1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAssembler.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 24 #include "llvm/MC/MCELFStreamer.h" 25 #include "llvm/MC/MCExpr.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/MC/MCObjectFileInfo.h" 30 #include "llvm/MC/MCParser/MCAsmLexer.h" 31 #include "llvm/MC/MCParser/MCAsmParser.h" 32 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 35 #include "llvm/MC/MCRegisterInfo.h" 36 #include "llvm/MC/MCSection.h" 37 #include "llvm/MC/MCStreamer.h" 38 #include "llvm/MC/MCSubtargetInfo.h" 39 #include "llvm/MC/MCSymbol.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/COFF.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ELF.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SourceMgr.h" 48 #include "llvm/Support/TargetParser.h" 49 #include "llvm/Support/TargetRegistry.h" 50 #include "llvm/Support/raw_ostream.h" 51 52 using namespace llvm; 53 54 namespace { 55 56 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 57 58 static cl::opt<ImplicitItModeTy> ImplicitItMode( 59 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 60 cl::desc("Allow conditional instructions outdside of an IT block"), 61 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 62 "Accept in both ISAs, emit implicit ITs in Thumb"), 63 clEnumValN(ImplicitItModeTy::Never, "never", 64 "Warn in ARM, reject in Thumb"), 65 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 66 "Accept in ARM, reject in Thumb"), 67 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 68 "Warn in ARM, emit implicit ITs in Thumb"), 69 clEnumValEnd)); 70 71 class ARMOperand; 72 73 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 74 75 class UnwindContext { 76 MCAsmParser &Parser; 77 78 typedef SmallVector<SMLoc, 4> Locs; 79 80 Locs FnStartLocs; 81 Locs CantUnwindLocs; 82 Locs PersonalityLocs; 83 Locs PersonalityIndexLocs; 84 Locs HandlerDataLocs; 85 int FPReg; 86 87 public: 88 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 89 90 bool hasFnStart() const { return !FnStartLocs.empty(); } 91 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 92 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 93 bool hasPersonality() const { 94 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 95 } 96 97 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 98 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 99 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 100 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 101 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 102 103 void saveFPReg(int Reg) { FPReg = Reg; } 104 int getFPReg() const { return FPReg; } 105 106 void emitFnStartLocNotes() const { 107 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 108 FI != FE; ++FI) 109 Parser.Note(*FI, ".fnstart was specified here"); 110 } 111 void emitCantUnwindLocNotes() const { 112 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 113 UE = CantUnwindLocs.end(); UI != UE; ++UI) 114 Parser.Note(*UI, ".cantunwind was specified here"); 115 } 116 void emitHandlerDataLocNotes() const { 117 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 118 HE = HandlerDataLocs.end(); HI != HE; ++HI) 119 Parser.Note(*HI, ".handlerdata was specified here"); 120 } 121 void emitPersonalityLocNotes() const { 122 for (Locs::const_iterator PI = PersonalityLocs.begin(), 123 PE = PersonalityLocs.end(), 124 PII = PersonalityIndexLocs.begin(), 125 PIE = PersonalityIndexLocs.end(); 126 PI != PE || PII != PIE;) { 127 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 128 Parser.Note(*PI++, ".personality was specified here"); 129 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 130 Parser.Note(*PII++, ".personalityindex was specified here"); 131 else 132 llvm_unreachable(".personality and .personalityindex cannot be " 133 "at the same location"); 134 } 135 } 136 137 void reset() { 138 FnStartLocs = Locs(); 139 CantUnwindLocs = Locs(); 140 PersonalityLocs = Locs(); 141 HandlerDataLocs = Locs(); 142 PersonalityIndexLocs = Locs(); 143 FPReg = ARM::SP; 144 } 145 }; 146 147 class ARMAsmParser : public MCTargetAsmParser { 148 const MCInstrInfo &MII; 149 const MCRegisterInfo *MRI; 150 UnwindContext UC; 151 152 ARMTargetStreamer &getTargetStreamer() { 153 assert(getParser().getStreamer().getTargetStreamer() && 154 "do not have a target streamer"); 155 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 156 return static_cast<ARMTargetStreamer &>(TS); 157 } 158 159 // Map of register aliases registers via the .req directive. 160 StringMap<unsigned> RegisterReqs; 161 162 bool NextSymbolIsThumb; 163 164 bool useImplicitITThumb() const { 165 return ImplicitItMode == ImplicitItModeTy::Always || 166 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 167 } 168 169 bool useImplicitITARM() const { 170 return ImplicitItMode == ImplicitItModeTy::Always || 171 ImplicitItMode == ImplicitItModeTy::ARMOnly; 172 } 173 174 struct { 175 ARMCC::CondCodes Cond; // Condition for IT block. 176 unsigned Mask:4; // Condition mask for instructions. 177 // Starting at first 1 (from lsb). 178 // '1' condition as indicated in IT. 179 // '0' inverse of condition (else). 180 // Count of instructions in IT block is 181 // 4 - trailingzeroes(mask) 182 // Note that this does not have the same encoding 183 // as in the IT instruction, which also depends 184 // on the low bit of the condition code. 185 186 unsigned CurPosition; // Current position in parsing of IT 187 // block. In range [0,4], with 0 being the IT 188 // instruction itself. Initialized according to 189 // count of instructions in block. ~0U if no 190 // active IT block. 191 192 bool IsExplicit; // true - The IT instruction was present in the 193 // input, we should not modify it. 194 // false - The IT instruction was added 195 // implicitly, we can extend it if that 196 // would be legal. 197 } ITState; 198 199 llvm::SmallVector<MCInst, 4> PendingConditionalInsts; 200 201 void flushPendingInstructions(MCStreamer &Out) override { 202 if (!inImplicitITBlock()) { 203 assert(PendingConditionalInsts.size() == 0); 204 return; 205 } 206 207 // Emit the IT instruction 208 unsigned Mask = getITMaskEncoding(); 209 MCInst ITInst; 210 ITInst.setOpcode(ARM::t2IT); 211 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 212 ITInst.addOperand(MCOperand::createImm(Mask)); 213 Out.EmitInstruction(ITInst, getSTI()); 214 215 // Emit the conditonal instructions 216 assert(PendingConditionalInsts.size() <= 4); 217 for (const MCInst &Inst : PendingConditionalInsts) { 218 Out.EmitInstruction(Inst, getSTI()); 219 } 220 PendingConditionalInsts.clear(); 221 222 // Clear the IT state 223 ITState.Mask = 0; 224 ITState.CurPosition = ~0U; 225 } 226 227 bool inITBlock() { return ITState.CurPosition != ~0U; } 228 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 229 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 230 bool lastInITBlock() { 231 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 232 } 233 void forwardITPosition() { 234 if (!inITBlock()) return; 235 // Move to the next instruction in the IT block, if there is one. If not, 236 // mark the block as done, except for implicit IT blocks, which we leave 237 // open until we find an instruction that can't be added to it. 238 unsigned TZ = countTrailingZeros(ITState.Mask); 239 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 240 ITState.CurPosition = ~0U; // Done with the IT block after this. 241 } 242 243 // Rewind the state of the current IT block, removing the last slot from it. 244 void rewindImplicitITPosition() { 245 assert(inImplicitITBlock()); 246 assert(ITState.CurPosition > 1); 247 ITState.CurPosition--; 248 unsigned TZ = countTrailingZeros(ITState.Mask); 249 unsigned NewMask = 0; 250 NewMask |= ITState.Mask & (0xC << TZ); 251 NewMask |= 0x2 << TZ; 252 ITState.Mask = NewMask; 253 } 254 255 // Rewind the state of the current IT block, removing the last slot from it. 256 // If we were at the first slot, this closes the IT block. 257 void discardImplicitITBlock() { 258 assert(inImplicitITBlock()); 259 assert(ITState.CurPosition == 1); 260 ITState.CurPosition = ~0U; 261 return; 262 } 263 264 // Get the encoding of the IT mask, as it will appear in an IT instruction. 265 unsigned getITMaskEncoding() { 266 assert(inITBlock()); 267 unsigned Mask = ITState.Mask; 268 unsigned TZ = countTrailingZeros(Mask); 269 if ((ITState.Cond & 1) == 0) { 270 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 271 Mask ^= (0xE << TZ) & 0xF; 272 } 273 return Mask; 274 } 275 276 // Get the condition code corresponding to the current IT block slot. 277 ARMCC::CondCodes currentITCond() { 278 unsigned MaskBit; 279 if (ITState.CurPosition == 1) 280 MaskBit = 1; 281 else 282 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 283 284 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 285 } 286 287 // Invert the condition of the current IT block slot without changing any 288 // other slots in the same block. 289 void invertCurrentITCondition() { 290 if (ITState.CurPosition == 1) { 291 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 292 } else { 293 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 294 } 295 } 296 297 // Returns true if the current IT block is full (all 4 slots used). 298 bool isITBlockFull() { 299 return inITBlock() && (ITState.Mask & 1); 300 } 301 302 // Extend the current implicit IT block to have one more slot with the given 303 // condition code. 304 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 305 assert(inImplicitITBlock()); 306 assert(!isITBlockFull()); 307 assert(Cond == ITState.Cond || 308 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 309 unsigned TZ = countTrailingZeros(ITState.Mask); 310 unsigned NewMask = 0; 311 // Keep any existing condition bits. 312 NewMask |= ITState.Mask & (0xE << TZ); 313 // Insert the new condition bit. 314 NewMask |= (Cond == ITState.Cond) << TZ; 315 // Move the trailing 1 down one bit. 316 NewMask |= 1 << (TZ - 1); 317 ITState.Mask = NewMask; 318 } 319 320 // Create a new implicit IT block with a dummy condition code. 321 void startImplicitITBlock() { 322 assert(!inITBlock()); 323 ITState.Cond = ARMCC::AL; 324 ITState.Mask = 8; 325 ITState.CurPosition = 1; 326 ITState.IsExplicit = false; 327 return; 328 } 329 330 // Create a new explicit IT block with the given condition and mask. The mask 331 // should be in the parsed format, with a 1 implying 't', regardless of the 332 // low bit of the condition. 333 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 334 assert(!inITBlock()); 335 ITState.Cond = Cond; 336 ITState.Mask = Mask; 337 ITState.CurPosition = 0; 338 ITState.IsExplicit = true; 339 return; 340 } 341 342 void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { 343 return getParser().Note(L, Msg, Ranges); 344 } 345 bool Warning(SMLoc L, const Twine &Msg, 346 ArrayRef<SMRange> Ranges = None) { 347 return getParser().Warning(L, Msg, Ranges); 348 } 349 bool Error(SMLoc L, const Twine &Msg, 350 ArrayRef<SMRange> Ranges = None) { 351 return getParser().Error(L, Msg, Ranges); 352 } 353 354 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 355 unsigned ListNo, bool IsARPop = false); 356 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 357 unsigned ListNo); 358 359 int tryParseRegister(); 360 bool tryParseRegisterWithWriteBack(OperandVector &); 361 int tryParseShiftRegister(OperandVector &); 362 bool parseRegisterList(OperandVector &); 363 bool parseMemory(OperandVector &); 364 bool parseOperand(OperandVector &, StringRef Mnemonic); 365 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 366 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 367 unsigned &ShiftAmount); 368 bool parseLiteralValues(unsigned Size, SMLoc L); 369 bool parseDirectiveThumb(SMLoc L); 370 bool parseDirectiveARM(SMLoc L); 371 bool parseDirectiveThumbFunc(SMLoc L); 372 bool parseDirectiveCode(SMLoc L); 373 bool parseDirectiveSyntax(SMLoc L); 374 bool parseDirectiveReq(StringRef Name, SMLoc L); 375 bool parseDirectiveUnreq(SMLoc L); 376 bool parseDirectiveArch(SMLoc L); 377 bool parseDirectiveEabiAttr(SMLoc L); 378 bool parseDirectiveCPU(SMLoc L); 379 bool parseDirectiveFPU(SMLoc L); 380 bool parseDirectiveFnStart(SMLoc L); 381 bool parseDirectiveFnEnd(SMLoc L); 382 bool parseDirectiveCantUnwind(SMLoc L); 383 bool parseDirectivePersonality(SMLoc L); 384 bool parseDirectiveHandlerData(SMLoc L); 385 bool parseDirectiveSetFP(SMLoc L); 386 bool parseDirectivePad(SMLoc L); 387 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 388 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 389 bool parseDirectiveLtorg(SMLoc L); 390 bool parseDirectiveEven(SMLoc L); 391 bool parseDirectivePersonalityIndex(SMLoc L); 392 bool parseDirectiveUnwindRaw(SMLoc L); 393 bool parseDirectiveTLSDescSeq(SMLoc L); 394 bool parseDirectiveMovSP(SMLoc L); 395 bool parseDirectiveObjectArch(SMLoc L); 396 bool parseDirectiveArchExtension(SMLoc L); 397 bool parseDirectiveAlign(SMLoc L); 398 bool parseDirectiveThumbSet(SMLoc L); 399 400 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 401 bool &CarrySetting, unsigned &ProcessorIMod, 402 StringRef &ITMask); 403 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 404 bool &CanAcceptCarrySet, 405 bool &CanAcceptPredicationCode); 406 407 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 408 OperandVector &Operands); 409 bool isThumb() const { 410 // FIXME: Can tablegen auto-generate this? 411 return getSTI().getFeatureBits()[ARM::ModeThumb]; 412 } 413 bool isThumbOne() const { 414 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 415 } 416 bool isThumbTwo() const { 417 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 418 } 419 bool hasThumb() const { 420 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 421 } 422 bool hasThumb2() const { 423 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 424 } 425 bool hasV6Ops() const { 426 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 427 } 428 bool hasV6T2Ops() const { 429 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 430 } 431 bool hasV6MOps() const { 432 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 433 } 434 bool hasV7Ops() const { 435 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 436 } 437 bool hasV8Ops() const { 438 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 439 } 440 bool hasV8MBaseline() const { 441 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 442 } 443 bool hasV8MMainline() const { 444 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 445 } 446 bool has8MSecExt() const { 447 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 448 } 449 bool hasARM() const { 450 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 451 } 452 bool hasDSP() const { 453 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 454 } 455 bool hasD16() const { 456 return getSTI().getFeatureBits()[ARM::FeatureD16]; 457 } 458 bool hasV8_1aOps() const { 459 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 460 } 461 bool hasRAS() const { 462 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 463 } 464 465 void SwitchMode() { 466 MCSubtargetInfo &STI = copySTI(); 467 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 468 setAvailableFeatures(FB); 469 } 470 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 471 bool isMClass() const { 472 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 473 } 474 475 /// @name Auto-generated Match Functions 476 /// { 477 478 #define GET_ASSEMBLER_HEADER 479 #include "ARMGenAsmMatcher.inc" 480 481 /// } 482 483 OperandMatchResultTy parseITCondCode(OperandVector &); 484 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 485 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 486 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 487 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 488 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 489 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 490 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 491 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 492 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 493 int High); 494 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 495 return parsePKHImm(O, "lsl", 0, 31); 496 } 497 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 498 return parsePKHImm(O, "asr", 1, 32); 499 } 500 OperandMatchResultTy parseSetEndImm(OperandVector &); 501 OperandMatchResultTy parseShifterImm(OperandVector &); 502 OperandMatchResultTy parseRotImm(OperandVector &); 503 OperandMatchResultTy parseModImm(OperandVector &); 504 OperandMatchResultTy parseBitfield(OperandVector &); 505 OperandMatchResultTy parsePostIdxReg(OperandVector &); 506 OperandMatchResultTy parseAM3Offset(OperandVector &); 507 OperandMatchResultTy parseFPImm(OperandVector &); 508 OperandMatchResultTy parseVectorList(OperandVector &); 509 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 510 SMLoc &EndLoc); 511 512 // Asm Match Converter Methods 513 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 514 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 515 516 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 517 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 518 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 519 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 520 bool isITBlockTerminator(MCInst &Inst) const; 521 522 public: 523 enum ARMMatchResultTy { 524 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 525 Match_RequiresNotITBlock, 526 Match_RequiresV6, 527 Match_RequiresThumb2, 528 Match_RequiresV8, 529 #define GET_OPERAND_DIAGNOSTIC_TYPES 530 #include "ARMGenAsmMatcher.inc" 531 532 }; 533 534 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 535 const MCInstrInfo &MII, const MCTargetOptions &Options) 536 : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) { 537 MCAsmParserExtension::Initialize(Parser); 538 539 // Cache the MCRegisterInfo. 540 MRI = getContext().getRegisterInfo(); 541 542 // Initialize the set of available features. 543 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 544 545 // Not in an ITBlock to start with. 546 ITState.CurPosition = ~0U; 547 548 NextSymbolIsThumb = false; 549 } 550 551 // Implementation of the MCTargetAsmParser interface: 552 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 553 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 554 SMLoc NameLoc, OperandVector &Operands) override; 555 bool ParseDirective(AsmToken DirectiveID) override; 556 557 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 558 unsigned Kind) override; 559 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 560 561 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 562 OperandVector &Operands, MCStreamer &Out, 563 uint64_t &ErrorInfo, 564 bool MatchingInlineAsm) override; 565 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 566 uint64_t &ErrorInfo, bool MatchingInlineAsm, 567 bool &EmitInITBlock, MCStreamer &Out); 568 void onLabelParsed(MCSymbol *Symbol) override; 569 }; 570 } // end anonymous namespace 571 572 namespace { 573 574 /// ARMOperand - Instances of this class represent a parsed ARM machine 575 /// operand. 576 class ARMOperand : public MCParsedAsmOperand { 577 enum KindTy { 578 k_CondCode, 579 k_CCOut, 580 k_ITCondMask, 581 k_CoprocNum, 582 k_CoprocReg, 583 k_CoprocOption, 584 k_Immediate, 585 k_MemBarrierOpt, 586 k_InstSyncBarrierOpt, 587 k_Memory, 588 k_PostIndexRegister, 589 k_MSRMask, 590 k_BankedReg, 591 k_ProcIFlags, 592 k_VectorIndex, 593 k_Register, 594 k_RegisterList, 595 k_DPRRegisterList, 596 k_SPRRegisterList, 597 k_VectorList, 598 k_VectorListAllLanes, 599 k_VectorListIndexed, 600 k_ShiftedRegister, 601 k_ShiftedImmediate, 602 k_ShifterImmediate, 603 k_RotateImmediate, 604 k_ModifiedImmediate, 605 k_ConstantPoolImmediate, 606 k_BitfieldDescriptor, 607 k_Token, 608 } Kind; 609 610 SMLoc StartLoc, EndLoc, AlignmentLoc; 611 SmallVector<unsigned, 8> Registers; 612 613 struct CCOp { 614 ARMCC::CondCodes Val; 615 }; 616 617 struct CopOp { 618 unsigned Val; 619 }; 620 621 struct CoprocOptionOp { 622 unsigned Val; 623 }; 624 625 struct ITMaskOp { 626 unsigned Mask:4; 627 }; 628 629 struct MBOptOp { 630 ARM_MB::MemBOpt Val; 631 }; 632 633 struct ISBOptOp { 634 ARM_ISB::InstSyncBOpt Val; 635 }; 636 637 struct IFlagsOp { 638 ARM_PROC::IFlags Val; 639 }; 640 641 struct MMaskOp { 642 unsigned Val; 643 }; 644 645 struct BankedRegOp { 646 unsigned Val; 647 }; 648 649 struct TokOp { 650 const char *Data; 651 unsigned Length; 652 }; 653 654 struct RegOp { 655 unsigned RegNum; 656 }; 657 658 // A vector register list is a sequential list of 1 to 4 registers. 659 struct VectorListOp { 660 unsigned RegNum; 661 unsigned Count; 662 unsigned LaneIndex; 663 bool isDoubleSpaced; 664 }; 665 666 struct VectorIndexOp { 667 unsigned Val; 668 }; 669 670 struct ImmOp { 671 const MCExpr *Val; 672 }; 673 674 /// Combined record for all forms of ARM address expressions. 675 struct MemoryOp { 676 unsigned BaseRegNum; 677 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 678 // was specified. 679 const MCConstantExpr *OffsetImm; // Offset immediate value 680 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 681 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 682 unsigned ShiftImm; // shift for OffsetReg. 683 unsigned Alignment; // 0 = no alignment specified 684 // n = alignment in bytes (2, 4, 8, 16, or 32) 685 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 686 }; 687 688 struct PostIdxRegOp { 689 unsigned RegNum; 690 bool isAdd; 691 ARM_AM::ShiftOpc ShiftTy; 692 unsigned ShiftImm; 693 }; 694 695 struct ShifterImmOp { 696 bool isASR; 697 unsigned Imm; 698 }; 699 700 struct RegShiftedRegOp { 701 ARM_AM::ShiftOpc ShiftTy; 702 unsigned SrcReg; 703 unsigned ShiftReg; 704 unsigned ShiftImm; 705 }; 706 707 struct RegShiftedImmOp { 708 ARM_AM::ShiftOpc ShiftTy; 709 unsigned SrcReg; 710 unsigned ShiftImm; 711 }; 712 713 struct RotImmOp { 714 unsigned Imm; 715 }; 716 717 struct ModImmOp { 718 unsigned Bits; 719 unsigned Rot; 720 }; 721 722 struct BitfieldOp { 723 unsigned LSB; 724 unsigned Width; 725 }; 726 727 union { 728 struct CCOp CC; 729 struct CopOp Cop; 730 struct CoprocOptionOp CoprocOption; 731 struct MBOptOp MBOpt; 732 struct ISBOptOp ISBOpt; 733 struct ITMaskOp ITMask; 734 struct IFlagsOp IFlags; 735 struct MMaskOp MMask; 736 struct BankedRegOp BankedReg; 737 struct TokOp Tok; 738 struct RegOp Reg; 739 struct VectorListOp VectorList; 740 struct VectorIndexOp VectorIndex; 741 struct ImmOp Imm; 742 struct MemoryOp Memory; 743 struct PostIdxRegOp PostIdxReg; 744 struct ShifterImmOp ShifterImm; 745 struct RegShiftedRegOp RegShiftedReg; 746 struct RegShiftedImmOp RegShiftedImm; 747 struct RotImmOp RotImm; 748 struct ModImmOp ModImm; 749 struct BitfieldOp Bitfield; 750 }; 751 752 public: 753 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 754 755 /// getStartLoc - Get the location of the first token of this operand. 756 SMLoc getStartLoc() const override { return StartLoc; } 757 /// getEndLoc - Get the location of the last token of this operand. 758 SMLoc getEndLoc() const override { return EndLoc; } 759 /// getLocRange - Get the range between the first and last token of this 760 /// operand. 761 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 762 763 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 764 SMLoc getAlignmentLoc() const { 765 assert(Kind == k_Memory && "Invalid access!"); 766 return AlignmentLoc; 767 } 768 769 ARMCC::CondCodes getCondCode() const { 770 assert(Kind == k_CondCode && "Invalid access!"); 771 return CC.Val; 772 } 773 774 unsigned getCoproc() const { 775 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 776 return Cop.Val; 777 } 778 779 StringRef getToken() const { 780 assert(Kind == k_Token && "Invalid access!"); 781 return StringRef(Tok.Data, Tok.Length); 782 } 783 784 unsigned getReg() const override { 785 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 786 return Reg.RegNum; 787 } 788 789 const SmallVectorImpl<unsigned> &getRegList() const { 790 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 791 Kind == k_SPRRegisterList) && "Invalid access!"); 792 return Registers; 793 } 794 795 const MCExpr *getImm() const { 796 assert(isImm() && "Invalid access!"); 797 return Imm.Val; 798 } 799 800 const MCExpr *getConstantPoolImm() const { 801 assert(isConstantPoolImm() && "Invalid access!"); 802 return Imm.Val; 803 } 804 805 unsigned getVectorIndex() const { 806 assert(Kind == k_VectorIndex && "Invalid access!"); 807 return VectorIndex.Val; 808 } 809 810 ARM_MB::MemBOpt getMemBarrierOpt() const { 811 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 812 return MBOpt.Val; 813 } 814 815 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 816 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 817 return ISBOpt.Val; 818 } 819 820 ARM_PROC::IFlags getProcIFlags() const { 821 assert(Kind == k_ProcIFlags && "Invalid access!"); 822 return IFlags.Val; 823 } 824 825 unsigned getMSRMask() const { 826 assert(Kind == k_MSRMask && "Invalid access!"); 827 return MMask.Val; 828 } 829 830 unsigned getBankedReg() const { 831 assert(Kind == k_BankedReg && "Invalid access!"); 832 return BankedReg.Val; 833 } 834 835 bool isCoprocNum() const { return Kind == k_CoprocNum; } 836 bool isCoprocReg() const { return Kind == k_CoprocReg; } 837 bool isCoprocOption() const { return Kind == k_CoprocOption; } 838 bool isCondCode() const { return Kind == k_CondCode; } 839 bool isCCOut() const { return Kind == k_CCOut; } 840 bool isITMask() const { return Kind == k_ITCondMask; } 841 bool isITCondCode() const { return Kind == k_CondCode; } 842 bool isImm() const override { 843 return Kind == k_Immediate; 844 } 845 846 bool isARMBranchTarget() const { 847 if (!isImm()) return false; 848 849 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 850 return CE->getValue() % 4 == 0; 851 return true; 852 } 853 854 855 bool isThumbBranchTarget() const { 856 if (!isImm()) return false; 857 858 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 859 return CE->getValue() % 2 == 0; 860 return true; 861 } 862 863 // checks whether this operand is an unsigned offset which fits is a field 864 // of specified width and scaled by a specific number of bits 865 template<unsigned width, unsigned scale> 866 bool isUnsignedOffset() const { 867 if (!isImm()) return false; 868 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 869 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 870 int64_t Val = CE->getValue(); 871 int64_t Align = 1LL << scale; 872 int64_t Max = Align * ((1LL << width) - 1); 873 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 874 } 875 return false; 876 } 877 // checks whether this operand is an signed offset which fits is a field 878 // of specified width and scaled by a specific number of bits 879 template<unsigned width, unsigned scale> 880 bool isSignedOffset() const { 881 if (!isImm()) return false; 882 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 883 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 884 int64_t Val = CE->getValue(); 885 int64_t Align = 1LL << scale; 886 int64_t Max = Align * ((1LL << (width-1)) - 1); 887 int64_t Min = -Align * (1LL << (width-1)); 888 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 889 } 890 return false; 891 } 892 893 // checks whether this operand is a memory operand computed as an offset 894 // applied to PC. the offset may have 8 bits of magnitude and is represented 895 // with two bits of shift. textually it may be either [pc, #imm], #imm or 896 // relocable expression... 897 bool isThumbMemPC() const { 898 int64_t Val = 0; 899 if (isImm()) { 900 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 901 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 902 if (!CE) return false; 903 Val = CE->getValue(); 904 } 905 else if (isMem()) { 906 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 907 if(Memory.BaseRegNum != ARM::PC) return false; 908 Val = Memory.OffsetImm->getValue(); 909 } 910 else return false; 911 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 912 } 913 bool isFPImm() const { 914 if (!isImm()) return false; 915 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 916 if (!CE) return false; 917 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 918 return Val != -1; 919 } 920 bool isFBits16() const { 921 if (!isImm()) return false; 922 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 923 if (!CE) return false; 924 int64_t Value = CE->getValue(); 925 return Value >= 0 && Value <= 16; 926 } 927 bool isFBits32() const { 928 if (!isImm()) return false; 929 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 930 if (!CE) return false; 931 int64_t Value = CE->getValue(); 932 return Value >= 1 && Value <= 32; 933 } 934 bool isImm8s4() const { 935 if (!isImm()) return false; 936 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 937 if (!CE) return false; 938 int64_t Value = CE->getValue(); 939 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 940 } 941 bool isImm0_1020s4() const { 942 if (!isImm()) return false; 943 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 944 if (!CE) return false; 945 int64_t Value = CE->getValue(); 946 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 947 } 948 bool isImm0_508s4() const { 949 if (!isImm()) return false; 950 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 951 if (!CE) return false; 952 int64_t Value = CE->getValue(); 953 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 954 } 955 bool isImm0_508s4Neg() const { 956 if (!isImm()) return false; 957 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 958 if (!CE) return false; 959 int64_t Value = -CE->getValue(); 960 // explicitly exclude zero. we want that to use the normal 0_508 version. 961 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 962 } 963 bool isImm0_239() const { 964 if (!isImm()) return false; 965 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 966 if (!CE) return false; 967 int64_t Value = CE->getValue(); 968 return Value >= 0 && Value < 240; 969 } 970 bool isImm0_255() const { 971 if (!isImm()) return false; 972 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 973 if (!CE) return false; 974 int64_t Value = CE->getValue(); 975 return Value >= 0 && Value < 256; 976 } 977 bool isImm0_4095() const { 978 if (!isImm()) return false; 979 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 980 if (!CE) return false; 981 int64_t Value = CE->getValue(); 982 return Value >= 0 && Value < 4096; 983 } 984 bool isImm0_4095Neg() const { 985 if (!isImm()) return false; 986 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 987 if (!CE) return false; 988 int64_t Value = -CE->getValue(); 989 return Value > 0 && Value < 4096; 990 } 991 bool isImm0_1() const { 992 if (!isImm()) return false; 993 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 994 if (!CE) return false; 995 int64_t Value = CE->getValue(); 996 return Value >= 0 && Value < 2; 997 } 998 bool isImm0_3() const { 999 if (!isImm()) return false; 1000 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1001 if (!CE) return false; 1002 int64_t Value = CE->getValue(); 1003 return Value >= 0 && Value < 4; 1004 } 1005 bool isImm0_7() const { 1006 if (!isImm()) return false; 1007 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1008 if (!CE) return false; 1009 int64_t Value = CE->getValue(); 1010 return Value >= 0 && Value < 8; 1011 } 1012 bool isImm0_15() const { 1013 if (!isImm()) return false; 1014 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1015 if (!CE) return false; 1016 int64_t Value = CE->getValue(); 1017 return Value >= 0 && Value < 16; 1018 } 1019 bool isImm0_31() const { 1020 if (!isImm()) return false; 1021 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1022 if (!CE) return false; 1023 int64_t Value = CE->getValue(); 1024 return Value >= 0 && Value < 32; 1025 } 1026 bool isImm0_63() const { 1027 if (!isImm()) return false; 1028 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1029 if (!CE) return false; 1030 int64_t Value = CE->getValue(); 1031 return Value >= 0 && Value < 64; 1032 } 1033 bool isImm8() const { 1034 if (!isImm()) return false; 1035 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1036 if (!CE) return false; 1037 int64_t Value = CE->getValue(); 1038 return Value == 8; 1039 } 1040 bool isImm16() const { 1041 if (!isImm()) return false; 1042 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1043 if (!CE) return false; 1044 int64_t Value = CE->getValue(); 1045 return Value == 16; 1046 } 1047 bool isImm32() const { 1048 if (!isImm()) return false; 1049 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1050 if (!CE) return false; 1051 int64_t Value = CE->getValue(); 1052 return Value == 32; 1053 } 1054 bool isShrImm8() const { 1055 if (!isImm()) return false; 1056 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1057 if (!CE) return false; 1058 int64_t Value = CE->getValue(); 1059 return Value > 0 && Value <= 8; 1060 } 1061 bool isShrImm16() const { 1062 if (!isImm()) return false; 1063 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1064 if (!CE) return false; 1065 int64_t Value = CE->getValue(); 1066 return Value > 0 && Value <= 16; 1067 } 1068 bool isShrImm32() const { 1069 if (!isImm()) return false; 1070 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1071 if (!CE) return false; 1072 int64_t Value = CE->getValue(); 1073 return Value > 0 && Value <= 32; 1074 } 1075 bool isShrImm64() const { 1076 if (!isImm()) return false; 1077 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1078 if (!CE) return false; 1079 int64_t Value = CE->getValue(); 1080 return Value > 0 && Value <= 64; 1081 } 1082 bool isImm1_7() const { 1083 if (!isImm()) return false; 1084 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1085 if (!CE) return false; 1086 int64_t Value = CE->getValue(); 1087 return Value > 0 && Value < 8; 1088 } 1089 bool isImm1_15() const { 1090 if (!isImm()) return false; 1091 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1092 if (!CE) return false; 1093 int64_t Value = CE->getValue(); 1094 return Value > 0 && Value < 16; 1095 } 1096 bool isImm1_31() const { 1097 if (!isImm()) return false; 1098 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1099 if (!CE) return false; 1100 int64_t Value = CE->getValue(); 1101 return Value > 0 && Value < 32; 1102 } 1103 bool isImm1_16() const { 1104 if (!isImm()) return false; 1105 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1106 if (!CE) return false; 1107 int64_t Value = CE->getValue(); 1108 return Value > 0 && Value < 17; 1109 } 1110 bool isImm1_32() const { 1111 if (!isImm()) return false; 1112 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1113 if (!CE) return false; 1114 int64_t Value = CE->getValue(); 1115 return Value > 0 && Value < 33; 1116 } 1117 bool isImm0_32() const { 1118 if (!isImm()) return false; 1119 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1120 if (!CE) return false; 1121 int64_t Value = CE->getValue(); 1122 return Value >= 0 && Value < 33; 1123 } 1124 bool isImm0_65535() const { 1125 if (!isImm()) return false; 1126 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1127 if (!CE) return false; 1128 int64_t Value = CE->getValue(); 1129 return Value >= 0 && Value < 65536; 1130 } 1131 bool isImm256_65535Expr() const { 1132 if (!isImm()) return false; 1133 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1134 // If it's not a constant expression, it'll generate a fixup and be 1135 // handled later. 1136 if (!CE) return true; 1137 int64_t Value = CE->getValue(); 1138 return Value >= 256 && Value < 65536; 1139 } 1140 bool isImm0_65535Expr() const { 1141 if (!isImm()) return false; 1142 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1143 // If it's not a constant expression, it'll generate a fixup and be 1144 // handled later. 1145 if (!CE) return true; 1146 int64_t Value = CE->getValue(); 1147 return Value >= 0 && Value < 65536; 1148 } 1149 bool isImm24bit() const { 1150 if (!isImm()) return false; 1151 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1152 if (!CE) return false; 1153 int64_t Value = CE->getValue(); 1154 return Value >= 0 && Value <= 0xffffff; 1155 } 1156 bool isImmThumbSR() const { 1157 if (!isImm()) return false; 1158 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1159 if (!CE) return false; 1160 int64_t Value = CE->getValue(); 1161 return Value > 0 && Value < 33; 1162 } 1163 bool isPKHLSLImm() const { 1164 if (!isImm()) return false; 1165 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1166 if (!CE) return false; 1167 int64_t Value = CE->getValue(); 1168 return Value >= 0 && Value < 32; 1169 } 1170 bool isPKHASRImm() const { 1171 if (!isImm()) return false; 1172 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1173 if (!CE) return false; 1174 int64_t Value = CE->getValue(); 1175 return Value > 0 && Value <= 32; 1176 } 1177 bool isAdrLabel() const { 1178 // If we have an immediate that's not a constant, treat it as a label 1179 // reference needing a fixup. 1180 if (isImm() && !isa<MCConstantExpr>(getImm())) 1181 return true; 1182 1183 // If it is a constant, it must fit into a modified immediate encoding. 1184 if (!isImm()) return false; 1185 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1186 if (!CE) return false; 1187 int64_t Value = CE->getValue(); 1188 return (ARM_AM::getSOImmVal(Value) != -1 || 1189 ARM_AM::getSOImmVal(-Value) != -1); 1190 } 1191 bool isT2SOImm() const { 1192 if (!isImm()) return false; 1193 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1194 if (!CE) return false; 1195 int64_t Value = CE->getValue(); 1196 return ARM_AM::getT2SOImmVal(Value) != -1; 1197 } 1198 bool isT2SOImmNot() const { 1199 if (!isImm()) return false; 1200 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1201 if (!CE) return false; 1202 int64_t Value = CE->getValue(); 1203 return ARM_AM::getT2SOImmVal(Value) == -1 && 1204 ARM_AM::getT2SOImmVal(~Value) != -1; 1205 } 1206 bool isT2SOImmNeg() const { 1207 if (!isImm()) return false; 1208 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1209 if (!CE) return false; 1210 int64_t Value = CE->getValue(); 1211 // Only use this when not representable as a plain so_imm. 1212 return ARM_AM::getT2SOImmVal(Value) == -1 && 1213 ARM_AM::getT2SOImmVal(-Value) != -1; 1214 } 1215 bool isSetEndImm() const { 1216 if (!isImm()) return false; 1217 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1218 if (!CE) return false; 1219 int64_t Value = CE->getValue(); 1220 return Value == 1 || Value == 0; 1221 } 1222 bool isReg() const override { return Kind == k_Register; } 1223 bool isRegList() const { return Kind == k_RegisterList; } 1224 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1225 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1226 bool isToken() const override { return Kind == k_Token; } 1227 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1228 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1229 bool isMem() const override { return Kind == k_Memory; } 1230 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1231 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1232 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1233 bool isRotImm() const { return Kind == k_RotateImmediate; } 1234 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1235 bool isModImmNot() const { 1236 if (!isImm()) return false; 1237 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1238 if (!CE) return false; 1239 int64_t Value = CE->getValue(); 1240 return ARM_AM::getSOImmVal(~Value) != -1; 1241 } 1242 bool isModImmNeg() const { 1243 if (!isImm()) return false; 1244 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1245 if (!CE) return false; 1246 int64_t Value = CE->getValue(); 1247 return ARM_AM::getSOImmVal(Value) == -1 && 1248 ARM_AM::getSOImmVal(-Value) != -1; 1249 } 1250 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1251 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1252 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1253 bool isPostIdxReg() const { 1254 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1255 } 1256 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1257 if (!isMem()) 1258 return false; 1259 // No offset of any kind. 1260 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1261 (alignOK || Memory.Alignment == Alignment); 1262 } 1263 bool isMemPCRelImm12() const { 1264 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1265 return false; 1266 // Base register must be PC. 1267 if (Memory.BaseRegNum != ARM::PC) 1268 return false; 1269 // Immediate offset in range [-4095, 4095]. 1270 if (!Memory.OffsetImm) return true; 1271 int64_t Val = Memory.OffsetImm->getValue(); 1272 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1273 } 1274 bool isAlignedMemory() const { 1275 return isMemNoOffset(true); 1276 } 1277 bool isAlignedMemoryNone() const { 1278 return isMemNoOffset(false, 0); 1279 } 1280 bool isDupAlignedMemoryNone() const { 1281 return isMemNoOffset(false, 0); 1282 } 1283 bool isAlignedMemory16() const { 1284 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1285 return true; 1286 return isMemNoOffset(false, 0); 1287 } 1288 bool isDupAlignedMemory16() const { 1289 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1290 return true; 1291 return isMemNoOffset(false, 0); 1292 } 1293 bool isAlignedMemory32() const { 1294 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1295 return true; 1296 return isMemNoOffset(false, 0); 1297 } 1298 bool isDupAlignedMemory32() const { 1299 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1300 return true; 1301 return isMemNoOffset(false, 0); 1302 } 1303 bool isAlignedMemory64() const { 1304 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1305 return true; 1306 return isMemNoOffset(false, 0); 1307 } 1308 bool isDupAlignedMemory64() const { 1309 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1310 return true; 1311 return isMemNoOffset(false, 0); 1312 } 1313 bool isAlignedMemory64or128() const { 1314 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1315 return true; 1316 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1317 return true; 1318 return isMemNoOffset(false, 0); 1319 } 1320 bool isDupAlignedMemory64or128() const { 1321 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1322 return true; 1323 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1324 return true; 1325 return isMemNoOffset(false, 0); 1326 } 1327 bool isAlignedMemory64or128or256() const { 1328 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1329 return true; 1330 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1331 return true; 1332 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1333 return true; 1334 return isMemNoOffset(false, 0); 1335 } 1336 bool isAddrMode2() const { 1337 if (!isMem() || Memory.Alignment != 0) return false; 1338 // Check for register offset. 1339 if (Memory.OffsetRegNum) return true; 1340 // Immediate offset in range [-4095, 4095]. 1341 if (!Memory.OffsetImm) return true; 1342 int64_t Val = Memory.OffsetImm->getValue(); 1343 return Val > -4096 && Val < 4096; 1344 } 1345 bool isAM2OffsetImm() const { 1346 if (!isImm()) return false; 1347 // Immediate offset in range [-4095, 4095]. 1348 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1349 if (!CE) return false; 1350 int64_t Val = CE->getValue(); 1351 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1352 } 1353 bool isAddrMode3() const { 1354 // If we have an immediate that's not a constant, treat it as a label 1355 // reference needing a fixup. If it is a constant, it's something else 1356 // and we reject it. 1357 if (isImm() && !isa<MCConstantExpr>(getImm())) 1358 return true; 1359 if (!isMem() || Memory.Alignment != 0) return false; 1360 // No shifts are legal for AM3. 1361 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1362 // Check for register offset. 1363 if (Memory.OffsetRegNum) return true; 1364 // Immediate offset in range [-255, 255]. 1365 if (!Memory.OffsetImm) return true; 1366 int64_t Val = Memory.OffsetImm->getValue(); 1367 // The #-0 offset is encoded as INT32_MIN, and we have to check 1368 // for this too. 1369 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1370 } 1371 bool isAM3Offset() const { 1372 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1373 return false; 1374 if (Kind == k_PostIndexRegister) 1375 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1376 // Immediate offset in range [-255, 255]. 1377 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1378 if (!CE) return false; 1379 int64_t Val = CE->getValue(); 1380 // Special case, #-0 is INT32_MIN. 1381 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1382 } 1383 bool isAddrMode5() const { 1384 // If we have an immediate that's not a constant, treat it as a label 1385 // reference needing a fixup. If it is a constant, it's something else 1386 // and we reject it. 1387 if (isImm() && !isa<MCConstantExpr>(getImm())) 1388 return true; 1389 if (!isMem() || Memory.Alignment != 0) return false; 1390 // Check for register offset. 1391 if (Memory.OffsetRegNum) return false; 1392 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1393 if (!Memory.OffsetImm) return true; 1394 int64_t Val = Memory.OffsetImm->getValue(); 1395 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1396 Val == INT32_MIN; 1397 } 1398 bool isAddrMode5FP16() const { 1399 // If we have an immediate that's not a constant, treat it as a label 1400 // reference needing a fixup. If it is a constant, it's something else 1401 // and we reject it. 1402 if (isImm() && !isa<MCConstantExpr>(getImm())) 1403 return true; 1404 if (!isMem() || Memory.Alignment != 0) return false; 1405 // Check for register offset. 1406 if (Memory.OffsetRegNum) return false; 1407 // Immediate offset in range [-510, 510] and a multiple of 2. 1408 if (!Memory.OffsetImm) return true; 1409 int64_t Val = Memory.OffsetImm->getValue(); 1410 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || Val == INT32_MIN; 1411 } 1412 bool isMemTBB() const { 1413 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1414 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1415 return false; 1416 return true; 1417 } 1418 bool isMemTBH() const { 1419 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1420 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1421 Memory.Alignment != 0 ) 1422 return false; 1423 return true; 1424 } 1425 bool isMemRegOffset() const { 1426 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1427 return false; 1428 return true; 1429 } 1430 bool isT2MemRegOffset() const { 1431 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1432 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1433 return false; 1434 // Only lsl #{0, 1, 2, 3} allowed. 1435 if (Memory.ShiftType == ARM_AM::no_shift) 1436 return true; 1437 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1438 return false; 1439 return true; 1440 } 1441 bool isMemThumbRR() const { 1442 // Thumb reg+reg addressing is simple. Just two registers, a base and 1443 // an offset. No shifts, negations or any other complicating factors. 1444 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1445 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1446 return false; 1447 return isARMLowRegister(Memory.BaseRegNum) && 1448 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1449 } 1450 bool isMemThumbRIs4() const { 1451 if (!isMem() || Memory.OffsetRegNum != 0 || 1452 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1453 return false; 1454 // Immediate offset, multiple of 4 in range [0, 124]. 1455 if (!Memory.OffsetImm) return true; 1456 int64_t Val = Memory.OffsetImm->getValue(); 1457 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1458 } 1459 bool isMemThumbRIs2() const { 1460 if (!isMem() || Memory.OffsetRegNum != 0 || 1461 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1462 return false; 1463 // Immediate offset, multiple of 4 in range [0, 62]. 1464 if (!Memory.OffsetImm) return true; 1465 int64_t Val = Memory.OffsetImm->getValue(); 1466 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1467 } 1468 bool isMemThumbRIs1() const { 1469 if (!isMem() || Memory.OffsetRegNum != 0 || 1470 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1471 return false; 1472 // Immediate offset in range [0, 31]. 1473 if (!Memory.OffsetImm) return true; 1474 int64_t Val = Memory.OffsetImm->getValue(); 1475 return Val >= 0 && Val <= 31; 1476 } 1477 bool isMemThumbSPI() const { 1478 if (!isMem() || Memory.OffsetRegNum != 0 || 1479 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1480 return false; 1481 // Immediate offset, multiple of 4 in range [0, 1020]. 1482 if (!Memory.OffsetImm) return true; 1483 int64_t Val = Memory.OffsetImm->getValue(); 1484 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1485 } 1486 bool isMemImm8s4Offset() const { 1487 // If we have an immediate that's not a constant, treat it as a label 1488 // reference needing a fixup. If it is a constant, it's something else 1489 // and we reject it. 1490 if (isImm() && !isa<MCConstantExpr>(getImm())) 1491 return true; 1492 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1493 return false; 1494 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1495 if (!Memory.OffsetImm) return true; 1496 int64_t Val = Memory.OffsetImm->getValue(); 1497 // Special case, #-0 is INT32_MIN. 1498 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1499 } 1500 bool isMemImm0_1020s4Offset() const { 1501 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1502 return false; 1503 // Immediate offset a multiple of 4 in range [0, 1020]. 1504 if (!Memory.OffsetImm) return true; 1505 int64_t Val = Memory.OffsetImm->getValue(); 1506 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1507 } 1508 bool isMemImm8Offset() const { 1509 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1510 return false; 1511 // Base reg of PC isn't allowed for these encodings. 1512 if (Memory.BaseRegNum == ARM::PC) return false; 1513 // Immediate offset in range [-255, 255]. 1514 if (!Memory.OffsetImm) return true; 1515 int64_t Val = Memory.OffsetImm->getValue(); 1516 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1517 } 1518 bool isMemPosImm8Offset() const { 1519 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1520 return false; 1521 // Immediate offset in range [0, 255]. 1522 if (!Memory.OffsetImm) return true; 1523 int64_t Val = Memory.OffsetImm->getValue(); 1524 return Val >= 0 && Val < 256; 1525 } 1526 bool isMemNegImm8Offset() const { 1527 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1528 return false; 1529 // Base reg of PC isn't allowed for these encodings. 1530 if (Memory.BaseRegNum == ARM::PC) return false; 1531 // Immediate offset in range [-255, -1]. 1532 if (!Memory.OffsetImm) return false; 1533 int64_t Val = Memory.OffsetImm->getValue(); 1534 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1535 } 1536 bool isMemUImm12Offset() const { 1537 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1538 return false; 1539 // Immediate offset in range [0, 4095]. 1540 if (!Memory.OffsetImm) return true; 1541 int64_t Val = Memory.OffsetImm->getValue(); 1542 return (Val >= 0 && Val < 4096); 1543 } 1544 bool isMemImm12Offset() const { 1545 // If we have an immediate that's not a constant, treat it as a label 1546 // reference needing a fixup. If it is a constant, it's something else 1547 // and we reject it. 1548 1549 if (isImm() && !isa<MCConstantExpr>(getImm())) 1550 return true; 1551 1552 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1553 return false; 1554 // Immediate offset in range [-4095, 4095]. 1555 if (!Memory.OffsetImm) return true; 1556 int64_t Val = Memory.OffsetImm->getValue(); 1557 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1558 } 1559 bool isConstPoolAsmImm() const { 1560 // Delay processing of Constant Pool Immediate, this will turn into 1561 // a constant. Match no other operand 1562 return (isConstantPoolImm()); 1563 } 1564 bool isPostIdxImm8() const { 1565 if (!isImm()) return false; 1566 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1567 if (!CE) return false; 1568 int64_t Val = CE->getValue(); 1569 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1570 } 1571 bool isPostIdxImm8s4() const { 1572 if (!isImm()) return false; 1573 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1574 if (!CE) return false; 1575 int64_t Val = CE->getValue(); 1576 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1577 (Val == INT32_MIN); 1578 } 1579 1580 bool isMSRMask() const { return Kind == k_MSRMask; } 1581 bool isBankedReg() const { return Kind == k_BankedReg; } 1582 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1583 1584 // NEON operands. 1585 bool isSingleSpacedVectorList() const { 1586 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1587 } 1588 bool isDoubleSpacedVectorList() const { 1589 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1590 } 1591 bool isVecListOneD() const { 1592 if (!isSingleSpacedVectorList()) return false; 1593 return VectorList.Count == 1; 1594 } 1595 1596 bool isVecListDPair() const { 1597 if (!isSingleSpacedVectorList()) return false; 1598 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1599 .contains(VectorList.RegNum)); 1600 } 1601 1602 bool isVecListThreeD() const { 1603 if (!isSingleSpacedVectorList()) return false; 1604 return VectorList.Count == 3; 1605 } 1606 1607 bool isVecListFourD() const { 1608 if (!isSingleSpacedVectorList()) return false; 1609 return VectorList.Count == 4; 1610 } 1611 1612 bool isVecListDPairSpaced() const { 1613 if (Kind != k_VectorList) return false; 1614 if (isSingleSpacedVectorList()) return false; 1615 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1616 .contains(VectorList.RegNum)); 1617 } 1618 1619 bool isVecListThreeQ() const { 1620 if (!isDoubleSpacedVectorList()) return false; 1621 return VectorList.Count == 3; 1622 } 1623 1624 bool isVecListFourQ() const { 1625 if (!isDoubleSpacedVectorList()) return false; 1626 return VectorList.Count == 4; 1627 } 1628 1629 bool isSingleSpacedVectorAllLanes() const { 1630 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1631 } 1632 bool isDoubleSpacedVectorAllLanes() const { 1633 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1634 } 1635 bool isVecListOneDAllLanes() const { 1636 if (!isSingleSpacedVectorAllLanes()) return false; 1637 return VectorList.Count == 1; 1638 } 1639 1640 bool isVecListDPairAllLanes() const { 1641 if (!isSingleSpacedVectorAllLanes()) return false; 1642 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1643 .contains(VectorList.RegNum)); 1644 } 1645 1646 bool isVecListDPairSpacedAllLanes() const { 1647 if (!isDoubleSpacedVectorAllLanes()) return false; 1648 return VectorList.Count == 2; 1649 } 1650 1651 bool isVecListThreeDAllLanes() const { 1652 if (!isSingleSpacedVectorAllLanes()) return false; 1653 return VectorList.Count == 3; 1654 } 1655 1656 bool isVecListThreeQAllLanes() const { 1657 if (!isDoubleSpacedVectorAllLanes()) return false; 1658 return VectorList.Count == 3; 1659 } 1660 1661 bool isVecListFourDAllLanes() const { 1662 if (!isSingleSpacedVectorAllLanes()) return false; 1663 return VectorList.Count == 4; 1664 } 1665 1666 bool isVecListFourQAllLanes() const { 1667 if (!isDoubleSpacedVectorAllLanes()) return false; 1668 return VectorList.Count == 4; 1669 } 1670 1671 bool isSingleSpacedVectorIndexed() const { 1672 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1673 } 1674 bool isDoubleSpacedVectorIndexed() const { 1675 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1676 } 1677 bool isVecListOneDByteIndexed() const { 1678 if (!isSingleSpacedVectorIndexed()) return false; 1679 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1680 } 1681 1682 bool isVecListOneDHWordIndexed() const { 1683 if (!isSingleSpacedVectorIndexed()) return false; 1684 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1685 } 1686 1687 bool isVecListOneDWordIndexed() const { 1688 if (!isSingleSpacedVectorIndexed()) return false; 1689 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1690 } 1691 1692 bool isVecListTwoDByteIndexed() const { 1693 if (!isSingleSpacedVectorIndexed()) return false; 1694 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1695 } 1696 1697 bool isVecListTwoDHWordIndexed() const { 1698 if (!isSingleSpacedVectorIndexed()) return false; 1699 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1700 } 1701 1702 bool isVecListTwoQWordIndexed() const { 1703 if (!isDoubleSpacedVectorIndexed()) return false; 1704 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1705 } 1706 1707 bool isVecListTwoQHWordIndexed() const { 1708 if (!isDoubleSpacedVectorIndexed()) return false; 1709 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1710 } 1711 1712 bool isVecListTwoDWordIndexed() const { 1713 if (!isSingleSpacedVectorIndexed()) return false; 1714 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1715 } 1716 1717 bool isVecListThreeDByteIndexed() const { 1718 if (!isSingleSpacedVectorIndexed()) return false; 1719 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1720 } 1721 1722 bool isVecListThreeDHWordIndexed() const { 1723 if (!isSingleSpacedVectorIndexed()) return false; 1724 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1725 } 1726 1727 bool isVecListThreeQWordIndexed() const { 1728 if (!isDoubleSpacedVectorIndexed()) return false; 1729 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1730 } 1731 1732 bool isVecListThreeQHWordIndexed() const { 1733 if (!isDoubleSpacedVectorIndexed()) return false; 1734 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1735 } 1736 1737 bool isVecListThreeDWordIndexed() const { 1738 if (!isSingleSpacedVectorIndexed()) return false; 1739 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1740 } 1741 1742 bool isVecListFourDByteIndexed() const { 1743 if (!isSingleSpacedVectorIndexed()) return false; 1744 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1745 } 1746 1747 bool isVecListFourDHWordIndexed() const { 1748 if (!isSingleSpacedVectorIndexed()) return false; 1749 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1750 } 1751 1752 bool isVecListFourQWordIndexed() const { 1753 if (!isDoubleSpacedVectorIndexed()) return false; 1754 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1755 } 1756 1757 bool isVecListFourQHWordIndexed() const { 1758 if (!isDoubleSpacedVectorIndexed()) return false; 1759 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1760 } 1761 1762 bool isVecListFourDWordIndexed() const { 1763 if (!isSingleSpacedVectorIndexed()) return false; 1764 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1765 } 1766 1767 bool isVectorIndex8() const { 1768 if (Kind != k_VectorIndex) return false; 1769 return VectorIndex.Val < 8; 1770 } 1771 bool isVectorIndex16() const { 1772 if (Kind != k_VectorIndex) return false; 1773 return VectorIndex.Val < 4; 1774 } 1775 bool isVectorIndex32() const { 1776 if (Kind != k_VectorIndex) return false; 1777 return VectorIndex.Val < 2; 1778 } 1779 1780 bool isNEONi8splat() const { 1781 if (!isImm()) return false; 1782 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1783 // Must be a constant. 1784 if (!CE) return false; 1785 int64_t Value = CE->getValue(); 1786 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1787 // value. 1788 return Value >= 0 && Value < 256; 1789 } 1790 1791 bool isNEONi16splat() const { 1792 if (isNEONByteReplicate(2)) 1793 return false; // Leave that for bytes replication and forbid by default. 1794 if (!isImm()) 1795 return false; 1796 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1797 // Must be a constant. 1798 if (!CE) return false; 1799 unsigned Value = CE->getValue(); 1800 return ARM_AM::isNEONi16splat(Value); 1801 } 1802 1803 bool isNEONi16splatNot() const { 1804 if (!isImm()) 1805 return false; 1806 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1807 // Must be a constant. 1808 if (!CE) return false; 1809 unsigned Value = CE->getValue(); 1810 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1811 } 1812 1813 bool isNEONi32splat() const { 1814 if (isNEONByteReplicate(4)) 1815 return false; // Leave that for bytes replication and forbid by default. 1816 if (!isImm()) 1817 return false; 1818 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1819 // Must be a constant. 1820 if (!CE) return false; 1821 unsigned Value = CE->getValue(); 1822 return ARM_AM::isNEONi32splat(Value); 1823 } 1824 1825 bool isNEONi32splatNot() const { 1826 if (!isImm()) 1827 return false; 1828 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1829 // Must be a constant. 1830 if (!CE) return false; 1831 unsigned Value = CE->getValue(); 1832 return ARM_AM::isNEONi32splat(~Value); 1833 } 1834 1835 bool isNEONByteReplicate(unsigned NumBytes) const { 1836 if (!isImm()) 1837 return false; 1838 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1839 // Must be a constant. 1840 if (!CE) 1841 return false; 1842 int64_t Value = CE->getValue(); 1843 if (!Value) 1844 return false; // Don't bother with zero. 1845 1846 unsigned char B = Value & 0xff; 1847 for (unsigned i = 1; i < NumBytes; ++i) { 1848 Value >>= 8; 1849 if ((Value & 0xff) != B) 1850 return false; 1851 } 1852 return true; 1853 } 1854 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1855 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1856 bool isNEONi32vmov() const { 1857 if (isNEONByteReplicate(4)) 1858 return false; // Let it to be classified as byte-replicate case. 1859 if (!isImm()) 1860 return false; 1861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1862 // Must be a constant. 1863 if (!CE) 1864 return false; 1865 int64_t Value = CE->getValue(); 1866 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1867 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1868 // FIXME: This is probably wrong and a copy and paste from previous example 1869 return (Value >= 0 && Value < 256) || 1870 (Value >= 0x0100 && Value <= 0xff00) || 1871 (Value >= 0x010000 && Value <= 0xff0000) || 1872 (Value >= 0x01000000 && Value <= 0xff000000) || 1873 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1874 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1875 } 1876 bool isNEONi32vmovNeg() const { 1877 if (!isImm()) return false; 1878 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1879 // Must be a constant. 1880 if (!CE) return false; 1881 int64_t Value = ~CE->getValue(); 1882 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1883 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1884 // FIXME: This is probably wrong and a copy and paste from previous example 1885 return (Value >= 0 && Value < 256) || 1886 (Value >= 0x0100 && Value <= 0xff00) || 1887 (Value >= 0x010000 && Value <= 0xff0000) || 1888 (Value >= 0x01000000 && Value <= 0xff000000) || 1889 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1890 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1891 } 1892 1893 bool isNEONi64splat() const { 1894 if (!isImm()) return false; 1895 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1896 // Must be a constant. 1897 if (!CE) return false; 1898 uint64_t Value = CE->getValue(); 1899 // i64 value with each byte being either 0 or 0xff. 1900 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1901 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1902 return true; 1903 } 1904 1905 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1906 // Add as immediates when possible. Null MCExpr = 0. 1907 if (!Expr) 1908 Inst.addOperand(MCOperand::createImm(0)); 1909 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1910 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1911 else 1912 Inst.addOperand(MCOperand::createExpr(Expr)); 1913 } 1914 1915 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 1916 assert(N == 1 && "Invalid number of operands!"); 1917 addExpr(Inst, getImm()); 1918 } 1919 1920 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 1921 assert(N == 1 && "Invalid number of operands!"); 1922 addExpr(Inst, getImm()); 1923 } 1924 1925 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1926 assert(N == 2 && "Invalid number of operands!"); 1927 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1928 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1929 Inst.addOperand(MCOperand::createReg(RegNum)); 1930 } 1931 1932 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1933 assert(N == 1 && "Invalid number of operands!"); 1934 Inst.addOperand(MCOperand::createImm(getCoproc())); 1935 } 1936 1937 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1938 assert(N == 1 && "Invalid number of operands!"); 1939 Inst.addOperand(MCOperand::createImm(getCoproc())); 1940 } 1941 1942 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1943 assert(N == 1 && "Invalid number of operands!"); 1944 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1945 } 1946 1947 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1948 assert(N == 1 && "Invalid number of operands!"); 1949 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1950 } 1951 1952 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1953 assert(N == 1 && "Invalid number of operands!"); 1954 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1955 } 1956 1957 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1958 assert(N == 1 && "Invalid number of operands!"); 1959 Inst.addOperand(MCOperand::createReg(getReg())); 1960 } 1961 1962 void addRegOperands(MCInst &Inst, unsigned N) const { 1963 assert(N == 1 && "Invalid number of operands!"); 1964 Inst.addOperand(MCOperand::createReg(getReg())); 1965 } 1966 1967 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1968 assert(N == 3 && "Invalid number of operands!"); 1969 assert(isRegShiftedReg() && 1970 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1971 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1972 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1973 Inst.addOperand(MCOperand::createImm( 1974 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1975 } 1976 1977 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1978 assert(N == 2 && "Invalid number of operands!"); 1979 assert(isRegShiftedImm() && 1980 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1981 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1982 // Shift of #32 is encoded as 0 where permitted 1983 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1984 Inst.addOperand(MCOperand::createImm( 1985 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1986 } 1987 1988 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1989 assert(N == 1 && "Invalid number of operands!"); 1990 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1991 ShifterImm.Imm)); 1992 } 1993 1994 void addRegListOperands(MCInst &Inst, unsigned N) const { 1995 assert(N == 1 && "Invalid number of operands!"); 1996 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1997 for (SmallVectorImpl<unsigned>::const_iterator 1998 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1999 Inst.addOperand(MCOperand::createReg(*I)); 2000 } 2001 2002 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2003 addRegListOperands(Inst, N); 2004 } 2005 2006 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2007 addRegListOperands(Inst, N); 2008 } 2009 2010 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2011 assert(N == 1 && "Invalid number of operands!"); 2012 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2013 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2014 } 2015 2016 void addModImmOperands(MCInst &Inst, unsigned N) const { 2017 assert(N == 1 && "Invalid number of operands!"); 2018 2019 // Support for fixups (MCFixup) 2020 if (isImm()) 2021 return addImmOperands(Inst, N); 2022 2023 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2024 } 2025 2026 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2027 assert(N == 1 && "Invalid number of operands!"); 2028 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2029 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2030 Inst.addOperand(MCOperand::createImm(Enc)); 2031 } 2032 2033 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2034 assert(N == 1 && "Invalid number of operands!"); 2035 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2036 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2037 Inst.addOperand(MCOperand::createImm(Enc)); 2038 } 2039 2040 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2041 assert(N == 1 && "Invalid number of operands!"); 2042 // Munge the lsb/width into a bitfield mask. 2043 unsigned lsb = Bitfield.LSB; 2044 unsigned width = Bitfield.Width; 2045 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2046 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2047 (32 - (lsb + width))); 2048 Inst.addOperand(MCOperand::createImm(Mask)); 2049 } 2050 2051 void addImmOperands(MCInst &Inst, unsigned N) const { 2052 assert(N == 1 && "Invalid number of operands!"); 2053 addExpr(Inst, getImm()); 2054 } 2055 2056 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2057 assert(N == 1 && "Invalid number of operands!"); 2058 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2059 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2060 } 2061 2062 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2063 assert(N == 1 && "Invalid number of operands!"); 2064 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2065 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2066 } 2067 2068 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2069 assert(N == 1 && "Invalid number of operands!"); 2070 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2071 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2072 Inst.addOperand(MCOperand::createImm(Val)); 2073 } 2074 2075 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2076 assert(N == 1 && "Invalid number of operands!"); 2077 // FIXME: We really want to scale the value here, but the LDRD/STRD 2078 // instruction don't encode operands that way yet. 2079 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2080 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2081 } 2082 2083 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2084 assert(N == 1 && "Invalid number of operands!"); 2085 // The immediate is scaled by four in the encoding and is stored 2086 // in the MCInst as such. Lop off the low two bits here. 2087 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2088 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2089 } 2090 2091 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2092 assert(N == 1 && "Invalid number of operands!"); 2093 // The immediate is scaled by four in the encoding and is stored 2094 // in the MCInst as such. Lop off the low two bits here. 2095 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2096 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2097 } 2098 2099 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2100 assert(N == 1 && "Invalid number of operands!"); 2101 // The immediate is scaled by four in the encoding and is stored 2102 // in the MCInst as such. Lop off the low two bits here. 2103 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2104 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2105 } 2106 2107 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2108 assert(N == 1 && "Invalid number of operands!"); 2109 // The constant encodes as the immediate-1, and we store in the instruction 2110 // the bits as encoded, so subtract off one here. 2111 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2112 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2113 } 2114 2115 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2116 assert(N == 1 && "Invalid number of operands!"); 2117 // The constant encodes as the immediate-1, and we store in the instruction 2118 // the bits as encoded, so subtract off one here. 2119 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2120 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2121 } 2122 2123 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2124 assert(N == 1 && "Invalid number of operands!"); 2125 // The constant encodes as the immediate, except for 32, which encodes as 2126 // zero. 2127 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2128 unsigned Imm = CE->getValue(); 2129 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2130 } 2131 2132 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2133 assert(N == 1 && "Invalid number of operands!"); 2134 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2135 // the instruction as well. 2136 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2137 int Val = CE->getValue(); 2138 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2139 } 2140 2141 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2142 assert(N == 1 && "Invalid number of operands!"); 2143 // The operand is actually a t2_so_imm, but we have its bitwise 2144 // negation in the assembly source, so twiddle it here. 2145 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2146 Inst.addOperand(MCOperand::createImm(~CE->getValue())); 2147 } 2148 2149 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2150 assert(N == 1 && "Invalid number of operands!"); 2151 // The operand is actually a t2_so_imm, but we have its 2152 // negation in the assembly source, so twiddle it here. 2153 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2154 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2155 } 2156 2157 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2158 assert(N == 1 && "Invalid number of operands!"); 2159 // The operand is actually an imm0_4095, but we have its 2160 // negation in the assembly source, so twiddle it here. 2161 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2162 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2163 } 2164 2165 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2166 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2167 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2168 return; 2169 } 2170 2171 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2172 assert(SR && "Unknown value type!"); 2173 Inst.addOperand(MCOperand::createExpr(SR)); 2174 } 2175 2176 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2177 assert(N == 1 && "Invalid number of operands!"); 2178 if (isImm()) { 2179 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2180 if (CE) { 2181 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2182 return; 2183 } 2184 2185 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2186 2187 assert(SR && "Unknown value type!"); 2188 Inst.addOperand(MCOperand::createExpr(SR)); 2189 return; 2190 } 2191 2192 assert(isMem() && "Unknown value type!"); 2193 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2194 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2195 } 2196 2197 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2198 assert(N == 1 && "Invalid number of operands!"); 2199 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2200 } 2201 2202 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2203 assert(N == 1 && "Invalid number of operands!"); 2204 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2205 } 2206 2207 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2208 assert(N == 1 && "Invalid number of operands!"); 2209 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2210 } 2211 2212 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2213 assert(N == 1 && "Invalid number of operands!"); 2214 int32_t Imm = Memory.OffsetImm->getValue(); 2215 Inst.addOperand(MCOperand::createImm(Imm)); 2216 } 2217 2218 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2219 assert(N == 1 && "Invalid number of operands!"); 2220 assert(isImm() && "Not an immediate!"); 2221 2222 // If we have an immediate that's not a constant, treat it as a label 2223 // reference needing a fixup. 2224 if (!isa<MCConstantExpr>(getImm())) { 2225 Inst.addOperand(MCOperand::createExpr(getImm())); 2226 return; 2227 } 2228 2229 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2230 int Val = CE->getValue(); 2231 Inst.addOperand(MCOperand::createImm(Val)); 2232 } 2233 2234 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2235 assert(N == 2 && "Invalid number of operands!"); 2236 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2237 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2238 } 2239 2240 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2241 addAlignedMemoryOperands(Inst, N); 2242 } 2243 2244 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2245 addAlignedMemoryOperands(Inst, N); 2246 } 2247 2248 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2249 addAlignedMemoryOperands(Inst, N); 2250 } 2251 2252 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2253 addAlignedMemoryOperands(Inst, N); 2254 } 2255 2256 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2257 addAlignedMemoryOperands(Inst, N); 2258 } 2259 2260 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2261 addAlignedMemoryOperands(Inst, N); 2262 } 2263 2264 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2265 addAlignedMemoryOperands(Inst, N); 2266 } 2267 2268 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2269 addAlignedMemoryOperands(Inst, N); 2270 } 2271 2272 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2273 addAlignedMemoryOperands(Inst, N); 2274 } 2275 2276 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2277 addAlignedMemoryOperands(Inst, N); 2278 } 2279 2280 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2281 addAlignedMemoryOperands(Inst, N); 2282 } 2283 2284 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2285 assert(N == 3 && "Invalid number of operands!"); 2286 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2287 if (!Memory.OffsetRegNum) { 2288 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2289 // Special case for #-0 2290 if (Val == INT32_MIN) Val = 0; 2291 if (Val < 0) Val = -Val; 2292 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2293 } else { 2294 // For register offset, we encode the shift type and negation flag 2295 // here. 2296 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2297 Memory.ShiftImm, Memory.ShiftType); 2298 } 2299 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2300 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2301 Inst.addOperand(MCOperand::createImm(Val)); 2302 } 2303 2304 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2305 assert(N == 2 && "Invalid number of operands!"); 2306 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2307 assert(CE && "non-constant AM2OffsetImm operand!"); 2308 int32_t Val = CE->getValue(); 2309 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2310 // Special case for #-0 2311 if (Val == INT32_MIN) Val = 0; 2312 if (Val < 0) Val = -Val; 2313 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2314 Inst.addOperand(MCOperand::createReg(0)); 2315 Inst.addOperand(MCOperand::createImm(Val)); 2316 } 2317 2318 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2319 assert(N == 3 && "Invalid number of operands!"); 2320 // If we have an immediate that's not a constant, treat it as a label 2321 // reference needing a fixup. If it is a constant, it's something else 2322 // and we reject it. 2323 if (isImm()) { 2324 Inst.addOperand(MCOperand::createExpr(getImm())); 2325 Inst.addOperand(MCOperand::createReg(0)); 2326 Inst.addOperand(MCOperand::createImm(0)); 2327 return; 2328 } 2329 2330 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2331 if (!Memory.OffsetRegNum) { 2332 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2333 // Special case for #-0 2334 if (Val == INT32_MIN) Val = 0; 2335 if (Val < 0) Val = -Val; 2336 Val = ARM_AM::getAM3Opc(AddSub, Val); 2337 } else { 2338 // For register offset, we encode the shift type and negation flag 2339 // here. 2340 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2341 } 2342 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2343 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2344 Inst.addOperand(MCOperand::createImm(Val)); 2345 } 2346 2347 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2348 assert(N == 2 && "Invalid number of operands!"); 2349 if (Kind == k_PostIndexRegister) { 2350 int32_t Val = 2351 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2352 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2353 Inst.addOperand(MCOperand::createImm(Val)); 2354 return; 2355 } 2356 2357 // Constant offset. 2358 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2359 int32_t Val = CE->getValue(); 2360 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2361 // Special case for #-0 2362 if (Val == INT32_MIN) Val = 0; 2363 if (Val < 0) Val = -Val; 2364 Val = ARM_AM::getAM3Opc(AddSub, Val); 2365 Inst.addOperand(MCOperand::createReg(0)); 2366 Inst.addOperand(MCOperand::createImm(Val)); 2367 } 2368 2369 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2370 assert(N == 2 && "Invalid number of operands!"); 2371 // If we have an immediate that's not a constant, treat it as a label 2372 // reference needing a fixup. If it is a constant, it's something else 2373 // and we reject it. 2374 if (isImm()) { 2375 Inst.addOperand(MCOperand::createExpr(getImm())); 2376 Inst.addOperand(MCOperand::createImm(0)); 2377 return; 2378 } 2379 2380 // The lower two bits are always zero and as such are not encoded. 2381 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2382 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2383 // Special case for #-0 2384 if (Val == INT32_MIN) Val = 0; 2385 if (Val < 0) Val = -Val; 2386 Val = ARM_AM::getAM5Opc(AddSub, Val); 2387 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2388 Inst.addOperand(MCOperand::createImm(Val)); 2389 } 2390 2391 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2392 assert(N == 2 && "Invalid number of operands!"); 2393 // If we have an immediate that's not a constant, treat it as a label 2394 // reference needing a fixup. If it is a constant, it's something else 2395 // and we reject it. 2396 if (isImm()) { 2397 Inst.addOperand(MCOperand::createExpr(getImm())); 2398 Inst.addOperand(MCOperand::createImm(0)); 2399 return; 2400 } 2401 2402 // The lower bit is always zero and as such is not encoded. 2403 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2404 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2405 // Special case for #-0 2406 if (Val == INT32_MIN) Val = 0; 2407 if (Val < 0) Val = -Val; 2408 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2409 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2410 Inst.addOperand(MCOperand::createImm(Val)); 2411 } 2412 2413 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2414 assert(N == 2 && "Invalid number of operands!"); 2415 // If we have an immediate that's not a constant, treat it as a label 2416 // reference needing a fixup. If it is a constant, it's something else 2417 // and we reject it. 2418 if (isImm()) { 2419 Inst.addOperand(MCOperand::createExpr(getImm())); 2420 Inst.addOperand(MCOperand::createImm(0)); 2421 return; 2422 } 2423 2424 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2425 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2426 Inst.addOperand(MCOperand::createImm(Val)); 2427 } 2428 2429 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2430 assert(N == 2 && "Invalid number of operands!"); 2431 // The lower two bits are always zero and as such are not encoded. 2432 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2433 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2434 Inst.addOperand(MCOperand::createImm(Val)); 2435 } 2436 2437 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2438 assert(N == 2 && "Invalid number of operands!"); 2439 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2440 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2441 Inst.addOperand(MCOperand::createImm(Val)); 2442 } 2443 2444 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2445 addMemImm8OffsetOperands(Inst, N); 2446 } 2447 2448 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2449 addMemImm8OffsetOperands(Inst, N); 2450 } 2451 2452 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2453 assert(N == 2 && "Invalid number of operands!"); 2454 // If this is an immediate, it's a label reference. 2455 if (isImm()) { 2456 addExpr(Inst, getImm()); 2457 Inst.addOperand(MCOperand::createImm(0)); 2458 return; 2459 } 2460 2461 // Otherwise, it's a normal memory reg+offset. 2462 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2463 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2464 Inst.addOperand(MCOperand::createImm(Val)); 2465 } 2466 2467 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2468 assert(N == 2 && "Invalid number of operands!"); 2469 // If this is an immediate, it's a label reference. 2470 if (isImm()) { 2471 addExpr(Inst, getImm()); 2472 Inst.addOperand(MCOperand::createImm(0)); 2473 return; 2474 } 2475 2476 // Otherwise, it's a normal memory reg+offset. 2477 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2478 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2479 Inst.addOperand(MCOperand::createImm(Val)); 2480 } 2481 2482 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2483 assert(N == 1 && "Invalid number of operands!"); 2484 // This is container for the immediate that we will create the constant 2485 // pool from 2486 addExpr(Inst, getConstantPoolImm()); 2487 return; 2488 } 2489 2490 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2491 assert(N == 2 && "Invalid number of operands!"); 2492 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2493 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2494 } 2495 2496 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2497 assert(N == 2 && "Invalid number of operands!"); 2498 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2499 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2500 } 2501 2502 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2503 assert(N == 3 && "Invalid number of operands!"); 2504 unsigned Val = 2505 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2506 Memory.ShiftImm, Memory.ShiftType); 2507 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2508 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2509 Inst.addOperand(MCOperand::createImm(Val)); 2510 } 2511 2512 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2513 assert(N == 3 && "Invalid number of operands!"); 2514 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2515 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2516 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2517 } 2518 2519 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2520 assert(N == 2 && "Invalid number of operands!"); 2521 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2522 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2523 } 2524 2525 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2526 assert(N == 2 && "Invalid number of operands!"); 2527 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2528 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2529 Inst.addOperand(MCOperand::createImm(Val)); 2530 } 2531 2532 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2533 assert(N == 2 && "Invalid number of operands!"); 2534 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2535 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2536 Inst.addOperand(MCOperand::createImm(Val)); 2537 } 2538 2539 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2540 assert(N == 2 && "Invalid number of operands!"); 2541 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2542 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2543 Inst.addOperand(MCOperand::createImm(Val)); 2544 } 2545 2546 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2547 assert(N == 2 && "Invalid number of operands!"); 2548 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2549 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2550 Inst.addOperand(MCOperand::createImm(Val)); 2551 } 2552 2553 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2554 assert(N == 1 && "Invalid number of operands!"); 2555 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2556 assert(CE && "non-constant post-idx-imm8 operand!"); 2557 int Imm = CE->getValue(); 2558 bool isAdd = Imm >= 0; 2559 if (Imm == INT32_MIN) Imm = 0; 2560 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2561 Inst.addOperand(MCOperand::createImm(Imm)); 2562 } 2563 2564 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2565 assert(N == 1 && "Invalid number of operands!"); 2566 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2567 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2568 int Imm = CE->getValue(); 2569 bool isAdd = Imm >= 0; 2570 if (Imm == INT32_MIN) Imm = 0; 2571 // Immediate is scaled by 4. 2572 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2573 Inst.addOperand(MCOperand::createImm(Imm)); 2574 } 2575 2576 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2577 assert(N == 2 && "Invalid number of operands!"); 2578 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2579 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2580 } 2581 2582 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2583 assert(N == 2 && "Invalid number of operands!"); 2584 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2585 // The sign, shift type, and shift amount are encoded in a single operand 2586 // using the AM2 encoding helpers. 2587 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2588 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2589 PostIdxReg.ShiftTy); 2590 Inst.addOperand(MCOperand::createImm(Imm)); 2591 } 2592 2593 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2594 assert(N == 1 && "Invalid number of operands!"); 2595 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2596 } 2597 2598 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2599 assert(N == 1 && "Invalid number of operands!"); 2600 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2601 } 2602 2603 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2604 assert(N == 1 && "Invalid number of operands!"); 2605 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2606 } 2607 2608 void addVecListOperands(MCInst &Inst, unsigned N) const { 2609 assert(N == 1 && "Invalid number of operands!"); 2610 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2611 } 2612 2613 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2614 assert(N == 2 && "Invalid number of operands!"); 2615 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2616 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2617 } 2618 2619 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2620 assert(N == 1 && "Invalid number of operands!"); 2621 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2622 } 2623 2624 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2625 assert(N == 1 && "Invalid number of operands!"); 2626 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2627 } 2628 2629 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2630 assert(N == 1 && "Invalid number of operands!"); 2631 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2632 } 2633 2634 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2635 assert(N == 1 && "Invalid number of operands!"); 2636 // The immediate encodes the type of constant as well as the value. 2637 // Mask in that this is an i8 splat. 2638 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2639 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2640 } 2641 2642 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2643 assert(N == 1 && "Invalid number of operands!"); 2644 // The immediate encodes the type of constant as well as the value. 2645 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2646 unsigned Value = CE->getValue(); 2647 Value = ARM_AM::encodeNEONi16splat(Value); 2648 Inst.addOperand(MCOperand::createImm(Value)); 2649 } 2650 2651 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2652 assert(N == 1 && "Invalid number of operands!"); 2653 // The immediate encodes the type of constant as well as the value. 2654 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2655 unsigned Value = CE->getValue(); 2656 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2657 Inst.addOperand(MCOperand::createImm(Value)); 2658 } 2659 2660 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2661 assert(N == 1 && "Invalid number of operands!"); 2662 // The immediate encodes the type of constant as well as the value. 2663 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2664 unsigned Value = CE->getValue(); 2665 Value = ARM_AM::encodeNEONi32splat(Value); 2666 Inst.addOperand(MCOperand::createImm(Value)); 2667 } 2668 2669 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2670 assert(N == 1 && "Invalid number of operands!"); 2671 // The immediate encodes the type of constant as well as the value. 2672 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2673 unsigned Value = CE->getValue(); 2674 Value = ARM_AM::encodeNEONi32splat(~Value); 2675 Inst.addOperand(MCOperand::createImm(Value)); 2676 } 2677 2678 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2679 assert(N == 1 && "Invalid number of operands!"); 2680 // The immediate encodes the type of constant as well as the value. 2681 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2682 unsigned Value = CE->getValue(); 2683 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2684 Inst.getOpcode() == ARM::VMOVv16i8) && 2685 "All vmvn instructions that wants to replicate non-zero byte " 2686 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2687 unsigned B = ((~Value) & 0xff); 2688 B |= 0xe00; // cmode = 0b1110 2689 Inst.addOperand(MCOperand::createImm(B)); 2690 } 2691 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2692 assert(N == 1 && "Invalid number of operands!"); 2693 // The immediate encodes the type of constant as well as the value. 2694 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2695 unsigned Value = CE->getValue(); 2696 if (Value >= 256 && Value <= 0xffff) 2697 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2698 else if (Value > 0xffff && Value <= 0xffffff) 2699 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2700 else if (Value > 0xffffff) 2701 Value = (Value >> 24) | 0x600; 2702 Inst.addOperand(MCOperand::createImm(Value)); 2703 } 2704 2705 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2706 assert(N == 1 && "Invalid number of operands!"); 2707 // The immediate encodes the type of constant as well as the value. 2708 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2709 unsigned Value = CE->getValue(); 2710 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2711 Inst.getOpcode() == ARM::VMOVv16i8) && 2712 "All instructions that wants to replicate non-zero byte " 2713 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2714 unsigned B = Value & 0xff; 2715 B |= 0xe00; // cmode = 0b1110 2716 Inst.addOperand(MCOperand::createImm(B)); 2717 } 2718 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2719 assert(N == 1 && "Invalid number of operands!"); 2720 // The immediate encodes the type of constant as well as the value. 2721 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2722 unsigned Value = ~CE->getValue(); 2723 if (Value >= 256 && Value <= 0xffff) 2724 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2725 else if (Value > 0xffff && Value <= 0xffffff) 2726 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2727 else if (Value > 0xffffff) 2728 Value = (Value >> 24) | 0x600; 2729 Inst.addOperand(MCOperand::createImm(Value)); 2730 } 2731 2732 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2733 assert(N == 1 && "Invalid number of operands!"); 2734 // The immediate encodes the type of constant as well as the value. 2735 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2736 uint64_t Value = CE->getValue(); 2737 unsigned Imm = 0; 2738 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2739 Imm |= (Value & 1) << i; 2740 } 2741 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2742 } 2743 2744 void print(raw_ostream &OS) const override; 2745 2746 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2747 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2748 Op->ITMask.Mask = Mask; 2749 Op->StartLoc = S; 2750 Op->EndLoc = S; 2751 return Op; 2752 } 2753 2754 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2755 SMLoc S) { 2756 auto Op = make_unique<ARMOperand>(k_CondCode); 2757 Op->CC.Val = CC; 2758 Op->StartLoc = S; 2759 Op->EndLoc = S; 2760 return Op; 2761 } 2762 2763 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2764 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2765 Op->Cop.Val = CopVal; 2766 Op->StartLoc = S; 2767 Op->EndLoc = S; 2768 return Op; 2769 } 2770 2771 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2772 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2773 Op->Cop.Val = CopVal; 2774 Op->StartLoc = S; 2775 Op->EndLoc = S; 2776 return Op; 2777 } 2778 2779 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2780 SMLoc E) { 2781 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2782 Op->Cop.Val = Val; 2783 Op->StartLoc = S; 2784 Op->EndLoc = E; 2785 return Op; 2786 } 2787 2788 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2789 auto Op = make_unique<ARMOperand>(k_CCOut); 2790 Op->Reg.RegNum = RegNum; 2791 Op->StartLoc = S; 2792 Op->EndLoc = S; 2793 return Op; 2794 } 2795 2796 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2797 auto Op = make_unique<ARMOperand>(k_Token); 2798 Op->Tok.Data = Str.data(); 2799 Op->Tok.Length = Str.size(); 2800 Op->StartLoc = S; 2801 Op->EndLoc = S; 2802 return Op; 2803 } 2804 2805 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2806 SMLoc E) { 2807 auto Op = make_unique<ARMOperand>(k_Register); 2808 Op->Reg.RegNum = RegNum; 2809 Op->StartLoc = S; 2810 Op->EndLoc = E; 2811 return Op; 2812 } 2813 2814 static std::unique_ptr<ARMOperand> 2815 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2816 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2817 SMLoc E) { 2818 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2819 Op->RegShiftedReg.ShiftTy = ShTy; 2820 Op->RegShiftedReg.SrcReg = SrcReg; 2821 Op->RegShiftedReg.ShiftReg = ShiftReg; 2822 Op->RegShiftedReg.ShiftImm = ShiftImm; 2823 Op->StartLoc = S; 2824 Op->EndLoc = E; 2825 return Op; 2826 } 2827 2828 static std::unique_ptr<ARMOperand> 2829 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2830 unsigned ShiftImm, SMLoc S, SMLoc E) { 2831 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2832 Op->RegShiftedImm.ShiftTy = ShTy; 2833 Op->RegShiftedImm.SrcReg = SrcReg; 2834 Op->RegShiftedImm.ShiftImm = ShiftImm; 2835 Op->StartLoc = S; 2836 Op->EndLoc = E; 2837 return Op; 2838 } 2839 2840 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2841 SMLoc S, SMLoc E) { 2842 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2843 Op->ShifterImm.isASR = isASR; 2844 Op->ShifterImm.Imm = Imm; 2845 Op->StartLoc = S; 2846 Op->EndLoc = E; 2847 return Op; 2848 } 2849 2850 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2851 SMLoc E) { 2852 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2853 Op->RotImm.Imm = Imm; 2854 Op->StartLoc = S; 2855 Op->EndLoc = E; 2856 return Op; 2857 } 2858 2859 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2860 SMLoc S, SMLoc E) { 2861 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2862 Op->ModImm.Bits = Bits; 2863 Op->ModImm.Rot = Rot; 2864 Op->StartLoc = S; 2865 Op->EndLoc = E; 2866 return Op; 2867 } 2868 2869 static std::unique_ptr<ARMOperand> 2870 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 2871 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 2872 Op->Imm.Val = Val; 2873 Op->StartLoc = S; 2874 Op->EndLoc = E; 2875 return Op; 2876 } 2877 2878 static std::unique_ptr<ARMOperand> 2879 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2880 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2881 Op->Bitfield.LSB = LSB; 2882 Op->Bitfield.Width = Width; 2883 Op->StartLoc = S; 2884 Op->EndLoc = E; 2885 return Op; 2886 } 2887 2888 static std::unique_ptr<ARMOperand> 2889 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2890 SMLoc StartLoc, SMLoc EndLoc) { 2891 assert (Regs.size() > 0 && "RegList contains no registers?"); 2892 KindTy Kind = k_RegisterList; 2893 2894 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2895 Kind = k_DPRRegisterList; 2896 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2897 contains(Regs.front().second)) 2898 Kind = k_SPRRegisterList; 2899 2900 // Sort based on the register encoding values. 2901 array_pod_sort(Regs.begin(), Regs.end()); 2902 2903 auto Op = make_unique<ARMOperand>(Kind); 2904 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2905 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2906 Op->Registers.push_back(I->second); 2907 Op->StartLoc = StartLoc; 2908 Op->EndLoc = EndLoc; 2909 return Op; 2910 } 2911 2912 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2913 unsigned Count, 2914 bool isDoubleSpaced, 2915 SMLoc S, SMLoc E) { 2916 auto Op = make_unique<ARMOperand>(k_VectorList); 2917 Op->VectorList.RegNum = RegNum; 2918 Op->VectorList.Count = Count; 2919 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2920 Op->StartLoc = S; 2921 Op->EndLoc = E; 2922 return Op; 2923 } 2924 2925 static std::unique_ptr<ARMOperand> 2926 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2927 SMLoc S, SMLoc E) { 2928 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2929 Op->VectorList.RegNum = RegNum; 2930 Op->VectorList.Count = Count; 2931 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2932 Op->StartLoc = S; 2933 Op->EndLoc = E; 2934 return Op; 2935 } 2936 2937 static std::unique_ptr<ARMOperand> 2938 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2939 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2940 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2941 Op->VectorList.RegNum = RegNum; 2942 Op->VectorList.Count = Count; 2943 Op->VectorList.LaneIndex = Index; 2944 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2945 Op->StartLoc = S; 2946 Op->EndLoc = E; 2947 return Op; 2948 } 2949 2950 static std::unique_ptr<ARMOperand> 2951 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2952 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2953 Op->VectorIndex.Val = Idx; 2954 Op->StartLoc = S; 2955 Op->EndLoc = E; 2956 return Op; 2957 } 2958 2959 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2960 SMLoc E) { 2961 auto Op = make_unique<ARMOperand>(k_Immediate); 2962 Op->Imm.Val = Val; 2963 Op->StartLoc = S; 2964 Op->EndLoc = E; 2965 return Op; 2966 } 2967 2968 static std::unique_ptr<ARMOperand> 2969 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2970 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2971 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2972 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2973 auto Op = make_unique<ARMOperand>(k_Memory); 2974 Op->Memory.BaseRegNum = BaseRegNum; 2975 Op->Memory.OffsetImm = OffsetImm; 2976 Op->Memory.OffsetRegNum = OffsetRegNum; 2977 Op->Memory.ShiftType = ShiftType; 2978 Op->Memory.ShiftImm = ShiftImm; 2979 Op->Memory.Alignment = Alignment; 2980 Op->Memory.isNegative = isNegative; 2981 Op->StartLoc = S; 2982 Op->EndLoc = E; 2983 Op->AlignmentLoc = AlignmentLoc; 2984 return Op; 2985 } 2986 2987 static std::unique_ptr<ARMOperand> 2988 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2989 unsigned ShiftImm, SMLoc S, SMLoc E) { 2990 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2991 Op->PostIdxReg.RegNum = RegNum; 2992 Op->PostIdxReg.isAdd = isAdd; 2993 Op->PostIdxReg.ShiftTy = ShiftTy; 2994 Op->PostIdxReg.ShiftImm = ShiftImm; 2995 Op->StartLoc = S; 2996 Op->EndLoc = E; 2997 return Op; 2998 } 2999 3000 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3001 SMLoc S) { 3002 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3003 Op->MBOpt.Val = Opt; 3004 Op->StartLoc = S; 3005 Op->EndLoc = S; 3006 return Op; 3007 } 3008 3009 static std::unique_ptr<ARMOperand> 3010 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3011 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3012 Op->ISBOpt.Val = Opt; 3013 Op->StartLoc = S; 3014 Op->EndLoc = S; 3015 return Op; 3016 } 3017 3018 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3019 SMLoc S) { 3020 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3021 Op->IFlags.Val = IFlags; 3022 Op->StartLoc = S; 3023 Op->EndLoc = S; 3024 return Op; 3025 } 3026 3027 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3028 auto Op = make_unique<ARMOperand>(k_MSRMask); 3029 Op->MMask.Val = MMask; 3030 Op->StartLoc = S; 3031 Op->EndLoc = S; 3032 return Op; 3033 } 3034 3035 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3036 auto Op = make_unique<ARMOperand>(k_BankedReg); 3037 Op->BankedReg.Val = Reg; 3038 Op->StartLoc = S; 3039 Op->EndLoc = S; 3040 return Op; 3041 } 3042 }; 3043 3044 } // end anonymous namespace. 3045 3046 void ARMOperand::print(raw_ostream &OS) const { 3047 switch (Kind) { 3048 case k_CondCode: 3049 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3050 break; 3051 case k_CCOut: 3052 OS << "<ccout " << getReg() << ">"; 3053 break; 3054 case k_ITCondMask: { 3055 static const char *const MaskStr[] = { 3056 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 3057 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 3058 }; 3059 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3060 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3061 break; 3062 } 3063 case k_CoprocNum: 3064 OS << "<coprocessor number: " << getCoproc() << ">"; 3065 break; 3066 case k_CoprocReg: 3067 OS << "<coprocessor register: " << getCoproc() << ">"; 3068 break; 3069 case k_CoprocOption: 3070 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3071 break; 3072 case k_MSRMask: 3073 OS << "<mask: " << getMSRMask() << ">"; 3074 break; 3075 case k_BankedReg: 3076 OS << "<banked reg: " << getBankedReg() << ">"; 3077 break; 3078 case k_Immediate: 3079 OS << *getImm(); 3080 break; 3081 case k_MemBarrierOpt: 3082 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3083 break; 3084 case k_InstSyncBarrierOpt: 3085 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3086 break; 3087 case k_Memory: 3088 OS << "<memory " 3089 << " base:" << Memory.BaseRegNum; 3090 OS << ">"; 3091 break; 3092 case k_PostIndexRegister: 3093 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3094 << PostIdxReg.RegNum; 3095 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3096 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3097 << PostIdxReg.ShiftImm; 3098 OS << ">"; 3099 break; 3100 case k_ProcIFlags: { 3101 OS << "<ARM_PROC::"; 3102 unsigned IFlags = getProcIFlags(); 3103 for (int i=2; i >= 0; --i) 3104 if (IFlags & (1 << i)) 3105 OS << ARM_PROC::IFlagsToString(1 << i); 3106 OS << ">"; 3107 break; 3108 } 3109 case k_Register: 3110 OS << "<register " << getReg() << ">"; 3111 break; 3112 case k_ShifterImmediate: 3113 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3114 << " #" << ShifterImm.Imm << ">"; 3115 break; 3116 case k_ShiftedRegister: 3117 OS << "<so_reg_reg " 3118 << RegShiftedReg.SrcReg << " " 3119 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 3120 << " " << RegShiftedReg.ShiftReg << ">"; 3121 break; 3122 case k_ShiftedImmediate: 3123 OS << "<so_reg_imm " 3124 << RegShiftedImm.SrcReg << " " 3125 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 3126 << " #" << RegShiftedImm.ShiftImm << ">"; 3127 break; 3128 case k_RotateImmediate: 3129 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3130 break; 3131 case k_ModifiedImmediate: 3132 OS << "<mod_imm #" << ModImm.Bits << ", #" 3133 << ModImm.Rot << ")>"; 3134 break; 3135 case k_ConstantPoolImmediate: 3136 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3137 break; 3138 case k_BitfieldDescriptor: 3139 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3140 << ", width: " << Bitfield.Width << ">"; 3141 break; 3142 case k_RegisterList: 3143 case k_DPRRegisterList: 3144 case k_SPRRegisterList: { 3145 OS << "<register_list "; 3146 3147 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3148 for (SmallVectorImpl<unsigned>::const_iterator 3149 I = RegList.begin(), E = RegList.end(); I != E; ) { 3150 OS << *I; 3151 if (++I < E) OS << ", "; 3152 } 3153 3154 OS << ">"; 3155 break; 3156 } 3157 case k_VectorList: 3158 OS << "<vector_list " << VectorList.Count << " * " 3159 << VectorList.RegNum << ">"; 3160 break; 3161 case k_VectorListAllLanes: 3162 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3163 << VectorList.RegNum << ">"; 3164 break; 3165 case k_VectorListIndexed: 3166 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3167 << VectorList.Count << " * " << VectorList.RegNum << ">"; 3168 break; 3169 case k_Token: 3170 OS << "'" << getToken() << "'"; 3171 break; 3172 case k_VectorIndex: 3173 OS << "<vectorindex " << getVectorIndex() << ">"; 3174 break; 3175 } 3176 } 3177 3178 /// @name Auto-generated Match Functions 3179 /// { 3180 3181 static unsigned MatchRegisterName(StringRef Name); 3182 3183 /// } 3184 3185 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3186 SMLoc &StartLoc, SMLoc &EndLoc) { 3187 const AsmToken &Tok = getParser().getTok(); 3188 StartLoc = Tok.getLoc(); 3189 EndLoc = Tok.getEndLoc(); 3190 RegNo = tryParseRegister(); 3191 3192 return (RegNo == (unsigned)-1); 3193 } 3194 3195 /// Try to parse a register name. The token must be an Identifier when called, 3196 /// and if it is a register name the token is eaten and the register number is 3197 /// returned. Otherwise return -1. 3198 /// 3199 int ARMAsmParser::tryParseRegister() { 3200 MCAsmParser &Parser = getParser(); 3201 const AsmToken &Tok = Parser.getTok(); 3202 if (Tok.isNot(AsmToken::Identifier)) return -1; 3203 3204 std::string lowerCase = Tok.getString().lower(); 3205 unsigned RegNum = MatchRegisterName(lowerCase); 3206 if (!RegNum) { 3207 RegNum = StringSwitch<unsigned>(lowerCase) 3208 .Case("r13", ARM::SP) 3209 .Case("r14", ARM::LR) 3210 .Case("r15", ARM::PC) 3211 .Case("ip", ARM::R12) 3212 // Additional register name aliases for 'gas' compatibility. 3213 .Case("a1", ARM::R0) 3214 .Case("a2", ARM::R1) 3215 .Case("a3", ARM::R2) 3216 .Case("a4", ARM::R3) 3217 .Case("v1", ARM::R4) 3218 .Case("v2", ARM::R5) 3219 .Case("v3", ARM::R6) 3220 .Case("v4", ARM::R7) 3221 .Case("v5", ARM::R8) 3222 .Case("v6", ARM::R9) 3223 .Case("v7", ARM::R10) 3224 .Case("v8", ARM::R11) 3225 .Case("sb", ARM::R9) 3226 .Case("sl", ARM::R10) 3227 .Case("fp", ARM::R11) 3228 .Default(0); 3229 } 3230 if (!RegNum) { 3231 // Check for aliases registered via .req. Canonicalize to lower case. 3232 // That's more consistent since register names are case insensitive, and 3233 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3234 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3235 // If no match, return failure. 3236 if (Entry == RegisterReqs.end()) 3237 return -1; 3238 Parser.Lex(); // Eat identifier token. 3239 return Entry->getValue(); 3240 } 3241 3242 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3243 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3244 return -1; 3245 3246 Parser.Lex(); // Eat identifier token. 3247 3248 return RegNum; 3249 } 3250 3251 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3252 // If a recoverable error occurs, return 1. If an irrecoverable error 3253 // occurs, return -1. An irrecoverable error is one where tokens have been 3254 // consumed in the process of trying to parse the shifter (i.e., when it is 3255 // indeed a shifter operand, but malformed). 3256 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3257 MCAsmParser &Parser = getParser(); 3258 SMLoc S = Parser.getTok().getLoc(); 3259 const AsmToken &Tok = Parser.getTok(); 3260 if (Tok.isNot(AsmToken::Identifier)) 3261 return -1; 3262 3263 std::string lowerCase = Tok.getString().lower(); 3264 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3265 .Case("asl", ARM_AM::lsl) 3266 .Case("lsl", ARM_AM::lsl) 3267 .Case("lsr", ARM_AM::lsr) 3268 .Case("asr", ARM_AM::asr) 3269 .Case("ror", ARM_AM::ror) 3270 .Case("rrx", ARM_AM::rrx) 3271 .Default(ARM_AM::no_shift); 3272 3273 if (ShiftTy == ARM_AM::no_shift) 3274 return 1; 3275 3276 Parser.Lex(); // Eat the operator. 3277 3278 // The source register for the shift has already been added to the 3279 // operand list, so we need to pop it off and combine it into the shifted 3280 // register operand instead. 3281 std::unique_ptr<ARMOperand> PrevOp( 3282 (ARMOperand *)Operands.pop_back_val().release()); 3283 if (!PrevOp->isReg()) 3284 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3285 int SrcReg = PrevOp->getReg(); 3286 3287 SMLoc EndLoc; 3288 int64_t Imm = 0; 3289 int ShiftReg = 0; 3290 if (ShiftTy == ARM_AM::rrx) { 3291 // RRX Doesn't have an explicit shift amount. The encoder expects 3292 // the shift register to be the same as the source register. Seems odd, 3293 // but OK. 3294 ShiftReg = SrcReg; 3295 } else { 3296 // Figure out if this is shifted by a constant or a register (for non-RRX). 3297 if (Parser.getTok().is(AsmToken::Hash) || 3298 Parser.getTok().is(AsmToken::Dollar)) { 3299 Parser.Lex(); // Eat hash. 3300 SMLoc ImmLoc = Parser.getTok().getLoc(); 3301 const MCExpr *ShiftExpr = nullptr; 3302 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3303 Error(ImmLoc, "invalid immediate shift value"); 3304 return -1; 3305 } 3306 // The expression must be evaluatable as an immediate. 3307 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3308 if (!CE) { 3309 Error(ImmLoc, "invalid immediate shift value"); 3310 return -1; 3311 } 3312 // Range check the immediate. 3313 // lsl, ror: 0 <= imm <= 31 3314 // lsr, asr: 0 <= imm <= 32 3315 Imm = CE->getValue(); 3316 if (Imm < 0 || 3317 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3318 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3319 Error(ImmLoc, "immediate shift value out of range"); 3320 return -1; 3321 } 3322 // shift by zero is a nop. Always send it through as lsl. 3323 // ('as' compatibility) 3324 if (Imm == 0) 3325 ShiftTy = ARM_AM::lsl; 3326 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3327 SMLoc L = Parser.getTok().getLoc(); 3328 EndLoc = Parser.getTok().getEndLoc(); 3329 ShiftReg = tryParseRegister(); 3330 if (ShiftReg == -1) { 3331 Error(L, "expected immediate or register in shift operand"); 3332 return -1; 3333 } 3334 } else { 3335 Error(Parser.getTok().getLoc(), 3336 "expected immediate or register in shift operand"); 3337 return -1; 3338 } 3339 } 3340 3341 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3342 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3343 ShiftReg, Imm, 3344 S, EndLoc)); 3345 else 3346 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3347 S, EndLoc)); 3348 3349 return 0; 3350 } 3351 3352 3353 /// Try to parse a register name. The token must be an Identifier when called. 3354 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3355 /// if there is a "writeback". 'true' if it's not a register. 3356 /// 3357 /// TODO this is likely to change to allow different register types and or to 3358 /// parse for a specific register type. 3359 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3360 MCAsmParser &Parser = getParser(); 3361 const AsmToken &RegTok = Parser.getTok(); 3362 int RegNo = tryParseRegister(); 3363 if (RegNo == -1) 3364 return true; 3365 3366 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3367 RegTok.getEndLoc())); 3368 3369 const AsmToken &ExclaimTok = Parser.getTok(); 3370 if (ExclaimTok.is(AsmToken::Exclaim)) { 3371 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3372 ExclaimTok.getLoc())); 3373 Parser.Lex(); // Eat exclaim token 3374 return false; 3375 } 3376 3377 // Also check for an index operand. This is only legal for vector registers, 3378 // but that'll get caught OK in operand matching, so we don't need to 3379 // explicitly filter everything else out here. 3380 if (Parser.getTok().is(AsmToken::LBrac)) { 3381 SMLoc SIdx = Parser.getTok().getLoc(); 3382 Parser.Lex(); // Eat left bracket token. 3383 3384 const MCExpr *ImmVal; 3385 if (getParser().parseExpression(ImmVal)) 3386 return true; 3387 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3388 if (!MCE) 3389 return TokError("immediate value expected for vector index"); 3390 3391 if (Parser.getTok().isNot(AsmToken::RBrac)) 3392 return Error(Parser.getTok().getLoc(), "']' expected"); 3393 3394 SMLoc E = Parser.getTok().getEndLoc(); 3395 Parser.Lex(); // Eat right bracket token. 3396 3397 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3398 SIdx, E, 3399 getContext())); 3400 } 3401 3402 return false; 3403 } 3404 3405 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3406 /// instruction with a symbolic operand name. 3407 /// We accept "crN" syntax for GAS compatibility. 3408 /// <operand-name> ::= <prefix><number> 3409 /// If CoprocOp is 'c', then: 3410 /// <prefix> ::= c | cr 3411 /// If CoprocOp is 'p', then : 3412 /// <prefix> ::= p 3413 /// <number> ::= integer in range [0, 15] 3414 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3415 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3416 // but efficient. 3417 if (Name.size() < 2 || Name[0] != CoprocOp) 3418 return -1; 3419 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3420 3421 switch (Name.size()) { 3422 default: return -1; 3423 case 1: 3424 switch (Name[0]) { 3425 default: return -1; 3426 case '0': return 0; 3427 case '1': return 1; 3428 case '2': return 2; 3429 case '3': return 3; 3430 case '4': return 4; 3431 case '5': return 5; 3432 case '6': return 6; 3433 case '7': return 7; 3434 case '8': return 8; 3435 case '9': return 9; 3436 } 3437 case 2: 3438 if (Name[0] != '1') 3439 return -1; 3440 switch (Name[1]) { 3441 default: return -1; 3442 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3443 // However, old cores (v5/v6) did use them in that way. 3444 case '0': return 10; 3445 case '1': return 11; 3446 case '2': return 12; 3447 case '3': return 13; 3448 case '4': return 14; 3449 case '5': return 15; 3450 } 3451 } 3452 } 3453 3454 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3455 ARMAsmParser::OperandMatchResultTy 3456 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3457 MCAsmParser &Parser = getParser(); 3458 SMLoc S = Parser.getTok().getLoc(); 3459 const AsmToken &Tok = Parser.getTok(); 3460 if (!Tok.is(AsmToken::Identifier)) 3461 return MatchOperand_NoMatch; 3462 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3463 .Case("eq", ARMCC::EQ) 3464 .Case("ne", ARMCC::NE) 3465 .Case("hs", ARMCC::HS) 3466 .Case("cs", ARMCC::HS) 3467 .Case("lo", ARMCC::LO) 3468 .Case("cc", ARMCC::LO) 3469 .Case("mi", ARMCC::MI) 3470 .Case("pl", ARMCC::PL) 3471 .Case("vs", ARMCC::VS) 3472 .Case("vc", ARMCC::VC) 3473 .Case("hi", ARMCC::HI) 3474 .Case("ls", ARMCC::LS) 3475 .Case("ge", ARMCC::GE) 3476 .Case("lt", ARMCC::LT) 3477 .Case("gt", ARMCC::GT) 3478 .Case("le", ARMCC::LE) 3479 .Case("al", ARMCC::AL) 3480 .Default(~0U); 3481 if (CC == ~0U) 3482 return MatchOperand_NoMatch; 3483 Parser.Lex(); // Eat the token. 3484 3485 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3486 3487 return MatchOperand_Success; 3488 } 3489 3490 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3491 /// token must be an Identifier when called, and if it is a coprocessor 3492 /// number, the token is eaten and the operand is added to the operand list. 3493 ARMAsmParser::OperandMatchResultTy 3494 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3495 MCAsmParser &Parser = getParser(); 3496 SMLoc S = Parser.getTok().getLoc(); 3497 const AsmToken &Tok = Parser.getTok(); 3498 if (Tok.isNot(AsmToken::Identifier)) 3499 return MatchOperand_NoMatch; 3500 3501 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3502 if (Num == -1) 3503 return MatchOperand_NoMatch; 3504 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3505 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3506 return MatchOperand_NoMatch; 3507 3508 Parser.Lex(); // Eat identifier token. 3509 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3510 return MatchOperand_Success; 3511 } 3512 3513 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3514 /// token must be an Identifier when called, and if it is a coprocessor 3515 /// number, the token is eaten and the operand is added to the operand list. 3516 ARMAsmParser::OperandMatchResultTy 3517 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3518 MCAsmParser &Parser = getParser(); 3519 SMLoc S = Parser.getTok().getLoc(); 3520 const AsmToken &Tok = Parser.getTok(); 3521 if (Tok.isNot(AsmToken::Identifier)) 3522 return MatchOperand_NoMatch; 3523 3524 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3525 if (Reg == -1) 3526 return MatchOperand_NoMatch; 3527 3528 Parser.Lex(); // Eat identifier token. 3529 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3530 return MatchOperand_Success; 3531 } 3532 3533 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3534 /// coproc_option : '{' imm0_255 '}' 3535 ARMAsmParser::OperandMatchResultTy 3536 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3537 MCAsmParser &Parser = getParser(); 3538 SMLoc S = Parser.getTok().getLoc(); 3539 3540 // If this isn't a '{', this isn't a coprocessor immediate operand. 3541 if (Parser.getTok().isNot(AsmToken::LCurly)) 3542 return MatchOperand_NoMatch; 3543 Parser.Lex(); // Eat the '{' 3544 3545 const MCExpr *Expr; 3546 SMLoc Loc = Parser.getTok().getLoc(); 3547 if (getParser().parseExpression(Expr)) { 3548 Error(Loc, "illegal expression"); 3549 return MatchOperand_ParseFail; 3550 } 3551 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3552 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3553 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3554 return MatchOperand_ParseFail; 3555 } 3556 int Val = CE->getValue(); 3557 3558 // Check for and consume the closing '}' 3559 if (Parser.getTok().isNot(AsmToken::RCurly)) 3560 return MatchOperand_ParseFail; 3561 SMLoc E = Parser.getTok().getEndLoc(); 3562 Parser.Lex(); // Eat the '}' 3563 3564 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3565 return MatchOperand_Success; 3566 } 3567 3568 // For register list parsing, we need to map from raw GPR register numbering 3569 // to the enumeration values. The enumeration values aren't sorted by 3570 // register number due to our using "sp", "lr" and "pc" as canonical names. 3571 static unsigned getNextRegister(unsigned Reg) { 3572 // If this is a GPR, we need to do it manually, otherwise we can rely 3573 // on the sort ordering of the enumeration since the other reg-classes 3574 // are sane. 3575 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3576 return Reg + 1; 3577 switch(Reg) { 3578 default: llvm_unreachable("Invalid GPR number!"); 3579 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3580 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3581 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3582 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3583 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3584 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3585 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3586 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3587 } 3588 } 3589 3590 // Return the low-subreg of a given Q register. 3591 static unsigned getDRegFromQReg(unsigned QReg) { 3592 switch (QReg) { 3593 default: llvm_unreachable("expected a Q register!"); 3594 case ARM::Q0: return ARM::D0; 3595 case ARM::Q1: return ARM::D2; 3596 case ARM::Q2: return ARM::D4; 3597 case ARM::Q3: return ARM::D6; 3598 case ARM::Q4: return ARM::D8; 3599 case ARM::Q5: return ARM::D10; 3600 case ARM::Q6: return ARM::D12; 3601 case ARM::Q7: return ARM::D14; 3602 case ARM::Q8: return ARM::D16; 3603 case ARM::Q9: return ARM::D18; 3604 case ARM::Q10: return ARM::D20; 3605 case ARM::Q11: return ARM::D22; 3606 case ARM::Q12: return ARM::D24; 3607 case ARM::Q13: return ARM::D26; 3608 case ARM::Q14: return ARM::D28; 3609 case ARM::Q15: return ARM::D30; 3610 } 3611 } 3612 3613 /// Parse a register list. 3614 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3615 MCAsmParser &Parser = getParser(); 3616 assert(Parser.getTok().is(AsmToken::LCurly) && 3617 "Token is not a Left Curly Brace"); 3618 SMLoc S = Parser.getTok().getLoc(); 3619 Parser.Lex(); // Eat '{' token. 3620 SMLoc RegLoc = Parser.getTok().getLoc(); 3621 3622 // Check the first register in the list to see what register class 3623 // this is a list of. 3624 int Reg = tryParseRegister(); 3625 if (Reg == -1) 3626 return Error(RegLoc, "register expected"); 3627 3628 // The reglist instructions have at most 16 registers, so reserve 3629 // space for that many. 3630 int EReg = 0; 3631 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3632 3633 // Allow Q regs and just interpret them as the two D sub-registers. 3634 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3635 Reg = getDRegFromQReg(Reg); 3636 EReg = MRI->getEncodingValue(Reg); 3637 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3638 ++Reg; 3639 } 3640 const MCRegisterClass *RC; 3641 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3642 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3643 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3644 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3645 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3646 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3647 else 3648 return Error(RegLoc, "invalid register in register list"); 3649 3650 // Store the register. 3651 EReg = MRI->getEncodingValue(Reg); 3652 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3653 3654 // This starts immediately after the first register token in the list, 3655 // so we can see either a comma or a minus (range separator) as a legal 3656 // next token. 3657 while (Parser.getTok().is(AsmToken::Comma) || 3658 Parser.getTok().is(AsmToken::Minus)) { 3659 if (Parser.getTok().is(AsmToken::Minus)) { 3660 Parser.Lex(); // Eat the minus. 3661 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3662 int EndReg = tryParseRegister(); 3663 if (EndReg == -1) 3664 return Error(AfterMinusLoc, "register expected"); 3665 // Allow Q regs and just interpret them as the two D sub-registers. 3666 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3667 EndReg = getDRegFromQReg(EndReg) + 1; 3668 // If the register is the same as the start reg, there's nothing 3669 // more to do. 3670 if (Reg == EndReg) 3671 continue; 3672 // The register must be in the same register class as the first. 3673 if (!RC->contains(EndReg)) 3674 return Error(AfterMinusLoc, "invalid register in register list"); 3675 // Ranges must go from low to high. 3676 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3677 return Error(AfterMinusLoc, "bad range in register list"); 3678 3679 // Add all the registers in the range to the register list. 3680 while (Reg != EndReg) { 3681 Reg = getNextRegister(Reg); 3682 EReg = MRI->getEncodingValue(Reg); 3683 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3684 } 3685 continue; 3686 } 3687 Parser.Lex(); // Eat the comma. 3688 RegLoc = Parser.getTok().getLoc(); 3689 int OldReg = Reg; 3690 const AsmToken RegTok = Parser.getTok(); 3691 Reg = tryParseRegister(); 3692 if (Reg == -1) 3693 return Error(RegLoc, "register expected"); 3694 // Allow Q regs and just interpret them as the two D sub-registers. 3695 bool isQReg = false; 3696 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3697 Reg = getDRegFromQReg(Reg); 3698 isQReg = true; 3699 } 3700 // The register must be in the same register class as the first. 3701 if (!RC->contains(Reg)) 3702 return Error(RegLoc, "invalid register in register list"); 3703 // List must be monotonically increasing. 3704 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3705 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3706 Warning(RegLoc, "register list not in ascending order"); 3707 else 3708 return Error(RegLoc, "register list not in ascending order"); 3709 } 3710 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3711 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3712 ") in register list"); 3713 continue; 3714 } 3715 // VFP register lists must also be contiguous. 3716 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3717 Reg != OldReg + 1) 3718 return Error(RegLoc, "non-contiguous register range"); 3719 EReg = MRI->getEncodingValue(Reg); 3720 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3721 if (isQReg) { 3722 EReg = MRI->getEncodingValue(++Reg); 3723 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3724 } 3725 } 3726 3727 if (Parser.getTok().isNot(AsmToken::RCurly)) 3728 return Error(Parser.getTok().getLoc(), "'}' expected"); 3729 SMLoc E = Parser.getTok().getEndLoc(); 3730 Parser.Lex(); // Eat '}' token. 3731 3732 // Push the register list operand. 3733 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3734 3735 // The ARM system instruction variants for LDM/STM have a '^' token here. 3736 if (Parser.getTok().is(AsmToken::Caret)) { 3737 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3738 Parser.Lex(); // Eat '^' token. 3739 } 3740 3741 return false; 3742 } 3743 3744 // Helper function to parse the lane index for vector lists. 3745 ARMAsmParser::OperandMatchResultTy ARMAsmParser:: 3746 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3747 MCAsmParser &Parser = getParser(); 3748 Index = 0; // Always return a defined index value. 3749 if (Parser.getTok().is(AsmToken::LBrac)) { 3750 Parser.Lex(); // Eat the '['. 3751 if (Parser.getTok().is(AsmToken::RBrac)) { 3752 // "Dn[]" is the 'all lanes' syntax. 3753 LaneKind = AllLanes; 3754 EndLoc = Parser.getTok().getEndLoc(); 3755 Parser.Lex(); // Eat the ']'. 3756 return MatchOperand_Success; 3757 } 3758 3759 // There's an optional '#' token here. Normally there wouldn't be, but 3760 // inline assemble puts one in, and it's friendly to accept that. 3761 if (Parser.getTok().is(AsmToken::Hash)) 3762 Parser.Lex(); // Eat '#' or '$'. 3763 3764 const MCExpr *LaneIndex; 3765 SMLoc Loc = Parser.getTok().getLoc(); 3766 if (getParser().parseExpression(LaneIndex)) { 3767 Error(Loc, "illegal expression"); 3768 return MatchOperand_ParseFail; 3769 } 3770 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3771 if (!CE) { 3772 Error(Loc, "lane index must be empty or an integer"); 3773 return MatchOperand_ParseFail; 3774 } 3775 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3776 Error(Parser.getTok().getLoc(), "']' expected"); 3777 return MatchOperand_ParseFail; 3778 } 3779 EndLoc = Parser.getTok().getEndLoc(); 3780 Parser.Lex(); // Eat the ']'. 3781 int64_t Val = CE->getValue(); 3782 3783 // FIXME: Make this range check context sensitive for .8, .16, .32. 3784 if (Val < 0 || Val > 7) { 3785 Error(Parser.getTok().getLoc(), "lane index out of range"); 3786 return MatchOperand_ParseFail; 3787 } 3788 Index = Val; 3789 LaneKind = IndexedLane; 3790 return MatchOperand_Success; 3791 } 3792 LaneKind = NoLanes; 3793 return MatchOperand_Success; 3794 } 3795 3796 // parse a vector register list 3797 ARMAsmParser::OperandMatchResultTy 3798 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3799 MCAsmParser &Parser = getParser(); 3800 VectorLaneTy LaneKind; 3801 unsigned LaneIndex; 3802 SMLoc S = Parser.getTok().getLoc(); 3803 // As an extension (to match gas), support a plain D register or Q register 3804 // (without encosing curly braces) as a single or double entry list, 3805 // respectively. 3806 if (Parser.getTok().is(AsmToken::Identifier)) { 3807 SMLoc E = Parser.getTok().getEndLoc(); 3808 int Reg = tryParseRegister(); 3809 if (Reg == -1) 3810 return MatchOperand_NoMatch; 3811 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3812 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3813 if (Res != MatchOperand_Success) 3814 return Res; 3815 switch (LaneKind) { 3816 case NoLanes: 3817 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3818 break; 3819 case AllLanes: 3820 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3821 S, E)); 3822 break; 3823 case IndexedLane: 3824 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3825 LaneIndex, 3826 false, S, E)); 3827 break; 3828 } 3829 return MatchOperand_Success; 3830 } 3831 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3832 Reg = getDRegFromQReg(Reg); 3833 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3834 if (Res != MatchOperand_Success) 3835 return Res; 3836 switch (LaneKind) { 3837 case NoLanes: 3838 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3839 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3840 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3841 break; 3842 case AllLanes: 3843 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3844 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3845 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3846 S, E)); 3847 break; 3848 case IndexedLane: 3849 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3850 LaneIndex, 3851 false, S, E)); 3852 break; 3853 } 3854 return MatchOperand_Success; 3855 } 3856 Error(S, "vector register expected"); 3857 return MatchOperand_ParseFail; 3858 } 3859 3860 if (Parser.getTok().isNot(AsmToken::LCurly)) 3861 return MatchOperand_NoMatch; 3862 3863 Parser.Lex(); // Eat '{' token. 3864 SMLoc RegLoc = Parser.getTok().getLoc(); 3865 3866 int Reg = tryParseRegister(); 3867 if (Reg == -1) { 3868 Error(RegLoc, "register expected"); 3869 return MatchOperand_ParseFail; 3870 } 3871 unsigned Count = 1; 3872 int Spacing = 0; 3873 unsigned FirstReg = Reg; 3874 // The list is of D registers, but we also allow Q regs and just interpret 3875 // them as the two D sub-registers. 3876 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3877 FirstReg = Reg = getDRegFromQReg(Reg); 3878 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3879 // it's ambiguous with four-register single spaced. 3880 ++Reg; 3881 ++Count; 3882 } 3883 3884 SMLoc E; 3885 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3886 return MatchOperand_ParseFail; 3887 3888 while (Parser.getTok().is(AsmToken::Comma) || 3889 Parser.getTok().is(AsmToken::Minus)) { 3890 if (Parser.getTok().is(AsmToken::Minus)) { 3891 if (!Spacing) 3892 Spacing = 1; // Register range implies a single spaced list. 3893 else if (Spacing == 2) { 3894 Error(Parser.getTok().getLoc(), 3895 "sequential registers in double spaced list"); 3896 return MatchOperand_ParseFail; 3897 } 3898 Parser.Lex(); // Eat the minus. 3899 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3900 int EndReg = tryParseRegister(); 3901 if (EndReg == -1) { 3902 Error(AfterMinusLoc, "register expected"); 3903 return MatchOperand_ParseFail; 3904 } 3905 // Allow Q regs and just interpret them as the two D sub-registers. 3906 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3907 EndReg = getDRegFromQReg(EndReg) + 1; 3908 // If the register is the same as the start reg, there's nothing 3909 // more to do. 3910 if (Reg == EndReg) 3911 continue; 3912 // The register must be in the same register class as the first. 3913 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3914 Error(AfterMinusLoc, "invalid register in register list"); 3915 return MatchOperand_ParseFail; 3916 } 3917 // Ranges must go from low to high. 3918 if (Reg > EndReg) { 3919 Error(AfterMinusLoc, "bad range in register list"); 3920 return MatchOperand_ParseFail; 3921 } 3922 // Parse the lane specifier if present. 3923 VectorLaneTy NextLaneKind; 3924 unsigned NextLaneIndex; 3925 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3926 MatchOperand_Success) 3927 return MatchOperand_ParseFail; 3928 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3929 Error(AfterMinusLoc, "mismatched lane index in register list"); 3930 return MatchOperand_ParseFail; 3931 } 3932 3933 // Add all the registers in the range to the register list. 3934 Count += EndReg - Reg; 3935 Reg = EndReg; 3936 continue; 3937 } 3938 Parser.Lex(); // Eat the comma. 3939 RegLoc = Parser.getTok().getLoc(); 3940 int OldReg = Reg; 3941 Reg = tryParseRegister(); 3942 if (Reg == -1) { 3943 Error(RegLoc, "register expected"); 3944 return MatchOperand_ParseFail; 3945 } 3946 // vector register lists must be contiguous. 3947 // It's OK to use the enumeration values directly here rather, as the 3948 // VFP register classes have the enum sorted properly. 3949 // 3950 // The list is of D registers, but we also allow Q regs and just interpret 3951 // them as the two D sub-registers. 3952 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3953 if (!Spacing) 3954 Spacing = 1; // Register range implies a single spaced list. 3955 else if (Spacing == 2) { 3956 Error(RegLoc, 3957 "invalid register in double-spaced list (must be 'D' register')"); 3958 return MatchOperand_ParseFail; 3959 } 3960 Reg = getDRegFromQReg(Reg); 3961 if (Reg != OldReg + 1) { 3962 Error(RegLoc, "non-contiguous register range"); 3963 return MatchOperand_ParseFail; 3964 } 3965 ++Reg; 3966 Count += 2; 3967 // Parse the lane specifier if present. 3968 VectorLaneTy NextLaneKind; 3969 unsigned NextLaneIndex; 3970 SMLoc LaneLoc = Parser.getTok().getLoc(); 3971 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3972 MatchOperand_Success) 3973 return MatchOperand_ParseFail; 3974 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3975 Error(LaneLoc, "mismatched lane index in register list"); 3976 return MatchOperand_ParseFail; 3977 } 3978 continue; 3979 } 3980 // Normal D register. 3981 // Figure out the register spacing (single or double) of the list if 3982 // we don't know it already. 3983 if (!Spacing) 3984 Spacing = 1 + (Reg == OldReg + 2); 3985 3986 // Just check that it's contiguous and keep going. 3987 if (Reg != OldReg + Spacing) { 3988 Error(RegLoc, "non-contiguous register range"); 3989 return MatchOperand_ParseFail; 3990 } 3991 ++Count; 3992 // Parse the lane specifier if present. 3993 VectorLaneTy NextLaneKind; 3994 unsigned NextLaneIndex; 3995 SMLoc EndLoc = Parser.getTok().getLoc(); 3996 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3997 return MatchOperand_ParseFail; 3998 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3999 Error(EndLoc, "mismatched lane index in register list"); 4000 return MatchOperand_ParseFail; 4001 } 4002 } 4003 4004 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4005 Error(Parser.getTok().getLoc(), "'}' expected"); 4006 return MatchOperand_ParseFail; 4007 } 4008 E = Parser.getTok().getEndLoc(); 4009 Parser.Lex(); // Eat '}' token. 4010 4011 switch (LaneKind) { 4012 case NoLanes: 4013 // Two-register operands have been converted to the 4014 // composite register classes. 4015 if (Count == 2) { 4016 const MCRegisterClass *RC = (Spacing == 1) ? 4017 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4018 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4019 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4020 } 4021 4022 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 4023 (Spacing == 2), S, E)); 4024 break; 4025 case AllLanes: 4026 // Two-register operands have been converted to the 4027 // composite register classes. 4028 if (Count == 2) { 4029 const MCRegisterClass *RC = (Spacing == 1) ? 4030 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4031 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4032 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4033 } 4034 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 4035 (Spacing == 2), 4036 S, E)); 4037 break; 4038 case IndexedLane: 4039 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4040 LaneIndex, 4041 (Spacing == 2), 4042 S, E)); 4043 break; 4044 } 4045 return MatchOperand_Success; 4046 } 4047 4048 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4049 ARMAsmParser::OperandMatchResultTy 4050 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4051 MCAsmParser &Parser = getParser(); 4052 SMLoc S = Parser.getTok().getLoc(); 4053 const AsmToken &Tok = Parser.getTok(); 4054 unsigned Opt; 4055 4056 if (Tok.is(AsmToken::Identifier)) { 4057 StringRef OptStr = Tok.getString(); 4058 4059 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4060 .Case("sy", ARM_MB::SY) 4061 .Case("st", ARM_MB::ST) 4062 .Case("ld", ARM_MB::LD) 4063 .Case("sh", ARM_MB::ISH) 4064 .Case("ish", ARM_MB::ISH) 4065 .Case("shst", ARM_MB::ISHST) 4066 .Case("ishst", ARM_MB::ISHST) 4067 .Case("ishld", ARM_MB::ISHLD) 4068 .Case("nsh", ARM_MB::NSH) 4069 .Case("un", ARM_MB::NSH) 4070 .Case("nshst", ARM_MB::NSHST) 4071 .Case("nshld", ARM_MB::NSHLD) 4072 .Case("unst", ARM_MB::NSHST) 4073 .Case("osh", ARM_MB::OSH) 4074 .Case("oshst", ARM_MB::OSHST) 4075 .Case("oshld", ARM_MB::OSHLD) 4076 .Default(~0U); 4077 4078 // ishld, oshld, nshld and ld are only available from ARMv8. 4079 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4080 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4081 Opt = ~0U; 4082 4083 if (Opt == ~0U) 4084 return MatchOperand_NoMatch; 4085 4086 Parser.Lex(); // Eat identifier token. 4087 } else if (Tok.is(AsmToken::Hash) || 4088 Tok.is(AsmToken::Dollar) || 4089 Tok.is(AsmToken::Integer)) { 4090 if (Parser.getTok().isNot(AsmToken::Integer)) 4091 Parser.Lex(); // Eat '#' or '$'. 4092 SMLoc Loc = Parser.getTok().getLoc(); 4093 4094 const MCExpr *MemBarrierID; 4095 if (getParser().parseExpression(MemBarrierID)) { 4096 Error(Loc, "illegal expression"); 4097 return MatchOperand_ParseFail; 4098 } 4099 4100 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4101 if (!CE) { 4102 Error(Loc, "constant expression expected"); 4103 return MatchOperand_ParseFail; 4104 } 4105 4106 int Val = CE->getValue(); 4107 if (Val & ~0xf) { 4108 Error(Loc, "immediate value out of range"); 4109 return MatchOperand_ParseFail; 4110 } 4111 4112 Opt = ARM_MB::RESERVED_0 + Val; 4113 } else 4114 return MatchOperand_ParseFail; 4115 4116 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4117 return MatchOperand_Success; 4118 } 4119 4120 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4121 ARMAsmParser::OperandMatchResultTy 4122 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4123 MCAsmParser &Parser = getParser(); 4124 SMLoc S = Parser.getTok().getLoc(); 4125 const AsmToken &Tok = Parser.getTok(); 4126 unsigned Opt; 4127 4128 if (Tok.is(AsmToken::Identifier)) { 4129 StringRef OptStr = Tok.getString(); 4130 4131 if (OptStr.equals_lower("sy")) 4132 Opt = ARM_ISB::SY; 4133 else 4134 return MatchOperand_NoMatch; 4135 4136 Parser.Lex(); // Eat identifier token. 4137 } else if (Tok.is(AsmToken::Hash) || 4138 Tok.is(AsmToken::Dollar) || 4139 Tok.is(AsmToken::Integer)) { 4140 if (Parser.getTok().isNot(AsmToken::Integer)) 4141 Parser.Lex(); // Eat '#' or '$'. 4142 SMLoc Loc = Parser.getTok().getLoc(); 4143 4144 const MCExpr *ISBarrierID; 4145 if (getParser().parseExpression(ISBarrierID)) { 4146 Error(Loc, "illegal expression"); 4147 return MatchOperand_ParseFail; 4148 } 4149 4150 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4151 if (!CE) { 4152 Error(Loc, "constant expression expected"); 4153 return MatchOperand_ParseFail; 4154 } 4155 4156 int Val = CE->getValue(); 4157 if (Val & ~0xf) { 4158 Error(Loc, "immediate value out of range"); 4159 return MatchOperand_ParseFail; 4160 } 4161 4162 Opt = ARM_ISB::RESERVED_0 + Val; 4163 } else 4164 return MatchOperand_ParseFail; 4165 4166 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4167 (ARM_ISB::InstSyncBOpt)Opt, S)); 4168 return MatchOperand_Success; 4169 } 4170 4171 4172 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4173 ARMAsmParser::OperandMatchResultTy 4174 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4175 MCAsmParser &Parser = getParser(); 4176 SMLoc S = Parser.getTok().getLoc(); 4177 const AsmToken &Tok = Parser.getTok(); 4178 if (!Tok.is(AsmToken::Identifier)) 4179 return MatchOperand_NoMatch; 4180 StringRef IFlagsStr = Tok.getString(); 4181 4182 // An iflags string of "none" is interpreted to mean that none of the AIF 4183 // bits are set. Not a terribly useful instruction, but a valid encoding. 4184 unsigned IFlags = 0; 4185 if (IFlagsStr != "none") { 4186 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4187 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 4188 .Case("a", ARM_PROC::A) 4189 .Case("i", ARM_PROC::I) 4190 .Case("f", ARM_PROC::F) 4191 .Default(~0U); 4192 4193 // If some specific iflag is already set, it means that some letter is 4194 // present more than once, this is not acceptable. 4195 if (Flag == ~0U || (IFlags & Flag)) 4196 return MatchOperand_NoMatch; 4197 4198 IFlags |= Flag; 4199 } 4200 } 4201 4202 Parser.Lex(); // Eat identifier token. 4203 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4204 return MatchOperand_Success; 4205 } 4206 4207 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4208 ARMAsmParser::OperandMatchResultTy 4209 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4210 MCAsmParser &Parser = getParser(); 4211 SMLoc S = Parser.getTok().getLoc(); 4212 const AsmToken &Tok = Parser.getTok(); 4213 if (!Tok.is(AsmToken::Identifier)) 4214 return MatchOperand_NoMatch; 4215 StringRef Mask = Tok.getString(); 4216 4217 if (isMClass()) { 4218 // See ARMv6-M 10.1.1 4219 std::string Name = Mask.lower(); 4220 unsigned FlagsVal = StringSwitch<unsigned>(Name) 4221 // Note: in the documentation: 4222 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 4223 // for MSR APSR_nzcvq. 4224 // but we do make it an alias here. This is so to get the "mask encoding" 4225 // bits correct on MSR APSR writes. 4226 // 4227 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 4228 // should really only be allowed when writing a special register. Note 4229 // they get dropped in the MRS instruction reading a special register as 4230 // the SYSm field is only 8 bits. 4231 .Case("apsr", 0x800) 4232 .Case("apsr_nzcvq", 0x800) 4233 .Case("apsr_g", 0x400) 4234 .Case("apsr_nzcvqg", 0xc00) 4235 .Case("iapsr", 0x801) 4236 .Case("iapsr_nzcvq", 0x801) 4237 .Case("iapsr_g", 0x401) 4238 .Case("iapsr_nzcvqg", 0xc01) 4239 .Case("eapsr", 0x802) 4240 .Case("eapsr_nzcvq", 0x802) 4241 .Case("eapsr_g", 0x402) 4242 .Case("eapsr_nzcvqg", 0xc02) 4243 .Case("xpsr", 0x803) 4244 .Case("xpsr_nzcvq", 0x803) 4245 .Case("xpsr_g", 0x403) 4246 .Case("xpsr_nzcvqg", 0xc03) 4247 .Case("ipsr", 0x805) 4248 .Case("epsr", 0x806) 4249 .Case("iepsr", 0x807) 4250 .Case("msp", 0x808) 4251 .Case("psp", 0x809) 4252 .Case("primask", 0x810) 4253 .Case("basepri", 0x811) 4254 .Case("basepri_max", 0x812) 4255 .Case("faultmask", 0x813) 4256 .Case("control", 0x814) 4257 .Case("msplim", 0x80a) 4258 .Case("psplim", 0x80b) 4259 .Case("msp_ns", 0x888) 4260 .Case("psp_ns", 0x889) 4261 .Case("msplim_ns", 0x88a) 4262 .Case("psplim_ns", 0x88b) 4263 .Case("primask_ns", 0x890) 4264 .Case("basepri_ns", 0x891) 4265 .Case("basepri_max_ns", 0x892) 4266 .Case("faultmask_ns", 0x893) 4267 .Case("control_ns", 0x894) 4268 .Case("sp_ns", 0x898) 4269 .Default(~0U); 4270 4271 if (FlagsVal == ~0U) 4272 return MatchOperand_NoMatch; 4273 4274 if (!hasDSP() && (FlagsVal & 0x400)) 4275 // The _g and _nzcvqg versions are only valid if the DSP extension is 4276 // available. 4277 return MatchOperand_NoMatch; 4278 4279 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 4280 // basepri, basepri_max and faultmask only valid for V7m. 4281 return MatchOperand_NoMatch; 4282 4283 if (!has8MSecExt() && (FlagsVal == 0x80a || FlagsVal == 0x80b || 4284 (FlagsVal > 0x814 && FlagsVal < 0xc00))) 4285 return MatchOperand_NoMatch; 4286 4287 if (!hasV8MMainline() && (FlagsVal == 0x88a || FlagsVal == 0x88b || 4288 (FlagsVal > 0x890 && FlagsVal <= 0x893))) 4289 return MatchOperand_NoMatch; 4290 4291 Parser.Lex(); // Eat identifier token. 4292 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4293 return MatchOperand_Success; 4294 } 4295 4296 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4297 size_t Start = 0, Next = Mask.find('_'); 4298 StringRef Flags = ""; 4299 std::string SpecReg = Mask.slice(Start, Next).lower(); 4300 if (Next != StringRef::npos) 4301 Flags = Mask.slice(Next+1, Mask.size()); 4302 4303 // FlagsVal contains the complete mask: 4304 // 3-0: Mask 4305 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4306 unsigned FlagsVal = 0; 4307 4308 if (SpecReg == "apsr") { 4309 FlagsVal = StringSwitch<unsigned>(Flags) 4310 .Case("nzcvq", 0x8) // same as CPSR_f 4311 .Case("g", 0x4) // same as CPSR_s 4312 .Case("nzcvqg", 0xc) // same as CPSR_fs 4313 .Default(~0U); 4314 4315 if (FlagsVal == ~0U) { 4316 if (!Flags.empty()) 4317 return MatchOperand_NoMatch; 4318 else 4319 FlagsVal = 8; // No flag 4320 } 4321 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4322 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4323 if (Flags == "all" || Flags == "") 4324 Flags = "fc"; 4325 for (int i = 0, e = Flags.size(); i != e; ++i) { 4326 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4327 .Case("c", 1) 4328 .Case("x", 2) 4329 .Case("s", 4) 4330 .Case("f", 8) 4331 .Default(~0U); 4332 4333 // If some specific flag is already set, it means that some letter is 4334 // present more than once, this is not acceptable. 4335 if (FlagsVal == ~0U || (FlagsVal & Flag)) 4336 return MatchOperand_NoMatch; 4337 FlagsVal |= Flag; 4338 } 4339 } else // No match for special register. 4340 return MatchOperand_NoMatch; 4341 4342 // Special register without flags is NOT equivalent to "fc" flags. 4343 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4344 // two lines would enable gas compatibility at the expense of breaking 4345 // round-tripping. 4346 // 4347 // if (!FlagsVal) 4348 // FlagsVal = 0x9; 4349 4350 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4351 if (SpecReg == "spsr") 4352 FlagsVal |= 16; 4353 4354 Parser.Lex(); // Eat identifier token. 4355 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4356 return MatchOperand_Success; 4357 } 4358 4359 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4360 /// use in the MRS/MSR instructions added to support virtualization. 4361 ARMAsmParser::OperandMatchResultTy 4362 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4363 MCAsmParser &Parser = getParser(); 4364 SMLoc S = Parser.getTok().getLoc(); 4365 const AsmToken &Tok = Parser.getTok(); 4366 if (!Tok.is(AsmToken::Identifier)) 4367 return MatchOperand_NoMatch; 4368 StringRef RegName = Tok.getString(); 4369 4370 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4371 // and bit 5 is R. 4372 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4373 .Case("r8_usr", 0x00) 4374 .Case("r9_usr", 0x01) 4375 .Case("r10_usr", 0x02) 4376 .Case("r11_usr", 0x03) 4377 .Case("r12_usr", 0x04) 4378 .Case("sp_usr", 0x05) 4379 .Case("lr_usr", 0x06) 4380 .Case("r8_fiq", 0x08) 4381 .Case("r9_fiq", 0x09) 4382 .Case("r10_fiq", 0x0a) 4383 .Case("r11_fiq", 0x0b) 4384 .Case("r12_fiq", 0x0c) 4385 .Case("sp_fiq", 0x0d) 4386 .Case("lr_fiq", 0x0e) 4387 .Case("lr_irq", 0x10) 4388 .Case("sp_irq", 0x11) 4389 .Case("lr_svc", 0x12) 4390 .Case("sp_svc", 0x13) 4391 .Case("lr_abt", 0x14) 4392 .Case("sp_abt", 0x15) 4393 .Case("lr_und", 0x16) 4394 .Case("sp_und", 0x17) 4395 .Case("lr_mon", 0x1c) 4396 .Case("sp_mon", 0x1d) 4397 .Case("elr_hyp", 0x1e) 4398 .Case("sp_hyp", 0x1f) 4399 .Case("spsr_fiq", 0x2e) 4400 .Case("spsr_irq", 0x30) 4401 .Case("spsr_svc", 0x32) 4402 .Case("spsr_abt", 0x34) 4403 .Case("spsr_und", 0x36) 4404 .Case("spsr_mon", 0x3c) 4405 .Case("spsr_hyp", 0x3e) 4406 .Default(~0U); 4407 4408 if (Encoding == ~0U) 4409 return MatchOperand_NoMatch; 4410 4411 Parser.Lex(); // Eat identifier token. 4412 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4413 return MatchOperand_Success; 4414 } 4415 4416 ARMAsmParser::OperandMatchResultTy 4417 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4418 int High) { 4419 MCAsmParser &Parser = getParser(); 4420 const AsmToken &Tok = Parser.getTok(); 4421 if (Tok.isNot(AsmToken::Identifier)) { 4422 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4423 return MatchOperand_ParseFail; 4424 } 4425 StringRef ShiftName = Tok.getString(); 4426 std::string LowerOp = Op.lower(); 4427 std::string UpperOp = Op.upper(); 4428 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4429 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4430 return MatchOperand_ParseFail; 4431 } 4432 Parser.Lex(); // Eat shift type token. 4433 4434 // There must be a '#' and a shift amount. 4435 if (Parser.getTok().isNot(AsmToken::Hash) && 4436 Parser.getTok().isNot(AsmToken::Dollar)) { 4437 Error(Parser.getTok().getLoc(), "'#' expected"); 4438 return MatchOperand_ParseFail; 4439 } 4440 Parser.Lex(); // Eat hash token. 4441 4442 const MCExpr *ShiftAmount; 4443 SMLoc Loc = Parser.getTok().getLoc(); 4444 SMLoc EndLoc; 4445 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4446 Error(Loc, "illegal expression"); 4447 return MatchOperand_ParseFail; 4448 } 4449 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4450 if (!CE) { 4451 Error(Loc, "constant expression expected"); 4452 return MatchOperand_ParseFail; 4453 } 4454 int Val = CE->getValue(); 4455 if (Val < Low || Val > High) { 4456 Error(Loc, "immediate value out of range"); 4457 return MatchOperand_ParseFail; 4458 } 4459 4460 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4461 4462 return MatchOperand_Success; 4463 } 4464 4465 ARMAsmParser::OperandMatchResultTy 4466 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4467 MCAsmParser &Parser = getParser(); 4468 const AsmToken &Tok = Parser.getTok(); 4469 SMLoc S = Tok.getLoc(); 4470 if (Tok.isNot(AsmToken::Identifier)) { 4471 Error(S, "'be' or 'le' operand expected"); 4472 return MatchOperand_ParseFail; 4473 } 4474 int Val = StringSwitch<int>(Tok.getString().lower()) 4475 .Case("be", 1) 4476 .Case("le", 0) 4477 .Default(-1); 4478 Parser.Lex(); // Eat the token. 4479 4480 if (Val == -1) { 4481 Error(S, "'be' or 'le' operand expected"); 4482 return MatchOperand_ParseFail; 4483 } 4484 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4485 getContext()), 4486 S, Tok.getEndLoc())); 4487 return MatchOperand_Success; 4488 } 4489 4490 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4491 /// instructions. Legal values are: 4492 /// lsl #n 'n' in [0,31] 4493 /// asr #n 'n' in [1,32] 4494 /// n == 32 encoded as n == 0. 4495 ARMAsmParser::OperandMatchResultTy 4496 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4497 MCAsmParser &Parser = getParser(); 4498 const AsmToken &Tok = Parser.getTok(); 4499 SMLoc S = Tok.getLoc(); 4500 if (Tok.isNot(AsmToken::Identifier)) { 4501 Error(S, "shift operator 'asr' or 'lsl' expected"); 4502 return MatchOperand_ParseFail; 4503 } 4504 StringRef ShiftName = Tok.getString(); 4505 bool isASR; 4506 if (ShiftName == "lsl" || ShiftName == "LSL") 4507 isASR = false; 4508 else if (ShiftName == "asr" || ShiftName == "ASR") 4509 isASR = true; 4510 else { 4511 Error(S, "shift operator 'asr' or 'lsl' expected"); 4512 return MatchOperand_ParseFail; 4513 } 4514 Parser.Lex(); // Eat the operator. 4515 4516 // A '#' and a shift amount. 4517 if (Parser.getTok().isNot(AsmToken::Hash) && 4518 Parser.getTok().isNot(AsmToken::Dollar)) { 4519 Error(Parser.getTok().getLoc(), "'#' expected"); 4520 return MatchOperand_ParseFail; 4521 } 4522 Parser.Lex(); // Eat hash token. 4523 SMLoc ExLoc = Parser.getTok().getLoc(); 4524 4525 const MCExpr *ShiftAmount; 4526 SMLoc EndLoc; 4527 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4528 Error(ExLoc, "malformed shift expression"); 4529 return MatchOperand_ParseFail; 4530 } 4531 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4532 if (!CE) { 4533 Error(ExLoc, "shift amount must be an immediate"); 4534 return MatchOperand_ParseFail; 4535 } 4536 4537 int64_t Val = CE->getValue(); 4538 if (isASR) { 4539 // Shift amount must be in [1,32] 4540 if (Val < 1 || Val > 32) { 4541 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4542 return MatchOperand_ParseFail; 4543 } 4544 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4545 if (isThumb() && Val == 32) { 4546 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4547 return MatchOperand_ParseFail; 4548 } 4549 if (Val == 32) Val = 0; 4550 } else { 4551 // Shift amount must be in [1,32] 4552 if (Val < 0 || Val > 31) { 4553 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4554 return MatchOperand_ParseFail; 4555 } 4556 } 4557 4558 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4559 4560 return MatchOperand_Success; 4561 } 4562 4563 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4564 /// of instructions. Legal values are: 4565 /// ror #n 'n' in {0, 8, 16, 24} 4566 ARMAsmParser::OperandMatchResultTy 4567 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4568 MCAsmParser &Parser = getParser(); 4569 const AsmToken &Tok = Parser.getTok(); 4570 SMLoc S = Tok.getLoc(); 4571 if (Tok.isNot(AsmToken::Identifier)) 4572 return MatchOperand_NoMatch; 4573 StringRef ShiftName = Tok.getString(); 4574 if (ShiftName != "ror" && ShiftName != "ROR") 4575 return MatchOperand_NoMatch; 4576 Parser.Lex(); // Eat the operator. 4577 4578 // A '#' and a rotate amount. 4579 if (Parser.getTok().isNot(AsmToken::Hash) && 4580 Parser.getTok().isNot(AsmToken::Dollar)) { 4581 Error(Parser.getTok().getLoc(), "'#' expected"); 4582 return MatchOperand_ParseFail; 4583 } 4584 Parser.Lex(); // Eat hash token. 4585 SMLoc ExLoc = Parser.getTok().getLoc(); 4586 4587 const MCExpr *ShiftAmount; 4588 SMLoc EndLoc; 4589 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4590 Error(ExLoc, "malformed rotate expression"); 4591 return MatchOperand_ParseFail; 4592 } 4593 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4594 if (!CE) { 4595 Error(ExLoc, "rotate amount must be an immediate"); 4596 return MatchOperand_ParseFail; 4597 } 4598 4599 int64_t Val = CE->getValue(); 4600 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4601 // normally, zero is represented in asm by omitting the rotate operand 4602 // entirely. 4603 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4604 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4605 return MatchOperand_ParseFail; 4606 } 4607 4608 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4609 4610 return MatchOperand_Success; 4611 } 4612 4613 ARMAsmParser::OperandMatchResultTy 4614 ARMAsmParser::parseModImm(OperandVector &Operands) { 4615 MCAsmParser &Parser = getParser(); 4616 MCAsmLexer &Lexer = getLexer(); 4617 int64_t Imm1, Imm2; 4618 4619 SMLoc S = Parser.getTok().getLoc(); 4620 4621 // 1) A mod_imm operand can appear in the place of a register name: 4622 // add r0, #mod_imm 4623 // add r0, r0, #mod_imm 4624 // to correctly handle the latter, we bail out as soon as we see an 4625 // identifier. 4626 // 4627 // 2) Similarly, we do not want to parse into complex operands: 4628 // mov r0, #mod_imm 4629 // mov r0, :lower16:(_foo) 4630 if (Parser.getTok().is(AsmToken::Identifier) || 4631 Parser.getTok().is(AsmToken::Colon)) 4632 return MatchOperand_NoMatch; 4633 4634 // Hash (dollar) is optional as per the ARMARM 4635 if (Parser.getTok().is(AsmToken::Hash) || 4636 Parser.getTok().is(AsmToken::Dollar)) { 4637 // Avoid parsing into complex operands (#:) 4638 if (Lexer.peekTok().is(AsmToken::Colon)) 4639 return MatchOperand_NoMatch; 4640 4641 // Eat the hash (dollar) 4642 Parser.Lex(); 4643 } 4644 4645 SMLoc Sx1, Ex1; 4646 Sx1 = Parser.getTok().getLoc(); 4647 const MCExpr *Imm1Exp; 4648 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4649 Error(Sx1, "malformed expression"); 4650 return MatchOperand_ParseFail; 4651 } 4652 4653 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4654 4655 if (CE) { 4656 // Immediate must fit within 32-bits 4657 Imm1 = CE->getValue(); 4658 int Enc = ARM_AM::getSOImmVal(Imm1); 4659 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4660 // We have a match! 4661 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4662 (Enc & 0xF00) >> 7, 4663 Sx1, Ex1)); 4664 return MatchOperand_Success; 4665 } 4666 4667 // We have parsed an immediate which is not for us, fallback to a plain 4668 // immediate. This can happen for instruction aliases. For an example, 4669 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4670 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4671 // instruction with a mod_imm operand. The alias is defined such that the 4672 // parser method is shared, that's why we have to do this here. 4673 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4674 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4675 return MatchOperand_Success; 4676 } 4677 } else { 4678 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4679 // MCFixup). Fallback to a plain immediate. 4680 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4681 return MatchOperand_Success; 4682 } 4683 4684 // From this point onward, we expect the input to be a (#bits, #rot) pair 4685 if (Parser.getTok().isNot(AsmToken::Comma)) { 4686 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4687 return MatchOperand_ParseFail; 4688 } 4689 4690 if (Imm1 & ~0xFF) { 4691 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4692 return MatchOperand_ParseFail; 4693 } 4694 4695 // Eat the comma 4696 Parser.Lex(); 4697 4698 // Repeat for #rot 4699 SMLoc Sx2, Ex2; 4700 Sx2 = Parser.getTok().getLoc(); 4701 4702 // Eat the optional hash (dollar) 4703 if (Parser.getTok().is(AsmToken::Hash) || 4704 Parser.getTok().is(AsmToken::Dollar)) 4705 Parser.Lex(); 4706 4707 const MCExpr *Imm2Exp; 4708 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4709 Error(Sx2, "malformed expression"); 4710 return MatchOperand_ParseFail; 4711 } 4712 4713 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4714 4715 if (CE) { 4716 Imm2 = CE->getValue(); 4717 if (!(Imm2 & ~0x1E)) { 4718 // We have a match! 4719 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4720 return MatchOperand_Success; 4721 } 4722 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4723 return MatchOperand_ParseFail; 4724 } else { 4725 Error(Sx2, "constant expression expected"); 4726 return MatchOperand_ParseFail; 4727 } 4728 } 4729 4730 ARMAsmParser::OperandMatchResultTy 4731 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4732 MCAsmParser &Parser = getParser(); 4733 SMLoc S = Parser.getTok().getLoc(); 4734 // The bitfield descriptor is really two operands, the LSB and the width. 4735 if (Parser.getTok().isNot(AsmToken::Hash) && 4736 Parser.getTok().isNot(AsmToken::Dollar)) { 4737 Error(Parser.getTok().getLoc(), "'#' expected"); 4738 return MatchOperand_ParseFail; 4739 } 4740 Parser.Lex(); // Eat hash token. 4741 4742 const MCExpr *LSBExpr; 4743 SMLoc E = Parser.getTok().getLoc(); 4744 if (getParser().parseExpression(LSBExpr)) { 4745 Error(E, "malformed immediate expression"); 4746 return MatchOperand_ParseFail; 4747 } 4748 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4749 if (!CE) { 4750 Error(E, "'lsb' operand must be an immediate"); 4751 return MatchOperand_ParseFail; 4752 } 4753 4754 int64_t LSB = CE->getValue(); 4755 // The LSB must be in the range [0,31] 4756 if (LSB < 0 || LSB > 31) { 4757 Error(E, "'lsb' operand must be in the range [0,31]"); 4758 return MatchOperand_ParseFail; 4759 } 4760 E = Parser.getTok().getLoc(); 4761 4762 // Expect another immediate operand. 4763 if (Parser.getTok().isNot(AsmToken::Comma)) { 4764 Error(Parser.getTok().getLoc(), "too few operands"); 4765 return MatchOperand_ParseFail; 4766 } 4767 Parser.Lex(); // Eat hash token. 4768 if (Parser.getTok().isNot(AsmToken::Hash) && 4769 Parser.getTok().isNot(AsmToken::Dollar)) { 4770 Error(Parser.getTok().getLoc(), "'#' expected"); 4771 return MatchOperand_ParseFail; 4772 } 4773 Parser.Lex(); // Eat hash token. 4774 4775 const MCExpr *WidthExpr; 4776 SMLoc EndLoc; 4777 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4778 Error(E, "malformed immediate expression"); 4779 return MatchOperand_ParseFail; 4780 } 4781 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4782 if (!CE) { 4783 Error(E, "'width' operand must be an immediate"); 4784 return MatchOperand_ParseFail; 4785 } 4786 4787 int64_t Width = CE->getValue(); 4788 // The LSB must be in the range [1,32-lsb] 4789 if (Width < 1 || Width > 32 - LSB) { 4790 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4791 return MatchOperand_ParseFail; 4792 } 4793 4794 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4795 4796 return MatchOperand_Success; 4797 } 4798 4799 ARMAsmParser::OperandMatchResultTy 4800 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4801 // Check for a post-index addressing register operand. Specifically: 4802 // postidx_reg := '+' register {, shift} 4803 // | '-' register {, shift} 4804 // | register {, shift} 4805 4806 // This method must return MatchOperand_NoMatch without consuming any tokens 4807 // in the case where there is no match, as other alternatives take other 4808 // parse methods. 4809 MCAsmParser &Parser = getParser(); 4810 AsmToken Tok = Parser.getTok(); 4811 SMLoc S = Tok.getLoc(); 4812 bool haveEaten = false; 4813 bool isAdd = true; 4814 if (Tok.is(AsmToken::Plus)) { 4815 Parser.Lex(); // Eat the '+' token. 4816 haveEaten = true; 4817 } else if (Tok.is(AsmToken::Minus)) { 4818 Parser.Lex(); // Eat the '-' token. 4819 isAdd = false; 4820 haveEaten = true; 4821 } 4822 4823 SMLoc E = Parser.getTok().getEndLoc(); 4824 int Reg = tryParseRegister(); 4825 if (Reg == -1) { 4826 if (!haveEaten) 4827 return MatchOperand_NoMatch; 4828 Error(Parser.getTok().getLoc(), "register expected"); 4829 return MatchOperand_ParseFail; 4830 } 4831 4832 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4833 unsigned ShiftImm = 0; 4834 if (Parser.getTok().is(AsmToken::Comma)) { 4835 Parser.Lex(); // Eat the ','. 4836 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4837 return MatchOperand_ParseFail; 4838 4839 // FIXME: Only approximates end...may include intervening whitespace. 4840 E = Parser.getTok().getLoc(); 4841 } 4842 4843 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4844 ShiftImm, S, E)); 4845 4846 return MatchOperand_Success; 4847 } 4848 4849 ARMAsmParser::OperandMatchResultTy 4850 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4851 // Check for a post-index addressing register operand. Specifically: 4852 // am3offset := '+' register 4853 // | '-' register 4854 // | register 4855 // | # imm 4856 // | # + imm 4857 // | # - imm 4858 4859 // This method must return MatchOperand_NoMatch without consuming any tokens 4860 // in the case where there is no match, as other alternatives take other 4861 // parse methods. 4862 MCAsmParser &Parser = getParser(); 4863 AsmToken Tok = Parser.getTok(); 4864 SMLoc S = Tok.getLoc(); 4865 4866 // Do immediates first, as we always parse those if we have a '#'. 4867 if (Parser.getTok().is(AsmToken::Hash) || 4868 Parser.getTok().is(AsmToken::Dollar)) { 4869 Parser.Lex(); // Eat '#' or '$'. 4870 // Explicitly look for a '-', as we need to encode negative zero 4871 // differently. 4872 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4873 const MCExpr *Offset; 4874 SMLoc E; 4875 if (getParser().parseExpression(Offset, E)) 4876 return MatchOperand_ParseFail; 4877 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4878 if (!CE) { 4879 Error(S, "constant expression expected"); 4880 return MatchOperand_ParseFail; 4881 } 4882 // Negative zero is encoded as the flag value INT32_MIN. 4883 int32_t Val = CE->getValue(); 4884 if (isNegative && Val == 0) 4885 Val = INT32_MIN; 4886 4887 Operands.push_back( 4888 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4889 4890 return MatchOperand_Success; 4891 } 4892 4893 4894 bool haveEaten = false; 4895 bool isAdd = true; 4896 if (Tok.is(AsmToken::Plus)) { 4897 Parser.Lex(); // Eat the '+' token. 4898 haveEaten = true; 4899 } else if (Tok.is(AsmToken::Minus)) { 4900 Parser.Lex(); // Eat the '-' token. 4901 isAdd = false; 4902 haveEaten = true; 4903 } 4904 4905 Tok = Parser.getTok(); 4906 int Reg = tryParseRegister(); 4907 if (Reg == -1) { 4908 if (!haveEaten) 4909 return MatchOperand_NoMatch; 4910 Error(Tok.getLoc(), "register expected"); 4911 return MatchOperand_ParseFail; 4912 } 4913 4914 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4915 0, S, Tok.getEndLoc())); 4916 4917 return MatchOperand_Success; 4918 } 4919 4920 /// Convert parsed operands to MCInst. Needed here because this instruction 4921 /// only has two register operands, but multiplication is commutative so 4922 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4923 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4924 const OperandVector &Operands) { 4925 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4926 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4927 // If we have a three-operand form, make sure to set Rn to be the operand 4928 // that isn't the same as Rd. 4929 unsigned RegOp = 4; 4930 if (Operands.size() == 6 && 4931 ((ARMOperand &)*Operands[4]).getReg() == 4932 ((ARMOperand &)*Operands[3]).getReg()) 4933 RegOp = 5; 4934 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4935 Inst.addOperand(Inst.getOperand(0)); 4936 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4937 } 4938 4939 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4940 const OperandVector &Operands) { 4941 int CondOp = -1, ImmOp = -1; 4942 switch(Inst.getOpcode()) { 4943 case ARM::tB: 4944 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4945 4946 case ARM::t2B: 4947 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4948 4949 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4950 } 4951 // first decide whether or not the branch should be conditional 4952 // by looking at it's location relative to an IT block 4953 if(inITBlock()) { 4954 // inside an IT block we cannot have any conditional branches. any 4955 // such instructions needs to be converted to unconditional form 4956 switch(Inst.getOpcode()) { 4957 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4958 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4959 } 4960 } else { 4961 // outside IT blocks we can only have unconditional branches with AL 4962 // condition code or conditional branches with non-AL condition code 4963 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4964 switch(Inst.getOpcode()) { 4965 case ARM::tB: 4966 case ARM::tBcc: 4967 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4968 break; 4969 case ARM::t2B: 4970 case ARM::t2Bcc: 4971 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4972 break; 4973 } 4974 } 4975 4976 // now decide on encoding size based on branch target range 4977 switch(Inst.getOpcode()) { 4978 // classify tB as either t2B or t1B based on range of immediate operand 4979 case ARM::tB: { 4980 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4981 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 4982 Inst.setOpcode(ARM::t2B); 4983 break; 4984 } 4985 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4986 case ARM::tBcc: { 4987 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4988 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 4989 Inst.setOpcode(ARM::t2Bcc); 4990 break; 4991 } 4992 } 4993 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4994 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4995 } 4996 4997 /// Parse an ARM memory expression, return false if successful else return true 4998 /// or an error. The first token must be a '[' when called. 4999 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5000 MCAsmParser &Parser = getParser(); 5001 SMLoc S, E; 5002 assert(Parser.getTok().is(AsmToken::LBrac) && 5003 "Token is not a Left Bracket"); 5004 S = Parser.getTok().getLoc(); 5005 Parser.Lex(); // Eat left bracket token. 5006 5007 const AsmToken &BaseRegTok = Parser.getTok(); 5008 int BaseRegNum = tryParseRegister(); 5009 if (BaseRegNum == -1) 5010 return Error(BaseRegTok.getLoc(), "register expected"); 5011 5012 // The next token must either be a comma, a colon or a closing bracket. 5013 const AsmToken &Tok = Parser.getTok(); 5014 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5015 !Tok.is(AsmToken::RBrac)) 5016 return Error(Tok.getLoc(), "malformed memory operand"); 5017 5018 if (Tok.is(AsmToken::RBrac)) { 5019 E = Tok.getEndLoc(); 5020 Parser.Lex(); // Eat right bracket token. 5021 5022 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5023 ARM_AM::no_shift, 0, 0, false, 5024 S, E)); 5025 5026 // If there's a pre-indexing writeback marker, '!', just add it as a token 5027 // operand. It's rather odd, but syntactically valid. 5028 if (Parser.getTok().is(AsmToken::Exclaim)) { 5029 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5030 Parser.Lex(); // Eat the '!'. 5031 } 5032 5033 return false; 5034 } 5035 5036 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5037 "Lost colon or comma in memory operand?!"); 5038 if (Tok.is(AsmToken::Comma)) { 5039 Parser.Lex(); // Eat the comma. 5040 } 5041 5042 // If we have a ':', it's an alignment specifier. 5043 if (Parser.getTok().is(AsmToken::Colon)) { 5044 Parser.Lex(); // Eat the ':'. 5045 E = Parser.getTok().getLoc(); 5046 SMLoc AlignmentLoc = Tok.getLoc(); 5047 5048 const MCExpr *Expr; 5049 if (getParser().parseExpression(Expr)) 5050 return true; 5051 5052 // The expression has to be a constant. Memory references with relocations 5053 // don't come through here, as they use the <label> forms of the relevant 5054 // instructions. 5055 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5056 if (!CE) 5057 return Error (E, "constant expression expected"); 5058 5059 unsigned Align = 0; 5060 switch (CE->getValue()) { 5061 default: 5062 return Error(E, 5063 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5064 case 16: Align = 2; break; 5065 case 32: Align = 4; break; 5066 case 64: Align = 8; break; 5067 case 128: Align = 16; break; 5068 case 256: Align = 32; break; 5069 } 5070 5071 // Now we should have the closing ']' 5072 if (Parser.getTok().isNot(AsmToken::RBrac)) 5073 return Error(Parser.getTok().getLoc(), "']' expected"); 5074 E = Parser.getTok().getEndLoc(); 5075 Parser.Lex(); // Eat right bracket token. 5076 5077 // Don't worry about range checking the value here. That's handled by 5078 // the is*() predicates. 5079 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5080 ARM_AM::no_shift, 0, Align, 5081 false, S, E, AlignmentLoc)); 5082 5083 // If there's a pre-indexing writeback marker, '!', just add it as a token 5084 // operand. 5085 if (Parser.getTok().is(AsmToken::Exclaim)) { 5086 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5087 Parser.Lex(); // Eat the '!'. 5088 } 5089 5090 return false; 5091 } 5092 5093 // If we have a '#', it's an immediate offset, else assume it's a register 5094 // offset. Be friendly and also accept a plain integer (without a leading 5095 // hash) for gas compatibility. 5096 if (Parser.getTok().is(AsmToken::Hash) || 5097 Parser.getTok().is(AsmToken::Dollar) || 5098 Parser.getTok().is(AsmToken::Integer)) { 5099 if (Parser.getTok().isNot(AsmToken::Integer)) 5100 Parser.Lex(); // Eat '#' or '$'. 5101 E = Parser.getTok().getLoc(); 5102 5103 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5104 const MCExpr *Offset; 5105 if (getParser().parseExpression(Offset)) 5106 return true; 5107 5108 // The expression has to be a constant. Memory references with relocations 5109 // don't come through here, as they use the <label> forms of the relevant 5110 // instructions. 5111 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5112 if (!CE) 5113 return Error (E, "constant expression expected"); 5114 5115 // If the constant was #-0, represent it as INT32_MIN. 5116 int32_t Val = CE->getValue(); 5117 if (isNegative && Val == 0) 5118 CE = MCConstantExpr::create(INT32_MIN, getContext()); 5119 5120 // Now we should have the closing ']' 5121 if (Parser.getTok().isNot(AsmToken::RBrac)) 5122 return Error(Parser.getTok().getLoc(), "']' expected"); 5123 E = Parser.getTok().getEndLoc(); 5124 Parser.Lex(); // Eat right bracket token. 5125 5126 // Don't worry about range checking the value here. That's handled by 5127 // the is*() predicates. 5128 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5129 ARM_AM::no_shift, 0, 0, 5130 false, S, E)); 5131 5132 // If there's a pre-indexing writeback marker, '!', just add it as a token 5133 // operand. 5134 if (Parser.getTok().is(AsmToken::Exclaim)) { 5135 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5136 Parser.Lex(); // Eat the '!'. 5137 } 5138 5139 return false; 5140 } 5141 5142 // The register offset is optionally preceded by a '+' or '-' 5143 bool isNegative = false; 5144 if (Parser.getTok().is(AsmToken::Minus)) { 5145 isNegative = true; 5146 Parser.Lex(); // Eat the '-'. 5147 } else if (Parser.getTok().is(AsmToken::Plus)) { 5148 // Nothing to do. 5149 Parser.Lex(); // Eat the '+'. 5150 } 5151 5152 E = Parser.getTok().getLoc(); 5153 int OffsetRegNum = tryParseRegister(); 5154 if (OffsetRegNum == -1) 5155 return Error(E, "register expected"); 5156 5157 // If there's a shift operator, handle it. 5158 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5159 unsigned ShiftImm = 0; 5160 if (Parser.getTok().is(AsmToken::Comma)) { 5161 Parser.Lex(); // Eat the ','. 5162 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5163 return true; 5164 } 5165 5166 // Now we should have the closing ']' 5167 if (Parser.getTok().isNot(AsmToken::RBrac)) 5168 return Error(Parser.getTok().getLoc(), "']' expected"); 5169 E = Parser.getTok().getEndLoc(); 5170 Parser.Lex(); // Eat right bracket token. 5171 5172 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5173 ShiftType, ShiftImm, 0, isNegative, 5174 S, E)); 5175 5176 // If there's a pre-indexing writeback marker, '!', just add it as a token 5177 // operand. 5178 if (Parser.getTok().is(AsmToken::Exclaim)) { 5179 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5180 Parser.Lex(); // Eat the '!'. 5181 } 5182 5183 return false; 5184 } 5185 5186 /// parseMemRegOffsetShift - one of these two: 5187 /// ( lsl | lsr | asr | ror ) , # shift_amount 5188 /// rrx 5189 /// return true if it parses a shift otherwise it returns false. 5190 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5191 unsigned &Amount) { 5192 MCAsmParser &Parser = getParser(); 5193 SMLoc Loc = Parser.getTok().getLoc(); 5194 const AsmToken &Tok = Parser.getTok(); 5195 if (Tok.isNot(AsmToken::Identifier)) 5196 return true; 5197 StringRef ShiftName = Tok.getString(); 5198 if (ShiftName == "lsl" || ShiftName == "LSL" || 5199 ShiftName == "asl" || ShiftName == "ASL") 5200 St = ARM_AM::lsl; 5201 else if (ShiftName == "lsr" || ShiftName == "LSR") 5202 St = ARM_AM::lsr; 5203 else if (ShiftName == "asr" || ShiftName == "ASR") 5204 St = ARM_AM::asr; 5205 else if (ShiftName == "ror" || ShiftName == "ROR") 5206 St = ARM_AM::ror; 5207 else if (ShiftName == "rrx" || ShiftName == "RRX") 5208 St = ARM_AM::rrx; 5209 else 5210 return Error(Loc, "illegal shift operator"); 5211 Parser.Lex(); // Eat shift type token. 5212 5213 // rrx stands alone. 5214 Amount = 0; 5215 if (St != ARM_AM::rrx) { 5216 Loc = Parser.getTok().getLoc(); 5217 // A '#' and a shift amount. 5218 const AsmToken &HashTok = Parser.getTok(); 5219 if (HashTok.isNot(AsmToken::Hash) && 5220 HashTok.isNot(AsmToken::Dollar)) 5221 return Error(HashTok.getLoc(), "'#' expected"); 5222 Parser.Lex(); // Eat hash token. 5223 5224 const MCExpr *Expr; 5225 if (getParser().parseExpression(Expr)) 5226 return true; 5227 // Range check the immediate. 5228 // lsl, ror: 0 <= imm <= 31 5229 // lsr, asr: 0 <= imm <= 32 5230 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5231 if (!CE) 5232 return Error(Loc, "shift amount must be an immediate"); 5233 int64_t Imm = CE->getValue(); 5234 if (Imm < 0 || 5235 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5236 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5237 return Error(Loc, "immediate shift value out of range"); 5238 // If <ShiftTy> #0, turn it into a no_shift. 5239 if (Imm == 0) 5240 St = ARM_AM::lsl; 5241 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5242 if (Imm == 32) 5243 Imm = 0; 5244 Amount = Imm; 5245 } 5246 5247 return false; 5248 } 5249 5250 /// parseFPImm - A floating point immediate expression operand. 5251 ARMAsmParser::OperandMatchResultTy 5252 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5253 MCAsmParser &Parser = getParser(); 5254 // Anything that can accept a floating point constant as an operand 5255 // needs to go through here, as the regular parseExpression is 5256 // integer only. 5257 // 5258 // This routine still creates a generic Immediate operand, containing 5259 // a bitcast of the 64-bit floating point value. The various operands 5260 // that accept floats can check whether the value is valid for them 5261 // via the standard is*() predicates. 5262 5263 SMLoc S = Parser.getTok().getLoc(); 5264 5265 if (Parser.getTok().isNot(AsmToken::Hash) && 5266 Parser.getTok().isNot(AsmToken::Dollar)) 5267 return MatchOperand_NoMatch; 5268 5269 // Disambiguate the VMOV forms that can accept an FP immediate. 5270 // vmov.f32 <sreg>, #imm 5271 // vmov.f64 <dreg>, #imm 5272 // vmov.f32 <dreg>, #imm @ vector f32x2 5273 // vmov.f32 <qreg>, #imm @ vector f32x4 5274 // 5275 // There are also the NEON VMOV instructions which expect an 5276 // integer constant. Make sure we don't try to parse an FPImm 5277 // for these: 5278 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5279 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5280 bool isVmovf = TyOp.isToken() && 5281 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5282 TyOp.getToken() == ".f16"); 5283 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5284 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5285 Mnemonic.getToken() == "fconsts"); 5286 if (!(isVmovf || isFconst)) 5287 return MatchOperand_NoMatch; 5288 5289 Parser.Lex(); // Eat '#' or '$'. 5290 5291 // Handle negation, as that still comes through as a separate token. 5292 bool isNegative = false; 5293 if (Parser.getTok().is(AsmToken::Minus)) { 5294 isNegative = true; 5295 Parser.Lex(); 5296 } 5297 const AsmToken &Tok = Parser.getTok(); 5298 SMLoc Loc = Tok.getLoc(); 5299 if (Tok.is(AsmToken::Real) && isVmovf) { 5300 APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); 5301 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5302 // If we had a '-' in front, toggle the sign bit. 5303 IntVal ^= (uint64_t)isNegative << 31; 5304 Parser.Lex(); // Eat the token. 5305 Operands.push_back(ARMOperand::CreateImm( 5306 MCConstantExpr::create(IntVal, getContext()), 5307 S, Parser.getTok().getLoc())); 5308 return MatchOperand_Success; 5309 } 5310 // Also handle plain integers. Instructions which allow floating point 5311 // immediates also allow a raw encoded 8-bit value. 5312 if (Tok.is(AsmToken::Integer) && isFconst) { 5313 int64_t Val = Tok.getIntVal(); 5314 Parser.Lex(); // Eat the token. 5315 if (Val > 255 || Val < 0) { 5316 Error(Loc, "encoded floating point value out of range"); 5317 return MatchOperand_ParseFail; 5318 } 5319 float RealVal = ARM_AM::getFPImmFloat(Val); 5320 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5321 5322 Operands.push_back(ARMOperand::CreateImm( 5323 MCConstantExpr::create(Val, getContext()), S, 5324 Parser.getTok().getLoc())); 5325 return MatchOperand_Success; 5326 } 5327 5328 Error(Loc, "invalid floating point immediate"); 5329 return MatchOperand_ParseFail; 5330 } 5331 5332 /// Parse a arm instruction operand. For now this parses the operand regardless 5333 /// of the mnemonic. 5334 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5335 MCAsmParser &Parser = getParser(); 5336 SMLoc S, E; 5337 5338 // Check if the current operand has a custom associated parser, if so, try to 5339 // custom parse the operand, or fallback to the general approach. 5340 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5341 if (ResTy == MatchOperand_Success) 5342 return false; 5343 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5344 // there was a match, but an error occurred, in which case, just return that 5345 // the operand parsing failed. 5346 if (ResTy == MatchOperand_ParseFail) 5347 return true; 5348 5349 switch (getLexer().getKind()) { 5350 default: 5351 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5352 return true; 5353 case AsmToken::Identifier: { 5354 // If we've seen a branch mnemonic, the next operand must be a label. This 5355 // is true even if the label is a register name. So "br r1" means branch to 5356 // label "r1". 5357 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5358 if (!ExpectLabel) { 5359 if (!tryParseRegisterWithWriteBack(Operands)) 5360 return false; 5361 int Res = tryParseShiftRegister(Operands); 5362 if (Res == 0) // success 5363 return false; 5364 else if (Res == -1) // irrecoverable error 5365 return true; 5366 // If this is VMRS, check for the apsr_nzcv operand. 5367 if (Mnemonic == "vmrs" && 5368 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5369 S = Parser.getTok().getLoc(); 5370 Parser.Lex(); 5371 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5372 return false; 5373 } 5374 } 5375 5376 // Fall though for the Identifier case that is not a register or a 5377 // special name. 5378 } 5379 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5380 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5381 case AsmToken::String: // quoted label names. 5382 case AsmToken::Dot: { // . as a branch target 5383 // This was not a register so parse other operands that start with an 5384 // identifier (like labels) as expressions and create them as immediates. 5385 const MCExpr *IdVal; 5386 S = Parser.getTok().getLoc(); 5387 if (getParser().parseExpression(IdVal)) 5388 return true; 5389 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5390 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5391 return false; 5392 } 5393 case AsmToken::LBrac: 5394 return parseMemory(Operands); 5395 case AsmToken::LCurly: 5396 return parseRegisterList(Operands); 5397 case AsmToken::Dollar: 5398 case AsmToken::Hash: { 5399 // #42 -> immediate. 5400 S = Parser.getTok().getLoc(); 5401 Parser.Lex(); 5402 5403 if (Parser.getTok().isNot(AsmToken::Colon)) { 5404 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5405 const MCExpr *ImmVal; 5406 if (getParser().parseExpression(ImmVal)) 5407 return true; 5408 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5409 if (CE) { 5410 int32_t Val = CE->getValue(); 5411 if (isNegative && Val == 0) 5412 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5413 } 5414 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5415 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5416 5417 // There can be a trailing '!' on operands that we want as a separate 5418 // '!' Token operand. Handle that here. For example, the compatibility 5419 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5420 if (Parser.getTok().is(AsmToken::Exclaim)) { 5421 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5422 Parser.getTok().getLoc())); 5423 Parser.Lex(); // Eat exclaim token 5424 } 5425 return false; 5426 } 5427 // w/ a ':' after the '#', it's just like a plain ':'. 5428 LLVM_FALLTHROUGH; 5429 } 5430 case AsmToken::Colon: { 5431 S = Parser.getTok().getLoc(); 5432 // ":lower16:" and ":upper16:" expression prefixes 5433 // FIXME: Check it's an expression prefix, 5434 // e.g. (FOO - :lower16:BAR) isn't legal. 5435 ARMMCExpr::VariantKind RefKind; 5436 if (parsePrefix(RefKind)) 5437 return true; 5438 5439 const MCExpr *SubExprVal; 5440 if (getParser().parseExpression(SubExprVal)) 5441 return true; 5442 5443 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5444 getContext()); 5445 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5446 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5447 return false; 5448 } 5449 case AsmToken::Equal: { 5450 S = Parser.getTok().getLoc(); 5451 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5452 return Error(S, "unexpected token in operand"); 5453 Parser.Lex(); // Eat '=' 5454 const MCExpr *SubExprVal; 5455 if (getParser().parseExpression(SubExprVal)) 5456 return true; 5457 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5458 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5459 return false; 5460 } 5461 } 5462 } 5463 5464 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5465 // :lower16: and :upper16:. 5466 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5467 MCAsmParser &Parser = getParser(); 5468 RefKind = ARMMCExpr::VK_ARM_None; 5469 5470 // consume an optional '#' (GNU compatibility) 5471 if (getLexer().is(AsmToken::Hash)) 5472 Parser.Lex(); 5473 5474 // :lower16: and :upper16: modifiers 5475 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5476 Parser.Lex(); // Eat ':' 5477 5478 if (getLexer().isNot(AsmToken::Identifier)) { 5479 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5480 return true; 5481 } 5482 5483 enum { 5484 COFF = (1 << MCObjectFileInfo::IsCOFF), 5485 ELF = (1 << MCObjectFileInfo::IsELF), 5486 MACHO = (1 << MCObjectFileInfo::IsMachO) 5487 }; 5488 static const struct PrefixEntry { 5489 const char *Spelling; 5490 ARMMCExpr::VariantKind VariantKind; 5491 uint8_t SupportedFormats; 5492 } PrefixEntries[] = { 5493 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5494 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5495 }; 5496 5497 StringRef IDVal = Parser.getTok().getIdentifier(); 5498 5499 const auto &Prefix = 5500 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5501 [&IDVal](const PrefixEntry &PE) { 5502 return PE.Spelling == IDVal; 5503 }); 5504 if (Prefix == std::end(PrefixEntries)) { 5505 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5506 return true; 5507 } 5508 5509 uint8_t CurrentFormat; 5510 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5511 case MCObjectFileInfo::IsMachO: 5512 CurrentFormat = MACHO; 5513 break; 5514 case MCObjectFileInfo::IsELF: 5515 CurrentFormat = ELF; 5516 break; 5517 case MCObjectFileInfo::IsCOFF: 5518 CurrentFormat = COFF; 5519 break; 5520 } 5521 5522 if (~Prefix->SupportedFormats & CurrentFormat) { 5523 Error(Parser.getTok().getLoc(), 5524 "cannot represent relocation in the current file format"); 5525 return true; 5526 } 5527 5528 RefKind = Prefix->VariantKind; 5529 Parser.Lex(); 5530 5531 if (getLexer().isNot(AsmToken::Colon)) { 5532 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5533 return true; 5534 } 5535 Parser.Lex(); // Eat the last ':' 5536 5537 return false; 5538 } 5539 5540 /// \brief Given a mnemonic, split out possible predication code and carry 5541 /// setting letters to form a canonical mnemonic and flags. 5542 // 5543 // FIXME: Would be nice to autogen this. 5544 // FIXME: This is a bit of a maze of special cases. 5545 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5546 unsigned &PredicationCode, 5547 bool &CarrySetting, 5548 unsigned &ProcessorIMod, 5549 StringRef &ITMask) { 5550 PredicationCode = ARMCC::AL; 5551 CarrySetting = false; 5552 ProcessorIMod = 0; 5553 5554 // Ignore some mnemonics we know aren't predicated forms. 5555 // 5556 // FIXME: Would be nice to autogen this. 5557 if ((Mnemonic == "movs" && isThumb()) || 5558 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5559 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5560 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5561 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5562 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5563 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5564 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5565 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5566 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5567 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5568 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5569 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5570 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5571 Mnemonic == "bxns" || Mnemonic == "blxns") 5572 return Mnemonic; 5573 5574 // First, split out any predication code. Ignore mnemonics we know aren't 5575 // predicated but do have a carry-set and so weren't caught above. 5576 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5577 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5578 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5579 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5580 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5581 .Case("eq", ARMCC::EQ) 5582 .Case("ne", ARMCC::NE) 5583 .Case("hs", ARMCC::HS) 5584 .Case("cs", ARMCC::HS) 5585 .Case("lo", ARMCC::LO) 5586 .Case("cc", ARMCC::LO) 5587 .Case("mi", ARMCC::MI) 5588 .Case("pl", ARMCC::PL) 5589 .Case("vs", ARMCC::VS) 5590 .Case("vc", ARMCC::VC) 5591 .Case("hi", ARMCC::HI) 5592 .Case("ls", ARMCC::LS) 5593 .Case("ge", ARMCC::GE) 5594 .Case("lt", ARMCC::LT) 5595 .Case("gt", ARMCC::GT) 5596 .Case("le", ARMCC::LE) 5597 .Case("al", ARMCC::AL) 5598 .Default(~0U); 5599 if (CC != ~0U) { 5600 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5601 PredicationCode = CC; 5602 } 5603 } 5604 5605 // Next, determine if we have a carry setting bit. We explicitly ignore all 5606 // the instructions we know end in 's'. 5607 if (Mnemonic.endswith("s") && 5608 !(Mnemonic == "cps" || Mnemonic == "mls" || 5609 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5610 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5611 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5612 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5613 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5614 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5615 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5616 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5617 Mnemonic == "bxns" || Mnemonic == "blxns" || 5618 (Mnemonic == "movs" && isThumb()))) { 5619 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5620 CarrySetting = true; 5621 } 5622 5623 // The "cps" instruction can have a interrupt mode operand which is glued into 5624 // the mnemonic. Check if this is the case, split it and parse the imod op 5625 if (Mnemonic.startswith("cps")) { 5626 // Split out any imod code. 5627 unsigned IMod = 5628 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5629 .Case("ie", ARM_PROC::IE) 5630 .Case("id", ARM_PROC::ID) 5631 .Default(~0U); 5632 if (IMod != ~0U) { 5633 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5634 ProcessorIMod = IMod; 5635 } 5636 } 5637 5638 // The "it" instruction has the condition mask on the end of the mnemonic. 5639 if (Mnemonic.startswith("it")) { 5640 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5641 Mnemonic = Mnemonic.slice(0, 2); 5642 } 5643 5644 return Mnemonic; 5645 } 5646 5647 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5648 /// inclusion of carry set or predication code operands. 5649 // 5650 // FIXME: It would be nice to autogen this. 5651 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5652 bool &CanAcceptCarrySet, 5653 bool &CanAcceptPredicationCode) { 5654 CanAcceptCarrySet = 5655 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5656 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5657 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5658 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5659 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5660 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5661 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5662 (!isThumb() && 5663 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5664 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5665 5666 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5667 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5668 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5669 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5670 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5671 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5672 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5673 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5674 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5675 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5676 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5677 Mnemonic == "vmovx" || Mnemonic == "vins") { 5678 // These mnemonics are never predicable 5679 CanAcceptPredicationCode = false; 5680 } else if (!isThumb()) { 5681 // Some instructions are only predicable in Thumb mode 5682 CanAcceptPredicationCode = 5683 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5684 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5685 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5686 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5687 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5688 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5689 !Mnemonic.startswith("srs"); 5690 } else if (isThumbOne()) { 5691 if (hasV6MOps()) 5692 CanAcceptPredicationCode = Mnemonic != "movs"; 5693 else 5694 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5695 } else 5696 CanAcceptPredicationCode = true; 5697 } 5698 5699 // \brief Some Thumb instructions have two operand forms that are not 5700 // available as three operand, convert to two operand form if possible. 5701 // 5702 // FIXME: We would really like to be able to tablegen'erate this. 5703 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5704 bool CarrySetting, 5705 OperandVector &Operands) { 5706 if (Operands.size() != 6) 5707 return; 5708 5709 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5710 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5711 if (!Op3.isReg() || !Op4.isReg()) 5712 return; 5713 5714 auto Op3Reg = Op3.getReg(); 5715 auto Op4Reg = Op4.getReg(); 5716 5717 // For most Thumb2 cases we just generate the 3 operand form and reduce 5718 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5719 // won't accept SP or PC so we do the transformation here taking care 5720 // with immediate range in the 'add sp, sp #imm' case. 5721 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5722 if (isThumbTwo()) { 5723 if (Mnemonic != "add") 5724 return; 5725 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5726 (Op5.isReg() && Op5.getReg() == ARM::PC); 5727 if (!TryTransform) { 5728 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5729 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5730 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5731 Op5.isImm() && !Op5.isImm0_508s4()); 5732 } 5733 if (!TryTransform) 5734 return; 5735 } else if (!isThumbOne()) 5736 return; 5737 5738 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5739 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5740 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5741 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5742 return; 5743 5744 // If first 2 operands of a 3 operand instruction are the same 5745 // then transform to 2 operand version of the same instruction 5746 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5747 bool Transform = Op3Reg == Op4Reg; 5748 5749 // For communtative operations, we might be able to transform if we swap 5750 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5751 // as tADDrsp. 5752 const ARMOperand *LastOp = &Op5; 5753 bool Swap = false; 5754 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5755 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5756 Mnemonic == "and" || Mnemonic == "eor" || 5757 Mnemonic == "adc" || Mnemonic == "orr")) { 5758 Swap = true; 5759 LastOp = &Op4; 5760 Transform = true; 5761 } 5762 5763 // If both registers are the same then remove one of them from 5764 // the operand list, with certain exceptions. 5765 if (Transform) { 5766 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5767 // 2 operand forms don't exist. 5768 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5769 LastOp->isReg()) 5770 Transform = false; 5771 5772 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5773 // 3-bits because the ARMARM says not to. 5774 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5775 Transform = false; 5776 } 5777 5778 if (Transform) { 5779 if (Swap) 5780 std::swap(Op4, Op5); 5781 Operands.erase(Operands.begin() + 3); 5782 } 5783 } 5784 5785 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5786 OperandVector &Operands) { 5787 // FIXME: This is all horribly hacky. We really need a better way to deal 5788 // with optional operands like this in the matcher table. 5789 5790 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5791 // another does not. Specifically, the MOVW instruction does not. So we 5792 // special case it here and remove the defaulted (non-setting) cc_out 5793 // operand if that's the instruction we're trying to match. 5794 // 5795 // We do this as post-processing of the explicit operands rather than just 5796 // conditionally adding the cc_out in the first place because we need 5797 // to check the type of the parsed immediate operand. 5798 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5799 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5800 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5801 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5802 return true; 5803 5804 // Register-register 'add' for thumb does not have a cc_out operand 5805 // when there are only two register operands. 5806 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5807 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5808 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5809 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5810 return true; 5811 // Register-register 'add' for thumb does not have a cc_out operand 5812 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5813 // have to check the immediate range here since Thumb2 has a variant 5814 // that can handle a different range and has a cc_out operand. 5815 if (((isThumb() && Mnemonic == "add") || 5816 (isThumbTwo() && Mnemonic == "sub")) && 5817 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5818 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5819 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5820 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5821 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5822 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5823 return true; 5824 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5825 // imm0_4095 variant. That's the least-preferred variant when 5826 // selecting via the generic "add" mnemonic, so to know that we 5827 // should remove the cc_out operand, we have to explicitly check that 5828 // it's not one of the other variants. Ugh. 5829 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5830 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5831 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5832 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5833 // Nest conditions rather than one big 'if' statement for readability. 5834 // 5835 // If both registers are low, we're in an IT block, and the immediate is 5836 // in range, we should use encoding T1 instead, which has a cc_out. 5837 if (inITBlock() && 5838 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5839 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5840 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5841 return false; 5842 // Check against T3. If the second register is the PC, this is an 5843 // alternate form of ADR, which uses encoding T4, so check for that too. 5844 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5845 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5846 return false; 5847 5848 // Otherwise, we use encoding T4, which does not have a cc_out 5849 // operand. 5850 return true; 5851 } 5852 5853 // The thumb2 multiply instruction doesn't have a CCOut register, so 5854 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5855 // use the 16-bit encoding or not. 5856 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5857 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5858 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5859 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5860 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5861 // If the registers aren't low regs, the destination reg isn't the 5862 // same as one of the source regs, or the cc_out operand is zero 5863 // outside of an IT block, we have to use the 32-bit encoding, so 5864 // remove the cc_out operand. 5865 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5866 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5867 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5868 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5869 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5870 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5871 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5872 return true; 5873 5874 // Also check the 'mul' syntax variant that doesn't specify an explicit 5875 // destination register. 5876 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5877 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5878 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5879 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5880 // If the registers aren't low regs or the cc_out operand is zero 5881 // outside of an IT block, we have to use the 32-bit encoding, so 5882 // remove the cc_out operand. 5883 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5884 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5885 !inITBlock())) 5886 return true; 5887 5888 5889 5890 // Register-register 'add/sub' for thumb does not have a cc_out operand 5891 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5892 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5893 // right, this will result in better diagnostics (which operand is off) 5894 // anyway. 5895 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5896 (Operands.size() == 5 || Operands.size() == 6) && 5897 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5898 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5899 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5900 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5901 (Operands.size() == 6 && 5902 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5903 return true; 5904 5905 return false; 5906 } 5907 5908 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5909 OperandVector &Operands) { 5910 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5911 unsigned RegIdx = 3; 5912 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5913 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5914 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5915 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5916 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5917 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5918 RegIdx = 4; 5919 5920 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5921 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5922 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5923 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5924 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5925 return true; 5926 } 5927 return false; 5928 } 5929 5930 static bool isDataTypeToken(StringRef Tok) { 5931 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5932 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5933 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5934 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5935 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5936 Tok == ".f" || Tok == ".d"; 5937 } 5938 5939 // FIXME: This bit should probably be handled via an explicit match class 5940 // in the .td files that matches the suffix instead of having it be 5941 // a literal string token the way it is now. 5942 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5943 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5944 } 5945 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5946 unsigned VariantID); 5947 5948 static bool RequiresVFPRegListValidation(StringRef Inst, 5949 bool &AcceptSinglePrecisionOnly, 5950 bool &AcceptDoublePrecisionOnly) { 5951 if (Inst.size() < 7) 5952 return false; 5953 5954 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5955 StringRef AddressingMode = Inst.substr(4, 2); 5956 if (AddressingMode == "ia" || AddressingMode == "db" || 5957 AddressingMode == "ea" || AddressingMode == "fd") { 5958 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5959 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5960 return true; 5961 } 5962 } 5963 5964 return false; 5965 } 5966 5967 /// Parse an arm instruction mnemonic followed by its operands. 5968 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5969 SMLoc NameLoc, OperandVector &Operands) { 5970 MCAsmParser &Parser = getParser(); 5971 // FIXME: Can this be done via tablegen in some fashion? 5972 bool RequireVFPRegisterListCheck; 5973 bool AcceptSinglePrecisionOnly; 5974 bool AcceptDoublePrecisionOnly; 5975 RequireVFPRegisterListCheck = 5976 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5977 AcceptDoublePrecisionOnly); 5978 5979 // Apply mnemonic aliases before doing anything else, as the destination 5980 // mnemonic may include suffices and we want to handle them normally. 5981 // The generic tblgen'erated code does this later, at the start of 5982 // MatchInstructionImpl(), but that's too late for aliases that include 5983 // any sort of suffix. 5984 uint64_t AvailableFeatures = getAvailableFeatures(); 5985 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5986 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5987 5988 // First check for the ARM-specific .req directive. 5989 if (Parser.getTok().is(AsmToken::Identifier) && 5990 Parser.getTok().getIdentifier() == ".req") { 5991 parseDirectiveReq(Name, NameLoc); 5992 // We always return 'error' for this, as we're done with this 5993 // statement and don't need to match the 'instruction." 5994 return true; 5995 } 5996 5997 // Create the leading tokens for the mnemonic, split by '.' characters. 5998 size_t Start = 0, Next = Name.find('.'); 5999 StringRef Mnemonic = Name.slice(Start, Next); 6000 6001 // Split out the predication code and carry setting flag from the mnemonic. 6002 unsigned PredicationCode; 6003 unsigned ProcessorIMod; 6004 bool CarrySetting; 6005 StringRef ITMask; 6006 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 6007 ProcessorIMod, ITMask); 6008 6009 // In Thumb1, only the branch (B) instruction can be predicated. 6010 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6011 Parser.eatToEndOfStatement(); 6012 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6013 } 6014 6015 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6016 6017 // Handle the IT instruction ITMask. Convert it to a bitmask. This 6018 // is the mask as it will be for the IT encoding if the conditional 6019 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 6020 // where the conditional bit0 is zero, the instruction post-processing 6021 // will adjust the mask accordingly. 6022 if (Mnemonic == "it") { 6023 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 6024 if (ITMask.size() > 3) { 6025 Parser.eatToEndOfStatement(); 6026 return Error(Loc, "too many conditions on IT instruction"); 6027 } 6028 unsigned Mask = 8; 6029 for (unsigned i = ITMask.size(); i != 0; --i) { 6030 char pos = ITMask[i - 1]; 6031 if (pos != 't' && pos != 'e') { 6032 Parser.eatToEndOfStatement(); 6033 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6034 } 6035 Mask >>= 1; 6036 if (ITMask[i - 1] == 't') 6037 Mask |= 8; 6038 } 6039 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6040 } 6041 6042 // FIXME: This is all a pretty gross hack. We should automatically handle 6043 // optional operands like this via tblgen. 6044 6045 // Next, add the CCOut and ConditionCode operands, if needed. 6046 // 6047 // For mnemonics which can ever incorporate a carry setting bit or predication 6048 // code, our matching model involves us always generating CCOut and 6049 // ConditionCode operands to match the mnemonic "as written" and then we let 6050 // the matcher deal with finding the right instruction or generating an 6051 // appropriate error. 6052 bool CanAcceptCarrySet, CanAcceptPredicationCode; 6053 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 6054 6055 // If we had a carry-set on an instruction that can't do that, issue an 6056 // error. 6057 if (!CanAcceptCarrySet && CarrySetting) { 6058 Parser.eatToEndOfStatement(); 6059 return Error(NameLoc, "instruction '" + Mnemonic + 6060 "' can not set flags, but 's' suffix specified"); 6061 } 6062 // If we had a predication code on an instruction that can't do that, issue an 6063 // error. 6064 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6065 Parser.eatToEndOfStatement(); 6066 return Error(NameLoc, "instruction '" + Mnemonic + 6067 "' is not predicable, but condition code specified"); 6068 } 6069 6070 // Add the carry setting operand, if necessary. 6071 if (CanAcceptCarrySet) { 6072 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6073 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6074 Loc)); 6075 } 6076 6077 // Add the predication code operand, if necessary. 6078 if (CanAcceptPredicationCode) { 6079 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6080 CarrySetting); 6081 Operands.push_back(ARMOperand::CreateCondCode( 6082 ARMCC::CondCodes(PredicationCode), Loc)); 6083 } 6084 6085 // Add the processor imod operand, if necessary. 6086 if (ProcessorIMod) { 6087 Operands.push_back(ARMOperand::CreateImm( 6088 MCConstantExpr::create(ProcessorIMod, getContext()), 6089 NameLoc, NameLoc)); 6090 } else if (Mnemonic == "cps" && isMClass()) { 6091 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6092 } 6093 6094 // Add the remaining tokens in the mnemonic. 6095 while (Next != StringRef::npos) { 6096 Start = Next; 6097 Next = Name.find('.', Start + 1); 6098 StringRef ExtraToken = Name.slice(Start, Next); 6099 6100 // Some NEON instructions have an optional datatype suffix that is 6101 // completely ignored. Check for that. 6102 if (isDataTypeToken(ExtraToken) && 6103 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6104 continue; 6105 6106 // For for ARM mode generate an error if the .n qualifier is used. 6107 if (ExtraToken == ".n" && !isThumb()) { 6108 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6109 Parser.eatToEndOfStatement(); 6110 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6111 "arm mode"); 6112 } 6113 6114 // The .n qualifier is always discarded as that is what the tables 6115 // and matcher expect. In ARM mode the .w qualifier has no effect, 6116 // so discard it to avoid errors that can be caused by the matcher. 6117 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6118 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6119 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6120 } 6121 } 6122 6123 // Read the remaining operands. 6124 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6125 // Read the first operand. 6126 if (parseOperand(Operands, Mnemonic)) { 6127 Parser.eatToEndOfStatement(); 6128 return true; 6129 } 6130 6131 while (getLexer().is(AsmToken::Comma)) { 6132 Parser.Lex(); // Eat the comma. 6133 6134 // Parse and remember the operand. 6135 if (parseOperand(Operands, Mnemonic)) { 6136 Parser.eatToEndOfStatement(); 6137 return true; 6138 } 6139 } 6140 } 6141 6142 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6143 SMLoc Loc = getLexer().getLoc(); 6144 Parser.eatToEndOfStatement(); 6145 return Error(Loc, "unexpected token in argument list"); 6146 } 6147 6148 Parser.Lex(); // Consume the EndOfStatement 6149 6150 if (RequireVFPRegisterListCheck) { 6151 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 6152 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 6153 return Error(Op.getStartLoc(), 6154 "VFP/Neon single precision register expected"); 6155 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 6156 return Error(Op.getStartLoc(), 6157 "VFP/Neon double precision register expected"); 6158 } 6159 6160 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6161 6162 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6163 // do and don't have a cc_out optional-def operand. With some spot-checks 6164 // of the operand list, we can figure out which variant we're trying to 6165 // parse and adjust accordingly before actually matching. We shouldn't ever 6166 // try to remove a cc_out operand that was explicitly set on the 6167 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6168 // table driven matcher doesn't fit well with the ARM instruction set. 6169 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6170 Operands.erase(Operands.begin() + 1); 6171 6172 // Some instructions have the same mnemonic, but don't always 6173 // have a predicate. Distinguish them here and delete the 6174 // predicate if needed. 6175 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 6176 Operands.erase(Operands.begin() + 1); 6177 6178 // ARM mode 'blx' need special handling, as the register operand version 6179 // is predicable, but the label operand version is not. So, we can't rely 6180 // on the Mnemonic based checking to correctly figure out when to put 6181 // a k_CondCode operand in the list. If we're trying to match the label 6182 // version, remove the k_CondCode operand here. 6183 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6184 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6185 Operands.erase(Operands.begin() + 1); 6186 6187 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6188 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6189 // a single GPRPair reg operand is used in the .td file to replace the two 6190 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6191 // expressed as a GPRPair, so we have to manually merge them. 6192 // FIXME: We would really like to be able to tablegen'erate this. 6193 if (!isThumb() && Operands.size() > 4 && 6194 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6195 Mnemonic == "stlexd")) { 6196 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6197 unsigned Idx = isLoad ? 2 : 3; 6198 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6199 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6200 6201 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6202 // Adjust only if Op1 and Op2 are GPRs. 6203 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6204 MRC.contains(Op2.getReg())) { 6205 unsigned Reg1 = Op1.getReg(); 6206 unsigned Reg2 = Op2.getReg(); 6207 unsigned Rt = MRI->getEncodingValue(Reg1); 6208 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6209 6210 // Rt2 must be Rt + 1 and Rt must be even. 6211 if (Rt + 1 != Rt2 || (Rt & 1)) { 6212 Error(Op2.getStartLoc(), isLoad 6213 ? "destination operands must be sequential" 6214 : "source operands must be sequential"); 6215 return true; 6216 } 6217 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6218 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6219 Operands[Idx] = 6220 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6221 Operands.erase(Operands.begin() + Idx + 1); 6222 } 6223 } 6224 6225 // GNU Assembler extension (compatibility) 6226 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 6227 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6228 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6229 if (Op3.isMem()) { 6230 assert(Op2.isReg() && "expected register argument"); 6231 6232 unsigned SuperReg = MRI->getMatchingSuperReg( 6233 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 6234 6235 assert(SuperReg && "expected register pair"); 6236 6237 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 6238 6239 Operands.insert( 6240 Operands.begin() + 3, 6241 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6242 } 6243 } 6244 6245 // FIXME: As said above, this is all a pretty gross hack. This instruction 6246 // does not fit with other "subs" and tblgen. 6247 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6248 // so the Mnemonic is the original name "subs" and delete the predicate 6249 // operand so it will match the table entry. 6250 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6251 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6252 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6253 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6254 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6255 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6256 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6257 Operands.erase(Operands.begin() + 1); 6258 } 6259 return false; 6260 } 6261 6262 // Validate context-sensitive operand constraints. 6263 6264 // return 'true' if register list contains non-low GPR registers, 6265 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6266 // 'containsReg' to true. 6267 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6268 unsigned Reg, unsigned HiReg, 6269 bool &containsReg) { 6270 containsReg = false; 6271 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6272 unsigned OpReg = Inst.getOperand(i).getReg(); 6273 if (OpReg == Reg) 6274 containsReg = true; 6275 // Anything other than a low register isn't legal here. 6276 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6277 return true; 6278 } 6279 return false; 6280 } 6281 6282 // Check if the specified regisgter is in the register list of the inst, 6283 // starting at the indicated operand number. 6284 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6285 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6286 unsigned OpReg = Inst.getOperand(i).getReg(); 6287 if (OpReg == Reg) 6288 return true; 6289 } 6290 return false; 6291 } 6292 6293 // Return true if instruction has the interesting property of being 6294 // allowed in IT blocks, but not being predicable. 6295 static bool instIsBreakpoint(const MCInst &Inst) { 6296 return Inst.getOpcode() == ARM::tBKPT || 6297 Inst.getOpcode() == ARM::BKPT || 6298 Inst.getOpcode() == ARM::tHLT || 6299 Inst.getOpcode() == ARM::HLT; 6300 6301 } 6302 6303 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6304 const OperandVector &Operands, 6305 unsigned ListNo, bool IsARPop) { 6306 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6307 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6308 6309 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6310 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6311 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6312 6313 if (!IsARPop && ListContainsSP) 6314 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6315 "SP may not be in the register list"); 6316 else if (ListContainsPC && ListContainsLR) 6317 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6318 "PC and LR may not be in the register list simultaneously"); 6319 else if (inITBlock() && !lastInITBlock() && ListContainsPC) 6320 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6321 "instruction must be outside of IT block or the last " 6322 "instruction in an IT block"); 6323 return false; 6324 } 6325 6326 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6327 const OperandVector &Operands, 6328 unsigned ListNo) { 6329 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6330 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6331 6332 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6333 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6334 6335 if (ListContainsSP && ListContainsPC) 6336 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6337 "SP and PC may not be in the register list"); 6338 else if (ListContainsSP) 6339 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6340 "SP may not be in the register list"); 6341 else if (ListContainsPC) 6342 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6343 "PC may not be in the register list"); 6344 return false; 6345 } 6346 6347 // FIXME: We would really like to be able to tablegen'erate this. 6348 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6349 const OperandVector &Operands) { 6350 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6351 SMLoc Loc = Operands[0]->getStartLoc(); 6352 6353 // Check the IT block state first. 6354 // NOTE: BKPT and HLT instructions have the interesting property of being 6355 // allowed in IT blocks, but not being predicable. They just always execute. 6356 if (inITBlock() && !instIsBreakpoint(Inst)) { 6357 // The instruction must be predicable. 6358 if (!MCID.isPredicable()) 6359 return Error(Loc, "instructions in IT block must be predicable"); 6360 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6361 if (Cond != currentITCond()) { 6362 // Find the condition code Operand to get its SMLoc information. 6363 SMLoc CondLoc; 6364 for (unsigned I = 1; I < Operands.size(); ++I) 6365 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6366 CondLoc = Operands[I]->getStartLoc(); 6367 return Error(CondLoc, "incorrect condition in IT block; got '" + 6368 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6369 "', but expected '" + 6370 ARMCondCodeToString(ARMCC::CondCodes(currentITCond())) + "'"); 6371 } 6372 // Check for non-'al' condition codes outside of the IT block. 6373 } else if (isThumbTwo() && MCID.isPredicable() && 6374 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6375 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6376 Inst.getOpcode() != ARM::t2Bcc) { 6377 return Error(Loc, "predicated instructions must be in IT block"); 6378 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6379 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6380 ARMCC::AL) { 6381 return Warning(Loc, "predicated instructions should be in IT block"); 6382 } 6383 6384 const unsigned Opcode = Inst.getOpcode(); 6385 switch (Opcode) { 6386 case ARM::LDRD: 6387 case ARM::LDRD_PRE: 6388 case ARM::LDRD_POST: { 6389 const unsigned RtReg = Inst.getOperand(0).getReg(); 6390 6391 // Rt can't be R14. 6392 if (RtReg == ARM::LR) 6393 return Error(Operands[3]->getStartLoc(), 6394 "Rt can't be R14"); 6395 6396 const unsigned Rt = MRI->getEncodingValue(RtReg); 6397 // Rt must be even-numbered. 6398 if ((Rt & 1) == 1) 6399 return Error(Operands[3]->getStartLoc(), 6400 "Rt must be even-numbered"); 6401 6402 // Rt2 must be Rt + 1. 6403 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6404 if (Rt2 != Rt + 1) 6405 return Error(Operands[3]->getStartLoc(), 6406 "destination operands must be sequential"); 6407 6408 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6409 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6410 // For addressing modes with writeback, the base register needs to be 6411 // different from the destination registers. 6412 if (Rn == Rt || Rn == Rt2) 6413 return Error(Operands[3]->getStartLoc(), 6414 "base register needs to be different from destination " 6415 "registers"); 6416 } 6417 6418 return false; 6419 } 6420 case ARM::t2LDRDi8: 6421 case ARM::t2LDRD_PRE: 6422 case ARM::t2LDRD_POST: { 6423 // Rt2 must be different from Rt. 6424 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6425 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6426 if (Rt2 == Rt) 6427 return Error(Operands[3]->getStartLoc(), 6428 "destination operands can't be identical"); 6429 return false; 6430 } 6431 case ARM::t2BXJ: { 6432 const unsigned RmReg = Inst.getOperand(0).getReg(); 6433 // Rm = SP is no longer unpredictable in v8-A 6434 if (RmReg == ARM::SP && !hasV8Ops()) 6435 return Error(Operands[2]->getStartLoc(), 6436 "r13 (SP) is an unpredictable operand to BXJ"); 6437 return false; 6438 } 6439 case ARM::STRD: { 6440 // Rt2 must be Rt + 1. 6441 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6442 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6443 if (Rt2 != Rt + 1) 6444 return Error(Operands[3]->getStartLoc(), 6445 "source operands must be sequential"); 6446 return false; 6447 } 6448 case ARM::STRD_PRE: 6449 case ARM::STRD_POST: { 6450 // Rt2 must be Rt + 1. 6451 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6452 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6453 if (Rt2 != Rt + 1) 6454 return Error(Operands[3]->getStartLoc(), 6455 "source operands must be sequential"); 6456 return false; 6457 } 6458 case ARM::STR_PRE_IMM: 6459 case ARM::STR_PRE_REG: 6460 case ARM::STR_POST_IMM: 6461 case ARM::STR_POST_REG: 6462 case ARM::STRH_PRE: 6463 case ARM::STRH_POST: 6464 case ARM::STRB_PRE_IMM: 6465 case ARM::STRB_PRE_REG: 6466 case ARM::STRB_POST_IMM: 6467 case ARM::STRB_POST_REG: { 6468 // Rt must be different from Rn. 6469 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6470 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6471 6472 if (Rt == Rn) 6473 return Error(Operands[3]->getStartLoc(), 6474 "source register and base register can't be identical"); 6475 return false; 6476 } 6477 case ARM::LDR_PRE_IMM: 6478 case ARM::LDR_PRE_REG: 6479 case ARM::LDR_POST_IMM: 6480 case ARM::LDR_POST_REG: 6481 case ARM::LDRH_PRE: 6482 case ARM::LDRH_POST: 6483 case ARM::LDRSH_PRE: 6484 case ARM::LDRSH_POST: 6485 case ARM::LDRB_PRE_IMM: 6486 case ARM::LDRB_PRE_REG: 6487 case ARM::LDRB_POST_IMM: 6488 case ARM::LDRB_POST_REG: 6489 case ARM::LDRSB_PRE: 6490 case ARM::LDRSB_POST: { 6491 // Rt must be different from Rn. 6492 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6493 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6494 6495 if (Rt == Rn) 6496 return Error(Operands[3]->getStartLoc(), 6497 "destination register and base register can't be identical"); 6498 return false; 6499 } 6500 case ARM::SBFX: 6501 case ARM::UBFX: { 6502 // Width must be in range [1, 32-lsb]. 6503 unsigned LSB = Inst.getOperand(2).getImm(); 6504 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6505 if (Widthm1 >= 32 - LSB) 6506 return Error(Operands[5]->getStartLoc(), 6507 "bitfield width must be in range [1,32-lsb]"); 6508 return false; 6509 } 6510 // Notionally handles ARM::tLDMIA_UPD too. 6511 case ARM::tLDMIA: { 6512 // If we're parsing Thumb2, the .w variant is available and handles 6513 // most cases that are normally illegal for a Thumb1 LDM instruction. 6514 // We'll make the transformation in processInstruction() if necessary. 6515 // 6516 // Thumb LDM instructions are writeback iff the base register is not 6517 // in the register list. 6518 unsigned Rn = Inst.getOperand(0).getReg(); 6519 bool HasWritebackToken = 6520 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6521 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6522 bool ListContainsBase; 6523 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6524 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6525 "registers must be in range r0-r7"); 6526 // If we should have writeback, then there should be a '!' token. 6527 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6528 return Error(Operands[2]->getStartLoc(), 6529 "writeback operator '!' expected"); 6530 // If we should not have writeback, there must not be a '!'. This is 6531 // true even for the 32-bit wide encodings. 6532 if (ListContainsBase && HasWritebackToken) 6533 return Error(Operands[3]->getStartLoc(), 6534 "writeback operator '!' not allowed when base register " 6535 "in register list"); 6536 6537 if (validatetLDMRegList(Inst, Operands, 3)) 6538 return true; 6539 break; 6540 } 6541 case ARM::LDMIA_UPD: 6542 case ARM::LDMDB_UPD: 6543 case ARM::LDMIB_UPD: 6544 case ARM::LDMDA_UPD: 6545 // ARM variants loading and updating the same register are only officially 6546 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6547 if (!hasV7Ops()) 6548 break; 6549 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6550 return Error(Operands.back()->getStartLoc(), 6551 "writeback register not allowed in register list"); 6552 break; 6553 case ARM::t2LDMIA: 6554 case ARM::t2LDMDB: 6555 if (validatetLDMRegList(Inst, Operands, 3)) 6556 return true; 6557 break; 6558 case ARM::t2STMIA: 6559 case ARM::t2STMDB: 6560 if (validatetSTMRegList(Inst, Operands, 3)) 6561 return true; 6562 break; 6563 case ARM::t2LDMIA_UPD: 6564 case ARM::t2LDMDB_UPD: 6565 case ARM::t2STMIA_UPD: 6566 case ARM::t2STMDB_UPD: { 6567 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6568 return Error(Operands.back()->getStartLoc(), 6569 "writeback register not allowed in register list"); 6570 6571 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6572 if (validatetLDMRegList(Inst, Operands, 3)) 6573 return true; 6574 } else { 6575 if (validatetSTMRegList(Inst, Operands, 3)) 6576 return true; 6577 } 6578 break; 6579 } 6580 case ARM::sysLDMIA_UPD: 6581 case ARM::sysLDMDA_UPD: 6582 case ARM::sysLDMDB_UPD: 6583 case ARM::sysLDMIB_UPD: 6584 if (!listContainsReg(Inst, 3, ARM::PC)) 6585 return Error(Operands[4]->getStartLoc(), 6586 "writeback register only allowed on system LDM " 6587 "if PC in register-list"); 6588 break; 6589 case ARM::sysSTMIA_UPD: 6590 case ARM::sysSTMDA_UPD: 6591 case ARM::sysSTMDB_UPD: 6592 case ARM::sysSTMIB_UPD: 6593 return Error(Operands[2]->getStartLoc(), 6594 "system STM cannot have writeback register"); 6595 case ARM::tMUL: { 6596 // The second source operand must be the same register as the destination 6597 // operand. 6598 // 6599 // In this case, we must directly check the parsed operands because the 6600 // cvtThumbMultiply() function is written in such a way that it guarantees 6601 // this first statement is always true for the new Inst. Essentially, the 6602 // destination is unconditionally copied into the second source operand 6603 // without checking to see if it matches what we actually parsed. 6604 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6605 ((ARMOperand &)*Operands[5]).getReg()) && 6606 (((ARMOperand &)*Operands[3]).getReg() != 6607 ((ARMOperand &)*Operands[4]).getReg())) { 6608 return Error(Operands[3]->getStartLoc(), 6609 "destination register must match source register"); 6610 } 6611 break; 6612 } 6613 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6614 // so only issue a diagnostic for thumb1. The instructions will be 6615 // switched to the t2 encodings in processInstruction() if necessary. 6616 case ARM::tPOP: { 6617 bool ListContainsBase; 6618 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6619 !isThumbTwo()) 6620 return Error(Operands[2]->getStartLoc(), 6621 "registers must be in range r0-r7 or pc"); 6622 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6623 return true; 6624 break; 6625 } 6626 case ARM::tPUSH: { 6627 bool ListContainsBase; 6628 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6629 !isThumbTwo()) 6630 return Error(Operands[2]->getStartLoc(), 6631 "registers must be in range r0-r7 or lr"); 6632 if (validatetSTMRegList(Inst, Operands, 2)) 6633 return true; 6634 break; 6635 } 6636 case ARM::tSTMIA_UPD: { 6637 bool ListContainsBase, InvalidLowList; 6638 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6639 0, ListContainsBase); 6640 if (InvalidLowList && !isThumbTwo()) 6641 return Error(Operands[4]->getStartLoc(), 6642 "registers must be in range r0-r7"); 6643 6644 // This would be converted to a 32-bit stm, but that's not valid if the 6645 // writeback register is in the list. 6646 if (InvalidLowList && ListContainsBase) 6647 return Error(Operands[4]->getStartLoc(), 6648 "writeback operator '!' not allowed when base register " 6649 "in register list"); 6650 6651 if (validatetSTMRegList(Inst, Operands, 4)) 6652 return true; 6653 break; 6654 } 6655 case ARM::tADDrSP: { 6656 // If the non-SP source operand and the destination operand are not the 6657 // same, we need thumb2 (for the wide encoding), or we have an error. 6658 if (!isThumbTwo() && 6659 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6660 return Error(Operands[4]->getStartLoc(), 6661 "source register must be the same as destination"); 6662 } 6663 break; 6664 } 6665 // Final range checking for Thumb unconditional branch instructions. 6666 case ARM::tB: 6667 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6668 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6669 break; 6670 case ARM::t2B: { 6671 int op = (Operands[2]->isImm()) ? 2 : 3; 6672 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6673 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6674 break; 6675 } 6676 // Final range checking for Thumb conditional branch instructions. 6677 case ARM::tBcc: 6678 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6679 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6680 break; 6681 case ARM::t2Bcc: { 6682 int Op = (Operands[2]->isImm()) ? 2 : 3; 6683 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6684 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6685 break; 6686 } 6687 case ARM::tCBZ: 6688 case ARM::tCBNZ: { 6689 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6690 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6691 break; 6692 } 6693 case ARM::MOVi16: 6694 case ARM::t2MOVi16: 6695 case ARM::t2MOVTi16: 6696 { 6697 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6698 // especially when we turn it into a movw and the expression <symbol> does 6699 // not have a :lower16: or :upper16 as part of the expression. We don't 6700 // want the behavior of silently truncating, which can be unexpected and 6701 // lead to bugs that are difficult to find since this is an easy mistake 6702 // to make. 6703 int i = (Operands[3]->isImm()) ? 3 : 4; 6704 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6705 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6706 if (CE) break; 6707 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6708 if (!E) break; 6709 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6710 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6711 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6712 return Error( 6713 Op.getStartLoc(), 6714 "immediate expression for mov requires :lower16: or :upper16"); 6715 break; 6716 } 6717 case ARM::HINT: 6718 case ARM::t2HINT: { 6719 if (hasRAS()) { 6720 // ESB is not predicable (pred must be AL) 6721 unsigned Imm8 = Inst.getOperand(0).getImm(); 6722 unsigned Pred = Inst.getOperand(1).getImm(); 6723 if (Imm8 == 0x10 && Pred != ARMCC::AL) 6724 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6725 "predicable, but condition " 6726 "code specified"); 6727 } 6728 // Without the RAS extension, this behaves as any other unallocated hint. 6729 break; 6730 } 6731 } 6732 6733 return false; 6734 } 6735 6736 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6737 switch(Opc) { 6738 default: llvm_unreachable("unexpected opcode!"); 6739 // VST1LN 6740 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6741 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6742 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6743 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6744 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6745 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6746 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6747 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6748 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6749 6750 // VST2LN 6751 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6752 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6753 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6754 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6755 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6756 6757 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6758 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6759 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6760 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6761 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6762 6763 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6764 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6765 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6766 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6767 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6768 6769 // VST3LN 6770 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6771 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6772 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6773 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6774 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6775 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6776 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6777 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6778 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6779 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6780 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6781 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6782 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6783 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6784 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6785 6786 // VST3 6787 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6788 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6789 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6790 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6791 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6792 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6793 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6794 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6795 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6796 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6797 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6798 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6799 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6800 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6801 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6802 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6803 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6804 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6805 6806 // VST4LN 6807 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6808 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6809 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6810 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6811 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6812 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6813 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6814 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6815 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6816 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6817 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6818 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6819 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6820 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6821 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6822 6823 // VST4 6824 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6825 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6826 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6827 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6828 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6829 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6830 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6831 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6832 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6833 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6834 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6835 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6836 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6837 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6838 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6839 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6840 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6841 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6842 } 6843 } 6844 6845 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6846 switch(Opc) { 6847 default: llvm_unreachable("unexpected opcode!"); 6848 // VLD1LN 6849 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6850 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6851 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6852 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6853 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6854 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6855 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6856 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6857 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6858 6859 // VLD2LN 6860 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6861 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6862 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6863 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6864 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6865 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6866 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6867 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6868 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6869 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6870 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6871 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6872 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6873 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6874 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6875 6876 // VLD3DUP 6877 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6878 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6879 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6880 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6881 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6882 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6883 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6884 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6885 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6886 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6887 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6888 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6889 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6890 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6891 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6892 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6893 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6894 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6895 6896 // VLD3LN 6897 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6898 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6899 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6900 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6901 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6902 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6903 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6904 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6905 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6906 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6907 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6908 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6909 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6910 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6911 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6912 6913 // VLD3 6914 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6915 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6916 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6917 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6918 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6919 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6920 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6921 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6922 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6923 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6924 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6925 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6926 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6927 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6928 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6929 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6930 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6931 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6932 6933 // VLD4LN 6934 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6935 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6936 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6937 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6938 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6939 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6940 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6941 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6942 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6943 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6944 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6945 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6946 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6947 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6948 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6949 6950 // VLD4DUP 6951 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6952 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6953 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6954 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6955 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6956 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6957 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6958 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6959 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6960 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6961 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6962 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6963 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6964 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6965 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6966 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6967 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6968 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6969 6970 // VLD4 6971 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6972 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6973 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6974 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6975 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6976 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6977 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6978 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6979 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6980 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6981 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6982 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6983 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6984 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6985 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6986 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6987 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6988 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6989 } 6990 } 6991 6992 bool ARMAsmParser::processInstruction(MCInst &Inst, 6993 const OperandVector &Operands, 6994 MCStreamer &Out) { 6995 switch (Inst.getOpcode()) { 6996 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6997 case ARM::LDRT_POST: 6998 case ARM::LDRBT_POST: { 6999 const unsigned Opcode = 7000 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 7001 : ARM::LDRBT_POST_IMM; 7002 MCInst TmpInst; 7003 TmpInst.setOpcode(Opcode); 7004 TmpInst.addOperand(Inst.getOperand(0)); 7005 TmpInst.addOperand(Inst.getOperand(1)); 7006 TmpInst.addOperand(Inst.getOperand(1)); 7007 TmpInst.addOperand(MCOperand::createReg(0)); 7008 TmpInst.addOperand(MCOperand::createImm(0)); 7009 TmpInst.addOperand(Inst.getOperand(2)); 7010 TmpInst.addOperand(Inst.getOperand(3)); 7011 Inst = TmpInst; 7012 return true; 7013 } 7014 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 7015 case ARM::STRT_POST: 7016 case ARM::STRBT_POST: { 7017 const unsigned Opcode = 7018 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 7019 : ARM::STRBT_POST_IMM; 7020 MCInst TmpInst; 7021 TmpInst.setOpcode(Opcode); 7022 TmpInst.addOperand(Inst.getOperand(1)); 7023 TmpInst.addOperand(Inst.getOperand(0)); 7024 TmpInst.addOperand(Inst.getOperand(1)); 7025 TmpInst.addOperand(MCOperand::createReg(0)); 7026 TmpInst.addOperand(MCOperand::createImm(0)); 7027 TmpInst.addOperand(Inst.getOperand(2)); 7028 TmpInst.addOperand(Inst.getOperand(3)); 7029 Inst = TmpInst; 7030 return true; 7031 } 7032 // Alias for alternate form of 'ADR Rd, #imm' instruction. 7033 case ARM::ADDri: { 7034 if (Inst.getOperand(1).getReg() != ARM::PC || 7035 Inst.getOperand(5).getReg() != 0 || 7036 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 7037 return false; 7038 MCInst TmpInst; 7039 TmpInst.setOpcode(ARM::ADR); 7040 TmpInst.addOperand(Inst.getOperand(0)); 7041 if (Inst.getOperand(2).isImm()) { 7042 // Immediate (mod_imm) will be in its encoded form, we must unencode it 7043 // before passing it to the ADR instruction. 7044 unsigned Enc = Inst.getOperand(2).getImm(); 7045 TmpInst.addOperand(MCOperand::createImm( 7046 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 7047 } else { 7048 // Turn PC-relative expression into absolute expression. 7049 // Reading PC provides the start of the current instruction + 8 and 7050 // the transform to adr is biased by that. 7051 MCSymbol *Dot = getContext().createTempSymbol(); 7052 Out.EmitLabel(Dot); 7053 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 7054 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 7055 MCSymbolRefExpr::VK_None, 7056 getContext()); 7057 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 7058 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 7059 getContext()); 7060 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 7061 getContext()); 7062 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 7063 } 7064 TmpInst.addOperand(Inst.getOperand(3)); 7065 TmpInst.addOperand(Inst.getOperand(4)); 7066 Inst = TmpInst; 7067 return true; 7068 } 7069 // Aliases for alternate PC+imm syntax of LDR instructions. 7070 case ARM::t2LDRpcrel: 7071 // Select the narrow version if the immediate will fit. 7072 if (Inst.getOperand(1).getImm() > 0 && 7073 Inst.getOperand(1).getImm() <= 0xff && 7074 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 7075 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 7076 Inst.setOpcode(ARM::tLDRpci); 7077 else 7078 Inst.setOpcode(ARM::t2LDRpci); 7079 return true; 7080 case ARM::t2LDRBpcrel: 7081 Inst.setOpcode(ARM::t2LDRBpci); 7082 return true; 7083 case ARM::t2LDRHpcrel: 7084 Inst.setOpcode(ARM::t2LDRHpci); 7085 return true; 7086 case ARM::t2LDRSBpcrel: 7087 Inst.setOpcode(ARM::t2LDRSBpci); 7088 return true; 7089 case ARM::t2LDRSHpcrel: 7090 Inst.setOpcode(ARM::t2LDRSHpci); 7091 return true; 7092 case ARM::LDRConstPool: 7093 case ARM::tLDRConstPool: 7094 case ARM::t2LDRConstPool: { 7095 // Pseudo instruction ldr rt, =immediate is converted to a 7096 // MOV rt, immediate if immediate is known and representable 7097 // otherwise we create a constant pool entry that we load from. 7098 MCInst TmpInst; 7099 if (Inst.getOpcode() == ARM::LDRConstPool) 7100 TmpInst.setOpcode(ARM::LDRi12); 7101 else if (Inst.getOpcode() == ARM::tLDRConstPool) 7102 TmpInst.setOpcode(ARM::tLDRpci); 7103 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 7104 TmpInst.setOpcode(ARM::t2LDRpci); 7105 const ARMOperand &PoolOperand = 7106 static_cast<ARMOperand &>(*Operands[3]); 7107 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 7108 // If SubExprVal is a constant we may be able to use a MOV 7109 if (isa<MCConstantExpr>(SubExprVal) && 7110 Inst.getOperand(0).getReg() != ARM::PC && 7111 Inst.getOperand(0).getReg() != ARM::SP) { 7112 int64_t Value = 7113 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 7114 bool UseMov = true; 7115 bool MovHasS = true; 7116 if (Inst.getOpcode() == ARM::LDRConstPool) { 7117 // ARM Constant 7118 if (ARM_AM::getSOImmVal(Value) != -1) { 7119 Value = ARM_AM::getSOImmVal(Value); 7120 TmpInst.setOpcode(ARM::MOVi); 7121 } 7122 else if (ARM_AM::getSOImmVal(~Value) != -1) { 7123 Value = ARM_AM::getSOImmVal(~Value); 7124 TmpInst.setOpcode(ARM::MVNi); 7125 } 7126 else if (hasV6T2Ops() && 7127 Value >=0 && Value < 65536) { 7128 TmpInst.setOpcode(ARM::MOVi16); 7129 MovHasS = false; 7130 } 7131 else 7132 UseMov = false; 7133 } 7134 else { 7135 // Thumb/Thumb2 Constant 7136 if (hasThumb2() && 7137 ARM_AM::getT2SOImmVal(Value) != -1) 7138 TmpInst.setOpcode(ARM::t2MOVi); 7139 else if (hasThumb2() && 7140 ARM_AM::getT2SOImmVal(~Value) != -1) { 7141 TmpInst.setOpcode(ARM::t2MVNi); 7142 Value = ~Value; 7143 } 7144 else if (hasV8MBaseline() && 7145 Value >=0 && Value < 65536) { 7146 TmpInst.setOpcode(ARM::t2MOVi16); 7147 MovHasS = false; 7148 } 7149 else 7150 UseMov = false; 7151 } 7152 if (UseMov) { 7153 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7154 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7155 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7156 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7157 if (MovHasS) 7158 TmpInst.addOperand(MCOperand::createReg(0)); // S 7159 Inst = TmpInst; 7160 return true; 7161 } 7162 } 7163 // No opportunity to use MOV/MVN create constant pool 7164 const MCExpr *CPLoc = 7165 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7166 PoolOperand.getStartLoc()); 7167 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7168 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7169 if (TmpInst.getOpcode() == ARM::LDRi12) 7170 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7171 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7172 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7173 Inst = TmpInst; 7174 return true; 7175 } 7176 // Handle NEON VST complex aliases. 7177 case ARM::VST1LNdWB_register_Asm_8: 7178 case ARM::VST1LNdWB_register_Asm_16: 7179 case ARM::VST1LNdWB_register_Asm_32: { 7180 MCInst TmpInst; 7181 // Shuffle the operands around so the lane index operand is in the 7182 // right place. 7183 unsigned Spacing; 7184 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7185 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7186 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7187 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7188 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7189 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7190 TmpInst.addOperand(Inst.getOperand(1)); // lane 7191 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7192 TmpInst.addOperand(Inst.getOperand(6)); 7193 Inst = TmpInst; 7194 return true; 7195 } 7196 7197 case ARM::VST2LNdWB_register_Asm_8: 7198 case ARM::VST2LNdWB_register_Asm_16: 7199 case ARM::VST2LNdWB_register_Asm_32: 7200 case ARM::VST2LNqWB_register_Asm_16: 7201 case ARM::VST2LNqWB_register_Asm_32: { 7202 MCInst TmpInst; 7203 // Shuffle the operands around so the lane index operand is in the 7204 // right place. 7205 unsigned Spacing; 7206 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7207 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7208 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7209 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7210 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7211 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7212 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7213 Spacing)); 7214 TmpInst.addOperand(Inst.getOperand(1)); // lane 7215 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7216 TmpInst.addOperand(Inst.getOperand(6)); 7217 Inst = TmpInst; 7218 return true; 7219 } 7220 7221 case ARM::VST3LNdWB_register_Asm_8: 7222 case ARM::VST3LNdWB_register_Asm_16: 7223 case ARM::VST3LNdWB_register_Asm_32: 7224 case ARM::VST3LNqWB_register_Asm_16: 7225 case ARM::VST3LNqWB_register_Asm_32: { 7226 MCInst TmpInst; 7227 // Shuffle the operands around so the lane index operand is in the 7228 // right place. 7229 unsigned Spacing; 7230 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7231 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7232 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7233 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7234 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7235 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7236 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7237 Spacing)); 7238 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7239 Spacing * 2)); 7240 TmpInst.addOperand(Inst.getOperand(1)); // lane 7241 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7242 TmpInst.addOperand(Inst.getOperand(6)); 7243 Inst = TmpInst; 7244 return true; 7245 } 7246 7247 case ARM::VST4LNdWB_register_Asm_8: 7248 case ARM::VST4LNdWB_register_Asm_16: 7249 case ARM::VST4LNdWB_register_Asm_32: 7250 case ARM::VST4LNqWB_register_Asm_16: 7251 case ARM::VST4LNqWB_register_Asm_32: { 7252 MCInst TmpInst; 7253 // Shuffle the operands around so the lane index operand is in the 7254 // right place. 7255 unsigned Spacing; 7256 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7257 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7258 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7259 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7260 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7261 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7262 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7263 Spacing)); 7264 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7265 Spacing * 2)); 7266 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7267 Spacing * 3)); 7268 TmpInst.addOperand(Inst.getOperand(1)); // lane 7269 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7270 TmpInst.addOperand(Inst.getOperand(6)); 7271 Inst = TmpInst; 7272 return true; 7273 } 7274 7275 case ARM::VST1LNdWB_fixed_Asm_8: 7276 case ARM::VST1LNdWB_fixed_Asm_16: 7277 case ARM::VST1LNdWB_fixed_Asm_32: { 7278 MCInst TmpInst; 7279 // Shuffle the operands around so the lane index operand is in the 7280 // right place. 7281 unsigned Spacing; 7282 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7283 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7284 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7285 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7286 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7287 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7288 TmpInst.addOperand(Inst.getOperand(1)); // lane 7289 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7290 TmpInst.addOperand(Inst.getOperand(5)); 7291 Inst = TmpInst; 7292 return true; 7293 } 7294 7295 case ARM::VST2LNdWB_fixed_Asm_8: 7296 case ARM::VST2LNdWB_fixed_Asm_16: 7297 case ARM::VST2LNdWB_fixed_Asm_32: 7298 case ARM::VST2LNqWB_fixed_Asm_16: 7299 case ARM::VST2LNqWB_fixed_Asm_32: { 7300 MCInst TmpInst; 7301 // Shuffle the operands around so the lane index operand is in the 7302 // right place. 7303 unsigned Spacing; 7304 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7305 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7306 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7307 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7308 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7309 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7310 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7311 Spacing)); 7312 TmpInst.addOperand(Inst.getOperand(1)); // lane 7313 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7314 TmpInst.addOperand(Inst.getOperand(5)); 7315 Inst = TmpInst; 7316 return true; 7317 } 7318 7319 case ARM::VST3LNdWB_fixed_Asm_8: 7320 case ARM::VST3LNdWB_fixed_Asm_16: 7321 case ARM::VST3LNdWB_fixed_Asm_32: 7322 case ARM::VST3LNqWB_fixed_Asm_16: 7323 case ARM::VST3LNqWB_fixed_Asm_32: { 7324 MCInst TmpInst; 7325 // Shuffle the operands around so the lane index operand is in the 7326 // right place. 7327 unsigned Spacing; 7328 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7329 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7330 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7331 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7332 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7333 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7334 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7335 Spacing)); 7336 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7337 Spacing * 2)); 7338 TmpInst.addOperand(Inst.getOperand(1)); // lane 7339 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7340 TmpInst.addOperand(Inst.getOperand(5)); 7341 Inst = TmpInst; 7342 return true; 7343 } 7344 7345 case ARM::VST4LNdWB_fixed_Asm_8: 7346 case ARM::VST4LNdWB_fixed_Asm_16: 7347 case ARM::VST4LNdWB_fixed_Asm_32: 7348 case ARM::VST4LNqWB_fixed_Asm_16: 7349 case ARM::VST4LNqWB_fixed_Asm_32: { 7350 MCInst TmpInst; 7351 // Shuffle the operands around so the lane index operand is in the 7352 // right place. 7353 unsigned Spacing; 7354 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7355 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7356 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7357 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7358 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7359 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7360 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7361 Spacing)); 7362 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7363 Spacing * 2)); 7364 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7365 Spacing * 3)); 7366 TmpInst.addOperand(Inst.getOperand(1)); // lane 7367 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7368 TmpInst.addOperand(Inst.getOperand(5)); 7369 Inst = TmpInst; 7370 return true; 7371 } 7372 7373 case ARM::VST1LNdAsm_8: 7374 case ARM::VST1LNdAsm_16: 7375 case ARM::VST1LNdAsm_32: { 7376 MCInst TmpInst; 7377 // Shuffle the operands around so the lane index operand is in the 7378 // right place. 7379 unsigned Spacing; 7380 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7381 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7382 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7383 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7384 TmpInst.addOperand(Inst.getOperand(1)); // lane 7385 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7386 TmpInst.addOperand(Inst.getOperand(5)); 7387 Inst = TmpInst; 7388 return true; 7389 } 7390 7391 case ARM::VST2LNdAsm_8: 7392 case ARM::VST2LNdAsm_16: 7393 case ARM::VST2LNdAsm_32: 7394 case ARM::VST2LNqAsm_16: 7395 case ARM::VST2LNqAsm_32: { 7396 MCInst TmpInst; 7397 // Shuffle the operands around so the lane index operand is in the 7398 // right place. 7399 unsigned Spacing; 7400 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7401 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7402 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7403 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7404 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7405 Spacing)); 7406 TmpInst.addOperand(Inst.getOperand(1)); // lane 7407 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7408 TmpInst.addOperand(Inst.getOperand(5)); 7409 Inst = TmpInst; 7410 return true; 7411 } 7412 7413 case ARM::VST3LNdAsm_8: 7414 case ARM::VST3LNdAsm_16: 7415 case ARM::VST3LNdAsm_32: 7416 case ARM::VST3LNqAsm_16: 7417 case ARM::VST3LNqAsm_32: { 7418 MCInst TmpInst; 7419 // Shuffle the operands around so the lane index operand is in the 7420 // right place. 7421 unsigned Spacing; 7422 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7423 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7424 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7425 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7426 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7427 Spacing)); 7428 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7429 Spacing * 2)); 7430 TmpInst.addOperand(Inst.getOperand(1)); // lane 7431 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7432 TmpInst.addOperand(Inst.getOperand(5)); 7433 Inst = TmpInst; 7434 return true; 7435 } 7436 7437 case ARM::VST4LNdAsm_8: 7438 case ARM::VST4LNdAsm_16: 7439 case ARM::VST4LNdAsm_32: 7440 case ARM::VST4LNqAsm_16: 7441 case ARM::VST4LNqAsm_32: { 7442 MCInst TmpInst; 7443 // Shuffle the operands around so the lane index operand is in the 7444 // right place. 7445 unsigned Spacing; 7446 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7447 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7448 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7449 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7450 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7451 Spacing)); 7452 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7453 Spacing * 2)); 7454 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7455 Spacing * 3)); 7456 TmpInst.addOperand(Inst.getOperand(1)); // lane 7457 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7458 TmpInst.addOperand(Inst.getOperand(5)); 7459 Inst = TmpInst; 7460 return true; 7461 } 7462 7463 // Handle NEON VLD complex aliases. 7464 case ARM::VLD1LNdWB_register_Asm_8: 7465 case ARM::VLD1LNdWB_register_Asm_16: 7466 case ARM::VLD1LNdWB_register_Asm_32: { 7467 MCInst TmpInst; 7468 // Shuffle the operands around so the lane index operand is in the 7469 // right place. 7470 unsigned Spacing; 7471 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7472 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7473 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7474 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7475 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7476 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7477 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7478 TmpInst.addOperand(Inst.getOperand(1)); // lane 7479 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7480 TmpInst.addOperand(Inst.getOperand(6)); 7481 Inst = TmpInst; 7482 return true; 7483 } 7484 7485 case ARM::VLD2LNdWB_register_Asm_8: 7486 case ARM::VLD2LNdWB_register_Asm_16: 7487 case ARM::VLD2LNdWB_register_Asm_32: 7488 case ARM::VLD2LNqWB_register_Asm_16: 7489 case ARM::VLD2LNqWB_register_Asm_32: { 7490 MCInst TmpInst; 7491 // Shuffle the operands around so the lane index operand is in the 7492 // right place. 7493 unsigned Spacing; 7494 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7495 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7496 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7497 Spacing)); 7498 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7499 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7500 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7501 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7502 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7503 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7504 Spacing)); 7505 TmpInst.addOperand(Inst.getOperand(1)); // lane 7506 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7507 TmpInst.addOperand(Inst.getOperand(6)); 7508 Inst = TmpInst; 7509 return true; 7510 } 7511 7512 case ARM::VLD3LNdWB_register_Asm_8: 7513 case ARM::VLD3LNdWB_register_Asm_16: 7514 case ARM::VLD3LNdWB_register_Asm_32: 7515 case ARM::VLD3LNqWB_register_Asm_16: 7516 case ARM::VLD3LNqWB_register_Asm_32: { 7517 MCInst TmpInst; 7518 // Shuffle the operands around so the lane index operand is in the 7519 // right place. 7520 unsigned Spacing; 7521 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7522 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7523 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7524 Spacing)); 7525 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7526 Spacing * 2)); 7527 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7528 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7529 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7530 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7531 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7532 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7533 Spacing)); 7534 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7535 Spacing * 2)); 7536 TmpInst.addOperand(Inst.getOperand(1)); // lane 7537 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7538 TmpInst.addOperand(Inst.getOperand(6)); 7539 Inst = TmpInst; 7540 return true; 7541 } 7542 7543 case ARM::VLD4LNdWB_register_Asm_8: 7544 case ARM::VLD4LNdWB_register_Asm_16: 7545 case ARM::VLD4LNdWB_register_Asm_32: 7546 case ARM::VLD4LNqWB_register_Asm_16: 7547 case ARM::VLD4LNqWB_register_Asm_32: { 7548 MCInst TmpInst; 7549 // Shuffle the operands around so the lane index operand is in the 7550 // right place. 7551 unsigned Spacing; 7552 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7553 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7554 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7555 Spacing)); 7556 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7557 Spacing * 2)); 7558 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7559 Spacing * 3)); 7560 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7561 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7562 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7563 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7564 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7565 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7566 Spacing)); 7567 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7568 Spacing * 2)); 7569 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7570 Spacing * 3)); 7571 TmpInst.addOperand(Inst.getOperand(1)); // lane 7572 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7573 TmpInst.addOperand(Inst.getOperand(6)); 7574 Inst = TmpInst; 7575 return true; 7576 } 7577 7578 case ARM::VLD1LNdWB_fixed_Asm_8: 7579 case ARM::VLD1LNdWB_fixed_Asm_16: 7580 case ARM::VLD1LNdWB_fixed_Asm_32: { 7581 MCInst TmpInst; 7582 // Shuffle the operands around so the lane index operand is in the 7583 // right place. 7584 unsigned Spacing; 7585 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7586 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7587 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7588 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7589 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7590 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7591 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7592 TmpInst.addOperand(Inst.getOperand(1)); // lane 7593 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7594 TmpInst.addOperand(Inst.getOperand(5)); 7595 Inst = TmpInst; 7596 return true; 7597 } 7598 7599 case ARM::VLD2LNdWB_fixed_Asm_8: 7600 case ARM::VLD2LNdWB_fixed_Asm_16: 7601 case ARM::VLD2LNdWB_fixed_Asm_32: 7602 case ARM::VLD2LNqWB_fixed_Asm_16: 7603 case ARM::VLD2LNqWB_fixed_Asm_32: { 7604 MCInst TmpInst; 7605 // Shuffle the operands around so the lane index operand is in the 7606 // right place. 7607 unsigned Spacing; 7608 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7609 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7610 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7611 Spacing)); 7612 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7613 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7614 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7615 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7616 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7617 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7618 Spacing)); 7619 TmpInst.addOperand(Inst.getOperand(1)); // lane 7620 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7621 TmpInst.addOperand(Inst.getOperand(5)); 7622 Inst = TmpInst; 7623 return true; 7624 } 7625 7626 case ARM::VLD3LNdWB_fixed_Asm_8: 7627 case ARM::VLD3LNdWB_fixed_Asm_16: 7628 case ARM::VLD3LNdWB_fixed_Asm_32: 7629 case ARM::VLD3LNqWB_fixed_Asm_16: 7630 case ARM::VLD3LNqWB_fixed_Asm_32: { 7631 MCInst TmpInst; 7632 // Shuffle the operands around so the lane index operand is in the 7633 // right place. 7634 unsigned Spacing; 7635 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7636 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7637 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7638 Spacing)); 7639 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7640 Spacing * 2)); 7641 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7642 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7643 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7644 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7645 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7646 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7647 Spacing)); 7648 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7649 Spacing * 2)); 7650 TmpInst.addOperand(Inst.getOperand(1)); // lane 7651 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7652 TmpInst.addOperand(Inst.getOperand(5)); 7653 Inst = TmpInst; 7654 return true; 7655 } 7656 7657 case ARM::VLD4LNdWB_fixed_Asm_8: 7658 case ARM::VLD4LNdWB_fixed_Asm_16: 7659 case ARM::VLD4LNdWB_fixed_Asm_32: 7660 case ARM::VLD4LNqWB_fixed_Asm_16: 7661 case ARM::VLD4LNqWB_fixed_Asm_32: { 7662 MCInst TmpInst; 7663 // Shuffle the operands around so the lane index operand is in the 7664 // right place. 7665 unsigned Spacing; 7666 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7667 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7668 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7669 Spacing)); 7670 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7671 Spacing * 2)); 7672 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7673 Spacing * 3)); 7674 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7675 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7676 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7677 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7678 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7679 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7680 Spacing)); 7681 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7682 Spacing * 2)); 7683 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7684 Spacing * 3)); 7685 TmpInst.addOperand(Inst.getOperand(1)); // lane 7686 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7687 TmpInst.addOperand(Inst.getOperand(5)); 7688 Inst = TmpInst; 7689 return true; 7690 } 7691 7692 case ARM::VLD1LNdAsm_8: 7693 case ARM::VLD1LNdAsm_16: 7694 case ARM::VLD1LNdAsm_32: { 7695 MCInst TmpInst; 7696 // Shuffle the operands around so the lane index operand is in the 7697 // right place. 7698 unsigned Spacing; 7699 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7700 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7701 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7702 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7703 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7704 TmpInst.addOperand(Inst.getOperand(1)); // lane 7705 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7706 TmpInst.addOperand(Inst.getOperand(5)); 7707 Inst = TmpInst; 7708 return true; 7709 } 7710 7711 case ARM::VLD2LNdAsm_8: 7712 case ARM::VLD2LNdAsm_16: 7713 case ARM::VLD2LNdAsm_32: 7714 case ARM::VLD2LNqAsm_16: 7715 case ARM::VLD2LNqAsm_32: { 7716 MCInst TmpInst; 7717 // Shuffle the operands around so the lane index operand is in the 7718 // right place. 7719 unsigned Spacing; 7720 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7721 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7722 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7723 Spacing)); 7724 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7725 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7726 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7727 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7728 Spacing)); 7729 TmpInst.addOperand(Inst.getOperand(1)); // lane 7730 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7731 TmpInst.addOperand(Inst.getOperand(5)); 7732 Inst = TmpInst; 7733 return true; 7734 } 7735 7736 case ARM::VLD3LNdAsm_8: 7737 case ARM::VLD3LNdAsm_16: 7738 case ARM::VLD3LNdAsm_32: 7739 case ARM::VLD3LNqAsm_16: 7740 case ARM::VLD3LNqAsm_32: { 7741 MCInst TmpInst; 7742 // Shuffle the operands around so the lane index operand is in the 7743 // right place. 7744 unsigned Spacing; 7745 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7746 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7747 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7748 Spacing)); 7749 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7750 Spacing * 2)); 7751 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7752 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7753 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7754 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7755 Spacing)); 7756 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7757 Spacing * 2)); 7758 TmpInst.addOperand(Inst.getOperand(1)); // lane 7759 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7760 TmpInst.addOperand(Inst.getOperand(5)); 7761 Inst = TmpInst; 7762 return true; 7763 } 7764 7765 case ARM::VLD4LNdAsm_8: 7766 case ARM::VLD4LNdAsm_16: 7767 case ARM::VLD4LNdAsm_32: 7768 case ARM::VLD4LNqAsm_16: 7769 case ARM::VLD4LNqAsm_32: { 7770 MCInst TmpInst; 7771 // Shuffle the operands around so the lane index operand is in the 7772 // right place. 7773 unsigned Spacing; 7774 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7775 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7776 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7777 Spacing)); 7778 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7779 Spacing * 2)); 7780 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7781 Spacing * 3)); 7782 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7783 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7784 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7785 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7786 Spacing)); 7787 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7788 Spacing * 2)); 7789 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7790 Spacing * 3)); 7791 TmpInst.addOperand(Inst.getOperand(1)); // lane 7792 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7793 TmpInst.addOperand(Inst.getOperand(5)); 7794 Inst = TmpInst; 7795 return true; 7796 } 7797 7798 // VLD3DUP single 3-element structure to all lanes instructions. 7799 case ARM::VLD3DUPdAsm_8: 7800 case ARM::VLD3DUPdAsm_16: 7801 case ARM::VLD3DUPdAsm_32: 7802 case ARM::VLD3DUPqAsm_8: 7803 case ARM::VLD3DUPqAsm_16: 7804 case ARM::VLD3DUPqAsm_32: { 7805 MCInst TmpInst; 7806 unsigned Spacing; 7807 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7808 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7809 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7810 Spacing)); 7811 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7812 Spacing * 2)); 7813 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7814 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7815 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7816 TmpInst.addOperand(Inst.getOperand(4)); 7817 Inst = TmpInst; 7818 return true; 7819 } 7820 7821 case ARM::VLD3DUPdWB_fixed_Asm_8: 7822 case ARM::VLD3DUPdWB_fixed_Asm_16: 7823 case ARM::VLD3DUPdWB_fixed_Asm_32: 7824 case ARM::VLD3DUPqWB_fixed_Asm_8: 7825 case ARM::VLD3DUPqWB_fixed_Asm_16: 7826 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7827 MCInst TmpInst; 7828 unsigned Spacing; 7829 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7830 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7831 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7832 Spacing)); 7833 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7834 Spacing * 2)); 7835 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7836 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7837 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7838 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7839 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7840 TmpInst.addOperand(Inst.getOperand(4)); 7841 Inst = TmpInst; 7842 return true; 7843 } 7844 7845 case ARM::VLD3DUPdWB_register_Asm_8: 7846 case ARM::VLD3DUPdWB_register_Asm_16: 7847 case ARM::VLD3DUPdWB_register_Asm_32: 7848 case ARM::VLD3DUPqWB_register_Asm_8: 7849 case ARM::VLD3DUPqWB_register_Asm_16: 7850 case ARM::VLD3DUPqWB_register_Asm_32: { 7851 MCInst TmpInst; 7852 unsigned Spacing; 7853 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7854 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7855 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7856 Spacing)); 7857 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7858 Spacing * 2)); 7859 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7860 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7861 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7862 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7863 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7864 TmpInst.addOperand(Inst.getOperand(5)); 7865 Inst = TmpInst; 7866 return true; 7867 } 7868 7869 // VLD3 multiple 3-element structure instructions. 7870 case ARM::VLD3dAsm_8: 7871 case ARM::VLD3dAsm_16: 7872 case ARM::VLD3dAsm_32: 7873 case ARM::VLD3qAsm_8: 7874 case ARM::VLD3qAsm_16: 7875 case ARM::VLD3qAsm_32: { 7876 MCInst TmpInst; 7877 unsigned Spacing; 7878 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7879 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7880 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7881 Spacing)); 7882 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7883 Spacing * 2)); 7884 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7885 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7886 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7887 TmpInst.addOperand(Inst.getOperand(4)); 7888 Inst = TmpInst; 7889 return true; 7890 } 7891 7892 case ARM::VLD3dWB_fixed_Asm_8: 7893 case ARM::VLD3dWB_fixed_Asm_16: 7894 case ARM::VLD3dWB_fixed_Asm_32: 7895 case ARM::VLD3qWB_fixed_Asm_8: 7896 case ARM::VLD3qWB_fixed_Asm_16: 7897 case ARM::VLD3qWB_fixed_Asm_32: { 7898 MCInst TmpInst; 7899 unsigned Spacing; 7900 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7901 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7902 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7903 Spacing)); 7904 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7905 Spacing * 2)); 7906 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7907 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7908 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7909 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7910 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7911 TmpInst.addOperand(Inst.getOperand(4)); 7912 Inst = TmpInst; 7913 return true; 7914 } 7915 7916 case ARM::VLD3dWB_register_Asm_8: 7917 case ARM::VLD3dWB_register_Asm_16: 7918 case ARM::VLD3dWB_register_Asm_32: 7919 case ARM::VLD3qWB_register_Asm_8: 7920 case ARM::VLD3qWB_register_Asm_16: 7921 case ARM::VLD3qWB_register_Asm_32: { 7922 MCInst TmpInst; 7923 unsigned Spacing; 7924 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7925 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7926 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7927 Spacing)); 7928 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7929 Spacing * 2)); 7930 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7931 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7932 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7933 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7934 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7935 TmpInst.addOperand(Inst.getOperand(5)); 7936 Inst = TmpInst; 7937 return true; 7938 } 7939 7940 // VLD4DUP single 3-element structure to all lanes instructions. 7941 case ARM::VLD4DUPdAsm_8: 7942 case ARM::VLD4DUPdAsm_16: 7943 case ARM::VLD4DUPdAsm_32: 7944 case ARM::VLD4DUPqAsm_8: 7945 case ARM::VLD4DUPqAsm_16: 7946 case ARM::VLD4DUPqAsm_32: { 7947 MCInst TmpInst; 7948 unsigned Spacing; 7949 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7950 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7951 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7952 Spacing)); 7953 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7954 Spacing * 2)); 7955 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7956 Spacing * 3)); 7957 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7958 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7959 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7960 TmpInst.addOperand(Inst.getOperand(4)); 7961 Inst = TmpInst; 7962 return true; 7963 } 7964 7965 case ARM::VLD4DUPdWB_fixed_Asm_8: 7966 case ARM::VLD4DUPdWB_fixed_Asm_16: 7967 case ARM::VLD4DUPdWB_fixed_Asm_32: 7968 case ARM::VLD4DUPqWB_fixed_Asm_8: 7969 case ARM::VLD4DUPqWB_fixed_Asm_16: 7970 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7971 MCInst TmpInst; 7972 unsigned Spacing; 7973 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7974 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7975 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7976 Spacing)); 7977 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7978 Spacing * 2)); 7979 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7980 Spacing * 3)); 7981 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7982 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7983 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7984 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7985 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7986 TmpInst.addOperand(Inst.getOperand(4)); 7987 Inst = TmpInst; 7988 return true; 7989 } 7990 7991 case ARM::VLD4DUPdWB_register_Asm_8: 7992 case ARM::VLD4DUPdWB_register_Asm_16: 7993 case ARM::VLD4DUPdWB_register_Asm_32: 7994 case ARM::VLD4DUPqWB_register_Asm_8: 7995 case ARM::VLD4DUPqWB_register_Asm_16: 7996 case ARM::VLD4DUPqWB_register_Asm_32: { 7997 MCInst TmpInst; 7998 unsigned Spacing; 7999 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8000 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8001 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8002 Spacing)); 8003 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8004 Spacing * 2)); 8005 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8006 Spacing * 3)); 8007 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8008 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8009 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8010 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8011 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8012 TmpInst.addOperand(Inst.getOperand(5)); 8013 Inst = TmpInst; 8014 return true; 8015 } 8016 8017 // VLD4 multiple 4-element structure instructions. 8018 case ARM::VLD4dAsm_8: 8019 case ARM::VLD4dAsm_16: 8020 case ARM::VLD4dAsm_32: 8021 case ARM::VLD4qAsm_8: 8022 case ARM::VLD4qAsm_16: 8023 case ARM::VLD4qAsm_32: { 8024 MCInst TmpInst; 8025 unsigned Spacing; 8026 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8027 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8028 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8029 Spacing)); 8030 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8031 Spacing * 2)); 8032 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8033 Spacing * 3)); 8034 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8035 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8036 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8037 TmpInst.addOperand(Inst.getOperand(4)); 8038 Inst = TmpInst; 8039 return true; 8040 } 8041 8042 case ARM::VLD4dWB_fixed_Asm_8: 8043 case ARM::VLD4dWB_fixed_Asm_16: 8044 case ARM::VLD4dWB_fixed_Asm_32: 8045 case ARM::VLD4qWB_fixed_Asm_8: 8046 case ARM::VLD4qWB_fixed_Asm_16: 8047 case ARM::VLD4qWB_fixed_Asm_32: { 8048 MCInst TmpInst; 8049 unsigned Spacing; 8050 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8051 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8052 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8053 Spacing)); 8054 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8055 Spacing * 2)); 8056 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8057 Spacing * 3)); 8058 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8059 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8060 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8061 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8062 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8063 TmpInst.addOperand(Inst.getOperand(4)); 8064 Inst = TmpInst; 8065 return true; 8066 } 8067 8068 case ARM::VLD4dWB_register_Asm_8: 8069 case ARM::VLD4dWB_register_Asm_16: 8070 case ARM::VLD4dWB_register_Asm_32: 8071 case ARM::VLD4qWB_register_Asm_8: 8072 case ARM::VLD4qWB_register_Asm_16: 8073 case ARM::VLD4qWB_register_Asm_32: { 8074 MCInst TmpInst; 8075 unsigned Spacing; 8076 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8077 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8078 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8079 Spacing)); 8080 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8081 Spacing * 2)); 8082 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8083 Spacing * 3)); 8084 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8085 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8086 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8087 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8088 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8089 TmpInst.addOperand(Inst.getOperand(5)); 8090 Inst = TmpInst; 8091 return true; 8092 } 8093 8094 // VST3 multiple 3-element structure instructions. 8095 case ARM::VST3dAsm_8: 8096 case ARM::VST3dAsm_16: 8097 case ARM::VST3dAsm_32: 8098 case ARM::VST3qAsm_8: 8099 case ARM::VST3qAsm_16: 8100 case ARM::VST3qAsm_32: { 8101 MCInst TmpInst; 8102 unsigned Spacing; 8103 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8104 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8105 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8106 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8107 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8108 Spacing)); 8109 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8110 Spacing * 2)); 8111 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8112 TmpInst.addOperand(Inst.getOperand(4)); 8113 Inst = TmpInst; 8114 return true; 8115 } 8116 8117 case ARM::VST3dWB_fixed_Asm_8: 8118 case ARM::VST3dWB_fixed_Asm_16: 8119 case ARM::VST3dWB_fixed_Asm_32: 8120 case ARM::VST3qWB_fixed_Asm_8: 8121 case ARM::VST3qWB_fixed_Asm_16: 8122 case ARM::VST3qWB_fixed_Asm_32: { 8123 MCInst TmpInst; 8124 unsigned Spacing; 8125 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8126 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8127 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8128 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8129 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8130 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8131 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8132 Spacing)); 8133 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8134 Spacing * 2)); 8135 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8136 TmpInst.addOperand(Inst.getOperand(4)); 8137 Inst = TmpInst; 8138 return true; 8139 } 8140 8141 case ARM::VST3dWB_register_Asm_8: 8142 case ARM::VST3dWB_register_Asm_16: 8143 case ARM::VST3dWB_register_Asm_32: 8144 case ARM::VST3qWB_register_Asm_8: 8145 case ARM::VST3qWB_register_Asm_16: 8146 case ARM::VST3qWB_register_Asm_32: { 8147 MCInst TmpInst; 8148 unsigned Spacing; 8149 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8150 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8151 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8152 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8153 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8154 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8155 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8156 Spacing)); 8157 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8158 Spacing * 2)); 8159 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8160 TmpInst.addOperand(Inst.getOperand(5)); 8161 Inst = TmpInst; 8162 return true; 8163 } 8164 8165 // VST4 multiple 3-element structure instructions. 8166 case ARM::VST4dAsm_8: 8167 case ARM::VST4dAsm_16: 8168 case ARM::VST4dAsm_32: 8169 case ARM::VST4qAsm_8: 8170 case ARM::VST4qAsm_16: 8171 case ARM::VST4qAsm_32: { 8172 MCInst TmpInst; 8173 unsigned Spacing; 8174 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8175 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8176 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8177 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8178 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8179 Spacing)); 8180 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8181 Spacing * 2)); 8182 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8183 Spacing * 3)); 8184 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8185 TmpInst.addOperand(Inst.getOperand(4)); 8186 Inst = TmpInst; 8187 return true; 8188 } 8189 8190 case ARM::VST4dWB_fixed_Asm_8: 8191 case ARM::VST4dWB_fixed_Asm_16: 8192 case ARM::VST4dWB_fixed_Asm_32: 8193 case ARM::VST4qWB_fixed_Asm_8: 8194 case ARM::VST4qWB_fixed_Asm_16: 8195 case ARM::VST4qWB_fixed_Asm_32: { 8196 MCInst TmpInst; 8197 unsigned Spacing; 8198 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8199 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8200 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8201 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8202 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8203 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8204 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8205 Spacing)); 8206 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8207 Spacing * 2)); 8208 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8209 Spacing * 3)); 8210 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8211 TmpInst.addOperand(Inst.getOperand(4)); 8212 Inst = TmpInst; 8213 return true; 8214 } 8215 8216 case ARM::VST4dWB_register_Asm_8: 8217 case ARM::VST4dWB_register_Asm_16: 8218 case ARM::VST4dWB_register_Asm_32: 8219 case ARM::VST4qWB_register_Asm_8: 8220 case ARM::VST4qWB_register_Asm_16: 8221 case ARM::VST4qWB_register_Asm_32: { 8222 MCInst TmpInst; 8223 unsigned Spacing; 8224 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8225 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8226 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8227 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8228 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8229 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8230 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8231 Spacing)); 8232 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8233 Spacing * 2)); 8234 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8235 Spacing * 3)); 8236 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8237 TmpInst.addOperand(Inst.getOperand(5)); 8238 Inst = TmpInst; 8239 return true; 8240 } 8241 8242 // Handle encoding choice for the shift-immediate instructions. 8243 case ARM::t2LSLri: 8244 case ARM::t2LSRri: 8245 case ARM::t2ASRri: { 8246 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8247 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8248 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8249 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 8250 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 8251 unsigned NewOpc; 8252 switch (Inst.getOpcode()) { 8253 default: llvm_unreachable("unexpected opcode"); 8254 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8255 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8256 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8257 } 8258 // The Thumb1 operands aren't in the same order. Awesome, eh? 8259 MCInst TmpInst; 8260 TmpInst.setOpcode(NewOpc); 8261 TmpInst.addOperand(Inst.getOperand(0)); 8262 TmpInst.addOperand(Inst.getOperand(5)); 8263 TmpInst.addOperand(Inst.getOperand(1)); 8264 TmpInst.addOperand(Inst.getOperand(2)); 8265 TmpInst.addOperand(Inst.getOperand(3)); 8266 TmpInst.addOperand(Inst.getOperand(4)); 8267 Inst = TmpInst; 8268 return true; 8269 } 8270 return false; 8271 } 8272 8273 // Handle the Thumb2 mode MOV complex aliases. 8274 case ARM::t2MOVsr: 8275 case ARM::t2MOVSsr: { 8276 // Which instruction to expand to depends on the CCOut operand and 8277 // whether we're in an IT block if the register operands are low 8278 // registers. 8279 bool isNarrow = false; 8280 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8281 isARMLowRegister(Inst.getOperand(1).getReg()) && 8282 isARMLowRegister(Inst.getOperand(2).getReg()) && 8283 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8284 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 8285 isNarrow = true; 8286 MCInst TmpInst; 8287 unsigned newOpc; 8288 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8289 default: llvm_unreachable("unexpected opcode!"); 8290 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8291 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8292 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8293 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8294 } 8295 TmpInst.setOpcode(newOpc); 8296 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8297 if (isNarrow) 8298 TmpInst.addOperand(MCOperand::createReg( 8299 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8300 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8301 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8302 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8303 TmpInst.addOperand(Inst.getOperand(5)); 8304 if (!isNarrow) 8305 TmpInst.addOperand(MCOperand::createReg( 8306 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8307 Inst = TmpInst; 8308 return true; 8309 } 8310 case ARM::t2MOVsi: 8311 case ARM::t2MOVSsi: { 8312 // Which instruction to expand to depends on the CCOut operand and 8313 // whether we're in an IT block if the register operands are low 8314 // registers. 8315 bool isNarrow = false; 8316 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8317 isARMLowRegister(Inst.getOperand(1).getReg()) && 8318 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 8319 isNarrow = true; 8320 MCInst TmpInst; 8321 unsigned newOpc; 8322 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { 8323 default: llvm_unreachable("unexpected opcode!"); 8324 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8325 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8326 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8327 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8328 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8329 } 8330 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8331 if (Amount == 32) Amount = 0; 8332 TmpInst.setOpcode(newOpc); 8333 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8334 if (isNarrow) 8335 TmpInst.addOperand(MCOperand::createReg( 8336 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8337 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8338 if (newOpc != ARM::t2RRX) 8339 TmpInst.addOperand(MCOperand::createImm(Amount)); 8340 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8341 TmpInst.addOperand(Inst.getOperand(4)); 8342 if (!isNarrow) 8343 TmpInst.addOperand(MCOperand::createReg( 8344 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8345 Inst = TmpInst; 8346 return true; 8347 } 8348 // Handle the ARM mode MOV complex aliases. 8349 case ARM::ASRr: 8350 case ARM::LSRr: 8351 case ARM::LSLr: 8352 case ARM::RORr: { 8353 ARM_AM::ShiftOpc ShiftTy; 8354 switch(Inst.getOpcode()) { 8355 default: llvm_unreachable("unexpected opcode!"); 8356 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8357 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8358 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8359 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8360 } 8361 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8362 MCInst TmpInst; 8363 TmpInst.setOpcode(ARM::MOVsr); 8364 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8365 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8366 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8367 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8368 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8369 TmpInst.addOperand(Inst.getOperand(4)); 8370 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8371 Inst = TmpInst; 8372 return true; 8373 } 8374 case ARM::ASRi: 8375 case ARM::LSRi: 8376 case ARM::LSLi: 8377 case ARM::RORi: { 8378 ARM_AM::ShiftOpc ShiftTy; 8379 switch(Inst.getOpcode()) { 8380 default: llvm_unreachable("unexpected opcode!"); 8381 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8382 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8383 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8384 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8385 } 8386 // A shift by zero is a plain MOVr, not a MOVsi. 8387 unsigned Amt = Inst.getOperand(2).getImm(); 8388 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8389 // A shift by 32 should be encoded as 0 when permitted 8390 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8391 Amt = 0; 8392 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8393 MCInst TmpInst; 8394 TmpInst.setOpcode(Opc); 8395 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8396 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8397 if (Opc == ARM::MOVsi) 8398 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8399 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8400 TmpInst.addOperand(Inst.getOperand(4)); 8401 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8402 Inst = TmpInst; 8403 return true; 8404 } 8405 case ARM::RRXi: { 8406 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8407 MCInst TmpInst; 8408 TmpInst.setOpcode(ARM::MOVsi); 8409 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8410 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8411 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8412 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8413 TmpInst.addOperand(Inst.getOperand(3)); 8414 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8415 Inst = TmpInst; 8416 return true; 8417 } 8418 case ARM::t2LDMIA_UPD: { 8419 // If this is a load of a single register, then we should use 8420 // a post-indexed LDR instruction instead, per the ARM ARM. 8421 if (Inst.getNumOperands() != 5) 8422 return false; 8423 MCInst TmpInst; 8424 TmpInst.setOpcode(ARM::t2LDR_POST); 8425 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8426 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8427 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8428 TmpInst.addOperand(MCOperand::createImm(4)); 8429 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8430 TmpInst.addOperand(Inst.getOperand(3)); 8431 Inst = TmpInst; 8432 return true; 8433 } 8434 case ARM::t2STMDB_UPD: { 8435 // If this is a store of a single register, then we should use 8436 // a pre-indexed STR instruction instead, per the ARM ARM. 8437 if (Inst.getNumOperands() != 5) 8438 return false; 8439 MCInst TmpInst; 8440 TmpInst.setOpcode(ARM::t2STR_PRE); 8441 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8442 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8443 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8444 TmpInst.addOperand(MCOperand::createImm(-4)); 8445 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8446 TmpInst.addOperand(Inst.getOperand(3)); 8447 Inst = TmpInst; 8448 return true; 8449 } 8450 case ARM::LDMIA_UPD: 8451 // If this is a load of a single register via a 'pop', then we should use 8452 // a post-indexed LDR instruction instead, per the ARM ARM. 8453 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8454 Inst.getNumOperands() == 5) { 8455 MCInst TmpInst; 8456 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8457 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8458 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8459 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8460 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8461 TmpInst.addOperand(MCOperand::createImm(4)); 8462 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8463 TmpInst.addOperand(Inst.getOperand(3)); 8464 Inst = TmpInst; 8465 return true; 8466 } 8467 break; 8468 case ARM::STMDB_UPD: 8469 // If this is a store of a single register via a 'push', then we should use 8470 // a pre-indexed STR instruction instead, per the ARM ARM. 8471 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8472 Inst.getNumOperands() == 5) { 8473 MCInst TmpInst; 8474 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8475 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8476 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8477 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8478 TmpInst.addOperand(MCOperand::createImm(-4)); 8479 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8480 TmpInst.addOperand(Inst.getOperand(3)); 8481 Inst = TmpInst; 8482 } 8483 break; 8484 case ARM::t2ADDri12: 8485 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8486 // mnemonic was used (not "addw"), encoding T3 is preferred. 8487 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8488 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8489 break; 8490 Inst.setOpcode(ARM::t2ADDri); 8491 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8492 break; 8493 case ARM::t2SUBri12: 8494 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8495 // mnemonic was used (not "subw"), encoding T3 is preferred. 8496 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8497 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8498 break; 8499 Inst.setOpcode(ARM::t2SUBri); 8500 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8501 break; 8502 case ARM::tADDi8: 8503 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8504 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8505 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8506 // to encoding T1 if <Rd> is omitted." 8507 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8508 Inst.setOpcode(ARM::tADDi3); 8509 return true; 8510 } 8511 break; 8512 case ARM::tSUBi8: 8513 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8514 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8515 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8516 // to encoding T1 if <Rd> is omitted." 8517 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8518 Inst.setOpcode(ARM::tSUBi3); 8519 return true; 8520 } 8521 break; 8522 case ARM::t2ADDri: 8523 case ARM::t2SUBri: { 8524 // If the destination and first source operand are the same, and 8525 // the flags are compatible with the current IT status, use encoding T2 8526 // instead of T3. For compatibility with the system 'as'. Make sure the 8527 // wide encoding wasn't explicit. 8528 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8529 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8530 (unsigned)Inst.getOperand(2).getImm() > 255 || 8531 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8532 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8533 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8534 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8535 break; 8536 MCInst TmpInst; 8537 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8538 ARM::tADDi8 : ARM::tSUBi8); 8539 TmpInst.addOperand(Inst.getOperand(0)); 8540 TmpInst.addOperand(Inst.getOperand(5)); 8541 TmpInst.addOperand(Inst.getOperand(0)); 8542 TmpInst.addOperand(Inst.getOperand(2)); 8543 TmpInst.addOperand(Inst.getOperand(3)); 8544 TmpInst.addOperand(Inst.getOperand(4)); 8545 Inst = TmpInst; 8546 return true; 8547 } 8548 case ARM::t2ADDrr: { 8549 // If the destination and first source operand are the same, and 8550 // there's no setting of the flags, use encoding T2 instead of T3. 8551 // Note that this is only for ADD, not SUB. This mirrors the system 8552 // 'as' behaviour. Also take advantage of ADD being commutative. 8553 // Make sure the wide encoding wasn't explicit. 8554 bool Swap = false; 8555 auto DestReg = Inst.getOperand(0).getReg(); 8556 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8557 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8558 Transform = true; 8559 Swap = true; 8560 } 8561 if (!Transform || 8562 Inst.getOperand(5).getReg() != 0 || 8563 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8564 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8565 break; 8566 MCInst TmpInst; 8567 TmpInst.setOpcode(ARM::tADDhirr); 8568 TmpInst.addOperand(Inst.getOperand(0)); 8569 TmpInst.addOperand(Inst.getOperand(0)); 8570 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8571 TmpInst.addOperand(Inst.getOperand(3)); 8572 TmpInst.addOperand(Inst.getOperand(4)); 8573 Inst = TmpInst; 8574 return true; 8575 } 8576 case ARM::tADDrSP: { 8577 // If the non-SP source operand and the destination operand are not the 8578 // same, we need to use the 32-bit encoding if it's available. 8579 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8580 Inst.setOpcode(ARM::t2ADDrr); 8581 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8582 return true; 8583 } 8584 break; 8585 } 8586 case ARM::tB: 8587 // A Thumb conditional branch outside of an IT block is a tBcc. 8588 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8589 Inst.setOpcode(ARM::tBcc); 8590 return true; 8591 } 8592 break; 8593 case ARM::t2B: 8594 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8595 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8596 Inst.setOpcode(ARM::t2Bcc); 8597 return true; 8598 } 8599 break; 8600 case ARM::t2Bcc: 8601 // If the conditional is AL or we're in an IT block, we really want t2B. 8602 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8603 Inst.setOpcode(ARM::t2B); 8604 return true; 8605 } 8606 break; 8607 case ARM::tBcc: 8608 // If the conditional is AL, we really want tB. 8609 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8610 Inst.setOpcode(ARM::tB); 8611 return true; 8612 } 8613 break; 8614 case ARM::tLDMIA: { 8615 // If the register list contains any high registers, or if the writeback 8616 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8617 // instead if we're in Thumb2. Otherwise, this should have generated 8618 // an error in validateInstruction(). 8619 unsigned Rn = Inst.getOperand(0).getReg(); 8620 bool hasWritebackToken = 8621 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8622 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8623 bool listContainsBase; 8624 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8625 (!listContainsBase && !hasWritebackToken) || 8626 (listContainsBase && hasWritebackToken)) { 8627 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8628 assert (isThumbTwo()); 8629 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8630 // If we're switching to the updating version, we need to insert 8631 // the writeback tied operand. 8632 if (hasWritebackToken) 8633 Inst.insert(Inst.begin(), 8634 MCOperand::createReg(Inst.getOperand(0).getReg())); 8635 return true; 8636 } 8637 break; 8638 } 8639 case ARM::tSTMIA_UPD: { 8640 // If the register list contains any high registers, we need to use 8641 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8642 // should have generated an error in validateInstruction(). 8643 unsigned Rn = Inst.getOperand(0).getReg(); 8644 bool listContainsBase; 8645 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8646 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8647 assert (isThumbTwo()); 8648 Inst.setOpcode(ARM::t2STMIA_UPD); 8649 return true; 8650 } 8651 break; 8652 } 8653 case ARM::tPOP: { 8654 bool listContainsBase; 8655 // If the register list contains any high registers, we need to use 8656 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8657 // should have generated an error in validateInstruction(). 8658 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8659 return false; 8660 assert (isThumbTwo()); 8661 Inst.setOpcode(ARM::t2LDMIA_UPD); 8662 // Add the base register and writeback operands. 8663 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8664 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8665 return true; 8666 } 8667 case ARM::tPUSH: { 8668 bool listContainsBase; 8669 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8670 return false; 8671 assert (isThumbTwo()); 8672 Inst.setOpcode(ARM::t2STMDB_UPD); 8673 // Add the base register and writeback operands. 8674 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8675 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8676 return true; 8677 } 8678 case ARM::t2MOVi: { 8679 // If we can use the 16-bit encoding and the user didn't explicitly 8680 // request the 32-bit variant, transform it here. 8681 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8682 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8683 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8684 Inst.getOperand(4).getReg() == ARM::CPSR) || 8685 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8686 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8687 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8688 // The operands aren't in the same order for tMOVi8... 8689 MCInst TmpInst; 8690 TmpInst.setOpcode(ARM::tMOVi8); 8691 TmpInst.addOperand(Inst.getOperand(0)); 8692 TmpInst.addOperand(Inst.getOperand(4)); 8693 TmpInst.addOperand(Inst.getOperand(1)); 8694 TmpInst.addOperand(Inst.getOperand(2)); 8695 TmpInst.addOperand(Inst.getOperand(3)); 8696 Inst = TmpInst; 8697 return true; 8698 } 8699 break; 8700 } 8701 case ARM::t2MOVr: { 8702 // If we can use the 16-bit encoding and the user didn't explicitly 8703 // request the 32-bit variant, transform it here. 8704 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8705 isARMLowRegister(Inst.getOperand(1).getReg()) && 8706 Inst.getOperand(2).getImm() == ARMCC::AL && 8707 Inst.getOperand(4).getReg() == ARM::CPSR && 8708 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8709 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8710 // The operands aren't the same for tMOV[S]r... (no cc_out) 8711 MCInst TmpInst; 8712 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8713 TmpInst.addOperand(Inst.getOperand(0)); 8714 TmpInst.addOperand(Inst.getOperand(1)); 8715 TmpInst.addOperand(Inst.getOperand(2)); 8716 TmpInst.addOperand(Inst.getOperand(3)); 8717 Inst = TmpInst; 8718 return true; 8719 } 8720 break; 8721 } 8722 case ARM::t2SXTH: 8723 case ARM::t2SXTB: 8724 case ARM::t2UXTH: 8725 case ARM::t2UXTB: { 8726 // If we can use the 16-bit encoding and the user didn't explicitly 8727 // request the 32-bit variant, transform it here. 8728 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8729 isARMLowRegister(Inst.getOperand(1).getReg()) && 8730 Inst.getOperand(2).getImm() == 0 && 8731 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8732 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8733 unsigned NewOpc; 8734 switch (Inst.getOpcode()) { 8735 default: llvm_unreachable("Illegal opcode!"); 8736 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8737 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8738 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8739 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8740 } 8741 // The operands aren't the same for thumb1 (no rotate operand). 8742 MCInst TmpInst; 8743 TmpInst.setOpcode(NewOpc); 8744 TmpInst.addOperand(Inst.getOperand(0)); 8745 TmpInst.addOperand(Inst.getOperand(1)); 8746 TmpInst.addOperand(Inst.getOperand(3)); 8747 TmpInst.addOperand(Inst.getOperand(4)); 8748 Inst = TmpInst; 8749 return true; 8750 } 8751 break; 8752 } 8753 case ARM::MOVsi: { 8754 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8755 // rrx shifts and asr/lsr of #32 is encoded as 0 8756 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8757 return false; 8758 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8759 // Shifting by zero is accepted as a vanilla 'MOVr' 8760 MCInst TmpInst; 8761 TmpInst.setOpcode(ARM::MOVr); 8762 TmpInst.addOperand(Inst.getOperand(0)); 8763 TmpInst.addOperand(Inst.getOperand(1)); 8764 TmpInst.addOperand(Inst.getOperand(3)); 8765 TmpInst.addOperand(Inst.getOperand(4)); 8766 TmpInst.addOperand(Inst.getOperand(5)); 8767 Inst = TmpInst; 8768 return true; 8769 } 8770 return false; 8771 } 8772 case ARM::ANDrsi: 8773 case ARM::ORRrsi: 8774 case ARM::EORrsi: 8775 case ARM::BICrsi: 8776 case ARM::SUBrsi: 8777 case ARM::ADDrsi: { 8778 unsigned newOpc; 8779 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8780 if (SOpc == ARM_AM::rrx) return false; 8781 switch (Inst.getOpcode()) { 8782 default: llvm_unreachable("unexpected opcode!"); 8783 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8784 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8785 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8786 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8787 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8788 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8789 } 8790 // If the shift is by zero, use the non-shifted instruction definition. 8791 // The exception is for right shifts, where 0 == 32 8792 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8793 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8794 MCInst TmpInst; 8795 TmpInst.setOpcode(newOpc); 8796 TmpInst.addOperand(Inst.getOperand(0)); 8797 TmpInst.addOperand(Inst.getOperand(1)); 8798 TmpInst.addOperand(Inst.getOperand(2)); 8799 TmpInst.addOperand(Inst.getOperand(4)); 8800 TmpInst.addOperand(Inst.getOperand(5)); 8801 TmpInst.addOperand(Inst.getOperand(6)); 8802 Inst = TmpInst; 8803 return true; 8804 } 8805 return false; 8806 } 8807 case ARM::ITasm: 8808 case ARM::t2IT: { 8809 MCOperand &MO = Inst.getOperand(1); 8810 unsigned Mask = MO.getImm(); 8811 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8812 8813 // Set up the IT block state according to the IT instruction we just 8814 // matched. 8815 assert(!inITBlock() && "nested IT blocks?!"); 8816 startExplicitITBlock(Cond, Mask); 8817 MO.setImm(getITMaskEncoding()); 8818 break; 8819 } 8820 case ARM::t2LSLrr: 8821 case ARM::t2LSRrr: 8822 case ARM::t2ASRrr: 8823 case ARM::t2SBCrr: 8824 case ARM::t2RORrr: 8825 case ARM::t2BICrr: 8826 { 8827 // Assemblers should use the narrow encodings of these instructions when permissible. 8828 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8829 isARMLowRegister(Inst.getOperand(2).getReg())) && 8830 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8831 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8832 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8833 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8834 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8835 ".w"))) { 8836 unsigned NewOpc; 8837 switch (Inst.getOpcode()) { 8838 default: llvm_unreachable("unexpected opcode"); 8839 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8840 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8841 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8842 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8843 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8844 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8845 } 8846 MCInst TmpInst; 8847 TmpInst.setOpcode(NewOpc); 8848 TmpInst.addOperand(Inst.getOperand(0)); 8849 TmpInst.addOperand(Inst.getOperand(5)); 8850 TmpInst.addOperand(Inst.getOperand(1)); 8851 TmpInst.addOperand(Inst.getOperand(2)); 8852 TmpInst.addOperand(Inst.getOperand(3)); 8853 TmpInst.addOperand(Inst.getOperand(4)); 8854 Inst = TmpInst; 8855 return true; 8856 } 8857 return false; 8858 } 8859 case ARM::t2ANDrr: 8860 case ARM::t2EORrr: 8861 case ARM::t2ADCrr: 8862 case ARM::t2ORRrr: 8863 { 8864 // Assemblers should use the narrow encodings of these instructions when permissible. 8865 // These instructions are special in that they are commutable, so shorter encodings 8866 // are available more often. 8867 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8868 isARMLowRegister(Inst.getOperand(2).getReg())) && 8869 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8870 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8871 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8872 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8873 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8874 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8875 ".w"))) { 8876 unsigned NewOpc; 8877 switch (Inst.getOpcode()) { 8878 default: llvm_unreachable("unexpected opcode"); 8879 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8880 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8881 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8882 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8883 } 8884 MCInst TmpInst; 8885 TmpInst.setOpcode(NewOpc); 8886 TmpInst.addOperand(Inst.getOperand(0)); 8887 TmpInst.addOperand(Inst.getOperand(5)); 8888 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8889 TmpInst.addOperand(Inst.getOperand(1)); 8890 TmpInst.addOperand(Inst.getOperand(2)); 8891 } else { 8892 TmpInst.addOperand(Inst.getOperand(2)); 8893 TmpInst.addOperand(Inst.getOperand(1)); 8894 } 8895 TmpInst.addOperand(Inst.getOperand(3)); 8896 TmpInst.addOperand(Inst.getOperand(4)); 8897 Inst = TmpInst; 8898 return true; 8899 } 8900 return false; 8901 } 8902 } 8903 return false; 8904 } 8905 8906 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8907 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8908 // suffix depending on whether they're in an IT block or not. 8909 unsigned Opc = Inst.getOpcode(); 8910 const MCInstrDesc &MCID = MII.get(Opc); 8911 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8912 assert(MCID.hasOptionalDef() && 8913 "optionally flag setting instruction missing optional def operand"); 8914 assert(MCID.NumOperands == Inst.getNumOperands() && 8915 "operand count mismatch!"); 8916 // Find the optional-def operand (cc_out). 8917 unsigned OpNo; 8918 for (OpNo = 0; 8919 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8920 ++OpNo) 8921 ; 8922 // If we're parsing Thumb1, reject it completely. 8923 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8924 return Match_MnemonicFail; 8925 // If we're parsing Thumb2, which form is legal depends on whether we're 8926 // in an IT block. 8927 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8928 !inITBlock()) 8929 return Match_RequiresITBlock; 8930 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8931 inITBlock()) 8932 return Match_RequiresNotITBlock; 8933 } else if (isThumbOne()) { 8934 // Some high-register supporting Thumb1 encodings only allow both registers 8935 // to be from r0-r7 when in Thumb2. 8936 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8937 isARMLowRegister(Inst.getOperand(1).getReg()) && 8938 isARMLowRegister(Inst.getOperand(2).getReg())) 8939 return Match_RequiresThumb2; 8940 // Others only require ARMv6 or later. 8941 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8942 isARMLowRegister(Inst.getOperand(0).getReg()) && 8943 isARMLowRegister(Inst.getOperand(1).getReg())) 8944 return Match_RequiresV6; 8945 } 8946 8947 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8948 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8949 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8950 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8951 return Match_RequiresV8; 8952 else if (Inst.getOperand(I).getReg() == ARM::PC) 8953 return Match_InvalidOperand; 8954 } 8955 8956 return Match_Success; 8957 } 8958 8959 namespace llvm { 8960 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { 8961 return true; // In an assembly source, no need to second-guess 8962 } 8963 } 8964 8965 // Returns true if Inst is unpredictable if it is in and IT block, but is not 8966 // the last instruction in the block. 8967 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 8968 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8969 8970 // All branch & call instructions terminate IT blocks. 8971 if (MCID.isTerminator() || MCID.isCall() || MCID.isReturn() || 8972 MCID.isBranch() || MCID.isIndirectBranch()) 8973 return true; 8974 8975 // Any arithmetic instruction which writes to the PC also terminates the IT 8976 // block. 8977 for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) { 8978 MCOperand &Op = Inst.getOperand(OpIdx); 8979 if (Op.isReg() && Op.getReg() == ARM::PC) 8980 return true; 8981 } 8982 8983 if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI)) 8984 return true; 8985 8986 // Instructions with variable operand lists, which write to the variable 8987 // operands. We only care about Thumb instructions here, as ARM instructions 8988 // obviously can't be in an IT block. 8989 switch (Inst.getOpcode()) { 8990 case ARM::t2LDMIA: 8991 case ARM::t2LDMIA_UPD: 8992 case ARM::t2LDMDB: 8993 case ARM::t2LDMDB_UPD: 8994 if (listContainsReg(Inst, 3, ARM::PC)) 8995 return true; 8996 break; 8997 case ARM::tPOP: 8998 if (listContainsReg(Inst, 2, ARM::PC)) 8999 return true; 9000 break; 9001 } 9002 9003 return false; 9004 } 9005 9006 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 9007 uint64_t &ErrorInfo, 9008 bool MatchingInlineAsm, 9009 bool &EmitInITBlock, 9010 MCStreamer &Out) { 9011 // If we can't use an implicit IT block here, just match as normal. 9012 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 9013 return MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 9014 9015 // Try to match the instruction in an extension of the current IT block (if 9016 // there is one). 9017 if (inImplicitITBlock()) { 9018 extendImplicitITBlock(ITState.Cond); 9019 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 9020 Match_Success) { 9021 // The match succeded, but we still have to check that the instruction is 9022 // valid in this implicit IT block. 9023 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9024 if (MCID.isPredicable()) { 9025 ARMCC::CondCodes InstCond = 9026 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9027 .getImm(); 9028 ARMCC::CondCodes ITCond = currentITCond(); 9029 if (InstCond == ITCond) { 9030 EmitInITBlock = true; 9031 return Match_Success; 9032 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 9033 invertCurrentITCondition(); 9034 EmitInITBlock = true; 9035 return Match_Success; 9036 } 9037 } 9038 } 9039 rewindImplicitITPosition(); 9040 } 9041 9042 // Finish the current IT block, and try to match outside any IT block. 9043 flushPendingInstructions(Out); 9044 unsigned PlainMatchResult = 9045 MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 9046 if (PlainMatchResult == Match_Success) { 9047 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9048 if (MCID.isPredicable()) { 9049 ARMCC::CondCodes InstCond = 9050 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9051 .getImm(); 9052 // Some forms of the branch instruction have their own condition code 9053 // fields, so can be conditionally executed without an IT block. 9054 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 9055 EmitInITBlock = false; 9056 return Match_Success; 9057 } 9058 if (InstCond == ARMCC::AL) { 9059 EmitInITBlock = false; 9060 return Match_Success; 9061 } 9062 } else { 9063 EmitInITBlock = false; 9064 return Match_Success; 9065 } 9066 } 9067 9068 // Try to match in a new IT block. The matcher doesn't check the actual 9069 // condition, so we create an IT block with a dummy condition, and fix it up 9070 // once we know the actual condition. 9071 startImplicitITBlock(); 9072 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 9073 Match_Success) { 9074 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9075 if (MCID.isPredicable()) { 9076 ITState.Cond = 9077 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9078 .getImm(); 9079 EmitInITBlock = true; 9080 return Match_Success; 9081 } 9082 } 9083 discardImplicitITBlock(); 9084 9085 // If none of these succeed, return the error we got when trying to match 9086 // outside any IT blocks. 9087 EmitInITBlock = false; 9088 return PlainMatchResult; 9089 } 9090 9091 static const char *getSubtargetFeatureName(uint64_t Val); 9092 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 9093 OperandVector &Operands, 9094 MCStreamer &Out, uint64_t &ErrorInfo, 9095 bool MatchingInlineAsm) { 9096 MCInst Inst; 9097 unsigned MatchResult; 9098 bool PendConditionalInstruction = false; 9099 9100 MatchResult = MatchInstruction(Operands, Inst, ErrorInfo, MatchingInlineAsm, 9101 PendConditionalInstruction, Out); 9102 9103 switch (MatchResult) { 9104 case Match_Success: 9105 // Context sensitive operand constraints aren't handled by the matcher, 9106 // so check them here. 9107 if (validateInstruction(Inst, Operands)) { 9108 // Still progress the IT block, otherwise one wrong condition causes 9109 // nasty cascading errors. 9110 forwardITPosition(); 9111 return true; 9112 } 9113 9114 { // processInstruction() updates inITBlock state, we need to save it away 9115 bool wasInITBlock = inITBlock(); 9116 9117 // Some instructions need post-processing to, for example, tweak which 9118 // encoding is selected. Loop on it while changes happen so the 9119 // individual transformations can chain off each other. E.g., 9120 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9121 while (processInstruction(Inst, Operands, Out)) 9122 ; 9123 9124 // Only after the instruction is fully processed, we can validate it 9125 if (wasInITBlock && hasV8Ops() && isThumb() && 9126 !isV8EligibleForIT(&Inst)) { 9127 Warning(IDLoc, "deprecated instruction in IT block"); 9128 } 9129 } 9130 9131 // Only move forward at the very end so that everything in validate 9132 // and process gets a consistent answer about whether we're in an IT 9133 // block. 9134 forwardITPosition(); 9135 9136 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9137 // doesn't actually encode. 9138 if (Inst.getOpcode() == ARM::ITasm) 9139 return false; 9140 9141 Inst.setLoc(IDLoc); 9142 if (PendConditionalInstruction) { 9143 PendingConditionalInsts.push_back(Inst); 9144 if (isITBlockFull() || isITBlockTerminator(Inst)) 9145 flushPendingInstructions(Out); 9146 } else { 9147 Out.EmitInstruction(Inst, getSTI()); 9148 } 9149 return false; 9150 case Match_MissingFeature: { 9151 assert(ErrorInfo && "Unknown missing feature!"); 9152 // Special case the error message for the very common case where only 9153 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 9154 std::string Msg = "instruction requires:"; 9155 uint64_t Mask = 1; 9156 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 9157 if (ErrorInfo & Mask) { 9158 Msg += " "; 9159 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 9160 } 9161 Mask <<= 1; 9162 } 9163 return Error(IDLoc, Msg); 9164 } 9165 case Match_InvalidOperand: { 9166 SMLoc ErrorLoc = IDLoc; 9167 if (ErrorInfo != ~0ULL) { 9168 if (ErrorInfo >= Operands.size()) 9169 return Error(IDLoc, "too few operands for instruction"); 9170 9171 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9172 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9173 } 9174 9175 return Error(ErrorLoc, "invalid operand for instruction"); 9176 } 9177 case Match_MnemonicFail: 9178 return Error(IDLoc, "invalid instruction", 9179 ((ARMOperand &)*Operands[0]).getLocRange()); 9180 case Match_RequiresNotITBlock: 9181 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 9182 case Match_RequiresITBlock: 9183 return Error(IDLoc, "instruction only valid inside IT block"); 9184 case Match_RequiresV6: 9185 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 9186 case Match_RequiresThumb2: 9187 return Error(IDLoc, "instruction variant requires Thumb2"); 9188 case Match_RequiresV8: 9189 return Error(IDLoc, "instruction variant requires ARMv8 or later"); 9190 case Match_ImmRange0_15: { 9191 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9192 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9193 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 9194 } 9195 case Match_ImmRange0_239: { 9196 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9197 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9198 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 9199 } 9200 case Match_AlignedMemoryRequiresNone: 9201 case Match_DupAlignedMemoryRequiresNone: 9202 case Match_AlignedMemoryRequires16: 9203 case Match_DupAlignedMemoryRequires16: 9204 case Match_AlignedMemoryRequires32: 9205 case Match_DupAlignedMemoryRequires32: 9206 case Match_AlignedMemoryRequires64: 9207 case Match_DupAlignedMemoryRequires64: 9208 case Match_AlignedMemoryRequires64or128: 9209 case Match_DupAlignedMemoryRequires64or128: 9210 case Match_AlignedMemoryRequires64or128or256: 9211 { 9212 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 9213 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9214 switch (MatchResult) { 9215 default: 9216 llvm_unreachable("Missing Match_Aligned type"); 9217 case Match_AlignedMemoryRequiresNone: 9218 case Match_DupAlignedMemoryRequiresNone: 9219 return Error(ErrorLoc, "alignment must be omitted"); 9220 case Match_AlignedMemoryRequires16: 9221 case Match_DupAlignedMemoryRequires16: 9222 return Error(ErrorLoc, "alignment must be 16 or omitted"); 9223 case Match_AlignedMemoryRequires32: 9224 case Match_DupAlignedMemoryRequires32: 9225 return Error(ErrorLoc, "alignment must be 32 or omitted"); 9226 case Match_AlignedMemoryRequires64: 9227 case Match_DupAlignedMemoryRequires64: 9228 return Error(ErrorLoc, "alignment must be 64 or omitted"); 9229 case Match_AlignedMemoryRequires64or128: 9230 case Match_DupAlignedMemoryRequires64or128: 9231 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 9232 case Match_AlignedMemoryRequires64or128or256: 9233 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 9234 } 9235 } 9236 } 9237 9238 llvm_unreachable("Implement any new match types added!"); 9239 } 9240 9241 /// parseDirective parses the arm specific directives 9242 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9243 const MCObjectFileInfo::Environment Format = 9244 getContext().getObjectFileInfo()->getObjectFileType(); 9245 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9246 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9247 9248 StringRef IDVal = DirectiveID.getIdentifier(); 9249 if (IDVal == ".word") 9250 return parseLiteralValues(4, DirectiveID.getLoc()); 9251 else if (IDVal == ".short" || IDVal == ".hword") 9252 return parseLiteralValues(2, DirectiveID.getLoc()); 9253 else if (IDVal == ".thumb") 9254 return parseDirectiveThumb(DirectiveID.getLoc()); 9255 else if (IDVal == ".arm") 9256 return parseDirectiveARM(DirectiveID.getLoc()); 9257 else if (IDVal == ".thumb_func") 9258 return parseDirectiveThumbFunc(DirectiveID.getLoc()); 9259 else if (IDVal == ".code") 9260 return parseDirectiveCode(DirectiveID.getLoc()); 9261 else if (IDVal == ".syntax") 9262 return parseDirectiveSyntax(DirectiveID.getLoc()); 9263 else if (IDVal == ".unreq") 9264 return parseDirectiveUnreq(DirectiveID.getLoc()); 9265 else if (IDVal == ".fnend") 9266 return parseDirectiveFnEnd(DirectiveID.getLoc()); 9267 else if (IDVal == ".cantunwind") 9268 return parseDirectiveCantUnwind(DirectiveID.getLoc()); 9269 else if (IDVal == ".personality") 9270 return parseDirectivePersonality(DirectiveID.getLoc()); 9271 else if (IDVal == ".handlerdata") 9272 return parseDirectiveHandlerData(DirectiveID.getLoc()); 9273 else if (IDVal == ".setfp") 9274 return parseDirectiveSetFP(DirectiveID.getLoc()); 9275 else if (IDVal == ".pad") 9276 return parseDirectivePad(DirectiveID.getLoc()); 9277 else if (IDVal == ".save") 9278 return parseDirectiveRegSave(DirectiveID.getLoc(), false); 9279 else if (IDVal == ".vsave") 9280 return parseDirectiveRegSave(DirectiveID.getLoc(), true); 9281 else if (IDVal == ".ltorg" || IDVal == ".pool") 9282 return parseDirectiveLtorg(DirectiveID.getLoc()); 9283 else if (IDVal == ".even") 9284 return parseDirectiveEven(DirectiveID.getLoc()); 9285 else if (IDVal == ".personalityindex") 9286 return parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9287 else if (IDVal == ".unwind_raw") 9288 return parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9289 else if (IDVal == ".movsp") 9290 return parseDirectiveMovSP(DirectiveID.getLoc()); 9291 else if (IDVal == ".arch_extension") 9292 return parseDirectiveArchExtension(DirectiveID.getLoc()); 9293 else if (IDVal == ".align") 9294 return parseDirectiveAlign(DirectiveID.getLoc()); 9295 else if (IDVal == ".thumb_set") 9296 return parseDirectiveThumbSet(DirectiveID.getLoc()); 9297 9298 if (!IsMachO && !IsCOFF) { 9299 if (IDVal == ".arch") 9300 return parseDirectiveArch(DirectiveID.getLoc()); 9301 else if (IDVal == ".cpu") 9302 return parseDirectiveCPU(DirectiveID.getLoc()); 9303 else if (IDVal == ".eabi_attribute") 9304 return parseDirectiveEabiAttr(DirectiveID.getLoc()); 9305 else if (IDVal == ".fpu") 9306 return parseDirectiveFPU(DirectiveID.getLoc()); 9307 else if (IDVal == ".fnstart") 9308 return parseDirectiveFnStart(DirectiveID.getLoc()); 9309 else if (IDVal == ".inst") 9310 return parseDirectiveInst(DirectiveID.getLoc()); 9311 else if (IDVal == ".inst.n") 9312 return parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9313 else if (IDVal == ".inst.w") 9314 return parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9315 else if (IDVal == ".object_arch") 9316 return parseDirectiveObjectArch(DirectiveID.getLoc()); 9317 else if (IDVal == ".tlsdescseq") 9318 return parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9319 } 9320 9321 return true; 9322 } 9323 9324 /// parseLiteralValues 9325 /// ::= .hword expression [, expression]* 9326 /// ::= .short expression [, expression]* 9327 /// ::= .word expression [, expression]* 9328 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9329 MCAsmParser &Parser = getParser(); 9330 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9331 for (;;) { 9332 const MCExpr *Value; 9333 if (getParser().parseExpression(Value)) { 9334 Parser.eatToEndOfStatement(); 9335 return false; 9336 } 9337 9338 getParser().getStreamer().EmitValue(Value, Size, L); 9339 9340 if (getLexer().is(AsmToken::EndOfStatement)) 9341 break; 9342 9343 // FIXME: Improve diagnostic. 9344 if (getLexer().isNot(AsmToken::Comma)) { 9345 Error(L, "unexpected token in directive"); 9346 return false; 9347 } 9348 Parser.Lex(); 9349 } 9350 } 9351 9352 Parser.Lex(); 9353 return false; 9354 } 9355 9356 /// parseDirectiveThumb 9357 /// ::= .thumb 9358 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9359 MCAsmParser &Parser = getParser(); 9360 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9361 Error(L, "unexpected token in directive"); 9362 return false; 9363 } 9364 Parser.Lex(); 9365 9366 if (!hasThumb()) { 9367 Error(L, "target does not support Thumb mode"); 9368 return false; 9369 } 9370 9371 if (!isThumb()) 9372 SwitchMode(); 9373 9374 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9375 return false; 9376 } 9377 9378 /// parseDirectiveARM 9379 /// ::= .arm 9380 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9381 MCAsmParser &Parser = getParser(); 9382 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9383 Error(L, "unexpected token in directive"); 9384 return false; 9385 } 9386 Parser.Lex(); 9387 9388 if (!hasARM()) { 9389 Error(L, "target does not support ARM mode"); 9390 return false; 9391 } 9392 9393 if (isThumb()) 9394 SwitchMode(); 9395 9396 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9397 return false; 9398 } 9399 9400 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9401 // We need to flush the current implicit IT block on a label, because it is 9402 // not legal to branch into an IT block. 9403 flushPendingInstructions(getStreamer()); 9404 if (NextSymbolIsThumb) { 9405 getParser().getStreamer().EmitThumbFunc(Symbol); 9406 NextSymbolIsThumb = false; 9407 } 9408 } 9409 9410 /// parseDirectiveThumbFunc 9411 /// ::= .thumbfunc symbol_name 9412 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9413 MCAsmParser &Parser = getParser(); 9414 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9415 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9416 9417 // Darwin asm has (optionally) function name after .thumb_func direction 9418 // ELF doesn't 9419 if (IsMachO) { 9420 const AsmToken &Tok = Parser.getTok(); 9421 if (Tok.isNot(AsmToken::EndOfStatement)) { 9422 if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) { 9423 Error(L, "unexpected token in .thumb_func directive"); 9424 return false; 9425 } 9426 9427 MCSymbol *Func = 9428 getParser().getContext().getOrCreateSymbol(Tok.getIdentifier()); 9429 getParser().getStreamer().EmitThumbFunc(Func); 9430 Parser.Lex(); // Consume the identifier token. 9431 return false; 9432 } 9433 } 9434 9435 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9436 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9437 Parser.eatToEndOfStatement(); 9438 return false; 9439 } 9440 9441 NextSymbolIsThumb = true; 9442 return false; 9443 } 9444 9445 /// parseDirectiveSyntax 9446 /// ::= .syntax unified | divided 9447 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9448 MCAsmParser &Parser = getParser(); 9449 const AsmToken &Tok = Parser.getTok(); 9450 if (Tok.isNot(AsmToken::Identifier)) { 9451 Error(L, "unexpected token in .syntax directive"); 9452 return false; 9453 } 9454 9455 StringRef Mode = Tok.getString(); 9456 if (Mode == "unified" || Mode == "UNIFIED") { 9457 Parser.Lex(); 9458 } else if (Mode == "divided" || Mode == "DIVIDED") { 9459 Error(L, "'.syntax divided' arm asssembly not supported"); 9460 return false; 9461 } else { 9462 Error(L, "unrecognized syntax mode in .syntax directive"); 9463 return false; 9464 } 9465 9466 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9467 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9468 return false; 9469 } 9470 Parser.Lex(); 9471 9472 // TODO tell the MC streamer the mode 9473 // getParser().getStreamer().Emit???(); 9474 return false; 9475 } 9476 9477 /// parseDirectiveCode 9478 /// ::= .code 16 | 32 9479 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9480 MCAsmParser &Parser = getParser(); 9481 const AsmToken &Tok = Parser.getTok(); 9482 if (Tok.isNot(AsmToken::Integer)) { 9483 Error(L, "unexpected token in .code directive"); 9484 return false; 9485 } 9486 int64_t Val = Parser.getTok().getIntVal(); 9487 if (Val != 16 && Val != 32) { 9488 Error(L, "invalid operand to .code directive"); 9489 return false; 9490 } 9491 Parser.Lex(); 9492 9493 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9494 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9495 return false; 9496 } 9497 Parser.Lex(); 9498 9499 if (Val == 16) { 9500 if (!hasThumb()) { 9501 Error(L, "target does not support Thumb mode"); 9502 return false; 9503 } 9504 9505 if (!isThumb()) 9506 SwitchMode(); 9507 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9508 } else { 9509 if (!hasARM()) { 9510 Error(L, "target does not support ARM mode"); 9511 return false; 9512 } 9513 9514 if (isThumb()) 9515 SwitchMode(); 9516 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9517 } 9518 9519 return false; 9520 } 9521 9522 /// parseDirectiveReq 9523 /// ::= name .req registername 9524 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9525 MCAsmParser &Parser = getParser(); 9526 Parser.Lex(); // Eat the '.req' token. 9527 unsigned Reg; 9528 SMLoc SRegLoc, ERegLoc; 9529 if (ParseRegister(Reg, SRegLoc, ERegLoc)) { 9530 Parser.eatToEndOfStatement(); 9531 Error(SRegLoc, "register name expected"); 9532 return false; 9533 } 9534 9535 // Shouldn't be anything else. 9536 if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { 9537 Parser.eatToEndOfStatement(); 9538 Error(Parser.getTok().getLoc(), "unexpected input in .req directive."); 9539 return false; 9540 } 9541 9542 Parser.Lex(); // Consume the EndOfStatement 9543 9544 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) { 9545 Error(SRegLoc, "redefinition of '" + Name + "' does not match original."); 9546 return false; 9547 } 9548 9549 return false; 9550 } 9551 9552 /// parseDirectiveUneq 9553 /// ::= .unreq registername 9554 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9555 MCAsmParser &Parser = getParser(); 9556 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9557 Parser.eatToEndOfStatement(); 9558 Error(L, "unexpected input in .unreq directive."); 9559 return false; 9560 } 9561 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9562 Parser.Lex(); // Eat the identifier. 9563 return false; 9564 } 9565 9566 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9567 // before, if supported by the new target, or emit mapping symbols for the mode 9568 // switch. 9569 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9570 if (WasThumb != isThumb()) { 9571 if (WasThumb && hasThumb()) { 9572 // Stay in Thumb mode 9573 SwitchMode(); 9574 } else if (!WasThumb && hasARM()) { 9575 // Stay in ARM mode 9576 SwitchMode(); 9577 } else { 9578 // Mode switch forced, because the new arch doesn't support the old mode. 9579 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9580 : MCAF_Code32); 9581 // Warn about the implcit mode switch. GAS does not switch modes here, 9582 // but instead stays in the old mode, reporting an error on any following 9583 // instructions as the mode does not exist on the target. 9584 Warning(Loc, Twine("new target does not support ") + 9585 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9586 (!WasThumb ? "thumb" : "arm") + " mode"); 9587 } 9588 } 9589 } 9590 9591 /// parseDirectiveArch 9592 /// ::= .arch token 9593 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9594 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9595 9596 unsigned ID = ARM::parseArch(Arch); 9597 9598 if (ID == ARM::AK_INVALID) { 9599 Error(L, "Unknown arch name"); 9600 return false; 9601 } 9602 9603 bool WasThumb = isThumb(); 9604 Triple T; 9605 MCSubtargetInfo &STI = copySTI(); 9606 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9607 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9608 FixModeAfterArchChange(WasThumb, L); 9609 9610 getTargetStreamer().emitArch(ID); 9611 return false; 9612 } 9613 9614 /// parseDirectiveEabiAttr 9615 /// ::= .eabi_attribute int, int [, "str"] 9616 /// ::= .eabi_attribute Tag_name, int [, "str"] 9617 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9618 MCAsmParser &Parser = getParser(); 9619 int64_t Tag; 9620 SMLoc TagLoc; 9621 TagLoc = Parser.getTok().getLoc(); 9622 if (Parser.getTok().is(AsmToken::Identifier)) { 9623 StringRef Name = Parser.getTok().getIdentifier(); 9624 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9625 if (Tag == -1) { 9626 Error(TagLoc, "attribute name not recognised: " + Name); 9627 Parser.eatToEndOfStatement(); 9628 return false; 9629 } 9630 Parser.Lex(); 9631 } else { 9632 const MCExpr *AttrExpr; 9633 9634 TagLoc = Parser.getTok().getLoc(); 9635 if (Parser.parseExpression(AttrExpr)) { 9636 Parser.eatToEndOfStatement(); 9637 return false; 9638 } 9639 9640 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9641 if (!CE) { 9642 Error(TagLoc, "expected numeric constant"); 9643 Parser.eatToEndOfStatement(); 9644 return false; 9645 } 9646 9647 Tag = CE->getValue(); 9648 } 9649 9650 if (Parser.getTok().isNot(AsmToken::Comma)) { 9651 Error(Parser.getTok().getLoc(), "comma expected"); 9652 Parser.eatToEndOfStatement(); 9653 return false; 9654 } 9655 Parser.Lex(); // skip comma 9656 9657 StringRef StringValue = ""; 9658 bool IsStringValue = false; 9659 9660 int64_t IntegerValue = 0; 9661 bool IsIntegerValue = false; 9662 9663 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9664 IsStringValue = true; 9665 else if (Tag == ARMBuildAttrs::compatibility) { 9666 IsStringValue = true; 9667 IsIntegerValue = true; 9668 } else if (Tag < 32 || Tag % 2 == 0) 9669 IsIntegerValue = true; 9670 else if (Tag % 2 == 1) 9671 IsStringValue = true; 9672 else 9673 llvm_unreachable("invalid tag type"); 9674 9675 if (IsIntegerValue) { 9676 const MCExpr *ValueExpr; 9677 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9678 if (Parser.parseExpression(ValueExpr)) { 9679 Parser.eatToEndOfStatement(); 9680 return false; 9681 } 9682 9683 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9684 if (!CE) { 9685 Error(ValueExprLoc, "expected numeric constant"); 9686 Parser.eatToEndOfStatement(); 9687 return false; 9688 } 9689 9690 IntegerValue = CE->getValue(); 9691 } 9692 9693 if (Tag == ARMBuildAttrs::compatibility) { 9694 if (Parser.getTok().isNot(AsmToken::Comma)) 9695 IsStringValue = false; 9696 if (Parser.getTok().isNot(AsmToken::Comma)) { 9697 Error(Parser.getTok().getLoc(), "comma expected"); 9698 Parser.eatToEndOfStatement(); 9699 return false; 9700 } else { 9701 Parser.Lex(); 9702 } 9703 } 9704 9705 if (IsStringValue) { 9706 if (Parser.getTok().isNot(AsmToken::String)) { 9707 Error(Parser.getTok().getLoc(), "bad string constant"); 9708 Parser.eatToEndOfStatement(); 9709 return false; 9710 } 9711 9712 StringValue = Parser.getTok().getStringContents(); 9713 Parser.Lex(); 9714 } 9715 9716 if (IsIntegerValue && IsStringValue) { 9717 assert(Tag == ARMBuildAttrs::compatibility); 9718 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9719 } else if (IsIntegerValue) 9720 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9721 else if (IsStringValue) 9722 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9723 return false; 9724 } 9725 9726 /// parseDirectiveCPU 9727 /// ::= .cpu str 9728 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9729 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9730 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9731 9732 // FIXME: This is using table-gen data, but should be moved to 9733 // ARMTargetParser once that is table-gen'd. 9734 if (!getSTI().isCPUStringValid(CPU)) { 9735 Error(L, "Unknown CPU name"); 9736 return false; 9737 } 9738 9739 bool WasThumb = isThumb(); 9740 MCSubtargetInfo &STI = copySTI(); 9741 STI.setDefaultFeatures(CPU, ""); 9742 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9743 FixModeAfterArchChange(WasThumb, L); 9744 9745 return false; 9746 } 9747 /// parseDirectiveFPU 9748 /// ::= .fpu str 9749 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9750 SMLoc FPUNameLoc = getTok().getLoc(); 9751 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9752 9753 unsigned ID = ARM::parseFPU(FPU); 9754 std::vector<const char *> Features; 9755 if (!ARM::getFPUFeatures(ID, Features)) { 9756 Error(FPUNameLoc, "Unknown FPU name"); 9757 return false; 9758 } 9759 9760 MCSubtargetInfo &STI = copySTI(); 9761 for (auto Feature : Features) 9762 STI.ApplyFeatureFlag(Feature); 9763 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9764 9765 getTargetStreamer().emitFPU(ID); 9766 return false; 9767 } 9768 9769 /// parseDirectiveFnStart 9770 /// ::= .fnstart 9771 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9772 if (UC.hasFnStart()) { 9773 Error(L, ".fnstart starts before the end of previous one"); 9774 UC.emitFnStartLocNotes(); 9775 return false; 9776 } 9777 9778 // Reset the unwind directives parser state 9779 UC.reset(); 9780 9781 getTargetStreamer().emitFnStart(); 9782 9783 UC.recordFnStart(L); 9784 return false; 9785 } 9786 9787 /// parseDirectiveFnEnd 9788 /// ::= .fnend 9789 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9790 // Check the ordering of unwind directives 9791 if (!UC.hasFnStart()) { 9792 Error(L, ".fnstart must precede .fnend directive"); 9793 return false; 9794 } 9795 9796 // Reset the unwind directives parser state 9797 getTargetStreamer().emitFnEnd(); 9798 9799 UC.reset(); 9800 return false; 9801 } 9802 9803 /// parseDirectiveCantUnwind 9804 /// ::= .cantunwind 9805 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9806 UC.recordCantUnwind(L); 9807 9808 // Check the ordering of unwind directives 9809 if (!UC.hasFnStart()) { 9810 Error(L, ".fnstart must precede .cantunwind directive"); 9811 return false; 9812 } 9813 if (UC.hasHandlerData()) { 9814 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9815 UC.emitHandlerDataLocNotes(); 9816 return false; 9817 } 9818 if (UC.hasPersonality()) { 9819 Error(L, ".cantunwind can't be used with .personality directive"); 9820 UC.emitPersonalityLocNotes(); 9821 return false; 9822 } 9823 9824 getTargetStreamer().emitCantUnwind(); 9825 return false; 9826 } 9827 9828 /// parseDirectivePersonality 9829 /// ::= .personality name 9830 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9831 MCAsmParser &Parser = getParser(); 9832 bool HasExistingPersonality = UC.hasPersonality(); 9833 9834 UC.recordPersonality(L); 9835 9836 // Check the ordering of unwind directives 9837 if (!UC.hasFnStart()) { 9838 Error(L, ".fnstart must precede .personality directive"); 9839 return false; 9840 } 9841 if (UC.cantUnwind()) { 9842 Error(L, ".personality can't be used with .cantunwind directive"); 9843 UC.emitCantUnwindLocNotes(); 9844 return false; 9845 } 9846 if (UC.hasHandlerData()) { 9847 Error(L, ".personality must precede .handlerdata directive"); 9848 UC.emitHandlerDataLocNotes(); 9849 return false; 9850 } 9851 if (HasExistingPersonality) { 9852 Parser.eatToEndOfStatement(); 9853 Error(L, "multiple personality directives"); 9854 UC.emitPersonalityLocNotes(); 9855 return false; 9856 } 9857 9858 // Parse the name of the personality routine 9859 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9860 Parser.eatToEndOfStatement(); 9861 Error(L, "unexpected input in .personality directive."); 9862 return false; 9863 } 9864 StringRef Name(Parser.getTok().getIdentifier()); 9865 Parser.Lex(); 9866 9867 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9868 getTargetStreamer().emitPersonality(PR); 9869 return false; 9870 } 9871 9872 /// parseDirectiveHandlerData 9873 /// ::= .handlerdata 9874 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9875 UC.recordHandlerData(L); 9876 9877 // Check the ordering of unwind directives 9878 if (!UC.hasFnStart()) { 9879 Error(L, ".fnstart must precede .personality directive"); 9880 return false; 9881 } 9882 if (UC.cantUnwind()) { 9883 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9884 UC.emitCantUnwindLocNotes(); 9885 return false; 9886 } 9887 9888 getTargetStreamer().emitHandlerData(); 9889 return false; 9890 } 9891 9892 /// parseDirectiveSetFP 9893 /// ::= .setfp fpreg, spreg [, offset] 9894 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9895 MCAsmParser &Parser = getParser(); 9896 // Check the ordering of unwind directives 9897 if (!UC.hasFnStart()) { 9898 Error(L, ".fnstart must precede .setfp directive"); 9899 return false; 9900 } 9901 if (UC.hasHandlerData()) { 9902 Error(L, ".setfp must precede .handlerdata directive"); 9903 return false; 9904 } 9905 9906 // Parse fpreg 9907 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9908 int FPReg = tryParseRegister(); 9909 if (FPReg == -1) { 9910 Error(FPRegLoc, "frame pointer register expected"); 9911 return false; 9912 } 9913 9914 // Consume comma 9915 if (Parser.getTok().isNot(AsmToken::Comma)) { 9916 Error(Parser.getTok().getLoc(), "comma expected"); 9917 return false; 9918 } 9919 Parser.Lex(); // skip comma 9920 9921 // Parse spreg 9922 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9923 int SPReg = tryParseRegister(); 9924 if (SPReg == -1) { 9925 Error(SPRegLoc, "stack pointer register expected"); 9926 return false; 9927 } 9928 9929 if (SPReg != ARM::SP && SPReg != UC.getFPReg()) { 9930 Error(SPRegLoc, "register should be either $sp or the latest fp register"); 9931 return false; 9932 } 9933 9934 // Update the frame pointer register 9935 UC.saveFPReg(FPReg); 9936 9937 // Parse offset 9938 int64_t Offset = 0; 9939 if (Parser.getTok().is(AsmToken::Comma)) { 9940 Parser.Lex(); // skip comma 9941 9942 if (Parser.getTok().isNot(AsmToken::Hash) && 9943 Parser.getTok().isNot(AsmToken::Dollar)) { 9944 Error(Parser.getTok().getLoc(), "'#' expected"); 9945 return false; 9946 } 9947 Parser.Lex(); // skip hash token. 9948 9949 const MCExpr *OffsetExpr; 9950 SMLoc ExLoc = Parser.getTok().getLoc(); 9951 SMLoc EndLoc; 9952 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9953 Error(ExLoc, "malformed setfp offset"); 9954 return false; 9955 } 9956 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9957 if (!CE) { 9958 Error(ExLoc, "setfp offset must be an immediate"); 9959 return false; 9960 } 9961 9962 Offset = CE->getValue(); 9963 } 9964 9965 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9966 static_cast<unsigned>(SPReg), Offset); 9967 return false; 9968 } 9969 9970 /// parseDirective 9971 /// ::= .pad offset 9972 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9973 MCAsmParser &Parser = getParser(); 9974 // Check the ordering of unwind directives 9975 if (!UC.hasFnStart()) { 9976 Error(L, ".fnstart must precede .pad directive"); 9977 return false; 9978 } 9979 if (UC.hasHandlerData()) { 9980 Error(L, ".pad must precede .handlerdata directive"); 9981 return false; 9982 } 9983 9984 // Parse the offset 9985 if (Parser.getTok().isNot(AsmToken::Hash) && 9986 Parser.getTok().isNot(AsmToken::Dollar)) { 9987 Error(Parser.getTok().getLoc(), "'#' expected"); 9988 return false; 9989 } 9990 Parser.Lex(); // skip hash token. 9991 9992 const MCExpr *OffsetExpr; 9993 SMLoc ExLoc = Parser.getTok().getLoc(); 9994 SMLoc EndLoc; 9995 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9996 Error(ExLoc, "malformed pad offset"); 9997 return false; 9998 } 9999 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10000 if (!CE) { 10001 Error(ExLoc, "pad offset must be an immediate"); 10002 return false; 10003 } 10004 10005 getTargetStreamer().emitPad(CE->getValue()); 10006 return false; 10007 } 10008 10009 /// parseDirectiveRegSave 10010 /// ::= .save { registers } 10011 /// ::= .vsave { registers } 10012 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 10013 // Check the ordering of unwind directives 10014 if (!UC.hasFnStart()) { 10015 Error(L, ".fnstart must precede .save or .vsave directives"); 10016 return false; 10017 } 10018 if (UC.hasHandlerData()) { 10019 Error(L, ".save or .vsave must precede .handlerdata directive"); 10020 return false; 10021 } 10022 10023 // RAII object to make sure parsed operands are deleted. 10024 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 10025 10026 // Parse the register list 10027 if (parseRegisterList(Operands)) 10028 return false; 10029 ARMOperand &Op = (ARMOperand &)*Operands[0]; 10030 if (!IsVector && !Op.isRegList()) { 10031 Error(L, ".save expects GPR registers"); 10032 return false; 10033 } 10034 if (IsVector && !Op.isDPRRegList()) { 10035 Error(L, ".vsave expects DPR registers"); 10036 return false; 10037 } 10038 10039 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 10040 return false; 10041 } 10042 10043 /// parseDirectiveInst 10044 /// ::= .inst opcode [, ...] 10045 /// ::= .inst.n opcode [, ...] 10046 /// ::= .inst.w opcode [, ...] 10047 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 10048 MCAsmParser &Parser = getParser(); 10049 int Width; 10050 10051 if (isThumb()) { 10052 switch (Suffix) { 10053 case 'n': 10054 Width = 2; 10055 break; 10056 case 'w': 10057 Width = 4; 10058 break; 10059 default: 10060 Parser.eatToEndOfStatement(); 10061 Error(Loc, "cannot determine Thumb instruction size, " 10062 "use inst.n/inst.w instead"); 10063 return false; 10064 } 10065 } else { 10066 if (Suffix) { 10067 Parser.eatToEndOfStatement(); 10068 Error(Loc, "width suffixes are invalid in ARM mode"); 10069 return false; 10070 } 10071 Width = 4; 10072 } 10073 10074 if (getLexer().is(AsmToken::EndOfStatement)) { 10075 Parser.eatToEndOfStatement(); 10076 Error(Loc, "expected expression following directive"); 10077 return false; 10078 } 10079 10080 for (;;) { 10081 const MCExpr *Expr; 10082 10083 if (getParser().parseExpression(Expr)) { 10084 Error(Loc, "expected expression"); 10085 return false; 10086 } 10087 10088 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 10089 if (!Value) { 10090 Error(Loc, "expected constant expression"); 10091 return false; 10092 } 10093 10094 switch (Width) { 10095 case 2: 10096 if (Value->getValue() > 0xffff) { 10097 Error(Loc, "inst.n operand is too big, use inst.w instead"); 10098 return false; 10099 } 10100 break; 10101 case 4: 10102 if (Value->getValue() > 0xffffffff) { 10103 Error(Loc, 10104 StringRef(Suffix ? "inst.w" : "inst") + " operand is too big"); 10105 return false; 10106 } 10107 break; 10108 default: 10109 llvm_unreachable("only supported widths are 2 and 4"); 10110 } 10111 10112 getTargetStreamer().emitInst(Value->getValue(), Suffix); 10113 10114 if (getLexer().is(AsmToken::EndOfStatement)) 10115 break; 10116 10117 if (getLexer().isNot(AsmToken::Comma)) { 10118 Error(Loc, "unexpected token in directive"); 10119 return false; 10120 } 10121 10122 Parser.Lex(); 10123 } 10124 10125 Parser.Lex(); 10126 return false; 10127 } 10128 10129 /// parseDirectiveLtorg 10130 /// ::= .ltorg | .pool 10131 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 10132 getTargetStreamer().emitCurrentConstantPool(); 10133 return false; 10134 } 10135 10136 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 10137 const MCSection *Section = getStreamer().getCurrentSection().first; 10138 10139 if (getLexer().isNot(AsmToken::EndOfStatement)) { 10140 TokError("unexpected token in directive"); 10141 return false; 10142 } 10143 10144 if (!Section) { 10145 getStreamer().InitSections(false); 10146 Section = getStreamer().getCurrentSection().first; 10147 } 10148 10149 assert(Section && "must have section to emit alignment"); 10150 if (Section->UseCodeAlign()) 10151 getStreamer().EmitCodeAlignment(2); 10152 else 10153 getStreamer().EmitValueToAlignment(2); 10154 10155 return false; 10156 } 10157 10158 /// parseDirectivePersonalityIndex 10159 /// ::= .personalityindex index 10160 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 10161 MCAsmParser &Parser = getParser(); 10162 bool HasExistingPersonality = UC.hasPersonality(); 10163 10164 UC.recordPersonalityIndex(L); 10165 10166 if (!UC.hasFnStart()) { 10167 Parser.eatToEndOfStatement(); 10168 Error(L, ".fnstart must precede .personalityindex directive"); 10169 return false; 10170 } 10171 if (UC.cantUnwind()) { 10172 Parser.eatToEndOfStatement(); 10173 Error(L, ".personalityindex cannot be used with .cantunwind"); 10174 UC.emitCantUnwindLocNotes(); 10175 return false; 10176 } 10177 if (UC.hasHandlerData()) { 10178 Parser.eatToEndOfStatement(); 10179 Error(L, ".personalityindex must precede .handlerdata directive"); 10180 UC.emitHandlerDataLocNotes(); 10181 return false; 10182 } 10183 if (HasExistingPersonality) { 10184 Parser.eatToEndOfStatement(); 10185 Error(L, "multiple personality directives"); 10186 UC.emitPersonalityLocNotes(); 10187 return false; 10188 } 10189 10190 const MCExpr *IndexExpression; 10191 SMLoc IndexLoc = Parser.getTok().getLoc(); 10192 if (Parser.parseExpression(IndexExpression)) { 10193 Parser.eatToEndOfStatement(); 10194 return false; 10195 } 10196 10197 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 10198 if (!CE) { 10199 Parser.eatToEndOfStatement(); 10200 Error(IndexLoc, "index must be a constant number"); 10201 return false; 10202 } 10203 if (CE->getValue() < 0 || 10204 CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) { 10205 Parser.eatToEndOfStatement(); 10206 Error(IndexLoc, "personality routine index should be in range [0-3]"); 10207 return false; 10208 } 10209 10210 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 10211 return false; 10212 } 10213 10214 /// parseDirectiveUnwindRaw 10215 /// ::= .unwind_raw offset, opcode [, opcode...] 10216 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 10217 MCAsmParser &Parser = getParser(); 10218 if (!UC.hasFnStart()) { 10219 Parser.eatToEndOfStatement(); 10220 Error(L, ".fnstart must precede .unwind_raw directives"); 10221 return false; 10222 } 10223 10224 int64_t StackOffset; 10225 10226 const MCExpr *OffsetExpr; 10227 SMLoc OffsetLoc = getLexer().getLoc(); 10228 if (getLexer().is(AsmToken::EndOfStatement) || 10229 getParser().parseExpression(OffsetExpr)) { 10230 Error(OffsetLoc, "expected expression"); 10231 Parser.eatToEndOfStatement(); 10232 return false; 10233 } 10234 10235 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10236 if (!CE) { 10237 Error(OffsetLoc, "offset must be a constant"); 10238 Parser.eatToEndOfStatement(); 10239 return false; 10240 } 10241 10242 StackOffset = CE->getValue(); 10243 10244 if (getLexer().isNot(AsmToken::Comma)) { 10245 Error(getLexer().getLoc(), "expected comma"); 10246 Parser.eatToEndOfStatement(); 10247 return false; 10248 } 10249 Parser.Lex(); 10250 10251 SmallVector<uint8_t, 16> Opcodes; 10252 for (;;) { 10253 const MCExpr *OE; 10254 10255 SMLoc OpcodeLoc = getLexer().getLoc(); 10256 if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) { 10257 Error(OpcodeLoc, "expected opcode expression"); 10258 Parser.eatToEndOfStatement(); 10259 return false; 10260 } 10261 10262 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 10263 if (!OC) { 10264 Error(OpcodeLoc, "opcode value must be a constant"); 10265 Parser.eatToEndOfStatement(); 10266 return false; 10267 } 10268 10269 const int64_t Opcode = OC->getValue(); 10270 if (Opcode & ~0xff) { 10271 Error(OpcodeLoc, "invalid opcode"); 10272 Parser.eatToEndOfStatement(); 10273 return false; 10274 } 10275 10276 Opcodes.push_back(uint8_t(Opcode)); 10277 10278 if (getLexer().is(AsmToken::EndOfStatement)) 10279 break; 10280 10281 if (getLexer().isNot(AsmToken::Comma)) { 10282 Error(getLexer().getLoc(), "unexpected token in directive"); 10283 Parser.eatToEndOfStatement(); 10284 return false; 10285 } 10286 10287 Parser.Lex(); 10288 } 10289 10290 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 10291 10292 Parser.Lex(); 10293 return false; 10294 } 10295 10296 /// parseDirectiveTLSDescSeq 10297 /// ::= .tlsdescseq tls-variable 10298 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 10299 MCAsmParser &Parser = getParser(); 10300 10301 if (getLexer().isNot(AsmToken::Identifier)) { 10302 TokError("expected variable after '.tlsdescseq' directive"); 10303 Parser.eatToEndOfStatement(); 10304 return false; 10305 } 10306 10307 const MCSymbolRefExpr *SRE = 10308 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10309 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10310 Lex(); 10311 10312 if (getLexer().isNot(AsmToken::EndOfStatement)) { 10313 Error(Parser.getTok().getLoc(), "unexpected token"); 10314 Parser.eatToEndOfStatement(); 10315 return false; 10316 } 10317 10318 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10319 return false; 10320 } 10321 10322 /// parseDirectiveMovSP 10323 /// ::= .movsp reg [, #offset] 10324 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10325 MCAsmParser &Parser = getParser(); 10326 if (!UC.hasFnStart()) { 10327 Parser.eatToEndOfStatement(); 10328 Error(L, ".fnstart must precede .movsp directives"); 10329 return false; 10330 } 10331 if (UC.getFPReg() != ARM::SP) { 10332 Parser.eatToEndOfStatement(); 10333 Error(L, "unexpected .movsp directive"); 10334 return false; 10335 } 10336 10337 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10338 int SPReg = tryParseRegister(); 10339 if (SPReg == -1) { 10340 Parser.eatToEndOfStatement(); 10341 Error(SPRegLoc, "register expected"); 10342 return false; 10343 } 10344 10345 if (SPReg == ARM::SP || SPReg == ARM::PC) { 10346 Parser.eatToEndOfStatement(); 10347 Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10348 return false; 10349 } 10350 10351 int64_t Offset = 0; 10352 if (Parser.getTok().is(AsmToken::Comma)) { 10353 Parser.Lex(); 10354 10355 if (Parser.getTok().isNot(AsmToken::Hash)) { 10356 Error(Parser.getTok().getLoc(), "expected #constant"); 10357 Parser.eatToEndOfStatement(); 10358 return false; 10359 } 10360 Parser.Lex(); 10361 10362 const MCExpr *OffsetExpr; 10363 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10364 if (Parser.parseExpression(OffsetExpr)) { 10365 Parser.eatToEndOfStatement(); 10366 Error(OffsetLoc, "malformed offset expression"); 10367 return false; 10368 } 10369 10370 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10371 if (!CE) { 10372 Parser.eatToEndOfStatement(); 10373 Error(OffsetLoc, "offset must be an immediate constant"); 10374 return false; 10375 } 10376 10377 Offset = CE->getValue(); 10378 } 10379 10380 getTargetStreamer().emitMovSP(SPReg, Offset); 10381 UC.saveFPReg(SPReg); 10382 10383 return false; 10384 } 10385 10386 /// parseDirectiveObjectArch 10387 /// ::= .object_arch name 10388 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10389 MCAsmParser &Parser = getParser(); 10390 if (getLexer().isNot(AsmToken::Identifier)) { 10391 Error(getLexer().getLoc(), "unexpected token"); 10392 Parser.eatToEndOfStatement(); 10393 return false; 10394 } 10395 10396 StringRef Arch = Parser.getTok().getString(); 10397 SMLoc ArchLoc = Parser.getTok().getLoc(); 10398 Lex(); 10399 10400 unsigned ID = ARM::parseArch(Arch); 10401 10402 if (ID == ARM::AK_INVALID) { 10403 Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10404 Parser.eatToEndOfStatement(); 10405 return false; 10406 } 10407 10408 getTargetStreamer().emitObjectArch(ID); 10409 10410 if (getLexer().isNot(AsmToken::EndOfStatement)) { 10411 Error(getLexer().getLoc(), "unexpected token"); 10412 Parser.eatToEndOfStatement(); 10413 } 10414 10415 return false; 10416 } 10417 10418 /// parseDirectiveAlign 10419 /// ::= .align 10420 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10421 // NOTE: if this is not the end of the statement, fall back to the target 10422 // agnostic handling for this directive which will correctly handle this. 10423 if (getLexer().isNot(AsmToken::EndOfStatement)) 10424 return true; 10425 10426 // '.align' is target specifically handled to mean 2**2 byte alignment. 10427 const MCSection *Section = getStreamer().getCurrentSection().first; 10428 assert(Section && "must have section to emit alignment"); 10429 if (Section->UseCodeAlign()) 10430 getStreamer().EmitCodeAlignment(4, 0); 10431 else 10432 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10433 10434 return false; 10435 } 10436 10437 /// parseDirectiveThumbSet 10438 /// ::= .thumb_set name, value 10439 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10440 MCAsmParser &Parser = getParser(); 10441 10442 StringRef Name; 10443 if (Parser.parseIdentifier(Name)) { 10444 TokError("expected identifier after '.thumb_set'"); 10445 Parser.eatToEndOfStatement(); 10446 return false; 10447 } 10448 10449 if (getLexer().isNot(AsmToken::Comma)) { 10450 TokError("expected comma after name '" + Name + "'"); 10451 Parser.eatToEndOfStatement(); 10452 return false; 10453 } 10454 Lex(); 10455 10456 MCSymbol *Sym; 10457 const MCExpr *Value; 10458 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10459 Parser, Sym, Value)) 10460 return true; 10461 10462 getTargetStreamer().emitThumbSet(Sym, Value); 10463 return false; 10464 } 10465 10466 /// Force static initialization. 10467 extern "C" void LLVMInitializeARMAsmParser() { 10468 RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget); 10469 RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget); 10470 RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget); 10471 RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget); 10472 } 10473 10474 #define GET_REGISTER_MATCHER 10475 #define GET_SUBTARGET_FEATURE_NAME 10476 #define GET_MATCHER_IMPLEMENTATION 10477 #include "ARMGenAsmMatcher.inc" 10478 10479 // FIXME: This structure should be moved inside ARMTargetParser 10480 // when we start to table-generate them, and we can use the ARM 10481 // flags below, that were generated by table-gen. 10482 static const struct { 10483 const unsigned Kind; 10484 const uint64_t ArchCheck; 10485 const FeatureBitset Features; 10486 } Extensions[] = { 10487 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10488 { ARM::AEK_CRYPTO, Feature_HasV8, 10489 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10490 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10491 { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10492 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 10493 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10494 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10495 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10496 // FIXME: Only available in A-class, isel not predicated 10497 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10498 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10499 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10500 // FIXME: Unsupported extensions. 10501 { ARM::AEK_OS, Feature_None, {} }, 10502 { ARM::AEK_IWMMXT, Feature_None, {} }, 10503 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10504 { ARM::AEK_MAVERICK, Feature_None, {} }, 10505 { ARM::AEK_XSCALE, Feature_None, {} }, 10506 }; 10507 10508 /// parseDirectiveArchExtension 10509 /// ::= .arch_extension [no]feature 10510 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10511 MCAsmParser &Parser = getParser(); 10512 10513 if (getLexer().isNot(AsmToken::Identifier)) { 10514 Error(getLexer().getLoc(), "expected architecture extension name"); 10515 Parser.eatToEndOfStatement(); 10516 return false; 10517 } 10518 10519 StringRef Name = Parser.getTok().getString(); 10520 SMLoc ExtLoc = Parser.getTok().getLoc(); 10521 Lex(); 10522 10523 bool EnableFeature = true; 10524 if (Name.startswith_lower("no")) { 10525 EnableFeature = false; 10526 Name = Name.substr(2); 10527 } 10528 unsigned FeatureKind = ARM::parseArchExt(Name); 10529 if (FeatureKind == ARM::AEK_INVALID) { 10530 Error(ExtLoc, "unknown architectural extension: " + Name); 10531 return false; 10532 } 10533 10534 for (const auto &Extension : Extensions) { 10535 if (Extension.Kind != FeatureKind) 10536 continue; 10537 10538 if (Extension.Features.none()) { 10539 Error(ExtLoc, "unsupported architectural extension: " + Name); 10540 return false; 10541 } 10542 10543 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) { 10544 Error(ExtLoc, "architectural extension '" + Name + "' is not " 10545 "allowed for the current base architecture"); 10546 return false; 10547 } 10548 10549 MCSubtargetInfo &STI = copySTI(); 10550 FeatureBitset ToggleFeatures = EnableFeature 10551 ? (~STI.getFeatureBits() & Extension.Features) 10552 : ( STI.getFeatureBits() & Extension.Features); 10553 10554 uint64_t Features = 10555 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10556 setAvailableFeatures(Features); 10557 return false; 10558 } 10559 10560 Error(ExtLoc, "unknown architectural extension: " + Name); 10561 Parser.eatToEndOfStatement(); 10562 return false; 10563 } 10564 10565 // Define this matcher function after the auto-generated include so we 10566 // have the match class enum definitions. 10567 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10568 unsigned Kind) { 10569 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10570 // If the kind is a token for a literal immediate, check if our asm 10571 // operand matches. This is for InstAliases which have a fixed-value 10572 // immediate in the syntax. 10573 switch (Kind) { 10574 default: break; 10575 case MCK__35_0: 10576 if (Op.isImm()) 10577 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10578 if (CE->getValue() == 0) 10579 return Match_Success; 10580 break; 10581 case MCK_ModImm: 10582 if (Op.isImm()) { 10583 const MCExpr *SOExpr = Op.getImm(); 10584 int64_t Value; 10585 if (!SOExpr->evaluateAsAbsolute(Value)) 10586 return Match_Success; 10587 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10588 "expression value must be representable in 32 bits"); 10589 } 10590 break; 10591 case MCK_rGPR: 10592 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10593 return Match_Success; 10594 break; 10595 case MCK_GPRPair: 10596 if (Op.isReg() && 10597 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10598 return Match_Success; 10599 break; 10600 } 10601 return Match_InvalidOperand; 10602 } 10603