1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "MCTargetDesc/ARMMCTargetDesc.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "MCTargetDesc/ARMAsmBackend.h"
13 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
14 #include "MCTargetDesc/ARMAsmBackendELF.h"
15 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
16 #include "MCTargetDesc/ARMBaseInfo.h"
17 #include "MCTargetDesc/ARMFixupKinds.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCMachObjectWriter.h"
27 #include "llvm/MC/MCObjectWriter.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSectionMachO.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ELF.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/MachO.h"
38 #include "llvm/Support/TargetParser.h"
39 #include "llvm/Support/raw_ostream.h"
40 using namespace llvm;
41 
42 namespace {
43 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
44 public:
45   ARMELFObjectWriter(uint8_t OSABI)
46       : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
47                                 /*HasRelocationAddend*/ false) {}
48 };
49 } // end anonymous namespace
50 
51 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
52   const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
53       // This table *must* be in the order that the fixup_* kinds are defined in
54       // ARMFixupKinds.h.
55       //
56       // Name                      Offset (bits) Size (bits)     Flags
57       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
58       {"fixup_t2_ldst_pcrel_12", 0, 32,
59        MCFixupKindInfo::FKF_IsPCRel |
60            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
61       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
62       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
63       {"fixup_t2_pcrel_10", 0, 32,
64        MCFixupKindInfo::FKF_IsPCRel |
65            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
66       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
67       {"fixup_t2_pcrel_9", 0, 32,
68        MCFixupKindInfo::FKF_IsPCRel |
69            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
70       {"fixup_thumb_adr_pcrel_10", 0, 8,
71        MCFixupKindInfo::FKF_IsPCRel |
72            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
73       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
74       {"fixup_t2_adr_pcrel_12", 0, 32,
75        MCFixupKindInfo::FKF_IsPCRel |
76            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
77       {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
78       {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
79       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
80       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
81       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
82       {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
83       {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
84       {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
85       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
86       {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
87       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
88       {"fixup_arm_thumb_cp", 0, 8,
89        MCFixupKindInfo::FKF_IsPCRel |
90            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
91       {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
92       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
93       // - 19.
94       {"fixup_arm_movt_hi16", 0, 20, 0},
95       {"fixup_arm_movw_lo16", 0, 20, 0},
96       {"fixup_t2_movt_hi16", 0, 20, 0},
97       {"fixup_t2_movw_lo16", 0, 20, 0},
98       {"fixup_arm_mod_imm", 0, 12, 0},
99   };
100   const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
101       // This table *must* be in the order that the fixup_* kinds are defined in
102       // ARMFixupKinds.h.
103       //
104       // Name                      Offset (bits) Size (bits)     Flags
105       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
106       {"fixup_t2_ldst_pcrel_12", 0, 32,
107        MCFixupKindInfo::FKF_IsPCRel |
108            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
109       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
110       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
111       {"fixup_t2_pcrel_10", 0, 32,
112        MCFixupKindInfo::FKF_IsPCRel |
113            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
114       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
115       {"fixup_t2_pcrel_9", 0, 32,
116        MCFixupKindInfo::FKF_IsPCRel |
117            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
118       {"fixup_thumb_adr_pcrel_10", 8, 8,
119        MCFixupKindInfo::FKF_IsPCRel |
120            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
121       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
122       {"fixup_t2_adr_pcrel_12", 0, 32,
123        MCFixupKindInfo::FKF_IsPCRel |
124            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
125       {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
126       {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
127       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
128       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
129       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
130       {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
131       {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
132       {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
133       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
134       {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
135       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
136       {"fixup_arm_thumb_cp", 8, 8,
137        MCFixupKindInfo::FKF_IsPCRel |
138            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
139       {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
140       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
141       // - 19.
142       {"fixup_arm_movt_hi16", 12, 20, 0},
143       {"fixup_arm_movw_lo16", 12, 20, 0},
144       {"fixup_t2_movt_hi16", 12, 20, 0},
145       {"fixup_t2_movw_lo16", 12, 20, 0},
146       {"fixup_arm_mod_imm", 20, 12, 0},
147   };
148 
149   if (Kind < FirstTargetFixupKind)
150     return MCAsmBackend::getFixupKindInfo(Kind);
151 
152   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
153          "Invalid kind!");
154   return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind];
155 }
156 
157 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
158   switch (Flag) {
159   default:
160     break;
161   case MCAF_Code16:
162     setIsThumb(true);
163     break;
164   case MCAF_Code32:
165     setIsThumb(false);
166     break;
167   }
168 }
169 
170 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op) const {
171   bool HasThumb2 = STI->getFeatureBits()[ARM::FeatureThumb2];
172   bool HasV8MBaselineOps = STI->getFeatureBits()[ARM::HasV8MBaselineOps];
173 
174   switch (Op) {
175   default:
176     return Op;
177   case ARM::tBcc:
178     return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
179   case ARM::tLDRpci:
180     return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
181   case ARM::tADR:
182     return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
183   case ARM::tB:
184     return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
185   case ARM::tCBZ:
186     return ARM::tHINT;
187   case ARM::tCBNZ:
188     return ARM::tHINT;
189   }
190 }
191 
192 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
193   if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode())
194     return true;
195   return false;
196 }
197 
198 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
199                                                     uint64_t Value) const {
200   switch ((unsigned)Fixup.getKind()) {
201   case ARM::fixup_arm_thumb_br: {
202     // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
203     // low bit being an implied zero. There's an implied +4 offset for the
204     // branch, so we adjust the other way here to determine what's
205     // encodable.
206     //
207     // Relax if the value is too big for a (signed) i8.
208     int64_t Offset = int64_t(Value) - 4;
209     if (Offset > 2046 || Offset < -2048)
210       return "out of range pc-relative fixup value";
211     break;
212   }
213   case ARM::fixup_arm_thumb_bcc: {
214     // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
215     // low bit being an implied zero. There's an implied +4 offset for the
216     // branch, so we adjust the other way here to determine what's
217     // encodable.
218     //
219     // Relax if the value is too big for a (signed) i8.
220     int64_t Offset = int64_t(Value) - 4;
221     if (Offset > 254 || Offset < -256)
222       return "out of range pc-relative fixup value";
223     break;
224   }
225   case ARM::fixup_thumb_adr_pcrel_10:
226   case ARM::fixup_arm_thumb_cp: {
227     // If the immediate is negative, greater than 1020, or not a multiple
228     // of four, the wide version of the instruction must be used.
229     int64_t Offset = int64_t(Value) - 4;
230     if (Offset & 3)
231       return "misaligned pc-relative fixup value";
232     else if (Offset > 1020 || Offset < 0)
233       return "out of range pc-relative fixup value";
234     break;
235   }
236   case ARM::fixup_arm_thumb_cb: {
237     // If we have a Thumb CBZ or CBNZ instruction and its target is the next
238     // instruction it is is actually out of range for the instruction.
239     // It will be changed to a NOP.
240     int64_t Offset = (Value & ~1);
241     if (Offset == 2)
242       return "will be converted to nop";
243     break;
244   }
245   default:
246     llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
247   }
248   return nullptr;
249 }
250 
251 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
252                                          const MCRelaxableFragment *DF,
253                                          const MCAsmLayout &Layout) const {
254   return reasonForFixupRelaxation(Fixup, Value);
255 }
256 
257 void ARMAsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
258   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
259 
260   // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
261   if (RelaxedOp == Inst.getOpcode()) {
262     SmallString<256> Tmp;
263     raw_svector_ostream OS(Tmp);
264     Inst.dump_pretty(OS);
265     OS << "\n";
266     report_fatal_error("unexpected instruction to relax: " + OS.str());
267   }
268 
269   // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
270   // have to change the operands too.
271   if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
272       RelaxedOp == ARM::tHINT) {
273     Res.setOpcode(RelaxedOp);
274     Res.addOperand(MCOperand::createImm(0));
275     Res.addOperand(MCOperand::createImm(14));
276     Res.addOperand(MCOperand::createReg(0));
277     return;
278   }
279 
280   // The rest of instructions we're relaxing have the same operands.
281   // We just need to update to the proper opcode.
282   Res = Inst;
283   Res.setOpcode(RelaxedOp);
284 }
285 
286 bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
287   const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
288   const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
289   const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
290   const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
291   if (isThumb()) {
292     const uint16_t nopEncoding =
293         hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
294     uint64_t NumNops = Count / 2;
295     for (uint64_t i = 0; i != NumNops; ++i)
296       OW->write16(nopEncoding);
297     if (Count & 1)
298       OW->write8(0);
299     return true;
300   }
301   // ARM mode
302   const uint32_t nopEncoding =
303       hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
304   uint64_t NumNops = Count / 4;
305   for (uint64_t i = 0; i != NumNops; ++i)
306     OW->write32(nopEncoding);
307   // FIXME: should this function return false when unable to write exactly
308   // 'Count' bytes with NOP encodings?
309   switch (Count % 4) {
310   default:
311     break; // No leftover bytes to write
312   case 1:
313     OW->write8(0);
314     break;
315   case 2:
316     OW->write16(0);
317     break;
318   case 3:
319     OW->write16(0);
320     OW->write8(0xa0);
321     break;
322   }
323 
324   return true;
325 }
326 
327 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
328   if (IsLittleEndian) {
329     // Note that the halfwords are stored high first and low second in thumb;
330     // so we need to swap the fixup value here to map properly.
331     uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
332     Swapped |= (Value & 0x0000FFFF) << 16;
333     return Swapped;
334   } else
335     return Value;
336 }
337 
338 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
339                               bool IsLittleEndian) {
340   uint32_t Value;
341 
342   if (IsLittleEndian) {
343     Value = (SecondHalf & 0xFFFF) << 16;
344     Value |= (FirstHalf & 0xFFFF);
345   } else {
346     Value = (SecondHalf & 0xFFFF);
347     Value |= (FirstHalf & 0xFFFF) << 16;
348   }
349 
350   return Value;
351 }
352 
353 unsigned ARMAsmBackend::adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
354                                          bool IsPCRel, MCContext *Ctx,
355                                          bool IsLittleEndian,
356                                          bool IsResolved) const {
357   unsigned Kind = Fixup.getKind();
358   switch (Kind) {
359   default:
360     llvm_unreachable("Unknown fixup kind!");
361   case FK_Data_1:
362   case FK_Data_2:
363   case FK_Data_4:
364     return Value;
365   case FK_SecRel_2:
366     return Value;
367   case FK_SecRel_4:
368     return Value;
369   case ARM::fixup_arm_movt_hi16:
370     if (!IsPCRel)
371       Value >>= 16;
372   // Fallthrough
373   case ARM::fixup_arm_movw_lo16: {
374     unsigned Hi4 = (Value & 0xF000) >> 12;
375     unsigned Lo12 = Value & 0x0FFF;
376     // inst{19-16} = Hi4;
377     // inst{11-0} = Lo12;
378     Value = (Hi4 << 16) | (Lo12);
379     return Value;
380   }
381   case ARM::fixup_t2_movt_hi16:
382     if (!IsPCRel)
383       Value >>= 16;
384   // Fallthrough
385   case ARM::fixup_t2_movw_lo16: {
386     unsigned Hi4 = (Value & 0xF000) >> 12;
387     unsigned i = (Value & 0x800) >> 11;
388     unsigned Mid3 = (Value & 0x700) >> 8;
389     unsigned Lo8 = Value & 0x0FF;
390     // inst{19-16} = Hi4;
391     // inst{26} = i;
392     // inst{14-12} = Mid3;
393     // inst{7-0} = Lo8;
394     Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
395     return swapHalfWords(Value, IsLittleEndian);
396   }
397   case ARM::fixup_arm_ldst_pcrel_12:
398     // ARM PC-relative values are offset by 8.
399     Value -= 4;
400   // FALLTHROUGH
401   case ARM::fixup_t2_ldst_pcrel_12: {
402     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
403     Value -= 4;
404     bool isAdd = true;
405     if ((int64_t)Value < 0) {
406       Value = -Value;
407       isAdd = false;
408     }
409     if (Ctx && Value >= 4096) {
410       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
411       return 0;
412     }
413     Value |= isAdd << 23;
414 
415     // Same addressing mode as fixup_arm_pcrel_10,
416     // but with 16-bit halfwords swapped.
417     if (Kind == ARM::fixup_t2_ldst_pcrel_12)
418       return swapHalfWords(Value, IsLittleEndian);
419 
420     return Value;
421   }
422   case ARM::fixup_arm_adr_pcrel_12: {
423     // ARM PC-relative values are offset by 8.
424     Value -= 8;
425     unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
426     if ((int64_t)Value < 0) {
427       Value = -Value;
428       opc = 2; // 0b0010
429     }
430     if (Ctx && ARM_AM::getSOImmVal(Value) == -1) {
431       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
432       return 0;
433     }
434     // Encode the immediate and shift the opcode into place.
435     return ARM_AM::getSOImmVal(Value) | (opc << 21);
436   }
437 
438   case ARM::fixup_t2_adr_pcrel_12: {
439     Value -= 4;
440     unsigned opc = 0;
441     if ((int64_t)Value < 0) {
442       Value = -Value;
443       opc = 5;
444     }
445 
446     uint32_t out = (opc << 21);
447     out |= (Value & 0x800) << 15;
448     out |= (Value & 0x700) << 4;
449     out |= (Value & 0x0FF);
450 
451     return swapHalfWords(out, IsLittleEndian);
452   }
453 
454   case ARM::fixup_arm_condbranch:
455   case ARM::fixup_arm_uncondbranch:
456   case ARM::fixup_arm_uncondbl:
457   case ARM::fixup_arm_condbl:
458   case ARM::fixup_arm_blx:
459     // These values don't encode the low two bits since they're always zero.
460     // Offset by 8 just as above.
461     if (const MCSymbolRefExpr *SRE =
462             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
463       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
464         return 0;
465     return 0xffffff & ((Value - 8) >> 2);
466   case ARM::fixup_t2_uncondbranch: {
467     Value = Value - 4;
468     Value >>= 1; // Low bit is not encoded.
469 
470     uint32_t out = 0;
471     bool I = Value & 0x800000;
472     bool J1 = Value & 0x400000;
473     bool J2 = Value & 0x200000;
474     J1 ^= I;
475     J2 ^= I;
476 
477     out |= I << 26;                 // S bit
478     out |= !J1 << 13;               // J1 bit
479     out |= !J2 << 11;               // J2 bit
480     out |= (Value & 0x1FF800) << 5; // imm6 field
481     out |= (Value & 0x0007FF);      // imm11 field
482 
483     return swapHalfWords(out, IsLittleEndian);
484   }
485   case ARM::fixup_t2_condbranch: {
486     Value = Value - 4;
487     Value >>= 1; // Low bit is not encoded.
488 
489     uint64_t out = 0;
490     out |= (Value & 0x80000) << 7; // S bit
491     out |= (Value & 0x40000) >> 7; // J2 bit
492     out |= (Value & 0x20000) >> 4; // J1 bit
493     out |= (Value & 0x1F800) << 5; // imm6 field
494     out |= (Value & 0x007FF);      // imm11 field
495 
496     return swapHalfWords(out, IsLittleEndian);
497   }
498   case ARM::fixup_arm_thumb_bl: {
499     // The value doesn't encode the low bit (always zero) and is offset by
500     // four. The 32-bit immediate value is encoded as
501     //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
502     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
503     // The value is encoded into disjoint bit positions in the destination
504     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
505     // J = either J1 or J2 bit
506     //
507     //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
508     //
509     // Note that the halfwords are stored high first, low second; so we need
510     // to transpose the fixup value here to map properly.
511     uint32_t offset = (Value - 4) >> 1;
512     uint32_t signBit = (offset & 0x800000) >> 23;
513     uint32_t I1Bit = (offset & 0x400000) >> 22;
514     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
515     uint32_t I2Bit = (offset & 0x200000) >> 21;
516     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
517     uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
518     uint32_t imm11Bits = (offset & 0x000007FF);
519 
520     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
521     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
522                            (uint16_t)imm11Bits);
523     return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
524   }
525   case ARM::fixup_arm_thumb_blx: {
526     // The value doesn't encode the low two bits (always zero) and is offset by
527     // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
528     //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
529     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
530     // The value is encoded into disjoint bit positions in the destination
531     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
532     // J = either J1 or J2 bit, 0 = zero.
533     //
534     //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
535     //
536     // Note that the halfwords are stored high first, low second; so we need
537     // to transpose the fixup value here to map properly.
538     uint32_t offset = (Value - 2) >> 2;
539     if (const MCSymbolRefExpr *SRE =
540             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
541       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
542         offset = 0;
543     uint32_t signBit = (offset & 0x400000) >> 22;
544     uint32_t I1Bit = (offset & 0x200000) >> 21;
545     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
546     uint32_t I2Bit = (offset & 0x100000) >> 20;
547     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
548     uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
549     uint32_t imm10LBits = (offset & 0x3FF);
550 
551     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
552     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
553                            ((uint16_t)imm10LBits) << 1);
554     return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
555   }
556   case ARM::fixup_thumb_adr_pcrel_10:
557   case ARM::fixup_arm_thumb_cp:
558     // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
559     // could have an error on our hands.
560     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
561       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
562       if (FixupDiagnostic) {
563         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
564         return 0;
565       }
566     }
567     // Offset by 4, and don't encode the low two bits.
568     return ((Value - 4) >> 2) & 0xff;
569   case ARM::fixup_arm_thumb_cb: {
570     // Offset by 4 and don't encode the lower bit, which is always 0.
571     // FIXME: diagnose if no Thumb2
572     uint32_t Binary = (Value - 4) >> 1;
573     return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
574   }
575   case ARM::fixup_arm_thumb_br:
576     // Offset by 4 and don't encode the lower bit, which is always 0.
577     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2] &&
578                !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) {
579       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
580       if (FixupDiagnostic) {
581         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
582         return 0;
583       }
584     }
585     return ((Value - 4) >> 1) & 0x7ff;
586   case ARM::fixup_arm_thumb_bcc:
587     // Offset by 4 and don't encode the lower bit, which is always 0.
588     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2]) {
589       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
590       if (FixupDiagnostic) {
591         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
592         return 0;
593       }
594     }
595     return ((Value - 4) >> 1) & 0xff;
596   case ARM::fixup_arm_pcrel_10_unscaled: {
597     Value = Value - 8; // ARM fixups offset by an additional word and don't
598                        // need to adjust for the half-word ordering.
599     bool isAdd = true;
600     if ((int64_t)Value < 0) {
601       Value = -Value;
602       isAdd = false;
603     }
604     // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
605     if (Ctx && Value >= 256) {
606       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
607       return 0;
608     }
609     Value = (Value & 0xf) | ((Value & 0xf0) << 4);
610     return Value | (isAdd << 23);
611   }
612   case ARM::fixup_arm_pcrel_10:
613     Value = Value - 4; // ARM fixups offset by an additional word and don't
614                        // need to adjust for the half-word ordering.
615                        // Fall through.
616   case ARM::fixup_t2_pcrel_10: {
617     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
618     Value = Value - 4;
619     bool isAdd = true;
620     if ((int64_t)Value < 0) {
621       Value = -Value;
622       isAdd = false;
623     }
624     // These values don't encode the low two bits since they're always zero.
625     Value >>= 2;
626     if (Ctx && Value >= 256) {
627       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
628       return 0;
629     }
630     Value |= isAdd << 23;
631 
632     // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
633     // swapped.
634     if (Kind == ARM::fixup_t2_pcrel_10)
635       return swapHalfWords(Value, IsLittleEndian);
636 
637     return Value;
638   }
639   case ARM::fixup_arm_pcrel_9:
640     Value = Value - 4; // ARM fixups offset by an additional word and don't
641                        // need to adjust for the half-word ordering.
642                        // Fall through.
643   case ARM::fixup_t2_pcrel_9: {
644     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
645     Value = Value - 4;
646     bool isAdd = true;
647     if ((int64_t)Value < 0) {
648       Value = -Value;
649       isAdd = false;
650     }
651     // These values don't encode the low bit since it's always zero.
652     if (Ctx && (Value & 1)) {
653       Ctx->reportError(Fixup.getLoc(), "invalid value for this fixup");
654       return 0;
655     }
656     Value >>= 1;
657     if (Ctx && Value >= 256) {
658       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
659       return 0;
660     }
661     Value |= isAdd << 23;
662 
663     // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
664     // swapped.
665     if (Kind == ARM::fixup_t2_pcrel_9)
666       return swapHalfWords(Value, IsLittleEndian);
667 
668     return Value;
669   }
670   case ARM::fixup_arm_mod_imm:
671     Value = ARM_AM::getSOImmVal(Value);
672     if (Ctx && Value >> 12) {
673       Ctx->reportError(Fixup.getLoc(), "out of range immediate fixup value");
674       return 0;
675     }
676     return Value;
677   }
678 }
679 
680 void ARMAsmBackend::processFixupValue(const MCAssembler &Asm,
681                                       const MCAsmLayout &Layout,
682                                       const MCFixup &Fixup,
683                                       const MCFragment *DF,
684                                       const MCValue &Target, uint64_t &Value,
685                                       bool &IsResolved) {
686   const MCSymbolRefExpr *A = Target.getSymA();
687   const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
688   // Some fixups to thumb function symbols need the low bit (thumb bit)
689   // twiddled.
690   if ((unsigned)Fixup.getKind() != ARM::fixup_arm_ldst_pcrel_12 &&
691       (unsigned)Fixup.getKind() != ARM::fixup_t2_ldst_pcrel_12 &&
692       (unsigned)Fixup.getKind() != ARM::fixup_arm_adr_pcrel_12 &&
693       (unsigned)Fixup.getKind() != ARM::fixup_thumb_adr_pcrel_10 &&
694       (unsigned)Fixup.getKind() != ARM::fixup_t2_adr_pcrel_12 &&
695       (unsigned)Fixup.getKind() != ARM::fixup_arm_thumb_cp) {
696     if (Sym) {
697       if (Asm.isThumbFunc(Sym))
698         Value |= 1;
699     }
700   }
701   if (IsResolved && (unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) {
702     assert(Sym && "How did we resolve this?");
703 
704     // If the symbol is external the linker will handle it.
705     // FIXME: Should we handle it as an optimization?
706 
707     // If the symbol is out of range, produce a relocation and hope the
708     // linker can handle it. GNU AS produces an error in this case.
709     if (Sym->isExternal() || Value >= 0x400004)
710       IsResolved = false;
711   }
712   // We must always generate a relocation for BL/BLX instructions if we have
713   // a symbol to reference, as the linker relies on knowing the destination
714   // symbol's thumb-ness to get interworking right.
715   if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx ||
716             (unsigned)Fixup.getKind() == ARM::fixup_arm_blx ||
717             (unsigned)Fixup.getKind() == ARM::fixup_arm_uncondbl ||
718             (unsigned)Fixup.getKind() == ARM::fixup_arm_condbl))
719     IsResolved = false;
720 
721   // Try to get the encoded value for the fixup as-if we're mapping it into
722   // the instruction. This allows adjustFixupValue() to issue a diagnostic
723   // if the value aren't invalid.
724   (void)adjustFixupValue(Fixup, Value, false, &Asm.getContext(),
725                          IsLittleEndian, IsResolved);
726 }
727 
728 /// getFixupKindNumBytes - The number of bytes the fixup may change.
729 static unsigned getFixupKindNumBytes(unsigned Kind) {
730   switch (Kind) {
731   default:
732     llvm_unreachable("Unknown fixup kind!");
733 
734   case FK_Data_1:
735   case ARM::fixup_arm_thumb_bcc:
736   case ARM::fixup_arm_thumb_cp:
737   case ARM::fixup_thumb_adr_pcrel_10:
738     return 1;
739 
740   case FK_Data_2:
741   case ARM::fixup_arm_thumb_br:
742   case ARM::fixup_arm_thumb_cb:
743   case ARM::fixup_arm_mod_imm:
744     return 2;
745 
746   case ARM::fixup_arm_pcrel_10_unscaled:
747   case ARM::fixup_arm_ldst_pcrel_12:
748   case ARM::fixup_arm_pcrel_10:
749   case ARM::fixup_arm_pcrel_9:
750   case ARM::fixup_arm_adr_pcrel_12:
751   case ARM::fixup_arm_uncondbl:
752   case ARM::fixup_arm_condbl:
753   case ARM::fixup_arm_blx:
754   case ARM::fixup_arm_condbranch:
755   case ARM::fixup_arm_uncondbranch:
756     return 3;
757 
758   case FK_Data_4:
759   case ARM::fixup_t2_ldst_pcrel_12:
760   case ARM::fixup_t2_condbranch:
761   case ARM::fixup_t2_uncondbranch:
762   case ARM::fixup_t2_pcrel_10:
763   case ARM::fixup_t2_pcrel_9:
764   case ARM::fixup_t2_adr_pcrel_12:
765   case ARM::fixup_arm_thumb_bl:
766   case ARM::fixup_arm_thumb_blx:
767   case ARM::fixup_arm_movt_hi16:
768   case ARM::fixup_arm_movw_lo16:
769   case ARM::fixup_t2_movt_hi16:
770   case ARM::fixup_t2_movw_lo16:
771     return 4;
772 
773   case FK_SecRel_2:
774     return 2;
775   case FK_SecRel_4:
776     return 4;
777   }
778 }
779 
780 /// getFixupKindContainerSizeBytes - The number of bytes of the
781 /// container involved in big endian.
782 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
783   switch (Kind) {
784   default:
785     llvm_unreachable("Unknown fixup kind!");
786 
787   case FK_Data_1:
788     return 1;
789   case FK_Data_2:
790     return 2;
791   case FK_Data_4:
792     return 4;
793 
794   case ARM::fixup_arm_thumb_bcc:
795   case ARM::fixup_arm_thumb_cp:
796   case ARM::fixup_thumb_adr_pcrel_10:
797   case ARM::fixup_arm_thumb_br:
798   case ARM::fixup_arm_thumb_cb:
799     // Instruction size is 2 bytes.
800     return 2;
801 
802   case ARM::fixup_arm_pcrel_10_unscaled:
803   case ARM::fixup_arm_ldst_pcrel_12:
804   case ARM::fixup_arm_pcrel_10:
805   case ARM::fixup_arm_adr_pcrel_12:
806   case ARM::fixup_arm_uncondbl:
807   case ARM::fixup_arm_condbl:
808   case ARM::fixup_arm_blx:
809   case ARM::fixup_arm_condbranch:
810   case ARM::fixup_arm_uncondbranch:
811   case ARM::fixup_t2_ldst_pcrel_12:
812   case ARM::fixup_t2_condbranch:
813   case ARM::fixup_t2_uncondbranch:
814   case ARM::fixup_t2_pcrel_10:
815   case ARM::fixup_t2_adr_pcrel_12:
816   case ARM::fixup_arm_thumb_bl:
817   case ARM::fixup_arm_thumb_blx:
818   case ARM::fixup_arm_movt_hi16:
819   case ARM::fixup_arm_movw_lo16:
820   case ARM::fixup_t2_movt_hi16:
821   case ARM::fixup_t2_movw_lo16:
822   case ARM::fixup_arm_mod_imm:
823     // Instruction size is 4 bytes.
824     return 4;
825   }
826 }
827 
828 void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
829                                unsigned DataSize, uint64_t Value,
830                                bool IsPCRel) const {
831   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
832   Value =
833       adjustFixupValue(Fixup, Value, IsPCRel, nullptr, IsLittleEndian, true);
834   if (!Value)
835     return; // Doesn't change encoding.
836 
837   unsigned Offset = Fixup.getOffset();
838   assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
839 
840   // Used to point to big endian bytes.
841   unsigned FullSizeBytes;
842   if (!IsLittleEndian) {
843     FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
844     assert((Offset + FullSizeBytes) <= DataSize && "Invalid fixup size!");
845     assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
846   }
847 
848   // For each byte of the fragment that the fixup touches, mask in the bits from
849   // the fixup value. The Value has been "split up" into the appropriate
850   // bitfields above.
851   for (unsigned i = 0; i != NumBytes; ++i) {
852     unsigned Idx = IsLittleEndian ? i : (FullSizeBytes - 1 - i);
853     Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
854   }
855 }
856 
857 namespace CU {
858 
859 /// \brief Compact unwind encoding values.
860 enum CompactUnwindEncodings {
861   UNWIND_ARM_MODE_MASK                         = 0x0F000000,
862   UNWIND_ARM_MODE_FRAME                        = 0x01000000,
863   UNWIND_ARM_MODE_FRAME_D                      = 0x02000000,
864   UNWIND_ARM_MODE_DWARF                        = 0x04000000,
865 
866   UNWIND_ARM_FRAME_STACK_ADJUST_MASK           = 0x00C00000,
867 
868   UNWIND_ARM_FRAME_FIRST_PUSH_R4               = 0x00000001,
869   UNWIND_ARM_FRAME_FIRST_PUSH_R5               = 0x00000002,
870   UNWIND_ARM_FRAME_FIRST_PUSH_R6               = 0x00000004,
871 
872   UNWIND_ARM_FRAME_SECOND_PUSH_R8              = 0x00000008,
873   UNWIND_ARM_FRAME_SECOND_PUSH_R9              = 0x00000010,
874   UNWIND_ARM_FRAME_SECOND_PUSH_R10             = 0x00000020,
875   UNWIND_ARM_FRAME_SECOND_PUSH_R11             = 0x00000040,
876   UNWIND_ARM_FRAME_SECOND_PUSH_R12             = 0x00000080,
877 
878   UNWIND_ARM_FRAME_D_REG_COUNT_MASK            = 0x00000F00,
879 
880   UNWIND_ARM_DWARF_SECTION_OFFSET              = 0x00FFFFFF
881 };
882 
883 } // end CU namespace
884 
885 /// Generate compact unwind encoding for the function based on the CFI
886 /// instructions. If the CFI instructions describe a frame that cannot be
887 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
888 /// tells the runtime to fallback and unwind using dwarf.
889 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
890     ArrayRef<MCCFIInstruction> Instrs) const {
891   DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
892   // Only armv7k uses CFI based unwinding.
893   if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
894     return 0;
895   // No .cfi directives means no frame.
896   if (Instrs.empty())
897     return 0;
898   // Start off assuming CFA is at SP+0.
899   int CFARegister = ARM::SP;
900   int CFARegisterOffset = 0;
901   // Mark savable registers as initially unsaved
902   DenseMap<unsigned, int> RegOffsets;
903   int FloatRegCount = 0;
904   // Process each .cfi directive and build up compact unwind info.
905   for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
906     int Reg;
907     const MCCFIInstruction &Inst = Instrs[i];
908     switch (Inst.getOperation()) {
909     case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
910       CFARegisterOffset = -Inst.getOffset();
911       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
912       break;
913     case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
914       CFARegisterOffset = -Inst.getOffset();
915       break;
916     case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
917       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
918       break;
919     case MCCFIInstruction::OpOffset: // DW_CFA_offset
920       Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
921       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
922         RegOffsets[Reg] = Inst.getOffset();
923       else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
924         RegOffsets[Reg] = Inst.getOffset();
925         ++FloatRegCount;
926       } else {
927         DEBUG_WITH_TYPE("compact-unwind",
928                         llvm::dbgs() << ".cfi_offset on unknown register="
929                                      << Inst.getRegister() << "\n");
930         return CU::UNWIND_ARM_MODE_DWARF;
931       }
932       break;
933     case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
934       // Ignore
935       break;
936     default:
937       // Directive not convertable to compact unwind, bail out.
938       DEBUG_WITH_TYPE("compact-unwind",
939                       llvm::dbgs()
940                           << "CFI directive not compatiable with comact "
941                              "unwind encoding, opcode=" << Inst.getOperation()
942                           << "\n");
943       return CU::UNWIND_ARM_MODE_DWARF;
944       break;
945     }
946   }
947 
948   // If no frame set up, return no unwind info.
949   if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
950     return 0;
951 
952   // Verify standard frame (lr/r7) was used.
953   if (CFARegister != ARM::R7) {
954     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
955                                                    << CFARegister
956                                                    << " instead of r7\n");
957     return CU::UNWIND_ARM_MODE_DWARF;
958   }
959   int StackAdjust = CFARegisterOffset - 8;
960   if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
961     DEBUG_WITH_TYPE("compact-unwind",
962                     llvm::dbgs()
963                         << "LR not saved as standard frame, StackAdjust="
964                         << StackAdjust
965                         << ", CFARegisterOffset=" << CFARegisterOffset
966                         << ", lr save at offset=" << RegOffsets[14] << "\n");
967     return CU::UNWIND_ARM_MODE_DWARF;
968   }
969   if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
970     DEBUG_WITH_TYPE("compact-unwind",
971                     llvm::dbgs() << "r7 not saved as standard frame\n");
972     return CU::UNWIND_ARM_MODE_DWARF;
973   }
974   uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
975 
976   // If var-args are used, there may be a stack adjust required.
977   switch (StackAdjust) {
978   case 0:
979     break;
980   case 4:
981     CompactUnwindEncoding |= 0x00400000;
982     break;
983   case 8:
984     CompactUnwindEncoding |= 0x00800000;
985     break;
986   case 12:
987     CompactUnwindEncoding |= 0x00C00000;
988     break;
989   default:
990     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
991                                           << ".cfi_def_cfa stack adjust ("
992                                           << StackAdjust << ") out of range\n");
993     return CU::UNWIND_ARM_MODE_DWARF;
994   }
995 
996   // If r6 is saved, it must be right below r7.
997   static struct {
998     unsigned Reg;
999     unsigned Encoding;
1000   } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1001                    {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
1002                    {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
1003                    {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
1004                    {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
1005                    {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
1006                    {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
1007                    {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
1008 
1009   int CurOffset = -8 - StackAdjust;
1010   for (auto CSReg : GPRCSRegs) {
1011     auto Offset = RegOffsets.find(CSReg.Reg);
1012     if (Offset == RegOffsets.end())
1013       continue;
1014 
1015     int RegOffset = Offset->second;
1016     if (RegOffset != CurOffset - 4) {
1017       DEBUG_WITH_TYPE("compact-unwind",
1018                       llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1019                                    << RegOffset << " but only supported at "
1020                                    << CurOffset << "\n");
1021       return CU::UNWIND_ARM_MODE_DWARF;
1022     }
1023     CompactUnwindEncoding |= CSReg.Encoding;
1024     CurOffset -= 4;
1025   }
1026 
1027   // If no floats saved, we are done.
1028   if (FloatRegCount == 0)
1029     return CompactUnwindEncoding;
1030 
1031   // Switch mode to include D register saving.
1032   CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1033   CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1034 
1035   // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1036   // but needs coordination with the linker and libunwind.
1037   if (FloatRegCount > 4) {
1038     DEBUG_WITH_TYPE("compact-unwind",
1039                     llvm::dbgs() << "unsupported number of D registers saved ("
1040                                  << FloatRegCount << ")\n");
1041       return CU::UNWIND_ARM_MODE_DWARF;
1042   }
1043 
1044   // Floating point registers must either be saved sequentially, or we defer to
1045   // DWARF. No gaps allowed here so check that each saved d-register is
1046   // precisely where it should be.
1047   static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1048   for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1049     auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1050     if (Offset == RegOffsets.end()) {
1051       DEBUG_WITH_TYPE("compact-unwind",
1052                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1053                                    << MRI.getName(FPRCSRegs[Idx])
1054                                    << " not saved\n");
1055       return CU::UNWIND_ARM_MODE_DWARF;
1056     } else if (Offset->second != CurOffset - 8) {
1057       DEBUG_WITH_TYPE("compact-unwind",
1058                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1059                                    << MRI.getName(FPRCSRegs[Idx])
1060                                    << " saved at " << Offset->second
1061                                    << ", expected at " << CurOffset - 8
1062                                    << "\n");
1063       return CU::UNWIND_ARM_MODE_DWARF;
1064     }
1065     CurOffset -= 8;
1066   }
1067 
1068   return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1069 }
1070 
1071 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
1072   unsigned AK = ARM::parseArch(Arch);
1073   switch (AK) {
1074   default:
1075     return MachO::CPU_SUBTYPE_ARM_V7;
1076   case ARM::AK_ARMV4T:
1077     return MachO::CPU_SUBTYPE_ARM_V4T;
1078   case ARM::AK_ARMV5T:
1079   case ARM::AK_ARMV5TE:
1080   case ARM::AK_ARMV5TEJ:
1081     return MachO::CPU_SUBTYPE_ARM_V5;
1082   case ARM::AK_ARMV6:
1083   case ARM::AK_ARMV6K:
1084     return MachO::CPU_SUBTYPE_ARM_V6;
1085   case ARM::AK_ARMV7A:
1086     return MachO::CPU_SUBTYPE_ARM_V7;
1087   case ARM::AK_ARMV7S:
1088     return MachO::CPU_SUBTYPE_ARM_V7S;
1089   case ARM::AK_ARMV7K:
1090     return MachO::CPU_SUBTYPE_ARM_V7K;
1091   case ARM::AK_ARMV6M:
1092     return MachO::CPU_SUBTYPE_ARM_V6M;
1093   case ARM::AK_ARMV7M:
1094     return MachO::CPU_SUBTYPE_ARM_V7M;
1095   case ARM::AK_ARMV7EM:
1096     return MachO::CPU_SUBTYPE_ARM_V7EM;
1097   }
1098 }
1099 
1100 MCAsmBackend *llvm::createARMAsmBackend(const Target &T,
1101                                         const MCRegisterInfo &MRI,
1102                                         const Triple &TheTriple, StringRef CPU,
1103                                         bool isLittle) {
1104   switch (TheTriple.getObjectFormat()) {
1105   default:
1106     llvm_unreachable("unsupported object format");
1107   case Triple::MachO: {
1108     MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
1109     return new ARMAsmBackendDarwin(T, TheTriple, MRI, CS);
1110   }
1111   case Triple::COFF:
1112     assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1113     return new ARMAsmBackendWinCOFF(T, TheTriple);
1114   case Triple::ELF:
1115     assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1116     uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1117     return new ARMAsmBackendELF(T, TheTriple, OSABI, isLittle);
1118   }
1119 }
1120 
1121 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1122                                           const MCRegisterInfo &MRI,
1123                                           const Triple &TT, StringRef CPU) {
1124   return createARMAsmBackend(T, MRI, TT, CPU, true);
1125 }
1126 
1127 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1128                                           const MCRegisterInfo &MRI,
1129                                           const Triple &TT, StringRef CPU) {
1130   return createARMAsmBackend(T, MRI, TT, CPU, false);
1131 }
1132 
1133 MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T,
1134                                             const MCRegisterInfo &MRI,
1135                                             const Triple &TT, StringRef CPU) {
1136   return createARMAsmBackend(T, MRI, TT, CPU, true);
1137 }
1138 
1139 MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T,
1140                                             const MCRegisterInfo &MRI,
1141                                             const Triple &TT, StringRef CPU) {
1142   return createARMAsmBackend(T, MRI, TT, CPU, false);
1143 }
1144