1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "MCTargetDesc/ARMAsmBackend.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
13 #include "MCTargetDesc/ARMAsmBackendELF.h"
14 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
15 #include "MCTargetDesc/ARMFixupKinds.h"
16 #include "MCTargetDesc/ARMMCTargetDesc.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/BinaryFormat/ELF.h"
19 #include "llvm/BinaryFormat/MachO.h"
20 #include "llvm/MC/MCAsmBackend.h"
21 #include "llvm/MC/MCAssembler.h"
22 #include "llvm/MC/MCContext.h"
23 #include "llvm/MC/MCDirectives.h"
24 #include "llvm/MC/MCELFObjectWriter.h"
25 #include "llvm/MC/MCExpr.h"
26 #include "llvm/MC/MCFixupKindInfo.h"
27 #include "llvm/MC/MCObjectWriter.h"
28 #include "llvm/MC/MCRegisterInfo.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCSectionMachO.h"
31 #include "llvm/MC/MCSubtargetInfo.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/Format.h"
36 #include "llvm/Support/TargetParser.h"
37 #include "llvm/Support/raw_ostream.h"
38 using namespace llvm;
39 
40 namespace {
41 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
42 public:
43   ARMELFObjectWriter(uint8_t OSABI)
44       : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
45                                 /*HasRelocationAddend*/ false) {}
46 };
47 } // end anonymous namespace
48 
49 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
50   const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
51       // This table *must* be in the order that the fixup_* kinds are defined in
52       // ARMFixupKinds.h.
53       //
54       // Name                      Offset (bits) Size (bits)     Flags
55       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
56       {"fixup_t2_ldst_pcrel_12", 0, 32,
57        MCFixupKindInfo::FKF_IsPCRel |
58            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
59       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
60       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
61       {"fixup_t2_pcrel_10", 0, 32,
62        MCFixupKindInfo::FKF_IsPCRel |
63            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
64       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
65       {"fixup_t2_pcrel_9", 0, 32,
66        MCFixupKindInfo::FKF_IsPCRel |
67            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
68       {"fixup_thumb_adr_pcrel_10", 0, 8,
69        MCFixupKindInfo::FKF_IsPCRel |
70            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
71       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
72       {"fixup_t2_adr_pcrel_12", 0, 32,
73        MCFixupKindInfo::FKF_IsPCRel |
74            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
75       {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
76       {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
77       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
78       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
79       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
80       {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
81       {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
82       {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
83       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
84       {"fixup_arm_thumb_blx", 0, 32,
85        MCFixupKindInfo::FKF_IsPCRel |
86            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
87       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
88       {"fixup_arm_thumb_cp", 0, 8,
89        MCFixupKindInfo::FKF_IsPCRel |
90            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
91       {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
92       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
93       // - 19.
94       {"fixup_arm_movt_hi16", 0, 20, 0},
95       {"fixup_arm_movw_lo16", 0, 20, 0},
96       {"fixup_t2_movt_hi16", 0, 20, 0},
97       {"fixup_t2_movw_lo16", 0, 20, 0},
98       {"fixup_arm_mod_imm", 0, 12, 0},
99       {"fixup_t2_so_imm", 0, 26, 0},
100   };
101   const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
102       // This table *must* be in the order that the fixup_* kinds are defined in
103       // ARMFixupKinds.h.
104       //
105       // Name                      Offset (bits) Size (bits)     Flags
106       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
107       {"fixup_t2_ldst_pcrel_12", 0, 32,
108        MCFixupKindInfo::FKF_IsPCRel |
109            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
110       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
111       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
112       {"fixup_t2_pcrel_10", 0, 32,
113        MCFixupKindInfo::FKF_IsPCRel |
114            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
115       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
116       {"fixup_t2_pcrel_9", 0, 32,
117        MCFixupKindInfo::FKF_IsPCRel |
118            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
119       {"fixup_thumb_adr_pcrel_10", 8, 8,
120        MCFixupKindInfo::FKF_IsPCRel |
121            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
122       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
123       {"fixup_t2_adr_pcrel_12", 0, 32,
124        MCFixupKindInfo::FKF_IsPCRel |
125            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
126       {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
127       {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
128       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
129       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
130       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
131       {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
132       {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
133       {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
134       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
135       {"fixup_arm_thumb_blx", 0, 32,
136        MCFixupKindInfo::FKF_IsPCRel |
137            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
138       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
139       {"fixup_arm_thumb_cp", 8, 8,
140        MCFixupKindInfo::FKF_IsPCRel |
141            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
142       {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
143       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
144       // - 19.
145       {"fixup_arm_movt_hi16", 12, 20, 0},
146       {"fixup_arm_movw_lo16", 12, 20, 0},
147       {"fixup_t2_movt_hi16", 12, 20, 0},
148       {"fixup_t2_movw_lo16", 12, 20, 0},
149       {"fixup_arm_mod_imm", 20, 12, 0},
150       {"fixup_t2_so_imm", 26, 6, 0},
151   };
152 
153   if (Kind < FirstTargetFixupKind)
154     return MCAsmBackend::getFixupKindInfo(Kind);
155 
156   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
157          "Invalid kind!");
158   return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind];
159 }
160 
161 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
162   switch (Flag) {
163   default:
164     break;
165   case MCAF_Code16:
166     setIsThumb(true);
167     break;
168   case MCAF_Code32:
169     setIsThumb(false);
170     break;
171   }
172 }
173 
174 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op) const {
175   bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2];
176   bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps];
177 
178   switch (Op) {
179   default:
180     return Op;
181   case ARM::tBcc:
182     return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
183   case ARM::tLDRpci:
184     return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
185   case ARM::tADR:
186     return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
187   case ARM::tB:
188     return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
189   case ARM::tCBZ:
190     return ARM::tHINT;
191   case ARM::tCBNZ:
192     return ARM::tHINT;
193   }
194 }
195 
196 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
197   if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode())
198     return true;
199   return false;
200 }
201 
202 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
203                                                     uint64_t Value) const {
204   switch ((unsigned)Fixup.getKind()) {
205   case ARM::fixup_arm_thumb_br: {
206     // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
207     // low bit being an implied zero. There's an implied +4 offset for the
208     // branch, so we adjust the other way here to determine what's
209     // encodable.
210     //
211     // Relax if the value is too big for a (signed) i8.
212     int64_t Offset = int64_t(Value) - 4;
213     if (Offset > 2046 || Offset < -2048)
214       return "out of range pc-relative fixup value";
215     break;
216   }
217   case ARM::fixup_arm_thumb_bcc: {
218     // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
219     // low bit being an implied zero. There's an implied +4 offset for the
220     // branch, so we adjust the other way here to determine what's
221     // encodable.
222     //
223     // Relax if the value is too big for a (signed) i8.
224     int64_t Offset = int64_t(Value) - 4;
225     if (Offset > 254 || Offset < -256)
226       return "out of range pc-relative fixup value";
227     break;
228   }
229   case ARM::fixup_thumb_adr_pcrel_10:
230   case ARM::fixup_arm_thumb_cp: {
231     // If the immediate is negative, greater than 1020, or not a multiple
232     // of four, the wide version of the instruction must be used.
233     int64_t Offset = int64_t(Value) - 4;
234     if (Offset & 3)
235       return "misaligned pc-relative fixup value";
236     else if (Offset > 1020 || Offset < 0)
237       return "out of range pc-relative fixup value";
238     break;
239   }
240   case ARM::fixup_arm_thumb_cb: {
241     // If we have a Thumb CBZ or CBNZ instruction and its target is the next
242     // instruction it is is actually out of range for the instruction.
243     // It will be changed to a NOP.
244     int64_t Offset = (Value & ~1);
245     if (Offset == 2)
246       return "will be converted to nop";
247     break;
248   }
249   default:
250     llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
251   }
252   return nullptr;
253 }
254 
255 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
256                                          const MCRelaxableFragment *DF,
257                                          const MCAsmLayout &Layout) const {
258   return reasonForFixupRelaxation(Fixup, Value);
259 }
260 
261 void ARMAsmBackend::relaxInstruction(const MCInst &Inst,
262                                      const MCSubtargetInfo &STI,
263                                      MCInst &Res) const {
264   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
265 
266   // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
267   if (RelaxedOp == Inst.getOpcode()) {
268     SmallString<256> Tmp;
269     raw_svector_ostream OS(Tmp);
270     Inst.dump_pretty(OS);
271     OS << "\n";
272     report_fatal_error("unexpected instruction to relax: " + OS.str());
273   }
274 
275   // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
276   // have to change the operands too.
277   if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
278       RelaxedOp == ARM::tHINT) {
279     Res.setOpcode(RelaxedOp);
280     Res.addOperand(MCOperand::createImm(0));
281     Res.addOperand(MCOperand::createImm(14));
282     Res.addOperand(MCOperand::createReg(0));
283     return;
284   }
285 
286   // The rest of instructions we're relaxing have the same operands.
287   // We just need to update to the proper opcode.
288   Res = Inst;
289   Res.setOpcode(RelaxedOp);
290 }
291 
292 bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
293   const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
294   const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
295   const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
296   const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
297   if (isThumb()) {
298     const uint16_t nopEncoding =
299         hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
300     uint64_t NumNops = Count / 2;
301     for (uint64_t i = 0; i != NumNops; ++i)
302       OW->write16(nopEncoding);
303     if (Count & 1)
304       OW->write8(0);
305     return true;
306   }
307   // ARM mode
308   const uint32_t nopEncoding =
309       hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
310   uint64_t NumNops = Count / 4;
311   for (uint64_t i = 0; i != NumNops; ++i)
312     OW->write32(nopEncoding);
313   // FIXME: should this function return false when unable to write exactly
314   // 'Count' bytes with NOP encodings?
315   switch (Count % 4) {
316   default:
317     break; // No leftover bytes to write
318   case 1:
319     OW->write8(0);
320     break;
321   case 2:
322     OW->write16(0);
323     break;
324   case 3:
325     OW->write16(0);
326     OW->write8(0xa0);
327     break;
328   }
329 
330   return true;
331 }
332 
333 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
334   if (IsLittleEndian) {
335     // Note that the halfwords are stored high first and low second in thumb;
336     // so we need to swap the fixup value here to map properly.
337     uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
338     Swapped |= (Value & 0x0000FFFF) << 16;
339     return Swapped;
340   } else
341     return Value;
342 }
343 
344 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
345                               bool IsLittleEndian) {
346   uint32_t Value;
347 
348   if (IsLittleEndian) {
349     Value = (SecondHalf & 0xFFFF) << 16;
350     Value |= (FirstHalf & 0xFFFF);
351   } else {
352     Value = (SecondHalf & 0xFFFF);
353     Value |= (FirstHalf & 0xFFFF) << 16;
354   }
355 
356   return Value;
357 }
358 
359 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm,
360                                          const MCFixup &Fixup,
361                                          const MCValue &Target, uint64_t Value,
362                                          bool IsResolved, MCContext &Ctx,
363                                          bool IsLittleEndian) const {
364   unsigned Kind = Fixup.getKind();
365 
366   // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
367   // and .word relocations they put the Thumb bit into the addend if possible.
368   // Other relocation types don't want this bit though (branches couldn't encode
369   // it if it *was* present, and no other relocations exist) and it can
370   // interfere with checking valid expressions.
371   if (const MCSymbolRefExpr *A = Target.getSymA()) {
372     if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) &&
373         (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 ||
374          Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 ||
375          Kind == ARM::fixup_t2_movt_hi16))
376       Value |= 1;
377   }
378 
379   switch (Kind) {
380   default:
381     Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type");
382     return 0;
383   case FK_Data_1:
384   case FK_Data_2:
385   case FK_Data_4:
386     return Value;
387   case FK_SecRel_2:
388     return Value;
389   case FK_SecRel_4:
390     return Value;
391   case ARM::fixup_arm_movt_hi16:
392     if (IsResolved || !STI.getTargetTriple().isOSBinFormatELF())
393       Value >>= 16;
394     LLVM_FALLTHROUGH;
395   case ARM::fixup_arm_movw_lo16: {
396     unsigned Hi4 = (Value & 0xF000) >> 12;
397     unsigned Lo12 = Value & 0x0FFF;
398     // inst{19-16} = Hi4;
399     // inst{11-0} = Lo12;
400     Value = (Hi4 << 16) | (Lo12);
401     return Value;
402   }
403   case ARM::fixup_t2_movt_hi16:
404     if (IsResolved || !STI.getTargetTriple().isOSBinFormatELF())
405       Value >>= 16;
406     LLVM_FALLTHROUGH;
407   case ARM::fixup_t2_movw_lo16: {
408     unsigned Hi4 = (Value & 0xF000) >> 12;
409     unsigned i = (Value & 0x800) >> 11;
410     unsigned Mid3 = (Value & 0x700) >> 8;
411     unsigned Lo8 = Value & 0x0FF;
412     // inst{19-16} = Hi4;
413     // inst{26} = i;
414     // inst{14-12} = Mid3;
415     // inst{7-0} = Lo8;
416     Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
417     return swapHalfWords(Value, IsLittleEndian);
418   }
419   case ARM::fixup_arm_ldst_pcrel_12:
420     // ARM PC-relative values are offset by 8.
421     Value -= 4;
422     LLVM_FALLTHROUGH;
423   case ARM::fixup_t2_ldst_pcrel_12: {
424     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
425     Value -= 4;
426     bool isAdd = true;
427     if ((int64_t)Value < 0) {
428       Value = -Value;
429       isAdd = false;
430     }
431     if (Value >= 4096) {
432       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
433       return 0;
434     }
435     Value |= isAdd << 23;
436 
437     // Same addressing mode as fixup_arm_pcrel_10,
438     // but with 16-bit halfwords swapped.
439     if (Kind == ARM::fixup_t2_ldst_pcrel_12)
440       return swapHalfWords(Value, IsLittleEndian);
441 
442     return Value;
443   }
444   case ARM::fixup_arm_adr_pcrel_12: {
445     // ARM PC-relative values are offset by 8.
446     Value -= 8;
447     unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
448     if ((int64_t)Value < 0) {
449       Value = -Value;
450       opc = 2; // 0b0010
451     }
452     if (ARM_AM::getSOImmVal(Value) == -1) {
453       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
454       return 0;
455     }
456     // Encode the immediate and shift the opcode into place.
457     return ARM_AM::getSOImmVal(Value) | (opc << 21);
458   }
459 
460   case ARM::fixup_t2_adr_pcrel_12: {
461     Value -= 4;
462     unsigned opc = 0;
463     if ((int64_t)Value < 0) {
464       Value = -Value;
465       opc = 5;
466     }
467 
468     uint32_t out = (opc << 21);
469     out |= (Value & 0x800) << 15;
470     out |= (Value & 0x700) << 4;
471     out |= (Value & 0x0FF);
472 
473     return swapHalfWords(out, IsLittleEndian);
474   }
475 
476   case ARM::fixup_arm_condbranch:
477   case ARM::fixup_arm_uncondbranch:
478   case ARM::fixup_arm_uncondbl:
479   case ARM::fixup_arm_condbl:
480   case ARM::fixup_arm_blx:
481     // These values don't encode the low two bits since they're always zero.
482     // Offset by 8 just as above.
483     if (const MCSymbolRefExpr *SRE =
484             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
485       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
486         return 0;
487     return 0xffffff & ((Value - 8) >> 2);
488   case ARM::fixup_t2_uncondbranch: {
489     Value = Value - 4;
490     Value >>= 1; // Low bit is not encoded.
491 
492     uint32_t out = 0;
493     bool I = Value & 0x800000;
494     bool J1 = Value & 0x400000;
495     bool J2 = Value & 0x200000;
496     J1 ^= I;
497     J2 ^= I;
498 
499     out |= I << 26;                 // S bit
500     out |= !J1 << 13;               // J1 bit
501     out |= !J2 << 11;               // J2 bit
502     out |= (Value & 0x1FF800) << 5; // imm6 field
503     out |= (Value & 0x0007FF);      // imm11 field
504 
505     return swapHalfWords(out, IsLittleEndian);
506   }
507   case ARM::fixup_t2_condbranch: {
508     Value = Value - 4;
509     Value >>= 1; // Low bit is not encoded.
510 
511     uint64_t out = 0;
512     out |= (Value & 0x80000) << 7; // S bit
513     out |= (Value & 0x40000) >> 7; // J2 bit
514     out |= (Value & 0x20000) >> 4; // J1 bit
515     out |= (Value & 0x1F800) << 5; // imm6 field
516     out |= (Value & 0x007FF);      // imm11 field
517 
518     return swapHalfWords(out, IsLittleEndian);
519   }
520   case ARM::fixup_arm_thumb_bl: {
521     // FIXME: We get both thumb1 and thumb2 in here, so we can only check for
522     // the less strict thumb2 value.
523     if (!isInt<26>(Value - 4)) {
524       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
525       return 0;
526     }
527 
528     // The value doesn't encode the low bit (always zero) and is offset by
529     // four. The 32-bit immediate value is encoded as
530     //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
531     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
532     // The value is encoded into disjoint bit positions in the destination
533     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
534     // J = either J1 or J2 bit
535     //
536     //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
537     //
538     // Note that the halfwords are stored high first, low second; so we need
539     // to transpose the fixup value here to map properly.
540     uint32_t offset = (Value - 4) >> 1;
541     uint32_t signBit = (offset & 0x800000) >> 23;
542     uint32_t I1Bit = (offset & 0x400000) >> 22;
543     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
544     uint32_t I2Bit = (offset & 0x200000) >> 21;
545     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
546     uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
547     uint32_t imm11Bits = (offset & 0x000007FF);
548 
549     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
550     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
551                            (uint16_t)imm11Bits);
552     return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
553   }
554   case ARM::fixup_arm_thumb_blx: {
555     // The value doesn't encode the low two bits (always zero) and is offset by
556     // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
557     //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
558     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
559     // The value is encoded into disjoint bit positions in the destination
560     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
561     // J = either J1 or J2 bit, 0 = zero.
562     //
563     //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
564     //
565     // Note that the halfwords are stored high first, low second; so we need
566     // to transpose the fixup value here to map properly.
567     if (Value % 4 != 0) {
568       Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination");
569       return 0;
570     }
571 
572     uint32_t offset = (Value - 4) >> 2;
573     if (const MCSymbolRefExpr *SRE =
574             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
575       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
576         offset = 0;
577     uint32_t signBit = (offset & 0x400000) >> 22;
578     uint32_t I1Bit = (offset & 0x200000) >> 21;
579     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
580     uint32_t I2Bit = (offset & 0x100000) >> 20;
581     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
582     uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
583     uint32_t imm10LBits = (offset & 0x3FF);
584 
585     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
586     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
587                            ((uint16_t)imm10LBits) << 1);
588     return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian);
589   }
590   case ARM::fixup_thumb_adr_pcrel_10:
591   case ARM::fixup_arm_thumb_cp:
592     // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
593     // could have an error on our hands.
594     if (!STI.getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
595       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
596       if (FixupDiagnostic) {
597         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
598         return 0;
599       }
600     }
601     // Offset by 4, and don't encode the low two bits.
602     return ((Value - 4) >> 2) & 0xff;
603   case ARM::fixup_arm_thumb_cb: {
604     // CB instructions can only branch to offsets in [4, 126] in multiples of 2
605     // so ensure that the raw value LSB is zero and it lies in [2, 130].
606     // An offset of 2 will be relaxed to a NOP.
607     if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) {
608       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
609       return 0;
610     }
611     // Offset by 4 and don't encode the lower bit, which is always 0.
612     // FIXME: diagnose if no Thumb2
613     uint32_t Binary = (Value - 4) >> 1;
614     return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
615   }
616   case ARM::fixup_arm_thumb_br:
617     // Offset by 4 and don't encode the lower bit, which is always 0.
618     if (!STI.getFeatureBits()[ARM::FeatureThumb2] &&
619         !STI.getFeatureBits()[ARM::HasV8MBaselineOps]) {
620       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
621       if (FixupDiagnostic) {
622         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
623         return 0;
624       }
625     }
626     return ((Value - 4) >> 1) & 0x7ff;
627   case ARM::fixup_arm_thumb_bcc:
628     // Offset by 4 and don't encode the lower bit, which is always 0.
629     if (!STI.getFeatureBits()[ARM::FeatureThumb2]) {
630       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
631       if (FixupDiagnostic) {
632         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
633         return 0;
634       }
635     }
636     return ((Value - 4) >> 1) & 0xff;
637   case ARM::fixup_arm_pcrel_10_unscaled: {
638     Value = Value - 8; // ARM fixups offset by an additional word and don't
639                        // need to adjust for the half-word ordering.
640     bool isAdd = true;
641     if ((int64_t)Value < 0) {
642       Value = -Value;
643       isAdd = false;
644     }
645     // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
646     if (Value >= 256) {
647       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
648       return 0;
649     }
650     Value = (Value & 0xf) | ((Value & 0xf0) << 4);
651     return Value | (isAdd << 23);
652   }
653   case ARM::fixup_arm_pcrel_10:
654     Value = Value - 4; // ARM fixups offset by an additional word and don't
655                        // need to adjust for the half-word ordering.
656     LLVM_FALLTHROUGH;
657   case ARM::fixup_t2_pcrel_10: {
658     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
659     Value = Value - 4;
660     bool isAdd = true;
661     if ((int64_t)Value < 0) {
662       Value = -Value;
663       isAdd = false;
664     }
665     // These values don't encode the low two bits since they're always zero.
666     Value >>= 2;
667     if (Value >= 256) {
668       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
669       return 0;
670     }
671     Value |= isAdd << 23;
672 
673     // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
674     // swapped.
675     if (Kind == ARM::fixup_t2_pcrel_10)
676       return swapHalfWords(Value, IsLittleEndian);
677 
678     return Value;
679   }
680   case ARM::fixup_arm_pcrel_9:
681     Value = Value - 4; // ARM fixups offset by an additional word and don't
682                        // need to adjust for the half-word ordering.
683     LLVM_FALLTHROUGH;
684   case ARM::fixup_t2_pcrel_9: {
685     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
686     Value = Value - 4;
687     bool isAdd = true;
688     if ((int64_t)Value < 0) {
689       Value = -Value;
690       isAdd = false;
691     }
692     // These values don't encode the low bit since it's always zero.
693     if (Value & 1) {
694       Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup");
695       return 0;
696     }
697     Value >>= 1;
698     if (Value >= 256) {
699       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
700       return 0;
701     }
702     Value |= isAdd << 23;
703 
704     // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
705     // swapped.
706     if (Kind == ARM::fixup_t2_pcrel_9)
707       return swapHalfWords(Value, IsLittleEndian);
708 
709     return Value;
710   }
711   case ARM::fixup_arm_mod_imm:
712     Value = ARM_AM::getSOImmVal(Value);
713     if (Value >> 12) {
714       Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
715       return 0;
716     }
717     return Value;
718   case ARM::fixup_t2_so_imm: {
719     Value = ARM_AM::getT2SOImmVal(Value);
720     if ((int64_t)Value < 0) {
721       Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
722       return 0;
723     }
724     // Value will contain a 12-bit value broken up into a 4-bit shift in bits
725     // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
726     // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
727     // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
728     // half-word.
729     uint64_t EncValue = 0;
730     EncValue |= (Value & 0x800) << 15;
731     EncValue |= (Value & 0x700) << 4;
732     EncValue |= (Value & 0xff);
733     return swapHalfWords(EncValue, IsLittleEndian);
734   }
735   }
736 }
737 
738 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
739                                           const MCFixup &Fixup,
740                                           const MCValue &Target) {
741   const MCSymbolRefExpr *A = Target.getSymA();
742   const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
743   const unsigned FixupKind = Fixup.getKind() ;
744   if ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) {
745     assert(Sym && "How did we resolve this?");
746 
747     // If the symbol is external the linker will handle it.
748     // FIXME: Should we handle it as an optimization?
749 
750     // If the symbol is out of range, produce a relocation and hope the
751     // linker can handle it. GNU AS produces an error in this case.
752     if (Sym->isExternal())
753       return true;
754   }
755   // Create relocations for unconditional branches to function symbols with
756   // different execution mode in ELF binaries.
757   if (Sym && Sym->isELF()) {
758     unsigned Type = dyn_cast<MCSymbolELF>(Sym)->getType();
759     if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) {
760       if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch))
761         return true;
762       if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br ||
763                                     FixupKind == ARM::fixup_arm_thumb_bl ||
764                                     FixupKind == ARM::fixup_t2_condbranch ||
765                                     FixupKind == ARM::fixup_t2_uncondbranch))
766         return true;
767     }
768   }
769   // We must always generate a relocation for BL/BLX instructions if we have
770   // a symbol to reference, as the linker relies on knowing the destination
771   // symbol's thumb-ness to get interworking right.
772   if (A && (FixupKind == ARM::fixup_arm_thumb_blx ||
773             FixupKind == ARM::fixup_arm_blx ||
774             FixupKind == ARM::fixup_arm_uncondbl ||
775             FixupKind == ARM::fixup_arm_condbl))
776     return true;
777   return false;
778 }
779 
780 /// getFixupKindNumBytes - The number of bytes the fixup may change.
781 static unsigned getFixupKindNumBytes(unsigned Kind) {
782   switch (Kind) {
783   default:
784     llvm_unreachable("Unknown fixup kind!");
785 
786   case FK_Data_1:
787   case ARM::fixup_arm_thumb_bcc:
788   case ARM::fixup_arm_thumb_cp:
789   case ARM::fixup_thumb_adr_pcrel_10:
790     return 1;
791 
792   case FK_Data_2:
793   case ARM::fixup_arm_thumb_br:
794   case ARM::fixup_arm_thumb_cb:
795   case ARM::fixup_arm_mod_imm:
796     return 2;
797 
798   case ARM::fixup_arm_pcrel_10_unscaled:
799   case ARM::fixup_arm_ldst_pcrel_12:
800   case ARM::fixup_arm_pcrel_10:
801   case ARM::fixup_arm_pcrel_9:
802   case ARM::fixup_arm_adr_pcrel_12:
803   case ARM::fixup_arm_uncondbl:
804   case ARM::fixup_arm_condbl:
805   case ARM::fixup_arm_blx:
806   case ARM::fixup_arm_condbranch:
807   case ARM::fixup_arm_uncondbranch:
808     return 3;
809 
810   case FK_Data_4:
811   case ARM::fixup_t2_ldst_pcrel_12:
812   case ARM::fixup_t2_condbranch:
813   case ARM::fixup_t2_uncondbranch:
814   case ARM::fixup_t2_pcrel_10:
815   case ARM::fixup_t2_pcrel_9:
816   case ARM::fixup_t2_adr_pcrel_12:
817   case ARM::fixup_arm_thumb_bl:
818   case ARM::fixup_arm_thumb_blx:
819   case ARM::fixup_arm_movt_hi16:
820   case ARM::fixup_arm_movw_lo16:
821   case ARM::fixup_t2_movt_hi16:
822   case ARM::fixup_t2_movw_lo16:
823   case ARM::fixup_t2_so_imm:
824     return 4;
825 
826   case FK_SecRel_2:
827     return 2;
828   case FK_SecRel_4:
829     return 4;
830   }
831 }
832 
833 /// getFixupKindContainerSizeBytes - The number of bytes of the
834 /// container involved in big endian.
835 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
836   switch (Kind) {
837   default:
838     llvm_unreachable("Unknown fixup kind!");
839 
840   case FK_Data_1:
841     return 1;
842   case FK_Data_2:
843     return 2;
844   case FK_Data_4:
845     return 4;
846 
847   case ARM::fixup_arm_thumb_bcc:
848   case ARM::fixup_arm_thumb_cp:
849   case ARM::fixup_thumb_adr_pcrel_10:
850   case ARM::fixup_arm_thumb_br:
851   case ARM::fixup_arm_thumb_cb:
852     // Instruction size is 2 bytes.
853     return 2;
854 
855   case ARM::fixup_arm_pcrel_10_unscaled:
856   case ARM::fixup_arm_ldst_pcrel_12:
857   case ARM::fixup_arm_pcrel_10:
858   case ARM::fixup_arm_adr_pcrel_12:
859   case ARM::fixup_arm_uncondbl:
860   case ARM::fixup_arm_condbl:
861   case ARM::fixup_arm_blx:
862   case ARM::fixup_arm_condbranch:
863   case ARM::fixup_arm_uncondbranch:
864   case ARM::fixup_t2_ldst_pcrel_12:
865   case ARM::fixup_t2_condbranch:
866   case ARM::fixup_t2_uncondbranch:
867   case ARM::fixup_t2_pcrel_10:
868   case ARM::fixup_t2_adr_pcrel_12:
869   case ARM::fixup_arm_thumb_bl:
870   case ARM::fixup_arm_thumb_blx:
871   case ARM::fixup_arm_movt_hi16:
872   case ARM::fixup_arm_movw_lo16:
873   case ARM::fixup_t2_movt_hi16:
874   case ARM::fixup_t2_movw_lo16:
875   case ARM::fixup_arm_mod_imm:
876   case ARM::fixup_t2_so_imm:
877     // Instruction size is 4 bytes.
878     return 4;
879   }
880 }
881 
882 void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
883                                const MCValue &Target,
884                                MutableArrayRef<char> Data, uint64_t Value,
885                                bool IsResolved) const {
886   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
887   MCContext &Ctx = Asm.getContext();
888   Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx,
889                            IsLittleEndian);
890   if (!Value)
891     return; // Doesn't change encoding.
892 
893   unsigned Offset = Fixup.getOffset();
894   assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
895 
896   // Used to point to big endian bytes.
897   unsigned FullSizeBytes;
898   if (!IsLittleEndian) {
899     FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
900     assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!");
901     assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
902   }
903 
904   // For each byte of the fragment that the fixup touches, mask in the bits from
905   // the fixup value. The Value has been "split up" into the appropriate
906   // bitfields above.
907   for (unsigned i = 0; i != NumBytes; ++i) {
908     unsigned Idx = IsLittleEndian ? i : (FullSizeBytes - 1 - i);
909     Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
910   }
911 }
912 
913 namespace CU {
914 
915 /// \brief Compact unwind encoding values.
916 enum CompactUnwindEncodings {
917   UNWIND_ARM_MODE_MASK                         = 0x0F000000,
918   UNWIND_ARM_MODE_FRAME                        = 0x01000000,
919   UNWIND_ARM_MODE_FRAME_D                      = 0x02000000,
920   UNWIND_ARM_MODE_DWARF                        = 0x04000000,
921 
922   UNWIND_ARM_FRAME_STACK_ADJUST_MASK           = 0x00C00000,
923 
924   UNWIND_ARM_FRAME_FIRST_PUSH_R4               = 0x00000001,
925   UNWIND_ARM_FRAME_FIRST_PUSH_R5               = 0x00000002,
926   UNWIND_ARM_FRAME_FIRST_PUSH_R6               = 0x00000004,
927 
928   UNWIND_ARM_FRAME_SECOND_PUSH_R8              = 0x00000008,
929   UNWIND_ARM_FRAME_SECOND_PUSH_R9              = 0x00000010,
930   UNWIND_ARM_FRAME_SECOND_PUSH_R10             = 0x00000020,
931   UNWIND_ARM_FRAME_SECOND_PUSH_R11             = 0x00000040,
932   UNWIND_ARM_FRAME_SECOND_PUSH_R12             = 0x00000080,
933 
934   UNWIND_ARM_FRAME_D_REG_COUNT_MASK            = 0x00000F00,
935 
936   UNWIND_ARM_DWARF_SECTION_OFFSET              = 0x00FFFFFF
937 };
938 
939 } // end CU namespace
940 
941 /// Generate compact unwind encoding for the function based on the CFI
942 /// instructions. If the CFI instructions describe a frame that cannot be
943 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
944 /// tells the runtime to fallback and unwind using dwarf.
945 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
946     ArrayRef<MCCFIInstruction> Instrs) const {
947   DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
948   // Only armv7k uses CFI based unwinding.
949   if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
950     return 0;
951   // No .cfi directives means no frame.
952   if (Instrs.empty())
953     return 0;
954   // Start off assuming CFA is at SP+0.
955   int CFARegister = ARM::SP;
956   int CFARegisterOffset = 0;
957   // Mark savable registers as initially unsaved
958   DenseMap<unsigned, int> RegOffsets;
959   int FloatRegCount = 0;
960   // Process each .cfi directive and build up compact unwind info.
961   for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
962     int Reg;
963     const MCCFIInstruction &Inst = Instrs[i];
964     switch (Inst.getOperation()) {
965     case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
966       CFARegisterOffset = -Inst.getOffset();
967       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
968       break;
969     case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
970       CFARegisterOffset = -Inst.getOffset();
971       break;
972     case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
973       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
974       break;
975     case MCCFIInstruction::OpOffset: // DW_CFA_offset
976       Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
977       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
978         RegOffsets[Reg] = Inst.getOffset();
979       else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
980         RegOffsets[Reg] = Inst.getOffset();
981         ++FloatRegCount;
982       } else {
983         DEBUG_WITH_TYPE("compact-unwind",
984                         llvm::dbgs() << ".cfi_offset on unknown register="
985                                      << Inst.getRegister() << "\n");
986         return CU::UNWIND_ARM_MODE_DWARF;
987       }
988       break;
989     case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
990       // Ignore
991       break;
992     default:
993       // Directive not convertable to compact unwind, bail out.
994       DEBUG_WITH_TYPE("compact-unwind",
995                       llvm::dbgs()
996                           << "CFI directive not compatiable with comact "
997                              "unwind encoding, opcode=" << Inst.getOperation()
998                           << "\n");
999       return CU::UNWIND_ARM_MODE_DWARF;
1000       break;
1001     }
1002   }
1003 
1004   // If no frame set up, return no unwind info.
1005   if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
1006     return 0;
1007 
1008   // Verify standard frame (lr/r7) was used.
1009   if (CFARegister != ARM::R7) {
1010     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1011                                                    << CFARegister
1012                                                    << " instead of r7\n");
1013     return CU::UNWIND_ARM_MODE_DWARF;
1014   }
1015   int StackAdjust = CFARegisterOffset - 8;
1016   if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
1017     DEBUG_WITH_TYPE("compact-unwind",
1018                     llvm::dbgs()
1019                         << "LR not saved as standard frame, StackAdjust="
1020                         << StackAdjust
1021                         << ", CFARegisterOffset=" << CFARegisterOffset
1022                         << ", lr save at offset=" << RegOffsets[14] << "\n");
1023     return CU::UNWIND_ARM_MODE_DWARF;
1024   }
1025   if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
1026     DEBUG_WITH_TYPE("compact-unwind",
1027                     llvm::dbgs() << "r7 not saved as standard frame\n");
1028     return CU::UNWIND_ARM_MODE_DWARF;
1029   }
1030   uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
1031 
1032   // If var-args are used, there may be a stack adjust required.
1033   switch (StackAdjust) {
1034   case 0:
1035     break;
1036   case 4:
1037     CompactUnwindEncoding |= 0x00400000;
1038     break;
1039   case 8:
1040     CompactUnwindEncoding |= 0x00800000;
1041     break;
1042   case 12:
1043     CompactUnwindEncoding |= 0x00C00000;
1044     break;
1045   default:
1046     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1047                                           << ".cfi_def_cfa stack adjust ("
1048                                           << StackAdjust << ") out of range\n");
1049     return CU::UNWIND_ARM_MODE_DWARF;
1050   }
1051 
1052   // If r6 is saved, it must be right below r7.
1053   static struct {
1054     unsigned Reg;
1055     unsigned Encoding;
1056   } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1057                    {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
1058                    {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
1059                    {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
1060                    {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
1061                    {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
1062                    {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
1063                    {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
1064 
1065   int CurOffset = -8 - StackAdjust;
1066   for (auto CSReg : GPRCSRegs) {
1067     auto Offset = RegOffsets.find(CSReg.Reg);
1068     if (Offset == RegOffsets.end())
1069       continue;
1070 
1071     int RegOffset = Offset->second;
1072     if (RegOffset != CurOffset - 4) {
1073       DEBUG_WITH_TYPE("compact-unwind",
1074                       llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1075                                    << RegOffset << " but only supported at "
1076                                    << CurOffset << "\n");
1077       return CU::UNWIND_ARM_MODE_DWARF;
1078     }
1079     CompactUnwindEncoding |= CSReg.Encoding;
1080     CurOffset -= 4;
1081   }
1082 
1083   // If no floats saved, we are done.
1084   if (FloatRegCount == 0)
1085     return CompactUnwindEncoding;
1086 
1087   // Switch mode to include D register saving.
1088   CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1089   CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1090 
1091   // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1092   // but needs coordination with the linker and libunwind.
1093   if (FloatRegCount > 4) {
1094     DEBUG_WITH_TYPE("compact-unwind",
1095                     llvm::dbgs() << "unsupported number of D registers saved ("
1096                                  << FloatRegCount << ")\n");
1097       return CU::UNWIND_ARM_MODE_DWARF;
1098   }
1099 
1100   // Floating point registers must either be saved sequentially, or we defer to
1101   // DWARF. No gaps allowed here so check that each saved d-register is
1102   // precisely where it should be.
1103   static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1104   for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1105     auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1106     if (Offset == RegOffsets.end()) {
1107       DEBUG_WITH_TYPE("compact-unwind",
1108                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1109                                    << MRI.getName(FPRCSRegs[Idx])
1110                                    << " not saved\n");
1111       return CU::UNWIND_ARM_MODE_DWARF;
1112     } else if (Offset->second != CurOffset - 8) {
1113       DEBUG_WITH_TYPE("compact-unwind",
1114                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1115                                    << MRI.getName(FPRCSRegs[Idx])
1116                                    << " saved at " << Offset->second
1117                                    << ", expected at " << CurOffset - 8
1118                                    << "\n");
1119       return CU::UNWIND_ARM_MODE_DWARF;
1120     }
1121     CurOffset -= 8;
1122   }
1123 
1124   return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1125 }
1126 
1127 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
1128   ARM::ArchKind AK = ARM::parseArch(Arch);
1129   switch (AK) {
1130   default:
1131     return MachO::CPU_SUBTYPE_ARM_V7;
1132   case ARM::ArchKind::ARMV4T:
1133     return MachO::CPU_SUBTYPE_ARM_V4T;
1134   case ARM::ArchKind::ARMV5T:
1135   case ARM::ArchKind::ARMV5TE:
1136   case ARM::ArchKind::ARMV5TEJ:
1137     return MachO::CPU_SUBTYPE_ARM_V5;
1138   case ARM::ArchKind::ARMV6:
1139   case ARM::ArchKind::ARMV6K:
1140     return MachO::CPU_SUBTYPE_ARM_V6;
1141   case ARM::ArchKind::ARMV7A:
1142     return MachO::CPU_SUBTYPE_ARM_V7;
1143   case ARM::ArchKind::ARMV7S:
1144     return MachO::CPU_SUBTYPE_ARM_V7S;
1145   case ARM::ArchKind::ARMV7K:
1146     return MachO::CPU_SUBTYPE_ARM_V7K;
1147   case ARM::ArchKind::ARMV6M:
1148     return MachO::CPU_SUBTYPE_ARM_V6M;
1149   case ARM::ArchKind::ARMV7M:
1150     return MachO::CPU_SUBTYPE_ARM_V7M;
1151   case ARM::ArchKind::ARMV7EM:
1152     return MachO::CPU_SUBTYPE_ARM_V7EM;
1153   }
1154 }
1155 
1156 MCAsmBackend *llvm::createARMAsmBackend(const Target &T,
1157                                         const MCSubtargetInfo &STI,
1158                                         const MCRegisterInfo &MRI,
1159                                         const MCTargetOptions &Options,
1160                                         bool isLittle) {
1161   const Triple &TheTriple = STI.getTargetTriple();
1162   switch (TheTriple.getObjectFormat()) {
1163   default:
1164     llvm_unreachable("unsupported object format");
1165   case Triple::MachO: {
1166     MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
1167     return new ARMAsmBackendDarwin(T, STI, MRI, CS);
1168   }
1169   case Triple::COFF:
1170     assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1171     return new ARMAsmBackendWinCOFF(T, STI);
1172   case Triple::ELF:
1173     assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1174     uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1175     return new ARMAsmBackendELF(T, STI, OSABI, isLittle);
1176   }
1177 }
1178 
1179 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1180                                           const MCSubtargetInfo &STI,
1181                                           const MCRegisterInfo &MRI,
1182                                           const MCTargetOptions &Options) {
1183   return createARMAsmBackend(T, STI, MRI, Options, true);
1184 }
1185 
1186 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1187                                           const MCSubtargetInfo &STI,
1188                                           const MCRegisterInfo &MRI,
1189                                           const MCTargetOptions &Options) {
1190   return createARMAsmBackend(T, STI, MRI, Options, false);
1191 }
1192 
1193 MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T,
1194                                             const MCSubtargetInfo &STI,
1195                                             const MCRegisterInfo &MRI,
1196                                             const MCTargetOptions &Options) {
1197   return createARMAsmBackend(T, STI, MRI, Options, true);
1198 }
1199 
1200 MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T,
1201                                             const MCSubtargetInfo &STI,
1202                                             const MCRegisterInfo &MRI,
1203                                             const MCTargetOptions &Options) {
1204   return createARMAsmBackend(T, STI, MRI, Options, false);
1205 }
1206