1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/ARMMCTargetDesc.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMAsmBackend.h" 13 #include "MCTargetDesc/ARMAsmBackendDarwin.h" 14 #include "MCTargetDesc/ARMAsmBackendELF.h" 15 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h" 16 #include "MCTargetDesc/ARMBaseInfo.h" 17 #include "MCTargetDesc/ARMFixupKinds.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/MC/MCAsmBackend.h" 20 #include "llvm/MC/MCAssembler.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCDirectives.h" 23 #include "llvm/MC/MCELFObjectWriter.h" 24 #include "llvm/MC/MCExpr.h" 25 #include "llvm/MC/MCFixupKindInfo.h" 26 #include "llvm/MC/MCMachObjectWriter.h" 27 #include "llvm/MC/MCObjectWriter.h" 28 #include "llvm/MC/MCSectionELF.h" 29 #include "llvm/MC/MCSectionMachO.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/MCValue.h" 32 #include "llvm/Support/ELF.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MachO.h" 35 #include "llvm/Support/TargetParser.h" 36 #include "llvm/Support/raw_ostream.h" 37 using namespace llvm; 38 39 namespace { 40 class ARMELFObjectWriter : public MCELFObjectTargetWriter { 41 public: 42 ARMELFObjectWriter(uint8_t OSABI) 43 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM, 44 /*HasRelocationAddend*/ false) {} 45 }; 46 47 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { 48 const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = { 49 // This table *must* be in the order that the fixup_* kinds are defined in 50 // ARMFixupKinds.h. 51 // 52 // Name Offset (bits) Size (bits) Flags 53 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 54 {"fixup_t2_ldst_pcrel_12", 0, 32, 55 MCFixupKindInfo::FKF_IsPCRel | 56 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 57 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 58 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 59 {"fixup_t2_pcrel_10", 0, 32, 60 MCFixupKindInfo::FKF_IsPCRel | 61 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 62 {"fixup_thumb_adr_pcrel_10", 0, 8, 63 MCFixupKindInfo::FKF_IsPCRel | 64 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 65 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 66 {"fixup_t2_adr_pcrel_12", 0, 32, 67 MCFixupKindInfo::FKF_IsPCRel | 68 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 69 {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 70 {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 71 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 72 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 73 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 74 {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 75 {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 76 {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 77 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 78 {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 79 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 80 {"fixup_arm_thumb_cp", 0, 8, 81 MCFixupKindInfo::FKF_IsPCRel | 82 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 83 {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel}, 84 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 85 // - 19. 86 {"fixup_arm_movt_hi16", 0, 20, 0}, 87 {"fixup_arm_movw_lo16", 0, 20, 0}, 88 {"fixup_t2_movt_hi16", 0, 20, 0}, 89 {"fixup_t2_movw_lo16", 0, 20, 0}, 90 }; 91 const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = { 92 // This table *must* be in the order that the fixup_* kinds are defined in 93 // ARMFixupKinds.h. 94 // 95 // Name Offset (bits) Size (bits) Flags 96 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 97 {"fixup_t2_ldst_pcrel_12", 0, 32, 98 MCFixupKindInfo::FKF_IsPCRel | 99 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 100 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 101 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 102 {"fixup_t2_pcrel_10", 0, 32, 103 MCFixupKindInfo::FKF_IsPCRel | 104 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 105 {"fixup_thumb_adr_pcrel_10", 8, 8, 106 MCFixupKindInfo::FKF_IsPCRel | 107 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 108 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 109 {"fixup_t2_adr_pcrel_12", 0, 32, 110 MCFixupKindInfo::FKF_IsPCRel | 111 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 112 {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 113 {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 114 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 115 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 116 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 117 {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 118 {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 119 {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 120 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 121 {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 122 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 123 {"fixup_arm_thumb_cp", 8, 8, 124 MCFixupKindInfo::FKF_IsPCRel | 125 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 126 {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel}, 127 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 128 // - 19. 129 {"fixup_arm_movt_hi16", 12, 20, 0}, 130 {"fixup_arm_movw_lo16", 12, 20, 0}, 131 {"fixup_t2_movt_hi16", 12, 20, 0}, 132 {"fixup_t2_movw_lo16", 12, 20, 0}, 133 }; 134 135 if (Kind < FirstTargetFixupKind) 136 return MCAsmBackend::getFixupKindInfo(Kind); 137 138 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && 139 "Invalid kind!"); 140 return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind]; 141 } 142 143 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) { 144 switch (Flag) { 145 default: 146 break; 147 case MCAF_Code16: 148 setIsThumb(true); 149 break; 150 case MCAF_Code32: 151 setIsThumb(false); 152 break; 153 } 154 } 155 } // end anonymous namespace 156 157 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op) const { 158 bool HasThumb2 = STI->getFeatureBits()[ARM::FeatureThumb2]; 159 160 switch (Op) { 161 default: 162 return Op; 163 case ARM::tBcc: 164 return HasThumb2 ? (unsigned)ARM::t2Bcc : Op; 165 case ARM::tLDRpci: 166 return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op; 167 case ARM::tADR: 168 return HasThumb2 ? (unsigned)ARM::t2ADR : Op; 169 case ARM::tB: 170 return HasThumb2 ? (unsigned)ARM::t2B : Op; 171 case ARM::tCBZ: 172 return ARM::tHINT; 173 case ARM::tCBNZ: 174 return ARM::tHINT; 175 } 176 } 177 178 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const { 179 if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode()) 180 return true; 181 return false; 182 } 183 184 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup, 185 uint64_t Value) const { 186 switch ((unsigned)Fixup.getKind()) { 187 case ARM::fixup_arm_thumb_br: { 188 // Relaxing tB to t2B. tB has a signed 12-bit displacement with the 189 // low bit being an implied zero. There's an implied +4 offset for the 190 // branch, so we adjust the other way here to determine what's 191 // encodable. 192 // 193 // Relax if the value is too big for a (signed) i8. 194 int64_t Offset = int64_t(Value) - 4; 195 if (Offset > 2046 || Offset < -2048) 196 return "out of range pc-relative fixup value"; 197 break; 198 } 199 case ARM::fixup_arm_thumb_bcc: { 200 // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the 201 // low bit being an implied zero. There's an implied +4 offset for the 202 // branch, so we adjust the other way here to determine what's 203 // encodable. 204 // 205 // Relax if the value is too big for a (signed) i8. 206 int64_t Offset = int64_t(Value) - 4; 207 if (Offset > 254 || Offset < -256) 208 return "out of range pc-relative fixup value"; 209 break; 210 } 211 case ARM::fixup_thumb_adr_pcrel_10: 212 case ARM::fixup_arm_thumb_cp: { 213 // If the immediate is negative, greater than 1020, or not a multiple 214 // of four, the wide version of the instruction must be used. 215 int64_t Offset = int64_t(Value) - 4; 216 if (Offset & 3) 217 return "misaligned pc-relative fixup value"; 218 else if (Offset > 1020 || Offset < 0) 219 return "out of range pc-relative fixup value"; 220 break; 221 } 222 case ARM::fixup_arm_thumb_cb: { 223 // If we have a Thumb CBZ or CBNZ instruction and its target is the next 224 // instruction it is is actually out of range for the instruction. 225 // It will be changed to a NOP. 226 int64_t Offset = (Value & ~1); 227 if (Offset == 2) 228 return "will be converted to nop"; 229 break; 230 } 231 default: 232 llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!"); 233 } 234 return nullptr; 235 } 236 237 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, 238 const MCRelaxableFragment *DF, 239 const MCAsmLayout &Layout) const { 240 return reasonForFixupRelaxation(Fixup, Value); 241 } 242 243 void ARMAsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const { 244 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode()); 245 246 // Sanity check w/ diagnostic if we get here w/ a bogus instruction. 247 if (RelaxedOp == Inst.getOpcode()) { 248 SmallString<256> Tmp; 249 raw_svector_ostream OS(Tmp); 250 Inst.dump_pretty(OS); 251 OS << "\n"; 252 report_fatal_error("unexpected instruction to relax: " + OS.str()); 253 } 254 255 // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we 256 // have to change the operands too. 257 if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) && 258 RelaxedOp == ARM::tHINT) { 259 Res.setOpcode(RelaxedOp); 260 Res.addOperand(MCOperand::createImm(0)); 261 Res.addOperand(MCOperand::createImm(14)); 262 Res.addOperand(MCOperand::createReg(0)); 263 return; 264 } 265 266 // The rest of instructions we're relaxing have the same operands. 267 // We just need to update to the proper opcode. 268 Res = Inst; 269 Res.setOpcode(RelaxedOp); 270 } 271 272 bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const { 273 const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8 274 const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP 275 const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0 276 const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP 277 if (isThumb()) { 278 const uint16_t nopEncoding = 279 hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding; 280 uint64_t NumNops = Count / 2; 281 for (uint64_t i = 0; i != NumNops; ++i) 282 OW->write16(nopEncoding); 283 if (Count & 1) 284 OW->write8(0); 285 return true; 286 } 287 // ARM mode 288 const uint32_t nopEncoding = 289 hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding; 290 uint64_t NumNops = Count / 4; 291 for (uint64_t i = 0; i != NumNops; ++i) 292 OW->write32(nopEncoding); 293 // FIXME: should this function return false when unable to write exactly 294 // 'Count' bytes with NOP encodings? 295 switch (Count % 4) { 296 default: 297 break; // No leftover bytes to write 298 case 1: 299 OW->write8(0); 300 break; 301 case 2: 302 OW->write16(0); 303 break; 304 case 3: 305 OW->write16(0); 306 OW->write8(0xa0); 307 break; 308 } 309 310 return true; 311 } 312 313 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) { 314 if (IsLittleEndian) { 315 // Note that the halfwords are stored high first and low second in thumb; 316 // so we need to swap the fixup value here to map properly. 317 uint32_t Swapped = (Value & 0xFFFF0000) >> 16; 318 Swapped |= (Value & 0x0000FFFF) << 16; 319 return Swapped; 320 } else 321 return Value; 322 } 323 324 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf, 325 bool IsLittleEndian) { 326 uint32_t Value; 327 328 if (IsLittleEndian) { 329 Value = (SecondHalf & 0xFFFF) << 16; 330 Value |= (FirstHalf & 0xFFFF); 331 } else { 332 Value = (SecondHalf & 0xFFFF); 333 Value |= (FirstHalf & 0xFFFF) << 16; 334 } 335 336 return Value; 337 } 338 339 unsigned ARMAsmBackend::adjustFixupValue(const MCFixup &Fixup, uint64_t Value, 340 bool IsPCRel, MCContext *Ctx, 341 bool IsLittleEndian, 342 bool IsResolved) const { 343 unsigned Kind = Fixup.getKind(); 344 switch (Kind) { 345 default: 346 llvm_unreachable("Unknown fixup kind!"); 347 case FK_Data_1: 348 case FK_Data_2: 349 case FK_Data_4: 350 return Value; 351 case FK_SecRel_2: 352 return Value; 353 case FK_SecRel_4: 354 return Value; 355 case ARM::fixup_arm_movt_hi16: 356 if (!IsPCRel) 357 Value >>= 16; 358 // Fallthrough 359 case ARM::fixup_arm_movw_lo16: { 360 unsigned Hi4 = (Value & 0xF000) >> 12; 361 unsigned Lo12 = Value & 0x0FFF; 362 // inst{19-16} = Hi4; 363 // inst{11-0} = Lo12; 364 Value = (Hi4 << 16) | (Lo12); 365 return Value; 366 } 367 case ARM::fixup_t2_movt_hi16: 368 if (!IsPCRel) 369 Value >>= 16; 370 // Fallthrough 371 case ARM::fixup_t2_movw_lo16: { 372 unsigned Hi4 = (Value & 0xF000) >> 12; 373 unsigned i = (Value & 0x800) >> 11; 374 unsigned Mid3 = (Value & 0x700) >> 8; 375 unsigned Lo8 = Value & 0x0FF; 376 // inst{19-16} = Hi4; 377 // inst{26} = i; 378 // inst{14-12} = Mid3; 379 // inst{7-0} = Lo8; 380 Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8); 381 return swapHalfWords(Value, IsLittleEndian); 382 } 383 case ARM::fixup_arm_ldst_pcrel_12: 384 // ARM PC-relative values are offset by 8. 385 Value -= 4; 386 // FALLTHROUGH 387 case ARM::fixup_t2_ldst_pcrel_12: { 388 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 389 Value -= 4; 390 bool isAdd = true; 391 if ((int64_t)Value < 0) { 392 Value = -Value; 393 isAdd = false; 394 } 395 if (Ctx && Value >= 4096) 396 Ctx->reportFatalError(Fixup.getLoc(), "out of range pc-relative fixup value"); 397 Value |= isAdd << 23; 398 399 // Same addressing mode as fixup_arm_pcrel_10, 400 // but with 16-bit halfwords swapped. 401 if (Kind == ARM::fixup_t2_ldst_pcrel_12) 402 return swapHalfWords(Value, IsLittleEndian); 403 404 return Value; 405 } 406 case ARM::fixup_arm_adr_pcrel_12: { 407 // ARM PC-relative values are offset by 8. 408 Value -= 8; 409 unsigned opc = 4; // bits {24-21}. Default to add: 0b0100 410 if ((int64_t)Value < 0) { 411 Value = -Value; 412 opc = 2; // 0b0010 413 } 414 if (Ctx && ARM_AM::getSOImmVal(Value) == -1) 415 Ctx->reportFatalError(Fixup.getLoc(), "out of range pc-relative fixup value"); 416 // Encode the immediate and shift the opcode into place. 417 return ARM_AM::getSOImmVal(Value) | (opc << 21); 418 } 419 420 case ARM::fixup_t2_adr_pcrel_12: { 421 Value -= 4; 422 unsigned opc = 0; 423 if ((int64_t)Value < 0) { 424 Value = -Value; 425 opc = 5; 426 } 427 428 uint32_t out = (opc << 21); 429 out |= (Value & 0x800) << 15; 430 out |= (Value & 0x700) << 4; 431 out |= (Value & 0x0FF); 432 433 return swapHalfWords(out, IsLittleEndian); 434 } 435 436 case ARM::fixup_arm_condbranch: 437 case ARM::fixup_arm_uncondbranch: 438 case ARM::fixup_arm_uncondbl: 439 case ARM::fixup_arm_condbl: 440 case ARM::fixup_arm_blx: 441 // These values don't encode the low two bits since they're always zero. 442 // Offset by 8 just as above. 443 if (const MCSymbolRefExpr *SRE = 444 dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) 445 if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL) 446 return 0; 447 return 0xffffff & ((Value - 8) >> 2); 448 case ARM::fixup_t2_uncondbranch: { 449 Value = Value - 4; 450 Value >>= 1; // Low bit is not encoded. 451 452 uint32_t out = 0; 453 bool I = Value & 0x800000; 454 bool J1 = Value & 0x400000; 455 bool J2 = Value & 0x200000; 456 J1 ^= I; 457 J2 ^= I; 458 459 out |= I << 26; // S bit 460 out |= !J1 << 13; // J1 bit 461 out |= !J2 << 11; // J2 bit 462 out |= (Value & 0x1FF800) << 5; // imm6 field 463 out |= (Value & 0x0007FF); // imm11 field 464 465 return swapHalfWords(out, IsLittleEndian); 466 } 467 case ARM::fixup_t2_condbranch: { 468 Value = Value - 4; 469 Value >>= 1; // Low bit is not encoded. 470 471 uint64_t out = 0; 472 out |= (Value & 0x80000) << 7; // S bit 473 out |= (Value & 0x40000) >> 7; // J2 bit 474 out |= (Value & 0x20000) >> 4; // J1 bit 475 out |= (Value & 0x1F800) << 5; // imm6 field 476 out |= (Value & 0x007FF); // imm11 field 477 478 return swapHalfWords(out, IsLittleEndian); 479 } 480 case ARM::fixup_arm_thumb_bl: { 481 // The value doesn't encode the low bit (always zero) and is offset by 482 // four. The 32-bit immediate value is encoded as 483 // imm32 = SignExtend(S:I1:I2:imm10:imm11:0) 484 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). 485 // The value is encoded into disjoint bit positions in the destination 486 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, 487 // J = either J1 or J2 bit 488 // 489 // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII 490 // 491 // Note that the halfwords are stored high first, low second; so we need 492 // to transpose the fixup value here to map properly. 493 uint32_t offset = (Value - 4) >> 1; 494 uint32_t signBit = (offset & 0x800000) >> 23; 495 uint32_t I1Bit = (offset & 0x400000) >> 22; 496 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; 497 uint32_t I2Bit = (offset & 0x200000) >> 21; 498 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; 499 uint32_t imm10Bits = (offset & 0x1FF800) >> 11; 500 uint32_t imm11Bits = (offset & 0x000007FF); 501 502 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits); 503 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | 504 (uint16_t)imm11Bits); 505 return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian); 506 } 507 case ARM::fixup_arm_thumb_blx: { 508 // The value doesn't encode the low two bits (always zero) and is offset by 509 // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as 510 // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00) 511 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). 512 // The value is encoded into disjoint bit positions in the destination 513 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, 514 // J = either J1 or J2 bit, 0 = zero. 515 // 516 // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0 517 // 518 // Note that the halfwords are stored high first, low second; so we need 519 // to transpose the fixup value here to map properly. 520 uint32_t offset = (Value - 2) >> 2; 521 if (const MCSymbolRefExpr *SRE = 522 dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) 523 if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL) 524 offset = 0; 525 uint32_t signBit = (offset & 0x400000) >> 22; 526 uint32_t I1Bit = (offset & 0x200000) >> 21; 527 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; 528 uint32_t I2Bit = (offset & 0x100000) >> 20; 529 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; 530 uint32_t imm10HBits = (offset & 0xFFC00) >> 10; 531 uint32_t imm10LBits = (offset & 0x3FF); 532 533 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits); 534 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | 535 ((uint16_t)imm10LBits) << 1); 536 return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian); 537 } 538 case ARM::fixup_thumb_adr_pcrel_10: 539 case ARM::fixup_arm_thumb_cp: 540 // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we 541 // could have an error on our hands. 542 if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) { 543 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 544 if (FixupDiagnostic) 545 Ctx->reportFatalError(Fixup.getLoc(), FixupDiagnostic); 546 } 547 // Offset by 4, and don't encode the low two bits. 548 return ((Value - 4) >> 2) & 0xff; 549 case ARM::fixup_arm_thumb_cb: { 550 // Offset by 4 and don't encode the lower bit, which is always 0. 551 // FIXME: diagnose if no Thumb2 552 uint32_t Binary = (Value - 4) >> 1; 553 return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3); 554 } 555 case ARM::fixup_arm_thumb_br: 556 // Offset by 4 and don't encode the lower bit, which is always 0. 557 if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2]) { 558 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 559 if (FixupDiagnostic) 560 Ctx->reportFatalError(Fixup.getLoc(), FixupDiagnostic); 561 } 562 return ((Value - 4) >> 1) & 0x7ff; 563 case ARM::fixup_arm_thumb_bcc: 564 // Offset by 4 and don't encode the lower bit, which is always 0. 565 if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2]) { 566 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 567 if (FixupDiagnostic) 568 Ctx->reportFatalError(Fixup.getLoc(), FixupDiagnostic); 569 } 570 return ((Value - 4) >> 1) & 0xff; 571 case ARM::fixup_arm_pcrel_10_unscaled: { 572 Value = Value - 8; // ARM fixups offset by an additional word and don't 573 // need to adjust for the half-word ordering. 574 bool isAdd = true; 575 if ((int64_t)Value < 0) { 576 Value = -Value; 577 isAdd = false; 578 } 579 // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8]. 580 if (Ctx && Value >= 256) 581 Ctx->reportFatalError(Fixup.getLoc(), "out of range pc-relative fixup value"); 582 Value = (Value & 0xf) | ((Value & 0xf0) << 4); 583 return Value | (isAdd << 23); 584 } 585 case ARM::fixup_arm_pcrel_10: 586 Value = Value - 4; // ARM fixups offset by an additional word and don't 587 // need to adjust for the half-word ordering. 588 // Fall through. 589 case ARM::fixup_t2_pcrel_10: { 590 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 591 Value = Value - 4; 592 bool isAdd = true; 593 if ((int64_t)Value < 0) { 594 Value = -Value; 595 isAdd = false; 596 } 597 // These values don't encode the low two bits since they're always zero. 598 Value >>= 2; 599 if (Ctx && Value >= 256) 600 Ctx->reportFatalError(Fixup.getLoc(), "out of range pc-relative fixup value"); 601 Value |= isAdd << 23; 602 603 // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords 604 // swapped. 605 if (Kind == ARM::fixup_t2_pcrel_10) 606 return swapHalfWords(Value, IsLittleEndian); 607 608 return Value; 609 } 610 } 611 } 612 613 void ARMAsmBackend::processFixupValue(const MCAssembler &Asm, 614 const MCAsmLayout &Layout, 615 const MCFixup &Fixup, 616 const MCFragment *DF, 617 const MCValue &Target, uint64_t &Value, 618 bool &IsResolved) { 619 const MCSymbolRefExpr *A = Target.getSymA(); 620 // Some fixups to thumb function symbols need the low bit (thumb bit) 621 // twiddled. 622 if ((unsigned)Fixup.getKind() != ARM::fixup_arm_ldst_pcrel_12 && 623 (unsigned)Fixup.getKind() != ARM::fixup_t2_ldst_pcrel_12 && 624 (unsigned)Fixup.getKind() != ARM::fixup_arm_adr_pcrel_12 && 625 (unsigned)Fixup.getKind() != ARM::fixup_thumb_adr_pcrel_10 && 626 (unsigned)Fixup.getKind() != ARM::fixup_t2_adr_pcrel_12 && 627 (unsigned)Fixup.getKind() != ARM::fixup_arm_thumb_cp) { 628 if (A) { 629 const MCSymbol &Sym = A->getSymbol(); 630 if (Asm.isThumbFunc(&Sym)) 631 Value |= 1; 632 } 633 } 634 // For Thumb1 BL instruction, it is possible to be a long jump between 635 // the basic blocks of the same function. Thus, we would like to resolve 636 // the offset when the destination has the same MCFragment. 637 if (A && (unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) { 638 const MCSymbol &Sym = A->getSymbol(); 639 IsResolved = (Sym.getFragment() == DF); 640 } 641 // We must always generate a relocation for BL/BLX instructions if we have 642 // a symbol to reference, as the linker relies on knowing the destination 643 // symbol's thumb-ness to get interworking right. 644 if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx || 645 (unsigned)Fixup.getKind() == ARM::fixup_arm_blx || 646 (unsigned)Fixup.getKind() == ARM::fixup_arm_uncondbl || 647 (unsigned)Fixup.getKind() == ARM::fixup_arm_condbl)) 648 IsResolved = false; 649 650 // Try to get the encoded value for the fixup as-if we're mapping it into 651 // the instruction. This allows adjustFixupValue() to issue a diagnostic 652 // if the value aren't invalid. 653 (void)adjustFixupValue(Fixup, Value, false, &Asm.getContext(), 654 IsLittleEndian, IsResolved); 655 } 656 657 /// getFixupKindNumBytes - The number of bytes the fixup may change. 658 static unsigned getFixupKindNumBytes(unsigned Kind) { 659 switch (Kind) { 660 default: 661 llvm_unreachable("Unknown fixup kind!"); 662 663 case FK_Data_1: 664 case ARM::fixup_arm_thumb_bcc: 665 case ARM::fixup_arm_thumb_cp: 666 case ARM::fixup_thumb_adr_pcrel_10: 667 return 1; 668 669 case FK_Data_2: 670 case ARM::fixup_arm_thumb_br: 671 case ARM::fixup_arm_thumb_cb: 672 return 2; 673 674 case ARM::fixup_arm_pcrel_10_unscaled: 675 case ARM::fixup_arm_ldst_pcrel_12: 676 case ARM::fixup_arm_pcrel_10: 677 case ARM::fixup_arm_adr_pcrel_12: 678 case ARM::fixup_arm_uncondbl: 679 case ARM::fixup_arm_condbl: 680 case ARM::fixup_arm_blx: 681 case ARM::fixup_arm_condbranch: 682 case ARM::fixup_arm_uncondbranch: 683 return 3; 684 685 case FK_Data_4: 686 case ARM::fixup_t2_ldst_pcrel_12: 687 case ARM::fixup_t2_condbranch: 688 case ARM::fixup_t2_uncondbranch: 689 case ARM::fixup_t2_pcrel_10: 690 case ARM::fixup_t2_adr_pcrel_12: 691 case ARM::fixup_arm_thumb_bl: 692 case ARM::fixup_arm_thumb_blx: 693 case ARM::fixup_arm_movt_hi16: 694 case ARM::fixup_arm_movw_lo16: 695 case ARM::fixup_t2_movt_hi16: 696 case ARM::fixup_t2_movw_lo16: 697 return 4; 698 699 case FK_SecRel_2: 700 return 2; 701 case FK_SecRel_4: 702 return 4; 703 } 704 } 705 706 /// getFixupKindContainerSizeBytes - The number of bytes of the 707 /// container involved in big endian. 708 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) { 709 switch (Kind) { 710 default: 711 llvm_unreachable("Unknown fixup kind!"); 712 713 case FK_Data_1: 714 return 1; 715 case FK_Data_2: 716 return 2; 717 case FK_Data_4: 718 return 4; 719 720 case ARM::fixup_arm_thumb_bcc: 721 case ARM::fixup_arm_thumb_cp: 722 case ARM::fixup_thumb_adr_pcrel_10: 723 case ARM::fixup_arm_thumb_br: 724 case ARM::fixup_arm_thumb_cb: 725 // Instruction size is 2 bytes. 726 return 2; 727 728 case ARM::fixup_arm_pcrel_10_unscaled: 729 case ARM::fixup_arm_ldst_pcrel_12: 730 case ARM::fixup_arm_pcrel_10: 731 case ARM::fixup_arm_adr_pcrel_12: 732 case ARM::fixup_arm_uncondbl: 733 case ARM::fixup_arm_condbl: 734 case ARM::fixup_arm_blx: 735 case ARM::fixup_arm_condbranch: 736 case ARM::fixup_arm_uncondbranch: 737 case ARM::fixup_t2_ldst_pcrel_12: 738 case ARM::fixup_t2_condbranch: 739 case ARM::fixup_t2_uncondbranch: 740 case ARM::fixup_t2_pcrel_10: 741 case ARM::fixup_t2_adr_pcrel_12: 742 case ARM::fixup_arm_thumb_bl: 743 case ARM::fixup_arm_thumb_blx: 744 case ARM::fixup_arm_movt_hi16: 745 case ARM::fixup_arm_movw_lo16: 746 case ARM::fixup_t2_movt_hi16: 747 case ARM::fixup_t2_movw_lo16: 748 // Instruction size is 4 bytes. 749 return 4; 750 } 751 } 752 753 void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data, 754 unsigned DataSize, uint64_t Value, 755 bool IsPCRel) const { 756 unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind()); 757 Value = 758 adjustFixupValue(Fixup, Value, IsPCRel, nullptr, IsLittleEndian, true); 759 if (!Value) 760 return; // Doesn't change encoding. 761 762 unsigned Offset = Fixup.getOffset(); 763 assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!"); 764 765 // Used to point to big endian bytes. 766 unsigned FullSizeBytes; 767 if (!IsLittleEndian) { 768 FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind()); 769 assert((Offset + FullSizeBytes) <= DataSize && "Invalid fixup size!"); 770 assert(NumBytes <= FullSizeBytes && "Invalid fixup size!"); 771 } 772 773 // For each byte of the fragment that the fixup touches, mask in the bits from 774 // the fixup value. The Value has been "split up" into the appropriate 775 // bitfields above. 776 for (unsigned i = 0; i != NumBytes; ++i) { 777 unsigned Idx = IsLittleEndian ? i : (FullSizeBytes - 1 - i); 778 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff); 779 } 780 } 781 782 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) { 783 unsigned AK = ARM::parseArch(Arch); 784 switch (AK) { 785 default: 786 return MachO::CPU_SUBTYPE_ARM_V7; 787 case ARM::AK_ARMV4T: 788 return MachO::CPU_SUBTYPE_ARM_V4T; 789 case ARM::AK_ARMV6: 790 case ARM::AK_ARMV6K: 791 return MachO::CPU_SUBTYPE_ARM_V6; 792 case ARM::AK_ARMV5: 793 return MachO::CPU_SUBTYPE_ARM_V5; 794 case ARM::AK_ARMV5T: 795 case ARM::AK_ARMV5E: 796 case ARM::AK_ARMV5TE: 797 case ARM::AK_ARMV5TEJ: 798 return MachO::CPU_SUBTYPE_ARM_V5TEJ; 799 case ARM::AK_ARMV7: 800 return MachO::CPU_SUBTYPE_ARM_V7; 801 case ARM::AK_ARMV7S: 802 return MachO::CPU_SUBTYPE_ARM_V7S; 803 case ARM::AK_ARMV7K: 804 return MachO::CPU_SUBTYPE_ARM_V7K; 805 case ARM::AK_ARMV6M: 806 case ARM::AK_ARMV6SM: 807 return MachO::CPU_SUBTYPE_ARM_V6M; 808 case ARM::AK_ARMV7M: 809 return MachO::CPU_SUBTYPE_ARM_V7M; 810 case ARM::AK_ARMV7EM: 811 return MachO::CPU_SUBTYPE_ARM_V7EM; 812 } 813 } 814 815 MCAsmBackend *llvm::createARMAsmBackend(const Target &T, 816 const MCRegisterInfo &MRI, 817 const Triple &TheTriple, StringRef CPU, 818 bool isLittle) { 819 switch (TheTriple.getObjectFormat()) { 820 default: 821 llvm_unreachable("unsupported object format"); 822 case Triple::MachO: { 823 MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName()); 824 return new ARMAsmBackendDarwin(T, TheTriple, CS); 825 } 826 case Triple::COFF: 827 assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported"); 828 return new ARMAsmBackendWinCOFF(T, TheTriple); 829 case Triple::ELF: 830 assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target"); 831 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); 832 return new ARMAsmBackendELF(T, TheTriple, OSABI, isLittle); 833 } 834 } 835 836 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T, 837 const MCRegisterInfo &MRI, 838 const Triple &TT, StringRef CPU) { 839 return createARMAsmBackend(T, MRI, TT, CPU, true); 840 } 841 842 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T, 843 const MCRegisterInfo &MRI, 844 const Triple &TT, StringRef CPU) { 845 return createARMAsmBackend(T, MRI, TT, CPU, false); 846 } 847 848 MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T, 849 const MCRegisterInfo &MRI, 850 const Triple &TT, StringRef CPU) { 851 return createARMAsmBackend(T, MRI, TT, CPU, true); 852 } 853 854 MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T, 855 const MCRegisterInfo &MRI, 856 const Triple &TT, StringRef CPU) { 857 return createARMAsmBackend(T, MRI, TT, CPU, false); 858 } 859