1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFPUName.h" 11 #include "ARMFeatures.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMArchName.h" 14 #include "MCTargetDesc/ARMBaseInfo.h" 15 #include "MCTargetDesc/ARMMCExpr.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/MC/MCAsmInfo.h" 22 #include "llvm/MC/MCAssembler.h" 23 #include "llvm/MC/MCContext.h" 24 #include "llvm/MC/MCDisassembler.h" 25 #include "llvm/MC/MCELFStreamer.h" 26 #include "llvm/MC/MCExpr.h" 27 #include "llvm/MC/MCInst.h" 28 #include "llvm/MC/MCInstrDesc.h" 29 #include "llvm/MC/MCInstrInfo.h" 30 #include "llvm/MC/MCObjectFileInfo.h" 31 #include "llvm/MC/MCParser/MCAsmLexer.h" 32 #include "llvm/MC/MCParser/MCAsmParser.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/MC/MCSection.h" 36 #include "llvm/MC/MCStreamer.h" 37 #include "llvm/MC/MCSubtargetInfo.h" 38 #include "llvm/MC/MCSymbol.h" 39 #include "llvm/MC/MCTargetAsmParser.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/COFF.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ELF.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SourceMgr.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/raw_ostream.h" 49 50 using namespace llvm; 51 52 namespace { 53 54 class ARMOperand; 55 56 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 57 58 class UnwindContext { 59 MCAsmParser &Parser; 60 61 typedef SmallVector<SMLoc, 4> Locs; 62 63 Locs FnStartLocs; 64 Locs CantUnwindLocs; 65 Locs PersonalityLocs; 66 Locs PersonalityIndexLocs; 67 Locs HandlerDataLocs; 68 int FPReg; 69 70 public: 71 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 72 73 bool hasFnStart() const { return !FnStartLocs.empty(); } 74 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 75 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 76 bool hasPersonality() const { 77 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 78 } 79 80 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 81 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 82 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 83 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 84 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 85 86 void saveFPReg(int Reg) { FPReg = Reg; } 87 int getFPReg() const { return FPReg; } 88 89 void emitFnStartLocNotes() const { 90 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 91 FI != FE; ++FI) 92 Parser.Note(*FI, ".fnstart was specified here"); 93 } 94 void emitCantUnwindLocNotes() const { 95 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 96 UE = CantUnwindLocs.end(); UI != UE; ++UI) 97 Parser.Note(*UI, ".cantunwind was specified here"); 98 } 99 void emitHandlerDataLocNotes() const { 100 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 101 HE = HandlerDataLocs.end(); HI != HE; ++HI) 102 Parser.Note(*HI, ".handlerdata was specified here"); 103 } 104 void emitPersonalityLocNotes() const { 105 for (Locs::const_iterator PI = PersonalityLocs.begin(), 106 PE = PersonalityLocs.end(), 107 PII = PersonalityIndexLocs.begin(), 108 PIE = PersonalityIndexLocs.end(); 109 PI != PE || PII != PIE;) { 110 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 111 Parser.Note(*PI++, ".personality was specified here"); 112 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 113 Parser.Note(*PII++, ".personalityindex was specified here"); 114 else 115 llvm_unreachable(".personality and .personalityindex cannot be " 116 "at the same location"); 117 } 118 } 119 120 void reset() { 121 FnStartLocs = Locs(); 122 CantUnwindLocs = Locs(); 123 PersonalityLocs = Locs(); 124 HandlerDataLocs = Locs(); 125 PersonalityIndexLocs = Locs(); 126 FPReg = ARM::SP; 127 } 128 }; 129 130 class ARMAsmParser : public MCTargetAsmParser { 131 MCSubtargetInfo &STI; 132 MCAsmParser &Parser; 133 const MCInstrInfo &MII; 134 const MCRegisterInfo *MRI; 135 UnwindContext UC; 136 137 ARMTargetStreamer &getTargetStreamer() { 138 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 139 return static_cast<ARMTargetStreamer &>(TS); 140 } 141 142 // Map of register aliases registers via the .req directive. 143 StringMap<unsigned> RegisterReqs; 144 145 bool NextSymbolIsThumb; 146 147 struct { 148 ARMCC::CondCodes Cond; // Condition for IT block. 149 unsigned Mask:4; // Condition mask for instructions. 150 // Starting at first 1 (from lsb). 151 // '1' condition as indicated in IT. 152 // '0' inverse of condition (else). 153 // Count of instructions in IT block is 154 // 4 - trailingzeroes(mask) 155 156 bool FirstCond; // Explicit flag for when we're parsing the 157 // First instruction in the IT block. It's 158 // implied in the mask, so needs special 159 // handling. 160 161 unsigned CurPosition; // Current position in parsing of IT 162 // block. In range [0,3]. Initialized 163 // according to count of instructions in block. 164 // ~0U if no active IT block. 165 } ITState; 166 bool inITBlock() { return ITState.CurPosition != ~0U;} 167 void forwardITPosition() { 168 if (!inITBlock()) return; 169 // Move to the next instruction in the IT block, if there is one. If not, 170 // mark the block as done. 171 unsigned TZ = countTrailingZeros(ITState.Mask); 172 if (++ITState.CurPosition == 5 - TZ) 173 ITState.CurPosition = ~0U; // Done with the IT block after this. 174 } 175 176 177 MCAsmParser &getParser() const { return Parser; } 178 MCAsmLexer &getLexer() const { return Parser.getLexer(); } 179 180 void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { 181 return Parser.Note(L, Msg, Ranges); 182 } 183 bool Warning(SMLoc L, const Twine &Msg, 184 ArrayRef<SMRange> Ranges = None) { 185 return Parser.Warning(L, Msg, Ranges); 186 } 187 bool Error(SMLoc L, const Twine &Msg, 188 ArrayRef<SMRange> Ranges = None) { 189 return Parser.Error(L, Msg, Ranges); 190 } 191 192 int tryParseRegister(); 193 bool tryParseRegisterWithWriteBack(OperandVector &); 194 int tryParseShiftRegister(OperandVector &); 195 bool parseRegisterList(OperandVector &); 196 bool parseMemory(OperandVector &); 197 bool parseOperand(OperandVector &, StringRef Mnemonic); 198 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 199 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 200 unsigned &ShiftAmount); 201 bool parseLiteralValues(unsigned Size, SMLoc L); 202 bool parseDirectiveThumb(SMLoc L); 203 bool parseDirectiveARM(SMLoc L); 204 bool parseDirectiveThumbFunc(SMLoc L); 205 bool parseDirectiveCode(SMLoc L); 206 bool parseDirectiveSyntax(SMLoc L); 207 bool parseDirectiveReq(StringRef Name, SMLoc L); 208 bool parseDirectiveUnreq(SMLoc L); 209 bool parseDirectiveArch(SMLoc L); 210 bool parseDirectiveEabiAttr(SMLoc L); 211 bool parseDirectiveCPU(SMLoc L); 212 bool parseDirectiveFPU(SMLoc L); 213 bool parseDirectiveFnStart(SMLoc L); 214 bool parseDirectiveFnEnd(SMLoc L); 215 bool parseDirectiveCantUnwind(SMLoc L); 216 bool parseDirectivePersonality(SMLoc L); 217 bool parseDirectiveHandlerData(SMLoc L); 218 bool parseDirectiveSetFP(SMLoc L); 219 bool parseDirectivePad(SMLoc L); 220 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 221 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 222 bool parseDirectiveLtorg(SMLoc L); 223 bool parseDirectiveEven(SMLoc L); 224 bool parseDirectivePersonalityIndex(SMLoc L); 225 bool parseDirectiveUnwindRaw(SMLoc L); 226 bool parseDirectiveTLSDescSeq(SMLoc L); 227 bool parseDirectiveMovSP(SMLoc L); 228 bool parseDirectiveObjectArch(SMLoc L); 229 bool parseDirectiveArchExtension(SMLoc L); 230 bool parseDirectiveAlign(SMLoc L); 231 bool parseDirectiveThumbSet(SMLoc L); 232 233 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 234 bool &CarrySetting, unsigned &ProcessorIMod, 235 StringRef &ITMask); 236 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 237 bool &CanAcceptCarrySet, 238 bool &CanAcceptPredicationCode); 239 240 bool isThumb() const { 241 // FIXME: Can tablegen auto-generate this? 242 return (STI.getFeatureBits() & ARM::ModeThumb) != 0; 243 } 244 bool isThumbOne() const { 245 return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0; 246 } 247 bool isThumbTwo() const { 248 return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2); 249 } 250 bool hasThumb() const { 251 return STI.getFeatureBits() & ARM::HasV4TOps; 252 } 253 bool hasV6Ops() const { 254 return STI.getFeatureBits() & ARM::HasV6Ops; 255 } 256 bool hasV6MOps() const { 257 return STI.getFeatureBits() & ARM::HasV6MOps; 258 } 259 bool hasV7Ops() const { 260 return STI.getFeatureBits() & ARM::HasV7Ops; 261 } 262 bool hasV8Ops() const { 263 return STI.getFeatureBits() & ARM::HasV8Ops; 264 } 265 bool hasARM() const { 266 return !(STI.getFeatureBits() & ARM::FeatureNoARM); 267 } 268 269 void SwitchMode() { 270 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 271 setAvailableFeatures(FB); 272 } 273 bool isMClass() const { 274 return STI.getFeatureBits() & ARM::FeatureMClass; 275 } 276 277 /// @name Auto-generated Match Functions 278 /// { 279 280 #define GET_ASSEMBLER_HEADER 281 #include "ARMGenAsmMatcher.inc" 282 283 /// } 284 285 OperandMatchResultTy parseITCondCode(OperandVector &); 286 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 287 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 288 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 289 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 290 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 291 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 292 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 293 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 294 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 295 int High); 296 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 297 return parsePKHImm(O, "lsl", 0, 31); 298 } 299 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 300 return parsePKHImm(O, "asr", 1, 32); 301 } 302 OperandMatchResultTy parseSetEndImm(OperandVector &); 303 OperandMatchResultTy parseShifterImm(OperandVector &); 304 OperandMatchResultTy parseRotImm(OperandVector &); 305 OperandMatchResultTy parseBitfield(OperandVector &); 306 OperandMatchResultTy parsePostIdxReg(OperandVector &); 307 OperandMatchResultTy parseAM3Offset(OperandVector &); 308 OperandMatchResultTy parseFPImm(OperandVector &); 309 OperandMatchResultTy parseVectorList(OperandVector &); 310 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 311 SMLoc &EndLoc); 312 313 // Asm Match Converter Methods 314 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 315 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 316 317 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 318 bool processInstruction(MCInst &Inst, const OperandVector &Ops); 319 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 320 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 321 322 public: 323 enum ARMMatchResultTy { 324 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 325 Match_RequiresNotITBlock, 326 Match_RequiresV6, 327 Match_RequiresThumb2, 328 #define GET_OPERAND_DIAGNOSTIC_TYPES 329 #include "ARMGenAsmMatcher.inc" 330 331 }; 332 333 ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser, 334 const MCInstrInfo &MII, 335 const MCTargetOptions &Options) 336 : MCTargetAsmParser(), STI(_STI), Parser(_Parser), MII(MII), UC(_Parser) { 337 MCAsmParserExtension::Initialize(_Parser); 338 339 // Cache the MCRegisterInfo. 340 MRI = getContext().getRegisterInfo(); 341 342 // Initialize the set of available features. 343 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 344 345 // Not in an ITBlock to start with. 346 ITState.CurPosition = ~0U; 347 348 NextSymbolIsThumb = false; 349 } 350 351 // Implementation of the MCTargetAsmParser interface: 352 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 353 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 354 SMLoc NameLoc, OperandVector &Operands) override; 355 bool ParseDirective(AsmToken DirectiveID) override; 356 357 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 358 unsigned Kind) override; 359 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 360 361 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 362 OperandVector &Operands, MCStreamer &Out, 363 uint64_t &ErrorInfo, 364 bool MatchingInlineAsm) override; 365 void onLabelParsed(MCSymbol *Symbol) override; 366 }; 367 } // end anonymous namespace 368 369 namespace { 370 371 /// ARMOperand - Instances of this class represent a parsed ARM machine 372 /// operand. 373 class ARMOperand : public MCParsedAsmOperand { 374 enum KindTy { 375 k_CondCode, 376 k_CCOut, 377 k_ITCondMask, 378 k_CoprocNum, 379 k_CoprocReg, 380 k_CoprocOption, 381 k_Immediate, 382 k_MemBarrierOpt, 383 k_InstSyncBarrierOpt, 384 k_Memory, 385 k_PostIndexRegister, 386 k_MSRMask, 387 k_BankedReg, 388 k_ProcIFlags, 389 k_VectorIndex, 390 k_Register, 391 k_RegisterList, 392 k_DPRRegisterList, 393 k_SPRRegisterList, 394 k_VectorList, 395 k_VectorListAllLanes, 396 k_VectorListIndexed, 397 k_ShiftedRegister, 398 k_ShiftedImmediate, 399 k_ShifterImmediate, 400 k_RotateImmediate, 401 k_BitfieldDescriptor, 402 k_Token 403 } Kind; 404 405 SMLoc StartLoc, EndLoc, AlignmentLoc; 406 SmallVector<unsigned, 8> Registers; 407 408 struct CCOp { 409 ARMCC::CondCodes Val; 410 }; 411 412 struct CopOp { 413 unsigned Val; 414 }; 415 416 struct CoprocOptionOp { 417 unsigned Val; 418 }; 419 420 struct ITMaskOp { 421 unsigned Mask:4; 422 }; 423 424 struct MBOptOp { 425 ARM_MB::MemBOpt Val; 426 }; 427 428 struct ISBOptOp { 429 ARM_ISB::InstSyncBOpt Val; 430 }; 431 432 struct IFlagsOp { 433 ARM_PROC::IFlags Val; 434 }; 435 436 struct MMaskOp { 437 unsigned Val; 438 }; 439 440 struct BankedRegOp { 441 unsigned Val; 442 }; 443 444 struct TokOp { 445 const char *Data; 446 unsigned Length; 447 }; 448 449 struct RegOp { 450 unsigned RegNum; 451 }; 452 453 // A vector register list is a sequential list of 1 to 4 registers. 454 struct VectorListOp { 455 unsigned RegNum; 456 unsigned Count; 457 unsigned LaneIndex; 458 bool isDoubleSpaced; 459 }; 460 461 struct VectorIndexOp { 462 unsigned Val; 463 }; 464 465 struct ImmOp { 466 const MCExpr *Val; 467 }; 468 469 /// Combined record for all forms of ARM address expressions. 470 struct MemoryOp { 471 unsigned BaseRegNum; 472 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 473 // was specified. 474 const MCConstantExpr *OffsetImm; // Offset immediate value 475 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 476 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 477 unsigned ShiftImm; // shift for OffsetReg. 478 unsigned Alignment; // 0 = no alignment specified 479 // n = alignment in bytes (2, 4, 8, 16, or 32) 480 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 481 }; 482 483 struct PostIdxRegOp { 484 unsigned RegNum; 485 bool isAdd; 486 ARM_AM::ShiftOpc ShiftTy; 487 unsigned ShiftImm; 488 }; 489 490 struct ShifterImmOp { 491 bool isASR; 492 unsigned Imm; 493 }; 494 495 struct RegShiftedRegOp { 496 ARM_AM::ShiftOpc ShiftTy; 497 unsigned SrcReg; 498 unsigned ShiftReg; 499 unsigned ShiftImm; 500 }; 501 502 struct RegShiftedImmOp { 503 ARM_AM::ShiftOpc ShiftTy; 504 unsigned SrcReg; 505 unsigned ShiftImm; 506 }; 507 508 struct RotImmOp { 509 unsigned Imm; 510 }; 511 512 struct BitfieldOp { 513 unsigned LSB; 514 unsigned Width; 515 }; 516 517 union { 518 struct CCOp CC; 519 struct CopOp Cop; 520 struct CoprocOptionOp CoprocOption; 521 struct MBOptOp MBOpt; 522 struct ISBOptOp ISBOpt; 523 struct ITMaskOp ITMask; 524 struct IFlagsOp IFlags; 525 struct MMaskOp MMask; 526 struct BankedRegOp BankedReg; 527 struct TokOp Tok; 528 struct RegOp Reg; 529 struct VectorListOp VectorList; 530 struct VectorIndexOp VectorIndex; 531 struct ImmOp Imm; 532 struct MemoryOp Memory; 533 struct PostIdxRegOp PostIdxReg; 534 struct ShifterImmOp ShifterImm; 535 struct RegShiftedRegOp RegShiftedReg; 536 struct RegShiftedImmOp RegShiftedImm; 537 struct RotImmOp RotImm; 538 struct BitfieldOp Bitfield; 539 }; 540 541 public: 542 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 543 ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() { 544 Kind = o.Kind; 545 StartLoc = o.StartLoc; 546 EndLoc = o.EndLoc; 547 switch (Kind) { 548 case k_CondCode: 549 CC = o.CC; 550 break; 551 case k_ITCondMask: 552 ITMask = o.ITMask; 553 break; 554 case k_Token: 555 Tok = o.Tok; 556 break; 557 case k_CCOut: 558 case k_Register: 559 Reg = o.Reg; 560 break; 561 case k_RegisterList: 562 case k_DPRRegisterList: 563 case k_SPRRegisterList: 564 Registers = o.Registers; 565 break; 566 case k_VectorList: 567 case k_VectorListAllLanes: 568 case k_VectorListIndexed: 569 VectorList = o.VectorList; 570 break; 571 case k_CoprocNum: 572 case k_CoprocReg: 573 Cop = o.Cop; 574 break; 575 case k_CoprocOption: 576 CoprocOption = o.CoprocOption; 577 break; 578 case k_Immediate: 579 Imm = o.Imm; 580 break; 581 case k_MemBarrierOpt: 582 MBOpt = o.MBOpt; 583 break; 584 case k_InstSyncBarrierOpt: 585 ISBOpt = o.ISBOpt; 586 case k_Memory: 587 Memory = o.Memory; 588 break; 589 case k_PostIndexRegister: 590 PostIdxReg = o.PostIdxReg; 591 break; 592 case k_MSRMask: 593 MMask = o.MMask; 594 break; 595 case k_BankedReg: 596 BankedReg = o.BankedReg; 597 break; 598 case k_ProcIFlags: 599 IFlags = o.IFlags; 600 break; 601 case k_ShifterImmediate: 602 ShifterImm = o.ShifterImm; 603 break; 604 case k_ShiftedRegister: 605 RegShiftedReg = o.RegShiftedReg; 606 break; 607 case k_ShiftedImmediate: 608 RegShiftedImm = o.RegShiftedImm; 609 break; 610 case k_RotateImmediate: 611 RotImm = o.RotImm; 612 break; 613 case k_BitfieldDescriptor: 614 Bitfield = o.Bitfield; 615 break; 616 case k_VectorIndex: 617 VectorIndex = o.VectorIndex; 618 break; 619 } 620 } 621 622 /// getStartLoc - Get the location of the first token of this operand. 623 SMLoc getStartLoc() const override { return StartLoc; } 624 /// getEndLoc - Get the location of the last token of this operand. 625 SMLoc getEndLoc() const override { return EndLoc; } 626 /// getLocRange - Get the range between the first and last token of this 627 /// operand. 628 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 629 630 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 631 SMLoc getAlignmentLoc() const { 632 assert(Kind == k_Memory && "Invalid access!"); 633 return AlignmentLoc; 634 } 635 636 ARMCC::CondCodes getCondCode() const { 637 assert(Kind == k_CondCode && "Invalid access!"); 638 return CC.Val; 639 } 640 641 unsigned getCoproc() const { 642 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 643 return Cop.Val; 644 } 645 646 StringRef getToken() const { 647 assert(Kind == k_Token && "Invalid access!"); 648 return StringRef(Tok.Data, Tok.Length); 649 } 650 651 unsigned getReg() const override { 652 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 653 return Reg.RegNum; 654 } 655 656 const SmallVectorImpl<unsigned> &getRegList() const { 657 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 658 Kind == k_SPRRegisterList) && "Invalid access!"); 659 return Registers; 660 } 661 662 const MCExpr *getImm() const { 663 assert(isImm() && "Invalid access!"); 664 return Imm.Val; 665 } 666 667 unsigned getVectorIndex() const { 668 assert(Kind == k_VectorIndex && "Invalid access!"); 669 return VectorIndex.Val; 670 } 671 672 ARM_MB::MemBOpt getMemBarrierOpt() const { 673 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 674 return MBOpt.Val; 675 } 676 677 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 678 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 679 return ISBOpt.Val; 680 } 681 682 ARM_PROC::IFlags getProcIFlags() const { 683 assert(Kind == k_ProcIFlags && "Invalid access!"); 684 return IFlags.Val; 685 } 686 687 unsigned getMSRMask() const { 688 assert(Kind == k_MSRMask && "Invalid access!"); 689 return MMask.Val; 690 } 691 692 unsigned getBankedReg() const { 693 assert(Kind == k_BankedReg && "Invalid access!"); 694 return BankedReg.Val; 695 } 696 697 bool isCoprocNum() const { return Kind == k_CoprocNum; } 698 bool isCoprocReg() const { return Kind == k_CoprocReg; } 699 bool isCoprocOption() const { return Kind == k_CoprocOption; } 700 bool isCondCode() const { return Kind == k_CondCode; } 701 bool isCCOut() const { return Kind == k_CCOut; } 702 bool isITMask() const { return Kind == k_ITCondMask; } 703 bool isITCondCode() const { return Kind == k_CondCode; } 704 bool isImm() const override { return Kind == k_Immediate; } 705 // checks whether this operand is an unsigned offset which fits is a field 706 // of specified width and scaled by a specific number of bits 707 template<unsigned width, unsigned scale> 708 bool isUnsignedOffset() const { 709 if (!isImm()) return false; 710 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 711 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 712 int64_t Val = CE->getValue(); 713 int64_t Align = 1LL << scale; 714 int64_t Max = Align * ((1LL << width) - 1); 715 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 716 } 717 return false; 718 } 719 // checks whether this operand is an signed offset which fits is a field 720 // of specified width and scaled by a specific number of bits 721 template<unsigned width, unsigned scale> 722 bool isSignedOffset() const { 723 if (!isImm()) return false; 724 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 725 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 726 int64_t Val = CE->getValue(); 727 int64_t Align = 1LL << scale; 728 int64_t Max = Align * ((1LL << (width-1)) - 1); 729 int64_t Min = -Align * (1LL << (width-1)); 730 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 731 } 732 return false; 733 } 734 735 // checks whether this operand is a memory operand computed as an offset 736 // applied to PC. the offset may have 8 bits of magnitude and is represented 737 // with two bits of shift. textually it may be either [pc, #imm], #imm or 738 // relocable expression... 739 bool isThumbMemPC() const { 740 int64_t Val = 0; 741 if (isImm()) { 742 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 743 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 744 if (!CE) return false; 745 Val = CE->getValue(); 746 } 747 else if (isMem()) { 748 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 749 if(Memory.BaseRegNum != ARM::PC) return false; 750 Val = Memory.OffsetImm->getValue(); 751 } 752 else return false; 753 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 754 } 755 bool isFPImm() const { 756 if (!isImm()) return false; 757 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 758 if (!CE) return false; 759 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 760 return Val != -1; 761 } 762 bool isFBits16() const { 763 if (!isImm()) return false; 764 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 765 if (!CE) return false; 766 int64_t Value = CE->getValue(); 767 return Value >= 0 && Value <= 16; 768 } 769 bool isFBits32() const { 770 if (!isImm()) return false; 771 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 772 if (!CE) return false; 773 int64_t Value = CE->getValue(); 774 return Value >= 1 && Value <= 32; 775 } 776 bool isImm8s4() const { 777 if (!isImm()) return false; 778 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 779 if (!CE) return false; 780 int64_t Value = CE->getValue(); 781 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 782 } 783 bool isImm0_1020s4() const { 784 if (!isImm()) return false; 785 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 786 if (!CE) return false; 787 int64_t Value = CE->getValue(); 788 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 789 } 790 bool isImm0_508s4() const { 791 if (!isImm()) return false; 792 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 793 if (!CE) return false; 794 int64_t Value = CE->getValue(); 795 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 796 } 797 bool isImm0_508s4Neg() const { 798 if (!isImm()) return false; 799 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 800 if (!CE) return false; 801 int64_t Value = -CE->getValue(); 802 // explicitly exclude zero. we want that to use the normal 0_508 version. 803 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 804 } 805 bool isImm0_239() const { 806 if (!isImm()) return false; 807 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 808 if (!CE) return false; 809 int64_t Value = CE->getValue(); 810 return Value >= 0 && Value < 240; 811 } 812 bool isImm0_255() const { 813 if (!isImm()) return false; 814 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 815 if (!CE) return false; 816 int64_t Value = CE->getValue(); 817 return Value >= 0 && Value < 256; 818 } 819 bool isImm0_4095() const { 820 if (!isImm()) return false; 821 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 822 if (!CE) return false; 823 int64_t Value = CE->getValue(); 824 return Value >= 0 && Value < 4096; 825 } 826 bool isImm0_4095Neg() const { 827 if (!isImm()) return false; 828 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 829 if (!CE) return false; 830 int64_t Value = -CE->getValue(); 831 return Value > 0 && Value < 4096; 832 } 833 bool isImm0_1() const { 834 if (!isImm()) return false; 835 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 836 if (!CE) return false; 837 int64_t Value = CE->getValue(); 838 return Value >= 0 && Value < 2; 839 } 840 bool isImm0_3() const { 841 if (!isImm()) return false; 842 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 843 if (!CE) return false; 844 int64_t Value = CE->getValue(); 845 return Value >= 0 && Value < 4; 846 } 847 bool isImm0_7() const { 848 if (!isImm()) return false; 849 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 850 if (!CE) return false; 851 int64_t Value = CE->getValue(); 852 return Value >= 0 && Value < 8; 853 } 854 bool isImm0_15() const { 855 if (!isImm()) return false; 856 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 857 if (!CE) return false; 858 int64_t Value = CE->getValue(); 859 return Value >= 0 && Value < 16; 860 } 861 bool isImm0_31() const { 862 if (!isImm()) return false; 863 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 864 if (!CE) return false; 865 int64_t Value = CE->getValue(); 866 return Value >= 0 && Value < 32; 867 } 868 bool isImm0_63() const { 869 if (!isImm()) return false; 870 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 871 if (!CE) return false; 872 int64_t Value = CE->getValue(); 873 return Value >= 0 && Value < 64; 874 } 875 bool isImm8() const { 876 if (!isImm()) return false; 877 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 878 if (!CE) return false; 879 int64_t Value = CE->getValue(); 880 return Value == 8; 881 } 882 bool isImm16() const { 883 if (!isImm()) return false; 884 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 885 if (!CE) return false; 886 int64_t Value = CE->getValue(); 887 return Value == 16; 888 } 889 bool isImm32() const { 890 if (!isImm()) return false; 891 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 892 if (!CE) return false; 893 int64_t Value = CE->getValue(); 894 return Value == 32; 895 } 896 bool isShrImm8() const { 897 if (!isImm()) return false; 898 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 899 if (!CE) return false; 900 int64_t Value = CE->getValue(); 901 return Value > 0 && Value <= 8; 902 } 903 bool isShrImm16() const { 904 if (!isImm()) return false; 905 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 906 if (!CE) return false; 907 int64_t Value = CE->getValue(); 908 return Value > 0 && Value <= 16; 909 } 910 bool isShrImm32() const { 911 if (!isImm()) return false; 912 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 913 if (!CE) return false; 914 int64_t Value = CE->getValue(); 915 return Value > 0 && Value <= 32; 916 } 917 bool isShrImm64() const { 918 if (!isImm()) return false; 919 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 920 if (!CE) return false; 921 int64_t Value = CE->getValue(); 922 return Value > 0 && Value <= 64; 923 } 924 bool isImm1_7() const { 925 if (!isImm()) return false; 926 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 927 if (!CE) return false; 928 int64_t Value = CE->getValue(); 929 return Value > 0 && Value < 8; 930 } 931 bool isImm1_15() const { 932 if (!isImm()) return false; 933 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 934 if (!CE) return false; 935 int64_t Value = CE->getValue(); 936 return Value > 0 && Value < 16; 937 } 938 bool isImm1_31() const { 939 if (!isImm()) return false; 940 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 941 if (!CE) return false; 942 int64_t Value = CE->getValue(); 943 return Value > 0 && Value < 32; 944 } 945 bool isImm1_16() const { 946 if (!isImm()) return false; 947 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 948 if (!CE) return false; 949 int64_t Value = CE->getValue(); 950 return Value > 0 && Value < 17; 951 } 952 bool isImm1_32() const { 953 if (!isImm()) return false; 954 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 955 if (!CE) return false; 956 int64_t Value = CE->getValue(); 957 return Value > 0 && Value < 33; 958 } 959 bool isImm0_32() const { 960 if (!isImm()) return false; 961 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 962 if (!CE) return false; 963 int64_t Value = CE->getValue(); 964 return Value >= 0 && Value < 33; 965 } 966 bool isImm0_65535() const { 967 if (!isImm()) return false; 968 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 969 if (!CE) return false; 970 int64_t Value = CE->getValue(); 971 return Value >= 0 && Value < 65536; 972 } 973 bool isImm256_65535Expr() const { 974 if (!isImm()) return false; 975 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 976 // If it's not a constant expression, it'll generate a fixup and be 977 // handled later. 978 if (!CE) return true; 979 int64_t Value = CE->getValue(); 980 return Value >= 256 && Value < 65536; 981 } 982 bool isImm0_65535Expr() const { 983 if (!isImm()) return false; 984 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 985 // If it's not a constant expression, it'll generate a fixup and be 986 // handled later. 987 if (!CE) return true; 988 int64_t Value = CE->getValue(); 989 return Value >= 0 && Value < 65536; 990 } 991 bool isImm24bit() const { 992 if (!isImm()) return false; 993 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 994 if (!CE) return false; 995 int64_t Value = CE->getValue(); 996 return Value >= 0 && Value <= 0xffffff; 997 } 998 bool isImmThumbSR() const { 999 if (!isImm()) return false; 1000 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1001 if (!CE) return false; 1002 int64_t Value = CE->getValue(); 1003 return Value > 0 && Value < 33; 1004 } 1005 bool isPKHLSLImm() const { 1006 if (!isImm()) return false; 1007 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1008 if (!CE) return false; 1009 int64_t Value = CE->getValue(); 1010 return Value >= 0 && Value < 32; 1011 } 1012 bool isPKHASRImm() const { 1013 if (!isImm()) return false; 1014 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1015 if (!CE) return false; 1016 int64_t Value = CE->getValue(); 1017 return Value > 0 && Value <= 32; 1018 } 1019 bool isAdrLabel() const { 1020 // If we have an immediate that's not a constant, treat it as a label 1021 // reference needing a fixup. If it is a constant, but it can't fit 1022 // into shift immediate encoding, we reject it. 1023 if (isImm() && !isa<MCConstantExpr>(getImm())) return true; 1024 else return (isARMSOImm() || isARMSOImmNeg()); 1025 } 1026 bool isARMSOImm() const { 1027 if (!isImm()) return false; 1028 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1029 if (!CE) return false; 1030 int64_t Value = CE->getValue(); 1031 return ARM_AM::getSOImmVal(Value) != -1; 1032 } 1033 bool isARMSOImmNot() const { 1034 if (!isImm()) return false; 1035 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1036 if (!CE) return false; 1037 int64_t Value = CE->getValue(); 1038 return ARM_AM::getSOImmVal(~Value) != -1; 1039 } 1040 bool isARMSOImmNeg() const { 1041 if (!isImm()) return false; 1042 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1043 if (!CE) return false; 1044 int64_t Value = CE->getValue(); 1045 // Only use this when not representable as a plain so_imm. 1046 return ARM_AM::getSOImmVal(Value) == -1 && 1047 ARM_AM::getSOImmVal(-Value) != -1; 1048 } 1049 bool isT2SOImm() const { 1050 if (!isImm()) return false; 1051 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1052 if (!CE) return false; 1053 int64_t Value = CE->getValue(); 1054 return ARM_AM::getT2SOImmVal(Value) != -1; 1055 } 1056 bool isT2SOImmNot() const { 1057 if (!isImm()) return false; 1058 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1059 if (!CE) return false; 1060 int64_t Value = CE->getValue(); 1061 return ARM_AM::getT2SOImmVal(Value) == -1 && 1062 ARM_AM::getT2SOImmVal(~Value) != -1; 1063 } 1064 bool isT2SOImmNeg() const { 1065 if (!isImm()) return false; 1066 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1067 if (!CE) return false; 1068 int64_t Value = CE->getValue(); 1069 // Only use this when not representable as a plain so_imm. 1070 return ARM_AM::getT2SOImmVal(Value) == -1 && 1071 ARM_AM::getT2SOImmVal(-Value) != -1; 1072 } 1073 bool isSetEndImm() const { 1074 if (!isImm()) return false; 1075 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1076 if (!CE) return false; 1077 int64_t Value = CE->getValue(); 1078 return Value == 1 || Value == 0; 1079 } 1080 bool isReg() const override { return Kind == k_Register; } 1081 bool isRegList() const { return Kind == k_RegisterList; } 1082 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1083 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1084 bool isToken() const override { return Kind == k_Token; } 1085 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1086 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1087 bool isMem() const override { return Kind == k_Memory; } 1088 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1089 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1090 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1091 bool isRotImm() const { return Kind == k_RotateImmediate; } 1092 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1093 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1094 bool isPostIdxReg() const { 1095 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1096 } 1097 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1098 if (!isMem()) 1099 return false; 1100 // No offset of any kind. 1101 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1102 (alignOK || Memory.Alignment == Alignment); 1103 } 1104 bool isMemPCRelImm12() const { 1105 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1106 return false; 1107 // Base register must be PC. 1108 if (Memory.BaseRegNum != ARM::PC) 1109 return false; 1110 // Immediate offset in range [-4095, 4095]. 1111 if (!Memory.OffsetImm) return true; 1112 int64_t Val = Memory.OffsetImm->getValue(); 1113 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1114 } 1115 bool isAlignedMemory() const { 1116 return isMemNoOffset(true); 1117 } 1118 bool isAlignedMemoryNone() const { 1119 return isMemNoOffset(false, 0); 1120 } 1121 bool isDupAlignedMemoryNone() const { 1122 return isMemNoOffset(false, 0); 1123 } 1124 bool isAlignedMemory16() const { 1125 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1126 return true; 1127 return isMemNoOffset(false, 0); 1128 } 1129 bool isDupAlignedMemory16() const { 1130 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1131 return true; 1132 return isMemNoOffset(false, 0); 1133 } 1134 bool isAlignedMemory32() const { 1135 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1136 return true; 1137 return isMemNoOffset(false, 0); 1138 } 1139 bool isDupAlignedMemory32() const { 1140 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1141 return true; 1142 return isMemNoOffset(false, 0); 1143 } 1144 bool isAlignedMemory64() const { 1145 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1146 return true; 1147 return isMemNoOffset(false, 0); 1148 } 1149 bool isDupAlignedMemory64() const { 1150 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1151 return true; 1152 return isMemNoOffset(false, 0); 1153 } 1154 bool isAlignedMemory64or128() const { 1155 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1156 return true; 1157 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1158 return true; 1159 return isMemNoOffset(false, 0); 1160 } 1161 bool isDupAlignedMemory64or128() const { 1162 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1163 return true; 1164 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1165 return true; 1166 return isMemNoOffset(false, 0); 1167 } 1168 bool isAlignedMemory64or128or256() const { 1169 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1170 return true; 1171 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1172 return true; 1173 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1174 return true; 1175 return isMemNoOffset(false, 0); 1176 } 1177 bool isAddrMode2() const { 1178 if (!isMem() || Memory.Alignment != 0) return false; 1179 // Check for register offset. 1180 if (Memory.OffsetRegNum) return true; 1181 // Immediate offset in range [-4095, 4095]. 1182 if (!Memory.OffsetImm) return true; 1183 int64_t Val = Memory.OffsetImm->getValue(); 1184 return Val > -4096 && Val < 4096; 1185 } 1186 bool isAM2OffsetImm() const { 1187 if (!isImm()) return false; 1188 // Immediate offset in range [-4095, 4095]. 1189 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1190 if (!CE) return false; 1191 int64_t Val = CE->getValue(); 1192 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1193 } 1194 bool isAddrMode3() const { 1195 // If we have an immediate that's not a constant, treat it as a label 1196 // reference needing a fixup. If it is a constant, it's something else 1197 // and we reject it. 1198 if (isImm() && !isa<MCConstantExpr>(getImm())) 1199 return true; 1200 if (!isMem() || Memory.Alignment != 0) return false; 1201 // No shifts are legal for AM3. 1202 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1203 // Check for register offset. 1204 if (Memory.OffsetRegNum) return true; 1205 // Immediate offset in range [-255, 255]. 1206 if (!Memory.OffsetImm) return true; 1207 int64_t Val = Memory.OffsetImm->getValue(); 1208 // The #-0 offset is encoded as INT32_MIN, and we have to check 1209 // for this too. 1210 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1211 } 1212 bool isAM3Offset() const { 1213 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1214 return false; 1215 if (Kind == k_PostIndexRegister) 1216 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1217 // Immediate offset in range [-255, 255]. 1218 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1219 if (!CE) return false; 1220 int64_t Val = CE->getValue(); 1221 // Special case, #-0 is INT32_MIN. 1222 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1223 } 1224 bool isAddrMode5() const { 1225 // If we have an immediate that's not a constant, treat it as a label 1226 // reference needing a fixup. If it is a constant, it's something else 1227 // and we reject it. 1228 if (isImm() && !isa<MCConstantExpr>(getImm())) 1229 return true; 1230 if (!isMem() || Memory.Alignment != 0) return false; 1231 // Check for register offset. 1232 if (Memory.OffsetRegNum) return false; 1233 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1234 if (!Memory.OffsetImm) return true; 1235 int64_t Val = Memory.OffsetImm->getValue(); 1236 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1237 Val == INT32_MIN; 1238 } 1239 bool isMemTBB() const { 1240 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1241 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1242 return false; 1243 return true; 1244 } 1245 bool isMemTBH() const { 1246 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1247 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1248 Memory.Alignment != 0 ) 1249 return false; 1250 return true; 1251 } 1252 bool isMemRegOffset() const { 1253 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1254 return false; 1255 return true; 1256 } 1257 bool isT2MemRegOffset() const { 1258 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1259 Memory.Alignment != 0) 1260 return false; 1261 // Only lsl #{0, 1, 2, 3} allowed. 1262 if (Memory.ShiftType == ARM_AM::no_shift) 1263 return true; 1264 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1265 return false; 1266 return true; 1267 } 1268 bool isMemThumbRR() const { 1269 // Thumb reg+reg addressing is simple. Just two registers, a base and 1270 // an offset. No shifts, negations or any other complicating factors. 1271 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1272 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1273 return false; 1274 return isARMLowRegister(Memory.BaseRegNum) && 1275 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1276 } 1277 bool isMemThumbRIs4() const { 1278 if (!isMem() || Memory.OffsetRegNum != 0 || 1279 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1280 return false; 1281 // Immediate offset, multiple of 4 in range [0, 124]. 1282 if (!Memory.OffsetImm) return true; 1283 int64_t Val = Memory.OffsetImm->getValue(); 1284 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1285 } 1286 bool isMemThumbRIs2() const { 1287 if (!isMem() || Memory.OffsetRegNum != 0 || 1288 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1289 return false; 1290 // Immediate offset, multiple of 4 in range [0, 62]. 1291 if (!Memory.OffsetImm) return true; 1292 int64_t Val = Memory.OffsetImm->getValue(); 1293 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1294 } 1295 bool isMemThumbRIs1() const { 1296 if (!isMem() || Memory.OffsetRegNum != 0 || 1297 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1298 return false; 1299 // Immediate offset in range [0, 31]. 1300 if (!Memory.OffsetImm) return true; 1301 int64_t Val = Memory.OffsetImm->getValue(); 1302 return Val >= 0 && Val <= 31; 1303 } 1304 bool isMemThumbSPI() const { 1305 if (!isMem() || Memory.OffsetRegNum != 0 || 1306 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1307 return false; 1308 // Immediate offset, multiple of 4 in range [0, 1020]. 1309 if (!Memory.OffsetImm) return true; 1310 int64_t Val = Memory.OffsetImm->getValue(); 1311 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1312 } 1313 bool isMemImm8s4Offset() const { 1314 // If we have an immediate that's not a constant, treat it as a label 1315 // reference needing a fixup. If it is a constant, it's something else 1316 // and we reject it. 1317 if (isImm() && !isa<MCConstantExpr>(getImm())) 1318 return true; 1319 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1320 return false; 1321 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1322 if (!Memory.OffsetImm) return true; 1323 int64_t Val = Memory.OffsetImm->getValue(); 1324 // Special case, #-0 is INT32_MIN. 1325 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1326 } 1327 bool isMemImm0_1020s4Offset() const { 1328 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1329 return false; 1330 // Immediate offset a multiple of 4 in range [0, 1020]. 1331 if (!Memory.OffsetImm) return true; 1332 int64_t Val = Memory.OffsetImm->getValue(); 1333 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1334 } 1335 bool isMemImm8Offset() const { 1336 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1337 return false; 1338 // Base reg of PC isn't allowed for these encodings. 1339 if (Memory.BaseRegNum == ARM::PC) return false; 1340 // Immediate offset in range [-255, 255]. 1341 if (!Memory.OffsetImm) return true; 1342 int64_t Val = Memory.OffsetImm->getValue(); 1343 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1344 } 1345 bool isMemPosImm8Offset() const { 1346 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1347 return false; 1348 // Immediate offset in range [0, 255]. 1349 if (!Memory.OffsetImm) return true; 1350 int64_t Val = Memory.OffsetImm->getValue(); 1351 return Val >= 0 && Val < 256; 1352 } 1353 bool isMemNegImm8Offset() const { 1354 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1355 return false; 1356 // Base reg of PC isn't allowed for these encodings. 1357 if (Memory.BaseRegNum == ARM::PC) return false; 1358 // Immediate offset in range [-255, -1]. 1359 if (!Memory.OffsetImm) return false; 1360 int64_t Val = Memory.OffsetImm->getValue(); 1361 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1362 } 1363 bool isMemUImm12Offset() const { 1364 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1365 return false; 1366 // Immediate offset in range [0, 4095]. 1367 if (!Memory.OffsetImm) return true; 1368 int64_t Val = Memory.OffsetImm->getValue(); 1369 return (Val >= 0 && Val < 4096); 1370 } 1371 bool isMemImm12Offset() const { 1372 // If we have an immediate that's not a constant, treat it as a label 1373 // reference needing a fixup. If it is a constant, it's something else 1374 // and we reject it. 1375 if (isImm() && !isa<MCConstantExpr>(getImm())) 1376 return true; 1377 1378 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1379 return false; 1380 // Immediate offset in range [-4095, 4095]. 1381 if (!Memory.OffsetImm) return true; 1382 int64_t Val = Memory.OffsetImm->getValue(); 1383 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1384 } 1385 bool isPostIdxImm8() const { 1386 if (!isImm()) return false; 1387 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1388 if (!CE) return false; 1389 int64_t Val = CE->getValue(); 1390 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1391 } 1392 bool isPostIdxImm8s4() const { 1393 if (!isImm()) return false; 1394 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1395 if (!CE) return false; 1396 int64_t Val = CE->getValue(); 1397 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1398 (Val == INT32_MIN); 1399 } 1400 1401 bool isMSRMask() const { return Kind == k_MSRMask; } 1402 bool isBankedReg() const { return Kind == k_BankedReg; } 1403 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1404 1405 // NEON operands. 1406 bool isSingleSpacedVectorList() const { 1407 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1408 } 1409 bool isDoubleSpacedVectorList() const { 1410 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1411 } 1412 bool isVecListOneD() const { 1413 if (!isSingleSpacedVectorList()) return false; 1414 return VectorList.Count == 1; 1415 } 1416 1417 bool isVecListDPair() const { 1418 if (!isSingleSpacedVectorList()) return false; 1419 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1420 .contains(VectorList.RegNum)); 1421 } 1422 1423 bool isVecListThreeD() const { 1424 if (!isSingleSpacedVectorList()) return false; 1425 return VectorList.Count == 3; 1426 } 1427 1428 bool isVecListFourD() const { 1429 if (!isSingleSpacedVectorList()) return false; 1430 return VectorList.Count == 4; 1431 } 1432 1433 bool isVecListDPairSpaced() const { 1434 if (Kind != k_VectorList) return false; 1435 if (isSingleSpacedVectorList()) return false; 1436 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1437 .contains(VectorList.RegNum)); 1438 } 1439 1440 bool isVecListThreeQ() const { 1441 if (!isDoubleSpacedVectorList()) return false; 1442 return VectorList.Count == 3; 1443 } 1444 1445 bool isVecListFourQ() const { 1446 if (!isDoubleSpacedVectorList()) return false; 1447 return VectorList.Count == 4; 1448 } 1449 1450 bool isSingleSpacedVectorAllLanes() const { 1451 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1452 } 1453 bool isDoubleSpacedVectorAllLanes() const { 1454 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1455 } 1456 bool isVecListOneDAllLanes() const { 1457 if (!isSingleSpacedVectorAllLanes()) return false; 1458 return VectorList.Count == 1; 1459 } 1460 1461 bool isVecListDPairAllLanes() const { 1462 if (!isSingleSpacedVectorAllLanes()) return false; 1463 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1464 .contains(VectorList.RegNum)); 1465 } 1466 1467 bool isVecListDPairSpacedAllLanes() const { 1468 if (!isDoubleSpacedVectorAllLanes()) return false; 1469 return VectorList.Count == 2; 1470 } 1471 1472 bool isVecListThreeDAllLanes() const { 1473 if (!isSingleSpacedVectorAllLanes()) return false; 1474 return VectorList.Count == 3; 1475 } 1476 1477 bool isVecListThreeQAllLanes() const { 1478 if (!isDoubleSpacedVectorAllLanes()) return false; 1479 return VectorList.Count == 3; 1480 } 1481 1482 bool isVecListFourDAllLanes() const { 1483 if (!isSingleSpacedVectorAllLanes()) return false; 1484 return VectorList.Count == 4; 1485 } 1486 1487 bool isVecListFourQAllLanes() const { 1488 if (!isDoubleSpacedVectorAllLanes()) return false; 1489 return VectorList.Count == 4; 1490 } 1491 1492 bool isSingleSpacedVectorIndexed() const { 1493 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1494 } 1495 bool isDoubleSpacedVectorIndexed() const { 1496 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1497 } 1498 bool isVecListOneDByteIndexed() const { 1499 if (!isSingleSpacedVectorIndexed()) return false; 1500 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1501 } 1502 1503 bool isVecListOneDHWordIndexed() const { 1504 if (!isSingleSpacedVectorIndexed()) return false; 1505 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1506 } 1507 1508 bool isVecListOneDWordIndexed() const { 1509 if (!isSingleSpacedVectorIndexed()) return false; 1510 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1511 } 1512 1513 bool isVecListTwoDByteIndexed() const { 1514 if (!isSingleSpacedVectorIndexed()) return false; 1515 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1516 } 1517 1518 bool isVecListTwoDHWordIndexed() const { 1519 if (!isSingleSpacedVectorIndexed()) return false; 1520 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1521 } 1522 1523 bool isVecListTwoQWordIndexed() const { 1524 if (!isDoubleSpacedVectorIndexed()) return false; 1525 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1526 } 1527 1528 bool isVecListTwoQHWordIndexed() const { 1529 if (!isDoubleSpacedVectorIndexed()) return false; 1530 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1531 } 1532 1533 bool isVecListTwoDWordIndexed() const { 1534 if (!isSingleSpacedVectorIndexed()) return false; 1535 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1536 } 1537 1538 bool isVecListThreeDByteIndexed() const { 1539 if (!isSingleSpacedVectorIndexed()) return false; 1540 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1541 } 1542 1543 bool isVecListThreeDHWordIndexed() const { 1544 if (!isSingleSpacedVectorIndexed()) return false; 1545 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1546 } 1547 1548 bool isVecListThreeQWordIndexed() const { 1549 if (!isDoubleSpacedVectorIndexed()) return false; 1550 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1551 } 1552 1553 bool isVecListThreeQHWordIndexed() const { 1554 if (!isDoubleSpacedVectorIndexed()) return false; 1555 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1556 } 1557 1558 bool isVecListThreeDWordIndexed() const { 1559 if (!isSingleSpacedVectorIndexed()) return false; 1560 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1561 } 1562 1563 bool isVecListFourDByteIndexed() const { 1564 if (!isSingleSpacedVectorIndexed()) return false; 1565 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1566 } 1567 1568 bool isVecListFourDHWordIndexed() const { 1569 if (!isSingleSpacedVectorIndexed()) return false; 1570 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1571 } 1572 1573 bool isVecListFourQWordIndexed() const { 1574 if (!isDoubleSpacedVectorIndexed()) return false; 1575 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1576 } 1577 1578 bool isVecListFourQHWordIndexed() const { 1579 if (!isDoubleSpacedVectorIndexed()) return false; 1580 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1581 } 1582 1583 bool isVecListFourDWordIndexed() const { 1584 if (!isSingleSpacedVectorIndexed()) return false; 1585 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1586 } 1587 1588 bool isVectorIndex8() const { 1589 if (Kind != k_VectorIndex) return false; 1590 return VectorIndex.Val < 8; 1591 } 1592 bool isVectorIndex16() const { 1593 if (Kind != k_VectorIndex) return false; 1594 return VectorIndex.Val < 4; 1595 } 1596 bool isVectorIndex32() const { 1597 if (Kind != k_VectorIndex) return false; 1598 return VectorIndex.Val < 2; 1599 } 1600 1601 bool isNEONi8splat() const { 1602 if (!isImm()) return false; 1603 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1604 // Must be a constant. 1605 if (!CE) return false; 1606 int64_t Value = CE->getValue(); 1607 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1608 // value. 1609 return Value >= 0 && Value < 256; 1610 } 1611 1612 bool isNEONi16splat() const { 1613 if (isNEONByteReplicate(2)) 1614 return false; // Leave that for bytes replication and forbid by default. 1615 if (!isImm()) 1616 return false; 1617 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1618 // Must be a constant. 1619 if (!CE) return false; 1620 int64_t Value = CE->getValue(); 1621 // i16 value in the range [0,255] or [0x0100, 0xff00] 1622 return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00); 1623 } 1624 1625 bool isNEONi32splat() const { 1626 if (isNEONByteReplicate(4)) 1627 return false; // Leave that for bytes replication and forbid by default. 1628 if (!isImm()) 1629 return false; 1630 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1631 // Must be a constant. 1632 if (!CE) return false; 1633 int64_t Value = CE->getValue(); 1634 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X. 1635 return (Value >= 0 && Value < 256) || 1636 (Value >= 0x0100 && Value <= 0xff00) || 1637 (Value >= 0x010000 && Value <= 0xff0000) || 1638 (Value >= 0x01000000 && Value <= 0xff000000); 1639 } 1640 1641 bool isNEONByteReplicate(unsigned NumBytes) const { 1642 if (!isImm()) 1643 return false; 1644 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1645 // Must be a constant. 1646 if (!CE) 1647 return false; 1648 int64_t Value = CE->getValue(); 1649 if (!Value) 1650 return false; // Don't bother with zero. 1651 1652 unsigned char B = Value & 0xff; 1653 for (unsigned i = 1; i < NumBytes; ++i) { 1654 Value >>= 8; 1655 if ((Value & 0xff) != B) 1656 return false; 1657 } 1658 return true; 1659 } 1660 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1661 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1662 bool isNEONi32vmov() const { 1663 if (isNEONByteReplicate(4)) 1664 return false; // Let it to be classified as byte-replicate case. 1665 if (!isImm()) 1666 return false; 1667 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1668 // Must be a constant. 1669 if (!CE) 1670 return false; 1671 int64_t Value = CE->getValue(); 1672 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1673 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1674 return (Value >= 0 && Value < 256) || 1675 (Value >= 0x0100 && Value <= 0xff00) || 1676 (Value >= 0x010000 && Value <= 0xff0000) || 1677 (Value >= 0x01000000 && Value <= 0xff000000) || 1678 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1679 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1680 } 1681 bool isNEONi32vmovNeg() const { 1682 if (!isImm()) return false; 1683 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1684 // Must be a constant. 1685 if (!CE) return false; 1686 int64_t Value = ~CE->getValue(); 1687 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1688 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1689 return (Value >= 0 && Value < 256) || 1690 (Value >= 0x0100 && Value <= 0xff00) || 1691 (Value >= 0x010000 && Value <= 0xff0000) || 1692 (Value >= 0x01000000 && Value <= 0xff000000) || 1693 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1694 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1695 } 1696 1697 bool isNEONi64splat() const { 1698 if (!isImm()) return false; 1699 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1700 // Must be a constant. 1701 if (!CE) return false; 1702 uint64_t Value = CE->getValue(); 1703 // i64 value with each byte being either 0 or 0xff. 1704 for (unsigned i = 0; i < 8; ++i) 1705 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1706 return true; 1707 } 1708 1709 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1710 // Add as immediates when possible. Null MCExpr = 0. 1711 if (!Expr) 1712 Inst.addOperand(MCOperand::CreateImm(0)); 1713 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1714 Inst.addOperand(MCOperand::CreateImm(CE->getValue())); 1715 else 1716 Inst.addOperand(MCOperand::CreateExpr(Expr)); 1717 } 1718 1719 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1720 assert(N == 2 && "Invalid number of operands!"); 1721 Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode()))); 1722 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1723 Inst.addOperand(MCOperand::CreateReg(RegNum)); 1724 } 1725 1726 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1727 assert(N == 1 && "Invalid number of operands!"); 1728 Inst.addOperand(MCOperand::CreateImm(getCoproc())); 1729 } 1730 1731 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1732 assert(N == 1 && "Invalid number of operands!"); 1733 Inst.addOperand(MCOperand::CreateImm(getCoproc())); 1734 } 1735 1736 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1737 assert(N == 1 && "Invalid number of operands!"); 1738 Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val)); 1739 } 1740 1741 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1742 assert(N == 1 && "Invalid number of operands!"); 1743 Inst.addOperand(MCOperand::CreateImm(ITMask.Mask)); 1744 } 1745 1746 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1747 assert(N == 1 && "Invalid number of operands!"); 1748 Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode()))); 1749 } 1750 1751 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1752 assert(N == 1 && "Invalid number of operands!"); 1753 Inst.addOperand(MCOperand::CreateReg(getReg())); 1754 } 1755 1756 void addRegOperands(MCInst &Inst, unsigned N) const { 1757 assert(N == 1 && "Invalid number of operands!"); 1758 Inst.addOperand(MCOperand::CreateReg(getReg())); 1759 } 1760 1761 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1762 assert(N == 3 && "Invalid number of operands!"); 1763 assert(isRegShiftedReg() && 1764 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1765 Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg)); 1766 Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg)); 1767 Inst.addOperand(MCOperand::CreateImm( 1768 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1769 } 1770 1771 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1772 assert(N == 2 && "Invalid number of operands!"); 1773 assert(isRegShiftedImm() && 1774 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1775 Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg)); 1776 // Shift of #32 is encoded as 0 where permitted 1777 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1778 Inst.addOperand(MCOperand::CreateImm( 1779 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1780 } 1781 1782 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1783 assert(N == 1 && "Invalid number of operands!"); 1784 Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) | 1785 ShifterImm.Imm)); 1786 } 1787 1788 void addRegListOperands(MCInst &Inst, unsigned N) const { 1789 assert(N == 1 && "Invalid number of operands!"); 1790 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1791 for (SmallVectorImpl<unsigned>::const_iterator 1792 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1793 Inst.addOperand(MCOperand::CreateReg(*I)); 1794 } 1795 1796 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 1797 addRegListOperands(Inst, N); 1798 } 1799 1800 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 1801 addRegListOperands(Inst, N); 1802 } 1803 1804 void addRotImmOperands(MCInst &Inst, unsigned N) const { 1805 assert(N == 1 && "Invalid number of operands!"); 1806 // Encoded as val>>3. The printer handles display as 8, 16, 24. 1807 Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3)); 1808 } 1809 1810 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 1811 assert(N == 1 && "Invalid number of operands!"); 1812 // Munge the lsb/width into a bitfield mask. 1813 unsigned lsb = Bitfield.LSB; 1814 unsigned width = Bitfield.Width; 1815 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 1816 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 1817 (32 - (lsb + width))); 1818 Inst.addOperand(MCOperand::CreateImm(Mask)); 1819 } 1820 1821 void addImmOperands(MCInst &Inst, unsigned N) const { 1822 assert(N == 1 && "Invalid number of operands!"); 1823 addExpr(Inst, getImm()); 1824 } 1825 1826 void addFBits16Operands(MCInst &Inst, unsigned N) const { 1827 assert(N == 1 && "Invalid number of operands!"); 1828 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1829 Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue())); 1830 } 1831 1832 void addFBits32Operands(MCInst &Inst, unsigned N) const { 1833 assert(N == 1 && "Invalid number of operands!"); 1834 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1835 Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue())); 1836 } 1837 1838 void addFPImmOperands(MCInst &Inst, unsigned N) const { 1839 assert(N == 1 && "Invalid number of operands!"); 1840 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1841 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1842 Inst.addOperand(MCOperand::CreateImm(Val)); 1843 } 1844 1845 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 1846 assert(N == 1 && "Invalid number of operands!"); 1847 // FIXME: We really want to scale the value here, but the LDRD/STRD 1848 // instruction don't encode operands that way yet. 1849 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1850 Inst.addOperand(MCOperand::CreateImm(CE->getValue())); 1851 } 1852 1853 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 1854 assert(N == 1 && "Invalid number of operands!"); 1855 // The immediate is scaled by four in the encoding and is stored 1856 // in the MCInst as such. Lop off the low two bits here. 1857 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1858 Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4)); 1859 } 1860 1861 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 1862 assert(N == 1 && "Invalid number of operands!"); 1863 // The immediate is scaled by four in the encoding and is stored 1864 // in the MCInst as such. Lop off the low two bits here. 1865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1866 Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4))); 1867 } 1868 1869 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 1870 assert(N == 1 && "Invalid number of operands!"); 1871 // The immediate is scaled by four in the encoding and is stored 1872 // in the MCInst as such. Lop off the low two bits here. 1873 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1874 Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4)); 1875 } 1876 1877 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 1878 assert(N == 1 && "Invalid number of operands!"); 1879 // The constant encodes as the immediate-1, and we store in the instruction 1880 // the bits as encoded, so subtract off one here. 1881 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1882 Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1)); 1883 } 1884 1885 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 1886 assert(N == 1 && "Invalid number of operands!"); 1887 // The constant encodes as the immediate-1, and we store in the instruction 1888 // the bits as encoded, so subtract off one here. 1889 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1890 Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1)); 1891 } 1892 1893 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 1894 assert(N == 1 && "Invalid number of operands!"); 1895 // The constant encodes as the immediate, except for 32, which encodes as 1896 // zero. 1897 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1898 unsigned Imm = CE->getValue(); 1899 Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm))); 1900 } 1901 1902 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 1903 assert(N == 1 && "Invalid number of operands!"); 1904 // An ASR value of 32 encodes as 0, so that's how we want to add it to 1905 // the instruction as well. 1906 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1907 int Val = CE->getValue(); 1908 Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val)); 1909 } 1910 1911 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 1912 assert(N == 1 && "Invalid number of operands!"); 1913 // The operand is actually a t2_so_imm, but we have its bitwise 1914 // negation in the assembly source, so twiddle it here. 1915 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1916 Inst.addOperand(MCOperand::CreateImm(~CE->getValue())); 1917 } 1918 1919 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 1920 assert(N == 1 && "Invalid number of operands!"); 1921 // The operand is actually a t2_so_imm, but we have its 1922 // negation in the assembly source, so twiddle it here. 1923 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1924 Inst.addOperand(MCOperand::CreateImm(-CE->getValue())); 1925 } 1926 1927 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 1928 assert(N == 1 && "Invalid number of operands!"); 1929 // The operand is actually an imm0_4095, but we have its 1930 // negation in the assembly source, so twiddle it here. 1931 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1932 Inst.addOperand(MCOperand::CreateImm(-CE->getValue())); 1933 } 1934 1935 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 1936 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 1937 Inst.addOperand(MCOperand::CreateImm(CE->getValue() >> 2)); 1938 return; 1939 } 1940 1941 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1942 assert(SR && "Unknown value type!"); 1943 Inst.addOperand(MCOperand::CreateExpr(SR)); 1944 } 1945 1946 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 1947 assert(N == 1 && "Invalid number of operands!"); 1948 if (isImm()) { 1949 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1950 if (CE) { 1951 Inst.addOperand(MCOperand::CreateImm(CE->getValue())); 1952 return; 1953 } 1954 1955 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1956 assert(SR && "Unknown value type!"); 1957 Inst.addOperand(MCOperand::CreateExpr(SR)); 1958 return; 1959 } 1960 1961 assert(isMem() && "Unknown value type!"); 1962 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 1963 Inst.addOperand(MCOperand::CreateImm(Memory.OffsetImm->getValue())); 1964 } 1965 1966 void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const { 1967 assert(N == 1 && "Invalid number of operands!"); 1968 // The operand is actually a so_imm, but we have its bitwise 1969 // negation in the assembly source, so twiddle it here. 1970 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1971 Inst.addOperand(MCOperand::CreateImm(~CE->getValue())); 1972 } 1973 1974 void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const { 1975 assert(N == 1 && "Invalid number of operands!"); 1976 // The operand is actually a so_imm, but we have its 1977 // negation in the assembly source, so twiddle it here. 1978 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1979 Inst.addOperand(MCOperand::CreateImm(-CE->getValue())); 1980 } 1981 1982 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 1983 assert(N == 1 && "Invalid number of operands!"); 1984 Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt()))); 1985 } 1986 1987 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 1988 assert(N == 1 && "Invalid number of operands!"); 1989 Inst.addOperand(MCOperand::CreateImm(unsigned(getInstSyncBarrierOpt()))); 1990 } 1991 1992 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 1993 assert(N == 1 && "Invalid number of operands!"); 1994 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 1995 } 1996 1997 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 1998 assert(N == 1 && "Invalid number of operands!"); 1999 int32_t Imm = Memory.OffsetImm->getValue(); 2000 Inst.addOperand(MCOperand::CreateImm(Imm)); 2001 } 2002 2003 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2004 assert(N == 1 && "Invalid number of operands!"); 2005 assert(isImm() && "Not an immediate!"); 2006 2007 // If we have an immediate that's not a constant, treat it as a label 2008 // reference needing a fixup. 2009 if (!isa<MCConstantExpr>(getImm())) { 2010 Inst.addOperand(MCOperand::CreateExpr(getImm())); 2011 return; 2012 } 2013 2014 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2015 int Val = CE->getValue(); 2016 Inst.addOperand(MCOperand::CreateImm(Val)); 2017 } 2018 2019 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2020 assert(N == 2 && "Invalid number of operands!"); 2021 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2022 Inst.addOperand(MCOperand::CreateImm(Memory.Alignment)); 2023 } 2024 2025 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2026 addAlignedMemoryOperands(Inst, N); 2027 } 2028 2029 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2030 addAlignedMemoryOperands(Inst, N); 2031 } 2032 2033 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2034 addAlignedMemoryOperands(Inst, N); 2035 } 2036 2037 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2038 addAlignedMemoryOperands(Inst, N); 2039 } 2040 2041 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2042 addAlignedMemoryOperands(Inst, N); 2043 } 2044 2045 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2046 addAlignedMemoryOperands(Inst, N); 2047 } 2048 2049 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2050 addAlignedMemoryOperands(Inst, N); 2051 } 2052 2053 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2054 addAlignedMemoryOperands(Inst, N); 2055 } 2056 2057 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2058 addAlignedMemoryOperands(Inst, N); 2059 } 2060 2061 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2062 addAlignedMemoryOperands(Inst, N); 2063 } 2064 2065 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2066 addAlignedMemoryOperands(Inst, N); 2067 } 2068 2069 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2070 assert(N == 3 && "Invalid number of operands!"); 2071 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2072 if (!Memory.OffsetRegNum) { 2073 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2074 // Special case for #-0 2075 if (Val == INT32_MIN) Val = 0; 2076 if (Val < 0) Val = -Val; 2077 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2078 } else { 2079 // For register offset, we encode the shift type and negation flag 2080 // here. 2081 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2082 Memory.ShiftImm, Memory.ShiftType); 2083 } 2084 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2085 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); 2086 Inst.addOperand(MCOperand::CreateImm(Val)); 2087 } 2088 2089 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2090 assert(N == 2 && "Invalid number of operands!"); 2091 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2092 assert(CE && "non-constant AM2OffsetImm operand!"); 2093 int32_t Val = CE->getValue(); 2094 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2095 // Special case for #-0 2096 if (Val == INT32_MIN) Val = 0; 2097 if (Val < 0) Val = -Val; 2098 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2099 Inst.addOperand(MCOperand::CreateReg(0)); 2100 Inst.addOperand(MCOperand::CreateImm(Val)); 2101 } 2102 2103 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2104 assert(N == 3 && "Invalid number of operands!"); 2105 // If we have an immediate that's not a constant, treat it as a label 2106 // reference needing a fixup. If it is a constant, it's something else 2107 // and we reject it. 2108 if (isImm()) { 2109 Inst.addOperand(MCOperand::CreateExpr(getImm())); 2110 Inst.addOperand(MCOperand::CreateReg(0)); 2111 Inst.addOperand(MCOperand::CreateImm(0)); 2112 return; 2113 } 2114 2115 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2116 if (!Memory.OffsetRegNum) { 2117 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2118 // Special case for #-0 2119 if (Val == INT32_MIN) Val = 0; 2120 if (Val < 0) Val = -Val; 2121 Val = ARM_AM::getAM3Opc(AddSub, Val); 2122 } else { 2123 // For register offset, we encode the shift type and negation flag 2124 // here. 2125 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2126 } 2127 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2128 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); 2129 Inst.addOperand(MCOperand::CreateImm(Val)); 2130 } 2131 2132 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2133 assert(N == 2 && "Invalid number of operands!"); 2134 if (Kind == k_PostIndexRegister) { 2135 int32_t Val = 2136 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2137 Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum)); 2138 Inst.addOperand(MCOperand::CreateImm(Val)); 2139 return; 2140 } 2141 2142 // Constant offset. 2143 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2144 int32_t Val = CE->getValue(); 2145 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2146 // Special case for #-0 2147 if (Val == INT32_MIN) Val = 0; 2148 if (Val < 0) Val = -Val; 2149 Val = ARM_AM::getAM3Opc(AddSub, Val); 2150 Inst.addOperand(MCOperand::CreateReg(0)); 2151 Inst.addOperand(MCOperand::CreateImm(Val)); 2152 } 2153 2154 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2155 assert(N == 2 && "Invalid number of operands!"); 2156 // If we have an immediate that's not a constant, treat it as a label 2157 // reference needing a fixup. If it is a constant, it's something else 2158 // and we reject it. 2159 if (isImm()) { 2160 Inst.addOperand(MCOperand::CreateExpr(getImm())); 2161 Inst.addOperand(MCOperand::CreateImm(0)); 2162 return; 2163 } 2164 2165 // The lower two bits are always zero and as such are not encoded. 2166 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2167 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2168 // Special case for #-0 2169 if (Val == INT32_MIN) Val = 0; 2170 if (Val < 0) Val = -Val; 2171 Val = ARM_AM::getAM5Opc(AddSub, Val); 2172 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2173 Inst.addOperand(MCOperand::CreateImm(Val)); 2174 } 2175 2176 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2177 assert(N == 2 && "Invalid number of operands!"); 2178 // If we have an immediate that's not a constant, treat it as a label 2179 // reference needing a fixup. If it is a constant, it's something else 2180 // and we reject it. 2181 if (isImm()) { 2182 Inst.addOperand(MCOperand::CreateExpr(getImm())); 2183 Inst.addOperand(MCOperand::CreateImm(0)); 2184 return; 2185 } 2186 2187 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2188 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2189 Inst.addOperand(MCOperand::CreateImm(Val)); 2190 } 2191 2192 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2193 assert(N == 2 && "Invalid number of operands!"); 2194 // The lower two bits are always zero and as such are not encoded. 2195 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2196 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2197 Inst.addOperand(MCOperand::CreateImm(Val)); 2198 } 2199 2200 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2201 assert(N == 2 && "Invalid number of operands!"); 2202 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2203 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2204 Inst.addOperand(MCOperand::CreateImm(Val)); 2205 } 2206 2207 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2208 addMemImm8OffsetOperands(Inst, N); 2209 } 2210 2211 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2212 addMemImm8OffsetOperands(Inst, N); 2213 } 2214 2215 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2216 assert(N == 2 && "Invalid number of operands!"); 2217 // If this is an immediate, it's a label reference. 2218 if (isImm()) { 2219 addExpr(Inst, getImm()); 2220 Inst.addOperand(MCOperand::CreateImm(0)); 2221 return; 2222 } 2223 2224 // Otherwise, it's a normal memory reg+offset. 2225 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2226 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2227 Inst.addOperand(MCOperand::CreateImm(Val)); 2228 } 2229 2230 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2231 assert(N == 2 && "Invalid number of operands!"); 2232 // If this is an immediate, it's a label reference. 2233 if (isImm()) { 2234 addExpr(Inst, getImm()); 2235 Inst.addOperand(MCOperand::CreateImm(0)); 2236 return; 2237 } 2238 2239 // Otherwise, it's a normal memory reg+offset. 2240 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2241 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2242 Inst.addOperand(MCOperand::CreateImm(Val)); 2243 } 2244 2245 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2246 assert(N == 2 && "Invalid number of operands!"); 2247 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2248 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); 2249 } 2250 2251 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2252 assert(N == 2 && "Invalid number of operands!"); 2253 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2254 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); 2255 } 2256 2257 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2258 assert(N == 3 && "Invalid number of operands!"); 2259 unsigned Val = 2260 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2261 Memory.ShiftImm, Memory.ShiftType); 2262 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2263 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); 2264 Inst.addOperand(MCOperand::CreateImm(Val)); 2265 } 2266 2267 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2268 assert(N == 3 && "Invalid number of operands!"); 2269 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2270 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); 2271 Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm)); 2272 } 2273 2274 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2275 assert(N == 2 && "Invalid number of operands!"); 2276 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2277 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); 2278 } 2279 2280 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2281 assert(N == 2 && "Invalid number of operands!"); 2282 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2283 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2284 Inst.addOperand(MCOperand::CreateImm(Val)); 2285 } 2286 2287 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2288 assert(N == 2 && "Invalid number of operands!"); 2289 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2290 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2291 Inst.addOperand(MCOperand::CreateImm(Val)); 2292 } 2293 2294 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2295 assert(N == 2 && "Invalid number of operands!"); 2296 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2297 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2298 Inst.addOperand(MCOperand::CreateImm(Val)); 2299 } 2300 2301 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2302 assert(N == 2 && "Invalid number of operands!"); 2303 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2304 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2305 Inst.addOperand(MCOperand::CreateImm(Val)); 2306 } 2307 2308 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2309 assert(N == 1 && "Invalid number of operands!"); 2310 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2311 assert(CE && "non-constant post-idx-imm8 operand!"); 2312 int Imm = CE->getValue(); 2313 bool isAdd = Imm >= 0; 2314 if (Imm == INT32_MIN) Imm = 0; 2315 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2316 Inst.addOperand(MCOperand::CreateImm(Imm)); 2317 } 2318 2319 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2320 assert(N == 1 && "Invalid number of operands!"); 2321 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2322 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2323 int Imm = CE->getValue(); 2324 bool isAdd = Imm >= 0; 2325 if (Imm == INT32_MIN) Imm = 0; 2326 // Immediate is scaled by 4. 2327 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2328 Inst.addOperand(MCOperand::CreateImm(Imm)); 2329 } 2330 2331 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2332 assert(N == 2 && "Invalid number of operands!"); 2333 Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum)); 2334 Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd)); 2335 } 2336 2337 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2338 assert(N == 2 && "Invalid number of operands!"); 2339 Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum)); 2340 // The sign, shift type, and shift amount are encoded in a single operand 2341 // using the AM2 encoding helpers. 2342 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2343 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2344 PostIdxReg.ShiftTy); 2345 Inst.addOperand(MCOperand::CreateImm(Imm)); 2346 } 2347 2348 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2349 assert(N == 1 && "Invalid number of operands!"); 2350 Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask()))); 2351 } 2352 2353 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2354 assert(N == 1 && "Invalid number of operands!"); 2355 Inst.addOperand(MCOperand::CreateImm(unsigned(getBankedReg()))); 2356 } 2357 2358 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2359 assert(N == 1 && "Invalid number of operands!"); 2360 Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags()))); 2361 } 2362 2363 void addVecListOperands(MCInst &Inst, unsigned N) const { 2364 assert(N == 1 && "Invalid number of operands!"); 2365 Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum)); 2366 } 2367 2368 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2369 assert(N == 2 && "Invalid number of operands!"); 2370 Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum)); 2371 Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex)); 2372 } 2373 2374 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2375 assert(N == 1 && "Invalid number of operands!"); 2376 Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); 2377 } 2378 2379 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2380 assert(N == 1 && "Invalid number of operands!"); 2381 Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); 2382 } 2383 2384 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2385 assert(N == 1 && "Invalid number of operands!"); 2386 Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); 2387 } 2388 2389 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2390 assert(N == 1 && "Invalid number of operands!"); 2391 // The immediate encodes the type of constant as well as the value. 2392 // Mask in that this is an i8 splat. 2393 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2394 Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00)); 2395 } 2396 2397 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2398 assert(N == 1 && "Invalid number of operands!"); 2399 // The immediate encodes the type of constant as well as the value. 2400 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2401 unsigned Value = CE->getValue(); 2402 if (Value >= 256) 2403 Value = (Value >> 8) | 0xa00; 2404 else 2405 Value |= 0x800; 2406 Inst.addOperand(MCOperand::CreateImm(Value)); 2407 } 2408 2409 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2410 assert(N == 1 && "Invalid number of operands!"); 2411 // The immediate encodes the type of constant as well as the value. 2412 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2413 unsigned Value = CE->getValue(); 2414 if (Value >= 256 && Value <= 0xff00) 2415 Value = (Value >> 8) | 0x200; 2416 else if (Value > 0xffff && Value <= 0xff0000) 2417 Value = (Value >> 16) | 0x400; 2418 else if (Value > 0xffffff) 2419 Value = (Value >> 24) | 0x600; 2420 Inst.addOperand(MCOperand::CreateImm(Value)); 2421 } 2422 2423 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2424 assert(N == 1 && "Invalid number of operands!"); 2425 // The immediate encodes the type of constant as well as the value. 2426 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2427 unsigned Value = CE->getValue(); 2428 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2429 Inst.getOpcode() == ARM::VMOVv16i8) && 2430 "All vmvn instructions that wants to replicate non-zero byte " 2431 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2432 unsigned B = ((~Value) & 0xff); 2433 B |= 0xe00; // cmode = 0b1110 2434 Inst.addOperand(MCOperand::CreateImm(B)); 2435 } 2436 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2437 assert(N == 1 && "Invalid number of operands!"); 2438 // The immediate encodes the type of constant as well as the value. 2439 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2440 unsigned Value = CE->getValue(); 2441 if (Value >= 256 && Value <= 0xffff) 2442 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2443 else if (Value > 0xffff && Value <= 0xffffff) 2444 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2445 else if (Value > 0xffffff) 2446 Value = (Value >> 24) | 0x600; 2447 Inst.addOperand(MCOperand::CreateImm(Value)); 2448 } 2449 2450 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2451 assert(N == 1 && "Invalid number of operands!"); 2452 // The immediate encodes the type of constant as well as the value. 2453 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2454 unsigned Value = CE->getValue(); 2455 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2456 Inst.getOpcode() == ARM::VMOVv16i8) && 2457 "All instructions that wants to replicate non-zero byte " 2458 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2459 unsigned B = Value & 0xff; 2460 B |= 0xe00; // cmode = 0b1110 2461 Inst.addOperand(MCOperand::CreateImm(B)); 2462 } 2463 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2464 assert(N == 1 && "Invalid number of operands!"); 2465 // The immediate encodes the type of constant as well as the value. 2466 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2467 unsigned Value = ~CE->getValue(); 2468 if (Value >= 256 && Value <= 0xffff) 2469 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2470 else if (Value > 0xffff && Value <= 0xffffff) 2471 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2472 else if (Value > 0xffffff) 2473 Value = (Value >> 24) | 0x600; 2474 Inst.addOperand(MCOperand::CreateImm(Value)); 2475 } 2476 2477 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2478 assert(N == 1 && "Invalid number of operands!"); 2479 // The immediate encodes the type of constant as well as the value. 2480 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2481 uint64_t Value = CE->getValue(); 2482 unsigned Imm = 0; 2483 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2484 Imm |= (Value & 1) << i; 2485 } 2486 Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00)); 2487 } 2488 2489 void print(raw_ostream &OS) const override; 2490 2491 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2492 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2493 Op->ITMask.Mask = Mask; 2494 Op->StartLoc = S; 2495 Op->EndLoc = S; 2496 return Op; 2497 } 2498 2499 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2500 SMLoc S) { 2501 auto Op = make_unique<ARMOperand>(k_CondCode); 2502 Op->CC.Val = CC; 2503 Op->StartLoc = S; 2504 Op->EndLoc = S; 2505 return Op; 2506 } 2507 2508 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2509 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2510 Op->Cop.Val = CopVal; 2511 Op->StartLoc = S; 2512 Op->EndLoc = S; 2513 return Op; 2514 } 2515 2516 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2517 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2518 Op->Cop.Val = CopVal; 2519 Op->StartLoc = S; 2520 Op->EndLoc = S; 2521 return Op; 2522 } 2523 2524 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2525 SMLoc E) { 2526 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2527 Op->Cop.Val = Val; 2528 Op->StartLoc = S; 2529 Op->EndLoc = E; 2530 return Op; 2531 } 2532 2533 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2534 auto Op = make_unique<ARMOperand>(k_CCOut); 2535 Op->Reg.RegNum = RegNum; 2536 Op->StartLoc = S; 2537 Op->EndLoc = S; 2538 return Op; 2539 } 2540 2541 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2542 auto Op = make_unique<ARMOperand>(k_Token); 2543 Op->Tok.Data = Str.data(); 2544 Op->Tok.Length = Str.size(); 2545 Op->StartLoc = S; 2546 Op->EndLoc = S; 2547 return Op; 2548 } 2549 2550 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2551 SMLoc E) { 2552 auto Op = make_unique<ARMOperand>(k_Register); 2553 Op->Reg.RegNum = RegNum; 2554 Op->StartLoc = S; 2555 Op->EndLoc = E; 2556 return Op; 2557 } 2558 2559 static std::unique_ptr<ARMOperand> 2560 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2561 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2562 SMLoc E) { 2563 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2564 Op->RegShiftedReg.ShiftTy = ShTy; 2565 Op->RegShiftedReg.SrcReg = SrcReg; 2566 Op->RegShiftedReg.ShiftReg = ShiftReg; 2567 Op->RegShiftedReg.ShiftImm = ShiftImm; 2568 Op->StartLoc = S; 2569 Op->EndLoc = E; 2570 return Op; 2571 } 2572 2573 static std::unique_ptr<ARMOperand> 2574 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2575 unsigned ShiftImm, SMLoc S, SMLoc E) { 2576 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2577 Op->RegShiftedImm.ShiftTy = ShTy; 2578 Op->RegShiftedImm.SrcReg = SrcReg; 2579 Op->RegShiftedImm.ShiftImm = ShiftImm; 2580 Op->StartLoc = S; 2581 Op->EndLoc = E; 2582 return Op; 2583 } 2584 2585 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2586 SMLoc S, SMLoc E) { 2587 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2588 Op->ShifterImm.isASR = isASR; 2589 Op->ShifterImm.Imm = Imm; 2590 Op->StartLoc = S; 2591 Op->EndLoc = E; 2592 return Op; 2593 } 2594 2595 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2596 SMLoc E) { 2597 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2598 Op->RotImm.Imm = Imm; 2599 Op->StartLoc = S; 2600 Op->EndLoc = E; 2601 return Op; 2602 } 2603 2604 static std::unique_ptr<ARMOperand> 2605 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2606 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2607 Op->Bitfield.LSB = LSB; 2608 Op->Bitfield.Width = Width; 2609 Op->StartLoc = S; 2610 Op->EndLoc = E; 2611 return Op; 2612 } 2613 2614 static std::unique_ptr<ARMOperand> 2615 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2616 SMLoc StartLoc, SMLoc EndLoc) { 2617 assert (Regs.size() > 0 && "RegList contains no registers?"); 2618 KindTy Kind = k_RegisterList; 2619 2620 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2621 Kind = k_DPRRegisterList; 2622 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2623 contains(Regs.front().second)) 2624 Kind = k_SPRRegisterList; 2625 2626 // Sort based on the register encoding values. 2627 array_pod_sort(Regs.begin(), Regs.end()); 2628 2629 auto Op = make_unique<ARMOperand>(Kind); 2630 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2631 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2632 Op->Registers.push_back(I->second); 2633 Op->StartLoc = StartLoc; 2634 Op->EndLoc = EndLoc; 2635 return Op; 2636 } 2637 2638 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2639 unsigned Count, 2640 bool isDoubleSpaced, 2641 SMLoc S, SMLoc E) { 2642 auto Op = make_unique<ARMOperand>(k_VectorList); 2643 Op->VectorList.RegNum = RegNum; 2644 Op->VectorList.Count = Count; 2645 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2646 Op->StartLoc = S; 2647 Op->EndLoc = E; 2648 return Op; 2649 } 2650 2651 static std::unique_ptr<ARMOperand> 2652 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2653 SMLoc S, SMLoc E) { 2654 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2655 Op->VectorList.RegNum = RegNum; 2656 Op->VectorList.Count = Count; 2657 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2658 Op->StartLoc = S; 2659 Op->EndLoc = E; 2660 return Op; 2661 } 2662 2663 static std::unique_ptr<ARMOperand> 2664 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2665 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2666 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2667 Op->VectorList.RegNum = RegNum; 2668 Op->VectorList.Count = Count; 2669 Op->VectorList.LaneIndex = Index; 2670 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2671 Op->StartLoc = S; 2672 Op->EndLoc = E; 2673 return Op; 2674 } 2675 2676 static std::unique_ptr<ARMOperand> 2677 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2678 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2679 Op->VectorIndex.Val = Idx; 2680 Op->StartLoc = S; 2681 Op->EndLoc = E; 2682 return Op; 2683 } 2684 2685 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2686 SMLoc E) { 2687 auto Op = make_unique<ARMOperand>(k_Immediate); 2688 Op->Imm.Val = Val; 2689 Op->StartLoc = S; 2690 Op->EndLoc = E; 2691 return Op; 2692 } 2693 2694 static std::unique_ptr<ARMOperand> 2695 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2696 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2697 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2698 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2699 auto Op = make_unique<ARMOperand>(k_Memory); 2700 Op->Memory.BaseRegNum = BaseRegNum; 2701 Op->Memory.OffsetImm = OffsetImm; 2702 Op->Memory.OffsetRegNum = OffsetRegNum; 2703 Op->Memory.ShiftType = ShiftType; 2704 Op->Memory.ShiftImm = ShiftImm; 2705 Op->Memory.Alignment = Alignment; 2706 Op->Memory.isNegative = isNegative; 2707 Op->StartLoc = S; 2708 Op->EndLoc = E; 2709 Op->AlignmentLoc = AlignmentLoc; 2710 return Op; 2711 } 2712 2713 static std::unique_ptr<ARMOperand> 2714 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2715 unsigned ShiftImm, SMLoc S, SMLoc E) { 2716 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2717 Op->PostIdxReg.RegNum = RegNum; 2718 Op->PostIdxReg.isAdd = isAdd; 2719 Op->PostIdxReg.ShiftTy = ShiftTy; 2720 Op->PostIdxReg.ShiftImm = ShiftImm; 2721 Op->StartLoc = S; 2722 Op->EndLoc = E; 2723 return Op; 2724 } 2725 2726 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2727 SMLoc S) { 2728 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 2729 Op->MBOpt.Val = Opt; 2730 Op->StartLoc = S; 2731 Op->EndLoc = S; 2732 return Op; 2733 } 2734 2735 static std::unique_ptr<ARMOperand> 2736 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 2737 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 2738 Op->ISBOpt.Val = Opt; 2739 Op->StartLoc = S; 2740 Op->EndLoc = S; 2741 return Op; 2742 } 2743 2744 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 2745 SMLoc S) { 2746 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 2747 Op->IFlags.Val = IFlags; 2748 Op->StartLoc = S; 2749 Op->EndLoc = S; 2750 return Op; 2751 } 2752 2753 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 2754 auto Op = make_unique<ARMOperand>(k_MSRMask); 2755 Op->MMask.Val = MMask; 2756 Op->StartLoc = S; 2757 Op->EndLoc = S; 2758 return Op; 2759 } 2760 2761 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 2762 auto Op = make_unique<ARMOperand>(k_BankedReg); 2763 Op->BankedReg.Val = Reg; 2764 Op->StartLoc = S; 2765 Op->EndLoc = S; 2766 return Op; 2767 } 2768 }; 2769 2770 } // end anonymous namespace. 2771 2772 void ARMOperand::print(raw_ostream &OS) const { 2773 switch (Kind) { 2774 case k_CondCode: 2775 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 2776 break; 2777 case k_CCOut: 2778 OS << "<ccout " << getReg() << ">"; 2779 break; 2780 case k_ITCondMask: { 2781 static const char *const MaskStr[] = { 2782 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 2783 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 2784 }; 2785 assert((ITMask.Mask & 0xf) == ITMask.Mask); 2786 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 2787 break; 2788 } 2789 case k_CoprocNum: 2790 OS << "<coprocessor number: " << getCoproc() << ">"; 2791 break; 2792 case k_CoprocReg: 2793 OS << "<coprocessor register: " << getCoproc() << ">"; 2794 break; 2795 case k_CoprocOption: 2796 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 2797 break; 2798 case k_MSRMask: 2799 OS << "<mask: " << getMSRMask() << ">"; 2800 break; 2801 case k_BankedReg: 2802 OS << "<banked reg: " << getBankedReg() << ">"; 2803 break; 2804 case k_Immediate: 2805 getImm()->print(OS); 2806 break; 2807 case k_MemBarrierOpt: 2808 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 2809 break; 2810 case k_InstSyncBarrierOpt: 2811 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 2812 break; 2813 case k_Memory: 2814 OS << "<memory " 2815 << " base:" << Memory.BaseRegNum; 2816 OS << ">"; 2817 break; 2818 case k_PostIndexRegister: 2819 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 2820 << PostIdxReg.RegNum; 2821 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 2822 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 2823 << PostIdxReg.ShiftImm; 2824 OS << ">"; 2825 break; 2826 case k_ProcIFlags: { 2827 OS << "<ARM_PROC::"; 2828 unsigned IFlags = getProcIFlags(); 2829 for (int i=2; i >= 0; --i) 2830 if (IFlags & (1 << i)) 2831 OS << ARM_PROC::IFlagsToString(1 << i); 2832 OS << ">"; 2833 break; 2834 } 2835 case k_Register: 2836 OS << "<register " << getReg() << ">"; 2837 break; 2838 case k_ShifterImmediate: 2839 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 2840 << " #" << ShifterImm.Imm << ">"; 2841 break; 2842 case k_ShiftedRegister: 2843 OS << "<so_reg_reg " 2844 << RegShiftedReg.SrcReg << " " 2845 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 2846 << " " << RegShiftedReg.ShiftReg << ">"; 2847 break; 2848 case k_ShiftedImmediate: 2849 OS << "<so_reg_imm " 2850 << RegShiftedImm.SrcReg << " " 2851 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 2852 << " #" << RegShiftedImm.ShiftImm << ">"; 2853 break; 2854 case k_RotateImmediate: 2855 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 2856 break; 2857 case k_BitfieldDescriptor: 2858 OS << "<bitfield " << "lsb: " << Bitfield.LSB 2859 << ", width: " << Bitfield.Width << ">"; 2860 break; 2861 case k_RegisterList: 2862 case k_DPRRegisterList: 2863 case k_SPRRegisterList: { 2864 OS << "<register_list "; 2865 2866 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2867 for (SmallVectorImpl<unsigned>::const_iterator 2868 I = RegList.begin(), E = RegList.end(); I != E; ) { 2869 OS << *I; 2870 if (++I < E) OS << ", "; 2871 } 2872 2873 OS << ">"; 2874 break; 2875 } 2876 case k_VectorList: 2877 OS << "<vector_list " << VectorList.Count << " * " 2878 << VectorList.RegNum << ">"; 2879 break; 2880 case k_VectorListAllLanes: 2881 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 2882 << VectorList.RegNum << ">"; 2883 break; 2884 case k_VectorListIndexed: 2885 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 2886 << VectorList.Count << " * " << VectorList.RegNum << ">"; 2887 break; 2888 case k_Token: 2889 OS << "'" << getToken() << "'"; 2890 break; 2891 case k_VectorIndex: 2892 OS << "<vectorindex " << getVectorIndex() << ">"; 2893 break; 2894 } 2895 } 2896 2897 /// @name Auto-generated Match Functions 2898 /// { 2899 2900 static unsigned MatchRegisterName(StringRef Name); 2901 2902 /// } 2903 2904 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 2905 SMLoc &StartLoc, SMLoc &EndLoc) { 2906 StartLoc = Parser.getTok().getLoc(); 2907 EndLoc = Parser.getTok().getEndLoc(); 2908 RegNo = tryParseRegister(); 2909 2910 return (RegNo == (unsigned)-1); 2911 } 2912 2913 /// Try to parse a register name. The token must be an Identifier when called, 2914 /// and if it is a register name the token is eaten and the register number is 2915 /// returned. Otherwise return -1. 2916 /// 2917 int ARMAsmParser::tryParseRegister() { 2918 const AsmToken &Tok = Parser.getTok(); 2919 if (Tok.isNot(AsmToken::Identifier)) return -1; 2920 2921 std::string lowerCase = Tok.getString().lower(); 2922 unsigned RegNum = MatchRegisterName(lowerCase); 2923 if (!RegNum) { 2924 RegNum = StringSwitch<unsigned>(lowerCase) 2925 .Case("r13", ARM::SP) 2926 .Case("r14", ARM::LR) 2927 .Case("r15", ARM::PC) 2928 .Case("ip", ARM::R12) 2929 // Additional register name aliases for 'gas' compatibility. 2930 .Case("a1", ARM::R0) 2931 .Case("a2", ARM::R1) 2932 .Case("a3", ARM::R2) 2933 .Case("a4", ARM::R3) 2934 .Case("v1", ARM::R4) 2935 .Case("v2", ARM::R5) 2936 .Case("v3", ARM::R6) 2937 .Case("v4", ARM::R7) 2938 .Case("v5", ARM::R8) 2939 .Case("v6", ARM::R9) 2940 .Case("v7", ARM::R10) 2941 .Case("v8", ARM::R11) 2942 .Case("sb", ARM::R9) 2943 .Case("sl", ARM::R10) 2944 .Case("fp", ARM::R11) 2945 .Default(0); 2946 } 2947 if (!RegNum) { 2948 // Check for aliases registered via .req. Canonicalize to lower case. 2949 // That's more consistent since register names are case insensitive, and 2950 // it's how the original entry was passed in from MC/MCParser/AsmParser. 2951 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 2952 // If no match, return failure. 2953 if (Entry == RegisterReqs.end()) 2954 return -1; 2955 Parser.Lex(); // Eat identifier token. 2956 return Entry->getValue(); 2957 } 2958 2959 Parser.Lex(); // Eat identifier token. 2960 2961 return RegNum; 2962 } 2963 2964 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 2965 // If a recoverable error occurs, return 1. If an irrecoverable error 2966 // occurs, return -1. An irrecoverable error is one where tokens have been 2967 // consumed in the process of trying to parse the shifter (i.e., when it is 2968 // indeed a shifter operand, but malformed). 2969 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 2970 SMLoc S = Parser.getTok().getLoc(); 2971 const AsmToken &Tok = Parser.getTok(); 2972 if (Tok.isNot(AsmToken::Identifier)) 2973 return -1; 2974 2975 std::string lowerCase = Tok.getString().lower(); 2976 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 2977 .Case("asl", ARM_AM::lsl) 2978 .Case("lsl", ARM_AM::lsl) 2979 .Case("lsr", ARM_AM::lsr) 2980 .Case("asr", ARM_AM::asr) 2981 .Case("ror", ARM_AM::ror) 2982 .Case("rrx", ARM_AM::rrx) 2983 .Default(ARM_AM::no_shift); 2984 2985 if (ShiftTy == ARM_AM::no_shift) 2986 return 1; 2987 2988 Parser.Lex(); // Eat the operator. 2989 2990 // The source register for the shift has already been added to the 2991 // operand list, so we need to pop it off and combine it into the shifted 2992 // register operand instead. 2993 std::unique_ptr<ARMOperand> PrevOp( 2994 (ARMOperand *)Operands.pop_back_val().release()); 2995 if (!PrevOp->isReg()) 2996 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 2997 int SrcReg = PrevOp->getReg(); 2998 2999 SMLoc EndLoc; 3000 int64_t Imm = 0; 3001 int ShiftReg = 0; 3002 if (ShiftTy == ARM_AM::rrx) { 3003 // RRX Doesn't have an explicit shift amount. The encoder expects 3004 // the shift register to be the same as the source register. Seems odd, 3005 // but OK. 3006 ShiftReg = SrcReg; 3007 } else { 3008 // Figure out if this is shifted by a constant or a register (for non-RRX). 3009 if (Parser.getTok().is(AsmToken::Hash) || 3010 Parser.getTok().is(AsmToken::Dollar)) { 3011 Parser.Lex(); // Eat hash. 3012 SMLoc ImmLoc = Parser.getTok().getLoc(); 3013 const MCExpr *ShiftExpr = nullptr; 3014 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3015 Error(ImmLoc, "invalid immediate shift value"); 3016 return -1; 3017 } 3018 // The expression must be evaluatable as an immediate. 3019 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3020 if (!CE) { 3021 Error(ImmLoc, "invalid immediate shift value"); 3022 return -1; 3023 } 3024 // Range check the immediate. 3025 // lsl, ror: 0 <= imm <= 31 3026 // lsr, asr: 0 <= imm <= 32 3027 Imm = CE->getValue(); 3028 if (Imm < 0 || 3029 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3030 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3031 Error(ImmLoc, "immediate shift value out of range"); 3032 return -1; 3033 } 3034 // shift by zero is a nop. Always send it through as lsl. 3035 // ('as' compatibility) 3036 if (Imm == 0) 3037 ShiftTy = ARM_AM::lsl; 3038 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3039 SMLoc L = Parser.getTok().getLoc(); 3040 EndLoc = Parser.getTok().getEndLoc(); 3041 ShiftReg = tryParseRegister(); 3042 if (ShiftReg == -1) { 3043 Error(L, "expected immediate or register in shift operand"); 3044 return -1; 3045 } 3046 } else { 3047 Error(Parser.getTok().getLoc(), 3048 "expected immediate or register in shift operand"); 3049 return -1; 3050 } 3051 } 3052 3053 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3054 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3055 ShiftReg, Imm, 3056 S, EndLoc)); 3057 else 3058 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3059 S, EndLoc)); 3060 3061 return 0; 3062 } 3063 3064 3065 /// Try to parse a register name. The token must be an Identifier when called. 3066 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3067 /// if there is a "writeback". 'true' if it's not a register. 3068 /// 3069 /// TODO this is likely to change to allow different register types and or to 3070 /// parse for a specific register type. 3071 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3072 const AsmToken &RegTok = Parser.getTok(); 3073 int RegNo = tryParseRegister(); 3074 if (RegNo == -1) 3075 return true; 3076 3077 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3078 RegTok.getEndLoc())); 3079 3080 const AsmToken &ExclaimTok = Parser.getTok(); 3081 if (ExclaimTok.is(AsmToken::Exclaim)) { 3082 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3083 ExclaimTok.getLoc())); 3084 Parser.Lex(); // Eat exclaim token 3085 return false; 3086 } 3087 3088 // Also check for an index operand. This is only legal for vector registers, 3089 // but that'll get caught OK in operand matching, so we don't need to 3090 // explicitly filter everything else out here. 3091 if (Parser.getTok().is(AsmToken::LBrac)) { 3092 SMLoc SIdx = Parser.getTok().getLoc(); 3093 Parser.Lex(); // Eat left bracket token. 3094 3095 const MCExpr *ImmVal; 3096 if (getParser().parseExpression(ImmVal)) 3097 return true; 3098 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3099 if (!MCE) 3100 return TokError("immediate value expected for vector index"); 3101 3102 if (Parser.getTok().isNot(AsmToken::RBrac)) 3103 return Error(Parser.getTok().getLoc(), "']' expected"); 3104 3105 SMLoc E = Parser.getTok().getEndLoc(); 3106 Parser.Lex(); // Eat right bracket token. 3107 3108 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3109 SIdx, E, 3110 getContext())); 3111 } 3112 3113 return false; 3114 } 3115 3116 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3117 /// instruction with a symbolic operand name. 3118 /// We accept "crN" syntax for GAS compatibility. 3119 /// <operand-name> ::= <prefix><number> 3120 /// If CoprocOp is 'c', then: 3121 /// <prefix> ::= c | cr 3122 /// If CoprocOp is 'p', then : 3123 /// <prefix> ::= p 3124 /// <number> ::= integer in range [0, 15] 3125 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3126 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3127 // but efficient. 3128 if (Name.size() < 2 || Name[0] != CoprocOp) 3129 return -1; 3130 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3131 3132 switch (Name.size()) { 3133 default: return -1; 3134 case 1: 3135 switch (Name[0]) { 3136 default: return -1; 3137 case '0': return 0; 3138 case '1': return 1; 3139 case '2': return 2; 3140 case '3': return 3; 3141 case '4': return 4; 3142 case '5': return 5; 3143 case '6': return 6; 3144 case '7': return 7; 3145 case '8': return 8; 3146 case '9': return 9; 3147 } 3148 case 2: 3149 if (Name[0] != '1') 3150 return -1; 3151 switch (Name[1]) { 3152 default: return -1; 3153 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3154 // However, old cores (v5/v6) did use them in that way. 3155 case '0': return 10; 3156 case '1': return 11; 3157 case '2': return 12; 3158 case '3': return 13; 3159 case '4': return 14; 3160 case '5': return 15; 3161 } 3162 } 3163 } 3164 3165 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3166 ARMAsmParser::OperandMatchResultTy 3167 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3168 SMLoc S = Parser.getTok().getLoc(); 3169 const AsmToken &Tok = Parser.getTok(); 3170 if (!Tok.is(AsmToken::Identifier)) 3171 return MatchOperand_NoMatch; 3172 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3173 .Case("eq", ARMCC::EQ) 3174 .Case("ne", ARMCC::NE) 3175 .Case("hs", ARMCC::HS) 3176 .Case("cs", ARMCC::HS) 3177 .Case("lo", ARMCC::LO) 3178 .Case("cc", ARMCC::LO) 3179 .Case("mi", ARMCC::MI) 3180 .Case("pl", ARMCC::PL) 3181 .Case("vs", ARMCC::VS) 3182 .Case("vc", ARMCC::VC) 3183 .Case("hi", ARMCC::HI) 3184 .Case("ls", ARMCC::LS) 3185 .Case("ge", ARMCC::GE) 3186 .Case("lt", ARMCC::LT) 3187 .Case("gt", ARMCC::GT) 3188 .Case("le", ARMCC::LE) 3189 .Case("al", ARMCC::AL) 3190 .Default(~0U); 3191 if (CC == ~0U) 3192 return MatchOperand_NoMatch; 3193 Parser.Lex(); // Eat the token. 3194 3195 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3196 3197 return MatchOperand_Success; 3198 } 3199 3200 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3201 /// token must be an Identifier when called, and if it is a coprocessor 3202 /// number, the token is eaten and the operand is added to the operand list. 3203 ARMAsmParser::OperandMatchResultTy 3204 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3205 SMLoc S = Parser.getTok().getLoc(); 3206 const AsmToken &Tok = Parser.getTok(); 3207 if (Tok.isNot(AsmToken::Identifier)) 3208 return MatchOperand_NoMatch; 3209 3210 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3211 if (Num == -1) 3212 return MatchOperand_NoMatch; 3213 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3214 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3215 return MatchOperand_NoMatch; 3216 3217 Parser.Lex(); // Eat identifier token. 3218 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3219 return MatchOperand_Success; 3220 } 3221 3222 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3223 /// token must be an Identifier when called, and if it is a coprocessor 3224 /// number, the token is eaten and the operand is added to the operand list. 3225 ARMAsmParser::OperandMatchResultTy 3226 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3227 SMLoc S = Parser.getTok().getLoc(); 3228 const AsmToken &Tok = Parser.getTok(); 3229 if (Tok.isNot(AsmToken::Identifier)) 3230 return MatchOperand_NoMatch; 3231 3232 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3233 if (Reg == -1) 3234 return MatchOperand_NoMatch; 3235 3236 Parser.Lex(); // Eat identifier token. 3237 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3238 return MatchOperand_Success; 3239 } 3240 3241 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3242 /// coproc_option : '{' imm0_255 '}' 3243 ARMAsmParser::OperandMatchResultTy 3244 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3245 SMLoc S = Parser.getTok().getLoc(); 3246 3247 // If this isn't a '{', this isn't a coprocessor immediate operand. 3248 if (Parser.getTok().isNot(AsmToken::LCurly)) 3249 return MatchOperand_NoMatch; 3250 Parser.Lex(); // Eat the '{' 3251 3252 const MCExpr *Expr; 3253 SMLoc Loc = Parser.getTok().getLoc(); 3254 if (getParser().parseExpression(Expr)) { 3255 Error(Loc, "illegal expression"); 3256 return MatchOperand_ParseFail; 3257 } 3258 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3259 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3260 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3261 return MatchOperand_ParseFail; 3262 } 3263 int Val = CE->getValue(); 3264 3265 // Check for and consume the closing '}' 3266 if (Parser.getTok().isNot(AsmToken::RCurly)) 3267 return MatchOperand_ParseFail; 3268 SMLoc E = Parser.getTok().getEndLoc(); 3269 Parser.Lex(); // Eat the '}' 3270 3271 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3272 return MatchOperand_Success; 3273 } 3274 3275 // For register list parsing, we need to map from raw GPR register numbering 3276 // to the enumeration values. The enumeration values aren't sorted by 3277 // register number due to our using "sp", "lr" and "pc" as canonical names. 3278 static unsigned getNextRegister(unsigned Reg) { 3279 // If this is a GPR, we need to do it manually, otherwise we can rely 3280 // on the sort ordering of the enumeration since the other reg-classes 3281 // are sane. 3282 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3283 return Reg + 1; 3284 switch(Reg) { 3285 default: llvm_unreachable("Invalid GPR number!"); 3286 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3287 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3288 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3289 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3290 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3291 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3292 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3293 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3294 } 3295 } 3296 3297 // Return the low-subreg of a given Q register. 3298 static unsigned getDRegFromQReg(unsigned QReg) { 3299 switch (QReg) { 3300 default: llvm_unreachable("expected a Q register!"); 3301 case ARM::Q0: return ARM::D0; 3302 case ARM::Q1: return ARM::D2; 3303 case ARM::Q2: return ARM::D4; 3304 case ARM::Q3: return ARM::D6; 3305 case ARM::Q4: return ARM::D8; 3306 case ARM::Q5: return ARM::D10; 3307 case ARM::Q6: return ARM::D12; 3308 case ARM::Q7: return ARM::D14; 3309 case ARM::Q8: return ARM::D16; 3310 case ARM::Q9: return ARM::D18; 3311 case ARM::Q10: return ARM::D20; 3312 case ARM::Q11: return ARM::D22; 3313 case ARM::Q12: return ARM::D24; 3314 case ARM::Q13: return ARM::D26; 3315 case ARM::Q14: return ARM::D28; 3316 case ARM::Q15: return ARM::D30; 3317 } 3318 } 3319 3320 /// Parse a register list. 3321 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3322 assert(Parser.getTok().is(AsmToken::LCurly) && 3323 "Token is not a Left Curly Brace"); 3324 SMLoc S = Parser.getTok().getLoc(); 3325 Parser.Lex(); // Eat '{' token. 3326 SMLoc RegLoc = Parser.getTok().getLoc(); 3327 3328 // Check the first register in the list to see what register class 3329 // this is a list of. 3330 int Reg = tryParseRegister(); 3331 if (Reg == -1) 3332 return Error(RegLoc, "register expected"); 3333 3334 // The reglist instructions have at most 16 registers, so reserve 3335 // space for that many. 3336 int EReg = 0; 3337 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3338 3339 // Allow Q regs and just interpret them as the two D sub-registers. 3340 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3341 Reg = getDRegFromQReg(Reg); 3342 EReg = MRI->getEncodingValue(Reg); 3343 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3344 ++Reg; 3345 } 3346 const MCRegisterClass *RC; 3347 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3348 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3349 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3350 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3351 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3352 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3353 else 3354 return Error(RegLoc, "invalid register in register list"); 3355 3356 // Store the register. 3357 EReg = MRI->getEncodingValue(Reg); 3358 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3359 3360 // This starts immediately after the first register token in the list, 3361 // so we can see either a comma or a minus (range separator) as a legal 3362 // next token. 3363 while (Parser.getTok().is(AsmToken::Comma) || 3364 Parser.getTok().is(AsmToken::Minus)) { 3365 if (Parser.getTok().is(AsmToken::Minus)) { 3366 Parser.Lex(); // Eat the minus. 3367 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3368 int EndReg = tryParseRegister(); 3369 if (EndReg == -1) 3370 return Error(AfterMinusLoc, "register expected"); 3371 // Allow Q regs and just interpret them as the two D sub-registers. 3372 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3373 EndReg = getDRegFromQReg(EndReg) + 1; 3374 // If the register is the same as the start reg, there's nothing 3375 // more to do. 3376 if (Reg == EndReg) 3377 continue; 3378 // The register must be in the same register class as the first. 3379 if (!RC->contains(EndReg)) 3380 return Error(AfterMinusLoc, "invalid register in register list"); 3381 // Ranges must go from low to high. 3382 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3383 return Error(AfterMinusLoc, "bad range in register list"); 3384 3385 // Add all the registers in the range to the register list. 3386 while (Reg != EndReg) { 3387 Reg = getNextRegister(Reg); 3388 EReg = MRI->getEncodingValue(Reg); 3389 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3390 } 3391 continue; 3392 } 3393 Parser.Lex(); // Eat the comma. 3394 RegLoc = Parser.getTok().getLoc(); 3395 int OldReg = Reg; 3396 const AsmToken RegTok = Parser.getTok(); 3397 Reg = tryParseRegister(); 3398 if (Reg == -1) 3399 return Error(RegLoc, "register expected"); 3400 // Allow Q regs and just interpret them as the two D sub-registers. 3401 bool isQReg = false; 3402 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3403 Reg = getDRegFromQReg(Reg); 3404 isQReg = true; 3405 } 3406 // The register must be in the same register class as the first. 3407 if (!RC->contains(Reg)) 3408 return Error(RegLoc, "invalid register in register list"); 3409 // List must be monotonically increasing. 3410 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3411 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3412 Warning(RegLoc, "register list not in ascending order"); 3413 else 3414 return Error(RegLoc, "register list not in ascending order"); 3415 } 3416 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3417 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3418 ") in register list"); 3419 continue; 3420 } 3421 // VFP register lists must also be contiguous. 3422 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3423 Reg != OldReg + 1) 3424 return Error(RegLoc, "non-contiguous register range"); 3425 EReg = MRI->getEncodingValue(Reg); 3426 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3427 if (isQReg) { 3428 EReg = MRI->getEncodingValue(++Reg); 3429 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3430 } 3431 } 3432 3433 if (Parser.getTok().isNot(AsmToken::RCurly)) 3434 return Error(Parser.getTok().getLoc(), "'}' expected"); 3435 SMLoc E = Parser.getTok().getEndLoc(); 3436 Parser.Lex(); // Eat '}' token. 3437 3438 // Push the register list operand. 3439 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3440 3441 // The ARM system instruction variants for LDM/STM have a '^' token here. 3442 if (Parser.getTok().is(AsmToken::Caret)) { 3443 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3444 Parser.Lex(); // Eat '^' token. 3445 } 3446 3447 return false; 3448 } 3449 3450 // Helper function to parse the lane index for vector lists. 3451 ARMAsmParser::OperandMatchResultTy ARMAsmParser:: 3452 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3453 Index = 0; // Always return a defined index value. 3454 if (Parser.getTok().is(AsmToken::LBrac)) { 3455 Parser.Lex(); // Eat the '['. 3456 if (Parser.getTok().is(AsmToken::RBrac)) { 3457 // "Dn[]" is the 'all lanes' syntax. 3458 LaneKind = AllLanes; 3459 EndLoc = Parser.getTok().getEndLoc(); 3460 Parser.Lex(); // Eat the ']'. 3461 return MatchOperand_Success; 3462 } 3463 3464 // There's an optional '#' token here. Normally there wouldn't be, but 3465 // inline assemble puts one in, and it's friendly to accept that. 3466 if (Parser.getTok().is(AsmToken::Hash)) 3467 Parser.Lex(); // Eat '#' or '$'. 3468 3469 const MCExpr *LaneIndex; 3470 SMLoc Loc = Parser.getTok().getLoc(); 3471 if (getParser().parseExpression(LaneIndex)) { 3472 Error(Loc, "illegal expression"); 3473 return MatchOperand_ParseFail; 3474 } 3475 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3476 if (!CE) { 3477 Error(Loc, "lane index must be empty or an integer"); 3478 return MatchOperand_ParseFail; 3479 } 3480 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3481 Error(Parser.getTok().getLoc(), "']' expected"); 3482 return MatchOperand_ParseFail; 3483 } 3484 EndLoc = Parser.getTok().getEndLoc(); 3485 Parser.Lex(); // Eat the ']'. 3486 int64_t Val = CE->getValue(); 3487 3488 // FIXME: Make this range check context sensitive for .8, .16, .32. 3489 if (Val < 0 || Val > 7) { 3490 Error(Parser.getTok().getLoc(), "lane index out of range"); 3491 return MatchOperand_ParseFail; 3492 } 3493 Index = Val; 3494 LaneKind = IndexedLane; 3495 return MatchOperand_Success; 3496 } 3497 LaneKind = NoLanes; 3498 return MatchOperand_Success; 3499 } 3500 3501 // parse a vector register list 3502 ARMAsmParser::OperandMatchResultTy 3503 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3504 VectorLaneTy LaneKind; 3505 unsigned LaneIndex; 3506 SMLoc S = Parser.getTok().getLoc(); 3507 // As an extension (to match gas), support a plain D register or Q register 3508 // (without encosing curly braces) as a single or double entry list, 3509 // respectively. 3510 if (Parser.getTok().is(AsmToken::Identifier)) { 3511 SMLoc E = Parser.getTok().getEndLoc(); 3512 int Reg = tryParseRegister(); 3513 if (Reg == -1) 3514 return MatchOperand_NoMatch; 3515 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3516 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3517 if (Res != MatchOperand_Success) 3518 return Res; 3519 switch (LaneKind) { 3520 case NoLanes: 3521 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3522 break; 3523 case AllLanes: 3524 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3525 S, E)); 3526 break; 3527 case IndexedLane: 3528 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3529 LaneIndex, 3530 false, S, E)); 3531 break; 3532 } 3533 return MatchOperand_Success; 3534 } 3535 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3536 Reg = getDRegFromQReg(Reg); 3537 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3538 if (Res != MatchOperand_Success) 3539 return Res; 3540 switch (LaneKind) { 3541 case NoLanes: 3542 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3543 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3544 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3545 break; 3546 case AllLanes: 3547 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3548 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3549 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3550 S, E)); 3551 break; 3552 case IndexedLane: 3553 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3554 LaneIndex, 3555 false, S, E)); 3556 break; 3557 } 3558 return MatchOperand_Success; 3559 } 3560 Error(S, "vector register expected"); 3561 return MatchOperand_ParseFail; 3562 } 3563 3564 if (Parser.getTok().isNot(AsmToken::LCurly)) 3565 return MatchOperand_NoMatch; 3566 3567 Parser.Lex(); // Eat '{' token. 3568 SMLoc RegLoc = Parser.getTok().getLoc(); 3569 3570 int Reg = tryParseRegister(); 3571 if (Reg == -1) { 3572 Error(RegLoc, "register expected"); 3573 return MatchOperand_ParseFail; 3574 } 3575 unsigned Count = 1; 3576 int Spacing = 0; 3577 unsigned FirstReg = Reg; 3578 // The list is of D registers, but we also allow Q regs and just interpret 3579 // them as the two D sub-registers. 3580 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3581 FirstReg = Reg = getDRegFromQReg(Reg); 3582 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3583 // it's ambiguous with four-register single spaced. 3584 ++Reg; 3585 ++Count; 3586 } 3587 3588 SMLoc E; 3589 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3590 return MatchOperand_ParseFail; 3591 3592 while (Parser.getTok().is(AsmToken::Comma) || 3593 Parser.getTok().is(AsmToken::Minus)) { 3594 if (Parser.getTok().is(AsmToken::Minus)) { 3595 if (!Spacing) 3596 Spacing = 1; // Register range implies a single spaced list. 3597 else if (Spacing == 2) { 3598 Error(Parser.getTok().getLoc(), 3599 "sequential registers in double spaced list"); 3600 return MatchOperand_ParseFail; 3601 } 3602 Parser.Lex(); // Eat the minus. 3603 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3604 int EndReg = tryParseRegister(); 3605 if (EndReg == -1) { 3606 Error(AfterMinusLoc, "register expected"); 3607 return MatchOperand_ParseFail; 3608 } 3609 // Allow Q regs and just interpret them as the two D sub-registers. 3610 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3611 EndReg = getDRegFromQReg(EndReg) + 1; 3612 // If the register is the same as the start reg, there's nothing 3613 // more to do. 3614 if (Reg == EndReg) 3615 continue; 3616 // The register must be in the same register class as the first. 3617 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3618 Error(AfterMinusLoc, "invalid register in register list"); 3619 return MatchOperand_ParseFail; 3620 } 3621 // Ranges must go from low to high. 3622 if (Reg > EndReg) { 3623 Error(AfterMinusLoc, "bad range in register list"); 3624 return MatchOperand_ParseFail; 3625 } 3626 // Parse the lane specifier if present. 3627 VectorLaneTy NextLaneKind; 3628 unsigned NextLaneIndex; 3629 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3630 MatchOperand_Success) 3631 return MatchOperand_ParseFail; 3632 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3633 Error(AfterMinusLoc, "mismatched lane index in register list"); 3634 return MatchOperand_ParseFail; 3635 } 3636 3637 // Add all the registers in the range to the register list. 3638 Count += EndReg - Reg; 3639 Reg = EndReg; 3640 continue; 3641 } 3642 Parser.Lex(); // Eat the comma. 3643 RegLoc = Parser.getTok().getLoc(); 3644 int OldReg = Reg; 3645 Reg = tryParseRegister(); 3646 if (Reg == -1) { 3647 Error(RegLoc, "register expected"); 3648 return MatchOperand_ParseFail; 3649 } 3650 // vector register lists must be contiguous. 3651 // It's OK to use the enumeration values directly here rather, as the 3652 // VFP register classes have the enum sorted properly. 3653 // 3654 // The list is of D registers, but we also allow Q regs and just interpret 3655 // them as the two D sub-registers. 3656 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3657 if (!Spacing) 3658 Spacing = 1; // Register range implies a single spaced list. 3659 else if (Spacing == 2) { 3660 Error(RegLoc, 3661 "invalid register in double-spaced list (must be 'D' register')"); 3662 return MatchOperand_ParseFail; 3663 } 3664 Reg = getDRegFromQReg(Reg); 3665 if (Reg != OldReg + 1) { 3666 Error(RegLoc, "non-contiguous register range"); 3667 return MatchOperand_ParseFail; 3668 } 3669 ++Reg; 3670 Count += 2; 3671 // Parse the lane specifier if present. 3672 VectorLaneTy NextLaneKind; 3673 unsigned NextLaneIndex; 3674 SMLoc LaneLoc = Parser.getTok().getLoc(); 3675 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3676 MatchOperand_Success) 3677 return MatchOperand_ParseFail; 3678 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3679 Error(LaneLoc, "mismatched lane index in register list"); 3680 return MatchOperand_ParseFail; 3681 } 3682 continue; 3683 } 3684 // Normal D register. 3685 // Figure out the register spacing (single or double) of the list if 3686 // we don't know it already. 3687 if (!Spacing) 3688 Spacing = 1 + (Reg == OldReg + 2); 3689 3690 // Just check that it's contiguous and keep going. 3691 if (Reg != OldReg + Spacing) { 3692 Error(RegLoc, "non-contiguous register range"); 3693 return MatchOperand_ParseFail; 3694 } 3695 ++Count; 3696 // Parse the lane specifier if present. 3697 VectorLaneTy NextLaneKind; 3698 unsigned NextLaneIndex; 3699 SMLoc EndLoc = Parser.getTok().getLoc(); 3700 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3701 return MatchOperand_ParseFail; 3702 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3703 Error(EndLoc, "mismatched lane index in register list"); 3704 return MatchOperand_ParseFail; 3705 } 3706 } 3707 3708 if (Parser.getTok().isNot(AsmToken::RCurly)) { 3709 Error(Parser.getTok().getLoc(), "'}' expected"); 3710 return MatchOperand_ParseFail; 3711 } 3712 E = Parser.getTok().getEndLoc(); 3713 Parser.Lex(); // Eat '}' token. 3714 3715 switch (LaneKind) { 3716 case NoLanes: 3717 // Two-register operands have been converted to the 3718 // composite register classes. 3719 if (Count == 2) { 3720 const MCRegisterClass *RC = (Spacing == 1) ? 3721 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3722 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3723 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3724 } 3725 3726 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 3727 (Spacing == 2), S, E)); 3728 break; 3729 case AllLanes: 3730 // Two-register operands have been converted to the 3731 // composite register classes. 3732 if (Count == 2) { 3733 const MCRegisterClass *RC = (Spacing == 1) ? 3734 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3735 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3736 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3737 } 3738 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 3739 (Spacing == 2), 3740 S, E)); 3741 break; 3742 case IndexedLane: 3743 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 3744 LaneIndex, 3745 (Spacing == 2), 3746 S, E)); 3747 break; 3748 } 3749 return MatchOperand_Success; 3750 } 3751 3752 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 3753 ARMAsmParser::OperandMatchResultTy 3754 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 3755 SMLoc S = Parser.getTok().getLoc(); 3756 const AsmToken &Tok = Parser.getTok(); 3757 unsigned Opt; 3758 3759 if (Tok.is(AsmToken::Identifier)) { 3760 StringRef OptStr = Tok.getString(); 3761 3762 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 3763 .Case("sy", ARM_MB::SY) 3764 .Case("st", ARM_MB::ST) 3765 .Case("ld", ARM_MB::LD) 3766 .Case("sh", ARM_MB::ISH) 3767 .Case("ish", ARM_MB::ISH) 3768 .Case("shst", ARM_MB::ISHST) 3769 .Case("ishst", ARM_MB::ISHST) 3770 .Case("ishld", ARM_MB::ISHLD) 3771 .Case("nsh", ARM_MB::NSH) 3772 .Case("un", ARM_MB::NSH) 3773 .Case("nshst", ARM_MB::NSHST) 3774 .Case("nshld", ARM_MB::NSHLD) 3775 .Case("unst", ARM_MB::NSHST) 3776 .Case("osh", ARM_MB::OSH) 3777 .Case("oshst", ARM_MB::OSHST) 3778 .Case("oshld", ARM_MB::OSHLD) 3779 .Default(~0U); 3780 3781 // ishld, oshld, nshld and ld are only available from ARMv8. 3782 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 3783 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 3784 Opt = ~0U; 3785 3786 if (Opt == ~0U) 3787 return MatchOperand_NoMatch; 3788 3789 Parser.Lex(); // Eat identifier token. 3790 } else if (Tok.is(AsmToken::Hash) || 3791 Tok.is(AsmToken::Dollar) || 3792 Tok.is(AsmToken::Integer)) { 3793 if (Parser.getTok().isNot(AsmToken::Integer)) 3794 Parser.Lex(); // Eat '#' or '$'. 3795 SMLoc Loc = Parser.getTok().getLoc(); 3796 3797 const MCExpr *MemBarrierID; 3798 if (getParser().parseExpression(MemBarrierID)) { 3799 Error(Loc, "illegal expression"); 3800 return MatchOperand_ParseFail; 3801 } 3802 3803 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 3804 if (!CE) { 3805 Error(Loc, "constant expression expected"); 3806 return MatchOperand_ParseFail; 3807 } 3808 3809 int Val = CE->getValue(); 3810 if (Val & ~0xf) { 3811 Error(Loc, "immediate value out of range"); 3812 return MatchOperand_ParseFail; 3813 } 3814 3815 Opt = ARM_MB::RESERVED_0 + Val; 3816 } else 3817 return MatchOperand_ParseFail; 3818 3819 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 3820 return MatchOperand_Success; 3821 } 3822 3823 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 3824 ARMAsmParser::OperandMatchResultTy 3825 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 3826 SMLoc S = Parser.getTok().getLoc(); 3827 const AsmToken &Tok = Parser.getTok(); 3828 unsigned Opt; 3829 3830 if (Tok.is(AsmToken::Identifier)) { 3831 StringRef OptStr = Tok.getString(); 3832 3833 if (OptStr.equals_lower("sy")) 3834 Opt = ARM_ISB::SY; 3835 else 3836 return MatchOperand_NoMatch; 3837 3838 Parser.Lex(); // Eat identifier token. 3839 } else if (Tok.is(AsmToken::Hash) || 3840 Tok.is(AsmToken::Dollar) || 3841 Tok.is(AsmToken::Integer)) { 3842 if (Parser.getTok().isNot(AsmToken::Integer)) 3843 Parser.Lex(); // Eat '#' or '$'. 3844 SMLoc Loc = Parser.getTok().getLoc(); 3845 3846 const MCExpr *ISBarrierID; 3847 if (getParser().parseExpression(ISBarrierID)) { 3848 Error(Loc, "illegal expression"); 3849 return MatchOperand_ParseFail; 3850 } 3851 3852 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 3853 if (!CE) { 3854 Error(Loc, "constant expression expected"); 3855 return MatchOperand_ParseFail; 3856 } 3857 3858 int Val = CE->getValue(); 3859 if (Val & ~0xf) { 3860 Error(Loc, "immediate value out of range"); 3861 return MatchOperand_ParseFail; 3862 } 3863 3864 Opt = ARM_ISB::RESERVED_0 + Val; 3865 } else 3866 return MatchOperand_ParseFail; 3867 3868 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 3869 (ARM_ISB::InstSyncBOpt)Opt, S)); 3870 return MatchOperand_Success; 3871 } 3872 3873 3874 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 3875 ARMAsmParser::OperandMatchResultTy 3876 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 3877 SMLoc S = Parser.getTok().getLoc(); 3878 const AsmToken &Tok = Parser.getTok(); 3879 if (!Tok.is(AsmToken::Identifier)) 3880 return MatchOperand_NoMatch; 3881 StringRef IFlagsStr = Tok.getString(); 3882 3883 // An iflags string of "none" is interpreted to mean that none of the AIF 3884 // bits are set. Not a terribly useful instruction, but a valid encoding. 3885 unsigned IFlags = 0; 3886 if (IFlagsStr != "none") { 3887 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 3888 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 3889 .Case("a", ARM_PROC::A) 3890 .Case("i", ARM_PROC::I) 3891 .Case("f", ARM_PROC::F) 3892 .Default(~0U); 3893 3894 // If some specific iflag is already set, it means that some letter is 3895 // present more than once, this is not acceptable. 3896 if (Flag == ~0U || (IFlags & Flag)) 3897 return MatchOperand_NoMatch; 3898 3899 IFlags |= Flag; 3900 } 3901 } 3902 3903 Parser.Lex(); // Eat identifier token. 3904 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 3905 return MatchOperand_Success; 3906 } 3907 3908 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 3909 ARMAsmParser::OperandMatchResultTy 3910 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 3911 SMLoc S = Parser.getTok().getLoc(); 3912 const AsmToken &Tok = Parser.getTok(); 3913 if (!Tok.is(AsmToken::Identifier)) 3914 return MatchOperand_NoMatch; 3915 StringRef Mask = Tok.getString(); 3916 3917 if (isMClass()) { 3918 // See ARMv6-M 10.1.1 3919 std::string Name = Mask.lower(); 3920 unsigned FlagsVal = StringSwitch<unsigned>(Name) 3921 // Note: in the documentation: 3922 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 3923 // for MSR APSR_nzcvq. 3924 // but we do make it an alias here. This is so to get the "mask encoding" 3925 // bits correct on MSR APSR writes. 3926 // 3927 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 3928 // should really only be allowed when writing a special register. Note 3929 // they get dropped in the MRS instruction reading a special register as 3930 // the SYSm field is only 8 bits. 3931 // 3932 // FIXME: the _g and _nzcvqg versions are only allowed if the processor 3933 // includes the DSP extension but that is not checked. 3934 .Case("apsr", 0x800) 3935 .Case("apsr_nzcvq", 0x800) 3936 .Case("apsr_g", 0x400) 3937 .Case("apsr_nzcvqg", 0xc00) 3938 .Case("iapsr", 0x801) 3939 .Case("iapsr_nzcvq", 0x801) 3940 .Case("iapsr_g", 0x401) 3941 .Case("iapsr_nzcvqg", 0xc01) 3942 .Case("eapsr", 0x802) 3943 .Case("eapsr_nzcvq", 0x802) 3944 .Case("eapsr_g", 0x402) 3945 .Case("eapsr_nzcvqg", 0xc02) 3946 .Case("xpsr", 0x803) 3947 .Case("xpsr_nzcvq", 0x803) 3948 .Case("xpsr_g", 0x403) 3949 .Case("xpsr_nzcvqg", 0xc03) 3950 .Case("ipsr", 0x805) 3951 .Case("epsr", 0x806) 3952 .Case("iepsr", 0x807) 3953 .Case("msp", 0x808) 3954 .Case("psp", 0x809) 3955 .Case("primask", 0x810) 3956 .Case("basepri", 0x811) 3957 .Case("basepri_max", 0x812) 3958 .Case("faultmask", 0x813) 3959 .Case("control", 0x814) 3960 .Default(~0U); 3961 3962 if (FlagsVal == ~0U) 3963 return MatchOperand_NoMatch; 3964 3965 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 3966 // basepri, basepri_max and faultmask only valid for V7m. 3967 return MatchOperand_NoMatch; 3968 3969 Parser.Lex(); // Eat identifier token. 3970 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 3971 return MatchOperand_Success; 3972 } 3973 3974 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 3975 size_t Start = 0, Next = Mask.find('_'); 3976 StringRef Flags = ""; 3977 std::string SpecReg = Mask.slice(Start, Next).lower(); 3978 if (Next != StringRef::npos) 3979 Flags = Mask.slice(Next+1, Mask.size()); 3980 3981 // FlagsVal contains the complete mask: 3982 // 3-0: Mask 3983 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 3984 unsigned FlagsVal = 0; 3985 3986 if (SpecReg == "apsr") { 3987 FlagsVal = StringSwitch<unsigned>(Flags) 3988 .Case("nzcvq", 0x8) // same as CPSR_f 3989 .Case("g", 0x4) // same as CPSR_s 3990 .Case("nzcvqg", 0xc) // same as CPSR_fs 3991 .Default(~0U); 3992 3993 if (FlagsVal == ~0U) { 3994 if (!Flags.empty()) 3995 return MatchOperand_NoMatch; 3996 else 3997 FlagsVal = 8; // No flag 3998 } 3999 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4000 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4001 if (Flags == "all" || Flags == "") 4002 Flags = "fc"; 4003 for (int i = 0, e = Flags.size(); i != e; ++i) { 4004 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4005 .Case("c", 1) 4006 .Case("x", 2) 4007 .Case("s", 4) 4008 .Case("f", 8) 4009 .Default(~0U); 4010 4011 // If some specific flag is already set, it means that some letter is 4012 // present more than once, this is not acceptable. 4013 if (FlagsVal == ~0U || (FlagsVal & Flag)) 4014 return MatchOperand_NoMatch; 4015 FlagsVal |= Flag; 4016 } 4017 } else // No match for special register. 4018 return MatchOperand_NoMatch; 4019 4020 // Special register without flags is NOT equivalent to "fc" flags. 4021 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4022 // two lines would enable gas compatibility at the expense of breaking 4023 // round-tripping. 4024 // 4025 // if (!FlagsVal) 4026 // FlagsVal = 0x9; 4027 4028 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4029 if (SpecReg == "spsr") 4030 FlagsVal |= 16; 4031 4032 Parser.Lex(); // Eat identifier token. 4033 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4034 return MatchOperand_Success; 4035 } 4036 4037 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4038 /// use in the MRS/MSR instructions added to support virtualization. 4039 ARMAsmParser::OperandMatchResultTy 4040 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4041 SMLoc S = Parser.getTok().getLoc(); 4042 const AsmToken &Tok = Parser.getTok(); 4043 if (!Tok.is(AsmToken::Identifier)) 4044 return MatchOperand_NoMatch; 4045 StringRef RegName = Tok.getString(); 4046 4047 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4048 // and bit 5 is R. 4049 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4050 .Case("r8_usr", 0x00) 4051 .Case("r9_usr", 0x01) 4052 .Case("r10_usr", 0x02) 4053 .Case("r11_usr", 0x03) 4054 .Case("r12_usr", 0x04) 4055 .Case("sp_usr", 0x05) 4056 .Case("lr_usr", 0x06) 4057 .Case("r8_fiq", 0x08) 4058 .Case("r9_fiq", 0x09) 4059 .Case("r10_fiq", 0x0a) 4060 .Case("r11_fiq", 0x0b) 4061 .Case("r12_fiq", 0x0c) 4062 .Case("sp_fiq", 0x0d) 4063 .Case("lr_fiq", 0x0e) 4064 .Case("lr_irq", 0x10) 4065 .Case("sp_irq", 0x11) 4066 .Case("lr_svc", 0x12) 4067 .Case("sp_svc", 0x13) 4068 .Case("lr_abt", 0x14) 4069 .Case("sp_abt", 0x15) 4070 .Case("lr_und", 0x16) 4071 .Case("sp_und", 0x17) 4072 .Case("lr_mon", 0x1c) 4073 .Case("sp_mon", 0x1d) 4074 .Case("elr_hyp", 0x1e) 4075 .Case("sp_hyp", 0x1f) 4076 .Case("spsr_fiq", 0x2e) 4077 .Case("spsr_irq", 0x30) 4078 .Case("spsr_svc", 0x32) 4079 .Case("spsr_abt", 0x34) 4080 .Case("spsr_und", 0x36) 4081 .Case("spsr_mon", 0x3c) 4082 .Case("spsr_hyp", 0x3e) 4083 .Default(~0U); 4084 4085 if (Encoding == ~0U) 4086 return MatchOperand_NoMatch; 4087 4088 Parser.Lex(); // Eat identifier token. 4089 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4090 return MatchOperand_Success; 4091 } 4092 4093 ARMAsmParser::OperandMatchResultTy 4094 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4095 int High) { 4096 const AsmToken &Tok = Parser.getTok(); 4097 if (Tok.isNot(AsmToken::Identifier)) { 4098 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4099 return MatchOperand_ParseFail; 4100 } 4101 StringRef ShiftName = Tok.getString(); 4102 std::string LowerOp = Op.lower(); 4103 std::string UpperOp = Op.upper(); 4104 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4105 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4106 return MatchOperand_ParseFail; 4107 } 4108 Parser.Lex(); // Eat shift type token. 4109 4110 // There must be a '#' and a shift amount. 4111 if (Parser.getTok().isNot(AsmToken::Hash) && 4112 Parser.getTok().isNot(AsmToken::Dollar)) { 4113 Error(Parser.getTok().getLoc(), "'#' expected"); 4114 return MatchOperand_ParseFail; 4115 } 4116 Parser.Lex(); // Eat hash token. 4117 4118 const MCExpr *ShiftAmount; 4119 SMLoc Loc = Parser.getTok().getLoc(); 4120 SMLoc EndLoc; 4121 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4122 Error(Loc, "illegal expression"); 4123 return MatchOperand_ParseFail; 4124 } 4125 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4126 if (!CE) { 4127 Error(Loc, "constant expression expected"); 4128 return MatchOperand_ParseFail; 4129 } 4130 int Val = CE->getValue(); 4131 if (Val < Low || Val > High) { 4132 Error(Loc, "immediate value out of range"); 4133 return MatchOperand_ParseFail; 4134 } 4135 4136 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4137 4138 return MatchOperand_Success; 4139 } 4140 4141 ARMAsmParser::OperandMatchResultTy 4142 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4143 const AsmToken &Tok = Parser.getTok(); 4144 SMLoc S = Tok.getLoc(); 4145 if (Tok.isNot(AsmToken::Identifier)) { 4146 Error(S, "'be' or 'le' operand expected"); 4147 return MatchOperand_ParseFail; 4148 } 4149 int Val = StringSwitch<int>(Tok.getString().lower()) 4150 .Case("be", 1) 4151 .Case("le", 0) 4152 .Default(-1); 4153 Parser.Lex(); // Eat the token. 4154 4155 if (Val == -1) { 4156 Error(S, "'be' or 'le' operand expected"); 4157 return MatchOperand_ParseFail; 4158 } 4159 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val, 4160 getContext()), 4161 S, Tok.getEndLoc())); 4162 return MatchOperand_Success; 4163 } 4164 4165 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4166 /// instructions. Legal values are: 4167 /// lsl #n 'n' in [0,31] 4168 /// asr #n 'n' in [1,32] 4169 /// n == 32 encoded as n == 0. 4170 ARMAsmParser::OperandMatchResultTy 4171 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4172 const AsmToken &Tok = Parser.getTok(); 4173 SMLoc S = Tok.getLoc(); 4174 if (Tok.isNot(AsmToken::Identifier)) { 4175 Error(S, "shift operator 'asr' or 'lsl' expected"); 4176 return MatchOperand_ParseFail; 4177 } 4178 StringRef ShiftName = Tok.getString(); 4179 bool isASR; 4180 if (ShiftName == "lsl" || ShiftName == "LSL") 4181 isASR = false; 4182 else if (ShiftName == "asr" || ShiftName == "ASR") 4183 isASR = true; 4184 else { 4185 Error(S, "shift operator 'asr' or 'lsl' expected"); 4186 return MatchOperand_ParseFail; 4187 } 4188 Parser.Lex(); // Eat the operator. 4189 4190 // A '#' and a shift amount. 4191 if (Parser.getTok().isNot(AsmToken::Hash) && 4192 Parser.getTok().isNot(AsmToken::Dollar)) { 4193 Error(Parser.getTok().getLoc(), "'#' expected"); 4194 return MatchOperand_ParseFail; 4195 } 4196 Parser.Lex(); // Eat hash token. 4197 SMLoc ExLoc = Parser.getTok().getLoc(); 4198 4199 const MCExpr *ShiftAmount; 4200 SMLoc EndLoc; 4201 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4202 Error(ExLoc, "malformed shift expression"); 4203 return MatchOperand_ParseFail; 4204 } 4205 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4206 if (!CE) { 4207 Error(ExLoc, "shift amount must be an immediate"); 4208 return MatchOperand_ParseFail; 4209 } 4210 4211 int64_t Val = CE->getValue(); 4212 if (isASR) { 4213 // Shift amount must be in [1,32] 4214 if (Val < 1 || Val > 32) { 4215 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4216 return MatchOperand_ParseFail; 4217 } 4218 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4219 if (isThumb() && Val == 32) { 4220 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4221 return MatchOperand_ParseFail; 4222 } 4223 if (Val == 32) Val = 0; 4224 } else { 4225 // Shift amount must be in [1,32] 4226 if (Val < 0 || Val > 31) { 4227 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4228 return MatchOperand_ParseFail; 4229 } 4230 } 4231 4232 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4233 4234 return MatchOperand_Success; 4235 } 4236 4237 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4238 /// of instructions. Legal values are: 4239 /// ror #n 'n' in {0, 8, 16, 24} 4240 ARMAsmParser::OperandMatchResultTy 4241 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4242 const AsmToken &Tok = Parser.getTok(); 4243 SMLoc S = Tok.getLoc(); 4244 if (Tok.isNot(AsmToken::Identifier)) 4245 return MatchOperand_NoMatch; 4246 StringRef ShiftName = Tok.getString(); 4247 if (ShiftName != "ror" && ShiftName != "ROR") 4248 return MatchOperand_NoMatch; 4249 Parser.Lex(); // Eat the operator. 4250 4251 // A '#' and a rotate amount. 4252 if (Parser.getTok().isNot(AsmToken::Hash) && 4253 Parser.getTok().isNot(AsmToken::Dollar)) { 4254 Error(Parser.getTok().getLoc(), "'#' expected"); 4255 return MatchOperand_ParseFail; 4256 } 4257 Parser.Lex(); // Eat hash token. 4258 SMLoc ExLoc = Parser.getTok().getLoc(); 4259 4260 const MCExpr *ShiftAmount; 4261 SMLoc EndLoc; 4262 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4263 Error(ExLoc, "malformed rotate expression"); 4264 return MatchOperand_ParseFail; 4265 } 4266 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4267 if (!CE) { 4268 Error(ExLoc, "rotate amount must be an immediate"); 4269 return MatchOperand_ParseFail; 4270 } 4271 4272 int64_t Val = CE->getValue(); 4273 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4274 // normally, zero is represented in asm by omitting the rotate operand 4275 // entirely. 4276 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4277 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4278 return MatchOperand_ParseFail; 4279 } 4280 4281 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4282 4283 return MatchOperand_Success; 4284 } 4285 4286 ARMAsmParser::OperandMatchResultTy 4287 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4288 SMLoc S = Parser.getTok().getLoc(); 4289 // The bitfield descriptor is really two operands, the LSB and the width. 4290 if (Parser.getTok().isNot(AsmToken::Hash) && 4291 Parser.getTok().isNot(AsmToken::Dollar)) { 4292 Error(Parser.getTok().getLoc(), "'#' expected"); 4293 return MatchOperand_ParseFail; 4294 } 4295 Parser.Lex(); // Eat hash token. 4296 4297 const MCExpr *LSBExpr; 4298 SMLoc E = Parser.getTok().getLoc(); 4299 if (getParser().parseExpression(LSBExpr)) { 4300 Error(E, "malformed immediate expression"); 4301 return MatchOperand_ParseFail; 4302 } 4303 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4304 if (!CE) { 4305 Error(E, "'lsb' operand must be an immediate"); 4306 return MatchOperand_ParseFail; 4307 } 4308 4309 int64_t LSB = CE->getValue(); 4310 // The LSB must be in the range [0,31] 4311 if (LSB < 0 || LSB > 31) { 4312 Error(E, "'lsb' operand must be in the range [0,31]"); 4313 return MatchOperand_ParseFail; 4314 } 4315 E = Parser.getTok().getLoc(); 4316 4317 // Expect another immediate operand. 4318 if (Parser.getTok().isNot(AsmToken::Comma)) { 4319 Error(Parser.getTok().getLoc(), "too few operands"); 4320 return MatchOperand_ParseFail; 4321 } 4322 Parser.Lex(); // Eat hash token. 4323 if (Parser.getTok().isNot(AsmToken::Hash) && 4324 Parser.getTok().isNot(AsmToken::Dollar)) { 4325 Error(Parser.getTok().getLoc(), "'#' expected"); 4326 return MatchOperand_ParseFail; 4327 } 4328 Parser.Lex(); // Eat hash token. 4329 4330 const MCExpr *WidthExpr; 4331 SMLoc EndLoc; 4332 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4333 Error(E, "malformed immediate expression"); 4334 return MatchOperand_ParseFail; 4335 } 4336 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4337 if (!CE) { 4338 Error(E, "'width' operand must be an immediate"); 4339 return MatchOperand_ParseFail; 4340 } 4341 4342 int64_t Width = CE->getValue(); 4343 // The LSB must be in the range [1,32-lsb] 4344 if (Width < 1 || Width > 32 - LSB) { 4345 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4346 return MatchOperand_ParseFail; 4347 } 4348 4349 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4350 4351 return MatchOperand_Success; 4352 } 4353 4354 ARMAsmParser::OperandMatchResultTy 4355 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4356 // Check for a post-index addressing register operand. Specifically: 4357 // postidx_reg := '+' register {, shift} 4358 // | '-' register {, shift} 4359 // | register {, shift} 4360 4361 // This method must return MatchOperand_NoMatch without consuming any tokens 4362 // in the case where there is no match, as other alternatives take other 4363 // parse methods. 4364 AsmToken Tok = Parser.getTok(); 4365 SMLoc S = Tok.getLoc(); 4366 bool haveEaten = false; 4367 bool isAdd = true; 4368 if (Tok.is(AsmToken::Plus)) { 4369 Parser.Lex(); // Eat the '+' token. 4370 haveEaten = true; 4371 } else if (Tok.is(AsmToken::Minus)) { 4372 Parser.Lex(); // Eat the '-' token. 4373 isAdd = false; 4374 haveEaten = true; 4375 } 4376 4377 SMLoc E = Parser.getTok().getEndLoc(); 4378 int Reg = tryParseRegister(); 4379 if (Reg == -1) { 4380 if (!haveEaten) 4381 return MatchOperand_NoMatch; 4382 Error(Parser.getTok().getLoc(), "register expected"); 4383 return MatchOperand_ParseFail; 4384 } 4385 4386 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4387 unsigned ShiftImm = 0; 4388 if (Parser.getTok().is(AsmToken::Comma)) { 4389 Parser.Lex(); // Eat the ','. 4390 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4391 return MatchOperand_ParseFail; 4392 4393 // FIXME: Only approximates end...may include intervening whitespace. 4394 E = Parser.getTok().getLoc(); 4395 } 4396 4397 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4398 ShiftImm, S, E)); 4399 4400 return MatchOperand_Success; 4401 } 4402 4403 ARMAsmParser::OperandMatchResultTy 4404 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4405 // Check for a post-index addressing register operand. Specifically: 4406 // am3offset := '+' register 4407 // | '-' register 4408 // | register 4409 // | # imm 4410 // | # + imm 4411 // | # - imm 4412 4413 // This method must return MatchOperand_NoMatch without consuming any tokens 4414 // in the case where there is no match, as other alternatives take other 4415 // parse methods. 4416 AsmToken Tok = Parser.getTok(); 4417 SMLoc S = Tok.getLoc(); 4418 4419 // Do immediates first, as we always parse those if we have a '#'. 4420 if (Parser.getTok().is(AsmToken::Hash) || 4421 Parser.getTok().is(AsmToken::Dollar)) { 4422 Parser.Lex(); // Eat '#' or '$'. 4423 // Explicitly look for a '-', as we need to encode negative zero 4424 // differently. 4425 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4426 const MCExpr *Offset; 4427 SMLoc E; 4428 if (getParser().parseExpression(Offset, E)) 4429 return MatchOperand_ParseFail; 4430 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4431 if (!CE) { 4432 Error(S, "constant expression expected"); 4433 return MatchOperand_ParseFail; 4434 } 4435 // Negative zero is encoded as the flag value INT32_MIN. 4436 int32_t Val = CE->getValue(); 4437 if (isNegative && Val == 0) 4438 Val = INT32_MIN; 4439 4440 Operands.push_back( 4441 ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E)); 4442 4443 return MatchOperand_Success; 4444 } 4445 4446 4447 bool haveEaten = false; 4448 bool isAdd = true; 4449 if (Tok.is(AsmToken::Plus)) { 4450 Parser.Lex(); // Eat the '+' token. 4451 haveEaten = true; 4452 } else if (Tok.is(AsmToken::Minus)) { 4453 Parser.Lex(); // Eat the '-' token. 4454 isAdd = false; 4455 haveEaten = true; 4456 } 4457 4458 Tok = Parser.getTok(); 4459 int Reg = tryParseRegister(); 4460 if (Reg == -1) { 4461 if (!haveEaten) 4462 return MatchOperand_NoMatch; 4463 Error(Tok.getLoc(), "register expected"); 4464 return MatchOperand_ParseFail; 4465 } 4466 4467 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4468 0, S, Tok.getEndLoc())); 4469 4470 return MatchOperand_Success; 4471 } 4472 4473 /// Convert parsed operands to MCInst. Needed here because this instruction 4474 /// only has two register operands, but multiplication is commutative so 4475 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4476 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4477 const OperandVector &Operands) { 4478 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4479 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4480 // If we have a three-operand form, make sure to set Rn to be the operand 4481 // that isn't the same as Rd. 4482 unsigned RegOp = 4; 4483 if (Operands.size() == 6 && 4484 ((ARMOperand &)*Operands[4]).getReg() == 4485 ((ARMOperand &)*Operands[3]).getReg()) 4486 RegOp = 5; 4487 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4488 Inst.addOperand(Inst.getOperand(0)); 4489 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4490 } 4491 4492 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4493 const OperandVector &Operands) { 4494 int CondOp = -1, ImmOp = -1; 4495 switch(Inst.getOpcode()) { 4496 case ARM::tB: 4497 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4498 4499 case ARM::t2B: 4500 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4501 4502 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4503 } 4504 // first decide whether or not the branch should be conditional 4505 // by looking at it's location relative to an IT block 4506 if(inITBlock()) { 4507 // inside an IT block we cannot have any conditional branches. any 4508 // such instructions needs to be converted to unconditional form 4509 switch(Inst.getOpcode()) { 4510 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4511 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4512 } 4513 } else { 4514 // outside IT blocks we can only have unconditional branches with AL 4515 // condition code or conditional branches with non-AL condition code 4516 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4517 switch(Inst.getOpcode()) { 4518 case ARM::tB: 4519 case ARM::tBcc: 4520 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4521 break; 4522 case ARM::t2B: 4523 case ARM::t2Bcc: 4524 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4525 break; 4526 } 4527 } 4528 4529 // now decide on encoding size based on branch target range 4530 switch(Inst.getOpcode()) { 4531 // classify tB as either t2B or t1B based on range of immediate operand 4532 case ARM::tB: { 4533 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4534 if (!op.isSignedOffset<11, 1>() && isThumbTwo()) 4535 Inst.setOpcode(ARM::t2B); 4536 break; 4537 } 4538 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4539 case ARM::tBcc: { 4540 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4541 if (!op.isSignedOffset<8, 1>() && isThumbTwo()) 4542 Inst.setOpcode(ARM::t2Bcc); 4543 break; 4544 } 4545 } 4546 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4547 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4548 } 4549 4550 /// Parse an ARM memory expression, return false if successful else return true 4551 /// or an error. The first token must be a '[' when called. 4552 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4553 SMLoc S, E; 4554 assert(Parser.getTok().is(AsmToken::LBrac) && 4555 "Token is not a Left Bracket"); 4556 S = Parser.getTok().getLoc(); 4557 Parser.Lex(); // Eat left bracket token. 4558 4559 const AsmToken &BaseRegTok = Parser.getTok(); 4560 int BaseRegNum = tryParseRegister(); 4561 if (BaseRegNum == -1) 4562 return Error(BaseRegTok.getLoc(), "register expected"); 4563 4564 // The next token must either be a comma, a colon or a closing bracket. 4565 const AsmToken &Tok = Parser.getTok(); 4566 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4567 !Tok.is(AsmToken::RBrac)) 4568 return Error(Tok.getLoc(), "malformed memory operand"); 4569 4570 if (Tok.is(AsmToken::RBrac)) { 4571 E = Tok.getEndLoc(); 4572 Parser.Lex(); // Eat right bracket token. 4573 4574 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4575 ARM_AM::no_shift, 0, 0, false, 4576 S, E)); 4577 4578 // If there's a pre-indexing writeback marker, '!', just add it as a token 4579 // operand. It's rather odd, but syntactically valid. 4580 if (Parser.getTok().is(AsmToken::Exclaim)) { 4581 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4582 Parser.Lex(); // Eat the '!'. 4583 } 4584 4585 return false; 4586 } 4587 4588 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4589 "Lost colon or comma in memory operand?!"); 4590 if (Tok.is(AsmToken::Comma)) { 4591 Parser.Lex(); // Eat the comma. 4592 } 4593 4594 // If we have a ':', it's an alignment specifier. 4595 if (Parser.getTok().is(AsmToken::Colon)) { 4596 Parser.Lex(); // Eat the ':'. 4597 E = Parser.getTok().getLoc(); 4598 SMLoc AlignmentLoc = Tok.getLoc(); 4599 4600 const MCExpr *Expr; 4601 if (getParser().parseExpression(Expr)) 4602 return true; 4603 4604 // The expression has to be a constant. Memory references with relocations 4605 // don't come through here, as they use the <label> forms of the relevant 4606 // instructions. 4607 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4608 if (!CE) 4609 return Error (E, "constant expression expected"); 4610 4611 unsigned Align = 0; 4612 switch (CE->getValue()) { 4613 default: 4614 return Error(E, 4615 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4616 case 16: Align = 2; break; 4617 case 32: Align = 4; break; 4618 case 64: Align = 8; break; 4619 case 128: Align = 16; break; 4620 case 256: Align = 32; break; 4621 } 4622 4623 // Now we should have the closing ']' 4624 if (Parser.getTok().isNot(AsmToken::RBrac)) 4625 return Error(Parser.getTok().getLoc(), "']' expected"); 4626 E = Parser.getTok().getEndLoc(); 4627 Parser.Lex(); // Eat right bracket token. 4628 4629 // Don't worry about range checking the value here. That's handled by 4630 // the is*() predicates. 4631 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4632 ARM_AM::no_shift, 0, Align, 4633 false, S, E, AlignmentLoc)); 4634 4635 // If there's a pre-indexing writeback marker, '!', just add it as a token 4636 // operand. 4637 if (Parser.getTok().is(AsmToken::Exclaim)) { 4638 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4639 Parser.Lex(); // Eat the '!'. 4640 } 4641 4642 return false; 4643 } 4644 4645 // If we have a '#', it's an immediate offset, else assume it's a register 4646 // offset. Be friendly and also accept a plain integer (without a leading 4647 // hash) for gas compatibility. 4648 if (Parser.getTok().is(AsmToken::Hash) || 4649 Parser.getTok().is(AsmToken::Dollar) || 4650 Parser.getTok().is(AsmToken::Integer)) { 4651 if (Parser.getTok().isNot(AsmToken::Integer)) 4652 Parser.Lex(); // Eat '#' or '$'. 4653 E = Parser.getTok().getLoc(); 4654 4655 bool isNegative = getParser().getTok().is(AsmToken::Minus); 4656 const MCExpr *Offset; 4657 if (getParser().parseExpression(Offset)) 4658 return true; 4659 4660 // The expression has to be a constant. Memory references with relocations 4661 // don't come through here, as they use the <label> forms of the relevant 4662 // instructions. 4663 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4664 if (!CE) 4665 return Error (E, "constant expression expected"); 4666 4667 // If the constant was #-0, represent it as INT32_MIN. 4668 int32_t Val = CE->getValue(); 4669 if (isNegative && Val == 0) 4670 CE = MCConstantExpr::Create(INT32_MIN, getContext()); 4671 4672 // Now we should have the closing ']' 4673 if (Parser.getTok().isNot(AsmToken::RBrac)) 4674 return Error(Parser.getTok().getLoc(), "']' expected"); 4675 E = Parser.getTok().getEndLoc(); 4676 Parser.Lex(); // Eat right bracket token. 4677 4678 // Don't worry about range checking the value here. That's handled by 4679 // the is*() predicates. 4680 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 4681 ARM_AM::no_shift, 0, 0, 4682 false, S, E)); 4683 4684 // If there's a pre-indexing writeback marker, '!', just add it as a token 4685 // operand. 4686 if (Parser.getTok().is(AsmToken::Exclaim)) { 4687 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4688 Parser.Lex(); // Eat the '!'. 4689 } 4690 4691 return false; 4692 } 4693 4694 // The register offset is optionally preceded by a '+' or '-' 4695 bool isNegative = false; 4696 if (Parser.getTok().is(AsmToken::Minus)) { 4697 isNegative = true; 4698 Parser.Lex(); // Eat the '-'. 4699 } else if (Parser.getTok().is(AsmToken::Plus)) { 4700 // Nothing to do. 4701 Parser.Lex(); // Eat the '+'. 4702 } 4703 4704 E = Parser.getTok().getLoc(); 4705 int OffsetRegNum = tryParseRegister(); 4706 if (OffsetRegNum == -1) 4707 return Error(E, "register expected"); 4708 4709 // If there's a shift operator, handle it. 4710 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 4711 unsigned ShiftImm = 0; 4712 if (Parser.getTok().is(AsmToken::Comma)) { 4713 Parser.Lex(); // Eat the ','. 4714 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 4715 return true; 4716 } 4717 4718 // Now we should have the closing ']' 4719 if (Parser.getTok().isNot(AsmToken::RBrac)) 4720 return Error(Parser.getTok().getLoc(), "']' expected"); 4721 E = Parser.getTok().getEndLoc(); 4722 Parser.Lex(); // Eat right bracket token. 4723 4724 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 4725 ShiftType, ShiftImm, 0, isNegative, 4726 S, E)); 4727 4728 // If there's a pre-indexing writeback marker, '!', just add it as a token 4729 // operand. 4730 if (Parser.getTok().is(AsmToken::Exclaim)) { 4731 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4732 Parser.Lex(); // Eat the '!'. 4733 } 4734 4735 return false; 4736 } 4737 4738 /// parseMemRegOffsetShift - one of these two: 4739 /// ( lsl | lsr | asr | ror ) , # shift_amount 4740 /// rrx 4741 /// return true if it parses a shift otherwise it returns false. 4742 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 4743 unsigned &Amount) { 4744 SMLoc Loc = Parser.getTok().getLoc(); 4745 const AsmToken &Tok = Parser.getTok(); 4746 if (Tok.isNot(AsmToken::Identifier)) 4747 return true; 4748 StringRef ShiftName = Tok.getString(); 4749 if (ShiftName == "lsl" || ShiftName == "LSL" || 4750 ShiftName == "asl" || ShiftName == "ASL") 4751 St = ARM_AM::lsl; 4752 else if (ShiftName == "lsr" || ShiftName == "LSR") 4753 St = ARM_AM::lsr; 4754 else if (ShiftName == "asr" || ShiftName == "ASR") 4755 St = ARM_AM::asr; 4756 else if (ShiftName == "ror" || ShiftName == "ROR") 4757 St = ARM_AM::ror; 4758 else if (ShiftName == "rrx" || ShiftName == "RRX") 4759 St = ARM_AM::rrx; 4760 else 4761 return Error(Loc, "illegal shift operator"); 4762 Parser.Lex(); // Eat shift type token. 4763 4764 // rrx stands alone. 4765 Amount = 0; 4766 if (St != ARM_AM::rrx) { 4767 Loc = Parser.getTok().getLoc(); 4768 // A '#' and a shift amount. 4769 const AsmToken &HashTok = Parser.getTok(); 4770 if (HashTok.isNot(AsmToken::Hash) && 4771 HashTok.isNot(AsmToken::Dollar)) 4772 return Error(HashTok.getLoc(), "'#' expected"); 4773 Parser.Lex(); // Eat hash token. 4774 4775 const MCExpr *Expr; 4776 if (getParser().parseExpression(Expr)) 4777 return true; 4778 // Range check the immediate. 4779 // lsl, ror: 0 <= imm <= 31 4780 // lsr, asr: 0 <= imm <= 32 4781 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4782 if (!CE) 4783 return Error(Loc, "shift amount must be an immediate"); 4784 int64_t Imm = CE->getValue(); 4785 if (Imm < 0 || 4786 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 4787 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 4788 return Error(Loc, "immediate shift value out of range"); 4789 // If <ShiftTy> #0, turn it into a no_shift. 4790 if (Imm == 0) 4791 St = ARM_AM::lsl; 4792 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 4793 if (Imm == 32) 4794 Imm = 0; 4795 Amount = Imm; 4796 } 4797 4798 return false; 4799 } 4800 4801 /// parseFPImm - A floating point immediate expression operand. 4802 ARMAsmParser::OperandMatchResultTy 4803 ARMAsmParser::parseFPImm(OperandVector &Operands) { 4804 // Anything that can accept a floating point constant as an operand 4805 // needs to go through here, as the regular parseExpression is 4806 // integer only. 4807 // 4808 // This routine still creates a generic Immediate operand, containing 4809 // a bitcast of the 64-bit floating point value. The various operands 4810 // that accept floats can check whether the value is valid for them 4811 // via the standard is*() predicates. 4812 4813 SMLoc S = Parser.getTok().getLoc(); 4814 4815 if (Parser.getTok().isNot(AsmToken::Hash) && 4816 Parser.getTok().isNot(AsmToken::Dollar)) 4817 return MatchOperand_NoMatch; 4818 4819 // Disambiguate the VMOV forms that can accept an FP immediate. 4820 // vmov.f32 <sreg>, #imm 4821 // vmov.f64 <dreg>, #imm 4822 // vmov.f32 <dreg>, #imm @ vector f32x2 4823 // vmov.f32 <qreg>, #imm @ vector f32x4 4824 // 4825 // There are also the NEON VMOV instructions which expect an 4826 // integer constant. Make sure we don't try to parse an FPImm 4827 // for these: 4828 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 4829 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 4830 bool isVmovf = TyOp.isToken() && 4831 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64"); 4832 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 4833 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 4834 Mnemonic.getToken() == "fconsts"); 4835 if (!(isVmovf || isFconst)) 4836 return MatchOperand_NoMatch; 4837 4838 Parser.Lex(); // Eat '#' or '$'. 4839 4840 // Handle negation, as that still comes through as a separate token. 4841 bool isNegative = false; 4842 if (Parser.getTok().is(AsmToken::Minus)) { 4843 isNegative = true; 4844 Parser.Lex(); 4845 } 4846 const AsmToken &Tok = Parser.getTok(); 4847 SMLoc Loc = Tok.getLoc(); 4848 if (Tok.is(AsmToken::Real) && isVmovf) { 4849 APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); 4850 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 4851 // If we had a '-' in front, toggle the sign bit. 4852 IntVal ^= (uint64_t)isNegative << 31; 4853 Parser.Lex(); // Eat the token. 4854 Operands.push_back(ARMOperand::CreateImm( 4855 MCConstantExpr::Create(IntVal, getContext()), 4856 S, Parser.getTok().getLoc())); 4857 return MatchOperand_Success; 4858 } 4859 // Also handle plain integers. Instructions which allow floating point 4860 // immediates also allow a raw encoded 8-bit value. 4861 if (Tok.is(AsmToken::Integer) && isFconst) { 4862 int64_t Val = Tok.getIntVal(); 4863 Parser.Lex(); // Eat the token. 4864 if (Val > 255 || Val < 0) { 4865 Error(Loc, "encoded floating point value out of range"); 4866 return MatchOperand_ParseFail; 4867 } 4868 float RealVal = ARM_AM::getFPImmFloat(Val); 4869 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 4870 4871 Operands.push_back(ARMOperand::CreateImm( 4872 MCConstantExpr::Create(Val, getContext()), S, 4873 Parser.getTok().getLoc())); 4874 return MatchOperand_Success; 4875 } 4876 4877 Error(Loc, "invalid floating point immediate"); 4878 return MatchOperand_ParseFail; 4879 } 4880 4881 /// Parse a arm instruction operand. For now this parses the operand regardless 4882 /// of the mnemonic. 4883 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 4884 SMLoc S, E; 4885 4886 // Check if the current operand has a custom associated parser, if so, try to 4887 // custom parse the operand, or fallback to the general approach. 4888 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 4889 if (ResTy == MatchOperand_Success) 4890 return false; 4891 // If there wasn't a custom match, try the generic matcher below. Otherwise, 4892 // there was a match, but an error occurred, in which case, just return that 4893 // the operand parsing failed. 4894 if (ResTy == MatchOperand_ParseFail) 4895 return true; 4896 4897 switch (getLexer().getKind()) { 4898 default: 4899 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 4900 return true; 4901 case AsmToken::Identifier: { 4902 // If we've seen a branch mnemonic, the next operand must be a label. This 4903 // is true even if the label is a register name. So "br r1" means branch to 4904 // label "r1". 4905 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 4906 if (!ExpectLabel) { 4907 if (!tryParseRegisterWithWriteBack(Operands)) 4908 return false; 4909 int Res = tryParseShiftRegister(Operands); 4910 if (Res == 0) // success 4911 return false; 4912 else if (Res == -1) // irrecoverable error 4913 return true; 4914 // If this is VMRS, check for the apsr_nzcv operand. 4915 if (Mnemonic == "vmrs" && 4916 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 4917 S = Parser.getTok().getLoc(); 4918 Parser.Lex(); 4919 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 4920 return false; 4921 } 4922 } 4923 4924 // Fall though for the Identifier case that is not a register or a 4925 // special name. 4926 } 4927 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 4928 case AsmToken::Integer: // things like 1f and 2b as a branch targets 4929 case AsmToken::String: // quoted label names. 4930 case AsmToken::Dot: { // . as a branch target 4931 // This was not a register so parse other operands that start with an 4932 // identifier (like labels) as expressions and create them as immediates. 4933 const MCExpr *IdVal; 4934 S = Parser.getTok().getLoc(); 4935 if (getParser().parseExpression(IdVal)) 4936 return true; 4937 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 4938 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 4939 return false; 4940 } 4941 case AsmToken::LBrac: 4942 return parseMemory(Operands); 4943 case AsmToken::LCurly: 4944 return parseRegisterList(Operands); 4945 case AsmToken::Dollar: 4946 case AsmToken::Hash: { 4947 // #42 -> immediate. 4948 S = Parser.getTok().getLoc(); 4949 Parser.Lex(); 4950 4951 if (Parser.getTok().isNot(AsmToken::Colon)) { 4952 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4953 const MCExpr *ImmVal; 4954 if (getParser().parseExpression(ImmVal)) 4955 return true; 4956 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 4957 if (CE) { 4958 int32_t Val = CE->getValue(); 4959 if (isNegative && Val == 0) 4960 ImmVal = MCConstantExpr::Create(INT32_MIN, getContext()); 4961 } 4962 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 4963 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 4964 4965 // There can be a trailing '!' on operands that we want as a separate 4966 // '!' Token operand. Handle that here. For example, the compatibility 4967 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 4968 if (Parser.getTok().is(AsmToken::Exclaim)) { 4969 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 4970 Parser.getTok().getLoc())); 4971 Parser.Lex(); // Eat exclaim token 4972 } 4973 return false; 4974 } 4975 // w/ a ':' after the '#', it's just like a plain ':'. 4976 // FALLTHROUGH 4977 } 4978 case AsmToken::Colon: { 4979 // ":lower16:" and ":upper16:" expression prefixes 4980 // FIXME: Check it's an expression prefix, 4981 // e.g. (FOO - :lower16:BAR) isn't legal. 4982 ARMMCExpr::VariantKind RefKind; 4983 if (parsePrefix(RefKind)) 4984 return true; 4985 4986 const MCExpr *SubExprVal; 4987 if (getParser().parseExpression(SubExprVal)) 4988 return true; 4989 4990 const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal, 4991 getContext()); 4992 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 4993 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 4994 return false; 4995 } 4996 case AsmToken::Equal: { 4997 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 4998 return Error(Parser.getTok().getLoc(), "unexpected token in operand"); 4999 5000 Parser.Lex(); // Eat '=' 5001 const MCExpr *SubExprVal; 5002 if (getParser().parseExpression(SubExprVal)) 5003 return true; 5004 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5005 5006 const MCExpr *CPLoc = getTargetStreamer().addConstantPoolEntry(SubExprVal); 5007 Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E)); 5008 return false; 5009 } 5010 } 5011 } 5012 5013 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5014 // :lower16: and :upper16:. 5015 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5016 RefKind = ARMMCExpr::VK_ARM_None; 5017 5018 // consume an optional '#' (GNU compatibility) 5019 if (getLexer().is(AsmToken::Hash)) 5020 Parser.Lex(); 5021 5022 // :lower16: and :upper16: modifiers 5023 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5024 Parser.Lex(); // Eat ':' 5025 5026 if (getLexer().isNot(AsmToken::Identifier)) { 5027 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5028 return true; 5029 } 5030 5031 StringRef IDVal = Parser.getTok().getIdentifier(); 5032 if (IDVal == "lower16") { 5033 RefKind = ARMMCExpr::VK_ARM_LO16; 5034 } else if (IDVal == "upper16") { 5035 RefKind = ARMMCExpr::VK_ARM_HI16; 5036 } else { 5037 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5038 return true; 5039 } 5040 Parser.Lex(); 5041 5042 if (getLexer().isNot(AsmToken::Colon)) { 5043 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5044 return true; 5045 } 5046 Parser.Lex(); // Eat the last ':' 5047 return false; 5048 } 5049 5050 /// \brief Given a mnemonic, split out possible predication code and carry 5051 /// setting letters to form a canonical mnemonic and flags. 5052 // 5053 // FIXME: Would be nice to autogen this. 5054 // FIXME: This is a bit of a maze of special cases. 5055 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5056 unsigned &PredicationCode, 5057 bool &CarrySetting, 5058 unsigned &ProcessorIMod, 5059 StringRef &ITMask) { 5060 PredicationCode = ARMCC::AL; 5061 CarrySetting = false; 5062 ProcessorIMod = 0; 5063 5064 // Ignore some mnemonics we know aren't predicated forms. 5065 // 5066 // FIXME: Would be nice to autogen this. 5067 if ((Mnemonic == "movs" && isThumb()) || 5068 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5069 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5070 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5071 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5072 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5073 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5074 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5075 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5076 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5077 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5078 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5079 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic.startswith("vsel")) 5080 return Mnemonic; 5081 5082 // First, split out any predication code. Ignore mnemonics we know aren't 5083 // predicated but do have a carry-set and so weren't caught above. 5084 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5085 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5086 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5087 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5088 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5089 .Case("eq", ARMCC::EQ) 5090 .Case("ne", ARMCC::NE) 5091 .Case("hs", ARMCC::HS) 5092 .Case("cs", ARMCC::HS) 5093 .Case("lo", ARMCC::LO) 5094 .Case("cc", ARMCC::LO) 5095 .Case("mi", ARMCC::MI) 5096 .Case("pl", ARMCC::PL) 5097 .Case("vs", ARMCC::VS) 5098 .Case("vc", ARMCC::VC) 5099 .Case("hi", ARMCC::HI) 5100 .Case("ls", ARMCC::LS) 5101 .Case("ge", ARMCC::GE) 5102 .Case("lt", ARMCC::LT) 5103 .Case("gt", ARMCC::GT) 5104 .Case("le", ARMCC::LE) 5105 .Case("al", ARMCC::AL) 5106 .Default(~0U); 5107 if (CC != ~0U) { 5108 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5109 PredicationCode = CC; 5110 } 5111 } 5112 5113 // Next, determine if we have a carry setting bit. We explicitly ignore all 5114 // the instructions we know end in 's'. 5115 if (Mnemonic.endswith("s") && 5116 !(Mnemonic == "cps" || Mnemonic == "mls" || 5117 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5118 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5119 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5120 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5121 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5122 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5123 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5124 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5125 (Mnemonic == "movs" && isThumb()))) { 5126 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5127 CarrySetting = true; 5128 } 5129 5130 // The "cps" instruction can have a interrupt mode operand which is glued into 5131 // the mnemonic. Check if this is the case, split it and parse the imod op 5132 if (Mnemonic.startswith("cps")) { 5133 // Split out any imod code. 5134 unsigned IMod = 5135 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5136 .Case("ie", ARM_PROC::IE) 5137 .Case("id", ARM_PROC::ID) 5138 .Default(~0U); 5139 if (IMod != ~0U) { 5140 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5141 ProcessorIMod = IMod; 5142 } 5143 } 5144 5145 // The "it" instruction has the condition mask on the end of the mnemonic. 5146 if (Mnemonic.startswith("it")) { 5147 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5148 Mnemonic = Mnemonic.slice(0, 2); 5149 } 5150 5151 return Mnemonic; 5152 } 5153 5154 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5155 /// inclusion of carry set or predication code operands. 5156 // 5157 // FIXME: It would be nice to autogen this. 5158 void ARMAsmParser:: 5159 getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5160 bool &CanAcceptCarrySet, bool &CanAcceptPredicationCode) { 5161 if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5162 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5163 Mnemonic == "add" || Mnemonic == "adc" || 5164 Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" || 5165 Mnemonic == "orr" || Mnemonic == "mvn" || 5166 Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" || 5167 Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" || 5168 Mnemonic == "vfm" || Mnemonic == "vfnm" || 5169 (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" || 5170 Mnemonic == "mla" || Mnemonic == "smlal" || 5171 Mnemonic == "umlal" || Mnemonic == "umull"))) { 5172 CanAcceptCarrySet = true; 5173 } else 5174 CanAcceptCarrySet = false; 5175 5176 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5177 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5178 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5179 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5180 Mnemonic.startswith("vsel") || 5181 Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" || 5182 Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || 5183 Mnemonic == "vrinta" || Mnemonic == "vrintn" || Mnemonic == "vrintp" || 5184 Mnemonic == "vrintm" || Mnemonic.startswith("aes") || 5185 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5186 (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) { 5187 // These mnemonics are never predicable 5188 CanAcceptPredicationCode = false; 5189 } else if (!isThumb()) { 5190 // Some instructions are only predicable in Thumb mode 5191 CanAcceptPredicationCode 5192 = Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5193 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5194 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5195 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5196 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 5197 Mnemonic != "stc2" && Mnemonic != "stc2l" && 5198 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 5199 } else if (isThumbOne()) { 5200 if (hasV6MOps()) 5201 CanAcceptPredicationCode = Mnemonic != "movs"; 5202 else 5203 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5204 } else 5205 CanAcceptPredicationCode = true; 5206 } 5207 5208 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5209 OperandVector &Operands) { 5210 // FIXME: This is all horribly hacky. We really need a better way to deal 5211 // with optional operands like this in the matcher table. 5212 5213 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5214 // another does not. Specifically, the MOVW instruction does not. So we 5215 // special case it here and remove the defaulted (non-setting) cc_out 5216 // operand if that's the instruction we're trying to match. 5217 // 5218 // We do this as post-processing of the explicit operands rather than just 5219 // conditionally adding the cc_out in the first place because we need 5220 // to check the type of the parsed immediate operand. 5221 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5222 !static_cast<ARMOperand &>(*Operands[4]).isARMSOImm() && 5223 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5224 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5225 return true; 5226 5227 // Register-register 'add' for thumb does not have a cc_out operand 5228 // when there are only two register operands. 5229 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5230 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5231 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5232 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5233 return true; 5234 // Register-register 'add' for thumb does not have a cc_out operand 5235 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5236 // have to check the immediate range here since Thumb2 has a variant 5237 // that can handle a different range and has a cc_out operand. 5238 if (((isThumb() && Mnemonic == "add") || 5239 (isThumbTwo() && Mnemonic == "sub")) && 5240 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5241 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5242 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5243 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5244 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5245 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5246 return true; 5247 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5248 // imm0_4095 variant. That's the least-preferred variant when 5249 // selecting via the generic "add" mnemonic, so to know that we 5250 // should remove the cc_out operand, we have to explicitly check that 5251 // it's not one of the other variants. Ugh. 5252 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5253 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5254 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5255 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5256 // Nest conditions rather than one big 'if' statement for readability. 5257 // 5258 // If both registers are low, we're in an IT block, and the immediate is 5259 // in range, we should use encoding T1 instead, which has a cc_out. 5260 if (inITBlock() && 5261 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5262 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5263 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5264 return false; 5265 // Check against T3. If the second register is the PC, this is an 5266 // alternate form of ADR, which uses encoding T4, so check for that too. 5267 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5268 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5269 return false; 5270 5271 // Otherwise, we use encoding T4, which does not have a cc_out 5272 // operand. 5273 return true; 5274 } 5275 5276 // The thumb2 multiply instruction doesn't have a CCOut register, so 5277 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5278 // use the 16-bit encoding or not. 5279 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5280 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5281 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5282 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5283 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5284 // If the registers aren't low regs, the destination reg isn't the 5285 // same as one of the source regs, or the cc_out operand is zero 5286 // outside of an IT block, we have to use the 32-bit encoding, so 5287 // remove the cc_out operand. 5288 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5289 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5290 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5291 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5292 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5293 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5294 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5295 return true; 5296 5297 // Also check the 'mul' syntax variant that doesn't specify an explicit 5298 // destination register. 5299 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5300 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5301 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5302 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5303 // If the registers aren't low regs or the cc_out operand is zero 5304 // outside of an IT block, we have to use the 32-bit encoding, so 5305 // remove the cc_out operand. 5306 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5307 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5308 !inITBlock())) 5309 return true; 5310 5311 5312 5313 // Register-register 'add/sub' for thumb does not have a cc_out operand 5314 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5315 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5316 // right, this will result in better diagnostics (which operand is off) 5317 // anyway. 5318 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5319 (Operands.size() == 5 || Operands.size() == 6) && 5320 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5321 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5322 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5323 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5324 (Operands.size() == 6 && 5325 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5326 return true; 5327 5328 return false; 5329 } 5330 5331 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5332 OperandVector &Operands) { 5333 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5334 unsigned RegIdx = 3; 5335 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5336 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32") { 5337 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5338 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32") 5339 RegIdx = 4; 5340 5341 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5342 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5343 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5344 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5345 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5346 return true; 5347 } 5348 return false; 5349 } 5350 5351 static bool isDataTypeToken(StringRef Tok) { 5352 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5353 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5354 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5355 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5356 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5357 Tok == ".f" || Tok == ".d"; 5358 } 5359 5360 // FIXME: This bit should probably be handled via an explicit match class 5361 // in the .td files that matches the suffix instead of having it be 5362 // a literal string token the way it is now. 5363 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5364 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5365 } 5366 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5367 unsigned VariantID); 5368 5369 static bool RequiresVFPRegListValidation(StringRef Inst, 5370 bool &AcceptSinglePrecisionOnly, 5371 bool &AcceptDoublePrecisionOnly) { 5372 if (Inst.size() < 7) 5373 return false; 5374 5375 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5376 StringRef AddressingMode = Inst.substr(4, 2); 5377 if (AddressingMode == "ia" || AddressingMode == "db" || 5378 AddressingMode == "ea" || AddressingMode == "fd") { 5379 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5380 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5381 return true; 5382 } 5383 } 5384 5385 return false; 5386 } 5387 5388 /// Parse an arm instruction mnemonic followed by its operands. 5389 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5390 SMLoc NameLoc, OperandVector &Operands) { 5391 // FIXME: Can this be done via tablegen in some fashion? 5392 bool RequireVFPRegisterListCheck; 5393 bool AcceptSinglePrecisionOnly; 5394 bool AcceptDoublePrecisionOnly; 5395 RequireVFPRegisterListCheck = 5396 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5397 AcceptDoublePrecisionOnly); 5398 5399 // Apply mnemonic aliases before doing anything else, as the destination 5400 // mnemonic may include suffices and we want to handle them normally. 5401 // The generic tblgen'erated code does this later, at the start of 5402 // MatchInstructionImpl(), but that's too late for aliases that include 5403 // any sort of suffix. 5404 uint64_t AvailableFeatures = getAvailableFeatures(); 5405 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5406 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5407 5408 // First check for the ARM-specific .req directive. 5409 if (Parser.getTok().is(AsmToken::Identifier) && 5410 Parser.getTok().getIdentifier() == ".req") { 5411 parseDirectiveReq(Name, NameLoc); 5412 // We always return 'error' for this, as we're done with this 5413 // statement and don't need to match the 'instruction." 5414 return true; 5415 } 5416 5417 // Create the leading tokens for the mnemonic, split by '.' characters. 5418 size_t Start = 0, Next = Name.find('.'); 5419 StringRef Mnemonic = Name.slice(Start, Next); 5420 5421 // Split out the predication code and carry setting flag from the mnemonic. 5422 unsigned PredicationCode; 5423 unsigned ProcessorIMod; 5424 bool CarrySetting; 5425 StringRef ITMask; 5426 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5427 ProcessorIMod, ITMask); 5428 5429 // In Thumb1, only the branch (B) instruction can be predicated. 5430 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5431 Parser.eatToEndOfStatement(); 5432 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5433 } 5434 5435 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5436 5437 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5438 // is the mask as it will be for the IT encoding if the conditional 5439 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5440 // where the conditional bit0 is zero, the instruction post-processing 5441 // will adjust the mask accordingly. 5442 if (Mnemonic == "it") { 5443 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5444 if (ITMask.size() > 3) { 5445 Parser.eatToEndOfStatement(); 5446 return Error(Loc, "too many conditions on IT instruction"); 5447 } 5448 unsigned Mask = 8; 5449 for (unsigned i = ITMask.size(); i != 0; --i) { 5450 char pos = ITMask[i - 1]; 5451 if (pos != 't' && pos != 'e') { 5452 Parser.eatToEndOfStatement(); 5453 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5454 } 5455 Mask >>= 1; 5456 if (ITMask[i - 1] == 't') 5457 Mask |= 8; 5458 } 5459 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5460 } 5461 5462 // FIXME: This is all a pretty gross hack. We should automatically handle 5463 // optional operands like this via tblgen. 5464 5465 // Next, add the CCOut and ConditionCode operands, if needed. 5466 // 5467 // For mnemonics which can ever incorporate a carry setting bit or predication 5468 // code, our matching model involves us always generating CCOut and 5469 // ConditionCode operands to match the mnemonic "as written" and then we let 5470 // the matcher deal with finding the right instruction or generating an 5471 // appropriate error. 5472 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5473 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5474 5475 // If we had a carry-set on an instruction that can't do that, issue an 5476 // error. 5477 if (!CanAcceptCarrySet && CarrySetting) { 5478 Parser.eatToEndOfStatement(); 5479 return Error(NameLoc, "instruction '" + Mnemonic + 5480 "' can not set flags, but 's' suffix specified"); 5481 } 5482 // If we had a predication code on an instruction that can't do that, issue an 5483 // error. 5484 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 5485 Parser.eatToEndOfStatement(); 5486 return Error(NameLoc, "instruction '" + Mnemonic + 5487 "' is not predicable, but condition code specified"); 5488 } 5489 5490 // Add the carry setting operand, if necessary. 5491 if (CanAcceptCarrySet) { 5492 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 5493 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 5494 Loc)); 5495 } 5496 5497 // Add the predication code operand, if necessary. 5498 if (CanAcceptPredicationCode) { 5499 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 5500 CarrySetting); 5501 Operands.push_back(ARMOperand::CreateCondCode( 5502 ARMCC::CondCodes(PredicationCode), Loc)); 5503 } 5504 5505 // Add the processor imod operand, if necessary. 5506 if (ProcessorIMod) { 5507 Operands.push_back(ARMOperand::CreateImm( 5508 MCConstantExpr::Create(ProcessorIMod, getContext()), 5509 NameLoc, NameLoc)); 5510 } 5511 5512 // Add the remaining tokens in the mnemonic. 5513 while (Next != StringRef::npos) { 5514 Start = Next; 5515 Next = Name.find('.', Start + 1); 5516 StringRef ExtraToken = Name.slice(Start, Next); 5517 5518 // Some NEON instructions have an optional datatype suffix that is 5519 // completely ignored. Check for that. 5520 if (isDataTypeToken(ExtraToken) && 5521 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 5522 continue; 5523 5524 // For for ARM mode generate an error if the .n qualifier is used. 5525 if (ExtraToken == ".n" && !isThumb()) { 5526 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5527 Parser.eatToEndOfStatement(); 5528 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 5529 "arm mode"); 5530 } 5531 5532 // The .n qualifier is always discarded as that is what the tables 5533 // and matcher expect. In ARM mode the .w qualifier has no effect, 5534 // so discard it to avoid errors that can be caused by the matcher. 5535 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 5536 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5537 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 5538 } 5539 } 5540 5541 // Read the remaining operands. 5542 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5543 // Read the first operand. 5544 if (parseOperand(Operands, Mnemonic)) { 5545 Parser.eatToEndOfStatement(); 5546 return true; 5547 } 5548 5549 while (getLexer().is(AsmToken::Comma)) { 5550 Parser.Lex(); // Eat the comma. 5551 5552 // Parse and remember the operand. 5553 if (parseOperand(Operands, Mnemonic)) { 5554 Parser.eatToEndOfStatement(); 5555 return true; 5556 } 5557 } 5558 } 5559 5560 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5561 SMLoc Loc = getLexer().getLoc(); 5562 Parser.eatToEndOfStatement(); 5563 return Error(Loc, "unexpected token in argument list"); 5564 } 5565 5566 Parser.Lex(); // Consume the EndOfStatement 5567 5568 if (RequireVFPRegisterListCheck) { 5569 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 5570 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 5571 return Error(Op.getStartLoc(), 5572 "VFP/Neon single precision register expected"); 5573 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 5574 return Error(Op.getStartLoc(), 5575 "VFP/Neon double precision register expected"); 5576 } 5577 5578 // Some instructions, mostly Thumb, have forms for the same mnemonic that 5579 // do and don't have a cc_out optional-def operand. With some spot-checks 5580 // of the operand list, we can figure out which variant we're trying to 5581 // parse and adjust accordingly before actually matching. We shouldn't ever 5582 // try to remove a cc_out operand that was explicitly set on the the 5583 // mnemonic, of course (CarrySetting == true). Reason number #317 the 5584 // table driven matcher doesn't fit well with the ARM instruction set. 5585 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 5586 Operands.erase(Operands.begin() + 1); 5587 5588 // Some instructions have the same mnemonic, but don't always 5589 // have a predicate. Distinguish them here and delete the 5590 // predicate if needed. 5591 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 5592 Operands.erase(Operands.begin() + 1); 5593 5594 // ARM mode 'blx' need special handling, as the register operand version 5595 // is predicable, but the label operand version is not. So, we can't rely 5596 // on the Mnemonic based checking to correctly figure out when to put 5597 // a k_CondCode operand in the list. If we're trying to match the label 5598 // version, remove the k_CondCode operand here. 5599 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 5600 static_cast<ARMOperand &>(*Operands[2]).isImm()) 5601 Operands.erase(Operands.begin() + 1); 5602 5603 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 5604 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 5605 // a single GPRPair reg operand is used in the .td file to replace the two 5606 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 5607 // expressed as a GPRPair, so we have to manually merge them. 5608 // FIXME: We would really like to be able to tablegen'erate this. 5609 if (!isThumb() && Operands.size() > 4 && 5610 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 5611 Mnemonic == "stlexd")) { 5612 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 5613 unsigned Idx = isLoad ? 2 : 3; 5614 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 5615 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 5616 5617 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 5618 // Adjust only if Op1 and Op2 are GPRs. 5619 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 5620 MRC.contains(Op2.getReg())) { 5621 unsigned Reg1 = Op1.getReg(); 5622 unsigned Reg2 = Op2.getReg(); 5623 unsigned Rt = MRI->getEncodingValue(Reg1); 5624 unsigned Rt2 = MRI->getEncodingValue(Reg2); 5625 5626 // Rt2 must be Rt + 1 and Rt must be even. 5627 if (Rt + 1 != Rt2 || (Rt & 1)) { 5628 Error(Op2.getStartLoc(), isLoad 5629 ? "destination operands must be sequential" 5630 : "source operands must be sequential"); 5631 return true; 5632 } 5633 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 5634 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 5635 Operands[Idx] = 5636 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 5637 Operands.erase(Operands.begin() + Idx + 1); 5638 } 5639 } 5640 5641 // GNU Assembler extension (compatibility) 5642 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 5643 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 5644 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5645 if (Op3.isMem()) { 5646 assert(Op2.isReg() && "expected register argument"); 5647 5648 unsigned SuperReg = MRI->getMatchingSuperReg( 5649 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 5650 5651 assert(SuperReg && "expected register pair"); 5652 5653 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 5654 5655 Operands.insert( 5656 Operands.begin() + 3, 5657 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 5658 } 5659 } 5660 5661 // FIXME: As said above, this is all a pretty gross hack. This instruction 5662 // does not fit with other "subs" and tblgen. 5663 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 5664 // so the Mnemonic is the original name "subs" and delete the predicate 5665 // operand so it will match the table entry. 5666 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 5667 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5668 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 5669 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5670 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 5671 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5672 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 5673 Operands.erase(Operands.begin() + 1); 5674 } 5675 return false; 5676 } 5677 5678 // Validate context-sensitive operand constraints. 5679 5680 // return 'true' if register list contains non-low GPR registers, 5681 // 'false' otherwise. If Reg is in the register list or is HiReg, set 5682 // 'containsReg' to true. 5683 static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg, 5684 unsigned HiReg, bool &containsReg) { 5685 containsReg = false; 5686 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 5687 unsigned OpReg = Inst.getOperand(i).getReg(); 5688 if (OpReg == Reg) 5689 containsReg = true; 5690 // Anything other than a low register isn't legal here. 5691 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 5692 return true; 5693 } 5694 return false; 5695 } 5696 5697 // Check if the specified regisgter is in the register list of the inst, 5698 // starting at the indicated operand number. 5699 static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) { 5700 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 5701 unsigned OpReg = Inst.getOperand(i).getReg(); 5702 if (OpReg == Reg) 5703 return true; 5704 } 5705 return false; 5706 } 5707 5708 // Return true if instruction has the interesting property of being 5709 // allowed in IT blocks, but not being predicable. 5710 static bool instIsBreakpoint(const MCInst &Inst) { 5711 return Inst.getOpcode() == ARM::tBKPT || 5712 Inst.getOpcode() == ARM::BKPT || 5713 Inst.getOpcode() == ARM::tHLT || 5714 Inst.getOpcode() == ARM::HLT; 5715 5716 } 5717 5718 // FIXME: We would really like to be able to tablegen'erate this. 5719 bool ARMAsmParser::validateInstruction(MCInst &Inst, 5720 const OperandVector &Operands) { 5721 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 5722 SMLoc Loc = Operands[0]->getStartLoc(); 5723 5724 // Check the IT block state first. 5725 // NOTE: BKPT and HLT instructions have the interesting property of being 5726 // allowed in IT blocks, but not being predicable. They just always execute. 5727 if (inITBlock() && !instIsBreakpoint(Inst)) { 5728 unsigned Bit = 1; 5729 if (ITState.FirstCond) 5730 ITState.FirstCond = false; 5731 else 5732 Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 5733 // The instruction must be predicable. 5734 if (!MCID.isPredicable()) 5735 return Error(Loc, "instructions in IT block must be predicable"); 5736 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 5737 unsigned ITCond = Bit ? ITState.Cond : 5738 ARMCC::getOppositeCondition(ITState.Cond); 5739 if (Cond != ITCond) { 5740 // Find the condition code Operand to get its SMLoc information. 5741 SMLoc CondLoc; 5742 for (unsigned I = 1; I < Operands.size(); ++I) 5743 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 5744 CondLoc = Operands[I]->getStartLoc(); 5745 return Error(CondLoc, "incorrect condition in IT block; got '" + 5746 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 5747 "', but expected '" + 5748 ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'"); 5749 } 5750 // Check for non-'al' condition codes outside of the IT block. 5751 } else if (isThumbTwo() && MCID.isPredicable() && 5752 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 5753 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 5754 Inst.getOpcode() != ARM::t2Bcc) 5755 return Error(Loc, "predicated instructions must be in IT block"); 5756 5757 const unsigned Opcode = Inst.getOpcode(); 5758 switch (Opcode) { 5759 case ARM::LDRD: 5760 case ARM::LDRD_PRE: 5761 case ARM::LDRD_POST: { 5762 const unsigned RtReg = Inst.getOperand(0).getReg(); 5763 5764 // Rt can't be R14. 5765 if (RtReg == ARM::LR) 5766 return Error(Operands[3]->getStartLoc(), 5767 "Rt can't be R14"); 5768 5769 const unsigned Rt = MRI->getEncodingValue(RtReg); 5770 // Rt must be even-numbered. 5771 if ((Rt & 1) == 1) 5772 return Error(Operands[3]->getStartLoc(), 5773 "Rt must be even-numbered"); 5774 5775 // Rt2 must be Rt + 1. 5776 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 5777 if (Rt2 != Rt + 1) 5778 return Error(Operands[3]->getStartLoc(), 5779 "destination operands must be sequential"); 5780 5781 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 5782 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 5783 // For addressing modes with writeback, the base register needs to be 5784 // different from the destination registers. 5785 if (Rn == Rt || Rn == Rt2) 5786 return Error(Operands[3]->getStartLoc(), 5787 "base register needs to be different from destination " 5788 "registers"); 5789 } 5790 5791 return false; 5792 } 5793 case ARM::t2LDRDi8: 5794 case ARM::t2LDRD_PRE: 5795 case ARM::t2LDRD_POST: { 5796 // Rt2 must be different from Rt. 5797 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 5798 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 5799 if (Rt2 == Rt) 5800 return Error(Operands[3]->getStartLoc(), 5801 "destination operands can't be identical"); 5802 return false; 5803 } 5804 case ARM::STRD: { 5805 // Rt2 must be Rt + 1. 5806 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 5807 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 5808 if (Rt2 != Rt + 1) 5809 return Error(Operands[3]->getStartLoc(), 5810 "source operands must be sequential"); 5811 return false; 5812 } 5813 case ARM::STRD_PRE: 5814 case ARM::STRD_POST: { 5815 // Rt2 must be Rt + 1. 5816 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 5817 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 5818 if (Rt2 != Rt + 1) 5819 return Error(Operands[3]->getStartLoc(), 5820 "source operands must be sequential"); 5821 return false; 5822 } 5823 case ARM::STR_PRE_IMM: 5824 case ARM::STR_PRE_REG: 5825 case ARM::STR_POST_IMM: 5826 case ARM::STR_POST_REG: 5827 case ARM::STRH_PRE: 5828 case ARM::STRH_POST: 5829 case ARM::STRB_PRE_IMM: 5830 case ARM::STRB_PRE_REG: 5831 case ARM::STRB_POST_IMM: 5832 case ARM::STRB_POST_REG: { 5833 // Rt must be different from Rn. 5834 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 5835 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 5836 5837 if (Rt == Rn) 5838 return Error(Operands[3]->getStartLoc(), 5839 "source register and base register can't be identical"); 5840 return false; 5841 } 5842 case ARM::LDR_PRE_IMM: 5843 case ARM::LDR_PRE_REG: 5844 case ARM::LDR_POST_IMM: 5845 case ARM::LDR_POST_REG: 5846 case ARM::LDRH_PRE: 5847 case ARM::LDRH_POST: 5848 case ARM::LDRSH_PRE: 5849 case ARM::LDRSH_POST: 5850 case ARM::LDRB_PRE_IMM: 5851 case ARM::LDRB_PRE_REG: 5852 case ARM::LDRB_POST_IMM: 5853 case ARM::LDRB_POST_REG: 5854 case ARM::LDRSB_PRE: 5855 case ARM::LDRSB_POST: { 5856 // Rt must be different from Rn. 5857 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 5858 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 5859 5860 if (Rt == Rn) 5861 return Error(Operands[3]->getStartLoc(), 5862 "destination register and base register can't be identical"); 5863 return false; 5864 } 5865 case ARM::SBFX: 5866 case ARM::UBFX: { 5867 // Width must be in range [1, 32-lsb]. 5868 unsigned LSB = Inst.getOperand(2).getImm(); 5869 unsigned Widthm1 = Inst.getOperand(3).getImm(); 5870 if (Widthm1 >= 32 - LSB) 5871 return Error(Operands[5]->getStartLoc(), 5872 "bitfield width must be in range [1,32-lsb]"); 5873 return false; 5874 } 5875 // Notionally handles ARM::tLDMIA_UPD too. 5876 case ARM::tLDMIA: { 5877 // If we're parsing Thumb2, the .w variant is available and handles 5878 // most cases that are normally illegal for a Thumb1 LDM instruction. 5879 // We'll make the transformation in processInstruction() if necessary. 5880 // 5881 // Thumb LDM instructions are writeback iff the base register is not 5882 // in the register list. 5883 unsigned Rn = Inst.getOperand(0).getReg(); 5884 bool HasWritebackToken = 5885 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5886 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 5887 bool ListContainsBase; 5888 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 5889 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 5890 "registers must be in range r0-r7"); 5891 // If we should have writeback, then there should be a '!' token. 5892 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 5893 return Error(Operands[2]->getStartLoc(), 5894 "writeback operator '!' expected"); 5895 // If we should not have writeback, there must not be a '!'. This is 5896 // true even for the 32-bit wide encodings. 5897 if (ListContainsBase && HasWritebackToken) 5898 return Error(Operands[3]->getStartLoc(), 5899 "writeback operator '!' not allowed when base register " 5900 "in register list"); 5901 5902 break; 5903 } 5904 case ARM::LDMIA_UPD: 5905 case ARM::LDMDB_UPD: 5906 case ARM::LDMIB_UPD: 5907 case ARM::LDMDA_UPD: 5908 // ARM variants loading and updating the same register are only officially 5909 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 5910 if (!hasV7Ops()) 5911 break; 5912 // Fallthrough 5913 case ARM::t2LDMIA_UPD: 5914 case ARM::t2LDMDB_UPD: 5915 case ARM::t2STMIA_UPD: 5916 case ARM::t2STMDB_UPD: { 5917 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 5918 return Error(Operands.back()->getStartLoc(), 5919 "writeback register not allowed in register list"); 5920 break; 5921 } 5922 case ARM::sysLDMIA_UPD: 5923 case ARM::sysLDMDA_UPD: 5924 case ARM::sysLDMDB_UPD: 5925 case ARM::sysLDMIB_UPD: 5926 if (!listContainsReg(Inst, 3, ARM::PC)) 5927 return Error(Operands[4]->getStartLoc(), 5928 "writeback register only allowed on system LDM " 5929 "if PC in register-list"); 5930 break; 5931 case ARM::sysSTMIA_UPD: 5932 case ARM::sysSTMDA_UPD: 5933 case ARM::sysSTMDB_UPD: 5934 case ARM::sysSTMIB_UPD: 5935 return Error(Operands[2]->getStartLoc(), 5936 "system STM cannot have writeback register"); 5937 case ARM::tMUL: { 5938 // The second source operand must be the same register as the destination 5939 // operand. 5940 // 5941 // In this case, we must directly check the parsed operands because the 5942 // cvtThumbMultiply() function is written in such a way that it guarantees 5943 // this first statement is always true for the new Inst. Essentially, the 5944 // destination is unconditionally copied into the second source operand 5945 // without checking to see if it matches what we actually parsed. 5946 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 5947 ((ARMOperand &)*Operands[5]).getReg()) && 5948 (((ARMOperand &)*Operands[3]).getReg() != 5949 ((ARMOperand &)*Operands[4]).getReg())) { 5950 return Error(Operands[3]->getStartLoc(), 5951 "destination register must match source register"); 5952 } 5953 break; 5954 } 5955 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 5956 // so only issue a diagnostic for thumb1. The instructions will be 5957 // switched to the t2 encodings in processInstruction() if necessary. 5958 case ARM::tPOP: { 5959 bool ListContainsBase; 5960 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 5961 !isThumbTwo()) 5962 return Error(Operands[2]->getStartLoc(), 5963 "registers must be in range r0-r7 or pc"); 5964 break; 5965 } 5966 case ARM::tPUSH: { 5967 bool ListContainsBase; 5968 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 5969 !isThumbTwo()) 5970 return Error(Operands[2]->getStartLoc(), 5971 "registers must be in range r0-r7 or lr"); 5972 break; 5973 } 5974 case ARM::tSTMIA_UPD: { 5975 bool ListContainsBase, InvalidLowList; 5976 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 5977 0, ListContainsBase); 5978 if (InvalidLowList && !isThumbTwo()) 5979 return Error(Operands[4]->getStartLoc(), 5980 "registers must be in range r0-r7"); 5981 5982 // This would be converted to a 32-bit stm, but that's not valid if the 5983 // writeback register is in the list. 5984 if (InvalidLowList && ListContainsBase) 5985 return Error(Operands[4]->getStartLoc(), 5986 "writeback operator '!' not allowed when base register " 5987 "in register list"); 5988 break; 5989 } 5990 case ARM::tADDrSP: { 5991 // If the non-SP source operand and the destination operand are not the 5992 // same, we need thumb2 (for the wide encoding), or we have an error. 5993 if (!isThumbTwo() && 5994 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 5995 return Error(Operands[4]->getStartLoc(), 5996 "source register must be the same as destination"); 5997 } 5998 break; 5999 } 6000 // Final range checking for Thumb unconditional branch instructions. 6001 case ARM::tB: 6002 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6003 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6004 break; 6005 case ARM::t2B: { 6006 int op = (Operands[2]->isImm()) ? 2 : 3; 6007 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6008 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6009 break; 6010 } 6011 // Final range checking for Thumb conditional branch instructions. 6012 case ARM::tBcc: 6013 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6014 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6015 break; 6016 case ARM::t2Bcc: { 6017 int Op = (Operands[2]->isImm()) ? 2 : 3; 6018 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6019 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6020 break; 6021 } 6022 case ARM::MOVi16: 6023 case ARM::t2MOVi16: 6024 case ARM::t2MOVTi16: 6025 { 6026 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6027 // especially when we turn it into a movw and the expression <symbol> does 6028 // not have a :lower16: or :upper16 as part of the expression. We don't 6029 // want the behavior of silently truncating, which can be unexpected and 6030 // lead to bugs that are difficult to find since this is an easy mistake 6031 // to make. 6032 int i = (Operands[3]->isImm()) ? 3 : 4; 6033 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6034 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6035 if (CE) break; 6036 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6037 if (!E) break; 6038 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6039 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6040 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6041 return Error( 6042 Op.getStartLoc(), 6043 "immediate expression for mov requires :lower16: or :upper16"); 6044 break; 6045 } 6046 } 6047 6048 return false; 6049 } 6050 6051 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6052 switch(Opc) { 6053 default: llvm_unreachable("unexpected opcode!"); 6054 // VST1LN 6055 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6056 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6057 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6058 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6059 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6060 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6061 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6062 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6063 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6064 6065 // VST2LN 6066 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6067 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6068 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6069 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6070 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6071 6072 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6073 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6074 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6075 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6076 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6077 6078 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6079 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6080 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6081 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6082 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6083 6084 // VST3LN 6085 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6086 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6087 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6088 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6089 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6090 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6091 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6092 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6093 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6094 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6095 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6096 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6097 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6098 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6099 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6100 6101 // VST3 6102 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6103 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6104 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6105 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6106 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6107 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6108 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6109 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6110 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6111 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6112 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6113 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6114 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6115 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6116 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6117 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6118 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6119 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6120 6121 // VST4LN 6122 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6123 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6124 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6125 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6126 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6127 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6128 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6129 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6130 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6131 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6132 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6133 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6134 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6135 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6136 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6137 6138 // VST4 6139 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6140 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6141 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6142 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6143 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6144 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6145 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6146 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6147 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6148 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6149 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6150 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6151 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6152 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6153 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6154 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6155 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6156 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6157 } 6158 } 6159 6160 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6161 switch(Opc) { 6162 default: llvm_unreachable("unexpected opcode!"); 6163 // VLD1LN 6164 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6165 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6166 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6167 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6168 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6169 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6170 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6171 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6172 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6173 6174 // VLD2LN 6175 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6176 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6177 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6178 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6179 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6180 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6181 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6182 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6183 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6184 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6185 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6186 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6187 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6188 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6189 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6190 6191 // VLD3DUP 6192 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6193 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6194 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6195 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6196 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6197 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6198 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6199 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6200 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6201 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6202 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6203 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6204 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6205 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6206 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6207 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6208 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6209 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6210 6211 // VLD3LN 6212 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6213 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6214 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6215 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6216 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6217 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6218 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6219 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6220 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6221 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6222 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6223 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6224 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6225 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6226 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6227 6228 // VLD3 6229 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6230 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6231 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6232 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6233 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6234 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6235 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6236 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6237 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6238 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6239 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6240 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6241 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6242 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6243 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6244 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6245 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6246 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6247 6248 // VLD4LN 6249 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6250 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6251 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6252 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6253 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6254 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6255 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6256 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6257 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6258 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6259 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6260 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6261 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6262 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6263 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6264 6265 // VLD4DUP 6266 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6267 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6268 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6269 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6270 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6271 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6272 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6273 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6274 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6275 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6276 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6277 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6278 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6279 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6280 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6281 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6282 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6283 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6284 6285 // VLD4 6286 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6287 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6288 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6289 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6290 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6291 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6292 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6293 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6294 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6295 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6296 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6297 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6298 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6299 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6300 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6301 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6302 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6303 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6304 } 6305 } 6306 6307 bool ARMAsmParser::processInstruction(MCInst &Inst, 6308 const OperandVector &Operands) { 6309 switch (Inst.getOpcode()) { 6310 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6311 case ARM::LDRT_POST: 6312 case ARM::LDRBT_POST: { 6313 const unsigned Opcode = 6314 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6315 : ARM::LDRBT_POST_IMM; 6316 MCInst TmpInst; 6317 TmpInst.setOpcode(Opcode); 6318 TmpInst.addOperand(Inst.getOperand(0)); 6319 TmpInst.addOperand(Inst.getOperand(1)); 6320 TmpInst.addOperand(Inst.getOperand(1)); 6321 TmpInst.addOperand(MCOperand::CreateReg(0)); 6322 TmpInst.addOperand(MCOperand::CreateImm(0)); 6323 TmpInst.addOperand(Inst.getOperand(2)); 6324 TmpInst.addOperand(Inst.getOperand(3)); 6325 Inst = TmpInst; 6326 return true; 6327 } 6328 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6329 case ARM::STRT_POST: 6330 case ARM::STRBT_POST: { 6331 const unsigned Opcode = 6332 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6333 : ARM::STRBT_POST_IMM; 6334 MCInst TmpInst; 6335 TmpInst.setOpcode(Opcode); 6336 TmpInst.addOperand(Inst.getOperand(1)); 6337 TmpInst.addOperand(Inst.getOperand(0)); 6338 TmpInst.addOperand(Inst.getOperand(1)); 6339 TmpInst.addOperand(MCOperand::CreateReg(0)); 6340 TmpInst.addOperand(MCOperand::CreateImm(0)); 6341 TmpInst.addOperand(Inst.getOperand(2)); 6342 TmpInst.addOperand(Inst.getOperand(3)); 6343 Inst = TmpInst; 6344 return true; 6345 } 6346 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6347 case ARM::ADDri: { 6348 if (Inst.getOperand(1).getReg() != ARM::PC || 6349 Inst.getOperand(5).getReg() != 0) 6350 return false; 6351 MCInst TmpInst; 6352 TmpInst.setOpcode(ARM::ADR); 6353 TmpInst.addOperand(Inst.getOperand(0)); 6354 TmpInst.addOperand(Inst.getOperand(2)); 6355 TmpInst.addOperand(Inst.getOperand(3)); 6356 TmpInst.addOperand(Inst.getOperand(4)); 6357 Inst = TmpInst; 6358 return true; 6359 } 6360 // Aliases for alternate PC+imm syntax of LDR instructions. 6361 case ARM::t2LDRpcrel: 6362 // Select the narrow version if the immediate will fit. 6363 if (Inst.getOperand(1).getImm() > 0 && 6364 Inst.getOperand(1).getImm() <= 0xff && 6365 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 6366 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 6367 Inst.setOpcode(ARM::tLDRpci); 6368 else 6369 Inst.setOpcode(ARM::t2LDRpci); 6370 return true; 6371 case ARM::t2LDRBpcrel: 6372 Inst.setOpcode(ARM::t2LDRBpci); 6373 return true; 6374 case ARM::t2LDRHpcrel: 6375 Inst.setOpcode(ARM::t2LDRHpci); 6376 return true; 6377 case ARM::t2LDRSBpcrel: 6378 Inst.setOpcode(ARM::t2LDRSBpci); 6379 return true; 6380 case ARM::t2LDRSHpcrel: 6381 Inst.setOpcode(ARM::t2LDRSHpci); 6382 return true; 6383 // Handle NEON VST complex aliases. 6384 case ARM::VST1LNdWB_register_Asm_8: 6385 case ARM::VST1LNdWB_register_Asm_16: 6386 case ARM::VST1LNdWB_register_Asm_32: { 6387 MCInst TmpInst; 6388 // Shuffle the operands around so the lane index operand is in the 6389 // right place. 6390 unsigned Spacing; 6391 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6392 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6393 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6394 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6395 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6396 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6397 TmpInst.addOperand(Inst.getOperand(1)); // lane 6398 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6399 TmpInst.addOperand(Inst.getOperand(6)); 6400 Inst = TmpInst; 6401 return true; 6402 } 6403 6404 case ARM::VST2LNdWB_register_Asm_8: 6405 case ARM::VST2LNdWB_register_Asm_16: 6406 case ARM::VST2LNdWB_register_Asm_32: 6407 case ARM::VST2LNqWB_register_Asm_16: 6408 case ARM::VST2LNqWB_register_Asm_32: { 6409 MCInst TmpInst; 6410 // Shuffle the operands around so the lane index operand is in the 6411 // right place. 6412 unsigned Spacing; 6413 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6414 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6415 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6416 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6417 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6418 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6419 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6420 Spacing)); 6421 TmpInst.addOperand(Inst.getOperand(1)); // lane 6422 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6423 TmpInst.addOperand(Inst.getOperand(6)); 6424 Inst = TmpInst; 6425 return true; 6426 } 6427 6428 case ARM::VST3LNdWB_register_Asm_8: 6429 case ARM::VST3LNdWB_register_Asm_16: 6430 case ARM::VST3LNdWB_register_Asm_32: 6431 case ARM::VST3LNqWB_register_Asm_16: 6432 case ARM::VST3LNqWB_register_Asm_32: { 6433 MCInst TmpInst; 6434 // Shuffle the operands around so the lane index operand is in the 6435 // right place. 6436 unsigned Spacing; 6437 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6438 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6439 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6440 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6441 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6442 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6443 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6444 Spacing)); 6445 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6446 Spacing * 2)); 6447 TmpInst.addOperand(Inst.getOperand(1)); // lane 6448 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6449 TmpInst.addOperand(Inst.getOperand(6)); 6450 Inst = TmpInst; 6451 return true; 6452 } 6453 6454 case ARM::VST4LNdWB_register_Asm_8: 6455 case ARM::VST4LNdWB_register_Asm_16: 6456 case ARM::VST4LNdWB_register_Asm_32: 6457 case ARM::VST4LNqWB_register_Asm_16: 6458 case ARM::VST4LNqWB_register_Asm_32: { 6459 MCInst TmpInst; 6460 // Shuffle the operands around so the lane index operand is in the 6461 // right place. 6462 unsigned Spacing; 6463 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6464 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6465 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6466 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6467 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6468 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6469 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6470 Spacing)); 6471 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6472 Spacing * 2)); 6473 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6474 Spacing * 3)); 6475 TmpInst.addOperand(Inst.getOperand(1)); // lane 6476 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6477 TmpInst.addOperand(Inst.getOperand(6)); 6478 Inst = TmpInst; 6479 return true; 6480 } 6481 6482 case ARM::VST1LNdWB_fixed_Asm_8: 6483 case ARM::VST1LNdWB_fixed_Asm_16: 6484 case ARM::VST1LNdWB_fixed_Asm_32: { 6485 MCInst TmpInst; 6486 // Shuffle the operands around so the lane index operand is in the 6487 // right place. 6488 unsigned Spacing; 6489 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6490 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6491 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6492 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6493 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 6494 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6495 TmpInst.addOperand(Inst.getOperand(1)); // lane 6496 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6497 TmpInst.addOperand(Inst.getOperand(5)); 6498 Inst = TmpInst; 6499 return true; 6500 } 6501 6502 case ARM::VST2LNdWB_fixed_Asm_8: 6503 case ARM::VST2LNdWB_fixed_Asm_16: 6504 case ARM::VST2LNdWB_fixed_Asm_32: 6505 case ARM::VST2LNqWB_fixed_Asm_16: 6506 case ARM::VST2LNqWB_fixed_Asm_32: { 6507 MCInst TmpInst; 6508 // Shuffle the operands around so the lane index operand is in the 6509 // right place. 6510 unsigned Spacing; 6511 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6512 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6513 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6514 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6515 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 6516 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6517 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6518 Spacing)); 6519 TmpInst.addOperand(Inst.getOperand(1)); // lane 6520 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6521 TmpInst.addOperand(Inst.getOperand(5)); 6522 Inst = TmpInst; 6523 return true; 6524 } 6525 6526 case ARM::VST3LNdWB_fixed_Asm_8: 6527 case ARM::VST3LNdWB_fixed_Asm_16: 6528 case ARM::VST3LNdWB_fixed_Asm_32: 6529 case ARM::VST3LNqWB_fixed_Asm_16: 6530 case ARM::VST3LNqWB_fixed_Asm_32: { 6531 MCInst TmpInst; 6532 // Shuffle the operands around so the lane index operand is in the 6533 // right place. 6534 unsigned Spacing; 6535 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6536 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6537 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6538 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6539 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 6540 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6541 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6542 Spacing)); 6543 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6544 Spacing * 2)); 6545 TmpInst.addOperand(Inst.getOperand(1)); // lane 6546 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6547 TmpInst.addOperand(Inst.getOperand(5)); 6548 Inst = TmpInst; 6549 return true; 6550 } 6551 6552 case ARM::VST4LNdWB_fixed_Asm_8: 6553 case ARM::VST4LNdWB_fixed_Asm_16: 6554 case ARM::VST4LNdWB_fixed_Asm_32: 6555 case ARM::VST4LNqWB_fixed_Asm_16: 6556 case ARM::VST4LNqWB_fixed_Asm_32: { 6557 MCInst TmpInst; 6558 // Shuffle the operands around so the lane index operand is in the 6559 // right place. 6560 unsigned Spacing; 6561 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6562 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6563 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6564 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6565 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 6566 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6567 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6568 Spacing)); 6569 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6570 Spacing * 2)); 6571 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6572 Spacing * 3)); 6573 TmpInst.addOperand(Inst.getOperand(1)); // lane 6574 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6575 TmpInst.addOperand(Inst.getOperand(5)); 6576 Inst = TmpInst; 6577 return true; 6578 } 6579 6580 case ARM::VST1LNdAsm_8: 6581 case ARM::VST1LNdAsm_16: 6582 case ARM::VST1LNdAsm_32: { 6583 MCInst TmpInst; 6584 // Shuffle the operands around so the lane index operand is in the 6585 // right place. 6586 unsigned Spacing; 6587 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6588 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6589 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6590 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6591 TmpInst.addOperand(Inst.getOperand(1)); // lane 6592 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6593 TmpInst.addOperand(Inst.getOperand(5)); 6594 Inst = TmpInst; 6595 return true; 6596 } 6597 6598 case ARM::VST2LNdAsm_8: 6599 case ARM::VST2LNdAsm_16: 6600 case ARM::VST2LNdAsm_32: 6601 case ARM::VST2LNqAsm_16: 6602 case ARM::VST2LNqAsm_32: { 6603 MCInst TmpInst; 6604 // Shuffle the operands around so the lane index operand is in the 6605 // right place. 6606 unsigned Spacing; 6607 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6608 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6609 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6610 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6611 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6612 Spacing)); 6613 TmpInst.addOperand(Inst.getOperand(1)); // lane 6614 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6615 TmpInst.addOperand(Inst.getOperand(5)); 6616 Inst = TmpInst; 6617 return true; 6618 } 6619 6620 case ARM::VST3LNdAsm_8: 6621 case ARM::VST3LNdAsm_16: 6622 case ARM::VST3LNdAsm_32: 6623 case ARM::VST3LNqAsm_16: 6624 case ARM::VST3LNqAsm_32: { 6625 MCInst TmpInst; 6626 // Shuffle the operands around so the lane index operand is in the 6627 // right place. 6628 unsigned Spacing; 6629 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6630 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6631 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6632 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6633 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6634 Spacing)); 6635 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6636 Spacing * 2)); 6637 TmpInst.addOperand(Inst.getOperand(1)); // lane 6638 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6639 TmpInst.addOperand(Inst.getOperand(5)); 6640 Inst = TmpInst; 6641 return true; 6642 } 6643 6644 case ARM::VST4LNdAsm_8: 6645 case ARM::VST4LNdAsm_16: 6646 case ARM::VST4LNdAsm_32: 6647 case ARM::VST4LNqAsm_16: 6648 case ARM::VST4LNqAsm_32: { 6649 MCInst TmpInst; 6650 // Shuffle the operands around so the lane index operand is in the 6651 // right place. 6652 unsigned Spacing; 6653 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6654 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6655 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6656 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6657 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6658 Spacing)); 6659 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6660 Spacing * 2)); 6661 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6662 Spacing * 3)); 6663 TmpInst.addOperand(Inst.getOperand(1)); // lane 6664 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6665 TmpInst.addOperand(Inst.getOperand(5)); 6666 Inst = TmpInst; 6667 return true; 6668 } 6669 6670 // Handle NEON VLD complex aliases. 6671 case ARM::VLD1LNdWB_register_Asm_8: 6672 case ARM::VLD1LNdWB_register_Asm_16: 6673 case ARM::VLD1LNdWB_register_Asm_32: { 6674 MCInst TmpInst; 6675 // Shuffle the operands around so the lane index operand is in the 6676 // right place. 6677 unsigned Spacing; 6678 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 6679 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6680 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6681 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6682 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6683 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6684 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 6685 TmpInst.addOperand(Inst.getOperand(1)); // lane 6686 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6687 TmpInst.addOperand(Inst.getOperand(6)); 6688 Inst = TmpInst; 6689 return true; 6690 } 6691 6692 case ARM::VLD2LNdWB_register_Asm_8: 6693 case ARM::VLD2LNdWB_register_Asm_16: 6694 case ARM::VLD2LNdWB_register_Asm_32: 6695 case ARM::VLD2LNqWB_register_Asm_16: 6696 case ARM::VLD2LNqWB_register_Asm_32: { 6697 MCInst TmpInst; 6698 // Shuffle the operands around so the lane index operand is in the 6699 // right place. 6700 unsigned Spacing; 6701 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 6702 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6703 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6704 Spacing)); 6705 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6706 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6707 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6708 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6709 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 6710 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6711 Spacing)); 6712 TmpInst.addOperand(Inst.getOperand(1)); // lane 6713 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6714 TmpInst.addOperand(Inst.getOperand(6)); 6715 Inst = TmpInst; 6716 return true; 6717 } 6718 6719 case ARM::VLD3LNdWB_register_Asm_8: 6720 case ARM::VLD3LNdWB_register_Asm_16: 6721 case ARM::VLD3LNdWB_register_Asm_32: 6722 case ARM::VLD3LNqWB_register_Asm_16: 6723 case ARM::VLD3LNqWB_register_Asm_32: { 6724 MCInst TmpInst; 6725 // Shuffle the operands around so the lane index operand is in the 6726 // right place. 6727 unsigned Spacing; 6728 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 6729 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6730 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6731 Spacing)); 6732 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6733 Spacing * 2)); 6734 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6735 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6736 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6737 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6738 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 6739 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6740 Spacing)); 6741 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6742 Spacing * 2)); 6743 TmpInst.addOperand(Inst.getOperand(1)); // lane 6744 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6745 TmpInst.addOperand(Inst.getOperand(6)); 6746 Inst = TmpInst; 6747 return true; 6748 } 6749 6750 case ARM::VLD4LNdWB_register_Asm_8: 6751 case ARM::VLD4LNdWB_register_Asm_16: 6752 case ARM::VLD4LNdWB_register_Asm_32: 6753 case ARM::VLD4LNqWB_register_Asm_16: 6754 case ARM::VLD4LNqWB_register_Asm_32: { 6755 MCInst TmpInst; 6756 // Shuffle the operands around so the lane index operand is in the 6757 // right place. 6758 unsigned Spacing; 6759 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 6760 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6761 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6762 Spacing)); 6763 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6764 Spacing * 2)); 6765 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6766 Spacing * 3)); 6767 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6768 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6769 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6770 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6771 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 6772 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6773 Spacing)); 6774 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6775 Spacing * 2)); 6776 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6777 Spacing * 3)); 6778 TmpInst.addOperand(Inst.getOperand(1)); // lane 6779 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6780 TmpInst.addOperand(Inst.getOperand(6)); 6781 Inst = TmpInst; 6782 return true; 6783 } 6784 6785 case ARM::VLD1LNdWB_fixed_Asm_8: 6786 case ARM::VLD1LNdWB_fixed_Asm_16: 6787 case ARM::VLD1LNdWB_fixed_Asm_32: { 6788 MCInst TmpInst; 6789 // Shuffle the operands around so the lane index operand is in the 6790 // right place. 6791 unsigned Spacing; 6792 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 6793 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6794 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6795 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6796 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6797 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 6798 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 6799 TmpInst.addOperand(Inst.getOperand(1)); // lane 6800 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6801 TmpInst.addOperand(Inst.getOperand(5)); 6802 Inst = TmpInst; 6803 return true; 6804 } 6805 6806 case ARM::VLD2LNdWB_fixed_Asm_8: 6807 case ARM::VLD2LNdWB_fixed_Asm_16: 6808 case ARM::VLD2LNdWB_fixed_Asm_32: 6809 case ARM::VLD2LNqWB_fixed_Asm_16: 6810 case ARM::VLD2LNqWB_fixed_Asm_32: { 6811 MCInst TmpInst; 6812 // Shuffle the operands around so the lane index operand is in the 6813 // right place. 6814 unsigned Spacing; 6815 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 6816 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6817 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6818 Spacing)); 6819 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6820 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6821 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6822 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 6823 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 6824 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6825 Spacing)); 6826 TmpInst.addOperand(Inst.getOperand(1)); // lane 6827 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6828 TmpInst.addOperand(Inst.getOperand(5)); 6829 Inst = TmpInst; 6830 return true; 6831 } 6832 6833 case ARM::VLD3LNdWB_fixed_Asm_8: 6834 case ARM::VLD3LNdWB_fixed_Asm_16: 6835 case ARM::VLD3LNdWB_fixed_Asm_32: 6836 case ARM::VLD3LNqWB_fixed_Asm_16: 6837 case ARM::VLD3LNqWB_fixed_Asm_32: { 6838 MCInst TmpInst; 6839 // Shuffle the operands around so the lane index operand is in the 6840 // right place. 6841 unsigned Spacing; 6842 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 6843 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6844 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6845 Spacing)); 6846 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6847 Spacing * 2)); 6848 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6849 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6850 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6851 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 6852 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 6853 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6854 Spacing)); 6855 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6856 Spacing * 2)); 6857 TmpInst.addOperand(Inst.getOperand(1)); // lane 6858 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6859 TmpInst.addOperand(Inst.getOperand(5)); 6860 Inst = TmpInst; 6861 return true; 6862 } 6863 6864 case ARM::VLD4LNdWB_fixed_Asm_8: 6865 case ARM::VLD4LNdWB_fixed_Asm_16: 6866 case ARM::VLD4LNdWB_fixed_Asm_32: 6867 case ARM::VLD4LNqWB_fixed_Asm_16: 6868 case ARM::VLD4LNqWB_fixed_Asm_32: { 6869 MCInst TmpInst; 6870 // Shuffle the operands around so the lane index operand is in the 6871 // right place. 6872 unsigned Spacing; 6873 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 6874 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6875 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6876 Spacing)); 6877 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6878 Spacing * 2)); 6879 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6880 Spacing * 3)); 6881 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6882 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6883 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6884 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 6885 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 6886 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6887 Spacing)); 6888 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6889 Spacing * 2)); 6890 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6891 Spacing * 3)); 6892 TmpInst.addOperand(Inst.getOperand(1)); // lane 6893 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6894 TmpInst.addOperand(Inst.getOperand(5)); 6895 Inst = TmpInst; 6896 return true; 6897 } 6898 6899 case ARM::VLD1LNdAsm_8: 6900 case ARM::VLD1LNdAsm_16: 6901 case ARM::VLD1LNdAsm_32: { 6902 MCInst TmpInst; 6903 // Shuffle the operands around so the lane index operand is in the 6904 // right place. 6905 unsigned Spacing; 6906 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 6907 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6908 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6909 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6910 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 6911 TmpInst.addOperand(Inst.getOperand(1)); // lane 6912 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6913 TmpInst.addOperand(Inst.getOperand(5)); 6914 Inst = TmpInst; 6915 return true; 6916 } 6917 6918 case ARM::VLD2LNdAsm_8: 6919 case ARM::VLD2LNdAsm_16: 6920 case ARM::VLD2LNdAsm_32: 6921 case ARM::VLD2LNqAsm_16: 6922 case ARM::VLD2LNqAsm_32: { 6923 MCInst TmpInst; 6924 // Shuffle the operands around so the lane index operand is in the 6925 // right place. 6926 unsigned Spacing; 6927 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 6928 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6929 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6930 Spacing)); 6931 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6932 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6933 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 6934 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6935 Spacing)); 6936 TmpInst.addOperand(Inst.getOperand(1)); // lane 6937 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6938 TmpInst.addOperand(Inst.getOperand(5)); 6939 Inst = TmpInst; 6940 return true; 6941 } 6942 6943 case ARM::VLD3LNdAsm_8: 6944 case ARM::VLD3LNdAsm_16: 6945 case ARM::VLD3LNdAsm_32: 6946 case ARM::VLD3LNqAsm_16: 6947 case ARM::VLD3LNqAsm_32: { 6948 MCInst TmpInst; 6949 // Shuffle the operands around so the lane index operand is in the 6950 // right place. 6951 unsigned Spacing; 6952 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 6953 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6954 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6955 Spacing)); 6956 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6957 Spacing * 2)); 6958 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6959 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6960 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 6961 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6962 Spacing)); 6963 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6964 Spacing * 2)); 6965 TmpInst.addOperand(Inst.getOperand(1)); // lane 6966 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6967 TmpInst.addOperand(Inst.getOperand(5)); 6968 Inst = TmpInst; 6969 return true; 6970 } 6971 6972 case ARM::VLD4LNdAsm_8: 6973 case ARM::VLD4LNdAsm_16: 6974 case ARM::VLD4LNdAsm_32: 6975 case ARM::VLD4LNqAsm_16: 6976 case ARM::VLD4LNqAsm_32: { 6977 MCInst TmpInst; 6978 // Shuffle the operands around so the lane index operand is in the 6979 // right place. 6980 unsigned Spacing; 6981 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 6982 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6983 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6984 Spacing)); 6985 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6986 Spacing * 2)); 6987 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6988 Spacing * 3)); 6989 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6990 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6991 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 6992 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6993 Spacing)); 6994 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6995 Spacing * 2)); 6996 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6997 Spacing * 3)); 6998 TmpInst.addOperand(Inst.getOperand(1)); // lane 6999 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7000 TmpInst.addOperand(Inst.getOperand(5)); 7001 Inst = TmpInst; 7002 return true; 7003 } 7004 7005 // VLD3DUP single 3-element structure to all lanes instructions. 7006 case ARM::VLD3DUPdAsm_8: 7007 case ARM::VLD3DUPdAsm_16: 7008 case ARM::VLD3DUPdAsm_32: 7009 case ARM::VLD3DUPqAsm_8: 7010 case ARM::VLD3DUPqAsm_16: 7011 case ARM::VLD3DUPqAsm_32: { 7012 MCInst TmpInst; 7013 unsigned Spacing; 7014 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7015 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7016 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7017 Spacing)); 7018 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7019 Spacing * 2)); 7020 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7021 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7022 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7023 TmpInst.addOperand(Inst.getOperand(4)); 7024 Inst = TmpInst; 7025 return true; 7026 } 7027 7028 case ARM::VLD3DUPdWB_fixed_Asm_8: 7029 case ARM::VLD3DUPdWB_fixed_Asm_16: 7030 case ARM::VLD3DUPdWB_fixed_Asm_32: 7031 case ARM::VLD3DUPqWB_fixed_Asm_8: 7032 case ARM::VLD3DUPqWB_fixed_Asm_16: 7033 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7034 MCInst TmpInst; 7035 unsigned Spacing; 7036 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7037 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7038 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7039 Spacing)); 7040 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7041 Spacing * 2)); 7042 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7043 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7044 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7045 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7046 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7047 TmpInst.addOperand(Inst.getOperand(4)); 7048 Inst = TmpInst; 7049 return true; 7050 } 7051 7052 case ARM::VLD3DUPdWB_register_Asm_8: 7053 case ARM::VLD3DUPdWB_register_Asm_16: 7054 case ARM::VLD3DUPdWB_register_Asm_32: 7055 case ARM::VLD3DUPqWB_register_Asm_8: 7056 case ARM::VLD3DUPqWB_register_Asm_16: 7057 case ARM::VLD3DUPqWB_register_Asm_32: { 7058 MCInst TmpInst; 7059 unsigned Spacing; 7060 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7061 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7062 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7063 Spacing)); 7064 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7065 Spacing * 2)); 7066 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7067 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7068 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7069 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7070 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7071 TmpInst.addOperand(Inst.getOperand(5)); 7072 Inst = TmpInst; 7073 return true; 7074 } 7075 7076 // VLD3 multiple 3-element structure instructions. 7077 case ARM::VLD3dAsm_8: 7078 case ARM::VLD3dAsm_16: 7079 case ARM::VLD3dAsm_32: 7080 case ARM::VLD3qAsm_8: 7081 case ARM::VLD3qAsm_16: 7082 case ARM::VLD3qAsm_32: { 7083 MCInst TmpInst; 7084 unsigned Spacing; 7085 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7086 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7087 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7088 Spacing)); 7089 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7090 Spacing * 2)); 7091 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7092 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7093 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7094 TmpInst.addOperand(Inst.getOperand(4)); 7095 Inst = TmpInst; 7096 return true; 7097 } 7098 7099 case ARM::VLD3dWB_fixed_Asm_8: 7100 case ARM::VLD3dWB_fixed_Asm_16: 7101 case ARM::VLD3dWB_fixed_Asm_32: 7102 case ARM::VLD3qWB_fixed_Asm_8: 7103 case ARM::VLD3qWB_fixed_Asm_16: 7104 case ARM::VLD3qWB_fixed_Asm_32: { 7105 MCInst TmpInst; 7106 unsigned Spacing; 7107 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7108 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7109 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7110 Spacing)); 7111 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7112 Spacing * 2)); 7113 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7114 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7115 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7116 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7117 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7118 TmpInst.addOperand(Inst.getOperand(4)); 7119 Inst = TmpInst; 7120 return true; 7121 } 7122 7123 case ARM::VLD3dWB_register_Asm_8: 7124 case ARM::VLD3dWB_register_Asm_16: 7125 case ARM::VLD3dWB_register_Asm_32: 7126 case ARM::VLD3qWB_register_Asm_8: 7127 case ARM::VLD3qWB_register_Asm_16: 7128 case ARM::VLD3qWB_register_Asm_32: { 7129 MCInst TmpInst; 7130 unsigned Spacing; 7131 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7132 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7133 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7134 Spacing)); 7135 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7136 Spacing * 2)); 7137 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7138 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7139 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7140 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7141 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7142 TmpInst.addOperand(Inst.getOperand(5)); 7143 Inst = TmpInst; 7144 return true; 7145 } 7146 7147 // VLD4DUP single 3-element structure to all lanes instructions. 7148 case ARM::VLD4DUPdAsm_8: 7149 case ARM::VLD4DUPdAsm_16: 7150 case ARM::VLD4DUPdAsm_32: 7151 case ARM::VLD4DUPqAsm_8: 7152 case ARM::VLD4DUPqAsm_16: 7153 case ARM::VLD4DUPqAsm_32: { 7154 MCInst TmpInst; 7155 unsigned Spacing; 7156 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7157 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7158 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7159 Spacing)); 7160 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7161 Spacing * 2)); 7162 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7163 Spacing * 3)); 7164 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7165 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7166 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7167 TmpInst.addOperand(Inst.getOperand(4)); 7168 Inst = TmpInst; 7169 return true; 7170 } 7171 7172 case ARM::VLD4DUPdWB_fixed_Asm_8: 7173 case ARM::VLD4DUPdWB_fixed_Asm_16: 7174 case ARM::VLD4DUPdWB_fixed_Asm_32: 7175 case ARM::VLD4DUPqWB_fixed_Asm_8: 7176 case ARM::VLD4DUPqWB_fixed_Asm_16: 7177 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7178 MCInst TmpInst; 7179 unsigned Spacing; 7180 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7181 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7182 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7183 Spacing)); 7184 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7185 Spacing * 2)); 7186 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7187 Spacing * 3)); 7188 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7189 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7190 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7191 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7192 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7193 TmpInst.addOperand(Inst.getOperand(4)); 7194 Inst = TmpInst; 7195 return true; 7196 } 7197 7198 case ARM::VLD4DUPdWB_register_Asm_8: 7199 case ARM::VLD4DUPdWB_register_Asm_16: 7200 case ARM::VLD4DUPdWB_register_Asm_32: 7201 case ARM::VLD4DUPqWB_register_Asm_8: 7202 case ARM::VLD4DUPqWB_register_Asm_16: 7203 case ARM::VLD4DUPqWB_register_Asm_32: { 7204 MCInst TmpInst; 7205 unsigned Spacing; 7206 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7207 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7208 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7209 Spacing)); 7210 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7211 Spacing * 2)); 7212 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7213 Spacing * 3)); 7214 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7215 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7216 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7217 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7218 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7219 TmpInst.addOperand(Inst.getOperand(5)); 7220 Inst = TmpInst; 7221 return true; 7222 } 7223 7224 // VLD4 multiple 4-element structure instructions. 7225 case ARM::VLD4dAsm_8: 7226 case ARM::VLD4dAsm_16: 7227 case ARM::VLD4dAsm_32: 7228 case ARM::VLD4qAsm_8: 7229 case ARM::VLD4qAsm_16: 7230 case ARM::VLD4qAsm_32: { 7231 MCInst TmpInst; 7232 unsigned Spacing; 7233 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7234 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7235 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7236 Spacing)); 7237 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7238 Spacing * 2)); 7239 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7240 Spacing * 3)); 7241 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7242 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7243 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7244 TmpInst.addOperand(Inst.getOperand(4)); 7245 Inst = TmpInst; 7246 return true; 7247 } 7248 7249 case ARM::VLD4dWB_fixed_Asm_8: 7250 case ARM::VLD4dWB_fixed_Asm_16: 7251 case ARM::VLD4dWB_fixed_Asm_32: 7252 case ARM::VLD4qWB_fixed_Asm_8: 7253 case ARM::VLD4qWB_fixed_Asm_16: 7254 case ARM::VLD4qWB_fixed_Asm_32: { 7255 MCInst TmpInst; 7256 unsigned Spacing; 7257 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7258 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7259 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7260 Spacing)); 7261 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7262 Spacing * 2)); 7263 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7264 Spacing * 3)); 7265 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7266 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7267 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7268 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7269 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7270 TmpInst.addOperand(Inst.getOperand(4)); 7271 Inst = TmpInst; 7272 return true; 7273 } 7274 7275 case ARM::VLD4dWB_register_Asm_8: 7276 case ARM::VLD4dWB_register_Asm_16: 7277 case ARM::VLD4dWB_register_Asm_32: 7278 case ARM::VLD4qWB_register_Asm_8: 7279 case ARM::VLD4qWB_register_Asm_16: 7280 case ARM::VLD4qWB_register_Asm_32: { 7281 MCInst TmpInst; 7282 unsigned Spacing; 7283 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7284 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7285 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7286 Spacing)); 7287 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7288 Spacing * 2)); 7289 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7290 Spacing * 3)); 7291 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7292 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7293 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7294 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7295 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7296 TmpInst.addOperand(Inst.getOperand(5)); 7297 Inst = TmpInst; 7298 return true; 7299 } 7300 7301 // VST3 multiple 3-element structure instructions. 7302 case ARM::VST3dAsm_8: 7303 case ARM::VST3dAsm_16: 7304 case ARM::VST3dAsm_32: 7305 case ARM::VST3qAsm_8: 7306 case ARM::VST3qAsm_16: 7307 case ARM::VST3qAsm_32: { 7308 MCInst TmpInst; 7309 unsigned Spacing; 7310 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7311 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7312 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7313 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7314 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7315 Spacing)); 7316 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7317 Spacing * 2)); 7318 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7319 TmpInst.addOperand(Inst.getOperand(4)); 7320 Inst = TmpInst; 7321 return true; 7322 } 7323 7324 case ARM::VST3dWB_fixed_Asm_8: 7325 case ARM::VST3dWB_fixed_Asm_16: 7326 case ARM::VST3dWB_fixed_Asm_32: 7327 case ARM::VST3qWB_fixed_Asm_8: 7328 case ARM::VST3qWB_fixed_Asm_16: 7329 case ARM::VST3qWB_fixed_Asm_32: { 7330 MCInst TmpInst; 7331 unsigned Spacing; 7332 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7333 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7334 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7335 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7336 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7337 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7338 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7339 Spacing)); 7340 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7341 Spacing * 2)); 7342 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7343 TmpInst.addOperand(Inst.getOperand(4)); 7344 Inst = TmpInst; 7345 return true; 7346 } 7347 7348 case ARM::VST3dWB_register_Asm_8: 7349 case ARM::VST3dWB_register_Asm_16: 7350 case ARM::VST3dWB_register_Asm_32: 7351 case ARM::VST3qWB_register_Asm_8: 7352 case ARM::VST3qWB_register_Asm_16: 7353 case ARM::VST3qWB_register_Asm_32: { 7354 MCInst TmpInst; 7355 unsigned Spacing; 7356 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7357 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7358 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7359 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7360 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7361 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7362 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7363 Spacing)); 7364 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7365 Spacing * 2)); 7366 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7367 TmpInst.addOperand(Inst.getOperand(5)); 7368 Inst = TmpInst; 7369 return true; 7370 } 7371 7372 // VST4 multiple 3-element structure instructions. 7373 case ARM::VST4dAsm_8: 7374 case ARM::VST4dAsm_16: 7375 case ARM::VST4dAsm_32: 7376 case ARM::VST4qAsm_8: 7377 case ARM::VST4qAsm_16: 7378 case ARM::VST4qAsm_32: { 7379 MCInst TmpInst; 7380 unsigned Spacing; 7381 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7382 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7383 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7384 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7385 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7386 Spacing)); 7387 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7388 Spacing * 2)); 7389 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7390 Spacing * 3)); 7391 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7392 TmpInst.addOperand(Inst.getOperand(4)); 7393 Inst = TmpInst; 7394 return true; 7395 } 7396 7397 case ARM::VST4dWB_fixed_Asm_8: 7398 case ARM::VST4dWB_fixed_Asm_16: 7399 case ARM::VST4dWB_fixed_Asm_32: 7400 case ARM::VST4qWB_fixed_Asm_8: 7401 case ARM::VST4qWB_fixed_Asm_16: 7402 case ARM::VST4qWB_fixed_Asm_32: { 7403 MCInst TmpInst; 7404 unsigned Spacing; 7405 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7406 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7407 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7408 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7409 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7410 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7411 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7412 Spacing)); 7413 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7414 Spacing * 2)); 7415 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7416 Spacing * 3)); 7417 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7418 TmpInst.addOperand(Inst.getOperand(4)); 7419 Inst = TmpInst; 7420 return true; 7421 } 7422 7423 case ARM::VST4dWB_register_Asm_8: 7424 case ARM::VST4dWB_register_Asm_16: 7425 case ARM::VST4dWB_register_Asm_32: 7426 case ARM::VST4qWB_register_Asm_8: 7427 case ARM::VST4qWB_register_Asm_16: 7428 case ARM::VST4qWB_register_Asm_32: { 7429 MCInst TmpInst; 7430 unsigned Spacing; 7431 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7432 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7433 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7434 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7435 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7436 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7437 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7438 Spacing)); 7439 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7440 Spacing * 2)); 7441 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7442 Spacing * 3)); 7443 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7444 TmpInst.addOperand(Inst.getOperand(5)); 7445 Inst = TmpInst; 7446 return true; 7447 } 7448 7449 // Handle encoding choice for the shift-immediate instructions. 7450 case ARM::t2LSLri: 7451 case ARM::t2LSRri: 7452 case ARM::t2ASRri: { 7453 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7454 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7455 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 7456 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 7457 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 7458 unsigned NewOpc; 7459 switch (Inst.getOpcode()) { 7460 default: llvm_unreachable("unexpected opcode"); 7461 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 7462 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 7463 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 7464 } 7465 // The Thumb1 operands aren't in the same order. Awesome, eh? 7466 MCInst TmpInst; 7467 TmpInst.setOpcode(NewOpc); 7468 TmpInst.addOperand(Inst.getOperand(0)); 7469 TmpInst.addOperand(Inst.getOperand(5)); 7470 TmpInst.addOperand(Inst.getOperand(1)); 7471 TmpInst.addOperand(Inst.getOperand(2)); 7472 TmpInst.addOperand(Inst.getOperand(3)); 7473 TmpInst.addOperand(Inst.getOperand(4)); 7474 Inst = TmpInst; 7475 return true; 7476 } 7477 return false; 7478 } 7479 7480 // Handle the Thumb2 mode MOV complex aliases. 7481 case ARM::t2MOVsr: 7482 case ARM::t2MOVSsr: { 7483 // Which instruction to expand to depends on the CCOut operand and 7484 // whether we're in an IT block if the register operands are low 7485 // registers. 7486 bool isNarrow = false; 7487 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7488 isARMLowRegister(Inst.getOperand(1).getReg()) && 7489 isARMLowRegister(Inst.getOperand(2).getReg()) && 7490 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7491 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 7492 isNarrow = true; 7493 MCInst TmpInst; 7494 unsigned newOpc; 7495 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 7496 default: llvm_unreachable("unexpected opcode!"); 7497 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 7498 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 7499 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 7500 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 7501 } 7502 TmpInst.setOpcode(newOpc); 7503 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7504 if (isNarrow) 7505 TmpInst.addOperand(MCOperand::CreateReg( 7506 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7507 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7508 TmpInst.addOperand(Inst.getOperand(2)); // Rm 7509 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7510 TmpInst.addOperand(Inst.getOperand(5)); 7511 if (!isNarrow) 7512 TmpInst.addOperand(MCOperand::CreateReg( 7513 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7514 Inst = TmpInst; 7515 return true; 7516 } 7517 case ARM::t2MOVsi: 7518 case ARM::t2MOVSsi: { 7519 // Which instruction to expand to depends on the CCOut operand and 7520 // whether we're in an IT block if the register operands are low 7521 // registers. 7522 bool isNarrow = false; 7523 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7524 isARMLowRegister(Inst.getOperand(1).getReg()) && 7525 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 7526 isNarrow = true; 7527 MCInst TmpInst; 7528 unsigned newOpc; 7529 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { 7530 default: llvm_unreachable("unexpected opcode!"); 7531 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 7532 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 7533 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 7534 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 7535 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 7536 } 7537 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 7538 if (Amount == 32) Amount = 0; 7539 TmpInst.setOpcode(newOpc); 7540 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7541 if (isNarrow) 7542 TmpInst.addOperand(MCOperand::CreateReg( 7543 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7544 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7545 if (newOpc != ARM::t2RRX) 7546 TmpInst.addOperand(MCOperand::CreateImm(Amount)); 7547 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7548 TmpInst.addOperand(Inst.getOperand(4)); 7549 if (!isNarrow) 7550 TmpInst.addOperand(MCOperand::CreateReg( 7551 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7552 Inst = TmpInst; 7553 return true; 7554 } 7555 // Handle the ARM mode MOV complex aliases. 7556 case ARM::ASRr: 7557 case ARM::LSRr: 7558 case ARM::LSLr: 7559 case ARM::RORr: { 7560 ARM_AM::ShiftOpc ShiftTy; 7561 switch(Inst.getOpcode()) { 7562 default: llvm_unreachable("unexpected opcode!"); 7563 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 7564 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 7565 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 7566 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 7567 } 7568 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 7569 MCInst TmpInst; 7570 TmpInst.setOpcode(ARM::MOVsr); 7571 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7572 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7573 TmpInst.addOperand(Inst.getOperand(2)); // Rm 7574 TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty 7575 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7576 TmpInst.addOperand(Inst.getOperand(4)); 7577 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 7578 Inst = TmpInst; 7579 return true; 7580 } 7581 case ARM::ASRi: 7582 case ARM::LSRi: 7583 case ARM::LSLi: 7584 case ARM::RORi: { 7585 ARM_AM::ShiftOpc ShiftTy; 7586 switch(Inst.getOpcode()) { 7587 default: llvm_unreachable("unexpected opcode!"); 7588 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 7589 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 7590 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 7591 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 7592 } 7593 // A shift by zero is a plain MOVr, not a MOVsi. 7594 unsigned Amt = Inst.getOperand(2).getImm(); 7595 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 7596 // A shift by 32 should be encoded as 0 when permitted 7597 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 7598 Amt = 0; 7599 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 7600 MCInst TmpInst; 7601 TmpInst.setOpcode(Opc); 7602 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7603 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7604 if (Opc == ARM::MOVsi) 7605 TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty 7606 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7607 TmpInst.addOperand(Inst.getOperand(4)); 7608 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 7609 Inst = TmpInst; 7610 return true; 7611 } 7612 case ARM::RRXi: { 7613 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 7614 MCInst TmpInst; 7615 TmpInst.setOpcode(ARM::MOVsi); 7616 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7617 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7618 TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty 7619 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7620 TmpInst.addOperand(Inst.getOperand(3)); 7621 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 7622 Inst = TmpInst; 7623 return true; 7624 } 7625 case ARM::t2LDMIA_UPD: { 7626 // If this is a load of a single register, then we should use 7627 // a post-indexed LDR instruction instead, per the ARM ARM. 7628 if (Inst.getNumOperands() != 5) 7629 return false; 7630 MCInst TmpInst; 7631 TmpInst.setOpcode(ARM::t2LDR_POST); 7632 TmpInst.addOperand(Inst.getOperand(4)); // Rt 7633 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 7634 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7635 TmpInst.addOperand(MCOperand::CreateImm(4)); 7636 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7637 TmpInst.addOperand(Inst.getOperand(3)); 7638 Inst = TmpInst; 7639 return true; 7640 } 7641 case ARM::t2STMDB_UPD: { 7642 // If this is a store of a single register, then we should use 7643 // a pre-indexed STR instruction instead, per the ARM ARM. 7644 if (Inst.getNumOperands() != 5) 7645 return false; 7646 MCInst TmpInst; 7647 TmpInst.setOpcode(ARM::t2STR_PRE); 7648 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 7649 TmpInst.addOperand(Inst.getOperand(4)); // Rt 7650 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7651 TmpInst.addOperand(MCOperand::CreateImm(-4)); 7652 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7653 TmpInst.addOperand(Inst.getOperand(3)); 7654 Inst = TmpInst; 7655 return true; 7656 } 7657 case ARM::LDMIA_UPD: 7658 // If this is a load of a single register via a 'pop', then we should use 7659 // a post-indexed LDR instruction instead, per the ARM ARM. 7660 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 7661 Inst.getNumOperands() == 5) { 7662 MCInst TmpInst; 7663 TmpInst.setOpcode(ARM::LDR_POST_IMM); 7664 TmpInst.addOperand(Inst.getOperand(4)); // Rt 7665 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 7666 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7667 TmpInst.addOperand(MCOperand::CreateReg(0)); // am2offset 7668 TmpInst.addOperand(MCOperand::CreateImm(4)); 7669 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7670 TmpInst.addOperand(Inst.getOperand(3)); 7671 Inst = TmpInst; 7672 return true; 7673 } 7674 break; 7675 case ARM::STMDB_UPD: 7676 // If this is a store of a single register via a 'push', then we should use 7677 // a pre-indexed STR instruction instead, per the ARM ARM. 7678 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 7679 Inst.getNumOperands() == 5) { 7680 MCInst TmpInst; 7681 TmpInst.setOpcode(ARM::STR_PRE_IMM); 7682 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 7683 TmpInst.addOperand(Inst.getOperand(4)); // Rt 7684 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 7685 TmpInst.addOperand(MCOperand::CreateImm(-4)); 7686 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7687 TmpInst.addOperand(Inst.getOperand(3)); 7688 Inst = TmpInst; 7689 } 7690 break; 7691 case ARM::t2ADDri12: 7692 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 7693 // mnemonic was used (not "addw"), encoding T3 is preferred. 7694 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 7695 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 7696 break; 7697 Inst.setOpcode(ARM::t2ADDri); 7698 Inst.addOperand(MCOperand::CreateReg(0)); // cc_out 7699 break; 7700 case ARM::t2SUBri12: 7701 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 7702 // mnemonic was used (not "subw"), encoding T3 is preferred. 7703 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 7704 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 7705 break; 7706 Inst.setOpcode(ARM::t2SUBri); 7707 Inst.addOperand(MCOperand::CreateReg(0)); // cc_out 7708 break; 7709 case ARM::tADDi8: 7710 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 7711 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 7712 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 7713 // to encoding T1 if <Rd> is omitted." 7714 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 7715 Inst.setOpcode(ARM::tADDi3); 7716 return true; 7717 } 7718 break; 7719 case ARM::tSUBi8: 7720 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 7721 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 7722 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 7723 // to encoding T1 if <Rd> is omitted." 7724 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 7725 Inst.setOpcode(ARM::tSUBi3); 7726 return true; 7727 } 7728 break; 7729 case ARM::t2ADDri: 7730 case ARM::t2SUBri: { 7731 // If the destination and first source operand are the same, and 7732 // the flags are compatible with the current IT status, use encoding T2 7733 // instead of T3. For compatibility with the system 'as'. Make sure the 7734 // wide encoding wasn't explicit. 7735 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 7736 !isARMLowRegister(Inst.getOperand(0).getReg()) || 7737 (unsigned)Inst.getOperand(2).getImm() > 255 || 7738 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 7739 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 7740 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7741 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 7742 break; 7743 MCInst TmpInst; 7744 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 7745 ARM::tADDi8 : ARM::tSUBi8); 7746 TmpInst.addOperand(Inst.getOperand(0)); 7747 TmpInst.addOperand(Inst.getOperand(5)); 7748 TmpInst.addOperand(Inst.getOperand(0)); 7749 TmpInst.addOperand(Inst.getOperand(2)); 7750 TmpInst.addOperand(Inst.getOperand(3)); 7751 TmpInst.addOperand(Inst.getOperand(4)); 7752 Inst = TmpInst; 7753 return true; 7754 } 7755 case ARM::t2ADDrr: { 7756 // If the destination and first source operand are the same, and 7757 // there's no setting of the flags, use encoding T2 instead of T3. 7758 // Note that this is only for ADD, not SUB. This mirrors the system 7759 // 'as' behaviour. Make sure the wide encoding wasn't explicit. 7760 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 7761 Inst.getOperand(5).getReg() != 0 || 7762 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7763 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 7764 break; 7765 MCInst TmpInst; 7766 TmpInst.setOpcode(ARM::tADDhirr); 7767 TmpInst.addOperand(Inst.getOperand(0)); 7768 TmpInst.addOperand(Inst.getOperand(0)); 7769 TmpInst.addOperand(Inst.getOperand(2)); 7770 TmpInst.addOperand(Inst.getOperand(3)); 7771 TmpInst.addOperand(Inst.getOperand(4)); 7772 Inst = TmpInst; 7773 return true; 7774 } 7775 case ARM::tADDrSP: { 7776 // If the non-SP source operand and the destination operand are not the 7777 // same, we need to use the 32-bit encoding if it's available. 7778 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 7779 Inst.setOpcode(ARM::t2ADDrr); 7780 Inst.addOperand(MCOperand::CreateReg(0)); // cc_out 7781 return true; 7782 } 7783 break; 7784 } 7785 case ARM::tB: 7786 // A Thumb conditional branch outside of an IT block is a tBcc. 7787 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 7788 Inst.setOpcode(ARM::tBcc); 7789 return true; 7790 } 7791 break; 7792 case ARM::t2B: 7793 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 7794 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 7795 Inst.setOpcode(ARM::t2Bcc); 7796 return true; 7797 } 7798 break; 7799 case ARM::t2Bcc: 7800 // If the conditional is AL or we're in an IT block, we really want t2B. 7801 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 7802 Inst.setOpcode(ARM::t2B); 7803 return true; 7804 } 7805 break; 7806 case ARM::tBcc: 7807 // If the conditional is AL, we really want tB. 7808 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 7809 Inst.setOpcode(ARM::tB); 7810 return true; 7811 } 7812 break; 7813 case ARM::tLDMIA: { 7814 // If the register list contains any high registers, or if the writeback 7815 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 7816 // instead if we're in Thumb2. Otherwise, this should have generated 7817 // an error in validateInstruction(). 7818 unsigned Rn = Inst.getOperand(0).getReg(); 7819 bool hasWritebackToken = 7820 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7821 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 7822 bool listContainsBase; 7823 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 7824 (!listContainsBase && !hasWritebackToken) || 7825 (listContainsBase && hasWritebackToken)) { 7826 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 7827 assert (isThumbTwo()); 7828 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 7829 // If we're switching to the updating version, we need to insert 7830 // the writeback tied operand. 7831 if (hasWritebackToken) 7832 Inst.insert(Inst.begin(), 7833 MCOperand::CreateReg(Inst.getOperand(0).getReg())); 7834 return true; 7835 } 7836 break; 7837 } 7838 case ARM::tSTMIA_UPD: { 7839 // If the register list contains any high registers, we need to use 7840 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 7841 // should have generated an error in validateInstruction(). 7842 unsigned Rn = Inst.getOperand(0).getReg(); 7843 bool listContainsBase; 7844 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 7845 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 7846 assert (isThumbTwo()); 7847 Inst.setOpcode(ARM::t2STMIA_UPD); 7848 return true; 7849 } 7850 break; 7851 } 7852 case ARM::tPOP: { 7853 bool listContainsBase; 7854 // If the register list contains any high registers, we need to use 7855 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 7856 // should have generated an error in validateInstruction(). 7857 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 7858 return false; 7859 assert (isThumbTwo()); 7860 Inst.setOpcode(ARM::t2LDMIA_UPD); 7861 // Add the base register and writeback operands. 7862 Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP)); 7863 Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP)); 7864 return true; 7865 } 7866 case ARM::tPUSH: { 7867 bool listContainsBase; 7868 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 7869 return false; 7870 assert (isThumbTwo()); 7871 Inst.setOpcode(ARM::t2STMDB_UPD); 7872 // Add the base register and writeback operands. 7873 Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP)); 7874 Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP)); 7875 return true; 7876 } 7877 case ARM::t2MOVi: { 7878 // If we can use the 16-bit encoding and the user didn't explicitly 7879 // request the 32-bit variant, transform it here. 7880 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7881 (unsigned)Inst.getOperand(1).getImm() <= 255 && 7882 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 7883 Inst.getOperand(4).getReg() == ARM::CPSR) || 7884 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 7885 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 7886 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 7887 // The operands aren't in the same order for tMOVi8... 7888 MCInst TmpInst; 7889 TmpInst.setOpcode(ARM::tMOVi8); 7890 TmpInst.addOperand(Inst.getOperand(0)); 7891 TmpInst.addOperand(Inst.getOperand(4)); 7892 TmpInst.addOperand(Inst.getOperand(1)); 7893 TmpInst.addOperand(Inst.getOperand(2)); 7894 TmpInst.addOperand(Inst.getOperand(3)); 7895 Inst = TmpInst; 7896 return true; 7897 } 7898 break; 7899 } 7900 case ARM::t2MOVr: { 7901 // If we can use the 16-bit encoding and the user didn't explicitly 7902 // request the 32-bit variant, transform it here. 7903 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7904 isARMLowRegister(Inst.getOperand(1).getReg()) && 7905 Inst.getOperand(2).getImm() == ARMCC::AL && 7906 Inst.getOperand(4).getReg() == ARM::CPSR && 7907 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 7908 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 7909 // The operands aren't the same for tMOV[S]r... (no cc_out) 7910 MCInst TmpInst; 7911 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 7912 TmpInst.addOperand(Inst.getOperand(0)); 7913 TmpInst.addOperand(Inst.getOperand(1)); 7914 TmpInst.addOperand(Inst.getOperand(2)); 7915 TmpInst.addOperand(Inst.getOperand(3)); 7916 Inst = TmpInst; 7917 return true; 7918 } 7919 break; 7920 } 7921 case ARM::t2SXTH: 7922 case ARM::t2SXTB: 7923 case ARM::t2UXTH: 7924 case ARM::t2UXTB: { 7925 // If we can use the 16-bit encoding and the user didn't explicitly 7926 // request the 32-bit variant, transform it here. 7927 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7928 isARMLowRegister(Inst.getOperand(1).getReg()) && 7929 Inst.getOperand(2).getImm() == 0 && 7930 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 7931 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 7932 unsigned NewOpc; 7933 switch (Inst.getOpcode()) { 7934 default: llvm_unreachable("Illegal opcode!"); 7935 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 7936 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 7937 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 7938 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 7939 } 7940 // The operands aren't the same for thumb1 (no rotate operand). 7941 MCInst TmpInst; 7942 TmpInst.setOpcode(NewOpc); 7943 TmpInst.addOperand(Inst.getOperand(0)); 7944 TmpInst.addOperand(Inst.getOperand(1)); 7945 TmpInst.addOperand(Inst.getOperand(3)); 7946 TmpInst.addOperand(Inst.getOperand(4)); 7947 Inst = TmpInst; 7948 return true; 7949 } 7950 break; 7951 } 7952 case ARM::MOVsi: { 7953 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 7954 // rrx shifts and asr/lsr of #32 is encoded as 0 7955 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 7956 return false; 7957 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 7958 // Shifting by zero is accepted as a vanilla 'MOVr' 7959 MCInst TmpInst; 7960 TmpInst.setOpcode(ARM::MOVr); 7961 TmpInst.addOperand(Inst.getOperand(0)); 7962 TmpInst.addOperand(Inst.getOperand(1)); 7963 TmpInst.addOperand(Inst.getOperand(3)); 7964 TmpInst.addOperand(Inst.getOperand(4)); 7965 TmpInst.addOperand(Inst.getOperand(5)); 7966 Inst = TmpInst; 7967 return true; 7968 } 7969 return false; 7970 } 7971 case ARM::ANDrsi: 7972 case ARM::ORRrsi: 7973 case ARM::EORrsi: 7974 case ARM::BICrsi: 7975 case ARM::SUBrsi: 7976 case ARM::ADDrsi: { 7977 unsigned newOpc; 7978 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 7979 if (SOpc == ARM_AM::rrx) return false; 7980 switch (Inst.getOpcode()) { 7981 default: llvm_unreachable("unexpected opcode!"); 7982 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 7983 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 7984 case ARM::EORrsi: newOpc = ARM::EORrr; break; 7985 case ARM::BICrsi: newOpc = ARM::BICrr; break; 7986 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 7987 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 7988 } 7989 // If the shift is by zero, use the non-shifted instruction definition. 7990 // The exception is for right shifts, where 0 == 32 7991 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 7992 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 7993 MCInst TmpInst; 7994 TmpInst.setOpcode(newOpc); 7995 TmpInst.addOperand(Inst.getOperand(0)); 7996 TmpInst.addOperand(Inst.getOperand(1)); 7997 TmpInst.addOperand(Inst.getOperand(2)); 7998 TmpInst.addOperand(Inst.getOperand(4)); 7999 TmpInst.addOperand(Inst.getOperand(5)); 8000 TmpInst.addOperand(Inst.getOperand(6)); 8001 Inst = TmpInst; 8002 return true; 8003 } 8004 return false; 8005 } 8006 case ARM::ITasm: 8007 case ARM::t2IT: { 8008 // The mask bits for all but the first condition are represented as 8009 // the low bit of the condition code value implies 't'. We currently 8010 // always have 1 implies 't', so XOR toggle the bits if the low bit 8011 // of the condition code is zero. 8012 MCOperand &MO = Inst.getOperand(1); 8013 unsigned Mask = MO.getImm(); 8014 unsigned OrigMask = Mask; 8015 unsigned TZ = countTrailingZeros(Mask); 8016 if ((Inst.getOperand(0).getImm() & 1) == 0) { 8017 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 8018 Mask ^= (0xE << TZ) & 0xF; 8019 } 8020 MO.setImm(Mask); 8021 8022 // Set up the IT block state according to the IT instruction we just 8023 // matched. 8024 assert(!inITBlock() && "nested IT blocks?!"); 8025 ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8026 ITState.Mask = OrigMask; // Use the original mask, not the updated one. 8027 ITState.CurPosition = 0; 8028 ITState.FirstCond = true; 8029 break; 8030 } 8031 case ARM::t2LSLrr: 8032 case ARM::t2LSRrr: 8033 case ARM::t2ASRrr: 8034 case ARM::t2SBCrr: 8035 case ARM::t2RORrr: 8036 case ARM::t2BICrr: 8037 { 8038 // Assemblers should use the narrow encodings of these instructions when permissible. 8039 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8040 isARMLowRegister(Inst.getOperand(2).getReg())) && 8041 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8042 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8043 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8044 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8045 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8046 ".w"))) { 8047 unsigned NewOpc; 8048 switch (Inst.getOpcode()) { 8049 default: llvm_unreachable("unexpected opcode"); 8050 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8051 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8052 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8053 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8054 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8055 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8056 } 8057 MCInst TmpInst; 8058 TmpInst.setOpcode(NewOpc); 8059 TmpInst.addOperand(Inst.getOperand(0)); 8060 TmpInst.addOperand(Inst.getOperand(5)); 8061 TmpInst.addOperand(Inst.getOperand(1)); 8062 TmpInst.addOperand(Inst.getOperand(2)); 8063 TmpInst.addOperand(Inst.getOperand(3)); 8064 TmpInst.addOperand(Inst.getOperand(4)); 8065 Inst = TmpInst; 8066 return true; 8067 } 8068 return false; 8069 } 8070 case ARM::t2ANDrr: 8071 case ARM::t2EORrr: 8072 case ARM::t2ADCrr: 8073 case ARM::t2ORRrr: 8074 { 8075 // Assemblers should use the narrow encodings of these instructions when permissible. 8076 // These instructions are special in that they are commutable, so shorter encodings 8077 // are available more often. 8078 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8079 isARMLowRegister(Inst.getOperand(2).getReg())) && 8080 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8081 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8082 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8083 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8084 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8085 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8086 ".w"))) { 8087 unsigned NewOpc; 8088 switch (Inst.getOpcode()) { 8089 default: llvm_unreachable("unexpected opcode"); 8090 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8091 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8092 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8093 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8094 } 8095 MCInst TmpInst; 8096 TmpInst.setOpcode(NewOpc); 8097 TmpInst.addOperand(Inst.getOperand(0)); 8098 TmpInst.addOperand(Inst.getOperand(5)); 8099 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8100 TmpInst.addOperand(Inst.getOperand(1)); 8101 TmpInst.addOperand(Inst.getOperand(2)); 8102 } else { 8103 TmpInst.addOperand(Inst.getOperand(2)); 8104 TmpInst.addOperand(Inst.getOperand(1)); 8105 } 8106 TmpInst.addOperand(Inst.getOperand(3)); 8107 TmpInst.addOperand(Inst.getOperand(4)); 8108 Inst = TmpInst; 8109 return true; 8110 } 8111 return false; 8112 } 8113 } 8114 return false; 8115 } 8116 8117 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8118 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8119 // suffix depending on whether they're in an IT block or not. 8120 unsigned Opc = Inst.getOpcode(); 8121 const MCInstrDesc &MCID = MII.get(Opc); 8122 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8123 assert(MCID.hasOptionalDef() && 8124 "optionally flag setting instruction missing optional def operand"); 8125 assert(MCID.NumOperands == Inst.getNumOperands() && 8126 "operand count mismatch!"); 8127 // Find the optional-def operand (cc_out). 8128 unsigned OpNo; 8129 for (OpNo = 0; 8130 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8131 ++OpNo) 8132 ; 8133 // If we're parsing Thumb1, reject it completely. 8134 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8135 return Match_MnemonicFail; 8136 // If we're parsing Thumb2, which form is legal depends on whether we're 8137 // in an IT block. 8138 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8139 !inITBlock()) 8140 return Match_RequiresITBlock; 8141 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8142 inITBlock()) 8143 return Match_RequiresNotITBlock; 8144 } 8145 // Some high-register supporting Thumb1 encodings only allow both registers 8146 // to be from r0-r7 when in Thumb2. 8147 else if (Opc == ARM::tADDhirr && isThumbOne() && 8148 isARMLowRegister(Inst.getOperand(1).getReg()) && 8149 isARMLowRegister(Inst.getOperand(2).getReg())) 8150 return Match_RequiresThumb2; 8151 // Others only require ARMv6 or later. 8152 else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() && 8153 isARMLowRegister(Inst.getOperand(0).getReg()) && 8154 isARMLowRegister(Inst.getOperand(1).getReg())) 8155 return Match_RequiresV6; 8156 return Match_Success; 8157 } 8158 8159 namespace llvm { 8160 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { 8161 return true; // In an assembly source, no need to second-guess 8162 } 8163 } 8164 8165 static const char *getSubtargetFeatureName(uint64_t Val); 8166 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 8167 OperandVector &Operands, 8168 MCStreamer &Out, uint64_t &ErrorInfo, 8169 bool MatchingInlineAsm) { 8170 MCInst Inst; 8171 unsigned MatchResult; 8172 8173 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 8174 MatchingInlineAsm); 8175 switch (MatchResult) { 8176 default: break; 8177 case Match_Success: 8178 // Context sensitive operand constraints aren't handled by the matcher, 8179 // so check them here. 8180 if (validateInstruction(Inst, Operands)) { 8181 // Still progress the IT block, otherwise one wrong condition causes 8182 // nasty cascading errors. 8183 forwardITPosition(); 8184 return true; 8185 } 8186 8187 { // processInstruction() updates inITBlock state, we need to save it away 8188 bool wasInITBlock = inITBlock(); 8189 8190 // Some instructions need post-processing to, for example, tweak which 8191 // encoding is selected. Loop on it while changes happen so the 8192 // individual transformations can chain off each other. E.g., 8193 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 8194 while (processInstruction(Inst, Operands)) 8195 ; 8196 8197 // Only after the instruction is fully processed, we can validate it 8198 if (wasInITBlock && hasV8Ops() && isThumb() && 8199 !isV8EligibleForIT(&Inst)) { 8200 Warning(IDLoc, "deprecated instruction in IT block"); 8201 } 8202 } 8203 8204 // Only move forward at the very end so that everything in validate 8205 // and process gets a consistent answer about whether we're in an IT 8206 // block. 8207 forwardITPosition(); 8208 8209 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 8210 // doesn't actually encode. 8211 if (Inst.getOpcode() == ARM::ITasm) 8212 return false; 8213 8214 Inst.setLoc(IDLoc); 8215 Out.EmitInstruction(Inst, STI); 8216 return false; 8217 case Match_MissingFeature: { 8218 assert(ErrorInfo && "Unknown missing feature!"); 8219 // Special case the error message for the very common case where only 8220 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 8221 std::string Msg = "instruction requires:"; 8222 uint64_t Mask = 1; 8223 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 8224 if (ErrorInfo & Mask) { 8225 Msg += " "; 8226 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 8227 } 8228 Mask <<= 1; 8229 } 8230 return Error(IDLoc, Msg); 8231 } 8232 case Match_InvalidOperand: { 8233 SMLoc ErrorLoc = IDLoc; 8234 if (ErrorInfo != ~0ULL) { 8235 if (ErrorInfo >= Operands.size()) 8236 return Error(IDLoc, "too few operands for instruction"); 8237 8238 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8239 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8240 } 8241 8242 return Error(ErrorLoc, "invalid operand for instruction"); 8243 } 8244 case Match_MnemonicFail: 8245 return Error(IDLoc, "invalid instruction", 8246 ((ARMOperand &)*Operands[0]).getLocRange()); 8247 case Match_RequiresNotITBlock: 8248 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 8249 case Match_RequiresITBlock: 8250 return Error(IDLoc, "instruction only valid inside IT block"); 8251 case Match_RequiresV6: 8252 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 8253 case Match_RequiresThumb2: 8254 return Error(IDLoc, "instruction variant requires Thumb2"); 8255 case Match_ImmRange0_15: { 8256 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8257 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8258 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 8259 } 8260 case Match_ImmRange0_239: { 8261 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8262 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8263 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 8264 } 8265 case Match_AlignedMemoryRequiresNone: 8266 case Match_DupAlignedMemoryRequiresNone: 8267 case Match_AlignedMemoryRequires16: 8268 case Match_DupAlignedMemoryRequires16: 8269 case Match_AlignedMemoryRequires32: 8270 case Match_DupAlignedMemoryRequires32: 8271 case Match_AlignedMemoryRequires64: 8272 case Match_DupAlignedMemoryRequires64: 8273 case Match_AlignedMemoryRequires64or128: 8274 case Match_DupAlignedMemoryRequires64or128: 8275 case Match_AlignedMemoryRequires64or128or256: 8276 { 8277 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 8278 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8279 switch (MatchResult) { 8280 default: 8281 llvm_unreachable("Missing Match_Aligned type"); 8282 case Match_AlignedMemoryRequiresNone: 8283 case Match_DupAlignedMemoryRequiresNone: 8284 return Error(ErrorLoc, "alignment must be omitted"); 8285 case Match_AlignedMemoryRequires16: 8286 case Match_DupAlignedMemoryRequires16: 8287 return Error(ErrorLoc, "alignment must be 16 or omitted"); 8288 case Match_AlignedMemoryRequires32: 8289 case Match_DupAlignedMemoryRequires32: 8290 return Error(ErrorLoc, "alignment must be 32 or omitted"); 8291 case Match_AlignedMemoryRequires64: 8292 case Match_DupAlignedMemoryRequires64: 8293 return Error(ErrorLoc, "alignment must be 64 or omitted"); 8294 case Match_AlignedMemoryRequires64or128: 8295 case Match_DupAlignedMemoryRequires64or128: 8296 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 8297 case Match_AlignedMemoryRequires64or128or256: 8298 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 8299 } 8300 } 8301 } 8302 8303 llvm_unreachable("Implement any new match types added!"); 8304 } 8305 8306 /// parseDirective parses the arm specific directives 8307 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 8308 const MCObjectFileInfo::Environment Format = 8309 getContext().getObjectFileInfo()->getObjectFileType(); 8310 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8311 8312 StringRef IDVal = DirectiveID.getIdentifier(); 8313 if (IDVal == ".word") 8314 return parseLiteralValues(4, DirectiveID.getLoc()); 8315 else if (IDVal == ".short" || IDVal == ".hword") 8316 return parseLiteralValues(2, DirectiveID.getLoc()); 8317 else if (IDVal == ".thumb") 8318 return parseDirectiveThumb(DirectiveID.getLoc()); 8319 else if (IDVal == ".arm") 8320 return parseDirectiveARM(DirectiveID.getLoc()); 8321 else if (IDVal == ".thumb_func") 8322 return parseDirectiveThumbFunc(DirectiveID.getLoc()); 8323 else if (IDVal == ".code") 8324 return parseDirectiveCode(DirectiveID.getLoc()); 8325 else if (IDVal == ".syntax") 8326 return parseDirectiveSyntax(DirectiveID.getLoc()); 8327 else if (IDVal == ".unreq") 8328 return parseDirectiveUnreq(DirectiveID.getLoc()); 8329 else if (IDVal == ".fnend") 8330 return parseDirectiveFnEnd(DirectiveID.getLoc()); 8331 else if (IDVal == ".cantunwind") 8332 return parseDirectiveCantUnwind(DirectiveID.getLoc()); 8333 else if (IDVal == ".personality") 8334 return parseDirectivePersonality(DirectiveID.getLoc()); 8335 else if (IDVal == ".handlerdata") 8336 return parseDirectiveHandlerData(DirectiveID.getLoc()); 8337 else if (IDVal == ".setfp") 8338 return parseDirectiveSetFP(DirectiveID.getLoc()); 8339 else if (IDVal == ".pad") 8340 return parseDirectivePad(DirectiveID.getLoc()); 8341 else if (IDVal == ".save") 8342 return parseDirectiveRegSave(DirectiveID.getLoc(), false); 8343 else if (IDVal == ".vsave") 8344 return parseDirectiveRegSave(DirectiveID.getLoc(), true); 8345 else if (IDVal == ".ltorg" || IDVal == ".pool") 8346 return parseDirectiveLtorg(DirectiveID.getLoc()); 8347 else if (IDVal == ".even") 8348 return parseDirectiveEven(DirectiveID.getLoc()); 8349 else if (IDVal == ".personalityindex") 8350 return parseDirectivePersonalityIndex(DirectiveID.getLoc()); 8351 else if (IDVal == ".unwind_raw") 8352 return parseDirectiveUnwindRaw(DirectiveID.getLoc()); 8353 else if (IDVal == ".movsp") 8354 return parseDirectiveMovSP(DirectiveID.getLoc()); 8355 else if (IDVal == ".arch_extension") 8356 return parseDirectiveArchExtension(DirectiveID.getLoc()); 8357 else if (IDVal == ".align") 8358 return parseDirectiveAlign(DirectiveID.getLoc()); 8359 else if (IDVal == ".thumb_set") 8360 return parseDirectiveThumbSet(DirectiveID.getLoc()); 8361 8362 if (!IsMachO) { 8363 if (IDVal == ".arch") 8364 return parseDirectiveArch(DirectiveID.getLoc()); 8365 else if (IDVal == ".cpu") 8366 return parseDirectiveCPU(DirectiveID.getLoc()); 8367 else if (IDVal == ".eabi_attribute") 8368 return parseDirectiveEabiAttr(DirectiveID.getLoc()); 8369 else if (IDVal == ".fpu") 8370 return parseDirectiveFPU(DirectiveID.getLoc()); 8371 else if (IDVal == ".fnstart") 8372 return parseDirectiveFnStart(DirectiveID.getLoc()); 8373 else if (IDVal == ".inst") 8374 return parseDirectiveInst(DirectiveID.getLoc()); 8375 else if (IDVal == ".inst.n") 8376 return parseDirectiveInst(DirectiveID.getLoc(), 'n'); 8377 else if (IDVal == ".inst.w") 8378 return parseDirectiveInst(DirectiveID.getLoc(), 'w'); 8379 else if (IDVal == ".object_arch") 8380 return parseDirectiveObjectArch(DirectiveID.getLoc()); 8381 else if (IDVal == ".tlsdescseq") 8382 return parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 8383 } 8384 8385 return true; 8386 } 8387 8388 /// parseLiteralValues 8389 /// ::= .hword expression [, expression]* 8390 /// ::= .short expression [, expression]* 8391 /// ::= .word expression [, expression]* 8392 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 8393 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8394 for (;;) { 8395 const MCExpr *Value; 8396 if (getParser().parseExpression(Value)) { 8397 Parser.eatToEndOfStatement(); 8398 return false; 8399 } 8400 8401 getParser().getStreamer().EmitValue(Value, Size); 8402 8403 if (getLexer().is(AsmToken::EndOfStatement)) 8404 break; 8405 8406 // FIXME: Improve diagnostic. 8407 if (getLexer().isNot(AsmToken::Comma)) { 8408 Error(L, "unexpected token in directive"); 8409 return false; 8410 } 8411 Parser.Lex(); 8412 } 8413 } 8414 8415 Parser.Lex(); 8416 return false; 8417 } 8418 8419 /// parseDirectiveThumb 8420 /// ::= .thumb 8421 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 8422 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8423 Error(L, "unexpected token in directive"); 8424 return false; 8425 } 8426 Parser.Lex(); 8427 8428 if (!hasThumb()) { 8429 Error(L, "target does not support Thumb mode"); 8430 return false; 8431 } 8432 8433 if (!isThumb()) 8434 SwitchMode(); 8435 8436 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 8437 return false; 8438 } 8439 8440 /// parseDirectiveARM 8441 /// ::= .arm 8442 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 8443 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8444 Error(L, "unexpected token in directive"); 8445 return false; 8446 } 8447 Parser.Lex(); 8448 8449 if (!hasARM()) { 8450 Error(L, "target does not support ARM mode"); 8451 return false; 8452 } 8453 8454 if (isThumb()) 8455 SwitchMode(); 8456 8457 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 8458 return false; 8459 } 8460 8461 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 8462 if (NextSymbolIsThumb) { 8463 getParser().getStreamer().EmitThumbFunc(Symbol); 8464 NextSymbolIsThumb = false; 8465 } 8466 } 8467 8468 /// parseDirectiveThumbFunc 8469 /// ::= .thumbfunc symbol_name 8470 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 8471 const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo(); 8472 bool isMachO = MAI->hasSubsectionsViaSymbols(); 8473 8474 // Darwin asm has (optionally) function name after .thumb_func direction 8475 // ELF doesn't 8476 if (isMachO) { 8477 const AsmToken &Tok = Parser.getTok(); 8478 if (Tok.isNot(AsmToken::EndOfStatement)) { 8479 if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) { 8480 Error(L, "unexpected token in .thumb_func directive"); 8481 return false; 8482 } 8483 8484 MCSymbol *Func = 8485 getParser().getContext().GetOrCreateSymbol(Tok.getIdentifier()); 8486 getParser().getStreamer().EmitThumbFunc(Func); 8487 Parser.Lex(); // Consume the identifier token. 8488 return false; 8489 } 8490 } 8491 8492 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8493 Error(L, "unexpected token in directive"); 8494 return false; 8495 } 8496 8497 NextSymbolIsThumb = true; 8498 return false; 8499 } 8500 8501 /// parseDirectiveSyntax 8502 /// ::= .syntax unified | divided 8503 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 8504 const AsmToken &Tok = Parser.getTok(); 8505 if (Tok.isNot(AsmToken::Identifier)) { 8506 Error(L, "unexpected token in .syntax directive"); 8507 return false; 8508 } 8509 8510 StringRef Mode = Tok.getString(); 8511 if (Mode == "unified" || Mode == "UNIFIED") { 8512 Parser.Lex(); 8513 } else if (Mode == "divided" || Mode == "DIVIDED") { 8514 Error(L, "'.syntax divided' arm asssembly not supported"); 8515 return false; 8516 } else { 8517 Error(L, "unrecognized syntax mode in .syntax directive"); 8518 return false; 8519 } 8520 8521 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8522 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8523 return false; 8524 } 8525 Parser.Lex(); 8526 8527 // TODO tell the MC streamer the mode 8528 // getParser().getStreamer().Emit???(); 8529 return false; 8530 } 8531 8532 /// parseDirectiveCode 8533 /// ::= .code 16 | 32 8534 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 8535 const AsmToken &Tok = Parser.getTok(); 8536 if (Tok.isNot(AsmToken::Integer)) { 8537 Error(L, "unexpected token in .code directive"); 8538 return false; 8539 } 8540 int64_t Val = Parser.getTok().getIntVal(); 8541 if (Val != 16 && Val != 32) { 8542 Error(L, "invalid operand to .code directive"); 8543 return false; 8544 } 8545 Parser.Lex(); 8546 8547 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8548 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8549 return false; 8550 } 8551 Parser.Lex(); 8552 8553 if (Val == 16) { 8554 if (!hasThumb()) { 8555 Error(L, "target does not support Thumb mode"); 8556 return false; 8557 } 8558 8559 if (!isThumb()) 8560 SwitchMode(); 8561 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 8562 } else { 8563 if (!hasARM()) { 8564 Error(L, "target does not support ARM mode"); 8565 return false; 8566 } 8567 8568 if (isThumb()) 8569 SwitchMode(); 8570 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 8571 } 8572 8573 return false; 8574 } 8575 8576 /// parseDirectiveReq 8577 /// ::= name .req registername 8578 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 8579 Parser.Lex(); // Eat the '.req' token. 8580 unsigned Reg; 8581 SMLoc SRegLoc, ERegLoc; 8582 if (ParseRegister(Reg, SRegLoc, ERegLoc)) { 8583 Parser.eatToEndOfStatement(); 8584 Error(SRegLoc, "register name expected"); 8585 return false; 8586 } 8587 8588 // Shouldn't be anything else. 8589 if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { 8590 Parser.eatToEndOfStatement(); 8591 Error(Parser.getTok().getLoc(), "unexpected input in .req directive."); 8592 return false; 8593 } 8594 8595 Parser.Lex(); // Consume the EndOfStatement 8596 8597 if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg) { 8598 Error(SRegLoc, "redefinition of '" + Name + "' does not match original."); 8599 return false; 8600 } 8601 8602 return false; 8603 } 8604 8605 /// parseDirectiveUneq 8606 /// ::= .unreq registername 8607 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 8608 if (Parser.getTok().isNot(AsmToken::Identifier)) { 8609 Parser.eatToEndOfStatement(); 8610 Error(L, "unexpected input in .unreq directive."); 8611 return false; 8612 } 8613 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 8614 Parser.Lex(); // Eat the identifier. 8615 return false; 8616 } 8617 8618 /// parseDirectiveArch 8619 /// ::= .arch token 8620 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 8621 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 8622 8623 unsigned ID = StringSwitch<unsigned>(Arch) 8624 #define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \ 8625 .Case(NAME, ARM::ID) 8626 #define ARM_ARCH_ALIAS(NAME, ID) \ 8627 .Case(NAME, ARM::ID) 8628 #include "MCTargetDesc/ARMArchName.def" 8629 .Default(ARM::INVALID_ARCH); 8630 8631 if (ID == ARM::INVALID_ARCH) { 8632 Error(L, "Unknown arch name"); 8633 return false; 8634 } 8635 8636 getTargetStreamer().emitArch(ID); 8637 return false; 8638 } 8639 8640 /// parseDirectiveEabiAttr 8641 /// ::= .eabi_attribute int, int [, "str"] 8642 /// ::= .eabi_attribute Tag_name, int [, "str"] 8643 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 8644 int64_t Tag; 8645 SMLoc TagLoc; 8646 TagLoc = Parser.getTok().getLoc(); 8647 if (Parser.getTok().is(AsmToken::Identifier)) { 8648 StringRef Name = Parser.getTok().getIdentifier(); 8649 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 8650 if (Tag == -1) { 8651 Error(TagLoc, "attribute name not recognised: " + Name); 8652 Parser.eatToEndOfStatement(); 8653 return false; 8654 } 8655 Parser.Lex(); 8656 } else { 8657 const MCExpr *AttrExpr; 8658 8659 TagLoc = Parser.getTok().getLoc(); 8660 if (Parser.parseExpression(AttrExpr)) { 8661 Parser.eatToEndOfStatement(); 8662 return false; 8663 } 8664 8665 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 8666 if (!CE) { 8667 Error(TagLoc, "expected numeric constant"); 8668 Parser.eatToEndOfStatement(); 8669 return false; 8670 } 8671 8672 Tag = CE->getValue(); 8673 } 8674 8675 if (Parser.getTok().isNot(AsmToken::Comma)) { 8676 Error(Parser.getTok().getLoc(), "comma expected"); 8677 Parser.eatToEndOfStatement(); 8678 return false; 8679 } 8680 Parser.Lex(); // skip comma 8681 8682 StringRef StringValue = ""; 8683 bool IsStringValue = false; 8684 8685 int64_t IntegerValue = 0; 8686 bool IsIntegerValue = false; 8687 8688 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 8689 IsStringValue = true; 8690 else if (Tag == ARMBuildAttrs::compatibility) { 8691 IsStringValue = true; 8692 IsIntegerValue = true; 8693 } else if (Tag < 32 || Tag % 2 == 0) 8694 IsIntegerValue = true; 8695 else if (Tag % 2 == 1) 8696 IsStringValue = true; 8697 else 8698 llvm_unreachable("invalid tag type"); 8699 8700 if (IsIntegerValue) { 8701 const MCExpr *ValueExpr; 8702 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 8703 if (Parser.parseExpression(ValueExpr)) { 8704 Parser.eatToEndOfStatement(); 8705 return false; 8706 } 8707 8708 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 8709 if (!CE) { 8710 Error(ValueExprLoc, "expected numeric constant"); 8711 Parser.eatToEndOfStatement(); 8712 return false; 8713 } 8714 8715 IntegerValue = CE->getValue(); 8716 } 8717 8718 if (Tag == ARMBuildAttrs::compatibility) { 8719 if (Parser.getTok().isNot(AsmToken::Comma)) 8720 IsStringValue = false; 8721 else 8722 Parser.Lex(); 8723 } 8724 8725 if (IsStringValue) { 8726 if (Parser.getTok().isNot(AsmToken::String)) { 8727 Error(Parser.getTok().getLoc(), "bad string constant"); 8728 Parser.eatToEndOfStatement(); 8729 return false; 8730 } 8731 8732 StringValue = Parser.getTok().getStringContents(); 8733 Parser.Lex(); 8734 } 8735 8736 if (IsIntegerValue && IsStringValue) { 8737 assert(Tag == ARMBuildAttrs::compatibility); 8738 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 8739 } else if (IsIntegerValue) 8740 getTargetStreamer().emitAttribute(Tag, IntegerValue); 8741 else if (IsStringValue) 8742 getTargetStreamer().emitTextAttribute(Tag, StringValue); 8743 return false; 8744 } 8745 8746 /// parseDirectiveCPU 8747 /// ::= .cpu str 8748 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 8749 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 8750 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 8751 return false; 8752 } 8753 8754 // FIXME: This is duplicated in getARMFPUFeatures() in 8755 // tools/clang/lib/Driver/Tools.cpp 8756 static const struct { 8757 const unsigned Fpu; 8758 const uint64_t Enabled; 8759 const uint64_t Disabled; 8760 } Fpus[] = { 8761 {ARM::VFP, ARM::FeatureVFP2, ARM::FeatureNEON}, 8762 {ARM::VFPV2, ARM::FeatureVFP2, ARM::FeatureNEON}, 8763 {ARM::VFPV3, ARM::FeatureVFP3, ARM::FeatureNEON}, 8764 {ARM::VFPV3_D16, ARM::FeatureVFP3 | ARM::FeatureD16, ARM::FeatureNEON}, 8765 {ARM::VFPV4, ARM::FeatureVFP4, ARM::FeatureNEON}, 8766 {ARM::VFPV4_D16, ARM::FeatureVFP4 | ARM::FeatureD16, ARM::FeatureNEON}, 8767 {ARM::FP_ARMV8, ARM::FeatureFPARMv8, 8768 ARM::FeatureNEON | ARM::FeatureCrypto}, 8769 {ARM::NEON, ARM::FeatureNEON, 0}, 8770 {ARM::NEON_VFPV4, ARM::FeatureVFP4 | ARM::FeatureNEON, 0}, 8771 {ARM::NEON_FP_ARMV8, ARM::FeatureFPARMv8 | ARM::FeatureNEON, 8772 ARM::FeatureCrypto}, 8773 {ARM::CRYPTO_NEON_FP_ARMV8, 8774 ARM::FeatureFPARMv8 | ARM::FeatureNEON | ARM::FeatureCrypto, 0}, 8775 {ARM::SOFTVFP, 0, 0}, 8776 }; 8777 8778 /// parseDirectiveFPU 8779 /// ::= .fpu str 8780 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 8781 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 8782 8783 unsigned ID = StringSwitch<unsigned>(FPU) 8784 #define ARM_FPU_NAME(NAME, ID) .Case(NAME, ARM::ID) 8785 #include "ARMFPUName.def" 8786 .Default(ARM::INVALID_FPU); 8787 8788 if (ID == ARM::INVALID_FPU) { 8789 Error(L, "Unknown FPU name"); 8790 return false; 8791 } 8792 8793 for (const auto &Fpu : Fpus) { 8794 if (Fpu.Fpu != ID) 8795 continue; 8796 8797 // Need to toggle features that should be on but are off and that 8798 // should off but are on. 8799 uint64_t Toggle = (Fpu.Enabled & ~STI.getFeatureBits()) | 8800 (Fpu.Disabled & STI.getFeatureBits()); 8801 setAvailableFeatures(ComputeAvailableFeatures(STI.ToggleFeature(Toggle))); 8802 break; 8803 } 8804 8805 getTargetStreamer().emitFPU(ID); 8806 return false; 8807 } 8808 8809 /// parseDirectiveFnStart 8810 /// ::= .fnstart 8811 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 8812 if (UC.hasFnStart()) { 8813 Error(L, ".fnstart starts before the end of previous one"); 8814 UC.emitFnStartLocNotes(); 8815 return false; 8816 } 8817 8818 // Reset the unwind directives parser state 8819 UC.reset(); 8820 8821 getTargetStreamer().emitFnStart(); 8822 8823 UC.recordFnStart(L); 8824 return false; 8825 } 8826 8827 /// parseDirectiveFnEnd 8828 /// ::= .fnend 8829 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 8830 // Check the ordering of unwind directives 8831 if (!UC.hasFnStart()) { 8832 Error(L, ".fnstart must precede .fnend directive"); 8833 return false; 8834 } 8835 8836 // Reset the unwind directives parser state 8837 getTargetStreamer().emitFnEnd(); 8838 8839 UC.reset(); 8840 return false; 8841 } 8842 8843 /// parseDirectiveCantUnwind 8844 /// ::= .cantunwind 8845 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 8846 UC.recordCantUnwind(L); 8847 8848 // Check the ordering of unwind directives 8849 if (!UC.hasFnStart()) { 8850 Error(L, ".fnstart must precede .cantunwind directive"); 8851 return false; 8852 } 8853 if (UC.hasHandlerData()) { 8854 Error(L, ".cantunwind can't be used with .handlerdata directive"); 8855 UC.emitHandlerDataLocNotes(); 8856 return false; 8857 } 8858 if (UC.hasPersonality()) { 8859 Error(L, ".cantunwind can't be used with .personality directive"); 8860 UC.emitPersonalityLocNotes(); 8861 return false; 8862 } 8863 8864 getTargetStreamer().emitCantUnwind(); 8865 return false; 8866 } 8867 8868 /// parseDirectivePersonality 8869 /// ::= .personality name 8870 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 8871 bool HasExistingPersonality = UC.hasPersonality(); 8872 8873 UC.recordPersonality(L); 8874 8875 // Check the ordering of unwind directives 8876 if (!UC.hasFnStart()) { 8877 Error(L, ".fnstart must precede .personality directive"); 8878 return false; 8879 } 8880 if (UC.cantUnwind()) { 8881 Error(L, ".personality can't be used with .cantunwind directive"); 8882 UC.emitCantUnwindLocNotes(); 8883 return false; 8884 } 8885 if (UC.hasHandlerData()) { 8886 Error(L, ".personality must precede .handlerdata directive"); 8887 UC.emitHandlerDataLocNotes(); 8888 return false; 8889 } 8890 if (HasExistingPersonality) { 8891 Parser.eatToEndOfStatement(); 8892 Error(L, "multiple personality directives"); 8893 UC.emitPersonalityLocNotes(); 8894 return false; 8895 } 8896 8897 // Parse the name of the personality routine 8898 if (Parser.getTok().isNot(AsmToken::Identifier)) { 8899 Parser.eatToEndOfStatement(); 8900 Error(L, "unexpected input in .personality directive."); 8901 return false; 8902 } 8903 StringRef Name(Parser.getTok().getIdentifier()); 8904 Parser.Lex(); 8905 8906 MCSymbol *PR = getParser().getContext().GetOrCreateSymbol(Name); 8907 getTargetStreamer().emitPersonality(PR); 8908 return false; 8909 } 8910 8911 /// parseDirectiveHandlerData 8912 /// ::= .handlerdata 8913 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 8914 UC.recordHandlerData(L); 8915 8916 // Check the ordering of unwind directives 8917 if (!UC.hasFnStart()) { 8918 Error(L, ".fnstart must precede .personality directive"); 8919 return false; 8920 } 8921 if (UC.cantUnwind()) { 8922 Error(L, ".handlerdata can't be used with .cantunwind directive"); 8923 UC.emitCantUnwindLocNotes(); 8924 return false; 8925 } 8926 8927 getTargetStreamer().emitHandlerData(); 8928 return false; 8929 } 8930 8931 /// parseDirectiveSetFP 8932 /// ::= .setfp fpreg, spreg [, offset] 8933 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 8934 // Check the ordering of unwind directives 8935 if (!UC.hasFnStart()) { 8936 Error(L, ".fnstart must precede .setfp directive"); 8937 return false; 8938 } 8939 if (UC.hasHandlerData()) { 8940 Error(L, ".setfp must precede .handlerdata directive"); 8941 return false; 8942 } 8943 8944 // Parse fpreg 8945 SMLoc FPRegLoc = Parser.getTok().getLoc(); 8946 int FPReg = tryParseRegister(); 8947 if (FPReg == -1) { 8948 Error(FPRegLoc, "frame pointer register expected"); 8949 return false; 8950 } 8951 8952 // Consume comma 8953 if (Parser.getTok().isNot(AsmToken::Comma)) { 8954 Error(Parser.getTok().getLoc(), "comma expected"); 8955 return false; 8956 } 8957 Parser.Lex(); // skip comma 8958 8959 // Parse spreg 8960 SMLoc SPRegLoc = Parser.getTok().getLoc(); 8961 int SPReg = tryParseRegister(); 8962 if (SPReg == -1) { 8963 Error(SPRegLoc, "stack pointer register expected"); 8964 return false; 8965 } 8966 8967 if (SPReg != ARM::SP && SPReg != UC.getFPReg()) { 8968 Error(SPRegLoc, "register should be either $sp or the latest fp register"); 8969 return false; 8970 } 8971 8972 // Update the frame pointer register 8973 UC.saveFPReg(FPReg); 8974 8975 // Parse offset 8976 int64_t Offset = 0; 8977 if (Parser.getTok().is(AsmToken::Comma)) { 8978 Parser.Lex(); // skip comma 8979 8980 if (Parser.getTok().isNot(AsmToken::Hash) && 8981 Parser.getTok().isNot(AsmToken::Dollar)) { 8982 Error(Parser.getTok().getLoc(), "'#' expected"); 8983 return false; 8984 } 8985 Parser.Lex(); // skip hash token. 8986 8987 const MCExpr *OffsetExpr; 8988 SMLoc ExLoc = Parser.getTok().getLoc(); 8989 SMLoc EndLoc; 8990 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 8991 Error(ExLoc, "malformed setfp offset"); 8992 return false; 8993 } 8994 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 8995 if (!CE) { 8996 Error(ExLoc, "setfp offset must be an immediate"); 8997 return false; 8998 } 8999 9000 Offset = CE->getValue(); 9001 } 9002 9003 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9004 static_cast<unsigned>(SPReg), Offset); 9005 return false; 9006 } 9007 9008 /// parseDirective 9009 /// ::= .pad offset 9010 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9011 // Check the ordering of unwind directives 9012 if (!UC.hasFnStart()) { 9013 Error(L, ".fnstart must precede .pad directive"); 9014 return false; 9015 } 9016 if (UC.hasHandlerData()) { 9017 Error(L, ".pad must precede .handlerdata directive"); 9018 return false; 9019 } 9020 9021 // Parse the offset 9022 if (Parser.getTok().isNot(AsmToken::Hash) && 9023 Parser.getTok().isNot(AsmToken::Dollar)) { 9024 Error(Parser.getTok().getLoc(), "'#' expected"); 9025 return false; 9026 } 9027 Parser.Lex(); // skip hash token. 9028 9029 const MCExpr *OffsetExpr; 9030 SMLoc ExLoc = Parser.getTok().getLoc(); 9031 SMLoc EndLoc; 9032 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9033 Error(ExLoc, "malformed pad offset"); 9034 return false; 9035 } 9036 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9037 if (!CE) { 9038 Error(ExLoc, "pad offset must be an immediate"); 9039 return false; 9040 } 9041 9042 getTargetStreamer().emitPad(CE->getValue()); 9043 return false; 9044 } 9045 9046 /// parseDirectiveRegSave 9047 /// ::= .save { registers } 9048 /// ::= .vsave { registers } 9049 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9050 // Check the ordering of unwind directives 9051 if (!UC.hasFnStart()) { 9052 Error(L, ".fnstart must precede .save or .vsave directives"); 9053 return false; 9054 } 9055 if (UC.hasHandlerData()) { 9056 Error(L, ".save or .vsave must precede .handlerdata directive"); 9057 return false; 9058 } 9059 9060 // RAII object to make sure parsed operands are deleted. 9061 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9062 9063 // Parse the register list 9064 if (parseRegisterList(Operands)) 9065 return false; 9066 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9067 if (!IsVector && !Op.isRegList()) { 9068 Error(L, ".save expects GPR registers"); 9069 return false; 9070 } 9071 if (IsVector && !Op.isDPRRegList()) { 9072 Error(L, ".vsave expects DPR registers"); 9073 return false; 9074 } 9075 9076 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9077 return false; 9078 } 9079 9080 /// parseDirectiveInst 9081 /// ::= .inst opcode [, ...] 9082 /// ::= .inst.n opcode [, ...] 9083 /// ::= .inst.w opcode [, ...] 9084 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9085 int Width; 9086 9087 if (isThumb()) { 9088 switch (Suffix) { 9089 case 'n': 9090 Width = 2; 9091 break; 9092 case 'w': 9093 Width = 4; 9094 break; 9095 default: 9096 Parser.eatToEndOfStatement(); 9097 Error(Loc, "cannot determine Thumb instruction size, " 9098 "use inst.n/inst.w instead"); 9099 return false; 9100 } 9101 } else { 9102 if (Suffix) { 9103 Parser.eatToEndOfStatement(); 9104 Error(Loc, "width suffixes are invalid in ARM mode"); 9105 return false; 9106 } 9107 Width = 4; 9108 } 9109 9110 if (getLexer().is(AsmToken::EndOfStatement)) { 9111 Parser.eatToEndOfStatement(); 9112 Error(Loc, "expected expression following directive"); 9113 return false; 9114 } 9115 9116 for (;;) { 9117 const MCExpr *Expr; 9118 9119 if (getParser().parseExpression(Expr)) { 9120 Error(Loc, "expected expression"); 9121 return false; 9122 } 9123 9124 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9125 if (!Value) { 9126 Error(Loc, "expected constant expression"); 9127 return false; 9128 } 9129 9130 switch (Width) { 9131 case 2: 9132 if (Value->getValue() > 0xffff) { 9133 Error(Loc, "inst.n operand is too big, use inst.w instead"); 9134 return false; 9135 } 9136 break; 9137 case 4: 9138 if (Value->getValue() > 0xffffffff) { 9139 Error(Loc, 9140 StringRef(Suffix ? "inst.w" : "inst") + " operand is too big"); 9141 return false; 9142 } 9143 break; 9144 default: 9145 llvm_unreachable("only supported widths are 2 and 4"); 9146 } 9147 9148 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9149 9150 if (getLexer().is(AsmToken::EndOfStatement)) 9151 break; 9152 9153 if (getLexer().isNot(AsmToken::Comma)) { 9154 Error(Loc, "unexpected token in directive"); 9155 return false; 9156 } 9157 9158 Parser.Lex(); 9159 } 9160 9161 Parser.Lex(); 9162 return false; 9163 } 9164 9165 /// parseDirectiveLtorg 9166 /// ::= .ltorg | .pool 9167 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9168 getTargetStreamer().emitCurrentConstantPool(); 9169 return false; 9170 } 9171 9172 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9173 const MCSection *Section = getStreamer().getCurrentSection().first; 9174 9175 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9176 TokError("unexpected token in directive"); 9177 return false; 9178 } 9179 9180 if (!Section) { 9181 getStreamer().InitSections(); 9182 Section = getStreamer().getCurrentSection().first; 9183 } 9184 9185 assert(Section && "must have section to emit alignment"); 9186 if (Section->UseCodeAlign()) 9187 getStreamer().EmitCodeAlignment(2); 9188 else 9189 getStreamer().EmitValueToAlignment(2); 9190 9191 return false; 9192 } 9193 9194 /// parseDirectivePersonalityIndex 9195 /// ::= .personalityindex index 9196 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9197 bool HasExistingPersonality = UC.hasPersonality(); 9198 9199 UC.recordPersonalityIndex(L); 9200 9201 if (!UC.hasFnStart()) { 9202 Parser.eatToEndOfStatement(); 9203 Error(L, ".fnstart must precede .personalityindex directive"); 9204 return false; 9205 } 9206 if (UC.cantUnwind()) { 9207 Parser.eatToEndOfStatement(); 9208 Error(L, ".personalityindex cannot be used with .cantunwind"); 9209 UC.emitCantUnwindLocNotes(); 9210 return false; 9211 } 9212 if (UC.hasHandlerData()) { 9213 Parser.eatToEndOfStatement(); 9214 Error(L, ".personalityindex must precede .handlerdata directive"); 9215 UC.emitHandlerDataLocNotes(); 9216 return false; 9217 } 9218 if (HasExistingPersonality) { 9219 Parser.eatToEndOfStatement(); 9220 Error(L, "multiple personality directives"); 9221 UC.emitPersonalityLocNotes(); 9222 return false; 9223 } 9224 9225 const MCExpr *IndexExpression; 9226 SMLoc IndexLoc = Parser.getTok().getLoc(); 9227 if (Parser.parseExpression(IndexExpression)) { 9228 Parser.eatToEndOfStatement(); 9229 return false; 9230 } 9231 9232 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9233 if (!CE) { 9234 Parser.eatToEndOfStatement(); 9235 Error(IndexLoc, "index must be a constant number"); 9236 return false; 9237 } 9238 if (CE->getValue() < 0 || 9239 CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) { 9240 Parser.eatToEndOfStatement(); 9241 Error(IndexLoc, "personality routine index should be in range [0-3]"); 9242 return false; 9243 } 9244 9245 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9246 return false; 9247 } 9248 9249 /// parseDirectiveUnwindRaw 9250 /// ::= .unwind_raw offset, opcode [, opcode...] 9251 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9252 if (!UC.hasFnStart()) { 9253 Parser.eatToEndOfStatement(); 9254 Error(L, ".fnstart must precede .unwind_raw directives"); 9255 return false; 9256 } 9257 9258 int64_t StackOffset; 9259 9260 const MCExpr *OffsetExpr; 9261 SMLoc OffsetLoc = getLexer().getLoc(); 9262 if (getLexer().is(AsmToken::EndOfStatement) || 9263 getParser().parseExpression(OffsetExpr)) { 9264 Error(OffsetLoc, "expected expression"); 9265 Parser.eatToEndOfStatement(); 9266 return false; 9267 } 9268 9269 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9270 if (!CE) { 9271 Error(OffsetLoc, "offset must be a constant"); 9272 Parser.eatToEndOfStatement(); 9273 return false; 9274 } 9275 9276 StackOffset = CE->getValue(); 9277 9278 if (getLexer().isNot(AsmToken::Comma)) { 9279 Error(getLexer().getLoc(), "expected comma"); 9280 Parser.eatToEndOfStatement(); 9281 return false; 9282 } 9283 Parser.Lex(); 9284 9285 SmallVector<uint8_t, 16> Opcodes; 9286 for (;;) { 9287 const MCExpr *OE; 9288 9289 SMLoc OpcodeLoc = getLexer().getLoc(); 9290 if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) { 9291 Error(OpcodeLoc, "expected opcode expression"); 9292 Parser.eatToEndOfStatement(); 9293 return false; 9294 } 9295 9296 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9297 if (!OC) { 9298 Error(OpcodeLoc, "opcode value must be a constant"); 9299 Parser.eatToEndOfStatement(); 9300 return false; 9301 } 9302 9303 const int64_t Opcode = OC->getValue(); 9304 if (Opcode & ~0xff) { 9305 Error(OpcodeLoc, "invalid opcode"); 9306 Parser.eatToEndOfStatement(); 9307 return false; 9308 } 9309 9310 Opcodes.push_back(uint8_t(Opcode)); 9311 9312 if (getLexer().is(AsmToken::EndOfStatement)) 9313 break; 9314 9315 if (getLexer().isNot(AsmToken::Comma)) { 9316 Error(getLexer().getLoc(), "unexpected token in directive"); 9317 Parser.eatToEndOfStatement(); 9318 return false; 9319 } 9320 9321 Parser.Lex(); 9322 } 9323 9324 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9325 9326 Parser.Lex(); 9327 return false; 9328 } 9329 9330 /// parseDirectiveTLSDescSeq 9331 /// ::= .tlsdescseq tls-variable 9332 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 9333 if (getLexer().isNot(AsmToken::Identifier)) { 9334 TokError("expected variable after '.tlsdescseq' directive"); 9335 Parser.eatToEndOfStatement(); 9336 return false; 9337 } 9338 9339 const MCSymbolRefExpr *SRE = 9340 MCSymbolRefExpr::Create(Parser.getTok().getIdentifier(), 9341 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 9342 Lex(); 9343 9344 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9345 Error(Parser.getTok().getLoc(), "unexpected token"); 9346 Parser.eatToEndOfStatement(); 9347 return false; 9348 } 9349 9350 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 9351 return false; 9352 } 9353 9354 /// parseDirectiveMovSP 9355 /// ::= .movsp reg [, #offset] 9356 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 9357 if (!UC.hasFnStart()) { 9358 Parser.eatToEndOfStatement(); 9359 Error(L, ".fnstart must precede .movsp directives"); 9360 return false; 9361 } 9362 if (UC.getFPReg() != ARM::SP) { 9363 Parser.eatToEndOfStatement(); 9364 Error(L, "unexpected .movsp directive"); 9365 return false; 9366 } 9367 9368 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9369 int SPReg = tryParseRegister(); 9370 if (SPReg == -1) { 9371 Parser.eatToEndOfStatement(); 9372 Error(SPRegLoc, "register expected"); 9373 return false; 9374 } 9375 9376 if (SPReg == ARM::SP || SPReg == ARM::PC) { 9377 Parser.eatToEndOfStatement(); 9378 Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 9379 return false; 9380 } 9381 9382 int64_t Offset = 0; 9383 if (Parser.getTok().is(AsmToken::Comma)) { 9384 Parser.Lex(); 9385 9386 if (Parser.getTok().isNot(AsmToken::Hash)) { 9387 Error(Parser.getTok().getLoc(), "expected #constant"); 9388 Parser.eatToEndOfStatement(); 9389 return false; 9390 } 9391 Parser.Lex(); 9392 9393 const MCExpr *OffsetExpr; 9394 SMLoc OffsetLoc = Parser.getTok().getLoc(); 9395 if (Parser.parseExpression(OffsetExpr)) { 9396 Parser.eatToEndOfStatement(); 9397 Error(OffsetLoc, "malformed offset expression"); 9398 return false; 9399 } 9400 9401 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9402 if (!CE) { 9403 Parser.eatToEndOfStatement(); 9404 Error(OffsetLoc, "offset must be an immediate constant"); 9405 return false; 9406 } 9407 9408 Offset = CE->getValue(); 9409 } 9410 9411 getTargetStreamer().emitMovSP(SPReg, Offset); 9412 UC.saveFPReg(SPReg); 9413 9414 return false; 9415 } 9416 9417 /// parseDirectiveObjectArch 9418 /// ::= .object_arch name 9419 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 9420 if (getLexer().isNot(AsmToken::Identifier)) { 9421 Error(getLexer().getLoc(), "unexpected token"); 9422 Parser.eatToEndOfStatement(); 9423 return false; 9424 } 9425 9426 StringRef Arch = Parser.getTok().getString(); 9427 SMLoc ArchLoc = Parser.getTok().getLoc(); 9428 getLexer().Lex(); 9429 9430 unsigned ID = StringSwitch<unsigned>(Arch) 9431 #define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \ 9432 .Case(NAME, ARM::ID) 9433 #define ARM_ARCH_ALIAS(NAME, ID) \ 9434 .Case(NAME, ARM::ID) 9435 #include "MCTargetDesc/ARMArchName.def" 9436 #undef ARM_ARCH_NAME 9437 #undef ARM_ARCH_ALIAS 9438 .Default(ARM::INVALID_ARCH); 9439 9440 if (ID == ARM::INVALID_ARCH) { 9441 Error(ArchLoc, "unknown architecture '" + Arch + "'"); 9442 Parser.eatToEndOfStatement(); 9443 return false; 9444 } 9445 9446 getTargetStreamer().emitObjectArch(ID); 9447 9448 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9449 Error(getLexer().getLoc(), "unexpected token"); 9450 Parser.eatToEndOfStatement(); 9451 } 9452 9453 return false; 9454 } 9455 9456 /// parseDirectiveAlign 9457 /// ::= .align 9458 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 9459 // NOTE: if this is not the end of the statement, fall back to the target 9460 // agnostic handling for this directive which will correctly handle this. 9461 if (getLexer().isNot(AsmToken::EndOfStatement)) 9462 return true; 9463 9464 // '.align' is target specifically handled to mean 2**2 byte alignment. 9465 if (getStreamer().getCurrentSection().first->UseCodeAlign()) 9466 getStreamer().EmitCodeAlignment(4, 0); 9467 else 9468 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 9469 9470 return false; 9471 } 9472 9473 /// parseDirectiveThumbSet 9474 /// ::= .thumb_set name, value 9475 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 9476 StringRef Name; 9477 if (Parser.parseIdentifier(Name)) { 9478 TokError("expected identifier after '.thumb_set'"); 9479 Parser.eatToEndOfStatement(); 9480 return false; 9481 } 9482 9483 if (getLexer().isNot(AsmToken::Comma)) { 9484 TokError("expected comma after name '" + Name + "'"); 9485 Parser.eatToEndOfStatement(); 9486 return false; 9487 } 9488 Lex(); 9489 9490 const MCExpr *Value; 9491 if (Parser.parseExpression(Value)) { 9492 TokError("missing expression"); 9493 Parser.eatToEndOfStatement(); 9494 return false; 9495 } 9496 9497 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9498 TokError("unexpected token"); 9499 Parser.eatToEndOfStatement(); 9500 return false; 9501 } 9502 Lex(); 9503 9504 MCSymbol *Alias = getContext().GetOrCreateSymbol(Name); 9505 getTargetStreamer().emitThumbSet(Alias, Value); 9506 return false; 9507 } 9508 9509 /// Force static initialization. 9510 extern "C" void LLVMInitializeARMAsmParser() { 9511 RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget); 9512 RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget); 9513 RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget); 9514 RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget); 9515 } 9516 9517 #define GET_REGISTER_MATCHER 9518 #define GET_SUBTARGET_FEATURE_NAME 9519 #define GET_MATCHER_IMPLEMENTATION 9520 #include "ARMGenAsmMatcher.inc" 9521 9522 static const struct { 9523 const char *Name; 9524 const unsigned ArchCheck; 9525 const uint64_t Features; 9526 } Extensions[] = { 9527 { "crc", Feature_HasV8, ARM::FeatureCRC }, 9528 { "crypto", Feature_HasV8, 9529 ARM::FeatureCrypto | ARM::FeatureNEON | ARM::FeatureFPARMv8 }, 9530 { "fp", Feature_HasV8, ARM::FeatureFPARMv8 }, 9531 { "idiv", Feature_HasV7 | Feature_IsNotMClass, 9532 ARM::FeatureHWDiv | ARM::FeatureHWDivARM }, 9533 // FIXME: iWMMXT not supported 9534 { "iwmmxt", Feature_None, 0 }, 9535 // FIXME: iWMMXT2 not supported 9536 { "iwmmxt2", Feature_None, 0 }, 9537 // FIXME: Maverick not supported 9538 { "maverick", Feature_None, 0 }, 9539 { "mp", Feature_HasV7 | Feature_IsNotMClass, ARM::FeatureMP }, 9540 // FIXME: ARMv6-m OS Extensions feature not checked 9541 { "os", Feature_None, 0 }, 9542 // FIXME: Also available in ARMv6-K 9543 { "sec", Feature_HasV7, ARM::FeatureTrustZone }, 9544 { "simd", Feature_HasV8, ARM::FeatureNEON | ARM::FeatureFPARMv8 }, 9545 // FIXME: Only available in A-class, isel not predicated 9546 { "virt", Feature_HasV7, ARM::FeatureVirtualization }, 9547 // FIXME: xscale not supported 9548 { "xscale", Feature_None, 0 }, 9549 }; 9550 9551 /// parseDirectiveArchExtension 9552 /// ::= .arch_extension [no]feature 9553 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 9554 if (getLexer().isNot(AsmToken::Identifier)) { 9555 Error(getLexer().getLoc(), "unexpected token"); 9556 Parser.eatToEndOfStatement(); 9557 return false; 9558 } 9559 9560 StringRef Name = Parser.getTok().getString(); 9561 SMLoc ExtLoc = Parser.getTok().getLoc(); 9562 getLexer().Lex(); 9563 9564 bool EnableFeature = true; 9565 if (Name.startswith_lower("no")) { 9566 EnableFeature = false; 9567 Name = Name.substr(2); 9568 } 9569 9570 for (const auto &Extension : Extensions) { 9571 if (Extension.Name != Name) 9572 continue; 9573 9574 if (!Extension.Features) 9575 report_fatal_error("unsupported architectural extension: " + Name); 9576 9577 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) { 9578 Error(ExtLoc, "architectural extension '" + Name + "' is not " 9579 "allowed for the current base architecture"); 9580 return false; 9581 } 9582 9583 uint64_t ToggleFeatures = EnableFeature 9584 ? (~STI.getFeatureBits() & Extension.Features) 9585 : ( STI.getFeatureBits() & Extension.Features); 9586 uint64_t Features = 9587 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 9588 setAvailableFeatures(Features); 9589 return false; 9590 } 9591 9592 Error(ExtLoc, "unknown architectural extension: " + Name); 9593 Parser.eatToEndOfStatement(); 9594 return false; 9595 } 9596 9597 // Define this matcher function after the auto-generated include so we 9598 // have the match class enum definitions. 9599 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 9600 unsigned Kind) { 9601 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 9602 // If the kind is a token for a literal immediate, check if our asm 9603 // operand matches. This is for InstAliases which have a fixed-value 9604 // immediate in the syntax. 9605 switch (Kind) { 9606 default: break; 9607 case MCK__35_0: 9608 if (Op.isImm()) 9609 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 9610 if (CE->getValue() == 0) 9611 return Match_Success; 9612 break; 9613 case MCK_ARMSOImm: 9614 if (Op.isImm()) { 9615 const MCExpr *SOExpr = Op.getImm(); 9616 int64_t Value; 9617 if (!SOExpr->EvaluateAsAbsolute(Value)) 9618 return Match_Success; 9619 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 9620 "expression value must be representable in 32 bits"); 9621 } 9622 break; 9623 case MCK_GPRPair: 9624 if (Op.isReg() && 9625 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 9626 return Match_Success; 9627 break; 9628 } 9629 return Match_InvalidOperand; 9630 } 9631