1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/ARMAsmBackend.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMAsmBackendDarwin.h" 13 #include "MCTargetDesc/ARMAsmBackendELF.h" 14 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h" 15 #include "MCTargetDesc/ARMFixupKinds.h" 16 #include "MCTargetDesc/ARMMCTargetDesc.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/BinaryFormat/ELF.h" 19 #include "llvm/BinaryFormat/MachO.h" 20 #include "llvm/MC/MCAsmBackend.h" 21 #include "llvm/MC/MCAssembler.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDirectives.h" 24 #include "llvm/MC/MCELFObjectWriter.h" 25 #include "llvm/MC/MCExpr.h" 26 #include "llvm/MC/MCFixupKindInfo.h" 27 #include "llvm/MC/MCObjectWriter.h" 28 #include "llvm/MC/MCRegisterInfo.h" 29 #include "llvm/MC/MCSectionELF.h" 30 #include "llvm/MC/MCSectionMachO.h" 31 #include "llvm/MC/MCSubtargetInfo.h" 32 #include "llvm/MC/MCValue.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/EndianStream.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Format.h" 37 #include "llvm/Support/TargetParser.h" 38 #include "llvm/Support/raw_ostream.h" 39 using namespace llvm; 40 41 namespace { 42 class ARMELFObjectWriter : public MCELFObjectTargetWriter { 43 public: 44 ARMELFObjectWriter(uint8_t OSABI) 45 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM, 46 /*HasRelocationAddend*/ false) {} 47 }; 48 } // end anonymous namespace 49 50 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { 51 const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = { 52 // This table *must* be in the order that the fixup_* kinds are defined in 53 // ARMFixupKinds.h. 54 // 55 // Name Offset (bits) Size (bits) Flags 56 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 57 {"fixup_t2_ldst_pcrel_12", 0, 32, 58 MCFixupKindInfo::FKF_IsPCRel | 59 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 60 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 61 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 62 {"fixup_t2_pcrel_10", 0, 32, 63 MCFixupKindInfo::FKF_IsPCRel | 64 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 65 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 66 {"fixup_t2_pcrel_9", 0, 32, 67 MCFixupKindInfo::FKF_IsPCRel | 68 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 69 {"fixup_thumb_adr_pcrel_10", 0, 8, 70 MCFixupKindInfo::FKF_IsPCRel | 71 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 72 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 73 {"fixup_t2_adr_pcrel_12", 0, 32, 74 MCFixupKindInfo::FKF_IsPCRel | 75 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 76 {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 77 {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 78 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 79 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 80 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 81 {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 82 {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 83 {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 84 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 85 {"fixup_arm_thumb_blx", 0, 32, 86 MCFixupKindInfo::FKF_IsPCRel | 87 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 88 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 89 {"fixup_arm_thumb_cp", 0, 8, 90 MCFixupKindInfo::FKF_IsPCRel | 91 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 92 {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel}, 93 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 94 // - 19. 95 {"fixup_arm_movt_hi16", 0, 20, 0}, 96 {"fixup_arm_movw_lo16", 0, 20, 0}, 97 {"fixup_t2_movt_hi16", 0, 20, 0}, 98 {"fixup_t2_movw_lo16", 0, 20, 0}, 99 {"fixup_arm_mod_imm", 0, 12, 0}, 100 {"fixup_t2_so_imm", 0, 26, 0}, 101 }; 102 const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = { 103 // This table *must* be in the order that the fixup_* kinds are defined in 104 // ARMFixupKinds.h. 105 // 106 // Name Offset (bits) Size (bits) Flags 107 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 108 {"fixup_t2_ldst_pcrel_12", 0, 32, 109 MCFixupKindInfo::FKF_IsPCRel | 110 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 111 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 112 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 113 {"fixup_t2_pcrel_10", 0, 32, 114 MCFixupKindInfo::FKF_IsPCRel | 115 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 116 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 117 {"fixup_t2_pcrel_9", 0, 32, 118 MCFixupKindInfo::FKF_IsPCRel | 119 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 120 {"fixup_thumb_adr_pcrel_10", 8, 8, 121 MCFixupKindInfo::FKF_IsPCRel | 122 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 123 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 124 {"fixup_t2_adr_pcrel_12", 0, 32, 125 MCFixupKindInfo::FKF_IsPCRel | 126 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 127 {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 128 {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 129 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 130 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 131 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 132 {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 133 {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 134 {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 135 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 136 {"fixup_arm_thumb_blx", 0, 32, 137 MCFixupKindInfo::FKF_IsPCRel | 138 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 139 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 140 {"fixup_arm_thumb_cp", 8, 8, 141 MCFixupKindInfo::FKF_IsPCRel | 142 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 143 {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel}, 144 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 145 // - 19. 146 {"fixup_arm_movt_hi16", 12, 20, 0}, 147 {"fixup_arm_movw_lo16", 12, 20, 0}, 148 {"fixup_t2_movt_hi16", 12, 20, 0}, 149 {"fixup_t2_movw_lo16", 12, 20, 0}, 150 {"fixup_arm_mod_imm", 20, 12, 0}, 151 {"fixup_t2_so_imm", 26, 6, 0}, 152 }; 153 154 if (Kind < FirstTargetFixupKind) 155 return MCAsmBackend::getFixupKindInfo(Kind); 156 157 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && 158 "Invalid kind!"); 159 return (Endian == support::little ? InfosLE 160 : InfosBE)[Kind - FirstTargetFixupKind]; 161 } 162 163 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) { 164 switch (Flag) { 165 default: 166 break; 167 case MCAF_Code16: 168 setIsThumb(true); 169 break; 170 case MCAF_Code32: 171 setIsThumb(false); 172 break; 173 } 174 } 175 176 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op) const { 177 bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2]; 178 bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps]; 179 180 switch (Op) { 181 default: 182 return Op; 183 case ARM::tBcc: 184 return HasThumb2 ? (unsigned)ARM::t2Bcc : Op; 185 case ARM::tLDRpci: 186 return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op; 187 case ARM::tADR: 188 return HasThumb2 ? (unsigned)ARM::t2ADR : Op; 189 case ARM::tB: 190 return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op; 191 case ARM::tCBZ: 192 return ARM::tHINT; 193 case ARM::tCBNZ: 194 return ARM::tHINT; 195 } 196 } 197 198 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const { 199 if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode()) 200 return true; 201 return false; 202 } 203 204 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup, 205 uint64_t Value) const { 206 switch ((unsigned)Fixup.getKind()) { 207 case ARM::fixup_arm_thumb_br: { 208 // Relaxing tB to t2B. tB has a signed 12-bit displacement with the 209 // low bit being an implied zero. There's an implied +4 offset for the 210 // branch, so we adjust the other way here to determine what's 211 // encodable. 212 // 213 // Relax if the value is too big for a (signed) i8. 214 int64_t Offset = int64_t(Value) - 4; 215 if (Offset > 2046 || Offset < -2048) 216 return "out of range pc-relative fixup value"; 217 break; 218 } 219 case ARM::fixup_arm_thumb_bcc: { 220 // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the 221 // low bit being an implied zero. There's an implied +4 offset for the 222 // branch, so we adjust the other way here to determine what's 223 // encodable. 224 // 225 // Relax if the value is too big for a (signed) i8. 226 int64_t Offset = int64_t(Value) - 4; 227 if (Offset > 254 || Offset < -256) 228 return "out of range pc-relative fixup value"; 229 break; 230 } 231 case ARM::fixup_thumb_adr_pcrel_10: 232 case ARM::fixup_arm_thumb_cp: { 233 // If the immediate is negative, greater than 1020, or not a multiple 234 // of four, the wide version of the instruction must be used. 235 int64_t Offset = int64_t(Value) - 4; 236 if (Offset & 3) 237 return "misaligned pc-relative fixup value"; 238 else if (Offset > 1020 || Offset < 0) 239 return "out of range pc-relative fixup value"; 240 break; 241 } 242 case ARM::fixup_arm_thumb_cb: { 243 // If we have a Thumb CBZ or CBNZ instruction and its target is the next 244 // instruction it is actually out of range for the instruction. 245 // It will be changed to a NOP. 246 int64_t Offset = (Value & ~1); 247 if (Offset == 2) 248 return "will be converted to nop"; 249 break; 250 } 251 default: 252 llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!"); 253 } 254 return nullptr; 255 } 256 257 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, 258 const MCRelaxableFragment *DF, 259 const MCAsmLayout &Layout) const { 260 return reasonForFixupRelaxation(Fixup, Value); 261 } 262 263 void ARMAsmBackend::relaxInstruction(const MCInst &Inst, 264 const MCSubtargetInfo &STI, 265 MCInst &Res) const { 266 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode()); 267 268 // Sanity check w/ diagnostic if we get here w/ a bogus instruction. 269 if (RelaxedOp == Inst.getOpcode()) { 270 SmallString<256> Tmp; 271 raw_svector_ostream OS(Tmp); 272 Inst.dump_pretty(OS); 273 OS << "\n"; 274 report_fatal_error("unexpected instruction to relax: " + OS.str()); 275 } 276 277 // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we 278 // have to change the operands too. 279 if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) && 280 RelaxedOp == ARM::tHINT) { 281 Res.setOpcode(RelaxedOp); 282 Res.addOperand(MCOperand::createImm(0)); 283 Res.addOperand(MCOperand::createImm(14)); 284 Res.addOperand(MCOperand::createReg(0)); 285 return; 286 } 287 288 // The rest of instructions we're relaxing have the same operands. 289 // We just need to update to the proper opcode. 290 Res = Inst; 291 Res.setOpcode(RelaxedOp); 292 } 293 294 bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const { 295 const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8 296 const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP 297 const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0 298 const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP 299 if (isThumb()) { 300 const uint16_t nopEncoding = 301 hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding; 302 uint64_t NumNops = Count / 2; 303 for (uint64_t i = 0; i != NumNops; ++i) 304 support::endian::write(OS, nopEncoding, Endian); 305 if (Count & 1) 306 OS << '\0'; 307 return true; 308 } 309 // ARM mode 310 const uint32_t nopEncoding = 311 hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding; 312 uint64_t NumNops = Count / 4; 313 for (uint64_t i = 0; i != NumNops; ++i) 314 support::endian::write(OS, nopEncoding, Endian); 315 // FIXME: should this function return false when unable to write exactly 316 // 'Count' bytes with NOP encodings? 317 switch (Count % 4) { 318 default: 319 break; // No leftover bytes to write 320 case 1: 321 OS << '\0'; 322 break; 323 case 2: 324 OS.write("\0\0", 2); 325 break; 326 case 3: 327 OS.write("\0\0\xa0", 3); 328 break; 329 } 330 331 return true; 332 } 333 334 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) { 335 if (IsLittleEndian) { 336 // Note that the halfwords are stored high first and low second in thumb; 337 // so we need to swap the fixup value here to map properly. 338 uint32_t Swapped = (Value & 0xFFFF0000) >> 16; 339 Swapped |= (Value & 0x0000FFFF) << 16; 340 return Swapped; 341 } else 342 return Value; 343 } 344 345 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf, 346 bool IsLittleEndian) { 347 uint32_t Value; 348 349 if (IsLittleEndian) { 350 Value = (SecondHalf & 0xFFFF) << 16; 351 Value |= (FirstHalf & 0xFFFF); 352 } else { 353 Value = (SecondHalf & 0xFFFF); 354 Value |= (FirstHalf & 0xFFFF) << 16; 355 } 356 357 return Value; 358 } 359 360 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm, 361 const MCFixup &Fixup, 362 const MCValue &Target, uint64_t Value, 363 bool IsResolved, MCContext &Ctx) const { 364 unsigned Kind = Fixup.getKind(); 365 366 // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT 367 // and .word relocations they put the Thumb bit into the addend if possible. 368 // Other relocation types don't want this bit though (branches couldn't encode 369 // it if it *was* present, and no other relocations exist) and it can 370 // interfere with checking valid expressions. 371 if (const MCSymbolRefExpr *A = Target.getSymA()) { 372 if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) && 373 (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 || 374 Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 || 375 Kind == ARM::fixup_t2_movt_hi16)) 376 Value |= 1; 377 } 378 379 switch (Kind) { 380 default: 381 Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type"); 382 return 0; 383 case FK_Data_1: 384 case FK_Data_2: 385 case FK_Data_4: 386 return Value; 387 case FK_SecRel_2: 388 return Value; 389 case FK_SecRel_4: 390 return Value; 391 case ARM::fixup_arm_movt_hi16: 392 if (IsResolved || !STI.getTargetTriple().isOSBinFormatELF()) 393 Value >>= 16; 394 LLVM_FALLTHROUGH; 395 case ARM::fixup_arm_movw_lo16: { 396 unsigned Hi4 = (Value & 0xF000) >> 12; 397 unsigned Lo12 = Value & 0x0FFF; 398 // inst{19-16} = Hi4; 399 // inst{11-0} = Lo12; 400 Value = (Hi4 << 16) | (Lo12); 401 return Value; 402 } 403 case ARM::fixup_t2_movt_hi16: 404 if (IsResolved || !STI.getTargetTriple().isOSBinFormatELF()) 405 Value >>= 16; 406 LLVM_FALLTHROUGH; 407 case ARM::fixup_t2_movw_lo16: { 408 unsigned Hi4 = (Value & 0xF000) >> 12; 409 unsigned i = (Value & 0x800) >> 11; 410 unsigned Mid3 = (Value & 0x700) >> 8; 411 unsigned Lo8 = Value & 0x0FF; 412 // inst{19-16} = Hi4; 413 // inst{26} = i; 414 // inst{14-12} = Mid3; 415 // inst{7-0} = Lo8; 416 Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8); 417 return swapHalfWords(Value, Endian == support::little); 418 } 419 case ARM::fixup_arm_ldst_pcrel_12: 420 // ARM PC-relative values are offset by 8. 421 Value -= 4; 422 LLVM_FALLTHROUGH; 423 case ARM::fixup_t2_ldst_pcrel_12: { 424 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 425 Value -= 4; 426 bool isAdd = true; 427 if ((int64_t)Value < 0) { 428 Value = -Value; 429 isAdd = false; 430 } 431 if (Value >= 4096) { 432 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 433 return 0; 434 } 435 Value |= isAdd << 23; 436 437 // Same addressing mode as fixup_arm_pcrel_10, 438 // but with 16-bit halfwords swapped. 439 if (Kind == ARM::fixup_t2_ldst_pcrel_12) 440 return swapHalfWords(Value, Endian == support::little); 441 442 return Value; 443 } 444 case ARM::fixup_arm_adr_pcrel_12: { 445 // ARM PC-relative values are offset by 8. 446 Value -= 8; 447 unsigned opc = 4; // bits {24-21}. Default to add: 0b0100 448 if ((int64_t)Value < 0) { 449 Value = -Value; 450 opc = 2; // 0b0010 451 } 452 if (ARM_AM::getSOImmVal(Value) == -1) { 453 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 454 return 0; 455 } 456 // Encode the immediate and shift the opcode into place. 457 return ARM_AM::getSOImmVal(Value) | (opc << 21); 458 } 459 460 case ARM::fixup_t2_adr_pcrel_12: { 461 Value -= 4; 462 unsigned opc = 0; 463 if ((int64_t)Value < 0) { 464 Value = -Value; 465 opc = 5; 466 } 467 468 uint32_t out = (opc << 21); 469 out |= (Value & 0x800) << 15; 470 out |= (Value & 0x700) << 4; 471 out |= (Value & 0x0FF); 472 473 return swapHalfWords(out, Endian == support::little); 474 } 475 476 case ARM::fixup_arm_condbranch: 477 case ARM::fixup_arm_uncondbranch: 478 case ARM::fixup_arm_uncondbl: 479 case ARM::fixup_arm_condbl: 480 case ARM::fixup_arm_blx: 481 // These values don't encode the low two bits since they're always zero. 482 // Offset by 8 just as above. 483 if (const MCSymbolRefExpr *SRE = 484 dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) 485 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL) 486 return 0; 487 return 0xffffff & ((Value - 8) >> 2); 488 case ARM::fixup_t2_uncondbranch: { 489 Value = Value - 4; 490 if (!isInt<25>(Value)) { 491 Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); 492 return 0; 493 } 494 495 Value >>= 1; // Low bit is not encoded. 496 497 uint32_t out = 0; 498 bool I = Value & 0x800000; 499 bool J1 = Value & 0x400000; 500 bool J2 = Value & 0x200000; 501 J1 ^= I; 502 J2 ^= I; 503 504 out |= I << 26; // S bit 505 out |= !J1 << 13; // J1 bit 506 out |= !J2 << 11; // J2 bit 507 out |= (Value & 0x1FF800) << 5; // imm6 field 508 out |= (Value & 0x0007FF); // imm11 field 509 510 return swapHalfWords(out, Endian == support::little); 511 } 512 case ARM::fixup_t2_condbranch: { 513 Value = Value - 4; 514 if (!isInt<21>(Value)) { 515 Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); 516 return 0; 517 } 518 519 Value >>= 1; // Low bit is not encoded. 520 521 uint64_t out = 0; 522 out |= (Value & 0x80000) << 7; // S bit 523 out |= (Value & 0x40000) >> 7; // J2 bit 524 out |= (Value & 0x20000) >> 4; // J1 bit 525 out |= (Value & 0x1F800) << 5; // imm6 field 526 out |= (Value & 0x007FF); // imm11 field 527 528 return swapHalfWords(out, Endian == support::little); 529 } 530 case ARM::fixup_arm_thumb_bl: { 531 if (!isInt<25>(Value - 4) || 532 (!STI.getFeatureBits()[ARM::FeatureThumb2] && 533 !STI.getFeatureBits()[ARM::HasV8MBaselineOps] && 534 !STI.getFeatureBits()[ARM::HasV6MOps] && 535 !isInt<23>(Value - 4))) { 536 Ctx.reportError(Fixup.getLoc(), "Relocation out of range"); 537 return 0; 538 } 539 540 // The value doesn't encode the low bit (always zero) and is offset by 541 // four. The 32-bit immediate value is encoded as 542 // imm32 = SignExtend(S:I1:I2:imm10:imm11:0) 543 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). 544 // The value is encoded into disjoint bit positions in the destination 545 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, 546 // J = either J1 or J2 bit 547 // 548 // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII 549 // 550 // Note that the halfwords are stored high first, low second; so we need 551 // to transpose the fixup value here to map properly. 552 uint32_t offset = (Value - 4) >> 1; 553 uint32_t signBit = (offset & 0x800000) >> 23; 554 uint32_t I1Bit = (offset & 0x400000) >> 22; 555 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; 556 uint32_t I2Bit = (offset & 0x200000) >> 21; 557 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; 558 uint32_t imm10Bits = (offset & 0x1FF800) >> 11; 559 uint32_t imm11Bits = (offset & 0x000007FF); 560 561 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits); 562 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | 563 (uint16_t)imm11Bits); 564 return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little); 565 } 566 case ARM::fixup_arm_thumb_blx: { 567 // The value doesn't encode the low two bits (always zero) and is offset by 568 // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as 569 // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00) 570 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). 571 // The value is encoded into disjoint bit positions in the destination 572 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, 573 // J = either J1 or J2 bit, 0 = zero. 574 // 575 // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0 576 // 577 // Note that the halfwords are stored high first, low second; so we need 578 // to transpose the fixup value here to map properly. 579 if (Value % 4 != 0) { 580 Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination"); 581 return 0; 582 } 583 584 uint32_t offset = (Value - 4) >> 2; 585 if (const MCSymbolRefExpr *SRE = 586 dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) 587 if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL) 588 offset = 0; 589 uint32_t signBit = (offset & 0x400000) >> 22; 590 uint32_t I1Bit = (offset & 0x200000) >> 21; 591 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; 592 uint32_t I2Bit = (offset & 0x100000) >> 20; 593 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; 594 uint32_t imm10HBits = (offset & 0xFFC00) >> 10; 595 uint32_t imm10LBits = (offset & 0x3FF); 596 597 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits); 598 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | 599 ((uint16_t)imm10LBits) << 1); 600 return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little); 601 } 602 case ARM::fixup_thumb_adr_pcrel_10: 603 case ARM::fixup_arm_thumb_cp: 604 // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we 605 // could have an error on our hands. 606 if (!STI.getFeatureBits()[ARM::FeatureThumb2] && IsResolved) { 607 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 608 if (FixupDiagnostic) { 609 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 610 return 0; 611 } 612 } 613 // Offset by 4, and don't encode the low two bits. 614 return ((Value - 4) >> 2) & 0xff; 615 case ARM::fixup_arm_thumb_cb: { 616 // CB instructions can only branch to offsets in [4, 126] in multiples of 2 617 // so ensure that the raw value LSB is zero and it lies in [2, 130]. 618 // An offset of 2 will be relaxed to a NOP. 619 if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) { 620 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 621 return 0; 622 } 623 // Offset by 4 and don't encode the lower bit, which is always 0. 624 // FIXME: diagnose if no Thumb2 625 uint32_t Binary = (Value - 4) >> 1; 626 return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3); 627 } 628 case ARM::fixup_arm_thumb_br: 629 // Offset by 4 and don't encode the lower bit, which is always 0. 630 if (!STI.getFeatureBits()[ARM::FeatureThumb2] && 631 !STI.getFeatureBits()[ARM::HasV8MBaselineOps]) { 632 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 633 if (FixupDiagnostic) { 634 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 635 return 0; 636 } 637 } 638 return ((Value - 4) >> 1) & 0x7ff; 639 case ARM::fixup_arm_thumb_bcc: 640 // Offset by 4 and don't encode the lower bit, which is always 0. 641 if (!STI.getFeatureBits()[ARM::FeatureThumb2]) { 642 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 643 if (FixupDiagnostic) { 644 Ctx.reportError(Fixup.getLoc(), FixupDiagnostic); 645 return 0; 646 } 647 } 648 return ((Value - 4) >> 1) & 0xff; 649 case ARM::fixup_arm_pcrel_10_unscaled: { 650 Value = Value - 8; // ARM fixups offset by an additional word and don't 651 // need to adjust for the half-word ordering. 652 bool isAdd = true; 653 if ((int64_t)Value < 0) { 654 Value = -Value; 655 isAdd = false; 656 } 657 // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8]. 658 if (Value >= 256) { 659 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 660 return 0; 661 } 662 Value = (Value & 0xf) | ((Value & 0xf0) << 4); 663 return Value | (isAdd << 23); 664 } 665 case ARM::fixup_arm_pcrel_10: 666 Value = Value - 4; // ARM fixups offset by an additional word and don't 667 // need to adjust for the half-word ordering. 668 LLVM_FALLTHROUGH; 669 case ARM::fixup_t2_pcrel_10: { 670 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 671 Value = Value - 4; 672 bool isAdd = true; 673 if ((int64_t)Value < 0) { 674 Value = -Value; 675 isAdd = false; 676 } 677 // These values don't encode the low two bits since they're always zero. 678 Value >>= 2; 679 if (Value >= 256) { 680 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 681 return 0; 682 } 683 Value |= isAdd << 23; 684 685 // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords 686 // swapped. 687 if (Kind == ARM::fixup_t2_pcrel_10) 688 return swapHalfWords(Value, Endian == support::little); 689 690 return Value; 691 } 692 case ARM::fixup_arm_pcrel_9: 693 Value = Value - 4; // ARM fixups offset by an additional word and don't 694 // need to adjust for the half-word ordering. 695 LLVM_FALLTHROUGH; 696 case ARM::fixup_t2_pcrel_9: { 697 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 698 Value = Value - 4; 699 bool isAdd = true; 700 if ((int64_t)Value < 0) { 701 Value = -Value; 702 isAdd = false; 703 } 704 // These values don't encode the low bit since it's always zero. 705 if (Value & 1) { 706 Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup"); 707 return 0; 708 } 709 Value >>= 1; 710 if (Value >= 256) { 711 Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 712 return 0; 713 } 714 Value |= isAdd << 23; 715 716 // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords 717 // swapped. 718 if (Kind == ARM::fixup_t2_pcrel_9) 719 return swapHalfWords(Value, Endian == support::little); 720 721 return Value; 722 } 723 case ARM::fixup_arm_mod_imm: 724 Value = ARM_AM::getSOImmVal(Value); 725 if (Value >> 12) { 726 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value"); 727 return 0; 728 } 729 return Value; 730 case ARM::fixup_t2_so_imm: { 731 Value = ARM_AM::getT2SOImmVal(Value); 732 if ((int64_t)Value < 0) { 733 Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value"); 734 return 0; 735 } 736 // Value will contain a 12-bit value broken up into a 4-bit shift in bits 737 // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate 738 // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit 739 // 10 of the upper half-word and imm3 is placed at 14:12 of the lower 740 // half-word. 741 uint64_t EncValue = 0; 742 EncValue |= (Value & 0x800) << 15; 743 EncValue |= (Value & 0x700) << 4; 744 EncValue |= (Value & 0xff); 745 return swapHalfWords(EncValue, Endian == support::little); 746 } 747 } 748 } 749 750 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm, 751 const MCFixup &Fixup, 752 const MCValue &Target) { 753 const MCSymbolRefExpr *A = Target.getSymA(); 754 const MCSymbol *Sym = A ? &A->getSymbol() : nullptr; 755 const unsigned FixupKind = Fixup.getKind() ; 756 if ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) { 757 assert(Sym && "How did we resolve this?"); 758 759 // If the symbol is external the linker will handle it. 760 // FIXME: Should we handle it as an optimization? 761 762 // If the symbol is out of range, produce a relocation and hope the 763 // linker can handle it. GNU AS produces an error in this case. 764 if (Sym->isExternal()) 765 return true; 766 } 767 // Create relocations for unconditional branches to function symbols with 768 // different execution mode in ELF binaries. 769 if (Sym && Sym->isELF()) { 770 unsigned Type = cast<MCSymbolELF>(Sym)->getType(); 771 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) { 772 if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch)) 773 return true; 774 if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br || 775 FixupKind == ARM::fixup_arm_thumb_bl || 776 FixupKind == ARM::fixup_t2_condbranch || 777 FixupKind == ARM::fixup_t2_uncondbranch)) 778 return true; 779 } 780 } 781 // We must always generate a relocation for BL/BLX instructions if we have 782 // a symbol to reference, as the linker relies on knowing the destination 783 // symbol's thumb-ness to get interworking right. 784 if (A && (FixupKind == ARM::fixup_arm_thumb_blx || 785 FixupKind == ARM::fixup_arm_blx || 786 FixupKind == ARM::fixup_arm_uncondbl || 787 FixupKind == ARM::fixup_arm_condbl)) 788 return true; 789 return false; 790 } 791 792 /// getFixupKindNumBytes - The number of bytes the fixup may change. 793 static unsigned getFixupKindNumBytes(unsigned Kind) { 794 switch (Kind) { 795 default: 796 llvm_unreachable("Unknown fixup kind!"); 797 798 case FK_Data_1: 799 case ARM::fixup_arm_thumb_bcc: 800 case ARM::fixup_arm_thumb_cp: 801 case ARM::fixup_thumb_adr_pcrel_10: 802 return 1; 803 804 case FK_Data_2: 805 case ARM::fixup_arm_thumb_br: 806 case ARM::fixup_arm_thumb_cb: 807 case ARM::fixup_arm_mod_imm: 808 return 2; 809 810 case ARM::fixup_arm_pcrel_10_unscaled: 811 case ARM::fixup_arm_ldst_pcrel_12: 812 case ARM::fixup_arm_pcrel_10: 813 case ARM::fixup_arm_pcrel_9: 814 case ARM::fixup_arm_adr_pcrel_12: 815 case ARM::fixup_arm_uncondbl: 816 case ARM::fixup_arm_condbl: 817 case ARM::fixup_arm_blx: 818 case ARM::fixup_arm_condbranch: 819 case ARM::fixup_arm_uncondbranch: 820 return 3; 821 822 case FK_Data_4: 823 case ARM::fixup_t2_ldst_pcrel_12: 824 case ARM::fixup_t2_condbranch: 825 case ARM::fixup_t2_uncondbranch: 826 case ARM::fixup_t2_pcrel_10: 827 case ARM::fixup_t2_pcrel_9: 828 case ARM::fixup_t2_adr_pcrel_12: 829 case ARM::fixup_arm_thumb_bl: 830 case ARM::fixup_arm_thumb_blx: 831 case ARM::fixup_arm_movt_hi16: 832 case ARM::fixup_arm_movw_lo16: 833 case ARM::fixup_t2_movt_hi16: 834 case ARM::fixup_t2_movw_lo16: 835 case ARM::fixup_t2_so_imm: 836 return 4; 837 838 case FK_SecRel_2: 839 return 2; 840 case FK_SecRel_4: 841 return 4; 842 } 843 } 844 845 /// getFixupKindContainerSizeBytes - The number of bytes of the 846 /// container involved in big endian. 847 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) { 848 switch (Kind) { 849 default: 850 llvm_unreachable("Unknown fixup kind!"); 851 852 case FK_Data_1: 853 return 1; 854 case FK_Data_2: 855 return 2; 856 case FK_Data_4: 857 return 4; 858 859 case ARM::fixup_arm_thumb_bcc: 860 case ARM::fixup_arm_thumb_cp: 861 case ARM::fixup_thumb_adr_pcrel_10: 862 case ARM::fixup_arm_thumb_br: 863 case ARM::fixup_arm_thumb_cb: 864 // Instruction size is 2 bytes. 865 return 2; 866 867 case ARM::fixup_arm_pcrel_10_unscaled: 868 case ARM::fixup_arm_ldst_pcrel_12: 869 case ARM::fixup_arm_pcrel_10: 870 case ARM::fixup_arm_adr_pcrel_12: 871 case ARM::fixup_arm_uncondbl: 872 case ARM::fixup_arm_condbl: 873 case ARM::fixup_arm_blx: 874 case ARM::fixup_arm_condbranch: 875 case ARM::fixup_arm_uncondbranch: 876 case ARM::fixup_t2_ldst_pcrel_12: 877 case ARM::fixup_t2_condbranch: 878 case ARM::fixup_t2_uncondbranch: 879 case ARM::fixup_t2_pcrel_10: 880 case ARM::fixup_t2_adr_pcrel_12: 881 case ARM::fixup_arm_thumb_bl: 882 case ARM::fixup_arm_thumb_blx: 883 case ARM::fixup_arm_movt_hi16: 884 case ARM::fixup_arm_movw_lo16: 885 case ARM::fixup_t2_movt_hi16: 886 case ARM::fixup_t2_movw_lo16: 887 case ARM::fixup_arm_mod_imm: 888 case ARM::fixup_t2_so_imm: 889 // Instruction size is 4 bytes. 890 return 4; 891 } 892 } 893 894 void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup, 895 const MCValue &Target, 896 MutableArrayRef<char> Data, uint64_t Value, 897 bool IsResolved) const { 898 unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind()); 899 MCContext &Ctx = Asm.getContext(); 900 Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx); 901 if (!Value) 902 return; // Doesn't change encoding. 903 904 unsigned Offset = Fixup.getOffset(); 905 assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!"); 906 907 // Used to point to big endian bytes. 908 unsigned FullSizeBytes; 909 if (Endian == support::big) { 910 FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind()); 911 assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!"); 912 assert(NumBytes <= FullSizeBytes && "Invalid fixup size!"); 913 } 914 915 // For each byte of the fragment that the fixup touches, mask in the bits from 916 // the fixup value. The Value has been "split up" into the appropriate 917 // bitfields above. 918 for (unsigned i = 0; i != NumBytes; ++i) { 919 unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i); 920 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff); 921 } 922 } 923 924 namespace CU { 925 926 /// Compact unwind encoding values. 927 enum CompactUnwindEncodings { 928 UNWIND_ARM_MODE_MASK = 0x0F000000, 929 UNWIND_ARM_MODE_FRAME = 0x01000000, 930 UNWIND_ARM_MODE_FRAME_D = 0x02000000, 931 UNWIND_ARM_MODE_DWARF = 0x04000000, 932 933 UNWIND_ARM_FRAME_STACK_ADJUST_MASK = 0x00C00000, 934 935 UNWIND_ARM_FRAME_FIRST_PUSH_R4 = 0x00000001, 936 UNWIND_ARM_FRAME_FIRST_PUSH_R5 = 0x00000002, 937 UNWIND_ARM_FRAME_FIRST_PUSH_R6 = 0x00000004, 938 939 UNWIND_ARM_FRAME_SECOND_PUSH_R8 = 0x00000008, 940 UNWIND_ARM_FRAME_SECOND_PUSH_R9 = 0x00000010, 941 UNWIND_ARM_FRAME_SECOND_PUSH_R10 = 0x00000020, 942 UNWIND_ARM_FRAME_SECOND_PUSH_R11 = 0x00000040, 943 UNWIND_ARM_FRAME_SECOND_PUSH_R12 = 0x00000080, 944 945 UNWIND_ARM_FRAME_D_REG_COUNT_MASK = 0x00000F00, 946 947 UNWIND_ARM_DWARF_SECTION_OFFSET = 0x00FFFFFF 948 }; 949 950 } // end CU namespace 951 952 /// Generate compact unwind encoding for the function based on the CFI 953 /// instructions. If the CFI instructions describe a frame that cannot be 954 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which 955 /// tells the runtime to fallback and unwind using dwarf. 956 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding( 957 ArrayRef<MCCFIInstruction> Instrs) const { 958 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n"); 959 // Only armv7k uses CFI based unwinding. 960 if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K) 961 return 0; 962 // No .cfi directives means no frame. 963 if (Instrs.empty()) 964 return 0; 965 // Start off assuming CFA is at SP+0. 966 int CFARegister = ARM::SP; 967 int CFARegisterOffset = 0; 968 // Mark savable registers as initially unsaved 969 DenseMap<unsigned, int> RegOffsets; 970 int FloatRegCount = 0; 971 // Process each .cfi directive and build up compact unwind info. 972 for (size_t i = 0, e = Instrs.size(); i != e; ++i) { 973 int Reg; 974 const MCCFIInstruction &Inst = Instrs[i]; 975 switch (Inst.getOperation()) { 976 case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa 977 CFARegisterOffset = -Inst.getOffset(); 978 CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true); 979 break; 980 case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset 981 CFARegisterOffset = -Inst.getOffset(); 982 break; 983 case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register 984 CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true); 985 break; 986 case MCCFIInstruction::OpOffset: // DW_CFA_offset 987 Reg = MRI.getLLVMRegNum(Inst.getRegister(), true); 988 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 989 RegOffsets[Reg] = Inst.getOffset(); 990 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 991 RegOffsets[Reg] = Inst.getOffset(); 992 ++FloatRegCount; 993 } else { 994 DEBUG_WITH_TYPE("compact-unwind", 995 llvm::dbgs() << ".cfi_offset on unknown register=" 996 << Inst.getRegister() << "\n"); 997 return CU::UNWIND_ARM_MODE_DWARF; 998 } 999 break; 1000 case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc 1001 // Ignore 1002 break; 1003 default: 1004 // Directive not convertable to compact unwind, bail out. 1005 DEBUG_WITH_TYPE("compact-unwind", 1006 llvm::dbgs() 1007 << "CFI directive not compatiable with comact " 1008 "unwind encoding, opcode=" << Inst.getOperation() 1009 << "\n"); 1010 return CU::UNWIND_ARM_MODE_DWARF; 1011 break; 1012 } 1013 } 1014 1015 // If no frame set up, return no unwind info. 1016 if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0)) 1017 return 0; 1018 1019 // Verify standard frame (lr/r7) was used. 1020 if (CFARegister != ARM::R7) { 1021 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is " 1022 << CFARegister 1023 << " instead of r7\n"); 1024 return CU::UNWIND_ARM_MODE_DWARF; 1025 } 1026 int StackAdjust = CFARegisterOffset - 8; 1027 if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) { 1028 DEBUG_WITH_TYPE("compact-unwind", 1029 llvm::dbgs() 1030 << "LR not saved as standard frame, StackAdjust=" 1031 << StackAdjust 1032 << ", CFARegisterOffset=" << CFARegisterOffset 1033 << ", lr save at offset=" << RegOffsets[14] << "\n"); 1034 return CU::UNWIND_ARM_MODE_DWARF; 1035 } 1036 if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) { 1037 DEBUG_WITH_TYPE("compact-unwind", 1038 llvm::dbgs() << "r7 not saved as standard frame\n"); 1039 return CU::UNWIND_ARM_MODE_DWARF; 1040 } 1041 uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME; 1042 1043 // If var-args are used, there may be a stack adjust required. 1044 switch (StackAdjust) { 1045 case 0: 1046 break; 1047 case 4: 1048 CompactUnwindEncoding |= 0x00400000; 1049 break; 1050 case 8: 1051 CompactUnwindEncoding |= 0x00800000; 1052 break; 1053 case 12: 1054 CompactUnwindEncoding |= 0x00C00000; 1055 break; 1056 default: 1057 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() 1058 << ".cfi_def_cfa stack adjust (" 1059 << StackAdjust << ") out of range\n"); 1060 return CU::UNWIND_ARM_MODE_DWARF; 1061 } 1062 1063 // If r6 is saved, it must be right below r7. 1064 static struct { 1065 unsigned Reg; 1066 unsigned Encoding; 1067 } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6}, 1068 {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5}, 1069 {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4}, 1070 {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12}, 1071 {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11}, 1072 {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10}, 1073 {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9}, 1074 {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}}; 1075 1076 int CurOffset = -8 - StackAdjust; 1077 for (auto CSReg : GPRCSRegs) { 1078 auto Offset = RegOffsets.find(CSReg.Reg); 1079 if (Offset == RegOffsets.end()) 1080 continue; 1081 1082 int RegOffset = Offset->second; 1083 if (RegOffset != CurOffset - 4) { 1084 DEBUG_WITH_TYPE("compact-unwind", 1085 llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at " 1086 << RegOffset << " but only supported at " 1087 << CurOffset << "\n"); 1088 return CU::UNWIND_ARM_MODE_DWARF; 1089 } 1090 CompactUnwindEncoding |= CSReg.Encoding; 1091 CurOffset -= 4; 1092 } 1093 1094 // If no floats saved, we are done. 1095 if (FloatRegCount == 0) 1096 return CompactUnwindEncoding; 1097 1098 // Switch mode to include D register saving. 1099 CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK; 1100 CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D; 1101 1102 // FIXME: supporting more than 4 saved D-registers compactly would be trivial, 1103 // but needs coordination with the linker and libunwind. 1104 if (FloatRegCount > 4) { 1105 DEBUG_WITH_TYPE("compact-unwind", 1106 llvm::dbgs() << "unsupported number of D registers saved (" 1107 << FloatRegCount << ")\n"); 1108 return CU::UNWIND_ARM_MODE_DWARF; 1109 } 1110 1111 // Floating point registers must either be saved sequentially, or we defer to 1112 // DWARF. No gaps allowed here so check that each saved d-register is 1113 // precisely where it should be. 1114 static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 }; 1115 for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) { 1116 auto Offset = RegOffsets.find(FPRCSRegs[Idx]); 1117 if (Offset == RegOffsets.end()) { 1118 DEBUG_WITH_TYPE("compact-unwind", 1119 llvm::dbgs() << FloatRegCount << " D-regs saved, but " 1120 << MRI.getName(FPRCSRegs[Idx]) 1121 << " not saved\n"); 1122 return CU::UNWIND_ARM_MODE_DWARF; 1123 } else if (Offset->second != CurOffset - 8) { 1124 DEBUG_WITH_TYPE("compact-unwind", 1125 llvm::dbgs() << FloatRegCount << " D-regs saved, but " 1126 << MRI.getName(FPRCSRegs[Idx]) 1127 << " saved at " << Offset->second 1128 << ", expected at " << CurOffset - 8 1129 << "\n"); 1130 return CU::UNWIND_ARM_MODE_DWARF; 1131 } 1132 CurOffset -= 8; 1133 } 1134 1135 return CompactUnwindEncoding | ((FloatRegCount - 1) << 8); 1136 } 1137 1138 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) { 1139 ARM::ArchKind AK = ARM::parseArch(Arch); 1140 switch (AK) { 1141 default: 1142 return MachO::CPU_SUBTYPE_ARM_V7; 1143 case ARM::ArchKind::ARMV4T: 1144 return MachO::CPU_SUBTYPE_ARM_V4T; 1145 case ARM::ArchKind::ARMV5T: 1146 case ARM::ArchKind::ARMV5TE: 1147 case ARM::ArchKind::ARMV5TEJ: 1148 return MachO::CPU_SUBTYPE_ARM_V5; 1149 case ARM::ArchKind::ARMV6: 1150 case ARM::ArchKind::ARMV6K: 1151 return MachO::CPU_SUBTYPE_ARM_V6; 1152 case ARM::ArchKind::ARMV7A: 1153 return MachO::CPU_SUBTYPE_ARM_V7; 1154 case ARM::ArchKind::ARMV7S: 1155 return MachO::CPU_SUBTYPE_ARM_V7S; 1156 case ARM::ArchKind::ARMV7K: 1157 return MachO::CPU_SUBTYPE_ARM_V7K; 1158 case ARM::ArchKind::ARMV6M: 1159 return MachO::CPU_SUBTYPE_ARM_V6M; 1160 case ARM::ArchKind::ARMV7M: 1161 return MachO::CPU_SUBTYPE_ARM_V7M; 1162 case ARM::ArchKind::ARMV7EM: 1163 return MachO::CPU_SUBTYPE_ARM_V7EM; 1164 } 1165 } 1166 1167 static MCAsmBackend *createARMAsmBackend(const Target &T, 1168 const MCSubtargetInfo &STI, 1169 const MCRegisterInfo &MRI, 1170 const MCTargetOptions &Options, 1171 support::endianness Endian) { 1172 const Triple &TheTriple = STI.getTargetTriple(); 1173 switch (TheTriple.getObjectFormat()) { 1174 default: 1175 llvm_unreachable("unsupported object format"); 1176 case Triple::MachO: { 1177 MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName()); 1178 return new ARMAsmBackendDarwin(T, STI, MRI, CS); 1179 } 1180 case Triple::COFF: 1181 assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported"); 1182 return new ARMAsmBackendWinCOFF(T, STI); 1183 case Triple::ELF: 1184 assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target"); 1185 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); 1186 return new ARMAsmBackendELF(T, STI, OSABI, Endian); 1187 } 1188 } 1189 1190 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T, 1191 const MCSubtargetInfo &STI, 1192 const MCRegisterInfo &MRI, 1193 const MCTargetOptions &Options) { 1194 return createARMAsmBackend(T, STI, MRI, Options, support::little); 1195 } 1196 1197 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T, 1198 const MCSubtargetInfo &STI, 1199 const MCRegisterInfo &MRI, 1200 const MCTargetOptions &Options) { 1201 return createARMAsmBackend(T, STI, MRI, Options, support::big); 1202 } 1203