1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "MCTargetDesc/ARMMCTargetDesc.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "MCTargetDesc/ARMAsmBackend.h"
13 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
14 #include "MCTargetDesc/ARMAsmBackendELF.h"
15 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
16 #include "MCTargetDesc/ARMBaseInfo.h"
17 #include "MCTargetDesc/ARMFixupKinds.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCMachObjectWriter.h"
27 #include "llvm/MC/MCObjectWriter.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSectionMachO.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ELF.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/MachO.h"
38 #include "llvm/Support/TargetParser.h"
39 #include "llvm/Support/raw_ostream.h"
40 using namespace llvm;
41 
42 namespace {
43 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
44 public:
45   ARMELFObjectWriter(uint8_t OSABI)
46       : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
47                                 /*HasRelocationAddend*/ false) {}
48 };
49 } // end anonymous namespace
50 
51 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
52   const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
53       // This table *must* be in the order that the fixup_* kinds are defined in
54       // ARMFixupKinds.h.
55       //
56       // Name                      Offset (bits) Size (bits)     Flags
57       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
58       {"fixup_t2_ldst_pcrel_12", 0, 32,
59        MCFixupKindInfo::FKF_IsPCRel |
60            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
61       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
62       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
63       {"fixup_t2_pcrel_10", 0, 32,
64        MCFixupKindInfo::FKF_IsPCRel |
65            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
66       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
67       {"fixup_t2_pcrel_9", 0, 32,
68        MCFixupKindInfo::FKF_IsPCRel |
69            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
70       {"fixup_thumb_adr_pcrel_10", 0, 8,
71        MCFixupKindInfo::FKF_IsPCRel |
72            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
73       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
74       {"fixup_t2_adr_pcrel_12", 0, 32,
75        MCFixupKindInfo::FKF_IsPCRel |
76            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
77       {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
78       {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
79       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
80       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
81       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
82       {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
83       {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
84       {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
85       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
86       {"fixup_arm_thumb_blx", 0, 32,
87        MCFixupKindInfo::FKF_IsPCRel |
88            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
89       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
90       {"fixup_arm_thumb_cp", 0, 8,
91        MCFixupKindInfo::FKF_IsPCRel |
92            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
93       {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
94       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
95       // - 19.
96       {"fixup_arm_movt_hi16", 0, 20, 0},
97       {"fixup_arm_movw_lo16", 0, 20, 0},
98       {"fixup_t2_movt_hi16", 0, 20, 0},
99       {"fixup_t2_movw_lo16", 0, 20, 0},
100       {"fixup_arm_mod_imm", 0, 12, 0},
101   };
102   const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
103       // This table *must* be in the order that the fixup_* kinds are defined in
104       // ARMFixupKinds.h.
105       //
106       // Name                      Offset (bits) Size (bits)     Flags
107       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
108       {"fixup_t2_ldst_pcrel_12", 0, 32,
109        MCFixupKindInfo::FKF_IsPCRel |
110            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
111       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
112       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
113       {"fixup_t2_pcrel_10", 0, 32,
114        MCFixupKindInfo::FKF_IsPCRel |
115            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
116       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
117       {"fixup_t2_pcrel_9", 0, 32,
118        MCFixupKindInfo::FKF_IsPCRel |
119            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
120       {"fixup_thumb_adr_pcrel_10", 8, 8,
121        MCFixupKindInfo::FKF_IsPCRel |
122            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
123       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
124       {"fixup_t2_adr_pcrel_12", 0, 32,
125        MCFixupKindInfo::FKF_IsPCRel |
126            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
127       {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
128       {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
129       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
130       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
131       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
132       {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
133       {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
134       {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
135       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
136       {"fixup_arm_thumb_blx", 0, 32,
137        MCFixupKindInfo::FKF_IsPCRel |
138            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
139       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
140       {"fixup_arm_thumb_cp", 8, 8,
141        MCFixupKindInfo::FKF_IsPCRel |
142            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
143       {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
144       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
145       // - 19.
146       {"fixup_arm_movt_hi16", 12, 20, 0},
147       {"fixup_arm_movw_lo16", 12, 20, 0},
148       {"fixup_t2_movt_hi16", 12, 20, 0},
149       {"fixup_t2_movw_lo16", 12, 20, 0},
150       {"fixup_arm_mod_imm", 20, 12, 0},
151   };
152 
153   if (Kind < FirstTargetFixupKind)
154     return MCAsmBackend::getFixupKindInfo(Kind);
155 
156   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
157          "Invalid kind!");
158   return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind];
159 }
160 
161 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
162   switch (Flag) {
163   default:
164     break;
165   case MCAF_Code16:
166     setIsThumb(true);
167     break;
168   case MCAF_Code32:
169     setIsThumb(false);
170     break;
171   }
172 }
173 
174 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op) const {
175   bool HasThumb2 = STI->getFeatureBits()[ARM::FeatureThumb2];
176   bool HasV8MBaselineOps = STI->getFeatureBits()[ARM::HasV8MBaselineOps];
177 
178   switch (Op) {
179   default:
180     return Op;
181   case ARM::tBcc:
182     return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
183   case ARM::tLDRpci:
184     return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
185   case ARM::tADR:
186     return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
187   case ARM::tB:
188     return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
189   case ARM::tCBZ:
190     return ARM::tHINT;
191   case ARM::tCBNZ:
192     return ARM::tHINT;
193   }
194 }
195 
196 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
197   if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode())
198     return true;
199   return false;
200 }
201 
202 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
203                                                     uint64_t Value) const {
204   switch ((unsigned)Fixup.getKind()) {
205   case ARM::fixup_arm_thumb_br: {
206     // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
207     // low bit being an implied zero. There's an implied +4 offset for the
208     // branch, so we adjust the other way here to determine what's
209     // encodable.
210     //
211     // Relax if the value is too big for a (signed) i8.
212     int64_t Offset = int64_t(Value) - 4;
213     if (Offset > 2046 || Offset < -2048)
214       return "out of range pc-relative fixup value";
215     break;
216   }
217   case ARM::fixup_arm_thumb_bcc: {
218     // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
219     // low bit being an implied zero. There's an implied +4 offset for the
220     // branch, so we adjust the other way here to determine what's
221     // encodable.
222     //
223     // Relax if the value is too big for a (signed) i8.
224     int64_t Offset = int64_t(Value) - 4;
225     if (Offset > 254 || Offset < -256)
226       return "out of range pc-relative fixup value";
227     break;
228   }
229   case ARM::fixup_thumb_adr_pcrel_10:
230   case ARM::fixup_arm_thumb_cp: {
231     // If the immediate is negative, greater than 1020, or not a multiple
232     // of four, the wide version of the instruction must be used.
233     int64_t Offset = int64_t(Value) - 4;
234     if (Offset & 3)
235       return "misaligned pc-relative fixup value";
236     else if (Offset > 1020 || Offset < 0)
237       return "out of range pc-relative fixup value";
238     break;
239   }
240   case ARM::fixup_arm_thumb_cb: {
241     // If we have a Thumb CBZ or CBNZ instruction and its target is the next
242     // instruction it is is actually out of range for the instruction.
243     // It will be changed to a NOP.
244     int64_t Offset = (Value & ~1);
245     if (Offset == 2)
246       return "will be converted to nop";
247     break;
248   }
249   default:
250     llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
251   }
252   return nullptr;
253 }
254 
255 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
256                                          const MCRelaxableFragment *DF,
257                                          const MCAsmLayout &Layout) const {
258   return reasonForFixupRelaxation(Fixup, Value);
259 }
260 
261 void ARMAsmBackend::relaxInstruction(const MCInst &Inst,
262                                      const MCSubtargetInfo &STI,
263                                      MCInst &Res) const {
264   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
265 
266   // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
267   if (RelaxedOp == Inst.getOpcode()) {
268     SmallString<256> Tmp;
269     raw_svector_ostream OS(Tmp);
270     Inst.dump_pretty(OS);
271     OS << "\n";
272     report_fatal_error("unexpected instruction to relax: " + OS.str());
273   }
274 
275   // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
276   // have to change the operands too.
277   if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
278       RelaxedOp == ARM::tHINT) {
279     Res.setOpcode(RelaxedOp);
280     Res.addOperand(MCOperand::createImm(0));
281     Res.addOperand(MCOperand::createImm(14));
282     Res.addOperand(MCOperand::createReg(0));
283     return;
284   }
285 
286   // The rest of instructions we're relaxing have the same operands.
287   // We just need to update to the proper opcode.
288   Res = Inst;
289   Res.setOpcode(RelaxedOp);
290 }
291 
292 bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
293   const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
294   const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
295   const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
296   const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
297   if (isThumb()) {
298     const uint16_t nopEncoding =
299         hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
300     uint64_t NumNops = Count / 2;
301     for (uint64_t i = 0; i != NumNops; ++i)
302       OW->write16(nopEncoding);
303     if (Count & 1)
304       OW->write8(0);
305     return true;
306   }
307   // ARM mode
308   const uint32_t nopEncoding =
309       hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
310   uint64_t NumNops = Count / 4;
311   for (uint64_t i = 0; i != NumNops; ++i)
312     OW->write32(nopEncoding);
313   // FIXME: should this function return false when unable to write exactly
314   // 'Count' bytes with NOP encodings?
315   switch (Count % 4) {
316   default:
317     break; // No leftover bytes to write
318   case 1:
319     OW->write8(0);
320     break;
321   case 2:
322     OW->write16(0);
323     break;
324   case 3:
325     OW->write16(0);
326     OW->write8(0xa0);
327     break;
328   }
329 
330   return true;
331 }
332 
333 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
334   if (IsLittleEndian) {
335     // Note that the halfwords are stored high first and low second in thumb;
336     // so we need to swap the fixup value here to map properly.
337     uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
338     Swapped |= (Value & 0x0000FFFF) << 16;
339     return Swapped;
340   } else
341     return Value;
342 }
343 
344 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
345                               bool IsLittleEndian) {
346   uint32_t Value;
347 
348   if (IsLittleEndian) {
349     Value = (SecondHalf & 0xFFFF) << 16;
350     Value |= (FirstHalf & 0xFFFF);
351   } else {
352     Value = (SecondHalf & 0xFFFF);
353     Value |= (FirstHalf & 0xFFFF) << 16;
354   }
355 
356   return Value;
357 }
358 
359 unsigned ARMAsmBackend::adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
360                                          bool IsPCRel, MCContext *Ctx,
361                                          bool IsLittleEndian,
362                                          bool IsResolved) const {
363   unsigned Kind = Fixup.getKind();
364   switch (Kind) {
365   default:
366     llvm_unreachable("Unknown fixup kind!");
367   case FK_Data_1:
368   case FK_Data_2:
369   case FK_Data_4:
370     return Value;
371   case FK_SecRel_2:
372     return Value;
373   case FK_SecRel_4:
374     return Value;
375   case ARM::fixup_arm_movt_hi16:
376     if (!IsPCRel)
377       Value >>= 16;
378     LLVM_FALLTHROUGH;
379   case ARM::fixup_arm_movw_lo16: {
380     unsigned Hi4 = (Value & 0xF000) >> 12;
381     unsigned Lo12 = Value & 0x0FFF;
382     // inst{19-16} = Hi4;
383     // inst{11-0} = Lo12;
384     Value = (Hi4 << 16) | (Lo12);
385     return Value;
386   }
387   case ARM::fixup_t2_movt_hi16:
388     if (!IsPCRel)
389       Value >>= 16;
390     LLVM_FALLTHROUGH;
391   case ARM::fixup_t2_movw_lo16: {
392     unsigned Hi4 = (Value & 0xF000) >> 12;
393     unsigned i = (Value & 0x800) >> 11;
394     unsigned Mid3 = (Value & 0x700) >> 8;
395     unsigned Lo8 = Value & 0x0FF;
396     // inst{19-16} = Hi4;
397     // inst{26} = i;
398     // inst{14-12} = Mid3;
399     // inst{7-0} = Lo8;
400     Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
401     return swapHalfWords(Value, IsLittleEndian);
402   }
403   case ARM::fixup_arm_ldst_pcrel_12:
404     // ARM PC-relative values are offset by 8.
405     Value -= 4;
406     LLVM_FALLTHROUGH;
407   case ARM::fixup_t2_ldst_pcrel_12: {
408     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
409     Value -= 4;
410     bool isAdd = true;
411     if ((int64_t)Value < 0) {
412       Value = -Value;
413       isAdd = false;
414     }
415     if (Ctx && Value >= 4096) {
416       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
417       return 0;
418     }
419     Value |= isAdd << 23;
420 
421     // Same addressing mode as fixup_arm_pcrel_10,
422     // but with 16-bit halfwords swapped.
423     if (Kind == ARM::fixup_t2_ldst_pcrel_12)
424       return swapHalfWords(Value, IsLittleEndian);
425 
426     return Value;
427   }
428   case ARM::fixup_arm_adr_pcrel_12: {
429     // ARM PC-relative values are offset by 8.
430     Value -= 8;
431     unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
432     if ((int64_t)Value < 0) {
433       Value = -Value;
434       opc = 2; // 0b0010
435     }
436     if (Ctx && ARM_AM::getSOImmVal(Value) == -1) {
437       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
438       return 0;
439     }
440     // Encode the immediate and shift the opcode into place.
441     return ARM_AM::getSOImmVal(Value) | (opc << 21);
442   }
443 
444   case ARM::fixup_t2_adr_pcrel_12: {
445     Value -= 4;
446     unsigned opc = 0;
447     if ((int64_t)Value < 0) {
448       Value = -Value;
449       opc = 5;
450     }
451 
452     uint32_t out = (opc << 21);
453     out |= (Value & 0x800) << 15;
454     out |= (Value & 0x700) << 4;
455     out |= (Value & 0x0FF);
456 
457     return swapHalfWords(out, IsLittleEndian);
458   }
459 
460   case ARM::fixup_arm_condbranch:
461   case ARM::fixup_arm_uncondbranch:
462   case ARM::fixup_arm_uncondbl:
463   case ARM::fixup_arm_condbl:
464   case ARM::fixup_arm_blx:
465     // These values don't encode the low two bits since they're always zero.
466     // Offset by 8 just as above.
467     if (const MCSymbolRefExpr *SRE =
468             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
469       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
470         return 0;
471     return 0xffffff & ((Value - 8) >> 2);
472   case ARM::fixup_t2_uncondbranch: {
473     Value = Value - 4;
474     Value >>= 1; // Low bit is not encoded.
475 
476     uint32_t out = 0;
477     bool I = Value & 0x800000;
478     bool J1 = Value & 0x400000;
479     bool J2 = Value & 0x200000;
480     J1 ^= I;
481     J2 ^= I;
482 
483     out |= I << 26;                 // S bit
484     out |= !J1 << 13;               // J1 bit
485     out |= !J2 << 11;               // J2 bit
486     out |= (Value & 0x1FF800) << 5; // imm6 field
487     out |= (Value & 0x0007FF);      // imm11 field
488 
489     return swapHalfWords(out, IsLittleEndian);
490   }
491   case ARM::fixup_t2_condbranch: {
492     Value = Value - 4;
493     Value >>= 1; // Low bit is not encoded.
494 
495     uint64_t out = 0;
496     out |= (Value & 0x80000) << 7; // S bit
497     out |= (Value & 0x40000) >> 7; // J2 bit
498     out |= (Value & 0x20000) >> 4; // J1 bit
499     out |= (Value & 0x1F800) << 5; // imm6 field
500     out |= (Value & 0x007FF);      // imm11 field
501 
502     return swapHalfWords(out, IsLittleEndian);
503   }
504   case ARM::fixup_arm_thumb_bl: {
505     // The value doesn't encode the low bit (always zero) and is offset by
506     // four. The 32-bit immediate value is encoded as
507     //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
508     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
509     // The value is encoded into disjoint bit positions in the destination
510     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
511     // J = either J1 or J2 bit
512     //
513     //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
514     //
515     // Note that the halfwords are stored high first, low second; so we need
516     // to transpose the fixup value here to map properly.
517     uint32_t offset = (Value - 4) >> 1;
518     uint32_t signBit = (offset & 0x800000) >> 23;
519     uint32_t I1Bit = (offset & 0x400000) >> 22;
520     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
521     uint32_t I2Bit = (offset & 0x200000) >> 21;
522     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
523     uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
524     uint32_t imm11Bits = (offset & 0x000007FF);
525 
526     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
527     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
528                            (uint16_t)imm11Bits);
529     return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
530   }
531   case ARM::fixup_arm_thumb_blx: {
532     // The value doesn't encode the low two bits (always zero) and is offset by
533     // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
534     //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
535     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
536     // The value is encoded into disjoint bit positions in the destination
537     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
538     // J = either J1 or J2 bit, 0 = zero.
539     //
540     //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
541     //
542     // Note that the halfwords are stored high first, low second; so we need
543     // to transpose the fixup value here to map properly.
544     if (Ctx && Value % 4 != 0) {
545       Ctx->reportError(Fixup.getLoc(), "misaligned ARM call destination");
546       return 0;
547     }
548 
549     uint32_t offset = (Value - 4) >> 2;
550     if (const MCSymbolRefExpr *SRE =
551             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
552       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
553         offset = 0;
554     uint32_t signBit = (offset & 0x400000) >> 22;
555     uint32_t I1Bit = (offset & 0x200000) >> 21;
556     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
557     uint32_t I2Bit = (offset & 0x100000) >> 20;
558     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
559     uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
560     uint32_t imm10LBits = (offset & 0x3FF);
561 
562     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
563     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
564                            ((uint16_t)imm10LBits) << 1);
565     return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
566   }
567   case ARM::fixup_thumb_adr_pcrel_10:
568   case ARM::fixup_arm_thumb_cp:
569     // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
570     // could have an error on our hands.
571     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
572       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
573       if (FixupDiagnostic) {
574         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
575         return 0;
576       }
577     }
578     // Offset by 4, and don't encode the low two bits.
579     return ((Value - 4) >> 2) & 0xff;
580   case ARM::fixup_arm_thumb_cb: {
581     // CB instructions can only branch to offsets in [4, 126] in multiples of 2
582     // so ensure that the raw value LSB is zero and it lies in [2, 130].
583     // An offset of 2 will be relaxed to a NOP.
584     if (Ctx && ((int64_t)Value < 2 || Value > 0x82 || Value & 1)) {
585       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
586       return 0;
587     }
588     // Offset by 4 and don't encode the lower bit, which is always 0.
589     // FIXME: diagnose if no Thumb2
590     uint32_t Binary = (Value - 4) >> 1;
591     return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
592   }
593   case ARM::fixup_arm_thumb_br:
594     // Offset by 4 and don't encode the lower bit, which is always 0.
595     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2] &&
596                !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) {
597       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
598       if (FixupDiagnostic) {
599         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
600         return 0;
601       }
602     }
603     return ((Value - 4) >> 1) & 0x7ff;
604   case ARM::fixup_arm_thumb_bcc:
605     // Offset by 4 and don't encode the lower bit, which is always 0.
606     if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2]) {
607       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
608       if (FixupDiagnostic) {
609         Ctx->reportError(Fixup.getLoc(), FixupDiagnostic);
610         return 0;
611       }
612     }
613     return ((Value - 4) >> 1) & 0xff;
614   case ARM::fixup_arm_pcrel_10_unscaled: {
615     Value = Value - 8; // ARM fixups offset by an additional word and don't
616                        // need to adjust for the half-word ordering.
617     bool isAdd = true;
618     if ((int64_t)Value < 0) {
619       Value = -Value;
620       isAdd = false;
621     }
622     // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
623     if (Ctx && Value >= 256) {
624       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
625       return 0;
626     }
627     Value = (Value & 0xf) | ((Value & 0xf0) << 4);
628     return Value | (isAdd << 23);
629   }
630   case ARM::fixup_arm_pcrel_10:
631     Value = Value - 4; // ARM fixups offset by an additional word and don't
632                        // need to adjust for the half-word ordering.
633     LLVM_FALLTHROUGH;
634   case ARM::fixup_t2_pcrel_10: {
635     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
636     Value = Value - 4;
637     bool isAdd = true;
638     if ((int64_t)Value < 0) {
639       Value = -Value;
640       isAdd = false;
641     }
642     // These values don't encode the low two bits since they're always zero.
643     Value >>= 2;
644     if (Ctx && Value >= 256) {
645       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
646       return 0;
647     }
648     Value |= isAdd << 23;
649 
650     // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
651     // swapped.
652     if (Kind == ARM::fixup_t2_pcrel_10)
653       return swapHalfWords(Value, IsLittleEndian);
654 
655     return Value;
656   }
657   case ARM::fixup_arm_pcrel_9:
658     Value = Value - 4; // ARM fixups offset by an additional word and don't
659                        // need to adjust for the half-word ordering.
660     LLVM_FALLTHROUGH;
661   case ARM::fixup_t2_pcrel_9: {
662     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
663     Value = Value - 4;
664     bool isAdd = true;
665     if ((int64_t)Value < 0) {
666       Value = -Value;
667       isAdd = false;
668     }
669     // These values don't encode the low bit since it's always zero.
670     if (Ctx && (Value & 1)) {
671       Ctx->reportError(Fixup.getLoc(), "invalid value for this fixup");
672       return 0;
673     }
674     Value >>= 1;
675     if (Ctx && Value >= 256) {
676       Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
677       return 0;
678     }
679     Value |= isAdd << 23;
680 
681     // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
682     // swapped.
683     if (Kind == ARM::fixup_t2_pcrel_9)
684       return swapHalfWords(Value, IsLittleEndian);
685 
686     return Value;
687   }
688   case ARM::fixup_arm_mod_imm:
689     Value = ARM_AM::getSOImmVal(Value);
690     if (Ctx && Value >> 12) {
691       Ctx->reportError(Fixup.getLoc(), "out of range immediate fixup value");
692       return 0;
693     }
694     return Value;
695   }
696 }
697 
698 void ARMAsmBackend::processFixupValue(const MCAssembler &Asm,
699                                       const MCAsmLayout &Layout,
700                                       const MCFixup &Fixup,
701                                       const MCFragment *DF,
702                                       const MCValue &Target, uint64_t &Value,
703                                       bool &IsResolved) {
704   const MCSymbolRefExpr *A = Target.getSymA();
705   const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
706   // MachO (the only user of "Value") tries to make .o files that look vaguely
707   // pre-linked, so for MOVW/MOVT and .word relocations they put the Thumb bit
708   // into the addend if possible. Other relocation types don't want this bit
709   // though (branches couldn't encode it if it *was* present, and no other
710   // relocations exist) and it can interfere with checking valid expressions.
711   if ((unsigned)Fixup.getKind() == FK_Data_4 ||
712       (unsigned)Fixup.getKind() == ARM::fixup_arm_movw_lo16 ||
713       (unsigned)Fixup.getKind() == ARM::fixup_arm_movt_hi16 ||
714       (unsigned)Fixup.getKind() == ARM::fixup_t2_movw_lo16 ||
715       (unsigned)Fixup.getKind() == ARM::fixup_t2_movt_hi16) {
716     if (Sym) {
717       if (Asm.isThumbFunc(Sym))
718         Value |= 1;
719     }
720   }
721   if (IsResolved && (unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) {
722     assert(Sym && "How did we resolve this?");
723 
724     // If the symbol is external the linker will handle it.
725     // FIXME: Should we handle it as an optimization?
726 
727     // If the symbol is out of range, produce a relocation and hope the
728     // linker can handle it. GNU AS produces an error in this case.
729     if (Sym->isExternal() || Value >= 0x400004)
730       IsResolved = false;
731   }
732   // We must always generate a relocation for BL/BLX instructions if we have
733   // a symbol to reference, as the linker relies on knowing the destination
734   // symbol's thumb-ness to get interworking right.
735   if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx ||
736             (unsigned)Fixup.getKind() == ARM::fixup_arm_blx ||
737             (unsigned)Fixup.getKind() == ARM::fixup_arm_uncondbl ||
738             (unsigned)Fixup.getKind() == ARM::fixup_arm_condbl))
739     IsResolved = false;
740 
741   // Try to get the encoded value for the fixup as-if we're mapping it into
742   // the instruction. This allows adjustFixupValue() to issue a diagnostic
743   // if the value aren't invalid.
744   (void)adjustFixupValue(Fixup, Value, false, &Asm.getContext(),
745                          IsLittleEndian, IsResolved);
746 }
747 
748 /// getFixupKindNumBytes - The number of bytes the fixup may change.
749 static unsigned getFixupKindNumBytes(unsigned Kind) {
750   switch (Kind) {
751   default:
752     llvm_unreachable("Unknown fixup kind!");
753 
754   case FK_Data_1:
755   case ARM::fixup_arm_thumb_bcc:
756   case ARM::fixup_arm_thumb_cp:
757   case ARM::fixup_thumb_adr_pcrel_10:
758     return 1;
759 
760   case FK_Data_2:
761   case ARM::fixup_arm_thumb_br:
762   case ARM::fixup_arm_thumb_cb:
763   case ARM::fixup_arm_mod_imm:
764     return 2;
765 
766   case ARM::fixup_arm_pcrel_10_unscaled:
767   case ARM::fixup_arm_ldst_pcrel_12:
768   case ARM::fixup_arm_pcrel_10:
769   case ARM::fixup_arm_pcrel_9:
770   case ARM::fixup_arm_adr_pcrel_12:
771   case ARM::fixup_arm_uncondbl:
772   case ARM::fixup_arm_condbl:
773   case ARM::fixup_arm_blx:
774   case ARM::fixup_arm_condbranch:
775   case ARM::fixup_arm_uncondbranch:
776     return 3;
777 
778   case FK_Data_4:
779   case ARM::fixup_t2_ldst_pcrel_12:
780   case ARM::fixup_t2_condbranch:
781   case ARM::fixup_t2_uncondbranch:
782   case ARM::fixup_t2_pcrel_10:
783   case ARM::fixup_t2_pcrel_9:
784   case ARM::fixup_t2_adr_pcrel_12:
785   case ARM::fixup_arm_thumb_bl:
786   case ARM::fixup_arm_thumb_blx:
787   case ARM::fixup_arm_movt_hi16:
788   case ARM::fixup_arm_movw_lo16:
789   case ARM::fixup_t2_movt_hi16:
790   case ARM::fixup_t2_movw_lo16:
791     return 4;
792 
793   case FK_SecRel_2:
794     return 2;
795   case FK_SecRel_4:
796     return 4;
797   }
798 }
799 
800 /// getFixupKindContainerSizeBytes - The number of bytes of the
801 /// container involved in big endian.
802 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
803   switch (Kind) {
804   default:
805     llvm_unreachable("Unknown fixup kind!");
806 
807   case FK_Data_1:
808     return 1;
809   case FK_Data_2:
810     return 2;
811   case FK_Data_4:
812     return 4;
813 
814   case ARM::fixup_arm_thumb_bcc:
815   case ARM::fixup_arm_thumb_cp:
816   case ARM::fixup_thumb_adr_pcrel_10:
817   case ARM::fixup_arm_thumb_br:
818   case ARM::fixup_arm_thumb_cb:
819     // Instruction size is 2 bytes.
820     return 2;
821 
822   case ARM::fixup_arm_pcrel_10_unscaled:
823   case ARM::fixup_arm_ldst_pcrel_12:
824   case ARM::fixup_arm_pcrel_10:
825   case ARM::fixup_arm_adr_pcrel_12:
826   case ARM::fixup_arm_uncondbl:
827   case ARM::fixup_arm_condbl:
828   case ARM::fixup_arm_blx:
829   case ARM::fixup_arm_condbranch:
830   case ARM::fixup_arm_uncondbranch:
831   case ARM::fixup_t2_ldst_pcrel_12:
832   case ARM::fixup_t2_condbranch:
833   case ARM::fixup_t2_uncondbranch:
834   case ARM::fixup_t2_pcrel_10:
835   case ARM::fixup_t2_adr_pcrel_12:
836   case ARM::fixup_arm_thumb_bl:
837   case ARM::fixup_arm_thumb_blx:
838   case ARM::fixup_arm_movt_hi16:
839   case ARM::fixup_arm_movw_lo16:
840   case ARM::fixup_t2_movt_hi16:
841   case ARM::fixup_t2_movw_lo16:
842   case ARM::fixup_arm_mod_imm:
843     // Instruction size is 4 bytes.
844     return 4;
845   }
846 }
847 
848 void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
849                                unsigned DataSize, uint64_t Value,
850                                bool IsPCRel) const {
851   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
852   Value =
853       adjustFixupValue(Fixup, Value, IsPCRel, nullptr, IsLittleEndian, true);
854   if (!Value)
855     return; // Doesn't change encoding.
856 
857   unsigned Offset = Fixup.getOffset();
858   assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
859 
860   // Used to point to big endian bytes.
861   unsigned FullSizeBytes;
862   if (!IsLittleEndian) {
863     FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
864     assert((Offset + FullSizeBytes) <= DataSize && "Invalid fixup size!");
865     assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
866   }
867 
868   // For each byte of the fragment that the fixup touches, mask in the bits from
869   // the fixup value. The Value has been "split up" into the appropriate
870   // bitfields above.
871   for (unsigned i = 0; i != NumBytes; ++i) {
872     unsigned Idx = IsLittleEndian ? i : (FullSizeBytes - 1 - i);
873     Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
874   }
875 }
876 
877 namespace CU {
878 
879 /// \brief Compact unwind encoding values.
880 enum CompactUnwindEncodings {
881   UNWIND_ARM_MODE_MASK                         = 0x0F000000,
882   UNWIND_ARM_MODE_FRAME                        = 0x01000000,
883   UNWIND_ARM_MODE_FRAME_D                      = 0x02000000,
884   UNWIND_ARM_MODE_DWARF                        = 0x04000000,
885 
886   UNWIND_ARM_FRAME_STACK_ADJUST_MASK           = 0x00C00000,
887 
888   UNWIND_ARM_FRAME_FIRST_PUSH_R4               = 0x00000001,
889   UNWIND_ARM_FRAME_FIRST_PUSH_R5               = 0x00000002,
890   UNWIND_ARM_FRAME_FIRST_PUSH_R6               = 0x00000004,
891 
892   UNWIND_ARM_FRAME_SECOND_PUSH_R8              = 0x00000008,
893   UNWIND_ARM_FRAME_SECOND_PUSH_R9              = 0x00000010,
894   UNWIND_ARM_FRAME_SECOND_PUSH_R10             = 0x00000020,
895   UNWIND_ARM_FRAME_SECOND_PUSH_R11             = 0x00000040,
896   UNWIND_ARM_FRAME_SECOND_PUSH_R12             = 0x00000080,
897 
898   UNWIND_ARM_FRAME_D_REG_COUNT_MASK            = 0x00000F00,
899 
900   UNWIND_ARM_DWARF_SECTION_OFFSET              = 0x00FFFFFF
901 };
902 
903 } // end CU namespace
904 
905 /// Generate compact unwind encoding for the function based on the CFI
906 /// instructions. If the CFI instructions describe a frame that cannot be
907 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
908 /// tells the runtime to fallback and unwind using dwarf.
909 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
910     ArrayRef<MCCFIInstruction> Instrs) const {
911   DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
912   // Only armv7k uses CFI based unwinding.
913   if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
914     return 0;
915   // No .cfi directives means no frame.
916   if (Instrs.empty())
917     return 0;
918   // Start off assuming CFA is at SP+0.
919   int CFARegister = ARM::SP;
920   int CFARegisterOffset = 0;
921   // Mark savable registers as initially unsaved
922   DenseMap<unsigned, int> RegOffsets;
923   int FloatRegCount = 0;
924   // Process each .cfi directive and build up compact unwind info.
925   for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
926     int Reg;
927     const MCCFIInstruction &Inst = Instrs[i];
928     switch (Inst.getOperation()) {
929     case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
930       CFARegisterOffset = -Inst.getOffset();
931       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
932       break;
933     case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
934       CFARegisterOffset = -Inst.getOffset();
935       break;
936     case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
937       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
938       break;
939     case MCCFIInstruction::OpOffset: // DW_CFA_offset
940       Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
941       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
942         RegOffsets[Reg] = Inst.getOffset();
943       else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
944         RegOffsets[Reg] = Inst.getOffset();
945         ++FloatRegCount;
946       } else {
947         DEBUG_WITH_TYPE("compact-unwind",
948                         llvm::dbgs() << ".cfi_offset on unknown register="
949                                      << Inst.getRegister() << "\n");
950         return CU::UNWIND_ARM_MODE_DWARF;
951       }
952       break;
953     case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
954       // Ignore
955       break;
956     default:
957       // Directive not convertable to compact unwind, bail out.
958       DEBUG_WITH_TYPE("compact-unwind",
959                       llvm::dbgs()
960                           << "CFI directive not compatiable with comact "
961                              "unwind encoding, opcode=" << Inst.getOperation()
962                           << "\n");
963       return CU::UNWIND_ARM_MODE_DWARF;
964       break;
965     }
966   }
967 
968   // If no frame set up, return no unwind info.
969   if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
970     return 0;
971 
972   // Verify standard frame (lr/r7) was used.
973   if (CFARegister != ARM::R7) {
974     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
975                                                    << CFARegister
976                                                    << " instead of r7\n");
977     return CU::UNWIND_ARM_MODE_DWARF;
978   }
979   int StackAdjust = CFARegisterOffset - 8;
980   if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
981     DEBUG_WITH_TYPE("compact-unwind",
982                     llvm::dbgs()
983                         << "LR not saved as standard frame, StackAdjust="
984                         << StackAdjust
985                         << ", CFARegisterOffset=" << CFARegisterOffset
986                         << ", lr save at offset=" << RegOffsets[14] << "\n");
987     return CU::UNWIND_ARM_MODE_DWARF;
988   }
989   if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
990     DEBUG_WITH_TYPE("compact-unwind",
991                     llvm::dbgs() << "r7 not saved as standard frame\n");
992     return CU::UNWIND_ARM_MODE_DWARF;
993   }
994   uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
995 
996   // If var-args are used, there may be a stack adjust required.
997   switch (StackAdjust) {
998   case 0:
999     break;
1000   case 4:
1001     CompactUnwindEncoding |= 0x00400000;
1002     break;
1003   case 8:
1004     CompactUnwindEncoding |= 0x00800000;
1005     break;
1006   case 12:
1007     CompactUnwindEncoding |= 0x00C00000;
1008     break;
1009   default:
1010     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1011                                           << ".cfi_def_cfa stack adjust ("
1012                                           << StackAdjust << ") out of range\n");
1013     return CU::UNWIND_ARM_MODE_DWARF;
1014   }
1015 
1016   // If r6 is saved, it must be right below r7.
1017   static struct {
1018     unsigned Reg;
1019     unsigned Encoding;
1020   } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1021                    {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
1022                    {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
1023                    {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
1024                    {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
1025                    {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
1026                    {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
1027                    {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
1028 
1029   int CurOffset = -8 - StackAdjust;
1030   for (auto CSReg : GPRCSRegs) {
1031     auto Offset = RegOffsets.find(CSReg.Reg);
1032     if (Offset == RegOffsets.end())
1033       continue;
1034 
1035     int RegOffset = Offset->second;
1036     if (RegOffset != CurOffset - 4) {
1037       DEBUG_WITH_TYPE("compact-unwind",
1038                       llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1039                                    << RegOffset << " but only supported at "
1040                                    << CurOffset << "\n");
1041       return CU::UNWIND_ARM_MODE_DWARF;
1042     }
1043     CompactUnwindEncoding |= CSReg.Encoding;
1044     CurOffset -= 4;
1045   }
1046 
1047   // If no floats saved, we are done.
1048   if (FloatRegCount == 0)
1049     return CompactUnwindEncoding;
1050 
1051   // Switch mode to include D register saving.
1052   CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1053   CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1054 
1055   // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1056   // but needs coordination with the linker and libunwind.
1057   if (FloatRegCount > 4) {
1058     DEBUG_WITH_TYPE("compact-unwind",
1059                     llvm::dbgs() << "unsupported number of D registers saved ("
1060                                  << FloatRegCount << ")\n");
1061       return CU::UNWIND_ARM_MODE_DWARF;
1062   }
1063 
1064   // Floating point registers must either be saved sequentially, or we defer to
1065   // DWARF. No gaps allowed here so check that each saved d-register is
1066   // precisely where it should be.
1067   static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1068   for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1069     auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1070     if (Offset == RegOffsets.end()) {
1071       DEBUG_WITH_TYPE("compact-unwind",
1072                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1073                                    << MRI.getName(FPRCSRegs[Idx])
1074                                    << " not saved\n");
1075       return CU::UNWIND_ARM_MODE_DWARF;
1076     } else if (Offset->second != CurOffset - 8) {
1077       DEBUG_WITH_TYPE("compact-unwind",
1078                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1079                                    << MRI.getName(FPRCSRegs[Idx])
1080                                    << " saved at " << Offset->second
1081                                    << ", expected at " << CurOffset - 8
1082                                    << "\n");
1083       return CU::UNWIND_ARM_MODE_DWARF;
1084     }
1085     CurOffset -= 8;
1086   }
1087 
1088   return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1089 }
1090 
1091 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
1092   unsigned AK = ARM::parseArch(Arch);
1093   switch (AK) {
1094   default:
1095     return MachO::CPU_SUBTYPE_ARM_V7;
1096   case ARM::AK_ARMV4T:
1097     return MachO::CPU_SUBTYPE_ARM_V4T;
1098   case ARM::AK_ARMV5T:
1099   case ARM::AK_ARMV5TE:
1100   case ARM::AK_ARMV5TEJ:
1101     return MachO::CPU_SUBTYPE_ARM_V5;
1102   case ARM::AK_ARMV6:
1103   case ARM::AK_ARMV6K:
1104     return MachO::CPU_SUBTYPE_ARM_V6;
1105   case ARM::AK_ARMV7A:
1106     return MachO::CPU_SUBTYPE_ARM_V7;
1107   case ARM::AK_ARMV7S:
1108     return MachO::CPU_SUBTYPE_ARM_V7S;
1109   case ARM::AK_ARMV7K:
1110     return MachO::CPU_SUBTYPE_ARM_V7K;
1111   case ARM::AK_ARMV6M:
1112     return MachO::CPU_SUBTYPE_ARM_V6M;
1113   case ARM::AK_ARMV7M:
1114     return MachO::CPU_SUBTYPE_ARM_V7M;
1115   case ARM::AK_ARMV7EM:
1116     return MachO::CPU_SUBTYPE_ARM_V7EM;
1117   }
1118 }
1119 
1120 MCAsmBackend *llvm::createARMAsmBackend(const Target &T,
1121                                         const MCRegisterInfo &MRI,
1122                                         const Triple &TheTriple, StringRef CPU,
1123                                         const MCTargetOptions &Options,
1124                                         bool isLittle) {
1125   switch (TheTriple.getObjectFormat()) {
1126   default:
1127     llvm_unreachable("unsupported object format");
1128   case Triple::MachO: {
1129     MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
1130     return new ARMAsmBackendDarwin(T, TheTriple, MRI, CS);
1131   }
1132   case Triple::COFF:
1133     assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1134     return new ARMAsmBackendWinCOFF(T, TheTriple);
1135   case Triple::ELF:
1136     assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1137     uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1138     return new ARMAsmBackendELF(T, TheTriple, OSABI, isLittle);
1139   }
1140 }
1141 
1142 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1143                                           const MCRegisterInfo &MRI,
1144                                           const Triple &TT, StringRef CPU,
1145                                           const MCTargetOptions &Options) {
1146   return createARMAsmBackend(T, MRI, TT, CPU, Options, true);
1147 }
1148 
1149 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1150                                           const MCRegisterInfo &MRI,
1151                                           const Triple &TT, StringRef CPU,
1152                                           const MCTargetOptions &Options) {
1153   return createARMAsmBackend(T, MRI, TT, CPU, Options, false);
1154 }
1155 
1156 MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T,
1157                                             const MCRegisterInfo &MRI,
1158                                             const Triple &TT, StringRef CPU,
1159                                             const MCTargetOptions &Options) {
1160   return createARMAsmBackend(T, MRI, TT, CPU, Options, true);
1161 }
1162 
1163 MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T,
1164                                             const MCRegisterInfo &MRI,
1165                                             const Triple &TT, StringRef CPU,
1166                                             const MCTargetOptions &Options) {
1167   return createARMAsmBackend(T, MRI, TT, CPU, Options, false);
1168 }
1169