1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "MCTargetDesc/ARMAsmBackend.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
13 #include "MCTargetDesc/ARMAsmBackendELF.h"
14 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
15 #include "MCTargetDesc/ARMFixupKinds.h"
16 #include "MCTargetDesc/ARMMCTargetDesc.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/BinaryFormat/ELF.h"
19 #include "llvm/BinaryFormat/MachO.h"
20 #include "llvm/MC/MCAsmBackend.h"
21 #include "llvm/MC/MCAssembler.h"
22 #include "llvm/MC/MCContext.h"
23 #include "llvm/MC/MCDirectives.h"
24 #include "llvm/MC/MCELFObjectWriter.h"
25 #include "llvm/MC/MCExpr.h"
26 #include "llvm/MC/MCFixupKindInfo.h"
27 #include "llvm/MC/MCObjectWriter.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSectionMachO.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/TargetParser.h"
38 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm;
40 
41 namespace {
42 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
43 public:
44   ARMELFObjectWriter(uint8_t OSABI)
45       : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
46                                 /*HasRelocationAddend*/ false) {}
47 };
48 } // end anonymous namespace
49 
50 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
51   const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
52       // This table *must* be in the order that the fixup_* kinds are defined in
53       // ARMFixupKinds.h.
54       //
55       // Name                      Offset (bits) Size (bits)     Flags
56       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
57       {"fixup_t2_ldst_pcrel_12", 0, 32,
58        MCFixupKindInfo::FKF_IsPCRel |
59            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
60       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
61       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
62       {"fixup_t2_pcrel_10", 0, 32,
63        MCFixupKindInfo::FKF_IsPCRel |
64            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
65       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
66       {"fixup_t2_pcrel_9", 0, 32,
67        MCFixupKindInfo::FKF_IsPCRel |
68            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
69       {"fixup_thumb_adr_pcrel_10", 0, 8,
70        MCFixupKindInfo::FKF_IsPCRel |
71            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
72       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
73       {"fixup_t2_adr_pcrel_12", 0, 32,
74        MCFixupKindInfo::FKF_IsPCRel |
75            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
76       {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
77       {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
78       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
79       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
80       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
81       {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
82       {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
83       {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
84       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
85       {"fixup_arm_thumb_blx", 0, 32,
86        MCFixupKindInfo::FKF_IsPCRel |
87            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
88       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
89       {"fixup_arm_thumb_cp", 0, 8,
90        MCFixupKindInfo::FKF_IsPCRel |
91            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
92       {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
93       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
94       // - 19.
95       {"fixup_arm_movt_hi16", 0, 20, 0},
96       {"fixup_arm_movw_lo16", 0, 20, 0},
97       {"fixup_t2_movt_hi16", 0, 20, 0},
98       {"fixup_t2_movw_lo16", 0, 20, 0},
99       {"fixup_arm_mod_imm", 0, 12, 0},
100       {"fixup_t2_so_imm", 0, 26, 0},
101   };
102   const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
103       // This table *must* be in the order that the fixup_* kinds are defined in
104       // ARMFixupKinds.h.
105       //
106       // Name                      Offset (bits) Size (bits)     Flags
107       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
108       {"fixup_t2_ldst_pcrel_12", 0, 32,
109        MCFixupKindInfo::FKF_IsPCRel |
110            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
111       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
112       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
113       {"fixup_t2_pcrel_10", 0, 32,
114        MCFixupKindInfo::FKF_IsPCRel |
115            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
116       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
117       {"fixup_t2_pcrel_9", 0, 32,
118        MCFixupKindInfo::FKF_IsPCRel |
119            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
120       {"fixup_thumb_adr_pcrel_10", 8, 8,
121        MCFixupKindInfo::FKF_IsPCRel |
122            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
123       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
124       {"fixup_t2_adr_pcrel_12", 0, 32,
125        MCFixupKindInfo::FKF_IsPCRel |
126            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
127       {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
128       {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
129       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
130       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
131       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
132       {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
133       {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
134       {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
135       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
136       {"fixup_arm_thumb_blx", 0, 32,
137        MCFixupKindInfo::FKF_IsPCRel |
138            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
139       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
140       {"fixup_arm_thumb_cp", 8, 8,
141        MCFixupKindInfo::FKF_IsPCRel |
142            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
143       {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
144       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
145       // - 19.
146       {"fixup_arm_movt_hi16", 12, 20, 0},
147       {"fixup_arm_movw_lo16", 12, 20, 0},
148       {"fixup_t2_movt_hi16", 12, 20, 0},
149       {"fixup_t2_movw_lo16", 12, 20, 0},
150       {"fixup_arm_mod_imm", 20, 12, 0},
151       {"fixup_t2_so_imm", 26, 6, 0},
152   };
153 
154   if (Kind < FirstTargetFixupKind)
155     return MCAsmBackend::getFixupKindInfo(Kind);
156 
157   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
158          "Invalid kind!");
159   return (Endian == support::little ? InfosLE
160                                     : InfosBE)[Kind - FirstTargetFixupKind];
161 }
162 
163 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
164   switch (Flag) {
165   default:
166     break;
167   case MCAF_Code16:
168     setIsThumb(true);
169     break;
170   case MCAF_Code32:
171     setIsThumb(false);
172     break;
173   }
174 }
175 
176 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op) const {
177   bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2];
178   bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps];
179 
180   switch (Op) {
181   default:
182     return Op;
183   case ARM::tBcc:
184     return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
185   case ARM::tLDRpci:
186     return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
187   case ARM::tADR:
188     return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
189   case ARM::tB:
190     return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
191   case ARM::tCBZ:
192     return ARM::tHINT;
193   case ARM::tCBNZ:
194     return ARM::tHINT;
195   }
196 }
197 
198 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
199   if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode())
200     return true;
201   return false;
202 }
203 
204 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
205                                                     uint64_t Value) const {
206   switch ((unsigned)Fixup.getKind()) {
207   case ARM::fixup_arm_thumb_br: {
208     // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
209     // low bit being an implied zero. There's an implied +4 offset for the
210     // branch, so we adjust the other way here to determine what's
211     // encodable.
212     //
213     // Relax if the value is too big for a (signed) i8.
214     int64_t Offset = int64_t(Value) - 4;
215     if (Offset > 2046 || Offset < -2048)
216       return "out of range pc-relative fixup value";
217     break;
218   }
219   case ARM::fixup_arm_thumb_bcc: {
220     // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
221     // low bit being an implied zero. There's an implied +4 offset for the
222     // branch, so we adjust the other way here to determine what's
223     // encodable.
224     //
225     // Relax if the value is too big for a (signed) i8.
226     int64_t Offset = int64_t(Value) - 4;
227     if (Offset > 254 || Offset < -256)
228       return "out of range pc-relative fixup value";
229     break;
230   }
231   case ARM::fixup_thumb_adr_pcrel_10:
232   case ARM::fixup_arm_thumb_cp: {
233     // If the immediate is negative, greater than 1020, or not a multiple
234     // of four, the wide version of the instruction must be used.
235     int64_t Offset = int64_t(Value) - 4;
236     if (Offset & 3)
237       return "misaligned pc-relative fixup value";
238     else if (Offset > 1020 || Offset < 0)
239       return "out of range pc-relative fixup value";
240     break;
241   }
242   case ARM::fixup_arm_thumb_cb: {
243     // If we have a Thumb CBZ or CBNZ instruction and its target is the next
244     // instruction it is actually out of range for the instruction.
245     // It will be changed to a NOP.
246     int64_t Offset = (Value & ~1);
247     if (Offset == 2)
248       return "will be converted to nop";
249     break;
250   }
251   default:
252     llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
253   }
254   return nullptr;
255 }
256 
257 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
258                                          const MCRelaxableFragment *DF,
259                                          const MCAsmLayout &Layout) const {
260   return reasonForFixupRelaxation(Fixup, Value);
261 }
262 
263 void ARMAsmBackend::relaxInstruction(const MCInst &Inst,
264                                      const MCSubtargetInfo &STI,
265                                      MCInst &Res) const {
266   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
267 
268   // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
269   if (RelaxedOp == Inst.getOpcode()) {
270     SmallString<256> Tmp;
271     raw_svector_ostream OS(Tmp);
272     Inst.dump_pretty(OS);
273     OS << "\n";
274     report_fatal_error("unexpected instruction to relax: " + OS.str());
275   }
276 
277   // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
278   // have to change the operands too.
279   if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
280       RelaxedOp == ARM::tHINT) {
281     Res.setOpcode(RelaxedOp);
282     Res.addOperand(MCOperand::createImm(0));
283     Res.addOperand(MCOperand::createImm(14));
284     Res.addOperand(MCOperand::createReg(0));
285     return;
286   }
287 
288   // The rest of instructions we're relaxing have the same operands.
289   // We just need to update to the proper opcode.
290   Res = Inst;
291   Res.setOpcode(RelaxedOp);
292 }
293 
294 bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
295   const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
296   const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
297   const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
298   const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
299   if (isThumb()) {
300     const uint16_t nopEncoding =
301         hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
302     uint64_t NumNops = Count / 2;
303     for (uint64_t i = 0; i != NumNops; ++i)
304       support::endian::write(OS, nopEncoding, Endian);
305     if (Count & 1)
306       OS << '\0';
307     return true;
308   }
309   // ARM mode
310   const uint32_t nopEncoding =
311       hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
312   uint64_t NumNops = Count / 4;
313   for (uint64_t i = 0; i != NumNops; ++i)
314     support::endian::write(OS, nopEncoding, Endian);
315   // FIXME: should this function return false when unable to write exactly
316   // 'Count' bytes with NOP encodings?
317   switch (Count % 4) {
318   default:
319     break; // No leftover bytes to write
320   case 1:
321     OS << '\0';
322     break;
323   case 2:
324     OS.write("\0\0", 2);
325     break;
326   case 3:
327     OS.write("\0\0\xa0", 3);
328     break;
329   }
330 
331   return true;
332 }
333 
334 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
335   if (IsLittleEndian) {
336     // Note that the halfwords are stored high first and low second in thumb;
337     // so we need to swap the fixup value here to map properly.
338     uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
339     Swapped |= (Value & 0x0000FFFF) << 16;
340     return Swapped;
341   } else
342     return Value;
343 }
344 
345 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
346                               bool IsLittleEndian) {
347   uint32_t Value;
348 
349   if (IsLittleEndian) {
350     Value = (SecondHalf & 0xFFFF) << 16;
351     Value |= (FirstHalf & 0xFFFF);
352   } else {
353     Value = (SecondHalf & 0xFFFF);
354     Value |= (FirstHalf & 0xFFFF) << 16;
355   }
356 
357   return Value;
358 }
359 
360 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm,
361                                          const MCFixup &Fixup,
362                                          const MCValue &Target, uint64_t Value,
363                                          bool IsResolved, MCContext &Ctx) const {
364   unsigned Kind = Fixup.getKind();
365 
366   // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
367   // and .word relocations they put the Thumb bit into the addend if possible.
368   // Other relocation types don't want this bit though (branches couldn't encode
369   // it if it *was* present, and no other relocations exist) and it can
370   // interfere with checking valid expressions.
371   if (const MCSymbolRefExpr *A = Target.getSymA()) {
372     if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) &&
373         (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 ||
374          Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 ||
375          Kind == ARM::fixup_t2_movt_hi16))
376       Value |= 1;
377   }
378 
379   switch (Kind) {
380   default:
381     Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type");
382     return 0;
383   case FK_Data_1:
384   case FK_Data_2:
385   case FK_Data_4:
386     return Value;
387   case FK_SecRel_2:
388     return Value;
389   case FK_SecRel_4:
390     return Value;
391   case ARM::fixup_arm_movt_hi16:
392     if (IsResolved || !STI.getTargetTriple().isOSBinFormatELF())
393       Value >>= 16;
394     LLVM_FALLTHROUGH;
395   case ARM::fixup_arm_movw_lo16: {
396     unsigned Hi4 = (Value & 0xF000) >> 12;
397     unsigned Lo12 = Value & 0x0FFF;
398     // inst{19-16} = Hi4;
399     // inst{11-0} = Lo12;
400     Value = (Hi4 << 16) | (Lo12);
401     return Value;
402   }
403   case ARM::fixup_t2_movt_hi16:
404     if (IsResolved || !STI.getTargetTriple().isOSBinFormatELF())
405       Value >>= 16;
406     LLVM_FALLTHROUGH;
407   case ARM::fixup_t2_movw_lo16: {
408     unsigned Hi4 = (Value & 0xF000) >> 12;
409     unsigned i = (Value & 0x800) >> 11;
410     unsigned Mid3 = (Value & 0x700) >> 8;
411     unsigned Lo8 = Value & 0x0FF;
412     // inst{19-16} = Hi4;
413     // inst{26} = i;
414     // inst{14-12} = Mid3;
415     // inst{7-0} = Lo8;
416     Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
417     return swapHalfWords(Value, Endian == support::little);
418   }
419   case ARM::fixup_arm_ldst_pcrel_12:
420     // ARM PC-relative values are offset by 8.
421     Value -= 4;
422     LLVM_FALLTHROUGH;
423   case ARM::fixup_t2_ldst_pcrel_12: {
424     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
425     Value -= 4;
426     bool isAdd = true;
427     if ((int64_t)Value < 0) {
428       Value = -Value;
429       isAdd = false;
430     }
431     if (Value >= 4096) {
432       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
433       return 0;
434     }
435     Value |= isAdd << 23;
436 
437     // Same addressing mode as fixup_arm_pcrel_10,
438     // but with 16-bit halfwords swapped.
439     if (Kind == ARM::fixup_t2_ldst_pcrel_12)
440       return swapHalfWords(Value, Endian == support::little);
441 
442     return Value;
443   }
444   case ARM::fixup_arm_adr_pcrel_12: {
445     // ARM PC-relative values are offset by 8.
446     Value -= 8;
447     unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
448     if ((int64_t)Value < 0) {
449       Value = -Value;
450       opc = 2; // 0b0010
451     }
452     if (ARM_AM::getSOImmVal(Value) == -1) {
453       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
454       return 0;
455     }
456     // Encode the immediate and shift the opcode into place.
457     return ARM_AM::getSOImmVal(Value) | (opc << 21);
458   }
459 
460   case ARM::fixup_t2_adr_pcrel_12: {
461     Value -= 4;
462     unsigned opc = 0;
463     if ((int64_t)Value < 0) {
464       Value = -Value;
465       opc = 5;
466     }
467 
468     uint32_t out = (opc << 21);
469     out |= (Value & 0x800) << 15;
470     out |= (Value & 0x700) << 4;
471     out |= (Value & 0x0FF);
472 
473     return swapHalfWords(out, Endian == support::little);
474   }
475 
476   case ARM::fixup_arm_condbranch:
477   case ARM::fixup_arm_uncondbranch:
478   case ARM::fixup_arm_uncondbl:
479   case ARM::fixup_arm_condbl:
480   case ARM::fixup_arm_blx:
481     // These values don't encode the low two bits since they're always zero.
482     // Offset by 8 just as above.
483     if (const MCSymbolRefExpr *SRE =
484             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
485       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
486         return 0;
487     return 0xffffff & ((Value - 8) >> 2);
488   case ARM::fixup_t2_uncondbranch: {
489     Value = Value - 4;
490     Value >>= 1; // Low bit is not encoded.
491 
492     uint32_t out = 0;
493     bool I = Value & 0x800000;
494     bool J1 = Value & 0x400000;
495     bool J2 = Value & 0x200000;
496     J1 ^= I;
497     J2 ^= I;
498 
499     out |= I << 26;                 // S bit
500     out |= !J1 << 13;               // J1 bit
501     out |= !J2 << 11;               // J2 bit
502     out |= (Value & 0x1FF800) << 5; // imm6 field
503     out |= (Value & 0x0007FF);      // imm11 field
504 
505     return swapHalfWords(out, Endian == support::little);
506   }
507   case ARM::fixup_t2_condbranch: {
508     Value = Value - 4;
509     Value >>= 1; // Low bit is not encoded.
510 
511     uint64_t out = 0;
512     out |= (Value & 0x80000) << 7; // S bit
513     out |= (Value & 0x40000) >> 7; // J2 bit
514     out |= (Value & 0x20000) >> 4; // J1 bit
515     out |= (Value & 0x1F800) << 5; // imm6 field
516     out |= (Value & 0x007FF);      // imm11 field
517 
518     return swapHalfWords(out, Endian == support::little);
519   }
520   case ARM::fixup_arm_thumb_bl: {
521     // FIXME: We get both thumb1 and thumb2 in here, so we can only check for
522     // the less strict thumb2 value.
523     if (!isInt<26>(Value - 4)) {
524       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
525       return 0;
526     }
527 
528     // The value doesn't encode the low bit (always zero) and is offset by
529     // four. The 32-bit immediate value is encoded as
530     //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
531     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
532     // The value is encoded into disjoint bit positions in the destination
533     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
534     // J = either J1 or J2 bit
535     //
536     //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
537     //
538     // Note that the halfwords are stored high first, low second; so we need
539     // to transpose the fixup value here to map properly.
540     uint32_t offset = (Value - 4) >> 1;
541     uint32_t signBit = (offset & 0x800000) >> 23;
542     uint32_t I1Bit = (offset & 0x400000) >> 22;
543     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
544     uint32_t I2Bit = (offset & 0x200000) >> 21;
545     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
546     uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
547     uint32_t imm11Bits = (offset & 0x000007FF);
548 
549     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
550     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
551                            (uint16_t)imm11Bits);
552     return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
553   }
554   case ARM::fixup_arm_thumb_blx: {
555     // The value doesn't encode the low two bits (always zero) and is offset by
556     // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
557     //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
558     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
559     // The value is encoded into disjoint bit positions in the destination
560     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
561     // J = either J1 or J2 bit, 0 = zero.
562     //
563     //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
564     //
565     // Note that the halfwords are stored high first, low second; so we need
566     // to transpose the fixup value here to map properly.
567     if (Value % 4 != 0) {
568       Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination");
569       return 0;
570     }
571 
572     uint32_t offset = (Value - 4) >> 2;
573     if (const MCSymbolRefExpr *SRE =
574             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
575       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
576         offset = 0;
577     uint32_t signBit = (offset & 0x400000) >> 22;
578     uint32_t I1Bit = (offset & 0x200000) >> 21;
579     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
580     uint32_t I2Bit = (offset & 0x100000) >> 20;
581     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
582     uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
583     uint32_t imm10LBits = (offset & 0x3FF);
584 
585     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
586     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
587                            ((uint16_t)imm10LBits) << 1);
588     return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
589   }
590   case ARM::fixup_thumb_adr_pcrel_10:
591   case ARM::fixup_arm_thumb_cp:
592     // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
593     // could have an error on our hands.
594     if (!STI.getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
595       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
596       if (FixupDiagnostic) {
597         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
598         return 0;
599       }
600     }
601     // Offset by 4, and don't encode the low two bits.
602     return ((Value - 4) >> 2) & 0xff;
603   case ARM::fixup_arm_thumb_cb: {
604     // CB instructions can only branch to offsets in [4, 126] in multiples of 2
605     // so ensure that the raw value LSB is zero and it lies in [2, 130].
606     // An offset of 2 will be relaxed to a NOP.
607     if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) {
608       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
609       return 0;
610     }
611     // Offset by 4 and don't encode the lower bit, which is always 0.
612     // FIXME: diagnose if no Thumb2
613     uint32_t Binary = (Value - 4) >> 1;
614     return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
615   }
616   case ARM::fixup_arm_thumb_br:
617     // Offset by 4 and don't encode the lower bit, which is always 0.
618     if (!STI.getFeatureBits()[ARM::FeatureThumb2] &&
619         !STI.getFeatureBits()[ARM::HasV8MBaselineOps]) {
620       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
621       if (FixupDiagnostic) {
622         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
623         return 0;
624       }
625     }
626     return ((Value - 4) >> 1) & 0x7ff;
627   case ARM::fixup_arm_thumb_bcc:
628     // Offset by 4 and don't encode the lower bit, which is always 0.
629     if (!STI.getFeatureBits()[ARM::FeatureThumb2]) {
630       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
631       if (FixupDiagnostic) {
632         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
633         return 0;
634       }
635     }
636     return ((Value - 4) >> 1) & 0xff;
637   case ARM::fixup_arm_pcrel_10_unscaled: {
638     Value = Value - 8; // ARM fixups offset by an additional word and don't
639                        // need to adjust for the half-word ordering.
640     bool isAdd = true;
641     if ((int64_t)Value < 0) {
642       Value = -Value;
643       isAdd = false;
644     }
645     // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
646     if (Value >= 256) {
647       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
648       return 0;
649     }
650     Value = (Value & 0xf) | ((Value & 0xf0) << 4);
651     return Value | (isAdd << 23);
652   }
653   case ARM::fixup_arm_pcrel_10:
654     Value = Value - 4; // ARM fixups offset by an additional word and don't
655                        // need to adjust for the half-word ordering.
656     LLVM_FALLTHROUGH;
657   case ARM::fixup_t2_pcrel_10: {
658     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
659     Value = Value - 4;
660     bool isAdd = true;
661     if ((int64_t)Value < 0) {
662       Value = -Value;
663       isAdd = false;
664     }
665     // These values don't encode the low two bits since they're always zero.
666     Value >>= 2;
667     if (Value >= 256) {
668       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
669       return 0;
670     }
671     Value |= isAdd << 23;
672 
673     // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
674     // swapped.
675     if (Kind == ARM::fixup_t2_pcrel_10)
676       return swapHalfWords(Value, Endian == support::little);
677 
678     return Value;
679   }
680   case ARM::fixup_arm_pcrel_9:
681     Value = Value - 4; // ARM fixups offset by an additional word and don't
682                        // need to adjust for the half-word ordering.
683     LLVM_FALLTHROUGH;
684   case ARM::fixup_t2_pcrel_9: {
685     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
686     Value = Value - 4;
687     bool isAdd = true;
688     if ((int64_t)Value < 0) {
689       Value = -Value;
690       isAdd = false;
691     }
692     // These values don't encode the low bit since it's always zero.
693     if (Value & 1) {
694       Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup");
695       return 0;
696     }
697     Value >>= 1;
698     if (Value >= 256) {
699       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
700       return 0;
701     }
702     Value |= isAdd << 23;
703 
704     // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
705     // swapped.
706     if (Kind == ARM::fixup_t2_pcrel_9)
707       return swapHalfWords(Value, Endian == support::little);
708 
709     return Value;
710   }
711   case ARM::fixup_arm_mod_imm:
712     Value = ARM_AM::getSOImmVal(Value);
713     if (Value >> 12) {
714       Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
715       return 0;
716     }
717     return Value;
718   case ARM::fixup_t2_so_imm: {
719     Value = ARM_AM::getT2SOImmVal(Value);
720     if ((int64_t)Value < 0) {
721       Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
722       return 0;
723     }
724     // Value will contain a 12-bit value broken up into a 4-bit shift in bits
725     // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
726     // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
727     // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
728     // half-word.
729     uint64_t EncValue = 0;
730     EncValue |= (Value & 0x800) << 15;
731     EncValue |= (Value & 0x700) << 4;
732     EncValue |= (Value & 0xff);
733     return swapHalfWords(EncValue, Endian == support::little);
734   }
735   }
736 }
737 
738 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
739                                           const MCFixup &Fixup,
740                                           const MCValue &Target) {
741   const MCSymbolRefExpr *A = Target.getSymA();
742   const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
743   const unsigned FixupKind = Fixup.getKind() ;
744   if ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) {
745     assert(Sym && "How did we resolve this?");
746 
747     // If the symbol is external the linker will handle it.
748     // FIXME: Should we handle it as an optimization?
749 
750     // If the symbol is out of range, produce a relocation and hope the
751     // linker can handle it. GNU AS produces an error in this case.
752     if (Sym->isExternal())
753       return true;
754   }
755   // Create relocations for unconditional branches to function symbols with
756   // different execution mode in ELF binaries.
757   if (Sym && Sym->isELF()) {
758     unsigned Type = cast<MCSymbolELF>(Sym)->getType();
759     if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) {
760       if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch))
761         return true;
762       if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br ||
763                                     FixupKind == ARM::fixup_arm_thumb_bl ||
764                                     FixupKind == ARM::fixup_t2_condbranch ||
765                                     FixupKind == ARM::fixup_t2_uncondbranch))
766         return true;
767     }
768   }
769   // We must always generate a relocation for BL/BLX instructions if we have
770   // a symbol to reference, as the linker relies on knowing the destination
771   // symbol's thumb-ness to get interworking right.
772   if (A && (FixupKind == ARM::fixup_arm_thumb_blx ||
773             FixupKind == ARM::fixup_arm_blx ||
774             FixupKind == ARM::fixup_arm_uncondbl ||
775             FixupKind == ARM::fixup_arm_condbl))
776     return true;
777   return false;
778 }
779 
780 /// getFixupKindNumBytes - The number of bytes the fixup may change.
781 static unsigned getFixupKindNumBytes(unsigned Kind) {
782   switch (Kind) {
783   default:
784     llvm_unreachable("Unknown fixup kind!");
785 
786   case FK_Data_1:
787   case ARM::fixup_arm_thumb_bcc:
788   case ARM::fixup_arm_thumb_cp:
789   case ARM::fixup_thumb_adr_pcrel_10:
790     return 1;
791 
792   case FK_Data_2:
793   case ARM::fixup_arm_thumb_br:
794   case ARM::fixup_arm_thumb_cb:
795   case ARM::fixup_arm_mod_imm:
796     return 2;
797 
798   case ARM::fixup_arm_pcrel_10_unscaled:
799   case ARM::fixup_arm_ldst_pcrel_12:
800   case ARM::fixup_arm_pcrel_10:
801   case ARM::fixup_arm_pcrel_9:
802   case ARM::fixup_arm_adr_pcrel_12:
803   case ARM::fixup_arm_uncondbl:
804   case ARM::fixup_arm_condbl:
805   case ARM::fixup_arm_blx:
806   case ARM::fixup_arm_condbranch:
807   case ARM::fixup_arm_uncondbranch:
808     return 3;
809 
810   case FK_Data_4:
811   case ARM::fixup_t2_ldst_pcrel_12:
812   case ARM::fixup_t2_condbranch:
813   case ARM::fixup_t2_uncondbranch:
814   case ARM::fixup_t2_pcrel_10:
815   case ARM::fixup_t2_pcrel_9:
816   case ARM::fixup_t2_adr_pcrel_12:
817   case ARM::fixup_arm_thumb_bl:
818   case ARM::fixup_arm_thumb_blx:
819   case ARM::fixup_arm_movt_hi16:
820   case ARM::fixup_arm_movw_lo16:
821   case ARM::fixup_t2_movt_hi16:
822   case ARM::fixup_t2_movw_lo16:
823   case ARM::fixup_t2_so_imm:
824     return 4;
825 
826   case FK_SecRel_2:
827     return 2;
828   case FK_SecRel_4:
829     return 4;
830   }
831 }
832 
833 /// getFixupKindContainerSizeBytes - The number of bytes of the
834 /// container involved in big endian.
835 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
836   switch (Kind) {
837   default:
838     llvm_unreachable("Unknown fixup kind!");
839 
840   case FK_Data_1:
841     return 1;
842   case FK_Data_2:
843     return 2;
844   case FK_Data_4:
845     return 4;
846 
847   case ARM::fixup_arm_thumb_bcc:
848   case ARM::fixup_arm_thumb_cp:
849   case ARM::fixup_thumb_adr_pcrel_10:
850   case ARM::fixup_arm_thumb_br:
851   case ARM::fixup_arm_thumb_cb:
852     // Instruction size is 2 bytes.
853     return 2;
854 
855   case ARM::fixup_arm_pcrel_10_unscaled:
856   case ARM::fixup_arm_ldst_pcrel_12:
857   case ARM::fixup_arm_pcrel_10:
858   case ARM::fixup_arm_adr_pcrel_12:
859   case ARM::fixup_arm_uncondbl:
860   case ARM::fixup_arm_condbl:
861   case ARM::fixup_arm_blx:
862   case ARM::fixup_arm_condbranch:
863   case ARM::fixup_arm_uncondbranch:
864   case ARM::fixup_t2_ldst_pcrel_12:
865   case ARM::fixup_t2_condbranch:
866   case ARM::fixup_t2_uncondbranch:
867   case ARM::fixup_t2_pcrel_10:
868   case ARM::fixup_t2_adr_pcrel_12:
869   case ARM::fixup_arm_thumb_bl:
870   case ARM::fixup_arm_thumb_blx:
871   case ARM::fixup_arm_movt_hi16:
872   case ARM::fixup_arm_movw_lo16:
873   case ARM::fixup_t2_movt_hi16:
874   case ARM::fixup_t2_movw_lo16:
875   case ARM::fixup_arm_mod_imm:
876   case ARM::fixup_t2_so_imm:
877     // Instruction size is 4 bytes.
878     return 4;
879   }
880 }
881 
882 void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
883                                const MCValue &Target,
884                                MutableArrayRef<char> Data, uint64_t Value,
885                                bool IsResolved) const {
886   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
887   MCContext &Ctx = Asm.getContext();
888   Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx);
889   if (!Value)
890     return; // Doesn't change encoding.
891 
892   unsigned Offset = Fixup.getOffset();
893   assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
894 
895   // Used to point to big endian bytes.
896   unsigned FullSizeBytes;
897   if (Endian == support::big) {
898     FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
899     assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!");
900     assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
901   }
902 
903   // For each byte of the fragment that the fixup touches, mask in the bits from
904   // the fixup value. The Value has been "split up" into the appropriate
905   // bitfields above.
906   for (unsigned i = 0; i != NumBytes; ++i) {
907     unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i);
908     Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
909   }
910 }
911 
912 namespace CU {
913 
914 /// Compact unwind encoding values.
915 enum CompactUnwindEncodings {
916   UNWIND_ARM_MODE_MASK                         = 0x0F000000,
917   UNWIND_ARM_MODE_FRAME                        = 0x01000000,
918   UNWIND_ARM_MODE_FRAME_D                      = 0x02000000,
919   UNWIND_ARM_MODE_DWARF                        = 0x04000000,
920 
921   UNWIND_ARM_FRAME_STACK_ADJUST_MASK           = 0x00C00000,
922 
923   UNWIND_ARM_FRAME_FIRST_PUSH_R4               = 0x00000001,
924   UNWIND_ARM_FRAME_FIRST_PUSH_R5               = 0x00000002,
925   UNWIND_ARM_FRAME_FIRST_PUSH_R6               = 0x00000004,
926 
927   UNWIND_ARM_FRAME_SECOND_PUSH_R8              = 0x00000008,
928   UNWIND_ARM_FRAME_SECOND_PUSH_R9              = 0x00000010,
929   UNWIND_ARM_FRAME_SECOND_PUSH_R10             = 0x00000020,
930   UNWIND_ARM_FRAME_SECOND_PUSH_R11             = 0x00000040,
931   UNWIND_ARM_FRAME_SECOND_PUSH_R12             = 0x00000080,
932 
933   UNWIND_ARM_FRAME_D_REG_COUNT_MASK            = 0x00000F00,
934 
935   UNWIND_ARM_DWARF_SECTION_OFFSET              = 0x00FFFFFF
936 };
937 
938 } // end CU namespace
939 
940 /// Generate compact unwind encoding for the function based on the CFI
941 /// instructions. If the CFI instructions describe a frame that cannot be
942 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
943 /// tells the runtime to fallback and unwind using dwarf.
944 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
945     ArrayRef<MCCFIInstruction> Instrs) const {
946   DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
947   // Only armv7k uses CFI based unwinding.
948   if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
949     return 0;
950   // No .cfi directives means no frame.
951   if (Instrs.empty())
952     return 0;
953   // Start off assuming CFA is at SP+0.
954   int CFARegister = ARM::SP;
955   int CFARegisterOffset = 0;
956   // Mark savable registers as initially unsaved
957   DenseMap<unsigned, int> RegOffsets;
958   int FloatRegCount = 0;
959   // Process each .cfi directive and build up compact unwind info.
960   for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
961     int Reg;
962     const MCCFIInstruction &Inst = Instrs[i];
963     switch (Inst.getOperation()) {
964     case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
965       CFARegisterOffset = -Inst.getOffset();
966       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
967       break;
968     case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
969       CFARegisterOffset = -Inst.getOffset();
970       break;
971     case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
972       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
973       break;
974     case MCCFIInstruction::OpOffset: // DW_CFA_offset
975       Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
976       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
977         RegOffsets[Reg] = Inst.getOffset();
978       else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
979         RegOffsets[Reg] = Inst.getOffset();
980         ++FloatRegCount;
981       } else {
982         DEBUG_WITH_TYPE("compact-unwind",
983                         llvm::dbgs() << ".cfi_offset on unknown register="
984                                      << Inst.getRegister() << "\n");
985         return CU::UNWIND_ARM_MODE_DWARF;
986       }
987       break;
988     case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
989       // Ignore
990       break;
991     default:
992       // Directive not convertable to compact unwind, bail out.
993       DEBUG_WITH_TYPE("compact-unwind",
994                       llvm::dbgs()
995                           << "CFI directive not compatiable with comact "
996                              "unwind encoding, opcode=" << Inst.getOperation()
997                           << "\n");
998       return CU::UNWIND_ARM_MODE_DWARF;
999       break;
1000     }
1001   }
1002 
1003   // If no frame set up, return no unwind info.
1004   if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
1005     return 0;
1006 
1007   // Verify standard frame (lr/r7) was used.
1008   if (CFARegister != ARM::R7) {
1009     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1010                                                    << CFARegister
1011                                                    << " instead of r7\n");
1012     return CU::UNWIND_ARM_MODE_DWARF;
1013   }
1014   int StackAdjust = CFARegisterOffset - 8;
1015   if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
1016     DEBUG_WITH_TYPE("compact-unwind",
1017                     llvm::dbgs()
1018                         << "LR not saved as standard frame, StackAdjust="
1019                         << StackAdjust
1020                         << ", CFARegisterOffset=" << CFARegisterOffset
1021                         << ", lr save at offset=" << RegOffsets[14] << "\n");
1022     return CU::UNWIND_ARM_MODE_DWARF;
1023   }
1024   if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
1025     DEBUG_WITH_TYPE("compact-unwind",
1026                     llvm::dbgs() << "r7 not saved as standard frame\n");
1027     return CU::UNWIND_ARM_MODE_DWARF;
1028   }
1029   uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
1030 
1031   // If var-args are used, there may be a stack adjust required.
1032   switch (StackAdjust) {
1033   case 0:
1034     break;
1035   case 4:
1036     CompactUnwindEncoding |= 0x00400000;
1037     break;
1038   case 8:
1039     CompactUnwindEncoding |= 0x00800000;
1040     break;
1041   case 12:
1042     CompactUnwindEncoding |= 0x00C00000;
1043     break;
1044   default:
1045     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1046                                           << ".cfi_def_cfa stack adjust ("
1047                                           << StackAdjust << ") out of range\n");
1048     return CU::UNWIND_ARM_MODE_DWARF;
1049   }
1050 
1051   // If r6 is saved, it must be right below r7.
1052   static struct {
1053     unsigned Reg;
1054     unsigned Encoding;
1055   } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1056                    {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
1057                    {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
1058                    {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
1059                    {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
1060                    {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
1061                    {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
1062                    {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
1063 
1064   int CurOffset = -8 - StackAdjust;
1065   for (auto CSReg : GPRCSRegs) {
1066     auto Offset = RegOffsets.find(CSReg.Reg);
1067     if (Offset == RegOffsets.end())
1068       continue;
1069 
1070     int RegOffset = Offset->second;
1071     if (RegOffset != CurOffset - 4) {
1072       DEBUG_WITH_TYPE("compact-unwind",
1073                       llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1074                                    << RegOffset << " but only supported at "
1075                                    << CurOffset << "\n");
1076       return CU::UNWIND_ARM_MODE_DWARF;
1077     }
1078     CompactUnwindEncoding |= CSReg.Encoding;
1079     CurOffset -= 4;
1080   }
1081 
1082   // If no floats saved, we are done.
1083   if (FloatRegCount == 0)
1084     return CompactUnwindEncoding;
1085 
1086   // Switch mode to include D register saving.
1087   CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1088   CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1089 
1090   // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1091   // but needs coordination with the linker and libunwind.
1092   if (FloatRegCount > 4) {
1093     DEBUG_WITH_TYPE("compact-unwind",
1094                     llvm::dbgs() << "unsupported number of D registers saved ("
1095                                  << FloatRegCount << ")\n");
1096       return CU::UNWIND_ARM_MODE_DWARF;
1097   }
1098 
1099   // Floating point registers must either be saved sequentially, or we defer to
1100   // DWARF. No gaps allowed here so check that each saved d-register is
1101   // precisely where it should be.
1102   static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1103   for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1104     auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1105     if (Offset == RegOffsets.end()) {
1106       DEBUG_WITH_TYPE("compact-unwind",
1107                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1108                                    << MRI.getName(FPRCSRegs[Idx])
1109                                    << " not saved\n");
1110       return CU::UNWIND_ARM_MODE_DWARF;
1111     } else if (Offset->second != CurOffset - 8) {
1112       DEBUG_WITH_TYPE("compact-unwind",
1113                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1114                                    << MRI.getName(FPRCSRegs[Idx])
1115                                    << " saved at " << Offset->second
1116                                    << ", expected at " << CurOffset - 8
1117                                    << "\n");
1118       return CU::UNWIND_ARM_MODE_DWARF;
1119     }
1120     CurOffset -= 8;
1121   }
1122 
1123   return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1124 }
1125 
1126 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
1127   ARM::ArchKind AK = ARM::parseArch(Arch);
1128   switch (AK) {
1129   default:
1130     return MachO::CPU_SUBTYPE_ARM_V7;
1131   case ARM::ArchKind::ARMV4T:
1132     return MachO::CPU_SUBTYPE_ARM_V4T;
1133   case ARM::ArchKind::ARMV5T:
1134   case ARM::ArchKind::ARMV5TE:
1135   case ARM::ArchKind::ARMV5TEJ:
1136     return MachO::CPU_SUBTYPE_ARM_V5;
1137   case ARM::ArchKind::ARMV6:
1138   case ARM::ArchKind::ARMV6K:
1139     return MachO::CPU_SUBTYPE_ARM_V6;
1140   case ARM::ArchKind::ARMV7A:
1141     return MachO::CPU_SUBTYPE_ARM_V7;
1142   case ARM::ArchKind::ARMV7S:
1143     return MachO::CPU_SUBTYPE_ARM_V7S;
1144   case ARM::ArchKind::ARMV7K:
1145     return MachO::CPU_SUBTYPE_ARM_V7K;
1146   case ARM::ArchKind::ARMV6M:
1147     return MachO::CPU_SUBTYPE_ARM_V6M;
1148   case ARM::ArchKind::ARMV7M:
1149     return MachO::CPU_SUBTYPE_ARM_V7M;
1150   case ARM::ArchKind::ARMV7EM:
1151     return MachO::CPU_SUBTYPE_ARM_V7EM;
1152   }
1153 }
1154 
1155 static MCAsmBackend *createARMAsmBackend(const Target &T,
1156                                          const MCSubtargetInfo &STI,
1157                                          const MCRegisterInfo &MRI,
1158                                          const MCTargetOptions &Options,
1159                                          support::endianness Endian) {
1160   const Triple &TheTriple = STI.getTargetTriple();
1161   switch (TheTriple.getObjectFormat()) {
1162   default:
1163     llvm_unreachable("unsupported object format");
1164   case Triple::MachO: {
1165     MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
1166     return new ARMAsmBackendDarwin(T, STI, MRI, CS);
1167   }
1168   case Triple::COFF:
1169     assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1170     return new ARMAsmBackendWinCOFF(T, STI);
1171   case Triple::ELF:
1172     assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1173     uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1174     return new ARMAsmBackendELF(T, STI, OSABI, Endian);
1175   }
1176 }
1177 
1178 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1179                                           const MCSubtargetInfo &STI,
1180                                           const MCRegisterInfo &MRI,
1181                                           const MCTargetOptions &Options) {
1182   return createARMAsmBackend(T, STI, MRI, Options, support::little);
1183 }
1184 
1185 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1186                                           const MCSubtargetInfo &STI,
1187                                           const MCRegisterInfo &MRI,
1188                                           const MCTargetOptions &Options) {
1189   return createARMAsmBackend(T, STI, MRI, Options, support::big);
1190 }
1191