1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMFeatures.h" 10 #include "Utils/ARMBaseInfo.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMInstPrinter.h" 14 #include "MCTargetDesc/ARMMCExpr.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "TargetInfo/ARMTargetInfo.h" 17 #include "llvm/ADT/APFloat.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/ADT/Twine.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/MC/MCInst.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCInstrInfo.h" 33 #include "llvm/MC/MCObjectFileInfo.h" 34 #include "llvm/MC/MCParser/MCAsmLexer.h" 35 #include "llvm/MC/MCParser/MCAsmParser.h" 36 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 37 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 38 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 39 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/MC/MCSection.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSubtargetInfo.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/SubtargetFeature.h" 46 #include "llvm/Support/ARMBuildAttributes.h" 47 #include "llvm/Support/ARMEHABI.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/SMLoc.h" 54 #include "llvm/Support/TargetParser.h" 55 #include "llvm/Support/TargetRegistry.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstddef> 60 #include <cstdint> 61 #include <iterator> 62 #include <limits> 63 #include <memory> 64 #include <string> 65 #include <utility> 66 #include <vector> 67 68 #define DEBUG_TYPE "asm-parser" 69 70 using namespace llvm; 71 72 namespace { 73 74 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 75 76 static cl::opt<ImplicitItModeTy> ImplicitItMode( 77 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 78 cl::desc("Allow conditional instructions outdside of an IT block"), 79 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 80 "Accept in both ISAs, emit implicit ITs in Thumb"), 81 clEnumValN(ImplicitItModeTy::Never, "never", 82 "Warn in ARM, reject in Thumb"), 83 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 84 "Accept in ARM, reject in Thumb"), 85 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 86 "Warn in ARM, emit implicit ITs in Thumb"))); 87 88 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 89 cl::init(false)); 90 91 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 92 93 class UnwindContext { 94 using Locs = SmallVector<SMLoc, 4>; 95 96 MCAsmParser &Parser; 97 Locs FnStartLocs; 98 Locs CantUnwindLocs; 99 Locs PersonalityLocs; 100 Locs PersonalityIndexLocs; 101 Locs HandlerDataLocs; 102 int FPReg; 103 104 public: 105 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 106 107 bool hasFnStart() const { return !FnStartLocs.empty(); } 108 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 109 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 110 111 bool hasPersonality() const { 112 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 113 } 114 115 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 116 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 117 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 118 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 119 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 120 121 void saveFPReg(int Reg) { FPReg = Reg; } 122 int getFPReg() const { return FPReg; } 123 124 void emitFnStartLocNotes() const { 125 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 126 FI != FE; ++FI) 127 Parser.Note(*FI, ".fnstart was specified here"); 128 } 129 130 void emitCantUnwindLocNotes() const { 131 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 132 UE = CantUnwindLocs.end(); UI != UE; ++UI) 133 Parser.Note(*UI, ".cantunwind was specified here"); 134 } 135 136 void emitHandlerDataLocNotes() const { 137 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 138 HE = HandlerDataLocs.end(); HI != HE; ++HI) 139 Parser.Note(*HI, ".handlerdata was specified here"); 140 } 141 142 void emitPersonalityLocNotes() const { 143 for (Locs::const_iterator PI = PersonalityLocs.begin(), 144 PE = PersonalityLocs.end(), 145 PII = PersonalityIndexLocs.begin(), 146 PIE = PersonalityIndexLocs.end(); 147 PI != PE || PII != PIE;) { 148 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 149 Parser.Note(*PI++, ".personality was specified here"); 150 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 151 Parser.Note(*PII++, ".personalityindex was specified here"); 152 else 153 llvm_unreachable(".personality and .personalityindex cannot be " 154 "at the same location"); 155 } 156 } 157 158 void reset() { 159 FnStartLocs = Locs(); 160 CantUnwindLocs = Locs(); 161 PersonalityLocs = Locs(); 162 HandlerDataLocs = Locs(); 163 PersonalityIndexLocs = Locs(); 164 FPReg = ARM::SP; 165 } 166 }; 167 168 169 class ARMAsmParser : public MCTargetAsmParser { 170 const MCRegisterInfo *MRI; 171 UnwindContext UC; 172 173 ARMTargetStreamer &getTargetStreamer() { 174 assert(getParser().getStreamer().getTargetStreamer() && 175 "do not have a target streamer"); 176 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 177 return static_cast<ARMTargetStreamer &>(TS); 178 } 179 180 // Map of register aliases registers via the .req directive. 181 StringMap<unsigned> RegisterReqs; 182 183 bool NextSymbolIsThumb; 184 185 bool useImplicitITThumb() const { 186 return ImplicitItMode == ImplicitItModeTy::Always || 187 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 188 } 189 190 bool useImplicitITARM() const { 191 return ImplicitItMode == ImplicitItModeTy::Always || 192 ImplicitItMode == ImplicitItModeTy::ARMOnly; 193 } 194 195 struct { 196 ARMCC::CondCodes Cond; // Condition for IT block. 197 unsigned Mask:4; // Condition mask for instructions. 198 // Starting at first 1 (from lsb). 199 // '1' condition as indicated in IT. 200 // '0' inverse of condition (else). 201 // Count of instructions in IT block is 202 // 4 - trailingzeroes(mask) 203 // Note that this does not have the same encoding 204 // as in the IT instruction, which also depends 205 // on the low bit of the condition code. 206 207 unsigned CurPosition; // Current position in parsing of IT 208 // block. In range [0,4], with 0 being the IT 209 // instruction itself. Initialized according to 210 // count of instructions in block. ~0U if no 211 // active IT block. 212 213 bool IsExplicit; // true - The IT instruction was present in the 214 // input, we should not modify it. 215 // false - The IT instruction was added 216 // implicitly, we can extend it if that 217 // would be legal. 218 } ITState; 219 220 SmallVector<MCInst, 4> PendingConditionalInsts; 221 222 void flushPendingInstructions(MCStreamer &Out) override { 223 if (!inImplicitITBlock()) { 224 assert(PendingConditionalInsts.size() == 0); 225 return; 226 } 227 228 // Emit the IT instruction 229 unsigned Mask = getITMaskEncoding(); 230 MCInst ITInst; 231 ITInst.setOpcode(ARM::t2IT); 232 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 233 ITInst.addOperand(MCOperand::createImm(Mask)); 234 Out.EmitInstruction(ITInst, getSTI()); 235 236 // Emit the conditonal instructions 237 assert(PendingConditionalInsts.size() <= 4); 238 for (const MCInst &Inst : PendingConditionalInsts) { 239 Out.EmitInstruction(Inst, getSTI()); 240 } 241 PendingConditionalInsts.clear(); 242 243 // Clear the IT state 244 ITState.Mask = 0; 245 ITState.CurPosition = ~0U; 246 } 247 248 bool inITBlock() { return ITState.CurPosition != ~0U; } 249 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 250 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 251 252 bool lastInITBlock() { 253 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 254 } 255 256 void forwardITPosition() { 257 if (!inITBlock()) return; 258 // Move to the next instruction in the IT block, if there is one. If not, 259 // mark the block as done, except for implicit IT blocks, which we leave 260 // open until we find an instruction that can't be added to it. 261 unsigned TZ = countTrailingZeros(ITState.Mask); 262 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 263 ITState.CurPosition = ~0U; // Done with the IT block after this. 264 } 265 266 // Rewind the state of the current IT block, removing the last slot from it. 267 void rewindImplicitITPosition() { 268 assert(inImplicitITBlock()); 269 assert(ITState.CurPosition > 1); 270 ITState.CurPosition--; 271 unsigned TZ = countTrailingZeros(ITState.Mask); 272 unsigned NewMask = 0; 273 NewMask |= ITState.Mask & (0xC << TZ); 274 NewMask |= 0x2 << TZ; 275 ITState.Mask = NewMask; 276 } 277 278 // Rewind the state of the current IT block, removing the last slot from it. 279 // If we were at the first slot, this closes the IT block. 280 void discardImplicitITBlock() { 281 assert(inImplicitITBlock()); 282 assert(ITState.CurPosition == 1); 283 ITState.CurPosition = ~0U; 284 } 285 286 // Return the low-subreg of a given Q register. 287 unsigned getDRegFromQReg(unsigned QReg) const { 288 return MRI->getSubReg(QReg, ARM::dsub_0); 289 } 290 291 // Get the encoding of the IT mask, as it will appear in an IT instruction. 292 unsigned getITMaskEncoding() { 293 assert(inITBlock()); 294 unsigned Mask = ITState.Mask; 295 unsigned TZ = countTrailingZeros(Mask); 296 if ((ITState.Cond & 1) == 0) { 297 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 298 Mask ^= (0xE << TZ) & 0xF; 299 } 300 return Mask; 301 } 302 303 // Get the condition code corresponding to the current IT block slot. 304 ARMCC::CondCodes currentITCond() { 305 unsigned MaskBit; 306 if (ITState.CurPosition == 1) 307 MaskBit = 1; 308 else 309 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 310 311 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 312 } 313 314 // Invert the condition of the current IT block slot without changing any 315 // other slots in the same block. 316 void invertCurrentITCondition() { 317 if (ITState.CurPosition == 1) { 318 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 319 } else { 320 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 321 } 322 } 323 324 // Returns true if the current IT block is full (all 4 slots used). 325 bool isITBlockFull() { 326 return inITBlock() && (ITState.Mask & 1); 327 } 328 329 // Extend the current implicit IT block to have one more slot with the given 330 // condition code. 331 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 332 assert(inImplicitITBlock()); 333 assert(!isITBlockFull()); 334 assert(Cond == ITState.Cond || 335 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 336 unsigned TZ = countTrailingZeros(ITState.Mask); 337 unsigned NewMask = 0; 338 // Keep any existing condition bits. 339 NewMask |= ITState.Mask & (0xE << TZ); 340 // Insert the new condition bit. 341 NewMask |= (Cond == ITState.Cond) << TZ; 342 // Move the trailing 1 down one bit. 343 NewMask |= 1 << (TZ - 1); 344 ITState.Mask = NewMask; 345 } 346 347 // Create a new implicit IT block with a dummy condition code. 348 void startImplicitITBlock() { 349 assert(!inITBlock()); 350 ITState.Cond = ARMCC::AL; 351 ITState.Mask = 8; 352 ITState.CurPosition = 1; 353 ITState.IsExplicit = false; 354 } 355 356 // Create a new explicit IT block with the given condition and mask. The mask 357 // should be in the parsed format, with a 1 implying 't', regardless of the 358 // low bit of the condition. 359 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 360 assert(!inITBlock()); 361 ITState.Cond = Cond; 362 ITState.Mask = Mask; 363 ITState.CurPosition = 0; 364 ITState.IsExplicit = true; 365 } 366 367 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 368 return getParser().Note(L, Msg, Range); 369 } 370 371 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 372 return getParser().Warning(L, Msg, Range); 373 } 374 375 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 376 return getParser().Error(L, Msg, Range); 377 } 378 379 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 380 unsigned ListNo, bool IsARPop = false); 381 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 382 unsigned ListNo); 383 384 int tryParseRegister(); 385 bool tryParseRegisterWithWriteBack(OperandVector &); 386 int tryParseShiftRegister(OperandVector &); 387 bool parseRegisterList(OperandVector &); 388 bool parseMemory(OperandVector &); 389 bool parseOperand(OperandVector &, StringRef Mnemonic); 390 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 391 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 392 unsigned &ShiftAmount); 393 bool parseLiteralValues(unsigned Size, SMLoc L); 394 bool parseDirectiveThumb(SMLoc L); 395 bool parseDirectiveARM(SMLoc L); 396 bool parseDirectiveThumbFunc(SMLoc L); 397 bool parseDirectiveCode(SMLoc L); 398 bool parseDirectiveSyntax(SMLoc L); 399 bool parseDirectiveReq(StringRef Name, SMLoc L); 400 bool parseDirectiveUnreq(SMLoc L); 401 bool parseDirectiveArch(SMLoc L); 402 bool parseDirectiveEabiAttr(SMLoc L); 403 bool parseDirectiveCPU(SMLoc L); 404 bool parseDirectiveFPU(SMLoc L); 405 bool parseDirectiveFnStart(SMLoc L); 406 bool parseDirectiveFnEnd(SMLoc L); 407 bool parseDirectiveCantUnwind(SMLoc L); 408 bool parseDirectivePersonality(SMLoc L); 409 bool parseDirectiveHandlerData(SMLoc L); 410 bool parseDirectiveSetFP(SMLoc L); 411 bool parseDirectivePad(SMLoc L); 412 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 413 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 414 bool parseDirectiveLtorg(SMLoc L); 415 bool parseDirectiveEven(SMLoc L); 416 bool parseDirectivePersonalityIndex(SMLoc L); 417 bool parseDirectiveUnwindRaw(SMLoc L); 418 bool parseDirectiveTLSDescSeq(SMLoc L); 419 bool parseDirectiveMovSP(SMLoc L); 420 bool parseDirectiveObjectArch(SMLoc L); 421 bool parseDirectiveArchExtension(SMLoc L); 422 bool parseDirectiveAlign(SMLoc L); 423 bool parseDirectiveThumbSet(SMLoc L); 424 425 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 426 bool &CarrySetting, unsigned &ProcessorIMod, 427 StringRef &ITMask); 428 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 429 bool &CanAcceptCarrySet, 430 bool &CanAcceptPredicationCode); 431 432 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 433 OperandVector &Operands); 434 bool isThumb() const { 435 // FIXME: Can tablegen auto-generate this? 436 return getSTI().getFeatureBits()[ARM::ModeThumb]; 437 } 438 439 bool isThumbOne() const { 440 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 441 } 442 443 bool isThumbTwo() const { 444 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 445 } 446 447 bool hasThumb() const { 448 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 449 } 450 451 bool hasThumb2() const { 452 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 453 } 454 455 bool hasV6Ops() const { 456 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 457 } 458 459 bool hasV6T2Ops() const { 460 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 461 } 462 463 bool hasV6MOps() const { 464 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 465 } 466 467 bool hasV7Ops() const { 468 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 469 } 470 471 bool hasV8Ops() const { 472 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 473 } 474 475 bool hasV8MBaseline() const { 476 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 477 } 478 479 bool hasV8MMainline() const { 480 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 481 } 482 483 bool has8MSecExt() const { 484 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 485 } 486 487 bool hasARM() const { 488 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 489 } 490 491 bool hasDSP() const { 492 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 493 } 494 495 bool hasD16() const { 496 return getSTI().getFeatureBits()[ARM::FeatureD16]; 497 } 498 499 bool hasV8_1aOps() const { 500 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 501 } 502 503 bool hasRAS() const { 504 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 505 } 506 507 void SwitchMode() { 508 MCSubtargetInfo &STI = copySTI(); 509 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 510 setAvailableFeatures(FB); 511 } 512 513 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 514 515 bool isMClass() const { 516 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 517 } 518 519 /// @name Auto-generated Match Functions 520 /// { 521 522 #define GET_ASSEMBLER_HEADER 523 #include "ARMGenAsmMatcher.inc" 524 525 /// } 526 527 OperandMatchResultTy parseITCondCode(OperandVector &); 528 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 529 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 530 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 531 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 532 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 533 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 534 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 535 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 536 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 537 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 538 int High); 539 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 540 return parsePKHImm(O, "lsl", 0, 31); 541 } 542 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 543 return parsePKHImm(O, "asr", 1, 32); 544 } 545 OperandMatchResultTy parseSetEndImm(OperandVector &); 546 OperandMatchResultTy parseShifterImm(OperandVector &); 547 OperandMatchResultTy parseRotImm(OperandVector &); 548 OperandMatchResultTy parseModImm(OperandVector &); 549 OperandMatchResultTy parseBitfield(OperandVector &); 550 OperandMatchResultTy parsePostIdxReg(OperandVector &); 551 OperandMatchResultTy parseAM3Offset(OperandVector &); 552 OperandMatchResultTy parseFPImm(OperandVector &); 553 OperandMatchResultTy parseVectorList(OperandVector &); 554 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 555 SMLoc &EndLoc); 556 557 // Asm Match Converter Methods 558 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 559 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 560 561 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 562 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 563 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 564 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 565 bool isITBlockTerminator(MCInst &Inst) const; 566 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 567 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 568 bool Load, bool ARMMode, bool Writeback); 569 570 public: 571 enum ARMMatchResultTy { 572 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 573 Match_RequiresNotITBlock, 574 Match_RequiresV6, 575 Match_RequiresThumb2, 576 Match_RequiresV8, 577 Match_RequiresFlagSetting, 578 #define GET_OPERAND_DIAGNOSTIC_TYPES 579 #include "ARMGenAsmMatcher.inc" 580 581 }; 582 583 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 584 const MCInstrInfo &MII, const MCTargetOptions &Options) 585 : MCTargetAsmParser(Options, STI, MII), UC(Parser) { 586 MCAsmParserExtension::Initialize(Parser); 587 588 // Cache the MCRegisterInfo. 589 MRI = getContext().getRegisterInfo(); 590 591 // Initialize the set of available features. 592 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 593 594 // Add build attributes based on the selected target. 595 if (AddBuildAttributes) 596 getTargetStreamer().emitTargetAttributes(STI); 597 598 // Not in an ITBlock to start with. 599 ITState.CurPosition = ~0U; 600 601 NextSymbolIsThumb = false; 602 } 603 604 // Implementation of the MCTargetAsmParser interface: 605 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 606 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 607 SMLoc NameLoc, OperandVector &Operands) override; 608 bool ParseDirective(AsmToken DirectiveID) override; 609 610 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 611 unsigned Kind) override; 612 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 613 614 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 615 OperandVector &Operands, MCStreamer &Out, 616 uint64_t &ErrorInfo, 617 bool MatchingInlineAsm) override; 618 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 619 SmallVectorImpl<NearMissInfo> &NearMisses, 620 bool MatchingInlineAsm, bool &EmitInITBlock, 621 MCStreamer &Out); 622 623 struct NearMissMessage { 624 SMLoc Loc; 625 SmallString<128> Message; 626 }; 627 628 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 629 630 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 631 SmallVectorImpl<NearMissMessage> &NearMissesOut, 632 SMLoc IDLoc, OperandVector &Operands); 633 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 634 OperandVector &Operands); 635 636 void doBeforeLabelEmit(MCSymbol *Symbol) override; 637 638 void onLabelParsed(MCSymbol *Symbol) override; 639 }; 640 641 /// ARMOperand - Instances of this class represent a parsed ARM machine 642 /// operand. 643 class ARMOperand : public MCParsedAsmOperand { 644 enum KindTy { 645 k_CondCode, 646 k_CCOut, 647 k_ITCondMask, 648 k_CoprocNum, 649 k_CoprocReg, 650 k_CoprocOption, 651 k_Immediate, 652 k_MemBarrierOpt, 653 k_InstSyncBarrierOpt, 654 k_TraceSyncBarrierOpt, 655 k_Memory, 656 k_PostIndexRegister, 657 k_MSRMask, 658 k_BankedReg, 659 k_ProcIFlags, 660 k_VectorIndex, 661 k_Register, 662 k_RegisterList, 663 k_DPRRegisterList, 664 k_SPRRegisterList, 665 k_VectorList, 666 k_VectorListAllLanes, 667 k_VectorListIndexed, 668 k_ShiftedRegister, 669 k_ShiftedImmediate, 670 k_ShifterImmediate, 671 k_RotateImmediate, 672 k_ModifiedImmediate, 673 k_ConstantPoolImmediate, 674 k_BitfieldDescriptor, 675 k_Token, 676 } Kind; 677 678 SMLoc StartLoc, EndLoc, AlignmentLoc; 679 SmallVector<unsigned, 8> Registers; 680 681 struct CCOp { 682 ARMCC::CondCodes Val; 683 }; 684 685 struct CopOp { 686 unsigned Val; 687 }; 688 689 struct CoprocOptionOp { 690 unsigned Val; 691 }; 692 693 struct ITMaskOp { 694 unsigned Mask:4; 695 }; 696 697 struct MBOptOp { 698 ARM_MB::MemBOpt Val; 699 }; 700 701 struct ISBOptOp { 702 ARM_ISB::InstSyncBOpt Val; 703 }; 704 705 struct TSBOptOp { 706 ARM_TSB::TraceSyncBOpt Val; 707 }; 708 709 struct IFlagsOp { 710 ARM_PROC::IFlags Val; 711 }; 712 713 struct MMaskOp { 714 unsigned Val; 715 }; 716 717 struct BankedRegOp { 718 unsigned Val; 719 }; 720 721 struct TokOp { 722 const char *Data; 723 unsigned Length; 724 }; 725 726 struct RegOp { 727 unsigned RegNum; 728 }; 729 730 // A vector register list is a sequential list of 1 to 4 registers. 731 struct VectorListOp { 732 unsigned RegNum; 733 unsigned Count; 734 unsigned LaneIndex; 735 bool isDoubleSpaced; 736 }; 737 738 struct VectorIndexOp { 739 unsigned Val; 740 }; 741 742 struct ImmOp { 743 const MCExpr *Val; 744 }; 745 746 /// Combined record for all forms of ARM address expressions. 747 struct MemoryOp { 748 unsigned BaseRegNum; 749 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 750 // was specified. 751 const MCConstantExpr *OffsetImm; // Offset immediate value 752 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 753 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 754 unsigned ShiftImm; // shift for OffsetReg. 755 unsigned Alignment; // 0 = no alignment specified 756 // n = alignment in bytes (2, 4, 8, 16, or 32) 757 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 758 }; 759 760 struct PostIdxRegOp { 761 unsigned RegNum; 762 bool isAdd; 763 ARM_AM::ShiftOpc ShiftTy; 764 unsigned ShiftImm; 765 }; 766 767 struct ShifterImmOp { 768 bool isASR; 769 unsigned Imm; 770 }; 771 772 struct RegShiftedRegOp { 773 ARM_AM::ShiftOpc ShiftTy; 774 unsigned SrcReg; 775 unsigned ShiftReg; 776 unsigned ShiftImm; 777 }; 778 779 struct RegShiftedImmOp { 780 ARM_AM::ShiftOpc ShiftTy; 781 unsigned SrcReg; 782 unsigned ShiftImm; 783 }; 784 785 struct RotImmOp { 786 unsigned Imm; 787 }; 788 789 struct ModImmOp { 790 unsigned Bits; 791 unsigned Rot; 792 }; 793 794 struct BitfieldOp { 795 unsigned LSB; 796 unsigned Width; 797 }; 798 799 union { 800 struct CCOp CC; 801 struct CopOp Cop; 802 struct CoprocOptionOp CoprocOption; 803 struct MBOptOp MBOpt; 804 struct ISBOptOp ISBOpt; 805 struct TSBOptOp TSBOpt; 806 struct ITMaskOp ITMask; 807 struct IFlagsOp IFlags; 808 struct MMaskOp MMask; 809 struct BankedRegOp BankedReg; 810 struct TokOp Tok; 811 struct RegOp Reg; 812 struct VectorListOp VectorList; 813 struct VectorIndexOp VectorIndex; 814 struct ImmOp Imm; 815 struct MemoryOp Memory; 816 struct PostIdxRegOp PostIdxReg; 817 struct ShifterImmOp ShifterImm; 818 struct RegShiftedRegOp RegShiftedReg; 819 struct RegShiftedImmOp RegShiftedImm; 820 struct RotImmOp RotImm; 821 struct ModImmOp ModImm; 822 struct BitfieldOp Bitfield; 823 }; 824 825 public: 826 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 827 828 /// getStartLoc - Get the location of the first token of this operand. 829 SMLoc getStartLoc() const override { return StartLoc; } 830 831 /// getEndLoc - Get the location of the last token of this operand. 832 SMLoc getEndLoc() const override { return EndLoc; } 833 834 /// getLocRange - Get the range between the first and last token of this 835 /// operand. 836 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 837 838 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 839 SMLoc getAlignmentLoc() const { 840 assert(Kind == k_Memory && "Invalid access!"); 841 return AlignmentLoc; 842 } 843 844 ARMCC::CondCodes getCondCode() const { 845 assert(Kind == k_CondCode && "Invalid access!"); 846 return CC.Val; 847 } 848 849 unsigned getCoproc() const { 850 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 851 return Cop.Val; 852 } 853 854 StringRef getToken() const { 855 assert(Kind == k_Token && "Invalid access!"); 856 return StringRef(Tok.Data, Tok.Length); 857 } 858 859 unsigned getReg() const override { 860 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 861 return Reg.RegNum; 862 } 863 864 const SmallVectorImpl<unsigned> &getRegList() const { 865 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 866 Kind == k_SPRRegisterList) && "Invalid access!"); 867 return Registers; 868 } 869 870 const MCExpr *getImm() const { 871 assert(isImm() && "Invalid access!"); 872 return Imm.Val; 873 } 874 875 const MCExpr *getConstantPoolImm() const { 876 assert(isConstantPoolImm() && "Invalid access!"); 877 return Imm.Val; 878 } 879 880 unsigned getVectorIndex() const { 881 assert(Kind == k_VectorIndex && "Invalid access!"); 882 return VectorIndex.Val; 883 } 884 885 ARM_MB::MemBOpt getMemBarrierOpt() const { 886 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 887 return MBOpt.Val; 888 } 889 890 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 891 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 892 return ISBOpt.Val; 893 } 894 895 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 896 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 897 return TSBOpt.Val; 898 } 899 900 ARM_PROC::IFlags getProcIFlags() const { 901 assert(Kind == k_ProcIFlags && "Invalid access!"); 902 return IFlags.Val; 903 } 904 905 unsigned getMSRMask() const { 906 assert(Kind == k_MSRMask && "Invalid access!"); 907 return MMask.Val; 908 } 909 910 unsigned getBankedReg() const { 911 assert(Kind == k_BankedReg && "Invalid access!"); 912 return BankedReg.Val; 913 } 914 915 bool isCoprocNum() const { return Kind == k_CoprocNum; } 916 bool isCoprocReg() const { return Kind == k_CoprocReg; } 917 bool isCoprocOption() const { return Kind == k_CoprocOption; } 918 bool isCondCode() const { return Kind == k_CondCode; } 919 bool isCCOut() const { return Kind == k_CCOut; } 920 bool isITMask() const { return Kind == k_ITCondMask; } 921 bool isITCondCode() const { return Kind == k_CondCode; } 922 bool isImm() const override { 923 return Kind == k_Immediate; 924 } 925 926 bool isARMBranchTarget() const { 927 if (!isImm()) return false; 928 929 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 930 return CE->getValue() % 4 == 0; 931 return true; 932 } 933 934 935 bool isThumbBranchTarget() const { 936 if (!isImm()) return false; 937 938 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 939 return CE->getValue() % 2 == 0; 940 return true; 941 } 942 943 // checks whether this operand is an unsigned offset which fits is a field 944 // of specified width and scaled by a specific number of bits 945 template<unsigned width, unsigned scale> 946 bool isUnsignedOffset() const { 947 if (!isImm()) return false; 948 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 949 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 950 int64_t Val = CE->getValue(); 951 int64_t Align = 1LL << scale; 952 int64_t Max = Align * ((1LL << width) - 1); 953 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 954 } 955 return false; 956 } 957 958 // checks whether this operand is an signed offset which fits is a field 959 // of specified width and scaled by a specific number of bits 960 template<unsigned width, unsigned scale> 961 bool isSignedOffset() const { 962 if (!isImm()) return false; 963 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 964 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 965 int64_t Val = CE->getValue(); 966 int64_t Align = 1LL << scale; 967 int64_t Max = Align * ((1LL << (width-1)) - 1); 968 int64_t Min = -Align * (1LL << (width-1)); 969 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 970 } 971 return false; 972 } 973 974 // checks whether this operand is a memory operand computed as an offset 975 // applied to PC. the offset may have 8 bits of magnitude and is represented 976 // with two bits of shift. textually it may be either [pc, #imm], #imm or 977 // relocable expression... 978 bool isThumbMemPC() const { 979 int64_t Val = 0; 980 if (isImm()) { 981 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 982 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 983 if (!CE) return false; 984 Val = CE->getValue(); 985 } 986 else if (isMem()) { 987 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 988 if(Memory.BaseRegNum != ARM::PC) return false; 989 Val = Memory.OffsetImm->getValue(); 990 } 991 else return false; 992 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 993 } 994 995 bool isFPImm() const { 996 if (!isImm()) return false; 997 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 998 if (!CE) return false; 999 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1000 return Val != -1; 1001 } 1002 1003 template<int64_t N, int64_t M> 1004 bool isImmediate() const { 1005 if (!isImm()) return false; 1006 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1007 if (!CE) return false; 1008 int64_t Value = CE->getValue(); 1009 return Value >= N && Value <= M; 1010 } 1011 1012 template<int64_t N, int64_t M> 1013 bool isImmediateS4() const { 1014 if (!isImm()) return false; 1015 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1016 if (!CE) return false; 1017 int64_t Value = CE->getValue(); 1018 return ((Value & 3) == 0) && Value >= N && Value <= M; 1019 } 1020 1021 bool isFBits16() const { 1022 return isImmediate<0, 17>(); 1023 } 1024 bool isFBits32() const { 1025 return isImmediate<1, 33>(); 1026 } 1027 bool isImm8s4() const { 1028 return isImmediateS4<-1020, 1020>(); 1029 } 1030 bool isImm0_1020s4() const { 1031 return isImmediateS4<0, 1020>(); 1032 } 1033 bool isImm0_508s4() const { 1034 return isImmediateS4<0, 508>(); 1035 } 1036 bool isImm0_508s4Neg() const { 1037 if (!isImm()) return false; 1038 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1039 if (!CE) return false; 1040 int64_t Value = -CE->getValue(); 1041 // explicitly exclude zero. we want that to use the normal 0_508 version. 1042 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1043 } 1044 1045 bool isImm0_4095Neg() const { 1046 if (!isImm()) return false; 1047 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1048 if (!CE) return false; 1049 // isImm0_4095Neg is used with 32-bit immediates only. 1050 // 32-bit immediates are zero extended to 64-bit when parsed, 1051 // thus simple -CE->getValue() results in a big negative number, 1052 // not a small positive number as intended 1053 if ((CE->getValue() >> 32) > 0) return false; 1054 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1055 return Value > 0 && Value < 4096; 1056 } 1057 1058 bool isImm0_7() const { 1059 return isImmediate<0, 7>(); 1060 } 1061 1062 bool isImm1_16() const { 1063 return isImmediate<1, 16>(); 1064 } 1065 1066 bool isImm1_32() const { 1067 return isImmediate<1, 32>(); 1068 } 1069 1070 bool isImm8_255() const { 1071 return isImmediate<8, 255>(); 1072 } 1073 1074 bool isImm256_65535Expr() const { 1075 if (!isImm()) return false; 1076 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1077 // If it's not a constant expression, it'll generate a fixup and be 1078 // handled later. 1079 if (!CE) return true; 1080 int64_t Value = CE->getValue(); 1081 return Value >= 256 && Value < 65536; 1082 } 1083 1084 bool isImm0_65535Expr() const { 1085 if (!isImm()) return false; 1086 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1087 // If it's not a constant expression, it'll generate a fixup and be 1088 // handled later. 1089 if (!CE) return true; 1090 int64_t Value = CE->getValue(); 1091 return Value >= 0 && Value < 65536; 1092 } 1093 1094 bool isImm24bit() const { 1095 return isImmediate<0, 0xffffff + 1>(); 1096 } 1097 1098 bool isImmThumbSR() const { 1099 return isImmediate<1, 33>(); 1100 } 1101 1102 bool isPKHLSLImm() const { 1103 return isImmediate<0, 32>(); 1104 } 1105 1106 bool isPKHASRImm() const { 1107 return isImmediate<0, 33>(); 1108 } 1109 1110 bool isAdrLabel() const { 1111 // If we have an immediate that's not a constant, treat it as a label 1112 // reference needing a fixup. 1113 if (isImm() && !isa<MCConstantExpr>(getImm())) 1114 return true; 1115 1116 // If it is a constant, it must fit into a modified immediate encoding. 1117 if (!isImm()) return false; 1118 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1119 if (!CE) return false; 1120 int64_t Value = CE->getValue(); 1121 return (ARM_AM::getSOImmVal(Value) != -1 || 1122 ARM_AM::getSOImmVal(-Value) != -1); 1123 } 1124 1125 bool isT2SOImm() const { 1126 // If we have an immediate that's not a constant, treat it as an expression 1127 // needing a fixup. 1128 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1129 // We want to avoid matching :upper16: and :lower16: as we want these 1130 // expressions to match in isImm0_65535Expr() 1131 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1132 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1133 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1134 } 1135 if (!isImm()) return false; 1136 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1137 if (!CE) return false; 1138 int64_t Value = CE->getValue(); 1139 return ARM_AM::getT2SOImmVal(Value) != -1; 1140 } 1141 1142 bool isT2SOImmNot() const { 1143 if (!isImm()) return false; 1144 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1145 if (!CE) return false; 1146 int64_t Value = CE->getValue(); 1147 return ARM_AM::getT2SOImmVal(Value) == -1 && 1148 ARM_AM::getT2SOImmVal(~Value) != -1; 1149 } 1150 1151 bool isT2SOImmNeg() const { 1152 if (!isImm()) return false; 1153 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1154 if (!CE) return false; 1155 int64_t Value = CE->getValue(); 1156 // Only use this when not representable as a plain so_imm. 1157 return ARM_AM::getT2SOImmVal(Value) == -1 && 1158 ARM_AM::getT2SOImmVal(-Value) != -1; 1159 } 1160 1161 bool isSetEndImm() const { 1162 if (!isImm()) return false; 1163 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1164 if (!CE) return false; 1165 int64_t Value = CE->getValue(); 1166 return Value == 1 || Value == 0; 1167 } 1168 1169 bool isReg() const override { return Kind == k_Register; } 1170 bool isRegList() const { return Kind == k_RegisterList; } 1171 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1172 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1173 bool isToken() const override { return Kind == k_Token; } 1174 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1175 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1176 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1177 bool isMem() const override { 1178 if (Kind != k_Memory) 1179 return false; 1180 if (Memory.BaseRegNum && 1181 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1182 return false; 1183 if (Memory.OffsetRegNum && 1184 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1185 return false; 1186 return true; 1187 } 1188 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1189 bool isRegShiftedReg() const { 1190 return Kind == k_ShiftedRegister && 1191 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1192 RegShiftedReg.SrcReg) && 1193 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1194 RegShiftedReg.ShiftReg); 1195 } 1196 bool isRegShiftedImm() const { 1197 return Kind == k_ShiftedImmediate && 1198 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1199 RegShiftedImm.SrcReg); 1200 } 1201 bool isRotImm() const { return Kind == k_RotateImmediate; } 1202 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1203 1204 bool isModImmNot() const { 1205 if (!isImm()) return false; 1206 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1207 if (!CE) return false; 1208 int64_t Value = CE->getValue(); 1209 return ARM_AM::getSOImmVal(~Value) != -1; 1210 } 1211 1212 bool isModImmNeg() const { 1213 if (!isImm()) return false; 1214 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1215 if (!CE) return false; 1216 int64_t Value = CE->getValue(); 1217 return ARM_AM::getSOImmVal(Value) == -1 && 1218 ARM_AM::getSOImmVal(-Value) != -1; 1219 } 1220 1221 bool isThumbModImmNeg1_7() const { 1222 if (!isImm()) return false; 1223 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1224 if (!CE) return false; 1225 int32_t Value = -(int32_t)CE->getValue(); 1226 return 0 < Value && Value < 8; 1227 } 1228 1229 bool isThumbModImmNeg8_255() const { 1230 if (!isImm()) return false; 1231 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1232 if (!CE) return false; 1233 int32_t Value = -(int32_t)CE->getValue(); 1234 return 7 < Value && Value < 256; 1235 } 1236 1237 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1238 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1239 bool isPostIdxRegShifted() const { 1240 return Kind == k_PostIndexRegister && 1241 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1242 } 1243 bool isPostIdxReg() const { 1244 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1245 } 1246 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1247 if (!isMem()) 1248 return false; 1249 // No offset of any kind. 1250 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1251 (alignOK || Memory.Alignment == Alignment); 1252 } 1253 bool isMemPCRelImm12() const { 1254 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1255 return false; 1256 // Base register must be PC. 1257 if (Memory.BaseRegNum != ARM::PC) 1258 return false; 1259 // Immediate offset in range [-4095, 4095]. 1260 if (!Memory.OffsetImm) return true; 1261 int64_t Val = Memory.OffsetImm->getValue(); 1262 return (Val > -4096 && Val < 4096) || 1263 (Val == std::numeric_limits<int32_t>::min()); 1264 } 1265 1266 bool isAlignedMemory() const { 1267 return isMemNoOffset(true); 1268 } 1269 1270 bool isAlignedMemoryNone() const { 1271 return isMemNoOffset(false, 0); 1272 } 1273 1274 bool isDupAlignedMemoryNone() const { 1275 return isMemNoOffset(false, 0); 1276 } 1277 1278 bool isAlignedMemory16() const { 1279 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1280 return true; 1281 return isMemNoOffset(false, 0); 1282 } 1283 1284 bool isDupAlignedMemory16() const { 1285 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1286 return true; 1287 return isMemNoOffset(false, 0); 1288 } 1289 1290 bool isAlignedMemory32() const { 1291 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1292 return true; 1293 return isMemNoOffset(false, 0); 1294 } 1295 1296 bool isDupAlignedMemory32() const { 1297 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1298 return true; 1299 return isMemNoOffset(false, 0); 1300 } 1301 1302 bool isAlignedMemory64() const { 1303 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1304 return true; 1305 return isMemNoOffset(false, 0); 1306 } 1307 1308 bool isDupAlignedMemory64() const { 1309 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1310 return true; 1311 return isMemNoOffset(false, 0); 1312 } 1313 1314 bool isAlignedMemory64or128() const { 1315 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1316 return true; 1317 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1318 return true; 1319 return isMemNoOffset(false, 0); 1320 } 1321 1322 bool isDupAlignedMemory64or128() const { 1323 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1324 return true; 1325 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1326 return true; 1327 return isMemNoOffset(false, 0); 1328 } 1329 1330 bool isAlignedMemory64or128or256() const { 1331 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1332 return true; 1333 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1334 return true; 1335 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1336 return true; 1337 return isMemNoOffset(false, 0); 1338 } 1339 1340 bool isAddrMode2() const { 1341 if (!isMem() || Memory.Alignment != 0) return false; 1342 // Check for register offset. 1343 if (Memory.OffsetRegNum) return true; 1344 // Immediate offset in range [-4095, 4095]. 1345 if (!Memory.OffsetImm) return true; 1346 int64_t Val = Memory.OffsetImm->getValue(); 1347 return Val > -4096 && Val < 4096; 1348 } 1349 1350 bool isAM2OffsetImm() const { 1351 if (!isImm()) return false; 1352 // Immediate offset in range [-4095, 4095]. 1353 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1354 if (!CE) return false; 1355 int64_t Val = CE->getValue(); 1356 return (Val == std::numeric_limits<int32_t>::min()) || 1357 (Val > -4096 && Val < 4096); 1358 } 1359 1360 bool isAddrMode3() const { 1361 // If we have an immediate that's not a constant, treat it as a label 1362 // reference needing a fixup. If it is a constant, it's something else 1363 // and we reject it. 1364 if (isImm() && !isa<MCConstantExpr>(getImm())) 1365 return true; 1366 if (!isMem() || Memory.Alignment != 0) return false; 1367 // No shifts are legal for AM3. 1368 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1369 // Check for register offset. 1370 if (Memory.OffsetRegNum) return true; 1371 // Immediate offset in range [-255, 255]. 1372 if (!Memory.OffsetImm) return true; 1373 int64_t Val = Memory.OffsetImm->getValue(); 1374 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1375 // have to check for this too. 1376 return (Val > -256 && Val < 256) || 1377 Val == std::numeric_limits<int32_t>::min(); 1378 } 1379 1380 bool isAM3Offset() const { 1381 if (isPostIdxReg()) 1382 return true; 1383 if (!isImm()) 1384 return false; 1385 // Immediate offset in range [-255, 255]. 1386 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1387 if (!CE) return false; 1388 int64_t Val = CE->getValue(); 1389 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1390 return (Val > -256 && Val < 256) || 1391 Val == std::numeric_limits<int32_t>::min(); 1392 } 1393 1394 bool isAddrMode5() const { 1395 // If we have an immediate that's not a constant, treat it as a label 1396 // reference needing a fixup. If it is a constant, it's something else 1397 // and we reject it. 1398 if (isImm() && !isa<MCConstantExpr>(getImm())) 1399 return true; 1400 if (!isMem() || Memory.Alignment != 0) return false; 1401 // Check for register offset. 1402 if (Memory.OffsetRegNum) return false; 1403 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1404 if (!Memory.OffsetImm) return true; 1405 int64_t Val = Memory.OffsetImm->getValue(); 1406 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1407 Val == std::numeric_limits<int32_t>::min(); 1408 } 1409 1410 bool isAddrMode5FP16() const { 1411 // If we have an immediate that's not a constant, treat it as a label 1412 // reference needing a fixup. If it is a constant, it's something else 1413 // and we reject it. 1414 if (isImm() && !isa<MCConstantExpr>(getImm())) 1415 return true; 1416 if (!isMem() || Memory.Alignment != 0) return false; 1417 // Check for register offset. 1418 if (Memory.OffsetRegNum) return false; 1419 // Immediate offset in range [-510, 510] and a multiple of 2. 1420 if (!Memory.OffsetImm) return true; 1421 int64_t Val = Memory.OffsetImm->getValue(); 1422 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1423 Val == std::numeric_limits<int32_t>::min(); 1424 } 1425 1426 bool isMemTBB() const { 1427 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1428 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1429 return false; 1430 return true; 1431 } 1432 1433 bool isMemTBH() const { 1434 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1435 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1436 Memory.Alignment != 0 ) 1437 return false; 1438 return true; 1439 } 1440 1441 bool isMemRegOffset() const { 1442 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1443 return false; 1444 return true; 1445 } 1446 1447 bool isT2MemRegOffset() const { 1448 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1449 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1450 return false; 1451 // Only lsl #{0, 1, 2, 3} allowed. 1452 if (Memory.ShiftType == ARM_AM::no_shift) 1453 return true; 1454 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1455 return false; 1456 return true; 1457 } 1458 1459 bool isMemThumbRR() const { 1460 // Thumb reg+reg addressing is simple. Just two registers, a base and 1461 // an offset. No shifts, negations or any other complicating factors. 1462 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1463 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1464 return false; 1465 return isARMLowRegister(Memory.BaseRegNum) && 1466 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1467 } 1468 1469 bool isMemThumbRIs4() const { 1470 if (!isMem() || Memory.OffsetRegNum != 0 || 1471 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1472 return false; 1473 // Immediate offset, multiple of 4 in range [0, 124]. 1474 if (!Memory.OffsetImm) return true; 1475 int64_t Val = Memory.OffsetImm->getValue(); 1476 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1477 } 1478 1479 bool isMemThumbRIs2() const { 1480 if (!isMem() || Memory.OffsetRegNum != 0 || 1481 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1482 return false; 1483 // Immediate offset, multiple of 4 in range [0, 62]. 1484 if (!Memory.OffsetImm) return true; 1485 int64_t Val = Memory.OffsetImm->getValue(); 1486 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1487 } 1488 1489 bool isMemThumbRIs1() const { 1490 if (!isMem() || Memory.OffsetRegNum != 0 || 1491 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1492 return false; 1493 // Immediate offset in range [0, 31]. 1494 if (!Memory.OffsetImm) return true; 1495 int64_t Val = Memory.OffsetImm->getValue(); 1496 return Val >= 0 && Val <= 31; 1497 } 1498 1499 bool isMemThumbSPI() const { 1500 if (!isMem() || Memory.OffsetRegNum != 0 || 1501 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1502 return false; 1503 // Immediate offset, multiple of 4 in range [0, 1020]. 1504 if (!Memory.OffsetImm) return true; 1505 int64_t Val = Memory.OffsetImm->getValue(); 1506 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1507 } 1508 1509 bool isMemImm8s4Offset() const { 1510 // If we have an immediate that's not a constant, treat it as a label 1511 // reference needing a fixup. If it is a constant, it's something else 1512 // and we reject it. 1513 if (isImm() && !isa<MCConstantExpr>(getImm())) 1514 return true; 1515 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1516 return false; 1517 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1518 if (!Memory.OffsetImm) return true; 1519 int64_t Val = Memory.OffsetImm->getValue(); 1520 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1521 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1522 Val == std::numeric_limits<int32_t>::min(); 1523 } 1524 1525 bool isMemImm0_1020s4Offset() const { 1526 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1527 return false; 1528 // Immediate offset a multiple of 4 in range [0, 1020]. 1529 if (!Memory.OffsetImm) return true; 1530 int64_t Val = Memory.OffsetImm->getValue(); 1531 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1532 } 1533 1534 bool isMemImm8Offset() const { 1535 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1536 return false; 1537 // Base reg of PC isn't allowed for these encodings. 1538 if (Memory.BaseRegNum == ARM::PC) return false; 1539 // Immediate offset in range [-255, 255]. 1540 if (!Memory.OffsetImm) return true; 1541 int64_t Val = Memory.OffsetImm->getValue(); 1542 return (Val == std::numeric_limits<int32_t>::min()) || 1543 (Val > -256 && Val < 256); 1544 } 1545 1546 bool isMemPosImm8Offset() const { 1547 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1548 return false; 1549 // Immediate offset in range [0, 255]. 1550 if (!Memory.OffsetImm) return true; 1551 int64_t Val = Memory.OffsetImm->getValue(); 1552 return Val >= 0 && Val < 256; 1553 } 1554 1555 bool isMemNegImm8Offset() const { 1556 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1557 return false; 1558 // Base reg of PC isn't allowed for these encodings. 1559 if (Memory.BaseRegNum == ARM::PC) return false; 1560 // Immediate offset in range [-255, -1]. 1561 if (!Memory.OffsetImm) return false; 1562 int64_t Val = Memory.OffsetImm->getValue(); 1563 return (Val == std::numeric_limits<int32_t>::min()) || 1564 (Val > -256 && Val < 0); 1565 } 1566 1567 bool isMemUImm12Offset() const { 1568 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1569 return false; 1570 // Immediate offset in range [0, 4095]. 1571 if (!Memory.OffsetImm) return true; 1572 int64_t Val = Memory.OffsetImm->getValue(); 1573 return (Val >= 0 && Val < 4096); 1574 } 1575 1576 bool isMemImm12Offset() const { 1577 // If we have an immediate that's not a constant, treat it as a label 1578 // reference needing a fixup. If it is a constant, it's something else 1579 // and we reject it. 1580 1581 if (isImm() && !isa<MCConstantExpr>(getImm())) 1582 return true; 1583 1584 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1585 return false; 1586 // Immediate offset in range [-4095, 4095]. 1587 if (!Memory.OffsetImm) return true; 1588 int64_t Val = Memory.OffsetImm->getValue(); 1589 return (Val > -4096 && Val < 4096) || 1590 (Val == std::numeric_limits<int32_t>::min()); 1591 } 1592 1593 bool isConstPoolAsmImm() const { 1594 // Delay processing of Constant Pool Immediate, this will turn into 1595 // a constant. Match no other operand 1596 return (isConstantPoolImm()); 1597 } 1598 1599 bool isPostIdxImm8() const { 1600 if (!isImm()) return false; 1601 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1602 if (!CE) return false; 1603 int64_t Val = CE->getValue(); 1604 return (Val > -256 && Val < 256) || 1605 (Val == std::numeric_limits<int32_t>::min()); 1606 } 1607 1608 bool isPostIdxImm8s4() const { 1609 if (!isImm()) return false; 1610 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1611 if (!CE) return false; 1612 int64_t Val = CE->getValue(); 1613 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1614 (Val == std::numeric_limits<int32_t>::min()); 1615 } 1616 1617 bool isMSRMask() const { return Kind == k_MSRMask; } 1618 bool isBankedReg() const { return Kind == k_BankedReg; } 1619 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1620 1621 // NEON operands. 1622 bool isSingleSpacedVectorList() const { 1623 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1624 } 1625 1626 bool isDoubleSpacedVectorList() const { 1627 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1628 } 1629 1630 bool isVecListOneD() const { 1631 if (!isSingleSpacedVectorList()) return false; 1632 return VectorList.Count == 1; 1633 } 1634 1635 bool isVecListDPair() const { 1636 if (!isSingleSpacedVectorList()) return false; 1637 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1638 .contains(VectorList.RegNum)); 1639 } 1640 1641 bool isVecListThreeD() const { 1642 if (!isSingleSpacedVectorList()) return false; 1643 return VectorList.Count == 3; 1644 } 1645 1646 bool isVecListFourD() const { 1647 if (!isSingleSpacedVectorList()) return false; 1648 return VectorList.Count == 4; 1649 } 1650 1651 bool isVecListDPairSpaced() const { 1652 if (Kind != k_VectorList) return false; 1653 if (isSingleSpacedVectorList()) return false; 1654 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1655 .contains(VectorList.RegNum)); 1656 } 1657 1658 bool isVecListThreeQ() const { 1659 if (!isDoubleSpacedVectorList()) return false; 1660 return VectorList.Count == 3; 1661 } 1662 1663 bool isVecListFourQ() const { 1664 if (!isDoubleSpacedVectorList()) return false; 1665 return VectorList.Count == 4; 1666 } 1667 1668 bool isSingleSpacedVectorAllLanes() const { 1669 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1670 } 1671 1672 bool isDoubleSpacedVectorAllLanes() const { 1673 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1674 } 1675 1676 bool isVecListOneDAllLanes() const { 1677 if (!isSingleSpacedVectorAllLanes()) return false; 1678 return VectorList.Count == 1; 1679 } 1680 1681 bool isVecListDPairAllLanes() const { 1682 if (!isSingleSpacedVectorAllLanes()) return false; 1683 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1684 .contains(VectorList.RegNum)); 1685 } 1686 1687 bool isVecListDPairSpacedAllLanes() const { 1688 if (!isDoubleSpacedVectorAllLanes()) return false; 1689 return VectorList.Count == 2; 1690 } 1691 1692 bool isVecListThreeDAllLanes() const { 1693 if (!isSingleSpacedVectorAllLanes()) return false; 1694 return VectorList.Count == 3; 1695 } 1696 1697 bool isVecListThreeQAllLanes() const { 1698 if (!isDoubleSpacedVectorAllLanes()) return false; 1699 return VectorList.Count == 3; 1700 } 1701 1702 bool isVecListFourDAllLanes() const { 1703 if (!isSingleSpacedVectorAllLanes()) return false; 1704 return VectorList.Count == 4; 1705 } 1706 1707 bool isVecListFourQAllLanes() const { 1708 if (!isDoubleSpacedVectorAllLanes()) return false; 1709 return VectorList.Count == 4; 1710 } 1711 1712 bool isSingleSpacedVectorIndexed() const { 1713 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1714 } 1715 1716 bool isDoubleSpacedVectorIndexed() const { 1717 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1718 } 1719 1720 bool isVecListOneDByteIndexed() const { 1721 if (!isSingleSpacedVectorIndexed()) return false; 1722 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1723 } 1724 1725 bool isVecListOneDHWordIndexed() const { 1726 if (!isSingleSpacedVectorIndexed()) return false; 1727 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1728 } 1729 1730 bool isVecListOneDWordIndexed() const { 1731 if (!isSingleSpacedVectorIndexed()) return false; 1732 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1733 } 1734 1735 bool isVecListTwoDByteIndexed() const { 1736 if (!isSingleSpacedVectorIndexed()) return false; 1737 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1738 } 1739 1740 bool isVecListTwoDHWordIndexed() const { 1741 if (!isSingleSpacedVectorIndexed()) return false; 1742 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1743 } 1744 1745 bool isVecListTwoQWordIndexed() const { 1746 if (!isDoubleSpacedVectorIndexed()) return false; 1747 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1748 } 1749 1750 bool isVecListTwoQHWordIndexed() const { 1751 if (!isDoubleSpacedVectorIndexed()) return false; 1752 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1753 } 1754 1755 bool isVecListTwoDWordIndexed() const { 1756 if (!isSingleSpacedVectorIndexed()) return false; 1757 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1758 } 1759 1760 bool isVecListThreeDByteIndexed() const { 1761 if (!isSingleSpacedVectorIndexed()) return false; 1762 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1763 } 1764 1765 bool isVecListThreeDHWordIndexed() const { 1766 if (!isSingleSpacedVectorIndexed()) return false; 1767 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1768 } 1769 1770 bool isVecListThreeQWordIndexed() const { 1771 if (!isDoubleSpacedVectorIndexed()) return false; 1772 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1773 } 1774 1775 bool isVecListThreeQHWordIndexed() const { 1776 if (!isDoubleSpacedVectorIndexed()) return false; 1777 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1778 } 1779 1780 bool isVecListThreeDWordIndexed() const { 1781 if (!isSingleSpacedVectorIndexed()) return false; 1782 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1783 } 1784 1785 bool isVecListFourDByteIndexed() const { 1786 if (!isSingleSpacedVectorIndexed()) return false; 1787 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1788 } 1789 1790 bool isVecListFourDHWordIndexed() const { 1791 if (!isSingleSpacedVectorIndexed()) return false; 1792 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1793 } 1794 1795 bool isVecListFourQWordIndexed() const { 1796 if (!isDoubleSpacedVectorIndexed()) return false; 1797 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1798 } 1799 1800 bool isVecListFourQHWordIndexed() const { 1801 if (!isDoubleSpacedVectorIndexed()) return false; 1802 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1803 } 1804 1805 bool isVecListFourDWordIndexed() const { 1806 if (!isSingleSpacedVectorIndexed()) return false; 1807 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1808 } 1809 1810 bool isVectorIndex8() const { 1811 if (Kind != k_VectorIndex) return false; 1812 return VectorIndex.Val < 8; 1813 } 1814 1815 bool isVectorIndex16() const { 1816 if (Kind != k_VectorIndex) return false; 1817 return VectorIndex.Val < 4; 1818 } 1819 1820 bool isVectorIndex32() const { 1821 if (Kind != k_VectorIndex) return false; 1822 return VectorIndex.Val < 2; 1823 } 1824 bool isVectorIndex64() const { 1825 if (Kind != k_VectorIndex) return false; 1826 return VectorIndex.Val < 1; 1827 } 1828 1829 bool isNEONi8splat() const { 1830 if (!isImm()) return false; 1831 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1832 // Must be a constant. 1833 if (!CE) return false; 1834 int64_t Value = CE->getValue(); 1835 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1836 // value. 1837 return Value >= 0 && Value < 256; 1838 } 1839 1840 bool isNEONi16splat() const { 1841 if (isNEONByteReplicate(2)) 1842 return false; // Leave that for bytes replication and forbid by default. 1843 if (!isImm()) 1844 return false; 1845 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1846 // Must be a constant. 1847 if (!CE) return false; 1848 unsigned Value = CE->getValue(); 1849 return ARM_AM::isNEONi16splat(Value); 1850 } 1851 1852 bool isNEONi16splatNot() const { 1853 if (!isImm()) 1854 return false; 1855 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1856 // Must be a constant. 1857 if (!CE) return false; 1858 unsigned Value = CE->getValue(); 1859 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1860 } 1861 1862 bool isNEONi32splat() const { 1863 if (isNEONByteReplicate(4)) 1864 return false; // Leave that for bytes replication and forbid by default. 1865 if (!isImm()) 1866 return false; 1867 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1868 // Must be a constant. 1869 if (!CE) return false; 1870 unsigned Value = CE->getValue(); 1871 return ARM_AM::isNEONi32splat(Value); 1872 } 1873 1874 bool isNEONi32splatNot() const { 1875 if (!isImm()) 1876 return false; 1877 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1878 // Must be a constant. 1879 if (!CE) return false; 1880 unsigned Value = CE->getValue(); 1881 return ARM_AM::isNEONi32splat(~Value); 1882 } 1883 1884 static bool isValidNEONi32vmovImm(int64_t Value) { 1885 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1886 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1887 return ((Value & 0xffffffffffffff00) == 0) || 1888 ((Value & 0xffffffffffff00ff) == 0) || 1889 ((Value & 0xffffffffff00ffff) == 0) || 1890 ((Value & 0xffffffff00ffffff) == 0) || 1891 ((Value & 0xffffffffffff00ff) == 0xff) || 1892 ((Value & 0xffffffffff00ffff) == 0xffff); 1893 } 1894 1895 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 1896 assert((Width == 8 || Width == 16 || Width == 32) && 1897 "Invalid element width"); 1898 assert(NumElems * Width <= 64 && "Invalid result width"); 1899 1900 if (!isImm()) 1901 return false; 1902 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1903 // Must be a constant. 1904 if (!CE) 1905 return false; 1906 int64_t Value = CE->getValue(); 1907 if (!Value) 1908 return false; // Don't bother with zero. 1909 if (Inv) 1910 Value = ~Value; 1911 1912 uint64_t Mask = (1ull << Width) - 1; 1913 uint64_t Elem = Value & Mask; 1914 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 1915 return false; 1916 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 1917 return false; 1918 1919 for (unsigned i = 1; i < NumElems; ++i) { 1920 Value >>= Width; 1921 if ((Value & Mask) != Elem) 1922 return false; 1923 } 1924 return true; 1925 } 1926 1927 bool isNEONByteReplicate(unsigned NumBytes) const { 1928 return isNEONReplicate(8, NumBytes, false); 1929 } 1930 1931 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 1932 assert((FromW == 8 || FromW == 16 || FromW == 32) && 1933 "Invalid source width"); 1934 assert((ToW == 16 || ToW == 32 || ToW == 64) && 1935 "Invalid destination width"); 1936 assert(FromW < ToW && "ToW is not less than FromW"); 1937 } 1938 1939 template<unsigned FromW, unsigned ToW> 1940 bool isNEONmovReplicate() const { 1941 checkNeonReplicateArgs(FromW, ToW); 1942 if (ToW == 64 && isNEONi64splat()) 1943 return false; 1944 return isNEONReplicate(FromW, ToW / FromW, false); 1945 } 1946 1947 template<unsigned FromW, unsigned ToW> 1948 bool isNEONinvReplicate() const { 1949 checkNeonReplicateArgs(FromW, ToW); 1950 return isNEONReplicate(FromW, ToW / FromW, true); 1951 } 1952 1953 bool isNEONi32vmov() const { 1954 if (isNEONByteReplicate(4)) 1955 return false; // Let it to be classified as byte-replicate case. 1956 if (!isImm()) 1957 return false; 1958 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1959 // Must be a constant. 1960 if (!CE) 1961 return false; 1962 return isValidNEONi32vmovImm(CE->getValue()); 1963 } 1964 1965 bool isNEONi32vmovNeg() const { 1966 if (!isImm()) return false; 1967 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1968 // Must be a constant. 1969 if (!CE) return false; 1970 return isValidNEONi32vmovImm(~CE->getValue()); 1971 } 1972 1973 bool isNEONi64splat() const { 1974 if (!isImm()) return false; 1975 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1976 // Must be a constant. 1977 if (!CE) return false; 1978 uint64_t Value = CE->getValue(); 1979 // i64 value with each byte being either 0 or 0xff. 1980 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1981 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1982 return true; 1983 } 1984 1985 template<int64_t Angle, int64_t Remainder> 1986 bool isComplexRotation() const { 1987 if (!isImm()) return false; 1988 1989 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1990 if (!CE) return false; 1991 uint64_t Value = CE->getValue(); 1992 1993 return (Value % Angle == Remainder && Value <= 270); 1994 } 1995 1996 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1997 // Add as immediates when possible. Null MCExpr = 0. 1998 if (!Expr) 1999 Inst.addOperand(MCOperand::createImm(0)); 2000 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 2001 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2002 else 2003 Inst.addOperand(MCOperand::createExpr(Expr)); 2004 } 2005 2006 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2007 assert(N == 1 && "Invalid number of operands!"); 2008 addExpr(Inst, getImm()); 2009 } 2010 2011 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2012 assert(N == 1 && "Invalid number of operands!"); 2013 addExpr(Inst, getImm()); 2014 } 2015 2016 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2017 assert(N == 2 && "Invalid number of operands!"); 2018 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2019 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2020 Inst.addOperand(MCOperand::createReg(RegNum)); 2021 } 2022 2023 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2024 assert(N == 1 && "Invalid number of operands!"); 2025 Inst.addOperand(MCOperand::createImm(getCoproc())); 2026 } 2027 2028 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2029 assert(N == 1 && "Invalid number of operands!"); 2030 Inst.addOperand(MCOperand::createImm(getCoproc())); 2031 } 2032 2033 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2034 assert(N == 1 && "Invalid number of operands!"); 2035 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2036 } 2037 2038 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2039 assert(N == 1 && "Invalid number of operands!"); 2040 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2041 } 2042 2043 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2044 assert(N == 1 && "Invalid number of operands!"); 2045 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2046 } 2047 2048 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2049 assert(N == 1 && "Invalid number of operands!"); 2050 Inst.addOperand(MCOperand::createReg(getReg())); 2051 } 2052 2053 void addRegOperands(MCInst &Inst, unsigned N) const { 2054 assert(N == 1 && "Invalid number of operands!"); 2055 Inst.addOperand(MCOperand::createReg(getReg())); 2056 } 2057 2058 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2059 assert(N == 3 && "Invalid number of operands!"); 2060 assert(isRegShiftedReg() && 2061 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2062 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2063 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2064 Inst.addOperand(MCOperand::createImm( 2065 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2066 } 2067 2068 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2069 assert(N == 2 && "Invalid number of operands!"); 2070 assert(isRegShiftedImm() && 2071 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2072 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2073 // Shift of #32 is encoded as 0 where permitted 2074 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2075 Inst.addOperand(MCOperand::createImm( 2076 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2077 } 2078 2079 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2080 assert(N == 1 && "Invalid number of operands!"); 2081 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2082 ShifterImm.Imm)); 2083 } 2084 2085 void addRegListOperands(MCInst &Inst, unsigned N) const { 2086 assert(N == 1 && "Invalid number of operands!"); 2087 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2088 for (SmallVectorImpl<unsigned>::const_iterator 2089 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2090 Inst.addOperand(MCOperand::createReg(*I)); 2091 } 2092 2093 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2094 addRegListOperands(Inst, N); 2095 } 2096 2097 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2098 addRegListOperands(Inst, N); 2099 } 2100 2101 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2102 assert(N == 1 && "Invalid number of operands!"); 2103 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2104 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2105 } 2106 2107 void addModImmOperands(MCInst &Inst, unsigned N) const { 2108 assert(N == 1 && "Invalid number of operands!"); 2109 2110 // Support for fixups (MCFixup) 2111 if (isImm()) 2112 return addImmOperands(Inst, N); 2113 2114 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2115 } 2116 2117 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2118 assert(N == 1 && "Invalid number of operands!"); 2119 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2120 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2121 Inst.addOperand(MCOperand::createImm(Enc)); 2122 } 2123 2124 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2125 assert(N == 1 && "Invalid number of operands!"); 2126 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2127 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2128 Inst.addOperand(MCOperand::createImm(Enc)); 2129 } 2130 2131 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2132 assert(N == 1 && "Invalid number of operands!"); 2133 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2134 uint32_t Val = -CE->getValue(); 2135 Inst.addOperand(MCOperand::createImm(Val)); 2136 } 2137 2138 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2139 assert(N == 1 && "Invalid number of operands!"); 2140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2141 uint32_t Val = -CE->getValue(); 2142 Inst.addOperand(MCOperand::createImm(Val)); 2143 } 2144 2145 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2146 assert(N == 1 && "Invalid number of operands!"); 2147 // Munge the lsb/width into a bitfield mask. 2148 unsigned lsb = Bitfield.LSB; 2149 unsigned width = Bitfield.Width; 2150 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2151 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2152 (32 - (lsb + width))); 2153 Inst.addOperand(MCOperand::createImm(Mask)); 2154 } 2155 2156 void addImmOperands(MCInst &Inst, unsigned N) const { 2157 assert(N == 1 && "Invalid number of operands!"); 2158 addExpr(Inst, getImm()); 2159 } 2160 2161 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2162 assert(N == 1 && "Invalid number of operands!"); 2163 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2164 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2165 } 2166 2167 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2168 assert(N == 1 && "Invalid number of operands!"); 2169 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2170 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2171 } 2172 2173 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2174 assert(N == 1 && "Invalid number of operands!"); 2175 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2176 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2177 Inst.addOperand(MCOperand::createImm(Val)); 2178 } 2179 2180 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2181 assert(N == 1 && "Invalid number of operands!"); 2182 // FIXME: We really want to scale the value here, but the LDRD/STRD 2183 // instruction don't encode operands that way yet. 2184 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2185 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2186 } 2187 2188 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2189 assert(N == 1 && "Invalid number of operands!"); 2190 // The immediate is scaled by four in the encoding and is stored 2191 // in the MCInst as such. Lop off the low two bits here. 2192 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2193 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2194 } 2195 2196 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2197 assert(N == 1 && "Invalid number of operands!"); 2198 // The immediate is scaled by four in the encoding and is stored 2199 // in the MCInst as such. Lop off the low two bits here. 2200 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2201 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2202 } 2203 2204 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2205 assert(N == 1 && "Invalid number of operands!"); 2206 // The immediate is scaled by four in the encoding and is stored 2207 // in the MCInst as such. Lop off the low two bits here. 2208 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2209 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2210 } 2211 2212 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2213 assert(N == 1 && "Invalid number of operands!"); 2214 // The constant encodes as the immediate-1, and we store in the instruction 2215 // the bits as encoded, so subtract off one here. 2216 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2217 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2218 } 2219 2220 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2221 assert(N == 1 && "Invalid number of operands!"); 2222 // The constant encodes as the immediate-1, and we store in the instruction 2223 // the bits as encoded, so subtract off one here. 2224 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2225 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2226 } 2227 2228 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2229 assert(N == 1 && "Invalid number of operands!"); 2230 // The constant encodes as the immediate, except for 32, which encodes as 2231 // zero. 2232 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2233 unsigned Imm = CE->getValue(); 2234 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2235 } 2236 2237 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2238 assert(N == 1 && "Invalid number of operands!"); 2239 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2240 // the instruction as well. 2241 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2242 int Val = CE->getValue(); 2243 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2244 } 2245 2246 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2247 assert(N == 1 && "Invalid number of operands!"); 2248 // The operand is actually a t2_so_imm, but we have its bitwise 2249 // negation in the assembly source, so twiddle it here. 2250 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2251 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2252 } 2253 2254 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2255 assert(N == 1 && "Invalid number of operands!"); 2256 // The operand is actually a t2_so_imm, but we have its 2257 // negation in the assembly source, so twiddle it here. 2258 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2259 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2260 } 2261 2262 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2263 assert(N == 1 && "Invalid number of operands!"); 2264 // The operand is actually an imm0_4095, but we have its 2265 // negation in the assembly source, so twiddle it here. 2266 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2267 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2268 } 2269 2270 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2271 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2272 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2273 return; 2274 } 2275 2276 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2277 assert(SR && "Unknown value type!"); 2278 Inst.addOperand(MCOperand::createExpr(SR)); 2279 } 2280 2281 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2282 assert(N == 1 && "Invalid number of operands!"); 2283 if (isImm()) { 2284 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2285 if (CE) { 2286 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2287 return; 2288 } 2289 2290 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2291 2292 assert(SR && "Unknown value type!"); 2293 Inst.addOperand(MCOperand::createExpr(SR)); 2294 return; 2295 } 2296 2297 assert(isMem() && "Unknown value type!"); 2298 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2299 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2300 } 2301 2302 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2303 assert(N == 1 && "Invalid number of operands!"); 2304 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2305 } 2306 2307 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2308 assert(N == 1 && "Invalid number of operands!"); 2309 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2310 } 2311 2312 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2313 assert(N == 1 && "Invalid number of operands!"); 2314 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2315 } 2316 2317 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2318 assert(N == 1 && "Invalid number of operands!"); 2319 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2320 } 2321 2322 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2323 assert(N == 1 && "Invalid number of operands!"); 2324 int32_t Imm = Memory.OffsetImm->getValue(); 2325 Inst.addOperand(MCOperand::createImm(Imm)); 2326 } 2327 2328 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2329 assert(N == 1 && "Invalid number of operands!"); 2330 assert(isImm() && "Not an immediate!"); 2331 2332 // If we have an immediate that's not a constant, treat it as a label 2333 // reference needing a fixup. 2334 if (!isa<MCConstantExpr>(getImm())) { 2335 Inst.addOperand(MCOperand::createExpr(getImm())); 2336 return; 2337 } 2338 2339 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2340 int Val = CE->getValue(); 2341 Inst.addOperand(MCOperand::createImm(Val)); 2342 } 2343 2344 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2345 assert(N == 2 && "Invalid number of operands!"); 2346 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2347 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2348 } 2349 2350 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2351 addAlignedMemoryOperands(Inst, N); 2352 } 2353 2354 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2355 addAlignedMemoryOperands(Inst, N); 2356 } 2357 2358 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2359 addAlignedMemoryOperands(Inst, N); 2360 } 2361 2362 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2363 addAlignedMemoryOperands(Inst, N); 2364 } 2365 2366 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2367 addAlignedMemoryOperands(Inst, N); 2368 } 2369 2370 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2371 addAlignedMemoryOperands(Inst, N); 2372 } 2373 2374 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2375 addAlignedMemoryOperands(Inst, N); 2376 } 2377 2378 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2379 addAlignedMemoryOperands(Inst, N); 2380 } 2381 2382 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2383 addAlignedMemoryOperands(Inst, N); 2384 } 2385 2386 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2387 addAlignedMemoryOperands(Inst, N); 2388 } 2389 2390 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2391 addAlignedMemoryOperands(Inst, N); 2392 } 2393 2394 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2395 assert(N == 3 && "Invalid number of operands!"); 2396 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2397 if (!Memory.OffsetRegNum) { 2398 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2399 // Special case for #-0 2400 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2401 if (Val < 0) Val = -Val; 2402 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2403 } else { 2404 // For register offset, we encode the shift type and negation flag 2405 // here. 2406 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2407 Memory.ShiftImm, Memory.ShiftType); 2408 } 2409 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2410 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2411 Inst.addOperand(MCOperand::createImm(Val)); 2412 } 2413 2414 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2415 assert(N == 2 && "Invalid number of operands!"); 2416 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2417 assert(CE && "non-constant AM2OffsetImm operand!"); 2418 int32_t Val = CE->getValue(); 2419 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2420 // Special case for #-0 2421 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2422 if (Val < 0) Val = -Val; 2423 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2424 Inst.addOperand(MCOperand::createReg(0)); 2425 Inst.addOperand(MCOperand::createImm(Val)); 2426 } 2427 2428 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2429 assert(N == 3 && "Invalid number of operands!"); 2430 // If we have an immediate that's not a constant, treat it as a label 2431 // reference needing a fixup. If it is a constant, it's something else 2432 // and we reject it. 2433 if (isImm()) { 2434 Inst.addOperand(MCOperand::createExpr(getImm())); 2435 Inst.addOperand(MCOperand::createReg(0)); 2436 Inst.addOperand(MCOperand::createImm(0)); 2437 return; 2438 } 2439 2440 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2441 if (!Memory.OffsetRegNum) { 2442 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2443 // Special case for #-0 2444 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2445 if (Val < 0) Val = -Val; 2446 Val = ARM_AM::getAM3Opc(AddSub, Val); 2447 } else { 2448 // For register offset, we encode the shift type and negation flag 2449 // here. 2450 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2451 } 2452 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2453 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2454 Inst.addOperand(MCOperand::createImm(Val)); 2455 } 2456 2457 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2458 assert(N == 2 && "Invalid number of operands!"); 2459 if (Kind == k_PostIndexRegister) { 2460 int32_t Val = 2461 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2462 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2463 Inst.addOperand(MCOperand::createImm(Val)); 2464 return; 2465 } 2466 2467 // Constant offset. 2468 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2469 int32_t Val = CE->getValue(); 2470 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2471 // Special case for #-0 2472 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2473 if (Val < 0) Val = -Val; 2474 Val = ARM_AM::getAM3Opc(AddSub, Val); 2475 Inst.addOperand(MCOperand::createReg(0)); 2476 Inst.addOperand(MCOperand::createImm(Val)); 2477 } 2478 2479 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2480 assert(N == 2 && "Invalid number of operands!"); 2481 // If we have an immediate that's not a constant, treat it as a label 2482 // reference needing a fixup. If it is a constant, it's something else 2483 // and we reject it. 2484 if (isImm()) { 2485 Inst.addOperand(MCOperand::createExpr(getImm())); 2486 Inst.addOperand(MCOperand::createImm(0)); 2487 return; 2488 } 2489 2490 // The lower two bits are always zero and as such are not encoded. 2491 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2492 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2493 // Special case for #-0 2494 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2495 if (Val < 0) Val = -Val; 2496 Val = ARM_AM::getAM5Opc(AddSub, Val); 2497 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2498 Inst.addOperand(MCOperand::createImm(Val)); 2499 } 2500 2501 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2502 assert(N == 2 && "Invalid number of operands!"); 2503 // If we have an immediate that's not a constant, treat it as a label 2504 // reference needing a fixup. If it is a constant, it's something else 2505 // and we reject it. 2506 if (isImm()) { 2507 Inst.addOperand(MCOperand::createExpr(getImm())); 2508 Inst.addOperand(MCOperand::createImm(0)); 2509 return; 2510 } 2511 2512 // The lower bit is always zero and as such is not encoded. 2513 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2514 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2515 // Special case for #-0 2516 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2517 if (Val < 0) Val = -Val; 2518 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2519 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2520 Inst.addOperand(MCOperand::createImm(Val)); 2521 } 2522 2523 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2524 assert(N == 2 && "Invalid number of operands!"); 2525 // If we have an immediate that's not a constant, treat it as a label 2526 // reference needing a fixup. If it is a constant, it's something else 2527 // and we reject it. 2528 if (isImm()) { 2529 Inst.addOperand(MCOperand::createExpr(getImm())); 2530 Inst.addOperand(MCOperand::createImm(0)); 2531 return; 2532 } 2533 2534 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2535 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2536 Inst.addOperand(MCOperand::createImm(Val)); 2537 } 2538 2539 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2540 assert(N == 2 && "Invalid number of operands!"); 2541 // The lower two bits are always zero and as such are not encoded. 2542 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2543 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2544 Inst.addOperand(MCOperand::createImm(Val)); 2545 } 2546 2547 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2548 assert(N == 2 && "Invalid number of operands!"); 2549 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2550 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2551 Inst.addOperand(MCOperand::createImm(Val)); 2552 } 2553 2554 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2555 addMemImm8OffsetOperands(Inst, N); 2556 } 2557 2558 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2559 addMemImm8OffsetOperands(Inst, N); 2560 } 2561 2562 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2563 assert(N == 2 && "Invalid number of operands!"); 2564 // If this is an immediate, it's a label reference. 2565 if (isImm()) { 2566 addExpr(Inst, getImm()); 2567 Inst.addOperand(MCOperand::createImm(0)); 2568 return; 2569 } 2570 2571 // Otherwise, it's a normal memory reg+offset. 2572 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2573 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2574 Inst.addOperand(MCOperand::createImm(Val)); 2575 } 2576 2577 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2578 assert(N == 2 && "Invalid number of operands!"); 2579 // If this is an immediate, it's a label reference. 2580 if (isImm()) { 2581 addExpr(Inst, getImm()); 2582 Inst.addOperand(MCOperand::createImm(0)); 2583 return; 2584 } 2585 2586 // Otherwise, it's a normal memory reg+offset. 2587 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2588 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2589 Inst.addOperand(MCOperand::createImm(Val)); 2590 } 2591 2592 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2593 assert(N == 1 && "Invalid number of operands!"); 2594 // This is container for the immediate that we will create the constant 2595 // pool from 2596 addExpr(Inst, getConstantPoolImm()); 2597 return; 2598 } 2599 2600 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2601 assert(N == 2 && "Invalid number of operands!"); 2602 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2603 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2604 } 2605 2606 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2607 assert(N == 2 && "Invalid number of operands!"); 2608 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2609 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2610 } 2611 2612 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2613 assert(N == 3 && "Invalid number of operands!"); 2614 unsigned Val = 2615 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2616 Memory.ShiftImm, Memory.ShiftType); 2617 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2618 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2619 Inst.addOperand(MCOperand::createImm(Val)); 2620 } 2621 2622 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2623 assert(N == 3 && "Invalid number of operands!"); 2624 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2625 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2626 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2627 } 2628 2629 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2630 assert(N == 2 && "Invalid number of operands!"); 2631 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2632 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2633 } 2634 2635 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2636 assert(N == 2 && "Invalid number of operands!"); 2637 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2638 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2639 Inst.addOperand(MCOperand::createImm(Val)); 2640 } 2641 2642 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2643 assert(N == 2 && "Invalid number of operands!"); 2644 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2645 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2646 Inst.addOperand(MCOperand::createImm(Val)); 2647 } 2648 2649 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2650 assert(N == 2 && "Invalid number of operands!"); 2651 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2652 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2653 Inst.addOperand(MCOperand::createImm(Val)); 2654 } 2655 2656 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2657 assert(N == 2 && "Invalid number of operands!"); 2658 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2659 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2660 Inst.addOperand(MCOperand::createImm(Val)); 2661 } 2662 2663 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2664 assert(N == 1 && "Invalid number of operands!"); 2665 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2666 assert(CE && "non-constant post-idx-imm8 operand!"); 2667 int Imm = CE->getValue(); 2668 bool isAdd = Imm >= 0; 2669 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2670 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2671 Inst.addOperand(MCOperand::createImm(Imm)); 2672 } 2673 2674 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2675 assert(N == 1 && "Invalid number of operands!"); 2676 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2677 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2678 int Imm = CE->getValue(); 2679 bool isAdd = Imm >= 0; 2680 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2681 // Immediate is scaled by 4. 2682 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2683 Inst.addOperand(MCOperand::createImm(Imm)); 2684 } 2685 2686 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2687 assert(N == 2 && "Invalid number of operands!"); 2688 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2689 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2690 } 2691 2692 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2693 assert(N == 2 && "Invalid number of operands!"); 2694 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2695 // The sign, shift type, and shift amount are encoded in a single operand 2696 // using the AM2 encoding helpers. 2697 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2698 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2699 PostIdxReg.ShiftTy); 2700 Inst.addOperand(MCOperand::createImm(Imm)); 2701 } 2702 2703 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2704 assert(N == 1 && "Invalid number of operands!"); 2705 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2706 } 2707 2708 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2709 assert(N == 1 && "Invalid number of operands!"); 2710 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2711 } 2712 2713 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2714 assert(N == 1 && "Invalid number of operands!"); 2715 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2716 } 2717 2718 void addVecListOperands(MCInst &Inst, unsigned N) const { 2719 assert(N == 1 && "Invalid number of operands!"); 2720 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2721 } 2722 2723 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2724 assert(N == 2 && "Invalid number of operands!"); 2725 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2726 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2727 } 2728 2729 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2730 assert(N == 1 && "Invalid number of operands!"); 2731 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2732 } 2733 2734 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2735 assert(N == 1 && "Invalid number of operands!"); 2736 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2737 } 2738 2739 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2740 assert(N == 1 && "Invalid number of operands!"); 2741 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2742 } 2743 2744 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 2745 assert(N == 1 && "Invalid number of operands!"); 2746 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2747 } 2748 2749 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2750 assert(N == 1 && "Invalid number of operands!"); 2751 // The immediate encodes the type of constant as well as the value. 2752 // Mask in that this is an i8 splat. 2753 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2754 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2755 } 2756 2757 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2758 assert(N == 1 && "Invalid number of operands!"); 2759 // The immediate encodes the type of constant as well as the value. 2760 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2761 unsigned Value = CE->getValue(); 2762 Value = ARM_AM::encodeNEONi16splat(Value); 2763 Inst.addOperand(MCOperand::createImm(Value)); 2764 } 2765 2766 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2767 assert(N == 1 && "Invalid number of operands!"); 2768 // The immediate encodes the type of constant as well as the value. 2769 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2770 unsigned Value = CE->getValue(); 2771 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2772 Inst.addOperand(MCOperand::createImm(Value)); 2773 } 2774 2775 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2776 assert(N == 1 && "Invalid number of operands!"); 2777 // The immediate encodes the type of constant as well as the value. 2778 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2779 unsigned Value = CE->getValue(); 2780 Value = ARM_AM::encodeNEONi32splat(Value); 2781 Inst.addOperand(MCOperand::createImm(Value)); 2782 } 2783 2784 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2785 assert(N == 1 && "Invalid number of operands!"); 2786 // The immediate encodes the type of constant as well as the value. 2787 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2788 unsigned Value = CE->getValue(); 2789 Value = ARM_AM::encodeNEONi32splat(~Value); 2790 Inst.addOperand(MCOperand::createImm(Value)); 2791 } 2792 2793 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 2794 // The immediate encodes the type of constant as well as the value. 2795 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2796 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2797 Inst.getOpcode() == ARM::VMOVv16i8) && 2798 "All instructions that wants to replicate non-zero byte " 2799 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2800 unsigned Value = CE->getValue(); 2801 if (Inv) 2802 Value = ~Value; 2803 unsigned B = Value & 0xff; 2804 B |= 0xe00; // cmode = 0b1110 2805 Inst.addOperand(MCOperand::createImm(B)); 2806 } 2807 2808 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 2809 assert(N == 1 && "Invalid number of operands!"); 2810 addNEONi8ReplicateOperands(Inst, true); 2811 } 2812 2813 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 2814 if (Value >= 256 && Value <= 0xffff) 2815 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2816 else if (Value > 0xffff && Value <= 0xffffff) 2817 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2818 else if (Value > 0xffffff) 2819 Value = (Value >> 24) | 0x600; 2820 return Value; 2821 } 2822 2823 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2824 assert(N == 1 && "Invalid number of operands!"); 2825 // The immediate encodes the type of constant as well as the value. 2826 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2827 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 2828 Inst.addOperand(MCOperand::createImm(Value)); 2829 } 2830 2831 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 2832 assert(N == 1 && "Invalid number of operands!"); 2833 addNEONi8ReplicateOperands(Inst, false); 2834 } 2835 2836 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 2837 assert(N == 1 && "Invalid number of operands!"); 2838 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2839 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 2840 Inst.getOpcode() == ARM::VMOVv8i16 || 2841 Inst.getOpcode() == ARM::VMVNv4i16 || 2842 Inst.getOpcode() == ARM::VMVNv8i16) && 2843 "All instructions that want to replicate non-zero half-word " 2844 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 2845 uint64_t Value = CE->getValue(); 2846 unsigned Elem = Value & 0xffff; 2847 if (Elem >= 256) 2848 Elem = (Elem >> 8) | 0x200; 2849 Inst.addOperand(MCOperand::createImm(Elem)); 2850 } 2851 2852 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2853 assert(N == 1 && "Invalid number of operands!"); 2854 // The immediate encodes the type of constant as well as the value. 2855 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2856 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 2857 Inst.addOperand(MCOperand::createImm(Value)); 2858 } 2859 2860 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 2861 assert(N == 1 && "Invalid number of operands!"); 2862 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2863 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 2864 Inst.getOpcode() == ARM::VMOVv4i32 || 2865 Inst.getOpcode() == ARM::VMVNv2i32 || 2866 Inst.getOpcode() == ARM::VMVNv4i32) && 2867 "All instructions that want to replicate non-zero word " 2868 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 2869 uint64_t Value = CE->getValue(); 2870 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 2871 Inst.addOperand(MCOperand::createImm(Elem)); 2872 } 2873 2874 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2875 assert(N == 1 && "Invalid number of operands!"); 2876 // The immediate encodes the type of constant as well as the value. 2877 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2878 uint64_t Value = CE->getValue(); 2879 unsigned Imm = 0; 2880 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2881 Imm |= (Value & 1) << i; 2882 } 2883 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2884 } 2885 2886 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 2887 assert(N == 1 && "Invalid number of operands!"); 2888 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2889 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 2890 } 2891 2892 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 2893 assert(N == 1 && "Invalid number of operands!"); 2894 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2895 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 2896 } 2897 2898 void print(raw_ostream &OS) const override; 2899 2900 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2901 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2902 Op->ITMask.Mask = Mask; 2903 Op->StartLoc = S; 2904 Op->EndLoc = S; 2905 return Op; 2906 } 2907 2908 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2909 SMLoc S) { 2910 auto Op = make_unique<ARMOperand>(k_CondCode); 2911 Op->CC.Val = CC; 2912 Op->StartLoc = S; 2913 Op->EndLoc = S; 2914 return Op; 2915 } 2916 2917 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2918 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2919 Op->Cop.Val = CopVal; 2920 Op->StartLoc = S; 2921 Op->EndLoc = S; 2922 return Op; 2923 } 2924 2925 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2926 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2927 Op->Cop.Val = CopVal; 2928 Op->StartLoc = S; 2929 Op->EndLoc = S; 2930 return Op; 2931 } 2932 2933 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2934 SMLoc E) { 2935 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2936 Op->Cop.Val = Val; 2937 Op->StartLoc = S; 2938 Op->EndLoc = E; 2939 return Op; 2940 } 2941 2942 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2943 auto Op = make_unique<ARMOperand>(k_CCOut); 2944 Op->Reg.RegNum = RegNum; 2945 Op->StartLoc = S; 2946 Op->EndLoc = S; 2947 return Op; 2948 } 2949 2950 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2951 auto Op = make_unique<ARMOperand>(k_Token); 2952 Op->Tok.Data = Str.data(); 2953 Op->Tok.Length = Str.size(); 2954 Op->StartLoc = S; 2955 Op->EndLoc = S; 2956 return Op; 2957 } 2958 2959 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2960 SMLoc E) { 2961 auto Op = make_unique<ARMOperand>(k_Register); 2962 Op->Reg.RegNum = RegNum; 2963 Op->StartLoc = S; 2964 Op->EndLoc = E; 2965 return Op; 2966 } 2967 2968 static std::unique_ptr<ARMOperand> 2969 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2970 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2971 SMLoc E) { 2972 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2973 Op->RegShiftedReg.ShiftTy = ShTy; 2974 Op->RegShiftedReg.SrcReg = SrcReg; 2975 Op->RegShiftedReg.ShiftReg = ShiftReg; 2976 Op->RegShiftedReg.ShiftImm = ShiftImm; 2977 Op->StartLoc = S; 2978 Op->EndLoc = E; 2979 return Op; 2980 } 2981 2982 static std::unique_ptr<ARMOperand> 2983 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2984 unsigned ShiftImm, SMLoc S, SMLoc E) { 2985 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2986 Op->RegShiftedImm.ShiftTy = ShTy; 2987 Op->RegShiftedImm.SrcReg = SrcReg; 2988 Op->RegShiftedImm.ShiftImm = ShiftImm; 2989 Op->StartLoc = S; 2990 Op->EndLoc = E; 2991 return Op; 2992 } 2993 2994 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2995 SMLoc S, SMLoc E) { 2996 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2997 Op->ShifterImm.isASR = isASR; 2998 Op->ShifterImm.Imm = Imm; 2999 Op->StartLoc = S; 3000 Op->EndLoc = E; 3001 return Op; 3002 } 3003 3004 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3005 SMLoc E) { 3006 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 3007 Op->RotImm.Imm = Imm; 3008 Op->StartLoc = S; 3009 Op->EndLoc = E; 3010 return Op; 3011 } 3012 3013 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3014 SMLoc S, SMLoc E) { 3015 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 3016 Op->ModImm.Bits = Bits; 3017 Op->ModImm.Rot = Rot; 3018 Op->StartLoc = S; 3019 Op->EndLoc = E; 3020 return Op; 3021 } 3022 3023 static std::unique_ptr<ARMOperand> 3024 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3025 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 3026 Op->Imm.Val = Val; 3027 Op->StartLoc = S; 3028 Op->EndLoc = E; 3029 return Op; 3030 } 3031 3032 static std::unique_ptr<ARMOperand> 3033 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3034 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 3035 Op->Bitfield.LSB = LSB; 3036 Op->Bitfield.Width = Width; 3037 Op->StartLoc = S; 3038 Op->EndLoc = E; 3039 return Op; 3040 } 3041 3042 static std::unique_ptr<ARMOperand> 3043 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3044 SMLoc StartLoc, SMLoc EndLoc) { 3045 assert(Regs.size() > 0 && "RegList contains no registers?"); 3046 KindTy Kind = k_RegisterList; 3047 3048 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 3049 Kind = k_DPRRegisterList; 3050 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 3051 contains(Regs.front().second)) 3052 Kind = k_SPRRegisterList; 3053 3054 // Sort based on the register encoding values. 3055 array_pod_sort(Regs.begin(), Regs.end()); 3056 3057 auto Op = make_unique<ARMOperand>(Kind); 3058 for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator 3059 I = Regs.begin(), E = Regs.end(); I != E; ++I) 3060 Op->Registers.push_back(I->second); 3061 Op->StartLoc = StartLoc; 3062 Op->EndLoc = EndLoc; 3063 return Op; 3064 } 3065 3066 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3067 unsigned Count, 3068 bool isDoubleSpaced, 3069 SMLoc S, SMLoc E) { 3070 auto Op = make_unique<ARMOperand>(k_VectorList); 3071 Op->VectorList.RegNum = RegNum; 3072 Op->VectorList.Count = Count; 3073 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3074 Op->StartLoc = S; 3075 Op->EndLoc = E; 3076 return Op; 3077 } 3078 3079 static std::unique_ptr<ARMOperand> 3080 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3081 SMLoc S, SMLoc E) { 3082 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 3083 Op->VectorList.RegNum = RegNum; 3084 Op->VectorList.Count = Count; 3085 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3086 Op->StartLoc = S; 3087 Op->EndLoc = E; 3088 return Op; 3089 } 3090 3091 static std::unique_ptr<ARMOperand> 3092 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3093 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3094 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 3095 Op->VectorList.RegNum = RegNum; 3096 Op->VectorList.Count = Count; 3097 Op->VectorList.LaneIndex = Index; 3098 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3099 Op->StartLoc = S; 3100 Op->EndLoc = E; 3101 return Op; 3102 } 3103 3104 static std::unique_ptr<ARMOperand> 3105 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3106 auto Op = make_unique<ARMOperand>(k_VectorIndex); 3107 Op->VectorIndex.Val = Idx; 3108 Op->StartLoc = S; 3109 Op->EndLoc = E; 3110 return Op; 3111 } 3112 3113 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3114 SMLoc E) { 3115 auto Op = make_unique<ARMOperand>(k_Immediate); 3116 Op->Imm.Val = Val; 3117 Op->StartLoc = S; 3118 Op->EndLoc = E; 3119 return Op; 3120 } 3121 3122 static std::unique_ptr<ARMOperand> 3123 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3124 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3125 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3126 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3127 auto Op = make_unique<ARMOperand>(k_Memory); 3128 Op->Memory.BaseRegNum = BaseRegNum; 3129 Op->Memory.OffsetImm = OffsetImm; 3130 Op->Memory.OffsetRegNum = OffsetRegNum; 3131 Op->Memory.ShiftType = ShiftType; 3132 Op->Memory.ShiftImm = ShiftImm; 3133 Op->Memory.Alignment = Alignment; 3134 Op->Memory.isNegative = isNegative; 3135 Op->StartLoc = S; 3136 Op->EndLoc = E; 3137 Op->AlignmentLoc = AlignmentLoc; 3138 return Op; 3139 } 3140 3141 static std::unique_ptr<ARMOperand> 3142 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3143 unsigned ShiftImm, SMLoc S, SMLoc E) { 3144 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 3145 Op->PostIdxReg.RegNum = RegNum; 3146 Op->PostIdxReg.isAdd = isAdd; 3147 Op->PostIdxReg.ShiftTy = ShiftTy; 3148 Op->PostIdxReg.ShiftImm = ShiftImm; 3149 Op->StartLoc = S; 3150 Op->EndLoc = E; 3151 return Op; 3152 } 3153 3154 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3155 SMLoc S) { 3156 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3157 Op->MBOpt.Val = Opt; 3158 Op->StartLoc = S; 3159 Op->EndLoc = S; 3160 return Op; 3161 } 3162 3163 static std::unique_ptr<ARMOperand> 3164 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3165 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3166 Op->ISBOpt.Val = Opt; 3167 Op->StartLoc = S; 3168 Op->EndLoc = S; 3169 return Op; 3170 } 3171 3172 static std::unique_ptr<ARMOperand> 3173 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3174 auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3175 Op->TSBOpt.Val = Opt; 3176 Op->StartLoc = S; 3177 Op->EndLoc = S; 3178 return Op; 3179 } 3180 3181 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3182 SMLoc S) { 3183 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3184 Op->IFlags.Val = IFlags; 3185 Op->StartLoc = S; 3186 Op->EndLoc = S; 3187 return Op; 3188 } 3189 3190 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3191 auto Op = make_unique<ARMOperand>(k_MSRMask); 3192 Op->MMask.Val = MMask; 3193 Op->StartLoc = S; 3194 Op->EndLoc = S; 3195 return Op; 3196 } 3197 3198 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3199 auto Op = make_unique<ARMOperand>(k_BankedReg); 3200 Op->BankedReg.Val = Reg; 3201 Op->StartLoc = S; 3202 Op->EndLoc = S; 3203 return Op; 3204 } 3205 }; 3206 3207 } // end anonymous namespace. 3208 3209 void ARMOperand::print(raw_ostream &OS) const { 3210 auto RegName = [](unsigned Reg) { 3211 if (Reg) 3212 return ARMInstPrinter::getRegisterName(Reg); 3213 else 3214 return "noreg"; 3215 }; 3216 3217 switch (Kind) { 3218 case k_CondCode: 3219 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3220 break; 3221 case k_CCOut: 3222 OS << "<ccout " << RegName(getReg()) << ">"; 3223 break; 3224 case k_ITCondMask: { 3225 static const char *const MaskStr[] = { 3226 "(invalid)", "(teee)", "(tee)", "(teet)", 3227 "(te)", "(tete)", "(tet)", "(tett)", 3228 "(t)", "(ttee)", "(tte)", "(ttet)", 3229 "(tt)", "(ttte)", "(ttt)", "(tttt)" 3230 }; 3231 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3232 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3233 break; 3234 } 3235 case k_CoprocNum: 3236 OS << "<coprocessor number: " << getCoproc() << ">"; 3237 break; 3238 case k_CoprocReg: 3239 OS << "<coprocessor register: " << getCoproc() << ">"; 3240 break; 3241 case k_CoprocOption: 3242 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3243 break; 3244 case k_MSRMask: 3245 OS << "<mask: " << getMSRMask() << ">"; 3246 break; 3247 case k_BankedReg: 3248 OS << "<banked reg: " << getBankedReg() << ">"; 3249 break; 3250 case k_Immediate: 3251 OS << *getImm(); 3252 break; 3253 case k_MemBarrierOpt: 3254 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3255 break; 3256 case k_InstSyncBarrierOpt: 3257 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3258 break; 3259 case k_TraceSyncBarrierOpt: 3260 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3261 break; 3262 case k_Memory: 3263 OS << "<memory"; 3264 if (Memory.BaseRegNum) 3265 OS << " base:" << RegName(Memory.BaseRegNum); 3266 if (Memory.OffsetImm) 3267 OS << " offset-imm:" << *Memory.OffsetImm; 3268 if (Memory.OffsetRegNum) 3269 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3270 << RegName(Memory.OffsetRegNum); 3271 if (Memory.ShiftType != ARM_AM::no_shift) { 3272 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3273 OS << " shift-imm:" << Memory.ShiftImm; 3274 } 3275 if (Memory.Alignment) 3276 OS << " alignment:" << Memory.Alignment; 3277 OS << ">"; 3278 break; 3279 case k_PostIndexRegister: 3280 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3281 << RegName(PostIdxReg.RegNum); 3282 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3283 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3284 << PostIdxReg.ShiftImm; 3285 OS << ">"; 3286 break; 3287 case k_ProcIFlags: { 3288 OS << "<ARM_PROC::"; 3289 unsigned IFlags = getProcIFlags(); 3290 for (int i=2; i >= 0; --i) 3291 if (IFlags & (1 << i)) 3292 OS << ARM_PROC::IFlagsToString(1 << i); 3293 OS << ">"; 3294 break; 3295 } 3296 case k_Register: 3297 OS << "<register " << RegName(getReg()) << ">"; 3298 break; 3299 case k_ShifterImmediate: 3300 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3301 << " #" << ShifterImm.Imm << ">"; 3302 break; 3303 case k_ShiftedRegister: 3304 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3305 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3306 << RegName(RegShiftedReg.ShiftReg) << ">"; 3307 break; 3308 case k_ShiftedImmediate: 3309 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3310 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3311 << RegShiftedImm.ShiftImm << ">"; 3312 break; 3313 case k_RotateImmediate: 3314 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3315 break; 3316 case k_ModifiedImmediate: 3317 OS << "<mod_imm #" << ModImm.Bits << ", #" 3318 << ModImm.Rot << ")>"; 3319 break; 3320 case k_ConstantPoolImmediate: 3321 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3322 break; 3323 case k_BitfieldDescriptor: 3324 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3325 << ", width: " << Bitfield.Width << ">"; 3326 break; 3327 case k_RegisterList: 3328 case k_DPRRegisterList: 3329 case k_SPRRegisterList: { 3330 OS << "<register_list "; 3331 3332 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3333 for (SmallVectorImpl<unsigned>::const_iterator 3334 I = RegList.begin(), E = RegList.end(); I != E; ) { 3335 OS << RegName(*I); 3336 if (++I < E) OS << ", "; 3337 } 3338 3339 OS << ">"; 3340 break; 3341 } 3342 case k_VectorList: 3343 OS << "<vector_list " << VectorList.Count << " * " 3344 << RegName(VectorList.RegNum) << ">"; 3345 break; 3346 case k_VectorListAllLanes: 3347 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3348 << RegName(VectorList.RegNum) << ">"; 3349 break; 3350 case k_VectorListIndexed: 3351 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3352 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 3353 break; 3354 case k_Token: 3355 OS << "'" << getToken() << "'"; 3356 break; 3357 case k_VectorIndex: 3358 OS << "<vectorindex " << getVectorIndex() << ">"; 3359 break; 3360 } 3361 } 3362 3363 /// @name Auto-generated Match Functions 3364 /// { 3365 3366 static unsigned MatchRegisterName(StringRef Name); 3367 3368 /// } 3369 3370 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3371 SMLoc &StartLoc, SMLoc &EndLoc) { 3372 const AsmToken &Tok = getParser().getTok(); 3373 StartLoc = Tok.getLoc(); 3374 EndLoc = Tok.getEndLoc(); 3375 RegNo = tryParseRegister(); 3376 3377 return (RegNo == (unsigned)-1); 3378 } 3379 3380 /// Try to parse a register name. The token must be an Identifier when called, 3381 /// and if it is a register name the token is eaten and the register number is 3382 /// returned. Otherwise return -1. 3383 int ARMAsmParser::tryParseRegister() { 3384 MCAsmParser &Parser = getParser(); 3385 const AsmToken &Tok = Parser.getTok(); 3386 if (Tok.isNot(AsmToken::Identifier)) return -1; 3387 3388 std::string lowerCase = Tok.getString().lower(); 3389 unsigned RegNum = MatchRegisterName(lowerCase); 3390 if (!RegNum) { 3391 RegNum = StringSwitch<unsigned>(lowerCase) 3392 .Case("r13", ARM::SP) 3393 .Case("r14", ARM::LR) 3394 .Case("r15", ARM::PC) 3395 .Case("ip", ARM::R12) 3396 // Additional register name aliases for 'gas' compatibility. 3397 .Case("a1", ARM::R0) 3398 .Case("a2", ARM::R1) 3399 .Case("a3", ARM::R2) 3400 .Case("a4", ARM::R3) 3401 .Case("v1", ARM::R4) 3402 .Case("v2", ARM::R5) 3403 .Case("v3", ARM::R6) 3404 .Case("v4", ARM::R7) 3405 .Case("v5", ARM::R8) 3406 .Case("v6", ARM::R9) 3407 .Case("v7", ARM::R10) 3408 .Case("v8", ARM::R11) 3409 .Case("sb", ARM::R9) 3410 .Case("sl", ARM::R10) 3411 .Case("fp", ARM::R11) 3412 .Default(0); 3413 } 3414 if (!RegNum) { 3415 // Check for aliases registered via .req. Canonicalize to lower case. 3416 // That's more consistent since register names are case insensitive, and 3417 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3418 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3419 // If no match, return failure. 3420 if (Entry == RegisterReqs.end()) 3421 return -1; 3422 Parser.Lex(); // Eat identifier token. 3423 return Entry->getValue(); 3424 } 3425 3426 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3427 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3428 return -1; 3429 3430 Parser.Lex(); // Eat identifier token. 3431 3432 return RegNum; 3433 } 3434 3435 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3436 // If a recoverable error occurs, return 1. If an irrecoverable error 3437 // occurs, return -1. An irrecoverable error is one where tokens have been 3438 // consumed in the process of trying to parse the shifter (i.e., when it is 3439 // indeed a shifter operand, but malformed). 3440 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3441 MCAsmParser &Parser = getParser(); 3442 SMLoc S = Parser.getTok().getLoc(); 3443 const AsmToken &Tok = Parser.getTok(); 3444 if (Tok.isNot(AsmToken::Identifier)) 3445 return -1; 3446 3447 std::string lowerCase = Tok.getString().lower(); 3448 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3449 .Case("asl", ARM_AM::lsl) 3450 .Case("lsl", ARM_AM::lsl) 3451 .Case("lsr", ARM_AM::lsr) 3452 .Case("asr", ARM_AM::asr) 3453 .Case("ror", ARM_AM::ror) 3454 .Case("rrx", ARM_AM::rrx) 3455 .Default(ARM_AM::no_shift); 3456 3457 if (ShiftTy == ARM_AM::no_shift) 3458 return 1; 3459 3460 Parser.Lex(); // Eat the operator. 3461 3462 // The source register for the shift has already been added to the 3463 // operand list, so we need to pop it off and combine it into the shifted 3464 // register operand instead. 3465 std::unique_ptr<ARMOperand> PrevOp( 3466 (ARMOperand *)Operands.pop_back_val().release()); 3467 if (!PrevOp->isReg()) 3468 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3469 int SrcReg = PrevOp->getReg(); 3470 3471 SMLoc EndLoc; 3472 int64_t Imm = 0; 3473 int ShiftReg = 0; 3474 if (ShiftTy == ARM_AM::rrx) { 3475 // RRX Doesn't have an explicit shift amount. The encoder expects 3476 // the shift register to be the same as the source register. Seems odd, 3477 // but OK. 3478 ShiftReg = SrcReg; 3479 } else { 3480 // Figure out if this is shifted by a constant or a register (for non-RRX). 3481 if (Parser.getTok().is(AsmToken::Hash) || 3482 Parser.getTok().is(AsmToken::Dollar)) { 3483 Parser.Lex(); // Eat hash. 3484 SMLoc ImmLoc = Parser.getTok().getLoc(); 3485 const MCExpr *ShiftExpr = nullptr; 3486 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3487 Error(ImmLoc, "invalid immediate shift value"); 3488 return -1; 3489 } 3490 // The expression must be evaluatable as an immediate. 3491 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3492 if (!CE) { 3493 Error(ImmLoc, "invalid immediate shift value"); 3494 return -1; 3495 } 3496 // Range check the immediate. 3497 // lsl, ror: 0 <= imm <= 31 3498 // lsr, asr: 0 <= imm <= 32 3499 Imm = CE->getValue(); 3500 if (Imm < 0 || 3501 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3502 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3503 Error(ImmLoc, "immediate shift value out of range"); 3504 return -1; 3505 } 3506 // shift by zero is a nop. Always send it through as lsl. 3507 // ('as' compatibility) 3508 if (Imm == 0) 3509 ShiftTy = ARM_AM::lsl; 3510 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3511 SMLoc L = Parser.getTok().getLoc(); 3512 EndLoc = Parser.getTok().getEndLoc(); 3513 ShiftReg = tryParseRegister(); 3514 if (ShiftReg == -1) { 3515 Error(L, "expected immediate or register in shift operand"); 3516 return -1; 3517 } 3518 } else { 3519 Error(Parser.getTok().getLoc(), 3520 "expected immediate or register in shift operand"); 3521 return -1; 3522 } 3523 } 3524 3525 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3526 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3527 ShiftReg, Imm, 3528 S, EndLoc)); 3529 else 3530 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3531 S, EndLoc)); 3532 3533 return 0; 3534 } 3535 3536 /// Try to parse a register name. The token must be an Identifier when called. 3537 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3538 /// if there is a "writeback". 'true' if it's not a register. 3539 /// 3540 /// TODO this is likely to change to allow different register types and or to 3541 /// parse for a specific register type. 3542 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3543 MCAsmParser &Parser = getParser(); 3544 SMLoc RegStartLoc = Parser.getTok().getLoc(); 3545 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 3546 int RegNo = tryParseRegister(); 3547 if (RegNo == -1) 3548 return true; 3549 3550 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 3551 3552 const AsmToken &ExclaimTok = Parser.getTok(); 3553 if (ExclaimTok.is(AsmToken::Exclaim)) { 3554 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3555 ExclaimTok.getLoc())); 3556 Parser.Lex(); // Eat exclaim token 3557 return false; 3558 } 3559 3560 // Also check for an index operand. This is only legal for vector registers, 3561 // but that'll get caught OK in operand matching, so we don't need to 3562 // explicitly filter everything else out here. 3563 if (Parser.getTok().is(AsmToken::LBrac)) { 3564 SMLoc SIdx = Parser.getTok().getLoc(); 3565 Parser.Lex(); // Eat left bracket token. 3566 3567 const MCExpr *ImmVal; 3568 if (getParser().parseExpression(ImmVal)) 3569 return true; 3570 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3571 if (!MCE) 3572 return TokError("immediate value expected for vector index"); 3573 3574 if (Parser.getTok().isNot(AsmToken::RBrac)) 3575 return Error(Parser.getTok().getLoc(), "']' expected"); 3576 3577 SMLoc E = Parser.getTok().getEndLoc(); 3578 Parser.Lex(); // Eat right bracket token. 3579 3580 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3581 SIdx, E, 3582 getContext())); 3583 } 3584 3585 return false; 3586 } 3587 3588 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3589 /// instruction with a symbolic operand name. 3590 /// We accept "crN" syntax for GAS compatibility. 3591 /// <operand-name> ::= <prefix><number> 3592 /// If CoprocOp is 'c', then: 3593 /// <prefix> ::= c | cr 3594 /// If CoprocOp is 'p', then : 3595 /// <prefix> ::= p 3596 /// <number> ::= integer in range [0, 15] 3597 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3598 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3599 // but efficient. 3600 if (Name.size() < 2 || Name[0] != CoprocOp) 3601 return -1; 3602 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3603 3604 switch (Name.size()) { 3605 default: return -1; 3606 case 1: 3607 switch (Name[0]) { 3608 default: return -1; 3609 case '0': return 0; 3610 case '1': return 1; 3611 case '2': return 2; 3612 case '3': return 3; 3613 case '4': return 4; 3614 case '5': return 5; 3615 case '6': return 6; 3616 case '7': return 7; 3617 case '8': return 8; 3618 case '9': return 9; 3619 } 3620 case 2: 3621 if (Name[0] != '1') 3622 return -1; 3623 switch (Name[1]) { 3624 default: return -1; 3625 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3626 // However, old cores (v5/v6) did use them in that way. 3627 case '0': return 10; 3628 case '1': return 11; 3629 case '2': return 12; 3630 case '3': return 13; 3631 case '4': return 14; 3632 case '5': return 15; 3633 } 3634 } 3635 } 3636 3637 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3638 OperandMatchResultTy 3639 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3640 MCAsmParser &Parser = getParser(); 3641 SMLoc S = Parser.getTok().getLoc(); 3642 const AsmToken &Tok = Parser.getTok(); 3643 if (!Tok.is(AsmToken::Identifier)) 3644 return MatchOperand_NoMatch; 3645 unsigned CC = ARMCondCodeFromString(Tok.getString()); 3646 if (CC == ~0U) 3647 return MatchOperand_NoMatch; 3648 Parser.Lex(); // Eat the token. 3649 3650 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3651 3652 return MatchOperand_Success; 3653 } 3654 3655 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3656 /// token must be an Identifier when called, and if it is a coprocessor 3657 /// number, the token is eaten and the operand is added to the operand list. 3658 OperandMatchResultTy 3659 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3660 MCAsmParser &Parser = getParser(); 3661 SMLoc S = Parser.getTok().getLoc(); 3662 const AsmToken &Tok = Parser.getTok(); 3663 if (Tok.isNot(AsmToken::Identifier)) 3664 return MatchOperand_NoMatch; 3665 3666 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); 3667 if (Num == -1) 3668 return MatchOperand_NoMatch; 3669 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3670 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3671 return MatchOperand_NoMatch; 3672 3673 Parser.Lex(); // Eat identifier token. 3674 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3675 return MatchOperand_Success; 3676 } 3677 3678 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3679 /// token must be an Identifier when called, and if it is a coprocessor 3680 /// number, the token is eaten and the operand is added to the operand list. 3681 OperandMatchResultTy 3682 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3683 MCAsmParser &Parser = getParser(); 3684 SMLoc S = Parser.getTok().getLoc(); 3685 const AsmToken &Tok = Parser.getTok(); 3686 if (Tok.isNot(AsmToken::Identifier)) 3687 return MatchOperand_NoMatch; 3688 3689 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); 3690 if (Reg == -1) 3691 return MatchOperand_NoMatch; 3692 3693 Parser.Lex(); // Eat identifier token. 3694 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3695 return MatchOperand_Success; 3696 } 3697 3698 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3699 /// coproc_option : '{' imm0_255 '}' 3700 OperandMatchResultTy 3701 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3702 MCAsmParser &Parser = getParser(); 3703 SMLoc S = Parser.getTok().getLoc(); 3704 3705 // If this isn't a '{', this isn't a coprocessor immediate operand. 3706 if (Parser.getTok().isNot(AsmToken::LCurly)) 3707 return MatchOperand_NoMatch; 3708 Parser.Lex(); // Eat the '{' 3709 3710 const MCExpr *Expr; 3711 SMLoc Loc = Parser.getTok().getLoc(); 3712 if (getParser().parseExpression(Expr)) { 3713 Error(Loc, "illegal expression"); 3714 return MatchOperand_ParseFail; 3715 } 3716 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3717 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3718 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3719 return MatchOperand_ParseFail; 3720 } 3721 int Val = CE->getValue(); 3722 3723 // Check for and consume the closing '}' 3724 if (Parser.getTok().isNot(AsmToken::RCurly)) 3725 return MatchOperand_ParseFail; 3726 SMLoc E = Parser.getTok().getEndLoc(); 3727 Parser.Lex(); // Eat the '}' 3728 3729 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3730 return MatchOperand_Success; 3731 } 3732 3733 // For register list parsing, we need to map from raw GPR register numbering 3734 // to the enumeration values. The enumeration values aren't sorted by 3735 // register number due to our using "sp", "lr" and "pc" as canonical names. 3736 static unsigned getNextRegister(unsigned Reg) { 3737 // If this is a GPR, we need to do it manually, otherwise we can rely 3738 // on the sort ordering of the enumeration since the other reg-classes 3739 // are sane. 3740 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3741 return Reg + 1; 3742 switch(Reg) { 3743 default: llvm_unreachable("Invalid GPR number!"); 3744 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3745 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3746 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3747 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3748 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3749 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3750 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3751 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3752 } 3753 } 3754 3755 /// Parse a register list. 3756 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3757 MCAsmParser &Parser = getParser(); 3758 if (Parser.getTok().isNot(AsmToken::LCurly)) 3759 return TokError("Token is not a Left Curly Brace"); 3760 SMLoc S = Parser.getTok().getLoc(); 3761 Parser.Lex(); // Eat '{' token. 3762 SMLoc RegLoc = Parser.getTok().getLoc(); 3763 3764 // Check the first register in the list to see what register class 3765 // this is a list of. 3766 int Reg = tryParseRegister(); 3767 if (Reg == -1) 3768 return Error(RegLoc, "register expected"); 3769 3770 // The reglist instructions have at most 16 registers, so reserve 3771 // space for that many. 3772 int EReg = 0; 3773 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3774 3775 // Allow Q regs and just interpret them as the two D sub-registers. 3776 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3777 Reg = getDRegFromQReg(Reg); 3778 EReg = MRI->getEncodingValue(Reg); 3779 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3780 ++Reg; 3781 } 3782 const MCRegisterClass *RC; 3783 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3784 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3785 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3786 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3787 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3788 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3789 else 3790 return Error(RegLoc, "invalid register in register list"); 3791 3792 // Store the register. 3793 EReg = MRI->getEncodingValue(Reg); 3794 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3795 3796 // This starts immediately after the first register token in the list, 3797 // so we can see either a comma or a minus (range separator) as a legal 3798 // next token. 3799 while (Parser.getTok().is(AsmToken::Comma) || 3800 Parser.getTok().is(AsmToken::Minus)) { 3801 if (Parser.getTok().is(AsmToken::Minus)) { 3802 Parser.Lex(); // Eat the minus. 3803 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3804 int EndReg = tryParseRegister(); 3805 if (EndReg == -1) 3806 return Error(AfterMinusLoc, "register expected"); 3807 // Allow Q regs and just interpret them as the two D sub-registers. 3808 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3809 EndReg = getDRegFromQReg(EndReg) + 1; 3810 // If the register is the same as the start reg, there's nothing 3811 // more to do. 3812 if (Reg == EndReg) 3813 continue; 3814 // The register must be in the same register class as the first. 3815 if (!RC->contains(EndReg)) 3816 return Error(AfterMinusLoc, "invalid register in register list"); 3817 // Ranges must go from low to high. 3818 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3819 return Error(AfterMinusLoc, "bad range in register list"); 3820 3821 // Add all the registers in the range to the register list. 3822 while (Reg != EndReg) { 3823 Reg = getNextRegister(Reg); 3824 EReg = MRI->getEncodingValue(Reg); 3825 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3826 } 3827 continue; 3828 } 3829 Parser.Lex(); // Eat the comma. 3830 RegLoc = Parser.getTok().getLoc(); 3831 int OldReg = Reg; 3832 const AsmToken RegTok = Parser.getTok(); 3833 Reg = tryParseRegister(); 3834 if (Reg == -1) 3835 return Error(RegLoc, "register expected"); 3836 // Allow Q regs and just interpret them as the two D sub-registers. 3837 bool isQReg = false; 3838 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3839 Reg = getDRegFromQReg(Reg); 3840 isQReg = true; 3841 } 3842 // The register must be in the same register class as the first. 3843 if (!RC->contains(Reg)) 3844 return Error(RegLoc, "invalid register in register list"); 3845 // List must be monotonically increasing. 3846 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3847 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3848 Warning(RegLoc, "register list not in ascending order"); 3849 else 3850 return Error(RegLoc, "register list not in ascending order"); 3851 } 3852 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3853 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3854 ") in register list"); 3855 continue; 3856 } 3857 // VFP register lists must also be contiguous. 3858 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3859 Reg != OldReg + 1) 3860 return Error(RegLoc, "non-contiguous register range"); 3861 EReg = MRI->getEncodingValue(Reg); 3862 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3863 if (isQReg) { 3864 EReg = MRI->getEncodingValue(++Reg); 3865 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3866 } 3867 } 3868 3869 if (Parser.getTok().isNot(AsmToken::RCurly)) 3870 return Error(Parser.getTok().getLoc(), "'}' expected"); 3871 SMLoc E = Parser.getTok().getEndLoc(); 3872 Parser.Lex(); // Eat '}' token. 3873 3874 // Push the register list operand. 3875 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3876 3877 // The ARM system instruction variants for LDM/STM have a '^' token here. 3878 if (Parser.getTok().is(AsmToken::Caret)) { 3879 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3880 Parser.Lex(); // Eat '^' token. 3881 } 3882 3883 return false; 3884 } 3885 3886 // Helper function to parse the lane index for vector lists. 3887 OperandMatchResultTy ARMAsmParser:: 3888 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3889 MCAsmParser &Parser = getParser(); 3890 Index = 0; // Always return a defined index value. 3891 if (Parser.getTok().is(AsmToken::LBrac)) { 3892 Parser.Lex(); // Eat the '['. 3893 if (Parser.getTok().is(AsmToken::RBrac)) { 3894 // "Dn[]" is the 'all lanes' syntax. 3895 LaneKind = AllLanes; 3896 EndLoc = Parser.getTok().getEndLoc(); 3897 Parser.Lex(); // Eat the ']'. 3898 return MatchOperand_Success; 3899 } 3900 3901 // There's an optional '#' token here. Normally there wouldn't be, but 3902 // inline assemble puts one in, and it's friendly to accept that. 3903 if (Parser.getTok().is(AsmToken::Hash)) 3904 Parser.Lex(); // Eat '#' or '$'. 3905 3906 const MCExpr *LaneIndex; 3907 SMLoc Loc = Parser.getTok().getLoc(); 3908 if (getParser().parseExpression(LaneIndex)) { 3909 Error(Loc, "illegal expression"); 3910 return MatchOperand_ParseFail; 3911 } 3912 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3913 if (!CE) { 3914 Error(Loc, "lane index must be empty or an integer"); 3915 return MatchOperand_ParseFail; 3916 } 3917 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3918 Error(Parser.getTok().getLoc(), "']' expected"); 3919 return MatchOperand_ParseFail; 3920 } 3921 EndLoc = Parser.getTok().getEndLoc(); 3922 Parser.Lex(); // Eat the ']'. 3923 int64_t Val = CE->getValue(); 3924 3925 // FIXME: Make this range check context sensitive for .8, .16, .32. 3926 if (Val < 0 || Val > 7) { 3927 Error(Parser.getTok().getLoc(), "lane index out of range"); 3928 return MatchOperand_ParseFail; 3929 } 3930 Index = Val; 3931 LaneKind = IndexedLane; 3932 return MatchOperand_Success; 3933 } 3934 LaneKind = NoLanes; 3935 return MatchOperand_Success; 3936 } 3937 3938 // parse a vector register list 3939 OperandMatchResultTy 3940 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3941 MCAsmParser &Parser = getParser(); 3942 VectorLaneTy LaneKind; 3943 unsigned LaneIndex; 3944 SMLoc S = Parser.getTok().getLoc(); 3945 // As an extension (to match gas), support a plain D register or Q register 3946 // (without encosing curly braces) as a single or double entry list, 3947 // respectively. 3948 if (Parser.getTok().is(AsmToken::Identifier)) { 3949 SMLoc E = Parser.getTok().getEndLoc(); 3950 int Reg = tryParseRegister(); 3951 if (Reg == -1) 3952 return MatchOperand_NoMatch; 3953 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3954 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3955 if (Res != MatchOperand_Success) 3956 return Res; 3957 switch (LaneKind) { 3958 case NoLanes: 3959 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3960 break; 3961 case AllLanes: 3962 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3963 S, E)); 3964 break; 3965 case IndexedLane: 3966 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3967 LaneIndex, 3968 false, S, E)); 3969 break; 3970 } 3971 return MatchOperand_Success; 3972 } 3973 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3974 Reg = getDRegFromQReg(Reg); 3975 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3976 if (Res != MatchOperand_Success) 3977 return Res; 3978 switch (LaneKind) { 3979 case NoLanes: 3980 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3981 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3982 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3983 break; 3984 case AllLanes: 3985 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3986 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3987 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3988 S, E)); 3989 break; 3990 case IndexedLane: 3991 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3992 LaneIndex, 3993 false, S, E)); 3994 break; 3995 } 3996 return MatchOperand_Success; 3997 } 3998 Error(S, "vector register expected"); 3999 return MatchOperand_ParseFail; 4000 } 4001 4002 if (Parser.getTok().isNot(AsmToken::LCurly)) 4003 return MatchOperand_NoMatch; 4004 4005 Parser.Lex(); // Eat '{' token. 4006 SMLoc RegLoc = Parser.getTok().getLoc(); 4007 4008 int Reg = tryParseRegister(); 4009 if (Reg == -1) { 4010 Error(RegLoc, "register expected"); 4011 return MatchOperand_ParseFail; 4012 } 4013 unsigned Count = 1; 4014 int Spacing = 0; 4015 unsigned FirstReg = Reg; 4016 // The list is of D registers, but we also allow Q regs and just interpret 4017 // them as the two D sub-registers. 4018 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4019 FirstReg = Reg = getDRegFromQReg(Reg); 4020 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4021 // it's ambiguous with four-register single spaced. 4022 ++Reg; 4023 ++Count; 4024 } 4025 4026 SMLoc E; 4027 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4028 return MatchOperand_ParseFail; 4029 4030 while (Parser.getTok().is(AsmToken::Comma) || 4031 Parser.getTok().is(AsmToken::Minus)) { 4032 if (Parser.getTok().is(AsmToken::Minus)) { 4033 if (!Spacing) 4034 Spacing = 1; // Register range implies a single spaced list. 4035 else if (Spacing == 2) { 4036 Error(Parser.getTok().getLoc(), 4037 "sequential registers in double spaced list"); 4038 return MatchOperand_ParseFail; 4039 } 4040 Parser.Lex(); // Eat the minus. 4041 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4042 int EndReg = tryParseRegister(); 4043 if (EndReg == -1) { 4044 Error(AfterMinusLoc, "register expected"); 4045 return MatchOperand_ParseFail; 4046 } 4047 // Allow Q regs and just interpret them as the two D sub-registers. 4048 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4049 EndReg = getDRegFromQReg(EndReg) + 1; 4050 // If the register is the same as the start reg, there's nothing 4051 // more to do. 4052 if (Reg == EndReg) 4053 continue; 4054 // The register must be in the same register class as the first. 4055 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 4056 Error(AfterMinusLoc, "invalid register in register list"); 4057 return MatchOperand_ParseFail; 4058 } 4059 // Ranges must go from low to high. 4060 if (Reg > EndReg) { 4061 Error(AfterMinusLoc, "bad range in register list"); 4062 return MatchOperand_ParseFail; 4063 } 4064 // Parse the lane specifier if present. 4065 VectorLaneTy NextLaneKind; 4066 unsigned NextLaneIndex; 4067 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4068 MatchOperand_Success) 4069 return MatchOperand_ParseFail; 4070 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4071 Error(AfterMinusLoc, "mismatched lane index in register list"); 4072 return MatchOperand_ParseFail; 4073 } 4074 4075 // Add all the registers in the range to the register list. 4076 Count += EndReg - Reg; 4077 Reg = EndReg; 4078 continue; 4079 } 4080 Parser.Lex(); // Eat the comma. 4081 RegLoc = Parser.getTok().getLoc(); 4082 int OldReg = Reg; 4083 Reg = tryParseRegister(); 4084 if (Reg == -1) { 4085 Error(RegLoc, "register expected"); 4086 return MatchOperand_ParseFail; 4087 } 4088 // vector register lists must be contiguous. 4089 // It's OK to use the enumeration values directly here rather, as the 4090 // VFP register classes have the enum sorted properly. 4091 // 4092 // The list is of D registers, but we also allow Q regs and just interpret 4093 // them as the two D sub-registers. 4094 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4095 if (!Spacing) 4096 Spacing = 1; // Register range implies a single spaced list. 4097 else if (Spacing == 2) { 4098 Error(RegLoc, 4099 "invalid register in double-spaced list (must be 'D' register')"); 4100 return MatchOperand_ParseFail; 4101 } 4102 Reg = getDRegFromQReg(Reg); 4103 if (Reg != OldReg + 1) { 4104 Error(RegLoc, "non-contiguous register range"); 4105 return MatchOperand_ParseFail; 4106 } 4107 ++Reg; 4108 Count += 2; 4109 // Parse the lane specifier if present. 4110 VectorLaneTy NextLaneKind; 4111 unsigned NextLaneIndex; 4112 SMLoc LaneLoc = Parser.getTok().getLoc(); 4113 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4114 MatchOperand_Success) 4115 return MatchOperand_ParseFail; 4116 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4117 Error(LaneLoc, "mismatched lane index in register list"); 4118 return MatchOperand_ParseFail; 4119 } 4120 continue; 4121 } 4122 // Normal D register. 4123 // Figure out the register spacing (single or double) of the list if 4124 // we don't know it already. 4125 if (!Spacing) 4126 Spacing = 1 + (Reg == OldReg + 2); 4127 4128 // Just check that it's contiguous and keep going. 4129 if (Reg != OldReg + Spacing) { 4130 Error(RegLoc, "non-contiguous register range"); 4131 return MatchOperand_ParseFail; 4132 } 4133 ++Count; 4134 // Parse the lane specifier if present. 4135 VectorLaneTy NextLaneKind; 4136 unsigned NextLaneIndex; 4137 SMLoc EndLoc = Parser.getTok().getLoc(); 4138 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4139 return MatchOperand_ParseFail; 4140 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4141 Error(EndLoc, "mismatched lane index in register list"); 4142 return MatchOperand_ParseFail; 4143 } 4144 } 4145 4146 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4147 Error(Parser.getTok().getLoc(), "'}' expected"); 4148 return MatchOperand_ParseFail; 4149 } 4150 E = Parser.getTok().getEndLoc(); 4151 Parser.Lex(); // Eat '}' token. 4152 4153 switch (LaneKind) { 4154 case NoLanes: 4155 // Two-register operands have been converted to the 4156 // composite register classes. 4157 if (Count == 2) { 4158 const MCRegisterClass *RC = (Spacing == 1) ? 4159 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4160 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4161 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4162 } 4163 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 4164 (Spacing == 2), S, E)); 4165 break; 4166 case AllLanes: 4167 // Two-register operands have been converted to the 4168 // composite register classes. 4169 if (Count == 2) { 4170 const MCRegisterClass *RC = (Spacing == 1) ? 4171 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4172 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4173 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4174 } 4175 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 4176 (Spacing == 2), 4177 S, E)); 4178 break; 4179 case IndexedLane: 4180 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4181 LaneIndex, 4182 (Spacing == 2), 4183 S, E)); 4184 break; 4185 } 4186 return MatchOperand_Success; 4187 } 4188 4189 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4190 OperandMatchResultTy 4191 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4192 MCAsmParser &Parser = getParser(); 4193 SMLoc S = Parser.getTok().getLoc(); 4194 const AsmToken &Tok = Parser.getTok(); 4195 unsigned Opt; 4196 4197 if (Tok.is(AsmToken::Identifier)) { 4198 StringRef OptStr = Tok.getString(); 4199 4200 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4201 .Case("sy", ARM_MB::SY) 4202 .Case("st", ARM_MB::ST) 4203 .Case("ld", ARM_MB::LD) 4204 .Case("sh", ARM_MB::ISH) 4205 .Case("ish", ARM_MB::ISH) 4206 .Case("shst", ARM_MB::ISHST) 4207 .Case("ishst", ARM_MB::ISHST) 4208 .Case("ishld", ARM_MB::ISHLD) 4209 .Case("nsh", ARM_MB::NSH) 4210 .Case("un", ARM_MB::NSH) 4211 .Case("nshst", ARM_MB::NSHST) 4212 .Case("nshld", ARM_MB::NSHLD) 4213 .Case("unst", ARM_MB::NSHST) 4214 .Case("osh", ARM_MB::OSH) 4215 .Case("oshst", ARM_MB::OSHST) 4216 .Case("oshld", ARM_MB::OSHLD) 4217 .Default(~0U); 4218 4219 // ishld, oshld, nshld and ld are only available from ARMv8. 4220 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4221 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4222 Opt = ~0U; 4223 4224 if (Opt == ~0U) 4225 return MatchOperand_NoMatch; 4226 4227 Parser.Lex(); // Eat identifier token. 4228 } else if (Tok.is(AsmToken::Hash) || 4229 Tok.is(AsmToken::Dollar) || 4230 Tok.is(AsmToken::Integer)) { 4231 if (Parser.getTok().isNot(AsmToken::Integer)) 4232 Parser.Lex(); // Eat '#' or '$'. 4233 SMLoc Loc = Parser.getTok().getLoc(); 4234 4235 const MCExpr *MemBarrierID; 4236 if (getParser().parseExpression(MemBarrierID)) { 4237 Error(Loc, "illegal expression"); 4238 return MatchOperand_ParseFail; 4239 } 4240 4241 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4242 if (!CE) { 4243 Error(Loc, "constant expression expected"); 4244 return MatchOperand_ParseFail; 4245 } 4246 4247 int Val = CE->getValue(); 4248 if (Val & ~0xf) { 4249 Error(Loc, "immediate value out of range"); 4250 return MatchOperand_ParseFail; 4251 } 4252 4253 Opt = ARM_MB::RESERVED_0 + Val; 4254 } else 4255 return MatchOperand_ParseFail; 4256 4257 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4258 return MatchOperand_Success; 4259 } 4260 4261 OperandMatchResultTy 4262 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 4263 MCAsmParser &Parser = getParser(); 4264 SMLoc S = Parser.getTok().getLoc(); 4265 const AsmToken &Tok = Parser.getTok(); 4266 4267 if (Tok.isNot(AsmToken::Identifier)) 4268 return MatchOperand_NoMatch; 4269 4270 if (!Tok.getString().equals_lower("csync")) 4271 return MatchOperand_NoMatch; 4272 4273 Parser.Lex(); // Eat identifier token. 4274 4275 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 4276 return MatchOperand_Success; 4277 } 4278 4279 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4280 OperandMatchResultTy 4281 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4282 MCAsmParser &Parser = getParser(); 4283 SMLoc S = Parser.getTok().getLoc(); 4284 const AsmToken &Tok = Parser.getTok(); 4285 unsigned Opt; 4286 4287 if (Tok.is(AsmToken::Identifier)) { 4288 StringRef OptStr = Tok.getString(); 4289 4290 if (OptStr.equals_lower("sy")) 4291 Opt = ARM_ISB::SY; 4292 else 4293 return MatchOperand_NoMatch; 4294 4295 Parser.Lex(); // Eat identifier token. 4296 } else if (Tok.is(AsmToken::Hash) || 4297 Tok.is(AsmToken::Dollar) || 4298 Tok.is(AsmToken::Integer)) { 4299 if (Parser.getTok().isNot(AsmToken::Integer)) 4300 Parser.Lex(); // Eat '#' or '$'. 4301 SMLoc Loc = Parser.getTok().getLoc(); 4302 4303 const MCExpr *ISBarrierID; 4304 if (getParser().parseExpression(ISBarrierID)) { 4305 Error(Loc, "illegal expression"); 4306 return MatchOperand_ParseFail; 4307 } 4308 4309 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4310 if (!CE) { 4311 Error(Loc, "constant expression expected"); 4312 return MatchOperand_ParseFail; 4313 } 4314 4315 int Val = CE->getValue(); 4316 if (Val & ~0xf) { 4317 Error(Loc, "immediate value out of range"); 4318 return MatchOperand_ParseFail; 4319 } 4320 4321 Opt = ARM_ISB::RESERVED_0 + Val; 4322 } else 4323 return MatchOperand_ParseFail; 4324 4325 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4326 (ARM_ISB::InstSyncBOpt)Opt, S)); 4327 return MatchOperand_Success; 4328 } 4329 4330 4331 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4332 OperandMatchResultTy 4333 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4334 MCAsmParser &Parser = getParser(); 4335 SMLoc S = Parser.getTok().getLoc(); 4336 const AsmToken &Tok = Parser.getTok(); 4337 if (!Tok.is(AsmToken::Identifier)) 4338 return MatchOperand_NoMatch; 4339 StringRef IFlagsStr = Tok.getString(); 4340 4341 // An iflags string of "none" is interpreted to mean that none of the AIF 4342 // bits are set. Not a terribly useful instruction, but a valid encoding. 4343 unsigned IFlags = 0; 4344 if (IFlagsStr != "none") { 4345 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4346 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4347 .Case("a", ARM_PROC::A) 4348 .Case("i", ARM_PROC::I) 4349 .Case("f", ARM_PROC::F) 4350 .Default(~0U); 4351 4352 // If some specific iflag is already set, it means that some letter is 4353 // present more than once, this is not acceptable. 4354 if (Flag == ~0U || (IFlags & Flag)) 4355 return MatchOperand_NoMatch; 4356 4357 IFlags |= Flag; 4358 } 4359 } 4360 4361 Parser.Lex(); // Eat identifier token. 4362 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4363 return MatchOperand_Success; 4364 } 4365 4366 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4367 OperandMatchResultTy 4368 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4369 MCAsmParser &Parser = getParser(); 4370 SMLoc S = Parser.getTok().getLoc(); 4371 const AsmToken &Tok = Parser.getTok(); 4372 4373 if (Tok.is(AsmToken::Integer)) { 4374 int64_t Val = Tok.getIntVal(); 4375 if (Val > 255 || Val < 0) { 4376 return MatchOperand_NoMatch; 4377 } 4378 unsigned SYSmvalue = Val & 0xFF; 4379 Parser.Lex(); 4380 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4381 return MatchOperand_Success; 4382 } 4383 4384 if (!Tok.is(AsmToken::Identifier)) 4385 return MatchOperand_NoMatch; 4386 StringRef Mask = Tok.getString(); 4387 4388 if (isMClass()) { 4389 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4390 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4391 return MatchOperand_NoMatch; 4392 4393 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4394 4395 Parser.Lex(); // Eat identifier token. 4396 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4397 return MatchOperand_Success; 4398 } 4399 4400 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4401 size_t Start = 0, Next = Mask.find('_'); 4402 StringRef Flags = ""; 4403 std::string SpecReg = Mask.slice(Start, Next).lower(); 4404 if (Next != StringRef::npos) 4405 Flags = Mask.slice(Next+1, Mask.size()); 4406 4407 // FlagsVal contains the complete mask: 4408 // 3-0: Mask 4409 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4410 unsigned FlagsVal = 0; 4411 4412 if (SpecReg == "apsr") { 4413 FlagsVal = StringSwitch<unsigned>(Flags) 4414 .Case("nzcvq", 0x8) // same as CPSR_f 4415 .Case("g", 0x4) // same as CPSR_s 4416 .Case("nzcvqg", 0xc) // same as CPSR_fs 4417 .Default(~0U); 4418 4419 if (FlagsVal == ~0U) { 4420 if (!Flags.empty()) 4421 return MatchOperand_NoMatch; 4422 else 4423 FlagsVal = 8; // No flag 4424 } 4425 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4426 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4427 if (Flags == "all" || Flags == "") 4428 Flags = "fc"; 4429 for (int i = 0, e = Flags.size(); i != e; ++i) { 4430 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4431 .Case("c", 1) 4432 .Case("x", 2) 4433 .Case("s", 4) 4434 .Case("f", 8) 4435 .Default(~0U); 4436 4437 // If some specific flag is already set, it means that some letter is 4438 // present more than once, this is not acceptable. 4439 if (Flag == ~0U || (FlagsVal & Flag)) 4440 return MatchOperand_NoMatch; 4441 FlagsVal |= Flag; 4442 } 4443 } else // No match for special register. 4444 return MatchOperand_NoMatch; 4445 4446 // Special register without flags is NOT equivalent to "fc" flags. 4447 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4448 // two lines would enable gas compatibility at the expense of breaking 4449 // round-tripping. 4450 // 4451 // if (!FlagsVal) 4452 // FlagsVal = 0x9; 4453 4454 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4455 if (SpecReg == "spsr") 4456 FlagsVal |= 16; 4457 4458 Parser.Lex(); // Eat identifier token. 4459 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4460 return MatchOperand_Success; 4461 } 4462 4463 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4464 /// use in the MRS/MSR instructions added to support virtualization. 4465 OperandMatchResultTy 4466 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4467 MCAsmParser &Parser = getParser(); 4468 SMLoc S = Parser.getTok().getLoc(); 4469 const AsmToken &Tok = Parser.getTok(); 4470 if (!Tok.is(AsmToken::Identifier)) 4471 return MatchOperand_NoMatch; 4472 StringRef RegName = Tok.getString(); 4473 4474 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 4475 if (!TheReg) 4476 return MatchOperand_NoMatch; 4477 unsigned Encoding = TheReg->Encoding; 4478 4479 Parser.Lex(); // Eat identifier token. 4480 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4481 return MatchOperand_Success; 4482 } 4483 4484 OperandMatchResultTy 4485 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4486 int High) { 4487 MCAsmParser &Parser = getParser(); 4488 const AsmToken &Tok = Parser.getTok(); 4489 if (Tok.isNot(AsmToken::Identifier)) { 4490 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4491 return MatchOperand_ParseFail; 4492 } 4493 StringRef ShiftName = Tok.getString(); 4494 std::string LowerOp = Op.lower(); 4495 std::string UpperOp = Op.upper(); 4496 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4497 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4498 return MatchOperand_ParseFail; 4499 } 4500 Parser.Lex(); // Eat shift type token. 4501 4502 // There must be a '#' and a shift amount. 4503 if (Parser.getTok().isNot(AsmToken::Hash) && 4504 Parser.getTok().isNot(AsmToken::Dollar)) { 4505 Error(Parser.getTok().getLoc(), "'#' expected"); 4506 return MatchOperand_ParseFail; 4507 } 4508 Parser.Lex(); // Eat hash token. 4509 4510 const MCExpr *ShiftAmount; 4511 SMLoc Loc = Parser.getTok().getLoc(); 4512 SMLoc EndLoc; 4513 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4514 Error(Loc, "illegal expression"); 4515 return MatchOperand_ParseFail; 4516 } 4517 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4518 if (!CE) { 4519 Error(Loc, "constant expression expected"); 4520 return MatchOperand_ParseFail; 4521 } 4522 int Val = CE->getValue(); 4523 if (Val < Low || Val > High) { 4524 Error(Loc, "immediate value out of range"); 4525 return MatchOperand_ParseFail; 4526 } 4527 4528 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4529 4530 return MatchOperand_Success; 4531 } 4532 4533 OperandMatchResultTy 4534 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4535 MCAsmParser &Parser = getParser(); 4536 const AsmToken &Tok = Parser.getTok(); 4537 SMLoc S = Tok.getLoc(); 4538 if (Tok.isNot(AsmToken::Identifier)) { 4539 Error(S, "'be' or 'le' operand expected"); 4540 return MatchOperand_ParseFail; 4541 } 4542 int Val = StringSwitch<int>(Tok.getString().lower()) 4543 .Case("be", 1) 4544 .Case("le", 0) 4545 .Default(-1); 4546 Parser.Lex(); // Eat the token. 4547 4548 if (Val == -1) { 4549 Error(S, "'be' or 'le' operand expected"); 4550 return MatchOperand_ParseFail; 4551 } 4552 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4553 getContext()), 4554 S, Tok.getEndLoc())); 4555 return MatchOperand_Success; 4556 } 4557 4558 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4559 /// instructions. Legal values are: 4560 /// lsl #n 'n' in [0,31] 4561 /// asr #n 'n' in [1,32] 4562 /// n == 32 encoded as n == 0. 4563 OperandMatchResultTy 4564 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4565 MCAsmParser &Parser = getParser(); 4566 const AsmToken &Tok = Parser.getTok(); 4567 SMLoc S = Tok.getLoc(); 4568 if (Tok.isNot(AsmToken::Identifier)) { 4569 Error(S, "shift operator 'asr' or 'lsl' expected"); 4570 return MatchOperand_ParseFail; 4571 } 4572 StringRef ShiftName = Tok.getString(); 4573 bool isASR; 4574 if (ShiftName == "lsl" || ShiftName == "LSL") 4575 isASR = false; 4576 else if (ShiftName == "asr" || ShiftName == "ASR") 4577 isASR = true; 4578 else { 4579 Error(S, "shift operator 'asr' or 'lsl' expected"); 4580 return MatchOperand_ParseFail; 4581 } 4582 Parser.Lex(); // Eat the operator. 4583 4584 // A '#' and a shift amount. 4585 if (Parser.getTok().isNot(AsmToken::Hash) && 4586 Parser.getTok().isNot(AsmToken::Dollar)) { 4587 Error(Parser.getTok().getLoc(), "'#' expected"); 4588 return MatchOperand_ParseFail; 4589 } 4590 Parser.Lex(); // Eat hash token. 4591 SMLoc ExLoc = Parser.getTok().getLoc(); 4592 4593 const MCExpr *ShiftAmount; 4594 SMLoc EndLoc; 4595 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4596 Error(ExLoc, "malformed shift expression"); 4597 return MatchOperand_ParseFail; 4598 } 4599 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4600 if (!CE) { 4601 Error(ExLoc, "shift amount must be an immediate"); 4602 return MatchOperand_ParseFail; 4603 } 4604 4605 int64_t Val = CE->getValue(); 4606 if (isASR) { 4607 // Shift amount must be in [1,32] 4608 if (Val < 1 || Val > 32) { 4609 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4610 return MatchOperand_ParseFail; 4611 } 4612 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4613 if (isThumb() && Val == 32) { 4614 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4615 return MatchOperand_ParseFail; 4616 } 4617 if (Val == 32) Val = 0; 4618 } else { 4619 // Shift amount must be in [1,32] 4620 if (Val < 0 || Val > 31) { 4621 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4622 return MatchOperand_ParseFail; 4623 } 4624 } 4625 4626 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4627 4628 return MatchOperand_Success; 4629 } 4630 4631 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4632 /// of instructions. Legal values are: 4633 /// ror #n 'n' in {0, 8, 16, 24} 4634 OperandMatchResultTy 4635 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4636 MCAsmParser &Parser = getParser(); 4637 const AsmToken &Tok = Parser.getTok(); 4638 SMLoc S = Tok.getLoc(); 4639 if (Tok.isNot(AsmToken::Identifier)) 4640 return MatchOperand_NoMatch; 4641 StringRef ShiftName = Tok.getString(); 4642 if (ShiftName != "ror" && ShiftName != "ROR") 4643 return MatchOperand_NoMatch; 4644 Parser.Lex(); // Eat the operator. 4645 4646 // A '#' and a rotate amount. 4647 if (Parser.getTok().isNot(AsmToken::Hash) && 4648 Parser.getTok().isNot(AsmToken::Dollar)) { 4649 Error(Parser.getTok().getLoc(), "'#' expected"); 4650 return MatchOperand_ParseFail; 4651 } 4652 Parser.Lex(); // Eat hash token. 4653 SMLoc ExLoc = Parser.getTok().getLoc(); 4654 4655 const MCExpr *ShiftAmount; 4656 SMLoc EndLoc; 4657 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4658 Error(ExLoc, "malformed rotate expression"); 4659 return MatchOperand_ParseFail; 4660 } 4661 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4662 if (!CE) { 4663 Error(ExLoc, "rotate amount must be an immediate"); 4664 return MatchOperand_ParseFail; 4665 } 4666 4667 int64_t Val = CE->getValue(); 4668 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4669 // normally, zero is represented in asm by omitting the rotate operand 4670 // entirely. 4671 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4672 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4673 return MatchOperand_ParseFail; 4674 } 4675 4676 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4677 4678 return MatchOperand_Success; 4679 } 4680 4681 OperandMatchResultTy 4682 ARMAsmParser::parseModImm(OperandVector &Operands) { 4683 MCAsmParser &Parser = getParser(); 4684 MCAsmLexer &Lexer = getLexer(); 4685 int64_t Imm1, Imm2; 4686 4687 SMLoc S = Parser.getTok().getLoc(); 4688 4689 // 1) A mod_imm operand can appear in the place of a register name: 4690 // add r0, #mod_imm 4691 // add r0, r0, #mod_imm 4692 // to correctly handle the latter, we bail out as soon as we see an 4693 // identifier. 4694 // 4695 // 2) Similarly, we do not want to parse into complex operands: 4696 // mov r0, #mod_imm 4697 // mov r0, :lower16:(_foo) 4698 if (Parser.getTok().is(AsmToken::Identifier) || 4699 Parser.getTok().is(AsmToken::Colon)) 4700 return MatchOperand_NoMatch; 4701 4702 // Hash (dollar) is optional as per the ARMARM 4703 if (Parser.getTok().is(AsmToken::Hash) || 4704 Parser.getTok().is(AsmToken::Dollar)) { 4705 // Avoid parsing into complex operands (#:) 4706 if (Lexer.peekTok().is(AsmToken::Colon)) 4707 return MatchOperand_NoMatch; 4708 4709 // Eat the hash (dollar) 4710 Parser.Lex(); 4711 } 4712 4713 SMLoc Sx1, Ex1; 4714 Sx1 = Parser.getTok().getLoc(); 4715 const MCExpr *Imm1Exp; 4716 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4717 Error(Sx1, "malformed expression"); 4718 return MatchOperand_ParseFail; 4719 } 4720 4721 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4722 4723 if (CE) { 4724 // Immediate must fit within 32-bits 4725 Imm1 = CE->getValue(); 4726 int Enc = ARM_AM::getSOImmVal(Imm1); 4727 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4728 // We have a match! 4729 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4730 (Enc & 0xF00) >> 7, 4731 Sx1, Ex1)); 4732 return MatchOperand_Success; 4733 } 4734 4735 // We have parsed an immediate which is not for us, fallback to a plain 4736 // immediate. This can happen for instruction aliases. For an example, 4737 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4738 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4739 // instruction with a mod_imm operand. The alias is defined such that the 4740 // parser method is shared, that's why we have to do this here. 4741 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4742 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4743 return MatchOperand_Success; 4744 } 4745 } else { 4746 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4747 // MCFixup). Fallback to a plain immediate. 4748 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4749 return MatchOperand_Success; 4750 } 4751 4752 // From this point onward, we expect the input to be a (#bits, #rot) pair 4753 if (Parser.getTok().isNot(AsmToken::Comma)) { 4754 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4755 return MatchOperand_ParseFail; 4756 } 4757 4758 if (Imm1 & ~0xFF) { 4759 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4760 return MatchOperand_ParseFail; 4761 } 4762 4763 // Eat the comma 4764 Parser.Lex(); 4765 4766 // Repeat for #rot 4767 SMLoc Sx2, Ex2; 4768 Sx2 = Parser.getTok().getLoc(); 4769 4770 // Eat the optional hash (dollar) 4771 if (Parser.getTok().is(AsmToken::Hash) || 4772 Parser.getTok().is(AsmToken::Dollar)) 4773 Parser.Lex(); 4774 4775 const MCExpr *Imm2Exp; 4776 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4777 Error(Sx2, "malformed expression"); 4778 return MatchOperand_ParseFail; 4779 } 4780 4781 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4782 4783 if (CE) { 4784 Imm2 = CE->getValue(); 4785 if (!(Imm2 & ~0x1E)) { 4786 // We have a match! 4787 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4788 return MatchOperand_Success; 4789 } 4790 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4791 return MatchOperand_ParseFail; 4792 } else { 4793 Error(Sx2, "constant expression expected"); 4794 return MatchOperand_ParseFail; 4795 } 4796 } 4797 4798 OperandMatchResultTy 4799 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4800 MCAsmParser &Parser = getParser(); 4801 SMLoc S = Parser.getTok().getLoc(); 4802 // The bitfield descriptor is really two operands, the LSB and the width. 4803 if (Parser.getTok().isNot(AsmToken::Hash) && 4804 Parser.getTok().isNot(AsmToken::Dollar)) { 4805 Error(Parser.getTok().getLoc(), "'#' expected"); 4806 return MatchOperand_ParseFail; 4807 } 4808 Parser.Lex(); // Eat hash token. 4809 4810 const MCExpr *LSBExpr; 4811 SMLoc E = Parser.getTok().getLoc(); 4812 if (getParser().parseExpression(LSBExpr)) { 4813 Error(E, "malformed immediate expression"); 4814 return MatchOperand_ParseFail; 4815 } 4816 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4817 if (!CE) { 4818 Error(E, "'lsb' operand must be an immediate"); 4819 return MatchOperand_ParseFail; 4820 } 4821 4822 int64_t LSB = CE->getValue(); 4823 // The LSB must be in the range [0,31] 4824 if (LSB < 0 || LSB > 31) { 4825 Error(E, "'lsb' operand must be in the range [0,31]"); 4826 return MatchOperand_ParseFail; 4827 } 4828 E = Parser.getTok().getLoc(); 4829 4830 // Expect another immediate operand. 4831 if (Parser.getTok().isNot(AsmToken::Comma)) { 4832 Error(Parser.getTok().getLoc(), "too few operands"); 4833 return MatchOperand_ParseFail; 4834 } 4835 Parser.Lex(); // Eat hash token. 4836 if (Parser.getTok().isNot(AsmToken::Hash) && 4837 Parser.getTok().isNot(AsmToken::Dollar)) { 4838 Error(Parser.getTok().getLoc(), "'#' expected"); 4839 return MatchOperand_ParseFail; 4840 } 4841 Parser.Lex(); // Eat hash token. 4842 4843 const MCExpr *WidthExpr; 4844 SMLoc EndLoc; 4845 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4846 Error(E, "malformed immediate expression"); 4847 return MatchOperand_ParseFail; 4848 } 4849 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4850 if (!CE) { 4851 Error(E, "'width' operand must be an immediate"); 4852 return MatchOperand_ParseFail; 4853 } 4854 4855 int64_t Width = CE->getValue(); 4856 // The LSB must be in the range [1,32-lsb] 4857 if (Width < 1 || Width > 32 - LSB) { 4858 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4859 return MatchOperand_ParseFail; 4860 } 4861 4862 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4863 4864 return MatchOperand_Success; 4865 } 4866 4867 OperandMatchResultTy 4868 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4869 // Check for a post-index addressing register operand. Specifically: 4870 // postidx_reg := '+' register {, shift} 4871 // | '-' register {, shift} 4872 // | register {, shift} 4873 4874 // This method must return MatchOperand_NoMatch without consuming any tokens 4875 // in the case where there is no match, as other alternatives take other 4876 // parse methods. 4877 MCAsmParser &Parser = getParser(); 4878 AsmToken Tok = Parser.getTok(); 4879 SMLoc S = Tok.getLoc(); 4880 bool haveEaten = false; 4881 bool isAdd = true; 4882 if (Tok.is(AsmToken::Plus)) { 4883 Parser.Lex(); // Eat the '+' token. 4884 haveEaten = true; 4885 } else if (Tok.is(AsmToken::Minus)) { 4886 Parser.Lex(); // Eat the '-' token. 4887 isAdd = false; 4888 haveEaten = true; 4889 } 4890 4891 SMLoc E = Parser.getTok().getEndLoc(); 4892 int Reg = tryParseRegister(); 4893 if (Reg == -1) { 4894 if (!haveEaten) 4895 return MatchOperand_NoMatch; 4896 Error(Parser.getTok().getLoc(), "register expected"); 4897 return MatchOperand_ParseFail; 4898 } 4899 4900 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4901 unsigned ShiftImm = 0; 4902 if (Parser.getTok().is(AsmToken::Comma)) { 4903 Parser.Lex(); // Eat the ','. 4904 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4905 return MatchOperand_ParseFail; 4906 4907 // FIXME: Only approximates end...may include intervening whitespace. 4908 E = Parser.getTok().getLoc(); 4909 } 4910 4911 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4912 ShiftImm, S, E)); 4913 4914 return MatchOperand_Success; 4915 } 4916 4917 OperandMatchResultTy 4918 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4919 // Check for a post-index addressing register operand. Specifically: 4920 // am3offset := '+' register 4921 // | '-' register 4922 // | register 4923 // | # imm 4924 // | # + imm 4925 // | # - imm 4926 4927 // This method must return MatchOperand_NoMatch without consuming any tokens 4928 // in the case where there is no match, as other alternatives take other 4929 // parse methods. 4930 MCAsmParser &Parser = getParser(); 4931 AsmToken Tok = Parser.getTok(); 4932 SMLoc S = Tok.getLoc(); 4933 4934 // Do immediates first, as we always parse those if we have a '#'. 4935 if (Parser.getTok().is(AsmToken::Hash) || 4936 Parser.getTok().is(AsmToken::Dollar)) { 4937 Parser.Lex(); // Eat '#' or '$'. 4938 // Explicitly look for a '-', as we need to encode negative zero 4939 // differently. 4940 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4941 const MCExpr *Offset; 4942 SMLoc E; 4943 if (getParser().parseExpression(Offset, E)) 4944 return MatchOperand_ParseFail; 4945 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4946 if (!CE) { 4947 Error(S, "constant expression expected"); 4948 return MatchOperand_ParseFail; 4949 } 4950 // Negative zero is encoded as the flag value 4951 // std::numeric_limits<int32_t>::min(). 4952 int32_t Val = CE->getValue(); 4953 if (isNegative && Val == 0) 4954 Val = std::numeric_limits<int32_t>::min(); 4955 4956 Operands.push_back( 4957 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4958 4959 return MatchOperand_Success; 4960 } 4961 4962 bool haveEaten = false; 4963 bool isAdd = true; 4964 if (Tok.is(AsmToken::Plus)) { 4965 Parser.Lex(); // Eat the '+' token. 4966 haveEaten = true; 4967 } else if (Tok.is(AsmToken::Minus)) { 4968 Parser.Lex(); // Eat the '-' token. 4969 isAdd = false; 4970 haveEaten = true; 4971 } 4972 4973 Tok = Parser.getTok(); 4974 int Reg = tryParseRegister(); 4975 if (Reg == -1) { 4976 if (!haveEaten) 4977 return MatchOperand_NoMatch; 4978 Error(Tok.getLoc(), "register expected"); 4979 return MatchOperand_ParseFail; 4980 } 4981 4982 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4983 0, S, Tok.getEndLoc())); 4984 4985 return MatchOperand_Success; 4986 } 4987 4988 /// Convert parsed operands to MCInst. Needed here because this instruction 4989 /// only has two register operands, but multiplication is commutative so 4990 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4991 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4992 const OperandVector &Operands) { 4993 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4994 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4995 // If we have a three-operand form, make sure to set Rn to be the operand 4996 // that isn't the same as Rd. 4997 unsigned RegOp = 4; 4998 if (Operands.size() == 6 && 4999 ((ARMOperand &)*Operands[4]).getReg() == 5000 ((ARMOperand &)*Operands[3]).getReg()) 5001 RegOp = 5; 5002 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5003 Inst.addOperand(Inst.getOperand(0)); 5004 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5005 } 5006 5007 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5008 const OperandVector &Operands) { 5009 int CondOp = -1, ImmOp = -1; 5010 switch(Inst.getOpcode()) { 5011 case ARM::tB: 5012 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5013 5014 case ARM::t2B: 5015 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5016 5017 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5018 } 5019 // first decide whether or not the branch should be conditional 5020 // by looking at it's location relative to an IT block 5021 if(inITBlock()) { 5022 // inside an IT block we cannot have any conditional branches. any 5023 // such instructions needs to be converted to unconditional form 5024 switch(Inst.getOpcode()) { 5025 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5026 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5027 } 5028 } else { 5029 // outside IT blocks we can only have unconditional branches with AL 5030 // condition code or conditional branches with non-AL condition code 5031 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5032 switch(Inst.getOpcode()) { 5033 case ARM::tB: 5034 case ARM::tBcc: 5035 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5036 break; 5037 case ARM::t2B: 5038 case ARM::t2Bcc: 5039 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5040 break; 5041 } 5042 } 5043 5044 // now decide on encoding size based on branch target range 5045 switch(Inst.getOpcode()) { 5046 // classify tB as either t2B or t1B based on range of immediate operand 5047 case ARM::tB: { 5048 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5049 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5050 Inst.setOpcode(ARM::t2B); 5051 break; 5052 } 5053 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5054 case ARM::tBcc: { 5055 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5056 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5057 Inst.setOpcode(ARM::t2Bcc); 5058 break; 5059 } 5060 } 5061 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5062 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5063 } 5064 5065 /// Parse an ARM memory expression, return false if successful else return true 5066 /// or an error. The first token must be a '[' when called. 5067 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5068 MCAsmParser &Parser = getParser(); 5069 SMLoc S, E; 5070 if (Parser.getTok().isNot(AsmToken::LBrac)) 5071 return TokError("Token is not a Left Bracket"); 5072 S = Parser.getTok().getLoc(); 5073 Parser.Lex(); // Eat left bracket token. 5074 5075 const AsmToken &BaseRegTok = Parser.getTok(); 5076 int BaseRegNum = tryParseRegister(); 5077 if (BaseRegNum == -1) 5078 return Error(BaseRegTok.getLoc(), "register expected"); 5079 5080 // The next token must either be a comma, a colon or a closing bracket. 5081 const AsmToken &Tok = Parser.getTok(); 5082 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5083 !Tok.is(AsmToken::RBrac)) 5084 return Error(Tok.getLoc(), "malformed memory operand"); 5085 5086 if (Tok.is(AsmToken::RBrac)) { 5087 E = Tok.getEndLoc(); 5088 Parser.Lex(); // Eat right bracket token. 5089 5090 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5091 ARM_AM::no_shift, 0, 0, false, 5092 S, E)); 5093 5094 // If there's a pre-indexing writeback marker, '!', just add it as a token 5095 // operand. It's rather odd, but syntactically valid. 5096 if (Parser.getTok().is(AsmToken::Exclaim)) { 5097 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5098 Parser.Lex(); // Eat the '!'. 5099 } 5100 5101 return false; 5102 } 5103 5104 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5105 "Lost colon or comma in memory operand?!"); 5106 if (Tok.is(AsmToken::Comma)) { 5107 Parser.Lex(); // Eat the comma. 5108 } 5109 5110 // If we have a ':', it's an alignment specifier. 5111 if (Parser.getTok().is(AsmToken::Colon)) { 5112 Parser.Lex(); // Eat the ':'. 5113 E = Parser.getTok().getLoc(); 5114 SMLoc AlignmentLoc = Tok.getLoc(); 5115 5116 const MCExpr *Expr; 5117 if (getParser().parseExpression(Expr)) 5118 return true; 5119 5120 // The expression has to be a constant. Memory references with relocations 5121 // don't come through here, as they use the <label> forms of the relevant 5122 // instructions. 5123 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5124 if (!CE) 5125 return Error (E, "constant expression expected"); 5126 5127 unsigned Align = 0; 5128 switch (CE->getValue()) { 5129 default: 5130 return Error(E, 5131 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5132 case 16: Align = 2; break; 5133 case 32: Align = 4; break; 5134 case 64: Align = 8; break; 5135 case 128: Align = 16; break; 5136 case 256: Align = 32; break; 5137 } 5138 5139 // Now we should have the closing ']' 5140 if (Parser.getTok().isNot(AsmToken::RBrac)) 5141 return Error(Parser.getTok().getLoc(), "']' expected"); 5142 E = Parser.getTok().getEndLoc(); 5143 Parser.Lex(); // Eat right bracket token. 5144 5145 // Don't worry about range checking the value here. That's handled by 5146 // the is*() predicates. 5147 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5148 ARM_AM::no_shift, 0, Align, 5149 false, S, E, AlignmentLoc)); 5150 5151 // If there's a pre-indexing writeback marker, '!', just add it as a token 5152 // operand. 5153 if (Parser.getTok().is(AsmToken::Exclaim)) { 5154 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5155 Parser.Lex(); // Eat the '!'. 5156 } 5157 5158 return false; 5159 } 5160 5161 // If we have a '#', it's an immediate offset, else assume it's a register 5162 // offset. Be friendly and also accept a plain integer (without a leading 5163 // hash) for gas compatibility. 5164 if (Parser.getTok().is(AsmToken::Hash) || 5165 Parser.getTok().is(AsmToken::Dollar) || 5166 Parser.getTok().is(AsmToken::Integer)) { 5167 if (Parser.getTok().isNot(AsmToken::Integer)) 5168 Parser.Lex(); // Eat '#' or '$'. 5169 E = Parser.getTok().getLoc(); 5170 5171 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5172 const MCExpr *Offset; 5173 if (getParser().parseExpression(Offset)) 5174 return true; 5175 5176 // The expression has to be a constant. Memory references with relocations 5177 // don't come through here, as they use the <label> forms of the relevant 5178 // instructions. 5179 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5180 if (!CE) 5181 return Error (E, "constant expression expected"); 5182 5183 // If the constant was #-0, represent it as 5184 // std::numeric_limits<int32_t>::min(). 5185 int32_t Val = CE->getValue(); 5186 if (isNegative && Val == 0) 5187 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5188 getContext()); 5189 5190 // Now we should have the closing ']' 5191 if (Parser.getTok().isNot(AsmToken::RBrac)) 5192 return Error(Parser.getTok().getLoc(), "']' expected"); 5193 E = Parser.getTok().getEndLoc(); 5194 Parser.Lex(); // Eat right bracket token. 5195 5196 // Don't worry about range checking the value here. That's handled by 5197 // the is*() predicates. 5198 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5199 ARM_AM::no_shift, 0, 0, 5200 false, S, E)); 5201 5202 // If there's a pre-indexing writeback marker, '!', just add it as a token 5203 // operand. 5204 if (Parser.getTok().is(AsmToken::Exclaim)) { 5205 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5206 Parser.Lex(); // Eat the '!'. 5207 } 5208 5209 return false; 5210 } 5211 5212 // The register offset is optionally preceded by a '+' or '-' 5213 bool isNegative = false; 5214 if (Parser.getTok().is(AsmToken::Minus)) { 5215 isNegative = true; 5216 Parser.Lex(); // Eat the '-'. 5217 } else if (Parser.getTok().is(AsmToken::Plus)) { 5218 // Nothing to do. 5219 Parser.Lex(); // Eat the '+'. 5220 } 5221 5222 E = Parser.getTok().getLoc(); 5223 int OffsetRegNum = tryParseRegister(); 5224 if (OffsetRegNum == -1) 5225 return Error(E, "register expected"); 5226 5227 // If there's a shift operator, handle it. 5228 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5229 unsigned ShiftImm = 0; 5230 if (Parser.getTok().is(AsmToken::Comma)) { 5231 Parser.Lex(); // Eat the ','. 5232 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5233 return true; 5234 } 5235 5236 // Now we should have the closing ']' 5237 if (Parser.getTok().isNot(AsmToken::RBrac)) 5238 return Error(Parser.getTok().getLoc(), "']' expected"); 5239 E = Parser.getTok().getEndLoc(); 5240 Parser.Lex(); // Eat right bracket token. 5241 5242 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5243 ShiftType, ShiftImm, 0, isNegative, 5244 S, E)); 5245 5246 // If there's a pre-indexing writeback marker, '!', just add it as a token 5247 // operand. 5248 if (Parser.getTok().is(AsmToken::Exclaim)) { 5249 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5250 Parser.Lex(); // Eat the '!'. 5251 } 5252 5253 return false; 5254 } 5255 5256 /// parseMemRegOffsetShift - one of these two: 5257 /// ( lsl | lsr | asr | ror ) , # shift_amount 5258 /// rrx 5259 /// return true if it parses a shift otherwise it returns false. 5260 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5261 unsigned &Amount) { 5262 MCAsmParser &Parser = getParser(); 5263 SMLoc Loc = Parser.getTok().getLoc(); 5264 const AsmToken &Tok = Parser.getTok(); 5265 if (Tok.isNot(AsmToken::Identifier)) 5266 return Error(Loc, "illegal shift operator"); 5267 StringRef ShiftName = Tok.getString(); 5268 if (ShiftName == "lsl" || ShiftName == "LSL" || 5269 ShiftName == "asl" || ShiftName == "ASL") 5270 St = ARM_AM::lsl; 5271 else if (ShiftName == "lsr" || ShiftName == "LSR") 5272 St = ARM_AM::lsr; 5273 else if (ShiftName == "asr" || ShiftName == "ASR") 5274 St = ARM_AM::asr; 5275 else if (ShiftName == "ror" || ShiftName == "ROR") 5276 St = ARM_AM::ror; 5277 else if (ShiftName == "rrx" || ShiftName == "RRX") 5278 St = ARM_AM::rrx; 5279 else 5280 return Error(Loc, "illegal shift operator"); 5281 Parser.Lex(); // Eat shift type token. 5282 5283 // rrx stands alone. 5284 Amount = 0; 5285 if (St != ARM_AM::rrx) { 5286 Loc = Parser.getTok().getLoc(); 5287 // A '#' and a shift amount. 5288 const AsmToken &HashTok = Parser.getTok(); 5289 if (HashTok.isNot(AsmToken::Hash) && 5290 HashTok.isNot(AsmToken::Dollar)) 5291 return Error(HashTok.getLoc(), "'#' expected"); 5292 Parser.Lex(); // Eat hash token. 5293 5294 const MCExpr *Expr; 5295 if (getParser().parseExpression(Expr)) 5296 return true; 5297 // Range check the immediate. 5298 // lsl, ror: 0 <= imm <= 31 5299 // lsr, asr: 0 <= imm <= 32 5300 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5301 if (!CE) 5302 return Error(Loc, "shift amount must be an immediate"); 5303 int64_t Imm = CE->getValue(); 5304 if (Imm < 0 || 5305 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5306 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5307 return Error(Loc, "immediate shift value out of range"); 5308 // If <ShiftTy> #0, turn it into a no_shift. 5309 if (Imm == 0) 5310 St = ARM_AM::lsl; 5311 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5312 if (Imm == 32) 5313 Imm = 0; 5314 Amount = Imm; 5315 } 5316 5317 return false; 5318 } 5319 5320 /// parseFPImm - A floating point immediate expression operand. 5321 OperandMatchResultTy 5322 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5323 MCAsmParser &Parser = getParser(); 5324 // Anything that can accept a floating point constant as an operand 5325 // needs to go through here, as the regular parseExpression is 5326 // integer only. 5327 // 5328 // This routine still creates a generic Immediate operand, containing 5329 // a bitcast of the 64-bit floating point value. The various operands 5330 // that accept floats can check whether the value is valid for them 5331 // via the standard is*() predicates. 5332 5333 SMLoc S = Parser.getTok().getLoc(); 5334 5335 if (Parser.getTok().isNot(AsmToken::Hash) && 5336 Parser.getTok().isNot(AsmToken::Dollar)) 5337 return MatchOperand_NoMatch; 5338 5339 // Disambiguate the VMOV forms that can accept an FP immediate. 5340 // vmov.f32 <sreg>, #imm 5341 // vmov.f64 <dreg>, #imm 5342 // vmov.f32 <dreg>, #imm @ vector f32x2 5343 // vmov.f32 <qreg>, #imm @ vector f32x4 5344 // 5345 // There are also the NEON VMOV instructions which expect an 5346 // integer constant. Make sure we don't try to parse an FPImm 5347 // for these: 5348 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5349 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5350 bool isVmovf = TyOp.isToken() && 5351 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5352 TyOp.getToken() == ".f16"); 5353 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5354 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5355 Mnemonic.getToken() == "fconsts"); 5356 if (!(isVmovf || isFconst)) 5357 return MatchOperand_NoMatch; 5358 5359 Parser.Lex(); // Eat '#' or '$'. 5360 5361 // Handle negation, as that still comes through as a separate token. 5362 bool isNegative = false; 5363 if (Parser.getTok().is(AsmToken::Minus)) { 5364 isNegative = true; 5365 Parser.Lex(); 5366 } 5367 const AsmToken &Tok = Parser.getTok(); 5368 SMLoc Loc = Tok.getLoc(); 5369 if (Tok.is(AsmToken::Real) && isVmovf) { 5370 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5371 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5372 // If we had a '-' in front, toggle the sign bit. 5373 IntVal ^= (uint64_t)isNegative << 31; 5374 Parser.Lex(); // Eat the token. 5375 Operands.push_back(ARMOperand::CreateImm( 5376 MCConstantExpr::create(IntVal, getContext()), 5377 S, Parser.getTok().getLoc())); 5378 return MatchOperand_Success; 5379 } 5380 // Also handle plain integers. Instructions which allow floating point 5381 // immediates also allow a raw encoded 8-bit value. 5382 if (Tok.is(AsmToken::Integer) && isFconst) { 5383 int64_t Val = Tok.getIntVal(); 5384 Parser.Lex(); // Eat the token. 5385 if (Val > 255 || Val < 0) { 5386 Error(Loc, "encoded floating point value out of range"); 5387 return MatchOperand_ParseFail; 5388 } 5389 float RealVal = ARM_AM::getFPImmFloat(Val); 5390 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5391 5392 Operands.push_back(ARMOperand::CreateImm( 5393 MCConstantExpr::create(Val, getContext()), S, 5394 Parser.getTok().getLoc())); 5395 return MatchOperand_Success; 5396 } 5397 5398 Error(Loc, "invalid floating point immediate"); 5399 return MatchOperand_ParseFail; 5400 } 5401 5402 /// Parse a arm instruction operand. For now this parses the operand regardless 5403 /// of the mnemonic. 5404 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5405 MCAsmParser &Parser = getParser(); 5406 SMLoc S, E; 5407 5408 // Check if the current operand has a custom associated parser, if so, try to 5409 // custom parse the operand, or fallback to the general approach. 5410 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5411 if (ResTy == MatchOperand_Success) 5412 return false; 5413 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5414 // there was a match, but an error occurred, in which case, just return that 5415 // the operand parsing failed. 5416 if (ResTy == MatchOperand_ParseFail) 5417 return true; 5418 5419 switch (getLexer().getKind()) { 5420 default: 5421 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5422 return true; 5423 case AsmToken::Identifier: { 5424 // If we've seen a branch mnemonic, the next operand must be a label. This 5425 // is true even if the label is a register name. So "br r1" means branch to 5426 // label "r1". 5427 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5428 if (!ExpectLabel) { 5429 if (!tryParseRegisterWithWriteBack(Operands)) 5430 return false; 5431 int Res = tryParseShiftRegister(Operands); 5432 if (Res == 0) // success 5433 return false; 5434 else if (Res == -1) // irrecoverable error 5435 return true; 5436 // If this is VMRS, check for the apsr_nzcv operand. 5437 if (Mnemonic == "vmrs" && 5438 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5439 S = Parser.getTok().getLoc(); 5440 Parser.Lex(); 5441 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5442 return false; 5443 } 5444 } 5445 5446 // Fall though for the Identifier case that is not a register or a 5447 // special name. 5448 LLVM_FALLTHROUGH; 5449 } 5450 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5451 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5452 case AsmToken::String: // quoted label names. 5453 case AsmToken::Dot: { // . as a branch target 5454 // This was not a register so parse other operands that start with an 5455 // identifier (like labels) as expressions and create them as immediates. 5456 const MCExpr *IdVal; 5457 S = Parser.getTok().getLoc(); 5458 if (getParser().parseExpression(IdVal)) 5459 return true; 5460 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5461 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5462 return false; 5463 } 5464 case AsmToken::LBrac: 5465 return parseMemory(Operands); 5466 case AsmToken::LCurly: 5467 return parseRegisterList(Operands); 5468 case AsmToken::Dollar: 5469 case AsmToken::Hash: 5470 // #42 -> immediate. 5471 S = Parser.getTok().getLoc(); 5472 Parser.Lex(); 5473 5474 if (Parser.getTok().isNot(AsmToken::Colon)) { 5475 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5476 const MCExpr *ImmVal; 5477 if (getParser().parseExpression(ImmVal)) 5478 return true; 5479 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5480 if (CE) { 5481 int32_t Val = CE->getValue(); 5482 if (isNegative && Val == 0) 5483 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5484 getContext()); 5485 } 5486 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5487 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5488 5489 // There can be a trailing '!' on operands that we want as a separate 5490 // '!' Token operand. Handle that here. For example, the compatibility 5491 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5492 if (Parser.getTok().is(AsmToken::Exclaim)) { 5493 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5494 Parser.getTok().getLoc())); 5495 Parser.Lex(); // Eat exclaim token 5496 } 5497 return false; 5498 } 5499 // w/ a ':' after the '#', it's just like a plain ':'. 5500 LLVM_FALLTHROUGH; 5501 5502 case AsmToken::Colon: { 5503 S = Parser.getTok().getLoc(); 5504 // ":lower16:" and ":upper16:" expression prefixes 5505 // FIXME: Check it's an expression prefix, 5506 // e.g. (FOO - :lower16:BAR) isn't legal. 5507 ARMMCExpr::VariantKind RefKind; 5508 if (parsePrefix(RefKind)) 5509 return true; 5510 5511 const MCExpr *SubExprVal; 5512 if (getParser().parseExpression(SubExprVal)) 5513 return true; 5514 5515 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5516 getContext()); 5517 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5518 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5519 return false; 5520 } 5521 case AsmToken::Equal: { 5522 S = Parser.getTok().getLoc(); 5523 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5524 return Error(S, "unexpected token in operand"); 5525 Parser.Lex(); // Eat '=' 5526 const MCExpr *SubExprVal; 5527 if (getParser().parseExpression(SubExprVal)) 5528 return true; 5529 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5530 5531 // execute-only: we assume that assembly programmers know what they are 5532 // doing and allow literal pool creation here 5533 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5534 return false; 5535 } 5536 } 5537 } 5538 5539 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5540 // :lower16: and :upper16:. 5541 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5542 MCAsmParser &Parser = getParser(); 5543 RefKind = ARMMCExpr::VK_ARM_None; 5544 5545 // consume an optional '#' (GNU compatibility) 5546 if (getLexer().is(AsmToken::Hash)) 5547 Parser.Lex(); 5548 5549 // :lower16: and :upper16: modifiers 5550 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5551 Parser.Lex(); // Eat ':' 5552 5553 if (getLexer().isNot(AsmToken::Identifier)) { 5554 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5555 return true; 5556 } 5557 5558 enum { 5559 COFF = (1 << MCObjectFileInfo::IsCOFF), 5560 ELF = (1 << MCObjectFileInfo::IsELF), 5561 MACHO = (1 << MCObjectFileInfo::IsMachO), 5562 WASM = (1 << MCObjectFileInfo::IsWasm), 5563 }; 5564 static const struct PrefixEntry { 5565 const char *Spelling; 5566 ARMMCExpr::VariantKind VariantKind; 5567 uint8_t SupportedFormats; 5568 } PrefixEntries[] = { 5569 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5570 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5571 }; 5572 5573 StringRef IDVal = Parser.getTok().getIdentifier(); 5574 5575 const auto &Prefix = 5576 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5577 [&IDVal](const PrefixEntry &PE) { 5578 return PE.Spelling == IDVal; 5579 }); 5580 if (Prefix == std::end(PrefixEntries)) { 5581 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5582 return true; 5583 } 5584 5585 uint8_t CurrentFormat; 5586 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5587 case MCObjectFileInfo::IsMachO: 5588 CurrentFormat = MACHO; 5589 break; 5590 case MCObjectFileInfo::IsELF: 5591 CurrentFormat = ELF; 5592 break; 5593 case MCObjectFileInfo::IsCOFF: 5594 CurrentFormat = COFF; 5595 break; 5596 case MCObjectFileInfo::IsWasm: 5597 CurrentFormat = WASM; 5598 break; 5599 case MCObjectFileInfo::IsXCOFF: 5600 llvm_unreachable("unexpected object format"); 5601 break; 5602 } 5603 5604 if (~Prefix->SupportedFormats & CurrentFormat) { 5605 Error(Parser.getTok().getLoc(), 5606 "cannot represent relocation in the current file format"); 5607 return true; 5608 } 5609 5610 RefKind = Prefix->VariantKind; 5611 Parser.Lex(); 5612 5613 if (getLexer().isNot(AsmToken::Colon)) { 5614 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5615 return true; 5616 } 5617 Parser.Lex(); // Eat the last ':' 5618 5619 return false; 5620 } 5621 5622 /// Given a mnemonic, split out possible predication code and carry 5623 /// setting letters to form a canonical mnemonic and flags. 5624 // 5625 // FIXME: Would be nice to autogen this. 5626 // FIXME: This is a bit of a maze of special cases. 5627 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5628 unsigned &PredicationCode, 5629 bool &CarrySetting, 5630 unsigned &ProcessorIMod, 5631 StringRef &ITMask) { 5632 PredicationCode = ARMCC::AL; 5633 CarrySetting = false; 5634 ProcessorIMod = 0; 5635 5636 // Ignore some mnemonics we know aren't predicated forms. 5637 // 5638 // FIXME: Would be nice to autogen this. 5639 if ((Mnemonic == "movs" && isThumb()) || 5640 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5641 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5642 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5643 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5644 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5645 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5646 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5647 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5648 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5649 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5650 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5651 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5652 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5653 Mnemonic == "bxns" || Mnemonic == "blxns" || 5654 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5655 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 5656 Mnemonic == "vfmal" || Mnemonic == "vfmsl") 5657 return Mnemonic; 5658 5659 // First, split out any predication code. Ignore mnemonics we know aren't 5660 // predicated but do have a carry-set and so weren't caught above. 5661 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5662 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5663 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5664 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5665 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 5666 if (CC != ~0U) { 5667 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5668 PredicationCode = CC; 5669 } 5670 } 5671 5672 // Next, determine if we have a carry setting bit. We explicitly ignore all 5673 // the instructions we know end in 's'. 5674 if (Mnemonic.endswith("s") && 5675 !(Mnemonic == "cps" || Mnemonic == "mls" || 5676 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5677 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5678 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5679 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5680 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5681 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5682 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5683 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5684 Mnemonic == "bxns" || Mnemonic == "blxns" || 5685 (Mnemonic == "movs" && isThumb()))) { 5686 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5687 CarrySetting = true; 5688 } 5689 5690 // The "cps" instruction can have a interrupt mode operand which is glued into 5691 // the mnemonic. Check if this is the case, split it and parse the imod op 5692 if (Mnemonic.startswith("cps")) { 5693 // Split out any imod code. 5694 unsigned IMod = 5695 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5696 .Case("ie", ARM_PROC::IE) 5697 .Case("id", ARM_PROC::ID) 5698 .Default(~0U); 5699 if (IMod != ~0U) { 5700 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5701 ProcessorIMod = IMod; 5702 } 5703 } 5704 5705 // The "it" instruction has the condition mask on the end of the mnemonic. 5706 if (Mnemonic.startswith("it")) { 5707 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5708 Mnemonic = Mnemonic.slice(0, 2); 5709 } 5710 5711 return Mnemonic; 5712 } 5713 5714 /// Given a canonical mnemonic, determine if the instruction ever allows 5715 /// inclusion of carry set or predication code operands. 5716 // 5717 // FIXME: It would be nice to autogen this. 5718 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5719 bool &CanAcceptCarrySet, 5720 bool &CanAcceptPredicationCode) { 5721 CanAcceptCarrySet = 5722 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5723 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5724 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5725 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5726 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5727 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5728 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5729 (!isThumb() && 5730 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5731 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5732 5733 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5734 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5735 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5736 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5737 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5738 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5739 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5740 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5741 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5742 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5743 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5744 Mnemonic == "vmovx" || Mnemonic == "vins" || 5745 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5746 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 5747 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 5748 Mnemonic == "sb" || Mnemonic == "ssbb" || 5749 Mnemonic == "pssbb") { 5750 // These mnemonics are never predicable 5751 CanAcceptPredicationCode = false; 5752 } else if (!isThumb()) { 5753 // Some instructions are only predicable in Thumb mode 5754 CanAcceptPredicationCode = 5755 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5756 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5757 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 5758 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 5759 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 5760 Mnemonic != "stc2" && Mnemonic != "stc2l" && 5761 Mnemonic != "tsb" && 5762 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 5763 } else if (isThumbOne()) { 5764 if (hasV6MOps()) 5765 CanAcceptPredicationCode = Mnemonic != "movs"; 5766 else 5767 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5768 } else 5769 CanAcceptPredicationCode = true; 5770 } 5771 5772 // Some Thumb instructions have two operand forms that are not 5773 // available as three operand, convert to two operand form if possible. 5774 // 5775 // FIXME: We would really like to be able to tablegen'erate this. 5776 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5777 bool CarrySetting, 5778 OperandVector &Operands) { 5779 if (Operands.size() != 6) 5780 return; 5781 5782 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5783 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5784 if (!Op3.isReg() || !Op4.isReg()) 5785 return; 5786 5787 auto Op3Reg = Op3.getReg(); 5788 auto Op4Reg = Op4.getReg(); 5789 5790 // For most Thumb2 cases we just generate the 3 operand form and reduce 5791 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5792 // won't accept SP or PC so we do the transformation here taking care 5793 // with immediate range in the 'add sp, sp #imm' case. 5794 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5795 if (isThumbTwo()) { 5796 if (Mnemonic != "add") 5797 return; 5798 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5799 (Op5.isReg() && Op5.getReg() == ARM::PC); 5800 if (!TryTransform) { 5801 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5802 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5803 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5804 Op5.isImm() && !Op5.isImm0_508s4()); 5805 } 5806 if (!TryTransform) 5807 return; 5808 } else if (!isThumbOne()) 5809 return; 5810 5811 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5812 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5813 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5814 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5815 return; 5816 5817 // If first 2 operands of a 3 operand instruction are the same 5818 // then transform to 2 operand version of the same instruction 5819 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5820 bool Transform = Op3Reg == Op4Reg; 5821 5822 // For communtative operations, we might be able to transform if we swap 5823 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5824 // as tADDrsp. 5825 const ARMOperand *LastOp = &Op5; 5826 bool Swap = false; 5827 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5828 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5829 Mnemonic == "and" || Mnemonic == "eor" || 5830 Mnemonic == "adc" || Mnemonic == "orr")) { 5831 Swap = true; 5832 LastOp = &Op4; 5833 Transform = true; 5834 } 5835 5836 // If both registers are the same then remove one of them from 5837 // the operand list, with certain exceptions. 5838 if (Transform) { 5839 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5840 // 2 operand forms don't exist. 5841 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5842 LastOp->isReg()) 5843 Transform = false; 5844 5845 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5846 // 3-bits because the ARMARM says not to. 5847 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5848 Transform = false; 5849 } 5850 5851 if (Transform) { 5852 if (Swap) 5853 std::swap(Op4, Op5); 5854 Operands.erase(Operands.begin() + 3); 5855 } 5856 } 5857 5858 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5859 OperandVector &Operands) { 5860 // FIXME: This is all horribly hacky. We really need a better way to deal 5861 // with optional operands like this in the matcher table. 5862 5863 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5864 // another does not. Specifically, the MOVW instruction does not. So we 5865 // special case it here and remove the defaulted (non-setting) cc_out 5866 // operand if that's the instruction we're trying to match. 5867 // 5868 // We do this as post-processing of the explicit operands rather than just 5869 // conditionally adding the cc_out in the first place because we need 5870 // to check the type of the parsed immediate operand. 5871 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5872 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5873 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5874 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5875 return true; 5876 5877 // Register-register 'add' for thumb does not have a cc_out operand 5878 // when there are only two register operands. 5879 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5880 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5881 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5882 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5883 return true; 5884 // Register-register 'add' for thumb does not have a cc_out operand 5885 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5886 // have to check the immediate range here since Thumb2 has a variant 5887 // that can handle a different range and has a cc_out operand. 5888 if (((isThumb() && Mnemonic == "add") || 5889 (isThumbTwo() && Mnemonic == "sub")) && 5890 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5891 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5892 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5893 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5894 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5895 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5896 return true; 5897 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5898 // imm0_4095 variant. That's the least-preferred variant when 5899 // selecting via the generic "add" mnemonic, so to know that we 5900 // should remove the cc_out operand, we have to explicitly check that 5901 // it's not one of the other variants. Ugh. 5902 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5903 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5904 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5905 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5906 // Nest conditions rather than one big 'if' statement for readability. 5907 // 5908 // If both registers are low, we're in an IT block, and the immediate is 5909 // in range, we should use encoding T1 instead, which has a cc_out. 5910 if (inITBlock() && 5911 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5912 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5913 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5914 return false; 5915 // Check against T3. If the second register is the PC, this is an 5916 // alternate form of ADR, which uses encoding T4, so check for that too. 5917 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5918 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5919 return false; 5920 5921 // Otherwise, we use encoding T4, which does not have a cc_out 5922 // operand. 5923 return true; 5924 } 5925 5926 // The thumb2 multiply instruction doesn't have a CCOut register, so 5927 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5928 // use the 16-bit encoding or not. 5929 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5930 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5931 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5932 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5933 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5934 // If the registers aren't low regs, the destination reg isn't the 5935 // same as one of the source regs, or the cc_out operand is zero 5936 // outside of an IT block, we have to use the 32-bit encoding, so 5937 // remove the cc_out operand. 5938 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5939 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5940 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5941 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5942 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5943 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5944 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5945 return true; 5946 5947 // Also check the 'mul' syntax variant that doesn't specify an explicit 5948 // destination register. 5949 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5950 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5951 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5952 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5953 // If the registers aren't low regs or the cc_out operand is zero 5954 // outside of an IT block, we have to use the 32-bit encoding, so 5955 // remove the cc_out operand. 5956 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5957 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5958 !inITBlock())) 5959 return true; 5960 5961 // Register-register 'add/sub' for thumb does not have a cc_out operand 5962 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5963 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5964 // right, this will result in better diagnostics (which operand is off) 5965 // anyway. 5966 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5967 (Operands.size() == 5 || Operands.size() == 6) && 5968 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5969 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5970 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5971 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5972 (Operands.size() == 6 && 5973 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5974 return true; 5975 5976 return false; 5977 } 5978 5979 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5980 OperandVector &Operands) { 5981 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 5982 unsigned RegIdx = 3; 5983 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") && 5984 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5985 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5986 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5987 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5988 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5989 RegIdx = 4; 5990 5991 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5992 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5993 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5994 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5995 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5996 return true; 5997 } 5998 return false; 5999 } 6000 6001 static bool isDataTypeToken(StringRef Tok) { 6002 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 6003 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 6004 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6005 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6006 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6007 Tok == ".f" || Tok == ".d"; 6008 } 6009 6010 // FIXME: This bit should probably be handled via an explicit match class 6011 // in the .td files that matches the suffix instead of having it be 6012 // a literal string token the way it is now. 6013 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6014 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6015 } 6016 6017 static void applyMnemonicAliases(StringRef &Mnemonic, 6018 const FeatureBitset &Features, 6019 unsigned VariantID); 6020 6021 // The GNU assembler has aliases of ldrd and strd with the second register 6022 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6023 // 6024 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6025 // the assmebly parser could then generate confusing diagnostics refering to 6026 // it. If we do find anything that prevents us from doing the transformation we 6027 // bail out, and let the assembly parser report an error on the instruction as 6028 // it is written. 6029 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6030 OperandVector &Operands) { 6031 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6032 return; 6033 if (Operands.size() < 4) 6034 return; 6035 6036 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6037 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6038 6039 if (!Op2.isReg()) 6040 return; 6041 if (!Op3.isMem()) 6042 return; 6043 6044 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6045 if (!GPR.contains(Op2.getReg())) 6046 return; 6047 6048 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6049 if (!isThumb() && (RtEncoding & 1)) { 6050 // In ARM mode, the registers must be from an aligned pair, this 6051 // restriction does not apply in Thumb mode. 6052 return; 6053 } 6054 if (Op2.getReg() == ARM::PC) 6055 return; 6056 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6057 if (!PairedReg || PairedReg == ARM::PC || 6058 (PairedReg == ARM::SP && !hasV8Ops())) 6059 return; 6060 6061 Operands.insert( 6062 Operands.begin() + 3, 6063 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6064 } 6065 6066 /// Parse an arm instruction mnemonic followed by its operands. 6067 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6068 SMLoc NameLoc, OperandVector &Operands) { 6069 MCAsmParser &Parser = getParser(); 6070 6071 // Apply mnemonic aliases before doing anything else, as the destination 6072 // mnemonic may include suffices and we want to handle them normally. 6073 // The generic tblgen'erated code does this later, at the start of 6074 // MatchInstructionImpl(), but that's too late for aliases that include 6075 // any sort of suffix. 6076 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 6077 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6078 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6079 6080 // First check for the ARM-specific .req directive. 6081 if (Parser.getTok().is(AsmToken::Identifier) && 6082 Parser.getTok().getIdentifier() == ".req") { 6083 parseDirectiveReq(Name, NameLoc); 6084 // We always return 'error' for this, as we're done with this 6085 // statement and don't need to match the 'instruction." 6086 return true; 6087 } 6088 6089 // Create the leading tokens for the mnemonic, split by '.' characters. 6090 size_t Start = 0, Next = Name.find('.'); 6091 StringRef Mnemonic = Name.slice(Start, Next); 6092 6093 // Split out the predication code and carry setting flag from the mnemonic. 6094 unsigned PredicationCode; 6095 unsigned ProcessorIMod; 6096 bool CarrySetting; 6097 StringRef ITMask; 6098 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 6099 ProcessorIMod, ITMask); 6100 6101 // In Thumb1, only the branch (B) instruction can be predicated. 6102 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6103 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6104 } 6105 6106 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6107 6108 // Handle the IT instruction ITMask. Convert it to a bitmask. This 6109 // is the mask as it will be for the IT encoding if the conditional 6110 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 6111 // where the conditional bit0 is zero, the instruction post-processing 6112 // will adjust the mask accordingly. 6113 if (Mnemonic == "it") { 6114 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 6115 if (ITMask.size() > 3) { 6116 return Error(Loc, "too many conditions on IT instruction"); 6117 } 6118 unsigned Mask = 8; 6119 for (unsigned i = ITMask.size(); i != 0; --i) { 6120 char pos = ITMask[i - 1]; 6121 if (pos != 't' && pos != 'e') { 6122 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6123 } 6124 Mask >>= 1; 6125 if (ITMask[i - 1] == 't') 6126 Mask |= 8; 6127 } 6128 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6129 } 6130 6131 // FIXME: This is all a pretty gross hack. We should automatically handle 6132 // optional operands like this via tblgen. 6133 6134 // Next, add the CCOut and ConditionCode operands, if needed. 6135 // 6136 // For mnemonics which can ever incorporate a carry setting bit or predication 6137 // code, our matching model involves us always generating CCOut and 6138 // ConditionCode operands to match the mnemonic "as written" and then we let 6139 // the matcher deal with finding the right instruction or generating an 6140 // appropriate error. 6141 bool CanAcceptCarrySet, CanAcceptPredicationCode; 6142 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 6143 6144 // If we had a carry-set on an instruction that can't do that, issue an 6145 // error. 6146 if (!CanAcceptCarrySet && CarrySetting) { 6147 return Error(NameLoc, "instruction '" + Mnemonic + 6148 "' can not set flags, but 's' suffix specified"); 6149 } 6150 // If we had a predication code on an instruction that can't do that, issue an 6151 // error. 6152 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6153 return Error(NameLoc, "instruction '" + Mnemonic + 6154 "' is not predicable, but condition code specified"); 6155 } 6156 6157 // Add the carry setting operand, if necessary. 6158 if (CanAcceptCarrySet) { 6159 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6160 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6161 Loc)); 6162 } 6163 6164 // Add the predication code operand, if necessary. 6165 if (CanAcceptPredicationCode) { 6166 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6167 CarrySetting); 6168 Operands.push_back(ARMOperand::CreateCondCode( 6169 ARMCC::CondCodes(PredicationCode), Loc)); 6170 } 6171 6172 // Add the processor imod operand, if necessary. 6173 if (ProcessorIMod) { 6174 Operands.push_back(ARMOperand::CreateImm( 6175 MCConstantExpr::create(ProcessorIMod, getContext()), 6176 NameLoc, NameLoc)); 6177 } else if (Mnemonic == "cps" && isMClass()) { 6178 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6179 } 6180 6181 // Add the remaining tokens in the mnemonic. 6182 while (Next != StringRef::npos) { 6183 Start = Next; 6184 Next = Name.find('.', Start + 1); 6185 StringRef ExtraToken = Name.slice(Start, Next); 6186 6187 // Some NEON instructions have an optional datatype suffix that is 6188 // completely ignored. Check for that. 6189 if (isDataTypeToken(ExtraToken) && 6190 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6191 continue; 6192 6193 // For for ARM mode generate an error if the .n qualifier is used. 6194 if (ExtraToken == ".n" && !isThumb()) { 6195 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6196 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6197 "arm mode"); 6198 } 6199 6200 // The .n qualifier is always discarded as that is what the tables 6201 // and matcher expect. In ARM mode the .w qualifier has no effect, 6202 // so discard it to avoid errors that can be caused by the matcher. 6203 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6204 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6205 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6206 } 6207 } 6208 6209 // Read the remaining operands. 6210 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6211 // Read the first operand. 6212 if (parseOperand(Operands, Mnemonic)) { 6213 return true; 6214 } 6215 6216 while (parseOptionalToken(AsmToken::Comma)) { 6217 // Parse and remember the operand. 6218 if (parseOperand(Operands, Mnemonic)) { 6219 return true; 6220 } 6221 } 6222 } 6223 6224 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6225 return true; 6226 6227 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6228 6229 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6230 // do and don't have a cc_out optional-def operand. With some spot-checks 6231 // of the operand list, we can figure out which variant we're trying to 6232 // parse and adjust accordingly before actually matching. We shouldn't ever 6233 // try to remove a cc_out operand that was explicitly set on the 6234 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6235 // table driven matcher doesn't fit well with the ARM instruction set. 6236 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6237 Operands.erase(Operands.begin() + 1); 6238 6239 // Some instructions have the same mnemonic, but don't always 6240 // have a predicate. Distinguish them here and delete the 6241 // predicate if needed. 6242 if (PredicationCode == ARMCC::AL && 6243 shouldOmitPredicateOperand(Mnemonic, Operands)) 6244 Operands.erase(Operands.begin() + 1); 6245 6246 // ARM mode 'blx' need special handling, as the register operand version 6247 // is predicable, but the label operand version is not. So, we can't rely 6248 // on the Mnemonic based checking to correctly figure out when to put 6249 // a k_CondCode operand in the list. If we're trying to match the label 6250 // version, remove the k_CondCode operand here. 6251 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6252 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6253 Operands.erase(Operands.begin() + 1); 6254 6255 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6256 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6257 // a single GPRPair reg operand is used in the .td file to replace the two 6258 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6259 // expressed as a GPRPair, so we have to manually merge them. 6260 // FIXME: We would really like to be able to tablegen'erate this. 6261 if (!isThumb() && Operands.size() > 4 && 6262 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6263 Mnemonic == "stlexd")) { 6264 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6265 unsigned Idx = isLoad ? 2 : 3; 6266 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6267 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6268 6269 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6270 // Adjust only if Op1 and Op2 are GPRs. 6271 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6272 MRC.contains(Op2.getReg())) { 6273 unsigned Reg1 = Op1.getReg(); 6274 unsigned Reg2 = Op2.getReg(); 6275 unsigned Rt = MRI->getEncodingValue(Reg1); 6276 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6277 6278 // Rt2 must be Rt + 1 and Rt must be even. 6279 if (Rt + 1 != Rt2 || (Rt & 1)) { 6280 return Error(Op2.getStartLoc(), 6281 isLoad ? "destination operands must be sequential" 6282 : "source operands must be sequential"); 6283 } 6284 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6285 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6286 Operands[Idx] = 6287 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6288 Operands.erase(Operands.begin() + Idx + 1); 6289 } 6290 } 6291 6292 // GNU Assembler extension (compatibility). 6293 fixupGNULDRDAlias(Mnemonic, Operands); 6294 6295 // FIXME: As said above, this is all a pretty gross hack. This instruction 6296 // does not fit with other "subs" and tblgen. 6297 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6298 // so the Mnemonic is the original name "subs" and delete the predicate 6299 // operand so it will match the table entry. 6300 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6301 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6302 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6303 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6304 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6305 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6306 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6307 Operands.erase(Operands.begin() + 1); 6308 } 6309 return false; 6310 } 6311 6312 // Validate context-sensitive operand constraints. 6313 6314 // return 'true' if register list contains non-low GPR registers, 6315 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6316 // 'containsReg' to true. 6317 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6318 unsigned Reg, unsigned HiReg, 6319 bool &containsReg) { 6320 containsReg = false; 6321 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6322 unsigned OpReg = Inst.getOperand(i).getReg(); 6323 if (OpReg == Reg) 6324 containsReg = true; 6325 // Anything other than a low register isn't legal here. 6326 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6327 return true; 6328 } 6329 return false; 6330 } 6331 6332 // Check if the specified regisgter is in the register list of the inst, 6333 // starting at the indicated operand number. 6334 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6335 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6336 unsigned OpReg = Inst.getOperand(i).getReg(); 6337 if (OpReg == Reg) 6338 return true; 6339 } 6340 return false; 6341 } 6342 6343 // Return true if instruction has the interesting property of being 6344 // allowed in IT blocks, but not being predicable. 6345 static bool instIsBreakpoint(const MCInst &Inst) { 6346 return Inst.getOpcode() == ARM::tBKPT || 6347 Inst.getOpcode() == ARM::BKPT || 6348 Inst.getOpcode() == ARM::tHLT || 6349 Inst.getOpcode() == ARM::HLT; 6350 } 6351 6352 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6353 const OperandVector &Operands, 6354 unsigned ListNo, bool IsARPop) { 6355 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6356 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6357 6358 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6359 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6360 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6361 6362 if (!IsARPop && ListContainsSP) 6363 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6364 "SP may not be in the register list"); 6365 else if (ListContainsPC && ListContainsLR) 6366 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6367 "PC and LR may not be in the register list simultaneously"); 6368 return false; 6369 } 6370 6371 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6372 const OperandVector &Operands, 6373 unsigned ListNo) { 6374 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6375 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6376 6377 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6378 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6379 6380 if (ListContainsSP && ListContainsPC) 6381 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6382 "SP and PC may not be in the register list"); 6383 else if (ListContainsSP) 6384 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6385 "SP may not be in the register list"); 6386 else if (ListContainsPC) 6387 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6388 "PC may not be in the register list"); 6389 return false; 6390 } 6391 6392 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 6393 const OperandVector &Operands, 6394 bool Load, bool ARMMode, bool Writeback) { 6395 unsigned RtIndex = Load || !Writeback ? 0 : 1; 6396 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 6397 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 6398 6399 if (ARMMode) { 6400 // Rt can't be R14. 6401 if (Rt == 14) 6402 return Error(Operands[3]->getStartLoc(), 6403 "Rt can't be R14"); 6404 6405 // Rt must be even-numbered. 6406 if ((Rt & 1) == 1) 6407 return Error(Operands[3]->getStartLoc(), 6408 "Rt must be even-numbered"); 6409 6410 // Rt2 must be Rt + 1. 6411 if (Rt2 != Rt + 1) { 6412 if (Load) 6413 return Error(Operands[3]->getStartLoc(), 6414 "destination operands must be sequential"); 6415 else 6416 return Error(Operands[3]->getStartLoc(), 6417 "source operands must be sequential"); 6418 } 6419 6420 // FIXME: Diagnose m == 15 6421 // FIXME: Diagnose ldrd with m == t || m == t2. 6422 } 6423 6424 if (!ARMMode && Load) { 6425 if (Rt2 == Rt) 6426 return Error(Operands[3]->getStartLoc(), 6427 "destination operands can't be identical"); 6428 } 6429 6430 if (Writeback) { 6431 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6432 6433 if (Rn == Rt || Rn == Rt2) { 6434 if (Load) 6435 return Error(Operands[3]->getStartLoc(), 6436 "base register needs to be different from destination " 6437 "registers"); 6438 else 6439 return Error(Operands[3]->getStartLoc(), 6440 "source register and base register can't be identical"); 6441 } 6442 6443 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 6444 // (Except the immediate form of ldrd?) 6445 } 6446 6447 return false; 6448 } 6449 6450 6451 // FIXME: We would really like to be able to tablegen'erate this. 6452 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6453 const OperandVector &Operands) { 6454 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6455 SMLoc Loc = Operands[0]->getStartLoc(); 6456 6457 // Check the IT block state first. 6458 // NOTE: BKPT and HLT instructions have the interesting property of being 6459 // allowed in IT blocks, but not being predicable. They just always execute. 6460 if (inITBlock() && !instIsBreakpoint(Inst)) { 6461 // The instruction must be predicable. 6462 if (!MCID.isPredicable()) 6463 return Error(Loc, "instructions in IT block must be predicable"); 6464 ARMCC::CondCodes Cond = ARMCC::CondCodes( 6465 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 6466 if (Cond != currentITCond()) { 6467 // Find the condition code Operand to get its SMLoc information. 6468 SMLoc CondLoc; 6469 for (unsigned I = 1; I < Operands.size(); ++I) 6470 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6471 CondLoc = Operands[I]->getStartLoc(); 6472 return Error(CondLoc, "incorrect condition in IT block; got '" + 6473 StringRef(ARMCondCodeToString(Cond)) + 6474 "', but expected '" + 6475 ARMCondCodeToString(currentITCond()) + "'"); 6476 } 6477 // Check for non-'al' condition codes outside of the IT block. 6478 } else if (isThumbTwo() && MCID.isPredicable() && 6479 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6480 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6481 Inst.getOpcode() != ARM::t2Bcc) { 6482 return Error(Loc, "predicated instructions must be in IT block"); 6483 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6484 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6485 ARMCC::AL) { 6486 return Warning(Loc, "predicated instructions should be in IT block"); 6487 } else if (!MCID.isPredicable()) { 6488 // Check the instruction doesn't have a predicate operand anyway 6489 // that it's not allowed to use. Sometimes this happens in order 6490 // to keep instructions the same shape even though one cannot 6491 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 6492 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 6493 if (MCID.OpInfo[i].isPredicate()) { 6494 if (Inst.getOperand(i).getImm() != ARMCC::AL) 6495 return Error(Loc, "instruction is not predicable"); 6496 break; 6497 } 6498 } 6499 } 6500 6501 // PC-setting instructions in an IT block, but not the last instruction of 6502 // the block, are UNPREDICTABLE. 6503 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 6504 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 6505 } 6506 6507 const unsigned Opcode = Inst.getOpcode(); 6508 switch (Opcode) { 6509 case ARM::t2IT: { 6510 // Encoding is unpredictable if it ever results in a notional 'NV' 6511 // predicate. Since we don't parse 'NV' directly this means an 'AL' 6512 // predicate with an "else" mask bit. 6513 unsigned Cond = Inst.getOperand(0).getImm(); 6514 unsigned Mask = Inst.getOperand(1).getImm(); 6515 6516 // Mask hasn't been modified to the IT instruction encoding yet so 6517 // conditions only allowing a 't' are a block of 1s starting at bit 3 6518 // followed by all 0s. Easiest way is to just list the 4 possibilities. 6519 if (Cond == ARMCC::AL && Mask != 8 && Mask != 12 && Mask != 14 && 6520 Mask != 15) 6521 return Error(Loc, "unpredictable IT predicate sequence"); 6522 break; 6523 } 6524 case ARM::LDRD: 6525 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 6526 /*Writeback*/false)) 6527 return true; 6528 break; 6529 case ARM::LDRD_PRE: 6530 case ARM::LDRD_POST: 6531 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 6532 /*Writeback*/true)) 6533 return true; 6534 break; 6535 case ARM::t2LDRDi8: 6536 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 6537 /*Writeback*/false)) 6538 return true; 6539 break; 6540 case ARM::t2LDRD_PRE: 6541 case ARM::t2LDRD_POST: 6542 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 6543 /*Writeback*/true)) 6544 return true; 6545 break; 6546 case ARM::t2BXJ: { 6547 const unsigned RmReg = Inst.getOperand(0).getReg(); 6548 // Rm = SP is no longer unpredictable in v8-A 6549 if (RmReg == ARM::SP && !hasV8Ops()) 6550 return Error(Operands[2]->getStartLoc(), 6551 "r13 (SP) is an unpredictable operand to BXJ"); 6552 return false; 6553 } 6554 case ARM::STRD: 6555 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 6556 /*Writeback*/false)) 6557 return true; 6558 break; 6559 case ARM::STRD_PRE: 6560 case ARM::STRD_POST: 6561 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 6562 /*Writeback*/true)) 6563 return true; 6564 break; 6565 case ARM::t2STRD_PRE: 6566 case ARM::t2STRD_POST: 6567 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 6568 /*Writeback*/true)) 6569 return true; 6570 break; 6571 case ARM::STR_PRE_IMM: 6572 case ARM::STR_PRE_REG: 6573 case ARM::t2STR_PRE: 6574 case ARM::STR_POST_IMM: 6575 case ARM::STR_POST_REG: 6576 case ARM::t2STR_POST: 6577 case ARM::STRH_PRE: 6578 case ARM::t2STRH_PRE: 6579 case ARM::STRH_POST: 6580 case ARM::t2STRH_POST: 6581 case ARM::STRB_PRE_IMM: 6582 case ARM::STRB_PRE_REG: 6583 case ARM::t2STRB_PRE: 6584 case ARM::STRB_POST_IMM: 6585 case ARM::STRB_POST_REG: 6586 case ARM::t2STRB_POST: { 6587 // Rt must be different from Rn. 6588 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6589 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6590 6591 if (Rt == Rn) 6592 return Error(Operands[3]->getStartLoc(), 6593 "source register and base register can't be identical"); 6594 return false; 6595 } 6596 case ARM::LDR_PRE_IMM: 6597 case ARM::LDR_PRE_REG: 6598 case ARM::t2LDR_PRE: 6599 case ARM::LDR_POST_IMM: 6600 case ARM::LDR_POST_REG: 6601 case ARM::t2LDR_POST: 6602 case ARM::LDRH_PRE: 6603 case ARM::t2LDRH_PRE: 6604 case ARM::LDRH_POST: 6605 case ARM::t2LDRH_POST: 6606 case ARM::LDRSH_PRE: 6607 case ARM::t2LDRSH_PRE: 6608 case ARM::LDRSH_POST: 6609 case ARM::t2LDRSH_POST: 6610 case ARM::LDRB_PRE_IMM: 6611 case ARM::LDRB_PRE_REG: 6612 case ARM::t2LDRB_PRE: 6613 case ARM::LDRB_POST_IMM: 6614 case ARM::LDRB_POST_REG: 6615 case ARM::t2LDRB_POST: 6616 case ARM::LDRSB_PRE: 6617 case ARM::t2LDRSB_PRE: 6618 case ARM::LDRSB_POST: 6619 case ARM::t2LDRSB_POST: { 6620 // Rt must be different from Rn. 6621 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6622 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6623 6624 if (Rt == Rn) 6625 return Error(Operands[3]->getStartLoc(), 6626 "destination register and base register can't be identical"); 6627 return false; 6628 } 6629 case ARM::SBFX: 6630 case ARM::t2SBFX: 6631 case ARM::UBFX: 6632 case ARM::t2UBFX: { 6633 // Width must be in range [1, 32-lsb]. 6634 unsigned LSB = Inst.getOperand(2).getImm(); 6635 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6636 if (Widthm1 >= 32 - LSB) 6637 return Error(Operands[5]->getStartLoc(), 6638 "bitfield width must be in range [1,32-lsb]"); 6639 return false; 6640 } 6641 // Notionally handles ARM::tLDMIA_UPD too. 6642 case ARM::tLDMIA: { 6643 // If we're parsing Thumb2, the .w variant is available and handles 6644 // most cases that are normally illegal for a Thumb1 LDM instruction. 6645 // We'll make the transformation in processInstruction() if necessary. 6646 // 6647 // Thumb LDM instructions are writeback iff the base register is not 6648 // in the register list. 6649 unsigned Rn = Inst.getOperand(0).getReg(); 6650 bool HasWritebackToken = 6651 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6652 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6653 bool ListContainsBase; 6654 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6655 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6656 "registers must be in range r0-r7"); 6657 // If we should have writeback, then there should be a '!' token. 6658 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6659 return Error(Operands[2]->getStartLoc(), 6660 "writeback operator '!' expected"); 6661 // If we should not have writeback, there must not be a '!'. This is 6662 // true even for the 32-bit wide encodings. 6663 if (ListContainsBase && HasWritebackToken) 6664 return Error(Operands[3]->getStartLoc(), 6665 "writeback operator '!' not allowed when base register " 6666 "in register list"); 6667 6668 if (validatetLDMRegList(Inst, Operands, 3)) 6669 return true; 6670 break; 6671 } 6672 case ARM::LDMIA_UPD: 6673 case ARM::LDMDB_UPD: 6674 case ARM::LDMIB_UPD: 6675 case ARM::LDMDA_UPD: 6676 // ARM variants loading and updating the same register are only officially 6677 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6678 if (!hasV7Ops()) 6679 break; 6680 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6681 return Error(Operands.back()->getStartLoc(), 6682 "writeback register not allowed in register list"); 6683 break; 6684 case ARM::t2LDMIA: 6685 case ARM::t2LDMDB: 6686 if (validatetLDMRegList(Inst, Operands, 3)) 6687 return true; 6688 break; 6689 case ARM::t2STMIA: 6690 case ARM::t2STMDB: 6691 if (validatetSTMRegList(Inst, Operands, 3)) 6692 return true; 6693 break; 6694 case ARM::t2LDMIA_UPD: 6695 case ARM::t2LDMDB_UPD: 6696 case ARM::t2STMIA_UPD: 6697 case ARM::t2STMDB_UPD: 6698 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6699 return Error(Operands.back()->getStartLoc(), 6700 "writeback register not allowed in register list"); 6701 6702 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6703 if (validatetLDMRegList(Inst, Operands, 3)) 6704 return true; 6705 } else { 6706 if (validatetSTMRegList(Inst, Operands, 3)) 6707 return true; 6708 } 6709 break; 6710 6711 case ARM::sysLDMIA_UPD: 6712 case ARM::sysLDMDA_UPD: 6713 case ARM::sysLDMDB_UPD: 6714 case ARM::sysLDMIB_UPD: 6715 if (!listContainsReg(Inst, 3, ARM::PC)) 6716 return Error(Operands[4]->getStartLoc(), 6717 "writeback register only allowed on system LDM " 6718 "if PC in register-list"); 6719 break; 6720 case ARM::sysSTMIA_UPD: 6721 case ARM::sysSTMDA_UPD: 6722 case ARM::sysSTMDB_UPD: 6723 case ARM::sysSTMIB_UPD: 6724 return Error(Operands[2]->getStartLoc(), 6725 "system STM cannot have writeback register"); 6726 case ARM::tMUL: 6727 // The second source operand must be the same register as the destination 6728 // operand. 6729 // 6730 // In this case, we must directly check the parsed operands because the 6731 // cvtThumbMultiply() function is written in such a way that it guarantees 6732 // this first statement is always true for the new Inst. Essentially, the 6733 // destination is unconditionally copied into the second source operand 6734 // without checking to see if it matches what we actually parsed. 6735 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6736 ((ARMOperand &)*Operands[5]).getReg()) && 6737 (((ARMOperand &)*Operands[3]).getReg() != 6738 ((ARMOperand &)*Operands[4]).getReg())) { 6739 return Error(Operands[3]->getStartLoc(), 6740 "destination register must match source register"); 6741 } 6742 break; 6743 6744 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6745 // so only issue a diagnostic for thumb1. The instructions will be 6746 // switched to the t2 encodings in processInstruction() if necessary. 6747 case ARM::tPOP: { 6748 bool ListContainsBase; 6749 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6750 !isThumbTwo()) 6751 return Error(Operands[2]->getStartLoc(), 6752 "registers must be in range r0-r7 or pc"); 6753 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6754 return true; 6755 break; 6756 } 6757 case ARM::tPUSH: { 6758 bool ListContainsBase; 6759 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6760 !isThumbTwo()) 6761 return Error(Operands[2]->getStartLoc(), 6762 "registers must be in range r0-r7 or lr"); 6763 if (validatetSTMRegList(Inst, Operands, 2)) 6764 return true; 6765 break; 6766 } 6767 case ARM::tSTMIA_UPD: { 6768 bool ListContainsBase, InvalidLowList; 6769 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6770 0, ListContainsBase); 6771 if (InvalidLowList && !isThumbTwo()) 6772 return Error(Operands[4]->getStartLoc(), 6773 "registers must be in range r0-r7"); 6774 6775 // This would be converted to a 32-bit stm, but that's not valid if the 6776 // writeback register is in the list. 6777 if (InvalidLowList && ListContainsBase) 6778 return Error(Operands[4]->getStartLoc(), 6779 "writeback operator '!' not allowed when base register " 6780 "in register list"); 6781 6782 if (validatetSTMRegList(Inst, Operands, 4)) 6783 return true; 6784 break; 6785 } 6786 case ARM::tADDrSP: 6787 // If the non-SP source operand and the destination operand are not the 6788 // same, we need thumb2 (for the wide encoding), or we have an error. 6789 if (!isThumbTwo() && 6790 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6791 return Error(Operands[4]->getStartLoc(), 6792 "source register must be the same as destination"); 6793 } 6794 break; 6795 6796 case ARM::t2ADDri: 6797 case ARM::t2ADDri12: 6798 case ARM::t2ADDrr: 6799 case ARM::t2ADDrs: 6800 case ARM::t2SUBri: 6801 case ARM::t2SUBri12: 6802 case ARM::t2SUBrr: 6803 case ARM::t2SUBrs: 6804 if (Inst.getOperand(0).getReg() == ARM::SP && 6805 Inst.getOperand(1).getReg() != ARM::SP) 6806 return Error(Operands[4]->getStartLoc(), 6807 "source register must be sp if destination is sp"); 6808 break; 6809 6810 // Final range checking for Thumb unconditional branch instructions. 6811 case ARM::tB: 6812 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6813 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6814 break; 6815 case ARM::t2B: { 6816 int op = (Operands[2]->isImm()) ? 2 : 3; 6817 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6818 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6819 break; 6820 } 6821 // Final range checking for Thumb conditional branch instructions. 6822 case ARM::tBcc: 6823 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6824 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6825 break; 6826 case ARM::t2Bcc: { 6827 int Op = (Operands[2]->isImm()) ? 2 : 3; 6828 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6829 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6830 break; 6831 } 6832 case ARM::tCBZ: 6833 case ARM::tCBNZ: { 6834 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6835 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6836 break; 6837 } 6838 case ARM::MOVi16: 6839 case ARM::MOVTi16: 6840 case ARM::t2MOVi16: 6841 case ARM::t2MOVTi16: 6842 { 6843 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6844 // especially when we turn it into a movw and the expression <symbol> does 6845 // not have a :lower16: or :upper16 as part of the expression. We don't 6846 // want the behavior of silently truncating, which can be unexpected and 6847 // lead to bugs that are difficult to find since this is an easy mistake 6848 // to make. 6849 int i = (Operands[3]->isImm()) ? 3 : 4; 6850 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6851 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6852 if (CE) break; 6853 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6854 if (!E) break; 6855 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6856 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6857 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6858 return Error( 6859 Op.getStartLoc(), 6860 "immediate expression for mov requires :lower16: or :upper16"); 6861 break; 6862 } 6863 case ARM::HINT: 6864 case ARM::t2HINT: { 6865 unsigned Imm8 = Inst.getOperand(0).getImm(); 6866 unsigned Pred = Inst.getOperand(1).getImm(); 6867 // ESB is not predicable (pred must be AL). Without the RAS extension, this 6868 // behaves as any other unallocated hint. 6869 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 6870 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6871 "predicable, but condition " 6872 "code specified"); 6873 if (Imm8 == 0x14 && Pred != ARMCC::AL) 6874 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 6875 "predicable, but condition " 6876 "code specified"); 6877 break; 6878 } 6879 case ARM::DSB: 6880 case ARM::t2DSB: { 6881 6882 if (Inst.getNumOperands() < 2) 6883 break; 6884 6885 unsigned Option = Inst.getOperand(0).getImm(); 6886 unsigned Pred = Inst.getOperand(1).getImm(); 6887 6888 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 6889 if (Option == 0 && Pred != ARMCC::AL) 6890 return Error(Operands[1]->getStartLoc(), 6891 "instruction 'ssbb' is not predicable, but condition code " 6892 "specified"); 6893 if (Option == 4 && Pred != ARMCC::AL) 6894 return Error(Operands[1]->getStartLoc(), 6895 "instruction 'pssbb' is not predicable, but condition code " 6896 "specified"); 6897 break; 6898 } 6899 case ARM::VMOVRRS: { 6900 // Source registers must be sequential. 6901 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6902 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6903 if (Sm1 != Sm + 1) 6904 return Error(Operands[5]->getStartLoc(), 6905 "source operands must be sequential"); 6906 break; 6907 } 6908 case ARM::VMOVSRR: { 6909 // Destination registers must be sequential. 6910 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6911 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6912 if (Sm1 != Sm + 1) 6913 return Error(Operands[3]->getStartLoc(), 6914 "destination operands must be sequential"); 6915 break; 6916 } 6917 case ARM::VLDMDIA: 6918 case ARM::VSTMDIA: { 6919 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 6920 auto &RegList = Op.getRegList(); 6921 if (RegList.size() < 1 || RegList.size() > 16) 6922 return Error(Operands[3]->getStartLoc(), 6923 "list of registers must be at least 1 and at most 16"); 6924 break; 6925 } 6926 } 6927 6928 return false; 6929 } 6930 6931 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6932 switch(Opc) { 6933 default: llvm_unreachable("unexpected opcode!"); 6934 // VST1LN 6935 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6936 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6937 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6938 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6939 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6940 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6941 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6942 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6943 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6944 6945 // VST2LN 6946 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6947 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6948 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6949 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6950 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6951 6952 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6953 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6954 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6955 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6956 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6957 6958 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6959 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6960 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6961 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6962 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6963 6964 // VST3LN 6965 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6966 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6967 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6968 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6969 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6970 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6971 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6972 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6973 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6974 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6975 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6976 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6977 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6978 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6979 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6980 6981 // VST3 6982 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6983 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6984 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6985 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6986 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6987 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6988 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6989 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6990 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6991 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6992 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6993 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6994 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6995 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6996 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6997 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6998 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6999 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 7000 7001 // VST4LN 7002 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 7003 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 7004 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 7005 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 7006 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 7007 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 7008 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 7009 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 7010 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 7011 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 7012 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 7013 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 7014 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 7015 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 7016 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 7017 7018 // VST4 7019 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 7020 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 7021 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 7022 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 7023 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 7024 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 7025 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 7026 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 7027 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 7028 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 7029 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 7030 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 7031 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 7032 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 7033 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 7034 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 7035 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 7036 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 7037 } 7038 } 7039 7040 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 7041 switch(Opc) { 7042 default: llvm_unreachable("unexpected opcode!"); 7043 // VLD1LN 7044 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 7045 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 7046 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 7047 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 7048 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 7049 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 7050 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 7051 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 7052 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 7053 7054 // VLD2LN 7055 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 7056 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 7057 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 7058 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 7059 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 7060 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 7061 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 7062 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 7063 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 7064 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 7065 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 7066 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 7067 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 7068 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 7069 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 7070 7071 // VLD3DUP 7072 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 7073 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 7074 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 7075 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 7076 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 7077 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 7078 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 7079 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 7080 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 7081 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 7082 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 7083 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 7084 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 7085 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 7086 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 7087 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 7088 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 7089 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 7090 7091 // VLD3LN 7092 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 7093 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 7094 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 7095 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 7096 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 7097 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 7098 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 7099 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 7100 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 7101 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 7102 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 7103 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 7104 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 7105 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 7106 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 7107 7108 // VLD3 7109 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 7110 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 7111 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 7112 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 7113 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 7114 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 7115 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 7116 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 7117 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 7118 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 7119 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 7120 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 7121 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 7122 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 7123 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 7124 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 7125 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 7126 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 7127 7128 // VLD4LN 7129 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 7130 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 7131 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 7132 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 7133 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 7134 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 7135 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 7136 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 7137 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 7138 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 7139 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 7140 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 7141 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 7142 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 7143 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 7144 7145 // VLD4DUP 7146 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 7147 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 7148 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 7149 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 7150 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 7151 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 7152 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 7153 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 7154 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 7155 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 7156 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 7157 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 7158 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 7159 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 7160 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 7161 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 7162 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 7163 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 7164 7165 // VLD4 7166 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 7167 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 7168 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 7169 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 7170 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 7171 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 7172 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 7173 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 7174 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 7175 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 7176 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 7177 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 7178 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 7179 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 7180 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 7181 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 7182 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 7183 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 7184 } 7185 } 7186 7187 bool ARMAsmParser::processInstruction(MCInst &Inst, 7188 const OperandVector &Operands, 7189 MCStreamer &Out) { 7190 // Check if we have the wide qualifier, because if it's present we 7191 // must avoid selecting a 16-bit thumb instruction. 7192 bool HasWideQualifier = false; 7193 for (auto &Op : Operands) { 7194 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 7195 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 7196 HasWideQualifier = true; 7197 break; 7198 } 7199 } 7200 7201 switch (Inst.getOpcode()) { 7202 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 7203 case ARM::LDRT_POST: 7204 case ARM::LDRBT_POST: { 7205 const unsigned Opcode = 7206 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 7207 : ARM::LDRBT_POST_IMM; 7208 MCInst TmpInst; 7209 TmpInst.setOpcode(Opcode); 7210 TmpInst.addOperand(Inst.getOperand(0)); 7211 TmpInst.addOperand(Inst.getOperand(1)); 7212 TmpInst.addOperand(Inst.getOperand(1)); 7213 TmpInst.addOperand(MCOperand::createReg(0)); 7214 TmpInst.addOperand(MCOperand::createImm(0)); 7215 TmpInst.addOperand(Inst.getOperand(2)); 7216 TmpInst.addOperand(Inst.getOperand(3)); 7217 Inst = TmpInst; 7218 return true; 7219 } 7220 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 7221 case ARM::STRT_POST: 7222 case ARM::STRBT_POST: { 7223 const unsigned Opcode = 7224 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 7225 : ARM::STRBT_POST_IMM; 7226 MCInst TmpInst; 7227 TmpInst.setOpcode(Opcode); 7228 TmpInst.addOperand(Inst.getOperand(1)); 7229 TmpInst.addOperand(Inst.getOperand(0)); 7230 TmpInst.addOperand(Inst.getOperand(1)); 7231 TmpInst.addOperand(MCOperand::createReg(0)); 7232 TmpInst.addOperand(MCOperand::createImm(0)); 7233 TmpInst.addOperand(Inst.getOperand(2)); 7234 TmpInst.addOperand(Inst.getOperand(3)); 7235 Inst = TmpInst; 7236 return true; 7237 } 7238 // Alias for alternate form of 'ADR Rd, #imm' instruction. 7239 case ARM::ADDri: { 7240 if (Inst.getOperand(1).getReg() != ARM::PC || 7241 Inst.getOperand(5).getReg() != 0 || 7242 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 7243 return false; 7244 MCInst TmpInst; 7245 TmpInst.setOpcode(ARM::ADR); 7246 TmpInst.addOperand(Inst.getOperand(0)); 7247 if (Inst.getOperand(2).isImm()) { 7248 // Immediate (mod_imm) will be in its encoded form, we must unencode it 7249 // before passing it to the ADR instruction. 7250 unsigned Enc = Inst.getOperand(2).getImm(); 7251 TmpInst.addOperand(MCOperand::createImm( 7252 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 7253 } else { 7254 // Turn PC-relative expression into absolute expression. 7255 // Reading PC provides the start of the current instruction + 8 and 7256 // the transform to adr is biased by that. 7257 MCSymbol *Dot = getContext().createTempSymbol(); 7258 Out.EmitLabel(Dot); 7259 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 7260 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 7261 MCSymbolRefExpr::VK_None, 7262 getContext()); 7263 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 7264 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 7265 getContext()); 7266 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 7267 getContext()); 7268 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 7269 } 7270 TmpInst.addOperand(Inst.getOperand(3)); 7271 TmpInst.addOperand(Inst.getOperand(4)); 7272 Inst = TmpInst; 7273 return true; 7274 } 7275 // Aliases for alternate PC+imm syntax of LDR instructions. 7276 case ARM::t2LDRpcrel: 7277 // Select the narrow version if the immediate will fit. 7278 if (Inst.getOperand(1).getImm() > 0 && 7279 Inst.getOperand(1).getImm() <= 0xff && 7280 !HasWideQualifier) 7281 Inst.setOpcode(ARM::tLDRpci); 7282 else 7283 Inst.setOpcode(ARM::t2LDRpci); 7284 return true; 7285 case ARM::t2LDRBpcrel: 7286 Inst.setOpcode(ARM::t2LDRBpci); 7287 return true; 7288 case ARM::t2LDRHpcrel: 7289 Inst.setOpcode(ARM::t2LDRHpci); 7290 return true; 7291 case ARM::t2LDRSBpcrel: 7292 Inst.setOpcode(ARM::t2LDRSBpci); 7293 return true; 7294 case ARM::t2LDRSHpcrel: 7295 Inst.setOpcode(ARM::t2LDRSHpci); 7296 return true; 7297 case ARM::LDRConstPool: 7298 case ARM::tLDRConstPool: 7299 case ARM::t2LDRConstPool: { 7300 // Pseudo instruction ldr rt, =immediate is converted to a 7301 // MOV rt, immediate if immediate is known and representable 7302 // otherwise we create a constant pool entry that we load from. 7303 MCInst TmpInst; 7304 if (Inst.getOpcode() == ARM::LDRConstPool) 7305 TmpInst.setOpcode(ARM::LDRi12); 7306 else if (Inst.getOpcode() == ARM::tLDRConstPool) 7307 TmpInst.setOpcode(ARM::tLDRpci); 7308 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 7309 TmpInst.setOpcode(ARM::t2LDRpci); 7310 const ARMOperand &PoolOperand = 7311 (HasWideQualifier ? 7312 static_cast<ARMOperand &>(*Operands[4]) : 7313 static_cast<ARMOperand &>(*Operands[3])); 7314 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 7315 // If SubExprVal is a constant we may be able to use a MOV 7316 if (isa<MCConstantExpr>(SubExprVal) && 7317 Inst.getOperand(0).getReg() != ARM::PC && 7318 Inst.getOperand(0).getReg() != ARM::SP) { 7319 int64_t Value = 7320 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 7321 bool UseMov = true; 7322 bool MovHasS = true; 7323 if (Inst.getOpcode() == ARM::LDRConstPool) { 7324 // ARM Constant 7325 if (ARM_AM::getSOImmVal(Value) != -1) { 7326 Value = ARM_AM::getSOImmVal(Value); 7327 TmpInst.setOpcode(ARM::MOVi); 7328 } 7329 else if (ARM_AM::getSOImmVal(~Value) != -1) { 7330 Value = ARM_AM::getSOImmVal(~Value); 7331 TmpInst.setOpcode(ARM::MVNi); 7332 } 7333 else if (hasV6T2Ops() && 7334 Value >=0 && Value < 65536) { 7335 TmpInst.setOpcode(ARM::MOVi16); 7336 MovHasS = false; 7337 } 7338 else 7339 UseMov = false; 7340 } 7341 else { 7342 // Thumb/Thumb2 Constant 7343 if (hasThumb2() && 7344 ARM_AM::getT2SOImmVal(Value) != -1) 7345 TmpInst.setOpcode(ARM::t2MOVi); 7346 else if (hasThumb2() && 7347 ARM_AM::getT2SOImmVal(~Value) != -1) { 7348 TmpInst.setOpcode(ARM::t2MVNi); 7349 Value = ~Value; 7350 } 7351 else if (hasV8MBaseline() && 7352 Value >=0 && Value < 65536) { 7353 TmpInst.setOpcode(ARM::t2MOVi16); 7354 MovHasS = false; 7355 } 7356 else 7357 UseMov = false; 7358 } 7359 if (UseMov) { 7360 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7361 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7362 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7363 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7364 if (MovHasS) 7365 TmpInst.addOperand(MCOperand::createReg(0)); // S 7366 Inst = TmpInst; 7367 return true; 7368 } 7369 } 7370 // No opportunity to use MOV/MVN create constant pool 7371 const MCExpr *CPLoc = 7372 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7373 PoolOperand.getStartLoc()); 7374 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7375 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7376 if (TmpInst.getOpcode() == ARM::LDRi12) 7377 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7378 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7379 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7380 Inst = TmpInst; 7381 return true; 7382 } 7383 // Handle NEON VST complex aliases. 7384 case ARM::VST1LNdWB_register_Asm_8: 7385 case ARM::VST1LNdWB_register_Asm_16: 7386 case ARM::VST1LNdWB_register_Asm_32: { 7387 MCInst TmpInst; 7388 // Shuffle the operands around so the lane index operand is in the 7389 // right place. 7390 unsigned Spacing; 7391 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7392 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7393 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7394 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7395 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7396 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7397 TmpInst.addOperand(Inst.getOperand(1)); // lane 7398 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7399 TmpInst.addOperand(Inst.getOperand(6)); 7400 Inst = TmpInst; 7401 return true; 7402 } 7403 7404 case ARM::VST2LNdWB_register_Asm_8: 7405 case ARM::VST2LNdWB_register_Asm_16: 7406 case ARM::VST2LNdWB_register_Asm_32: 7407 case ARM::VST2LNqWB_register_Asm_16: 7408 case ARM::VST2LNqWB_register_Asm_32: { 7409 MCInst TmpInst; 7410 // Shuffle the operands around so the lane index operand is in the 7411 // right place. 7412 unsigned Spacing; 7413 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7414 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7415 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7416 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7417 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7418 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7419 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7420 Spacing)); 7421 TmpInst.addOperand(Inst.getOperand(1)); // lane 7422 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7423 TmpInst.addOperand(Inst.getOperand(6)); 7424 Inst = TmpInst; 7425 return true; 7426 } 7427 7428 case ARM::VST3LNdWB_register_Asm_8: 7429 case ARM::VST3LNdWB_register_Asm_16: 7430 case ARM::VST3LNdWB_register_Asm_32: 7431 case ARM::VST3LNqWB_register_Asm_16: 7432 case ARM::VST3LNqWB_register_Asm_32: { 7433 MCInst TmpInst; 7434 // Shuffle the operands around so the lane index operand is in the 7435 // right place. 7436 unsigned Spacing; 7437 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7438 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7439 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7440 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7441 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7442 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7443 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7444 Spacing)); 7445 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7446 Spacing * 2)); 7447 TmpInst.addOperand(Inst.getOperand(1)); // lane 7448 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7449 TmpInst.addOperand(Inst.getOperand(6)); 7450 Inst = TmpInst; 7451 return true; 7452 } 7453 7454 case ARM::VST4LNdWB_register_Asm_8: 7455 case ARM::VST4LNdWB_register_Asm_16: 7456 case ARM::VST4LNdWB_register_Asm_32: 7457 case ARM::VST4LNqWB_register_Asm_16: 7458 case ARM::VST4LNqWB_register_Asm_32: { 7459 MCInst TmpInst; 7460 // Shuffle the operands around so the lane index operand is in the 7461 // right place. 7462 unsigned Spacing; 7463 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7464 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7465 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7466 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7467 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7468 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7469 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7470 Spacing)); 7471 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7472 Spacing * 2)); 7473 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7474 Spacing * 3)); 7475 TmpInst.addOperand(Inst.getOperand(1)); // lane 7476 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7477 TmpInst.addOperand(Inst.getOperand(6)); 7478 Inst = TmpInst; 7479 return true; 7480 } 7481 7482 case ARM::VST1LNdWB_fixed_Asm_8: 7483 case ARM::VST1LNdWB_fixed_Asm_16: 7484 case ARM::VST1LNdWB_fixed_Asm_32: { 7485 MCInst TmpInst; 7486 // Shuffle the operands around so the lane index operand is in the 7487 // right place. 7488 unsigned Spacing; 7489 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7490 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7491 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7492 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7493 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7494 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7495 TmpInst.addOperand(Inst.getOperand(1)); // lane 7496 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7497 TmpInst.addOperand(Inst.getOperand(5)); 7498 Inst = TmpInst; 7499 return true; 7500 } 7501 7502 case ARM::VST2LNdWB_fixed_Asm_8: 7503 case ARM::VST2LNdWB_fixed_Asm_16: 7504 case ARM::VST2LNdWB_fixed_Asm_32: 7505 case ARM::VST2LNqWB_fixed_Asm_16: 7506 case ARM::VST2LNqWB_fixed_Asm_32: { 7507 MCInst TmpInst; 7508 // Shuffle the operands around so the lane index operand is in the 7509 // right place. 7510 unsigned Spacing; 7511 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7512 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7513 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7514 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7515 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7516 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7517 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7518 Spacing)); 7519 TmpInst.addOperand(Inst.getOperand(1)); // lane 7520 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7521 TmpInst.addOperand(Inst.getOperand(5)); 7522 Inst = TmpInst; 7523 return true; 7524 } 7525 7526 case ARM::VST3LNdWB_fixed_Asm_8: 7527 case ARM::VST3LNdWB_fixed_Asm_16: 7528 case ARM::VST3LNdWB_fixed_Asm_32: 7529 case ARM::VST3LNqWB_fixed_Asm_16: 7530 case ARM::VST3LNqWB_fixed_Asm_32: { 7531 MCInst TmpInst; 7532 // Shuffle the operands around so the lane index operand is in the 7533 // right place. 7534 unsigned Spacing; 7535 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7536 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7537 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7538 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7539 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7540 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7541 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7542 Spacing)); 7543 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7544 Spacing * 2)); 7545 TmpInst.addOperand(Inst.getOperand(1)); // lane 7546 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7547 TmpInst.addOperand(Inst.getOperand(5)); 7548 Inst = TmpInst; 7549 return true; 7550 } 7551 7552 case ARM::VST4LNdWB_fixed_Asm_8: 7553 case ARM::VST4LNdWB_fixed_Asm_16: 7554 case ARM::VST4LNdWB_fixed_Asm_32: 7555 case ARM::VST4LNqWB_fixed_Asm_16: 7556 case ARM::VST4LNqWB_fixed_Asm_32: { 7557 MCInst TmpInst; 7558 // Shuffle the operands around so the lane index operand is in the 7559 // right place. 7560 unsigned Spacing; 7561 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7562 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7563 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7564 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7565 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7566 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7567 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7568 Spacing)); 7569 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7570 Spacing * 2)); 7571 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7572 Spacing * 3)); 7573 TmpInst.addOperand(Inst.getOperand(1)); // lane 7574 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7575 TmpInst.addOperand(Inst.getOperand(5)); 7576 Inst = TmpInst; 7577 return true; 7578 } 7579 7580 case ARM::VST1LNdAsm_8: 7581 case ARM::VST1LNdAsm_16: 7582 case ARM::VST1LNdAsm_32: { 7583 MCInst TmpInst; 7584 // Shuffle the operands around so the lane index operand is in the 7585 // right place. 7586 unsigned Spacing; 7587 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7588 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7589 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7590 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7591 TmpInst.addOperand(Inst.getOperand(1)); // lane 7592 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7593 TmpInst.addOperand(Inst.getOperand(5)); 7594 Inst = TmpInst; 7595 return true; 7596 } 7597 7598 case ARM::VST2LNdAsm_8: 7599 case ARM::VST2LNdAsm_16: 7600 case ARM::VST2LNdAsm_32: 7601 case ARM::VST2LNqAsm_16: 7602 case ARM::VST2LNqAsm_32: { 7603 MCInst TmpInst; 7604 // Shuffle the operands around so the lane index operand is in the 7605 // right place. 7606 unsigned Spacing; 7607 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7608 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7609 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7610 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7611 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7612 Spacing)); 7613 TmpInst.addOperand(Inst.getOperand(1)); // lane 7614 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7615 TmpInst.addOperand(Inst.getOperand(5)); 7616 Inst = TmpInst; 7617 return true; 7618 } 7619 7620 case ARM::VST3LNdAsm_8: 7621 case ARM::VST3LNdAsm_16: 7622 case ARM::VST3LNdAsm_32: 7623 case ARM::VST3LNqAsm_16: 7624 case ARM::VST3LNqAsm_32: { 7625 MCInst TmpInst; 7626 // Shuffle the operands around so the lane index operand is in the 7627 // right place. 7628 unsigned Spacing; 7629 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7630 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7631 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7632 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7633 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7634 Spacing)); 7635 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7636 Spacing * 2)); 7637 TmpInst.addOperand(Inst.getOperand(1)); // lane 7638 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7639 TmpInst.addOperand(Inst.getOperand(5)); 7640 Inst = TmpInst; 7641 return true; 7642 } 7643 7644 case ARM::VST4LNdAsm_8: 7645 case ARM::VST4LNdAsm_16: 7646 case ARM::VST4LNdAsm_32: 7647 case ARM::VST4LNqAsm_16: 7648 case ARM::VST4LNqAsm_32: { 7649 MCInst TmpInst; 7650 // Shuffle the operands around so the lane index operand is in the 7651 // right place. 7652 unsigned Spacing; 7653 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7654 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7655 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7656 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7657 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7658 Spacing)); 7659 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7660 Spacing * 2)); 7661 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7662 Spacing * 3)); 7663 TmpInst.addOperand(Inst.getOperand(1)); // lane 7664 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7665 TmpInst.addOperand(Inst.getOperand(5)); 7666 Inst = TmpInst; 7667 return true; 7668 } 7669 7670 // Handle NEON VLD complex aliases. 7671 case ARM::VLD1LNdWB_register_Asm_8: 7672 case ARM::VLD1LNdWB_register_Asm_16: 7673 case ARM::VLD1LNdWB_register_Asm_32: { 7674 MCInst TmpInst; 7675 // Shuffle the operands around so the lane index operand is in the 7676 // right place. 7677 unsigned Spacing; 7678 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7679 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7680 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7681 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7682 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7683 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7684 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7685 TmpInst.addOperand(Inst.getOperand(1)); // lane 7686 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7687 TmpInst.addOperand(Inst.getOperand(6)); 7688 Inst = TmpInst; 7689 return true; 7690 } 7691 7692 case ARM::VLD2LNdWB_register_Asm_8: 7693 case ARM::VLD2LNdWB_register_Asm_16: 7694 case ARM::VLD2LNdWB_register_Asm_32: 7695 case ARM::VLD2LNqWB_register_Asm_16: 7696 case ARM::VLD2LNqWB_register_Asm_32: { 7697 MCInst TmpInst; 7698 // Shuffle the operands around so the lane index operand is in the 7699 // right place. 7700 unsigned Spacing; 7701 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7702 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7703 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7704 Spacing)); 7705 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7706 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7707 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7708 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7709 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7710 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7711 Spacing)); 7712 TmpInst.addOperand(Inst.getOperand(1)); // lane 7713 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7714 TmpInst.addOperand(Inst.getOperand(6)); 7715 Inst = TmpInst; 7716 return true; 7717 } 7718 7719 case ARM::VLD3LNdWB_register_Asm_8: 7720 case ARM::VLD3LNdWB_register_Asm_16: 7721 case ARM::VLD3LNdWB_register_Asm_32: 7722 case ARM::VLD3LNqWB_register_Asm_16: 7723 case ARM::VLD3LNqWB_register_Asm_32: { 7724 MCInst TmpInst; 7725 // Shuffle the operands around so the lane index operand is in the 7726 // right place. 7727 unsigned Spacing; 7728 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7729 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7730 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7731 Spacing)); 7732 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7733 Spacing * 2)); 7734 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7735 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7736 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7737 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7738 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7739 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7740 Spacing)); 7741 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7742 Spacing * 2)); 7743 TmpInst.addOperand(Inst.getOperand(1)); // lane 7744 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7745 TmpInst.addOperand(Inst.getOperand(6)); 7746 Inst = TmpInst; 7747 return true; 7748 } 7749 7750 case ARM::VLD4LNdWB_register_Asm_8: 7751 case ARM::VLD4LNdWB_register_Asm_16: 7752 case ARM::VLD4LNdWB_register_Asm_32: 7753 case ARM::VLD4LNqWB_register_Asm_16: 7754 case ARM::VLD4LNqWB_register_Asm_32: { 7755 MCInst TmpInst; 7756 // Shuffle the operands around so the lane index operand is in the 7757 // right place. 7758 unsigned Spacing; 7759 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7760 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7761 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7762 Spacing)); 7763 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7764 Spacing * 2)); 7765 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7766 Spacing * 3)); 7767 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7768 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7769 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7770 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7771 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7772 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7773 Spacing)); 7774 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7775 Spacing * 2)); 7776 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7777 Spacing * 3)); 7778 TmpInst.addOperand(Inst.getOperand(1)); // lane 7779 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7780 TmpInst.addOperand(Inst.getOperand(6)); 7781 Inst = TmpInst; 7782 return true; 7783 } 7784 7785 case ARM::VLD1LNdWB_fixed_Asm_8: 7786 case ARM::VLD1LNdWB_fixed_Asm_16: 7787 case ARM::VLD1LNdWB_fixed_Asm_32: { 7788 MCInst TmpInst; 7789 // Shuffle the operands around so the lane index operand is in the 7790 // right place. 7791 unsigned Spacing; 7792 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7793 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7794 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7795 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7796 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7797 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7798 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7799 TmpInst.addOperand(Inst.getOperand(1)); // lane 7800 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7801 TmpInst.addOperand(Inst.getOperand(5)); 7802 Inst = TmpInst; 7803 return true; 7804 } 7805 7806 case ARM::VLD2LNdWB_fixed_Asm_8: 7807 case ARM::VLD2LNdWB_fixed_Asm_16: 7808 case ARM::VLD2LNdWB_fixed_Asm_32: 7809 case ARM::VLD2LNqWB_fixed_Asm_16: 7810 case ARM::VLD2LNqWB_fixed_Asm_32: { 7811 MCInst TmpInst; 7812 // Shuffle the operands around so the lane index operand is in the 7813 // right place. 7814 unsigned Spacing; 7815 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7816 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7817 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7818 Spacing)); 7819 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7820 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7821 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7822 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7823 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7824 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7825 Spacing)); 7826 TmpInst.addOperand(Inst.getOperand(1)); // lane 7827 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7828 TmpInst.addOperand(Inst.getOperand(5)); 7829 Inst = TmpInst; 7830 return true; 7831 } 7832 7833 case ARM::VLD3LNdWB_fixed_Asm_8: 7834 case ARM::VLD3LNdWB_fixed_Asm_16: 7835 case ARM::VLD3LNdWB_fixed_Asm_32: 7836 case ARM::VLD3LNqWB_fixed_Asm_16: 7837 case ARM::VLD3LNqWB_fixed_Asm_32: { 7838 MCInst TmpInst; 7839 // Shuffle the operands around so the lane index operand is in the 7840 // right place. 7841 unsigned Spacing; 7842 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7843 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7844 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7845 Spacing)); 7846 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7847 Spacing * 2)); 7848 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7849 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7850 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7851 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7852 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7853 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7854 Spacing)); 7855 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7856 Spacing * 2)); 7857 TmpInst.addOperand(Inst.getOperand(1)); // lane 7858 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7859 TmpInst.addOperand(Inst.getOperand(5)); 7860 Inst = TmpInst; 7861 return true; 7862 } 7863 7864 case ARM::VLD4LNdWB_fixed_Asm_8: 7865 case ARM::VLD4LNdWB_fixed_Asm_16: 7866 case ARM::VLD4LNdWB_fixed_Asm_32: 7867 case ARM::VLD4LNqWB_fixed_Asm_16: 7868 case ARM::VLD4LNqWB_fixed_Asm_32: { 7869 MCInst TmpInst; 7870 // Shuffle the operands around so the lane index operand is in the 7871 // right place. 7872 unsigned Spacing; 7873 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7874 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7875 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7876 Spacing)); 7877 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7878 Spacing * 2)); 7879 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7880 Spacing * 3)); 7881 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7882 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7883 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7884 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7885 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7886 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7887 Spacing)); 7888 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7889 Spacing * 2)); 7890 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7891 Spacing * 3)); 7892 TmpInst.addOperand(Inst.getOperand(1)); // lane 7893 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7894 TmpInst.addOperand(Inst.getOperand(5)); 7895 Inst = TmpInst; 7896 return true; 7897 } 7898 7899 case ARM::VLD1LNdAsm_8: 7900 case ARM::VLD1LNdAsm_16: 7901 case ARM::VLD1LNdAsm_32: { 7902 MCInst TmpInst; 7903 // Shuffle the operands around so the lane index operand is in the 7904 // right place. 7905 unsigned Spacing; 7906 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7907 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7908 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7909 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7910 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7911 TmpInst.addOperand(Inst.getOperand(1)); // lane 7912 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7913 TmpInst.addOperand(Inst.getOperand(5)); 7914 Inst = TmpInst; 7915 return true; 7916 } 7917 7918 case ARM::VLD2LNdAsm_8: 7919 case ARM::VLD2LNdAsm_16: 7920 case ARM::VLD2LNdAsm_32: 7921 case ARM::VLD2LNqAsm_16: 7922 case ARM::VLD2LNqAsm_32: { 7923 MCInst TmpInst; 7924 // Shuffle the operands around so the lane index operand is in the 7925 // right place. 7926 unsigned Spacing; 7927 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7928 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7929 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7930 Spacing)); 7931 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7932 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7933 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7934 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7935 Spacing)); 7936 TmpInst.addOperand(Inst.getOperand(1)); // lane 7937 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7938 TmpInst.addOperand(Inst.getOperand(5)); 7939 Inst = TmpInst; 7940 return true; 7941 } 7942 7943 case ARM::VLD3LNdAsm_8: 7944 case ARM::VLD3LNdAsm_16: 7945 case ARM::VLD3LNdAsm_32: 7946 case ARM::VLD3LNqAsm_16: 7947 case ARM::VLD3LNqAsm_32: { 7948 MCInst TmpInst; 7949 // Shuffle the operands around so the lane index operand is in the 7950 // right place. 7951 unsigned Spacing; 7952 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7953 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7954 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7955 Spacing)); 7956 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7957 Spacing * 2)); 7958 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7959 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7960 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7961 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7962 Spacing)); 7963 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7964 Spacing * 2)); 7965 TmpInst.addOperand(Inst.getOperand(1)); // lane 7966 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7967 TmpInst.addOperand(Inst.getOperand(5)); 7968 Inst = TmpInst; 7969 return true; 7970 } 7971 7972 case ARM::VLD4LNdAsm_8: 7973 case ARM::VLD4LNdAsm_16: 7974 case ARM::VLD4LNdAsm_32: 7975 case ARM::VLD4LNqAsm_16: 7976 case ARM::VLD4LNqAsm_32: { 7977 MCInst TmpInst; 7978 // Shuffle the operands around so the lane index operand is in the 7979 // right place. 7980 unsigned Spacing; 7981 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7982 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7983 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7984 Spacing)); 7985 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7986 Spacing * 2)); 7987 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7988 Spacing * 3)); 7989 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7990 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7991 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7992 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7993 Spacing)); 7994 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7995 Spacing * 2)); 7996 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7997 Spacing * 3)); 7998 TmpInst.addOperand(Inst.getOperand(1)); // lane 7999 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8000 TmpInst.addOperand(Inst.getOperand(5)); 8001 Inst = TmpInst; 8002 return true; 8003 } 8004 8005 // VLD3DUP single 3-element structure to all lanes instructions. 8006 case ARM::VLD3DUPdAsm_8: 8007 case ARM::VLD3DUPdAsm_16: 8008 case ARM::VLD3DUPdAsm_32: 8009 case ARM::VLD3DUPqAsm_8: 8010 case ARM::VLD3DUPqAsm_16: 8011 case ARM::VLD3DUPqAsm_32: { 8012 MCInst TmpInst; 8013 unsigned Spacing; 8014 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8015 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8016 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8017 Spacing)); 8018 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8019 Spacing * 2)); 8020 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8021 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8022 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8023 TmpInst.addOperand(Inst.getOperand(4)); 8024 Inst = TmpInst; 8025 return true; 8026 } 8027 8028 case ARM::VLD3DUPdWB_fixed_Asm_8: 8029 case ARM::VLD3DUPdWB_fixed_Asm_16: 8030 case ARM::VLD3DUPdWB_fixed_Asm_32: 8031 case ARM::VLD3DUPqWB_fixed_Asm_8: 8032 case ARM::VLD3DUPqWB_fixed_Asm_16: 8033 case ARM::VLD3DUPqWB_fixed_Asm_32: { 8034 MCInst TmpInst; 8035 unsigned Spacing; 8036 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8037 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8038 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8039 Spacing)); 8040 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8041 Spacing * 2)); 8042 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8043 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8044 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8045 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8046 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8047 TmpInst.addOperand(Inst.getOperand(4)); 8048 Inst = TmpInst; 8049 return true; 8050 } 8051 8052 case ARM::VLD3DUPdWB_register_Asm_8: 8053 case ARM::VLD3DUPdWB_register_Asm_16: 8054 case ARM::VLD3DUPdWB_register_Asm_32: 8055 case ARM::VLD3DUPqWB_register_Asm_8: 8056 case ARM::VLD3DUPqWB_register_Asm_16: 8057 case ARM::VLD3DUPqWB_register_Asm_32: { 8058 MCInst TmpInst; 8059 unsigned Spacing; 8060 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8061 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8062 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8063 Spacing)); 8064 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8065 Spacing * 2)); 8066 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8067 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8068 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8069 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8070 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8071 TmpInst.addOperand(Inst.getOperand(5)); 8072 Inst = TmpInst; 8073 return true; 8074 } 8075 8076 // VLD3 multiple 3-element structure instructions. 8077 case ARM::VLD3dAsm_8: 8078 case ARM::VLD3dAsm_16: 8079 case ARM::VLD3dAsm_32: 8080 case ARM::VLD3qAsm_8: 8081 case ARM::VLD3qAsm_16: 8082 case ARM::VLD3qAsm_32: { 8083 MCInst TmpInst; 8084 unsigned Spacing; 8085 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8086 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8087 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8088 Spacing)); 8089 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8090 Spacing * 2)); 8091 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8092 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8093 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8094 TmpInst.addOperand(Inst.getOperand(4)); 8095 Inst = TmpInst; 8096 return true; 8097 } 8098 8099 case ARM::VLD3dWB_fixed_Asm_8: 8100 case ARM::VLD3dWB_fixed_Asm_16: 8101 case ARM::VLD3dWB_fixed_Asm_32: 8102 case ARM::VLD3qWB_fixed_Asm_8: 8103 case ARM::VLD3qWB_fixed_Asm_16: 8104 case ARM::VLD3qWB_fixed_Asm_32: { 8105 MCInst TmpInst; 8106 unsigned Spacing; 8107 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8108 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8109 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8110 Spacing)); 8111 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8112 Spacing * 2)); 8113 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8114 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8115 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8116 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8117 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8118 TmpInst.addOperand(Inst.getOperand(4)); 8119 Inst = TmpInst; 8120 return true; 8121 } 8122 8123 case ARM::VLD3dWB_register_Asm_8: 8124 case ARM::VLD3dWB_register_Asm_16: 8125 case ARM::VLD3dWB_register_Asm_32: 8126 case ARM::VLD3qWB_register_Asm_8: 8127 case ARM::VLD3qWB_register_Asm_16: 8128 case ARM::VLD3qWB_register_Asm_32: { 8129 MCInst TmpInst; 8130 unsigned Spacing; 8131 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8132 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8133 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8134 Spacing)); 8135 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8136 Spacing * 2)); 8137 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8138 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8139 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8140 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8141 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8142 TmpInst.addOperand(Inst.getOperand(5)); 8143 Inst = TmpInst; 8144 return true; 8145 } 8146 8147 // VLD4DUP single 3-element structure to all lanes instructions. 8148 case ARM::VLD4DUPdAsm_8: 8149 case ARM::VLD4DUPdAsm_16: 8150 case ARM::VLD4DUPdAsm_32: 8151 case ARM::VLD4DUPqAsm_8: 8152 case ARM::VLD4DUPqAsm_16: 8153 case ARM::VLD4DUPqAsm_32: { 8154 MCInst TmpInst; 8155 unsigned Spacing; 8156 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8157 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8158 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8159 Spacing)); 8160 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8161 Spacing * 2)); 8162 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8163 Spacing * 3)); 8164 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8165 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8166 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8167 TmpInst.addOperand(Inst.getOperand(4)); 8168 Inst = TmpInst; 8169 return true; 8170 } 8171 8172 case ARM::VLD4DUPdWB_fixed_Asm_8: 8173 case ARM::VLD4DUPdWB_fixed_Asm_16: 8174 case ARM::VLD4DUPdWB_fixed_Asm_32: 8175 case ARM::VLD4DUPqWB_fixed_Asm_8: 8176 case ARM::VLD4DUPqWB_fixed_Asm_16: 8177 case ARM::VLD4DUPqWB_fixed_Asm_32: { 8178 MCInst TmpInst; 8179 unsigned Spacing; 8180 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8181 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8182 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8183 Spacing)); 8184 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8185 Spacing * 2)); 8186 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8187 Spacing * 3)); 8188 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8189 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8190 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8191 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8192 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8193 TmpInst.addOperand(Inst.getOperand(4)); 8194 Inst = TmpInst; 8195 return true; 8196 } 8197 8198 case ARM::VLD4DUPdWB_register_Asm_8: 8199 case ARM::VLD4DUPdWB_register_Asm_16: 8200 case ARM::VLD4DUPdWB_register_Asm_32: 8201 case ARM::VLD4DUPqWB_register_Asm_8: 8202 case ARM::VLD4DUPqWB_register_Asm_16: 8203 case ARM::VLD4DUPqWB_register_Asm_32: { 8204 MCInst TmpInst; 8205 unsigned Spacing; 8206 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8207 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8208 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8209 Spacing)); 8210 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8211 Spacing * 2)); 8212 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8213 Spacing * 3)); 8214 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8215 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8216 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8217 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8218 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8219 TmpInst.addOperand(Inst.getOperand(5)); 8220 Inst = TmpInst; 8221 return true; 8222 } 8223 8224 // VLD4 multiple 4-element structure instructions. 8225 case ARM::VLD4dAsm_8: 8226 case ARM::VLD4dAsm_16: 8227 case ARM::VLD4dAsm_32: 8228 case ARM::VLD4qAsm_8: 8229 case ARM::VLD4qAsm_16: 8230 case ARM::VLD4qAsm_32: { 8231 MCInst TmpInst; 8232 unsigned Spacing; 8233 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8234 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8235 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8236 Spacing)); 8237 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8238 Spacing * 2)); 8239 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8240 Spacing * 3)); 8241 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8242 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8243 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8244 TmpInst.addOperand(Inst.getOperand(4)); 8245 Inst = TmpInst; 8246 return true; 8247 } 8248 8249 case ARM::VLD4dWB_fixed_Asm_8: 8250 case ARM::VLD4dWB_fixed_Asm_16: 8251 case ARM::VLD4dWB_fixed_Asm_32: 8252 case ARM::VLD4qWB_fixed_Asm_8: 8253 case ARM::VLD4qWB_fixed_Asm_16: 8254 case ARM::VLD4qWB_fixed_Asm_32: { 8255 MCInst TmpInst; 8256 unsigned Spacing; 8257 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8258 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8259 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8260 Spacing)); 8261 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8262 Spacing * 2)); 8263 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8264 Spacing * 3)); 8265 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8266 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8267 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8268 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8269 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8270 TmpInst.addOperand(Inst.getOperand(4)); 8271 Inst = TmpInst; 8272 return true; 8273 } 8274 8275 case ARM::VLD4dWB_register_Asm_8: 8276 case ARM::VLD4dWB_register_Asm_16: 8277 case ARM::VLD4dWB_register_Asm_32: 8278 case ARM::VLD4qWB_register_Asm_8: 8279 case ARM::VLD4qWB_register_Asm_16: 8280 case ARM::VLD4qWB_register_Asm_32: { 8281 MCInst TmpInst; 8282 unsigned Spacing; 8283 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8284 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8285 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8286 Spacing)); 8287 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8288 Spacing * 2)); 8289 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8290 Spacing * 3)); 8291 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8292 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8293 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8294 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8295 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8296 TmpInst.addOperand(Inst.getOperand(5)); 8297 Inst = TmpInst; 8298 return true; 8299 } 8300 8301 // VST3 multiple 3-element structure instructions. 8302 case ARM::VST3dAsm_8: 8303 case ARM::VST3dAsm_16: 8304 case ARM::VST3dAsm_32: 8305 case ARM::VST3qAsm_8: 8306 case ARM::VST3qAsm_16: 8307 case ARM::VST3qAsm_32: { 8308 MCInst TmpInst; 8309 unsigned Spacing; 8310 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8311 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8312 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8313 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8314 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8315 Spacing)); 8316 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8317 Spacing * 2)); 8318 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8319 TmpInst.addOperand(Inst.getOperand(4)); 8320 Inst = TmpInst; 8321 return true; 8322 } 8323 8324 case ARM::VST3dWB_fixed_Asm_8: 8325 case ARM::VST3dWB_fixed_Asm_16: 8326 case ARM::VST3dWB_fixed_Asm_32: 8327 case ARM::VST3qWB_fixed_Asm_8: 8328 case ARM::VST3qWB_fixed_Asm_16: 8329 case ARM::VST3qWB_fixed_Asm_32: { 8330 MCInst TmpInst; 8331 unsigned Spacing; 8332 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8333 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8334 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8335 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8336 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8337 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8338 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8339 Spacing)); 8340 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8341 Spacing * 2)); 8342 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8343 TmpInst.addOperand(Inst.getOperand(4)); 8344 Inst = TmpInst; 8345 return true; 8346 } 8347 8348 case ARM::VST3dWB_register_Asm_8: 8349 case ARM::VST3dWB_register_Asm_16: 8350 case ARM::VST3dWB_register_Asm_32: 8351 case ARM::VST3qWB_register_Asm_8: 8352 case ARM::VST3qWB_register_Asm_16: 8353 case ARM::VST3qWB_register_Asm_32: { 8354 MCInst TmpInst; 8355 unsigned Spacing; 8356 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8357 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8358 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8359 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8360 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8361 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8362 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8363 Spacing)); 8364 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8365 Spacing * 2)); 8366 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8367 TmpInst.addOperand(Inst.getOperand(5)); 8368 Inst = TmpInst; 8369 return true; 8370 } 8371 8372 // VST4 multiple 3-element structure instructions. 8373 case ARM::VST4dAsm_8: 8374 case ARM::VST4dAsm_16: 8375 case ARM::VST4dAsm_32: 8376 case ARM::VST4qAsm_8: 8377 case ARM::VST4qAsm_16: 8378 case ARM::VST4qAsm_32: { 8379 MCInst TmpInst; 8380 unsigned Spacing; 8381 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8382 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8383 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8384 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8385 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8386 Spacing)); 8387 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8388 Spacing * 2)); 8389 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8390 Spacing * 3)); 8391 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8392 TmpInst.addOperand(Inst.getOperand(4)); 8393 Inst = TmpInst; 8394 return true; 8395 } 8396 8397 case ARM::VST4dWB_fixed_Asm_8: 8398 case ARM::VST4dWB_fixed_Asm_16: 8399 case ARM::VST4dWB_fixed_Asm_32: 8400 case ARM::VST4qWB_fixed_Asm_8: 8401 case ARM::VST4qWB_fixed_Asm_16: 8402 case ARM::VST4qWB_fixed_Asm_32: { 8403 MCInst TmpInst; 8404 unsigned Spacing; 8405 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8406 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8407 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8408 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8409 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8410 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8411 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8412 Spacing)); 8413 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8414 Spacing * 2)); 8415 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8416 Spacing * 3)); 8417 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8418 TmpInst.addOperand(Inst.getOperand(4)); 8419 Inst = TmpInst; 8420 return true; 8421 } 8422 8423 case ARM::VST4dWB_register_Asm_8: 8424 case ARM::VST4dWB_register_Asm_16: 8425 case ARM::VST4dWB_register_Asm_32: 8426 case ARM::VST4qWB_register_Asm_8: 8427 case ARM::VST4qWB_register_Asm_16: 8428 case ARM::VST4qWB_register_Asm_32: { 8429 MCInst TmpInst; 8430 unsigned Spacing; 8431 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8432 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8433 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8434 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8435 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8436 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8437 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8438 Spacing)); 8439 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8440 Spacing * 2)); 8441 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8442 Spacing * 3)); 8443 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8444 TmpInst.addOperand(Inst.getOperand(5)); 8445 Inst = TmpInst; 8446 return true; 8447 } 8448 8449 // Handle encoding choice for the shift-immediate instructions. 8450 case ARM::t2LSLri: 8451 case ARM::t2LSRri: 8452 case ARM::t2ASRri: 8453 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8454 isARMLowRegister(Inst.getOperand(1).getReg()) && 8455 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8456 !HasWideQualifier) { 8457 unsigned NewOpc; 8458 switch (Inst.getOpcode()) { 8459 default: llvm_unreachable("unexpected opcode"); 8460 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8461 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8462 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8463 } 8464 // The Thumb1 operands aren't in the same order. Awesome, eh? 8465 MCInst TmpInst; 8466 TmpInst.setOpcode(NewOpc); 8467 TmpInst.addOperand(Inst.getOperand(0)); 8468 TmpInst.addOperand(Inst.getOperand(5)); 8469 TmpInst.addOperand(Inst.getOperand(1)); 8470 TmpInst.addOperand(Inst.getOperand(2)); 8471 TmpInst.addOperand(Inst.getOperand(3)); 8472 TmpInst.addOperand(Inst.getOperand(4)); 8473 Inst = TmpInst; 8474 return true; 8475 } 8476 return false; 8477 8478 // Handle the Thumb2 mode MOV complex aliases. 8479 case ARM::t2MOVsr: 8480 case ARM::t2MOVSsr: { 8481 // Which instruction to expand to depends on the CCOut operand and 8482 // whether we're in an IT block if the register operands are low 8483 // registers. 8484 bool isNarrow = false; 8485 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8486 isARMLowRegister(Inst.getOperand(1).getReg()) && 8487 isARMLowRegister(Inst.getOperand(2).getReg()) && 8488 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8489 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 8490 !HasWideQualifier) 8491 isNarrow = true; 8492 MCInst TmpInst; 8493 unsigned newOpc; 8494 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8495 default: llvm_unreachable("unexpected opcode!"); 8496 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8497 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8498 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8499 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8500 } 8501 TmpInst.setOpcode(newOpc); 8502 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8503 if (isNarrow) 8504 TmpInst.addOperand(MCOperand::createReg( 8505 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8506 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8507 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8508 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8509 TmpInst.addOperand(Inst.getOperand(5)); 8510 if (!isNarrow) 8511 TmpInst.addOperand(MCOperand::createReg( 8512 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8513 Inst = TmpInst; 8514 return true; 8515 } 8516 case ARM::t2MOVsi: 8517 case ARM::t2MOVSsi: { 8518 // Which instruction to expand to depends on the CCOut operand and 8519 // whether we're in an IT block if the register operands are low 8520 // registers. 8521 bool isNarrow = false; 8522 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8523 isARMLowRegister(Inst.getOperand(1).getReg()) && 8524 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 8525 !HasWideQualifier) 8526 isNarrow = true; 8527 MCInst TmpInst; 8528 unsigned newOpc; 8529 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8530 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8531 bool isMov = false; 8532 // MOV rd, rm, LSL #0 is actually a MOV instruction 8533 if (Shift == ARM_AM::lsl && Amount == 0) { 8534 isMov = true; 8535 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 8536 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 8537 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 8538 // instead. 8539 if (inITBlock()) { 8540 isNarrow = false; 8541 } 8542 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 8543 } else { 8544 switch(Shift) { 8545 default: llvm_unreachable("unexpected opcode!"); 8546 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8547 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8548 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8549 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8550 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8551 } 8552 } 8553 if (Amount == 32) Amount = 0; 8554 TmpInst.setOpcode(newOpc); 8555 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8556 if (isNarrow && !isMov) 8557 TmpInst.addOperand(MCOperand::createReg( 8558 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8559 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8560 if (newOpc != ARM::t2RRX && !isMov) 8561 TmpInst.addOperand(MCOperand::createImm(Amount)); 8562 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8563 TmpInst.addOperand(Inst.getOperand(4)); 8564 if (!isNarrow) 8565 TmpInst.addOperand(MCOperand::createReg( 8566 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8567 Inst = TmpInst; 8568 return true; 8569 } 8570 // Handle the ARM mode MOV complex aliases. 8571 case ARM::ASRr: 8572 case ARM::LSRr: 8573 case ARM::LSLr: 8574 case ARM::RORr: { 8575 ARM_AM::ShiftOpc ShiftTy; 8576 switch(Inst.getOpcode()) { 8577 default: llvm_unreachable("unexpected opcode!"); 8578 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8579 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8580 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8581 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8582 } 8583 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8584 MCInst TmpInst; 8585 TmpInst.setOpcode(ARM::MOVsr); 8586 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8587 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8588 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8589 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8590 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8591 TmpInst.addOperand(Inst.getOperand(4)); 8592 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8593 Inst = TmpInst; 8594 return true; 8595 } 8596 case ARM::ASRi: 8597 case ARM::LSRi: 8598 case ARM::LSLi: 8599 case ARM::RORi: { 8600 ARM_AM::ShiftOpc ShiftTy; 8601 switch(Inst.getOpcode()) { 8602 default: llvm_unreachable("unexpected opcode!"); 8603 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8604 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8605 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8606 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8607 } 8608 // A shift by zero is a plain MOVr, not a MOVsi. 8609 unsigned Amt = Inst.getOperand(2).getImm(); 8610 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8611 // A shift by 32 should be encoded as 0 when permitted 8612 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8613 Amt = 0; 8614 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8615 MCInst TmpInst; 8616 TmpInst.setOpcode(Opc); 8617 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8618 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8619 if (Opc == ARM::MOVsi) 8620 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8621 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8622 TmpInst.addOperand(Inst.getOperand(4)); 8623 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8624 Inst = TmpInst; 8625 return true; 8626 } 8627 case ARM::RRXi: { 8628 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8629 MCInst TmpInst; 8630 TmpInst.setOpcode(ARM::MOVsi); 8631 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8632 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8633 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8634 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8635 TmpInst.addOperand(Inst.getOperand(3)); 8636 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8637 Inst = TmpInst; 8638 return true; 8639 } 8640 case ARM::t2LDMIA_UPD: { 8641 // If this is a load of a single register, then we should use 8642 // a post-indexed LDR instruction instead, per the ARM ARM. 8643 if (Inst.getNumOperands() != 5) 8644 return false; 8645 MCInst TmpInst; 8646 TmpInst.setOpcode(ARM::t2LDR_POST); 8647 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8648 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8649 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8650 TmpInst.addOperand(MCOperand::createImm(4)); 8651 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8652 TmpInst.addOperand(Inst.getOperand(3)); 8653 Inst = TmpInst; 8654 return true; 8655 } 8656 case ARM::t2STMDB_UPD: { 8657 // If this is a store of a single register, then we should use 8658 // a pre-indexed STR instruction instead, per the ARM ARM. 8659 if (Inst.getNumOperands() != 5) 8660 return false; 8661 MCInst TmpInst; 8662 TmpInst.setOpcode(ARM::t2STR_PRE); 8663 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8664 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8665 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8666 TmpInst.addOperand(MCOperand::createImm(-4)); 8667 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8668 TmpInst.addOperand(Inst.getOperand(3)); 8669 Inst = TmpInst; 8670 return true; 8671 } 8672 case ARM::LDMIA_UPD: 8673 // If this is a load of a single register via a 'pop', then we should use 8674 // a post-indexed LDR instruction instead, per the ARM ARM. 8675 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8676 Inst.getNumOperands() == 5) { 8677 MCInst TmpInst; 8678 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8679 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8680 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8681 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8682 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8683 TmpInst.addOperand(MCOperand::createImm(4)); 8684 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8685 TmpInst.addOperand(Inst.getOperand(3)); 8686 Inst = TmpInst; 8687 return true; 8688 } 8689 break; 8690 case ARM::STMDB_UPD: 8691 // If this is a store of a single register via a 'push', then we should use 8692 // a pre-indexed STR instruction instead, per the ARM ARM. 8693 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8694 Inst.getNumOperands() == 5) { 8695 MCInst TmpInst; 8696 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8697 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8698 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8699 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8700 TmpInst.addOperand(MCOperand::createImm(-4)); 8701 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8702 TmpInst.addOperand(Inst.getOperand(3)); 8703 Inst = TmpInst; 8704 } 8705 break; 8706 case ARM::t2ADDri12: 8707 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8708 // mnemonic was used (not "addw"), encoding T3 is preferred. 8709 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8710 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8711 break; 8712 Inst.setOpcode(ARM::t2ADDri); 8713 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8714 break; 8715 case ARM::t2SUBri12: 8716 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8717 // mnemonic was used (not "subw"), encoding T3 is preferred. 8718 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8719 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8720 break; 8721 Inst.setOpcode(ARM::t2SUBri); 8722 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8723 break; 8724 case ARM::tADDi8: 8725 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8726 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8727 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8728 // to encoding T1 if <Rd> is omitted." 8729 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8730 Inst.setOpcode(ARM::tADDi3); 8731 return true; 8732 } 8733 break; 8734 case ARM::tSUBi8: 8735 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8736 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8737 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8738 // to encoding T1 if <Rd> is omitted." 8739 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8740 Inst.setOpcode(ARM::tSUBi3); 8741 return true; 8742 } 8743 break; 8744 case ARM::t2ADDri: 8745 case ARM::t2SUBri: { 8746 // If the destination and first source operand are the same, and 8747 // the flags are compatible with the current IT status, use encoding T2 8748 // instead of T3. For compatibility with the system 'as'. Make sure the 8749 // wide encoding wasn't explicit. 8750 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8751 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8752 (Inst.getOperand(2).isImm() && 8753 (unsigned)Inst.getOperand(2).getImm() > 255) || 8754 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 8755 HasWideQualifier) 8756 break; 8757 MCInst TmpInst; 8758 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8759 ARM::tADDi8 : ARM::tSUBi8); 8760 TmpInst.addOperand(Inst.getOperand(0)); 8761 TmpInst.addOperand(Inst.getOperand(5)); 8762 TmpInst.addOperand(Inst.getOperand(0)); 8763 TmpInst.addOperand(Inst.getOperand(2)); 8764 TmpInst.addOperand(Inst.getOperand(3)); 8765 TmpInst.addOperand(Inst.getOperand(4)); 8766 Inst = TmpInst; 8767 return true; 8768 } 8769 case ARM::t2ADDrr: { 8770 // If the destination and first source operand are the same, and 8771 // there's no setting of the flags, use encoding T2 instead of T3. 8772 // Note that this is only for ADD, not SUB. This mirrors the system 8773 // 'as' behaviour. Also take advantage of ADD being commutative. 8774 // Make sure the wide encoding wasn't explicit. 8775 bool Swap = false; 8776 auto DestReg = Inst.getOperand(0).getReg(); 8777 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8778 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8779 Transform = true; 8780 Swap = true; 8781 } 8782 if (!Transform || 8783 Inst.getOperand(5).getReg() != 0 || 8784 HasWideQualifier) 8785 break; 8786 MCInst TmpInst; 8787 TmpInst.setOpcode(ARM::tADDhirr); 8788 TmpInst.addOperand(Inst.getOperand(0)); 8789 TmpInst.addOperand(Inst.getOperand(0)); 8790 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8791 TmpInst.addOperand(Inst.getOperand(3)); 8792 TmpInst.addOperand(Inst.getOperand(4)); 8793 Inst = TmpInst; 8794 return true; 8795 } 8796 case ARM::tADDrSP: 8797 // If the non-SP source operand and the destination operand are not the 8798 // same, we need to use the 32-bit encoding if it's available. 8799 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8800 Inst.setOpcode(ARM::t2ADDrr); 8801 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8802 return true; 8803 } 8804 break; 8805 case ARM::tB: 8806 // A Thumb conditional branch outside of an IT block is a tBcc. 8807 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8808 Inst.setOpcode(ARM::tBcc); 8809 return true; 8810 } 8811 break; 8812 case ARM::t2B: 8813 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8814 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8815 Inst.setOpcode(ARM::t2Bcc); 8816 return true; 8817 } 8818 break; 8819 case ARM::t2Bcc: 8820 // If the conditional is AL or we're in an IT block, we really want t2B. 8821 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8822 Inst.setOpcode(ARM::t2B); 8823 return true; 8824 } 8825 break; 8826 case ARM::tBcc: 8827 // If the conditional is AL, we really want tB. 8828 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8829 Inst.setOpcode(ARM::tB); 8830 return true; 8831 } 8832 break; 8833 case ARM::tLDMIA: { 8834 // If the register list contains any high registers, or if the writeback 8835 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8836 // instead if we're in Thumb2. Otherwise, this should have generated 8837 // an error in validateInstruction(). 8838 unsigned Rn = Inst.getOperand(0).getReg(); 8839 bool hasWritebackToken = 8840 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8841 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8842 bool listContainsBase; 8843 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8844 (!listContainsBase && !hasWritebackToken) || 8845 (listContainsBase && hasWritebackToken)) { 8846 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8847 assert(isThumbTwo()); 8848 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8849 // If we're switching to the updating version, we need to insert 8850 // the writeback tied operand. 8851 if (hasWritebackToken) 8852 Inst.insert(Inst.begin(), 8853 MCOperand::createReg(Inst.getOperand(0).getReg())); 8854 return true; 8855 } 8856 break; 8857 } 8858 case ARM::tSTMIA_UPD: { 8859 // If the register list contains any high registers, we need to use 8860 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8861 // should have generated an error in validateInstruction(). 8862 unsigned Rn = Inst.getOperand(0).getReg(); 8863 bool listContainsBase; 8864 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8865 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8866 assert(isThumbTwo()); 8867 Inst.setOpcode(ARM::t2STMIA_UPD); 8868 return true; 8869 } 8870 break; 8871 } 8872 case ARM::tPOP: { 8873 bool listContainsBase; 8874 // If the register list contains any high registers, we need to use 8875 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8876 // should have generated an error in validateInstruction(). 8877 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8878 return false; 8879 assert(isThumbTwo()); 8880 Inst.setOpcode(ARM::t2LDMIA_UPD); 8881 // Add the base register and writeback operands. 8882 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8883 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8884 return true; 8885 } 8886 case ARM::tPUSH: { 8887 bool listContainsBase; 8888 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8889 return false; 8890 assert(isThumbTwo()); 8891 Inst.setOpcode(ARM::t2STMDB_UPD); 8892 // Add the base register and writeback operands. 8893 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8894 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8895 return true; 8896 } 8897 case ARM::t2MOVi: 8898 // If we can use the 16-bit encoding and the user didn't explicitly 8899 // request the 32-bit variant, transform it here. 8900 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8901 (Inst.getOperand(1).isImm() && 8902 (unsigned)Inst.getOperand(1).getImm() <= 255) && 8903 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8904 !HasWideQualifier) { 8905 // The operands aren't in the same order for tMOVi8... 8906 MCInst TmpInst; 8907 TmpInst.setOpcode(ARM::tMOVi8); 8908 TmpInst.addOperand(Inst.getOperand(0)); 8909 TmpInst.addOperand(Inst.getOperand(4)); 8910 TmpInst.addOperand(Inst.getOperand(1)); 8911 TmpInst.addOperand(Inst.getOperand(2)); 8912 TmpInst.addOperand(Inst.getOperand(3)); 8913 Inst = TmpInst; 8914 return true; 8915 } 8916 break; 8917 8918 case ARM::t2MOVr: 8919 // If we can use the 16-bit encoding and the user didn't explicitly 8920 // request the 32-bit variant, transform it here. 8921 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8922 isARMLowRegister(Inst.getOperand(1).getReg()) && 8923 Inst.getOperand(2).getImm() == ARMCC::AL && 8924 Inst.getOperand(4).getReg() == ARM::CPSR && 8925 !HasWideQualifier) { 8926 // The operands aren't the same for tMOV[S]r... (no cc_out) 8927 MCInst TmpInst; 8928 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8929 TmpInst.addOperand(Inst.getOperand(0)); 8930 TmpInst.addOperand(Inst.getOperand(1)); 8931 TmpInst.addOperand(Inst.getOperand(2)); 8932 TmpInst.addOperand(Inst.getOperand(3)); 8933 Inst = TmpInst; 8934 return true; 8935 } 8936 break; 8937 8938 case ARM::t2SXTH: 8939 case ARM::t2SXTB: 8940 case ARM::t2UXTH: 8941 case ARM::t2UXTB: 8942 // If we can use the 16-bit encoding and the user didn't explicitly 8943 // request the 32-bit variant, transform it here. 8944 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8945 isARMLowRegister(Inst.getOperand(1).getReg()) && 8946 Inst.getOperand(2).getImm() == 0 && 8947 !HasWideQualifier) { 8948 unsigned NewOpc; 8949 switch (Inst.getOpcode()) { 8950 default: llvm_unreachable("Illegal opcode!"); 8951 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8952 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8953 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8954 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8955 } 8956 // The operands aren't the same for thumb1 (no rotate operand). 8957 MCInst TmpInst; 8958 TmpInst.setOpcode(NewOpc); 8959 TmpInst.addOperand(Inst.getOperand(0)); 8960 TmpInst.addOperand(Inst.getOperand(1)); 8961 TmpInst.addOperand(Inst.getOperand(3)); 8962 TmpInst.addOperand(Inst.getOperand(4)); 8963 Inst = TmpInst; 8964 return true; 8965 } 8966 break; 8967 8968 case ARM::MOVsi: { 8969 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8970 // rrx shifts and asr/lsr of #32 is encoded as 0 8971 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8972 return false; 8973 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8974 // Shifting by zero is accepted as a vanilla 'MOVr' 8975 MCInst TmpInst; 8976 TmpInst.setOpcode(ARM::MOVr); 8977 TmpInst.addOperand(Inst.getOperand(0)); 8978 TmpInst.addOperand(Inst.getOperand(1)); 8979 TmpInst.addOperand(Inst.getOperand(3)); 8980 TmpInst.addOperand(Inst.getOperand(4)); 8981 TmpInst.addOperand(Inst.getOperand(5)); 8982 Inst = TmpInst; 8983 return true; 8984 } 8985 return false; 8986 } 8987 case ARM::ANDrsi: 8988 case ARM::ORRrsi: 8989 case ARM::EORrsi: 8990 case ARM::BICrsi: 8991 case ARM::SUBrsi: 8992 case ARM::ADDrsi: { 8993 unsigned newOpc; 8994 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8995 if (SOpc == ARM_AM::rrx) return false; 8996 switch (Inst.getOpcode()) { 8997 default: llvm_unreachable("unexpected opcode!"); 8998 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8999 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 9000 case ARM::EORrsi: newOpc = ARM::EORrr; break; 9001 case ARM::BICrsi: newOpc = ARM::BICrr; break; 9002 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 9003 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 9004 } 9005 // If the shift is by zero, use the non-shifted instruction definition. 9006 // The exception is for right shifts, where 0 == 32 9007 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 9008 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 9009 MCInst TmpInst; 9010 TmpInst.setOpcode(newOpc); 9011 TmpInst.addOperand(Inst.getOperand(0)); 9012 TmpInst.addOperand(Inst.getOperand(1)); 9013 TmpInst.addOperand(Inst.getOperand(2)); 9014 TmpInst.addOperand(Inst.getOperand(4)); 9015 TmpInst.addOperand(Inst.getOperand(5)); 9016 TmpInst.addOperand(Inst.getOperand(6)); 9017 Inst = TmpInst; 9018 return true; 9019 } 9020 return false; 9021 } 9022 case ARM::ITasm: 9023 case ARM::t2IT: { 9024 MCOperand &MO = Inst.getOperand(1); 9025 unsigned Mask = MO.getImm(); 9026 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 9027 9028 // Set up the IT block state according to the IT instruction we just 9029 // matched. 9030 assert(!inITBlock() && "nested IT blocks?!"); 9031 startExplicitITBlock(Cond, Mask); 9032 MO.setImm(getITMaskEncoding()); 9033 break; 9034 } 9035 case ARM::t2LSLrr: 9036 case ARM::t2LSRrr: 9037 case ARM::t2ASRrr: 9038 case ARM::t2SBCrr: 9039 case ARM::t2RORrr: 9040 case ARM::t2BICrr: 9041 // Assemblers should use the narrow encodings of these instructions when permissible. 9042 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 9043 isARMLowRegister(Inst.getOperand(2).getReg())) && 9044 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 9045 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9046 !HasWideQualifier) { 9047 unsigned NewOpc; 9048 switch (Inst.getOpcode()) { 9049 default: llvm_unreachable("unexpected opcode"); 9050 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 9051 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 9052 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 9053 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 9054 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 9055 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 9056 } 9057 MCInst TmpInst; 9058 TmpInst.setOpcode(NewOpc); 9059 TmpInst.addOperand(Inst.getOperand(0)); 9060 TmpInst.addOperand(Inst.getOperand(5)); 9061 TmpInst.addOperand(Inst.getOperand(1)); 9062 TmpInst.addOperand(Inst.getOperand(2)); 9063 TmpInst.addOperand(Inst.getOperand(3)); 9064 TmpInst.addOperand(Inst.getOperand(4)); 9065 Inst = TmpInst; 9066 return true; 9067 } 9068 return false; 9069 9070 case ARM::t2ANDrr: 9071 case ARM::t2EORrr: 9072 case ARM::t2ADCrr: 9073 case ARM::t2ORRrr: 9074 // Assemblers should use the narrow encodings of these instructions when permissible. 9075 // These instructions are special in that they are commutable, so shorter encodings 9076 // are available more often. 9077 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 9078 isARMLowRegister(Inst.getOperand(2).getReg())) && 9079 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 9080 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 9081 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9082 !HasWideQualifier) { 9083 unsigned NewOpc; 9084 switch (Inst.getOpcode()) { 9085 default: llvm_unreachable("unexpected opcode"); 9086 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 9087 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 9088 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 9089 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 9090 } 9091 MCInst TmpInst; 9092 TmpInst.setOpcode(NewOpc); 9093 TmpInst.addOperand(Inst.getOperand(0)); 9094 TmpInst.addOperand(Inst.getOperand(5)); 9095 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 9096 TmpInst.addOperand(Inst.getOperand(1)); 9097 TmpInst.addOperand(Inst.getOperand(2)); 9098 } else { 9099 TmpInst.addOperand(Inst.getOperand(2)); 9100 TmpInst.addOperand(Inst.getOperand(1)); 9101 } 9102 TmpInst.addOperand(Inst.getOperand(3)); 9103 TmpInst.addOperand(Inst.getOperand(4)); 9104 Inst = TmpInst; 9105 return true; 9106 } 9107 return false; 9108 } 9109 return false; 9110 } 9111 9112 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 9113 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 9114 // suffix depending on whether they're in an IT block or not. 9115 unsigned Opc = Inst.getOpcode(); 9116 const MCInstrDesc &MCID = MII.get(Opc); 9117 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 9118 assert(MCID.hasOptionalDef() && 9119 "optionally flag setting instruction missing optional def operand"); 9120 assert(MCID.NumOperands == Inst.getNumOperands() && 9121 "operand count mismatch!"); 9122 // Find the optional-def operand (cc_out). 9123 unsigned OpNo; 9124 for (OpNo = 0; 9125 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 9126 ++OpNo) 9127 ; 9128 // If we're parsing Thumb1, reject it completely. 9129 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 9130 return Match_RequiresFlagSetting; 9131 // If we're parsing Thumb2, which form is legal depends on whether we're 9132 // in an IT block. 9133 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 9134 !inITBlock()) 9135 return Match_RequiresITBlock; 9136 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 9137 inITBlock()) 9138 return Match_RequiresNotITBlock; 9139 // LSL with zero immediate is not allowed in an IT block 9140 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 9141 return Match_RequiresNotITBlock; 9142 } else if (isThumbOne()) { 9143 // Some high-register supporting Thumb1 encodings only allow both registers 9144 // to be from r0-r7 when in Thumb2. 9145 if (Opc == ARM::tADDhirr && !hasV6MOps() && 9146 isARMLowRegister(Inst.getOperand(1).getReg()) && 9147 isARMLowRegister(Inst.getOperand(2).getReg())) 9148 return Match_RequiresThumb2; 9149 // Others only require ARMv6 or later. 9150 else if (Opc == ARM::tMOVr && !hasV6Ops() && 9151 isARMLowRegister(Inst.getOperand(0).getReg()) && 9152 isARMLowRegister(Inst.getOperand(1).getReg())) 9153 return Match_RequiresV6; 9154 } 9155 9156 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 9157 // than the loop below can handle, so it uses the GPRnopc register class and 9158 // we do SP handling here. 9159 if (Opc == ARM::t2MOVr && !hasV8Ops()) 9160 { 9161 // SP as both source and destination is not allowed 9162 if (Inst.getOperand(0).getReg() == ARM::SP && 9163 Inst.getOperand(1).getReg() == ARM::SP) 9164 return Match_RequiresV8; 9165 // When flags-setting SP as either source or destination is not allowed 9166 if (Inst.getOperand(4).getReg() == ARM::CPSR && 9167 (Inst.getOperand(0).getReg() == ARM::SP || 9168 Inst.getOperand(1).getReg() == ARM::SP)) 9169 return Match_RequiresV8; 9170 } 9171 9172 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 9173 // ARMv8-A. 9174 if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) && 9175 Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops())) 9176 return Match_InvalidOperand; 9177 9178 for (unsigned I = 0; I < MCID.NumOperands; ++I) 9179 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 9180 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 9181 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 9182 return Match_RequiresV8; 9183 else if (Inst.getOperand(I).getReg() == ARM::PC) 9184 return Match_InvalidOperand; 9185 } 9186 9187 return Match_Success; 9188 } 9189 9190 namespace llvm { 9191 9192 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 9193 return true; // In an assembly source, no need to second-guess 9194 } 9195 9196 } // end namespace llvm 9197 9198 // Returns true if Inst is unpredictable if it is in and IT block, but is not 9199 // the last instruction in the block. 9200 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 9201 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9202 9203 // All branch & call instructions terminate IT blocks with the exception of 9204 // SVC. 9205 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 9206 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 9207 return true; 9208 9209 // Any arithmetic instruction which writes to the PC also terminates the IT 9210 // block. 9211 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 9212 return true; 9213 9214 return false; 9215 } 9216 9217 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 9218 SmallVectorImpl<NearMissInfo> &NearMisses, 9219 bool MatchingInlineAsm, 9220 bool &EmitInITBlock, 9221 MCStreamer &Out) { 9222 // If we can't use an implicit IT block here, just match as normal. 9223 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 9224 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 9225 9226 // Try to match the instruction in an extension of the current IT block (if 9227 // there is one). 9228 if (inImplicitITBlock()) { 9229 extendImplicitITBlock(ITState.Cond); 9230 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9231 Match_Success) { 9232 // The match succeded, but we still have to check that the instruction is 9233 // valid in this implicit IT block. 9234 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9235 if (MCID.isPredicable()) { 9236 ARMCC::CondCodes InstCond = 9237 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9238 .getImm(); 9239 ARMCC::CondCodes ITCond = currentITCond(); 9240 if (InstCond == ITCond) { 9241 EmitInITBlock = true; 9242 return Match_Success; 9243 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 9244 invertCurrentITCondition(); 9245 EmitInITBlock = true; 9246 return Match_Success; 9247 } 9248 } 9249 } 9250 rewindImplicitITPosition(); 9251 } 9252 9253 // Finish the current IT block, and try to match outside any IT block. 9254 flushPendingInstructions(Out); 9255 unsigned PlainMatchResult = 9256 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 9257 if (PlainMatchResult == Match_Success) { 9258 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9259 if (MCID.isPredicable()) { 9260 ARMCC::CondCodes InstCond = 9261 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9262 .getImm(); 9263 // Some forms of the branch instruction have their own condition code 9264 // fields, so can be conditionally executed without an IT block. 9265 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 9266 EmitInITBlock = false; 9267 return Match_Success; 9268 } 9269 if (InstCond == ARMCC::AL) { 9270 EmitInITBlock = false; 9271 return Match_Success; 9272 } 9273 } else { 9274 EmitInITBlock = false; 9275 return Match_Success; 9276 } 9277 } 9278 9279 // Try to match in a new IT block. The matcher doesn't check the actual 9280 // condition, so we create an IT block with a dummy condition, and fix it up 9281 // once we know the actual condition. 9282 startImplicitITBlock(); 9283 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9284 Match_Success) { 9285 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9286 if (MCID.isPredicable()) { 9287 ITState.Cond = 9288 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9289 .getImm(); 9290 EmitInITBlock = true; 9291 return Match_Success; 9292 } 9293 } 9294 discardImplicitITBlock(); 9295 9296 // If none of these succeed, return the error we got when trying to match 9297 // outside any IT blocks. 9298 EmitInITBlock = false; 9299 return PlainMatchResult; 9300 } 9301 9302 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 9303 unsigned VariantID = 0); 9304 9305 static const char *getSubtargetFeatureName(uint64_t Val); 9306 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 9307 OperandVector &Operands, 9308 MCStreamer &Out, uint64_t &ErrorInfo, 9309 bool MatchingInlineAsm) { 9310 MCInst Inst; 9311 unsigned MatchResult; 9312 bool PendConditionalInstruction = false; 9313 9314 SmallVector<NearMissInfo, 4> NearMisses; 9315 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 9316 PendConditionalInstruction, Out); 9317 9318 switch (MatchResult) { 9319 case Match_Success: 9320 LLVM_DEBUG(dbgs() << "Parsed as: "; 9321 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 9322 dbgs() << "\n"); 9323 9324 // Context sensitive operand constraints aren't handled by the matcher, 9325 // so check them here. 9326 if (validateInstruction(Inst, Operands)) { 9327 // Still progress the IT block, otherwise one wrong condition causes 9328 // nasty cascading errors. 9329 forwardITPosition(); 9330 return true; 9331 } 9332 9333 { // processInstruction() updates inITBlock state, we need to save it away 9334 bool wasInITBlock = inITBlock(); 9335 9336 // Some instructions need post-processing to, for example, tweak which 9337 // encoding is selected. Loop on it while changes happen so the 9338 // individual transformations can chain off each other. E.g., 9339 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9340 while (processInstruction(Inst, Operands, Out)) 9341 LLVM_DEBUG(dbgs() << "Changed to: "; 9342 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 9343 dbgs() << "\n"); 9344 9345 // Only after the instruction is fully processed, we can validate it 9346 if (wasInITBlock && hasV8Ops() && isThumb() && 9347 !isV8EligibleForIT(&Inst)) { 9348 Warning(IDLoc, "deprecated instruction in IT block"); 9349 } 9350 } 9351 9352 // Only move forward at the very end so that everything in validate 9353 // and process gets a consistent answer about whether we're in an IT 9354 // block. 9355 forwardITPosition(); 9356 9357 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9358 // doesn't actually encode. 9359 if (Inst.getOpcode() == ARM::ITasm) 9360 return false; 9361 9362 Inst.setLoc(IDLoc); 9363 if (PendConditionalInstruction) { 9364 PendingConditionalInsts.push_back(Inst); 9365 if (isITBlockFull() || isITBlockTerminator(Inst)) 9366 flushPendingInstructions(Out); 9367 } else { 9368 Out.EmitInstruction(Inst, getSTI()); 9369 } 9370 return false; 9371 case Match_NearMisses: 9372 ReportNearMisses(NearMisses, IDLoc, Operands); 9373 return true; 9374 case Match_MnemonicFail: { 9375 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 9376 std::string Suggestion = ARMMnemonicSpellCheck( 9377 ((ARMOperand &)*Operands[0]).getToken(), FBS); 9378 return Error(IDLoc, "invalid instruction" + Suggestion, 9379 ((ARMOperand &)*Operands[0]).getLocRange()); 9380 } 9381 } 9382 9383 llvm_unreachable("Implement any new match types added!"); 9384 } 9385 9386 /// parseDirective parses the arm specific directives 9387 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9388 const MCObjectFileInfo::Environment Format = 9389 getContext().getObjectFileInfo()->getObjectFileType(); 9390 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9391 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9392 9393 StringRef IDVal = DirectiveID.getIdentifier(); 9394 if (IDVal == ".word") 9395 parseLiteralValues(4, DirectiveID.getLoc()); 9396 else if (IDVal == ".short" || IDVal == ".hword") 9397 parseLiteralValues(2, DirectiveID.getLoc()); 9398 else if (IDVal == ".thumb") 9399 parseDirectiveThumb(DirectiveID.getLoc()); 9400 else if (IDVal == ".arm") 9401 parseDirectiveARM(DirectiveID.getLoc()); 9402 else if (IDVal == ".thumb_func") 9403 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9404 else if (IDVal == ".code") 9405 parseDirectiveCode(DirectiveID.getLoc()); 9406 else if (IDVal == ".syntax") 9407 parseDirectiveSyntax(DirectiveID.getLoc()); 9408 else if (IDVal == ".unreq") 9409 parseDirectiveUnreq(DirectiveID.getLoc()); 9410 else if (IDVal == ".fnend") 9411 parseDirectiveFnEnd(DirectiveID.getLoc()); 9412 else if (IDVal == ".cantunwind") 9413 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9414 else if (IDVal == ".personality") 9415 parseDirectivePersonality(DirectiveID.getLoc()); 9416 else if (IDVal == ".handlerdata") 9417 parseDirectiveHandlerData(DirectiveID.getLoc()); 9418 else if (IDVal == ".setfp") 9419 parseDirectiveSetFP(DirectiveID.getLoc()); 9420 else if (IDVal == ".pad") 9421 parseDirectivePad(DirectiveID.getLoc()); 9422 else if (IDVal == ".save") 9423 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9424 else if (IDVal == ".vsave") 9425 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9426 else if (IDVal == ".ltorg" || IDVal == ".pool") 9427 parseDirectiveLtorg(DirectiveID.getLoc()); 9428 else if (IDVal == ".even") 9429 parseDirectiveEven(DirectiveID.getLoc()); 9430 else if (IDVal == ".personalityindex") 9431 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9432 else if (IDVal == ".unwind_raw") 9433 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9434 else if (IDVal == ".movsp") 9435 parseDirectiveMovSP(DirectiveID.getLoc()); 9436 else if (IDVal == ".arch_extension") 9437 parseDirectiveArchExtension(DirectiveID.getLoc()); 9438 else if (IDVal == ".align") 9439 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9440 else if (IDVal == ".thumb_set") 9441 parseDirectiveThumbSet(DirectiveID.getLoc()); 9442 else if (IDVal == ".inst") 9443 parseDirectiveInst(DirectiveID.getLoc()); 9444 else if (IDVal == ".inst.n") 9445 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9446 else if (IDVal == ".inst.w") 9447 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9448 else if (!IsMachO && !IsCOFF) { 9449 if (IDVal == ".arch") 9450 parseDirectiveArch(DirectiveID.getLoc()); 9451 else if (IDVal == ".cpu") 9452 parseDirectiveCPU(DirectiveID.getLoc()); 9453 else if (IDVal == ".eabi_attribute") 9454 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9455 else if (IDVal == ".fpu") 9456 parseDirectiveFPU(DirectiveID.getLoc()); 9457 else if (IDVal == ".fnstart") 9458 parseDirectiveFnStart(DirectiveID.getLoc()); 9459 else if (IDVal == ".object_arch") 9460 parseDirectiveObjectArch(DirectiveID.getLoc()); 9461 else if (IDVal == ".tlsdescseq") 9462 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9463 else 9464 return true; 9465 } else 9466 return true; 9467 return false; 9468 } 9469 9470 /// parseLiteralValues 9471 /// ::= .hword expression [, expression]* 9472 /// ::= .short expression [, expression]* 9473 /// ::= .word expression [, expression]* 9474 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9475 auto parseOne = [&]() -> bool { 9476 const MCExpr *Value; 9477 if (getParser().parseExpression(Value)) 9478 return true; 9479 getParser().getStreamer().EmitValue(Value, Size, L); 9480 return false; 9481 }; 9482 return (parseMany(parseOne)); 9483 } 9484 9485 /// parseDirectiveThumb 9486 /// ::= .thumb 9487 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9488 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9489 check(!hasThumb(), L, "target does not support Thumb mode")) 9490 return true; 9491 9492 if (!isThumb()) 9493 SwitchMode(); 9494 9495 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9496 return false; 9497 } 9498 9499 /// parseDirectiveARM 9500 /// ::= .arm 9501 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9502 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9503 check(!hasARM(), L, "target does not support ARM mode")) 9504 return true; 9505 9506 if (isThumb()) 9507 SwitchMode(); 9508 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9509 return false; 9510 } 9511 9512 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 9513 // We need to flush the current implicit IT block on a label, because it is 9514 // not legal to branch into an IT block. 9515 flushPendingInstructions(getStreamer()); 9516 } 9517 9518 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9519 if (NextSymbolIsThumb) { 9520 getParser().getStreamer().EmitThumbFunc(Symbol); 9521 NextSymbolIsThumb = false; 9522 } 9523 } 9524 9525 /// parseDirectiveThumbFunc 9526 /// ::= .thumbfunc symbol_name 9527 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9528 MCAsmParser &Parser = getParser(); 9529 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9530 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9531 9532 // Darwin asm has (optionally) function name after .thumb_func direction 9533 // ELF doesn't 9534 9535 if (IsMachO) { 9536 if (Parser.getTok().is(AsmToken::Identifier) || 9537 Parser.getTok().is(AsmToken::String)) { 9538 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9539 Parser.getTok().getIdentifier()); 9540 getParser().getStreamer().EmitThumbFunc(Func); 9541 Parser.Lex(); 9542 if (parseToken(AsmToken::EndOfStatement, 9543 "unexpected token in '.thumb_func' directive")) 9544 return true; 9545 return false; 9546 } 9547 } 9548 9549 if (parseToken(AsmToken::EndOfStatement, 9550 "unexpected token in '.thumb_func' directive")) 9551 return true; 9552 9553 NextSymbolIsThumb = true; 9554 return false; 9555 } 9556 9557 /// parseDirectiveSyntax 9558 /// ::= .syntax unified | divided 9559 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9560 MCAsmParser &Parser = getParser(); 9561 const AsmToken &Tok = Parser.getTok(); 9562 if (Tok.isNot(AsmToken::Identifier)) { 9563 Error(L, "unexpected token in .syntax directive"); 9564 return false; 9565 } 9566 9567 StringRef Mode = Tok.getString(); 9568 Parser.Lex(); 9569 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9570 "'.syntax divided' arm assembly not supported") || 9571 check(Mode != "unified" && Mode != "UNIFIED", L, 9572 "unrecognized syntax mode in .syntax directive") || 9573 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9574 return true; 9575 9576 // TODO tell the MC streamer the mode 9577 // getParser().getStreamer().Emit???(); 9578 return false; 9579 } 9580 9581 /// parseDirectiveCode 9582 /// ::= .code 16 | 32 9583 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9584 MCAsmParser &Parser = getParser(); 9585 const AsmToken &Tok = Parser.getTok(); 9586 if (Tok.isNot(AsmToken::Integer)) 9587 return Error(L, "unexpected token in .code directive"); 9588 int64_t Val = Parser.getTok().getIntVal(); 9589 if (Val != 16 && Val != 32) { 9590 Error(L, "invalid operand to .code directive"); 9591 return false; 9592 } 9593 Parser.Lex(); 9594 9595 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9596 return true; 9597 9598 if (Val == 16) { 9599 if (!hasThumb()) 9600 return Error(L, "target does not support Thumb mode"); 9601 9602 if (!isThumb()) 9603 SwitchMode(); 9604 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9605 } else { 9606 if (!hasARM()) 9607 return Error(L, "target does not support ARM mode"); 9608 9609 if (isThumb()) 9610 SwitchMode(); 9611 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9612 } 9613 9614 return false; 9615 } 9616 9617 /// parseDirectiveReq 9618 /// ::= name .req registername 9619 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9620 MCAsmParser &Parser = getParser(); 9621 Parser.Lex(); // Eat the '.req' token. 9622 unsigned Reg; 9623 SMLoc SRegLoc, ERegLoc; 9624 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9625 "register name expected") || 9626 parseToken(AsmToken::EndOfStatement, 9627 "unexpected input in .req directive.")) 9628 return true; 9629 9630 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9631 return Error(SRegLoc, 9632 "redefinition of '" + Name + "' does not match original."); 9633 9634 return false; 9635 } 9636 9637 /// parseDirectiveUneq 9638 /// ::= .unreq registername 9639 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9640 MCAsmParser &Parser = getParser(); 9641 if (Parser.getTok().isNot(AsmToken::Identifier)) 9642 return Error(L, "unexpected input in .unreq directive."); 9643 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9644 Parser.Lex(); // Eat the identifier. 9645 if (parseToken(AsmToken::EndOfStatement, 9646 "unexpected input in '.unreq' directive")) 9647 return true; 9648 return false; 9649 } 9650 9651 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9652 // before, if supported by the new target, or emit mapping symbols for the mode 9653 // switch. 9654 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9655 if (WasThumb != isThumb()) { 9656 if (WasThumb && hasThumb()) { 9657 // Stay in Thumb mode 9658 SwitchMode(); 9659 } else if (!WasThumb && hasARM()) { 9660 // Stay in ARM mode 9661 SwitchMode(); 9662 } else { 9663 // Mode switch forced, because the new arch doesn't support the old mode. 9664 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9665 : MCAF_Code32); 9666 // Warn about the implcit mode switch. GAS does not switch modes here, 9667 // but instead stays in the old mode, reporting an error on any following 9668 // instructions as the mode does not exist on the target. 9669 Warning(Loc, Twine("new target does not support ") + 9670 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9671 (!WasThumb ? "thumb" : "arm") + " mode"); 9672 } 9673 } 9674 } 9675 9676 /// parseDirectiveArch 9677 /// ::= .arch token 9678 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9679 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9680 ARM::ArchKind ID = ARM::parseArch(Arch); 9681 9682 if (ID == ARM::ArchKind::INVALID) 9683 return Error(L, "Unknown arch name"); 9684 9685 bool WasThumb = isThumb(); 9686 Triple T; 9687 MCSubtargetInfo &STI = copySTI(); 9688 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9689 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9690 FixModeAfterArchChange(WasThumb, L); 9691 9692 getTargetStreamer().emitArch(ID); 9693 return false; 9694 } 9695 9696 /// parseDirectiveEabiAttr 9697 /// ::= .eabi_attribute int, int [, "str"] 9698 /// ::= .eabi_attribute Tag_name, int [, "str"] 9699 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9700 MCAsmParser &Parser = getParser(); 9701 int64_t Tag; 9702 SMLoc TagLoc; 9703 TagLoc = Parser.getTok().getLoc(); 9704 if (Parser.getTok().is(AsmToken::Identifier)) { 9705 StringRef Name = Parser.getTok().getIdentifier(); 9706 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9707 if (Tag == -1) { 9708 Error(TagLoc, "attribute name not recognised: " + Name); 9709 return false; 9710 } 9711 Parser.Lex(); 9712 } else { 9713 const MCExpr *AttrExpr; 9714 9715 TagLoc = Parser.getTok().getLoc(); 9716 if (Parser.parseExpression(AttrExpr)) 9717 return true; 9718 9719 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9720 if (check(!CE, TagLoc, "expected numeric constant")) 9721 return true; 9722 9723 Tag = CE->getValue(); 9724 } 9725 9726 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9727 return true; 9728 9729 StringRef StringValue = ""; 9730 bool IsStringValue = false; 9731 9732 int64_t IntegerValue = 0; 9733 bool IsIntegerValue = false; 9734 9735 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9736 IsStringValue = true; 9737 else if (Tag == ARMBuildAttrs::compatibility) { 9738 IsStringValue = true; 9739 IsIntegerValue = true; 9740 } else if (Tag < 32 || Tag % 2 == 0) 9741 IsIntegerValue = true; 9742 else if (Tag % 2 == 1) 9743 IsStringValue = true; 9744 else 9745 llvm_unreachable("invalid tag type"); 9746 9747 if (IsIntegerValue) { 9748 const MCExpr *ValueExpr; 9749 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9750 if (Parser.parseExpression(ValueExpr)) 9751 return true; 9752 9753 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9754 if (!CE) 9755 return Error(ValueExprLoc, "expected numeric constant"); 9756 IntegerValue = CE->getValue(); 9757 } 9758 9759 if (Tag == ARMBuildAttrs::compatibility) { 9760 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9761 return true; 9762 } 9763 9764 if (IsStringValue) { 9765 if (Parser.getTok().isNot(AsmToken::String)) 9766 return Error(Parser.getTok().getLoc(), "bad string constant"); 9767 9768 StringValue = Parser.getTok().getStringContents(); 9769 Parser.Lex(); 9770 } 9771 9772 if (Parser.parseToken(AsmToken::EndOfStatement, 9773 "unexpected token in '.eabi_attribute' directive")) 9774 return true; 9775 9776 if (IsIntegerValue && IsStringValue) { 9777 assert(Tag == ARMBuildAttrs::compatibility); 9778 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9779 } else if (IsIntegerValue) 9780 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9781 else if (IsStringValue) 9782 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9783 return false; 9784 } 9785 9786 /// parseDirectiveCPU 9787 /// ::= .cpu str 9788 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9789 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9790 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9791 9792 // FIXME: This is using table-gen data, but should be moved to 9793 // ARMTargetParser once that is table-gen'd. 9794 if (!getSTI().isCPUStringValid(CPU)) 9795 return Error(L, "Unknown CPU name"); 9796 9797 bool WasThumb = isThumb(); 9798 MCSubtargetInfo &STI = copySTI(); 9799 STI.setDefaultFeatures(CPU, ""); 9800 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9801 FixModeAfterArchChange(WasThumb, L); 9802 9803 return false; 9804 } 9805 9806 /// parseDirectiveFPU 9807 /// ::= .fpu str 9808 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9809 SMLoc FPUNameLoc = getTok().getLoc(); 9810 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9811 9812 unsigned ID = ARM::parseFPU(FPU); 9813 std::vector<StringRef> Features; 9814 if (!ARM::getFPUFeatures(ID, Features)) 9815 return Error(FPUNameLoc, "Unknown FPU name"); 9816 9817 MCSubtargetInfo &STI = copySTI(); 9818 for (auto Feature : Features) 9819 STI.ApplyFeatureFlag(Feature); 9820 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9821 9822 getTargetStreamer().emitFPU(ID); 9823 return false; 9824 } 9825 9826 /// parseDirectiveFnStart 9827 /// ::= .fnstart 9828 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9829 if (parseToken(AsmToken::EndOfStatement, 9830 "unexpected token in '.fnstart' directive")) 9831 return true; 9832 9833 if (UC.hasFnStart()) { 9834 Error(L, ".fnstart starts before the end of previous one"); 9835 UC.emitFnStartLocNotes(); 9836 return true; 9837 } 9838 9839 // Reset the unwind directives parser state 9840 UC.reset(); 9841 9842 getTargetStreamer().emitFnStart(); 9843 9844 UC.recordFnStart(L); 9845 return false; 9846 } 9847 9848 /// parseDirectiveFnEnd 9849 /// ::= .fnend 9850 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9851 if (parseToken(AsmToken::EndOfStatement, 9852 "unexpected token in '.fnend' directive")) 9853 return true; 9854 // Check the ordering of unwind directives 9855 if (!UC.hasFnStart()) 9856 return Error(L, ".fnstart must precede .fnend directive"); 9857 9858 // Reset the unwind directives parser state 9859 getTargetStreamer().emitFnEnd(); 9860 9861 UC.reset(); 9862 return false; 9863 } 9864 9865 /// parseDirectiveCantUnwind 9866 /// ::= .cantunwind 9867 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9868 if (parseToken(AsmToken::EndOfStatement, 9869 "unexpected token in '.cantunwind' directive")) 9870 return true; 9871 9872 UC.recordCantUnwind(L); 9873 // Check the ordering of unwind directives 9874 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9875 return true; 9876 9877 if (UC.hasHandlerData()) { 9878 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9879 UC.emitHandlerDataLocNotes(); 9880 return true; 9881 } 9882 if (UC.hasPersonality()) { 9883 Error(L, ".cantunwind can't be used with .personality directive"); 9884 UC.emitPersonalityLocNotes(); 9885 return true; 9886 } 9887 9888 getTargetStreamer().emitCantUnwind(); 9889 return false; 9890 } 9891 9892 /// parseDirectivePersonality 9893 /// ::= .personality name 9894 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9895 MCAsmParser &Parser = getParser(); 9896 bool HasExistingPersonality = UC.hasPersonality(); 9897 9898 // Parse the name of the personality routine 9899 if (Parser.getTok().isNot(AsmToken::Identifier)) 9900 return Error(L, "unexpected input in .personality directive."); 9901 StringRef Name(Parser.getTok().getIdentifier()); 9902 Parser.Lex(); 9903 9904 if (parseToken(AsmToken::EndOfStatement, 9905 "unexpected token in '.personality' directive")) 9906 return true; 9907 9908 UC.recordPersonality(L); 9909 9910 // Check the ordering of unwind directives 9911 if (!UC.hasFnStart()) 9912 return Error(L, ".fnstart must precede .personality directive"); 9913 if (UC.cantUnwind()) { 9914 Error(L, ".personality can't be used with .cantunwind directive"); 9915 UC.emitCantUnwindLocNotes(); 9916 return true; 9917 } 9918 if (UC.hasHandlerData()) { 9919 Error(L, ".personality must precede .handlerdata directive"); 9920 UC.emitHandlerDataLocNotes(); 9921 return true; 9922 } 9923 if (HasExistingPersonality) { 9924 Error(L, "multiple personality directives"); 9925 UC.emitPersonalityLocNotes(); 9926 return true; 9927 } 9928 9929 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9930 getTargetStreamer().emitPersonality(PR); 9931 return false; 9932 } 9933 9934 /// parseDirectiveHandlerData 9935 /// ::= .handlerdata 9936 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9937 if (parseToken(AsmToken::EndOfStatement, 9938 "unexpected token in '.handlerdata' directive")) 9939 return true; 9940 9941 UC.recordHandlerData(L); 9942 // Check the ordering of unwind directives 9943 if (!UC.hasFnStart()) 9944 return Error(L, ".fnstart must precede .personality directive"); 9945 if (UC.cantUnwind()) { 9946 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9947 UC.emitCantUnwindLocNotes(); 9948 return true; 9949 } 9950 9951 getTargetStreamer().emitHandlerData(); 9952 return false; 9953 } 9954 9955 /// parseDirectiveSetFP 9956 /// ::= .setfp fpreg, spreg [, offset] 9957 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9958 MCAsmParser &Parser = getParser(); 9959 // Check the ordering of unwind directives 9960 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9961 check(UC.hasHandlerData(), L, 9962 ".setfp must precede .handlerdata directive")) 9963 return true; 9964 9965 // Parse fpreg 9966 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9967 int FPReg = tryParseRegister(); 9968 9969 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9970 Parser.parseToken(AsmToken::Comma, "comma expected")) 9971 return true; 9972 9973 // Parse spreg 9974 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9975 int SPReg = tryParseRegister(); 9976 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9977 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9978 "register should be either $sp or the latest fp register")) 9979 return true; 9980 9981 // Update the frame pointer register 9982 UC.saveFPReg(FPReg); 9983 9984 // Parse offset 9985 int64_t Offset = 0; 9986 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9987 if (Parser.getTok().isNot(AsmToken::Hash) && 9988 Parser.getTok().isNot(AsmToken::Dollar)) 9989 return Error(Parser.getTok().getLoc(), "'#' expected"); 9990 Parser.Lex(); // skip hash token. 9991 9992 const MCExpr *OffsetExpr; 9993 SMLoc ExLoc = Parser.getTok().getLoc(); 9994 SMLoc EndLoc; 9995 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9996 return Error(ExLoc, "malformed setfp offset"); 9997 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9998 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9999 return true; 10000 Offset = CE->getValue(); 10001 } 10002 10003 if (Parser.parseToken(AsmToken::EndOfStatement)) 10004 return true; 10005 10006 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 10007 static_cast<unsigned>(SPReg), Offset); 10008 return false; 10009 } 10010 10011 /// parseDirective 10012 /// ::= .pad offset 10013 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 10014 MCAsmParser &Parser = getParser(); 10015 // Check the ordering of unwind directives 10016 if (!UC.hasFnStart()) 10017 return Error(L, ".fnstart must precede .pad directive"); 10018 if (UC.hasHandlerData()) 10019 return Error(L, ".pad must precede .handlerdata directive"); 10020 10021 // Parse the offset 10022 if (Parser.getTok().isNot(AsmToken::Hash) && 10023 Parser.getTok().isNot(AsmToken::Dollar)) 10024 return Error(Parser.getTok().getLoc(), "'#' expected"); 10025 Parser.Lex(); // skip hash token. 10026 10027 const MCExpr *OffsetExpr; 10028 SMLoc ExLoc = Parser.getTok().getLoc(); 10029 SMLoc EndLoc; 10030 if (getParser().parseExpression(OffsetExpr, EndLoc)) 10031 return Error(ExLoc, "malformed pad offset"); 10032 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10033 if (!CE) 10034 return Error(ExLoc, "pad offset must be an immediate"); 10035 10036 if (parseToken(AsmToken::EndOfStatement, 10037 "unexpected token in '.pad' directive")) 10038 return true; 10039 10040 getTargetStreamer().emitPad(CE->getValue()); 10041 return false; 10042 } 10043 10044 /// parseDirectiveRegSave 10045 /// ::= .save { registers } 10046 /// ::= .vsave { registers } 10047 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 10048 // Check the ordering of unwind directives 10049 if (!UC.hasFnStart()) 10050 return Error(L, ".fnstart must precede .save or .vsave directives"); 10051 if (UC.hasHandlerData()) 10052 return Error(L, ".save or .vsave must precede .handlerdata directive"); 10053 10054 // RAII object to make sure parsed operands are deleted. 10055 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 10056 10057 // Parse the register list 10058 if (parseRegisterList(Operands) || 10059 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10060 return true; 10061 ARMOperand &Op = (ARMOperand &)*Operands[0]; 10062 if (!IsVector && !Op.isRegList()) 10063 return Error(L, ".save expects GPR registers"); 10064 if (IsVector && !Op.isDPRRegList()) 10065 return Error(L, ".vsave expects DPR registers"); 10066 10067 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 10068 return false; 10069 } 10070 10071 /// parseDirectiveInst 10072 /// ::= .inst opcode [, ...] 10073 /// ::= .inst.n opcode [, ...] 10074 /// ::= .inst.w opcode [, ...] 10075 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 10076 int Width = 4; 10077 10078 if (isThumb()) { 10079 switch (Suffix) { 10080 case 'n': 10081 Width = 2; 10082 break; 10083 case 'w': 10084 break; 10085 default: 10086 Width = 0; 10087 break; 10088 } 10089 } else { 10090 if (Suffix) 10091 return Error(Loc, "width suffixes are invalid in ARM mode"); 10092 } 10093 10094 auto parseOne = [&]() -> bool { 10095 const MCExpr *Expr; 10096 if (getParser().parseExpression(Expr)) 10097 return true; 10098 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 10099 if (!Value) { 10100 return Error(Loc, "expected constant expression"); 10101 } 10102 10103 char CurSuffix = Suffix; 10104 switch (Width) { 10105 case 2: 10106 if (Value->getValue() > 0xffff) 10107 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 10108 break; 10109 case 4: 10110 if (Value->getValue() > 0xffffffff) 10111 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 10112 " operand is too big"); 10113 break; 10114 case 0: 10115 // Thumb mode, no width indicated. Guess from the opcode, if possible. 10116 if (Value->getValue() < 0xe800) 10117 CurSuffix = 'n'; 10118 else if (Value->getValue() >= 0xe8000000) 10119 CurSuffix = 'w'; 10120 else 10121 return Error(Loc, "cannot determine Thumb instruction size, " 10122 "use inst.n/inst.w instead"); 10123 break; 10124 default: 10125 llvm_unreachable("only supported widths are 2 and 4"); 10126 } 10127 10128 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 10129 return false; 10130 }; 10131 10132 if (parseOptionalToken(AsmToken::EndOfStatement)) 10133 return Error(Loc, "expected expression following directive"); 10134 if (parseMany(parseOne)) 10135 return true; 10136 return false; 10137 } 10138 10139 /// parseDirectiveLtorg 10140 /// ::= .ltorg | .pool 10141 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 10142 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10143 return true; 10144 getTargetStreamer().emitCurrentConstantPool(); 10145 return false; 10146 } 10147 10148 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 10149 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10150 10151 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10152 return true; 10153 10154 if (!Section) { 10155 getStreamer().InitSections(false); 10156 Section = getStreamer().getCurrentSectionOnly(); 10157 } 10158 10159 assert(Section && "must have section to emit alignment"); 10160 if (Section->UseCodeAlign()) 10161 getStreamer().EmitCodeAlignment(2); 10162 else 10163 getStreamer().EmitValueToAlignment(2); 10164 10165 return false; 10166 } 10167 10168 /// parseDirectivePersonalityIndex 10169 /// ::= .personalityindex index 10170 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 10171 MCAsmParser &Parser = getParser(); 10172 bool HasExistingPersonality = UC.hasPersonality(); 10173 10174 const MCExpr *IndexExpression; 10175 SMLoc IndexLoc = Parser.getTok().getLoc(); 10176 if (Parser.parseExpression(IndexExpression) || 10177 parseToken(AsmToken::EndOfStatement, 10178 "unexpected token in '.personalityindex' directive")) { 10179 return true; 10180 } 10181 10182 UC.recordPersonalityIndex(L); 10183 10184 if (!UC.hasFnStart()) { 10185 return Error(L, ".fnstart must precede .personalityindex directive"); 10186 } 10187 if (UC.cantUnwind()) { 10188 Error(L, ".personalityindex cannot be used with .cantunwind"); 10189 UC.emitCantUnwindLocNotes(); 10190 return true; 10191 } 10192 if (UC.hasHandlerData()) { 10193 Error(L, ".personalityindex must precede .handlerdata directive"); 10194 UC.emitHandlerDataLocNotes(); 10195 return true; 10196 } 10197 if (HasExistingPersonality) { 10198 Error(L, "multiple personality directives"); 10199 UC.emitPersonalityLocNotes(); 10200 return true; 10201 } 10202 10203 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 10204 if (!CE) 10205 return Error(IndexLoc, "index must be a constant number"); 10206 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 10207 return Error(IndexLoc, 10208 "personality routine index should be in range [0-3]"); 10209 10210 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 10211 return false; 10212 } 10213 10214 /// parseDirectiveUnwindRaw 10215 /// ::= .unwind_raw offset, opcode [, opcode...] 10216 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 10217 MCAsmParser &Parser = getParser(); 10218 int64_t StackOffset; 10219 const MCExpr *OffsetExpr; 10220 SMLoc OffsetLoc = getLexer().getLoc(); 10221 10222 if (!UC.hasFnStart()) 10223 return Error(L, ".fnstart must precede .unwind_raw directives"); 10224 if (getParser().parseExpression(OffsetExpr)) 10225 return Error(OffsetLoc, "expected expression"); 10226 10227 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10228 if (!CE) 10229 return Error(OffsetLoc, "offset must be a constant"); 10230 10231 StackOffset = CE->getValue(); 10232 10233 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 10234 return true; 10235 10236 SmallVector<uint8_t, 16> Opcodes; 10237 10238 auto parseOne = [&]() -> bool { 10239 const MCExpr *OE; 10240 SMLoc OpcodeLoc = getLexer().getLoc(); 10241 if (check(getLexer().is(AsmToken::EndOfStatement) || 10242 Parser.parseExpression(OE), 10243 OpcodeLoc, "expected opcode expression")) 10244 return true; 10245 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 10246 if (!OC) 10247 return Error(OpcodeLoc, "opcode value must be a constant"); 10248 const int64_t Opcode = OC->getValue(); 10249 if (Opcode & ~0xff) 10250 return Error(OpcodeLoc, "invalid opcode"); 10251 Opcodes.push_back(uint8_t(Opcode)); 10252 return false; 10253 }; 10254 10255 // Must have at least 1 element 10256 SMLoc OpcodeLoc = getLexer().getLoc(); 10257 if (parseOptionalToken(AsmToken::EndOfStatement)) 10258 return Error(OpcodeLoc, "expected opcode expression"); 10259 if (parseMany(parseOne)) 10260 return true; 10261 10262 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 10263 return false; 10264 } 10265 10266 /// parseDirectiveTLSDescSeq 10267 /// ::= .tlsdescseq tls-variable 10268 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 10269 MCAsmParser &Parser = getParser(); 10270 10271 if (getLexer().isNot(AsmToken::Identifier)) 10272 return TokError("expected variable after '.tlsdescseq' directive"); 10273 10274 const MCSymbolRefExpr *SRE = 10275 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10276 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10277 Lex(); 10278 10279 if (parseToken(AsmToken::EndOfStatement, 10280 "unexpected token in '.tlsdescseq' directive")) 10281 return true; 10282 10283 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10284 return false; 10285 } 10286 10287 /// parseDirectiveMovSP 10288 /// ::= .movsp reg [, #offset] 10289 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10290 MCAsmParser &Parser = getParser(); 10291 if (!UC.hasFnStart()) 10292 return Error(L, ".fnstart must precede .movsp directives"); 10293 if (UC.getFPReg() != ARM::SP) 10294 return Error(L, "unexpected .movsp directive"); 10295 10296 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10297 int SPReg = tryParseRegister(); 10298 if (SPReg == -1) 10299 return Error(SPRegLoc, "register expected"); 10300 if (SPReg == ARM::SP || SPReg == ARM::PC) 10301 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10302 10303 int64_t Offset = 0; 10304 if (Parser.parseOptionalToken(AsmToken::Comma)) { 10305 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 10306 return true; 10307 10308 const MCExpr *OffsetExpr; 10309 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10310 10311 if (Parser.parseExpression(OffsetExpr)) 10312 return Error(OffsetLoc, "malformed offset expression"); 10313 10314 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10315 if (!CE) 10316 return Error(OffsetLoc, "offset must be an immediate constant"); 10317 10318 Offset = CE->getValue(); 10319 } 10320 10321 if (parseToken(AsmToken::EndOfStatement, 10322 "unexpected token in '.movsp' directive")) 10323 return true; 10324 10325 getTargetStreamer().emitMovSP(SPReg, Offset); 10326 UC.saveFPReg(SPReg); 10327 10328 return false; 10329 } 10330 10331 /// parseDirectiveObjectArch 10332 /// ::= .object_arch name 10333 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10334 MCAsmParser &Parser = getParser(); 10335 if (getLexer().isNot(AsmToken::Identifier)) 10336 return Error(getLexer().getLoc(), "unexpected token"); 10337 10338 StringRef Arch = Parser.getTok().getString(); 10339 SMLoc ArchLoc = Parser.getTok().getLoc(); 10340 Lex(); 10341 10342 ARM::ArchKind ID = ARM::parseArch(Arch); 10343 10344 if (ID == ARM::ArchKind::INVALID) 10345 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10346 if (parseToken(AsmToken::EndOfStatement)) 10347 return true; 10348 10349 getTargetStreamer().emitObjectArch(ID); 10350 return false; 10351 } 10352 10353 /// parseDirectiveAlign 10354 /// ::= .align 10355 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10356 // NOTE: if this is not the end of the statement, fall back to the target 10357 // agnostic handling for this directive which will correctly handle this. 10358 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10359 // '.align' is target specifically handled to mean 2**2 byte alignment. 10360 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10361 assert(Section && "must have section to emit alignment"); 10362 if (Section->UseCodeAlign()) 10363 getStreamer().EmitCodeAlignment(4, 0); 10364 else 10365 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10366 return false; 10367 } 10368 return true; 10369 } 10370 10371 /// parseDirectiveThumbSet 10372 /// ::= .thumb_set name, value 10373 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10374 MCAsmParser &Parser = getParser(); 10375 10376 StringRef Name; 10377 if (check(Parser.parseIdentifier(Name), 10378 "expected identifier after '.thumb_set'") || 10379 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10380 return true; 10381 10382 MCSymbol *Sym; 10383 const MCExpr *Value; 10384 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10385 Parser, Sym, Value)) 10386 return true; 10387 10388 getTargetStreamer().emitThumbSet(Sym, Value); 10389 return false; 10390 } 10391 10392 /// Force static initialization. 10393 extern "C" void LLVMInitializeARMAsmParser() { 10394 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10395 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10396 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10397 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10398 } 10399 10400 #define GET_REGISTER_MATCHER 10401 #define GET_SUBTARGET_FEATURE_NAME 10402 #define GET_MATCHER_IMPLEMENTATION 10403 #define GET_MNEMONIC_SPELL_CHECKER 10404 #include "ARMGenAsmMatcher.inc" 10405 10406 // Some diagnostics need to vary with subtarget features, so they are handled 10407 // here. For example, the DPR class has either 16 or 32 registers, depending 10408 // on the FPU available. 10409 const char * 10410 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 10411 switch (MatchError) { 10412 // rGPR contains sp starting with ARMv8. 10413 case Match_rGPR: 10414 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 10415 : "operand must be a register in range [r0, r12] or r14"; 10416 // DPR contains 16 registers for some FPUs, and 32 for others. 10417 case Match_DPR: 10418 return hasD16() ? "operand must be a register in range [d0, d15]" 10419 : "operand must be a register in range [d0, d31]"; 10420 case Match_DPR_RegList: 10421 return hasD16() ? "operand must be a list of registers in range [d0, d15]" 10422 : "operand must be a list of registers in range [d0, d31]"; 10423 10424 // For all other diags, use the static string from tablegen. 10425 default: 10426 return getMatchKindDiag(MatchError); 10427 } 10428 } 10429 10430 // Process the list of near-misses, throwing away ones we don't want to report 10431 // to the user, and converting the rest to a source location and string that 10432 // should be reported. 10433 void 10434 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 10435 SmallVectorImpl<NearMissMessage> &NearMissesOut, 10436 SMLoc IDLoc, OperandVector &Operands) { 10437 // TODO: If operand didn't match, sub in a dummy one and run target 10438 // predicate, so that we can avoid reporting near-misses that are invalid? 10439 // TODO: Many operand types dont have SuperClasses set, so we report 10440 // redundant ones. 10441 // TODO: Some operands are superclasses of registers (e.g. 10442 // MCK_RegShiftedImm), we don't have any way to represent that currently. 10443 // TODO: This is not all ARM-specific, can some of it be factored out? 10444 10445 // Record some information about near-misses that we have already seen, so 10446 // that we can avoid reporting redundant ones. For example, if there are 10447 // variants of an instruction that take 8- and 16-bit immediates, we want 10448 // to only report the widest one. 10449 std::multimap<unsigned, unsigned> OperandMissesSeen; 10450 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 10451 bool ReportedTooFewOperands = false; 10452 10453 // Process the near-misses in reverse order, so that we see more general ones 10454 // first, and so can avoid emitting more specific ones. 10455 for (NearMissInfo &I : reverse(NearMissesIn)) { 10456 switch (I.getKind()) { 10457 case NearMissInfo::NearMissOperand: { 10458 SMLoc OperandLoc = 10459 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 10460 const char *OperandDiag = 10461 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 10462 10463 // If we have already emitted a message for a superclass, don't also report 10464 // the sub-class. We consider all operand classes that we don't have a 10465 // specialised diagnostic for to be equal for the propose of this check, 10466 // so that we don't report the generic error multiple times on the same 10467 // operand. 10468 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 10469 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 10470 if (std::any_of(PrevReports.first, PrevReports.second, 10471 [DupCheckMatchClass]( 10472 const std::pair<unsigned, unsigned> Pair) { 10473 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 10474 return Pair.second == DupCheckMatchClass; 10475 else 10476 return isSubclass((MatchClassKind)DupCheckMatchClass, 10477 (MatchClassKind)Pair.second); 10478 })) 10479 break; 10480 OperandMissesSeen.insert( 10481 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 10482 10483 NearMissMessage Message; 10484 Message.Loc = OperandLoc; 10485 if (OperandDiag) { 10486 Message.Message = OperandDiag; 10487 } else if (I.getOperandClass() == InvalidMatchClass) { 10488 Message.Message = "too many operands for instruction"; 10489 } else { 10490 Message.Message = "invalid operand for instruction"; 10491 LLVM_DEBUG( 10492 dbgs() << "Missing diagnostic string for operand class " 10493 << getMatchClassName((MatchClassKind)I.getOperandClass()) 10494 << I.getOperandClass() << ", error " << I.getOperandError() 10495 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 10496 } 10497 NearMissesOut.emplace_back(Message); 10498 break; 10499 } 10500 case NearMissInfo::NearMissFeature: { 10501 const FeatureBitset &MissingFeatures = I.getFeatures(); 10502 // Don't report the same set of features twice. 10503 if (FeatureMissesSeen.count(MissingFeatures)) 10504 break; 10505 FeatureMissesSeen.insert(MissingFeatures); 10506 10507 // Special case: don't report a feature set which includes arm-mode for 10508 // targets that don't have ARM mode. 10509 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 10510 break; 10511 // Don't report any near-misses that both require switching instruction 10512 // set, and adding other subtarget features. 10513 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 10514 MissingFeatures.count() > 1) 10515 break; 10516 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 10517 MissingFeatures.count() > 1) 10518 break; 10519 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 10520 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 10521 Feature_IsThumbBit})).any()) 10522 break; 10523 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 10524 break; 10525 10526 NearMissMessage Message; 10527 Message.Loc = IDLoc; 10528 raw_svector_ostream OS(Message.Message); 10529 10530 OS << "instruction requires:"; 10531 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 10532 if (MissingFeatures.test(i)) 10533 OS << ' ' << getSubtargetFeatureName(i); 10534 10535 NearMissesOut.emplace_back(Message); 10536 10537 break; 10538 } 10539 case NearMissInfo::NearMissPredicate: { 10540 NearMissMessage Message; 10541 Message.Loc = IDLoc; 10542 switch (I.getPredicateError()) { 10543 case Match_RequiresNotITBlock: 10544 Message.Message = "flag setting instruction only valid outside IT block"; 10545 break; 10546 case Match_RequiresITBlock: 10547 Message.Message = "instruction only valid inside IT block"; 10548 break; 10549 case Match_RequiresV6: 10550 Message.Message = "instruction variant requires ARMv6 or later"; 10551 break; 10552 case Match_RequiresThumb2: 10553 Message.Message = "instruction variant requires Thumb2"; 10554 break; 10555 case Match_RequiresV8: 10556 Message.Message = "instruction variant requires ARMv8 or later"; 10557 break; 10558 case Match_RequiresFlagSetting: 10559 Message.Message = "no flag-preserving variant of this instruction available"; 10560 break; 10561 case Match_InvalidOperand: 10562 Message.Message = "invalid operand for instruction"; 10563 break; 10564 default: 10565 llvm_unreachable("Unhandled target predicate error"); 10566 break; 10567 } 10568 NearMissesOut.emplace_back(Message); 10569 break; 10570 } 10571 case NearMissInfo::NearMissTooFewOperands: { 10572 if (!ReportedTooFewOperands) { 10573 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 10574 NearMissesOut.emplace_back(NearMissMessage{ 10575 EndLoc, StringRef("too few operands for instruction")}); 10576 ReportedTooFewOperands = true; 10577 } 10578 break; 10579 } 10580 case NearMissInfo::NoNearMiss: 10581 // This should never leave the matcher. 10582 llvm_unreachable("not a near-miss"); 10583 break; 10584 } 10585 } 10586 } 10587 10588 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 10589 SMLoc IDLoc, OperandVector &Operands) { 10590 SmallVector<NearMissMessage, 4> Messages; 10591 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 10592 10593 if (Messages.size() == 0) { 10594 // No near-misses were found, so the best we can do is "invalid 10595 // instruction". 10596 Error(IDLoc, "invalid instruction"); 10597 } else if (Messages.size() == 1) { 10598 // One near miss was found, report it as the sole error. 10599 Error(Messages[0].Loc, Messages[0].Message); 10600 } else { 10601 // More than one near miss, so report a generic "invalid instruction" 10602 // error, followed by notes for each of the near-misses. 10603 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 10604 for (auto &M : Messages) { 10605 Note(M.Loc, M.Message); 10606 } 10607 } 10608 } 10609 10610 /// parseDirectiveArchExtension 10611 /// ::= .arch_extension [no]feature 10612 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10613 // FIXME: This structure should be moved inside ARMTargetParser 10614 // when we start to table-generate them, and we can use the ARM 10615 // flags below, that were generated by table-gen. 10616 static const struct { 10617 const unsigned Kind; 10618 const FeatureBitset ArchCheck; 10619 const FeatureBitset Features; 10620 } Extensions[] = { 10621 { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} }, 10622 { ARM::AEK_CRYPTO, {Feature_HasV8Bit}, 10623 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10624 { ARM::AEK_FP, {Feature_HasV8Bit}, {ARM::FeatureFPARMv8} }, 10625 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 10626 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 10627 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 10628 { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit}, 10629 {ARM::FeatureMP} }, 10630 { ARM::AEK_SIMD, {Feature_HasV8Bit}, 10631 {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10632 { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} }, 10633 // FIXME: Only available in A-class, isel not predicated 10634 { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} }, 10635 { ARM::AEK_FP16, {Feature_HasV8_2aBit}, 10636 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10637 { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} }, 10638 // FIXME: Unsupported extensions. 10639 { ARM::AEK_OS, {}, {} }, 10640 { ARM::AEK_IWMMXT, {}, {} }, 10641 { ARM::AEK_IWMMXT2, {}, {} }, 10642 { ARM::AEK_MAVERICK, {}, {} }, 10643 { ARM::AEK_XSCALE, {}, {} }, 10644 }; 10645 10646 MCAsmParser &Parser = getParser(); 10647 10648 if (getLexer().isNot(AsmToken::Identifier)) 10649 return Error(getLexer().getLoc(), "expected architecture extension name"); 10650 10651 StringRef Name = Parser.getTok().getString(); 10652 SMLoc ExtLoc = Parser.getTok().getLoc(); 10653 Lex(); 10654 10655 if (parseToken(AsmToken::EndOfStatement, 10656 "unexpected token in '.arch_extension' directive")) 10657 return true; 10658 10659 bool EnableFeature = true; 10660 if (Name.startswith_lower("no")) { 10661 EnableFeature = false; 10662 Name = Name.substr(2); 10663 } 10664 unsigned FeatureKind = ARM::parseArchExt(Name); 10665 if (FeatureKind == ARM::AEK_INVALID) 10666 return Error(ExtLoc, "unknown architectural extension: " + Name); 10667 10668 for (const auto &Extension : Extensions) { 10669 if (Extension.Kind != FeatureKind) 10670 continue; 10671 10672 if (Extension.Features.none()) 10673 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10674 10675 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10676 return Error(ExtLoc, "architectural extension '" + Name + 10677 "' is not " 10678 "allowed for the current base architecture"); 10679 10680 MCSubtargetInfo &STI = copySTI(); 10681 FeatureBitset ToggleFeatures = EnableFeature 10682 ? (~STI.getFeatureBits() & Extension.Features) 10683 : ( STI.getFeatureBits() & Extension.Features); 10684 10685 FeatureBitset Features = 10686 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10687 setAvailableFeatures(Features); 10688 return false; 10689 } 10690 10691 return Error(ExtLoc, "unknown architectural extension: " + Name); 10692 } 10693 10694 // Define this matcher function after the auto-generated include so we 10695 // have the match class enum definitions. 10696 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10697 unsigned Kind) { 10698 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10699 // If the kind is a token for a literal immediate, check if our asm 10700 // operand matches. This is for InstAliases which have a fixed-value 10701 // immediate in the syntax. 10702 switch (Kind) { 10703 default: break; 10704 case MCK__35_0: 10705 if (Op.isImm()) 10706 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10707 if (CE->getValue() == 0) 10708 return Match_Success; 10709 break; 10710 case MCK_ModImm: 10711 if (Op.isImm()) { 10712 const MCExpr *SOExpr = Op.getImm(); 10713 int64_t Value; 10714 if (!SOExpr->evaluateAsAbsolute(Value)) 10715 return Match_Success; 10716 assert((Value >= std::numeric_limits<int32_t>::min() && 10717 Value <= std::numeric_limits<uint32_t>::max()) && 10718 "expression value must be representable in 32 bits"); 10719 } 10720 break; 10721 case MCK_rGPR: 10722 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10723 return Match_Success; 10724 return Match_rGPR; 10725 case MCK_GPRPair: 10726 if (Op.isReg() && 10727 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10728 return Match_Success; 10729 break; 10730 } 10731 return Match_InvalidOperand; 10732 } 10733