1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMFeatures.h" 10 #include "ARMBaseInstrInfo.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMInstPrinter.h" 15 #include "MCTargetDesc/ARMMCExpr.h" 16 #include "MCTargetDesc/ARMMCTargetDesc.h" 17 #include "TargetInfo/ARMTargetInfo.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/MC/MCContext.h" 31 #include "llvm/MC/MCExpr.h" 32 #include "llvm/MC/MCInst.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCInstrInfo.h" 35 #include "llvm/MC/MCObjectFileInfo.h" 36 #include "llvm/MC/MCParser/MCAsmLexer.h" 37 #include "llvm/MC/MCParser/MCAsmParser.h" 38 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 39 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 40 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 41 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 42 #include "llvm/MC/MCRegisterInfo.h" 43 #include "llvm/MC/MCSection.h" 44 #include "llvm/MC/MCStreamer.h" 45 #include "llvm/MC/MCSubtargetInfo.h" 46 #include "llvm/MC/MCSymbol.h" 47 #include "llvm/MC/SubtargetFeature.h" 48 #include "llvm/Support/ARMBuildAttributes.h" 49 #include "llvm/Support/ARMEHABI.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/SMLoc.h" 56 #include "llvm/Support/TargetParser.h" 57 #include "llvm/Support/TargetRegistry.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstddef> 62 #include <cstdint> 63 #include <iterator> 64 #include <limits> 65 #include <memory> 66 #include <string> 67 #include <utility> 68 #include <vector> 69 70 #define DEBUG_TYPE "asm-parser" 71 72 using namespace llvm; 73 74 namespace llvm { 75 extern const MCInstrDesc ARMInsts[]; 76 } // end namespace llvm 77 78 namespace { 79 80 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 81 82 static cl::opt<ImplicitItModeTy> ImplicitItMode( 83 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 84 cl::desc("Allow conditional instructions outdside of an IT block"), 85 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 86 "Accept in both ISAs, emit implicit ITs in Thumb"), 87 clEnumValN(ImplicitItModeTy::Never, "never", 88 "Warn in ARM, reject in Thumb"), 89 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 90 "Accept in ARM, reject in Thumb"), 91 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 92 "Warn in ARM, emit implicit ITs in Thumb"))); 93 94 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 95 cl::init(false)); 96 97 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 98 99 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) { 100 // Position==0 means we're not in an IT block at all. Position==1 101 // means we want the first state bit, which is always 0 (Then). 102 // Position==2 means we want the second state bit, stored at bit 3 103 // of Mask, and so on downwards. So (5 - Position) will shift the 104 // right bit down to bit 0, including the always-0 bit at bit 4 for 105 // the mandatory initial Then. 106 return (Mask >> (5 - Position) & 1); 107 } 108 109 class UnwindContext { 110 using Locs = SmallVector<SMLoc, 4>; 111 112 MCAsmParser &Parser; 113 Locs FnStartLocs; 114 Locs CantUnwindLocs; 115 Locs PersonalityLocs; 116 Locs PersonalityIndexLocs; 117 Locs HandlerDataLocs; 118 int FPReg; 119 120 public: 121 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 122 123 bool hasFnStart() const { return !FnStartLocs.empty(); } 124 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 125 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 126 127 bool hasPersonality() const { 128 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 129 } 130 131 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 132 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 133 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 134 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 135 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 136 137 void saveFPReg(int Reg) { FPReg = Reg; } 138 int getFPReg() const { return FPReg; } 139 140 void emitFnStartLocNotes() const { 141 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 142 FI != FE; ++FI) 143 Parser.Note(*FI, ".fnstart was specified here"); 144 } 145 146 void emitCantUnwindLocNotes() const { 147 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 148 UE = CantUnwindLocs.end(); UI != UE; ++UI) 149 Parser.Note(*UI, ".cantunwind was specified here"); 150 } 151 152 void emitHandlerDataLocNotes() const { 153 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 154 HE = HandlerDataLocs.end(); HI != HE; ++HI) 155 Parser.Note(*HI, ".handlerdata was specified here"); 156 } 157 158 void emitPersonalityLocNotes() const { 159 for (Locs::const_iterator PI = PersonalityLocs.begin(), 160 PE = PersonalityLocs.end(), 161 PII = PersonalityIndexLocs.begin(), 162 PIE = PersonalityIndexLocs.end(); 163 PI != PE || PII != PIE;) { 164 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 165 Parser.Note(*PI++, ".personality was specified here"); 166 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 167 Parser.Note(*PII++, ".personalityindex was specified here"); 168 else 169 llvm_unreachable(".personality and .personalityindex cannot be " 170 "at the same location"); 171 } 172 } 173 174 void reset() { 175 FnStartLocs = Locs(); 176 CantUnwindLocs = Locs(); 177 PersonalityLocs = Locs(); 178 HandlerDataLocs = Locs(); 179 PersonalityIndexLocs = Locs(); 180 FPReg = ARM::SP; 181 } 182 }; 183 184 // Various sets of ARM instruction mnemonics which are used by the asm parser 185 class ARMMnemonicSets { 186 StringSet<> CDE; 187 StringSet<> CDEWithVPTSuffix; 188 public: 189 ARMMnemonicSets(const MCSubtargetInfo &STI); 190 191 /// Returns true iff a given mnemonic is a CDE instruction 192 bool isCDEInstr(StringRef Mnemonic) { 193 // Quick check before searching the set 194 if (!Mnemonic.startswith("cx") && !Mnemonic.startswith("vcx")) 195 return false; 196 return CDE.count(Mnemonic); 197 } 198 199 /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction 200 /// (possibly with a predication suffix "e" or "t") 201 bool isVPTPredicableCDEInstr(StringRef Mnemonic) { 202 if (!Mnemonic.startswith("vcx")) 203 return false; 204 return CDEWithVPTSuffix.count(Mnemonic); 205 } 206 207 /// Returns true iff a given mnemonic is an IT-predicable CDE instruction 208 /// (possibly with a condition suffix) 209 bool isITPredicableCDEInstr(StringRef Mnemonic) { 210 if (!Mnemonic.startswith("cx")) 211 return false; 212 return Mnemonic.startswith("cx1a") || Mnemonic.startswith("cx1da") || 213 Mnemonic.startswith("cx2a") || Mnemonic.startswith("cx2da") || 214 Mnemonic.startswith("cx3a") || Mnemonic.startswith("cx3da"); 215 } 216 217 /// Return true iff a given mnemonic is an integer CDE instruction with 218 /// dual-register destination 219 bool isCDEDualRegInstr(StringRef Mnemonic) { 220 if (!Mnemonic.startswith("cx")) 221 return false; 222 return Mnemonic == "cx1d" || Mnemonic == "cx1da" || 223 Mnemonic == "cx2d" || Mnemonic == "cx2da" || 224 Mnemonic == "cx3d" || Mnemonic == "cx3da"; 225 } 226 }; 227 228 ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) { 229 for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da", 230 "cx2", "cx2a", "cx2d", "cx2da", 231 "cx3", "cx3a", "cx3d", "cx3da", }) 232 CDE.insert(Mnemonic); 233 for (StringRef Mnemonic : 234 {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) { 235 CDE.insert(Mnemonic); 236 CDEWithVPTSuffix.insert(Mnemonic); 237 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t"); 238 CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e"); 239 } 240 } 241 242 class ARMAsmParser : public MCTargetAsmParser { 243 const MCRegisterInfo *MRI; 244 UnwindContext UC; 245 ARMMnemonicSets MS; 246 247 ARMTargetStreamer &getTargetStreamer() { 248 assert(getParser().getStreamer().getTargetStreamer() && 249 "do not have a target streamer"); 250 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 251 return static_cast<ARMTargetStreamer &>(TS); 252 } 253 254 // Map of register aliases registers via the .req directive. 255 StringMap<unsigned> RegisterReqs; 256 257 bool NextSymbolIsThumb; 258 259 bool useImplicitITThumb() const { 260 return ImplicitItMode == ImplicitItModeTy::Always || 261 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 262 } 263 264 bool useImplicitITARM() const { 265 return ImplicitItMode == ImplicitItModeTy::Always || 266 ImplicitItMode == ImplicitItModeTy::ARMOnly; 267 } 268 269 struct { 270 ARMCC::CondCodes Cond; // Condition for IT block. 271 unsigned Mask:4; // Condition mask for instructions. 272 // Starting at first 1 (from lsb). 273 // '1' condition as indicated in IT. 274 // '0' inverse of condition (else). 275 // Count of instructions in IT block is 276 // 4 - trailingzeroes(mask) 277 // Note that this does not have the same encoding 278 // as in the IT instruction, which also depends 279 // on the low bit of the condition code. 280 281 unsigned CurPosition; // Current position in parsing of IT 282 // block. In range [0,4], with 0 being the IT 283 // instruction itself. Initialized according to 284 // count of instructions in block. ~0U if no 285 // active IT block. 286 287 bool IsExplicit; // true - The IT instruction was present in the 288 // input, we should not modify it. 289 // false - The IT instruction was added 290 // implicitly, we can extend it if that 291 // would be legal. 292 } ITState; 293 294 SmallVector<MCInst, 4> PendingConditionalInsts; 295 296 void flushPendingInstructions(MCStreamer &Out) override { 297 if (!inImplicitITBlock()) { 298 assert(PendingConditionalInsts.size() == 0); 299 return; 300 } 301 302 // Emit the IT instruction 303 MCInst ITInst; 304 ITInst.setOpcode(ARM::t2IT); 305 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 306 ITInst.addOperand(MCOperand::createImm(ITState.Mask)); 307 Out.emitInstruction(ITInst, getSTI()); 308 309 // Emit the conditonal instructions 310 assert(PendingConditionalInsts.size() <= 4); 311 for (const MCInst &Inst : PendingConditionalInsts) { 312 Out.emitInstruction(Inst, getSTI()); 313 } 314 PendingConditionalInsts.clear(); 315 316 // Clear the IT state 317 ITState.Mask = 0; 318 ITState.CurPosition = ~0U; 319 } 320 321 bool inITBlock() { return ITState.CurPosition != ~0U; } 322 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 323 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 324 325 bool lastInITBlock() { 326 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 327 } 328 329 void forwardITPosition() { 330 if (!inITBlock()) return; 331 // Move to the next instruction in the IT block, if there is one. If not, 332 // mark the block as done, except for implicit IT blocks, which we leave 333 // open until we find an instruction that can't be added to it. 334 unsigned TZ = countTrailingZeros(ITState.Mask); 335 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 336 ITState.CurPosition = ~0U; // Done with the IT block after this. 337 } 338 339 // Rewind the state of the current IT block, removing the last slot from it. 340 void rewindImplicitITPosition() { 341 assert(inImplicitITBlock()); 342 assert(ITState.CurPosition > 1); 343 ITState.CurPosition--; 344 unsigned TZ = countTrailingZeros(ITState.Mask); 345 unsigned NewMask = 0; 346 NewMask |= ITState.Mask & (0xC << TZ); 347 NewMask |= 0x2 << TZ; 348 ITState.Mask = NewMask; 349 } 350 351 // Rewind the state of the current IT block, removing the last slot from it. 352 // If we were at the first slot, this closes the IT block. 353 void discardImplicitITBlock() { 354 assert(inImplicitITBlock()); 355 assert(ITState.CurPosition == 1); 356 ITState.CurPosition = ~0U; 357 } 358 359 // Return the low-subreg of a given Q register. 360 unsigned getDRegFromQReg(unsigned QReg) const { 361 return MRI->getSubReg(QReg, ARM::dsub_0); 362 } 363 364 // Get the condition code corresponding to the current IT block slot. 365 ARMCC::CondCodes currentITCond() { 366 unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition); 367 return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond; 368 } 369 370 // Invert the condition of the current IT block slot without changing any 371 // other slots in the same block. 372 void invertCurrentITCondition() { 373 if (ITState.CurPosition == 1) { 374 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 375 } else { 376 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 377 } 378 } 379 380 // Returns true if the current IT block is full (all 4 slots used). 381 bool isITBlockFull() { 382 return inITBlock() && (ITState.Mask & 1); 383 } 384 385 // Extend the current implicit IT block to have one more slot with the given 386 // condition code. 387 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 388 assert(inImplicitITBlock()); 389 assert(!isITBlockFull()); 390 assert(Cond == ITState.Cond || 391 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 392 unsigned TZ = countTrailingZeros(ITState.Mask); 393 unsigned NewMask = 0; 394 // Keep any existing condition bits. 395 NewMask |= ITState.Mask & (0xE << TZ); 396 // Insert the new condition bit. 397 NewMask |= (Cond != ITState.Cond) << TZ; 398 // Move the trailing 1 down one bit. 399 NewMask |= 1 << (TZ - 1); 400 ITState.Mask = NewMask; 401 } 402 403 // Create a new implicit IT block with a dummy condition code. 404 void startImplicitITBlock() { 405 assert(!inITBlock()); 406 ITState.Cond = ARMCC::AL; 407 ITState.Mask = 8; 408 ITState.CurPosition = 1; 409 ITState.IsExplicit = false; 410 } 411 412 // Create a new explicit IT block with the given condition and mask. 413 // The mask should be in the format used in ARMOperand and 414 // MCOperand, with a 1 implying 'e', regardless of the low bit of 415 // the condition. 416 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 417 assert(!inITBlock()); 418 ITState.Cond = Cond; 419 ITState.Mask = Mask; 420 ITState.CurPosition = 0; 421 ITState.IsExplicit = true; 422 } 423 424 struct { 425 unsigned Mask : 4; 426 unsigned CurPosition; 427 } VPTState; 428 bool inVPTBlock() { return VPTState.CurPosition != ~0U; } 429 void forwardVPTPosition() { 430 if (!inVPTBlock()) return; 431 unsigned TZ = countTrailingZeros(VPTState.Mask); 432 if (++VPTState.CurPosition == 5 - TZ) 433 VPTState.CurPosition = ~0U; 434 } 435 436 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 437 return getParser().Note(L, Msg, Range); 438 } 439 440 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 441 return getParser().Warning(L, Msg, Range); 442 } 443 444 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 445 return getParser().Error(L, Msg, Range); 446 } 447 448 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 449 unsigned ListNo, bool IsARPop = false); 450 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 451 unsigned ListNo); 452 453 int tryParseRegister(); 454 bool tryParseRegisterWithWriteBack(OperandVector &); 455 int tryParseShiftRegister(OperandVector &); 456 bool parseRegisterList(OperandVector &, bool EnforceOrder = true); 457 bool parseMemory(OperandVector &); 458 bool parseOperand(OperandVector &, StringRef Mnemonic); 459 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 460 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 461 unsigned &ShiftAmount); 462 bool parseLiteralValues(unsigned Size, SMLoc L); 463 bool parseDirectiveThumb(SMLoc L); 464 bool parseDirectiveARM(SMLoc L); 465 bool parseDirectiveThumbFunc(SMLoc L); 466 bool parseDirectiveCode(SMLoc L); 467 bool parseDirectiveSyntax(SMLoc L); 468 bool parseDirectiveReq(StringRef Name, SMLoc L); 469 bool parseDirectiveUnreq(SMLoc L); 470 bool parseDirectiveArch(SMLoc L); 471 bool parseDirectiveEabiAttr(SMLoc L); 472 bool parseDirectiveCPU(SMLoc L); 473 bool parseDirectiveFPU(SMLoc L); 474 bool parseDirectiveFnStart(SMLoc L); 475 bool parseDirectiveFnEnd(SMLoc L); 476 bool parseDirectiveCantUnwind(SMLoc L); 477 bool parseDirectivePersonality(SMLoc L); 478 bool parseDirectiveHandlerData(SMLoc L); 479 bool parseDirectiveSetFP(SMLoc L); 480 bool parseDirectivePad(SMLoc L); 481 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 482 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 483 bool parseDirectiveLtorg(SMLoc L); 484 bool parseDirectiveEven(SMLoc L); 485 bool parseDirectivePersonalityIndex(SMLoc L); 486 bool parseDirectiveUnwindRaw(SMLoc L); 487 bool parseDirectiveTLSDescSeq(SMLoc L); 488 bool parseDirectiveMovSP(SMLoc L); 489 bool parseDirectiveObjectArch(SMLoc L); 490 bool parseDirectiveArchExtension(SMLoc L); 491 bool parseDirectiveAlign(SMLoc L); 492 bool parseDirectiveThumbSet(SMLoc L); 493 494 bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken); 495 StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken, 496 unsigned &PredicationCode, 497 unsigned &VPTPredicationCode, bool &CarrySetting, 498 unsigned &ProcessorIMod, StringRef &ITMask); 499 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken, 500 StringRef FullInst, bool &CanAcceptCarrySet, 501 bool &CanAcceptPredicationCode, 502 bool &CanAcceptVPTPredicationCode); 503 504 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 505 OperandVector &Operands); 506 bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands); 507 508 bool isThumb() const { 509 // FIXME: Can tablegen auto-generate this? 510 return getSTI().getFeatureBits()[ARM::ModeThumb]; 511 } 512 513 bool isThumbOne() const { 514 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 515 } 516 517 bool isThumbTwo() const { 518 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 519 } 520 521 bool hasThumb() const { 522 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 523 } 524 525 bool hasThumb2() const { 526 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 527 } 528 529 bool hasV6Ops() const { 530 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 531 } 532 533 bool hasV6T2Ops() const { 534 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 535 } 536 537 bool hasV6MOps() const { 538 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 539 } 540 541 bool hasV7Ops() const { 542 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 543 } 544 545 bool hasV8Ops() const { 546 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 547 } 548 549 bool hasV8MBaseline() const { 550 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 551 } 552 553 bool hasV8MMainline() const { 554 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 555 } 556 bool hasV8_1MMainline() const { 557 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps]; 558 } 559 bool hasMVE() const { 560 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps]; 561 } 562 bool hasMVEFloat() const { 563 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps]; 564 } 565 bool hasCDE() const { 566 return getSTI().getFeatureBits()[ARM::HasCDEOps]; 567 } 568 bool has8MSecExt() const { 569 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 570 } 571 572 bool hasARM() const { 573 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 574 } 575 576 bool hasDSP() const { 577 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 578 } 579 580 bool hasD32() const { 581 return getSTI().getFeatureBits()[ARM::FeatureD32]; 582 } 583 584 bool hasV8_1aOps() const { 585 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 586 } 587 588 bool hasRAS() const { 589 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 590 } 591 592 void SwitchMode() { 593 MCSubtargetInfo &STI = copySTI(); 594 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 595 setAvailableFeatures(FB); 596 } 597 598 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 599 600 bool isMClass() const { 601 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 602 } 603 604 /// @name Auto-generated Match Functions 605 /// { 606 607 #define GET_ASSEMBLER_HEADER 608 #include "ARMGenAsmMatcher.inc" 609 610 /// } 611 612 OperandMatchResultTy parseITCondCode(OperandVector &); 613 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 614 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 615 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 616 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 617 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 618 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 619 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 620 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 621 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 622 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 623 int High); 624 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 625 return parsePKHImm(O, "lsl", 0, 31); 626 } 627 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 628 return parsePKHImm(O, "asr", 1, 32); 629 } 630 OperandMatchResultTy parseSetEndImm(OperandVector &); 631 OperandMatchResultTy parseShifterImm(OperandVector &); 632 OperandMatchResultTy parseRotImm(OperandVector &); 633 OperandMatchResultTy parseModImm(OperandVector &); 634 OperandMatchResultTy parseBitfield(OperandVector &); 635 OperandMatchResultTy parsePostIdxReg(OperandVector &); 636 OperandMatchResultTy parseAM3Offset(OperandVector &); 637 OperandMatchResultTy parseFPImm(OperandVector &); 638 OperandMatchResultTy parseVectorList(OperandVector &); 639 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 640 SMLoc &EndLoc); 641 642 // Asm Match Converter Methods 643 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 644 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 645 void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); 646 647 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 648 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 649 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 650 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 651 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 652 bool isITBlockTerminator(MCInst &Inst) const; 653 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 654 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 655 bool Load, bool ARMMode, bool Writeback); 656 657 public: 658 enum ARMMatchResultTy { 659 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 660 Match_RequiresNotITBlock, 661 Match_RequiresV6, 662 Match_RequiresThumb2, 663 Match_RequiresV8, 664 Match_RequiresFlagSetting, 665 #define GET_OPERAND_DIAGNOSTIC_TYPES 666 #include "ARMGenAsmMatcher.inc" 667 668 }; 669 670 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 671 const MCInstrInfo &MII, const MCTargetOptions &Options) 672 : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) { 673 MCAsmParserExtension::Initialize(Parser); 674 675 // Cache the MCRegisterInfo. 676 MRI = getContext().getRegisterInfo(); 677 678 // Initialize the set of available features. 679 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 680 681 // Add build attributes based on the selected target. 682 if (AddBuildAttributes) 683 getTargetStreamer().emitTargetAttributes(STI); 684 685 // Not in an ITBlock to start with. 686 ITState.CurPosition = ~0U; 687 688 VPTState.CurPosition = ~0U; 689 690 NextSymbolIsThumb = false; 691 } 692 693 // Implementation of the MCTargetAsmParser interface: 694 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 695 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 696 SMLoc &EndLoc) override; 697 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 698 SMLoc NameLoc, OperandVector &Operands) override; 699 bool ParseDirective(AsmToken DirectiveID) override; 700 701 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 702 unsigned Kind) override; 703 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 704 705 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 706 OperandVector &Operands, MCStreamer &Out, 707 uint64_t &ErrorInfo, 708 bool MatchingInlineAsm) override; 709 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 710 SmallVectorImpl<NearMissInfo> &NearMisses, 711 bool MatchingInlineAsm, bool &EmitInITBlock, 712 MCStreamer &Out); 713 714 struct NearMissMessage { 715 SMLoc Loc; 716 SmallString<128> Message; 717 }; 718 719 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 720 721 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 722 SmallVectorImpl<NearMissMessage> &NearMissesOut, 723 SMLoc IDLoc, OperandVector &Operands); 724 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 725 OperandVector &Operands); 726 727 void doBeforeLabelEmit(MCSymbol *Symbol) override; 728 729 void onLabelParsed(MCSymbol *Symbol) override; 730 }; 731 732 /// ARMOperand - Instances of this class represent a parsed ARM machine 733 /// operand. 734 class ARMOperand : public MCParsedAsmOperand { 735 enum KindTy { 736 k_CondCode, 737 k_VPTPred, 738 k_CCOut, 739 k_ITCondMask, 740 k_CoprocNum, 741 k_CoprocReg, 742 k_CoprocOption, 743 k_Immediate, 744 k_MemBarrierOpt, 745 k_InstSyncBarrierOpt, 746 k_TraceSyncBarrierOpt, 747 k_Memory, 748 k_PostIndexRegister, 749 k_MSRMask, 750 k_BankedReg, 751 k_ProcIFlags, 752 k_VectorIndex, 753 k_Register, 754 k_RegisterList, 755 k_RegisterListWithAPSR, 756 k_DPRRegisterList, 757 k_SPRRegisterList, 758 k_FPSRegisterListWithVPR, 759 k_FPDRegisterListWithVPR, 760 k_VectorList, 761 k_VectorListAllLanes, 762 k_VectorListIndexed, 763 k_ShiftedRegister, 764 k_ShiftedImmediate, 765 k_ShifterImmediate, 766 k_RotateImmediate, 767 k_ModifiedImmediate, 768 k_ConstantPoolImmediate, 769 k_BitfieldDescriptor, 770 k_Token, 771 } Kind; 772 773 SMLoc StartLoc, EndLoc, AlignmentLoc; 774 SmallVector<unsigned, 8> Registers; 775 776 struct CCOp { 777 ARMCC::CondCodes Val; 778 }; 779 780 struct VCCOp { 781 ARMVCC::VPTCodes Val; 782 }; 783 784 struct CopOp { 785 unsigned Val; 786 }; 787 788 struct CoprocOptionOp { 789 unsigned Val; 790 }; 791 792 struct ITMaskOp { 793 unsigned Mask:4; 794 }; 795 796 struct MBOptOp { 797 ARM_MB::MemBOpt Val; 798 }; 799 800 struct ISBOptOp { 801 ARM_ISB::InstSyncBOpt Val; 802 }; 803 804 struct TSBOptOp { 805 ARM_TSB::TraceSyncBOpt Val; 806 }; 807 808 struct IFlagsOp { 809 ARM_PROC::IFlags Val; 810 }; 811 812 struct MMaskOp { 813 unsigned Val; 814 }; 815 816 struct BankedRegOp { 817 unsigned Val; 818 }; 819 820 struct TokOp { 821 const char *Data; 822 unsigned Length; 823 }; 824 825 struct RegOp { 826 unsigned RegNum; 827 }; 828 829 // A vector register list is a sequential list of 1 to 4 registers. 830 struct VectorListOp { 831 unsigned RegNum; 832 unsigned Count; 833 unsigned LaneIndex; 834 bool isDoubleSpaced; 835 }; 836 837 struct VectorIndexOp { 838 unsigned Val; 839 }; 840 841 struct ImmOp { 842 const MCExpr *Val; 843 }; 844 845 /// Combined record for all forms of ARM address expressions. 846 struct MemoryOp { 847 unsigned BaseRegNum; 848 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 849 // was specified. 850 const MCConstantExpr *OffsetImm; // Offset immediate value 851 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 852 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 853 unsigned ShiftImm; // shift for OffsetReg. 854 unsigned Alignment; // 0 = no alignment specified 855 // n = alignment in bytes (2, 4, 8, 16, or 32) 856 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 857 }; 858 859 struct PostIdxRegOp { 860 unsigned RegNum; 861 bool isAdd; 862 ARM_AM::ShiftOpc ShiftTy; 863 unsigned ShiftImm; 864 }; 865 866 struct ShifterImmOp { 867 bool isASR; 868 unsigned Imm; 869 }; 870 871 struct RegShiftedRegOp { 872 ARM_AM::ShiftOpc ShiftTy; 873 unsigned SrcReg; 874 unsigned ShiftReg; 875 unsigned ShiftImm; 876 }; 877 878 struct RegShiftedImmOp { 879 ARM_AM::ShiftOpc ShiftTy; 880 unsigned SrcReg; 881 unsigned ShiftImm; 882 }; 883 884 struct RotImmOp { 885 unsigned Imm; 886 }; 887 888 struct ModImmOp { 889 unsigned Bits; 890 unsigned Rot; 891 }; 892 893 struct BitfieldOp { 894 unsigned LSB; 895 unsigned Width; 896 }; 897 898 union { 899 struct CCOp CC; 900 struct VCCOp VCC; 901 struct CopOp Cop; 902 struct CoprocOptionOp CoprocOption; 903 struct MBOptOp MBOpt; 904 struct ISBOptOp ISBOpt; 905 struct TSBOptOp TSBOpt; 906 struct ITMaskOp ITMask; 907 struct IFlagsOp IFlags; 908 struct MMaskOp MMask; 909 struct BankedRegOp BankedReg; 910 struct TokOp Tok; 911 struct RegOp Reg; 912 struct VectorListOp VectorList; 913 struct VectorIndexOp VectorIndex; 914 struct ImmOp Imm; 915 struct MemoryOp Memory; 916 struct PostIdxRegOp PostIdxReg; 917 struct ShifterImmOp ShifterImm; 918 struct RegShiftedRegOp RegShiftedReg; 919 struct RegShiftedImmOp RegShiftedImm; 920 struct RotImmOp RotImm; 921 struct ModImmOp ModImm; 922 struct BitfieldOp Bitfield; 923 }; 924 925 public: 926 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 927 928 /// getStartLoc - Get the location of the first token of this operand. 929 SMLoc getStartLoc() const override { return StartLoc; } 930 931 /// getEndLoc - Get the location of the last token of this operand. 932 SMLoc getEndLoc() const override { return EndLoc; } 933 934 /// getLocRange - Get the range between the first and last token of this 935 /// operand. 936 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 937 938 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 939 SMLoc getAlignmentLoc() const { 940 assert(Kind == k_Memory && "Invalid access!"); 941 return AlignmentLoc; 942 } 943 944 ARMCC::CondCodes getCondCode() const { 945 assert(Kind == k_CondCode && "Invalid access!"); 946 return CC.Val; 947 } 948 949 ARMVCC::VPTCodes getVPTPred() const { 950 assert(isVPTPred() && "Invalid access!"); 951 return VCC.Val; 952 } 953 954 unsigned getCoproc() const { 955 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 956 return Cop.Val; 957 } 958 959 StringRef getToken() const { 960 assert(Kind == k_Token && "Invalid access!"); 961 return StringRef(Tok.Data, Tok.Length); 962 } 963 964 unsigned getReg() const override { 965 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 966 return Reg.RegNum; 967 } 968 969 const SmallVectorImpl<unsigned> &getRegList() const { 970 assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || 971 Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || 972 Kind == k_FPSRegisterListWithVPR || 973 Kind == k_FPDRegisterListWithVPR) && 974 "Invalid access!"); 975 return Registers; 976 } 977 978 const MCExpr *getImm() const { 979 assert(isImm() && "Invalid access!"); 980 return Imm.Val; 981 } 982 983 const MCExpr *getConstantPoolImm() const { 984 assert(isConstantPoolImm() && "Invalid access!"); 985 return Imm.Val; 986 } 987 988 unsigned getVectorIndex() const { 989 assert(Kind == k_VectorIndex && "Invalid access!"); 990 return VectorIndex.Val; 991 } 992 993 ARM_MB::MemBOpt getMemBarrierOpt() const { 994 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 995 return MBOpt.Val; 996 } 997 998 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 999 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 1000 return ISBOpt.Val; 1001 } 1002 1003 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 1004 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 1005 return TSBOpt.Val; 1006 } 1007 1008 ARM_PROC::IFlags getProcIFlags() const { 1009 assert(Kind == k_ProcIFlags && "Invalid access!"); 1010 return IFlags.Val; 1011 } 1012 1013 unsigned getMSRMask() const { 1014 assert(Kind == k_MSRMask && "Invalid access!"); 1015 return MMask.Val; 1016 } 1017 1018 unsigned getBankedReg() const { 1019 assert(Kind == k_BankedReg && "Invalid access!"); 1020 return BankedReg.Val; 1021 } 1022 1023 bool isCoprocNum() const { return Kind == k_CoprocNum; } 1024 bool isCoprocReg() const { return Kind == k_CoprocReg; } 1025 bool isCoprocOption() const { return Kind == k_CoprocOption; } 1026 bool isCondCode() const { return Kind == k_CondCode; } 1027 bool isVPTPred() const { return Kind == k_VPTPred; } 1028 bool isCCOut() const { return Kind == k_CCOut; } 1029 bool isITMask() const { return Kind == k_ITCondMask; } 1030 bool isITCondCode() const { return Kind == k_CondCode; } 1031 bool isImm() const override { 1032 return Kind == k_Immediate; 1033 } 1034 1035 bool isARMBranchTarget() const { 1036 if (!isImm()) return false; 1037 1038 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 1039 return CE->getValue() % 4 == 0; 1040 return true; 1041 } 1042 1043 1044 bool isThumbBranchTarget() const { 1045 if (!isImm()) return false; 1046 1047 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 1048 return CE->getValue() % 2 == 0; 1049 return true; 1050 } 1051 1052 // checks whether this operand is an unsigned offset which fits is a field 1053 // of specified width and scaled by a specific number of bits 1054 template<unsigned width, unsigned scale> 1055 bool isUnsignedOffset() const { 1056 if (!isImm()) return false; 1057 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1058 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1059 int64_t Val = CE->getValue(); 1060 int64_t Align = 1LL << scale; 1061 int64_t Max = Align * ((1LL << width) - 1); 1062 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 1063 } 1064 return false; 1065 } 1066 1067 // checks whether this operand is an signed offset which fits is a field 1068 // of specified width and scaled by a specific number of bits 1069 template<unsigned width, unsigned scale> 1070 bool isSignedOffset() const { 1071 if (!isImm()) return false; 1072 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1073 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1074 int64_t Val = CE->getValue(); 1075 int64_t Align = 1LL << scale; 1076 int64_t Max = Align * ((1LL << (width-1)) - 1); 1077 int64_t Min = -Align * (1LL << (width-1)); 1078 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 1079 } 1080 return false; 1081 } 1082 1083 // checks whether this operand is an offset suitable for the LE / 1084 // LETP instructions in Arm v8.1M 1085 bool isLEOffset() const { 1086 if (!isImm()) return false; 1087 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1088 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1089 int64_t Val = CE->getValue(); 1090 return Val < 0 && Val >= -4094 && (Val & 1) == 0; 1091 } 1092 return false; 1093 } 1094 1095 // checks whether this operand is a memory operand computed as an offset 1096 // applied to PC. the offset may have 8 bits of magnitude and is represented 1097 // with two bits of shift. textually it may be either [pc, #imm], #imm or 1098 // relocable expression... 1099 bool isThumbMemPC() const { 1100 int64_t Val = 0; 1101 if (isImm()) { 1102 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1103 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 1104 if (!CE) return false; 1105 Val = CE->getValue(); 1106 } 1107 else if (isGPRMem()) { 1108 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 1109 if(Memory.BaseRegNum != ARM::PC) return false; 1110 Val = Memory.OffsetImm->getValue(); 1111 } 1112 else return false; 1113 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 1114 } 1115 1116 bool isFPImm() const { 1117 if (!isImm()) return false; 1118 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1119 if (!CE) return false; 1120 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1121 return Val != -1; 1122 } 1123 1124 template<int64_t N, int64_t M> 1125 bool isImmediate() const { 1126 if (!isImm()) return false; 1127 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1128 if (!CE) return false; 1129 int64_t Value = CE->getValue(); 1130 return Value >= N && Value <= M; 1131 } 1132 1133 template<int64_t N, int64_t M> 1134 bool isImmediateS4() const { 1135 if (!isImm()) return false; 1136 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1137 if (!CE) return false; 1138 int64_t Value = CE->getValue(); 1139 return ((Value & 3) == 0) && Value >= N && Value <= M; 1140 } 1141 template<int64_t N, int64_t M> 1142 bool isImmediateS2() const { 1143 if (!isImm()) return false; 1144 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1145 if (!CE) return false; 1146 int64_t Value = CE->getValue(); 1147 return ((Value & 1) == 0) && Value >= N && Value <= M; 1148 } 1149 bool isFBits16() const { 1150 return isImmediate<0, 17>(); 1151 } 1152 bool isFBits32() const { 1153 return isImmediate<1, 33>(); 1154 } 1155 bool isImm8s4() const { 1156 return isImmediateS4<-1020, 1020>(); 1157 } 1158 bool isImm7s4() const { 1159 return isImmediateS4<-508, 508>(); 1160 } 1161 bool isImm7Shift0() const { 1162 return isImmediate<-127, 127>(); 1163 } 1164 bool isImm7Shift1() const { 1165 return isImmediateS2<-255, 255>(); 1166 } 1167 bool isImm7Shift2() const { 1168 return isImmediateS4<-511, 511>(); 1169 } 1170 bool isImm7() const { 1171 return isImmediate<-127, 127>(); 1172 } 1173 bool isImm0_1020s4() const { 1174 return isImmediateS4<0, 1020>(); 1175 } 1176 bool isImm0_508s4() const { 1177 return isImmediateS4<0, 508>(); 1178 } 1179 bool isImm0_508s4Neg() const { 1180 if (!isImm()) return false; 1181 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1182 if (!CE) return false; 1183 int64_t Value = -CE->getValue(); 1184 // explicitly exclude zero. we want that to use the normal 0_508 version. 1185 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1186 } 1187 1188 bool isImm0_4095Neg() const { 1189 if (!isImm()) return false; 1190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1191 if (!CE) return false; 1192 // isImm0_4095Neg is used with 32-bit immediates only. 1193 // 32-bit immediates are zero extended to 64-bit when parsed, 1194 // thus simple -CE->getValue() results in a big negative number, 1195 // not a small positive number as intended 1196 if ((CE->getValue() >> 32) > 0) return false; 1197 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1198 return Value > 0 && Value < 4096; 1199 } 1200 1201 bool isImm0_7() const { 1202 return isImmediate<0, 7>(); 1203 } 1204 1205 bool isImm1_16() const { 1206 return isImmediate<1, 16>(); 1207 } 1208 1209 bool isImm1_32() const { 1210 return isImmediate<1, 32>(); 1211 } 1212 1213 bool isImm8_255() const { 1214 return isImmediate<8, 255>(); 1215 } 1216 1217 bool isImm256_65535Expr() const { 1218 if (!isImm()) return false; 1219 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1220 // If it's not a constant expression, it'll generate a fixup and be 1221 // handled later. 1222 if (!CE) return true; 1223 int64_t Value = CE->getValue(); 1224 return Value >= 256 && Value < 65536; 1225 } 1226 1227 bool isImm0_65535Expr() const { 1228 if (!isImm()) return false; 1229 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1230 // If it's not a constant expression, it'll generate a fixup and be 1231 // handled later. 1232 if (!CE) return true; 1233 int64_t Value = CE->getValue(); 1234 return Value >= 0 && Value < 65536; 1235 } 1236 1237 bool isImm24bit() const { 1238 return isImmediate<0, 0xffffff + 1>(); 1239 } 1240 1241 bool isImmThumbSR() const { 1242 return isImmediate<1, 33>(); 1243 } 1244 1245 template<int shift> 1246 bool isExpImmValue(uint64_t Value) const { 1247 uint64_t mask = (1 << shift) - 1; 1248 if ((Value & mask) != 0 || (Value >> shift) > 0xff) 1249 return false; 1250 return true; 1251 } 1252 1253 template<int shift> 1254 bool isExpImm() const { 1255 if (!isImm()) return false; 1256 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1257 if (!CE) return false; 1258 1259 return isExpImmValue<shift>(CE->getValue()); 1260 } 1261 1262 template<int shift, int size> 1263 bool isInvertedExpImm() const { 1264 if (!isImm()) return false; 1265 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1266 if (!CE) return false; 1267 1268 uint64_t OriginalValue = CE->getValue(); 1269 uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1); 1270 return isExpImmValue<shift>(InvertedValue); 1271 } 1272 1273 bool isPKHLSLImm() const { 1274 return isImmediate<0, 32>(); 1275 } 1276 1277 bool isPKHASRImm() const { 1278 return isImmediate<0, 33>(); 1279 } 1280 1281 bool isAdrLabel() const { 1282 // If we have an immediate that's not a constant, treat it as a label 1283 // reference needing a fixup. 1284 if (isImm() && !isa<MCConstantExpr>(getImm())) 1285 return true; 1286 1287 // If it is a constant, it must fit into a modified immediate encoding. 1288 if (!isImm()) return false; 1289 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1290 if (!CE) return false; 1291 int64_t Value = CE->getValue(); 1292 return (ARM_AM::getSOImmVal(Value) != -1 || 1293 ARM_AM::getSOImmVal(-Value) != -1); 1294 } 1295 1296 bool isT2SOImm() const { 1297 // If we have an immediate that's not a constant, treat it as an expression 1298 // needing a fixup. 1299 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1300 // We want to avoid matching :upper16: and :lower16: as we want these 1301 // expressions to match in isImm0_65535Expr() 1302 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1303 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1304 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1305 } 1306 if (!isImm()) return false; 1307 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1308 if (!CE) return false; 1309 int64_t Value = CE->getValue(); 1310 return ARM_AM::getT2SOImmVal(Value) != -1; 1311 } 1312 1313 bool isT2SOImmNot() const { 1314 if (!isImm()) return false; 1315 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1316 if (!CE) return false; 1317 int64_t Value = CE->getValue(); 1318 return ARM_AM::getT2SOImmVal(Value) == -1 && 1319 ARM_AM::getT2SOImmVal(~Value) != -1; 1320 } 1321 1322 bool isT2SOImmNeg() const { 1323 if (!isImm()) return false; 1324 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1325 if (!CE) return false; 1326 int64_t Value = CE->getValue(); 1327 // Only use this when not representable as a plain so_imm. 1328 return ARM_AM::getT2SOImmVal(Value) == -1 && 1329 ARM_AM::getT2SOImmVal(-Value) != -1; 1330 } 1331 1332 bool isSetEndImm() const { 1333 if (!isImm()) return false; 1334 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1335 if (!CE) return false; 1336 int64_t Value = CE->getValue(); 1337 return Value == 1 || Value == 0; 1338 } 1339 1340 bool isReg() const override { return Kind == k_Register; } 1341 bool isRegList() const { return Kind == k_RegisterList; } 1342 bool isRegListWithAPSR() const { 1343 return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; 1344 } 1345 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1346 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1347 bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } 1348 bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } 1349 bool isToken() const override { return Kind == k_Token; } 1350 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1351 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1352 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1353 bool isMem() const override { 1354 return isGPRMem() || isMVEMem(); 1355 } 1356 bool isMVEMem() const { 1357 if (Kind != k_Memory) 1358 return false; 1359 if (Memory.BaseRegNum && 1360 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) && 1361 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum)) 1362 return false; 1363 if (Memory.OffsetRegNum && 1364 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1365 Memory.OffsetRegNum)) 1366 return false; 1367 return true; 1368 } 1369 bool isGPRMem() const { 1370 if (Kind != k_Memory) 1371 return false; 1372 if (Memory.BaseRegNum && 1373 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1374 return false; 1375 if (Memory.OffsetRegNum && 1376 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1377 return false; 1378 return true; 1379 } 1380 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1381 bool isRegShiftedReg() const { 1382 return Kind == k_ShiftedRegister && 1383 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1384 RegShiftedReg.SrcReg) && 1385 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1386 RegShiftedReg.ShiftReg); 1387 } 1388 bool isRegShiftedImm() const { 1389 return Kind == k_ShiftedImmediate && 1390 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1391 RegShiftedImm.SrcReg); 1392 } 1393 bool isRotImm() const { return Kind == k_RotateImmediate; } 1394 1395 template<unsigned Min, unsigned Max> 1396 bool isPowerTwoInRange() const { 1397 if (!isImm()) return false; 1398 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1399 if (!CE) return false; 1400 int64_t Value = CE->getValue(); 1401 return Value > 0 && countPopulation((uint64_t)Value) == 1 && 1402 Value >= Min && Value <= Max; 1403 } 1404 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1405 1406 bool isModImmNot() const { 1407 if (!isImm()) return false; 1408 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1409 if (!CE) return false; 1410 int64_t Value = CE->getValue(); 1411 return ARM_AM::getSOImmVal(~Value) != -1; 1412 } 1413 1414 bool isModImmNeg() const { 1415 if (!isImm()) return false; 1416 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1417 if (!CE) return false; 1418 int64_t Value = CE->getValue(); 1419 return ARM_AM::getSOImmVal(Value) == -1 && 1420 ARM_AM::getSOImmVal(-Value) != -1; 1421 } 1422 1423 bool isThumbModImmNeg1_7() const { 1424 if (!isImm()) return false; 1425 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1426 if (!CE) return false; 1427 int32_t Value = -(int32_t)CE->getValue(); 1428 return 0 < Value && Value < 8; 1429 } 1430 1431 bool isThumbModImmNeg8_255() const { 1432 if (!isImm()) return false; 1433 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1434 if (!CE) return false; 1435 int32_t Value = -(int32_t)CE->getValue(); 1436 return 7 < Value && Value < 256; 1437 } 1438 1439 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1440 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1441 bool isPostIdxRegShifted() const { 1442 return Kind == k_PostIndexRegister && 1443 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1444 } 1445 bool isPostIdxReg() const { 1446 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1447 } 1448 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1449 if (!isGPRMem()) 1450 return false; 1451 // No offset of any kind. 1452 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1453 (alignOK || Memory.Alignment == Alignment); 1454 } 1455 bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { 1456 if (!isGPRMem()) 1457 return false; 1458 1459 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1460 Memory.BaseRegNum)) 1461 return false; 1462 1463 // No offset of any kind. 1464 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1465 (alignOK || Memory.Alignment == Alignment); 1466 } 1467 bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { 1468 if (!isGPRMem()) 1469 return false; 1470 1471 if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( 1472 Memory.BaseRegNum)) 1473 return false; 1474 1475 // No offset of any kind. 1476 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1477 (alignOK || Memory.Alignment == Alignment); 1478 } 1479 bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { 1480 if (!isGPRMem()) 1481 return false; 1482 1483 if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( 1484 Memory.BaseRegNum)) 1485 return false; 1486 1487 // No offset of any kind. 1488 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1489 (alignOK || Memory.Alignment == Alignment); 1490 } 1491 bool isMemPCRelImm12() const { 1492 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1493 return false; 1494 // Base register must be PC. 1495 if (Memory.BaseRegNum != ARM::PC) 1496 return false; 1497 // Immediate offset in range [-4095, 4095]. 1498 if (!Memory.OffsetImm) return true; 1499 int64_t Val = Memory.OffsetImm->getValue(); 1500 return (Val > -4096 && Val < 4096) || 1501 (Val == std::numeric_limits<int32_t>::min()); 1502 } 1503 1504 bool isAlignedMemory() const { 1505 return isMemNoOffset(true); 1506 } 1507 1508 bool isAlignedMemoryNone() const { 1509 return isMemNoOffset(false, 0); 1510 } 1511 1512 bool isDupAlignedMemoryNone() const { 1513 return isMemNoOffset(false, 0); 1514 } 1515 1516 bool isAlignedMemory16() const { 1517 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1518 return true; 1519 return isMemNoOffset(false, 0); 1520 } 1521 1522 bool isDupAlignedMemory16() const { 1523 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1524 return true; 1525 return isMemNoOffset(false, 0); 1526 } 1527 1528 bool isAlignedMemory32() const { 1529 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1530 return true; 1531 return isMemNoOffset(false, 0); 1532 } 1533 1534 bool isDupAlignedMemory32() const { 1535 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1536 return true; 1537 return isMemNoOffset(false, 0); 1538 } 1539 1540 bool isAlignedMemory64() const { 1541 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1542 return true; 1543 return isMemNoOffset(false, 0); 1544 } 1545 1546 bool isDupAlignedMemory64() const { 1547 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1548 return true; 1549 return isMemNoOffset(false, 0); 1550 } 1551 1552 bool isAlignedMemory64or128() const { 1553 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1554 return true; 1555 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1556 return true; 1557 return isMemNoOffset(false, 0); 1558 } 1559 1560 bool isDupAlignedMemory64or128() const { 1561 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1562 return true; 1563 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1564 return true; 1565 return isMemNoOffset(false, 0); 1566 } 1567 1568 bool isAlignedMemory64or128or256() const { 1569 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1570 return true; 1571 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1572 return true; 1573 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1574 return true; 1575 return isMemNoOffset(false, 0); 1576 } 1577 1578 bool isAddrMode2() const { 1579 if (!isGPRMem() || Memory.Alignment != 0) return false; 1580 // Check for register offset. 1581 if (Memory.OffsetRegNum) return true; 1582 // Immediate offset in range [-4095, 4095]. 1583 if (!Memory.OffsetImm) return true; 1584 int64_t Val = Memory.OffsetImm->getValue(); 1585 return Val > -4096 && Val < 4096; 1586 } 1587 1588 bool isAM2OffsetImm() const { 1589 if (!isImm()) return false; 1590 // Immediate offset in range [-4095, 4095]. 1591 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1592 if (!CE) return false; 1593 int64_t Val = CE->getValue(); 1594 return (Val == std::numeric_limits<int32_t>::min()) || 1595 (Val > -4096 && Val < 4096); 1596 } 1597 1598 bool isAddrMode3() const { 1599 // If we have an immediate that's not a constant, treat it as a label 1600 // reference needing a fixup. If it is a constant, it's something else 1601 // and we reject it. 1602 if (isImm() && !isa<MCConstantExpr>(getImm())) 1603 return true; 1604 if (!isGPRMem() || Memory.Alignment != 0) return false; 1605 // No shifts are legal for AM3. 1606 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1607 // Check for register offset. 1608 if (Memory.OffsetRegNum) return true; 1609 // Immediate offset in range [-255, 255]. 1610 if (!Memory.OffsetImm) return true; 1611 int64_t Val = Memory.OffsetImm->getValue(); 1612 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1613 // have to check for this too. 1614 return (Val > -256 && Val < 256) || 1615 Val == std::numeric_limits<int32_t>::min(); 1616 } 1617 1618 bool isAM3Offset() const { 1619 if (isPostIdxReg()) 1620 return true; 1621 if (!isImm()) 1622 return false; 1623 // Immediate offset in range [-255, 255]. 1624 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1625 if (!CE) return false; 1626 int64_t Val = CE->getValue(); 1627 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1628 return (Val > -256 && Val < 256) || 1629 Val == std::numeric_limits<int32_t>::min(); 1630 } 1631 1632 bool isAddrMode5() const { 1633 // If we have an immediate that's not a constant, treat it as a label 1634 // reference needing a fixup. If it is a constant, it's something else 1635 // and we reject it. 1636 if (isImm() && !isa<MCConstantExpr>(getImm())) 1637 return true; 1638 if (!isGPRMem() || Memory.Alignment != 0) return false; 1639 // Check for register offset. 1640 if (Memory.OffsetRegNum) return false; 1641 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1642 if (!Memory.OffsetImm) return true; 1643 int64_t Val = Memory.OffsetImm->getValue(); 1644 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1645 Val == std::numeric_limits<int32_t>::min(); 1646 } 1647 1648 bool isAddrMode5FP16() const { 1649 // If we have an immediate that's not a constant, treat it as a label 1650 // reference needing a fixup. If it is a constant, it's something else 1651 // and we reject it. 1652 if (isImm() && !isa<MCConstantExpr>(getImm())) 1653 return true; 1654 if (!isGPRMem() || Memory.Alignment != 0) return false; 1655 // Check for register offset. 1656 if (Memory.OffsetRegNum) return false; 1657 // Immediate offset in range [-510, 510] and a multiple of 2. 1658 if (!Memory.OffsetImm) return true; 1659 int64_t Val = Memory.OffsetImm->getValue(); 1660 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1661 Val == std::numeric_limits<int32_t>::min(); 1662 } 1663 1664 bool isMemTBB() const { 1665 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1666 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1667 return false; 1668 return true; 1669 } 1670 1671 bool isMemTBH() const { 1672 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1673 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1674 Memory.Alignment != 0 ) 1675 return false; 1676 return true; 1677 } 1678 1679 bool isMemRegOffset() const { 1680 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1681 return false; 1682 return true; 1683 } 1684 1685 bool isT2MemRegOffset() const { 1686 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1687 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1688 return false; 1689 // Only lsl #{0, 1, 2, 3} allowed. 1690 if (Memory.ShiftType == ARM_AM::no_shift) 1691 return true; 1692 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1693 return false; 1694 return true; 1695 } 1696 1697 bool isMemThumbRR() const { 1698 // Thumb reg+reg addressing is simple. Just two registers, a base and 1699 // an offset. No shifts, negations or any other complicating factors. 1700 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1701 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1702 return false; 1703 return isARMLowRegister(Memory.BaseRegNum) && 1704 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1705 } 1706 1707 bool isMemThumbRIs4() const { 1708 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1709 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1710 return false; 1711 // Immediate offset, multiple of 4 in range [0, 124]. 1712 if (!Memory.OffsetImm) return true; 1713 int64_t Val = Memory.OffsetImm->getValue(); 1714 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1715 } 1716 1717 bool isMemThumbRIs2() const { 1718 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1719 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1720 return false; 1721 // Immediate offset, multiple of 4 in range [0, 62]. 1722 if (!Memory.OffsetImm) return true; 1723 int64_t Val = Memory.OffsetImm->getValue(); 1724 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1725 } 1726 1727 bool isMemThumbRIs1() const { 1728 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1729 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1730 return false; 1731 // Immediate offset in range [0, 31]. 1732 if (!Memory.OffsetImm) return true; 1733 int64_t Val = Memory.OffsetImm->getValue(); 1734 return Val >= 0 && Val <= 31; 1735 } 1736 1737 bool isMemThumbSPI() const { 1738 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1739 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1740 return false; 1741 // Immediate offset, multiple of 4 in range [0, 1020]. 1742 if (!Memory.OffsetImm) return true; 1743 int64_t Val = Memory.OffsetImm->getValue(); 1744 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1745 } 1746 1747 bool isMemImm8s4Offset() const { 1748 // If we have an immediate that's not a constant, treat it as a label 1749 // reference needing a fixup. If it is a constant, it's something else 1750 // and we reject it. 1751 if (isImm() && !isa<MCConstantExpr>(getImm())) 1752 return true; 1753 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1754 return false; 1755 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1756 if (!Memory.OffsetImm) return true; 1757 int64_t Val = Memory.OffsetImm->getValue(); 1758 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1759 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1760 Val == std::numeric_limits<int32_t>::min(); 1761 } 1762 bool isMemImm7s4Offset() const { 1763 // If we have an immediate that's not a constant, treat it as a label 1764 // reference needing a fixup. If it is a constant, it's something else 1765 // and we reject it. 1766 if (isImm() && !isa<MCConstantExpr>(getImm())) 1767 return true; 1768 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1769 !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1770 Memory.BaseRegNum)) 1771 return false; 1772 // Immediate offset a multiple of 4 in range [-508, 508]. 1773 if (!Memory.OffsetImm) return true; 1774 int64_t Val = Memory.OffsetImm->getValue(); 1775 // Special case, #-0 is INT32_MIN. 1776 return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; 1777 } 1778 bool isMemImm0_1020s4Offset() const { 1779 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1780 return false; 1781 // Immediate offset a multiple of 4 in range [0, 1020]. 1782 if (!Memory.OffsetImm) return true; 1783 int64_t Val = Memory.OffsetImm->getValue(); 1784 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1785 } 1786 1787 bool isMemImm8Offset() const { 1788 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1789 return false; 1790 // Base reg of PC isn't allowed for these encodings. 1791 if (Memory.BaseRegNum == ARM::PC) return false; 1792 // Immediate offset in range [-255, 255]. 1793 if (!Memory.OffsetImm) return true; 1794 int64_t Val = Memory.OffsetImm->getValue(); 1795 return (Val == std::numeric_limits<int32_t>::min()) || 1796 (Val > -256 && Val < 256); 1797 } 1798 1799 template<unsigned Bits, unsigned RegClassID> 1800 bool isMemImm7ShiftedOffset() const { 1801 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1802 !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum)) 1803 return false; 1804 1805 // Expect an immediate offset equal to an element of the range 1806 // [-127, 127], shifted left by Bits. 1807 1808 if (!Memory.OffsetImm) return true; 1809 int64_t Val = Memory.OffsetImm->getValue(); 1810 1811 // INT32_MIN is a special-case value (indicating the encoding with 1812 // zero offset and the subtract bit set) 1813 if (Val == INT32_MIN) 1814 return true; 1815 1816 unsigned Divisor = 1U << Bits; 1817 1818 // Check that the low bits are zero 1819 if (Val % Divisor != 0) 1820 return false; 1821 1822 // Check that the remaining offset is within range. 1823 Val /= Divisor; 1824 return (Val >= -127 && Val <= 127); 1825 } 1826 1827 template <int shift> bool isMemRegRQOffset() const { 1828 if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0) 1829 return false; 1830 1831 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1832 Memory.BaseRegNum)) 1833 return false; 1834 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1835 Memory.OffsetRegNum)) 1836 return false; 1837 1838 if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) 1839 return false; 1840 1841 if (shift > 0 && 1842 (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) 1843 return false; 1844 1845 return true; 1846 } 1847 1848 template <int shift> bool isMemRegQOffset() const { 1849 if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1850 return false; 1851 1852 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1853 Memory.BaseRegNum)) 1854 return false; 1855 1856 if(!Memory.OffsetImm) return true; 1857 static_assert(shift < 56, 1858 "Such that we dont shift by a value higher than 62"); 1859 int64_t Val = Memory.OffsetImm->getValue(); 1860 1861 // The value must be a multiple of (1 << shift) 1862 if ((Val & ((1U << shift) - 1)) != 0) 1863 return false; 1864 1865 // And be in the right range, depending on the amount that it is shifted 1866 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set 1867 // separately. 1868 int64_t Range = (1U << (7+shift)) - 1; 1869 return (Val == INT32_MIN) || (Val > -Range && Val < Range); 1870 } 1871 1872 bool isMemPosImm8Offset() const { 1873 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1874 return false; 1875 // Immediate offset in range [0, 255]. 1876 if (!Memory.OffsetImm) return true; 1877 int64_t Val = Memory.OffsetImm->getValue(); 1878 return Val >= 0 && Val < 256; 1879 } 1880 1881 bool isMemNegImm8Offset() const { 1882 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1883 return false; 1884 // Base reg of PC isn't allowed for these encodings. 1885 if (Memory.BaseRegNum == ARM::PC) return false; 1886 // Immediate offset in range [-255, -1]. 1887 if (!Memory.OffsetImm) return false; 1888 int64_t Val = Memory.OffsetImm->getValue(); 1889 return (Val == std::numeric_limits<int32_t>::min()) || 1890 (Val > -256 && Val < 0); 1891 } 1892 1893 bool isMemUImm12Offset() const { 1894 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1895 return false; 1896 // Immediate offset in range [0, 4095]. 1897 if (!Memory.OffsetImm) return true; 1898 int64_t Val = Memory.OffsetImm->getValue(); 1899 return (Val >= 0 && Val < 4096); 1900 } 1901 1902 bool isMemImm12Offset() const { 1903 // If we have an immediate that's not a constant, treat it as a label 1904 // reference needing a fixup. If it is a constant, it's something else 1905 // and we reject it. 1906 1907 if (isImm() && !isa<MCConstantExpr>(getImm())) 1908 return true; 1909 1910 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1911 return false; 1912 // Immediate offset in range [-4095, 4095]. 1913 if (!Memory.OffsetImm) return true; 1914 int64_t Val = Memory.OffsetImm->getValue(); 1915 return (Val > -4096 && Val < 4096) || 1916 (Val == std::numeric_limits<int32_t>::min()); 1917 } 1918 1919 bool isConstPoolAsmImm() const { 1920 // Delay processing of Constant Pool Immediate, this will turn into 1921 // a constant. Match no other operand 1922 return (isConstantPoolImm()); 1923 } 1924 1925 bool isPostIdxImm8() const { 1926 if (!isImm()) return false; 1927 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1928 if (!CE) return false; 1929 int64_t Val = CE->getValue(); 1930 return (Val > -256 && Val < 256) || 1931 (Val == std::numeric_limits<int32_t>::min()); 1932 } 1933 1934 bool isPostIdxImm8s4() const { 1935 if (!isImm()) return false; 1936 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1937 if (!CE) return false; 1938 int64_t Val = CE->getValue(); 1939 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1940 (Val == std::numeric_limits<int32_t>::min()); 1941 } 1942 1943 bool isMSRMask() const { return Kind == k_MSRMask; } 1944 bool isBankedReg() const { return Kind == k_BankedReg; } 1945 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1946 1947 // NEON operands. 1948 bool isSingleSpacedVectorList() const { 1949 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1950 } 1951 1952 bool isDoubleSpacedVectorList() const { 1953 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1954 } 1955 1956 bool isVecListOneD() const { 1957 if (!isSingleSpacedVectorList()) return false; 1958 return VectorList.Count == 1; 1959 } 1960 1961 bool isVecListTwoMQ() const { 1962 return isSingleSpacedVectorList() && VectorList.Count == 2 && 1963 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1964 VectorList.RegNum); 1965 } 1966 1967 bool isVecListDPair() const { 1968 if (!isSingleSpacedVectorList()) return false; 1969 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1970 .contains(VectorList.RegNum)); 1971 } 1972 1973 bool isVecListThreeD() const { 1974 if (!isSingleSpacedVectorList()) return false; 1975 return VectorList.Count == 3; 1976 } 1977 1978 bool isVecListFourD() const { 1979 if (!isSingleSpacedVectorList()) return false; 1980 return VectorList.Count == 4; 1981 } 1982 1983 bool isVecListDPairSpaced() const { 1984 if (Kind != k_VectorList) return false; 1985 if (isSingleSpacedVectorList()) return false; 1986 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1987 .contains(VectorList.RegNum)); 1988 } 1989 1990 bool isVecListThreeQ() const { 1991 if (!isDoubleSpacedVectorList()) return false; 1992 return VectorList.Count == 3; 1993 } 1994 1995 bool isVecListFourQ() const { 1996 if (!isDoubleSpacedVectorList()) return false; 1997 return VectorList.Count == 4; 1998 } 1999 2000 bool isVecListFourMQ() const { 2001 return isSingleSpacedVectorList() && VectorList.Count == 4 && 2002 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 2003 VectorList.RegNum); 2004 } 2005 2006 bool isSingleSpacedVectorAllLanes() const { 2007 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 2008 } 2009 2010 bool isDoubleSpacedVectorAllLanes() const { 2011 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 2012 } 2013 2014 bool isVecListOneDAllLanes() const { 2015 if (!isSingleSpacedVectorAllLanes()) return false; 2016 return VectorList.Count == 1; 2017 } 2018 2019 bool isVecListDPairAllLanes() const { 2020 if (!isSingleSpacedVectorAllLanes()) return false; 2021 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 2022 .contains(VectorList.RegNum)); 2023 } 2024 2025 bool isVecListDPairSpacedAllLanes() const { 2026 if (!isDoubleSpacedVectorAllLanes()) return false; 2027 return VectorList.Count == 2; 2028 } 2029 2030 bool isVecListThreeDAllLanes() const { 2031 if (!isSingleSpacedVectorAllLanes()) return false; 2032 return VectorList.Count == 3; 2033 } 2034 2035 bool isVecListThreeQAllLanes() const { 2036 if (!isDoubleSpacedVectorAllLanes()) return false; 2037 return VectorList.Count == 3; 2038 } 2039 2040 bool isVecListFourDAllLanes() const { 2041 if (!isSingleSpacedVectorAllLanes()) return false; 2042 return VectorList.Count == 4; 2043 } 2044 2045 bool isVecListFourQAllLanes() const { 2046 if (!isDoubleSpacedVectorAllLanes()) return false; 2047 return VectorList.Count == 4; 2048 } 2049 2050 bool isSingleSpacedVectorIndexed() const { 2051 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 2052 } 2053 2054 bool isDoubleSpacedVectorIndexed() const { 2055 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 2056 } 2057 2058 bool isVecListOneDByteIndexed() const { 2059 if (!isSingleSpacedVectorIndexed()) return false; 2060 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 2061 } 2062 2063 bool isVecListOneDHWordIndexed() const { 2064 if (!isSingleSpacedVectorIndexed()) return false; 2065 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 2066 } 2067 2068 bool isVecListOneDWordIndexed() const { 2069 if (!isSingleSpacedVectorIndexed()) return false; 2070 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 2071 } 2072 2073 bool isVecListTwoDByteIndexed() const { 2074 if (!isSingleSpacedVectorIndexed()) return false; 2075 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 2076 } 2077 2078 bool isVecListTwoDHWordIndexed() const { 2079 if (!isSingleSpacedVectorIndexed()) return false; 2080 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2081 } 2082 2083 bool isVecListTwoQWordIndexed() const { 2084 if (!isDoubleSpacedVectorIndexed()) return false; 2085 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2086 } 2087 2088 bool isVecListTwoQHWordIndexed() const { 2089 if (!isDoubleSpacedVectorIndexed()) return false; 2090 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2091 } 2092 2093 bool isVecListTwoDWordIndexed() const { 2094 if (!isSingleSpacedVectorIndexed()) return false; 2095 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2096 } 2097 2098 bool isVecListThreeDByteIndexed() const { 2099 if (!isSingleSpacedVectorIndexed()) return false; 2100 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 2101 } 2102 2103 bool isVecListThreeDHWordIndexed() const { 2104 if (!isSingleSpacedVectorIndexed()) return false; 2105 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2106 } 2107 2108 bool isVecListThreeQWordIndexed() const { 2109 if (!isDoubleSpacedVectorIndexed()) return false; 2110 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2111 } 2112 2113 bool isVecListThreeQHWordIndexed() const { 2114 if (!isDoubleSpacedVectorIndexed()) return false; 2115 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2116 } 2117 2118 bool isVecListThreeDWordIndexed() const { 2119 if (!isSingleSpacedVectorIndexed()) return false; 2120 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2121 } 2122 2123 bool isVecListFourDByteIndexed() const { 2124 if (!isSingleSpacedVectorIndexed()) return false; 2125 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 2126 } 2127 2128 bool isVecListFourDHWordIndexed() const { 2129 if (!isSingleSpacedVectorIndexed()) return false; 2130 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2131 } 2132 2133 bool isVecListFourQWordIndexed() const { 2134 if (!isDoubleSpacedVectorIndexed()) return false; 2135 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2136 } 2137 2138 bool isVecListFourQHWordIndexed() const { 2139 if (!isDoubleSpacedVectorIndexed()) return false; 2140 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2141 } 2142 2143 bool isVecListFourDWordIndexed() const { 2144 if (!isSingleSpacedVectorIndexed()) return false; 2145 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2146 } 2147 2148 bool isVectorIndex() const { return Kind == k_VectorIndex; } 2149 2150 template <unsigned NumLanes> 2151 bool isVectorIndexInRange() const { 2152 if (Kind != k_VectorIndex) return false; 2153 return VectorIndex.Val < NumLanes; 2154 } 2155 2156 bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } 2157 bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } 2158 bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } 2159 bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } 2160 2161 template<int PermittedValue, int OtherPermittedValue> 2162 bool isMVEPairVectorIndex() const { 2163 if (Kind != k_VectorIndex) return false; 2164 return VectorIndex.Val == PermittedValue || 2165 VectorIndex.Val == OtherPermittedValue; 2166 } 2167 2168 bool isNEONi8splat() const { 2169 if (!isImm()) return false; 2170 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2171 // Must be a constant. 2172 if (!CE) return false; 2173 int64_t Value = CE->getValue(); 2174 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 2175 // value. 2176 return Value >= 0 && Value < 256; 2177 } 2178 2179 bool isNEONi16splat() const { 2180 if (isNEONByteReplicate(2)) 2181 return false; // Leave that for bytes replication and forbid by default. 2182 if (!isImm()) 2183 return false; 2184 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2185 // Must be a constant. 2186 if (!CE) return false; 2187 unsigned Value = CE->getValue(); 2188 return ARM_AM::isNEONi16splat(Value); 2189 } 2190 2191 bool isNEONi16splatNot() const { 2192 if (!isImm()) 2193 return false; 2194 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2195 // Must be a constant. 2196 if (!CE) return false; 2197 unsigned Value = CE->getValue(); 2198 return ARM_AM::isNEONi16splat(~Value & 0xffff); 2199 } 2200 2201 bool isNEONi32splat() const { 2202 if (isNEONByteReplicate(4)) 2203 return false; // Leave that for bytes replication and forbid by default. 2204 if (!isImm()) 2205 return false; 2206 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2207 // Must be a constant. 2208 if (!CE) return false; 2209 unsigned Value = CE->getValue(); 2210 return ARM_AM::isNEONi32splat(Value); 2211 } 2212 2213 bool isNEONi32splatNot() const { 2214 if (!isImm()) 2215 return false; 2216 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2217 // Must be a constant. 2218 if (!CE) return false; 2219 unsigned Value = CE->getValue(); 2220 return ARM_AM::isNEONi32splat(~Value); 2221 } 2222 2223 static bool isValidNEONi32vmovImm(int64_t Value) { 2224 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 2225 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 2226 return ((Value & 0xffffffffffffff00) == 0) || 2227 ((Value & 0xffffffffffff00ff) == 0) || 2228 ((Value & 0xffffffffff00ffff) == 0) || 2229 ((Value & 0xffffffff00ffffff) == 0) || 2230 ((Value & 0xffffffffffff00ff) == 0xff) || 2231 ((Value & 0xffffffffff00ffff) == 0xffff); 2232 } 2233 2234 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 2235 assert((Width == 8 || Width == 16 || Width == 32) && 2236 "Invalid element width"); 2237 assert(NumElems * Width <= 64 && "Invalid result width"); 2238 2239 if (!isImm()) 2240 return false; 2241 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2242 // Must be a constant. 2243 if (!CE) 2244 return false; 2245 int64_t Value = CE->getValue(); 2246 if (!Value) 2247 return false; // Don't bother with zero. 2248 if (Inv) 2249 Value = ~Value; 2250 2251 uint64_t Mask = (1ull << Width) - 1; 2252 uint64_t Elem = Value & Mask; 2253 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 2254 return false; 2255 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 2256 return false; 2257 2258 for (unsigned i = 1; i < NumElems; ++i) { 2259 Value >>= Width; 2260 if ((Value & Mask) != Elem) 2261 return false; 2262 } 2263 return true; 2264 } 2265 2266 bool isNEONByteReplicate(unsigned NumBytes) const { 2267 return isNEONReplicate(8, NumBytes, false); 2268 } 2269 2270 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 2271 assert((FromW == 8 || FromW == 16 || FromW == 32) && 2272 "Invalid source width"); 2273 assert((ToW == 16 || ToW == 32 || ToW == 64) && 2274 "Invalid destination width"); 2275 assert(FromW < ToW && "ToW is not less than FromW"); 2276 } 2277 2278 template<unsigned FromW, unsigned ToW> 2279 bool isNEONmovReplicate() const { 2280 checkNeonReplicateArgs(FromW, ToW); 2281 if (ToW == 64 && isNEONi64splat()) 2282 return false; 2283 return isNEONReplicate(FromW, ToW / FromW, false); 2284 } 2285 2286 template<unsigned FromW, unsigned ToW> 2287 bool isNEONinvReplicate() const { 2288 checkNeonReplicateArgs(FromW, ToW); 2289 return isNEONReplicate(FromW, ToW / FromW, true); 2290 } 2291 2292 bool isNEONi32vmov() const { 2293 if (isNEONByteReplicate(4)) 2294 return false; // Let it to be classified as byte-replicate case. 2295 if (!isImm()) 2296 return false; 2297 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2298 // Must be a constant. 2299 if (!CE) 2300 return false; 2301 return isValidNEONi32vmovImm(CE->getValue()); 2302 } 2303 2304 bool isNEONi32vmovNeg() const { 2305 if (!isImm()) return false; 2306 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2307 // Must be a constant. 2308 if (!CE) return false; 2309 return isValidNEONi32vmovImm(~CE->getValue()); 2310 } 2311 2312 bool isNEONi64splat() const { 2313 if (!isImm()) return false; 2314 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2315 // Must be a constant. 2316 if (!CE) return false; 2317 uint64_t Value = CE->getValue(); 2318 // i64 value with each byte being either 0 or 0xff. 2319 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 2320 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 2321 return true; 2322 } 2323 2324 template<int64_t Angle, int64_t Remainder> 2325 bool isComplexRotation() const { 2326 if (!isImm()) return false; 2327 2328 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2329 if (!CE) return false; 2330 uint64_t Value = CE->getValue(); 2331 2332 return (Value % Angle == Remainder && Value <= 270); 2333 } 2334 2335 bool isMVELongShift() const { 2336 if (!isImm()) return false; 2337 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2338 // Must be a constant. 2339 if (!CE) return false; 2340 uint64_t Value = CE->getValue(); 2341 return Value >= 1 && Value <= 32; 2342 } 2343 2344 bool isMveSaturateOp() const { 2345 if (!isImm()) return false; 2346 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2347 if (!CE) return false; 2348 uint64_t Value = CE->getValue(); 2349 return Value == 48 || Value == 64; 2350 } 2351 2352 bool isITCondCodeNoAL() const { 2353 if (!isITCondCode()) return false; 2354 ARMCC::CondCodes CC = getCondCode(); 2355 return CC != ARMCC::AL; 2356 } 2357 2358 bool isITCondCodeRestrictedI() const { 2359 if (!isITCondCode()) 2360 return false; 2361 ARMCC::CondCodes CC = getCondCode(); 2362 return CC == ARMCC::EQ || CC == ARMCC::NE; 2363 } 2364 2365 bool isITCondCodeRestrictedS() const { 2366 if (!isITCondCode()) 2367 return false; 2368 ARMCC::CondCodes CC = getCondCode(); 2369 return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || 2370 CC == ARMCC::GE; 2371 } 2372 2373 bool isITCondCodeRestrictedU() const { 2374 if (!isITCondCode()) 2375 return false; 2376 ARMCC::CondCodes CC = getCondCode(); 2377 return CC == ARMCC::HS || CC == ARMCC::HI; 2378 } 2379 2380 bool isITCondCodeRestrictedFP() const { 2381 if (!isITCondCode()) 2382 return false; 2383 ARMCC::CondCodes CC = getCondCode(); 2384 return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || 2385 CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; 2386 } 2387 2388 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 2389 // Add as immediates when possible. Null MCExpr = 0. 2390 if (!Expr) 2391 Inst.addOperand(MCOperand::createImm(0)); 2392 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 2393 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2394 else 2395 Inst.addOperand(MCOperand::createExpr(Expr)); 2396 } 2397 2398 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2399 assert(N == 1 && "Invalid number of operands!"); 2400 addExpr(Inst, getImm()); 2401 } 2402 2403 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2404 assert(N == 1 && "Invalid number of operands!"); 2405 addExpr(Inst, getImm()); 2406 } 2407 2408 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2409 assert(N == 2 && "Invalid number of operands!"); 2410 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2411 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2412 Inst.addOperand(MCOperand::createReg(RegNum)); 2413 } 2414 2415 void addVPTPredNOperands(MCInst &Inst, unsigned N) const { 2416 assert(N == 2 && "Invalid number of operands!"); 2417 Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred()))); 2418 unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; 2419 Inst.addOperand(MCOperand::createReg(RegNum)); 2420 } 2421 2422 void addVPTPredROperands(MCInst &Inst, unsigned N) const { 2423 assert(N == 3 && "Invalid number of operands!"); 2424 addVPTPredNOperands(Inst, N-1); 2425 unsigned RegNum; 2426 if (getVPTPred() == ARMVCC::None) { 2427 RegNum = 0; 2428 } else { 2429 unsigned NextOpIndex = Inst.getNumOperands(); 2430 const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()]; 2431 int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO); 2432 assert(TiedOp >= 0 && 2433 "Inactive register in vpred_r is not tied to an output!"); 2434 RegNum = Inst.getOperand(TiedOp).getReg(); 2435 } 2436 Inst.addOperand(MCOperand::createReg(RegNum)); 2437 } 2438 2439 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2440 assert(N == 1 && "Invalid number of operands!"); 2441 Inst.addOperand(MCOperand::createImm(getCoproc())); 2442 } 2443 2444 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2445 assert(N == 1 && "Invalid number of operands!"); 2446 Inst.addOperand(MCOperand::createImm(getCoproc())); 2447 } 2448 2449 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2450 assert(N == 1 && "Invalid number of operands!"); 2451 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2452 } 2453 2454 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2455 assert(N == 1 && "Invalid number of operands!"); 2456 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2457 } 2458 2459 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2460 assert(N == 1 && "Invalid number of operands!"); 2461 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2462 } 2463 2464 void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { 2465 assert(N == 1 && "Invalid number of operands!"); 2466 Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode())))); 2467 } 2468 2469 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2470 assert(N == 1 && "Invalid number of operands!"); 2471 Inst.addOperand(MCOperand::createReg(getReg())); 2472 } 2473 2474 void addRegOperands(MCInst &Inst, unsigned N) const { 2475 assert(N == 1 && "Invalid number of operands!"); 2476 Inst.addOperand(MCOperand::createReg(getReg())); 2477 } 2478 2479 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2480 assert(N == 3 && "Invalid number of operands!"); 2481 assert(isRegShiftedReg() && 2482 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2483 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2484 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2485 Inst.addOperand(MCOperand::createImm( 2486 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2487 } 2488 2489 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2490 assert(N == 2 && "Invalid number of operands!"); 2491 assert(isRegShiftedImm() && 2492 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2493 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2494 // Shift of #32 is encoded as 0 where permitted 2495 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2496 Inst.addOperand(MCOperand::createImm( 2497 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2498 } 2499 2500 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2501 assert(N == 1 && "Invalid number of operands!"); 2502 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2503 ShifterImm.Imm)); 2504 } 2505 2506 void addRegListOperands(MCInst &Inst, unsigned N) const { 2507 assert(N == 1 && "Invalid number of operands!"); 2508 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2509 for (SmallVectorImpl<unsigned>::const_iterator 2510 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2511 Inst.addOperand(MCOperand::createReg(*I)); 2512 } 2513 2514 void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { 2515 assert(N == 1 && "Invalid number of operands!"); 2516 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2517 for (SmallVectorImpl<unsigned>::const_iterator 2518 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2519 Inst.addOperand(MCOperand::createReg(*I)); 2520 } 2521 2522 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2523 addRegListOperands(Inst, N); 2524 } 2525 2526 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2527 addRegListOperands(Inst, N); 2528 } 2529 2530 void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2531 addRegListOperands(Inst, N); 2532 } 2533 2534 void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2535 addRegListOperands(Inst, N); 2536 } 2537 2538 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2539 assert(N == 1 && "Invalid number of operands!"); 2540 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2541 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2542 } 2543 2544 void addModImmOperands(MCInst &Inst, unsigned N) const { 2545 assert(N == 1 && "Invalid number of operands!"); 2546 2547 // Support for fixups (MCFixup) 2548 if (isImm()) 2549 return addImmOperands(Inst, N); 2550 2551 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2552 } 2553 2554 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2555 assert(N == 1 && "Invalid number of operands!"); 2556 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2557 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2558 Inst.addOperand(MCOperand::createImm(Enc)); 2559 } 2560 2561 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2562 assert(N == 1 && "Invalid number of operands!"); 2563 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2564 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2565 Inst.addOperand(MCOperand::createImm(Enc)); 2566 } 2567 2568 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2569 assert(N == 1 && "Invalid number of operands!"); 2570 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2571 uint32_t Val = -CE->getValue(); 2572 Inst.addOperand(MCOperand::createImm(Val)); 2573 } 2574 2575 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2576 assert(N == 1 && "Invalid number of operands!"); 2577 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2578 uint32_t Val = -CE->getValue(); 2579 Inst.addOperand(MCOperand::createImm(Val)); 2580 } 2581 2582 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2583 assert(N == 1 && "Invalid number of operands!"); 2584 // Munge the lsb/width into a bitfield mask. 2585 unsigned lsb = Bitfield.LSB; 2586 unsigned width = Bitfield.Width; 2587 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2588 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2589 (32 - (lsb + width))); 2590 Inst.addOperand(MCOperand::createImm(Mask)); 2591 } 2592 2593 void addImmOperands(MCInst &Inst, unsigned N) const { 2594 assert(N == 1 && "Invalid number of operands!"); 2595 addExpr(Inst, getImm()); 2596 } 2597 2598 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2599 assert(N == 1 && "Invalid number of operands!"); 2600 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2601 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2602 } 2603 2604 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2605 assert(N == 1 && "Invalid number of operands!"); 2606 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2607 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2608 } 2609 2610 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2611 assert(N == 1 && "Invalid number of operands!"); 2612 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2613 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2614 Inst.addOperand(MCOperand::createImm(Val)); 2615 } 2616 2617 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2618 assert(N == 1 && "Invalid number of operands!"); 2619 // FIXME: We really want to scale the value here, but the LDRD/STRD 2620 // instruction don't encode operands that way yet. 2621 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2622 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2623 } 2624 2625 void addImm7s4Operands(MCInst &Inst, unsigned N) const { 2626 assert(N == 1 && "Invalid number of operands!"); 2627 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR 2628 // instruction don't encode operands that way yet. 2629 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2630 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2631 } 2632 2633 void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { 2634 assert(N == 1 && "Invalid number of operands!"); 2635 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2636 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2637 } 2638 2639 void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { 2640 assert(N == 1 && "Invalid number of operands!"); 2641 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2642 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2643 } 2644 2645 void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { 2646 assert(N == 1 && "Invalid number of operands!"); 2647 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2648 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2649 } 2650 2651 void addImm7Operands(MCInst &Inst, unsigned N) const { 2652 assert(N == 1 && "Invalid number of operands!"); 2653 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2654 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2655 } 2656 2657 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2658 assert(N == 1 && "Invalid number of operands!"); 2659 // The immediate is scaled by four in the encoding and is stored 2660 // in the MCInst as such. Lop off the low two bits here. 2661 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2662 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2663 } 2664 2665 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2666 assert(N == 1 && "Invalid number of operands!"); 2667 // The immediate is scaled by four in the encoding and is stored 2668 // in the MCInst as such. Lop off the low two bits here. 2669 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2670 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2671 } 2672 2673 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2674 assert(N == 1 && "Invalid number of operands!"); 2675 // The immediate is scaled by four in the encoding and is stored 2676 // in the MCInst as such. Lop off the low two bits here. 2677 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2678 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2679 } 2680 2681 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2682 assert(N == 1 && "Invalid number of operands!"); 2683 // The constant encodes as the immediate-1, and we store in the instruction 2684 // the bits as encoded, so subtract off one here. 2685 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2686 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2687 } 2688 2689 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2690 assert(N == 1 && "Invalid number of operands!"); 2691 // The constant encodes as the immediate-1, and we store in the instruction 2692 // the bits as encoded, so subtract off one here. 2693 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2694 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2695 } 2696 2697 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2698 assert(N == 1 && "Invalid number of operands!"); 2699 // The constant encodes as the immediate, except for 32, which encodes as 2700 // zero. 2701 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2702 unsigned Imm = CE->getValue(); 2703 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2704 } 2705 2706 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2707 assert(N == 1 && "Invalid number of operands!"); 2708 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2709 // the instruction as well. 2710 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2711 int Val = CE->getValue(); 2712 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2713 } 2714 2715 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2716 assert(N == 1 && "Invalid number of operands!"); 2717 // The operand is actually a t2_so_imm, but we have its bitwise 2718 // negation in the assembly source, so twiddle it here. 2719 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2720 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2721 } 2722 2723 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2724 assert(N == 1 && "Invalid number of operands!"); 2725 // The operand is actually a t2_so_imm, but we have its 2726 // negation in the assembly source, so twiddle it here. 2727 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2728 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2729 } 2730 2731 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2732 assert(N == 1 && "Invalid number of operands!"); 2733 // The operand is actually an imm0_4095, but we have its 2734 // negation in the assembly source, so twiddle it here. 2735 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2736 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2737 } 2738 2739 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2740 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2741 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2742 return; 2743 } 2744 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2745 Inst.addOperand(MCOperand::createExpr(SR)); 2746 } 2747 2748 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2749 assert(N == 1 && "Invalid number of operands!"); 2750 if (isImm()) { 2751 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2752 if (CE) { 2753 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2754 return; 2755 } 2756 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2757 Inst.addOperand(MCOperand::createExpr(SR)); 2758 return; 2759 } 2760 2761 assert(isGPRMem() && "Unknown value type!"); 2762 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2763 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2764 } 2765 2766 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2767 assert(N == 1 && "Invalid number of operands!"); 2768 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2769 } 2770 2771 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2772 assert(N == 1 && "Invalid number of operands!"); 2773 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2774 } 2775 2776 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2777 assert(N == 1 && "Invalid number of operands!"); 2778 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2779 } 2780 2781 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2782 assert(N == 1 && "Invalid number of operands!"); 2783 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2784 } 2785 2786 void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { 2787 assert(N == 1 && "Invalid number of operands!"); 2788 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2789 } 2790 2791 void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { 2792 assert(N == 1 && "Invalid number of operands!"); 2793 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2794 } 2795 2796 void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { 2797 assert(N == 1 && "Invalid number of operands!"); 2798 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2799 } 2800 2801 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2802 assert(N == 1 && "Invalid number of operands!"); 2803 int32_t Imm = Memory.OffsetImm->getValue(); 2804 Inst.addOperand(MCOperand::createImm(Imm)); 2805 } 2806 2807 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2808 assert(N == 1 && "Invalid number of operands!"); 2809 assert(isImm() && "Not an immediate!"); 2810 2811 // If we have an immediate that's not a constant, treat it as a label 2812 // reference needing a fixup. 2813 if (!isa<MCConstantExpr>(getImm())) { 2814 Inst.addOperand(MCOperand::createExpr(getImm())); 2815 return; 2816 } 2817 2818 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2819 int Val = CE->getValue(); 2820 Inst.addOperand(MCOperand::createImm(Val)); 2821 } 2822 2823 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2824 assert(N == 2 && "Invalid number of operands!"); 2825 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2826 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2827 } 2828 2829 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2830 addAlignedMemoryOperands(Inst, N); 2831 } 2832 2833 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2834 addAlignedMemoryOperands(Inst, N); 2835 } 2836 2837 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2838 addAlignedMemoryOperands(Inst, N); 2839 } 2840 2841 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2842 addAlignedMemoryOperands(Inst, N); 2843 } 2844 2845 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2846 addAlignedMemoryOperands(Inst, N); 2847 } 2848 2849 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2850 addAlignedMemoryOperands(Inst, N); 2851 } 2852 2853 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2854 addAlignedMemoryOperands(Inst, N); 2855 } 2856 2857 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2858 addAlignedMemoryOperands(Inst, N); 2859 } 2860 2861 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2862 addAlignedMemoryOperands(Inst, N); 2863 } 2864 2865 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2866 addAlignedMemoryOperands(Inst, N); 2867 } 2868 2869 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2870 addAlignedMemoryOperands(Inst, N); 2871 } 2872 2873 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2874 assert(N == 3 && "Invalid number of operands!"); 2875 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2876 if (!Memory.OffsetRegNum) { 2877 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2878 // Special case for #-0 2879 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2880 if (Val < 0) Val = -Val; 2881 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2882 } else { 2883 // For register offset, we encode the shift type and negation flag 2884 // here. 2885 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2886 Memory.ShiftImm, Memory.ShiftType); 2887 } 2888 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2889 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2890 Inst.addOperand(MCOperand::createImm(Val)); 2891 } 2892 2893 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2894 assert(N == 2 && "Invalid number of operands!"); 2895 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2896 assert(CE && "non-constant AM2OffsetImm operand!"); 2897 int32_t Val = CE->getValue(); 2898 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2899 // Special case for #-0 2900 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2901 if (Val < 0) Val = -Val; 2902 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2903 Inst.addOperand(MCOperand::createReg(0)); 2904 Inst.addOperand(MCOperand::createImm(Val)); 2905 } 2906 2907 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2908 assert(N == 3 && "Invalid number of operands!"); 2909 // If we have an immediate that's not a constant, treat it as a label 2910 // reference needing a fixup. If it is a constant, it's something else 2911 // and we reject it. 2912 if (isImm()) { 2913 Inst.addOperand(MCOperand::createExpr(getImm())); 2914 Inst.addOperand(MCOperand::createReg(0)); 2915 Inst.addOperand(MCOperand::createImm(0)); 2916 return; 2917 } 2918 2919 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2920 if (!Memory.OffsetRegNum) { 2921 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2922 // Special case for #-0 2923 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2924 if (Val < 0) Val = -Val; 2925 Val = ARM_AM::getAM3Opc(AddSub, Val); 2926 } else { 2927 // For register offset, we encode the shift type and negation flag 2928 // here. 2929 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2930 } 2931 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2932 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2933 Inst.addOperand(MCOperand::createImm(Val)); 2934 } 2935 2936 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2937 assert(N == 2 && "Invalid number of operands!"); 2938 if (Kind == k_PostIndexRegister) { 2939 int32_t Val = 2940 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2941 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2942 Inst.addOperand(MCOperand::createImm(Val)); 2943 return; 2944 } 2945 2946 // Constant offset. 2947 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2948 int32_t Val = CE->getValue(); 2949 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2950 // Special case for #-0 2951 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2952 if (Val < 0) Val = -Val; 2953 Val = ARM_AM::getAM3Opc(AddSub, Val); 2954 Inst.addOperand(MCOperand::createReg(0)); 2955 Inst.addOperand(MCOperand::createImm(Val)); 2956 } 2957 2958 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2959 assert(N == 2 && "Invalid number of operands!"); 2960 // If we have an immediate that's not a constant, treat it as a label 2961 // reference needing a fixup. If it is a constant, it's something else 2962 // and we reject it. 2963 if (isImm()) { 2964 Inst.addOperand(MCOperand::createExpr(getImm())); 2965 Inst.addOperand(MCOperand::createImm(0)); 2966 return; 2967 } 2968 2969 // The lower two bits are always zero and as such are not encoded. 2970 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2971 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2972 // Special case for #-0 2973 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2974 if (Val < 0) Val = -Val; 2975 Val = ARM_AM::getAM5Opc(AddSub, Val); 2976 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2977 Inst.addOperand(MCOperand::createImm(Val)); 2978 } 2979 2980 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2981 assert(N == 2 && "Invalid number of operands!"); 2982 // If we have an immediate that's not a constant, treat it as a label 2983 // reference needing a fixup. If it is a constant, it's something else 2984 // and we reject it. 2985 if (isImm()) { 2986 Inst.addOperand(MCOperand::createExpr(getImm())); 2987 Inst.addOperand(MCOperand::createImm(0)); 2988 return; 2989 } 2990 2991 // The lower bit is always zero and as such is not encoded. 2992 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2993 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2994 // Special case for #-0 2995 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2996 if (Val < 0) Val = -Val; 2997 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2998 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2999 Inst.addOperand(MCOperand::createImm(Val)); 3000 } 3001 3002 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 3003 assert(N == 2 && "Invalid number of operands!"); 3004 // If we have an immediate that's not a constant, treat it as a label 3005 // reference needing a fixup. If it is a constant, it's something else 3006 // and we reject it. 3007 if (isImm()) { 3008 Inst.addOperand(MCOperand::createExpr(getImm())); 3009 Inst.addOperand(MCOperand::createImm(0)); 3010 return; 3011 } 3012 3013 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3014 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3015 Inst.addOperand(MCOperand::createImm(Val)); 3016 } 3017 3018 void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { 3019 assert(N == 2 && "Invalid number of operands!"); 3020 // If we have an immediate that's not a constant, treat it as a label 3021 // reference needing a fixup. If it is a constant, it's something else 3022 // and we reject it. 3023 if (isImm()) { 3024 Inst.addOperand(MCOperand::createExpr(getImm())); 3025 Inst.addOperand(MCOperand::createImm(0)); 3026 return; 3027 } 3028 3029 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3030 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3031 Inst.addOperand(MCOperand::createImm(Val)); 3032 } 3033 3034 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 3035 assert(N == 2 && "Invalid number of operands!"); 3036 // The lower two bits are always zero and as such are not encoded. 3037 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 3038 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3039 Inst.addOperand(MCOperand::createImm(Val)); 3040 } 3041 3042 void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { 3043 assert(N == 2 && "Invalid number of operands!"); 3044 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3045 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3046 Inst.addOperand(MCOperand::createImm(Val)); 3047 } 3048 3049 void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { 3050 assert(N == 2 && "Invalid number of operands!"); 3051 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3052 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3053 } 3054 3055 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3056 assert(N == 2 && "Invalid number of operands!"); 3057 // If this is an immediate, it's a label reference. 3058 if (isImm()) { 3059 addExpr(Inst, getImm()); 3060 Inst.addOperand(MCOperand::createImm(0)); 3061 return; 3062 } 3063 3064 // Otherwise, it's a normal memory reg+offset. 3065 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3066 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3067 Inst.addOperand(MCOperand::createImm(Val)); 3068 } 3069 3070 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3071 assert(N == 2 && "Invalid number of operands!"); 3072 // If this is an immediate, it's a label reference. 3073 if (isImm()) { 3074 addExpr(Inst, getImm()); 3075 Inst.addOperand(MCOperand::createImm(0)); 3076 return; 3077 } 3078 3079 // Otherwise, it's a normal memory reg+offset. 3080 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3081 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3082 Inst.addOperand(MCOperand::createImm(Val)); 3083 } 3084 3085 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 3086 assert(N == 1 && "Invalid number of operands!"); 3087 // This is container for the immediate that we will create the constant 3088 // pool from 3089 addExpr(Inst, getConstantPoolImm()); 3090 return; 3091 } 3092 3093 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 3094 assert(N == 2 && "Invalid number of operands!"); 3095 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3096 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3097 } 3098 3099 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 3100 assert(N == 2 && "Invalid number of operands!"); 3101 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3102 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3103 } 3104 3105 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3106 assert(N == 3 && "Invalid number of operands!"); 3107 unsigned Val = 3108 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 3109 Memory.ShiftImm, Memory.ShiftType); 3110 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3111 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3112 Inst.addOperand(MCOperand::createImm(Val)); 3113 } 3114 3115 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3116 assert(N == 3 && "Invalid number of operands!"); 3117 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3118 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3119 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 3120 } 3121 3122 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 3123 assert(N == 2 && "Invalid number of operands!"); 3124 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3125 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3126 } 3127 3128 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 3129 assert(N == 2 && "Invalid number of operands!"); 3130 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3131 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3132 Inst.addOperand(MCOperand::createImm(Val)); 3133 } 3134 3135 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 3136 assert(N == 2 && "Invalid number of operands!"); 3137 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 3138 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3139 Inst.addOperand(MCOperand::createImm(Val)); 3140 } 3141 3142 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 3143 assert(N == 2 && "Invalid number of operands!"); 3144 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 3145 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3146 Inst.addOperand(MCOperand::createImm(Val)); 3147 } 3148 3149 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 3150 assert(N == 2 && "Invalid number of operands!"); 3151 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3152 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3153 Inst.addOperand(MCOperand::createImm(Val)); 3154 } 3155 3156 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 3157 assert(N == 1 && "Invalid number of operands!"); 3158 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3159 assert(CE && "non-constant post-idx-imm8 operand!"); 3160 int Imm = CE->getValue(); 3161 bool isAdd = Imm >= 0; 3162 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3163 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 3164 Inst.addOperand(MCOperand::createImm(Imm)); 3165 } 3166 3167 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 3168 assert(N == 1 && "Invalid number of operands!"); 3169 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3170 assert(CE && "non-constant post-idx-imm8s4 operand!"); 3171 int Imm = CE->getValue(); 3172 bool isAdd = Imm >= 0; 3173 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3174 // Immediate is scaled by 4. 3175 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 3176 Inst.addOperand(MCOperand::createImm(Imm)); 3177 } 3178 3179 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 3180 assert(N == 2 && "Invalid number of operands!"); 3181 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3182 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 3183 } 3184 3185 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 3186 assert(N == 2 && "Invalid number of operands!"); 3187 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3188 // The sign, shift type, and shift amount are encoded in a single operand 3189 // using the AM2 encoding helpers. 3190 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 3191 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 3192 PostIdxReg.ShiftTy); 3193 Inst.addOperand(MCOperand::createImm(Imm)); 3194 } 3195 3196 void addPowerTwoOperands(MCInst &Inst, unsigned N) const { 3197 assert(N == 1 && "Invalid number of operands!"); 3198 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3199 Inst.addOperand(MCOperand::createImm(CE->getValue())); 3200 } 3201 3202 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 3203 assert(N == 1 && "Invalid number of operands!"); 3204 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 3205 } 3206 3207 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 3208 assert(N == 1 && "Invalid number of operands!"); 3209 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 3210 } 3211 3212 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 3213 assert(N == 1 && "Invalid number of operands!"); 3214 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 3215 } 3216 3217 void addVecListOperands(MCInst &Inst, unsigned N) const { 3218 assert(N == 1 && "Invalid number of operands!"); 3219 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3220 } 3221 3222 void addMVEVecListOperands(MCInst &Inst, unsigned N) const { 3223 assert(N == 1 && "Invalid number of operands!"); 3224 3225 // When we come here, the VectorList field will identify a range 3226 // of q-registers by its base register and length, and it will 3227 // have already been error-checked to be the expected length of 3228 // range and contain only q-regs in the range q0-q7. So we can 3229 // count on the base register being in the range q0-q6 (for 2 3230 // regs) or q0-q4 (for 4) 3231 // 3232 // The MVE instructions taking a register range of this kind will 3233 // need an operand in the QQPR or QQQQPR class, representing the 3234 // entire range as a unit. So we must translate into that class, 3235 // by finding the index of the base register in the MQPR reg 3236 // class, and returning the super-register at the corresponding 3237 // index in the target class. 3238 3239 const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; 3240 const MCRegisterClass *RC_out = (VectorList.Count == 2) ? 3241 &ARMMCRegisterClasses[ARM::QQPRRegClassID] : 3242 &ARMMCRegisterClasses[ARM::QQQQPRRegClassID]; 3243 3244 unsigned I, E = RC_out->getNumRegs(); 3245 for (I = 0; I < E; I++) 3246 if (RC_in->getRegister(I) == VectorList.RegNum) 3247 break; 3248 assert(I < E && "Invalid vector list start register!"); 3249 3250 Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I))); 3251 } 3252 3253 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 3254 assert(N == 2 && "Invalid number of operands!"); 3255 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3256 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 3257 } 3258 3259 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 3260 assert(N == 1 && "Invalid number of operands!"); 3261 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3262 } 3263 3264 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 3265 assert(N == 1 && "Invalid number of operands!"); 3266 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3267 } 3268 3269 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 3270 assert(N == 1 && "Invalid number of operands!"); 3271 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3272 } 3273 3274 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 3275 assert(N == 1 && "Invalid number of operands!"); 3276 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3277 } 3278 3279 void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { 3280 assert(N == 1 && "Invalid number of operands!"); 3281 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3282 } 3283 3284 void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { 3285 assert(N == 1 && "Invalid number of operands!"); 3286 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3287 } 3288 3289 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 3290 assert(N == 1 && "Invalid number of operands!"); 3291 // The immediate encodes the type of constant as well as the value. 3292 // Mask in that this is an i8 splat. 3293 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3294 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 3295 } 3296 3297 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 3298 assert(N == 1 && "Invalid number of operands!"); 3299 // The immediate encodes the type of constant as well as the value. 3300 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3301 unsigned Value = CE->getValue(); 3302 Value = ARM_AM::encodeNEONi16splat(Value); 3303 Inst.addOperand(MCOperand::createImm(Value)); 3304 } 3305 3306 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 3307 assert(N == 1 && "Invalid number of operands!"); 3308 // The immediate encodes the type of constant as well as the value. 3309 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3310 unsigned Value = CE->getValue(); 3311 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 3312 Inst.addOperand(MCOperand::createImm(Value)); 3313 } 3314 3315 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 3316 assert(N == 1 && "Invalid number of operands!"); 3317 // The immediate encodes the type of constant as well as the value. 3318 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3319 unsigned Value = CE->getValue(); 3320 Value = ARM_AM::encodeNEONi32splat(Value); 3321 Inst.addOperand(MCOperand::createImm(Value)); 3322 } 3323 3324 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 3325 assert(N == 1 && "Invalid number of operands!"); 3326 // The immediate encodes the type of constant as well as the value. 3327 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3328 unsigned Value = CE->getValue(); 3329 Value = ARM_AM::encodeNEONi32splat(~Value); 3330 Inst.addOperand(MCOperand::createImm(Value)); 3331 } 3332 3333 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 3334 // The immediate encodes the type of constant as well as the value. 3335 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3336 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 3337 Inst.getOpcode() == ARM::VMOVv16i8) && 3338 "All instructions that wants to replicate non-zero byte " 3339 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 3340 unsigned Value = CE->getValue(); 3341 if (Inv) 3342 Value = ~Value; 3343 unsigned B = Value & 0xff; 3344 B |= 0xe00; // cmode = 0b1110 3345 Inst.addOperand(MCOperand::createImm(B)); 3346 } 3347 3348 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3349 assert(N == 1 && "Invalid number of operands!"); 3350 addNEONi8ReplicateOperands(Inst, true); 3351 } 3352 3353 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 3354 if (Value >= 256 && Value <= 0xffff) 3355 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 3356 else if (Value > 0xffff && Value <= 0xffffff) 3357 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 3358 else if (Value > 0xffffff) 3359 Value = (Value >> 24) | 0x600; 3360 return Value; 3361 } 3362 3363 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 3364 assert(N == 1 && "Invalid number of operands!"); 3365 // The immediate encodes the type of constant as well as the value. 3366 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3367 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 3368 Inst.addOperand(MCOperand::createImm(Value)); 3369 } 3370 3371 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3372 assert(N == 1 && "Invalid number of operands!"); 3373 addNEONi8ReplicateOperands(Inst, false); 3374 } 3375 3376 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 3377 assert(N == 1 && "Invalid number of operands!"); 3378 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3379 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 3380 Inst.getOpcode() == ARM::VMOVv8i16 || 3381 Inst.getOpcode() == ARM::VMVNv4i16 || 3382 Inst.getOpcode() == ARM::VMVNv8i16) && 3383 "All instructions that want to replicate non-zero half-word " 3384 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 3385 uint64_t Value = CE->getValue(); 3386 unsigned Elem = Value & 0xffff; 3387 if (Elem >= 256) 3388 Elem = (Elem >> 8) | 0x200; 3389 Inst.addOperand(MCOperand::createImm(Elem)); 3390 } 3391 3392 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 3393 assert(N == 1 && "Invalid number of operands!"); 3394 // The immediate encodes the type of constant as well as the value. 3395 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3396 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 3397 Inst.addOperand(MCOperand::createImm(Value)); 3398 } 3399 3400 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 3401 assert(N == 1 && "Invalid number of operands!"); 3402 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3403 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 3404 Inst.getOpcode() == ARM::VMOVv4i32 || 3405 Inst.getOpcode() == ARM::VMVNv2i32 || 3406 Inst.getOpcode() == ARM::VMVNv4i32) && 3407 "All instructions that want to replicate non-zero word " 3408 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 3409 uint64_t Value = CE->getValue(); 3410 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 3411 Inst.addOperand(MCOperand::createImm(Elem)); 3412 } 3413 3414 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 3415 assert(N == 1 && "Invalid number of operands!"); 3416 // The immediate encodes the type of constant as well as the value. 3417 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3418 uint64_t Value = CE->getValue(); 3419 unsigned Imm = 0; 3420 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 3421 Imm |= (Value & 1) << i; 3422 } 3423 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 3424 } 3425 3426 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 3427 assert(N == 1 && "Invalid number of operands!"); 3428 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3429 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 3430 } 3431 3432 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 3433 assert(N == 1 && "Invalid number of operands!"); 3434 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3435 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 3436 } 3437 3438 void addMveSaturateOperands(MCInst &Inst, unsigned N) const { 3439 assert(N == 1 && "Invalid number of operands!"); 3440 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3441 unsigned Imm = CE->getValue(); 3442 assert((Imm == 48 || Imm == 64) && "Invalid saturate operand"); 3443 Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0)); 3444 } 3445 3446 void print(raw_ostream &OS) const override; 3447 3448 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 3449 auto Op = std::make_unique<ARMOperand>(k_ITCondMask); 3450 Op->ITMask.Mask = Mask; 3451 Op->StartLoc = S; 3452 Op->EndLoc = S; 3453 return Op; 3454 } 3455 3456 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 3457 SMLoc S) { 3458 auto Op = std::make_unique<ARMOperand>(k_CondCode); 3459 Op->CC.Val = CC; 3460 Op->StartLoc = S; 3461 Op->EndLoc = S; 3462 return Op; 3463 } 3464 3465 static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, 3466 SMLoc S) { 3467 auto Op = std::make_unique<ARMOperand>(k_VPTPred); 3468 Op->VCC.Val = CC; 3469 Op->StartLoc = S; 3470 Op->EndLoc = S; 3471 return Op; 3472 } 3473 3474 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 3475 auto Op = std::make_unique<ARMOperand>(k_CoprocNum); 3476 Op->Cop.Val = CopVal; 3477 Op->StartLoc = S; 3478 Op->EndLoc = S; 3479 return Op; 3480 } 3481 3482 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 3483 auto Op = std::make_unique<ARMOperand>(k_CoprocReg); 3484 Op->Cop.Val = CopVal; 3485 Op->StartLoc = S; 3486 Op->EndLoc = S; 3487 return Op; 3488 } 3489 3490 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 3491 SMLoc E) { 3492 auto Op = std::make_unique<ARMOperand>(k_CoprocOption); 3493 Op->Cop.Val = Val; 3494 Op->StartLoc = S; 3495 Op->EndLoc = E; 3496 return Op; 3497 } 3498 3499 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 3500 auto Op = std::make_unique<ARMOperand>(k_CCOut); 3501 Op->Reg.RegNum = RegNum; 3502 Op->StartLoc = S; 3503 Op->EndLoc = S; 3504 return Op; 3505 } 3506 3507 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 3508 auto Op = std::make_unique<ARMOperand>(k_Token); 3509 Op->Tok.Data = Str.data(); 3510 Op->Tok.Length = Str.size(); 3511 Op->StartLoc = S; 3512 Op->EndLoc = S; 3513 return Op; 3514 } 3515 3516 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 3517 SMLoc E) { 3518 auto Op = std::make_unique<ARMOperand>(k_Register); 3519 Op->Reg.RegNum = RegNum; 3520 Op->StartLoc = S; 3521 Op->EndLoc = E; 3522 return Op; 3523 } 3524 3525 static std::unique_ptr<ARMOperand> 3526 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3527 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 3528 SMLoc E) { 3529 auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister); 3530 Op->RegShiftedReg.ShiftTy = ShTy; 3531 Op->RegShiftedReg.SrcReg = SrcReg; 3532 Op->RegShiftedReg.ShiftReg = ShiftReg; 3533 Op->RegShiftedReg.ShiftImm = ShiftImm; 3534 Op->StartLoc = S; 3535 Op->EndLoc = E; 3536 return Op; 3537 } 3538 3539 static std::unique_ptr<ARMOperand> 3540 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3541 unsigned ShiftImm, SMLoc S, SMLoc E) { 3542 auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate); 3543 Op->RegShiftedImm.ShiftTy = ShTy; 3544 Op->RegShiftedImm.SrcReg = SrcReg; 3545 Op->RegShiftedImm.ShiftImm = ShiftImm; 3546 Op->StartLoc = S; 3547 Op->EndLoc = E; 3548 return Op; 3549 } 3550 3551 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 3552 SMLoc S, SMLoc E) { 3553 auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate); 3554 Op->ShifterImm.isASR = isASR; 3555 Op->ShifterImm.Imm = Imm; 3556 Op->StartLoc = S; 3557 Op->EndLoc = E; 3558 return Op; 3559 } 3560 3561 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3562 SMLoc E) { 3563 auto Op = std::make_unique<ARMOperand>(k_RotateImmediate); 3564 Op->RotImm.Imm = Imm; 3565 Op->StartLoc = S; 3566 Op->EndLoc = E; 3567 return Op; 3568 } 3569 3570 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3571 SMLoc S, SMLoc E) { 3572 auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate); 3573 Op->ModImm.Bits = Bits; 3574 Op->ModImm.Rot = Rot; 3575 Op->StartLoc = S; 3576 Op->EndLoc = E; 3577 return Op; 3578 } 3579 3580 static std::unique_ptr<ARMOperand> 3581 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3582 auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate); 3583 Op->Imm.Val = Val; 3584 Op->StartLoc = S; 3585 Op->EndLoc = E; 3586 return Op; 3587 } 3588 3589 static std::unique_ptr<ARMOperand> 3590 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3591 auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor); 3592 Op->Bitfield.LSB = LSB; 3593 Op->Bitfield.Width = Width; 3594 Op->StartLoc = S; 3595 Op->EndLoc = E; 3596 return Op; 3597 } 3598 3599 static std::unique_ptr<ARMOperand> 3600 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3601 SMLoc StartLoc, SMLoc EndLoc) { 3602 assert(Regs.size() > 0 && "RegList contains no registers?"); 3603 KindTy Kind = k_RegisterList; 3604 3605 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 3606 Regs.front().second)) { 3607 if (Regs.back().second == ARM::VPR) 3608 Kind = k_FPDRegisterListWithVPR; 3609 else 3610 Kind = k_DPRRegisterList; 3611 } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 3612 Regs.front().second)) { 3613 if (Regs.back().second == ARM::VPR) 3614 Kind = k_FPSRegisterListWithVPR; 3615 else 3616 Kind = k_SPRRegisterList; 3617 } 3618 3619 if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) 3620 Kind = k_RegisterListWithAPSR; 3621 3622 assert(std::is_sorted(Regs.begin(), Regs.end()) && 3623 "Register list must be sorted by encoding"); 3624 3625 auto Op = std::make_unique<ARMOperand>(Kind); 3626 for (const auto &P : Regs) 3627 Op->Registers.push_back(P.second); 3628 3629 Op->StartLoc = StartLoc; 3630 Op->EndLoc = EndLoc; 3631 return Op; 3632 } 3633 3634 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3635 unsigned Count, 3636 bool isDoubleSpaced, 3637 SMLoc S, SMLoc E) { 3638 auto Op = std::make_unique<ARMOperand>(k_VectorList); 3639 Op->VectorList.RegNum = RegNum; 3640 Op->VectorList.Count = Count; 3641 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3642 Op->StartLoc = S; 3643 Op->EndLoc = E; 3644 return Op; 3645 } 3646 3647 static std::unique_ptr<ARMOperand> 3648 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3649 SMLoc S, SMLoc E) { 3650 auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes); 3651 Op->VectorList.RegNum = RegNum; 3652 Op->VectorList.Count = Count; 3653 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3654 Op->StartLoc = S; 3655 Op->EndLoc = E; 3656 return Op; 3657 } 3658 3659 static std::unique_ptr<ARMOperand> 3660 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3661 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3662 auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed); 3663 Op->VectorList.RegNum = RegNum; 3664 Op->VectorList.Count = Count; 3665 Op->VectorList.LaneIndex = Index; 3666 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3667 Op->StartLoc = S; 3668 Op->EndLoc = E; 3669 return Op; 3670 } 3671 3672 static std::unique_ptr<ARMOperand> 3673 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3674 auto Op = std::make_unique<ARMOperand>(k_VectorIndex); 3675 Op->VectorIndex.Val = Idx; 3676 Op->StartLoc = S; 3677 Op->EndLoc = E; 3678 return Op; 3679 } 3680 3681 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3682 SMLoc E) { 3683 auto Op = std::make_unique<ARMOperand>(k_Immediate); 3684 Op->Imm.Val = Val; 3685 Op->StartLoc = S; 3686 Op->EndLoc = E; 3687 return Op; 3688 } 3689 3690 static std::unique_ptr<ARMOperand> 3691 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3692 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3693 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3694 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3695 auto Op = std::make_unique<ARMOperand>(k_Memory); 3696 Op->Memory.BaseRegNum = BaseRegNum; 3697 Op->Memory.OffsetImm = OffsetImm; 3698 Op->Memory.OffsetRegNum = OffsetRegNum; 3699 Op->Memory.ShiftType = ShiftType; 3700 Op->Memory.ShiftImm = ShiftImm; 3701 Op->Memory.Alignment = Alignment; 3702 Op->Memory.isNegative = isNegative; 3703 Op->StartLoc = S; 3704 Op->EndLoc = E; 3705 Op->AlignmentLoc = AlignmentLoc; 3706 return Op; 3707 } 3708 3709 static std::unique_ptr<ARMOperand> 3710 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3711 unsigned ShiftImm, SMLoc S, SMLoc E) { 3712 auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister); 3713 Op->PostIdxReg.RegNum = RegNum; 3714 Op->PostIdxReg.isAdd = isAdd; 3715 Op->PostIdxReg.ShiftTy = ShiftTy; 3716 Op->PostIdxReg.ShiftImm = ShiftImm; 3717 Op->StartLoc = S; 3718 Op->EndLoc = E; 3719 return Op; 3720 } 3721 3722 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3723 SMLoc S) { 3724 auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt); 3725 Op->MBOpt.Val = Opt; 3726 Op->StartLoc = S; 3727 Op->EndLoc = S; 3728 return Op; 3729 } 3730 3731 static std::unique_ptr<ARMOperand> 3732 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3733 auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3734 Op->ISBOpt.Val = Opt; 3735 Op->StartLoc = S; 3736 Op->EndLoc = S; 3737 return Op; 3738 } 3739 3740 static std::unique_ptr<ARMOperand> 3741 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3742 auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3743 Op->TSBOpt.Val = Opt; 3744 Op->StartLoc = S; 3745 Op->EndLoc = S; 3746 return Op; 3747 } 3748 3749 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3750 SMLoc S) { 3751 auto Op = std::make_unique<ARMOperand>(k_ProcIFlags); 3752 Op->IFlags.Val = IFlags; 3753 Op->StartLoc = S; 3754 Op->EndLoc = S; 3755 return Op; 3756 } 3757 3758 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3759 auto Op = std::make_unique<ARMOperand>(k_MSRMask); 3760 Op->MMask.Val = MMask; 3761 Op->StartLoc = S; 3762 Op->EndLoc = S; 3763 return Op; 3764 } 3765 3766 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3767 auto Op = std::make_unique<ARMOperand>(k_BankedReg); 3768 Op->BankedReg.Val = Reg; 3769 Op->StartLoc = S; 3770 Op->EndLoc = S; 3771 return Op; 3772 } 3773 }; 3774 3775 } // end anonymous namespace. 3776 3777 void ARMOperand::print(raw_ostream &OS) const { 3778 auto RegName = [](unsigned Reg) { 3779 if (Reg) 3780 return ARMInstPrinter::getRegisterName(Reg); 3781 else 3782 return "noreg"; 3783 }; 3784 3785 switch (Kind) { 3786 case k_CondCode: 3787 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3788 break; 3789 case k_VPTPred: 3790 OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">"; 3791 break; 3792 case k_CCOut: 3793 OS << "<ccout " << RegName(getReg()) << ">"; 3794 break; 3795 case k_ITCondMask: { 3796 static const char *const MaskStr[] = { 3797 "(invalid)", "(tttt)", "(ttt)", "(ttte)", 3798 "(tt)", "(ttet)", "(tte)", "(ttee)", 3799 "(t)", "(tett)", "(tet)", "(tete)", 3800 "(te)", "(teet)", "(tee)", "(teee)", 3801 }; 3802 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3803 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3804 break; 3805 } 3806 case k_CoprocNum: 3807 OS << "<coprocessor number: " << getCoproc() << ">"; 3808 break; 3809 case k_CoprocReg: 3810 OS << "<coprocessor register: " << getCoproc() << ">"; 3811 break; 3812 case k_CoprocOption: 3813 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3814 break; 3815 case k_MSRMask: 3816 OS << "<mask: " << getMSRMask() << ">"; 3817 break; 3818 case k_BankedReg: 3819 OS << "<banked reg: " << getBankedReg() << ">"; 3820 break; 3821 case k_Immediate: 3822 OS << *getImm(); 3823 break; 3824 case k_MemBarrierOpt: 3825 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3826 break; 3827 case k_InstSyncBarrierOpt: 3828 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3829 break; 3830 case k_TraceSyncBarrierOpt: 3831 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3832 break; 3833 case k_Memory: 3834 OS << "<memory"; 3835 if (Memory.BaseRegNum) 3836 OS << " base:" << RegName(Memory.BaseRegNum); 3837 if (Memory.OffsetImm) 3838 OS << " offset-imm:" << *Memory.OffsetImm; 3839 if (Memory.OffsetRegNum) 3840 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3841 << RegName(Memory.OffsetRegNum); 3842 if (Memory.ShiftType != ARM_AM::no_shift) { 3843 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3844 OS << " shift-imm:" << Memory.ShiftImm; 3845 } 3846 if (Memory.Alignment) 3847 OS << " alignment:" << Memory.Alignment; 3848 OS << ">"; 3849 break; 3850 case k_PostIndexRegister: 3851 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3852 << RegName(PostIdxReg.RegNum); 3853 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3854 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3855 << PostIdxReg.ShiftImm; 3856 OS << ">"; 3857 break; 3858 case k_ProcIFlags: { 3859 OS << "<ARM_PROC::"; 3860 unsigned IFlags = getProcIFlags(); 3861 for (int i=2; i >= 0; --i) 3862 if (IFlags & (1 << i)) 3863 OS << ARM_PROC::IFlagsToString(1 << i); 3864 OS << ">"; 3865 break; 3866 } 3867 case k_Register: 3868 OS << "<register " << RegName(getReg()) << ">"; 3869 break; 3870 case k_ShifterImmediate: 3871 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3872 << " #" << ShifterImm.Imm << ">"; 3873 break; 3874 case k_ShiftedRegister: 3875 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3876 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3877 << RegName(RegShiftedReg.ShiftReg) << ">"; 3878 break; 3879 case k_ShiftedImmediate: 3880 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3881 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3882 << RegShiftedImm.ShiftImm << ">"; 3883 break; 3884 case k_RotateImmediate: 3885 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3886 break; 3887 case k_ModifiedImmediate: 3888 OS << "<mod_imm #" << ModImm.Bits << ", #" 3889 << ModImm.Rot << ")>"; 3890 break; 3891 case k_ConstantPoolImmediate: 3892 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3893 break; 3894 case k_BitfieldDescriptor: 3895 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3896 << ", width: " << Bitfield.Width << ">"; 3897 break; 3898 case k_RegisterList: 3899 case k_RegisterListWithAPSR: 3900 case k_DPRRegisterList: 3901 case k_SPRRegisterList: 3902 case k_FPSRegisterListWithVPR: 3903 case k_FPDRegisterListWithVPR: { 3904 OS << "<register_list "; 3905 3906 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3907 for (SmallVectorImpl<unsigned>::const_iterator 3908 I = RegList.begin(), E = RegList.end(); I != E; ) { 3909 OS << RegName(*I); 3910 if (++I < E) OS << ", "; 3911 } 3912 3913 OS << ">"; 3914 break; 3915 } 3916 case k_VectorList: 3917 OS << "<vector_list " << VectorList.Count << " * " 3918 << RegName(VectorList.RegNum) << ">"; 3919 break; 3920 case k_VectorListAllLanes: 3921 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3922 << RegName(VectorList.RegNum) << ">"; 3923 break; 3924 case k_VectorListIndexed: 3925 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3926 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 3927 break; 3928 case k_Token: 3929 OS << "'" << getToken() << "'"; 3930 break; 3931 case k_VectorIndex: 3932 OS << "<vectorindex " << getVectorIndex() << ">"; 3933 break; 3934 } 3935 } 3936 3937 /// @name Auto-generated Match Functions 3938 /// { 3939 3940 static unsigned MatchRegisterName(StringRef Name); 3941 3942 /// } 3943 3944 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3945 SMLoc &StartLoc, SMLoc &EndLoc) { 3946 const AsmToken &Tok = getParser().getTok(); 3947 StartLoc = Tok.getLoc(); 3948 EndLoc = Tok.getEndLoc(); 3949 RegNo = tryParseRegister(); 3950 3951 return (RegNo == (unsigned)-1); 3952 } 3953 3954 OperandMatchResultTy ARMAsmParser::tryParseRegister(unsigned &RegNo, 3955 SMLoc &StartLoc, 3956 SMLoc &EndLoc) { 3957 if (ParseRegister(RegNo, StartLoc, EndLoc)) 3958 return MatchOperand_NoMatch; 3959 return MatchOperand_Success; 3960 } 3961 3962 /// Try to parse a register name. The token must be an Identifier when called, 3963 /// and if it is a register name the token is eaten and the register number is 3964 /// returned. Otherwise return -1. 3965 int ARMAsmParser::tryParseRegister() { 3966 MCAsmParser &Parser = getParser(); 3967 const AsmToken &Tok = Parser.getTok(); 3968 if (Tok.isNot(AsmToken::Identifier)) return -1; 3969 3970 std::string lowerCase = Tok.getString().lower(); 3971 unsigned RegNum = MatchRegisterName(lowerCase); 3972 if (!RegNum) { 3973 RegNum = StringSwitch<unsigned>(lowerCase) 3974 .Case("r13", ARM::SP) 3975 .Case("r14", ARM::LR) 3976 .Case("r15", ARM::PC) 3977 .Case("ip", ARM::R12) 3978 // Additional register name aliases for 'gas' compatibility. 3979 .Case("a1", ARM::R0) 3980 .Case("a2", ARM::R1) 3981 .Case("a3", ARM::R2) 3982 .Case("a4", ARM::R3) 3983 .Case("v1", ARM::R4) 3984 .Case("v2", ARM::R5) 3985 .Case("v3", ARM::R6) 3986 .Case("v4", ARM::R7) 3987 .Case("v5", ARM::R8) 3988 .Case("v6", ARM::R9) 3989 .Case("v7", ARM::R10) 3990 .Case("v8", ARM::R11) 3991 .Case("sb", ARM::R9) 3992 .Case("sl", ARM::R10) 3993 .Case("fp", ARM::R11) 3994 .Default(0); 3995 } 3996 if (!RegNum) { 3997 // Check for aliases registered via .req. Canonicalize to lower case. 3998 // That's more consistent since register names are case insensitive, and 3999 // it's how the original entry was passed in from MC/MCParser/AsmParser. 4000 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 4001 // If no match, return failure. 4002 if (Entry == RegisterReqs.end()) 4003 return -1; 4004 Parser.Lex(); // Eat identifier token. 4005 return Entry->getValue(); 4006 } 4007 4008 // Some FPUs only have 16 D registers, so D16-D31 are invalid 4009 if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 4010 return -1; 4011 4012 Parser.Lex(); // Eat identifier token. 4013 4014 return RegNum; 4015 } 4016 4017 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 4018 // If a recoverable error occurs, return 1. If an irrecoverable error 4019 // occurs, return -1. An irrecoverable error is one where tokens have been 4020 // consumed in the process of trying to parse the shifter (i.e., when it is 4021 // indeed a shifter operand, but malformed). 4022 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 4023 MCAsmParser &Parser = getParser(); 4024 SMLoc S = Parser.getTok().getLoc(); 4025 const AsmToken &Tok = Parser.getTok(); 4026 if (Tok.isNot(AsmToken::Identifier)) 4027 return -1; 4028 4029 std::string lowerCase = Tok.getString().lower(); 4030 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 4031 .Case("asl", ARM_AM::lsl) 4032 .Case("lsl", ARM_AM::lsl) 4033 .Case("lsr", ARM_AM::lsr) 4034 .Case("asr", ARM_AM::asr) 4035 .Case("ror", ARM_AM::ror) 4036 .Case("rrx", ARM_AM::rrx) 4037 .Default(ARM_AM::no_shift); 4038 4039 if (ShiftTy == ARM_AM::no_shift) 4040 return 1; 4041 4042 Parser.Lex(); // Eat the operator. 4043 4044 // The source register for the shift has already been added to the 4045 // operand list, so we need to pop it off and combine it into the shifted 4046 // register operand instead. 4047 std::unique_ptr<ARMOperand> PrevOp( 4048 (ARMOperand *)Operands.pop_back_val().release()); 4049 if (!PrevOp->isReg()) 4050 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 4051 int SrcReg = PrevOp->getReg(); 4052 4053 SMLoc EndLoc; 4054 int64_t Imm = 0; 4055 int ShiftReg = 0; 4056 if (ShiftTy == ARM_AM::rrx) { 4057 // RRX Doesn't have an explicit shift amount. The encoder expects 4058 // the shift register to be the same as the source register. Seems odd, 4059 // but OK. 4060 ShiftReg = SrcReg; 4061 } else { 4062 // Figure out if this is shifted by a constant or a register (for non-RRX). 4063 if (Parser.getTok().is(AsmToken::Hash) || 4064 Parser.getTok().is(AsmToken::Dollar)) { 4065 Parser.Lex(); // Eat hash. 4066 SMLoc ImmLoc = Parser.getTok().getLoc(); 4067 const MCExpr *ShiftExpr = nullptr; 4068 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 4069 Error(ImmLoc, "invalid immediate shift value"); 4070 return -1; 4071 } 4072 // The expression must be evaluatable as an immediate. 4073 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 4074 if (!CE) { 4075 Error(ImmLoc, "invalid immediate shift value"); 4076 return -1; 4077 } 4078 // Range check the immediate. 4079 // lsl, ror: 0 <= imm <= 31 4080 // lsr, asr: 0 <= imm <= 32 4081 Imm = CE->getValue(); 4082 if (Imm < 0 || 4083 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 4084 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 4085 Error(ImmLoc, "immediate shift value out of range"); 4086 return -1; 4087 } 4088 // shift by zero is a nop. Always send it through as lsl. 4089 // ('as' compatibility) 4090 if (Imm == 0) 4091 ShiftTy = ARM_AM::lsl; 4092 } else if (Parser.getTok().is(AsmToken::Identifier)) { 4093 SMLoc L = Parser.getTok().getLoc(); 4094 EndLoc = Parser.getTok().getEndLoc(); 4095 ShiftReg = tryParseRegister(); 4096 if (ShiftReg == -1) { 4097 Error(L, "expected immediate or register in shift operand"); 4098 return -1; 4099 } 4100 } else { 4101 Error(Parser.getTok().getLoc(), 4102 "expected immediate or register in shift operand"); 4103 return -1; 4104 } 4105 } 4106 4107 if (ShiftReg && ShiftTy != ARM_AM::rrx) 4108 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 4109 ShiftReg, Imm, 4110 S, EndLoc)); 4111 else 4112 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 4113 S, EndLoc)); 4114 4115 return 0; 4116 } 4117 4118 /// Try to parse a register name. The token must be an Identifier when called. 4119 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 4120 /// if there is a "writeback". 'true' if it's not a register. 4121 /// 4122 /// TODO this is likely to change to allow different register types and or to 4123 /// parse for a specific register type. 4124 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 4125 MCAsmParser &Parser = getParser(); 4126 SMLoc RegStartLoc = Parser.getTok().getLoc(); 4127 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 4128 int RegNo = tryParseRegister(); 4129 if (RegNo == -1) 4130 return true; 4131 4132 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 4133 4134 const AsmToken &ExclaimTok = Parser.getTok(); 4135 if (ExclaimTok.is(AsmToken::Exclaim)) { 4136 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 4137 ExclaimTok.getLoc())); 4138 Parser.Lex(); // Eat exclaim token 4139 return false; 4140 } 4141 4142 // Also check for an index operand. This is only legal for vector registers, 4143 // but that'll get caught OK in operand matching, so we don't need to 4144 // explicitly filter everything else out here. 4145 if (Parser.getTok().is(AsmToken::LBrac)) { 4146 SMLoc SIdx = Parser.getTok().getLoc(); 4147 Parser.Lex(); // Eat left bracket token. 4148 4149 const MCExpr *ImmVal; 4150 if (getParser().parseExpression(ImmVal)) 4151 return true; 4152 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 4153 if (!MCE) 4154 return TokError("immediate value expected for vector index"); 4155 4156 if (Parser.getTok().isNot(AsmToken::RBrac)) 4157 return Error(Parser.getTok().getLoc(), "']' expected"); 4158 4159 SMLoc E = Parser.getTok().getEndLoc(); 4160 Parser.Lex(); // Eat right bracket token. 4161 4162 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 4163 SIdx, E, 4164 getContext())); 4165 } 4166 4167 return false; 4168 } 4169 4170 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 4171 /// instruction with a symbolic operand name. 4172 /// We accept "crN" syntax for GAS compatibility. 4173 /// <operand-name> ::= <prefix><number> 4174 /// If CoprocOp is 'c', then: 4175 /// <prefix> ::= c | cr 4176 /// If CoprocOp is 'p', then : 4177 /// <prefix> ::= p 4178 /// <number> ::= integer in range [0, 15] 4179 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 4180 // Use the same layout as the tablegen'erated register name matcher. Ugly, 4181 // but efficient. 4182 if (Name.size() < 2 || Name[0] != CoprocOp) 4183 return -1; 4184 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 4185 4186 switch (Name.size()) { 4187 default: return -1; 4188 case 1: 4189 switch (Name[0]) { 4190 default: return -1; 4191 case '0': return 0; 4192 case '1': return 1; 4193 case '2': return 2; 4194 case '3': return 3; 4195 case '4': return 4; 4196 case '5': return 5; 4197 case '6': return 6; 4198 case '7': return 7; 4199 case '8': return 8; 4200 case '9': return 9; 4201 } 4202 case 2: 4203 if (Name[0] != '1') 4204 return -1; 4205 switch (Name[1]) { 4206 default: return -1; 4207 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 4208 // However, old cores (v5/v6) did use them in that way. 4209 case '0': return 10; 4210 case '1': return 11; 4211 case '2': return 12; 4212 case '3': return 13; 4213 case '4': return 14; 4214 case '5': return 15; 4215 } 4216 } 4217 } 4218 4219 /// parseITCondCode - Try to parse a condition code for an IT instruction. 4220 OperandMatchResultTy 4221 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 4222 MCAsmParser &Parser = getParser(); 4223 SMLoc S = Parser.getTok().getLoc(); 4224 const AsmToken &Tok = Parser.getTok(); 4225 if (!Tok.is(AsmToken::Identifier)) 4226 return MatchOperand_NoMatch; 4227 unsigned CC = ARMCondCodeFromString(Tok.getString()); 4228 if (CC == ~0U) 4229 return MatchOperand_NoMatch; 4230 Parser.Lex(); // Eat the token. 4231 4232 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 4233 4234 return MatchOperand_Success; 4235 } 4236 4237 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 4238 /// token must be an Identifier when called, and if it is a coprocessor 4239 /// number, the token is eaten and the operand is added to the operand list. 4240 OperandMatchResultTy 4241 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 4242 MCAsmParser &Parser = getParser(); 4243 SMLoc S = Parser.getTok().getLoc(); 4244 const AsmToken &Tok = Parser.getTok(); 4245 if (Tok.isNot(AsmToken::Identifier)) 4246 return MatchOperand_NoMatch; 4247 4248 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); 4249 if (Num == -1) 4250 return MatchOperand_NoMatch; 4251 if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits())) 4252 return MatchOperand_NoMatch; 4253 4254 Parser.Lex(); // Eat identifier token. 4255 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 4256 return MatchOperand_Success; 4257 } 4258 4259 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 4260 /// token must be an Identifier when called, and if it is a coprocessor 4261 /// number, the token is eaten and the operand is added to the operand list. 4262 OperandMatchResultTy 4263 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 4264 MCAsmParser &Parser = getParser(); 4265 SMLoc S = Parser.getTok().getLoc(); 4266 const AsmToken &Tok = Parser.getTok(); 4267 if (Tok.isNot(AsmToken::Identifier)) 4268 return MatchOperand_NoMatch; 4269 4270 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); 4271 if (Reg == -1) 4272 return MatchOperand_NoMatch; 4273 4274 Parser.Lex(); // Eat identifier token. 4275 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 4276 return MatchOperand_Success; 4277 } 4278 4279 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 4280 /// coproc_option : '{' imm0_255 '}' 4281 OperandMatchResultTy 4282 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 4283 MCAsmParser &Parser = getParser(); 4284 SMLoc S = Parser.getTok().getLoc(); 4285 4286 // If this isn't a '{', this isn't a coprocessor immediate operand. 4287 if (Parser.getTok().isNot(AsmToken::LCurly)) 4288 return MatchOperand_NoMatch; 4289 Parser.Lex(); // Eat the '{' 4290 4291 const MCExpr *Expr; 4292 SMLoc Loc = Parser.getTok().getLoc(); 4293 if (getParser().parseExpression(Expr)) { 4294 Error(Loc, "illegal expression"); 4295 return MatchOperand_ParseFail; 4296 } 4297 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4298 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 4299 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 4300 return MatchOperand_ParseFail; 4301 } 4302 int Val = CE->getValue(); 4303 4304 // Check for and consume the closing '}' 4305 if (Parser.getTok().isNot(AsmToken::RCurly)) 4306 return MatchOperand_ParseFail; 4307 SMLoc E = Parser.getTok().getEndLoc(); 4308 Parser.Lex(); // Eat the '}' 4309 4310 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 4311 return MatchOperand_Success; 4312 } 4313 4314 // For register list parsing, we need to map from raw GPR register numbering 4315 // to the enumeration values. The enumeration values aren't sorted by 4316 // register number due to our using "sp", "lr" and "pc" as canonical names. 4317 static unsigned getNextRegister(unsigned Reg) { 4318 // If this is a GPR, we need to do it manually, otherwise we can rely 4319 // on the sort ordering of the enumeration since the other reg-classes 4320 // are sane. 4321 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4322 return Reg + 1; 4323 switch(Reg) { 4324 default: llvm_unreachable("Invalid GPR number!"); 4325 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 4326 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 4327 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 4328 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 4329 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 4330 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 4331 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 4332 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 4333 } 4334 } 4335 4336 // Insert an <Encoding, Register> pair in an ordered vector. Return true on 4337 // success, or false, if duplicate encoding found. 4338 static bool 4339 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 4340 unsigned Enc, unsigned Reg) { 4341 Regs.emplace_back(Enc, Reg); 4342 for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) { 4343 if (J->first == Enc) { 4344 Regs.erase(J.base()); 4345 return false; 4346 } 4347 if (J->first < Enc) 4348 break; 4349 std::swap(*I, *J); 4350 } 4351 return true; 4352 } 4353 4354 /// Parse a register list. 4355 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, 4356 bool EnforceOrder) { 4357 MCAsmParser &Parser = getParser(); 4358 if (Parser.getTok().isNot(AsmToken::LCurly)) 4359 return TokError("Token is not a Left Curly Brace"); 4360 SMLoc S = Parser.getTok().getLoc(); 4361 Parser.Lex(); // Eat '{' token. 4362 SMLoc RegLoc = Parser.getTok().getLoc(); 4363 4364 // Check the first register in the list to see what register class 4365 // this is a list of. 4366 int Reg = tryParseRegister(); 4367 if (Reg == -1) 4368 return Error(RegLoc, "register expected"); 4369 4370 // The reglist instructions have at most 16 registers, so reserve 4371 // space for that many. 4372 int EReg = 0; 4373 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 4374 4375 // Allow Q regs and just interpret them as the two D sub-registers. 4376 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4377 Reg = getDRegFromQReg(Reg); 4378 EReg = MRI->getEncodingValue(Reg); 4379 Registers.emplace_back(EReg, Reg); 4380 ++Reg; 4381 } 4382 const MCRegisterClass *RC; 4383 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4384 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 4385 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 4386 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 4387 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 4388 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 4389 else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4390 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4391 else 4392 return Error(RegLoc, "invalid register in register list"); 4393 4394 // Store the register. 4395 EReg = MRI->getEncodingValue(Reg); 4396 Registers.emplace_back(EReg, Reg); 4397 4398 // This starts immediately after the first register token in the list, 4399 // so we can see either a comma or a minus (range separator) as a legal 4400 // next token. 4401 while (Parser.getTok().is(AsmToken::Comma) || 4402 Parser.getTok().is(AsmToken::Minus)) { 4403 if (Parser.getTok().is(AsmToken::Minus)) { 4404 Parser.Lex(); // Eat the minus. 4405 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4406 int EndReg = tryParseRegister(); 4407 if (EndReg == -1) 4408 return Error(AfterMinusLoc, "register expected"); 4409 // Allow Q regs and just interpret them as the two D sub-registers. 4410 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4411 EndReg = getDRegFromQReg(EndReg) + 1; 4412 // If the register is the same as the start reg, there's nothing 4413 // more to do. 4414 if (Reg == EndReg) 4415 continue; 4416 // The register must be in the same register class as the first. 4417 if (!RC->contains(EndReg)) 4418 return Error(AfterMinusLoc, "invalid register in register list"); 4419 // Ranges must go from low to high. 4420 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 4421 return Error(AfterMinusLoc, "bad range in register list"); 4422 4423 // Add all the registers in the range to the register list. 4424 while (Reg != EndReg) { 4425 Reg = getNextRegister(Reg); 4426 EReg = MRI->getEncodingValue(Reg); 4427 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4428 Warning(AfterMinusLoc, StringRef("duplicated register (") + 4429 ARMInstPrinter::getRegisterName(Reg) + 4430 ") in register list"); 4431 } 4432 } 4433 continue; 4434 } 4435 Parser.Lex(); // Eat the comma. 4436 RegLoc = Parser.getTok().getLoc(); 4437 int OldReg = Reg; 4438 const AsmToken RegTok = Parser.getTok(); 4439 Reg = tryParseRegister(); 4440 if (Reg == -1) 4441 return Error(RegLoc, "register expected"); 4442 // Allow Q regs and just interpret them as the two D sub-registers. 4443 bool isQReg = false; 4444 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4445 Reg = getDRegFromQReg(Reg); 4446 isQReg = true; 4447 } 4448 if (!RC->contains(Reg) && 4449 RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && 4450 ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { 4451 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial 4452 // subset of GPRRegClassId except it contains APSR as well. 4453 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4454 } 4455 if (Reg == ARM::VPR && 4456 (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || 4457 RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] || 4458 RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) { 4459 RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; 4460 EReg = MRI->getEncodingValue(Reg); 4461 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4462 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4463 ") in register list"); 4464 } 4465 continue; 4466 } 4467 // The register must be in the same register class as the first. 4468 if (!RC->contains(Reg)) 4469 return Error(RegLoc, "invalid register in register list"); 4470 // In most cases, the list must be monotonically increasing. An 4471 // exception is CLRM, which is order-independent anyway, so 4472 // there's no potential for confusion if you write clrm {r2,r1} 4473 // instead of clrm {r1,r2}. 4474 if (EnforceOrder && 4475 MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 4476 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4477 Warning(RegLoc, "register list not in ascending order"); 4478 else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4479 return Error(RegLoc, "register list not in ascending order"); 4480 } 4481 // VFP register lists must also be contiguous. 4482 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 4483 RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && 4484 Reg != OldReg + 1) 4485 return Error(RegLoc, "non-contiguous register range"); 4486 EReg = MRI->getEncodingValue(Reg); 4487 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4488 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4489 ") in register list"); 4490 } 4491 if (isQReg) { 4492 EReg = MRI->getEncodingValue(++Reg); 4493 Registers.emplace_back(EReg, Reg); 4494 } 4495 } 4496 4497 if (Parser.getTok().isNot(AsmToken::RCurly)) 4498 return Error(Parser.getTok().getLoc(), "'}' expected"); 4499 SMLoc E = Parser.getTok().getEndLoc(); 4500 Parser.Lex(); // Eat '}' token. 4501 4502 // Push the register list operand. 4503 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 4504 4505 // The ARM system instruction variants for LDM/STM have a '^' token here. 4506 if (Parser.getTok().is(AsmToken::Caret)) { 4507 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 4508 Parser.Lex(); // Eat '^' token. 4509 } 4510 4511 return false; 4512 } 4513 4514 // Helper function to parse the lane index for vector lists. 4515 OperandMatchResultTy ARMAsmParser:: 4516 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 4517 MCAsmParser &Parser = getParser(); 4518 Index = 0; // Always return a defined index value. 4519 if (Parser.getTok().is(AsmToken::LBrac)) { 4520 Parser.Lex(); // Eat the '['. 4521 if (Parser.getTok().is(AsmToken::RBrac)) { 4522 // "Dn[]" is the 'all lanes' syntax. 4523 LaneKind = AllLanes; 4524 EndLoc = Parser.getTok().getEndLoc(); 4525 Parser.Lex(); // Eat the ']'. 4526 return MatchOperand_Success; 4527 } 4528 4529 // There's an optional '#' token here. Normally there wouldn't be, but 4530 // inline assemble puts one in, and it's friendly to accept that. 4531 if (Parser.getTok().is(AsmToken::Hash)) 4532 Parser.Lex(); // Eat '#' or '$'. 4533 4534 const MCExpr *LaneIndex; 4535 SMLoc Loc = Parser.getTok().getLoc(); 4536 if (getParser().parseExpression(LaneIndex)) { 4537 Error(Loc, "illegal expression"); 4538 return MatchOperand_ParseFail; 4539 } 4540 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 4541 if (!CE) { 4542 Error(Loc, "lane index must be empty or an integer"); 4543 return MatchOperand_ParseFail; 4544 } 4545 if (Parser.getTok().isNot(AsmToken::RBrac)) { 4546 Error(Parser.getTok().getLoc(), "']' expected"); 4547 return MatchOperand_ParseFail; 4548 } 4549 EndLoc = Parser.getTok().getEndLoc(); 4550 Parser.Lex(); // Eat the ']'. 4551 int64_t Val = CE->getValue(); 4552 4553 // FIXME: Make this range check context sensitive for .8, .16, .32. 4554 if (Val < 0 || Val > 7) { 4555 Error(Parser.getTok().getLoc(), "lane index out of range"); 4556 return MatchOperand_ParseFail; 4557 } 4558 Index = Val; 4559 LaneKind = IndexedLane; 4560 return MatchOperand_Success; 4561 } 4562 LaneKind = NoLanes; 4563 return MatchOperand_Success; 4564 } 4565 4566 // parse a vector register list 4567 OperandMatchResultTy 4568 ARMAsmParser::parseVectorList(OperandVector &Operands) { 4569 MCAsmParser &Parser = getParser(); 4570 VectorLaneTy LaneKind; 4571 unsigned LaneIndex; 4572 SMLoc S = Parser.getTok().getLoc(); 4573 // As an extension (to match gas), support a plain D register or Q register 4574 // (without encosing curly braces) as a single or double entry list, 4575 // respectively. 4576 if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) { 4577 SMLoc E = Parser.getTok().getEndLoc(); 4578 int Reg = tryParseRegister(); 4579 if (Reg == -1) 4580 return MatchOperand_NoMatch; 4581 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 4582 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4583 if (Res != MatchOperand_Success) 4584 return Res; 4585 switch (LaneKind) { 4586 case NoLanes: 4587 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 4588 break; 4589 case AllLanes: 4590 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 4591 S, E)); 4592 break; 4593 case IndexedLane: 4594 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 4595 LaneIndex, 4596 false, S, E)); 4597 break; 4598 } 4599 return MatchOperand_Success; 4600 } 4601 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4602 Reg = getDRegFromQReg(Reg); 4603 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4604 if (Res != MatchOperand_Success) 4605 return Res; 4606 switch (LaneKind) { 4607 case NoLanes: 4608 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4609 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4610 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 4611 break; 4612 case AllLanes: 4613 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4614 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4615 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 4616 S, E)); 4617 break; 4618 case IndexedLane: 4619 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 4620 LaneIndex, 4621 false, S, E)); 4622 break; 4623 } 4624 return MatchOperand_Success; 4625 } 4626 Error(S, "vector register expected"); 4627 return MatchOperand_ParseFail; 4628 } 4629 4630 if (Parser.getTok().isNot(AsmToken::LCurly)) 4631 return MatchOperand_NoMatch; 4632 4633 Parser.Lex(); // Eat '{' token. 4634 SMLoc RegLoc = Parser.getTok().getLoc(); 4635 4636 int Reg = tryParseRegister(); 4637 if (Reg == -1) { 4638 Error(RegLoc, "register expected"); 4639 return MatchOperand_ParseFail; 4640 } 4641 unsigned Count = 1; 4642 int Spacing = 0; 4643 unsigned FirstReg = Reg; 4644 4645 if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4646 Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected"); 4647 return MatchOperand_ParseFail; 4648 } 4649 // The list is of D registers, but we also allow Q regs and just interpret 4650 // them as the two D sub-registers. 4651 else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4652 FirstReg = Reg = getDRegFromQReg(Reg); 4653 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4654 // it's ambiguous with four-register single spaced. 4655 ++Reg; 4656 ++Count; 4657 } 4658 4659 SMLoc E; 4660 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4661 return MatchOperand_ParseFail; 4662 4663 while (Parser.getTok().is(AsmToken::Comma) || 4664 Parser.getTok().is(AsmToken::Minus)) { 4665 if (Parser.getTok().is(AsmToken::Minus)) { 4666 if (!Spacing) 4667 Spacing = 1; // Register range implies a single spaced list. 4668 else if (Spacing == 2) { 4669 Error(Parser.getTok().getLoc(), 4670 "sequential registers in double spaced list"); 4671 return MatchOperand_ParseFail; 4672 } 4673 Parser.Lex(); // Eat the minus. 4674 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4675 int EndReg = tryParseRegister(); 4676 if (EndReg == -1) { 4677 Error(AfterMinusLoc, "register expected"); 4678 return MatchOperand_ParseFail; 4679 } 4680 // Allow Q regs and just interpret them as the two D sub-registers. 4681 if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4682 EndReg = getDRegFromQReg(EndReg) + 1; 4683 // If the register is the same as the start reg, there's nothing 4684 // more to do. 4685 if (Reg == EndReg) 4686 continue; 4687 // The register must be in the same register class as the first. 4688 if ((hasMVE() && 4689 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) || 4690 (!hasMVE() && 4691 !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) { 4692 Error(AfterMinusLoc, "invalid register in register list"); 4693 return MatchOperand_ParseFail; 4694 } 4695 // Ranges must go from low to high. 4696 if (Reg > EndReg) { 4697 Error(AfterMinusLoc, "bad range in register list"); 4698 return MatchOperand_ParseFail; 4699 } 4700 // Parse the lane specifier if present. 4701 VectorLaneTy NextLaneKind; 4702 unsigned NextLaneIndex; 4703 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4704 MatchOperand_Success) 4705 return MatchOperand_ParseFail; 4706 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4707 Error(AfterMinusLoc, "mismatched lane index in register list"); 4708 return MatchOperand_ParseFail; 4709 } 4710 4711 // Add all the registers in the range to the register list. 4712 Count += EndReg - Reg; 4713 Reg = EndReg; 4714 continue; 4715 } 4716 Parser.Lex(); // Eat the comma. 4717 RegLoc = Parser.getTok().getLoc(); 4718 int OldReg = Reg; 4719 Reg = tryParseRegister(); 4720 if (Reg == -1) { 4721 Error(RegLoc, "register expected"); 4722 return MatchOperand_ParseFail; 4723 } 4724 4725 if (hasMVE()) { 4726 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4727 Error(RegLoc, "vector register in range Q0-Q7 expected"); 4728 return MatchOperand_ParseFail; 4729 } 4730 Spacing = 1; 4731 } 4732 // vector register lists must be contiguous. 4733 // It's OK to use the enumeration values directly here rather, as the 4734 // VFP register classes have the enum sorted properly. 4735 // 4736 // The list is of D registers, but we also allow Q regs and just interpret 4737 // them as the two D sub-registers. 4738 else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4739 if (!Spacing) 4740 Spacing = 1; // Register range implies a single spaced list. 4741 else if (Spacing == 2) { 4742 Error(RegLoc, 4743 "invalid register in double-spaced list (must be 'D' register')"); 4744 return MatchOperand_ParseFail; 4745 } 4746 Reg = getDRegFromQReg(Reg); 4747 if (Reg != OldReg + 1) { 4748 Error(RegLoc, "non-contiguous register range"); 4749 return MatchOperand_ParseFail; 4750 } 4751 ++Reg; 4752 Count += 2; 4753 // Parse the lane specifier if present. 4754 VectorLaneTy NextLaneKind; 4755 unsigned NextLaneIndex; 4756 SMLoc LaneLoc = Parser.getTok().getLoc(); 4757 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4758 MatchOperand_Success) 4759 return MatchOperand_ParseFail; 4760 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4761 Error(LaneLoc, "mismatched lane index in register list"); 4762 return MatchOperand_ParseFail; 4763 } 4764 continue; 4765 } 4766 // Normal D register. 4767 // Figure out the register spacing (single or double) of the list if 4768 // we don't know it already. 4769 if (!Spacing) 4770 Spacing = 1 + (Reg == OldReg + 2); 4771 4772 // Just check that it's contiguous and keep going. 4773 if (Reg != OldReg + Spacing) { 4774 Error(RegLoc, "non-contiguous register range"); 4775 return MatchOperand_ParseFail; 4776 } 4777 ++Count; 4778 // Parse the lane specifier if present. 4779 VectorLaneTy NextLaneKind; 4780 unsigned NextLaneIndex; 4781 SMLoc EndLoc = Parser.getTok().getLoc(); 4782 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4783 return MatchOperand_ParseFail; 4784 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4785 Error(EndLoc, "mismatched lane index in register list"); 4786 return MatchOperand_ParseFail; 4787 } 4788 } 4789 4790 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4791 Error(Parser.getTok().getLoc(), "'}' expected"); 4792 return MatchOperand_ParseFail; 4793 } 4794 E = Parser.getTok().getEndLoc(); 4795 Parser.Lex(); // Eat '}' token. 4796 4797 switch (LaneKind) { 4798 case NoLanes: 4799 case AllLanes: { 4800 // Two-register operands have been converted to the 4801 // composite register classes. 4802 if (Count == 2 && !hasMVE()) { 4803 const MCRegisterClass *RC = (Spacing == 1) ? 4804 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4805 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4806 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4807 } 4808 auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : 4809 ARMOperand::CreateVectorListAllLanes); 4810 Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E)); 4811 break; 4812 } 4813 case IndexedLane: 4814 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4815 LaneIndex, 4816 (Spacing == 2), 4817 S, E)); 4818 break; 4819 } 4820 return MatchOperand_Success; 4821 } 4822 4823 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4824 OperandMatchResultTy 4825 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4826 MCAsmParser &Parser = getParser(); 4827 SMLoc S = Parser.getTok().getLoc(); 4828 const AsmToken &Tok = Parser.getTok(); 4829 unsigned Opt; 4830 4831 if (Tok.is(AsmToken::Identifier)) { 4832 StringRef OptStr = Tok.getString(); 4833 4834 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4835 .Case("sy", ARM_MB::SY) 4836 .Case("st", ARM_MB::ST) 4837 .Case("ld", ARM_MB::LD) 4838 .Case("sh", ARM_MB::ISH) 4839 .Case("ish", ARM_MB::ISH) 4840 .Case("shst", ARM_MB::ISHST) 4841 .Case("ishst", ARM_MB::ISHST) 4842 .Case("ishld", ARM_MB::ISHLD) 4843 .Case("nsh", ARM_MB::NSH) 4844 .Case("un", ARM_MB::NSH) 4845 .Case("nshst", ARM_MB::NSHST) 4846 .Case("nshld", ARM_MB::NSHLD) 4847 .Case("unst", ARM_MB::NSHST) 4848 .Case("osh", ARM_MB::OSH) 4849 .Case("oshst", ARM_MB::OSHST) 4850 .Case("oshld", ARM_MB::OSHLD) 4851 .Default(~0U); 4852 4853 // ishld, oshld, nshld and ld are only available from ARMv8. 4854 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4855 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4856 Opt = ~0U; 4857 4858 if (Opt == ~0U) 4859 return MatchOperand_NoMatch; 4860 4861 Parser.Lex(); // Eat identifier token. 4862 } else if (Tok.is(AsmToken::Hash) || 4863 Tok.is(AsmToken::Dollar) || 4864 Tok.is(AsmToken::Integer)) { 4865 if (Parser.getTok().isNot(AsmToken::Integer)) 4866 Parser.Lex(); // Eat '#' or '$'. 4867 SMLoc Loc = Parser.getTok().getLoc(); 4868 4869 const MCExpr *MemBarrierID; 4870 if (getParser().parseExpression(MemBarrierID)) { 4871 Error(Loc, "illegal expression"); 4872 return MatchOperand_ParseFail; 4873 } 4874 4875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4876 if (!CE) { 4877 Error(Loc, "constant expression expected"); 4878 return MatchOperand_ParseFail; 4879 } 4880 4881 int Val = CE->getValue(); 4882 if (Val & ~0xf) { 4883 Error(Loc, "immediate value out of range"); 4884 return MatchOperand_ParseFail; 4885 } 4886 4887 Opt = ARM_MB::RESERVED_0 + Val; 4888 } else 4889 return MatchOperand_ParseFail; 4890 4891 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4892 return MatchOperand_Success; 4893 } 4894 4895 OperandMatchResultTy 4896 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 4897 MCAsmParser &Parser = getParser(); 4898 SMLoc S = Parser.getTok().getLoc(); 4899 const AsmToken &Tok = Parser.getTok(); 4900 4901 if (Tok.isNot(AsmToken::Identifier)) 4902 return MatchOperand_NoMatch; 4903 4904 if (!Tok.getString().equals_lower("csync")) 4905 return MatchOperand_NoMatch; 4906 4907 Parser.Lex(); // Eat identifier token. 4908 4909 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 4910 return MatchOperand_Success; 4911 } 4912 4913 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4914 OperandMatchResultTy 4915 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4916 MCAsmParser &Parser = getParser(); 4917 SMLoc S = Parser.getTok().getLoc(); 4918 const AsmToken &Tok = Parser.getTok(); 4919 unsigned Opt; 4920 4921 if (Tok.is(AsmToken::Identifier)) { 4922 StringRef OptStr = Tok.getString(); 4923 4924 if (OptStr.equals_lower("sy")) 4925 Opt = ARM_ISB::SY; 4926 else 4927 return MatchOperand_NoMatch; 4928 4929 Parser.Lex(); // Eat identifier token. 4930 } else if (Tok.is(AsmToken::Hash) || 4931 Tok.is(AsmToken::Dollar) || 4932 Tok.is(AsmToken::Integer)) { 4933 if (Parser.getTok().isNot(AsmToken::Integer)) 4934 Parser.Lex(); // Eat '#' or '$'. 4935 SMLoc Loc = Parser.getTok().getLoc(); 4936 4937 const MCExpr *ISBarrierID; 4938 if (getParser().parseExpression(ISBarrierID)) { 4939 Error(Loc, "illegal expression"); 4940 return MatchOperand_ParseFail; 4941 } 4942 4943 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4944 if (!CE) { 4945 Error(Loc, "constant expression expected"); 4946 return MatchOperand_ParseFail; 4947 } 4948 4949 int Val = CE->getValue(); 4950 if (Val & ~0xf) { 4951 Error(Loc, "immediate value out of range"); 4952 return MatchOperand_ParseFail; 4953 } 4954 4955 Opt = ARM_ISB::RESERVED_0 + Val; 4956 } else 4957 return MatchOperand_ParseFail; 4958 4959 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4960 (ARM_ISB::InstSyncBOpt)Opt, S)); 4961 return MatchOperand_Success; 4962 } 4963 4964 4965 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4966 OperandMatchResultTy 4967 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4968 MCAsmParser &Parser = getParser(); 4969 SMLoc S = Parser.getTok().getLoc(); 4970 const AsmToken &Tok = Parser.getTok(); 4971 if (!Tok.is(AsmToken::Identifier)) 4972 return MatchOperand_NoMatch; 4973 StringRef IFlagsStr = Tok.getString(); 4974 4975 // An iflags string of "none" is interpreted to mean that none of the AIF 4976 // bits are set. Not a terribly useful instruction, but a valid encoding. 4977 unsigned IFlags = 0; 4978 if (IFlagsStr != "none") { 4979 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4980 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4981 .Case("a", ARM_PROC::A) 4982 .Case("i", ARM_PROC::I) 4983 .Case("f", ARM_PROC::F) 4984 .Default(~0U); 4985 4986 // If some specific iflag is already set, it means that some letter is 4987 // present more than once, this is not acceptable. 4988 if (Flag == ~0U || (IFlags & Flag)) 4989 return MatchOperand_NoMatch; 4990 4991 IFlags |= Flag; 4992 } 4993 } 4994 4995 Parser.Lex(); // Eat identifier token. 4996 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4997 return MatchOperand_Success; 4998 } 4999 5000 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 5001 OperandMatchResultTy 5002 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 5003 MCAsmParser &Parser = getParser(); 5004 SMLoc S = Parser.getTok().getLoc(); 5005 const AsmToken &Tok = Parser.getTok(); 5006 5007 if (Tok.is(AsmToken::Integer)) { 5008 int64_t Val = Tok.getIntVal(); 5009 if (Val > 255 || Val < 0) { 5010 return MatchOperand_NoMatch; 5011 } 5012 unsigned SYSmvalue = Val & 0xFF; 5013 Parser.Lex(); 5014 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 5015 return MatchOperand_Success; 5016 } 5017 5018 if (!Tok.is(AsmToken::Identifier)) 5019 return MatchOperand_NoMatch; 5020 StringRef Mask = Tok.getString(); 5021 5022 if (isMClass()) { 5023 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 5024 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 5025 return MatchOperand_NoMatch; 5026 5027 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 5028 5029 Parser.Lex(); // Eat identifier token. 5030 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 5031 return MatchOperand_Success; 5032 } 5033 5034 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 5035 size_t Start = 0, Next = Mask.find('_'); 5036 StringRef Flags = ""; 5037 std::string SpecReg = Mask.slice(Start, Next).lower(); 5038 if (Next != StringRef::npos) 5039 Flags = Mask.slice(Next+1, Mask.size()); 5040 5041 // FlagsVal contains the complete mask: 5042 // 3-0: Mask 5043 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5044 unsigned FlagsVal = 0; 5045 5046 if (SpecReg == "apsr") { 5047 FlagsVal = StringSwitch<unsigned>(Flags) 5048 .Case("nzcvq", 0x8) // same as CPSR_f 5049 .Case("g", 0x4) // same as CPSR_s 5050 .Case("nzcvqg", 0xc) // same as CPSR_fs 5051 .Default(~0U); 5052 5053 if (FlagsVal == ~0U) { 5054 if (!Flags.empty()) 5055 return MatchOperand_NoMatch; 5056 else 5057 FlagsVal = 8; // No flag 5058 } 5059 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 5060 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 5061 if (Flags == "all" || Flags == "") 5062 Flags = "fc"; 5063 for (int i = 0, e = Flags.size(); i != e; ++i) { 5064 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 5065 .Case("c", 1) 5066 .Case("x", 2) 5067 .Case("s", 4) 5068 .Case("f", 8) 5069 .Default(~0U); 5070 5071 // If some specific flag is already set, it means that some letter is 5072 // present more than once, this is not acceptable. 5073 if (Flag == ~0U || (FlagsVal & Flag)) 5074 return MatchOperand_NoMatch; 5075 FlagsVal |= Flag; 5076 } 5077 } else // No match for special register. 5078 return MatchOperand_NoMatch; 5079 5080 // Special register without flags is NOT equivalent to "fc" flags. 5081 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 5082 // two lines would enable gas compatibility at the expense of breaking 5083 // round-tripping. 5084 // 5085 // if (!FlagsVal) 5086 // FlagsVal = 0x9; 5087 5088 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5089 if (SpecReg == "spsr") 5090 FlagsVal |= 16; 5091 5092 Parser.Lex(); // Eat identifier token. 5093 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 5094 return MatchOperand_Success; 5095 } 5096 5097 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 5098 /// use in the MRS/MSR instructions added to support virtualization. 5099 OperandMatchResultTy 5100 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 5101 MCAsmParser &Parser = getParser(); 5102 SMLoc S = Parser.getTok().getLoc(); 5103 const AsmToken &Tok = Parser.getTok(); 5104 if (!Tok.is(AsmToken::Identifier)) 5105 return MatchOperand_NoMatch; 5106 StringRef RegName = Tok.getString(); 5107 5108 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 5109 if (!TheReg) 5110 return MatchOperand_NoMatch; 5111 unsigned Encoding = TheReg->Encoding; 5112 5113 Parser.Lex(); // Eat identifier token. 5114 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 5115 return MatchOperand_Success; 5116 } 5117 5118 OperandMatchResultTy 5119 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 5120 int High) { 5121 MCAsmParser &Parser = getParser(); 5122 const AsmToken &Tok = Parser.getTok(); 5123 if (Tok.isNot(AsmToken::Identifier)) { 5124 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5125 return MatchOperand_ParseFail; 5126 } 5127 StringRef ShiftName = Tok.getString(); 5128 std::string LowerOp = Op.lower(); 5129 std::string UpperOp = Op.upper(); 5130 if (ShiftName != LowerOp && ShiftName != UpperOp) { 5131 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5132 return MatchOperand_ParseFail; 5133 } 5134 Parser.Lex(); // Eat shift type token. 5135 5136 // There must be a '#' and a shift amount. 5137 if (Parser.getTok().isNot(AsmToken::Hash) && 5138 Parser.getTok().isNot(AsmToken::Dollar)) { 5139 Error(Parser.getTok().getLoc(), "'#' expected"); 5140 return MatchOperand_ParseFail; 5141 } 5142 Parser.Lex(); // Eat hash token. 5143 5144 const MCExpr *ShiftAmount; 5145 SMLoc Loc = Parser.getTok().getLoc(); 5146 SMLoc EndLoc; 5147 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5148 Error(Loc, "illegal expression"); 5149 return MatchOperand_ParseFail; 5150 } 5151 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5152 if (!CE) { 5153 Error(Loc, "constant expression expected"); 5154 return MatchOperand_ParseFail; 5155 } 5156 int Val = CE->getValue(); 5157 if (Val < Low || Val > High) { 5158 Error(Loc, "immediate value out of range"); 5159 return MatchOperand_ParseFail; 5160 } 5161 5162 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 5163 5164 return MatchOperand_Success; 5165 } 5166 5167 OperandMatchResultTy 5168 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 5169 MCAsmParser &Parser = getParser(); 5170 const AsmToken &Tok = Parser.getTok(); 5171 SMLoc S = Tok.getLoc(); 5172 if (Tok.isNot(AsmToken::Identifier)) { 5173 Error(S, "'be' or 'le' operand expected"); 5174 return MatchOperand_ParseFail; 5175 } 5176 int Val = StringSwitch<int>(Tok.getString().lower()) 5177 .Case("be", 1) 5178 .Case("le", 0) 5179 .Default(-1); 5180 Parser.Lex(); // Eat the token. 5181 5182 if (Val == -1) { 5183 Error(S, "'be' or 'le' operand expected"); 5184 return MatchOperand_ParseFail; 5185 } 5186 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 5187 getContext()), 5188 S, Tok.getEndLoc())); 5189 return MatchOperand_Success; 5190 } 5191 5192 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 5193 /// instructions. Legal values are: 5194 /// lsl #n 'n' in [0,31] 5195 /// asr #n 'n' in [1,32] 5196 /// n == 32 encoded as n == 0. 5197 OperandMatchResultTy 5198 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 5199 MCAsmParser &Parser = getParser(); 5200 const AsmToken &Tok = Parser.getTok(); 5201 SMLoc S = Tok.getLoc(); 5202 if (Tok.isNot(AsmToken::Identifier)) { 5203 Error(S, "shift operator 'asr' or 'lsl' expected"); 5204 return MatchOperand_ParseFail; 5205 } 5206 StringRef ShiftName = Tok.getString(); 5207 bool isASR; 5208 if (ShiftName == "lsl" || ShiftName == "LSL") 5209 isASR = false; 5210 else if (ShiftName == "asr" || ShiftName == "ASR") 5211 isASR = true; 5212 else { 5213 Error(S, "shift operator 'asr' or 'lsl' expected"); 5214 return MatchOperand_ParseFail; 5215 } 5216 Parser.Lex(); // Eat the operator. 5217 5218 // A '#' and a shift amount. 5219 if (Parser.getTok().isNot(AsmToken::Hash) && 5220 Parser.getTok().isNot(AsmToken::Dollar)) { 5221 Error(Parser.getTok().getLoc(), "'#' expected"); 5222 return MatchOperand_ParseFail; 5223 } 5224 Parser.Lex(); // Eat hash token. 5225 SMLoc ExLoc = Parser.getTok().getLoc(); 5226 5227 const MCExpr *ShiftAmount; 5228 SMLoc EndLoc; 5229 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5230 Error(ExLoc, "malformed shift expression"); 5231 return MatchOperand_ParseFail; 5232 } 5233 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5234 if (!CE) { 5235 Error(ExLoc, "shift amount must be an immediate"); 5236 return MatchOperand_ParseFail; 5237 } 5238 5239 int64_t Val = CE->getValue(); 5240 if (isASR) { 5241 // Shift amount must be in [1,32] 5242 if (Val < 1 || Val > 32) { 5243 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 5244 return MatchOperand_ParseFail; 5245 } 5246 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 5247 if (isThumb() && Val == 32) { 5248 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 5249 return MatchOperand_ParseFail; 5250 } 5251 if (Val == 32) Val = 0; 5252 } else { 5253 // Shift amount must be in [1,32] 5254 if (Val < 0 || Val > 31) { 5255 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 5256 return MatchOperand_ParseFail; 5257 } 5258 } 5259 5260 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 5261 5262 return MatchOperand_Success; 5263 } 5264 5265 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 5266 /// of instructions. Legal values are: 5267 /// ror #n 'n' in {0, 8, 16, 24} 5268 OperandMatchResultTy 5269 ARMAsmParser::parseRotImm(OperandVector &Operands) { 5270 MCAsmParser &Parser = getParser(); 5271 const AsmToken &Tok = Parser.getTok(); 5272 SMLoc S = Tok.getLoc(); 5273 if (Tok.isNot(AsmToken::Identifier)) 5274 return MatchOperand_NoMatch; 5275 StringRef ShiftName = Tok.getString(); 5276 if (ShiftName != "ror" && ShiftName != "ROR") 5277 return MatchOperand_NoMatch; 5278 Parser.Lex(); // Eat the operator. 5279 5280 // A '#' and a rotate amount. 5281 if (Parser.getTok().isNot(AsmToken::Hash) && 5282 Parser.getTok().isNot(AsmToken::Dollar)) { 5283 Error(Parser.getTok().getLoc(), "'#' expected"); 5284 return MatchOperand_ParseFail; 5285 } 5286 Parser.Lex(); // Eat hash token. 5287 SMLoc ExLoc = Parser.getTok().getLoc(); 5288 5289 const MCExpr *ShiftAmount; 5290 SMLoc EndLoc; 5291 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5292 Error(ExLoc, "malformed rotate expression"); 5293 return MatchOperand_ParseFail; 5294 } 5295 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5296 if (!CE) { 5297 Error(ExLoc, "rotate amount must be an immediate"); 5298 return MatchOperand_ParseFail; 5299 } 5300 5301 int64_t Val = CE->getValue(); 5302 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 5303 // normally, zero is represented in asm by omitting the rotate operand 5304 // entirely. 5305 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 5306 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 5307 return MatchOperand_ParseFail; 5308 } 5309 5310 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 5311 5312 return MatchOperand_Success; 5313 } 5314 5315 OperandMatchResultTy 5316 ARMAsmParser::parseModImm(OperandVector &Operands) { 5317 MCAsmParser &Parser = getParser(); 5318 MCAsmLexer &Lexer = getLexer(); 5319 int64_t Imm1, Imm2; 5320 5321 SMLoc S = Parser.getTok().getLoc(); 5322 5323 // 1) A mod_imm operand can appear in the place of a register name: 5324 // add r0, #mod_imm 5325 // add r0, r0, #mod_imm 5326 // to correctly handle the latter, we bail out as soon as we see an 5327 // identifier. 5328 // 5329 // 2) Similarly, we do not want to parse into complex operands: 5330 // mov r0, #mod_imm 5331 // mov r0, :lower16:(_foo) 5332 if (Parser.getTok().is(AsmToken::Identifier) || 5333 Parser.getTok().is(AsmToken::Colon)) 5334 return MatchOperand_NoMatch; 5335 5336 // Hash (dollar) is optional as per the ARMARM 5337 if (Parser.getTok().is(AsmToken::Hash) || 5338 Parser.getTok().is(AsmToken::Dollar)) { 5339 // Avoid parsing into complex operands (#:) 5340 if (Lexer.peekTok().is(AsmToken::Colon)) 5341 return MatchOperand_NoMatch; 5342 5343 // Eat the hash (dollar) 5344 Parser.Lex(); 5345 } 5346 5347 SMLoc Sx1, Ex1; 5348 Sx1 = Parser.getTok().getLoc(); 5349 const MCExpr *Imm1Exp; 5350 if (getParser().parseExpression(Imm1Exp, Ex1)) { 5351 Error(Sx1, "malformed expression"); 5352 return MatchOperand_ParseFail; 5353 } 5354 5355 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 5356 5357 if (CE) { 5358 // Immediate must fit within 32-bits 5359 Imm1 = CE->getValue(); 5360 int Enc = ARM_AM::getSOImmVal(Imm1); 5361 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 5362 // We have a match! 5363 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 5364 (Enc & 0xF00) >> 7, 5365 Sx1, Ex1)); 5366 return MatchOperand_Success; 5367 } 5368 5369 // We have parsed an immediate which is not for us, fallback to a plain 5370 // immediate. This can happen for instruction aliases. For an example, 5371 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 5372 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 5373 // instruction with a mod_imm operand. The alias is defined such that the 5374 // parser method is shared, that's why we have to do this here. 5375 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 5376 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5377 return MatchOperand_Success; 5378 } 5379 } else { 5380 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 5381 // MCFixup). Fallback to a plain immediate. 5382 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5383 return MatchOperand_Success; 5384 } 5385 5386 // From this point onward, we expect the input to be a (#bits, #rot) pair 5387 if (Parser.getTok().isNot(AsmToken::Comma)) { 5388 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 5389 return MatchOperand_ParseFail; 5390 } 5391 5392 if (Imm1 & ~0xFF) { 5393 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 5394 return MatchOperand_ParseFail; 5395 } 5396 5397 // Eat the comma 5398 Parser.Lex(); 5399 5400 // Repeat for #rot 5401 SMLoc Sx2, Ex2; 5402 Sx2 = Parser.getTok().getLoc(); 5403 5404 // Eat the optional hash (dollar) 5405 if (Parser.getTok().is(AsmToken::Hash) || 5406 Parser.getTok().is(AsmToken::Dollar)) 5407 Parser.Lex(); 5408 5409 const MCExpr *Imm2Exp; 5410 if (getParser().parseExpression(Imm2Exp, Ex2)) { 5411 Error(Sx2, "malformed expression"); 5412 return MatchOperand_ParseFail; 5413 } 5414 5415 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 5416 5417 if (CE) { 5418 Imm2 = CE->getValue(); 5419 if (!(Imm2 & ~0x1E)) { 5420 // We have a match! 5421 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 5422 return MatchOperand_Success; 5423 } 5424 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 5425 return MatchOperand_ParseFail; 5426 } else { 5427 Error(Sx2, "constant expression expected"); 5428 return MatchOperand_ParseFail; 5429 } 5430 } 5431 5432 OperandMatchResultTy 5433 ARMAsmParser::parseBitfield(OperandVector &Operands) { 5434 MCAsmParser &Parser = getParser(); 5435 SMLoc S = Parser.getTok().getLoc(); 5436 // The bitfield descriptor is really two operands, the LSB and the width. 5437 if (Parser.getTok().isNot(AsmToken::Hash) && 5438 Parser.getTok().isNot(AsmToken::Dollar)) { 5439 Error(Parser.getTok().getLoc(), "'#' expected"); 5440 return MatchOperand_ParseFail; 5441 } 5442 Parser.Lex(); // Eat hash token. 5443 5444 const MCExpr *LSBExpr; 5445 SMLoc E = Parser.getTok().getLoc(); 5446 if (getParser().parseExpression(LSBExpr)) { 5447 Error(E, "malformed immediate expression"); 5448 return MatchOperand_ParseFail; 5449 } 5450 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 5451 if (!CE) { 5452 Error(E, "'lsb' operand must be an immediate"); 5453 return MatchOperand_ParseFail; 5454 } 5455 5456 int64_t LSB = CE->getValue(); 5457 // The LSB must be in the range [0,31] 5458 if (LSB < 0 || LSB > 31) { 5459 Error(E, "'lsb' operand must be in the range [0,31]"); 5460 return MatchOperand_ParseFail; 5461 } 5462 E = Parser.getTok().getLoc(); 5463 5464 // Expect another immediate operand. 5465 if (Parser.getTok().isNot(AsmToken::Comma)) { 5466 Error(Parser.getTok().getLoc(), "too few operands"); 5467 return MatchOperand_ParseFail; 5468 } 5469 Parser.Lex(); // Eat hash token. 5470 if (Parser.getTok().isNot(AsmToken::Hash) && 5471 Parser.getTok().isNot(AsmToken::Dollar)) { 5472 Error(Parser.getTok().getLoc(), "'#' expected"); 5473 return MatchOperand_ParseFail; 5474 } 5475 Parser.Lex(); // Eat hash token. 5476 5477 const MCExpr *WidthExpr; 5478 SMLoc EndLoc; 5479 if (getParser().parseExpression(WidthExpr, EndLoc)) { 5480 Error(E, "malformed immediate expression"); 5481 return MatchOperand_ParseFail; 5482 } 5483 CE = dyn_cast<MCConstantExpr>(WidthExpr); 5484 if (!CE) { 5485 Error(E, "'width' operand must be an immediate"); 5486 return MatchOperand_ParseFail; 5487 } 5488 5489 int64_t Width = CE->getValue(); 5490 // The LSB must be in the range [1,32-lsb] 5491 if (Width < 1 || Width > 32 - LSB) { 5492 Error(E, "'width' operand must be in the range [1,32-lsb]"); 5493 return MatchOperand_ParseFail; 5494 } 5495 5496 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 5497 5498 return MatchOperand_Success; 5499 } 5500 5501 OperandMatchResultTy 5502 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 5503 // Check for a post-index addressing register operand. Specifically: 5504 // postidx_reg := '+' register {, shift} 5505 // | '-' register {, shift} 5506 // | register {, shift} 5507 5508 // This method must return MatchOperand_NoMatch without consuming any tokens 5509 // in the case where there is no match, as other alternatives take other 5510 // parse methods. 5511 MCAsmParser &Parser = getParser(); 5512 AsmToken Tok = Parser.getTok(); 5513 SMLoc S = Tok.getLoc(); 5514 bool haveEaten = false; 5515 bool isAdd = true; 5516 if (Tok.is(AsmToken::Plus)) { 5517 Parser.Lex(); // Eat the '+' token. 5518 haveEaten = true; 5519 } else if (Tok.is(AsmToken::Minus)) { 5520 Parser.Lex(); // Eat the '-' token. 5521 isAdd = false; 5522 haveEaten = true; 5523 } 5524 5525 SMLoc E = Parser.getTok().getEndLoc(); 5526 int Reg = tryParseRegister(); 5527 if (Reg == -1) { 5528 if (!haveEaten) 5529 return MatchOperand_NoMatch; 5530 Error(Parser.getTok().getLoc(), "register expected"); 5531 return MatchOperand_ParseFail; 5532 } 5533 5534 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 5535 unsigned ShiftImm = 0; 5536 if (Parser.getTok().is(AsmToken::Comma)) { 5537 Parser.Lex(); // Eat the ','. 5538 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 5539 return MatchOperand_ParseFail; 5540 5541 // FIXME: Only approximates end...may include intervening whitespace. 5542 E = Parser.getTok().getLoc(); 5543 } 5544 5545 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 5546 ShiftImm, S, E)); 5547 5548 return MatchOperand_Success; 5549 } 5550 5551 OperandMatchResultTy 5552 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 5553 // Check for a post-index addressing register operand. Specifically: 5554 // am3offset := '+' register 5555 // | '-' register 5556 // | register 5557 // | # imm 5558 // | # + imm 5559 // | # - imm 5560 5561 // This method must return MatchOperand_NoMatch without consuming any tokens 5562 // in the case where there is no match, as other alternatives take other 5563 // parse methods. 5564 MCAsmParser &Parser = getParser(); 5565 AsmToken Tok = Parser.getTok(); 5566 SMLoc S = Tok.getLoc(); 5567 5568 // Do immediates first, as we always parse those if we have a '#'. 5569 if (Parser.getTok().is(AsmToken::Hash) || 5570 Parser.getTok().is(AsmToken::Dollar)) { 5571 Parser.Lex(); // Eat '#' or '$'. 5572 // Explicitly look for a '-', as we need to encode negative zero 5573 // differently. 5574 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5575 const MCExpr *Offset; 5576 SMLoc E; 5577 if (getParser().parseExpression(Offset, E)) 5578 return MatchOperand_ParseFail; 5579 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5580 if (!CE) { 5581 Error(S, "constant expression expected"); 5582 return MatchOperand_ParseFail; 5583 } 5584 // Negative zero is encoded as the flag value 5585 // std::numeric_limits<int32_t>::min(). 5586 int32_t Val = CE->getValue(); 5587 if (isNegative && Val == 0) 5588 Val = std::numeric_limits<int32_t>::min(); 5589 5590 Operands.push_back( 5591 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 5592 5593 return MatchOperand_Success; 5594 } 5595 5596 bool haveEaten = false; 5597 bool isAdd = true; 5598 if (Tok.is(AsmToken::Plus)) { 5599 Parser.Lex(); // Eat the '+' token. 5600 haveEaten = true; 5601 } else if (Tok.is(AsmToken::Minus)) { 5602 Parser.Lex(); // Eat the '-' token. 5603 isAdd = false; 5604 haveEaten = true; 5605 } 5606 5607 Tok = Parser.getTok(); 5608 int Reg = tryParseRegister(); 5609 if (Reg == -1) { 5610 if (!haveEaten) 5611 return MatchOperand_NoMatch; 5612 Error(Tok.getLoc(), "register expected"); 5613 return MatchOperand_ParseFail; 5614 } 5615 5616 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 5617 0, S, Tok.getEndLoc())); 5618 5619 return MatchOperand_Success; 5620 } 5621 5622 /// Convert parsed operands to MCInst. Needed here because this instruction 5623 /// only has two register operands, but multiplication is commutative so 5624 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 5625 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 5626 const OperandVector &Operands) { 5627 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 5628 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 5629 // If we have a three-operand form, make sure to set Rn to be the operand 5630 // that isn't the same as Rd. 5631 unsigned RegOp = 4; 5632 if (Operands.size() == 6 && 5633 ((ARMOperand &)*Operands[4]).getReg() == 5634 ((ARMOperand &)*Operands[3]).getReg()) 5635 RegOp = 5; 5636 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5637 Inst.addOperand(Inst.getOperand(0)); 5638 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5639 } 5640 5641 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5642 const OperandVector &Operands) { 5643 int CondOp = -1, ImmOp = -1; 5644 switch(Inst.getOpcode()) { 5645 case ARM::tB: 5646 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5647 5648 case ARM::t2B: 5649 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5650 5651 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5652 } 5653 // first decide whether or not the branch should be conditional 5654 // by looking at it's location relative to an IT block 5655 if(inITBlock()) { 5656 // inside an IT block we cannot have any conditional branches. any 5657 // such instructions needs to be converted to unconditional form 5658 switch(Inst.getOpcode()) { 5659 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5660 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5661 } 5662 } else { 5663 // outside IT blocks we can only have unconditional branches with AL 5664 // condition code or conditional branches with non-AL condition code 5665 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5666 switch(Inst.getOpcode()) { 5667 case ARM::tB: 5668 case ARM::tBcc: 5669 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5670 break; 5671 case ARM::t2B: 5672 case ARM::t2Bcc: 5673 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5674 break; 5675 } 5676 } 5677 5678 // now decide on encoding size based on branch target range 5679 switch(Inst.getOpcode()) { 5680 // classify tB as either t2B or t1B based on range of immediate operand 5681 case ARM::tB: { 5682 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5683 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5684 Inst.setOpcode(ARM::t2B); 5685 break; 5686 } 5687 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5688 case ARM::tBcc: { 5689 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5690 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5691 Inst.setOpcode(ARM::t2Bcc); 5692 break; 5693 } 5694 } 5695 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5696 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5697 } 5698 5699 void ARMAsmParser::cvtMVEVMOVQtoDReg( 5700 MCInst &Inst, const OperandVector &Operands) { 5701 5702 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 5703 assert(Operands.size() == 8); 5704 5705 ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt 5706 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2 5707 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd 5708 ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx 5709 // skip second copy of Qd in Operands[6] 5710 ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2 5711 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code 5712 } 5713 5714 /// Parse an ARM memory expression, return false if successful else return true 5715 /// or an error. The first token must be a '[' when called. 5716 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5717 MCAsmParser &Parser = getParser(); 5718 SMLoc S, E; 5719 if (Parser.getTok().isNot(AsmToken::LBrac)) 5720 return TokError("Token is not a Left Bracket"); 5721 S = Parser.getTok().getLoc(); 5722 Parser.Lex(); // Eat left bracket token. 5723 5724 const AsmToken &BaseRegTok = Parser.getTok(); 5725 int BaseRegNum = tryParseRegister(); 5726 if (BaseRegNum == -1) 5727 return Error(BaseRegTok.getLoc(), "register expected"); 5728 5729 // The next token must either be a comma, a colon or a closing bracket. 5730 const AsmToken &Tok = Parser.getTok(); 5731 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5732 !Tok.is(AsmToken::RBrac)) 5733 return Error(Tok.getLoc(), "malformed memory operand"); 5734 5735 if (Tok.is(AsmToken::RBrac)) { 5736 E = Tok.getEndLoc(); 5737 Parser.Lex(); // Eat right bracket token. 5738 5739 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5740 ARM_AM::no_shift, 0, 0, false, 5741 S, E)); 5742 5743 // If there's a pre-indexing writeback marker, '!', just add it as a token 5744 // operand. It's rather odd, but syntactically valid. 5745 if (Parser.getTok().is(AsmToken::Exclaim)) { 5746 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5747 Parser.Lex(); // Eat the '!'. 5748 } 5749 5750 return false; 5751 } 5752 5753 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5754 "Lost colon or comma in memory operand?!"); 5755 if (Tok.is(AsmToken::Comma)) { 5756 Parser.Lex(); // Eat the comma. 5757 } 5758 5759 // If we have a ':', it's an alignment specifier. 5760 if (Parser.getTok().is(AsmToken::Colon)) { 5761 Parser.Lex(); // Eat the ':'. 5762 E = Parser.getTok().getLoc(); 5763 SMLoc AlignmentLoc = Tok.getLoc(); 5764 5765 const MCExpr *Expr; 5766 if (getParser().parseExpression(Expr)) 5767 return true; 5768 5769 // The expression has to be a constant. Memory references with relocations 5770 // don't come through here, as they use the <label> forms of the relevant 5771 // instructions. 5772 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5773 if (!CE) 5774 return Error (E, "constant expression expected"); 5775 5776 unsigned Align = 0; 5777 switch (CE->getValue()) { 5778 default: 5779 return Error(E, 5780 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5781 case 16: Align = 2; break; 5782 case 32: Align = 4; break; 5783 case 64: Align = 8; break; 5784 case 128: Align = 16; break; 5785 case 256: Align = 32; break; 5786 } 5787 5788 // Now we should have the closing ']' 5789 if (Parser.getTok().isNot(AsmToken::RBrac)) 5790 return Error(Parser.getTok().getLoc(), "']' expected"); 5791 E = Parser.getTok().getEndLoc(); 5792 Parser.Lex(); // Eat right bracket token. 5793 5794 // Don't worry about range checking the value here. That's handled by 5795 // the is*() predicates. 5796 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5797 ARM_AM::no_shift, 0, Align, 5798 false, S, E, AlignmentLoc)); 5799 5800 // If there's a pre-indexing writeback marker, '!', just add it as a token 5801 // operand. 5802 if (Parser.getTok().is(AsmToken::Exclaim)) { 5803 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5804 Parser.Lex(); // Eat the '!'. 5805 } 5806 5807 return false; 5808 } 5809 5810 // If we have a '#' or '$', it's an immediate offset, else assume it's a 5811 // register offset. Be friendly and also accept a plain integer or expression 5812 // (without a leading hash) for gas compatibility. 5813 if (Parser.getTok().is(AsmToken::Hash) || 5814 Parser.getTok().is(AsmToken::Dollar) || 5815 Parser.getTok().is(AsmToken::LParen) || 5816 Parser.getTok().is(AsmToken::Integer)) { 5817 if (Parser.getTok().is(AsmToken::Hash) || 5818 Parser.getTok().is(AsmToken::Dollar)) 5819 Parser.Lex(); // Eat '#' or '$' 5820 E = Parser.getTok().getLoc(); 5821 5822 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5823 const MCExpr *Offset; 5824 if (getParser().parseExpression(Offset)) 5825 return true; 5826 5827 // The expression has to be a constant. Memory references with relocations 5828 // don't come through here, as they use the <label> forms of the relevant 5829 // instructions. 5830 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5831 if (!CE) 5832 return Error (E, "constant expression expected"); 5833 5834 // If the constant was #-0, represent it as 5835 // std::numeric_limits<int32_t>::min(). 5836 int32_t Val = CE->getValue(); 5837 if (isNegative && Val == 0) 5838 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5839 getContext()); 5840 5841 // Now we should have the closing ']' 5842 if (Parser.getTok().isNot(AsmToken::RBrac)) 5843 return Error(Parser.getTok().getLoc(), "']' expected"); 5844 E = Parser.getTok().getEndLoc(); 5845 Parser.Lex(); // Eat right bracket token. 5846 5847 // Don't worry about range checking the value here. That's handled by 5848 // the is*() predicates. 5849 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5850 ARM_AM::no_shift, 0, 0, 5851 false, S, E)); 5852 5853 // If there's a pre-indexing writeback marker, '!', just add it as a token 5854 // operand. 5855 if (Parser.getTok().is(AsmToken::Exclaim)) { 5856 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5857 Parser.Lex(); // Eat the '!'. 5858 } 5859 5860 return false; 5861 } 5862 5863 // The register offset is optionally preceded by a '+' or '-' 5864 bool isNegative = false; 5865 if (Parser.getTok().is(AsmToken::Minus)) { 5866 isNegative = true; 5867 Parser.Lex(); // Eat the '-'. 5868 } else if (Parser.getTok().is(AsmToken::Plus)) { 5869 // Nothing to do. 5870 Parser.Lex(); // Eat the '+'. 5871 } 5872 5873 E = Parser.getTok().getLoc(); 5874 int OffsetRegNum = tryParseRegister(); 5875 if (OffsetRegNum == -1) 5876 return Error(E, "register expected"); 5877 5878 // If there's a shift operator, handle it. 5879 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5880 unsigned ShiftImm = 0; 5881 if (Parser.getTok().is(AsmToken::Comma)) { 5882 Parser.Lex(); // Eat the ','. 5883 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5884 return true; 5885 } 5886 5887 // Now we should have the closing ']' 5888 if (Parser.getTok().isNot(AsmToken::RBrac)) 5889 return Error(Parser.getTok().getLoc(), "']' expected"); 5890 E = Parser.getTok().getEndLoc(); 5891 Parser.Lex(); // Eat right bracket token. 5892 5893 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5894 ShiftType, ShiftImm, 0, isNegative, 5895 S, E)); 5896 5897 // If there's a pre-indexing writeback marker, '!', just add it as a token 5898 // operand. 5899 if (Parser.getTok().is(AsmToken::Exclaim)) { 5900 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5901 Parser.Lex(); // Eat the '!'. 5902 } 5903 5904 return false; 5905 } 5906 5907 /// parseMemRegOffsetShift - one of these two: 5908 /// ( lsl | lsr | asr | ror ) , # shift_amount 5909 /// rrx 5910 /// return true if it parses a shift otherwise it returns false. 5911 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5912 unsigned &Amount) { 5913 MCAsmParser &Parser = getParser(); 5914 SMLoc Loc = Parser.getTok().getLoc(); 5915 const AsmToken &Tok = Parser.getTok(); 5916 if (Tok.isNot(AsmToken::Identifier)) 5917 return Error(Loc, "illegal shift operator"); 5918 StringRef ShiftName = Tok.getString(); 5919 if (ShiftName == "lsl" || ShiftName == "LSL" || 5920 ShiftName == "asl" || ShiftName == "ASL") 5921 St = ARM_AM::lsl; 5922 else if (ShiftName == "lsr" || ShiftName == "LSR") 5923 St = ARM_AM::lsr; 5924 else if (ShiftName == "asr" || ShiftName == "ASR") 5925 St = ARM_AM::asr; 5926 else if (ShiftName == "ror" || ShiftName == "ROR") 5927 St = ARM_AM::ror; 5928 else if (ShiftName == "rrx" || ShiftName == "RRX") 5929 St = ARM_AM::rrx; 5930 else if (ShiftName == "uxtw" || ShiftName == "UXTW") 5931 St = ARM_AM::uxtw; 5932 else 5933 return Error(Loc, "illegal shift operator"); 5934 Parser.Lex(); // Eat shift type token. 5935 5936 // rrx stands alone. 5937 Amount = 0; 5938 if (St != ARM_AM::rrx) { 5939 Loc = Parser.getTok().getLoc(); 5940 // A '#' and a shift amount. 5941 const AsmToken &HashTok = Parser.getTok(); 5942 if (HashTok.isNot(AsmToken::Hash) && 5943 HashTok.isNot(AsmToken::Dollar)) 5944 return Error(HashTok.getLoc(), "'#' expected"); 5945 Parser.Lex(); // Eat hash token. 5946 5947 const MCExpr *Expr; 5948 if (getParser().parseExpression(Expr)) 5949 return true; 5950 // Range check the immediate. 5951 // lsl, ror: 0 <= imm <= 31 5952 // lsr, asr: 0 <= imm <= 32 5953 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5954 if (!CE) 5955 return Error(Loc, "shift amount must be an immediate"); 5956 int64_t Imm = CE->getValue(); 5957 if (Imm < 0 || 5958 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5959 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5960 return Error(Loc, "immediate shift value out of range"); 5961 // If <ShiftTy> #0, turn it into a no_shift. 5962 if (Imm == 0) 5963 St = ARM_AM::lsl; 5964 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5965 if (Imm == 32) 5966 Imm = 0; 5967 Amount = Imm; 5968 } 5969 5970 return false; 5971 } 5972 5973 /// parseFPImm - A floating point immediate expression operand. 5974 OperandMatchResultTy 5975 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5976 MCAsmParser &Parser = getParser(); 5977 // Anything that can accept a floating point constant as an operand 5978 // needs to go through here, as the regular parseExpression is 5979 // integer only. 5980 // 5981 // This routine still creates a generic Immediate operand, containing 5982 // a bitcast of the 64-bit floating point value. The various operands 5983 // that accept floats can check whether the value is valid for them 5984 // via the standard is*() predicates. 5985 5986 SMLoc S = Parser.getTok().getLoc(); 5987 5988 if (Parser.getTok().isNot(AsmToken::Hash) && 5989 Parser.getTok().isNot(AsmToken::Dollar)) 5990 return MatchOperand_NoMatch; 5991 5992 // Disambiguate the VMOV forms that can accept an FP immediate. 5993 // vmov.f32 <sreg>, #imm 5994 // vmov.f64 <dreg>, #imm 5995 // vmov.f32 <dreg>, #imm @ vector f32x2 5996 // vmov.f32 <qreg>, #imm @ vector f32x4 5997 // 5998 // There are also the NEON VMOV instructions which expect an 5999 // integer constant. Make sure we don't try to parse an FPImm 6000 // for these: 6001 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 6002 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 6003 bool isVmovf = TyOp.isToken() && 6004 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 6005 TyOp.getToken() == ".f16"); 6006 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 6007 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 6008 Mnemonic.getToken() == "fconsts"); 6009 if (!(isVmovf || isFconst)) 6010 return MatchOperand_NoMatch; 6011 6012 Parser.Lex(); // Eat '#' or '$'. 6013 6014 // Handle negation, as that still comes through as a separate token. 6015 bool isNegative = false; 6016 if (Parser.getTok().is(AsmToken::Minus)) { 6017 isNegative = true; 6018 Parser.Lex(); 6019 } 6020 const AsmToken &Tok = Parser.getTok(); 6021 SMLoc Loc = Tok.getLoc(); 6022 if (Tok.is(AsmToken::Real) && isVmovf) { 6023 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 6024 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 6025 // If we had a '-' in front, toggle the sign bit. 6026 IntVal ^= (uint64_t)isNegative << 31; 6027 Parser.Lex(); // Eat the token. 6028 Operands.push_back(ARMOperand::CreateImm( 6029 MCConstantExpr::create(IntVal, getContext()), 6030 S, Parser.getTok().getLoc())); 6031 return MatchOperand_Success; 6032 } 6033 // Also handle plain integers. Instructions which allow floating point 6034 // immediates also allow a raw encoded 8-bit value. 6035 if (Tok.is(AsmToken::Integer) && isFconst) { 6036 int64_t Val = Tok.getIntVal(); 6037 Parser.Lex(); // Eat the token. 6038 if (Val > 255 || Val < 0) { 6039 Error(Loc, "encoded floating point value out of range"); 6040 return MatchOperand_ParseFail; 6041 } 6042 float RealVal = ARM_AM::getFPImmFloat(Val); 6043 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 6044 6045 Operands.push_back(ARMOperand::CreateImm( 6046 MCConstantExpr::create(Val, getContext()), S, 6047 Parser.getTok().getLoc())); 6048 return MatchOperand_Success; 6049 } 6050 6051 Error(Loc, "invalid floating point immediate"); 6052 return MatchOperand_ParseFail; 6053 } 6054 6055 /// Parse a arm instruction operand. For now this parses the operand regardless 6056 /// of the mnemonic. 6057 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 6058 MCAsmParser &Parser = getParser(); 6059 SMLoc S, E; 6060 6061 // Check if the current operand has a custom associated parser, if so, try to 6062 // custom parse the operand, or fallback to the general approach. 6063 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 6064 if (ResTy == MatchOperand_Success) 6065 return false; 6066 // If there wasn't a custom match, try the generic matcher below. Otherwise, 6067 // there was a match, but an error occurred, in which case, just return that 6068 // the operand parsing failed. 6069 if (ResTy == MatchOperand_ParseFail) 6070 return true; 6071 6072 switch (getLexer().getKind()) { 6073 default: 6074 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 6075 return true; 6076 case AsmToken::Identifier: { 6077 // If we've seen a branch mnemonic, the next operand must be a label. This 6078 // is true even if the label is a register name. So "br r1" means branch to 6079 // label "r1". 6080 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 6081 if (!ExpectLabel) { 6082 if (!tryParseRegisterWithWriteBack(Operands)) 6083 return false; 6084 int Res = tryParseShiftRegister(Operands); 6085 if (Res == 0) // success 6086 return false; 6087 else if (Res == -1) // irrecoverable error 6088 return true; 6089 // If this is VMRS, check for the apsr_nzcv operand. 6090 if (Mnemonic == "vmrs" && 6091 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 6092 S = Parser.getTok().getLoc(); 6093 Parser.Lex(); 6094 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 6095 return false; 6096 } 6097 } 6098 6099 // Fall though for the Identifier case that is not a register or a 6100 // special name. 6101 LLVM_FALLTHROUGH; 6102 } 6103 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 6104 case AsmToken::Integer: // things like 1f and 2b as a branch targets 6105 case AsmToken::String: // quoted label names. 6106 case AsmToken::Dot: { // . as a branch target 6107 // This was not a register so parse other operands that start with an 6108 // identifier (like labels) as expressions and create them as immediates. 6109 const MCExpr *IdVal; 6110 S = Parser.getTok().getLoc(); 6111 if (getParser().parseExpression(IdVal)) 6112 return true; 6113 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6114 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 6115 return false; 6116 } 6117 case AsmToken::LBrac: 6118 return parseMemory(Operands); 6119 case AsmToken::LCurly: 6120 return parseRegisterList(Operands, !Mnemonic.startswith("clr")); 6121 case AsmToken::Dollar: 6122 case AsmToken::Hash: { 6123 // #42 -> immediate 6124 // $ 42 -> immediate 6125 // $foo -> symbol name 6126 // $42 -> symbol name 6127 S = Parser.getTok().getLoc(); 6128 6129 // Favor the interpretation of $-prefixed operands as symbol names. 6130 // Cases where immediates are explicitly expected are handled by their 6131 // specific ParseMethod implementations. 6132 auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false); 6133 bool ExpectIdentifier = Parser.getTok().is(AsmToken::Dollar) && 6134 (AdjacentToken.is(AsmToken::Identifier) || 6135 AdjacentToken.is(AsmToken::Integer)); 6136 if (!ExpectIdentifier) { 6137 // Token is not part of identifier. Drop leading $ or # before parsing 6138 // expression. 6139 Parser.Lex(); 6140 } 6141 6142 if (Parser.getTok().isNot(AsmToken::Colon)) { 6143 bool IsNegative = Parser.getTok().is(AsmToken::Minus); 6144 const MCExpr *ImmVal; 6145 if (getParser().parseExpression(ImmVal)) 6146 return true; 6147 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 6148 if (CE) { 6149 int32_t Val = CE->getValue(); 6150 if (IsNegative && Val == 0) 6151 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 6152 getContext()); 6153 } 6154 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6155 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 6156 6157 // There can be a trailing '!' on operands that we want as a separate 6158 // '!' Token operand. Handle that here. For example, the compatibility 6159 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 6160 if (Parser.getTok().is(AsmToken::Exclaim)) { 6161 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 6162 Parser.getTok().getLoc())); 6163 Parser.Lex(); // Eat exclaim token 6164 } 6165 return false; 6166 } 6167 // w/ a ':' after the '#', it's just like a plain ':'. 6168 LLVM_FALLTHROUGH; 6169 } 6170 case AsmToken::Colon: { 6171 S = Parser.getTok().getLoc(); 6172 // ":lower16:" and ":upper16:" expression prefixes 6173 // FIXME: Check it's an expression prefix, 6174 // e.g. (FOO - :lower16:BAR) isn't legal. 6175 ARMMCExpr::VariantKind RefKind; 6176 if (parsePrefix(RefKind)) 6177 return true; 6178 6179 const MCExpr *SubExprVal; 6180 if (getParser().parseExpression(SubExprVal)) 6181 return true; 6182 6183 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 6184 getContext()); 6185 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6186 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 6187 return false; 6188 } 6189 case AsmToken::Equal: { 6190 S = Parser.getTok().getLoc(); 6191 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 6192 return Error(S, "unexpected token in operand"); 6193 Parser.Lex(); // Eat '=' 6194 const MCExpr *SubExprVal; 6195 if (getParser().parseExpression(SubExprVal)) 6196 return true; 6197 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6198 6199 // execute-only: we assume that assembly programmers know what they are 6200 // doing and allow literal pool creation here 6201 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 6202 return false; 6203 } 6204 } 6205 } 6206 6207 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 6208 // :lower16: and :upper16:. 6209 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 6210 MCAsmParser &Parser = getParser(); 6211 RefKind = ARMMCExpr::VK_ARM_None; 6212 6213 // consume an optional '#' (GNU compatibility) 6214 if (getLexer().is(AsmToken::Hash)) 6215 Parser.Lex(); 6216 6217 // :lower16: and :upper16: modifiers 6218 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 6219 Parser.Lex(); // Eat ':' 6220 6221 if (getLexer().isNot(AsmToken::Identifier)) { 6222 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 6223 return true; 6224 } 6225 6226 enum { 6227 COFF = (1 << MCObjectFileInfo::IsCOFF), 6228 ELF = (1 << MCObjectFileInfo::IsELF), 6229 MACHO = (1 << MCObjectFileInfo::IsMachO), 6230 WASM = (1 << MCObjectFileInfo::IsWasm), 6231 }; 6232 static const struct PrefixEntry { 6233 const char *Spelling; 6234 ARMMCExpr::VariantKind VariantKind; 6235 uint8_t SupportedFormats; 6236 } PrefixEntries[] = { 6237 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 6238 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 6239 }; 6240 6241 StringRef IDVal = Parser.getTok().getIdentifier(); 6242 6243 const auto &Prefix = 6244 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 6245 [&IDVal](const PrefixEntry &PE) { 6246 return PE.Spelling == IDVal; 6247 }); 6248 if (Prefix == std::end(PrefixEntries)) { 6249 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 6250 return true; 6251 } 6252 6253 uint8_t CurrentFormat; 6254 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 6255 case MCObjectFileInfo::IsMachO: 6256 CurrentFormat = MACHO; 6257 break; 6258 case MCObjectFileInfo::IsELF: 6259 CurrentFormat = ELF; 6260 break; 6261 case MCObjectFileInfo::IsCOFF: 6262 CurrentFormat = COFF; 6263 break; 6264 case MCObjectFileInfo::IsWasm: 6265 CurrentFormat = WASM; 6266 break; 6267 case MCObjectFileInfo::IsXCOFF: 6268 llvm_unreachable("unexpected object format"); 6269 break; 6270 } 6271 6272 if (~Prefix->SupportedFormats & CurrentFormat) { 6273 Error(Parser.getTok().getLoc(), 6274 "cannot represent relocation in the current file format"); 6275 return true; 6276 } 6277 6278 RefKind = Prefix->VariantKind; 6279 Parser.Lex(); 6280 6281 if (getLexer().isNot(AsmToken::Colon)) { 6282 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 6283 return true; 6284 } 6285 Parser.Lex(); // Eat the last ':' 6286 6287 return false; 6288 } 6289 6290 /// Given a mnemonic, split out possible predication code and carry 6291 /// setting letters to form a canonical mnemonic and flags. 6292 // 6293 // FIXME: Would be nice to autogen this. 6294 // FIXME: This is a bit of a maze of special cases. 6295 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 6296 StringRef ExtraToken, 6297 unsigned &PredicationCode, 6298 unsigned &VPTPredicationCode, 6299 bool &CarrySetting, 6300 unsigned &ProcessorIMod, 6301 StringRef &ITMask) { 6302 PredicationCode = ARMCC::AL; 6303 VPTPredicationCode = ARMVCC::None; 6304 CarrySetting = false; 6305 ProcessorIMod = 0; 6306 6307 // Ignore some mnemonics we know aren't predicated forms. 6308 // 6309 // FIXME: Would be nice to autogen this. 6310 if ((Mnemonic == "movs" && isThumb()) || 6311 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 6312 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 6313 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 6314 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 6315 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 6316 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 6317 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 6318 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 6319 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 6320 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 6321 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 6322 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 6323 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 6324 Mnemonic == "bxns" || Mnemonic == "blxns" || 6325 Mnemonic == "vdot" || Mnemonic == "vmmla" || 6326 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6327 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6328 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6329 Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" || 6330 Mnemonic == "csel" || Mnemonic == "csinc" || 6331 Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" || 6332 Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" || 6333 Mnemonic == "csetm") 6334 return Mnemonic; 6335 6336 // First, split out any predication code. Ignore mnemonics we know aren't 6337 // predicated but do have a carry-set and so weren't caught above. 6338 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 6339 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 6340 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 6341 Mnemonic != "sbcs" && Mnemonic != "rscs" && 6342 !(hasMVE() && 6343 (Mnemonic == "vmine" || 6344 Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" || 6345 Mnemonic == "vrshle" || Mnemonic == "vrshlt" || 6346 Mnemonic == "vmvne" || Mnemonic == "vorne" || 6347 Mnemonic == "vnege" || Mnemonic == "vnegt" || 6348 Mnemonic == "vmule" || Mnemonic == "vmult" || 6349 Mnemonic == "vrintne" || 6350 Mnemonic == "vcmult" || Mnemonic == "vcmule" || 6351 Mnemonic == "vpsele" || Mnemonic == "vpselt" || 6352 Mnemonic.startswith("vq")))) { 6353 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 6354 if (CC != ~0U) { 6355 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 6356 PredicationCode = CC; 6357 } 6358 } 6359 6360 // Next, determine if we have a carry setting bit. We explicitly ignore all 6361 // the instructions we know end in 's'. 6362 if (Mnemonic.endswith("s") && 6363 !(Mnemonic == "cps" || Mnemonic == "mls" || 6364 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 6365 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 6366 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 6367 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 6368 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 6369 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 6370 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 6371 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 6372 Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" || 6373 Mnemonic == "vmlas" || 6374 (Mnemonic == "movs" && isThumb()))) { 6375 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 6376 CarrySetting = true; 6377 } 6378 6379 // The "cps" instruction can have a interrupt mode operand which is glued into 6380 // the mnemonic. Check if this is the case, split it and parse the imod op 6381 if (Mnemonic.startswith("cps")) { 6382 // Split out any imod code. 6383 unsigned IMod = 6384 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 6385 .Case("ie", ARM_PROC::IE) 6386 .Case("id", ARM_PROC::ID) 6387 .Default(~0U); 6388 if (IMod != ~0U) { 6389 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 6390 ProcessorIMod = IMod; 6391 } 6392 } 6393 6394 if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && 6395 Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && 6396 Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && 6397 Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && 6398 Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && 6399 Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" && 6400 Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") { 6401 unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1)); 6402 if (CC != ~0U) { 6403 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1); 6404 VPTPredicationCode = CC; 6405 } 6406 return Mnemonic; 6407 } 6408 6409 // The "it" instruction has the condition mask on the end of the mnemonic. 6410 if (Mnemonic.startswith("it")) { 6411 ITMask = Mnemonic.slice(2, Mnemonic.size()); 6412 Mnemonic = Mnemonic.slice(0, 2); 6413 } 6414 6415 if (Mnemonic.startswith("vpst")) { 6416 ITMask = Mnemonic.slice(4, Mnemonic.size()); 6417 Mnemonic = Mnemonic.slice(0, 4); 6418 } 6419 else if (Mnemonic.startswith("vpt")) { 6420 ITMask = Mnemonic.slice(3, Mnemonic.size()); 6421 Mnemonic = Mnemonic.slice(0, 3); 6422 } 6423 6424 return Mnemonic; 6425 } 6426 6427 /// Given a canonical mnemonic, determine if the instruction ever allows 6428 /// inclusion of carry set or predication code operands. 6429 // 6430 // FIXME: It would be nice to autogen this. 6431 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, 6432 StringRef ExtraToken, 6433 StringRef FullInst, 6434 bool &CanAcceptCarrySet, 6435 bool &CanAcceptPredicationCode, 6436 bool &CanAcceptVPTPredicationCode) { 6437 CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); 6438 6439 CanAcceptCarrySet = 6440 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6441 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 6442 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 6443 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 6444 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 6445 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 6446 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 6447 (!isThumb() && 6448 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 6449 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 6450 6451 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 6452 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 6453 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 6454 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 6455 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 6456 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 6457 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 6458 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 6459 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 6460 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 6461 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 6462 Mnemonic == "vmovx" || Mnemonic == "vins" || 6463 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6464 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6465 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6466 Mnemonic == "vfmat" || Mnemonic == "vfmab" || 6467 Mnemonic == "vdot" || Mnemonic == "vmmla" || 6468 Mnemonic == "sb" || Mnemonic == "ssbb" || 6469 Mnemonic == "pssbb" || 6470 Mnemonic == "bfcsel" || Mnemonic == "wls" || 6471 Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" || 6472 Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || 6473 Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || 6474 Mnemonic == "cset" || Mnemonic == "csetm" || 6475 Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") || 6476 (hasCDE() && MS.isCDEInstr(Mnemonic) && 6477 !MS.isITPredicableCDEInstr(Mnemonic)) || 6478 (hasMVE() && 6479 (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") || 6480 Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") || 6481 Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") || 6482 Mnemonic.startswith("letp")))) { 6483 // These mnemonics are never predicable 6484 CanAcceptPredicationCode = false; 6485 } else if (!isThumb()) { 6486 // Some instructions are only predicable in Thumb mode 6487 CanAcceptPredicationCode = 6488 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 6489 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 6490 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 6491 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 6492 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 6493 Mnemonic != "stc2" && Mnemonic != "stc2l" && 6494 Mnemonic != "tsb" && 6495 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 6496 } else if (isThumbOne()) { 6497 if (hasV6MOps()) 6498 CanAcceptPredicationCode = Mnemonic != "movs"; 6499 else 6500 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 6501 } else 6502 CanAcceptPredicationCode = true; 6503 } 6504 6505 // Some Thumb instructions have two operand forms that are not 6506 // available as three operand, convert to two operand form if possible. 6507 // 6508 // FIXME: We would really like to be able to tablegen'erate this. 6509 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 6510 bool CarrySetting, 6511 OperandVector &Operands) { 6512 if (Operands.size() != 6) 6513 return; 6514 6515 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6516 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 6517 if (!Op3.isReg() || !Op4.isReg()) 6518 return; 6519 6520 auto Op3Reg = Op3.getReg(); 6521 auto Op4Reg = Op4.getReg(); 6522 6523 // For most Thumb2 cases we just generate the 3 operand form and reduce 6524 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 6525 // won't accept SP or PC so we do the transformation here taking care 6526 // with immediate range in the 'add sp, sp #imm' case. 6527 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 6528 if (isThumbTwo()) { 6529 if (Mnemonic != "add") 6530 return; 6531 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 6532 (Op5.isReg() && Op5.getReg() == ARM::PC); 6533 if (!TryTransform) { 6534 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 6535 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 6536 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 6537 Op5.isImm() && !Op5.isImm0_508s4()); 6538 } 6539 if (!TryTransform) 6540 return; 6541 } else if (!isThumbOne()) 6542 return; 6543 6544 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 6545 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6546 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 6547 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 6548 return; 6549 6550 // If first 2 operands of a 3 operand instruction are the same 6551 // then transform to 2 operand version of the same instruction 6552 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 6553 bool Transform = Op3Reg == Op4Reg; 6554 6555 // For communtative operations, we might be able to transform if we swap 6556 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 6557 // as tADDrsp. 6558 const ARMOperand *LastOp = &Op5; 6559 bool Swap = false; 6560 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 6561 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 6562 Mnemonic == "and" || Mnemonic == "eor" || 6563 Mnemonic == "adc" || Mnemonic == "orr")) { 6564 Swap = true; 6565 LastOp = &Op4; 6566 Transform = true; 6567 } 6568 6569 // If both registers are the same then remove one of them from 6570 // the operand list, with certain exceptions. 6571 if (Transform) { 6572 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 6573 // 2 operand forms don't exist. 6574 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 6575 LastOp->isReg()) 6576 Transform = false; 6577 6578 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 6579 // 3-bits because the ARMARM says not to. 6580 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 6581 Transform = false; 6582 } 6583 6584 if (Transform) { 6585 if (Swap) 6586 std::swap(Op4, Op5); 6587 Operands.erase(Operands.begin() + 3); 6588 } 6589 } 6590 6591 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 6592 OperandVector &Operands) { 6593 // FIXME: This is all horribly hacky. We really need a better way to deal 6594 // with optional operands like this in the matcher table. 6595 6596 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 6597 // another does not. Specifically, the MOVW instruction does not. So we 6598 // special case it here and remove the defaulted (non-setting) cc_out 6599 // operand if that's the instruction we're trying to match. 6600 // 6601 // We do this as post-processing of the explicit operands rather than just 6602 // conditionally adding the cc_out in the first place because we need 6603 // to check the type of the parsed immediate operand. 6604 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 6605 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 6606 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 6607 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6608 return true; 6609 6610 // Register-register 'add' for thumb does not have a cc_out operand 6611 // when there are only two register operands. 6612 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 6613 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6614 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6615 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6616 return true; 6617 // Register-register 'add' for thumb does not have a cc_out operand 6618 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 6619 // have to check the immediate range here since Thumb2 has a variant 6620 // that can handle a different range and has a cc_out operand. 6621 if (((isThumb() && Mnemonic == "add") || 6622 (isThumbTwo() && Mnemonic == "sub")) && 6623 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6624 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6625 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 6626 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6627 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 6628 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 6629 return true; 6630 // For Thumb2, add/sub immediate does not have a cc_out operand for the 6631 // imm0_4095 variant. That's the least-preferred variant when 6632 // selecting via the generic "add" mnemonic, so to know that we 6633 // should remove the cc_out operand, we have to explicitly check that 6634 // it's not one of the other variants. Ugh. 6635 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6636 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6637 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6638 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6639 // Nest conditions rather than one big 'if' statement for readability. 6640 // 6641 // If both registers are low, we're in an IT block, and the immediate is 6642 // in range, we should use encoding T1 instead, which has a cc_out. 6643 if (inITBlock() && 6644 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 6645 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 6646 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 6647 return false; 6648 // Check against T3. If the second register is the PC, this is an 6649 // alternate form of ADR, which uses encoding T4, so check for that too. 6650 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 6651 (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() || 6652 static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg())) 6653 return false; 6654 6655 // Otherwise, we use encoding T4, which does not have a cc_out 6656 // operand. 6657 return true; 6658 } 6659 6660 // The thumb2 multiply instruction doesn't have a CCOut register, so 6661 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 6662 // use the 16-bit encoding or not. 6663 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 6664 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6665 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6666 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6667 static_cast<ARMOperand &>(*Operands[5]).isReg() && 6668 // If the registers aren't low regs, the destination reg isn't the 6669 // same as one of the source regs, or the cc_out operand is zero 6670 // outside of an IT block, we have to use the 32-bit encoding, so 6671 // remove the cc_out operand. 6672 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6673 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6674 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 6675 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 6676 static_cast<ARMOperand &>(*Operands[5]).getReg() && 6677 static_cast<ARMOperand &>(*Operands[3]).getReg() != 6678 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 6679 return true; 6680 6681 // Also check the 'mul' syntax variant that doesn't specify an explicit 6682 // destination register. 6683 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 6684 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6685 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6686 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6687 // If the registers aren't low regs or the cc_out operand is zero 6688 // outside of an IT block, we have to use the 32-bit encoding, so 6689 // remove the cc_out operand. 6690 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6691 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6692 !inITBlock())) 6693 return true; 6694 6695 // Register-register 'add/sub' for thumb does not have a cc_out operand 6696 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 6697 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 6698 // right, this will result in better diagnostics (which operand is off) 6699 // anyway. 6700 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 6701 (Operands.size() == 5 || Operands.size() == 6) && 6702 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6703 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 6704 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6705 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 6706 (Operands.size() == 6 && 6707 static_cast<ARMOperand &>(*Operands[5]).isImm()))) { 6708 // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out 6709 return (!(isThumbTwo() && 6710 (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() || 6711 static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg()))); 6712 } 6713 // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case 6714 // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4) 6715 // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095 6716 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6717 (Operands.size() == 5) && 6718 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6719 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP && 6720 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC && 6721 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6722 static_cast<ARMOperand &>(*Operands[4]).isImm()) { 6723 const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]); 6724 if (IMM.isT2SOImm() || IMM.isT2SOImmNeg()) 6725 return false; // add.w / sub.w 6726 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) { 6727 const int64_t Value = CE->getValue(); 6728 // Thumb1 imm8 sub / add 6729 if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) && 6730 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg())) 6731 return false; 6732 return true; // Thumb2 T4 addw / subw 6733 } 6734 } 6735 return false; 6736 } 6737 6738 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 6739 OperandVector &Operands) { 6740 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 6741 unsigned RegIdx = 3; 6742 if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) || 6743 Mnemonic == "vrintr") && 6744 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 6745 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 6746 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6747 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 6748 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 6749 RegIdx = 4; 6750 6751 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 6752 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6753 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 6754 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6755 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 6756 return true; 6757 } 6758 return false; 6759 } 6760 6761 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic, 6762 OperandVector &Operands) { 6763 if (!hasMVE() || Operands.size() < 3) 6764 return true; 6765 6766 if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") || 6767 Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4")) 6768 return true; 6769 6770 if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot")) 6771 return false; 6772 6773 if (Mnemonic.startswith("vmov") && 6774 !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") || 6775 Mnemonic.startswith("vmovx"))) { 6776 for (auto &Operand : Operands) { 6777 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6778 ((*Operand).isReg() && 6779 (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 6780 (*Operand).getReg()) || 6781 ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6782 (*Operand).getReg())))) { 6783 return true; 6784 } 6785 } 6786 return false; 6787 } else { 6788 for (auto &Operand : Operands) { 6789 // We check the larger class QPR instead of just the legal class 6790 // MQPR, to more accurately report errors when using Q registers 6791 // outside of the allowed range. 6792 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6793 (Operand->isReg() && 6794 (ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6795 Operand->getReg())))) 6796 return false; 6797 } 6798 return true; 6799 } 6800 } 6801 6802 static bool isDataTypeToken(StringRef Tok) { 6803 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 6804 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 6805 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6806 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6807 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6808 Tok == ".f" || Tok == ".d"; 6809 } 6810 6811 // FIXME: This bit should probably be handled via an explicit match class 6812 // in the .td files that matches the suffix instead of having it be 6813 // a literal string token the way it is now. 6814 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6815 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6816 } 6817 6818 static void applyMnemonicAliases(StringRef &Mnemonic, 6819 const FeatureBitset &Features, 6820 unsigned VariantID); 6821 6822 // The GNU assembler has aliases of ldrd and strd with the second register 6823 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6824 // 6825 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6826 // the assembly parser could then generate confusing diagnostics refering to 6827 // it. If we do find anything that prevents us from doing the transformation we 6828 // bail out, and let the assembly parser report an error on the instruction as 6829 // it is written. 6830 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6831 OperandVector &Operands) { 6832 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6833 return; 6834 if (Operands.size() < 4) 6835 return; 6836 6837 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6838 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6839 6840 if (!Op2.isReg()) 6841 return; 6842 if (!Op3.isGPRMem()) 6843 return; 6844 6845 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6846 if (!GPR.contains(Op2.getReg())) 6847 return; 6848 6849 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6850 if (!isThumb() && (RtEncoding & 1)) { 6851 // In ARM mode, the registers must be from an aligned pair, this 6852 // restriction does not apply in Thumb mode. 6853 return; 6854 } 6855 if (Op2.getReg() == ARM::PC) 6856 return; 6857 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6858 if (!PairedReg || PairedReg == ARM::PC || 6859 (PairedReg == ARM::SP && !hasV8Ops())) 6860 return; 6861 6862 Operands.insert( 6863 Operands.begin() + 3, 6864 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6865 } 6866 6867 // Dual-register instruction have the following syntax: 6868 // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm 6869 // This function tries to remove <Rdest+1> and replace <Rdest> with a pair 6870 // operand. If the conversion fails an error is diagnosed, and the function 6871 // returns true. 6872 bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic, 6873 OperandVector &Operands) { 6874 assert(MS.isCDEDualRegInstr(Mnemonic)); 6875 bool isPredicable = 6876 Mnemonic == "cx1da" || Mnemonic == "cx2da" || Mnemonic == "cx3da"; 6877 size_t NumPredOps = isPredicable ? 1 : 0; 6878 6879 if (Operands.size() <= 3 + NumPredOps) 6880 return false; 6881 6882 StringRef Op2Diag( 6883 "operand must be an even-numbered register in the range [r0, r10]"); 6884 6885 const MCParsedAsmOperand &Op2 = *Operands[2 + NumPredOps]; 6886 if (!Op2.isReg()) 6887 return Error(Op2.getStartLoc(), Op2Diag); 6888 6889 unsigned RNext; 6890 unsigned RPair; 6891 switch (Op2.getReg()) { 6892 default: 6893 return Error(Op2.getStartLoc(), Op2Diag); 6894 case ARM::R0: 6895 RNext = ARM::R1; 6896 RPair = ARM::R0_R1; 6897 break; 6898 case ARM::R2: 6899 RNext = ARM::R3; 6900 RPair = ARM::R2_R3; 6901 break; 6902 case ARM::R4: 6903 RNext = ARM::R5; 6904 RPair = ARM::R4_R5; 6905 break; 6906 case ARM::R6: 6907 RNext = ARM::R7; 6908 RPair = ARM::R6_R7; 6909 break; 6910 case ARM::R8: 6911 RNext = ARM::R9; 6912 RPair = ARM::R8_R9; 6913 break; 6914 case ARM::R10: 6915 RNext = ARM::R11; 6916 RPair = ARM::R10_R11; 6917 break; 6918 } 6919 6920 const MCParsedAsmOperand &Op3 = *Operands[3 + NumPredOps]; 6921 if (!Op3.isReg() || Op3.getReg() != RNext) 6922 return Error(Op3.getStartLoc(), "operand must be a consecutive register"); 6923 6924 Operands.erase(Operands.begin() + 3 + NumPredOps); 6925 Operands[2 + NumPredOps] = 6926 ARMOperand::CreateReg(RPair, Op2.getStartLoc(), Op2.getEndLoc()); 6927 return false; 6928 } 6929 6930 /// Parse an arm instruction mnemonic followed by its operands. 6931 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6932 SMLoc NameLoc, OperandVector &Operands) { 6933 MCAsmParser &Parser = getParser(); 6934 6935 // Apply mnemonic aliases before doing anything else, as the destination 6936 // mnemonic may include suffices and we want to handle them normally. 6937 // The generic tblgen'erated code does this later, at the start of 6938 // MatchInstructionImpl(), but that's too late for aliases that include 6939 // any sort of suffix. 6940 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 6941 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6942 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6943 6944 // First check for the ARM-specific .req directive. 6945 if (Parser.getTok().is(AsmToken::Identifier) && 6946 Parser.getTok().getIdentifier().lower() == ".req") { 6947 parseDirectiveReq(Name, NameLoc); 6948 // We always return 'error' for this, as we're done with this 6949 // statement and don't need to match the 'instruction." 6950 return true; 6951 } 6952 6953 // Create the leading tokens for the mnemonic, split by '.' characters. 6954 size_t Start = 0, Next = Name.find('.'); 6955 StringRef Mnemonic = Name.slice(Start, Next); 6956 StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1)); 6957 6958 // Split out the predication code and carry setting flag from the mnemonic. 6959 unsigned PredicationCode; 6960 unsigned VPTPredicationCode; 6961 unsigned ProcessorIMod; 6962 bool CarrySetting; 6963 StringRef ITMask; 6964 Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, 6965 CarrySetting, ProcessorIMod, ITMask); 6966 6967 // In Thumb1, only the branch (B) instruction can be predicated. 6968 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6969 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6970 } 6971 6972 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6973 6974 // Handle the mask for IT and VPT instructions. In ARMOperand and 6975 // MCOperand, this is stored in a format independent of the 6976 // condition code: the lowest set bit indicates the end of the 6977 // encoding, and above that, a 1 bit indicates 'else', and an 0 6978 // indicates 'then'. E.g. 6979 // IT -> 1000 6980 // ITx -> x100 (ITT -> 0100, ITE -> 1100) 6981 // ITxy -> xy10 (e.g. ITET -> 1010) 6982 // ITxyz -> xyz1 (e.g. ITEET -> 1101) 6983 if (Mnemonic == "it" || Mnemonic.startswith("vpt") || 6984 Mnemonic.startswith("vpst")) { 6985 SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) : 6986 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) : 6987 SMLoc::getFromPointer(NameLoc.getPointer() + 4); 6988 if (ITMask.size() > 3) { 6989 if (Mnemonic == "it") 6990 return Error(Loc, "too many conditions on IT instruction"); 6991 return Error(Loc, "too many conditions on VPT instruction"); 6992 } 6993 unsigned Mask = 8; 6994 for (unsigned i = ITMask.size(); i != 0; --i) { 6995 char pos = ITMask[i - 1]; 6996 if (pos != 't' && pos != 'e') { 6997 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6998 } 6999 Mask >>= 1; 7000 if (ITMask[i - 1] == 'e') 7001 Mask |= 8; 7002 } 7003 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 7004 } 7005 7006 // FIXME: This is all a pretty gross hack. We should automatically handle 7007 // optional operands like this via tblgen. 7008 7009 // Next, add the CCOut and ConditionCode operands, if needed. 7010 // 7011 // For mnemonics which can ever incorporate a carry setting bit or predication 7012 // code, our matching model involves us always generating CCOut and 7013 // ConditionCode operands to match the mnemonic "as written" and then we let 7014 // the matcher deal with finding the right instruction or generating an 7015 // appropriate error. 7016 bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; 7017 getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet, 7018 CanAcceptPredicationCode, CanAcceptVPTPredicationCode); 7019 7020 // If we had a carry-set on an instruction that can't do that, issue an 7021 // error. 7022 if (!CanAcceptCarrySet && CarrySetting) { 7023 return Error(NameLoc, "instruction '" + Mnemonic + 7024 "' can not set flags, but 's' suffix specified"); 7025 } 7026 // If we had a predication code on an instruction that can't do that, issue an 7027 // error. 7028 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 7029 return Error(NameLoc, "instruction '" + Mnemonic + 7030 "' is not predicable, but condition code specified"); 7031 } 7032 7033 // If we had a VPT predication code on an instruction that can't do that, issue an 7034 // error. 7035 if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { 7036 return Error(NameLoc, "instruction '" + Mnemonic + 7037 "' is not VPT predicable, but VPT code T/E is specified"); 7038 } 7039 7040 // Add the carry setting operand, if necessary. 7041 if (CanAcceptCarrySet) { 7042 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 7043 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 7044 Loc)); 7045 } 7046 7047 // Add the predication code operand, if necessary. 7048 if (CanAcceptPredicationCode) { 7049 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 7050 CarrySetting); 7051 Operands.push_back(ARMOperand::CreateCondCode( 7052 ARMCC::CondCodes(PredicationCode), Loc)); 7053 } 7054 7055 // Add the VPT predication code operand, if necessary. 7056 // FIXME: We don't add them for the instructions filtered below as these can 7057 // have custom operands which need special parsing. This parsing requires 7058 // the operand to be in the same place in the OperandVector as their 7059 // definition in tblgen. Since these instructions may also have the 7060 // scalar predication operand we do not add the vector one and leave until 7061 // now to fix it up. 7062 if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" && 7063 !Mnemonic.startswith("vcmp") && 7064 !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" && 7065 Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) { 7066 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 7067 CarrySetting); 7068 Operands.push_back(ARMOperand::CreateVPTPred( 7069 ARMVCC::VPTCodes(VPTPredicationCode), Loc)); 7070 } 7071 7072 // Add the processor imod operand, if necessary. 7073 if (ProcessorIMod) { 7074 Operands.push_back(ARMOperand::CreateImm( 7075 MCConstantExpr::create(ProcessorIMod, getContext()), 7076 NameLoc, NameLoc)); 7077 } else if (Mnemonic == "cps" && isMClass()) { 7078 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 7079 } 7080 7081 // Add the remaining tokens in the mnemonic. 7082 while (Next != StringRef::npos) { 7083 Start = Next; 7084 Next = Name.find('.', Start + 1); 7085 ExtraToken = Name.slice(Start, Next); 7086 7087 // Some NEON instructions have an optional datatype suffix that is 7088 // completely ignored. Check for that. 7089 if (isDataTypeToken(ExtraToken) && 7090 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 7091 continue; 7092 7093 // For for ARM mode generate an error if the .n qualifier is used. 7094 if (ExtraToken == ".n" && !isThumb()) { 7095 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 7096 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 7097 "arm mode"); 7098 } 7099 7100 // The .n qualifier is always discarded as that is what the tables 7101 // and matcher expect. In ARM mode the .w qualifier has no effect, 7102 // so discard it to avoid errors that can be caused by the matcher. 7103 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 7104 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 7105 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 7106 } 7107 } 7108 7109 // Read the remaining operands. 7110 if (getLexer().isNot(AsmToken::EndOfStatement)) { 7111 // Read the first operand. 7112 if (parseOperand(Operands, Mnemonic)) { 7113 return true; 7114 } 7115 7116 while (parseOptionalToken(AsmToken::Comma)) { 7117 // Parse and remember the operand. 7118 if (parseOperand(Operands, Mnemonic)) { 7119 return true; 7120 } 7121 } 7122 } 7123 7124 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 7125 return true; 7126 7127 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 7128 7129 if (hasCDE() && MS.isCDEInstr(Mnemonic)) { 7130 // Dual-register instructions use even-odd register pairs as their 7131 // destination operand, in assembly such pair is spelled as two 7132 // consecutive registers, without any special syntax. ConvertDualRegOperand 7133 // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3. 7134 // It returns true, if an error message has been emitted. If the function 7135 // returns false, the function either succeeded or an error (e.g. missing 7136 // operand) will be diagnosed elsewhere. 7137 if (MS.isCDEDualRegInstr(Mnemonic)) { 7138 bool GotError = CDEConvertDualRegOperand(Mnemonic, Operands); 7139 if (GotError) 7140 return GotError; 7141 } 7142 } 7143 7144 // Some instructions, mostly Thumb, have forms for the same mnemonic that 7145 // do and don't have a cc_out optional-def operand. With some spot-checks 7146 // of the operand list, we can figure out which variant we're trying to 7147 // parse and adjust accordingly before actually matching. We shouldn't ever 7148 // try to remove a cc_out operand that was explicitly set on the 7149 // mnemonic, of course (CarrySetting == true). Reason number #317 the 7150 // table driven matcher doesn't fit well with the ARM instruction set. 7151 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 7152 Operands.erase(Operands.begin() + 1); 7153 7154 // Some instructions have the same mnemonic, but don't always 7155 // have a predicate. Distinguish them here and delete the 7156 // appropriate predicate if needed. This could be either the scalar 7157 // predication code or the vector predication code. 7158 if (PredicationCode == ARMCC::AL && 7159 shouldOmitPredicateOperand(Mnemonic, Operands)) 7160 Operands.erase(Operands.begin() + 1); 7161 7162 7163 if (hasMVE()) { 7164 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) && 7165 Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { 7166 // Very nasty hack to deal with the vector predicated variant of vmovlt 7167 // the scalar predicated vmov with condition 'lt'. We can not tell them 7168 // apart until we have parsed their operands. 7169 Operands.erase(Operands.begin() + 1); 7170 Operands.erase(Operands.begin()); 7171 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7172 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7173 Mnemonic.size() - 1 + CarrySetting); 7174 Operands.insert(Operands.begin(), 7175 ARMOperand::CreateVPTPred(ARMVCC::None, PLoc)); 7176 Operands.insert(Operands.begin(), 7177 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc)); 7178 } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && 7179 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7180 // Another nasty hack to deal with the ambiguity between vcvt with scalar 7181 // predication 'ne' and vcvtn with vector predication 'e'. As above we 7182 // can only distinguish between the two after we have parsed their 7183 // operands. 7184 Operands.erase(Operands.begin() + 1); 7185 Operands.erase(Operands.begin()); 7186 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7187 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7188 Mnemonic.size() - 1 + CarrySetting); 7189 Operands.insert(Operands.begin(), 7190 ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc)); 7191 Operands.insert(Operands.begin(), 7192 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc)); 7193 } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && 7194 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7195 // Another hack, this time to distinguish between scalar predicated vmul 7196 // with 'lt' predication code and the vector instruction vmullt with 7197 // vector predication code "none" 7198 Operands.erase(Operands.begin() + 1); 7199 Operands.erase(Operands.begin()); 7200 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7201 Operands.insert(Operands.begin(), 7202 ARMOperand::CreateToken(StringRef("vmullt"), MLoc)); 7203 } 7204 // For vmov and vcmp, as mentioned earlier, we did not add the vector 7205 // predication code, since these may contain operands that require 7206 // special parsing. So now we have to see if they require vector 7207 // predication and replace the scalar one with the vector predication 7208 // operand if that is the case. 7209 else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") || 7210 (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") && 7211 !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") && 7212 !Mnemonic.startswith("vcvtm"))) { 7213 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7214 // We could not split the vector predicate off vcvt because it might 7215 // have been the scalar vcvtt instruction. Now we know its a vector 7216 // instruction, we still need to check whether its the vector 7217 // predicated vcvt with 'Then' predication or the vector vcvtt. We can 7218 // distinguish the two based on the suffixes, if it is any of 7219 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. 7220 if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) { 7221 auto Sz1 = static_cast<ARMOperand &>(*Operands[2]); 7222 auto Sz2 = static_cast<ARMOperand &>(*Operands[3]); 7223 if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") && 7224 Sz2.isToken() && Sz2.getToken().startswith(".f"))) { 7225 Operands.erase(Operands.begin()); 7226 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7227 VPTPredicationCode = ARMVCC::Then; 7228 7229 Mnemonic = Mnemonic.substr(0, 4); 7230 Operands.insert(Operands.begin(), 7231 ARMOperand::CreateToken(Mnemonic, MLoc)); 7232 } 7233 } 7234 Operands.erase(Operands.begin() + 1); 7235 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7236 Mnemonic.size() + CarrySetting); 7237 Operands.insert(Operands.begin() + 1, 7238 ARMOperand::CreateVPTPred( 7239 ARMVCC::VPTCodes(VPTPredicationCode), PLoc)); 7240 } 7241 } else if (CanAcceptVPTPredicationCode) { 7242 // For all other instructions, make sure only one of the two 7243 // predication operands is left behind, depending on whether we should 7244 // use the vector predication. 7245 if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7246 if (CanAcceptPredicationCode) 7247 Operands.erase(Operands.begin() + 2); 7248 else 7249 Operands.erase(Operands.begin() + 1); 7250 } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) { 7251 Operands.erase(Operands.begin() + 1); 7252 } 7253 } 7254 } 7255 7256 if (VPTPredicationCode != ARMVCC::None) { 7257 bool usedVPTPredicationCode = false; 7258 for (unsigned I = 1; I < Operands.size(); ++I) 7259 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7260 usedVPTPredicationCode = true; 7261 if (!usedVPTPredicationCode) { 7262 // If we have a VPT predication code and we haven't just turned it 7263 // into an operand, then it was a mistake for splitMnemonic to 7264 // separate it from the rest of the mnemonic in the first place, 7265 // and this may lead to wrong disassembly (e.g. scalar floating 7266 // point VCMPE is actually a different instruction from VCMP, so 7267 // we mustn't treat them the same). In that situation, glue it 7268 // back on. 7269 Mnemonic = Name.slice(0, Mnemonic.size() + 1); 7270 Operands.erase(Operands.begin()); 7271 Operands.insert(Operands.begin(), 7272 ARMOperand::CreateToken(Mnemonic, NameLoc)); 7273 } 7274 } 7275 7276 // ARM mode 'blx' need special handling, as the register operand version 7277 // is predicable, but the label operand version is not. So, we can't rely 7278 // on the Mnemonic based checking to correctly figure out when to put 7279 // a k_CondCode operand in the list. If we're trying to match the label 7280 // version, remove the k_CondCode operand here. 7281 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 7282 static_cast<ARMOperand &>(*Operands[2]).isImm()) 7283 Operands.erase(Operands.begin() + 1); 7284 7285 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 7286 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 7287 // a single GPRPair reg operand is used in the .td file to replace the two 7288 // GPRs. However, when parsing from asm, the two GRPs cannot be 7289 // automatically 7290 // expressed as a GPRPair, so we have to manually merge them. 7291 // FIXME: We would really like to be able to tablegen'erate this. 7292 if (!isThumb() && Operands.size() > 4 && 7293 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 7294 Mnemonic == "stlexd")) { 7295 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 7296 unsigned Idx = isLoad ? 2 : 3; 7297 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 7298 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 7299 7300 const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID); 7301 // Adjust only if Op1 and Op2 are GPRs. 7302 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 7303 MRC.contains(Op2.getReg())) { 7304 unsigned Reg1 = Op1.getReg(); 7305 unsigned Reg2 = Op2.getReg(); 7306 unsigned Rt = MRI->getEncodingValue(Reg1); 7307 unsigned Rt2 = MRI->getEncodingValue(Reg2); 7308 7309 // Rt2 must be Rt + 1 and Rt must be even. 7310 if (Rt + 1 != Rt2 || (Rt & 1)) { 7311 return Error(Op2.getStartLoc(), 7312 isLoad ? "destination operands must be sequential" 7313 : "source operands must be sequential"); 7314 } 7315 unsigned NewReg = MRI->getMatchingSuperReg( 7316 Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID))); 7317 Operands[Idx] = 7318 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 7319 Operands.erase(Operands.begin() + Idx + 1); 7320 } 7321 } 7322 7323 // GNU Assembler extension (compatibility). 7324 fixupGNULDRDAlias(Mnemonic, Operands); 7325 7326 // FIXME: As said above, this is all a pretty gross hack. This instruction 7327 // does not fit with other "subs" and tblgen. 7328 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 7329 // so the Mnemonic is the original name "subs" and delete the predicate 7330 // operand so it will match the table entry. 7331 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 7332 static_cast<ARMOperand &>(*Operands[3]).isReg() && 7333 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 7334 static_cast<ARMOperand &>(*Operands[4]).isReg() && 7335 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 7336 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 7337 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 7338 Operands.erase(Operands.begin() + 1); 7339 } 7340 return false; 7341 } 7342 7343 // Validate context-sensitive operand constraints. 7344 7345 // return 'true' if register list contains non-low GPR registers, 7346 // 'false' otherwise. If Reg is in the register list or is HiReg, set 7347 // 'containsReg' to true. 7348 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 7349 unsigned Reg, unsigned HiReg, 7350 bool &containsReg) { 7351 containsReg = false; 7352 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 7353 unsigned OpReg = Inst.getOperand(i).getReg(); 7354 if (OpReg == Reg) 7355 containsReg = true; 7356 // Anything other than a low register isn't legal here. 7357 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 7358 return true; 7359 } 7360 return false; 7361 } 7362 7363 // Check if the specified regisgter is in the register list of the inst, 7364 // starting at the indicated operand number. 7365 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 7366 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 7367 unsigned OpReg = Inst.getOperand(i).getReg(); 7368 if (OpReg == Reg) 7369 return true; 7370 } 7371 return false; 7372 } 7373 7374 // Return true if instruction has the interesting property of being 7375 // allowed in IT blocks, but not being predicable. 7376 static bool instIsBreakpoint(const MCInst &Inst) { 7377 return Inst.getOpcode() == ARM::tBKPT || 7378 Inst.getOpcode() == ARM::BKPT || 7379 Inst.getOpcode() == ARM::tHLT || 7380 Inst.getOpcode() == ARM::HLT; 7381 } 7382 7383 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 7384 const OperandVector &Operands, 7385 unsigned ListNo, bool IsARPop) { 7386 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7387 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7388 7389 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7390 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 7391 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7392 7393 if (!IsARPop && ListContainsSP) 7394 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7395 "SP may not be in the register list"); 7396 else if (ListContainsPC && ListContainsLR) 7397 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7398 "PC and LR may not be in the register list simultaneously"); 7399 return false; 7400 } 7401 7402 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 7403 const OperandVector &Operands, 7404 unsigned ListNo) { 7405 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7406 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7407 7408 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7409 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7410 7411 if (ListContainsSP && ListContainsPC) 7412 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7413 "SP and PC may not be in the register list"); 7414 else if (ListContainsSP) 7415 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7416 "SP may not be in the register list"); 7417 else if (ListContainsPC) 7418 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7419 "PC may not be in the register list"); 7420 return false; 7421 } 7422 7423 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 7424 const OperandVector &Operands, 7425 bool Load, bool ARMMode, bool Writeback) { 7426 unsigned RtIndex = Load || !Writeback ? 0 : 1; 7427 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 7428 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 7429 7430 if (ARMMode) { 7431 // Rt can't be R14. 7432 if (Rt == 14) 7433 return Error(Operands[3]->getStartLoc(), 7434 "Rt can't be R14"); 7435 7436 // Rt must be even-numbered. 7437 if ((Rt & 1) == 1) 7438 return Error(Operands[3]->getStartLoc(), 7439 "Rt must be even-numbered"); 7440 7441 // Rt2 must be Rt + 1. 7442 if (Rt2 != Rt + 1) { 7443 if (Load) 7444 return Error(Operands[3]->getStartLoc(), 7445 "destination operands must be sequential"); 7446 else 7447 return Error(Operands[3]->getStartLoc(), 7448 "source operands must be sequential"); 7449 } 7450 7451 // FIXME: Diagnose m == 15 7452 // FIXME: Diagnose ldrd with m == t || m == t2. 7453 } 7454 7455 if (!ARMMode && Load) { 7456 if (Rt2 == Rt) 7457 return Error(Operands[3]->getStartLoc(), 7458 "destination operands can't be identical"); 7459 } 7460 7461 if (Writeback) { 7462 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7463 7464 if (Rn == Rt || Rn == Rt2) { 7465 if (Load) 7466 return Error(Operands[3]->getStartLoc(), 7467 "base register needs to be different from destination " 7468 "registers"); 7469 else 7470 return Error(Operands[3]->getStartLoc(), 7471 "source register and base register can't be identical"); 7472 } 7473 7474 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 7475 // (Except the immediate form of ldrd?) 7476 } 7477 7478 return false; 7479 } 7480 7481 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { 7482 for (unsigned i = 0; i < MCID.NumOperands; ++i) { 7483 if (ARM::isVpred(MCID.OpInfo[i].OperandType)) 7484 return i; 7485 } 7486 return -1; 7487 } 7488 7489 static bool isVectorPredicable(const MCInstrDesc &MCID) { 7490 return findFirstVectorPredOperandIdx(MCID) != -1; 7491 } 7492 7493 // FIXME: We would really like to be able to tablegen'erate this. 7494 bool ARMAsmParser::validateInstruction(MCInst &Inst, 7495 const OperandVector &Operands) { 7496 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 7497 SMLoc Loc = Operands[0]->getStartLoc(); 7498 7499 // Check the IT block state first. 7500 // NOTE: BKPT and HLT instructions have the interesting property of being 7501 // allowed in IT blocks, but not being predicable. They just always execute. 7502 if (inITBlock() && !instIsBreakpoint(Inst)) { 7503 // The instruction must be predicable. 7504 if (!MCID.isPredicable()) 7505 return Error(Loc, "instructions in IT block must be predicable"); 7506 ARMCC::CondCodes Cond = ARMCC::CondCodes( 7507 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 7508 if (Cond != currentITCond()) { 7509 // Find the condition code Operand to get its SMLoc information. 7510 SMLoc CondLoc; 7511 for (unsigned I = 1; I < Operands.size(); ++I) 7512 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 7513 CondLoc = Operands[I]->getStartLoc(); 7514 return Error(CondLoc, "incorrect condition in IT block; got '" + 7515 StringRef(ARMCondCodeToString(Cond)) + 7516 "', but expected '" + 7517 ARMCondCodeToString(currentITCond()) + "'"); 7518 } 7519 // Check for non-'al' condition codes outside of the IT block. 7520 } else if (isThumbTwo() && MCID.isPredicable() && 7521 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7522 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 7523 Inst.getOpcode() != ARM::t2Bcc && 7524 Inst.getOpcode() != ARM::t2BFic) { 7525 return Error(Loc, "predicated instructions must be in IT block"); 7526 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 7527 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7528 ARMCC::AL) { 7529 return Warning(Loc, "predicated instructions should be in IT block"); 7530 } else if (!MCID.isPredicable()) { 7531 // Check the instruction doesn't have a predicate operand anyway 7532 // that it's not allowed to use. Sometimes this happens in order 7533 // to keep instructions the same shape even though one cannot 7534 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 7535 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 7536 if (MCID.OpInfo[i].isPredicate()) { 7537 if (Inst.getOperand(i).getImm() != ARMCC::AL) 7538 return Error(Loc, "instruction is not predicable"); 7539 break; 7540 } 7541 } 7542 } 7543 7544 // PC-setting instructions in an IT block, but not the last instruction of 7545 // the block, are UNPREDICTABLE. 7546 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 7547 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 7548 } 7549 7550 if (inVPTBlock() && !instIsBreakpoint(Inst)) { 7551 unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition); 7552 if (!isVectorPredicable(MCID)) 7553 return Error(Loc, "instruction in VPT block must be predicable"); 7554 unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm(); 7555 unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; 7556 if (Pred != VPTPred) { 7557 SMLoc PredLoc; 7558 for (unsigned I = 1; I < Operands.size(); ++I) 7559 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7560 PredLoc = Operands[I]->getStartLoc(); 7561 return Error(PredLoc, "incorrect predication in VPT block; got '" + 7562 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) + 7563 "', but expected '" + 7564 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'"); 7565 } 7566 } 7567 else if (isVectorPredicable(MCID) && 7568 Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() != 7569 ARMVCC::None) 7570 return Error(Loc, "VPT predicated instructions must be in VPT block"); 7571 7572 const unsigned Opcode = Inst.getOpcode(); 7573 switch (Opcode) { 7574 case ARM::t2IT: { 7575 // Encoding is unpredictable if it ever results in a notional 'NV' 7576 // predicate. Since we don't parse 'NV' directly this means an 'AL' 7577 // predicate with an "else" mask bit. 7578 unsigned Cond = Inst.getOperand(0).getImm(); 7579 unsigned Mask = Inst.getOperand(1).getImm(); 7580 7581 // Conditions only allowing a 't' are those with no set bit except 7582 // the lowest-order one that indicates the end of the sequence. In 7583 // other words, powers of 2. 7584 if (Cond == ARMCC::AL && countPopulation(Mask) != 1) 7585 return Error(Loc, "unpredictable IT predicate sequence"); 7586 break; 7587 } 7588 case ARM::LDRD: 7589 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7590 /*Writeback*/false)) 7591 return true; 7592 break; 7593 case ARM::LDRD_PRE: 7594 case ARM::LDRD_POST: 7595 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7596 /*Writeback*/true)) 7597 return true; 7598 break; 7599 case ARM::t2LDRDi8: 7600 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7601 /*Writeback*/false)) 7602 return true; 7603 break; 7604 case ARM::t2LDRD_PRE: 7605 case ARM::t2LDRD_POST: 7606 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7607 /*Writeback*/true)) 7608 return true; 7609 break; 7610 case ARM::t2BXJ: { 7611 const unsigned RmReg = Inst.getOperand(0).getReg(); 7612 // Rm = SP is no longer unpredictable in v8-A 7613 if (RmReg == ARM::SP && !hasV8Ops()) 7614 return Error(Operands[2]->getStartLoc(), 7615 "r13 (SP) is an unpredictable operand to BXJ"); 7616 return false; 7617 } 7618 case ARM::STRD: 7619 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7620 /*Writeback*/false)) 7621 return true; 7622 break; 7623 case ARM::STRD_PRE: 7624 case ARM::STRD_POST: 7625 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7626 /*Writeback*/true)) 7627 return true; 7628 break; 7629 case ARM::t2STRD_PRE: 7630 case ARM::t2STRD_POST: 7631 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 7632 /*Writeback*/true)) 7633 return true; 7634 break; 7635 case ARM::STR_PRE_IMM: 7636 case ARM::STR_PRE_REG: 7637 case ARM::t2STR_PRE: 7638 case ARM::STR_POST_IMM: 7639 case ARM::STR_POST_REG: 7640 case ARM::t2STR_POST: 7641 case ARM::STRH_PRE: 7642 case ARM::t2STRH_PRE: 7643 case ARM::STRH_POST: 7644 case ARM::t2STRH_POST: 7645 case ARM::STRB_PRE_IMM: 7646 case ARM::STRB_PRE_REG: 7647 case ARM::t2STRB_PRE: 7648 case ARM::STRB_POST_IMM: 7649 case ARM::STRB_POST_REG: 7650 case ARM::t2STRB_POST: { 7651 // Rt must be different from Rn. 7652 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7653 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7654 7655 if (Rt == Rn) 7656 return Error(Operands[3]->getStartLoc(), 7657 "source register and base register can't be identical"); 7658 return false; 7659 } 7660 case ARM::LDR_PRE_IMM: 7661 case ARM::LDR_PRE_REG: 7662 case ARM::t2LDR_PRE: 7663 case ARM::LDR_POST_IMM: 7664 case ARM::LDR_POST_REG: 7665 case ARM::t2LDR_POST: 7666 case ARM::LDRH_PRE: 7667 case ARM::t2LDRH_PRE: 7668 case ARM::LDRH_POST: 7669 case ARM::t2LDRH_POST: 7670 case ARM::LDRSH_PRE: 7671 case ARM::t2LDRSH_PRE: 7672 case ARM::LDRSH_POST: 7673 case ARM::t2LDRSH_POST: 7674 case ARM::LDRB_PRE_IMM: 7675 case ARM::LDRB_PRE_REG: 7676 case ARM::t2LDRB_PRE: 7677 case ARM::LDRB_POST_IMM: 7678 case ARM::LDRB_POST_REG: 7679 case ARM::t2LDRB_POST: 7680 case ARM::LDRSB_PRE: 7681 case ARM::t2LDRSB_PRE: 7682 case ARM::LDRSB_POST: 7683 case ARM::t2LDRSB_POST: { 7684 // Rt must be different from Rn. 7685 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7686 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7687 7688 if (Rt == Rn) 7689 return Error(Operands[3]->getStartLoc(), 7690 "destination register and base register can't be identical"); 7691 return false; 7692 } 7693 7694 case ARM::MVE_VLDRBU8_rq: 7695 case ARM::MVE_VLDRBU16_rq: 7696 case ARM::MVE_VLDRBS16_rq: 7697 case ARM::MVE_VLDRBU32_rq: 7698 case ARM::MVE_VLDRBS32_rq: 7699 case ARM::MVE_VLDRHU16_rq: 7700 case ARM::MVE_VLDRHU16_rq_u: 7701 case ARM::MVE_VLDRHU32_rq: 7702 case ARM::MVE_VLDRHU32_rq_u: 7703 case ARM::MVE_VLDRHS32_rq: 7704 case ARM::MVE_VLDRHS32_rq_u: 7705 case ARM::MVE_VLDRWU32_rq: 7706 case ARM::MVE_VLDRWU32_rq_u: 7707 case ARM::MVE_VLDRDU64_rq: 7708 case ARM::MVE_VLDRDU64_rq_u: 7709 case ARM::MVE_VLDRWU32_qi: 7710 case ARM::MVE_VLDRWU32_qi_pre: 7711 case ARM::MVE_VLDRDU64_qi: 7712 case ARM::MVE_VLDRDU64_qi_pre: { 7713 // Qd must be different from Qm. 7714 unsigned QdIdx = 0, QmIdx = 2; 7715 bool QmIsPointer = false; 7716 switch (Opcode) { 7717 case ARM::MVE_VLDRWU32_qi: 7718 case ARM::MVE_VLDRDU64_qi: 7719 QmIdx = 1; 7720 QmIsPointer = true; 7721 break; 7722 case ARM::MVE_VLDRWU32_qi_pre: 7723 case ARM::MVE_VLDRDU64_qi_pre: 7724 QdIdx = 1; 7725 QmIsPointer = true; 7726 break; 7727 } 7728 7729 const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg()); 7730 const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg()); 7731 7732 if (Qd == Qm) { 7733 return Error(Operands[3]->getStartLoc(), 7734 Twine("destination vector register and vector ") + 7735 (QmIsPointer ? "pointer" : "offset") + 7736 " register can't be identical"); 7737 } 7738 return false; 7739 } 7740 7741 case ARM::SBFX: 7742 case ARM::t2SBFX: 7743 case ARM::UBFX: 7744 case ARM::t2UBFX: { 7745 // Width must be in range [1, 32-lsb]. 7746 unsigned LSB = Inst.getOperand(2).getImm(); 7747 unsigned Widthm1 = Inst.getOperand(3).getImm(); 7748 if (Widthm1 >= 32 - LSB) 7749 return Error(Operands[5]->getStartLoc(), 7750 "bitfield width must be in range [1,32-lsb]"); 7751 return false; 7752 } 7753 // Notionally handles ARM::tLDMIA_UPD too. 7754 case ARM::tLDMIA: { 7755 // If we're parsing Thumb2, the .w variant is available and handles 7756 // most cases that are normally illegal for a Thumb1 LDM instruction. 7757 // We'll make the transformation in processInstruction() if necessary. 7758 // 7759 // Thumb LDM instructions are writeback iff the base register is not 7760 // in the register list. 7761 unsigned Rn = Inst.getOperand(0).getReg(); 7762 bool HasWritebackToken = 7763 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7764 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 7765 bool ListContainsBase; 7766 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 7767 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 7768 "registers must be in range r0-r7"); 7769 // If we should have writeback, then there should be a '!' token. 7770 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 7771 return Error(Operands[2]->getStartLoc(), 7772 "writeback operator '!' expected"); 7773 // If we should not have writeback, there must not be a '!'. This is 7774 // true even for the 32-bit wide encodings. 7775 if (ListContainsBase && HasWritebackToken) 7776 return Error(Operands[3]->getStartLoc(), 7777 "writeback operator '!' not allowed when base register " 7778 "in register list"); 7779 7780 if (validatetLDMRegList(Inst, Operands, 3)) 7781 return true; 7782 break; 7783 } 7784 case ARM::LDMIA_UPD: 7785 case ARM::LDMDB_UPD: 7786 case ARM::LDMIB_UPD: 7787 case ARM::LDMDA_UPD: 7788 // ARM variants loading and updating the same register are only officially 7789 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 7790 if (!hasV7Ops()) 7791 break; 7792 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7793 return Error(Operands.back()->getStartLoc(), 7794 "writeback register not allowed in register list"); 7795 break; 7796 case ARM::t2LDMIA: 7797 case ARM::t2LDMDB: 7798 if (validatetLDMRegList(Inst, Operands, 3)) 7799 return true; 7800 break; 7801 case ARM::t2STMIA: 7802 case ARM::t2STMDB: 7803 if (validatetSTMRegList(Inst, Operands, 3)) 7804 return true; 7805 break; 7806 case ARM::t2LDMIA_UPD: 7807 case ARM::t2LDMDB_UPD: 7808 case ARM::t2STMIA_UPD: 7809 case ARM::t2STMDB_UPD: 7810 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7811 return Error(Operands.back()->getStartLoc(), 7812 "writeback register not allowed in register list"); 7813 7814 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 7815 if (validatetLDMRegList(Inst, Operands, 3)) 7816 return true; 7817 } else { 7818 if (validatetSTMRegList(Inst, Operands, 3)) 7819 return true; 7820 } 7821 break; 7822 7823 case ARM::sysLDMIA_UPD: 7824 case ARM::sysLDMDA_UPD: 7825 case ARM::sysLDMDB_UPD: 7826 case ARM::sysLDMIB_UPD: 7827 if (!listContainsReg(Inst, 3, ARM::PC)) 7828 return Error(Operands[4]->getStartLoc(), 7829 "writeback register only allowed on system LDM " 7830 "if PC in register-list"); 7831 break; 7832 case ARM::sysSTMIA_UPD: 7833 case ARM::sysSTMDA_UPD: 7834 case ARM::sysSTMDB_UPD: 7835 case ARM::sysSTMIB_UPD: 7836 return Error(Operands[2]->getStartLoc(), 7837 "system STM cannot have writeback register"); 7838 case ARM::tMUL: 7839 // The second source operand must be the same register as the destination 7840 // operand. 7841 // 7842 // In this case, we must directly check the parsed operands because the 7843 // cvtThumbMultiply() function is written in such a way that it guarantees 7844 // this first statement is always true for the new Inst. Essentially, the 7845 // destination is unconditionally copied into the second source operand 7846 // without checking to see if it matches what we actually parsed. 7847 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 7848 ((ARMOperand &)*Operands[5]).getReg()) && 7849 (((ARMOperand &)*Operands[3]).getReg() != 7850 ((ARMOperand &)*Operands[4]).getReg())) { 7851 return Error(Operands[3]->getStartLoc(), 7852 "destination register must match source register"); 7853 } 7854 break; 7855 7856 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 7857 // so only issue a diagnostic for thumb1. The instructions will be 7858 // switched to the t2 encodings in processInstruction() if necessary. 7859 case ARM::tPOP: { 7860 bool ListContainsBase; 7861 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 7862 !isThumbTwo()) 7863 return Error(Operands[2]->getStartLoc(), 7864 "registers must be in range r0-r7 or pc"); 7865 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 7866 return true; 7867 break; 7868 } 7869 case ARM::tPUSH: { 7870 bool ListContainsBase; 7871 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 7872 !isThumbTwo()) 7873 return Error(Operands[2]->getStartLoc(), 7874 "registers must be in range r0-r7 or lr"); 7875 if (validatetSTMRegList(Inst, Operands, 2)) 7876 return true; 7877 break; 7878 } 7879 case ARM::tSTMIA_UPD: { 7880 bool ListContainsBase, InvalidLowList; 7881 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 7882 0, ListContainsBase); 7883 if (InvalidLowList && !isThumbTwo()) 7884 return Error(Operands[4]->getStartLoc(), 7885 "registers must be in range r0-r7"); 7886 7887 // This would be converted to a 32-bit stm, but that's not valid if the 7888 // writeback register is in the list. 7889 if (InvalidLowList && ListContainsBase) 7890 return Error(Operands[4]->getStartLoc(), 7891 "writeback operator '!' not allowed when base register " 7892 "in register list"); 7893 7894 if (validatetSTMRegList(Inst, Operands, 4)) 7895 return true; 7896 break; 7897 } 7898 case ARM::tADDrSP: 7899 // If the non-SP source operand and the destination operand are not the 7900 // same, we need thumb2 (for the wide encoding), or we have an error. 7901 if (!isThumbTwo() && 7902 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 7903 return Error(Operands[4]->getStartLoc(), 7904 "source register must be the same as destination"); 7905 } 7906 break; 7907 7908 case ARM::t2ADDrr: 7909 case ARM::t2ADDrs: 7910 case ARM::t2SUBrr: 7911 case ARM::t2SUBrs: 7912 if (Inst.getOperand(0).getReg() == ARM::SP && 7913 Inst.getOperand(1).getReg() != ARM::SP) 7914 return Error(Operands[4]->getStartLoc(), 7915 "source register must be sp if destination is sp"); 7916 break; 7917 7918 // Final range checking for Thumb unconditional branch instructions. 7919 case ARM::tB: 7920 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 7921 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7922 break; 7923 case ARM::t2B: { 7924 int op = (Operands[2]->isImm()) ? 2 : 3; 7925 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 7926 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 7927 break; 7928 } 7929 // Final range checking for Thumb conditional branch instructions. 7930 case ARM::tBcc: 7931 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 7932 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7933 break; 7934 case ARM::t2Bcc: { 7935 int Op = (Operands[2]->isImm()) ? 2 : 3; 7936 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 7937 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 7938 break; 7939 } 7940 case ARM::tCBZ: 7941 case ARM::tCBNZ: { 7942 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 7943 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7944 break; 7945 } 7946 case ARM::MOVi16: 7947 case ARM::MOVTi16: 7948 case ARM::t2MOVi16: 7949 case ARM::t2MOVTi16: 7950 { 7951 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 7952 // especially when we turn it into a movw and the expression <symbol> does 7953 // not have a :lower16: or :upper16 as part of the expression. We don't 7954 // want the behavior of silently truncating, which can be unexpected and 7955 // lead to bugs that are difficult to find since this is an easy mistake 7956 // to make. 7957 int i = (Operands[3]->isImm()) ? 3 : 4; 7958 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 7959 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 7960 if (CE) break; 7961 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 7962 if (!E) break; 7963 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 7964 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 7965 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 7966 return Error( 7967 Op.getStartLoc(), 7968 "immediate expression for mov requires :lower16: or :upper16"); 7969 break; 7970 } 7971 case ARM::HINT: 7972 case ARM::t2HINT: { 7973 unsigned Imm8 = Inst.getOperand(0).getImm(); 7974 unsigned Pred = Inst.getOperand(1).getImm(); 7975 // ESB is not predicable (pred must be AL). Without the RAS extension, this 7976 // behaves as any other unallocated hint. 7977 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 7978 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 7979 "predicable, but condition " 7980 "code specified"); 7981 if (Imm8 == 0x14 && Pred != ARMCC::AL) 7982 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 7983 "predicable, but condition " 7984 "code specified"); 7985 break; 7986 } 7987 case ARM::t2BFi: 7988 case ARM::t2BFr: 7989 case ARM::t2BFLi: 7990 case ARM::t2BFLr: { 7991 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() || 7992 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 7993 return Error(Operands[2]->getStartLoc(), 7994 "branch location out of range or not a multiple of 2"); 7995 7996 if (Opcode == ARM::t2BFi) { 7997 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>()) 7998 return Error(Operands[3]->getStartLoc(), 7999 "branch target out of range or not a multiple of 2"); 8000 } else if (Opcode == ARM::t2BFLi) { 8001 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>()) 8002 return Error(Operands[3]->getStartLoc(), 8003 "branch target out of range or not a multiple of 2"); 8004 } 8005 break; 8006 } 8007 case ARM::t2BFic: { 8008 if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() || 8009 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 8010 return Error(Operands[1]->getStartLoc(), 8011 "branch location out of range or not a multiple of 2"); 8012 8013 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>()) 8014 return Error(Operands[2]->getStartLoc(), 8015 "branch target out of range or not a multiple of 2"); 8016 8017 assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && 8018 "branch location and else branch target should either both be " 8019 "immediates or both labels"); 8020 8021 if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) { 8022 int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm(); 8023 if (Diff != 4 && Diff != 2) 8024 return Error( 8025 Operands[3]->getStartLoc(), 8026 "else branch target must be 2 or 4 greater than the branch location"); 8027 } 8028 break; 8029 } 8030 case ARM::t2CLRM: { 8031 for (unsigned i = 2; i < Inst.getNumOperands(); i++) { 8032 if (Inst.getOperand(i).isReg() && 8033 !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( 8034 Inst.getOperand(i).getReg())) { 8035 return Error(Operands[2]->getStartLoc(), 8036 "invalid register in register list. Valid registers are " 8037 "r0-r12, lr/r14 and APSR."); 8038 } 8039 } 8040 break; 8041 } 8042 case ARM::DSB: 8043 case ARM::t2DSB: { 8044 8045 if (Inst.getNumOperands() < 2) 8046 break; 8047 8048 unsigned Option = Inst.getOperand(0).getImm(); 8049 unsigned Pred = Inst.getOperand(1).getImm(); 8050 8051 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 8052 if (Option == 0 && Pred != ARMCC::AL) 8053 return Error(Operands[1]->getStartLoc(), 8054 "instruction 'ssbb' is not predicable, but condition code " 8055 "specified"); 8056 if (Option == 4 && Pred != ARMCC::AL) 8057 return Error(Operands[1]->getStartLoc(), 8058 "instruction 'pssbb' is not predicable, but condition code " 8059 "specified"); 8060 break; 8061 } 8062 case ARM::VMOVRRS: { 8063 // Source registers must be sequential. 8064 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 8065 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 8066 if (Sm1 != Sm + 1) 8067 return Error(Operands[5]->getStartLoc(), 8068 "source operands must be sequential"); 8069 break; 8070 } 8071 case ARM::VMOVSRR: { 8072 // Destination registers must be sequential. 8073 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 8074 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 8075 if (Sm1 != Sm + 1) 8076 return Error(Operands[3]->getStartLoc(), 8077 "destination operands must be sequential"); 8078 break; 8079 } 8080 case ARM::VLDMDIA: 8081 case ARM::VSTMDIA: { 8082 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 8083 auto &RegList = Op.getRegList(); 8084 if (RegList.size() < 1 || RegList.size() > 16) 8085 return Error(Operands[3]->getStartLoc(), 8086 "list of registers must be at least 1 and at most 16"); 8087 break; 8088 } 8089 case ARM::MVE_VQDMULLs32bh: 8090 case ARM::MVE_VQDMULLs32th: 8091 case ARM::MVE_VCMULf32: 8092 case ARM::MVE_VMULLBs32: 8093 case ARM::MVE_VMULLTs32: 8094 case ARM::MVE_VMULLBu32: 8095 case ARM::MVE_VMULLTu32: { 8096 if (Operands[3]->getReg() == Operands[4]->getReg()) { 8097 return Error (Operands[3]->getStartLoc(), 8098 "Qd register and Qn register can't be identical"); 8099 } 8100 if (Operands[3]->getReg() == Operands[5]->getReg()) { 8101 return Error (Operands[3]->getStartLoc(), 8102 "Qd register and Qm register can't be identical"); 8103 } 8104 break; 8105 } 8106 case ARM::MVE_VMOV_rr_q: { 8107 if (Operands[4]->getReg() != Operands[6]->getReg()) 8108 return Error (Operands[4]->getStartLoc(), "Q-registers must be the same"); 8109 if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() != 8110 static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2) 8111 return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 8112 break; 8113 } 8114 case ARM::MVE_VMOV_q_rr: { 8115 if (Operands[2]->getReg() != Operands[4]->getReg()) 8116 return Error (Operands[2]->getStartLoc(), "Q-registers must be the same"); 8117 if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() != 8118 static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2) 8119 return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 8120 break; 8121 } 8122 case ARM::UMAAL: 8123 case ARM::UMLAL: 8124 case ARM::UMULL: 8125 case ARM::t2UMAAL: 8126 case ARM::t2UMLAL: 8127 case ARM::t2UMULL: 8128 case ARM::SMLAL: 8129 case ARM::SMLALBB: 8130 case ARM::SMLALBT: 8131 case ARM::SMLALD: 8132 case ARM::SMLALDX: 8133 case ARM::SMLALTB: 8134 case ARM::SMLALTT: 8135 case ARM::SMLSLD: 8136 case ARM::SMLSLDX: 8137 case ARM::SMULL: 8138 case ARM::t2SMLAL: 8139 case ARM::t2SMLALBB: 8140 case ARM::t2SMLALBT: 8141 case ARM::t2SMLALD: 8142 case ARM::t2SMLALDX: 8143 case ARM::t2SMLALTB: 8144 case ARM::t2SMLALTT: 8145 case ARM::t2SMLSLD: 8146 case ARM::t2SMLSLDX: 8147 case ARM::t2SMULL: { 8148 unsigned RdHi = Inst.getOperand(0).getReg(); 8149 unsigned RdLo = Inst.getOperand(1).getReg(); 8150 if(RdHi == RdLo) { 8151 return Error(Loc, 8152 "unpredictable instruction, RdHi and RdLo must be different"); 8153 } 8154 break; 8155 } 8156 8157 case ARM::CDE_CX1: 8158 case ARM::CDE_CX1A: 8159 case ARM::CDE_CX1D: 8160 case ARM::CDE_CX1DA: 8161 case ARM::CDE_CX2: 8162 case ARM::CDE_CX2A: 8163 case ARM::CDE_CX2D: 8164 case ARM::CDE_CX2DA: 8165 case ARM::CDE_CX3: 8166 case ARM::CDE_CX3A: 8167 case ARM::CDE_CX3D: 8168 case ARM::CDE_CX3DA: 8169 case ARM::CDE_VCX1_vec: 8170 case ARM::CDE_VCX1_fpsp: 8171 case ARM::CDE_VCX1_fpdp: 8172 case ARM::CDE_VCX1A_vec: 8173 case ARM::CDE_VCX1A_fpsp: 8174 case ARM::CDE_VCX1A_fpdp: 8175 case ARM::CDE_VCX2_vec: 8176 case ARM::CDE_VCX2_fpsp: 8177 case ARM::CDE_VCX2_fpdp: 8178 case ARM::CDE_VCX2A_vec: 8179 case ARM::CDE_VCX2A_fpsp: 8180 case ARM::CDE_VCX2A_fpdp: 8181 case ARM::CDE_VCX3_vec: 8182 case ARM::CDE_VCX3_fpsp: 8183 case ARM::CDE_VCX3_fpdp: 8184 case ARM::CDE_VCX3A_vec: 8185 case ARM::CDE_VCX3A_fpsp: 8186 case ARM::CDE_VCX3A_fpdp: { 8187 assert(Inst.getOperand(1).isImm() && 8188 "CDE operand 1 must be a coprocessor ID"); 8189 int64_t Coproc = Inst.getOperand(1).getImm(); 8190 if (Coproc < 8 && !ARM::isCDECoproc(Coproc, *STI)) 8191 return Error(Operands[1]->getStartLoc(), 8192 "coprocessor must be configured as CDE"); 8193 else if (Coproc >= 8) 8194 return Error(Operands[1]->getStartLoc(), 8195 "coprocessor must be in the range [p0, p7]"); 8196 break; 8197 } 8198 8199 case ARM::t2CDP: 8200 case ARM::t2CDP2: 8201 case ARM::t2LDC2L_OFFSET: 8202 case ARM::t2LDC2L_OPTION: 8203 case ARM::t2LDC2L_POST: 8204 case ARM::t2LDC2L_PRE: 8205 case ARM::t2LDC2_OFFSET: 8206 case ARM::t2LDC2_OPTION: 8207 case ARM::t2LDC2_POST: 8208 case ARM::t2LDC2_PRE: 8209 case ARM::t2LDCL_OFFSET: 8210 case ARM::t2LDCL_OPTION: 8211 case ARM::t2LDCL_POST: 8212 case ARM::t2LDCL_PRE: 8213 case ARM::t2LDC_OFFSET: 8214 case ARM::t2LDC_OPTION: 8215 case ARM::t2LDC_POST: 8216 case ARM::t2LDC_PRE: 8217 case ARM::t2MCR: 8218 case ARM::t2MCR2: 8219 case ARM::t2MCRR: 8220 case ARM::t2MCRR2: 8221 case ARM::t2MRC: 8222 case ARM::t2MRC2: 8223 case ARM::t2MRRC: 8224 case ARM::t2MRRC2: 8225 case ARM::t2STC2L_OFFSET: 8226 case ARM::t2STC2L_OPTION: 8227 case ARM::t2STC2L_POST: 8228 case ARM::t2STC2L_PRE: 8229 case ARM::t2STC2_OFFSET: 8230 case ARM::t2STC2_OPTION: 8231 case ARM::t2STC2_POST: 8232 case ARM::t2STC2_PRE: 8233 case ARM::t2STCL_OFFSET: 8234 case ARM::t2STCL_OPTION: 8235 case ARM::t2STCL_POST: 8236 case ARM::t2STCL_PRE: 8237 case ARM::t2STC_OFFSET: 8238 case ARM::t2STC_OPTION: 8239 case ARM::t2STC_POST: 8240 case ARM::t2STC_PRE: { 8241 unsigned Opcode = Inst.getOpcode(); 8242 // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags, 8243 // CopInd is the index of the coprocessor operand. 8244 size_t CopInd = 0; 8245 if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2) 8246 CopInd = 2; 8247 else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2) 8248 CopInd = 1; 8249 assert(Inst.getOperand(CopInd).isImm() && 8250 "Operand must be a coprocessor ID"); 8251 int64_t Coproc = Inst.getOperand(CopInd).getImm(); 8252 // Operands[2] is the coprocessor operand at syntactic level 8253 if (ARM::isCDECoproc(Coproc, *STI)) 8254 return Error(Operands[2]->getStartLoc(), 8255 "coprocessor must be configured as GCP"); 8256 break; 8257 } 8258 } 8259 8260 return false; 8261 } 8262 8263 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 8264 switch(Opc) { 8265 default: llvm_unreachable("unexpected opcode!"); 8266 // VST1LN 8267 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8268 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8269 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8270 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8271 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8272 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8273 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 8274 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 8275 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 8276 8277 // VST2LN 8278 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8279 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8280 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8281 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8282 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8283 8284 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8285 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8286 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8287 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8288 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8289 8290 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 8291 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 8292 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 8293 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 8294 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 8295 8296 // VST3LN 8297 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8298 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8299 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8300 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 8301 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8302 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8303 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8304 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8305 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 8306 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8307 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 8308 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 8309 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 8310 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 8311 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 8312 8313 // VST3 8314 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8315 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8316 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8317 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8318 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8319 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8320 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8321 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8322 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8323 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8324 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8325 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8326 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 8327 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 8328 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 8329 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 8330 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 8331 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 8332 8333 // VST4LN 8334 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8335 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8336 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8337 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 8338 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8339 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8340 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8341 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8342 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 8343 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8344 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 8345 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 8346 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 8347 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 8348 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 8349 8350 // VST4 8351 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8352 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8353 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8354 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8355 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8356 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8357 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8358 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8359 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8360 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8361 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8362 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8363 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 8364 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 8365 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 8366 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 8367 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 8368 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 8369 } 8370 } 8371 8372 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 8373 switch(Opc) { 8374 default: llvm_unreachable("unexpected opcode!"); 8375 // VLD1LN 8376 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8377 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8378 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8379 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8380 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8381 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8382 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 8383 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 8384 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 8385 8386 // VLD2LN 8387 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8388 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8389 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8390 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 8391 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8392 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8393 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8394 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8395 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 8396 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8397 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 8398 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 8399 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 8400 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 8401 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 8402 8403 // VLD3DUP 8404 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8405 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8406 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8407 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 8408 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8409 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8410 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8411 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8412 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8413 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 8414 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8415 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8416 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 8417 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 8418 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 8419 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 8420 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 8421 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 8422 8423 // VLD3LN 8424 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8425 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8426 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8427 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 8428 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8429 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8430 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8431 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8432 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 8433 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8434 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 8435 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 8436 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 8437 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 8438 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 8439 8440 // VLD3 8441 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8442 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8443 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8444 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8445 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8446 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8447 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8448 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8449 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8450 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8451 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8452 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8453 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 8454 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 8455 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 8456 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 8457 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 8458 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 8459 8460 // VLD4LN 8461 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8462 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8463 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8464 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8465 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8466 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8467 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8468 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8469 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8470 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8471 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 8472 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 8473 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 8474 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 8475 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 8476 8477 // VLD4DUP 8478 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8479 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8480 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8481 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 8482 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 8483 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8484 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8485 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8486 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8487 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 8488 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 8489 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8490 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 8491 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 8492 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 8493 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 8494 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 8495 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 8496 8497 // VLD4 8498 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8499 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8500 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8501 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8502 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8503 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8504 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8505 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8506 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8507 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8508 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8509 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8510 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 8511 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 8512 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 8513 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 8514 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 8515 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 8516 } 8517 } 8518 8519 bool ARMAsmParser::processInstruction(MCInst &Inst, 8520 const OperandVector &Operands, 8521 MCStreamer &Out) { 8522 // Check if we have the wide qualifier, because if it's present we 8523 // must avoid selecting a 16-bit thumb instruction. 8524 bool HasWideQualifier = false; 8525 for (auto &Op : Operands) { 8526 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 8527 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 8528 HasWideQualifier = true; 8529 break; 8530 } 8531 } 8532 8533 switch (Inst.getOpcode()) { 8534 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 8535 case ARM::LDRT_POST: 8536 case ARM::LDRBT_POST: { 8537 const unsigned Opcode = 8538 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 8539 : ARM::LDRBT_POST_IMM; 8540 MCInst TmpInst; 8541 TmpInst.setOpcode(Opcode); 8542 TmpInst.addOperand(Inst.getOperand(0)); 8543 TmpInst.addOperand(Inst.getOperand(1)); 8544 TmpInst.addOperand(Inst.getOperand(1)); 8545 TmpInst.addOperand(MCOperand::createReg(0)); 8546 TmpInst.addOperand(MCOperand::createImm(0)); 8547 TmpInst.addOperand(Inst.getOperand(2)); 8548 TmpInst.addOperand(Inst.getOperand(3)); 8549 Inst = TmpInst; 8550 return true; 8551 } 8552 // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate. 8553 case ARM::LDRSBTii: 8554 case ARM::LDRHTii: 8555 case ARM::LDRSHTii: { 8556 MCInst TmpInst; 8557 8558 if (Inst.getOpcode() == ARM::LDRSBTii) 8559 TmpInst.setOpcode(ARM::LDRSBTi); 8560 else if (Inst.getOpcode() == ARM::LDRHTii) 8561 TmpInst.setOpcode(ARM::LDRHTi); 8562 else if (Inst.getOpcode() == ARM::LDRSHTii) 8563 TmpInst.setOpcode(ARM::LDRSHTi); 8564 TmpInst.addOperand(Inst.getOperand(0)); 8565 TmpInst.addOperand(Inst.getOperand(1)); 8566 TmpInst.addOperand(Inst.getOperand(1)); 8567 TmpInst.addOperand(MCOperand::createImm(256)); 8568 TmpInst.addOperand(Inst.getOperand(2)); 8569 Inst = TmpInst; 8570 return true; 8571 } 8572 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 8573 case ARM::STRT_POST: 8574 case ARM::STRBT_POST: { 8575 const unsigned Opcode = 8576 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 8577 : ARM::STRBT_POST_IMM; 8578 MCInst TmpInst; 8579 TmpInst.setOpcode(Opcode); 8580 TmpInst.addOperand(Inst.getOperand(1)); 8581 TmpInst.addOperand(Inst.getOperand(0)); 8582 TmpInst.addOperand(Inst.getOperand(1)); 8583 TmpInst.addOperand(MCOperand::createReg(0)); 8584 TmpInst.addOperand(MCOperand::createImm(0)); 8585 TmpInst.addOperand(Inst.getOperand(2)); 8586 TmpInst.addOperand(Inst.getOperand(3)); 8587 Inst = TmpInst; 8588 return true; 8589 } 8590 // Alias for alternate form of 'ADR Rd, #imm' instruction. 8591 case ARM::ADDri: { 8592 if (Inst.getOperand(1).getReg() != ARM::PC || 8593 Inst.getOperand(5).getReg() != 0 || 8594 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 8595 return false; 8596 MCInst TmpInst; 8597 TmpInst.setOpcode(ARM::ADR); 8598 TmpInst.addOperand(Inst.getOperand(0)); 8599 if (Inst.getOperand(2).isImm()) { 8600 // Immediate (mod_imm) will be in its encoded form, we must unencode it 8601 // before passing it to the ADR instruction. 8602 unsigned Enc = Inst.getOperand(2).getImm(); 8603 TmpInst.addOperand(MCOperand::createImm( 8604 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 8605 } else { 8606 // Turn PC-relative expression into absolute expression. 8607 // Reading PC provides the start of the current instruction + 8 and 8608 // the transform to adr is biased by that. 8609 MCSymbol *Dot = getContext().createTempSymbol(); 8610 Out.emitLabel(Dot); 8611 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 8612 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 8613 MCSymbolRefExpr::VK_None, 8614 getContext()); 8615 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 8616 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 8617 getContext()); 8618 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 8619 getContext()); 8620 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 8621 } 8622 TmpInst.addOperand(Inst.getOperand(3)); 8623 TmpInst.addOperand(Inst.getOperand(4)); 8624 Inst = TmpInst; 8625 return true; 8626 } 8627 // Aliases for alternate PC+imm syntax of LDR instructions. 8628 case ARM::t2LDRpcrel: 8629 // Select the narrow version if the immediate will fit. 8630 if (Inst.getOperand(1).getImm() > 0 && 8631 Inst.getOperand(1).getImm() <= 0xff && 8632 !HasWideQualifier) 8633 Inst.setOpcode(ARM::tLDRpci); 8634 else 8635 Inst.setOpcode(ARM::t2LDRpci); 8636 return true; 8637 case ARM::t2LDRBpcrel: 8638 Inst.setOpcode(ARM::t2LDRBpci); 8639 return true; 8640 case ARM::t2LDRHpcrel: 8641 Inst.setOpcode(ARM::t2LDRHpci); 8642 return true; 8643 case ARM::t2LDRSBpcrel: 8644 Inst.setOpcode(ARM::t2LDRSBpci); 8645 return true; 8646 case ARM::t2LDRSHpcrel: 8647 Inst.setOpcode(ARM::t2LDRSHpci); 8648 return true; 8649 case ARM::LDRConstPool: 8650 case ARM::tLDRConstPool: 8651 case ARM::t2LDRConstPool: { 8652 // Pseudo instruction ldr rt, =immediate is converted to a 8653 // MOV rt, immediate if immediate is known and representable 8654 // otherwise we create a constant pool entry that we load from. 8655 MCInst TmpInst; 8656 if (Inst.getOpcode() == ARM::LDRConstPool) 8657 TmpInst.setOpcode(ARM::LDRi12); 8658 else if (Inst.getOpcode() == ARM::tLDRConstPool) 8659 TmpInst.setOpcode(ARM::tLDRpci); 8660 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 8661 TmpInst.setOpcode(ARM::t2LDRpci); 8662 const ARMOperand &PoolOperand = 8663 (HasWideQualifier ? 8664 static_cast<ARMOperand &>(*Operands[4]) : 8665 static_cast<ARMOperand &>(*Operands[3])); 8666 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 8667 // If SubExprVal is a constant we may be able to use a MOV 8668 if (isa<MCConstantExpr>(SubExprVal) && 8669 Inst.getOperand(0).getReg() != ARM::PC && 8670 Inst.getOperand(0).getReg() != ARM::SP) { 8671 int64_t Value = 8672 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 8673 bool UseMov = true; 8674 bool MovHasS = true; 8675 if (Inst.getOpcode() == ARM::LDRConstPool) { 8676 // ARM Constant 8677 if (ARM_AM::getSOImmVal(Value) != -1) { 8678 Value = ARM_AM::getSOImmVal(Value); 8679 TmpInst.setOpcode(ARM::MOVi); 8680 } 8681 else if (ARM_AM::getSOImmVal(~Value) != -1) { 8682 Value = ARM_AM::getSOImmVal(~Value); 8683 TmpInst.setOpcode(ARM::MVNi); 8684 } 8685 else if (hasV6T2Ops() && 8686 Value >=0 && Value < 65536) { 8687 TmpInst.setOpcode(ARM::MOVi16); 8688 MovHasS = false; 8689 } 8690 else 8691 UseMov = false; 8692 } 8693 else { 8694 // Thumb/Thumb2 Constant 8695 if (hasThumb2() && 8696 ARM_AM::getT2SOImmVal(Value) != -1) 8697 TmpInst.setOpcode(ARM::t2MOVi); 8698 else if (hasThumb2() && 8699 ARM_AM::getT2SOImmVal(~Value) != -1) { 8700 TmpInst.setOpcode(ARM::t2MVNi); 8701 Value = ~Value; 8702 } 8703 else if (hasV8MBaseline() && 8704 Value >=0 && Value < 65536) { 8705 TmpInst.setOpcode(ARM::t2MOVi16); 8706 MovHasS = false; 8707 } 8708 else 8709 UseMov = false; 8710 } 8711 if (UseMov) { 8712 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8713 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 8714 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8715 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8716 if (MovHasS) 8717 TmpInst.addOperand(MCOperand::createReg(0)); // S 8718 Inst = TmpInst; 8719 return true; 8720 } 8721 } 8722 // No opportunity to use MOV/MVN create constant pool 8723 const MCExpr *CPLoc = 8724 getTargetStreamer().addConstantPoolEntry(SubExprVal, 8725 PoolOperand.getStartLoc()); 8726 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8727 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 8728 if (TmpInst.getOpcode() == ARM::LDRi12) 8729 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 8730 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8731 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8732 Inst = TmpInst; 8733 return true; 8734 } 8735 // Handle NEON VST complex aliases. 8736 case ARM::VST1LNdWB_register_Asm_8: 8737 case ARM::VST1LNdWB_register_Asm_16: 8738 case ARM::VST1LNdWB_register_Asm_32: { 8739 MCInst TmpInst; 8740 // Shuffle the operands around so the lane index operand is in the 8741 // right place. 8742 unsigned Spacing; 8743 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8744 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8745 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8746 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8747 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8748 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8749 TmpInst.addOperand(Inst.getOperand(1)); // lane 8750 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8751 TmpInst.addOperand(Inst.getOperand(6)); 8752 Inst = TmpInst; 8753 return true; 8754 } 8755 8756 case ARM::VST2LNdWB_register_Asm_8: 8757 case ARM::VST2LNdWB_register_Asm_16: 8758 case ARM::VST2LNdWB_register_Asm_32: 8759 case ARM::VST2LNqWB_register_Asm_16: 8760 case ARM::VST2LNqWB_register_Asm_32: { 8761 MCInst TmpInst; 8762 // Shuffle the operands around so the lane index operand is in the 8763 // right place. 8764 unsigned Spacing; 8765 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8766 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8767 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8768 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8769 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8770 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8771 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8772 Spacing)); 8773 TmpInst.addOperand(Inst.getOperand(1)); // lane 8774 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8775 TmpInst.addOperand(Inst.getOperand(6)); 8776 Inst = TmpInst; 8777 return true; 8778 } 8779 8780 case ARM::VST3LNdWB_register_Asm_8: 8781 case ARM::VST3LNdWB_register_Asm_16: 8782 case ARM::VST3LNdWB_register_Asm_32: 8783 case ARM::VST3LNqWB_register_Asm_16: 8784 case ARM::VST3LNqWB_register_Asm_32: { 8785 MCInst TmpInst; 8786 // Shuffle the operands around so the lane index operand is in the 8787 // right place. 8788 unsigned Spacing; 8789 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8790 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8791 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8792 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8793 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8794 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8795 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8796 Spacing)); 8797 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8798 Spacing * 2)); 8799 TmpInst.addOperand(Inst.getOperand(1)); // lane 8800 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8801 TmpInst.addOperand(Inst.getOperand(6)); 8802 Inst = TmpInst; 8803 return true; 8804 } 8805 8806 case ARM::VST4LNdWB_register_Asm_8: 8807 case ARM::VST4LNdWB_register_Asm_16: 8808 case ARM::VST4LNdWB_register_Asm_32: 8809 case ARM::VST4LNqWB_register_Asm_16: 8810 case ARM::VST4LNqWB_register_Asm_32: { 8811 MCInst TmpInst; 8812 // Shuffle the operands around so the lane index operand is in the 8813 // right place. 8814 unsigned Spacing; 8815 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8816 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8817 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8818 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8819 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8820 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8821 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8822 Spacing)); 8823 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8824 Spacing * 2)); 8825 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8826 Spacing * 3)); 8827 TmpInst.addOperand(Inst.getOperand(1)); // lane 8828 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8829 TmpInst.addOperand(Inst.getOperand(6)); 8830 Inst = TmpInst; 8831 return true; 8832 } 8833 8834 case ARM::VST1LNdWB_fixed_Asm_8: 8835 case ARM::VST1LNdWB_fixed_Asm_16: 8836 case ARM::VST1LNdWB_fixed_Asm_32: { 8837 MCInst TmpInst; 8838 // Shuffle the operands around so the lane index operand is in the 8839 // right place. 8840 unsigned Spacing; 8841 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8842 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8843 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8844 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8845 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8846 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8847 TmpInst.addOperand(Inst.getOperand(1)); // lane 8848 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8849 TmpInst.addOperand(Inst.getOperand(5)); 8850 Inst = TmpInst; 8851 return true; 8852 } 8853 8854 case ARM::VST2LNdWB_fixed_Asm_8: 8855 case ARM::VST2LNdWB_fixed_Asm_16: 8856 case ARM::VST2LNdWB_fixed_Asm_32: 8857 case ARM::VST2LNqWB_fixed_Asm_16: 8858 case ARM::VST2LNqWB_fixed_Asm_32: { 8859 MCInst TmpInst; 8860 // Shuffle the operands around so the lane index operand is in the 8861 // right place. 8862 unsigned Spacing; 8863 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8864 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8865 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8866 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8867 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8868 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8869 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8870 Spacing)); 8871 TmpInst.addOperand(Inst.getOperand(1)); // lane 8872 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8873 TmpInst.addOperand(Inst.getOperand(5)); 8874 Inst = TmpInst; 8875 return true; 8876 } 8877 8878 case ARM::VST3LNdWB_fixed_Asm_8: 8879 case ARM::VST3LNdWB_fixed_Asm_16: 8880 case ARM::VST3LNdWB_fixed_Asm_32: 8881 case ARM::VST3LNqWB_fixed_Asm_16: 8882 case ARM::VST3LNqWB_fixed_Asm_32: { 8883 MCInst TmpInst; 8884 // Shuffle the operands around so the lane index operand is in the 8885 // right place. 8886 unsigned Spacing; 8887 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8888 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8889 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8890 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8891 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8892 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8893 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8894 Spacing)); 8895 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8896 Spacing * 2)); 8897 TmpInst.addOperand(Inst.getOperand(1)); // lane 8898 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8899 TmpInst.addOperand(Inst.getOperand(5)); 8900 Inst = TmpInst; 8901 return true; 8902 } 8903 8904 case ARM::VST4LNdWB_fixed_Asm_8: 8905 case ARM::VST4LNdWB_fixed_Asm_16: 8906 case ARM::VST4LNdWB_fixed_Asm_32: 8907 case ARM::VST4LNqWB_fixed_Asm_16: 8908 case ARM::VST4LNqWB_fixed_Asm_32: { 8909 MCInst TmpInst; 8910 // Shuffle the operands around so the lane index operand is in the 8911 // right place. 8912 unsigned Spacing; 8913 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8914 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8915 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8916 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8917 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8918 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8919 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8920 Spacing)); 8921 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8922 Spacing * 2)); 8923 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8924 Spacing * 3)); 8925 TmpInst.addOperand(Inst.getOperand(1)); // lane 8926 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8927 TmpInst.addOperand(Inst.getOperand(5)); 8928 Inst = TmpInst; 8929 return true; 8930 } 8931 8932 case ARM::VST1LNdAsm_8: 8933 case ARM::VST1LNdAsm_16: 8934 case ARM::VST1LNdAsm_32: { 8935 MCInst TmpInst; 8936 // Shuffle the operands around so the lane index operand is in the 8937 // right place. 8938 unsigned Spacing; 8939 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8940 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8941 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8942 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8943 TmpInst.addOperand(Inst.getOperand(1)); // lane 8944 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8945 TmpInst.addOperand(Inst.getOperand(5)); 8946 Inst = TmpInst; 8947 return true; 8948 } 8949 8950 case ARM::VST2LNdAsm_8: 8951 case ARM::VST2LNdAsm_16: 8952 case ARM::VST2LNdAsm_32: 8953 case ARM::VST2LNqAsm_16: 8954 case ARM::VST2LNqAsm_32: { 8955 MCInst TmpInst; 8956 // Shuffle the operands around so the lane index operand is in the 8957 // right place. 8958 unsigned Spacing; 8959 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8960 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8961 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8962 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8963 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8964 Spacing)); 8965 TmpInst.addOperand(Inst.getOperand(1)); // lane 8966 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8967 TmpInst.addOperand(Inst.getOperand(5)); 8968 Inst = TmpInst; 8969 return true; 8970 } 8971 8972 case ARM::VST3LNdAsm_8: 8973 case ARM::VST3LNdAsm_16: 8974 case ARM::VST3LNdAsm_32: 8975 case ARM::VST3LNqAsm_16: 8976 case ARM::VST3LNqAsm_32: { 8977 MCInst TmpInst; 8978 // Shuffle the operands around so the lane index operand is in the 8979 // right place. 8980 unsigned Spacing; 8981 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8982 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8983 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8984 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8985 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8986 Spacing)); 8987 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8988 Spacing * 2)); 8989 TmpInst.addOperand(Inst.getOperand(1)); // lane 8990 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8991 TmpInst.addOperand(Inst.getOperand(5)); 8992 Inst = TmpInst; 8993 return true; 8994 } 8995 8996 case ARM::VST4LNdAsm_8: 8997 case ARM::VST4LNdAsm_16: 8998 case ARM::VST4LNdAsm_32: 8999 case ARM::VST4LNqAsm_16: 9000 case ARM::VST4LNqAsm_32: { 9001 MCInst TmpInst; 9002 // Shuffle the operands around so the lane index operand is in the 9003 // right place. 9004 unsigned Spacing; 9005 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9006 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9007 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9008 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9009 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9010 Spacing)); 9011 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9012 Spacing * 2)); 9013 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9014 Spacing * 3)); 9015 TmpInst.addOperand(Inst.getOperand(1)); // lane 9016 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9017 TmpInst.addOperand(Inst.getOperand(5)); 9018 Inst = TmpInst; 9019 return true; 9020 } 9021 9022 // Handle NEON VLD complex aliases. 9023 case ARM::VLD1LNdWB_register_Asm_8: 9024 case ARM::VLD1LNdWB_register_Asm_16: 9025 case ARM::VLD1LNdWB_register_Asm_32: { 9026 MCInst TmpInst; 9027 // Shuffle the operands around so the lane index operand is in the 9028 // right place. 9029 unsigned Spacing; 9030 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9031 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9032 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9033 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9034 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9035 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9036 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9037 TmpInst.addOperand(Inst.getOperand(1)); // lane 9038 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9039 TmpInst.addOperand(Inst.getOperand(6)); 9040 Inst = TmpInst; 9041 return true; 9042 } 9043 9044 case ARM::VLD2LNdWB_register_Asm_8: 9045 case ARM::VLD2LNdWB_register_Asm_16: 9046 case ARM::VLD2LNdWB_register_Asm_32: 9047 case ARM::VLD2LNqWB_register_Asm_16: 9048 case ARM::VLD2LNqWB_register_Asm_32: { 9049 MCInst TmpInst; 9050 // Shuffle the operands around so the lane index operand is in the 9051 // right place. 9052 unsigned Spacing; 9053 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9054 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9055 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9056 Spacing)); 9057 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9058 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9059 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9060 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9061 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9062 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9063 Spacing)); 9064 TmpInst.addOperand(Inst.getOperand(1)); // lane 9065 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9066 TmpInst.addOperand(Inst.getOperand(6)); 9067 Inst = TmpInst; 9068 return true; 9069 } 9070 9071 case ARM::VLD3LNdWB_register_Asm_8: 9072 case ARM::VLD3LNdWB_register_Asm_16: 9073 case ARM::VLD3LNdWB_register_Asm_32: 9074 case ARM::VLD3LNqWB_register_Asm_16: 9075 case ARM::VLD3LNqWB_register_Asm_32: { 9076 MCInst TmpInst; 9077 // Shuffle the operands around so the lane index operand is in the 9078 // right place. 9079 unsigned Spacing; 9080 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9081 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9082 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9083 Spacing)); 9084 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9085 Spacing * 2)); 9086 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9087 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9088 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9089 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9090 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9091 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9092 Spacing)); 9093 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9094 Spacing * 2)); 9095 TmpInst.addOperand(Inst.getOperand(1)); // lane 9096 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9097 TmpInst.addOperand(Inst.getOperand(6)); 9098 Inst = TmpInst; 9099 return true; 9100 } 9101 9102 case ARM::VLD4LNdWB_register_Asm_8: 9103 case ARM::VLD4LNdWB_register_Asm_16: 9104 case ARM::VLD4LNdWB_register_Asm_32: 9105 case ARM::VLD4LNqWB_register_Asm_16: 9106 case ARM::VLD4LNqWB_register_Asm_32: { 9107 MCInst TmpInst; 9108 // Shuffle the operands around so the lane index operand is in the 9109 // right place. 9110 unsigned Spacing; 9111 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9112 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9113 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9114 Spacing)); 9115 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9116 Spacing * 2)); 9117 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9118 Spacing * 3)); 9119 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9120 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9121 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9122 TmpInst.addOperand(Inst.getOperand(4)); // Rm 9123 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9124 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9125 Spacing)); 9126 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9127 Spacing * 2)); 9128 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9129 Spacing * 3)); 9130 TmpInst.addOperand(Inst.getOperand(1)); // lane 9131 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 9132 TmpInst.addOperand(Inst.getOperand(6)); 9133 Inst = TmpInst; 9134 return true; 9135 } 9136 9137 case ARM::VLD1LNdWB_fixed_Asm_8: 9138 case ARM::VLD1LNdWB_fixed_Asm_16: 9139 case ARM::VLD1LNdWB_fixed_Asm_32: { 9140 MCInst TmpInst; 9141 // Shuffle the operands around so the lane index operand is in the 9142 // right place. 9143 unsigned Spacing; 9144 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9145 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9146 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9147 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9148 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9149 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9150 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9151 TmpInst.addOperand(Inst.getOperand(1)); // lane 9152 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9153 TmpInst.addOperand(Inst.getOperand(5)); 9154 Inst = TmpInst; 9155 return true; 9156 } 9157 9158 case ARM::VLD2LNdWB_fixed_Asm_8: 9159 case ARM::VLD2LNdWB_fixed_Asm_16: 9160 case ARM::VLD2LNdWB_fixed_Asm_32: 9161 case ARM::VLD2LNqWB_fixed_Asm_16: 9162 case ARM::VLD2LNqWB_fixed_Asm_32: { 9163 MCInst TmpInst; 9164 // Shuffle the operands around so the lane index operand is in the 9165 // right place. 9166 unsigned Spacing; 9167 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9168 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9169 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9170 Spacing)); 9171 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9172 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9173 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9174 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9175 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9176 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9177 Spacing)); 9178 TmpInst.addOperand(Inst.getOperand(1)); // lane 9179 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9180 TmpInst.addOperand(Inst.getOperand(5)); 9181 Inst = TmpInst; 9182 return true; 9183 } 9184 9185 case ARM::VLD3LNdWB_fixed_Asm_8: 9186 case ARM::VLD3LNdWB_fixed_Asm_16: 9187 case ARM::VLD3LNdWB_fixed_Asm_32: 9188 case ARM::VLD3LNqWB_fixed_Asm_16: 9189 case ARM::VLD3LNqWB_fixed_Asm_32: { 9190 MCInst TmpInst; 9191 // Shuffle the operands around so the lane index operand is in the 9192 // right place. 9193 unsigned Spacing; 9194 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9195 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9196 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9197 Spacing)); 9198 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9199 Spacing * 2)); 9200 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9201 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9202 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9203 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9204 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9205 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9206 Spacing)); 9207 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9208 Spacing * 2)); 9209 TmpInst.addOperand(Inst.getOperand(1)); // lane 9210 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9211 TmpInst.addOperand(Inst.getOperand(5)); 9212 Inst = TmpInst; 9213 return true; 9214 } 9215 9216 case ARM::VLD4LNdWB_fixed_Asm_8: 9217 case ARM::VLD4LNdWB_fixed_Asm_16: 9218 case ARM::VLD4LNdWB_fixed_Asm_32: 9219 case ARM::VLD4LNqWB_fixed_Asm_16: 9220 case ARM::VLD4LNqWB_fixed_Asm_32: { 9221 MCInst TmpInst; 9222 // Shuffle the operands around so the lane index operand is in the 9223 // right place. 9224 unsigned Spacing; 9225 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9226 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9227 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9228 Spacing)); 9229 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9230 Spacing * 2)); 9231 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9232 Spacing * 3)); 9233 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 9234 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9235 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9236 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9237 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9238 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9239 Spacing)); 9240 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9241 Spacing * 2)); 9242 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9243 Spacing * 3)); 9244 TmpInst.addOperand(Inst.getOperand(1)); // lane 9245 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9246 TmpInst.addOperand(Inst.getOperand(5)); 9247 Inst = TmpInst; 9248 return true; 9249 } 9250 9251 case ARM::VLD1LNdAsm_8: 9252 case ARM::VLD1LNdAsm_16: 9253 case ARM::VLD1LNdAsm_32: { 9254 MCInst TmpInst; 9255 // Shuffle the operands around so the lane index operand is in the 9256 // right place. 9257 unsigned Spacing; 9258 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9259 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9260 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9261 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9262 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9263 TmpInst.addOperand(Inst.getOperand(1)); // lane 9264 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9265 TmpInst.addOperand(Inst.getOperand(5)); 9266 Inst = TmpInst; 9267 return true; 9268 } 9269 9270 case ARM::VLD2LNdAsm_8: 9271 case ARM::VLD2LNdAsm_16: 9272 case ARM::VLD2LNdAsm_32: 9273 case ARM::VLD2LNqAsm_16: 9274 case ARM::VLD2LNqAsm_32: { 9275 MCInst TmpInst; 9276 // Shuffle the operands around so the lane index operand is in the 9277 // right place. 9278 unsigned Spacing; 9279 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9280 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9281 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9282 Spacing)); 9283 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9284 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9285 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9286 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9287 Spacing)); 9288 TmpInst.addOperand(Inst.getOperand(1)); // lane 9289 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9290 TmpInst.addOperand(Inst.getOperand(5)); 9291 Inst = TmpInst; 9292 return true; 9293 } 9294 9295 case ARM::VLD3LNdAsm_8: 9296 case ARM::VLD3LNdAsm_16: 9297 case ARM::VLD3LNdAsm_32: 9298 case ARM::VLD3LNqAsm_16: 9299 case ARM::VLD3LNqAsm_32: { 9300 MCInst TmpInst; 9301 // Shuffle the operands around so the lane index operand is in the 9302 // right place. 9303 unsigned Spacing; 9304 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9305 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9306 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9307 Spacing)); 9308 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9309 Spacing * 2)); 9310 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9311 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9312 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9313 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9314 Spacing)); 9315 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9316 Spacing * 2)); 9317 TmpInst.addOperand(Inst.getOperand(1)); // lane 9318 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9319 TmpInst.addOperand(Inst.getOperand(5)); 9320 Inst = TmpInst; 9321 return true; 9322 } 9323 9324 case ARM::VLD4LNdAsm_8: 9325 case ARM::VLD4LNdAsm_16: 9326 case ARM::VLD4LNdAsm_32: 9327 case ARM::VLD4LNqAsm_16: 9328 case ARM::VLD4LNqAsm_32: { 9329 MCInst TmpInst; 9330 // Shuffle the operands around so the lane index operand is in the 9331 // right place. 9332 unsigned Spacing; 9333 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9334 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9335 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9336 Spacing)); 9337 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9338 Spacing * 2)); 9339 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9340 Spacing * 3)); 9341 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9342 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9343 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9344 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9345 Spacing)); 9346 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9347 Spacing * 2)); 9348 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9349 Spacing * 3)); 9350 TmpInst.addOperand(Inst.getOperand(1)); // lane 9351 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9352 TmpInst.addOperand(Inst.getOperand(5)); 9353 Inst = TmpInst; 9354 return true; 9355 } 9356 9357 // VLD3DUP single 3-element structure to all lanes instructions. 9358 case ARM::VLD3DUPdAsm_8: 9359 case ARM::VLD3DUPdAsm_16: 9360 case ARM::VLD3DUPdAsm_32: 9361 case ARM::VLD3DUPqAsm_8: 9362 case ARM::VLD3DUPqAsm_16: 9363 case ARM::VLD3DUPqAsm_32: { 9364 MCInst TmpInst; 9365 unsigned Spacing; 9366 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9367 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9368 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9369 Spacing)); 9370 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9371 Spacing * 2)); 9372 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9373 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9374 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9375 TmpInst.addOperand(Inst.getOperand(4)); 9376 Inst = TmpInst; 9377 return true; 9378 } 9379 9380 case ARM::VLD3DUPdWB_fixed_Asm_8: 9381 case ARM::VLD3DUPdWB_fixed_Asm_16: 9382 case ARM::VLD3DUPdWB_fixed_Asm_32: 9383 case ARM::VLD3DUPqWB_fixed_Asm_8: 9384 case ARM::VLD3DUPqWB_fixed_Asm_16: 9385 case ARM::VLD3DUPqWB_fixed_Asm_32: { 9386 MCInst TmpInst; 9387 unsigned Spacing; 9388 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9389 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9390 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9391 Spacing)); 9392 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9393 Spacing * 2)); 9394 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9395 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9396 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9397 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9398 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9399 TmpInst.addOperand(Inst.getOperand(4)); 9400 Inst = TmpInst; 9401 return true; 9402 } 9403 9404 case ARM::VLD3DUPdWB_register_Asm_8: 9405 case ARM::VLD3DUPdWB_register_Asm_16: 9406 case ARM::VLD3DUPdWB_register_Asm_32: 9407 case ARM::VLD3DUPqWB_register_Asm_8: 9408 case ARM::VLD3DUPqWB_register_Asm_16: 9409 case ARM::VLD3DUPqWB_register_Asm_32: { 9410 MCInst TmpInst; 9411 unsigned Spacing; 9412 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9413 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9414 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9415 Spacing)); 9416 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9417 Spacing * 2)); 9418 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9419 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9420 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9421 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9422 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9423 TmpInst.addOperand(Inst.getOperand(5)); 9424 Inst = TmpInst; 9425 return true; 9426 } 9427 9428 // VLD3 multiple 3-element structure instructions. 9429 case ARM::VLD3dAsm_8: 9430 case ARM::VLD3dAsm_16: 9431 case ARM::VLD3dAsm_32: 9432 case ARM::VLD3qAsm_8: 9433 case ARM::VLD3qAsm_16: 9434 case ARM::VLD3qAsm_32: { 9435 MCInst TmpInst; 9436 unsigned Spacing; 9437 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9438 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9439 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9440 Spacing)); 9441 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9442 Spacing * 2)); 9443 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9444 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9445 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9446 TmpInst.addOperand(Inst.getOperand(4)); 9447 Inst = TmpInst; 9448 return true; 9449 } 9450 9451 case ARM::VLD3dWB_fixed_Asm_8: 9452 case ARM::VLD3dWB_fixed_Asm_16: 9453 case ARM::VLD3dWB_fixed_Asm_32: 9454 case ARM::VLD3qWB_fixed_Asm_8: 9455 case ARM::VLD3qWB_fixed_Asm_16: 9456 case ARM::VLD3qWB_fixed_Asm_32: { 9457 MCInst TmpInst; 9458 unsigned Spacing; 9459 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9460 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9461 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9462 Spacing)); 9463 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9464 Spacing * 2)); 9465 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9466 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9467 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9468 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9469 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9470 TmpInst.addOperand(Inst.getOperand(4)); 9471 Inst = TmpInst; 9472 return true; 9473 } 9474 9475 case ARM::VLD3dWB_register_Asm_8: 9476 case ARM::VLD3dWB_register_Asm_16: 9477 case ARM::VLD3dWB_register_Asm_32: 9478 case ARM::VLD3qWB_register_Asm_8: 9479 case ARM::VLD3qWB_register_Asm_16: 9480 case ARM::VLD3qWB_register_Asm_32: { 9481 MCInst TmpInst; 9482 unsigned Spacing; 9483 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9484 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9485 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9486 Spacing)); 9487 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9488 Spacing * 2)); 9489 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9490 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9491 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9492 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9493 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9494 TmpInst.addOperand(Inst.getOperand(5)); 9495 Inst = TmpInst; 9496 return true; 9497 } 9498 9499 // VLD4DUP single 3-element structure to all lanes instructions. 9500 case ARM::VLD4DUPdAsm_8: 9501 case ARM::VLD4DUPdAsm_16: 9502 case ARM::VLD4DUPdAsm_32: 9503 case ARM::VLD4DUPqAsm_8: 9504 case ARM::VLD4DUPqAsm_16: 9505 case ARM::VLD4DUPqAsm_32: { 9506 MCInst TmpInst; 9507 unsigned Spacing; 9508 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9509 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9510 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9511 Spacing)); 9512 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9513 Spacing * 2)); 9514 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9515 Spacing * 3)); 9516 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9517 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9518 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9519 TmpInst.addOperand(Inst.getOperand(4)); 9520 Inst = TmpInst; 9521 return true; 9522 } 9523 9524 case ARM::VLD4DUPdWB_fixed_Asm_8: 9525 case ARM::VLD4DUPdWB_fixed_Asm_16: 9526 case ARM::VLD4DUPdWB_fixed_Asm_32: 9527 case ARM::VLD4DUPqWB_fixed_Asm_8: 9528 case ARM::VLD4DUPqWB_fixed_Asm_16: 9529 case ARM::VLD4DUPqWB_fixed_Asm_32: { 9530 MCInst TmpInst; 9531 unsigned Spacing; 9532 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9533 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9534 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9535 Spacing)); 9536 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9537 Spacing * 2)); 9538 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9539 Spacing * 3)); 9540 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9541 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9542 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9543 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9544 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9545 TmpInst.addOperand(Inst.getOperand(4)); 9546 Inst = TmpInst; 9547 return true; 9548 } 9549 9550 case ARM::VLD4DUPdWB_register_Asm_8: 9551 case ARM::VLD4DUPdWB_register_Asm_16: 9552 case ARM::VLD4DUPdWB_register_Asm_32: 9553 case ARM::VLD4DUPqWB_register_Asm_8: 9554 case ARM::VLD4DUPqWB_register_Asm_16: 9555 case ARM::VLD4DUPqWB_register_Asm_32: { 9556 MCInst TmpInst; 9557 unsigned Spacing; 9558 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9559 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9560 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9561 Spacing)); 9562 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9563 Spacing * 2)); 9564 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9565 Spacing * 3)); 9566 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9567 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9568 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9569 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9570 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9571 TmpInst.addOperand(Inst.getOperand(5)); 9572 Inst = TmpInst; 9573 return true; 9574 } 9575 9576 // VLD4 multiple 4-element structure instructions. 9577 case ARM::VLD4dAsm_8: 9578 case ARM::VLD4dAsm_16: 9579 case ARM::VLD4dAsm_32: 9580 case ARM::VLD4qAsm_8: 9581 case ARM::VLD4qAsm_16: 9582 case ARM::VLD4qAsm_32: { 9583 MCInst TmpInst; 9584 unsigned Spacing; 9585 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9586 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9587 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9588 Spacing)); 9589 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9590 Spacing * 2)); 9591 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9592 Spacing * 3)); 9593 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9594 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9595 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9596 TmpInst.addOperand(Inst.getOperand(4)); 9597 Inst = TmpInst; 9598 return true; 9599 } 9600 9601 case ARM::VLD4dWB_fixed_Asm_8: 9602 case ARM::VLD4dWB_fixed_Asm_16: 9603 case ARM::VLD4dWB_fixed_Asm_32: 9604 case ARM::VLD4qWB_fixed_Asm_8: 9605 case ARM::VLD4qWB_fixed_Asm_16: 9606 case ARM::VLD4qWB_fixed_Asm_32: { 9607 MCInst TmpInst; 9608 unsigned Spacing; 9609 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9610 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9611 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9612 Spacing)); 9613 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9614 Spacing * 2)); 9615 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9616 Spacing * 3)); 9617 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9618 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9619 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9620 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9621 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9622 TmpInst.addOperand(Inst.getOperand(4)); 9623 Inst = TmpInst; 9624 return true; 9625 } 9626 9627 case ARM::VLD4dWB_register_Asm_8: 9628 case ARM::VLD4dWB_register_Asm_16: 9629 case ARM::VLD4dWB_register_Asm_32: 9630 case ARM::VLD4qWB_register_Asm_8: 9631 case ARM::VLD4qWB_register_Asm_16: 9632 case ARM::VLD4qWB_register_Asm_32: { 9633 MCInst TmpInst; 9634 unsigned Spacing; 9635 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9636 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9637 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9638 Spacing)); 9639 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9640 Spacing * 2)); 9641 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9642 Spacing * 3)); 9643 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9644 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9645 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9646 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9647 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9648 TmpInst.addOperand(Inst.getOperand(5)); 9649 Inst = TmpInst; 9650 return true; 9651 } 9652 9653 // VST3 multiple 3-element structure instructions. 9654 case ARM::VST3dAsm_8: 9655 case ARM::VST3dAsm_16: 9656 case ARM::VST3dAsm_32: 9657 case ARM::VST3qAsm_8: 9658 case ARM::VST3qAsm_16: 9659 case ARM::VST3qAsm_32: { 9660 MCInst TmpInst; 9661 unsigned Spacing; 9662 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9663 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9664 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9665 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9666 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9667 Spacing)); 9668 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9669 Spacing * 2)); 9670 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9671 TmpInst.addOperand(Inst.getOperand(4)); 9672 Inst = TmpInst; 9673 return true; 9674 } 9675 9676 case ARM::VST3dWB_fixed_Asm_8: 9677 case ARM::VST3dWB_fixed_Asm_16: 9678 case ARM::VST3dWB_fixed_Asm_32: 9679 case ARM::VST3qWB_fixed_Asm_8: 9680 case ARM::VST3qWB_fixed_Asm_16: 9681 case ARM::VST3qWB_fixed_Asm_32: { 9682 MCInst TmpInst; 9683 unsigned Spacing; 9684 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9685 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9686 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9687 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9688 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9689 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9690 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9691 Spacing)); 9692 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9693 Spacing * 2)); 9694 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9695 TmpInst.addOperand(Inst.getOperand(4)); 9696 Inst = TmpInst; 9697 return true; 9698 } 9699 9700 case ARM::VST3dWB_register_Asm_8: 9701 case ARM::VST3dWB_register_Asm_16: 9702 case ARM::VST3dWB_register_Asm_32: 9703 case ARM::VST3qWB_register_Asm_8: 9704 case ARM::VST3qWB_register_Asm_16: 9705 case ARM::VST3qWB_register_Asm_32: { 9706 MCInst TmpInst; 9707 unsigned Spacing; 9708 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9709 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9710 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9711 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9712 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9713 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9714 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9715 Spacing)); 9716 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9717 Spacing * 2)); 9718 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9719 TmpInst.addOperand(Inst.getOperand(5)); 9720 Inst = TmpInst; 9721 return true; 9722 } 9723 9724 // VST4 multiple 3-element structure instructions. 9725 case ARM::VST4dAsm_8: 9726 case ARM::VST4dAsm_16: 9727 case ARM::VST4dAsm_32: 9728 case ARM::VST4qAsm_8: 9729 case ARM::VST4qAsm_16: 9730 case ARM::VST4qAsm_32: { 9731 MCInst TmpInst; 9732 unsigned Spacing; 9733 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9734 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9735 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9736 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9737 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9738 Spacing)); 9739 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9740 Spacing * 2)); 9741 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9742 Spacing * 3)); 9743 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9744 TmpInst.addOperand(Inst.getOperand(4)); 9745 Inst = TmpInst; 9746 return true; 9747 } 9748 9749 case ARM::VST4dWB_fixed_Asm_8: 9750 case ARM::VST4dWB_fixed_Asm_16: 9751 case ARM::VST4dWB_fixed_Asm_32: 9752 case ARM::VST4qWB_fixed_Asm_8: 9753 case ARM::VST4qWB_fixed_Asm_16: 9754 case ARM::VST4qWB_fixed_Asm_32: { 9755 MCInst TmpInst; 9756 unsigned Spacing; 9757 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9758 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9759 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9760 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9761 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9762 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9763 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9764 Spacing)); 9765 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9766 Spacing * 2)); 9767 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9768 Spacing * 3)); 9769 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9770 TmpInst.addOperand(Inst.getOperand(4)); 9771 Inst = TmpInst; 9772 return true; 9773 } 9774 9775 case ARM::VST4dWB_register_Asm_8: 9776 case ARM::VST4dWB_register_Asm_16: 9777 case ARM::VST4dWB_register_Asm_32: 9778 case ARM::VST4qWB_register_Asm_8: 9779 case ARM::VST4qWB_register_Asm_16: 9780 case ARM::VST4qWB_register_Asm_32: { 9781 MCInst TmpInst; 9782 unsigned Spacing; 9783 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9784 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9785 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9786 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9787 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9788 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9789 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9790 Spacing)); 9791 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9792 Spacing * 2)); 9793 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9794 Spacing * 3)); 9795 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9796 TmpInst.addOperand(Inst.getOperand(5)); 9797 Inst = TmpInst; 9798 return true; 9799 } 9800 9801 // Handle encoding choice for the shift-immediate instructions. 9802 case ARM::t2LSLri: 9803 case ARM::t2LSRri: 9804 case ARM::t2ASRri: 9805 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9806 isARMLowRegister(Inst.getOperand(1).getReg()) && 9807 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9808 !HasWideQualifier) { 9809 unsigned NewOpc; 9810 switch (Inst.getOpcode()) { 9811 default: llvm_unreachable("unexpected opcode"); 9812 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 9813 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 9814 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 9815 } 9816 // The Thumb1 operands aren't in the same order. Awesome, eh? 9817 MCInst TmpInst; 9818 TmpInst.setOpcode(NewOpc); 9819 TmpInst.addOperand(Inst.getOperand(0)); 9820 TmpInst.addOperand(Inst.getOperand(5)); 9821 TmpInst.addOperand(Inst.getOperand(1)); 9822 TmpInst.addOperand(Inst.getOperand(2)); 9823 TmpInst.addOperand(Inst.getOperand(3)); 9824 TmpInst.addOperand(Inst.getOperand(4)); 9825 Inst = TmpInst; 9826 return true; 9827 } 9828 return false; 9829 9830 // Handle the Thumb2 mode MOV complex aliases. 9831 case ARM::t2MOVsr: 9832 case ARM::t2MOVSsr: { 9833 // Which instruction to expand to depends on the CCOut operand and 9834 // whether we're in an IT block if the register operands are low 9835 // registers. 9836 bool isNarrow = false; 9837 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9838 isARMLowRegister(Inst.getOperand(1).getReg()) && 9839 isARMLowRegister(Inst.getOperand(2).getReg()) && 9840 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 9841 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 9842 !HasWideQualifier) 9843 isNarrow = true; 9844 MCInst TmpInst; 9845 unsigned newOpc; 9846 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 9847 default: llvm_unreachable("unexpected opcode!"); 9848 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 9849 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 9850 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 9851 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 9852 } 9853 TmpInst.setOpcode(newOpc); 9854 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9855 if (isNarrow) 9856 TmpInst.addOperand(MCOperand::createReg( 9857 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9858 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9859 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9860 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9861 TmpInst.addOperand(Inst.getOperand(5)); 9862 if (!isNarrow) 9863 TmpInst.addOperand(MCOperand::createReg( 9864 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9865 Inst = TmpInst; 9866 return true; 9867 } 9868 case ARM::t2MOVsi: 9869 case ARM::t2MOVSsi: { 9870 // Which instruction to expand to depends on the CCOut operand and 9871 // whether we're in an IT block if the register operands are low 9872 // registers. 9873 bool isNarrow = false; 9874 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9875 isARMLowRegister(Inst.getOperand(1).getReg()) && 9876 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 9877 !HasWideQualifier) 9878 isNarrow = true; 9879 MCInst TmpInst; 9880 unsigned newOpc; 9881 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 9882 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 9883 bool isMov = false; 9884 // MOV rd, rm, LSL #0 is actually a MOV instruction 9885 if (Shift == ARM_AM::lsl && Amount == 0) { 9886 isMov = true; 9887 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 9888 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 9889 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 9890 // instead. 9891 if (inITBlock()) { 9892 isNarrow = false; 9893 } 9894 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 9895 } else { 9896 switch(Shift) { 9897 default: llvm_unreachable("unexpected opcode!"); 9898 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 9899 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 9900 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 9901 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 9902 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 9903 } 9904 } 9905 if (Amount == 32) Amount = 0; 9906 TmpInst.setOpcode(newOpc); 9907 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9908 if (isNarrow && !isMov) 9909 TmpInst.addOperand(MCOperand::createReg( 9910 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9911 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9912 if (newOpc != ARM::t2RRX && !isMov) 9913 TmpInst.addOperand(MCOperand::createImm(Amount)); 9914 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9915 TmpInst.addOperand(Inst.getOperand(4)); 9916 if (!isNarrow) 9917 TmpInst.addOperand(MCOperand::createReg( 9918 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9919 Inst = TmpInst; 9920 return true; 9921 } 9922 // Handle the ARM mode MOV complex aliases. 9923 case ARM::ASRr: 9924 case ARM::LSRr: 9925 case ARM::LSLr: 9926 case ARM::RORr: { 9927 ARM_AM::ShiftOpc ShiftTy; 9928 switch(Inst.getOpcode()) { 9929 default: llvm_unreachable("unexpected opcode!"); 9930 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 9931 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 9932 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 9933 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 9934 } 9935 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 9936 MCInst TmpInst; 9937 TmpInst.setOpcode(ARM::MOVsr); 9938 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9939 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9940 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9941 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9942 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9943 TmpInst.addOperand(Inst.getOperand(4)); 9944 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9945 Inst = TmpInst; 9946 return true; 9947 } 9948 case ARM::ASRi: 9949 case ARM::LSRi: 9950 case ARM::LSLi: 9951 case ARM::RORi: { 9952 ARM_AM::ShiftOpc ShiftTy; 9953 switch(Inst.getOpcode()) { 9954 default: llvm_unreachable("unexpected opcode!"); 9955 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 9956 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 9957 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 9958 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 9959 } 9960 // A shift by zero is a plain MOVr, not a MOVsi. 9961 unsigned Amt = Inst.getOperand(2).getImm(); 9962 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 9963 // A shift by 32 should be encoded as 0 when permitted 9964 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 9965 Amt = 0; 9966 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 9967 MCInst TmpInst; 9968 TmpInst.setOpcode(Opc); 9969 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9970 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9971 if (Opc == ARM::MOVsi) 9972 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9973 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9974 TmpInst.addOperand(Inst.getOperand(4)); 9975 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9976 Inst = TmpInst; 9977 return true; 9978 } 9979 case ARM::RRXi: { 9980 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 9981 MCInst TmpInst; 9982 TmpInst.setOpcode(ARM::MOVsi); 9983 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9984 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9985 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9986 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9987 TmpInst.addOperand(Inst.getOperand(3)); 9988 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 9989 Inst = TmpInst; 9990 return true; 9991 } 9992 case ARM::t2LDMIA_UPD: { 9993 // If this is a load of a single register, then we should use 9994 // a post-indexed LDR instruction instead, per the ARM ARM. 9995 if (Inst.getNumOperands() != 5) 9996 return false; 9997 MCInst TmpInst; 9998 TmpInst.setOpcode(ARM::t2LDR_POST); 9999 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10000 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10001 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10002 TmpInst.addOperand(MCOperand::createImm(4)); 10003 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10004 TmpInst.addOperand(Inst.getOperand(3)); 10005 Inst = TmpInst; 10006 return true; 10007 } 10008 case ARM::t2STMDB_UPD: { 10009 // If this is a store of a single register, then we should use 10010 // a pre-indexed STR instruction instead, per the ARM ARM. 10011 if (Inst.getNumOperands() != 5) 10012 return false; 10013 MCInst TmpInst; 10014 TmpInst.setOpcode(ARM::t2STR_PRE); 10015 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10016 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10017 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10018 TmpInst.addOperand(MCOperand::createImm(-4)); 10019 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10020 TmpInst.addOperand(Inst.getOperand(3)); 10021 Inst = TmpInst; 10022 return true; 10023 } 10024 case ARM::LDMIA_UPD: 10025 // If this is a load of a single register via a 'pop', then we should use 10026 // a post-indexed LDR instruction instead, per the ARM ARM. 10027 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 10028 Inst.getNumOperands() == 5) { 10029 MCInst TmpInst; 10030 TmpInst.setOpcode(ARM::LDR_POST_IMM); 10031 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10032 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10033 TmpInst.addOperand(Inst.getOperand(1)); // Rn 10034 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 10035 TmpInst.addOperand(MCOperand::createImm(4)); 10036 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10037 TmpInst.addOperand(Inst.getOperand(3)); 10038 Inst = TmpInst; 10039 return true; 10040 } 10041 break; 10042 case ARM::STMDB_UPD: 10043 // If this is a store of a single register via a 'push', then we should use 10044 // a pre-indexed STR instruction instead, per the ARM ARM. 10045 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 10046 Inst.getNumOperands() == 5) { 10047 MCInst TmpInst; 10048 TmpInst.setOpcode(ARM::STR_PRE_IMM); 10049 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 10050 TmpInst.addOperand(Inst.getOperand(4)); // Rt 10051 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 10052 TmpInst.addOperand(MCOperand::createImm(-4)); 10053 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 10054 TmpInst.addOperand(Inst.getOperand(3)); 10055 Inst = TmpInst; 10056 } 10057 break; 10058 case ARM::t2ADDri12: 10059 case ARM::t2SUBri12: 10060 case ARM::t2ADDspImm12: 10061 case ARM::t2SUBspImm12: { 10062 // If the immediate fits for encoding T3 and the generic 10063 // mnemonic was used, encoding T3 is preferred. 10064 const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken(); 10065 if ((Token != "add" && Token != "sub") || 10066 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 10067 break; 10068 switch (Inst.getOpcode()) { 10069 case ARM::t2ADDri12: 10070 Inst.setOpcode(ARM::t2ADDri); 10071 break; 10072 case ARM::t2SUBri12: 10073 Inst.setOpcode(ARM::t2SUBri); 10074 break; 10075 case ARM::t2ADDspImm12: 10076 Inst.setOpcode(ARM::t2ADDspImm); 10077 break; 10078 case ARM::t2SUBspImm12: 10079 Inst.setOpcode(ARM::t2SUBspImm); 10080 break; 10081 } 10082 10083 Inst.addOperand(MCOperand::createReg(0)); // cc_out 10084 return true; 10085 } 10086 case ARM::tADDi8: 10087 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 10088 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 10089 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 10090 // to encoding T1 if <Rd> is omitted." 10091 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 10092 Inst.setOpcode(ARM::tADDi3); 10093 return true; 10094 } 10095 break; 10096 case ARM::tSUBi8: 10097 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 10098 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 10099 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 10100 // to encoding T1 if <Rd> is omitted." 10101 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 10102 Inst.setOpcode(ARM::tSUBi3); 10103 return true; 10104 } 10105 break; 10106 case ARM::t2ADDri: 10107 case ARM::t2SUBri: { 10108 // If the destination and first source operand are the same, and 10109 // the flags are compatible with the current IT status, use encoding T2 10110 // instead of T3. For compatibility with the system 'as'. Make sure the 10111 // wide encoding wasn't explicit. 10112 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 10113 !isARMLowRegister(Inst.getOperand(0).getReg()) || 10114 (Inst.getOperand(2).isImm() && 10115 (unsigned)Inst.getOperand(2).getImm() > 255) || 10116 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 10117 HasWideQualifier) 10118 break; 10119 MCInst TmpInst; 10120 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 10121 ARM::tADDi8 : ARM::tSUBi8); 10122 TmpInst.addOperand(Inst.getOperand(0)); 10123 TmpInst.addOperand(Inst.getOperand(5)); 10124 TmpInst.addOperand(Inst.getOperand(0)); 10125 TmpInst.addOperand(Inst.getOperand(2)); 10126 TmpInst.addOperand(Inst.getOperand(3)); 10127 TmpInst.addOperand(Inst.getOperand(4)); 10128 Inst = TmpInst; 10129 return true; 10130 } 10131 case ARM::t2ADDspImm: 10132 case ARM::t2SUBspImm: { 10133 // Prefer T1 encoding if possible 10134 if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier) 10135 break; 10136 unsigned V = Inst.getOperand(2).getImm(); 10137 if (V & 3 || V > ((1 << 7) - 1) << 2) 10138 break; 10139 MCInst TmpInst; 10140 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi 10141 : ARM::tSUBspi); 10142 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg 10143 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg 10144 TmpInst.addOperand(MCOperand::createImm(V / 4)); // immediate 10145 TmpInst.addOperand(Inst.getOperand(3)); // pred 10146 TmpInst.addOperand(Inst.getOperand(4)); 10147 Inst = TmpInst; 10148 return true; 10149 } 10150 case ARM::t2ADDrr: { 10151 // If the destination and first source operand are the same, and 10152 // there's no setting of the flags, use encoding T2 instead of T3. 10153 // Note that this is only for ADD, not SUB. This mirrors the system 10154 // 'as' behaviour. Also take advantage of ADD being commutative. 10155 // Make sure the wide encoding wasn't explicit. 10156 bool Swap = false; 10157 auto DestReg = Inst.getOperand(0).getReg(); 10158 bool Transform = DestReg == Inst.getOperand(1).getReg(); 10159 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 10160 Transform = true; 10161 Swap = true; 10162 } 10163 if (!Transform || 10164 Inst.getOperand(5).getReg() != 0 || 10165 HasWideQualifier) 10166 break; 10167 MCInst TmpInst; 10168 TmpInst.setOpcode(ARM::tADDhirr); 10169 TmpInst.addOperand(Inst.getOperand(0)); 10170 TmpInst.addOperand(Inst.getOperand(0)); 10171 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 10172 TmpInst.addOperand(Inst.getOperand(3)); 10173 TmpInst.addOperand(Inst.getOperand(4)); 10174 Inst = TmpInst; 10175 return true; 10176 } 10177 case ARM::tADDrSP: 10178 // If the non-SP source operand and the destination operand are not the 10179 // same, we need to use the 32-bit encoding if it's available. 10180 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 10181 Inst.setOpcode(ARM::t2ADDrr); 10182 Inst.addOperand(MCOperand::createReg(0)); // cc_out 10183 return true; 10184 } 10185 break; 10186 case ARM::tB: 10187 // A Thumb conditional branch outside of an IT block is a tBcc. 10188 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 10189 Inst.setOpcode(ARM::tBcc); 10190 return true; 10191 } 10192 break; 10193 case ARM::t2B: 10194 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 10195 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 10196 Inst.setOpcode(ARM::t2Bcc); 10197 return true; 10198 } 10199 break; 10200 case ARM::t2Bcc: 10201 // If the conditional is AL or we're in an IT block, we really want t2B. 10202 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 10203 Inst.setOpcode(ARM::t2B); 10204 return true; 10205 } 10206 break; 10207 case ARM::tBcc: 10208 // If the conditional is AL, we really want tB. 10209 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 10210 Inst.setOpcode(ARM::tB); 10211 return true; 10212 } 10213 break; 10214 case ARM::tLDMIA: { 10215 // If the register list contains any high registers, or if the writeback 10216 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 10217 // instead if we're in Thumb2. Otherwise, this should have generated 10218 // an error in validateInstruction(). 10219 unsigned Rn = Inst.getOperand(0).getReg(); 10220 bool hasWritebackToken = 10221 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 10222 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 10223 bool listContainsBase; 10224 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 10225 (!listContainsBase && !hasWritebackToken) || 10226 (listContainsBase && hasWritebackToken)) { 10227 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 10228 assert(isThumbTwo()); 10229 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 10230 // If we're switching to the updating version, we need to insert 10231 // the writeback tied operand. 10232 if (hasWritebackToken) 10233 Inst.insert(Inst.begin(), 10234 MCOperand::createReg(Inst.getOperand(0).getReg())); 10235 return true; 10236 } 10237 break; 10238 } 10239 case ARM::tSTMIA_UPD: { 10240 // If the register list contains any high registers, we need to use 10241 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 10242 // should have generated an error in validateInstruction(). 10243 unsigned Rn = Inst.getOperand(0).getReg(); 10244 bool listContainsBase; 10245 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 10246 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 10247 assert(isThumbTwo()); 10248 Inst.setOpcode(ARM::t2STMIA_UPD); 10249 return true; 10250 } 10251 break; 10252 } 10253 case ARM::tPOP: { 10254 bool listContainsBase; 10255 // If the register list contains any high registers, we need to use 10256 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 10257 // should have generated an error in validateInstruction(). 10258 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 10259 return false; 10260 assert(isThumbTwo()); 10261 Inst.setOpcode(ARM::t2LDMIA_UPD); 10262 // Add the base register and writeback operands. 10263 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10264 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10265 return true; 10266 } 10267 case ARM::tPUSH: { 10268 bool listContainsBase; 10269 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 10270 return false; 10271 assert(isThumbTwo()); 10272 Inst.setOpcode(ARM::t2STMDB_UPD); 10273 // Add the base register and writeback operands. 10274 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10275 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 10276 return true; 10277 } 10278 case ARM::t2MOVi: 10279 // If we can use the 16-bit encoding and the user didn't explicitly 10280 // request the 32-bit variant, transform it here. 10281 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10282 (Inst.getOperand(1).isImm() && 10283 (unsigned)Inst.getOperand(1).getImm() <= 255) && 10284 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10285 !HasWideQualifier) { 10286 // The operands aren't in the same order for tMOVi8... 10287 MCInst TmpInst; 10288 TmpInst.setOpcode(ARM::tMOVi8); 10289 TmpInst.addOperand(Inst.getOperand(0)); 10290 TmpInst.addOperand(Inst.getOperand(4)); 10291 TmpInst.addOperand(Inst.getOperand(1)); 10292 TmpInst.addOperand(Inst.getOperand(2)); 10293 TmpInst.addOperand(Inst.getOperand(3)); 10294 Inst = TmpInst; 10295 return true; 10296 } 10297 break; 10298 10299 case ARM::t2MOVr: 10300 // If we can use the 16-bit encoding and the user didn't explicitly 10301 // request the 32-bit variant, transform it here. 10302 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10303 isARMLowRegister(Inst.getOperand(1).getReg()) && 10304 Inst.getOperand(2).getImm() == ARMCC::AL && 10305 Inst.getOperand(4).getReg() == ARM::CPSR && 10306 !HasWideQualifier) { 10307 // The operands aren't the same for tMOV[S]r... (no cc_out) 10308 MCInst TmpInst; 10309 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 10310 TmpInst.addOperand(Inst.getOperand(0)); 10311 TmpInst.addOperand(Inst.getOperand(1)); 10312 TmpInst.addOperand(Inst.getOperand(2)); 10313 TmpInst.addOperand(Inst.getOperand(3)); 10314 Inst = TmpInst; 10315 return true; 10316 } 10317 break; 10318 10319 case ARM::t2SXTH: 10320 case ARM::t2SXTB: 10321 case ARM::t2UXTH: 10322 case ARM::t2UXTB: 10323 // If we can use the 16-bit encoding and the user didn't explicitly 10324 // request the 32-bit variant, transform it here. 10325 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10326 isARMLowRegister(Inst.getOperand(1).getReg()) && 10327 Inst.getOperand(2).getImm() == 0 && 10328 !HasWideQualifier) { 10329 unsigned NewOpc; 10330 switch (Inst.getOpcode()) { 10331 default: llvm_unreachable("Illegal opcode!"); 10332 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 10333 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 10334 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 10335 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 10336 } 10337 // The operands aren't the same for thumb1 (no rotate operand). 10338 MCInst TmpInst; 10339 TmpInst.setOpcode(NewOpc); 10340 TmpInst.addOperand(Inst.getOperand(0)); 10341 TmpInst.addOperand(Inst.getOperand(1)); 10342 TmpInst.addOperand(Inst.getOperand(3)); 10343 TmpInst.addOperand(Inst.getOperand(4)); 10344 Inst = TmpInst; 10345 return true; 10346 } 10347 break; 10348 10349 case ARM::MOVsi: { 10350 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10351 // rrx shifts and asr/lsr of #32 is encoded as 0 10352 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 10353 return false; 10354 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 10355 // Shifting by zero is accepted as a vanilla 'MOVr' 10356 MCInst TmpInst; 10357 TmpInst.setOpcode(ARM::MOVr); 10358 TmpInst.addOperand(Inst.getOperand(0)); 10359 TmpInst.addOperand(Inst.getOperand(1)); 10360 TmpInst.addOperand(Inst.getOperand(3)); 10361 TmpInst.addOperand(Inst.getOperand(4)); 10362 TmpInst.addOperand(Inst.getOperand(5)); 10363 Inst = TmpInst; 10364 return true; 10365 } 10366 return false; 10367 } 10368 case ARM::ANDrsi: 10369 case ARM::ORRrsi: 10370 case ARM::EORrsi: 10371 case ARM::BICrsi: 10372 case ARM::SUBrsi: 10373 case ARM::ADDrsi: { 10374 unsigned newOpc; 10375 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 10376 if (SOpc == ARM_AM::rrx) return false; 10377 switch (Inst.getOpcode()) { 10378 default: llvm_unreachable("unexpected opcode!"); 10379 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 10380 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 10381 case ARM::EORrsi: newOpc = ARM::EORrr; break; 10382 case ARM::BICrsi: newOpc = ARM::BICrr; break; 10383 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 10384 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 10385 } 10386 // If the shift is by zero, use the non-shifted instruction definition. 10387 // The exception is for right shifts, where 0 == 32 10388 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 10389 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 10390 MCInst TmpInst; 10391 TmpInst.setOpcode(newOpc); 10392 TmpInst.addOperand(Inst.getOperand(0)); 10393 TmpInst.addOperand(Inst.getOperand(1)); 10394 TmpInst.addOperand(Inst.getOperand(2)); 10395 TmpInst.addOperand(Inst.getOperand(4)); 10396 TmpInst.addOperand(Inst.getOperand(5)); 10397 TmpInst.addOperand(Inst.getOperand(6)); 10398 Inst = TmpInst; 10399 return true; 10400 } 10401 return false; 10402 } 10403 case ARM::ITasm: 10404 case ARM::t2IT: { 10405 // Set up the IT block state according to the IT instruction we just 10406 // matched. 10407 assert(!inITBlock() && "nested IT blocks?!"); 10408 startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()), 10409 Inst.getOperand(1).getImm()); 10410 break; 10411 } 10412 case ARM::t2LSLrr: 10413 case ARM::t2LSRrr: 10414 case ARM::t2ASRrr: 10415 case ARM::t2SBCrr: 10416 case ARM::t2RORrr: 10417 case ARM::t2BICrr: 10418 // Assemblers should use the narrow encodings of these instructions when permissible. 10419 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10420 isARMLowRegister(Inst.getOperand(2).getReg())) && 10421 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10422 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10423 !HasWideQualifier) { 10424 unsigned NewOpc; 10425 switch (Inst.getOpcode()) { 10426 default: llvm_unreachable("unexpected opcode"); 10427 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 10428 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 10429 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 10430 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 10431 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 10432 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 10433 } 10434 MCInst TmpInst; 10435 TmpInst.setOpcode(NewOpc); 10436 TmpInst.addOperand(Inst.getOperand(0)); 10437 TmpInst.addOperand(Inst.getOperand(5)); 10438 TmpInst.addOperand(Inst.getOperand(1)); 10439 TmpInst.addOperand(Inst.getOperand(2)); 10440 TmpInst.addOperand(Inst.getOperand(3)); 10441 TmpInst.addOperand(Inst.getOperand(4)); 10442 Inst = TmpInst; 10443 return true; 10444 } 10445 return false; 10446 10447 case ARM::t2ANDrr: 10448 case ARM::t2EORrr: 10449 case ARM::t2ADCrr: 10450 case ARM::t2ORRrr: 10451 // Assemblers should use the narrow encodings of these instructions when permissible. 10452 // These instructions are special in that they are commutable, so shorter encodings 10453 // are available more often. 10454 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10455 isARMLowRegister(Inst.getOperand(2).getReg())) && 10456 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 10457 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 10458 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10459 !HasWideQualifier) { 10460 unsigned NewOpc; 10461 switch (Inst.getOpcode()) { 10462 default: llvm_unreachable("unexpected opcode"); 10463 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 10464 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 10465 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 10466 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 10467 } 10468 MCInst TmpInst; 10469 TmpInst.setOpcode(NewOpc); 10470 TmpInst.addOperand(Inst.getOperand(0)); 10471 TmpInst.addOperand(Inst.getOperand(5)); 10472 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 10473 TmpInst.addOperand(Inst.getOperand(1)); 10474 TmpInst.addOperand(Inst.getOperand(2)); 10475 } else { 10476 TmpInst.addOperand(Inst.getOperand(2)); 10477 TmpInst.addOperand(Inst.getOperand(1)); 10478 } 10479 TmpInst.addOperand(Inst.getOperand(3)); 10480 TmpInst.addOperand(Inst.getOperand(4)); 10481 Inst = TmpInst; 10482 return true; 10483 } 10484 return false; 10485 case ARM::MVE_VPST: 10486 case ARM::MVE_VPTv16i8: 10487 case ARM::MVE_VPTv8i16: 10488 case ARM::MVE_VPTv4i32: 10489 case ARM::MVE_VPTv16u8: 10490 case ARM::MVE_VPTv8u16: 10491 case ARM::MVE_VPTv4u32: 10492 case ARM::MVE_VPTv16s8: 10493 case ARM::MVE_VPTv8s16: 10494 case ARM::MVE_VPTv4s32: 10495 case ARM::MVE_VPTv4f32: 10496 case ARM::MVE_VPTv8f16: 10497 case ARM::MVE_VPTv16i8r: 10498 case ARM::MVE_VPTv8i16r: 10499 case ARM::MVE_VPTv4i32r: 10500 case ARM::MVE_VPTv16u8r: 10501 case ARM::MVE_VPTv8u16r: 10502 case ARM::MVE_VPTv4u32r: 10503 case ARM::MVE_VPTv16s8r: 10504 case ARM::MVE_VPTv8s16r: 10505 case ARM::MVE_VPTv4s32r: 10506 case ARM::MVE_VPTv4f32r: 10507 case ARM::MVE_VPTv8f16r: { 10508 assert(!inVPTBlock() && "Nested VPT blocks are not allowed"); 10509 MCOperand &MO = Inst.getOperand(0); 10510 VPTState.Mask = MO.getImm(); 10511 VPTState.CurPosition = 0; 10512 break; 10513 } 10514 } 10515 return false; 10516 } 10517 10518 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 10519 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 10520 // suffix depending on whether they're in an IT block or not. 10521 unsigned Opc = Inst.getOpcode(); 10522 const MCInstrDesc &MCID = MII.get(Opc); 10523 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 10524 assert(MCID.hasOptionalDef() && 10525 "optionally flag setting instruction missing optional def operand"); 10526 assert(MCID.NumOperands == Inst.getNumOperands() && 10527 "operand count mismatch!"); 10528 // Find the optional-def operand (cc_out). 10529 unsigned OpNo; 10530 for (OpNo = 0; 10531 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 10532 ++OpNo) 10533 ; 10534 // If we're parsing Thumb1, reject it completely. 10535 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 10536 return Match_RequiresFlagSetting; 10537 // If we're parsing Thumb2, which form is legal depends on whether we're 10538 // in an IT block. 10539 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 10540 !inITBlock()) 10541 return Match_RequiresITBlock; 10542 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 10543 inITBlock()) 10544 return Match_RequiresNotITBlock; 10545 // LSL with zero immediate is not allowed in an IT block 10546 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 10547 return Match_RequiresNotITBlock; 10548 } else if (isThumbOne()) { 10549 // Some high-register supporting Thumb1 encodings only allow both registers 10550 // to be from r0-r7 when in Thumb2. 10551 if (Opc == ARM::tADDhirr && !hasV6MOps() && 10552 isARMLowRegister(Inst.getOperand(1).getReg()) && 10553 isARMLowRegister(Inst.getOperand(2).getReg())) 10554 return Match_RequiresThumb2; 10555 // Others only require ARMv6 or later. 10556 else if (Opc == ARM::tMOVr && !hasV6Ops() && 10557 isARMLowRegister(Inst.getOperand(0).getReg()) && 10558 isARMLowRegister(Inst.getOperand(1).getReg())) 10559 return Match_RequiresV6; 10560 } 10561 10562 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 10563 // than the loop below can handle, so it uses the GPRnopc register class and 10564 // we do SP handling here. 10565 if (Opc == ARM::t2MOVr && !hasV8Ops()) 10566 { 10567 // SP as both source and destination is not allowed 10568 if (Inst.getOperand(0).getReg() == ARM::SP && 10569 Inst.getOperand(1).getReg() == ARM::SP) 10570 return Match_RequiresV8; 10571 // When flags-setting SP as either source or destination is not allowed 10572 if (Inst.getOperand(4).getReg() == ARM::CPSR && 10573 (Inst.getOperand(0).getReg() == ARM::SP || 10574 Inst.getOperand(1).getReg() == ARM::SP)) 10575 return Match_RequiresV8; 10576 } 10577 10578 switch (Inst.getOpcode()) { 10579 case ARM::VMRS: 10580 case ARM::VMSR: 10581 case ARM::VMRS_FPCXTS: 10582 case ARM::VMRS_FPCXTNS: 10583 case ARM::VMSR_FPCXTS: 10584 case ARM::VMSR_FPCXTNS: 10585 case ARM::VMRS_FPSCR_NZCVQC: 10586 case ARM::VMSR_FPSCR_NZCVQC: 10587 case ARM::FMSTAT: 10588 case ARM::VMRS_VPR: 10589 case ARM::VMRS_P0: 10590 case ARM::VMSR_VPR: 10591 case ARM::VMSR_P0: 10592 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 10593 // ARMv8-A. 10594 if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP && 10595 (isThumb() && !hasV8Ops())) 10596 return Match_InvalidOperand; 10597 break; 10598 default: 10599 break; 10600 } 10601 10602 for (unsigned I = 0; I < MCID.NumOperands; ++I) 10603 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 10604 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 10605 const auto &Op = Inst.getOperand(I); 10606 if (!Op.isReg()) { 10607 // This can happen in awkward cases with tied operands, e.g. a 10608 // writeback load/store with a complex addressing mode in 10609 // which there's an output operand corresponding to the 10610 // updated written-back base register: the Tablegen-generated 10611 // AsmMatcher will have written a placeholder operand to that 10612 // slot in the form of an immediate 0, because it can't 10613 // generate the register part of the complex addressing-mode 10614 // operand ahead of time. 10615 continue; 10616 } 10617 10618 unsigned Reg = Op.getReg(); 10619 if ((Reg == ARM::SP) && !hasV8Ops()) 10620 return Match_RequiresV8; 10621 else if (Reg == ARM::PC) 10622 return Match_InvalidOperand; 10623 } 10624 10625 return Match_Success; 10626 } 10627 10628 namespace llvm { 10629 10630 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 10631 return true; // In an assembly source, no need to second-guess 10632 } 10633 10634 } // end namespace llvm 10635 10636 // Returns true if Inst is unpredictable if it is in and IT block, but is not 10637 // the last instruction in the block. 10638 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 10639 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10640 10641 // All branch & call instructions terminate IT blocks with the exception of 10642 // SVC. 10643 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 10644 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 10645 return true; 10646 10647 // Any arithmetic instruction which writes to the PC also terminates the IT 10648 // block. 10649 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 10650 return true; 10651 10652 return false; 10653 } 10654 10655 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 10656 SmallVectorImpl<NearMissInfo> &NearMisses, 10657 bool MatchingInlineAsm, 10658 bool &EmitInITBlock, 10659 MCStreamer &Out) { 10660 // If we can't use an implicit IT block here, just match as normal. 10661 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 10662 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10663 10664 // Try to match the instruction in an extension of the current IT block (if 10665 // there is one). 10666 if (inImplicitITBlock()) { 10667 extendImplicitITBlock(ITState.Cond); 10668 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10669 Match_Success) { 10670 // The match succeded, but we still have to check that the instruction is 10671 // valid in this implicit IT block. 10672 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10673 if (MCID.isPredicable()) { 10674 ARMCC::CondCodes InstCond = 10675 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10676 .getImm(); 10677 ARMCC::CondCodes ITCond = currentITCond(); 10678 if (InstCond == ITCond) { 10679 EmitInITBlock = true; 10680 return Match_Success; 10681 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 10682 invertCurrentITCondition(); 10683 EmitInITBlock = true; 10684 return Match_Success; 10685 } 10686 } 10687 } 10688 rewindImplicitITPosition(); 10689 } 10690 10691 // Finish the current IT block, and try to match outside any IT block. 10692 flushPendingInstructions(Out); 10693 unsigned PlainMatchResult = 10694 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10695 if (PlainMatchResult == Match_Success) { 10696 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10697 if (MCID.isPredicable()) { 10698 ARMCC::CondCodes InstCond = 10699 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10700 .getImm(); 10701 // Some forms of the branch instruction have their own condition code 10702 // fields, so can be conditionally executed without an IT block. 10703 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 10704 EmitInITBlock = false; 10705 return Match_Success; 10706 } 10707 if (InstCond == ARMCC::AL) { 10708 EmitInITBlock = false; 10709 return Match_Success; 10710 } 10711 } else { 10712 EmitInITBlock = false; 10713 return Match_Success; 10714 } 10715 } 10716 10717 // Try to match in a new IT block. The matcher doesn't check the actual 10718 // condition, so we create an IT block with a dummy condition, and fix it up 10719 // once we know the actual condition. 10720 startImplicitITBlock(); 10721 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10722 Match_Success) { 10723 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10724 if (MCID.isPredicable()) { 10725 ITState.Cond = 10726 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10727 .getImm(); 10728 EmitInITBlock = true; 10729 return Match_Success; 10730 } 10731 } 10732 discardImplicitITBlock(); 10733 10734 // If none of these succeed, return the error we got when trying to match 10735 // outside any IT blocks. 10736 EmitInITBlock = false; 10737 return PlainMatchResult; 10738 } 10739 10740 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 10741 unsigned VariantID = 0); 10742 10743 static const char *getSubtargetFeatureName(uint64_t Val); 10744 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 10745 OperandVector &Operands, 10746 MCStreamer &Out, uint64_t &ErrorInfo, 10747 bool MatchingInlineAsm) { 10748 MCInst Inst; 10749 unsigned MatchResult; 10750 bool PendConditionalInstruction = false; 10751 10752 SmallVector<NearMissInfo, 4> NearMisses; 10753 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 10754 PendConditionalInstruction, Out); 10755 10756 switch (MatchResult) { 10757 case Match_Success: 10758 LLVM_DEBUG(dbgs() << "Parsed as: "; 10759 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10760 dbgs() << "\n"); 10761 10762 // Context sensitive operand constraints aren't handled by the matcher, 10763 // so check them here. 10764 if (validateInstruction(Inst, Operands)) { 10765 // Still progress the IT block, otherwise one wrong condition causes 10766 // nasty cascading errors. 10767 forwardITPosition(); 10768 forwardVPTPosition(); 10769 return true; 10770 } 10771 10772 { // processInstruction() updates inITBlock state, we need to save it away 10773 bool wasInITBlock = inITBlock(); 10774 10775 // Some instructions need post-processing to, for example, tweak which 10776 // encoding is selected. Loop on it while changes happen so the 10777 // individual transformations can chain off each other. E.g., 10778 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 10779 while (processInstruction(Inst, Operands, Out)) 10780 LLVM_DEBUG(dbgs() << "Changed to: "; 10781 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10782 dbgs() << "\n"); 10783 10784 // Only after the instruction is fully processed, we can validate it 10785 if (wasInITBlock && hasV8Ops() && isThumb() && 10786 !isV8EligibleForIT(&Inst)) { 10787 Warning(IDLoc, "deprecated instruction in IT block"); 10788 } 10789 } 10790 10791 // Only move forward at the very end so that everything in validate 10792 // and process gets a consistent answer about whether we're in an IT 10793 // block. 10794 forwardITPosition(); 10795 forwardVPTPosition(); 10796 10797 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 10798 // doesn't actually encode. 10799 if (Inst.getOpcode() == ARM::ITasm) 10800 return false; 10801 10802 Inst.setLoc(IDLoc); 10803 if (PendConditionalInstruction) { 10804 PendingConditionalInsts.push_back(Inst); 10805 if (isITBlockFull() || isITBlockTerminator(Inst)) 10806 flushPendingInstructions(Out); 10807 } else { 10808 Out.emitInstruction(Inst, getSTI()); 10809 } 10810 return false; 10811 case Match_NearMisses: 10812 ReportNearMisses(NearMisses, IDLoc, Operands); 10813 return true; 10814 case Match_MnemonicFail: { 10815 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 10816 std::string Suggestion = ARMMnemonicSpellCheck( 10817 ((ARMOperand &)*Operands[0]).getToken(), FBS); 10818 return Error(IDLoc, "invalid instruction" + Suggestion, 10819 ((ARMOperand &)*Operands[0]).getLocRange()); 10820 } 10821 } 10822 10823 llvm_unreachable("Implement any new match types added!"); 10824 } 10825 10826 /// parseDirective parses the arm specific directives 10827 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 10828 const MCObjectFileInfo::Environment Format = 10829 getContext().getObjectFileInfo()->getObjectFileType(); 10830 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10831 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 10832 10833 std::string IDVal = DirectiveID.getIdentifier().lower(); 10834 if (IDVal == ".word") 10835 parseLiteralValues(4, DirectiveID.getLoc()); 10836 else if (IDVal == ".short" || IDVal == ".hword") 10837 parseLiteralValues(2, DirectiveID.getLoc()); 10838 else if (IDVal == ".thumb") 10839 parseDirectiveThumb(DirectiveID.getLoc()); 10840 else if (IDVal == ".arm") 10841 parseDirectiveARM(DirectiveID.getLoc()); 10842 else if (IDVal == ".thumb_func") 10843 parseDirectiveThumbFunc(DirectiveID.getLoc()); 10844 else if (IDVal == ".code") 10845 parseDirectiveCode(DirectiveID.getLoc()); 10846 else if (IDVal == ".syntax") 10847 parseDirectiveSyntax(DirectiveID.getLoc()); 10848 else if (IDVal == ".unreq") 10849 parseDirectiveUnreq(DirectiveID.getLoc()); 10850 else if (IDVal == ".fnend") 10851 parseDirectiveFnEnd(DirectiveID.getLoc()); 10852 else if (IDVal == ".cantunwind") 10853 parseDirectiveCantUnwind(DirectiveID.getLoc()); 10854 else if (IDVal == ".personality") 10855 parseDirectivePersonality(DirectiveID.getLoc()); 10856 else if (IDVal == ".handlerdata") 10857 parseDirectiveHandlerData(DirectiveID.getLoc()); 10858 else if (IDVal == ".setfp") 10859 parseDirectiveSetFP(DirectiveID.getLoc()); 10860 else if (IDVal == ".pad") 10861 parseDirectivePad(DirectiveID.getLoc()); 10862 else if (IDVal == ".save") 10863 parseDirectiveRegSave(DirectiveID.getLoc(), false); 10864 else if (IDVal == ".vsave") 10865 parseDirectiveRegSave(DirectiveID.getLoc(), true); 10866 else if (IDVal == ".ltorg" || IDVal == ".pool") 10867 parseDirectiveLtorg(DirectiveID.getLoc()); 10868 else if (IDVal == ".even") 10869 parseDirectiveEven(DirectiveID.getLoc()); 10870 else if (IDVal == ".personalityindex") 10871 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 10872 else if (IDVal == ".unwind_raw") 10873 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 10874 else if (IDVal == ".movsp") 10875 parseDirectiveMovSP(DirectiveID.getLoc()); 10876 else if (IDVal == ".arch_extension") 10877 parseDirectiveArchExtension(DirectiveID.getLoc()); 10878 else if (IDVal == ".align") 10879 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 10880 else if (IDVal == ".thumb_set") 10881 parseDirectiveThumbSet(DirectiveID.getLoc()); 10882 else if (IDVal == ".inst") 10883 parseDirectiveInst(DirectiveID.getLoc()); 10884 else if (IDVal == ".inst.n") 10885 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 10886 else if (IDVal == ".inst.w") 10887 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 10888 else if (!IsMachO && !IsCOFF) { 10889 if (IDVal == ".arch") 10890 parseDirectiveArch(DirectiveID.getLoc()); 10891 else if (IDVal == ".cpu") 10892 parseDirectiveCPU(DirectiveID.getLoc()); 10893 else if (IDVal == ".eabi_attribute") 10894 parseDirectiveEabiAttr(DirectiveID.getLoc()); 10895 else if (IDVal == ".fpu") 10896 parseDirectiveFPU(DirectiveID.getLoc()); 10897 else if (IDVal == ".fnstart") 10898 parseDirectiveFnStart(DirectiveID.getLoc()); 10899 else if (IDVal == ".object_arch") 10900 parseDirectiveObjectArch(DirectiveID.getLoc()); 10901 else if (IDVal == ".tlsdescseq") 10902 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 10903 else 10904 return true; 10905 } else 10906 return true; 10907 return false; 10908 } 10909 10910 /// parseLiteralValues 10911 /// ::= .hword expression [, expression]* 10912 /// ::= .short expression [, expression]* 10913 /// ::= .word expression [, expression]* 10914 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 10915 auto parseOne = [&]() -> bool { 10916 const MCExpr *Value; 10917 if (getParser().parseExpression(Value)) 10918 return true; 10919 getParser().getStreamer().emitValue(Value, Size, L); 10920 return false; 10921 }; 10922 return (parseMany(parseOne)); 10923 } 10924 10925 /// parseDirectiveThumb 10926 /// ::= .thumb 10927 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 10928 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10929 check(!hasThumb(), L, "target does not support Thumb mode")) 10930 return true; 10931 10932 if (!isThumb()) 10933 SwitchMode(); 10934 10935 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 10936 return false; 10937 } 10938 10939 /// parseDirectiveARM 10940 /// ::= .arm 10941 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 10942 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10943 check(!hasARM(), L, "target does not support ARM mode")) 10944 return true; 10945 10946 if (isThumb()) 10947 SwitchMode(); 10948 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 10949 return false; 10950 } 10951 10952 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 10953 // We need to flush the current implicit IT block on a label, because it is 10954 // not legal to branch into an IT block. 10955 flushPendingInstructions(getStreamer()); 10956 } 10957 10958 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 10959 if (NextSymbolIsThumb) { 10960 getParser().getStreamer().emitThumbFunc(Symbol); 10961 NextSymbolIsThumb = false; 10962 } 10963 } 10964 10965 /// parseDirectiveThumbFunc 10966 /// ::= .thumbfunc symbol_name 10967 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 10968 MCAsmParser &Parser = getParser(); 10969 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 10970 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10971 10972 // Darwin asm has (optionally) function name after .thumb_func direction 10973 // ELF doesn't 10974 10975 if (IsMachO) { 10976 if (Parser.getTok().is(AsmToken::Identifier) || 10977 Parser.getTok().is(AsmToken::String)) { 10978 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 10979 Parser.getTok().getIdentifier()); 10980 getParser().getStreamer().emitThumbFunc(Func); 10981 Parser.Lex(); 10982 if (parseToken(AsmToken::EndOfStatement, 10983 "unexpected token in '.thumb_func' directive")) 10984 return true; 10985 return false; 10986 } 10987 } 10988 10989 if (parseToken(AsmToken::EndOfStatement, 10990 "unexpected token in '.thumb_func' directive")) 10991 return true; 10992 10993 NextSymbolIsThumb = true; 10994 return false; 10995 } 10996 10997 /// parseDirectiveSyntax 10998 /// ::= .syntax unified | divided 10999 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 11000 MCAsmParser &Parser = getParser(); 11001 const AsmToken &Tok = Parser.getTok(); 11002 if (Tok.isNot(AsmToken::Identifier)) { 11003 Error(L, "unexpected token in .syntax directive"); 11004 return false; 11005 } 11006 11007 StringRef Mode = Tok.getString(); 11008 Parser.Lex(); 11009 if (check(Mode == "divided" || Mode == "DIVIDED", L, 11010 "'.syntax divided' arm assembly not supported") || 11011 check(Mode != "unified" && Mode != "UNIFIED", L, 11012 "unrecognized syntax mode in .syntax directive") || 11013 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11014 return true; 11015 11016 // TODO tell the MC streamer the mode 11017 // getParser().getStreamer().Emit???(); 11018 return false; 11019 } 11020 11021 /// parseDirectiveCode 11022 /// ::= .code 16 | 32 11023 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 11024 MCAsmParser &Parser = getParser(); 11025 const AsmToken &Tok = Parser.getTok(); 11026 if (Tok.isNot(AsmToken::Integer)) 11027 return Error(L, "unexpected token in .code directive"); 11028 int64_t Val = Parser.getTok().getIntVal(); 11029 if (Val != 16 && Val != 32) { 11030 Error(L, "invalid operand to .code directive"); 11031 return false; 11032 } 11033 Parser.Lex(); 11034 11035 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11036 return true; 11037 11038 if (Val == 16) { 11039 if (!hasThumb()) 11040 return Error(L, "target does not support Thumb mode"); 11041 11042 if (!isThumb()) 11043 SwitchMode(); 11044 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 11045 } else { 11046 if (!hasARM()) 11047 return Error(L, "target does not support ARM mode"); 11048 11049 if (isThumb()) 11050 SwitchMode(); 11051 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 11052 } 11053 11054 return false; 11055 } 11056 11057 /// parseDirectiveReq 11058 /// ::= name .req registername 11059 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 11060 MCAsmParser &Parser = getParser(); 11061 Parser.Lex(); // Eat the '.req' token. 11062 unsigned Reg; 11063 SMLoc SRegLoc, ERegLoc; 11064 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 11065 "register name expected") || 11066 parseToken(AsmToken::EndOfStatement, 11067 "unexpected input in .req directive.")) 11068 return true; 11069 11070 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 11071 return Error(SRegLoc, 11072 "redefinition of '" + Name + "' does not match original."); 11073 11074 return false; 11075 } 11076 11077 /// parseDirectiveUneq 11078 /// ::= .unreq registername 11079 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 11080 MCAsmParser &Parser = getParser(); 11081 if (Parser.getTok().isNot(AsmToken::Identifier)) 11082 return Error(L, "unexpected input in .unreq directive."); 11083 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 11084 Parser.Lex(); // Eat the identifier. 11085 if (parseToken(AsmToken::EndOfStatement, 11086 "unexpected input in '.unreq' directive")) 11087 return true; 11088 return false; 11089 } 11090 11091 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 11092 // before, if supported by the new target, or emit mapping symbols for the mode 11093 // switch. 11094 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 11095 if (WasThumb != isThumb()) { 11096 if (WasThumb && hasThumb()) { 11097 // Stay in Thumb mode 11098 SwitchMode(); 11099 } else if (!WasThumb && hasARM()) { 11100 // Stay in ARM mode 11101 SwitchMode(); 11102 } else { 11103 // Mode switch forced, because the new arch doesn't support the old mode. 11104 getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16 11105 : MCAF_Code32); 11106 // Warn about the implcit mode switch. GAS does not switch modes here, 11107 // but instead stays in the old mode, reporting an error on any following 11108 // instructions as the mode does not exist on the target. 11109 Warning(Loc, Twine("new target does not support ") + 11110 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 11111 (!WasThumb ? "thumb" : "arm") + " mode"); 11112 } 11113 } 11114 } 11115 11116 /// parseDirectiveArch 11117 /// ::= .arch token 11118 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 11119 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 11120 ARM::ArchKind ID = ARM::parseArch(Arch); 11121 11122 if (ID == ARM::ArchKind::INVALID) 11123 return Error(L, "Unknown arch name"); 11124 11125 bool WasThumb = isThumb(); 11126 Triple T; 11127 MCSubtargetInfo &STI = copySTI(); 11128 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 11129 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11130 FixModeAfterArchChange(WasThumb, L); 11131 11132 getTargetStreamer().emitArch(ID); 11133 return false; 11134 } 11135 11136 /// parseDirectiveEabiAttr 11137 /// ::= .eabi_attribute int, int [, "str"] 11138 /// ::= .eabi_attribute Tag_name, int [, "str"] 11139 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 11140 MCAsmParser &Parser = getParser(); 11141 int64_t Tag; 11142 SMLoc TagLoc; 11143 TagLoc = Parser.getTok().getLoc(); 11144 if (Parser.getTok().is(AsmToken::Identifier)) { 11145 StringRef Name = Parser.getTok().getIdentifier(); 11146 Optional<unsigned> Ret = 11147 ELFAttrs::attrTypeFromString(Name, ARMBuildAttrs::ARMAttributeTags); 11148 if (!Ret.hasValue()) { 11149 Error(TagLoc, "attribute name not recognised: " + Name); 11150 return false; 11151 } 11152 Tag = Ret.getValue(); 11153 Parser.Lex(); 11154 } else { 11155 const MCExpr *AttrExpr; 11156 11157 TagLoc = Parser.getTok().getLoc(); 11158 if (Parser.parseExpression(AttrExpr)) 11159 return true; 11160 11161 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 11162 if (check(!CE, TagLoc, "expected numeric constant")) 11163 return true; 11164 11165 Tag = CE->getValue(); 11166 } 11167 11168 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 11169 return true; 11170 11171 StringRef StringValue = ""; 11172 bool IsStringValue = false; 11173 11174 int64_t IntegerValue = 0; 11175 bool IsIntegerValue = false; 11176 11177 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 11178 IsStringValue = true; 11179 else if (Tag == ARMBuildAttrs::compatibility) { 11180 IsStringValue = true; 11181 IsIntegerValue = true; 11182 } else if (Tag < 32 || Tag % 2 == 0) 11183 IsIntegerValue = true; 11184 else if (Tag % 2 == 1) 11185 IsStringValue = true; 11186 else 11187 llvm_unreachable("invalid tag type"); 11188 11189 if (IsIntegerValue) { 11190 const MCExpr *ValueExpr; 11191 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 11192 if (Parser.parseExpression(ValueExpr)) 11193 return true; 11194 11195 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 11196 if (!CE) 11197 return Error(ValueExprLoc, "expected numeric constant"); 11198 IntegerValue = CE->getValue(); 11199 } 11200 11201 if (Tag == ARMBuildAttrs::compatibility) { 11202 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 11203 return true; 11204 } 11205 11206 if (IsStringValue) { 11207 if (Parser.getTok().isNot(AsmToken::String)) 11208 return Error(Parser.getTok().getLoc(), "bad string constant"); 11209 11210 StringValue = Parser.getTok().getStringContents(); 11211 Parser.Lex(); 11212 } 11213 11214 if (Parser.parseToken(AsmToken::EndOfStatement, 11215 "unexpected token in '.eabi_attribute' directive")) 11216 return true; 11217 11218 if (IsIntegerValue && IsStringValue) { 11219 assert(Tag == ARMBuildAttrs::compatibility); 11220 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 11221 } else if (IsIntegerValue) 11222 getTargetStreamer().emitAttribute(Tag, IntegerValue); 11223 else if (IsStringValue) 11224 getTargetStreamer().emitTextAttribute(Tag, StringValue); 11225 return false; 11226 } 11227 11228 /// parseDirectiveCPU 11229 /// ::= .cpu str 11230 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 11231 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 11232 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 11233 11234 // FIXME: This is using table-gen data, but should be moved to 11235 // ARMTargetParser once that is table-gen'd. 11236 if (!getSTI().isCPUStringValid(CPU)) 11237 return Error(L, "Unknown CPU name"); 11238 11239 bool WasThumb = isThumb(); 11240 MCSubtargetInfo &STI = copySTI(); 11241 STI.setDefaultFeatures(CPU, ""); 11242 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11243 FixModeAfterArchChange(WasThumb, L); 11244 11245 return false; 11246 } 11247 11248 /// parseDirectiveFPU 11249 /// ::= .fpu str 11250 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 11251 SMLoc FPUNameLoc = getTok().getLoc(); 11252 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 11253 11254 unsigned ID = ARM::parseFPU(FPU); 11255 std::vector<StringRef> Features; 11256 if (!ARM::getFPUFeatures(ID, Features)) 11257 return Error(FPUNameLoc, "Unknown FPU name"); 11258 11259 MCSubtargetInfo &STI = copySTI(); 11260 for (auto Feature : Features) 11261 STI.ApplyFeatureFlag(Feature); 11262 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 11263 11264 getTargetStreamer().emitFPU(ID); 11265 return false; 11266 } 11267 11268 /// parseDirectiveFnStart 11269 /// ::= .fnstart 11270 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 11271 if (parseToken(AsmToken::EndOfStatement, 11272 "unexpected token in '.fnstart' directive")) 11273 return true; 11274 11275 if (UC.hasFnStart()) { 11276 Error(L, ".fnstart starts before the end of previous one"); 11277 UC.emitFnStartLocNotes(); 11278 return true; 11279 } 11280 11281 // Reset the unwind directives parser state 11282 UC.reset(); 11283 11284 getTargetStreamer().emitFnStart(); 11285 11286 UC.recordFnStart(L); 11287 return false; 11288 } 11289 11290 /// parseDirectiveFnEnd 11291 /// ::= .fnend 11292 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 11293 if (parseToken(AsmToken::EndOfStatement, 11294 "unexpected token in '.fnend' directive")) 11295 return true; 11296 // Check the ordering of unwind directives 11297 if (!UC.hasFnStart()) 11298 return Error(L, ".fnstart must precede .fnend directive"); 11299 11300 // Reset the unwind directives parser state 11301 getTargetStreamer().emitFnEnd(); 11302 11303 UC.reset(); 11304 return false; 11305 } 11306 11307 /// parseDirectiveCantUnwind 11308 /// ::= .cantunwind 11309 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 11310 if (parseToken(AsmToken::EndOfStatement, 11311 "unexpected token in '.cantunwind' directive")) 11312 return true; 11313 11314 UC.recordCantUnwind(L); 11315 // Check the ordering of unwind directives 11316 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 11317 return true; 11318 11319 if (UC.hasHandlerData()) { 11320 Error(L, ".cantunwind can't be used with .handlerdata directive"); 11321 UC.emitHandlerDataLocNotes(); 11322 return true; 11323 } 11324 if (UC.hasPersonality()) { 11325 Error(L, ".cantunwind can't be used with .personality directive"); 11326 UC.emitPersonalityLocNotes(); 11327 return true; 11328 } 11329 11330 getTargetStreamer().emitCantUnwind(); 11331 return false; 11332 } 11333 11334 /// parseDirectivePersonality 11335 /// ::= .personality name 11336 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 11337 MCAsmParser &Parser = getParser(); 11338 bool HasExistingPersonality = UC.hasPersonality(); 11339 11340 // Parse the name of the personality routine 11341 if (Parser.getTok().isNot(AsmToken::Identifier)) 11342 return Error(L, "unexpected input in .personality directive."); 11343 StringRef Name(Parser.getTok().getIdentifier()); 11344 Parser.Lex(); 11345 11346 if (parseToken(AsmToken::EndOfStatement, 11347 "unexpected token in '.personality' directive")) 11348 return true; 11349 11350 UC.recordPersonality(L); 11351 11352 // Check the ordering of unwind directives 11353 if (!UC.hasFnStart()) 11354 return Error(L, ".fnstart must precede .personality directive"); 11355 if (UC.cantUnwind()) { 11356 Error(L, ".personality can't be used with .cantunwind directive"); 11357 UC.emitCantUnwindLocNotes(); 11358 return true; 11359 } 11360 if (UC.hasHandlerData()) { 11361 Error(L, ".personality must precede .handlerdata directive"); 11362 UC.emitHandlerDataLocNotes(); 11363 return true; 11364 } 11365 if (HasExistingPersonality) { 11366 Error(L, "multiple personality directives"); 11367 UC.emitPersonalityLocNotes(); 11368 return true; 11369 } 11370 11371 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 11372 getTargetStreamer().emitPersonality(PR); 11373 return false; 11374 } 11375 11376 /// parseDirectiveHandlerData 11377 /// ::= .handlerdata 11378 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 11379 if (parseToken(AsmToken::EndOfStatement, 11380 "unexpected token in '.handlerdata' directive")) 11381 return true; 11382 11383 UC.recordHandlerData(L); 11384 // Check the ordering of unwind directives 11385 if (!UC.hasFnStart()) 11386 return Error(L, ".fnstart must precede .personality directive"); 11387 if (UC.cantUnwind()) { 11388 Error(L, ".handlerdata can't be used with .cantunwind directive"); 11389 UC.emitCantUnwindLocNotes(); 11390 return true; 11391 } 11392 11393 getTargetStreamer().emitHandlerData(); 11394 return false; 11395 } 11396 11397 /// parseDirectiveSetFP 11398 /// ::= .setfp fpreg, spreg [, offset] 11399 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 11400 MCAsmParser &Parser = getParser(); 11401 // Check the ordering of unwind directives 11402 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 11403 check(UC.hasHandlerData(), L, 11404 ".setfp must precede .handlerdata directive")) 11405 return true; 11406 11407 // Parse fpreg 11408 SMLoc FPRegLoc = Parser.getTok().getLoc(); 11409 int FPReg = tryParseRegister(); 11410 11411 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 11412 Parser.parseToken(AsmToken::Comma, "comma expected")) 11413 return true; 11414 11415 // Parse spreg 11416 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11417 int SPReg = tryParseRegister(); 11418 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 11419 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 11420 "register should be either $sp or the latest fp register")) 11421 return true; 11422 11423 // Update the frame pointer register 11424 UC.saveFPReg(FPReg); 11425 11426 // Parse offset 11427 int64_t Offset = 0; 11428 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11429 if (Parser.getTok().isNot(AsmToken::Hash) && 11430 Parser.getTok().isNot(AsmToken::Dollar)) 11431 return Error(Parser.getTok().getLoc(), "'#' expected"); 11432 Parser.Lex(); // skip hash token. 11433 11434 const MCExpr *OffsetExpr; 11435 SMLoc ExLoc = Parser.getTok().getLoc(); 11436 SMLoc EndLoc; 11437 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11438 return Error(ExLoc, "malformed setfp offset"); 11439 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11440 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 11441 return true; 11442 Offset = CE->getValue(); 11443 } 11444 11445 if (Parser.parseToken(AsmToken::EndOfStatement)) 11446 return true; 11447 11448 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 11449 static_cast<unsigned>(SPReg), Offset); 11450 return false; 11451 } 11452 11453 /// parseDirective 11454 /// ::= .pad offset 11455 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 11456 MCAsmParser &Parser = getParser(); 11457 // Check the ordering of unwind directives 11458 if (!UC.hasFnStart()) 11459 return Error(L, ".fnstart must precede .pad directive"); 11460 if (UC.hasHandlerData()) 11461 return Error(L, ".pad must precede .handlerdata directive"); 11462 11463 // Parse the offset 11464 if (Parser.getTok().isNot(AsmToken::Hash) && 11465 Parser.getTok().isNot(AsmToken::Dollar)) 11466 return Error(Parser.getTok().getLoc(), "'#' expected"); 11467 Parser.Lex(); // skip hash token. 11468 11469 const MCExpr *OffsetExpr; 11470 SMLoc ExLoc = Parser.getTok().getLoc(); 11471 SMLoc EndLoc; 11472 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11473 return Error(ExLoc, "malformed pad offset"); 11474 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11475 if (!CE) 11476 return Error(ExLoc, "pad offset must be an immediate"); 11477 11478 if (parseToken(AsmToken::EndOfStatement, 11479 "unexpected token in '.pad' directive")) 11480 return true; 11481 11482 getTargetStreamer().emitPad(CE->getValue()); 11483 return false; 11484 } 11485 11486 /// parseDirectiveRegSave 11487 /// ::= .save { registers } 11488 /// ::= .vsave { registers } 11489 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 11490 // Check the ordering of unwind directives 11491 if (!UC.hasFnStart()) 11492 return Error(L, ".fnstart must precede .save or .vsave directives"); 11493 if (UC.hasHandlerData()) 11494 return Error(L, ".save or .vsave must precede .handlerdata directive"); 11495 11496 // RAII object to make sure parsed operands are deleted. 11497 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 11498 11499 // Parse the register list 11500 if (parseRegisterList(Operands) || 11501 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11502 return true; 11503 ARMOperand &Op = (ARMOperand &)*Operands[0]; 11504 if (!IsVector && !Op.isRegList()) 11505 return Error(L, ".save expects GPR registers"); 11506 if (IsVector && !Op.isDPRRegList()) 11507 return Error(L, ".vsave expects DPR registers"); 11508 11509 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 11510 return false; 11511 } 11512 11513 /// parseDirectiveInst 11514 /// ::= .inst opcode [, ...] 11515 /// ::= .inst.n opcode [, ...] 11516 /// ::= .inst.w opcode [, ...] 11517 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 11518 int Width = 4; 11519 11520 if (isThumb()) { 11521 switch (Suffix) { 11522 case 'n': 11523 Width = 2; 11524 break; 11525 case 'w': 11526 break; 11527 default: 11528 Width = 0; 11529 break; 11530 } 11531 } else { 11532 if (Suffix) 11533 return Error(Loc, "width suffixes are invalid in ARM mode"); 11534 } 11535 11536 auto parseOne = [&]() -> bool { 11537 const MCExpr *Expr; 11538 if (getParser().parseExpression(Expr)) 11539 return true; 11540 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 11541 if (!Value) { 11542 return Error(Loc, "expected constant expression"); 11543 } 11544 11545 char CurSuffix = Suffix; 11546 switch (Width) { 11547 case 2: 11548 if (Value->getValue() > 0xffff) 11549 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 11550 break; 11551 case 4: 11552 if (Value->getValue() > 0xffffffff) 11553 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 11554 " operand is too big"); 11555 break; 11556 case 0: 11557 // Thumb mode, no width indicated. Guess from the opcode, if possible. 11558 if (Value->getValue() < 0xe800) 11559 CurSuffix = 'n'; 11560 else if (Value->getValue() >= 0xe8000000) 11561 CurSuffix = 'w'; 11562 else 11563 return Error(Loc, "cannot determine Thumb instruction size, " 11564 "use inst.n/inst.w instead"); 11565 break; 11566 default: 11567 llvm_unreachable("only supported widths are 2 and 4"); 11568 } 11569 11570 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 11571 return false; 11572 }; 11573 11574 if (parseOptionalToken(AsmToken::EndOfStatement)) 11575 return Error(Loc, "expected expression following directive"); 11576 if (parseMany(parseOne)) 11577 return true; 11578 return false; 11579 } 11580 11581 /// parseDirectiveLtorg 11582 /// ::= .ltorg | .pool 11583 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 11584 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11585 return true; 11586 getTargetStreamer().emitCurrentConstantPool(); 11587 return false; 11588 } 11589 11590 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 11591 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11592 11593 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11594 return true; 11595 11596 if (!Section) { 11597 getStreamer().InitSections(false); 11598 Section = getStreamer().getCurrentSectionOnly(); 11599 } 11600 11601 assert(Section && "must have section to emit alignment"); 11602 if (Section->UseCodeAlign()) 11603 getStreamer().emitCodeAlignment(2); 11604 else 11605 getStreamer().emitValueToAlignment(2); 11606 11607 return false; 11608 } 11609 11610 /// parseDirectivePersonalityIndex 11611 /// ::= .personalityindex index 11612 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 11613 MCAsmParser &Parser = getParser(); 11614 bool HasExistingPersonality = UC.hasPersonality(); 11615 11616 const MCExpr *IndexExpression; 11617 SMLoc IndexLoc = Parser.getTok().getLoc(); 11618 if (Parser.parseExpression(IndexExpression) || 11619 parseToken(AsmToken::EndOfStatement, 11620 "unexpected token in '.personalityindex' directive")) { 11621 return true; 11622 } 11623 11624 UC.recordPersonalityIndex(L); 11625 11626 if (!UC.hasFnStart()) { 11627 return Error(L, ".fnstart must precede .personalityindex directive"); 11628 } 11629 if (UC.cantUnwind()) { 11630 Error(L, ".personalityindex cannot be used with .cantunwind"); 11631 UC.emitCantUnwindLocNotes(); 11632 return true; 11633 } 11634 if (UC.hasHandlerData()) { 11635 Error(L, ".personalityindex must precede .handlerdata directive"); 11636 UC.emitHandlerDataLocNotes(); 11637 return true; 11638 } 11639 if (HasExistingPersonality) { 11640 Error(L, "multiple personality directives"); 11641 UC.emitPersonalityLocNotes(); 11642 return true; 11643 } 11644 11645 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 11646 if (!CE) 11647 return Error(IndexLoc, "index must be a constant number"); 11648 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 11649 return Error(IndexLoc, 11650 "personality routine index should be in range [0-3]"); 11651 11652 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 11653 return false; 11654 } 11655 11656 /// parseDirectiveUnwindRaw 11657 /// ::= .unwind_raw offset, opcode [, opcode...] 11658 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 11659 MCAsmParser &Parser = getParser(); 11660 int64_t StackOffset; 11661 const MCExpr *OffsetExpr; 11662 SMLoc OffsetLoc = getLexer().getLoc(); 11663 11664 if (!UC.hasFnStart()) 11665 return Error(L, ".fnstart must precede .unwind_raw directives"); 11666 if (getParser().parseExpression(OffsetExpr)) 11667 return Error(OffsetLoc, "expected expression"); 11668 11669 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11670 if (!CE) 11671 return Error(OffsetLoc, "offset must be a constant"); 11672 11673 StackOffset = CE->getValue(); 11674 11675 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 11676 return true; 11677 11678 SmallVector<uint8_t, 16> Opcodes; 11679 11680 auto parseOne = [&]() -> bool { 11681 const MCExpr *OE = nullptr; 11682 SMLoc OpcodeLoc = getLexer().getLoc(); 11683 if (check(getLexer().is(AsmToken::EndOfStatement) || 11684 Parser.parseExpression(OE), 11685 OpcodeLoc, "expected opcode expression")) 11686 return true; 11687 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 11688 if (!OC) 11689 return Error(OpcodeLoc, "opcode value must be a constant"); 11690 const int64_t Opcode = OC->getValue(); 11691 if (Opcode & ~0xff) 11692 return Error(OpcodeLoc, "invalid opcode"); 11693 Opcodes.push_back(uint8_t(Opcode)); 11694 return false; 11695 }; 11696 11697 // Must have at least 1 element 11698 SMLoc OpcodeLoc = getLexer().getLoc(); 11699 if (parseOptionalToken(AsmToken::EndOfStatement)) 11700 return Error(OpcodeLoc, "expected opcode expression"); 11701 if (parseMany(parseOne)) 11702 return true; 11703 11704 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 11705 return false; 11706 } 11707 11708 /// parseDirectiveTLSDescSeq 11709 /// ::= .tlsdescseq tls-variable 11710 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 11711 MCAsmParser &Parser = getParser(); 11712 11713 if (getLexer().isNot(AsmToken::Identifier)) 11714 return TokError("expected variable after '.tlsdescseq' directive"); 11715 11716 const MCSymbolRefExpr *SRE = 11717 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 11718 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 11719 Lex(); 11720 11721 if (parseToken(AsmToken::EndOfStatement, 11722 "unexpected token in '.tlsdescseq' directive")) 11723 return true; 11724 11725 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 11726 return false; 11727 } 11728 11729 /// parseDirectiveMovSP 11730 /// ::= .movsp reg [, #offset] 11731 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 11732 MCAsmParser &Parser = getParser(); 11733 if (!UC.hasFnStart()) 11734 return Error(L, ".fnstart must precede .movsp directives"); 11735 if (UC.getFPReg() != ARM::SP) 11736 return Error(L, "unexpected .movsp directive"); 11737 11738 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11739 int SPReg = tryParseRegister(); 11740 if (SPReg == -1) 11741 return Error(SPRegLoc, "register expected"); 11742 if (SPReg == ARM::SP || SPReg == ARM::PC) 11743 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 11744 11745 int64_t Offset = 0; 11746 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11747 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 11748 return true; 11749 11750 const MCExpr *OffsetExpr; 11751 SMLoc OffsetLoc = Parser.getTok().getLoc(); 11752 11753 if (Parser.parseExpression(OffsetExpr)) 11754 return Error(OffsetLoc, "malformed offset expression"); 11755 11756 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11757 if (!CE) 11758 return Error(OffsetLoc, "offset must be an immediate constant"); 11759 11760 Offset = CE->getValue(); 11761 } 11762 11763 if (parseToken(AsmToken::EndOfStatement, 11764 "unexpected token in '.movsp' directive")) 11765 return true; 11766 11767 getTargetStreamer().emitMovSP(SPReg, Offset); 11768 UC.saveFPReg(SPReg); 11769 11770 return false; 11771 } 11772 11773 /// parseDirectiveObjectArch 11774 /// ::= .object_arch name 11775 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 11776 MCAsmParser &Parser = getParser(); 11777 if (getLexer().isNot(AsmToken::Identifier)) 11778 return Error(getLexer().getLoc(), "unexpected token"); 11779 11780 StringRef Arch = Parser.getTok().getString(); 11781 SMLoc ArchLoc = Parser.getTok().getLoc(); 11782 Lex(); 11783 11784 ARM::ArchKind ID = ARM::parseArch(Arch); 11785 11786 if (ID == ARM::ArchKind::INVALID) 11787 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 11788 if (parseToken(AsmToken::EndOfStatement)) 11789 return true; 11790 11791 getTargetStreamer().emitObjectArch(ID); 11792 return false; 11793 } 11794 11795 /// parseDirectiveAlign 11796 /// ::= .align 11797 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 11798 // NOTE: if this is not the end of the statement, fall back to the target 11799 // agnostic handling for this directive which will correctly handle this. 11800 if (parseOptionalToken(AsmToken::EndOfStatement)) { 11801 // '.align' is target specifically handled to mean 2**2 byte alignment. 11802 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11803 assert(Section && "must have section to emit alignment"); 11804 if (Section->UseCodeAlign()) 11805 getStreamer().emitCodeAlignment(4, 0); 11806 else 11807 getStreamer().emitValueToAlignment(4, 0, 1, 0); 11808 return false; 11809 } 11810 return true; 11811 } 11812 11813 /// parseDirectiveThumbSet 11814 /// ::= .thumb_set name, value 11815 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 11816 MCAsmParser &Parser = getParser(); 11817 11818 StringRef Name; 11819 if (check(Parser.parseIdentifier(Name), 11820 "expected identifier after '.thumb_set'") || 11821 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 11822 return true; 11823 11824 MCSymbol *Sym; 11825 const MCExpr *Value; 11826 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 11827 Parser, Sym, Value)) 11828 return true; 11829 11830 getTargetStreamer().emitThumbSet(Sym, Value); 11831 return false; 11832 } 11833 11834 /// Force static initialization. 11835 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() { 11836 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 11837 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 11838 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 11839 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 11840 } 11841 11842 #define GET_REGISTER_MATCHER 11843 #define GET_SUBTARGET_FEATURE_NAME 11844 #define GET_MATCHER_IMPLEMENTATION 11845 #define GET_MNEMONIC_SPELL_CHECKER 11846 #include "ARMGenAsmMatcher.inc" 11847 11848 // Some diagnostics need to vary with subtarget features, so they are handled 11849 // here. For example, the DPR class has either 16 or 32 registers, depending 11850 // on the FPU available. 11851 const char * 11852 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 11853 switch (MatchError) { 11854 // rGPR contains sp starting with ARMv8. 11855 case Match_rGPR: 11856 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 11857 : "operand must be a register in range [r0, r12] or r14"; 11858 // DPR contains 16 registers for some FPUs, and 32 for others. 11859 case Match_DPR: 11860 return hasD32() ? "operand must be a register in range [d0, d31]" 11861 : "operand must be a register in range [d0, d15]"; 11862 case Match_DPR_RegList: 11863 return hasD32() ? "operand must be a list of registers in range [d0, d31]" 11864 : "operand must be a list of registers in range [d0, d15]"; 11865 11866 // For all other diags, use the static string from tablegen. 11867 default: 11868 return getMatchKindDiag(MatchError); 11869 } 11870 } 11871 11872 // Process the list of near-misses, throwing away ones we don't want to report 11873 // to the user, and converting the rest to a source location and string that 11874 // should be reported. 11875 void 11876 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 11877 SmallVectorImpl<NearMissMessage> &NearMissesOut, 11878 SMLoc IDLoc, OperandVector &Operands) { 11879 // TODO: If operand didn't match, sub in a dummy one and run target 11880 // predicate, so that we can avoid reporting near-misses that are invalid? 11881 // TODO: Many operand types dont have SuperClasses set, so we report 11882 // redundant ones. 11883 // TODO: Some operands are superclasses of registers (e.g. 11884 // MCK_RegShiftedImm), we don't have any way to represent that currently. 11885 // TODO: This is not all ARM-specific, can some of it be factored out? 11886 11887 // Record some information about near-misses that we have already seen, so 11888 // that we can avoid reporting redundant ones. For example, if there are 11889 // variants of an instruction that take 8- and 16-bit immediates, we want 11890 // to only report the widest one. 11891 std::multimap<unsigned, unsigned> OperandMissesSeen; 11892 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 11893 bool ReportedTooFewOperands = false; 11894 11895 // Process the near-misses in reverse order, so that we see more general ones 11896 // first, and so can avoid emitting more specific ones. 11897 for (NearMissInfo &I : reverse(NearMissesIn)) { 11898 switch (I.getKind()) { 11899 case NearMissInfo::NearMissOperand: { 11900 SMLoc OperandLoc = 11901 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 11902 const char *OperandDiag = 11903 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 11904 11905 // If we have already emitted a message for a superclass, don't also report 11906 // the sub-class. We consider all operand classes that we don't have a 11907 // specialised diagnostic for to be equal for the propose of this check, 11908 // so that we don't report the generic error multiple times on the same 11909 // operand. 11910 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 11911 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 11912 if (std::any_of(PrevReports.first, PrevReports.second, 11913 [DupCheckMatchClass]( 11914 const std::pair<unsigned, unsigned> Pair) { 11915 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 11916 return Pair.second == DupCheckMatchClass; 11917 else 11918 return isSubclass((MatchClassKind)DupCheckMatchClass, 11919 (MatchClassKind)Pair.second); 11920 })) 11921 break; 11922 OperandMissesSeen.insert( 11923 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 11924 11925 NearMissMessage Message; 11926 Message.Loc = OperandLoc; 11927 if (OperandDiag) { 11928 Message.Message = OperandDiag; 11929 } else if (I.getOperandClass() == InvalidMatchClass) { 11930 Message.Message = "too many operands for instruction"; 11931 } else { 11932 Message.Message = "invalid operand for instruction"; 11933 LLVM_DEBUG( 11934 dbgs() << "Missing diagnostic string for operand class " 11935 << getMatchClassName((MatchClassKind)I.getOperandClass()) 11936 << I.getOperandClass() << ", error " << I.getOperandError() 11937 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 11938 } 11939 NearMissesOut.emplace_back(Message); 11940 break; 11941 } 11942 case NearMissInfo::NearMissFeature: { 11943 const FeatureBitset &MissingFeatures = I.getFeatures(); 11944 // Don't report the same set of features twice. 11945 if (FeatureMissesSeen.count(MissingFeatures)) 11946 break; 11947 FeatureMissesSeen.insert(MissingFeatures); 11948 11949 // Special case: don't report a feature set which includes arm-mode for 11950 // targets that don't have ARM mode. 11951 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 11952 break; 11953 // Don't report any near-misses that both require switching instruction 11954 // set, and adding other subtarget features. 11955 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 11956 MissingFeatures.count() > 1) 11957 break; 11958 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 11959 MissingFeatures.count() > 1) 11960 break; 11961 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 11962 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 11963 Feature_IsThumbBit})).any()) 11964 break; 11965 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 11966 break; 11967 11968 NearMissMessage Message; 11969 Message.Loc = IDLoc; 11970 raw_svector_ostream OS(Message.Message); 11971 11972 OS << "instruction requires:"; 11973 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 11974 if (MissingFeatures.test(i)) 11975 OS << ' ' << getSubtargetFeatureName(i); 11976 11977 NearMissesOut.emplace_back(Message); 11978 11979 break; 11980 } 11981 case NearMissInfo::NearMissPredicate: { 11982 NearMissMessage Message; 11983 Message.Loc = IDLoc; 11984 switch (I.getPredicateError()) { 11985 case Match_RequiresNotITBlock: 11986 Message.Message = "flag setting instruction only valid outside IT block"; 11987 break; 11988 case Match_RequiresITBlock: 11989 Message.Message = "instruction only valid inside IT block"; 11990 break; 11991 case Match_RequiresV6: 11992 Message.Message = "instruction variant requires ARMv6 or later"; 11993 break; 11994 case Match_RequiresThumb2: 11995 Message.Message = "instruction variant requires Thumb2"; 11996 break; 11997 case Match_RequiresV8: 11998 Message.Message = "instruction variant requires ARMv8 or later"; 11999 break; 12000 case Match_RequiresFlagSetting: 12001 Message.Message = "no flag-preserving variant of this instruction available"; 12002 break; 12003 case Match_InvalidOperand: 12004 Message.Message = "invalid operand for instruction"; 12005 break; 12006 default: 12007 llvm_unreachable("Unhandled target predicate error"); 12008 break; 12009 } 12010 NearMissesOut.emplace_back(Message); 12011 break; 12012 } 12013 case NearMissInfo::NearMissTooFewOperands: { 12014 if (!ReportedTooFewOperands) { 12015 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 12016 NearMissesOut.emplace_back(NearMissMessage{ 12017 EndLoc, StringRef("too few operands for instruction")}); 12018 ReportedTooFewOperands = true; 12019 } 12020 break; 12021 } 12022 case NearMissInfo::NoNearMiss: 12023 // This should never leave the matcher. 12024 llvm_unreachable("not a near-miss"); 12025 break; 12026 } 12027 } 12028 } 12029 12030 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 12031 SMLoc IDLoc, OperandVector &Operands) { 12032 SmallVector<NearMissMessage, 4> Messages; 12033 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 12034 12035 if (Messages.size() == 0) { 12036 // No near-misses were found, so the best we can do is "invalid 12037 // instruction". 12038 Error(IDLoc, "invalid instruction"); 12039 } else if (Messages.size() == 1) { 12040 // One near miss was found, report it as the sole error. 12041 Error(Messages[0].Loc, Messages[0].Message); 12042 } else { 12043 // More than one near miss, so report a generic "invalid instruction" 12044 // error, followed by notes for each of the near-misses. 12045 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 12046 for (auto &M : Messages) { 12047 Note(M.Loc, M.Message); 12048 } 12049 } 12050 } 12051 12052 /// parseDirectiveArchExtension 12053 /// ::= .arch_extension [no]feature 12054 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 12055 // FIXME: This structure should be moved inside ARMTargetParser 12056 // when we start to table-generate them, and we can use the ARM 12057 // flags below, that were generated by table-gen. 12058 static const struct { 12059 const uint64_t Kind; 12060 const FeatureBitset ArchCheck; 12061 const FeatureBitset Features; 12062 } Extensions[] = { 12063 { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} }, 12064 { ARM::AEK_CRYPTO, {Feature_HasV8Bit}, 12065 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 12066 { ARM::AEK_FP, {Feature_HasV8Bit}, 12067 {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} }, 12068 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 12069 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 12070 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 12071 { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit}, 12072 {ARM::FeatureMP} }, 12073 { ARM::AEK_SIMD, {Feature_HasV8Bit}, 12074 {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} }, 12075 { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} }, 12076 // FIXME: Only available in A-class, isel not predicated 12077 { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} }, 12078 { ARM::AEK_FP16, {Feature_HasV8_2aBit}, 12079 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 12080 { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} }, 12081 { ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} }, 12082 // FIXME: Unsupported extensions. 12083 { ARM::AEK_OS, {}, {} }, 12084 { ARM::AEK_IWMMXT, {}, {} }, 12085 { ARM::AEK_IWMMXT2, {}, {} }, 12086 { ARM::AEK_MAVERICK, {}, {} }, 12087 { ARM::AEK_XSCALE, {}, {} }, 12088 }; 12089 12090 MCAsmParser &Parser = getParser(); 12091 12092 if (getLexer().isNot(AsmToken::Identifier)) 12093 return Error(getLexer().getLoc(), "expected architecture extension name"); 12094 12095 StringRef Name = Parser.getTok().getString(); 12096 SMLoc ExtLoc = Parser.getTok().getLoc(); 12097 Lex(); 12098 12099 if (parseToken(AsmToken::EndOfStatement, 12100 "unexpected token in '.arch_extension' directive")) 12101 return true; 12102 12103 bool EnableFeature = true; 12104 if (Name.startswith_lower("no")) { 12105 EnableFeature = false; 12106 Name = Name.substr(2); 12107 } 12108 uint64_t FeatureKind = ARM::parseArchExt(Name); 12109 if (FeatureKind == ARM::AEK_INVALID) 12110 return Error(ExtLoc, "unknown architectural extension: " + Name); 12111 12112 for (const auto &Extension : Extensions) { 12113 if (Extension.Kind != FeatureKind) 12114 continue; 12115 12116 if (Extension.Features.none()) 12117 return Error(ExtLoc, "unsupported architectural extension: " + Name); 12118 12119 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 12120 return Error(ExtLoc, "architectural extension '" + Name + 12121 "' is not " 12122 "allowed for the current base architecture"); 12123 12124 MCSubtargetInfo &STI = copySTI(); 12125 if (EnableFeature) { 12126 STI.SetFeatureBitsTransitively(Extension.Features); 12127 } else { 12128 STI.ClearFeatureBitsTransitively(Extension.Features); 12129 } 12130 FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits()); 12131 setAvailableFeatures(Features); 12132 return false; 12133 } 12134 12135 return Error(ExtLoc, "unknown architectural extension: " + Name); 12136 } 12137 12138 // Define this matcher function after the auto-generated include so we 12139 // have the match class enum definitions. 12140 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 12141 unsigned Kind) { 12142 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 12143 // If the kind is a token for a literal immediate, check if our asm 12144 // operand matches. This is for InstAliases which have a fixed-value 12145 // immediate in the syntax. 12146 switch (Kind) { 12147 default: break; 12148 case MCK__HASH_0: 12149 if (Op.isImm()) 12150 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12151 if (CE->getValue() == 0) 12152 return Match_Success; 12153 break; 12154 case MCK__HASH_8: 12155 if (Op.isImm()) 12156 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12157 if (CE->getValue() == 8) 12158 return Match_Success; 12159 break; 12160 case MCK__HASH_16: 12161 if (Op.isImm()) 12162 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 12163 if (CE->getValue() == 16) 12164 return Match_Success; 12165 break; 12166 case MCK_ModImm: 12167 if (Op.isImm()) { 12168 const MCExpr *SOExpr = Op.getImm(); 12169 int64_t Value; 12170 if (!SOExpr->evaluateAsAbsolute(Value)) 12171 return Match_Success; 12172 assert((Value >= std::numeric_limits<int32_t>::min() && 12173 Value <= std::numeric_limits<uint32_t>::max()) && 12174 "expression value must be representable in 32 bits"); 12175 } 12176 break; 12177 case MCK_rGPR: 12178 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 12179 return Match_Success; 12180 return Match_rGPR; 12181 case MCK_GPRPair: 12182 if (Op.isReg() && 12183 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 12184 return Match_Success; 12185 break; 12186 } 12187 return Match_InvalidOperand; 12188 } 12189 12190 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, 12191 StringRef ExtraToken) { 12192 if (!hasMVE()) 12193 return false; 12194 12195 return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") || 12196 Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") || 12197 Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") || 12198 Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") || 12199 Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") || 12200 Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") || 12201 Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") || 12202 Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") || 12203 Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") || 12204 Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") || 12205 Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") || 12206 Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") || 12207 Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") || 12208 Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") || 12209 Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") || 12210 Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") || 12211 Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") || 12212 Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") || 12213 Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") || 12214 Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") || 12215 Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") || 12216 Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") || 12217 Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") || 12218 Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") || 12219 Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") || 12220 Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") || 12221 Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") || 12222 Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") || 12223 Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") || 12224 Mnemonic.startswith("vqabs") || 12225 (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") || 12226 Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") || 12227 Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") || 12228 Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") || 12229 Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") || 12230 Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") || 12231 Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") || 12232 Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") || 12233 Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") || 12234 Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") || 12235 Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") || 12236 Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") || 12237 Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") || 12238 Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") || 12239 Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") || 12240 Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") || 12241 Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") || 12242 Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") || 12243 Mnemonic.startswith("vldrb") || 12244 (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") || 12245 (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") || 12246 Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") || 12247 Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") || 12248 Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") || 12249 Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") || 12250 Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") || 12251 Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") || 12252 Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") || 12253 Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") || 12254 Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") || 12255 Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") || 12256 Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") || 12257 Mnemonic.startswith("vcvt") || 12258 MS.isVPTPredicableCDEInstr(Mnemonic) || 12259 (Mnemonic.startswith("vmov") && 12260 !(ExtraToken == ".f16" || ExtraToken == ".32" || 12261 ExtraToken == ".16" || ExtraToken == ".8")); 12262 } 12263