1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAssembler.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 24 #include "llvm/MC/MCELFStreamer.h" 25 #include "llvm/MC/MCExpr.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/MC/MCObjectFileInfo.h" 30 #include "llvm/MC/MCParser/MCAsmLexer.h" 31 #include "llvm/MC/MCParser/MCAsmParser.h" 32 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 35 #include "llvm/MC/MCRegisterInfo.h" 36 #include "llvm/MC/MCSection.h" 37 #include "llvm/MC/MCStreamer.h" 38 #include "llvm/MC/MCSubtargetInfo.h" 39 #include "llvm/MC/MCSymbol.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/COFF.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ELF.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SourceMgr.h" 48 #include "llvm/Support/TargetParser.h" 49 #include "llvm/Support/TargetRegistry.h" 50 #include "llvm/Support/raw_ostream.h" 51 52 using namespace llvm; 53 54 namespace { 55 56 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 57 58 static cl::opt<ImplicitItModeTy> ImplicitItMode( 59 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 60 cl::desc("Allow conditional instructions outdside of an IT block"), 61 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 62 "Accept in both ISAs, emit implicit ITs in Thumb"), 63 clEnumValN(ImplicitItModeTy::Never, "never", 64 "Warn in ARM, reject in Thumb"), 65 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 66 "Accept in ARM, reject in Thumb"), 67 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 68 "Warn in ARM, emit implicit ITs in Thumb"))); 69 70 class ARMOperand; 71 72 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 73 74 class UnwindContext { 75 MCAsmParser &Parser; 76 77 typedef SmallVector<SMLoc, 4> Locs; 78 79 Locs FnStartLocs; 80 Locs CantUnwindLocs; 81 Locs PersonalityLocs; 82 Locs PersonalityIndexLocs; 83 Locs HandlerDataLocs; 84 int FPReg; 85 86 public: 87 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 88 89 bool hasFnStart() const { return !FnStartLocs.empty(); } 90 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 91 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 92 bool hasPersonality() const { 93 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 94 } 95 96 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 97 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 98 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 99 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 100 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 101 102 void saveFPReg(int Reg) { FPReg = Reg; } 103 int getFPReg() const { return FPReg; } 104 105 void emitFnStartLocNotes() const { 106 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 107 FI != FE; ++FI) 108 Parser.Note(*FI, ".fnstart was specified here"); 109 } 110 void emitCantUnwindLocNotes() const { 111 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 112 UE = CantUnwindLocs.end(); UI != UE; ++UI) 113 Parser.Note(*UI, ".cantunwind was specified here"); 114 } 115 void emitHandlerDataLocNotes() const { 116 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 117 HE = HandlerDataLocs.end(); HI != HE; ++HI) 118 Parser.Note(*HI, ".handlerdata was specified here"); 119 } 120 void emitPersonalityLocNotes() const { 121 for (Locs::const_iterator PI = PersonalityLocs.begin(), 122 PE = PersonalityLocs.end(), 123 PII = PersonalityIndexLocs.begin(), 124 PIE = PersonalityIndexLocs.end(); 125 PI != PE || PII != PIE;) { 126 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 127 Parser.Note(*PI++, ".personality was specified here"); 128 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 129 Parser.Note(*PII++, ".personalityindex was specified here"); 130 else 131 llvm_unreachable(".personality and .personalityindex cannot be " 132 "at the same location"); 133 } 134 } 135 136 void reset() { 137 FnStartLocs = Locs(); 138 CantUnwindLocs = Locs(); 139 PersonalityLocs = Locs(); 140 HandlerDataLocs = Locs(); 141 PersonalityIndexLocs = Locs(); 142 FPReg = ARM::SP; 143 } 144 }; 145 146 class ARMAsmParser : public MCTargetAsmParser { 147 const MCInstrInfo &MII; 148 const MCRegisterInfo *MRI; 149 UnwindContext UC; 150 151 ARMTargetStreamer &getTargetStreamer() { 152 assert(getParser().getStreamer().getTargetStreamer() && 153 "do not have a target streamer"); 154 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 155 return static_cast<ARMTargetStreamer &>(TS); 156 } 157 158 // Map of register aliases registers via the .req directive. 159 StringMap<unsigned> RegisterReqs; 160 161 bool NextSymbolIsThumb; 162 163 bool useImplicitITThumb() const { 164 return ImplicitItMode == ImplicitItModeTy::Always || 165 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 166 } 167 168 bool useImplicitITARM() const { 169 return ImplicitItMode == ImplicitItModeTy::Always || 170 ImplicitItMode == ImplicitItModeTy::ARMOnly; 171 } 172 173 struct { 174 ARMCC::CondCodes Cond; // Condition for IT block. 175 unsigned Mask:4; // Condition mask for instructions. 176 // Starting at first 1 (from lsb). 177 // '1' condition as indicated in IT. 178 // '0' inverse of condition (else). 179 // Count of instructions in IT block is 180 // 4 - trailingzeroes(mask) 181 // Note that this does not have the same encoding 182 // as in the IT instruction, which also depends 183 // on the low bit of the condition code. 184 185 unsigned CurPosition; // Current position in parsing of IT 186 // block. In range [0,4], with 0 being the IT 187 // instruction itself. Initialized according to 188 // count of instructions in block. ~0U if no 189 // active IT block. 190 191 bool IsExplicit; // true - The IT instruction was present in the 192 // input, we should not modify it. 193 // false - The IT instruction was added 194 // implicitly, we can extend it if that 195 // would be legal. 196 } ITState; 197 198 llvm::SmallVector<MCInst, 4> PendingConditionalInsts; 199 200 void flushPendingInstructions(MCStreamer &Out) override { 201 if (!inImplicitITBlock()) { 202 assert(PendingConditionalInsts.size() == 0); 203 return; 204 } 205 206 // Emit the IT instruction 207 unsigned Mask = getITMaskEncoding(); 208 MCInst ITInst; 209 ITInst.setOpcode(ARM::t2IT); 210 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 211 ITInst.addOperand(MCOperand::createImm(Mask)); 212 Out.EmitInstruction(ITInst, getSTI()); 213 214 // Emit the conditonal instructions 215 assert(PendingConditionalInsts.size() <= 4); 216 for (const MCInst &Inst : PendingConditionalInsts) { 217 Out.EmitInstruction(Inst, getSTI()); 218 } 219 PendingConditionalInsts.clear(); 220 221 // Clear the IT state 222 ITState.Mask = 0; 223 ITState.CurPosition = ~0U; 224 } 225 226 bool inITBlock() { return ITState.CurPosition != ~0U; } 227 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 228 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 229 bool lastInITBlock() { 230 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 231 } 232 void forwardITPosition() { 233 if (!inITBlock()) return; 234 // Move to the next instruction in the IT block, if there is one. If not, 235 // mark the block as done, except for implicit IT blocks, which we leave 236 // open until we find an instruction that can't be added to it. 237 unsigned TZ = countTrailingZeros(ITState.Mask); 238 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 239 ITState.CurPosition = ~0U; // Done with the IT block after this. 240 } 241 242 // Rewind the state of the current IT block, removing the last slot from it. 243 void rewindImplicitITPosition() { 244 assert(inImplicitITBlock()); 245 assert(ITState.CurPosition > 1); 246 ITState.CurPosition--; 247 unsigned TZ = countTrailingZeros(ITState.Mask); 248 unsigned NewMask = 0; 249 NewMask |= ITState.Mask & (0xC << TZ); 250 NewMask |= 0x2 << TZ; 251 ITState.Mask = NewMask; 252 } 253 254 // Rewind the state of the current IT block, removing the last slot from it. 255 // If we were at the first slot, this closes the IT block. 256 void discardImplicitITBlock() { 257 assert(inImplicitITBlock()); 258 assert(ITState.CurPosition == 1); 259 ITState.CurPosition = ~0U; 260 return; 261 } 262 263 // Get the encoding of the IT mask, as it will appear in an IT instruction. 264 unsigned getITMaskEncoding() { 265 assert(inITBlock()); 266 unsigned Mask = ITState.Mask; 267 unsigned TZ = countTrailingZeros(Mask); 268 if ((ITState.Cond & 1) == 0) { 269 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 270 Mask ^= (0xE << TZ) & 0xF; 271 } 272 return Mask; 273 } 274 275 // Get the condition code corresponding to the current IT block slot. 276 ARMCC::CondCodes currentITCond() { 277 unsigned MaskBit; 278 if (ITState.CurPosition == 1) 279 MaskBit = 1; 280 else 281 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 282 283 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 284 } 285 286 // Invert the condition of the current IT block slot without changing any 287 // other slots in the same block. 288 void invertCurrentITCondition() { 289 if (ITState.CurPosition == 1) { 290 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 291 } else { 292 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 293 } 294 } 295 296 // Returns true if the current IT block is full (all 4 slots used). 297 bool isITBlockFull() { 298 return inITBlock() && (ITState.Mask & 1); 299 } 300 301 // Extend the current implicit IT block to have one more slot with the given 302 // condition code. 303 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 304 assert(inImplicitITBlock()); 305 assert(!isITBlockFull()); 306 assert(Cond == ITState.Cond || 307 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 308 unsigned TZ = countTrailingZeros(ITState.Mask); 309 unsigned NewMask = 0; 310 // Keep any existing condition bits. 311 NewMask |= ITState.Mask & (0xE << TZ); 312 // Insert the new condition bit. 313 NewMask |= (Cond == ITState.Cond) << TZ; 314 // Move the trailing 1 down one bit. 315 NewMask |= 1 << (TZ - 1); 316 ITState.Mask = NewMask; 317 } 318 319 // Create a new implicit IT block with a dummy condition code. 320 void startImplicitITBlock() { 321 assert(!inITBlock()); 322 ITState.Cond = ARMCC::AL; 323 ITState.Mask = 8; 324 ITState.CurPosition = 1; 325 ITState.IsExplicit = false; 326 return; 327 } 328 329 // Create a new explicit IT block with the given condition and mask. The mask 330 // should be in the parsed format, with a 1 implying 't', regardless of the 331 // low bit of the condition. 332 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 333 assert(!inITBlock()); 334 ITState.Cond = Cond; 335 ITState.Mask = Mask; 336 ITState.CurPosition = 0; 337 ITState.IsExplicit = true; 338 return; 339 } 340 341 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 342 return getParser().Note(L, Msg, Range); 343 } 344 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 345 return getParser().Warning(L, Msg, Range); 346 } 347 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 348 return getParser().Error(L, Msg, Range); 349 } 350 351 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 352 unsigned ListNo, bool IsARPop = false); 353 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 354 unsigned ListNo); 355 356 int tryParseRegister(); 357 bool tryParseRegisterWithWriteBack(OperandVector &); 358 int tryParseShiftRegister(OperandVector &); 359 bool parseRegisterList(OperandVector &); 360 bool parseMemory(OperandVector &); 361 bool parseOperand(OperandVector &, StringRef Mnemonic); 362 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 363 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 364 unsigned &ShiftAmount); 365 bool parseLiteralValues(unsigned Size, SMLoc L); 366 bool parseDirectiveThumb(SMLoc L); 367 bool parseDirectiveARM(SMLoc L); 368 bool parseDirectiveThumbFunc(SMLoc L); 369 bool parseDirectiveCode(SMLoc L); 370 bool parseDirectiveSyntax(SMLoc L); 371 bool parseDirectiveReq(StringRef Name, SMLoc L); 372 bool parseDirectiveUnreq(SMLoc L); 373 bool parseDirectiveArch(SMLoc L); 374 bool parseDirectiveEabiAttr(SMLoc L); 375 bool parseDirectiveCPU(SMLoc L); 376 bool parseDirectiveFPU(SMLoc L); 377 bool parseDirectiveFnStart(SMLoc L); 378 bool parseDirectiveFnEnd(SMLoc L); 379 bool parseDirectiveCantUnwind(SMLoc L); 380 bool parseDirectivePersonality(SMLoc L); 381 bool parseDirectiveHandlerData(SMLoc L); 382 bool parseDirectiveSetFP(SMLoc L); 383 bool parseDirectivePad(SMLoc L); 384 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 385 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 386 bool parseDirectiveLtorg(SMLoc L); 387 bool parseDirectiveEven(SMLoc L); 388 bool parseDirectivePersonalityIndex(SMLoc L); 389 bool parseDirectiveUnwindRaw(SMLoc L); 390 bool parseDirectiveTLSDescSeq(SMLoc L); 391 bool parseDirectiveMovSP(SMLoc L); 392 bool parseDirectiveObjectArch(SMLoc L); 393 bool parseDirectiveArchExtension(SMLoc L); 394 bool parseDirectiveAlign(SMLoc L); 395 bool parseDirectiveThumbSet(SMLoc L); 396 397 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 398 bool &CarrySetting, unsigned &ProcessorIMod, 399 StringRef &ITMask); 400 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 401 bool &CanAcceptCarrySet, 402 bool &CanAcceptPredicationCode); 403 404 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 405 OperandVector &Operands); 406 bool isThumb() const { 407 // FIXME: Can tablegen auto-generate this? 408 return getSTI().getFeatureBits()[ARM::ModeThumb]; 409 } 410 bool isThumbOne() const { 411 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 412 } 413 bool isThumbTwo() const { 414 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 415 } 416 bool hasThumb() const { 417 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 418 } 419 bool hasThumb2() const { 420 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 421 } 422 bool hasV6Ops() const { 423 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 424 } 425 bool hasV6T2Ops() const { 426 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 427 } 428 bool hasV6MOps() const { 429 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 430 } 431 bool hasV7Ops() const { 432 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 433 } 434 bool hasV8Ops() const { 435 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 436 } 437 bool hasV8MBaseline() const { 438 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 439 } 440 bool hasV8MMainline() const { 441 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 442 } 443 bool has8MSecExt() const { 444 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 445 } 446 bool hasARM() const { 447 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 448 } 449 bool hasDSP() const { 450 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 451 } 452 bool hasD16() const { 453 return getSTI().getFeatureBits()[ARM::FeatureD16]; 454 } 455 bool hasV8_1aOps() const { 456 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 457 } 458 bool hasRAS() const { 459 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 460 } 461 462 void SwitchMode() { 463 MCSubtargetInfo &STI = copySTI(); 464 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 465 setAvailableFeatures(FB); 466 } 467 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 468 bool isMClass() const { 469 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 470 } 471 472 /// @name Auto-generated Match Functions 473 /// { 474 475 #define GET_ASSEMBLER_HEADER 476 #include "ARMGenAsmMatcher.inc" 477 478 /// } 479 480 OperandMatchResultTy parseITCondCode(OperandVector &); 481 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 482 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 483 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 484 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 485 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 486 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 487 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 488 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 489 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 490 int High); 491 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 492 return parsePKHImm(O, "lsl", 0, 31); 493 } 494 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 495 return parsePKHImm(O, "asr", 1, 32); 496 } 497 OperandMatchResultTy parseSetEndImm(OperandVector &); 498 OperandMatchResultTy parseShifterImm(OperandVector &); 499 OperandMatchResultTy parseRotImm(OperandVector &); 500 OperandMatchResultTy parseModImm(OperandVector &); 501 OperandMatchResultTy parseBitfield(OperandVector &); 502 OperandMatchResultTy parsePostIdxReg(OperandVector &); 503 OperandMatchResultTy parseAM3Offset(OperandVector &); 504 OperandMatchResultTy parseFPImm(OperandVector &); 505 OperandMatchResultTy parseVectorList(OperandVector &); 506 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 507 SMLoc &EndLoc); 508 509 // Asm Match Converter Methods 510 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 511 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 512 513 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 514 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 515 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 516 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 517 bool isITBlockTerminator(MCInst &Inst) const; 518 519 public: 520 enum ARMMatchResultTy { 521 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 522 Match_RequiresNotITBlock, 523 Match_RequiresV6, 524 Match_RequiresThumb2, 525 Match_RequiresV8, 526 Match_RequiresFlagSetting, 527 #define GET_OPERAND_DIAGNOSTIC_TYPES 528 #include "ARMGenAsmMatcher.inc" 529 530 }; 531 532 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 533 const MCInstrInfo &MII, const MCTargetOptions &Options) 534 : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) { 535 MCAsmParserExtension::Initialize(Parser); 536 537 // Cache the MCRegisterInfo. 538 MRI = getContext().getRegisterInfo(); 539 540 // Initialize the set of available features. 541 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 542 543 // Not in an ITBlock to start with. 544 ITState.CurPosition = ~0U; 545 546 NextSymbolIsThumb = false; 547 } 548 549 // Implementation of the MCTargetAsmParser interface: 550 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 551 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 552 SMLoc NameLoc, OperandVector &Operands) override; 553 bool ParseDirective(AsmToken DirectiveID) override; 554 555 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 556 unsigned Kind) override; 557 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 558 559 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 560 OperandVector &Operands, MCStreamer &Out, 561 uint64_t &ErrorInfo, 562 bool MatchingInlineAsm) override; 563 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 564 uint64_t &ErrorInfo, bool MatchingInlineAsm, 565 bool &EmitInITBlock, MCStreamer &Out); 566 void onLabelParsed(MCSymbol *Symbol) override; 567 }; 568 } // end anonymous namespace 569 570 namespace { 571 572 /// ARMOperand - Instances of this class represent a parsed ARM machine 573 /// operand. 574 class ARMOperand : public MCParsedAsmOperand { 575 enum KindTy { 576 k_CondCode, 577 k_CCOut, 578 k_ITCondMask, 579 k_CoprocNum, 580 k_CoprocReg, 581 k_CoprocOption, 582 k_Immediate, 583 k_MemBarrierOpt, 584 k_InstSyncBarrierOpt, 585 k_Memory, 586 k_PostIndexRegister, 587 k_MSRMask, 588 k_BankedReg, 589 k_ProcIFlags, 590 k_VectorIndex, 591 k_Register, 592 k_RegisterList, 593 k_DPRRegisterList, 594 k_SPRRegisterList, 595 k_VectorList, 596 k_VectorListAllLanes, 597 k_VectorListIndexed, 598 k_ShiftedRegister, 599 k_ShiftedImmediate, 600 k_ShifterImmediate, 601 k_RotateImmediate, 602 k_ModifiedImmediate, 603 k_ConstantPoolImmediate, 604 k_BitfieldDescriptor, 605 k_Token, 606 } Kind; 607 608 SMLoc StartLoc, EndLoc, AlignmentLoc; 609 SmallVector<unsigned, 8> Registers; 610 611 struct CCOp { 612 ARMCC::CondCodes Val; 613 }; 614 615 struct CopOp { 616 unsigned Val; 617 }; 618 619 struct CoprocOptionOp { 620 unsigned Val; 621 }; 622 623 struct ITMaskOp { 624 unsigned Mask:4; 625 }; 626 627 struct MBOptOp { 628 ARM_MB::MemBOpt Val; 629 }; 630 631 struct ISBOptOp { 632 ARM_ISB::InstSyncBOpt Val; 633 }; 634 635 struct IFlagsOp { 636 ARM_PROC::IFlags Val; 637 }; 638 639 struct MMaskOp { 640 unsigned Val; 641 }; 642 643 struct BankedRegOp { 644 unsigned Val; 645 }; 646 647 struct TokOp { 648 const char *Data; 649 unsigned Length; 650 }; 651 652 struct RegOp { 653 unsigned RegNum; 654 }; 655 656 // A vector register list is a sequential list of 1 to 4 registers. 657 struct VectorListOp { 658 unsigned RegNum; 659 unsigned Count; 660 unsigned LaneIndex; 661 bool isDoubleSpaced; 662 }; 663 664 struct VectorIndexOp { 665 unsigned Val; 666 }; 667 668 struct ImmOp { 669 const MCExpr *Val; 670 }; 671 672 /// Combined record for all forms of ARM address expressions. 673 struct MemoryOp { 674 unsigned BaseRegNum; 675 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 676 // was specified. 677 const MCConstantExpr *OffsetImm; // Offset immediate value 678 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 679 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 680 unsigned ShiftImm; // shift for OffsetReg. 681 unsigned Alignment; // 0 = no alignment specified 682 // n = alignment in bytes (2, 4, 8, 16, or 32) 683 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 684 }; 685 686 struct PostIdxRegOp { 687 unsigned RegNum; 688 bool isAdd; 689 ARM_AM::ShiftOpc ShiftTy; 690 unsigned ShiftImm; 691 }; 692 693 struct ShifterImmOp { 694 bool isASR; 695 unsigned Imm; 696 }; 697 698 struct RegShiftedRegOp { 699 ARM_AM::ShiftOpc ShiftTy; 700 unsigned SrcReg; 701 unsigned ShiftReg; 702 unsigned ShiftImm; 703 }; 704 705 struct RegShiftedImmOp { 706 ARM_AM::ShiftOpc ShiftTy; 707 unsigned SrcReg; 708 unsigned ShiftImm; 709 }; 710 711 struct RotImmOp { 712 unsigned Imm; 713 }; 714 715 struct ModImmOp { 716 unsigned Bits; 717 unsigned Rot; 718 }; 719 720 struct BitfieldOp { 721 unsigned LSB; 722 unsigned Width; 723 }; 724 725 union { 726 struct CCOp CC; 727 struct CopOp Cop; 728 struct CoprocOptionOp CoprocOption; 729 struct MBOptOp MBOpt; 730 struct ISBOptOp ISBOpt; 731 struct ITMaskOp ITMask; 732 struct IFlagsOp IFlags; 733 struct MMaskOp MMask; 734 struct BankedRegOp BankedReg; 735 struct TokOp Tok; 736 struct RegOp Reg; 737 struct VectorListOp VectorList; 738 struct VectorIndexOp VectorIndex; 739 struct ImmOp Imm; 740 struct MemoryOp Memory; 741 struct PostIdxRegOp PostIdxReg; 742 struct ShifterImmOp ShifterImm; 743 struct RegShiftedRegOp RegShiftedReg; 744 struct RegShiftedImmOp RegShiftedImm; 745 struct RotImmOp RotImm; 746 struct ModImmOp ModImm; 747 struct BitfieldOp Bitfield; 748 }; 749 750 public: 751 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 752 753 /// getStartLoc - Get the location of the first token of this operand. 754 SMLoc getStartLoc() const override { return StartLoc; } 755 /// getEndLoc - Get the location of the last token of this operand. 756 SMLoc getEndLoc() const override { return EndLoc; } 757 /// getLocRange - Get the range between the first and last token of this 758 /// operand. 759 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 760 761 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 762 SMLoc getAlignmentLoc() const { 763 assert(Kind == k_Memory && "Invalid access!"); 764 return AlignmentLoc; 765 } 766 767 ARMCC::CondCodes getCondCode() const { 768 assert(Kind == k_CondCode && "Invalid access!"); 769 return CC.Val; 770 } 771 772 unsigned getCoproc() const { 773 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 774 return Cop.Val; 775 } 776 777 StringRef getToken() const { 778 assert(Kind == k_Token && "Invalid access!"); 779 return StringRef(Tok.Data, Tok.Length); 780 } 781 782 unsigned getReg() const override { 783 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 784 return Reg.RegNum; 785 } 786 787 const SmallVectorImpl<unsigned> &getRegList() const { 788 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 789 Kind == k_SPRRegisterList) && "Invalid access!"); 790 return Registers; 791 } 792 793 const MCExpr *getImm() const { 794 assert(isImm() && "Invalid access!"); 795 return Imm.Val; 796 } 797 798 const MCExpr *getConstantPoolImm() const { 799 assert(isConstantPoolImm() && "Invalid access!"); 800 return Imm.Val; 801 } 802 803 unsigned getVectorIndex() const { 804 assert(Kind == k_VectorIndex && "Invalid access!"); 805 return VectorIndex.Val; 806 } 807 808 ARM_MB::MemBOpt getMemBarrierOpt() const { 809 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 810 return MBOpt.Val; 811 } 812 813 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 814 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 815 return ISBOpt.Val; 816 } 817 818 ARM_PROC::IFlags getProcIFlags() const { 819 assert(Kind == k_ProcIFlags && "Invalid access!"); 820 return IFlags.Val; 821 } 822 823 unsigned getMSRMask() const { 824 assert(Kind == k_MSRMask && "Invalid access!"); 825 return MMask.Val; 826 } 827 828 unsigned getBankedReg() const { 829 assert(Kind == k_BankedReg && "Invalid access!"); 830 return BankedReg.Val; 831 } 832 833 bool isCoprocNum() const { return Kind == k_CoprocNum; } 834 bool isCoprocReg() const { return Kind == k_CoprocReg; } 835 bool isCoprocOption() const { return Kind == k_CoprocOption; } 836 bool isCondCode() const { return Kind == k_CondCode; } 837 bool isCCOut() const { return Kind == k_CCOut; } 838 bool isITMask() const { return Kind == k_ITCondMask; } 839 bool isITCondCode() const { return Kind == k_CondCode; } 840 bool isImm() const override { 841 return Kind == k_Immediate; 842 } 843 844 bool isARMBranchTarget() const { 845 if (!isImm()) return false; 846 847 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 848 return CE->getValue() % 4 == 0; 849 return true; 850 } 851 852 853 bool isThumbBranchTarget() const { 854 if (!isImm()) return false; 855 856 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 857 return CE->getValue() % 2 == 0; 858 return true; 859 } 860 861 // checks whether this operand is an unsigned offset which fits is a field 862 // of specified width and scaled by a specific number of bits 863 template<unsigned width, unsigned scale> 864 bool isUnsignedOffset() const { 865 if (!isImm()) return false; 866 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 867 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 868 int64_t Val = CE->getValue(); 869 int64_t Align = 1LL << scale; 870 int64_t Max = Align * ((1LL << width) - 1); 871 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 872 } 873 return false; 874 } 875 // checks whether this operand is an signed offset which fits is a field 876 // of specified width and scaled by a specific number of bits 877 template<unsigned width, unsigned scale> 878 bool isSignedOffset() const { 879 if (!isImm()) return false; 880 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 881 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 882 int64_t Val = CE->getValue(); 883 int64_t Align = 1LL << scale; 884 int64_t Max = Align * ((1LL << (width-1)) - 1); 885 int64_t Min = -Align * (1LL << (width-1)); 886 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 887 } 888 return false; 889 } 890 891 // checks whether this operand is a memory operand computed as an offset 892 // applied to PC. the offset may have 8 bits of magnitude and is represented 893 // with two bits of shift. textually it may be either [pc, #imm], #imm or 894 // relocable expression... 895 bool isThumbMemPC() const { 896 int64_t Val = 0; 897 if (isImm()) { 898 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 899 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 900 if (!CE) return false; 901 Val = CE->getValue(); 902 } 903 else if (isMem()) { 904 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 905 if(Memory.BaseRegNum != ARM::PC) return false; 906 Val = Memory.OffsetImm->getValue(); 907 } 908 else return false; 909 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 910 } 911 bool isFPImm() const { 912 if (!isImm()) return false; 913 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 914 if (!CE) return false; 915 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 916 return Val != -1; 917 } 918 bool isFBits16() const { 919 if (!isImm()) return false; 920 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 921 if (!CE) return false; 922 int64_t Value = CE->getValue(); 923 return Value >= 0 && Value <= 16; 924 } 925 bool isFBits32() const { 926 if (!isImm()) return false; 927 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 928 if (!CE) return false; 929 int64_t Value = CE->getValue(); 930 return Value >= 1 && Value <= 32; 931 } 932 bool isImm8s4() const { 933 if (!isImm()) return false; 934 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 935 if (!CE) return false; 936 int64_t Value = CE->getValue(); 937 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 938 } 939 bool isImm0_1020s4() const { 940 if (!isImm()) return false; 941 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 942 if (!CE) return false; 943 int64_t Value = CE->getValue(); 944 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 945 } 946 bool isImm0_508s4() const { 947 if (!isImm()) return false; 948 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 949 if (!CE) return false; 950 int64_t Value = CE->getValue(); 951 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 952 } 953 bool isImm0_508s4Neg() const { 954 if (!isImm()) return false; 955 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 956 if (!CE) return false; 957 int64_t Value = -CE->getValue(); 958 // explicitly exclude zero. we want that to use the normal 0_508 version. 959 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 960 } 961 bool isImm0_239() const { 962 if (!isImm()) return false; 963 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 964 if (!CE) return false; 965 int64_t Value = CE->getValue(); 966 return Value >= 0 && Value < 240; 967 } 968 bool isImm0_255() const { 969 if (!isImm()) return false; 970 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 971 if (!CE) return false; 972 int64_t Value = CE->getValue(); 973 return Value >= 0 && Value < 256; 974 } 975 bool isImm0_4095() const { 976 if (!isImm()) return false; 977 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 978 if (!CE) return false; 979 int64_t Value = CE->getValue(); 980 return Value >= 0 && Value < 4096; 981 } 982 bool isImm0_4095Neg() const { 983 if (!isImm()) return false; 984 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 985 if (!CE) return false; 986 int64_t Value = -CE->getValue(); 987 return Value > 0 && Value < 4096; 988 } 989 bool isImm0_1() const { 990 if (!isImm()) return false; 991 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 992 if (!CE) return false; 993 int64_t Value = CE->getValue(); 994 return Value >= 0 && Value < 2; 995 } 996 bool isImm0_3() const { 997 if (!isImm()) return false; 998 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 999 if (!CE) return false; 1000 int64_t Value = CE->getValue(); 1001 return Value >= 0 && Value < 4; 1002 } 1003 bool isImm0_7() const { 1004 if (!isImm()) return false; 1005 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1006 if (!CE) return false; 1007 int64_t Value = CE->getValue(); 1008 return Value >= 0 && Value < 8; 1009 } 1010 bool isImm0_15() const { 1011 if (!isImm()) return false; 1012 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1013 if (!CE) return false; 1014 int64_t Value = CE->getValue(); 1015 return Value >= 0 && Value < 16; 1016 } 1017 bool isImm0_31() const { 1018 if (!isImm()) return false; 1019 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1020 if (!CE) return false; 1021 int64_t Value = CE->getValue(); 1022 return Value >= 0 && Value < 32; 1023 } 1024 bool isImm0_63() const { 1025 if (!isImm()) return false; 1026 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1027 if (!CE) return false; 1028 int64_t Value = CE->getValue(); 1029 return Value >= 0 && Value < 64; 1030 } 1031 bool isImm8() const { 1032 if (!isImm()) return false; 1033 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1034 if (!CE) return false; 1035 int64_t Value = CE->getValue(); 1036 return Value == 8; 1037 } 1038 bool isImm16() const { 1039 if (!isImm()) return false; 1040 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1041 if (!CE) return false; 1042 int64_t Value = CE->getValue(); 1043 return Value == 16; 1044 } 1045 bool isImm32() const { 1046 if (!isImm()) return false; 1047 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1048 if (!CE) return false; 1049 int64_t Value = CE->getValue(); 1050 return Value == 32; 1051 } 1052 bool isShrImm8() const { 1053 if (!isImm()) return false; 1054 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1055 if (!CE) return false; 1056 int64_t Value = CE->getValue(); 1057 return Value > 0 && Value <= 8; 1058 } 1059 bool isShrImm16() const { 1060 if (!isImm()) return false; 1061 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1062 if (!CE) return false; 1063 int64_t Value = CE->getValue(); 1064 return Value > 0 && Value <= 16; 1065 } 1066 bool isShrImm32() const { 1067 if (!isImm()) return false; 1068 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1069 if (!CE) return false; 1070 int64_t Value = CE->getValue(); 1071 return Value > 0 && Value <= 32; 1072 } 1073 bool isShrImm64() const { 1074 if (!isImm()) return false; 1075 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1076 if (!CE) return false; 1077 int64_t Value = CE->getValue(); 1078 return Value > 0 && Value <= 64; 1079 } 1080 bool isImm1_7() const { 1081 if (!isImm()) return false; 1082 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1083 if (!CE) return false; 1084 int64_t Value = CE->getValue(); 1085 return Value > 0 && Value < 8; 1086 } 1087 bool isImm1_15() const { 1088 if (!isImm()) return false; 1089 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1090 if (!CE) return false; 1091 int64_t Value = CE->getValue(); 1092 return Value > 0 && Value < 16; 1093 } 1094 bool isImm1_31() const { 1095 if (!isImm()) return false; 1096 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1097 if (!CE) return false; 1098 int64_t Value = CE->getValue(); 1099 return Value > 0 && Value < 32; 1100 } 1101 bool isImm1_16() const { 1102 if (!isImm()) return false; 1103 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1104 if (!CE) return false; 1105 int64_t Value = CE->getValue(); 1106 return Value > 0 && Value < 17; 1107 } 1108 bool isImm1_32() const { 1109 if (!isImm()) return false; 1110 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1111 if (!CE) return false; 1112 int64_t Value = CE->getValue(); 1113 return Value > 0 && Value < 33; 1114 } 1115 bool isImm0_32() const { 1116 if (!isImm()) return false; 1117 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1118 if (!CE) return false; 1119 int64_t Value = CE->getValue(); 1120 return Value >= 0 && Value < 33; 1121 } 1122 bool isImm0_65535() const { 1123 if (!isImm()) return false; 1124 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1125 if (!CE) return false; 1126 int64_t Value = CE->getValue(); 1127 return Value >= 0 && Value < 65536; 1128 } 1129 bool isImm256_65535Expr() const { 1130 if (!isImm()) return false; 1131 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1132 // If it's not a constant expression, it'll generate a fixup and be 1133 // handled later. 1134 if (!CE) return true; 1135 int64_t Value = CE->getValue(); 1136 return Value >= 256 && Value < 65536; 1137 } 1138 bool isImm0_65535Expr() const { 1139 if (!isImm()) return false; 1140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1141 // If it's not a constant expression, it'll generate a fixup and be 1142 // handled later. 1143 if (!CE) return true; 1144 int64_t Value = CE->getValue(); 1145 return Value >= 0 && Value < 65536; 1146 } 1147 bool isImm24bit() const { 1148 if (!isImm()) return false; 1149 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1150 if (!CE) return false; 1151 int64_t Value = CE->getValue(); 1152 return Value >= 0 && Value <= 0xffffff; 1153 } 1154 bool isImmThumbSR() const { 1155 if (!isImm()) return false; 1156 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1157 if (!CE) return false; 1158 int64_t Value = CE->getValue(); 1159 return Value > 0 && Value < 33; 1160 } 1161 bool isPKHLSLImm() const { 1162 if (!isImm()) return false; 1163 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1164 if (!CE) return false; 1165 int64_t Value = CE->getValue(); 1166 return Value >= 0 && Value < 32; 1167 } 1168 bool isPKHASRImm() const { 1169 if (!isImm()) return false; 1170 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1171 if (!CE) return false; 1172 int64_t Value = CE->getValue(); 1173 return Value > 0 && Value <= 32; 1174 } 1175 bool isAdrLabel() const { 1176 // If we have an immediate that's not a constant, treat it as a label 1177 // reference needing a fixup. 1178 if (isImm() && !isa<MCConstantExpr>(getImm())) 1179 return true; 1180 1181 // If it is a constant, it must fit into a modified immediate encoding. 1182 if (!isImm()) return false; 1183 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1184 if (!CE) return false; 1185 int64_t Value = CE->getValue(); 1186 return (ARM_AM::getSOImmVal(Value) != -1 || 1187 ARM_AM::getSOImmVal(-Value) != -1); 1188 } 1189 bool isT2SOImm() const { 1190 if (!isImm()) return false; 1191 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1192 if (!CE) return false; 1193 int64_t Value = CE->getValue(); 1194 return ARM_AM::getT2SOImmVal(Value) != -1; 1195 } 1196 bool isT2SOImmNot() const { 1197 if (!isImm()) return false; 1198 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1199 if (!CE) return false; 1200 int64_t Value = CE->getValue(); 1201 return ARM_AM::getT2SOImmVal(Value) == -1 && 1202 ARM_AM::getT2SOImmVal(~Value) != -1; 1203 } 1204 bool isT2SOImmNeg() const { 1205 if (!isImm()) return false; 1206 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1207 if (!CE) return false; 1208 int64_t Value = CE->getValue(); 1209 // Only use this when not representable as a plain so_imm. 1210 return ARM_AM::getT2SOImmVal(Value) == -1 && 1211 ARM_AM::getT2SOImmVal(-Value) != -1; 1212 } 1213 bool isSetEndImm() const { 1214 if (!isImm()) return false; 1215 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1216 if (!CE) return false; 1217 int64_t Value = CE->getValue(); 1218 return Value == 1 || Value == 0; 1219 } 1220 bool isReg() const override { return Kind == k_Register; } 1221 bool isRegList() const { return Kind == k_RegisterList; } 1222 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1223 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1224 bool isToken() const override { return Kind == k_Token; } 1225 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1226 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1227 bool isMem() const override { return Kind == k_Memory; } 1228 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1229 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1230 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1231 bool isRotImm() const { return Kind == k_RotateImmediate; } 1232 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1233 bool isModImmNot() const { 1234 if (!isImm()) return false; 1235 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1236 if (!CE) return false; 1237 int64_t Value = CE->getValue(); 1238 return ARM_AM::getSOImmVal(~Value) != -1; 1239 } 1240 bool isModImmNeg() const { 1241 if (!isImm()) return false; 1242 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1243 if (!CE) return false; 1244 int64_t Value = CE->getValue(); 1245 return ARM_AM::getSOImmVal(Value) == -1 && 1246 ARM_AM::getSOImmVal(-Value) != -1; 1247 } 1248 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1249 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1250 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1251 bool isPostIdxReg() const { 1252 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1253 } 1254 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1255 if (!isMem()) 1256 return false; 1257 // No offset of any kind. 1258 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1259 (alignOK || Memory.Alignment == Alignment); 1260 } 1261 bool isMemPCRelImm12() const { 1262 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1263 return false; 1264 // Base register must be PC. 1265 if (Memory.BaseRegNum != ARM::PC) 1266 return false; 1267 // Immediate offset in range [-4095, 4095]. 1268 if (!Memory.OffsetImm) return true; 1269 int64_t Val = Memory.OffsetImm->getValue(); 1270 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1271 } 1272 bool isAlignedMemory() const { 1273 return isMemNoOffset(true); 1274 } 1275 bool isAlignedMemoryNone() const { 1276 return isMemNoOffset(false, 0); 1277 } 1278 bool isDupAlignedMemoryNone() const { 1279 return isMemNoOffset(false, 0); 1280 } 1281 bool isAlignedMemory16() const { 1282 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1283 return true; 1284 return isMemNoOffset(false, 0); 1285 } 1286 bool isDupAlignedMemory16() const { 1287 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1288 return true; 1289 return isMemNoOffset(false, 0); 1290 } 1291 bool isAlignedMemory32() const { 1292 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1293 return true; 1294 return isMemNoOffset(false, 0); 1295 } 1296 bool isDupAlignedMemory32() const { 1297 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1298 return true; 1299 return isMemNoOffset(false, 0); 1300 } 1301 bool isAlignedMemory64() const { 1302 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1303 return true; 1304 return isMemNoOffset(false, 0); 1305 } 1306 bool isDupAlignedMemory64() const { 1307 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1308 return true; 1309 return isMemNoOffset(false, 0); 1310 } 1311 bool isAlignedMemory64or128() const { 1312 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1313 return true; 1314 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1315 return true; 1316 return isMemNoOffset(false, 0); 1317 } 1318 bool isDupAlignedMemory64or128() const { 1319 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1320 return true; 1321 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1322 return true; 1323 return isMemNoOffset(false, 0); 1324 } 1325 bool isAlignedMemory64or128or256() const { 1326 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1327 return true; 1328 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1329 return true; 1330 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1331 return true; 1332 return isMemNoOffset(false, 0); 1333 } 1334 bool isAddrMode2() const { 1335 if (!isMem() || Memory.Alignment != 0) return false; 1336 // Check for register offset. 1337 if (Memory.OffsetRegNum) return true; 1338 // Immediate offset in range [-4095, 4095]. 1339 if (!Memory.OffsetImm) return true; 1340 int64_t Val = Memory.OffsetImm->getValue(); 1341 return Val > -4096 && Val < 4096; 1342 } 1343 bool isAM2OffsetImm() const { 1344 if (!isImm()) return false; 1345 // Immediate offset in range [-4095, 4095]. 1346 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1347 if (!CE) return false; 1348 int64_t Val = CE->getValue(); 1349 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1350 } 1351 bool isAddrMode3() const { 1352 // If we have an immediate that's not a constant, treat it as a label 1353 // reference needing a fixup. If it is a constant, it's something else 1354 // and we reject it. 1355 if (isImm() && !isa<MCConstantExpr>(getImm())) 1356 return true; 1357 if (!isMem() || Memory.Alignment != 0) return false; 1358 // No shifts are legal for AM3. 1359 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1360 // Check for register offset. 1361 if (Memory.OffsetRegNum) return true; 1362 // Immediate offset in range [-255, 255]. 1363 if (!Memory.OffsetImm) return true; 1364 int64_t Val = Memory.OffsetImm->getValue(); 1365 // The #-0 offset is encoded as INT32_MIN, and we have to check 1366 // for this too. 1367 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1368 } 1369 bool isAM3Offset() const { 1370 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1371 return false; 1372 if (Kind == k_PostIndexRegister) 1373 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1374 // Immediate offset in range [-255, 255]. 1375 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1376 if (!CE) return false; 1377 int64_t Val = CE->getValue(); 1378 // Special case, #-0 is INT32_MIN. 1379 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1380 } 1381 bool isAddrMode5() const { 1382 // If we have an immediate that's not a constant, treat it as a label 1383 // reference needing a fixup. If it is a constant, it's something else 1384 // and we reject it. 1385 if (isImm() && !isa<MCConstantExpr>(getImm())) 1386 return true; 1387 if (!isMem() || Memory.Alignment != 0) return false; 1388 // Check for register offset. 1389 if (Memory.OffsetRegNum) return false; 1390 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1391 if (!Memory.OffsetImm) return true; 1392 int64_t Val = Memory.OffsetImm->getValue(); 1393 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1394 Val == INT32_MIN; 1395 } 1396 bool isAddrMode5FP16() const { 1397 // If we have an immediate that's not a constant, treat it as a label 1398 // reference needing a fixup. If it is a constant, it's something else 1399 // and we reject it. 1400 if (isImm() && !isa<MCConstantExpr>(getImm())) 1401 return true; 1402 if (!isMem() || Memory.Alignment != 0) return false; 1403 // Check for register offset. 1404 if (Memory.OffsetRegNum) return false; 1405 // Immediate offset in range [-510, 510] and a multiple of 2. 1406 if (!Memory.OffsetImm) return true; 1407 int64_t Val = Memory.OffsetImm->getValue(); 1408 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || Val == INT32_MIN; 1409 } 1410 bool isMemTBB() const { 1411 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1412 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1413 return false; 1414 return true; 1415 } 1416 bool isMemTBH() const { 1417 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1418 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1419 Memory.Alignment != 0 ) 1420 return false; 1421 return true; 1422 } 1423 bool isMemRegOffset() const { 1424 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1425 return false; 1426 return true; 1427 } 1428 bool isT2MemRegOffset() const { 1429 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1430 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1431 return false; 1432 // Only lsl #{0, 1, 2, 3} allowed. 1433 if (Memory.ShiftType == ARM_AM::no_shift) 1434 return true; 1435 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1436 return false; 1437 return true; 1438 } 1439 bool isMemThumbRR() const { 1440 // Thumb reg+reg addressing is simple. Just two registers, a base and 1441 // an offset. No shifts, negations or any other complicating factors. 1442 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1443 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1444 return false; 1445 return isARMLowRegister(Memory.BaseRegNum) && 1446 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1447 } 1448 bool isMemThumbRIs4() const { 1449 if (!isMem() || Memory.OffsetRegNum != 0 || 1450 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1451 return false; 1452 // Immediate offset, multiple of 4 in range [0, 124]. 1453 if (!Memory.OffsetImm) return true; 1454 int64_t Val = Memory.OffsetImm->getValue(); 1455 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1456 } 1457 bool isMemThumbRIs2() const { 1458 if (!isMem() || Memory.OffsetRegNum != 0 || 1459 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1460 return false; 1461 // Immediate offset, multiple of 4 in range [0, 62]. 1462 if (!Memory.OffsetImm) return true; 1463 int64_t Val = Memory.OffsetImm->getValue(); 1464 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1465 } 1466 bool isMemThumbRIs1() const { 1467 if (!isMem() || Memory.OffsetRegNum != 0 || 1468 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1469 return false; 1470 // Immediate offset in range [0, 31]. 1471 if (!Memory.OffsetImm) return true; 1472 int64_t Val = Memory.OffsetImm->getValue(); 1473 return Val >= 0 && Val <= 31; 1474 } 1475 bool isMemThumbSPI() const { 1476 if (!isMem() || Memory.OffsetRegNum != 0 || 1477 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1478 return false; 1479 // Immediate offset, multiple of 4 in range [0, 1020]. 1480 if (!Memory.OffsetImm) return true; 1481 int64_t Val = Memory.OffsetImm->getValue(); 1482 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1483 } 1484 bool isMemImm8s4Offset() const { 1485 // If we have an immediate that's not a constant, treat it as a label 1486 // reference needing a fixup. If it is a constant, it's something else 1487 // and we reject it. 1488 if (isImm() && !isa<MCConstantExpr>(getImm())) 1489 return true; 1490 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1491 return false; 1492 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1493 if (!Memory.OffsetImm) return true; 1494 int64_t Val = Memory.OffsetImm->getValue(); 1495 // Special case, #-0 is INT32_MIN. 1496 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1497 } 1498 bool isMemImm0_1020s4Offset() const { 1499 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1500 return false; 1501 // Immediate offset a multiple of 4 in range [0, 1020]. 1502 if (!Memory.OffsetImm) return true; 1503 int64_t Val = Memory.OffsetImm->getValue(); 1504 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1505 } 1506 bool isMemImm8Offset() const { 1507 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1508 return false; 1509 // Base reg of PC isn't allowed for these encodings. 1510 if (Memory.BaseRegNum == ARM::PC) return false; 1511 // Immediate offset in range [-255, 255]. 1512 if (!Memory.OffsetImm) return true; 1513 int64_t Val = Memory.OffsetImm->getValue(); 1514 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1515 } 1516 bool isMemPosImm8Offset() const { 1517 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1518 return false; 1519 // Immediate offset in range [0, 255]. 1520 if (!Memory.OffsetImm) return true; 1521 int64_t Val = Memory.OffsetImm->getValue(); 1522 return Val >= 0 && Val < 256; 1523 } 1524 bool isMemNegImm8Offset() const { 1525 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1526 return false; 1527 // Base reg of PC isn't allowed for these encodings. 1528 if (Memory.BaseRegNum == ARM::PC) return false; 1529 // Immediate offset in range [-255, -1]. 1530 if (!Memory.OffsetImm) return false; 1531 int64_t Val = Memory.OffsetImm->getValue(); 1532 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1533 } 1534 bool isMemUImm12Offset() const { 1535 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1536 return false; 1537 // Immediate offset in range [0, 4095]. 1538 if (!Memory.OffsetImm) return true; 1539 int64_t Val = Memory.OffsetImm->getValue(); 1540 return (Val >= 0 && Val < 4096); 1541 } 1542 bool isMemImm12Offset() const { 1543 // If we have an immediate that's not a constant, treat it as a label 1544 // reference needing a fixup. If it is a constant, it's something else 1545 // and we reject it. 1546 1547 if (isImm() && !isa<MCConstantExpr>(getImm())) 1548 return true; 1549 1550 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1551 return false; 1552 // Immediate offset in range [-4095, 4095]. 1553 if (!Memory.OffsetImm) return true; 1554 int64_t Val = Memory.OffsetImm->getValue(); 1555 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1556 } 1557 bool isConstPoolAsmImm() const { 1558 // Delay processing of Constant Pool Immediate, this will turn into 1559 // a constant. Match no other operand 1560 return (isConstantPoolImm()); 1561 } 1562 bool isPostIdxImm8() const { 1563 if (!isImm()) return false; 1564 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1565 if (!CE) return false; 1566 int64_t Val = CE->getValue(); 1567 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1568 } 1569 bool isPostIdxImm8s4() const { 1570 if (!isImm()) return false; 1571 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1572 if (!CE) return false; 1573 int64_t Val = CE->getValue(); 1574 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1575 (Val == INT32_MIN); 1576 } 1577 1578 bool isMSRMask() const { return Kind == k_MSRMask; } 1579 bool isBankedReg() const { return Kind == k_BankedReg; } 1580 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1581 1582 // NEON operands. 1583 bool isSingleSpacedVectorList() const { 1584 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1585 } 1586 bool isDoubleSpacedVectorList() const { 1587 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1588 } 1589 bool isVecListOneD() const { 1590 if (!isSingleSpacedVectorList()) return false; 1591 return VectorList.Count == 1; 1592 } 1593 1594 bool isVecListDPair() const { 1595 if (!isSingleSpacedVectorList()) return false; 1596 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1597 .contains(VectorList.RegNum)); 1598 } 1599 1600 bool isVecListThreeD() const { 1601 if (!isSingleSpacedVectorList()) return false; 1602 return VectorList.Count == 3; 1603 } 1604 1605 bool isVecListFourD() const { 1606 if (!isSingleSpacedVectorList()) return false; 1607 return VectorList.Count == 4; 1608 } 1609 1610 bool isVecListDPairSpaced() const { 1611 if (Kind != k_VectorList) return false; 1612 if (isSingleSpacedVectorList()) return false; 1613 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1614 .contains(VectorList.RegNum)); 1615 } 1616 1617 bool isVecListThreeQ() const { 1618 if (!isDoubleSpacedVectorList()) return false; 1619 return VectorList.Count == 3; 1620 } 1621 1622 bool isVecListFourQ() const { 1623 if (!isDoubleSpacedVectorList()) return false; 1624 return VectorList.Count == 4; 1625 } 1626 1627 bool isSingleSpacedVectorAllLanes() const { 1628 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1629 } 1630 bool isDoubleSpacedVectorAllLanes() const { 1631 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1632 } 1633 bool isVecListOneDAllLanes() const { 1634 if (!isSingleSpacedVectorAllLanes()) return false; 1635 return VectorList.Count == 1; 1636 } 1637 1638 bool isVecListDPairAllLanes() const { 1639 if (!isSingleSpacedVectorAllLanes()) return false; 1640 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1641 .contains(VectorList.RegNum)); 1642 } 1643 1644 bool isVecListDPairSpacedAllLanes() const { 1645 if (!isDoubleSpacedVectorAllLanes()) return false; 1646 return VectorList.Count == 2; 1647 } 1648 1649 bool isVecListThreeDAllLanes() const { 1650 if (!isSingleSpacedVectorAllLanes()) return false; 1651 return VectorList.Count == 3; 1652 } 1653 1654 bool isVecListThreeQAllLanes() const { 1655 if (!isDoubleSpacedVectorAllLanes()) return false; 1656 return VectorList.Count == 3; 1657 } 1658 1659 bool isVecListFourDAllLanes() const { 1660 if (!isSingleSpacedVectorAllLanes()) return false; 1661 return VectorList.Count == 4; 1662 } 1663 1664 bool isVecListFourQAllLanes() const { 1665 if (!isDoubleSpacedVectorAllLanes()) return false; 1666 return VectorList.Count == 4; 1667 } 1668 1669 bool isSingleSpacedVectorIndexed() const { 1670 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1671 } 1672 bool isDoubleSpacedVectorIndexed() const { 1673 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1674 } 1675 bool isVecListOneDByteIndexed() const { 1676 if (!isSingleSpacedVectorIndexed()) return false; 1677 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1678 } 1679 1680 bool isVecListOneDHWordIndexed() const { 1681 if (!isSingleSpacedVectorIndexed()) return false; 1682 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1683 } 1684 1685 bool isVecListOneDWordIndexed() const { 1686 if (!isSingleSpacedVectorIndexed()) return false; 1687 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1688 } 1689 1690 bool isVecListTwoDByteIndexed() const { 1691 if (!isSingleSpacedVectorIndexed()) return false; 1692 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1693 } 1694 1695 bool isVecListTwoDHWordIndexed() const { 1696 if (!isSingleSpacedVectorIndexed()) return false; 1697 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1698 } 1699 1700 bool isVecListTwoQWordIndexed() const { 1701 if (!isDoubleSpacedVectorIndexed()) return false; 1702 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1703 } 1704 1705 bool isVecListTwoQHWordIndexed() const { 1706 if (!isDoubleSpacedVectorIndexed()) return false; 1707 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1708 } 1709 1710 bool isVecListTwoDWordIndexed() const { 1711 if (!isSingleSpacedVectorIndexed()) return false; 1712 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1713 } 1714 1715 bool isVecListThreeDByteIndexed() const { 1716 if (!isSingleSpacedVectorIndexed()) return false; 1717 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1718 } 1719 1720 bool isVecListThreeDHWordIndexed() const { 1721 if (!isSingleSpacedVectorIndexed()) return false; 1722 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1723 } 1724 1725 bool isVecListThreeQWordIndexed() const { 1726 if (!isDoubleSpacedVectorIndexed()) return false; 1727 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1728 } 1729 1730 bool isVecListThreeQHWordIndexed() const { 1731 if (!isDoubleSpacedVectorIndexed()) return false; 1732 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1733 } 1734 1735 bool isVecListThreeDWordIndexed() const { 1736 if (!isSingleSpacedVectorIndexed()) return false; 1737 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1738 } 1739 1740 bool isVecListFourDByteIndexed() const { 1741 if (!isSingleSpacedVectorIndexed()) return false; 1742 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1743 } 1744 1745 bool isVecListFourDHWordIndexed() const { 1746 if (!isSingleSpacedVectorIndexed()) return false; 1747 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1748 } 1749 1750 bool isVecListFourQWordIndexed() const { 1751 if (!isDoubleSpacedVectorIndexed()) return false; 1752 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1753 } 1754 1755 bool isVecListFourQHWordIndexed() const { 1756 if (!isDoubleSpacedVectorIndexed()) return false; 1757 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1758 } 1759 1760 bool isVecListFourDWordIndexed() const { 1761 if (!isSingleSpacedVectorIndexed()) return false; 1762 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1763 } 1764 1765 bool isVectorIndex8() const { 1766 if (Kind != k_VectorIndex) return false; 1767 return VectorIndex.Val < 8; 1768 } 1769 bool isVectorIndex16() const { 1770 if (Kind != k_VectorIndex) return false; 1771 return VectorIndex.Val < 4; 1772 } 1773 bool isVectorIndex32() const { 1774 if (Kind != k_VectorIndex) return false; 1775 return VectorIndex.Val < 2; 1776 } 1777 1778 bool isNEONi8splat() const { 1779 if (!isImm()) return false; 1780 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1781 // Must be a constant. 1782 if (!CE) return false; 1783 int64_t Value = CE->getValue(); 1784 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1785 // value. 1786 return Value >= 0 && Value < 256; 1787 } 1788 1789 bool isNEONi16splat() const { 1790 if (isNEONByteReplicate(2)) 1791 return false; // Leave that for bytes replication and forbid by default. 1792 if (!isImm()) 1793 return false; 1794 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1795 // Must be a constant. 1796 if (!CE) return false; 1797 unsigned Value = CE->getValue(); 1798 return ARM_AM::isNEONi16splat(Value); 1799 } 1800 1801 bool isNEONi16splatNot() const { 1802 if (!isImm()) 1803 return false; 1804 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1805 // Must be a constant. 1806 if (!CE) return false; 1807 unsigned Value = CE->getValue(); 1808 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1809 } 1810 1811 bool isNEONi32splat() const { 1812 if (isNEONByteReplicate(4)) 1813 return false; // Leave that for bytes replication and forbid by default. 1814 if (!isImm()) 1815 return false; 1816 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1817 // Must be a constant. 1818 if (!CE) return false; 1819 unsigned Value = CE->getValue(); 1820 return ARM_AM::isNEONi32splat(Value); 1821 } 1822 1823 bool isNEONi32splatNot() const { 1824 if (!isImm()) 1825 return false; 1826 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1827 // Must be a constant. 1828 if (!CE) return false; 1829 unsigned Value = CE->getValue(); 1830 return ARM_AM::isNEONi32splat(~Value); 1831 } 1832 1833 bool isNEONByteReplicate(unsigned NumBytes) const { 1834 if (!isImm()) 1835 return false; 1836 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1837 // Must be a constant. 1838 if (!CE) 1839 return false; 1840 int64_t Value = CE->getValue(); 1841 if (!Value) 1842 return false; // Don't bother with zero. 1843 1844 unsigned char B = Value & 0xff; 1845 for (unsigned i = 1; i < NumBytes; ++i) { 1846 Value >>= 8; 1847 if ((Value & 0xff) != B) 1848 return false; 1849 } 1850 return true; 1851 } 1852 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1853 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1854 bool isNEONi32vmov() const { 1855 if (isNEONByteReplicate(4)) 1856 return false; // Let it to be classified as byte-replicate case. 1857 if (!isImm()) 1858 return false; 1859 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1860 // Must be a constant. 1861 if (!CE) 1862 return false; 1863 int64_t Value = CE->getValue(); 1864 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1865 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1866 // FIXME: This is probably wrong and a copy and paste from previous example 1867 return (Value >= 0 && Value < 256) || 1868 (Value >= 0x0100 && Value <= 0xff00) || 1869 (Value >= 0x010000 && Value <= 0xff0000) || 1870 (Value >= 0x01000000 && Value <= 0xff000000) || 1871 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1872 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1873 } 1874 bool isNEONi32vmovNeg() const { 1875 if (!isImm()) return false; 1876 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1877 // Must be a constant. 1878 if (!CE) return false; 1879 int64_t Value = ~CE->getValue(); 1880 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1881 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1882 // FIXME: This is probably wrong and a copy and paste from previous example 1883 return (Value >= 0 && Value < 256) || 1884 (Value >= 0x0100 && Value <= 0xff00) || 1885 (Value >= 0x010000 && Value <= 0xff0000) || 1886 (Value >= 0x01000000 && Value <= 0xff000000) || 1887 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1888 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1889 } 1890 1891 bool isNEONi64splat() const { 1892 if (!isImm()) return false; 1893 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1894 // Must be a constant. 1895 if (!CE) return false; 1896 uint64_t Value = CE->getValue(); 1897 // i64 value with each byte being either 0 or 0xff. 1898 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1899 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1900 return true; 1901 } 1902 1903 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1904 // Add as immediates when possible. Null MCExpr = 0. 1905 if (!Expr) 1906 Inst.addOperand(MCOperand::createImm(0)); 1907 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1908 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1909 else 1910 Inst.addOperand(MCOperand::createExpr(Expr)); 1911 } 1912 1913 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 1914 assert(N == 1 && "Invalid number of operands!"); 1915 addExpr(Inst, getImm()); 1916 } 1917 1918 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 1919 assert(N == 1 && "Invalid number of operands!"); 1920 addExpr(Inst, getImm()); 1921 } 1922 1923 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1924 assert(N == 2 && "Invalid number of operands!"); 1925 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1926 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1927 Inst.addOperand(MCOperand::createReg(RegNum)); 1928 } 1929 1930 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1931 assert(N == 1 && "Invalid number of operands!"); 1932 Inst.addOperand(MCOperand::createImm(getCoproc())); 1933 } 1934 1935 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1936 assert(N == 1 && "Invalid number of operands!"); 1937 Inst.addOperand(MCOperand::createImm(getCoproc())); 1938 } 1939 1940 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1941 assert(N == 1 && "Invalid number of operands!"); 1942 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1943 } 1944 1945 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1946 assert(N == 1 && "Invalid number of operands!"); 1947 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1948 } 1949 1950 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1951 assert(N == 1 && "Invalid number of operands!"); 1952 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1953 } 1954 1955 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1956 assert(N == 1 && "Invalid number of operands!"); 1957 Inst.addOperand(MCOperand::createReg(getReg())); 1958 } 1959 1960 void addRegOperands(MCInst &Inst, unsigned N) const { 1961 assert(N == 1 && "Invalid number of operands!"); 1962 Inst.addOperand(MCOperand::createReg(getReg())); 1963 } 1964 1965 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1966 assert(N == 3 && "Invalid number of operands!"); 1967 assert(isRegShiftedReg() && 1968 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1969 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1970 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1971 Inst.addOperand(MCOperand::createImm( 1972 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1973 } 1974 1975 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1976 assert(N == 2 && "Invalid number of operands!"); 1977 assert(isRegShiftedImm() && 1978 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1979 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1980 // Shift of #32 is encoded as 0 where permitted 1981 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1982 Inst.addOperand(MCOperand::createImm( 1983 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1984 } 1985 1986 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1987 assert(N == 1 && "Invalid number of operands!"); 1988 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1989 ShifterImm.Imm)); 1990 } 1991 1992 void addRegListOperands(MCInst &Inst, unsigned N) const { 1993 assert(N == 1 && "Invalid number of operands!"); 1994 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1995 for (SmallVectorImpl<unsigned>::const_iterator 1996 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1997 Inst.addOperand(MCOperand::createReg(*I)); 1998 } 1999 2000 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2001 addRegListOperands(Inst, N); 2002 } 2003 2004 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2005 addRegListOperands(Inst, N); 2006 } 2007 2008 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2009 assert(N == 1 && "Invalid number of operands!"); 2010 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2011 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2012 } 2013 2014 void addModImmOperands(MCInst &Inst, unsigned N) const { 2015 assert(N == 1 && "Invalid number of operands!"); 2016 2017 // Support for fixups (MCFixup) 2018 if (isImm()) 2019 return addImmOperands(Inst, N); 2020 2021 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2022 } 2023 2024 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2025 assert(N == 1 && "Invalid number of operands!"); 2026 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2027 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2028 Inst.addOperand(MCOperand::createImm(Enc)); 2029 } 2030 2031 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2032 assert(N == 1 && "Invalid number of operands!"); 2033 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2034 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2035 Inst.addOperand(MCOperand::createImm(Enc)); 2036 } 2037 2038 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2039 assert(N == 1 && "Invalid number of operands!"); 2040 // Munge the lsb/width into a bitfield mask. 2041 unsigned lsb = Bitfield.LSB; 2042 unsigned width = Bitfield.Width; 2043 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2044 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2045 (32 - (lsb + width))); 2046 Inst.addOperand(MCOperand::createImm(Mask)); 2047 } 2048 2049 void addImmOperands(MCInst &Inst, unsigned N) const { 2050 assert(N == 1 && "Invalid number of operands!"); 2051 addExpr(Inst, getImm()); 2052 } 2053 2054 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2055 assert(N == 1 && "Invalid number of operands!"); 2056 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2057 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2058 } 2059 2060 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2061 assert(N == 1 && "Invalid number of operands!"); 2062 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2063 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2064 } 2065 2066 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2067 assert(N == 1 && "Invalid number of operands!"); 2068 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2069 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2070 Inst.addOperand(MCOperand::createImm(Val)); 2071 } 2072 2073 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2074 assert(N == 1 && "Invalid number of operands!"); 2075 // FIXME: We really want to scale the value here, but the LDRD/STRD 2076 // instruction don't encode operands that way yet. 2077 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2078 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2079 } 2080 2081 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2082 assert(N == 1 && "Invalid number of operands!"); 2083 // The immediate is scaled by four in the encoding and is stored 2084 // in the MCInst as such. Lop off the low two bits here. 2085 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2086 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2087 } 2088 2089 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2090 assert(N == 1 && "Invalid number of operands!"); 2091 // The immediate is scaled by four in the encoding and is stored 2092 // in the MCInst as such. Lop off the low two bits here. 2093 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2094 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2095 } 2096 2097 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2098 assert(N == 1 && "Invalid number of operands!"); 2099 // The immediate is scaled by four in the encoding and is stored 2100 // in the MCInst as such. Lop off the low two bits here. 2101 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2102 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2103 } 2104 2105 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2106 assert(N == 1 && "Invalid number of operands!"); 2107 // The constant encodes as the immediate-1, and we store in the instruction 2108 // the bits as encoded, so subtract off one here. 2109 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2110 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2111 } 2112 2113 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2114 assert(N == 1 && "Invalid number of operands!"); 2115 // The constant encodes as the immediate-1, and we store in the instruction 2116 // the bits as encoded, so subtract off one here. 2117 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2118 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2119 } 2120 2121 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2122 assert(N == 1 && "Invalid number of operands!"); 2123 // The constant encodes as the immediate, except for 32, which encodes as 2124 // zero. 2125 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2126 unsigned Imm = CE->getValue(); 2127 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2128 } 2129 2130 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2131 assert(N == 1 && "Invalid number of operands!"); 2132 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2133 // the instruction as well. 2134 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2135 int Val = CE->getValue(); 2136 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2137 } 2138 2139 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2140 assert(N == 1 && "Invalid number of operands!"); 2141 // The operand is actually a t2_so_imm, but we have its bitwise 2142 // negation in the assembly source, so twiddle it here. 2143 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2144 Inst.addOperand(MCOperand::createImm(~CE->getValue())); 2145 } 2146 2147 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2148 assert(N == 1 && "Invalid number of operands!"); 2149 // The operand is actually a t2_so_imm, but we have its 2150 // negation in the assembly source, so twiddle it here. 2151 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2152 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2153 } 2154 2155 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2156 assert(N == 1 && "Invalid number of operands!"); 2157 // The operand is actually an imm0_4095, but we have its 2158 // negation in the assembly source, so twiddle it here. 2159 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2160 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2161 } 2162 2163 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2164 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2165 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2166 return; 2167 } 2168 2169 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2170 assert(SR && "Unknown value type!"); 2171 Inst.addOperand(MCOperand::createExpr(SR)); 2172 } 2173 2174 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2175 assert(N == 1 && "Invalid number of operands!"); 2176 if (isImm()) { 2177 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2178 if (CE) { 2179 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2180 return; 2181 } 2182 2183 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2184 2185 assert(SR && "Unknown value type!"); 2186 Inst.addOperand(MCOperand::createExpr(SR)); 2187 return; 2188 } 2189 2190 assert(isMem() && "Unknown value type!"); 2191 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2192 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2193 } 2194 2195 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2196 assert(N == 1 && "Invalid number of operands!"); 2197 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2198 } 2199 2200 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2201 assert(N == 1 && "Invalid number of operands!"); 2202 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2203 } 2204 2205 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2206 assert(N == 1 && "Invalid number of operands!"); 2207 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2208 } 2209 2210 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2211 assert(N == 1 && "Invalid number of operands!"); 2212 int32_t Imm = Memory.OffsetImm->getValue(); 2213 Inst.addOperand(MCOperand::createImm(Imm)); 2214 } 2215 2216 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2217 assert(N == 1 && "Invalid number of operands!"); 2218 assert(isImm() && "Not an immediate!"); 2219 2220 // If we have an immediate that's not a constant, treat it as a label 2221 // reference needing a fixup. 2222 if (!isa<MCConstantExpr>(getImm())) { 2223 Inst.addOperand(MCOperand::createExpr(getImm())); 2224 return; 2225 } 2226 2227 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2228 int Val = CE->getValue(); 2229 Inst.addOperand(MCOperand::createImm(Val)); 2230 } 2231 2232 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2233 assert(N == 2 && "Invalid number of operands!"); 2234 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2235 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2236 } 2237 2238 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2239 addAlignedMemoryOperands(Inst, N); 2240 } 2241 2242 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2243 addAlignedMemoryOperands(Inst, N); 2244 } 2245 2246 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2247 addAlignedMemoryOperands(Inst, N); 2248 } 2249 2250 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2251 addAlignedMemoryOperands(Inst, N); 2252 } 2253 2254 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2255 addAlignedMemoryOperands(Inst, N); 2256 } 2257 2258 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2259 addAlignedMemoryOperands(Inst, N); 2260 } 2261 2262 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2263 addAlignedMemoryOperands(Inst, N); 2264 } 2265 2266 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2267 addAlignedMemoryOperands(Inst, N); 2268 } 2269 2270 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2271 addAlignedMemoryOperands(Inst, N); 2272 } 2273 2274 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2275 addAlignedMemoryOperands(Inst, N); 2276 } 2277 2278 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2279 addAlignedMemoryOperands(Inst, N); 2280 } 2281 2282 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2283 assert(N == 3 && "Invalid number of operands!"); 2284 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2285 if (!Memory.OffsetRegNum) { 2286 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2287 // Special case for #-0 2288 if (Val == INT32_MIN) Val = 0; 2289 if (Val < 0) Val = -Val; 2290 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2291 } else { 2292 // For register offset, we encode the shift type and negation flag 2293 // here. 2294 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2295 Memory.ShiftImm, Memory.ShiftType); 2296 } 2297 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2298 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2299 Inst.addOperand(MCOperand::createImm(Val)); 2300 } 2301 2302 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2303 assert(N == 2 && "Invalid number of operands!"); 2304 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2305 assert(CE && "non-constant AM2OffsetImm operand!"); 2306 int32_t Val = CE->getValue(); 2307 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2308 // Special case for #-0 2309 if (Val == INT32_MIN) Val = 0; 2310 if (Val < 0) Val = -Val; 2311 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2312 Inst.addOperand(MCOperand::createReg(0)); 2313 Inst.addOperand(MCOperand::createImm(Val)); 2314 } 2315 2316 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2317 assert(N == 3 && "Invalid number of operands!"); 2318 // If we have an immediate that's not a constant, treat it as a label 2319 // reference needing a fixup. If it is a constant, it's something else 2320 // and we reject it. 2321 if (isImm()) { 2322 Inst.addOperand(MCOperand::createExpr(getImm())); 2323 Inst.addOperand(MCOperand::createReg(0)); 2324 Inst.addOperand(MCOperand::createImm(0)); 2325 return; 2326 } 2327 2328 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2329 if (!Memory.OffsetRegNum) { 2330 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2331 // Special case for #-0 2332 if (Val == INT32_MIN) Val = 0; 2333 if (Val < 0) Val = -Val; 2334 Val = ARM_AM::getAM3Opc(AddSub, Val); 2335 } else { 2336 // For register offset, we encode the shift type and negation flag 2337 // here. 2338 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2339 } 2340 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2341 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2342 Inst.addOperand(MCOperand::createImm(Val)); 2343 } 2344 2345 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2346 assert(N == 2 && "Invalid number of operands!"); 2347 if (Kind == k_PostIndexRegister) { 2348 int32_t Val = 2349 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2350 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2351 Inst.addOperand(MCOperand::createImm(Val)); 2352 return; 2353 } 2354 2355 // Constant offset. 2356 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2357 int32_t Val = CE->getValue(); 2358 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2359 // Special case for #-0 2360 if (Val == INT32_MIN) Val = 0; 2361 if (Val < 0) Val = -Val; 2362 Val = ARM_AM::getAM3Opc(AddSub, Val); 2363 Inst.addOperand(MCOperand::createReg(0)); 2364 Inst.addOperand(MCOperand::createImm(Val)); 2365 } 2366 2367 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2368 assert(N == 2 && "Invalid number of operands!"); 2369 // If we have an immediate that's not a constant, treat it as a label 2370 // reference needing a fixup. If it is a constant, it's something else 2371 // and we reject it. 2372 if (isImm()) { 2373 Inst.addOperand(MCOperand::createExpr(getImm())); 2374 Inst.addOperand(MCOperand::createImm(0)); 2375 return; 2376 } 2377 2378 // The lower two bits are always zero and as such are not encoded. 2379 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2380 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2381 // Special case for #-0 2382 if (Val == INT32_MIN) Val = 0; 2383 if (Val < 0) Val = -Val; 2384 Val = ARM_AM::getAM5Opc(AddSub, Val); 2385 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2386 Inst.addOperand(MCOperand::createImm(Val)); 2387 } 2388 2389 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2390 assert(N == 2 && "Invalid number of operands!"); 2391 // If we have an immediate that's not a constant, treat it as a label 2392 // reference needing a fixup. If it is a constant, it's something else 2393 // and we reject it. 2394 if (isImm()) { 2395 Inst.addOperand(MCOperand::createExpr(getImm())); 2396 Inst.addOperand(MCOperand::createImm(0)); 2397 return; 2398 } 2399 2400 // The lower bit is always zero and as such is not encoded. 2401 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2402 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2403 // Special case for #-0 2404 if (Val == INT32_MIN) Val = 0; 2405 if (Val < 0) Val = -Val; 2406 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2407 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2408 Inst.addOperand(MCOperand::createImm(Val)); 2409 } 2410 2411 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2412 assert(N == 2 && "Invalid number of operands!"); 2413 // If we have an immediate that's not a constant, treat it as a label 2414 // reference needing a fixup. If it is a constant, it's something else 2415 // and we reject it. 2416 if (isImm()) { 2417 Inst.addOperand(MCOperand::createExpr(getImm())); 2418 Inst.addOperand(MCOperand::createImm(0)); 2419 return; 2420 } 2421 2422 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2423 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2424 Inst.addOperand(MCOperand::createImm(Val)); 2425 } 2426 2427 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2428 assert(N == 2 && "Invalid number of operands!"); 2429 // The lower two bits are always zero and as such are not encoded. 2430 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2431 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2432 Inst.addOperand(MCOperand::createImm(Val)); 2433 } 2434 2435 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2436 assert(N == 2 && "Invalid number of operands!"); 2437 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2438 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2439 Inst.addOperand(MCOperand::createImm(Val)); 2440 } 2441 2442 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2443 addMemImm8OffsetOperands(Inst, N); 2444 } 2445 2446 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2447 addMemImm8OffsetOperands(Inst, N); 2448 } 2449 2450 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2451 assert(N == 2 && "Invalid number of operands!"); 2452 // If this is an immediate, it's a label reference. 2453 if (isImm()) { 2454 addExpr(Inst, getImm()); 2455 Inst.addOperand(MCOperand::createImm(0)); 2456 return; 2457 } 2458 2459 // Otherwise, it's a normal memory reg+offset. 2460 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2461 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2462 Inst.addOperand(MCOperand::createImm(Val)); 2463 } 2464 2465 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2466 assert(N == 2 && "Invalid number of operands!"); 2467 // If this is an immediate, it's a label reference. 2468 if (isImm()) { 2469 addExpr(Inst, getImm()); 2470 Inst.addOperand(MCOperand::createImm(0)); 2471 return; 2472 } 2473 2474 // Otherwise, it's a normal memory reg+offset. 2475 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2476 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2477 Inst.addOperand(MCOperand::createImm(Val)); 2478 } 2479 2480 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2481 assert(N == 1 && "Invalid number of operands!"); 2482 // This is container for the immediate that we will create the constant 2483 // pool from 2484 addExpr(Inst, getConstantPoolImm()); 2485 return; 2486 } 2487 2488 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2489 assert(N == 2 && "Invalid number of operands!"); 2490 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2491 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2492 } 2493 2494 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2495 assert(N == 2 && "Invalid number of operands!"); 2496 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2497 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2498 } 2499 2500 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2501 assert(N == 3 && "Invalid number of operands!"); 2502 unsigned Val = 2503 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2504 Memory.ShiftImm, Memory.ShiftType); 2505 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2506 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2507 Inst.addOperand(MCOperand::createImm(Val)); 2508 } 2509 2510 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2511 assert(N == 3 && "Invalid number of operands!"); 2512 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2513 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2514 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2515 } 2516 2517 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2518 assert(N == 2 && "Invalid number of operands!"); 2519 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2520 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2521 } 2522 2523 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2524 assert(N == 2 && "Invalid number of operands!"); 2525 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2526 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2527 Inst.addOperand(MCOperand::createImm(Val)); 2528 } 2529 2530 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2531 assert(N == 2 && "Invalid number of operands!"); 2532 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2533 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2534 Inst.addOperand(MCOperand::createImm(Val)); 2535 } 2536 2537 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2538 assert(N == 2 && "Invalid number of operands!"); 2539 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2540 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2541 Inst.addOperand(MCOperand::createImm(Val)); 2542 } 2543 2544 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2545 assert(N == 2 && "Invalid number of operands!"); 2546 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2547 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2548 Inst.addOperand(MCOperand::createImm(Val)); 2549 } 2550 2551 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2552 assert(N == 1 && "Invalid number of operands!"); 2553 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2554 assert(CE && "non-constant post-idx-imm8 operand!"); 2555 int Imm = CE->getValue(); 2556 bool isAdd = Imm >= 0; 2557 if (Imm == INT32_MIN) Imm = 0; 2558 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2559 Inst.addOperand(MCOperand::createImm(Imm)); 2560 } 2561 2562 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2563 assert(N == 1 && "Invalid number of operands!"); 2564 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2565 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2566 int Imm = CE->getValue(); 2567 bool isAdd = Imm >= 0; 2568 if (Imm == INT32_MIN) Imm = 0; 2569 // Immediate is scaled by 4. 2570 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2571 Inst.addOperand(MCOperand::createImm(Imm)); 2572 } 2573 2574 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2575 assert(N == 2 && "Invalid number of operands!"); 2576 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2577 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2578 } 2579 2580 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2581 assert(N == 2 && "Invalid number of operands!"); 2582 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2583 // The sign, shift type, and shift amount are encoded in a single operand 2584 // using the AM2 encoding helpers. 2585 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2586 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2587 PostIdxReg.ShiftTy); 2588 Inst.addOperand(MCOperand::createImm(Imm)); 2589 } 2590 2591 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2592 assert(N == 1 && "Invalid number of operands!"); 2593 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2594 } 2595 2596 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2597 assert(N == 1 && "Invalid number of operands!"); 2598 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2599 } 2600 2601 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2602 assert(N == 1 && "Invalid number of operands!"); 2603 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2604 } 2605 2606 void addVecListOperands(MCInst &Inst, unsigned N) const { 2607 assert(N == 1 && "Invalid number of operands!"); 2608 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2609 } 2610 2611 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2612 assert(N == 2 && "Invalid number of operands!"); 2613 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2614 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2615 } 2616 2617 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2618 assert(N == 1 && "Invalid number of operands!"); 2619 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2620 } 2621 2622 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2623 assert(N == 1 && "Invalid number of operands!"); 2624 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2625 } 2626 2627 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2628 assert(N == 1 && "Invalid number of operands!"); 2629 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2630 } 2631 2632 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2633 assert(N == 1 && "Invalid number of operands!"); 2634 // The immediate encodes the type of constant as well as the value. 2635 // Mask in that this is an i8 splat. 2636 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2637 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2638 } 2639 2640 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2641 assert(N == 1 && "Invalid number of operands!"); 2642 // The immediate encodes the type of constant as well as the value. 2643 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2644 unsigned Value = CE->getValue(); 2645 Value = ARM_AM::encodeNEONi16splat(Value); 2646 Inst.addOperand(MCOperand::createImm(Value)); 2647 } 2648 2649 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2650 assert(N == 1 && "Invalid number of operands!"); 2651 // The immediate encodes the type of constant as well as the value. 2652 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2653 unsigned Value = CE->getValue(); 2654 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2655 Inst.addOperand(MCOperand::createImm(Value)); 2656 } 2657 2658 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2659 assert(N == 1 && "Invalid number of operands!"); 2660 // The immediate encodes the type of constant as well as the value. 2661 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2662 unsigned Value = CE->getValue(); 2663 Value = ARM_AM::encodeNEONi32splat(Value); 2664 Inst.addOperand(MCOperand::createImm(Value)); 2665 } 2666 2667 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2668 assert(N == 1 && "Invalid number of operands!"); 2669 // The immediate encodes the type of constant as well as the value. 2670 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2671 unsigned Value = CE->getValue(); 2672 Value = ARM_AM::encodeNEONi32splat(~Value); 2673 Inst.addOperand(MCOperand::createImm(Value)); 2674 } 2675 2676 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2677 assert(N == 1 && "Invalid number of operands!"); 2678 // The immediate encodes the type of constant as well as the value. 2679 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2680 unsigned Value = CE->getValue(); 2681 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2682 Inst.getOpcode() == ARM::VMOVv16i8) && 2683 "All vmvn instructions that wants to replicate non-zero byte " 2684 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2685 unsigned B = ((~Value) & 0xff); 2686 B |= 0xe00; // cmode = 0b1110 2687 Inst.addOperand(MCOperand::createImm(B)); 2688 } 2689 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2690 assert(N == 1 && "Invalid number of operands!"); 2691 // The immediate encodes the type of constant as well as the value. 2692 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2693 unsigned Value = CE->getValue(); 2694 if (Value >= 256 && Value <= 0xffff) 2695 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2696 else if (Value > 0xffff && Value <= 0xffffff) 2697 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2698 else if (Value > 0xffffff) 2699 Value = (Value >> 24) | 0x600; 2700 Inst.addOperand(MCOperand::createImm(Value)); 2701 } 2702 2703 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2704 assert(N == 1 && "Invalid number of operands!"); 2705 // The immediate encodes the type of constant as well as the value. 2706 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2707 unsigned Value = CE->getValue(); 2708 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2709 Inst.getOpcode() == ARM::VMOVv16i8) && 2710 "All instructions that wants to replicate non-zero byte " 2711 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2712 unsigned B = Value & 0xff; 2713 B |= 0xe00; // cmode = 0b1110 2714 Inst.addOperand(MCOperand::createImm(B)); 2715 } 2716 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2717 assert(N == 1 && "Invalid number of operands!"); 2718 // The immediate encodes the type of constant as well as the value. 2719 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2720 unsigned Value = ~CE->getValue(); 2721 if (Value >= 256 && Value <= 0xffff) 2722 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2723 else if (Value > 0xffff && Value <= 0xffffff) 2724 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2725 else if (Value > 0xffffff) 2726 Value = (Value >> 24) | 0x600; 2727 Inst.addOperand(MCOperand::createImm(Value)); 2728 } 2729 2730 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2731 assert(N == 1 && "Invalid number of operands!"); 2732 // The immediate encodes the type of constant as well as the value. 2733 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2734 uint64_t Value = CE->getValue(); 2735 unsigned Imm = 0; 2736 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2737 Imm |= (Value & 1) << i; 2738 } 2739 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2740 } 2741 2742 void print(raw_ostream &OS) const override; 2743 2744 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2745 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2746 Op->ITMask.Mask = Mask; 2747 Op->StartLoc = S; 2748 Op->EndLoc = S; 2749 return Op; 2750 } 2751 2752 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2753 SMLoc S) { 2754 auto Op = make_unique<ARMOperand>(k_CondCode); 2755 Op->CC.Val = CC; 2756 Op->StartLoc = S; 2757 Op->EndLoc = S; 2758 return Op; 2759 } 2760 2761 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2762 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2763 Op->Cop.Val = CopVal; 2764 Op->StartLoc = S; 2765 Op->EndLoc = S; 2766 return Op; 2767 } 2768 2769 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2770 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2771 Op->Cop.Val = CopVal; 2772 Op->StartLoc = S; 2773 Op->EndLoc = S; 2774 return Op; 2775 } 2776 2777 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2778 SMLoc E) { 2779 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2780 Op->Cop.Val = Val; 2781 Op->StartLoc = S; 2782 Op->EndLoc = E; 2783 return Op; 2784 } 2785 2786 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2787 auto Op = make_unique<ARMOperand>(k_CCOut); 2788 Op->Reg.RegNum = RegNum; 2789 Op->StartLoc = S; 2790 Op->EndLoc = S; 2791 return Op; 2792 } 2793 2794 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2795 auto Op = make_unique<ARMOperand>(k_Token); 2796 Op->Tok.Data = Str.data(); 2797 Op->Tok.Length = Str.size(); 2798 Op->StartLoc = S; 2799 Op->EndLoc = S; 2800 return Op; 2801 } 2802 2803 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2804 SMLoc E) { 2805 auto Op = make_unique<ARMOperand>(k_Register); 2806 Op->Reg.RegNum = RegNum; 2807 Op->StartLoc = S; 2808 Op->EndLoc = E; 2809 return Op; 2810 } 2811 2812 static std::unique_ptr<ARMOperand> 2813 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2814 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2815 SMLoc E) { 2816 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2817 Op->RegShiftedReg.ShiftTy = ShTy; 2818 Op->RegShiftedReg.SrcReg = SrcReg; 2819 Op->RegShiftedReg.ShiftReg = ShiftReg; 2820 Op->RegShiftedReg.ShiftImm = ShiftImm; 2821 Op->StartLoc = S; 2822 Op->EndLoc = E; 2823 return Op; 2824 } 2825 2826 static std::unique_ptr<ARMOperand> 2827 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2828 unsigned ShiftImm, SMLoc S, SMLoc E) { 2829 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2830 Op->RegShiftedImm.ShiftTy = ShTy; 2831 Op->RegShiftedImm.SrcReg = SrcReg; 2832 Op->RegShiftedImm.ShiftImm = ShiftImm; 2833 Op->StartLoc = S; 2834 Op->EndLoc = E; 2835 return Op; 2836 } 2837 2838 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2839 SMLoc S, SMLoc E) { 2840 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2841 Op->ShifterImm.isASR = isASR; 2842 Op->ShifterImm.Imm = Imm; 2843 Op->StartLoc = S; 2844 Op->EndLoc = E; 2845 return Op; 2846 } 2847 2848 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2849 SMLoc E) { 2850 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2851 Op->RotImm.Imm = Imm; 2852 Op->StartLoc = S; 2853 Op->EndLoc = E; 2854 return Op; 2855 } 2856 2857 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2858 SMLoc S, SMLoc E) { 2859 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2860 Op->ModImm.Bits = Bits; 2861 Op->ModImm.Rot = Rot; 2862 Op->StartLoc = S; 2863 Op->EndLoc = E; 2864 return Op; 2865 } 2866 2867 static std::unique_ptr<ARMOperand> 2868 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 2869 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 2870 Op->Imm.Val = Val; 2871 Op->StartLoc = S; 2872 Op->EndLoc = E; 2873 return Op; 2874 } 2875 2876 static std::unique_ptr<ARMOperand> 2877 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2878 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2879 Op->Bitfield.LSB = LSB; 2880 Op->Bitfield.Width = Width; 2881 Op->StartLoc = S; 2882 Op->EndLoc = E; 2883 return Op; 2884 } 2885 2886 static std::unique_ptr<ARMOperand> 2887 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2888 SMLoc StartLoc, SMLoc EndLoc) { 2889 assert (Regs.size() > 0 && "RegList contains no registers?"); 2890 KindTy Kind = k_RegisterList; 2891 2892 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2893 Kind = k_DPRRegisterList; 2894 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2895 contains(Regs.front().second)) 2896 Kind = k_SPRRegisterList; 2897 2898 // Sort based on the register encoding values. 2899 array_pod_sort(Regs.begin(), Regs.end()); 2900 2901 auto Op = make_unique<ARMOperand>(Kind); 2902 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2903 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2904 Op->Registers.push_back(I->second); 2905 Op->StartLoc = StartLoc; 2906 Op->EndLoc = EndLoc; 2907 return Op; 2908 } 2909 2910 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2911 unsigned Count, 2912 bool isDoubleSpaced, 2913 SMLoc S, SMLoc E) { 2914 auto Op = make_unique<ARMOperand>(k_VectorList); 2915 Op->VectorList.RegNum = RegNum; 2916 Op->VectorList.Count = Count; 2917 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2918 Op->StartLoc = S; 2919 Op->EndLoc = E; 2920 return Op; 2921 } 2922 2923 static std::unique_ptr<ARMOperand> 2924 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2925 SMLoc S, SMLoc E) { 2926 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2927 Op->VectorList.RegNum = RegNum; 2928 Op->VectorList.Count = Count; 2929 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2930 Op->StartLoc = S; 2931 Op->EndLoc = E; 2932 return Op; 2933 } 2934 2935 static std::unique_ptr<ARMOperand> 2936 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2937 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2938 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2939 Op->VectorList.RegNum = RegNum; 2940 Op->VectorList.Count = Count; 2941 Op->VectorList.LaneIndex = Index; 2942 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2943 Op->StartLoc = S; 2944 Op->EndLoc = E; 2945 return Op; 2946 } 2947 2948 static std::unique_ptr<ARMOperand> 2949 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2950 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2951 Op->VectorIndex.Val = Idx; 2952 Op->StartLoc = S; 2953 Op->EndLoc = E; 2954 return Op; 2955 } 2956 2957 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2958 SMLoc E) { 2959 auto Op = make_unique<ARMOperand>(k_Immediate); 2960 Op->Imm.Val = Val; 2961 Op->StartLoc = S; 2962 Op->EndLoc = E; 2963 return Op; 2964 } 2965 2966 static std::unique_ptr<ARMOperand> 2967 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2968 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2969 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2970 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2971 auto Op = make_unique<ARMOperand>(k_Memory); 2972 Op->Memory.BaseRegNum = BaseRegNum; 2973 Op->Memory.OffsetImm = OffsetImm; 2974 Op->Memory.OffsetRegNum = OffsetRegNum; 2975 Op->Memory.ShiftType = ShiftType; 2976 Op->Memory.ShiftImm = ShiftImm; 2977 Op->Memory.Alignment = Alignment; 2978 Op->Memory.isNegative = isNegative; 2979 Op->StartLoc = S; 2980 Op->EndLoc = E; 2981 Op->AlignmentLoc = AlignmentLoc; 2982 return Op; 2983 } 2984 2985 static std::unique_ptr<ARMOperand> 2986 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2987 unsigned ShiftImm, SMLoc S, SMLoc E) { 2988 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2989 Op->PostIdxReg.RegNum = RegNum; 2990 Op->PostIdxReg.isAdd = isAdd; 2991 Op->PostIdxReg.ShiftTy = ShiftTy; 2992 Op->PostIdxReg.ShiftImm = ShiftImm; 2993 Op->StartLoc = S; 2994 Op->EndLoc = E; 2995 return Op; 2996 } 2997 2998 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2999 SMLoc S) { 3000 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3001 Op->MBOpt.Val = Opt; 3002 Op->StartLoc = S; 3003 Op->EndLoc = S; 3004 return Op; 3005 } 3006 3007 static std::unique_ptr<ARMOperand> 3008 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3009 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3010 Op->ISBOpt.Val = Opt; 3011 Op->StartLoc = S; 3012 Op->EndLoc = S; 3013 return Op; 3014 } 3015 3016 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3017 SMLoc S) { 3018 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3019 Op->IFlags.Val = IFlags; 3020 Op->StartLoc = S; 3021 Op->EndLoc = S; 3022 return Op; 3023 } 3024 3025 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3026 auto Op = make_unique<ARMOperand>(k_MSRMask); 3027 Op->MMask.Val = MMask; 3028 Op->StartLoc = S; 3029 Op->EndLoc = S; 3030 return Op; 3031 } 3032 3033 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3034 auto Op = make_unique<ARMOperand>(k_BankedReg); 3035 Op->BankedReg.Val = Reg; 3036 Op->StartLoc = S; 3037 Op->EndLoc = S; 3038 return Op; 3039 } 3040 }; 3041 3042 } // end anonymous namespace. 3043 3044 void ARMOperand::print(raw_ostream &OS) const { 3045 switch (Kind) { 3046 case k_CondCode: 3047 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3048 break; 3049 case k_CCOut: 3050 OS << "<ccout " << getReg() << ">"; 3051 break; 3052 case k_ITCondMask: { 3053 static const char *const MaskStr[] = { 3054 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 3055 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 3056 }; 3057 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3058 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3059 break; 3060 } 3061 case k_CoprocNum: 3062 OS << "<coprocessor number: " << getCoproc() << ">"; 3063 break; 3064 case k_CoprocReg: 3065 OS << "<coprocessor register: " << getCoproc() << ">"; 3066 break; 3067 case k_CoprocOption: 3068 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3069 break; 3070 case k_MSRMask: 3071 OS << "<mask: " << getMSRMask() << ">"; 3072 break; 3073 case k_BankedReg: 3074 OS << "<banked reg: " << getBankedReg() << ">"; 3075 break; 3076 case k_Immediate: 3077 OS << *getImm(); 3078 break; 3079 case k_MemBarrierOpt: 3080 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3081 break; 3082 case k_InstSyncBarrierOpt: 3083 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3084 break; 3085 case k_Memory: 3086 OS << "<memory " 3087 << " base:" << Memory.BaseRegNum; 3088 OS << ">"; 3089 break; 3090 case k_PostIndexRegister: 3091 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3092 << PostIdxReg.RegNum; 3093 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3094 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3095 << PostIdxReg.ShiftImm; 3096 OS << ">"; 3097 break; 3098 case k_ProcIFlags: { 3099 OS << "<ARM_PROC::"; 3100 unsigned IFlags = getProcIFlags(); 3101 for (int i=2; i >= 0; --i) 3102 if (IFlags & (1 << i)) 3103 OS << ARM_PROC::IFlagsToString(1 << i); 3104 OS << ">"; 3105 break; 3106 } 3107 case k_Register: 3108 OS << "<register " << getReg() << ">"; 3109 break; 3110 case k_ShifterImmediate: 3111 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3112 << " #" << ShifterImm.Imm << ">"; 3113 break; 3114 case k_ShiftedRegister: 3115 OS << "<so_reg_reg " 3116 << RegShiftedReg.SrcReg << " " 3117 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 3118 << " " << RegShiftedReg.ShiftReg << ">"; 3119 break; 3120 case k_ShiftedImmediate: 3121 OS << "<so_reg_imm " 3122 << RegShiftedImm.SrcReg << " " 3123 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 3124 << " #" << RegShiftedImm.ShiftImm << ">"; 3125 break; 3126 case k_RotateImmediate: 3127 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3128 break; 3129 case k_ModifiedImmediate: 3130 OS << "<mod_imm #" << ModImm.Bits << ", #" 3131 << ModImm.Rot << ")>"; 3132 break; 3133 case k_ConstantPoolImmediate: 3134 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3135 break; 3136 case k_BitfieldDescriptor: 3137 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3138 << ", width: " << Bitfield.Width << ">"; 3139 break; 3140 case k_RegisterList: 3141 case k_DPRRegisterList: 3142 case k_SPRRegisterList: { 3143 OS << "<register_list "; 3144 3145 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3146 for (SmallVectorImpl<unsigned>::const_iterator 3147 I = RegList.begin(), E = RegList.end(); I != E; ) { 3148 OS << *I; 3149 if (++I < E) OS << ", "; 3150 } 3151 3152 OS << ">"; 3153 break; 3154 } 3155 case k_VectorList: 3156 OS << "<vector_list " << VectorList.Count << " * " 3157 << VectorList.RegNum << ">"; 3158 break; 3159 case k_VectorListAllLanes: 3160 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3161 << VectorList.RegNum << ">"; 3162 break; 3163 case k_VectorListIndexed: 3164 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3165 << VectorList.Count << " * " << VectorList.RegNum << ">"; 3166 break; 3167 case k_Token: 3168 OS << "'" << getToken() << "'"; 3169 break; 3170 case k_VectorIndex: 3171 OS << "<vectorindex " << getVectorIndex() << ">"; 3172 break; 3173 } 3174 } 3175 3176 /// @name Auto-generated Match Functions 3177 /// { 3178 3179 static unsigned MatchRegisterName(StringRef Name); 3180 3181 /// } 3182 3183 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3184 SMLoc &StartLoc, SMLoc &EndLoc) { 3185 const AsmToken &Tok = getParser().getTok(); 3186 StartLoc = Tok.getLoc(); 3187 EndLoc = Tok.getEndLoc(); 3188 RegNo = tryParseRegister(); 3189 3190 return (RegNo == (unsigned)-1); 3191 } 3192 3193 /// Try to parse a register name. The token must be an Identifier when called, 3194 /// and if it is a register name the token is eaten and the register number is 3195 /// returned. Otherwise return -1. 3196 /// 3197 int ARMAsmParser::tryParseRegister() { 3198 MCAsmParser &Parser = getParser(); 3199 const AsmToken &Tok = Parser.getTok(); 3200 if (Tok.isNot(AsmToken::Identifier)) return -1; 3201 3202 std::string lowerCase = Tok.getString().lower(); 3203 unsigned RegNum = MatchRegisterName(lowerCase); 3204 if (!RegNum) { 3205 RegNum = StringSwitch<unsigned>(lowerCase) 3206 .Case("r13", ARM::SP) 3207 .Case("r14", ARM::LR) 3208 .Case("r15", ARM::PC) 3209 .Case("ip", ARM::R12) 3210 // Additional register name aliases for 'gas' compatibility. 3211 .Case("a1", ARM::R0) 3212 .Case("a2", ARM::R1) 3213 .Case("a3", ARM::R2) 3214 .Case("a4", ARM::R3) 3215 .Case("v1", ARM::R4) 3216 .Case("v2", ARM::R5) 3217 .Case("v3", ARM::R6) 3218 .Case("v4", ARM::R7) 3219 .Case("v5", ARM::R8) 3220 .Case("v6", ARM::R9) 3221 .Case("v7", ARM::R10) 3222 .Case("v8", ARM::R11) 3223 .Case("sb", ARM::R9) 3224 .Case("sl", ARM::R10) 3225 .Case("fp", ARM::R11) 3226 .Default(0); 3227 } 3228 if (!RegNum) { 3229 // Check for aliases registered via .req. Canonicalize to lower case. 3230 // That's more consistent since register names are case insensitive, and 3231 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3232 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3233 // If no match, return failure. 3234 if (Entry == RegisterReqs.end()) 3235 return -1; 3236 Parser.Lex(); // Eat identifier token. 3237 return Entry->getValue(); 3238 } 3239 3240 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3241 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3242 return -1; 3243 3244 Parser.Lex(); // Eat identifier token. 3245 3246 return RegNum; 3247 } 3248 3249 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3250 // If a recoverable error occurs, return 1. If an irrecoverable error 3251 // occurs, return -1. An irrecoverable error is one where tokens have been 3252 // consumed in the process of trying to parse the shifter (i.e., when it is 3253 // indeed a shifter operand, but malformed). 3254 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3255 MCAsmParser &Parser = getParser(); 3256 SMLoc S = Parser.getTok().getLoc(); 3257 const AsmToken &Tok = Parser.getTok(); 3258 if (Tok.isNot(AsmToken::Identifier)) 3259 return -1; 3260 3261 std::string lowerCase = Tok.getString().lower(); 3262 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3263 .Case("asl", ARM_AM::lsl) 3264 .Case("lsl", ARM_AM::lsl) 3265 .Case("lsr", ARM_AM::lsr) 3266 .Case("asr", ARM_AM::asr) 3267 .Case("ror", ARM_AM::ror) 3268 .Case("rrx", ARM_AM::rrx) 3269 .Default(ARM_AM::no_shift); 3270 3271 if (ShiftTy == ARM_AM::no_shift) 3272 return 1; 3273 3274 Parser.Lex(); // Eat the operator. 3275 3276 // The source register for the shift has already been added to the 3277 // operand list, so we need to pop it off and combine it into the shifted 3278 // register operand instead. 3279 std::unique_ptr<ARMOperand> PrevOp( 3280 (ARMOperand *)Operands.pop_back_val().release()); 3281 if (!PrevOp->isReg()) 3282 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3283 int SrcReg = PrevOp->getReg(); 3284 3285 SMLoc EndLoc; 3286 int64_t Imm = 0; 3287 int ShiftReg = 0; 3288 if (ShiftTy == ARM_AM::rrx) { 3289 // RRX Doesn't have an explicit shift amount. The encoder expects 3290 // the shift register to be the same as the source register. Seems odd, 3291 // but OK. 3292 ShiftReg = SrcReg; 3293 } else { 3294 // Figure out if this is shifted by a constant or a register (for non-RRX). 3295 if (Parser.getTok().is(AsmToken::Hash) || 3296 Parser.getTok().is(AsmToken::Dollar)) { 3297 Parser.Lex(); // Eat hash. 3298 SMLoc ImmLoc = Parser.getTok().getLoc(); 3299 const MCExpr *ShiftExpr = nullptr; 3300 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3301 Error(ImmLoc, "invalid immediate shift value"); 3302 return -1; 3303 } 3304 // The expression must be evaluatable as an immediate. 3305 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3306 if (!CE) { 3307 Error(ImmLoc, "invalid immediate shift value"); 3308 return -1; 3309 } 3310 // Range check the immediate. 3311 // lsl, ror: 0 <= imm <= 31 3312 // lsr, asr: 0 <= imm <= 32 3313 Imm = CE->getValue(); 3314 if (Imm < 0 || 3315 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3316 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3317 Error(ImmLoc, "immediate shift value out of range"); 3318 return -1; 3319 } 3320 // shift by zero is a nop. Always send it through as lsl. 3321 // ('as' compatibility) 3322 if (Imm == 0) 3323 ShiftTy = ARM_AM::lsl; 3324 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3325 SMLoc L = Parser.getTok().getLoc(); 3326 EndLoc = Parser.getTok().getEndLoc(); 3327 ShiftReg = tryParseRegister(); 3328 if (ShiftReg == -1) { 3329 Error(L, "expected immediate or register in shift operand"); 3330 return -1; 3331 } 3332 } else { 3333 Error(Parser.getTok().getLoc(), 3334 "expected immediate or register in shift operand"); 3335 return -1; 3336 } 3337 } 3338 3339 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3340 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3341 ShiftReg, Imm, 3342 S, EndLoc)); 3343 else 3344 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3345 S, EndLoc)); 3346 3347 return 0; 3348 } 3349 3350 3351 /// Try to parse a register name. The token must be an Identifier when called. 3352 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3353 /// if there is a "writeback". 'true' if it's not a register. 3354 /// 3355 /// TODO this is likely to change to allow different register types and or to 3356 /// parse for a specific register type. 3357 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3358 MCAsmParser &Parser = getParser(); 3359 const AsmToken &RegTok = Parser.getTok(); 3360 int RegNo = tryParseRegister(); 3361 if (RegNo == -1) 3362 return true; 3363 3364 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3365 RegTok.getEndLoc())); 3366 3367 const AsmToken &ExclaimTok = Parser.getTok(); 3368 if (ExclaimTok.is(AsmToken::Exclaim)) { 3369 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3370 ExclaimTok.getLoc())); 3371 Parser.Lex(); // Eat exclaim token 3372 return false; 3373 } 3374 3375 // Also check for an index operand. This is only legal for vector registers, 3376 // but that'll get caught OK in operand matching, so we don't need to 3377 // explicitly filter everything else out here. 3378 if (Parser.getTok().is(AsmToken::LBrac)) { 3379 SMLoc SIdx = Parser.getTok().getLoc(); 3380 Parser.Lex(); // Eat left bracket token. 3381 3382 const MCExpr *ImmVal; 3383 if (getParser().parseExpression(ImmVal)) 3384 return true; 3385 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3386 if (!MCE) 3387 return TokError("immediate value expected for vector index"); 3388 3389 if (Parser.getTok().isNot(AsmToken::RBrac)) 3390 return Error(Parser.getTok().getLoc(), "']' expected"); 3391 3392 SMLoc E = Parser.getTok().getEndLoc(); 3393 Parser.Lex(); // Eat right bracket token. 3394 3395 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3396 SIdx, E, 3397 getContext())); 3398 } 3399 3400 return false; 3401 } 3402 3403 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3404 /// instruction with a symbolic operand name. 3405 /// We accept "crN" syntax for GAS compatibility. 3406 /// <operand-name> ::= <prefix><number> 3407 /// If CoprocOp is 'c', then: 3408 /// <prefix> ::= c | cr 3409 /// If CoprocOp is 'p', then : 3410 /// <prefix> ::= p 3411 /// <number> ::= integer in range [0, 15] 3412 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3413 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3414 // but efficient. 3415 if (Name.size() < 2 || Name[0] != CoprocOp) 3416 return -1; 3417 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3418 3419 switch (Name.size()) { 3420 default: return -1; 3421 case 1: 3422 switch (Name[0]) { 3423 default: return -1; 3424 case '0': return 0; 3425 case '1': return 1; 3426 case '2': return 2; 3427 case '3': return 3; 3428 case '4': return 4; 3429 case '5': return 5; 3430 case '6': return 6; 3431 case '7': return 7; 3432 case '8': return 8; 3433 case '9': return 9; 3434 } 3435 case 2: 3436 if (Name[0] != '1') 3437 return -1; 3438 switch (Name[1]) { 3439 default: return -1; 3440 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3441 // However, old cores (v5/v6) did use them in that way. 3442 case '0': return 10; 3443 case '1': return 11; 3444 case '2': return 12; 3445 case '3': return 13; 3446 case '4': return 14; 3447 case '5': return 15; 3448 } 3449 } 3450 } 3451 3452 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3453 OperandMatchResultTy 3454 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3455 MCAsmParser &Parser = getParser(); 3456 SMLoc S = Parser.getTok().getLoc(); 3457 const AsmToken &Tok = Parser.getTok(); 3458 if (!Tok.is(AsmToken::Identifier)) 3459 return MatchOperand_NoMatch; 3460 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3461 .Case("eq", ARMCC::EQ) 3462 .Case("ne", ARMCC::NE) 3463 .Case("hs", ARMCC::HS) 3464 .Case("cs", ARMCC::HS) 3465 .Case("lo", ARMCC::LO) 3466 .Case("cc", ARMCC::LO) 3467 .Case("mi", ARMCC::MI) 3468 .Case("pl", ARMCC::PL) 3469 .Case("vs", ARMCC::VS) 3470 .Case("vc", ARMCC::VC) 3471 .Case("hi", ARMCC::HI) 3472 .Case("ls", ARMCC::LS) 3473 .Case("ge", ARMCC::GE) 3474 .Case("lt", ARMCC::LT) 3475 .Case("gt", ARMCC::GT) 3476 .Case("le", ARMCC::LE) 3477 .Case("al", ARMCC::AL) 3478 .Default(~0U); 3479 if (CC == ~0U) 3480 return MatchOperand_NoMatch; 3481 Parser.Lex(); // Eat the token. 3482 3483 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3484 3485 return MatchOperand_Success; 3486 } 3487 3488 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3489 /// token must be an Identifier when called, and if it is a coprocessor 3490 /// number, the token is eaten and the operand is added to the operand list. 3491 OperandMatchResultTy 3492 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3493 MCAsmParser &Parser = getParser(); 3494 SMLoc S = Parser.getTok().getLoc(); 3495 const AsmToken &Tok = Parser.getTok(); 3496 if (Tok.isNot(AsmToken::Identifier)) 3497 return MatchOperand_NoMatch; 3498 3499 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3500 if (Num == -1) 3501 return MatchOperand_NoMatch; 3502 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3503 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3504 return MatchOperand_NoMatch; 3505 3506 Parser.Lex(); // Eat identifier token. 3507 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3508 return MatchOperand_Success; 3509 } 3510 3511 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3512 /// token must be an Identifier when called, and if it is a coprocessor 3513 /// number, the token is eaten and the operand is added to the operand list. 3514 OperandMatchResultTy 3515 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3516 MCAsmParser &Parser = getParser(); 3517 SMLoc S = Parser.getTok().getLoc(); 3518 const AsmToken &Tok = Parser.getTok(); 3519 if (Tok.isNot(AsmToken::Identifier)) 3520 return MatchOperand_NoMatch; 3521 3522 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3523 if (Reg == -1) 3524 return MatchOperand_NoMatch; 3525 3526 Parser.Lex(); // Eat identifier token. 3527 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3528 return MatchOperand_Success; 3529 } 3530 3531 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3532 /// coproc_option : '{' imm0_255 '}' 3533 OperandMatchResultTy 3534 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3535 MCAsmParser &Parser = getParser(); 3536 SMLoc S = Parser.getTok().getLoc(); 3537 3538 // If this isn't a '{', this isn't a coprocessor immediate operand. 3539 if (Parser.getTok().isNot(AsmToken::LCurly)) 3540 return MatchOperand_NoMatch; 3541 Parser.Lex(); // Eat the '{' 3542 3543 const MCExpr *Expr; 3544 SMLoc Loc = Parser.getTok().getLoc(); 3545 if (getParser().parseExpression(Expr)) { 3546 Error(Loc, "illegal expression"); 3547 return MatchOperand_ParseFail; 3548 } 3549 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3550 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3551 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3552 return MatchOperand_ParseFail; 3553 } 3554 int Val = CE->getValue(); 3555 3556 // Check for and consume the closing '}' 3557 if (Parser.getTok().isNot(AsmToken::RCurly)) 3558 return MatchOperand_ParseFail; 3559 SMLoc E = Parser.getTok().getEndLoc(); 3560 Parser.Lex(); // Eat the '}' 3561 3562 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3563 return MatchOperand_Success; 3564 } 3565 3566 // For register list parsing, we need to map from raw GPR register numbering 3567 // to the enumeration values. The enumeration values aren't sorted by 3568 // register number due to our using "sp", "lr" and "pc" as canonical names. 3569 static unsigned getNextRegister(unsigned Reg) { 3570 // If this is a GPR, we need to do it manually, otherwise we can rely 3571 // on the sort ordering of the enumeration since the other reg-classes 3572 // are sane. 3573 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3574 return Reg + 1; 3575 switch(Reg) { 3576 default: llvm_unreachable("Invalid GPR number!"); 3577 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3578 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3579 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3580 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3581 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3582 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3583 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3584 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3585 } 3586 } 3587 3588 // Return the low-subreg of a given Q register. 3589 static unsigned getDRegFromQReg(unsigned QReg) { 3590 switch (QReg) { 3591 default: llvm_unreachable("expected a Q register!"); 3592 case ARM::Q0: return ARM::D0; 3593 case ARM::Q1: return ARM::D2; 3594 case ARM::Q2: return ARM::D4; 3595 case ARM::Q3: return ARM::D6; 3596 case ARM::Q4: return ARM::D8; 3597 case ARM::Q5: return ARM::D10; 3598 case ARM::Q6: return ARM::D12; 3599 case ARM::Q7: return ARM::D14; 3600 case ARM::Q8: return ARM::D16; 3601 case ARM::Q9: return ARM::D18; 3602 case ARM::Q10: return ARM::D20; 3603 case ARM::Q11: return ARM::D22; 3604 case ARM::Q12: return ARM::D24; 3605 case ARM::Q13: return ARM::D26; 3606 case ARM::Q14: return ARM::D28; 3607 case ARM::Q15: return ARM::D30; 3608 } 3609 } 3610 3611 /// Parse a register list. 3612 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3613 MCAsmParser &Parser = getParser(); 3614 if (Parser.getTok().isNot(AsmToken::LCurly)) 3615 return TokError("Token is not a Left Curly Brace"); 3616 SMLoc S = Parser.getTok().getLoc(); 3617 Parser.Lex(); // Eat '{' token. 3618 SMLoc RegLoc = Parser.getTok().getLoc(); 3619 3620 // Check the first register in the list to see what register class 3621 // this is a list of. 3622 int Reg = tryParseRegister(); 3623 if (Reg == -1) 3624 return Error(RegLoc, "register expected"); 3625 3626 // The reglist instructions have at most 16 registers, so reserve 3627 // space for that many. 3628 int EReg = 0; 3629 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3630 3631 // Allow Q regs and just interpret them as the two D sub-registers. 3632 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3633 Reg = getDRegFromQReg(Reg); 3634 EReg = MRI->getEncodingValue(Reg); 3635 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3636 ++Reg; 3637 } 3638 const MCRegisterClass *RC; 3639 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3640 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3641 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3642 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3643 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3644 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3645 else 3646 return Error(RegLoc, "invalid register in register list"); 3647 3648 // Store the register. 3649 EReg = MRI->getEncodingValue(Reg); 3650 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3651 3652 // This starts immediately after the first register token in the list, 3653 // so we can see either a comma or a minus (range separator) as a legal 3654 // next token. 3655 while (Parser.getTok().is(AsmToken::Comma) || 3656 Parser.getTok().is(AsmToken::Minus)) { 3657 if (Parser.getTok().is(AsmToken::Minus)) { 3658 Parser.Lex(); // Eat the minus. 3659 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3660 int EndReg = tryParseRegister(); 3661 if (EndReg == -1) 3662 return Error(AfterMinusLoc, "register expected"); 3663 // Allow Q regs and just interpret them as the two D sub-registers. 3664 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3665 EndReg = getDRegFromQReg(EndReg) + 1; 3666 // If the register is the same as the start reg, there's nothing 3667 // more to do. 3668 if (Reg == EndReg) 3669 continue; 3670 // The register must be in the same register class as the first. 3671 if (!RC->contains(EndReg)) 3672 return Error(AfterMinusLoc, "invalid register in register list"); 3673 // Ranges must go from low to high. 3674 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3675 return Error(AfterMinusLoc, "bad range in register list"); 3676 3677 // Add all the registers in the range to the register list. 3678 while (Reg != EndReg) { 3679 Reg = getNextRegister(Reg); 3680 EReg = MRI->getEncodingValue(Reg); 3681 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3682 } 3683 continue; 3684 } 3685 Parser.Lex(); // Eat the comma. 3686 RegLoc = Parser.getTok().getLoc(); 3687 int OldReg = Reg; 3688 const AsmToken RegTok = Parser.getTok(); 3689 Reg = tryParseRegister(); 3690 if (Reg == -1) 3691 return Error(RegLoc, "register expected"); 3692 // Allow Q regs and just interpret them as the two D sub-registers. 3693 bool isQReg = false; 3694 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3695 Reg = getDRegFromQReg(Reg); 3696 isQReg = true; 3697 } 3698 // The register must be in the same register class as the first. 3699 if (!RC->contains(Reg)) 3700 return Error(RegLoc, "invalid register in register list"); 3701 // List must be monotonically increasing. 3702 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3703 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3704 Warning(RegLoc, "register list not in ascending order"); 3705 else 3706 return Error(RegLoc, "register list not in ascending order"); 3707 } 3708 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3709 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3710 ") in register list"); 3711 continue; 3712 } 3713 // VFP register lists must also be contiguous. 3714 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3715 Reg != OldReg + 1) 3716 return Error(RegLoc, "non-contiguous register range"); 3717 EReg = MRI->getEncodingValue(Reg); 3718 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3719 if (isQReg) { 3720 EReg = MRI->getEncodingValue(++Reg); 3721 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3722 } 3723 } 3724 3725 if (Parser.getTok().isNot(AsmToken::RCurly)) 3726 return Error(Parser.getTok().getLoc(), "'}' expected"); 3727 SMLoc E = Parser.getTok().getEndLoc(); 3728 Parser.Lex(); // Eat '}' token. 3729 3730 // Push the register list operand. 3731 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3732 3733 // The ARM system instruction variants for LDM/STM have a '^' token here. 3734 if (Parser.getTok().is(AsmToken::Caret)) { 3735 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3736 Parser.Lex(); // Eat '^' token. 3737 } 3738 3739 return false; 3740 } 3741 3742 // Helper function to parse the lane index for vector lists. 3743 OperandMatchResultTy ARMAsmParser:: 3744 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3745 MCAsmParser &Parser = getParser(); 3746 Index = 0; // Always return a defined index value. 3747 if (Parser.getTok().is(AsmToken::LBrac)) { 3748 Parser.Lex(); // Eat the '['. 3749 if (Parser.getTok().is(AsmToken::RBrac)) { 3750 // "Dn[]" is the 'all lanes' syntax. 3751 LaneKind = AllLanes; 3752 EndLoc = Parser.getTok().getEndLoc(); 3753 Parser.Lex(); // Eat the ']'. 3754 return MatchOperand_Success; 3755 } 3756 3757 // There's an optional '#' token here. Normally there wouldn't be, but 3758 // inline assemble puts one in, and it's friendly to accept that. 3759 if (Parser.getTok().is(AsmToken::Hash)) 3760 Parser.Lex(); // Eat '#' or '$'. 3761 3762 const MCExpr *LaneIndex; 3763 SMLoc Loc = Parser.getTok().getLoc(); 3764 if (getParser().parseExpression(LaneIndex)) { 3765 Error(Loc, "illegal expression"); 3766 return MatchOperand_ParseFail; 3767 } 3768 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3769 if (!CE) { 3770 Error(Loc, "lane index must be empty or an integer"); 3771 return MatchOperand_ParseFail; 3772 } 3773 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3774 Error(Parser.getTok().getLoc(), "']' expected"); 3775 return MatchOperand_ParseFail; 3776 } 3777 EndLoc = Parser.getTok().getEndLoc(); 3778 Parser.Lex(); // Eat the ']'. 3779 int64_t Val = CE->getValue(); 3780 3781 // FIXME: Make this range check context sensitive for .8, .16, .32. 3782 if (Val < 0 || Val > 7) { 3783 Error(Parser.getTok().getLoc(), "lane index out of range"); 3784 return MatchOperand_ParseFail; 3785 } 3786 Index = Val; 3787 LaneKind = IndexedLane; 3788 return MatchOperand_Success; 3789 } 3790 LaneKind = NoLanes; 3791 return MatchOperand_Success; 3792 } 3793 3794 // parse a vector register list 3795 OperandMatchResultTy 3796 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3797 MCAsmParser &Parser = getParser(); 3798 VectorLaneTy LaneKind; 3799 unsigned LaneIndex; 3800 SMLoc S = Parser.getTok().getLoc(); 3801 // As an extension (to match gas), support a plain D register or Q register 3802 // (without encosing curly braces) as a single or double entry list, 3803 // respectively. 3804 if (Parser.getTok().is(AsmToken::Identifier)) { 3805 SMLoc E = Parser.getTok().getEndLoc(); 3806 int Reg = tryParseRegister(); 3807 if (Reg == -1) 3808 return MatchOperand_NoMatch; 3809 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3810 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3811 if (Res != MatchOperand_Success) 3812 return Res; 3813 switch (LaneKind) { 3814 case NoLanes: 3815 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3816 break; 3817 case AllLanes: 3818 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3819 S, E)); 3820 break; 3821 case IndexedLane: 3822 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3823 LaneIndex, 3824 false, S, E)); 3825 break; 3826 } 3827 return MatchOperand_Success; 3828 } 3829 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3830 Reg = getDRegFromQReg(Reg); 3831 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3832 if (Res != MatchOperand_Success) 3833 return Res; 3834 switch (LaneKind) { 3835 case NoLanes: 3836 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3837 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3838 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3839 break; 3840 case AllLanes: 3841 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3842 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3843 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3844 S, E)); 3845 break; 3846 case IndexedLane: 3847 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3848 LaneIndex, 3849 false, S, E)); 3850 break; 3851 } 3852 return MatchOperand_Success; 3853 } 3854 Error(S, "vector register expected"); 3855 return MatchOperand_ParseFail; 3856 } 3857 3858 if (Parser.getTok().isNot(AsmToken::LCurly)) 3859 return MatchOperand_NoMatch; 3860 3861 Parser.Lex(); // Eat '{' token. 3862 SMLoc RegLoc = Parser.getTok().getLoc(); 3863 3864 int Reg = tryParseRegister(); 3865 if (Reg == -1) { 3866 Error(RegLoc, "register expected"); 3867 return MatchOperand_ParseFail; 3868 } 3869 unsigned Count = 1; 3870 int Spacing = 0; 3871 unsigned FirstReg = Reg; 3872 // The list is of D registers, but we also allow Q regs and just interpret 3873 // them as the two D sub-registers. 3874 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3875 FirstReg = Reg = getDRegFromQReg(Reg); 3876 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3877 // it's ambiguous with four-register single spaced. 3878 ++Reg; 3879 ++Count; 3880 } 3881 3882 SMLoc E; 3883 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3884 return MatchOperand_ParseFail; 3885 3886 while (Parser.getTok().is(AsmToken::Comma) || 3887 Parser.getTok().is(AsmToken::Minus)) { 3888 if (Parser.getTok().is(AsmToken::Minus)) { 3889 if (!Spacing) 3890 Spacing = 1; // Register range implies a single spaced list. 3891 else if (Spacing == 2) { 3892 Error(Parser.getTok().getLoc(), 3893 "sequential registers in double spaced list"); 3894 return MatchOperand_ParseFail; 3895 } 3896 Parser.Lex(); // Eat the minus. 3897 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3898 int EndReg = tryParseRegister(); 3899 if (EndReg == -1) { 3900 Error(AfterMinusLoc, "register expected"); 3901 return MatchOperand_ParseFail; 3902 } 3903 // Allow Q regs and just interpret them as the two D sub-registers. 3904 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3905 EndReg = getDRegFromQReg(EndReg) + 1; 3906 // If the register is the same as the start reg, there's nothing 3907 // more to do. 3908 if (Reg == EndReg) 3909 continue; 3910 // The register must be in the same register class as the first. 3911 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3912 Error(AfterMinusLoc, "invalid register in register list"); 3913 return MatchOperand_ParseFail; 3914 } 3915 // Ranges must go from low to high. 3916 if (Reg > EndReg) { 3917 Error(AfterMinusLoc, "bad range in register list"); 3918 return MatchOperand_ParseFail; 3919 } 3920 // Parse the lane specifier if present. 3921 VectorLaneTy NextLaneKind; 3922 unsigned NextLaneIndex; 3923 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3924 MatchOperand_Success) 3925 return MatchOperand_ParseFail; 3926 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3927 Error(AfterMinusLoc, "mismatched lane index in register list"); 3928 return MatchOperand_ParseFail; 3929 } 3930 3931 // Add all the registers in the range to the register list. 3932 Count += EndReg - Reg; 3933 Reg = EndReg; 3934 continue; 3935 } 3936 Parser.Lex(); // Eat the comma. 3937 RegLoc = Parser.getTok().getLoc(); 3938 int OldReg = Reg; 3939 Reg = tryParseRegister(); 3940 if (Reg == -1) { 3941 Error(RegLoc, "register expected"); 3942 return MatchOperand_ParseFail; 3943 } 3944 // vector register lists must be contiguous. 3945 // It's OK to use the enumeration values directly here rather, as the 3946 // VFP register classes have the enum sorted properly. 3947 // 3948 // The list is of D registers, but we also allow Q regs and just interpret 3949 // them as the two D sub-registers. 3950 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3951 if (!Spacing) 3952 Spacing = 1; // Register range implies a single spaced list. 3953 else if (Spacing == 2) { 3954 Error(RegLoc, 3955 "invalid register in double-spaced list (must be 'D' register')"); 3956 return MatchOperand_ParseFail; 3957 } 3958 Reg = getDRegFromQReg(Reg); 3959 if (Reg != OldReg + 1) { 3960 Error(RegLoc, "non-contiguous register range"); 3961 return MatchOperand_ParseFail; 3962 } 3963 ++Reg; 3964 Count += 2; 3965 // Parse the lane specifier if present. 3966 VectorLaneTy NextLaneKind; 3967 unsigned NextLaneIndex; 3968 SMLoc LaneLoc = Parser.getTok().getLoc(); 3969 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3970 MatchOperand_Success) 3971 return MatchOperand_ParseFail; 3972 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3973 Error(LaneLoc, "mismatched lane index in register list"); 3974 return MatchOperand_ParseFail; 3975 } 3976 continue; 3977 } 3978 // Normal D register. 3979 // Figure out the register spacing (single or double) of the list if 3980 // we don't know it already. 3981 if (!Spacing) 3982 Spacing = 1 + (Reg == OldReg + 2); 3983 3984 // Just check that it's contiguous and keep going. 3985 if (Reg != OldReg + Spacing) { 3986 Error(RegLoc, "non-contiguous register range"); 3987 return MatchOperand_ParseFail; 3988 } 3989 ++Count; 3990 // Parse the lane specifier if present. 3991 VectorLaneTy NextLaneKind; 3992 unsigned NextLaneIndex; 3993 SMLoc EndLoc = Parser.getTok().getLoc(); 3994 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3995 return MatchOperand_ParseFail; 3996 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3997 Error(EndLoc, "mismatched lane index in register list"); 3998 return MatchOperand_ParseFail; 3999 } 4000 } 4001 4002 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4003 Error(Parser.getTok().getLoc(), "'}' expected"); 4004 return MatchOperand_ParseFail; 4005 } 4006 E = Parser.getTok().getEndLoc(); 4007 Parser.Lex(); // Eat '}' token. 4008 4009 switch (LaneKind) { 4010 case NoLanes: 4011 // Two-register operands have been converted to the 4012 // composite register classes. 4013 if (Count == 2) { 4014 const MCRegisterClass *RC = (Spacing == 1) ? 4015 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4016 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4017 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4018 } 4019 4020 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 4021 (Spacing == 2), S, E)); 4022 break; 4023 case AllLanes: 4024 // Two-register operands have been converted to the 4025 // composite register classes. 4026 if (Count == 2) { 4027 const MCRegisterClass *RC = (Spacing == 1) ? 4028 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4029 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4030 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4031 } 4032 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 4033 (Spacing == 2), 4034 S, E)); 4035 break; 4036 case IndexedLane: 4037 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4038 LaneIndex, 4039 (Spacing == 2), 4040 S, E)); 4041 break; 4042 } 4043 return MatchOperand_Success; 4044 } 4045 4046 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4047 OperandMatchResultTy 4048 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4049 MCAsmParser &Parser = getParser(); 4050 SMLoc S = Parser.getTok().getLoc(); 4051 const AsmToken &Tok = Parser.getTok(); 4052 unsigned Opt; 4053 4054 if (Tok.is(AsmToken::Identifier)) { 4055 StringRef OptStr = Tok.getString(); 4056 4057 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4058 .Case("sy", ARM_MB::SY) 4059 .Case("st", ARM_MB::ST) 4060 .Case("ld", ARM_MB::LD) 4061 .Case("sh", ARM_MB::ISH) 4062 .Case("ish", ARM_MB::ISH) 4063 .Case("shst", ARM_MB::ISHST) 4064 .Case("ishst", ARM_MB::ISHST) 4065 .Case("ishld", ARM_MB::ISHLD) 4066 .Case("nsh", ARM_MB::NSH) 4067 .Case("un", ARM_MB::NSH) 4068 .Case("nshst", ARM_MB::NSHST) 4069 .Case("nshld", ARM_MB::NSHLD) 4070 .Case("unst", ARM_MB::NSHST) 4071 .Case("osh", ARM_MB::OSH) 4072 .Case("oshst", ARM_MB::OSHST) 4073 .Case("oshld", ARM_MB::OSHLD) 4074 .Default(~0U); 4075 4076 // ishld, oshld, nshld and ld are only available from ARMv8. 4077 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4078 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4079 Opt = ~0U; 4080 4081 if (Opt == ~0U) 4082 return MatchOperand_NoMatch; 4083 4084 Parser.Lex(); // Eat identifier token. 4085 } else if (Tok.is(AsmToken::Hash) || 4086 Tok.is(AsmToken::Dollar) || 4087 Tok.is(AsmToken::Integer)) { 4088 if (Parser.getTok().isNot(AsmToken::Integer)) 4089 Parser.Lex(); // Eat '#' or '$'. 4090 SMLoc Loc = Parser.getTok().getLoc(); 4091 4092 const MCExpr *MemBarrierID; 4093 if (getParser().parseExpression(MemBarrierID)) { 4094 Error(Loc, "illegal expression"); 4095 return MatchOperand_ParseFail; 4096 } 4097 4098 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4099 if (!CE) { 4100 Error(Loc, "constant expression expected"); 4101 return MatchOperand_ParseFail; 4102 } 4103 4104 int Val = CE->getValue(); 4105 if (Val & ~0xf) { 4106 Error(Loc, "immediate value out of range"); 4107 return MatchOperand_ParseFail; 4108 } 4109 4110 Opt = ARM_MB::RESERVED_0 + Val; 4111 } else 4112 return MatchOperand_ParseFail; 4113 4114 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4115 return MatchOperand_Success; 4116 } 4117 4118 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4119 OperandMatchResultTy 4120 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4121 MCAsmParser &Parser = getParser(); 4122 SMLoc S = Parser.getTok().getLoc(); 4123 const AsmToken &Tok = Parser.getTok(); 4124 unsigned Opt; 4125 4126 if (Tok.is(AsmToken::Identifier)) { 4127 StringRef OptStr = Tok.getString(); 4128 4129 if (OptStr.equals_lower("sy")) 4130 Opt = ARM_ISB::SY; 4131 else 4132 return MatchOperand_NoMatch; 4133 4134 Parser.Lex(); // Eat identifier token. 4135 } else if (Tok.is(AsmToken::Hash) || 4136 Tok.is(AsmToken::Dollar) || 4137 Tok.is(AsmToken::Integer)) { 4138 if (Parser.getTok().isNot(AsmToken::Integer)) 4139 Parser.Lex(); // Eat '#' or '$'. 4140 SMLoc Loc = Parser.getTok().getLoc(); 4141 4142 const MCExpr *ISBarrierID; 4143 if (getParser().parseExpression(ISBarrierID)) { 4144 Error(Loc, "illegal expression"); 4145 return MatchOperand_ParseFail; 4146 } 4147 4148 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4149 if (!CE) { 4150 Error(Loc, "constant expression expected"); 4151 return MatchOperand_ParseFail; 4152 } 4153 4154 int Val = CE->getValue(); 4155 if (Val & ~0xf) { 4156 Error(Loc, "immediate value out of range"); 4157 return MatchOperand_ParseFail; 4158 } 4159 4160 Opt = ARM_ISB::RESERVED_0 + Val; 4161 } else 4162 return MatchOperand_ParseFail; 4163 4164 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4165 (ARM_ISB::InstSyncBOpt)Opt, S)); 4166 return MatchOperand_Success; 4167 } 4168 4169 4170 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4171 OperandMatchResultTy 4172 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4173 MCAsmParser &Parser = getParser(); 4174 SMLoc S = Parser.getTok().getLoc(); 4175 const AsmToken &Tok = Parser.getTok(); 4176 if (!Tok.is(AsmToken::Identifier)) 4177 return MatchOperand_NoMatch; 4178 StringRef IFlagsStr = Tok.getString(); 4179 4180 // An iflags string of "none" is interpreted to mean that none of the AIF 4181 // bits are set. Not a terribly useful instruction, but a valid encoding. 4182 unsigned IFlags = 0; 4183 if (IFlagsStr != "none") { 4184 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4185 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 4186 .Case("a", ARM_PROC::A) 4187 .Case("i", ARM_PROC::I) 4188 .Case("f", ARM_PROC::F) 4189 .Default(~0U); 4190 4191 // If some specific iflag is already set, it means that some letter is 4192 // present more than once, this is not acceptable. 4193 if (Flag == ~0U || (IFlags & Flag)) 4194 return MatchOperand_NoMatch; 4195 4196 IFlags |= Flag; 4197 } 4198 } 4199 4200 Parser.Lex(); // Eat identifier token. 4201 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4202 return MatchOperand_Success; 4203 } 4204 4205 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4206 OperandMatchResultTy 4207 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4208 MCAsmParser &Parser = getParser(); 4209 SMLoc S = Parser.getTok().getLoc(); 4210 const AsmToken &Tok = Parser.getTok(); 4211 if (!Tok.is(AsmToken::Identifier)) 4212 return MatchOperand_NoMatch; 4213 StringRef Mask = Tok.getString(); 4214 4215 if (isMClass()) { 4216 // See ARMv6-M 10.1.1 4217 std::string Name = Mask.lower(); 4218 unsigned FlagsVal = StringSwitch<unsigned>(Name) 4219 // Note: in the documentation: 4220 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 4221 // for MSR APSR_nzcvq. 4222 // but we do make it an alias here. This is so to get the "mask encoding" 4223 // bits correct on MSR APSR writes. 4224 // 4225 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 4226 // should really only be allowed when writing a special register. Note 4227 // they get dropped in the MRS instruction reading a special register as 4228 // the SYSm field is only 8 bits. 4229 .Case("apsr", 0x800) 4230 .Case("apsr_nzcvq", 0x800) 4231 .Case("apsr_g", 0x400) 4232 .Case("apsr_nzcvqg", 0xc00) 4233 .Case("iapsr", 0x801) 4234 .Case("iapsr_nzcvq", 0x801) 4235 .Case("iapsr_g", 0x401) 4236 .Case("iapsr_nzcvqg", 0xc01) 4237 .Case("eapsr", 0x802) 4238 .Case("eapsr_nzcvq", 0x802) 4239 .Case("eapsr_g", 0x402) 4240 .Case("eapsr_nzcvqg", 0xc02) 4241 .Case("xpsr", 0x803) 4242 .Case("xpsr_nzcvq", 0x803) 4243 .Case("xpsr_g", 0x403) 4244 .Case("xpsr_nzcvqg", 0xc03) 4245 .Case("ipsr", 0x805) 4246 .Case("epsr", 0x806) 4247 .Case("iepsr", 0x807) 4248 .Case("msp", 0x808) 4249 .Case("psp", 0x809) 4250 .Case("primask", 0x810) 4251 .Case("basepri", 0x811) 4252 .Case("basepri_max", 0x812) 4253 .Case("faultmask", 0x813) 4254 .Case("control", 0x814) 4255 .Case("msplim", 0x80a) 4256 .Case("psplim", 0x80b) 4257 .Case("msp_ns", 0x888) 4258 .Case("psp_ns", 0x889) 4259 .Case("msplim_ns", 0x88a) 4260 .Case("psplim_ns", 0x88b) 4261 .Case("primask_ns", 0x890) 4262 .Case("basepri_ns", 0x891) 4263 .Case("basepri_max_ns", 0x892) 4264 .Case("faultmask_ns", 0x893) 4265 .Case("control_ns", 0x894) 4266 .Case("sp_ns", 0x898) 4267 .Default(~0U); 4268 4269 if (FlagsVal == ~0U) 4270 return MatchOperand_NoMatch; 4271 4272 if (!hasDSP() && (FlagsVal & 0x400)) 4273 // The _g and _nzcvqg versions are only valid if the DSP extension is 4274 // available. 4275 return MatchOperand_NoMatch; 4276 4277 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 4278 // basepri, basepri_max and faultmask only valid for V7m. 4279 return MatchOperand_NoMatch; 4280 4281 if (!has8MSecExt() && (FlagsVal == 0x80a || FlagsVal == 0x80b || 4282 (FlagsVal > 0x814 && FlagsVal < 0xc00))) 4283 return MatchOperand_NoMatch; 4284 4285 if (!hasV8MMainline() && (FlagsVal == 0x88a || FlagsVal == 0x88b || 4286 (FlagsVal > 0x890 && FlagsVal <= 0x893))) 4287 return MatchOperand_NoMatch; 4288 4289 Parser.Lex(); // Eat identifier token. 4290 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4291 return MatchOperand_Success; 4292 } 4293 4294 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4295 size_t Start = 0, Next = Mask.find('_'); 4296 StringRef Flags = ""; 4297 std::string SpecReg = Mask.slice(Start, Next).lower(); 4298 if (Next != StringRef::npos) 4299 Flags = Mask.slice(Next+1, Mask.size()); 4300 4301 // FlagsVal contains the complete mask: 4302 // 3-0: Mask 4303 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4304 unsigned FlagsVal = 0; 4305 4306 if (SpecReg == "apsr") { 4307 FlagsVal = StringSwitch<unsigned>(Flags) 4308 .Case("nzcvq", 0x8) // same as CPSR_f 4309 .Case("g", 0x4) // same as CPSR_s 4310 .Case("nzcvqg", 0xc) // same as CPSR_fs 4311 .Default(~0U); 4312 4313 if (FlagsVal == ~0U) { 4314 if (!Flags.empty()) 4315 return MatchOperand_NoMatch; 4316 else 4317 FlagsVal = 8; // No flag 4318 } 4319 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4320 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4321 if (Flags == "all" || Flags == "") 4322 Flags = "fc"; 4323 for (int i = 0, e = Flags.size(); i != e; ++i) { 4324 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4325 .Case("c", 1) 4326 .Case("x", 2) 4327 .Case("s", 4) 4328 .Case("f", 8) 4329 .Default(~0U); 4330 4331 // If some specific flag is already set, it means that some letter is 4332 // present more than once, this is not acceptable. 4333 if (Flag == ~0U || (FlagsVal & Flag)) 4334 return MatchOperand_NoMatch; 4335 FlagsVal |= Flag; 4336 } 4337 } else // No match for special register. 4338 return MatchOperand_NoMatch; 4339 4340 // Special register without flags is NOT equivalent to "fc" flags. 4341 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4342 // two lines would enable gas compatibility at the expense of breaking 4343 // round-tripping. 4344 // 4345 // if (!FlagsVal) 4346 // FlagsVal = 0x9; 4347 4348 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4349 if (SpecReg == "spsr") 4350 FlagsVal |= 16; 4351 4352 Parser.Lex(); // Eat identifier token. 4353 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4354 return MatchOperand_Success; 4355 } 4356 4357 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4358 /// use in the MRS/MSR instructions added to support virtualization. 4359 OperandMatchResultTy 4360 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4361 MCAsmParser &Parser = getParser(); 4362 SMLoc S = Parser.getTok().getLoc(); 4363 const AsmToken &Tok = Parser.getTok(); 4364 if (!Tok.is(AsmToken::Identifier)) 4365 return MatchOperand_NoMatch; 4366 StringRef RegName = Tok.getString(); 4367 4368 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4369 // and bit 5 is R. 4370 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4371 .Case("r8_usr", 0x00) 4372 .Case("r9_usr", 0x01) 4373 .Case("r10_usr", 0x02) 4374 .Case("r11_usr", 0x03) 4375 .Case("r12_usr", 0x04) 4376 .Case("sp_usr", 0x05) 4377 .Case("lr_usr", 0x06) 4378 .Case("r8_fiq", 0x08) 4379 .Case("r9_fiq", 0x09) 4380 .Case("r10_fiq", 0x0a) 4381 .Case("r11_fiq", 0x0b) 4382 .Case("r12_fiq", 0x0c) 4383 .Case("sp_fiq", 0x0d) 4384 .Case("lr_fiq", 0x0e) 4385 .Case("lr_irq", 0x10) 4386 .Case("sp_irq", 0x11) 4387 .Case("lr_svc", 0x12) 4388 .Case("sp_svc", 0x13) 4389 .Case("lr_abt", 0x14) 4390 .Case("sp_abt", 0x15) 4391 .Case("lr_und", 0x16) 4392 .Case("sp_und", 0x17) 4393 .Case("lr_mon", 0x1c) 4394 .Case("sp_mon", 0x1d) 4395 .Case("elr_hyp", 0x1e) 4396 .Case("sp_hyp", 0x1f) 4397 .Case("spsr_fiq", 0x2e) 4398 .Case("spsr_irq", 0x30) 4399 .Case("spsr_svc", 0x32) 4400 .Case("spsr_abt", 0x34) 4401 .Case("spsr_und", 0x36) 4402 .Case("spsr_mon", 0x3c) 4403 .Case("spsr_hyp", 0x3e) 4404 .Default(~0U); 4405 4406 if (Encoding == ~0U) 4407 return MatchOperand_NoMatch; 4408 4409 Parser.Lex(); // Eat identifier token. 4410 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4411 return MatchOperand_Success; 4412 } 4413 4414 OperandMatchResultTy 4415 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4416 int High) { 4417 MCAsmParser &Parser = getParser(); 4418 const AsmToken &Tok = Parser.getTok(); 4419 if (Tok.isNot(AsmToken::Identifier)) { 4420 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4421 return MatchOperand_ParseFail; 4422 } 4423 StringRef ShiftName = Tok.getString(); 4424 std::string LowerOp = Op.lower(); 4425 std::string UpperOp = Op.upper(); 4426 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4427 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4428 return MatchOperand_ParseFail; 4429 } 4430 Parser.Lex(); // Eat shift type token. 4431 4432 // There must be a '#' and a shift amount. 4433 if (Parser.getTok().isNot(AsmToken::Hash) && 4434 Parser.getTok().isNot(AsmToken::Dollar)) { 4435 Error(Parser.getTok().getLoc(), "'#' expected"); 4436 return MatchOperand_ParseFail; 4437 } 4438 Parser.Lex(); // Eat hash token. 4439 4440 const MCExpr *ShiftAmount; 4441 SMLoc Loc = Parser.getTok().getLoc(); 4442 SMLoc EndLoc; 4443 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4444 Error(Loc, "illegal expression"); 4445 return MatchOperand_ParseFail; 4446 } 4447 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4448 if (!CE) { 4449 Error(Loc, "constant expression expected"); 4450 return MatchOperand_ParseFail; 4451 } 4452 int Val = CE->getValue(); 4453 if (Val < Low || Val > High) { 4454 Error(Loc, "immediate value out of range"); 4455 return MatchOperand_ParseFail; 4456 } 4457 4458 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4459 4460 return MatchOperand_Success; 4461 } 4462 4463 OperandMatchResultTy 4464 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4465 MCAsmParser &Parser = getParser(); 4466 const AsmToken &Tok = Parser.getTok(); 4467 SMLoc S = Tok.getLoc(); 4468 if (Tok.isNot(AsmToken::Identifier)) { 4469 Error(S, "'be' or 'le' operand expected"); 4470 return MatchOperand_ParseFail; 4471 } 4472 int Val = StringSwitch<int>(Tok.getString().lower()) 4473 .Case("be", 1) 4474 .Case("le", 0) 4475 .Default(-1); 4476 Parser.Lex(); // Eat the token. 4477 4478 if (Val == -1) { 4479 Error(S, "'be' or 'le' operand expected"); 4480 return MatchOperand_ParseFail; 4481 } 4482 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4483 getContext()), 4484 S, Tok.getEndLoc())); 4485 return MatchOperand_Success; 4486 } 4487 4488 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4489 /// instructions. Legal values are: 4490 /// lsl #n 'n' in [0,31] 4491 /// asr #n 'n' in [1,32] 4492 /// n == 32 encoded as n == 0. 4493 OperandMatchResultTy 4494 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4495 MCAsmParser &Parser = getParser(); 4496 const AsmToken &Tok = Parser.getTok(); 4497 SMLoc S = Tok.getLoc(); 4498 if (Tok.isNot(AsmToken::Identifier)) { 4499 Error(S, "shift operator 'asr' or 'lsl' expected"); 4500 return MatchOperand_ParseFail; 4501 } 4502 StringRef ShiftName = Tok.getString(); 4503 bool isASR; 4504 if (ShiftName == "lsl" || ShiftName == "LSL") 4505 isASR = false; 4506 else if (ShiftName == "asr" || ShiftName == "ASR") 4507 isASR = true; 4508 else { 4509 Error(S, "shift operator 'asr' or 'lsl' expected"); 4510 return MatchOperand_ParseFail; 4511 } 4512 Parser.Lex(); // Eat the operator. 4513 4514 // A '#' and a shift amount. 4515 if (Parser.getTok().isNot(AsmToken::Hash) && 4516 Parser.getTok().isNot(AsmToken::Dollar)) { 4517 Error(Parser.getTok().getLoc(), "'#' expected"); 4518 return MatchOperand_ParseFail; 4519 } 4520 Parser.Lex(); // Eat hash token. 4521 SMLoc ExLoc = Parser.getTok().getLoc(); 4522 4523 const MCExpr *ShiftAmount; 4524 SMLoc EndLoc; 4525 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4526 Error(ExLoc, "malformed shift expression"); 4527 return MatchOperand_ParseFail; 4528 } 4529 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4530 if (!CE) { 4531 Error(ExLoc, "shift amount must be an immediate"); 4532 return MatchOperand_ParseFail; 4533 } 4534 4535 int64_t Val = CE->getValue(); 4536 if (isASR) { 4537 // Shift amount must be in [1,32] 4538 if (Val < 1 || Val > 32) { 4539 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4540 return MatchOperand_ParseFail; 4541 } 4542 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4543 if (isThumb() && Val == 32) { 4544 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4545 return MatchOperand_ParseFail; 4546 } 4547 if (Val == 32) Val = 0; 4548 } else { 4549 // Shift amount must be in [1,32] 4550 if (Val < 0 || Val > 31) { 4551 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4552 return MatchOperand_ParseFail; 4553 } 4554 } 4555 4556 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4557 4558 return MatchOperand_Success; 4559 } 4560 4561 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4562 /// of instructions. Legal values are: 4563 /// ror #n 'n' in {0, 8, 16, 24} 4564 OperandMatchResultTy 4565 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4566 MCAsmParser &Parser = getParser(); 4567 const AsmToken &Tok = Parser.getTok(); 4568 SMLoc S = Tok.getLoc(); 4569 if (Tok.isNot(AsmToken::Identifier)) 4570 return MatchOperand_NoMatch; 4571 StringRef ShiftName = Tok.getString(); 4572 if (ShiftName != "ror" && ShiftName != "ROR") 4573 return MatchOperand_NoMatch; 4574 Parser.Lex(); // Eat the operator. 4575 4576 // A '#' and a rotate amount. 4577 if (Parser.getTok().isNot(AsmToken::Hash) && 4578 Parser.getTok().isNot(AsmToken::Dollar)) { 4579 Error(Parser.getTok().getLoc(), "'#' expected"); 4580 return MatchOperand_ParseFail; 4581 } 4582 Parser.Lex(); // Eat hash token. 4583 SMLoc ExLoc = Parser.getTok().getLoc(); 4584 4585 const MCExpr *ShiftAmount; 4586 SMLoc EndLoc; 4587 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4588 Error(ExLoc, "malformed rotate expression"); 4589 return MatchOperand_ParseFail; 4590 } 4591 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4592 if (!CE) { 4593 Error(ExLoc, "rotate amount must be an immediate"); 4594 return MatchOperand_ParseFail; 4595 } 4596 4597 int64_t Val = CE->getValue(); 4598 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4599 // normally, zero is represented in asm by omitting the rotate operand 4600 // entirely. 4601 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4602 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4603 return MatchOperand_ParseFail; 4604 } 4605 4606 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4607 4608 return MatchOperand_Success; 4609 } 4610 4611 OperandMatchResultTy 4612 ARMAsmParser::parseModImm(OperandVector &Operands) { 4613 MCAsmParser &Parser = getParser(); 4614 MCAsmLexer &Lexer = getLexer(); 4615 int64_t Imm1, Imm2; 4616 4617 SMLoc S = Parser.getTok().getLoc(); 4618 4619 // 1) A mod_imm operand can appear in the place of a register name: 4620 // add r0, #mod_imm 4621 // add r0, r0, #mod_imm 4622 // to correctly handle the latter, we bail out as soon as we see an 4623 // identifier. 4624 // 4625 // 2) Similarly, we do not want to parse into complex operands: 4626 // mov r0, #mod_imm 4627 // mov r0, :lower16:(_foo) 4628 if (Parser.getTok().is(AsmToken::Identifier) || 4629 Parser.getTok().is(AsmToken::Colon)) 4630 return MatchOperand_NoMatch; 4631 4632 // Hash (dollar) is optional as per the ARMARM 4633 if (Parser.getTok().is(AsmToken::Hash) || 4634 Parser.getTok().is(AsmToken::Dollar)) { 4635 // Avoid parsing into complex operands (#:) 4636 if (Lexer.peekTok().is(AsmToken::Colon)) 4637 return MatchOperand_NoMatch; 4638 4639 // Eat the hash (dollar) 4640 Parser.Lex(); 4641 } 4642 4643 SMLoc Sx1, Ex1; 4644 Sx1 = Parser.getTok().getLoc(); 4645 const MCExpr *Imm1Exp; 4646 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4647 Error(Sx1, "malformed expression"); 4648 return MatchOperand_ParseFail; 4649 } 4650 4651 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4652 4653 if (CE) { 4654 // Immediate must fit within 32-bits 4655 Imm1 = CE->getValue(); 4656 int Enc = ARM_AM::getSOImmVal(Imm1); 4657 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4658 // We have a match! 4659 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4660 (Enc & 0xF00) >> 7, 4661 Sx1, Ex1)); 4662 return MatchOperand_Success; 4663 } 4664 4665 // We have parsed an immediate which is not for us, fallback to a plain 4666 // immediate. This can happen for instruction aliases. For an example, 4667 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4668 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4669 // instruction with a mod_imm operand. The alias is defined such that the 4670 // parser method is shared, that's why we have to do this here. 4671 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4672 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4673 return MatchOperand_Success; 4674 } 4675 } else { 4676 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4677 // MCFixup). Fallback to a plain immediate. 4678 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4679 return MatchOperand_Success; 4680 } 4681 4682 // From this point onward, we expect the input to be a (#bits, #rot) pair 4683 if (Parser.getTok().isNot(AsmToken::Comma)) { 4684 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4685 return MatchOperand_ParseFail; 4686 } 4687 4688 if (Imm1 & ~0xFF) { 4689 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4690 return MatchOperand_ParseFail; 4691 } 4692 4693 // Eat the comma 4694 Parser.Lex(); 4695 4696 // Repeat for #rot 4697 SMLoc Sx2, Ex2; 4698 Sx2 = Parser.getTok().getLoc(); 4699 4700 // Eat the optional hash (dollar) 4701 if (Parser.getTok().is(AsmToken::Hash) || 4702 Parser.getTok().is(AsmToken::Dollar)) 4703 Parser.Lex(); 4704 4705 const MCExpr *Imm2Exp; 4706 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4707 Error(Sx2, "malformed expression"); 4708 return MatchOperand_ParseFail; 4709 } 4710 4711 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4712 4713 if (CE) { 4714 Imm2 = CE->getValue(); 4715 if (!(Imm2 & ~0x1E)) { 4716 // We have a match! 4717 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4718 return MatchOperand_Success; 4719 } 4720 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4721 return MatchOperand_ParseFail; 4722 } else { 4723 Error(Sx2, "constant expression expected"); 4724 return MatchOperand_ParseFail; 4725 } 4726 } 4727 4728 OperandMatchResultTy 4729 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4730 MCAsmParser &Parser = getParser(); 4731 SMLoc S = Parser.getTok().getLoc(); 4732 // The bitfield descriptor is really two operands, the LSB and the width. 4733 if (Parser.getTok().isNot(AsmToken::Hash) && 4734 Parser.getTok().isNot(AsmToken::Dollar)) { 4735 Error(Parser.getTok().getLoc(), "'#' expected"); 4736 return MatchOperand_ParseFail; 4737 } 4738 Parser.Lex(); // Eat hash token. 4739 4740 const MCExpr *LSBExpr; 4741 SMLoc E = Parser.getTok().getLoc(); 4742 if (getParser().parseExpression(LSBExpr)) { 4743 Error(E, "malformed immediate expression"); 4744 return MatchOperand_ParseFail; 4745 } 4746 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4747 if (!CE) { 4748 Error(E, "'lsb' operand must be an immediate"); 4749 return MatchOperand_ParseFail; 4750 } 4751 4752 int64_t LSB = CE->getValue(); 4753 // The LSB must be in the range [0,31] 4754 if (LSB < 0 || LSB > 31) { 4755 Error(E, "'lsb' operand must be in the range [0,31]"); 4756 return MatchOperand_ParseFail; 4757 } 4758 E = Parser.getTok().getLoc(); 4759 4760 // Expect another immediate operand. 4761 if (Parser.getTok().isNot(AsmToken::Comma)) { 4762 Error(Parser.getTok().getLoc(), "too few operands"); 4763 return MatchOperand_ParseFail; 4764 } 4765 Parser.Lex(); // Eat hash token. 4766 if (Parser.getTok().isNot(AsmToken::Hash) && 4767 Parser.getTok().isNot(AsmToken::Dollar)) { 4768 Error(Parser.getTok().getLoc(), "'#' expected"); 4769 return MatchOperand_ParseFail; 4770 } 4771 Parser.Lex(); // Eat hash token. 4772 4773 const MCExpr *WidthExpr; 4774 SMLoc EndLoc; 4775 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4776 Error(E, "malformed immediate expression"); 4777 return MatchOperand_ParseFail; 4778 } 4779 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4780 if (!CE) { 4781 Error(E, "'width' operand must be an immediate"); 4782 return MatchOperand_ParseFail; 4783 } 4784 4785 int64_t Width = CE->getValue(); 4786 // The LSB must be in the range [1,32-lsb] 4787 if (Width < 1 || Width > 32 - LSB) { 4788 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4789 return MatchOperand_ParseFail; 4790 } 4791 4792 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4793 4794 return MatchOperand_Success; 4795 } 4796 4797 OperandMatchResultTy 4798 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4799 // Check for a post-index addressing register operand. Specifically: 4800 // postidx_reg := '+' register {, shift} 4801 // | '-' register {, shift} 4802 // | register {, shift} 4803 4804 // This method must return MatchOperand_NoMatch without consuming any tokens 4805 // in the case where there is no match, as other alternatives take other 4806 // parse methods. 4807 MCAsmParser &Parser = getParser(); 4808 AsmToken Tok = Parser.getTok(); 4809 SMLoc S = Tok.getLoc(); 4810 bool haveEaten = false; 4811 bool isAdd = true; 4812 if (Tok.is(AsmToken::Plus)) { 4813 Parser.Lex(); // Eat the '+' token. 4814 haveEaten = true; 4815 } else if (Tok.is(AsmToken::Minus)) { 4816 Parser.Lex(); // Eat the '-' token. 4817 isAdd = false; 4818 haveEaten = true; 4819 } 4820 4821 SMLoc E = Parser.getTok().getEndLoc(); 4822 int Reg = tryParseRegister(); 4823 if (Reg == -1) { 4824 if (!haveEaten) 4825 return MatchOperand_NoMatch; 4826 Error(Parser.getTok().getLoc(), "register expected"); 4827 return MatchOperand_ParseFail; 4828 } 4829 4830 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4831 unsigned ShiftImm = 0; 4832 if (Parser.getTok().is(AsmToken::Comma)) { 4833 Parser.Lex(); // Eat the ','. 4834 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4835 return MatchOperand_ParseFail; 4836 4837 // FIXME: Only approximates end...may include intervening whitespace. 4838 E = Parser.getTok().getLoc(); 4839 } 4840 4841 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4842 ShiftImm, S, E)); 4843 4844 return MatchOperand_Success; 4845 } 4846 4847 OperandMatchResultTy 4848 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4849 // Check for a post-index addressing register operand. Specifically: 4850 // am3offset := '+' register 4851 // | '-' register 4852 // | register 4853 // | # imm 4854 // | # + imm 4855 // | # - imm 4856 4857 // This method must return MatchOperand_NoMatch without consuming any tokens 4858 // in the case where there is no match, as other alternatives take other 4859 // parse methods. 4860 MCAsmParser &Parser = getParser(); 4861 AsmToken Tok = Parser.getTok(); 4862 SMLoc S = Tok.getLoc(); 4863 4864 // Do immediates first, as we always parse those if we have a '#'. 4865 if (Parser.getTok().is(AsmToken::Hash) || 4866 Parser.getTok().is(AsmToken::Dollar)) { 4867 Parser.Lex(); // Eat '#' or '$'. 4868 // Explicitly look for a '-', as we need to encode negative zero 4869 // differently. 4870 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4871 const MCExpr *Offset; 4872 SMLoc E; 4873 if (getParser().parseExpression(Offset, E)) 4874 return MatchOperand_ParseFail; 4875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4876 if (!CE) { 4877 Error(S, "constant expression expected"); 4878 return MatchOperand_ParseFail; 4879 } 4880 // Negative zero is encoded as the flag value INT32_MIN. 4881 int32_t Val = CE->getValue(); 4882 if (isNegative && Val == 0) 4883 Val = INT32_MIN; 4884 4885 Operands.push_back( 4886 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4887 4888 return MatchOperand_Success; 4889 } 4890 4891 4892 bool haveEaten = false; 4893 bool isAdd = true; 4894 if (Tok.is(AsmToken::Plus)) { 4895 Parser.Lex(); // Eat the '+' token. 4896 haveEaten = true; 4897 } else if (Tok.is(AsmToken::Minus)) { 4898 Parser.Lex(); // Eat the '-' token. 4899 isAdd = false; 4900 haveEaten = true; 4901 } 4902 4903 Tok = Parser.getTok(); 4904 int Reg = tryParseRegister(); 4905 if (Reg == -1) { 4906 if (!haveEaten) 4907 return MatchOperand_NoMatch; 4908 Error(Tok.getLoc(), "register expected"); 4909 return MatchOperand_ParseFail; 4910 } 4911 4912 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4913 0, S, Tok.getEndLoc())); 4914 4915 return MatchOperand_Success; 4916 } 4917 4918 /// Convert parsed operands to MCInst. Needed here because this instruction 4919 /// only has two register operands, but multiplication is commutative so 4920 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4921 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4922 const OperandVector &Operands) { 4923 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4924 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4925 // If we have a three-operand form, make sure to set Rn to be the operand 4926 // that isn't the same as Rd. 4927 unsigned RegOp = 4; 4928 if (Operands.size() == 6 && 4929 ((ARMOperand &)*Operands[4]).getReg() == 4930 ((ARMOperand &)*Operands[3]).getReg()) 4931 RegOp = 5; 4932 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4933 Inst.addOperand(Inst.getOperand(0)); 4934 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4935 } 4936 4937 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4938 const OperandVector &Operands) { 4939 int CondOp = -1, ImmOp = -1; 4940 switch(Inst.getOpcode()) { 4941 case ARM::tB: 4942 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4943 4944 case ARM::t2B: 4945 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4946 4947 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4948 } 4949 // first decide whether or not the branch should be conditional 4950 // by looking at it's location relative to an IT block 4951 if(inITBlock()) { 4952 // inside an IT block we cannot have any conditional branches. any 4953 // such instructions needs to be converted to unconditional form 4954 switch(Inst.getOpcode()) { 4955 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4956 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4957 } 4958 } else { 4959 // outside IT blocks we can only have unconditional branches with AL 4960 // condition code or conditional branches with non-AL condition code 4961 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4962 switch(Inst.getOpcode()) { 4963 case ARM::tB: 4964 case ARM::tBcc: 4965 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4966 break; 4967 case ARM::t2B: 4968 case ARM::t2Bcc: 4969 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4970 break; 4971 } 4972 } 4973 4974 // now decide on encoding size based on branch target range 4975 switch(Inst.getOpcode()) { 4976 // classify tB as either t2B or t1B based on range of immediate operand 4977 case ARM::tB: { 4978 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4979 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 4980 Inst.setOpcode(ARM::t2B); 4981 break; 4982 } 4983 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4984 case ARM::tBcc: { 4985 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4986 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 4987 Inst.setOpcode(ARM::t2Bcc); 4988 break; 4989 } 4990 } 4991 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4992 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4993 } 4994 4995 /// Parse an ARM memory expression, return false if successful else return true 4996 /// or an error. The first token must be a '[' when called. 4997 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4998 MCAsmParser &Parser = getParser(); 4999 SMLoc S, E; 5000 if (Parser.getTok().isNot(AsmToken::LBrac)) 5001 return TokError("Token is not a Left Bracket"); 5002 S = Parser.getTok().getLoc(); 5003 Parser.Lex(); // Eat left bracket token. 5004 5005 const AsmToken &BaseRegTok = Parser.getTok(); 5006 int BaseRegNum = tryParseRegister(); 5007 if (BaseRegNum == -1) 5008 return Error(BaseRegTok.getLoc(), "register expected"); 5009 5010 // The next token must either be a comma, a colon or a closing bracket. 5011 const AsmToken &Tok = Parser.getTok(); 5012 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5013 !Tok.is(AsmToken::RBrac)) 5014 return Error(Tok.getLoc(), "malformed memory operand"); 5015 5016 if (Tok.is(AsmToken::RBrac)) { 5017 E = Tok.getEndLoc(); 5018 Parser.Lex(); // Eat right bracket token. 5019 5020 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5021 ARM_AM::no_shift, 0, 0, false, 5022 S, E)); 5023 5024 // If there's a pre-indexing writeback marker, '!', just add it as a token 5025 // operand. It's rather odd, but syntactically valid. 5026 if (Parser.getTok().is(AsmToken::Exclaim)) { 5027 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5028 Parser.Lex(); // Eat the '!'. 5029 } 5030 5031 return false; 5032 } 5033 5034 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5035 "Lost colon or comma in memory operand?!"); 5036 if (Tok.is(AsmToken::Comma)) { 5037 Parser.Lex(); // Eat the comma. 5038 } 5039 5040 // If we have a ':', it's an alignment specifier. 5041 if (Parser.getTok().is(AsmToken::Colon)) { 5042 Parser.Lex(); // Eat the ':'. 5043 E = Parser.getTok().getLoc(); 5044 SMLoc AlignmentLoc = Tok.getLoc(); 5045 5046 const MCExpr *Expr; 5047 if (getParser().parseExpression(Expr)) 5048 return true; 5049 5050 // The expression has to be a constant. Memory references with relocations 5051 // don't come through here, as they use the <label> forms of the relevant 5052 // instructions. 5053 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5054 if (!CE) 5055 return Error (E, "constant expression expected"); 5056 5057 unsigned Align = 0; 5058 switch (CE->getValue()) { 5059 default: 5060 return Error(E, 5061 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5062 case 16: Align = 2; break; 5063 case 32: Align = 4; break; 5064 case 64: Align = 8; break; 5065 case 128: Align = 16; break; 5066 case 256: Align = 32; break; 5067 } 5068 5069 // Now we should have the closing ']' 5070 if (Parser.getTok().isNot(AsmToken::RBrac)) 5071 return Error(Parser.getTok().getLoc(), "']' expected"); 5072 E = Parser.getTok().getEndLoc(); 5073 Parser.Lex(); // Eat right bracket token. 5074 5075 // Don't worry about range checking the value here. That's handled by 5076 // the is*() predicates. 5077 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5078 ARM_AM::no_shift, 0, Align, 5079 false, S, E, AlignmentLoc)); 5080 5081 // If there's a pre-indexing writeback marker, '!', just add it as a token 5082 // operand. 5083 if (Parser.getTok().is(AsmToken::Exclaim)) { 5084 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5085 Parser.Lex(); // Eat the '!'. 5086 } 5087 5088 return false; 5089 } 5090 5091 // If we have a '#', it's an immediate offset, else assume it's a register 5092 // offset. Be friendly and also accept a plain integer (without a leading 5093 // hash) for gas compatibility. 5094 if (Parser.getTok().is(AsmToken::Hash) || 5095 Parser.getTok().is(AsmToken::Dollar) || 5096 Parser.getTok().is(AsmToken::Integer)) { 5097 if (Parser.getTok().isNot(AsmToken::Integer)) 5098 Parser.Lex(); // Eat '#' or '$'. 5099 E = Parser.getTok().getLoc(); 5100 5101 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5102 const MCExpr *Offset; 5103 if (getParser().parseExpression(Offset)) 5104 return true; 5105 5106 // The expression has to be a constant. Memory references with relocations 5107 // don't come through here, as they use the <label> forms of the relevant 5108 // instructions. 5109 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5110 if (!CE) 5111 return Error (E, "constant expression expected"); 5112 5113 // If the constant was #-0, represent it as INT32_MIN. 5114 int32_t Val = CE->getValue(); 5115 if (isNegative && Val == 0) 5116 CE = MCConstantExpr::create(INT32_MIN, getContext()); 5117 5118 // Now we should have the closing ']' 5119 if (Parser.getTok().isNot(AsmToken::RBrac)) 5120 return Error(Parser.getTok().getLoc(), "']' expected"); 5121 E = Parser.getTok().getEndLoc(); 5122 Parser.Lex(); // Eat right bracket token. 5123 5124 // Don't worry about range checking the value here. That's handled by 5125 // the is*() predicates. 5126 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5127 ARM_AM::no_shift, 0, 0, 5128 false, S, E)); 5129 5130 // If there's a pre-indexing writeback marker, '!', just add it as a token 5131 // operand. 5132 if (Parser.getTok().is(AsmToken::Exclaim)) { 5133 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5134 Parser.Lex(); // Eat the '!'. 5135 } 5136 5137 return false; 5138 } 5139 5140 // The register offset is optionally preceded by a '+' or '-' 5141 bool isNegative = false; 5142 if (Parser.getTok().is(AsmToken::Minus)) { 5143 isNegative = true; 5144 Parser.Lex(); // Eat the '-'. 5145 } else if (Parser.getTok().is(AsmToken::Plus)) { 5146 // Nothing to do. 5147 Parser.Lex(); // Eat the '+'. 5148 } 5149 5150 E = Parser.getTok().getLoc(); 5151 int OffsetRegNum = tryParseRegister(); 5152 if (OffsetRegNum == -1) 5153 return Error(E, "register expected"); 5154 5155 // If there's a shift operator, handle it. 5156 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5157 unsigned ShiftImm = 0; 5158 if (Parser.getTok().is(AsmToken::Comma)) { 5159 Parser.Lex(); // Eat the ','. 5160 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5161 return true; 5162 } 5163 5164 // Now we should have the closing ']' 5165 if (Parser.getTok().isNot(AsmToken::RBrac)) 5166 return Error(Parser.getTok().getLoc(), "']' expected"); 5167 E = Parser.getTok().getEndLoc(); 5168 Parser.Lex(); // Eat right bracket token. 5169 5170 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5171 ShiftType, ShiftImm, 0, isNegative, 5172 S, E)); 5173 5174 // If there's a pre-indexing writeback marker, '!', just add it as a token 5175 // operand. 5176 if (Parser.getTok().is(AsmToken::Exclaim)) { 5177 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5178 Parser.Lex(); // Eat the '!'. 5179 } 5180 5181 return false; 5182 } 5183 5184 /// parseMemRegOffsetShift - one of these two: 5185 /// ( lsl | lsr | asr | ror ) , # shift_amount 5186 /// rrx 5187 /// return true if it parses a shift otherwise it returns false. 5188 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5189 unsigned &Amount) { 5190 MCAsmParser &Parser = getParser(); 5191 SMLoc Loc = Parser.getTok().getLoc(); 5192 const AsmToken &Tok = Parser.getTok(); 5193 if (Tok.isNot(AsmToken::Identifier)) 5194 return true; 5195 StringRef ShiftName = Tok.getString(); 5196 if (ShiftName == "lsl" || ShiftName == "LSL" || 5197 ShiftName == "asl" || ShiftName == "ASL") 5198 St = ARM_AM::lsl; 5199 else if (ShiftName == "lsr" || ShiftName == "LSR") 5200 St = ARM_AM::lsr; 5201 else if (ShiftName == "asr" || ShiftName == "ASR") 5202 St = ARM_AM::asr; 5203 else if (ShiftName == "ror" || ShiftName == "ROR") 5204 St = ARM_AM::ror; 5205 else if (ShiftName == "rrx" || ShiftName == "RRX") 5206 St = ARM_AM::rrx; 5207 else 5208 return Error(Loc, "illegal shift operator"); 5209 Parser.Lex(); // Eat shift type token. 5210 5211 // rrx stands alone. 5212 Amount = 0; 5213 if (St != ARM_AM::rrx) { 5214 Loc = Parser.getTok().getLoc(); 5215 // A '#' and a shift amount. 5216 const AsmToken &HashTok = Parser.getTok(); 5217 if (HashTok.isNot(AsmToken::Hash) && 5218 HashTok.isNot(AsmToken::Dollar)) 5219 return Error(HashTok.getLoc(), "'#' expected"); 5220 Parser.Lex(); // Eat hash token. 5221 5222 const MCExpr *Expr; 5223 if (getParser().parseExpression(Expr)) 5224 return true; 5225 // Range check the immediate. 5226 // lsl, ror: 0 <= imm <= 31 5227 // lsr, asr: 0 <= imm <= 32 5228 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5229 if (!CE) 5230 return Error(Loc, "shift amount must be an immediate"); 5231 int64_t Imm = CE->getValue(); 5232 if (Imm < 0 || 5233 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5234 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5235 return Error(Loc, "immediate shift value out of range"); 5236 // If <ShiftTy> #0, turn it into a no_shift. 5237 if (Imm == 0) 5238 St = ARM_AM::lsl; 5239 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5240 if (Imm == 32) 5241 Imm = 0; 5242 Amount = Imm; 5243 } 5244 5245 return false; 5246 } 5247 5248 /// parseFPImm - A floating point immediate expression operand. 5249 OperandMatchResultTy 5250 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5251 MCAsmParser &Parser = getParser(); 5252 // Anything that can accept a floating point constant as an operand 5253 // needs to go through here, as the regular parseExpression is 5254 // integer only. 5255 // 5256 // This routine still creates a generic Immediate operand, containing 5257 // a bitcast of the 64-bit floating point value. The various operands 5258 // that accept floats can check whether the value is valid for them 5259 // via the standard is*() predicates. 5260 5261 SMLoc S = Parser.getTok().getLoc(); 5262 5263 if (Parser.getTok().isNot(AsmToken::Hash) && 5264 Parser.getTok().isNot(AsmToken::Dollar)) 5265 return MatchOperand_NoMatch; 5266 5267 // Disambiguate the VMOV forms that can accept an FP immediate. 5268 // vmov.f32 <sreg>, #imm 5269 // vmov.f64 <dreg>, #imm 5270 // vmov.f32 <dreg>, #imm @ vector f32x2 5271 // vmov.f32 <qreg>, #imm @ vector f32x4 5272 // 5273 // There are also the NEON VMOV instructions which expect an 5274 // integer constant. Make sure we don't try to parse an FPImm 5275 // for these: 5276 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5277 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5278 bool isVmovf = TyOp.isToken() && 5279 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5280 TyOp.getToken() == ".f16"); 5281 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5282 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5283 Mnemonic.getToken() == "fconsts"); 5284 if (!(isVmovf || isFconst)) 5285 return MatchOperand_NoMatch; 5286 5287 Parser.Lex(); // Eat '#' or '$'. 5288 5289 // Handle negation, as that still comes through as a separate token. 5290 bool isNegative = false; 5291 if (Parser.getTok().is(AsmToken::Minus)) { 5292 isNegative = true; 5293 Parser.Lex(); 5294 } 5295 const AsmToken &Tok = Parser.getTok(); 5296 SMLoc Loc = Tok.getLoc(); 5297 if (Tok.is(AsmToken::Real) && isVmovf) { 5298 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5299 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5300 // If we had a '-' in front, toggle the sign bit. 5301 IntVal ^= (uint64_t)isNegative << 31; 5302 Parser.Lex(); // Eat the token. 5303 Operands.push_back(ARMOperand::CreateImm( 5304 MCConstantExpr::create(IntVal, getContext()), 5305 S, Parser.getTok().getLoc())); 5306 return MatchOperand_Success; 5307 } 5308 // Also handle plain integers. Instructions which allow floating point 5309 // immediates also allow a raw encoded 8-bit value. 5310 if (Tok.is(AsmToken::Integer) && isFconst) { 5311 int64_t Val = Tok.getIntVal(); 5312 Parser.Lex(); // Eat the token. 5313 if (Val > 255 || Val < 0) { 5314 Error(Loc, "encoded floating point value out of range"); 5315 return MatchOperand_ParseFail; 5316 } 5317 float RealVal = ARM_AM::getFPImmFloat(Val); 5318 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5319 5320 Operands.push_back(ARMOperand::CreateImm( 5321 MCConstantExpr::create(Val, getContext()), S, 5322 Parser.getTok().getLoc())); 5323 return MatchOperand_Success; 5324 } 5325 5326 Error(Loc, "invalid floating point immediate"); 5327 return MatchOperand_ParseFail; 5328 } 5329 5330 /// Parse a arm instruction operand. For now this parses the operand regardless 5331 /// of the mnemonic. 5332 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5333 MCAsmParser &Parser = getParser(); 5334 SMLoc S, E; 5335 5336 // Check if the current operand has a custom associated parser, if so, try to 5337 // custom parse the operand, or fallback to the general approach. 5338 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5339 if (ResTy == MatchOperand_Success) 5340 return false; 5341 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5342 // there was a match, but an error occurred, in which case, just return that 5343 // the operand parsing failed. 5344 if (ResTy == MatchOperand_ParseFail) 5345 return true; 5346 5347 switch (getLexer().getKind()) { 5348 default: 5349 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5350 return true; 5351 case AsmToken::Identifier: { 5352 // If we've seen a branch mnemonic, the next operand must be a label. This 5353 // is true even if the label is a register name. So "br r1" means branch to 5354 // label "r1". 5355 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5356 if (!ExpectLabel) { 5357 if (!tryParseRegisterWithWriteBack(Operands)) 5358 return false; 5359 int Res = tryParseShiftRegister(Operands); 5360 if (Res == 0) // success 5361 return false; 5362 else if (Res == -1) // irrecoverable error 5363 return true; 5364 // If this is VMRS, check for the apsr_nzcv operand. 5365 if (Mnemonic == "vmrs" && 5366 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5367 S = Parser.getTok().getLoc(); 5368 Parser.Lex(); 5369 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5370 return false; 5371 } 5372 } 5373 5374 // Fall though for the Identifier case that is not a register or a 5375 // special name. 5376 } 5377 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5378 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5379 case AsmToken::String: // quoted label names. 5380 case AsmToken::Dot: { // . as a branch target 5381 // This was not a register so parse other operands that start with an 5382 // identifier (like labels) as expressions and create them as immediates. 5383 const MCExpr *IdVal; 5384 S = Parser.getTok().getLoc(); 5385 if (getParser().parseExpression(IdVal)) 5386 return true; 5387 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5388 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5389 return false; 5390 } 5391 case AsmToken::LBrac: 5392 return parseMemory(Operands); 5393 case AsmToken::LCurly: 5394 return parseRegisterList(Operands); 5395 case AsmToken::Dollar: 5396 case AsmToken::Hash: { 5397 // #42 -> immediate. 5398 S = Parser.getTok().getLoc(); 5399 Parser.Lex(); 5400 5401 if (Parser.getTok().isNot(AsmToken::Colon)) { 5402 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5403 const MCExpr *ImmVal; 5404 if (getParser().parseExpression(ImmVal)) 5405 return true; 5406 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5407 if (CE) { 5408 int32_t Val = CE->getValue(); 5409 if (isNegative && Val == 0) 5410 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5411 } 5412 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5413 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5414 5415 // There can be a trailing '!' on operands that we want as a separate 5416 // '!' Token operand. Handle that here. For example, the compatibility 5417 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5418 if (Parser.getTok().is(AsmToken::Exclaim)) { 5419 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5420 Parser.getTok().getLoc())); 5421 Parser.Lex(); // Eat exclaim token 5422 } 5423 return false; 5424 } 5425 // w/ a ':' after the '#', it's just like a plain ':'. 5426 LLVM_FALLTHROUGH; 5427 } 5428 case AsmToken::Colon: { 5429 S = Parser.getTok().getLoc(); 5430 // ":lower16:" and ":upper16:" expression prefixes 5431 // FIXME: Check it's an expression prefix, 5432 // e.g. (FOO - :lower16:BAR) isn't legal. 5433 ARMMCExpr::VariantKind RefKind; 5434 if (parsePrefix(RefKind)) 5435 return true; 5436 5437 const MCExpr *SubExprVal; 5438 if (getParser().parseExpression(SubExprVal)) 5439 return true; 5440 5441 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5442 getContext()); 5443 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5444 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5445 return false; 5446 } 5447 case AsmToken::Equal: { 5448 S = Parser.getTok().getLoc(); 5449 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5450 return Error(S, "unexpected token in operand"); 5451 Parser.Lex(); // Eat '=' 5452 const MCExpr *SubExprVal; 5453 if (getParser().parseExpression(SubExprVal)) 5454 return true; 5455 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5456 5457 // execute-only: we assume that assembly programmers know what they are 5458 // doing and allow literal pool creation here 5459 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5460 return false; 5461 } 5462 } 5463 } 5464 5465 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5466 // :lower16: and :upper16:. 5467 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5468 MCAsmParser &Parser = getParser(); 5469 RefKind = ARMMCExpr::VK_ARM_None; 5470 5471 // consume an optional '#' (GNU compatibility) 5472 if (getLexer().is(AsmToken::Hash)) 5473 Parser.Lex(); 5474 5475 // :lower16: and :upper16: modifiers 5476 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5477 Parser.Lex(); // Eat ':' 5478 5479 if (getLexer().isNot(AsmToken::Identifier)) { 5480 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5481 return true; 5482 } 5483 5484 enum { 5485 COFF = (1 << MCObjectFileInfo::IsCOFF), 5486 ELF = (1 << MCObjectFileInfo::IsELF), 5487 MACHO = (1 << MCObjectFileInfo::IsMachO), 5488 WASM = (1 << MCObjectFileInfo::IsWasm), 5489 }; 5490 static const struct PrefixEntry { 5491 const char *Spelling; 5492 ARMMCExpr::VariantKind VariantKind; 5493 uint8_t SupportedFormats; 5494 } PrefixEntries[] = { 5495 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5496 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5497 }; 5498 5499 StringRef IDVal = Parser.getTok().getIdentifier(); 5500 5501 const auto &Prefix = 5502 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5503 [&IDVal](const PrefixEntry &PE) { 5504 return PE.Spelling == IDVal; 5505 }); 5506 if (Prefix == std::end(PrefixEntries)) { 5507 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5508 return true; 5509 } 5510 5511 uint8_t CurrentFormat; 5512 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5513 case MCObjectFileInfo::IsMachO: 5514 CurrentFormat = MACHO; 5515 break; 5516 case MCObjectFileInfo::IsELF: 5517 CurrentFormat = ELF; 5518 break; 5519 case MCObjectFileInfo::IsCOFF: 5520 CurrentFormat = COFF; 5521 break; 5522 case MCObjectFileInfo::IsWasm: 5523 CurrentFormat = WASM; 5524 break; 5525 } 5526 5527 if (~Prefix->SupportedFormats & CurrentFormat) { 5528 Error(Parser.getTok().getLoc(), 5529 "cannot represent relocation in the current file format"); 5530 return true; 5531 } 5532 5533 RefKind = Prefix->VariantKind; 5534 Parser.Lex(); 5535 5536 if (getLexer().isNot(AsmToken::Colon)) { 5537 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5538 return true; 5539 } 5540 Parser.Lex(); // Eat the last ':' 5541 5542 return false; 5543 } 5544 5545 /// \brief Given a mnemonic, split out possible predication code and carry 5546 /// setting letters to form a canonical mnemonic and flags. 5547 // 5548 // FIXME: Would be nice to autogen this. 5549 // FIXME: This is a bit of a maze of special cases. 5550 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5551 unsigned &PredicationCode, 5552 bool &CarrySetting, 5553 unsigned &ProcessorIMod, 5554 StringRef &ITMask) { 5555 PredicationCode = ARMCC::AL; 5556 CarrySetting = false; 5557 ProcessorIMod = 0; 5558 5559 // Ignore some mnemonics we know aren't predicated forms. 5560 // 5561 // FIXME: Would be nice to autogen this. 5562 if ((Mnemonic == "movs" && isThumb()) || 5563 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5564 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5565 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5566 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5567 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5568 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5569 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5570 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5571 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5572 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5573 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5574 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5575 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5576 Mnemonic == "bxns" || Mnemonic == "blxns") 5577 return Mnemonic; 5578 5579 // First, split out any predication code. Ignore mnemonics we know aren't 5580 // predicated but do have a carry-set and so weren't caught above. 5581 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5582 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5583 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5584 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5585 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5586 .Case("eq", ARMCC::EQ) 5587 .Case("ne", ARMCC::NE) 5588 .Case("hs", ARMCC::HS) 5589 .Case("cs", ARMCC::HS) 5590 .Case("lo", ARMCC::LO) 5591 .Case("cc", ARMCC::LO) 5592 .Case("mi", ARMCC::MI) 5593 .Case("pl", ARMCC::PL) 5594 .Case("vs", ARMCC::VS) 5595 .Case("vc", ARMCC::VC) 5596 .Case("hi", ARMCC::HI) 5597 .Case("ls", ARMCC::LS) 5598 .Case("ge", ARMCC::GE) 5599 .Case("lt", ARMCC::LT) 5600 .Case("gt", ARMCC::GT) 5601 .Case("le", ARMCC::LE) 5602 .Case("al", ARMCC::AL) 5603 .Default(~0U); 5604 if (CC != ~0U) { 5605 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5606 PredicationCode = CC; 5607 } 5608 } 5609 5610 // Next, determine if we have a carry setting bit. We explicitly ignore all 5611 // the instructions we know end in 's'. 5612 if (Mnemonic.endswith("s") && 5613 !(Mnemonic == "cps" || Mnemonic == "mls" || 5614 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5615 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5616 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5617 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5618 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5619 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5620 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5621 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5622 Mnemonic == "bxns" || Mnemonic == "blxns" || 5623 (Mnemonic == "movs" && isThumb()))) { 5624 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5625 CarrySetting = true; 5626 } 5627 5628 // The "cps" instruction can have a interrupt mode operand which is glued into 5629 // the mnemonic. Check if this is the case, split it and parse the imod op 5630 if (Mnemonic.startswith("cps")) { 5631 // Split out any imod code. 5632 unsigned IMod = 5633 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5634 .Case("ie", ARM_PROC::IE) 5635 .Case("id", ARM_PROC::ID) 5636 .Default(~0U); 5637 if (IMod != ~0U) { 5638 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5639 ProcessorIMod = IMod; 5640 } 5641 } 5642 5643 // The "it" instruction has the condition mask on the end of the mnemonic. 5644 if (Mnemonic.startswith("it")) { 5645 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5646 Mnemonic = Mnemonic.slice(0, 2); 5647 } 5648 5649 return Mnemonic; 5650 } 5651 5652 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5653 /// inclusion of carry set or predication code operands. 5654 // 5655 // FIXME: It would be nice to autogen this. 5656 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5657 bool &CanAcceptCarrySet, 5658 bool &CanAcceptPredicationCode) { 5659 CanAcceptCarrySet = 5660 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5661 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5662 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5663 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5664 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5665 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5666 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5667 (!isThumb() && 5668 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5669 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5670 5671 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5672 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5673 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5674 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5675 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5676 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5677 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5678 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5679 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5680 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5681 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5682 Mnemonic == "vmovx" || Mnemonic == "vins") { 5683 // These mnemonics are never predicable 5684 CanAcceptPredicationCode = false; 5685 } else if (!isThumb()) { 5686 // Some instructions are only predicable in Thumb mode 5687 CanAcceptPredicationCode = 5688 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5689 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5690 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5691 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5692 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5693 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5694 !Mnemonic.startswith("srs"); 5695 } else if (isThumbOne()) { 5696 if (hasV6MOps()) 5697 CanAcceptPredicationCode = Mnemonic != "movs"; 5698 else 5699 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5700 } else 5701 CanAcceptPredicationCode = true; 5702 } 5703 5704 // \brief Some Thumb instructions have two operand forms that are not 5705 // available as three operand, convert to two operand form if possible. 5706 // 5707 // FIXME: We would really like to be able to tablegen'erate this. 5708 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5709 bool CarrySetting, 5710 OperandVector &Operands) { 5711 if (Operands.size() != 6) 5712 return; 5713 5714 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5715 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5716 if (!Op3.isReg() || !Op4.isReg()) 5717 return; 5718 5719 auto Op3Reg = Op3.getReg(); 5720 auto Op4Reg = Op4.getReg(); 5721 5722 // For most Thumb2 cases we just generate the 3 operand form and reduce 5723 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5724 // won't accept SP or PC so we do the transformation here taking care 5725 // with immediate range in the 'add sp, sp #imm' case. 5726 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5727 if (isThumbTwo()) { 5728 if (Mnemonic != "add") 5729 return; 5730 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5731 (Op5.isReg() && Op5.getReg() == ARM::PC); 5732 if (!TryTransform) { 5733 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5734 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5735 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5736 Op5.isImm() && !Op5.isImm0_508s4()); 5737 } 5738 if (!TryTransform) 5739 return; 5740 } else if (!isThumbOne()) 5741 return; 5742 5743 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5744 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5745 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5746 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5747 return; 5748 5749 // If first 2 operands of a 3 operand instruction are the same 5750 // then transform to 2 operand version of the same instruction 5751 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5752 bool Transform = Op3Reg == Op4Reg; 5753 5754 // For communtative operations, we might be able to transform if we swap 5755 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5756 // as tADDrsp. 5757 const ARMOperand *LastOp = &Op5; 5758 bool Swap = false; 5759 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5760 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5761 Mnemonic == "and" || Mnemonic == "eor" || 5762 Mnemonic == "adc" || Mnemonic == "orr")) { 5763 Swap = true; 5764 LastOp = &Op4; 5765 Transform = true; 5766 } 5767 5768 // If both registers are the same then remove one of them from 5769 // the operand list, with certain exceptions. 5770 if (Transform) { 5771 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5772 // 2 operand forms don't exist. 5773 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5774 LastOp->isReg()) 5775 Transform = false; 5776 5777 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5778 // 3-bits because the ARMARM says not to. 5779 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5780 Transform = false; 5781 } 5782 5783 if (Transform) { 5784 if (Swap) 5785 std::swap(Op4, Op5); 5786 Operands.erase(Operands.begin() + 3); 5787 } 5788 } 5789 5790 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5791 OperandVector &Operands) { 5792 // FIXME: This is all horribly hacky. We really need a better way to deal 5793 // with optional operands like this in the matcher table. 5794 5795 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5796 // another does not. Specifically, the MOVW instruction does not. So we 5797 // special case it here and remove the defaulted (non-setting) cc_out 5798 // operand if that's the instruction we're trying to match. 5799 // 5800 // We do this as post-processing of the explicit operands rather than just 5801 // conditionally adding the cc_out in the first place because we need 5802 // to check the type of the parsed immediate operand. 5803 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5804 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5805 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5806 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5807 return true; 5808 5809 // Register-register 'add' for thumb does not have a cc_out operand 5810 // when there are only two register operands. 5811 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5812 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5813 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5814 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5815 return true; 5816 // Register-register 'add' for thumb does not have a cc_out operand 5817 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5818 // have to check the immediate range here since Thumb2 has a variant 5819 // that can handle a different range and has a cc_out operand. 5820 if (((isThumb() && Mnemonic == "add") || 5821 (isThumbTwo() && Mnemonic == "sub")) && 5822 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5823 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5824 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5825 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5826 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5827 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5828 return true; 5829 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5830 // imm0_4095 variant. That's the least-preferred variant when 5831 // selecting via the generic "add" mnemonic, so to know that we 5832 // should remove the cc_out operand, we have to explicitly check that 5833 // it's not one of the other variants. Ugh. 5834 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5835 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5836 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5837 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5838 // Nest conditions rather than one big 'if' statement for readability. 5839 // 5840 // If both registers are low, we're in an IT block, and the immediate is 5841 // in range, we should use encoding T1 instead, which has a cc_out. 5842 if (inITBlock() && 5843 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5844 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5845 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5846 return false; 5847 // Check against T3. If the second register is the PC, this is an 5848 // alternate form of ADR, which uses encoding T4, so check for that too. 5849 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5850 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5851 return false; 5852 5853 // Otherwise, we use encoding T4, which does not have a cc_out 5854 // operand. 5855 return true; 5856 } 5857 5858 // The thumb2 multiply instruction doesn't have a CCOut register, so 5859 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5860 // use the 16-bit encoding or not. 5861 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5862 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5863 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5864 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5865 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5866 // If the registers aren't low regs, the destination reg isn't the 5867 // same as one of the source regs, or the cc_out operand is zero 5868 // outside of an IT block, we have to use the 32-bit encoding, so 5869 // remove the cc_out operand. 5870 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5871 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5872 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5873 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5874 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5875 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5876 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5877 return true; 5878 5879 // Also check the 'mul' syntax variant that doesn't specify an explicit 5880 // destination register. 5881 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5882 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5883 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5884 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5885 // If the registers aren't low regs or the cc_out operand is zero 5886 // outside of an IT block, we have to use the 32-bit encoding, so 5887 // remove the cc_out operand. 5888 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5889 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5890 !inITBlock())) 5891 return true; 5892 5893 5894 5895 // Register-register 'add/sub' for thumb does not have a cc_out operand 5896 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5897 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5898 // right, this will result in better diagnostics (which operand is off) 5899 // anyway. 5900 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5901 (Operands.size() == 5 || Operands.size() == 6) && 5902 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5903 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5904 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5905 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5906 (Operands.size() == 6 && 5907 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5908 return true; 5909 5910 return false; 5911 } 5912 5913 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5914 OperandVector &Operands) { 5915 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5916 unsigned RegIdx = 3; 5917 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5918 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5919 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5920 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5921 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5922 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5923 RegIdx = 4; 5924 5925 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5926 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5927 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5928 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5929 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5930 return true; 5931 } 5932 return false; 5933 } 5934 5935 static bool isDataTypeToken(StringRef Tok) { 5936 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5937 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5938 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5939 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5940 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5941 Tok == ".f" || Tok == ".d"; 5942 } 5943 5944 // FIXME: This bit should probably be handled via an explicit match class 5945 // in the .td files that matches the suffix instead of having it be 5946 // a literal string token the way it is now. 5947 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5948 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5949 } 5950 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5951 unsigned VariantID); 5952 5953 static bool RequiresVFPRegListValidation(StringRef Inst, 5954 bool &AcceptSinglePrecisionOnly, 5955 bool &AcceptDoublePrecisionOnly) { 5956 if (Inst.size() < 7) 5957 return false; 5958 5959 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5960 StringRef AddressingMode = Inst.substr(4, 2); 5961 if (AddressingMode == "ia" || AddressingMode == "db" || 5962 AddressingMode == "ea" || AddressingMode == "fd") { 5963 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5964 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5965 return true; 5966 } 5967 } 5968 5969 return false; 5970 } 5971 5972 /// Parse an arm instruction mnemonic followed by its operands. 5973 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5974 SMLoc NameLoc, OperandVector &Operands) { 5975 MCAsmParser &Parser = getParser(); 5976 // FIXME: Can this be done via tablegen in some fashion? 5977 bool RequireVFPRegisterListCheck; 5978 bool AcceptSinglePrecisionOnly; 5979 bool AcceptDoublePrecisionOnly; 5980 RequireVFPRegisterListCheck = 5981 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5982 AcceptDoublePrecisionOnly); 5983 5984 // Apply mnemonic aliases before doing anything else, as the destination 5985 // mnemonic may include suffices and we want to handle them normally. 5986 // The generic tblgen'erated code does this later, at the start of 5987 // MatchInstructionImpl(), but that's too late for aliases that include 5988 // any sort of suffix. 5989 uint64_t AvailableFeatures = getAvailableFeatures(); 5990 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5991 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5992 5993 // First check for the ARM-specific .req directive. 5994 if (Parser.getTok().is(AsmToken::Identifier) && 5995 Parser.getTok().getIdentifier() == ".req") { 5996 parseDirectiveReq(Name, NameLoc); 5997 // We always return 'error' for this, as we're done with this 5998 // statement and don't need to match the 'instruction." 5999 return true; 6000 } 6001 6002 // Create the leading tokens for the mnemonic, split by '.' characters. 6003 size_t Start = 0, Next = Name.find('.'); 6004 StringRef Mnemonic = Name.slice(Start, Next); 6005 6006 // Split out the predication code and carry setting flag from the mnemonic. 6007 unsigned PredicationCode; 6008 unsigned ProcessorIMod; 6009 bool CarrySetting; 6010 StringRef ITMask; 6011 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 6012 ProcessorIMod, ITMask); 6013 6014 // In Thumb1, only the branch (B) instruction can be predicated. 6015 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6016 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6017 } 6018 6019 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6020 6021 // Handle the IT instruction ITMask. Convert it to a bitmask. This 6022 // is the mask as it will be for the IT encoding if the conditional 6023 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 6024 // where the conditional bit0 is zero, the instruction post-processing 6025 // will adjust the mask accordingly. 6026 if (Mnemonic == "it") { 6027 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 6028 if (ITMask.size() > 3) { 6029 return Error(Loc, "too many conditions on IT instruction"); 6030 } 6031 unsigned Mask = 8; 6032 for (unsigned i = ITMask.size(); i != 0; --i) { 6033 char pos = ITMask[i - 1]; 6034 if (pos != 't' && pos != 'e') { 6035 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6036 } 6037 Mask >>= 1; 6038 if (ITMask[i - 1] == 't') 6039 Mask |= 8; 6040 } 6041 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6042 } 6043 6044 // FIXME: This is all a pretty gross hack. We should automatically handle 6045 // optional operands like this via tblgen. 6046 6047 // Next, add the CCOut and ConditionCode operands, if needed. 6048 // 6049 // For mnemonics which can ever incorporate a carry setting bit or predication 6050 // code, our matching model involves us always generating CCOut and 6051 // ConditionCode operands to match the mnemonic "as written" and then we let 6052 // the matcher deal with finding the right instruction or generating an 6053 // appropriate error. 6054 bool CanAcceptCarrySet, CanAcceptPredicationCode; 6055 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 6056 6057 // If we had a carry-set on an instruction that can't do that, issue an 6058 // error. 6059 if (!CanAcceptCarrySet && CarrySetting) { 6060 return Error(NameLoc, "instruction '" + Mnemonic + 6061 "' can not set flags, but 's' suffix specified"); 6062 } 6063 // If we had a predication code on an instruction that can't do that, issue an 6064 // error. 6065 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6066 return Error(NameLoc, "instruction '" + Mnemonic + 6067 "' is not predicable, but condition code specified"); 6068 } 6069 6070 // Add the carry setting operand, if necessary. 6071 if (CanAcceptCarrySet) { 6072 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6073 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6074 Loc)); 6075 } 6076 6077 // Add the predication code operand, if necessary. 6078 if (CanAcceptPredicationCode) { 6079 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6080 CarrySetting); 6081 Operands.push_back(ARMOperand::CreateCondCode( 6082 ARMCC::CondCodes(PredicationCode), Loc)); 6083 } 6084 6085 // Add the processor imod operand, if necessary. 6086 if (ProcessorIMod) { 6087 Operands.push_back(ARMOperand::CreateImm( 6088 MCConstantExpr::create(ProcessorIMod, getContext()), 6089 NameLoc, NameLoc)); 6090 } else if (Mnemonic == "cps" && isMClass()) { 6091 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6092 } 6093 6094 // Add the remaining tokens in the mnemonic. 6095 while (Next != StringRef::npos) { 6096 Start = Next; 6097 Next = Name.find('.', Start + 1); 6098 StringRef ExtraToken = Name.slice(Start, Next); 6099 6100 // Some NEON instructions have an optional datatype suffix that is 6101 // completely ignored. Check for that. 6102 if (isDataTypeToken(ExtraToken) && 6103 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6104 continue; 6105 6106 // For for ARM mode generate an error if the .n qualifier is used. 6107 if (ExtraToken == ".n" && !isThumb()) { 6108 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6109 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6110 "arm mode"); 6111 } 6112 6113 // The .n qualifier is always discarded as that is what the tables 6114 // and matcher expect. In ARM mode the .w qualifier has no effect, 6115 // so discard it to avoid errors that can be caused by the matcher. 6116 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6117 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6118 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6119 } 6120 } 6121 6122 // Read the remaining operands. 6123 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6124 // Read the first operand. 6125 if (parseOperand(Operands, Mnemonic)) { 6126 return true; 6127 } 6128 6129 while (parseOptionalToken(AsmToken::Comma)) { 6130 // Parse and remember the operand. 6131 if (parseOperand(Operands, Mnemonic)) { 6132 return true; 6133 } 6134 } 6135 } 6136 6137 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6138 return true; 6139 6140 if (RequireVFPRegisterListCheck) { 6141 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 6142 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 6143 return Error(Op.getStartLoc(), 6144 "VFP/Neon single precision register expected"); 6145 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 6146 return Error(Op.getStartLoc(), 6147 "VFP/Neon double precision register expected"); 6148 } 6149 6150 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6151 6152 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6153 // do and don't have a cc_out optional-def operand. With some spot-checks 6154 // of the operand list, we can figure out which variant we're trying to 6155 // parse and adjust accordingly before actually matching. We shouldn't ever 6156 // try to remove a cc_out operand that was explicitly set on the 6157 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6158 // table driven matcher doesn't fit well with the ARM instruction set. 6159 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6160 Operands.erase(Operands.begin() + 1); 6161 6162 // Some instructions have the same mnemonic, but don't always 6163 // have a predicate. Distinguish them here and delete the 6164 // predicate if needed. 6165 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 6166 Operands.erase(Operands.begin() + 1); 6167 6168 // ARM mode 'blx' need special handling, as the register operand version 6169 // is predicable, but the label operand version is not. So, we can't rely 6170 // on the Mnemonic based checking to correctly figure out when to put 6171 // a k_CondCode operand in the list. If we're trying to match the label 6172 // version, remove the k_CondCode operand here. 6173 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6174 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6175 Operands.erase(Operands.begin() + 1); 6176 6177 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6178 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6179 // a single GPRPair reg operand is used in the .td file to replace the two 6180 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6181 // expressed as a GPRPair, so we have to manually merge them. 6182 // FIXME: We would really like to be able to tablegen'erate this. 6183 if (!isThumb() && Operands.size() > 4 && 6184 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6185 Mnemonic == "stlexd")) { 6186 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6187 unsigned Idx = isLoad ? 2 : 3; 6188 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6189 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6190 6191 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6192 // Adjust only if Op1 and Op2 are GPRs. 6193 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6194 MRC.contains(Op2.getReg())) { 6195 unsigned Reg1 = Op1.getReg(); 6196 unsigned Reg2 = Op2.getReg(); 6197 unsigned Rt = MRI->getEncodingValue(Reg1); 6198 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6199 6200 // Rt2 must be Rt + 1 and Rt must be even. 6201 if (Rt + 1 != Rt2 || (Rt & 1)) { 6202 return Error(Op2.getStartLoc(), 6203 isLoad ? "destination operands must be sequential" 6204 : "source operands must be sequential"); 6205 } 6206 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6207 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6208 Operands[Idx] = 6209 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6210 Operands.erase(Operands.begin() + Idx + 1); 6211 } 6212 } 6213 6214 // GNU Assembler extension (compatibility) 6215 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 6216 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6217 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6218 if (Op3.isMem()) { 6219 assert(Op2.isReg() && "expected register argument"); 6220 6221 unsigned SuperReg = MRI->getMatchingSuperReg( 6222 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 6223 6224 assert(SuperReg && "expected register pair"); 6225 6226 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 6227 6228 Operands.insert( 6229 Operands.begin() + 3, 6230 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6231 } 6232 } 6233 6234 // FIXME: As said above, this is all a pretty gross hack. This instruction 6235 // does not fit with other "subs" and tblgen. 6236 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6237 // so the Mnemonic is the original name "subs" and delete the predicate 6238 // operand so it will match the table entry. 6239 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6240 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6241 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6242 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6243 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6244 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6245 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6246 Operands.erase(Operands.begin() + 1); 6247 } 6248 return false; 6249 } 6250 6251 // Validate context-sensitive operand constraints. 6252 6253 // return 'true' if register list contains non-low GPR registers, 6254 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6255 // 'containsReg' to true. 6256 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6257 unsigned Reg, unsigned HiReg, 6258 bool &containsReg) { 6259 containsReg = false; 6260 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6261 unsigned OpReg = Inst.getOperand(i).getReg(); 6262 if (OpReg == Reg) 6263 containsReg = true; 6264 // Anything other than a low register isn't legal here. 6265 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6266 return true; 6267 } 6268 return false; 6269 } 6270 6271 // Check if the specified regisgter is in the register list of the inst, 6272 // starting at the indicated operand number. 6273 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6274 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6275 unsigned OpReg = Inst.getOperand(i).getReg(); 6276 if (OpReg == Reg) 6277 return true; 6278 } 6279 return false; 6280 } 6281 6282 // Return true if instruction has the interesting property of being 6283 // allowed in IT blocks, but not being predicable. 6284 static bool instIsBreakpoint(const MCInst &Inst) { 6285 return Inst.getOpcode() == ARM::tBKPT || 6286 Inst.getOpcode() == ARM::BKPT || 6287 Inst.getOpcode() == ARM::tHLT || 6288 Inst.getOpcode() == ARM::HLT; 6289 6290 } 6291 6292 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6293 const OperandVector &Operands, 6294 unsigned ListNo, bool IsARPop) { 6295 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6296 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6297 6298 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6299 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6300 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6301 6302 if (!IsARPop && ListContainsSP) 6303 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6304 "SP may not be in the register list"); 6305 else if (ListContainsPC && ListContainsLR) 6306 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6307 "PC and LR may not be in the register list simultaneously"); 6308 return false; 6309 } 6310 6311 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6312 const OperandVector &Operands, 6313 unsigned ListNo) { 6314 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6315 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6316 6317 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6318 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6319 6320 if (ListContainsSP && ListContainsPC) 6321 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6322 "SP and PC may not be in the register list"); 6323 else if (ListContainsSP) 6324 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6325 "SP may not be in the register list"); 6326 else if (ListContainsPC) 6327 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6328 "PC may not be in the register list"); 6329 return false; 6330 } 6331 6332 // FIXME: We would really like to be able to tablegen'erate this. 6333 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6334 const OperandVector &Operands) { 6335 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6336 SMLoc Loc = Operands[0]->getStartLoc(); 6337 6338 // Check the IT block state first. 6339 // NOTE: BKPT and HLT instructions have the interesting property of being 6340 // allowed in IT blocks, but not being predicable. They just always execute. 6341 if (inITBlock() && !instIsBreakpoint(Inst)) { 6342 // The instruction must be predicable. 6343 if (!MCID.isPredicable()) 6344 return Error(Loc, "instructions in IT block must be predicable"); 6345 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6346 if (Cond != currentITCond()) { 6347 // Find the condition code Operand to get its SMLoc information. 6348 SMLoc CondLoc; 6349 for (unsigned I = 1; I < Operands.size(); ++I) 6350 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6351 CondLoc = Operands[I]->getStartLoc(); 6352 return Error(CondLoc, "incorrect condition in IT block; got '" + 6353 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6354 "', but expected '" + 6355 ARMCondCodeToString(ARMCC::CondCodes(currentITCond())) + "'"); 6356 } 6357 // Check for non-'al' condition codes outside of the IT block. 6358 } else if (isThumbTwo() && MCID.isPredicable() && 6359 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6360 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6361 Inst.getOpcode() != ARM::t2Bcc) { 6362 return Error(Loc, "predicated instructions must be in IT block"); 6363 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6364 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6365 ARMCC::AL) { 6366 return Warning(Loc, "predicated instructions should be in IT block"); 6367 } 6368 6369 // PC-setting instructions in an IT block, but not the last instruction of 6370 // the block, are UNPREDICTABLE. 6371 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 6372 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 6373 } 6374 6375 const unsigned Opcode = Inst.getOpcode(); 6376 switch (Opcode) { 6377 case ARM::LDRD: 6378 case ARM::LDRD_PRE: 6379 case ARM::LDRD_POST: { 6380 const unsigned RtReg = Inst.getOperand(0).getReg(); 6381 6382 // Rt can't be R14. 6383 if (RtReg == ARM::LR) 6384 return Error(Operands[3]->getStartLoc(), 6385 "Rt can't be R14"); 6386 6387 const unsigned Rt = MRI->getEncodingValue(RtReg); 6388 // Rt must be even-numbered. 6389 if ((Rt & 1) == 1) 6390 return Error(Operands[3]->getStartLoc(), 6391 "Rt must be even-numbered"); 6392 6393 // Rt2 must be Rt + 1. 6394 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6395 if (Rt2 != Rt + 1) 6396 return Error(Operands[3]->getStartLoc(), 6397 "destination operands must be sequential"); 6398 6399 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6400 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6401 // For addressing modes with writeback, the base register needs to be 6402 // different from the destination registers. 6403 if (Rn == Rt || Rn == Rt2) 6404 return Error(Operands[3]->getStartLoc(), 6405 "base register needs to be different from destination " 6406 "registers"); 6407 } 6408 6409 return false; 6410 } 6411 case ARM::t2LDRDi8: 6412 case ARM::t2LDRD_PRE: 6413 case ARM::t2LDRD_POST: { 6414 // Rt2 must be different from Rt. 6415 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6416 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6417 if (Rt2 == Rt) 6418 return Error(Operands[3]->getStartLoc(), 6419 "destination operands can't be identical"); 6420 return false; 6421 } 6422 case ARM::t2BXJ: { 6423 const unsigned RmReg = Inst.getOperand(0).getReg(); 6424 // Rm = SP is no longer unpredictable in v8-A 6425 if (RmReg == ARM::SP && !hasV8Ops()) 6426 return Error(Operands[2]->getStartLoc(), 6427 "r13 (SP) is an unpredictable operand to BXJ"); 6428 return false; 6429 } 6430 case ARM::STRD: { 6431 // Rt2 must be Rt + 1. 6432 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6433 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6434 if (Rt2 != Rt + 1) 6435 return Error(Operands[3]->getStartLoc(), 6436 "source operands must be sequential"); 6437 return false; 6438 } 6439 case ARM::STRD_PRE: 6440 case ARM::STRD_POST: { 6441 // Rt2 must be Rt + 1. 6442 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6443 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6444 if (Rt2 != Rt + 1) 6445 return Error(Operands[3]->getStartLoc(), 6446 "source operands must be sequential"); 6447 return false; 6448 } 6449 case ARM::STR_PRE_IMM: 6450 case ARM::STR_PRE_REG: 6451 case ARM::STR_POST_IMM: 6452 case ARM::STR_POST_REG: 6453 case ARM::STRH_PRE: 6454 case ARM::STRH_POST: 6455 case ARM::STRB_PRE_IMM: 6456 case ARM::STRB_PRE_REG: 6457 case ARM::STRB_POST_IMM: 6458 case ARM::STRB_POST_REG: { 6459 // Rt must be different from Rn. 6460 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6461 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6462 6463 if (Rt == Rn) 6464 return Error(Operands[3]->getStartLoc(), 6465 "source register and base register can't be identical"); 6466 return false; 6467 } 6468 case ARM::LDR_PRE_IMM: 6469 case ARM::LDR_PRE_REG: 6470 case ARM::LDR_POST_IMM: 6471 case ARM::LDR_POST_REG: 6472 case ARM::LDRH_PRE: 6473 case ARM::LDRH_POST: 6474 case ARM::LDRSH_PRE: 6475 case ARM::LDRSH_POST: 6476 case ARM::LDRB_PRE_IMM: 6477 case ARM::LDRB_PRE_REG: 6478 case ARM::LDRB_POST_IMM: 6479 case ARM::LDRB_POST_REG: 6480 case ARM::LDRSB_PRE: 6481 case ARM::LDRSB_POST: { 6482 // Rt must be different from Rn. 6483 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6484 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6485 6486 if (Rt == Rn) 6487 return Error(Operands[3]->getStartLoc(), 6488 "destination register and base register can't be identical"); 6489 return false; 6490 } 6491 case ARM::SBFX: 6492 case ARM::UBFX: { 6493 // Width must be in range [1, 32-lsb]. 6494 unsigned LSB = Inst.getOperand(2).getImm(); 6495 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6496 if (Widthm1 >= 32 - LSB) 6497 return Error(Operands[5]->getStartLoc(), 6498 "bitfield width must be in range [1,32-lsb]"); 6499 return false; 6500 } 6501 // Notionally handles ARM::tLDMIA_UPD too. 6502 case ARM::tLDMIA: { 6503 // If we're parsing Thumb2, the .w variant is available and handles 6504 // most cases that are normally illegal for a Thumb1 LDM instruction. 6505 // We'll make the transformation in processInstruction() if necessary. 6506 // 6507 // Thumb LDM instructions are writeback iff the base register is not 6508 // in the register list. 6509 unsigned Rn = Inst.getOperand(0).getReg(); 6510 bool HasWritebackToken = 6511 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6512 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6513 bool ListContainsBase; 6514 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6515 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6516 "registers must be in range r0-r7"); 6517 // If we should have writeback, then there should be a '!' token. 6518 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6519 return Error(Operands[2]->getStartLoc(), 6520 "writeback operator '!' expected"); 6521 // If we should not have writeback, there must not be a '!'. This is 6522 // true even for the 32-bit wide encodings. 6523 if (ListContainsBase && HasWritebackToken) 6524 return Error(Operands[3]->getStartLoc(), 6525 "writeback operator '!' not allowed when base register " 6526 "in register list"); 6527 6528 if (validatetLDMRegList(Inst, Operands, 3)) 6529 return true; 6530 break; 6531 } 6532 case ARM::LDMIA_UPD: 6533 case ARM::LDMDB_UPD: 6534 case ARM::LDMIB_UPD: 6535 case ARM::LDMDA_UPD: 6536 // ARM variants loading and updating the same register are only officially 6537 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6538 if (!hasV7Ops()) 6539 break; 6540 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6541 return Error(Operands.back()->getStartLoc(), 6542 "writeback register not allowed in register list"); 6543 break; 6544 case ARM::t2LDMIA: 6545 case ARM::t2LDMDB: 6546 if (validatetLDMRegList(Inst, Operands, 3)) 6547 return true; 6548 break; 6549 case ARM::t2STMIA: 6550 case ARM::t2STMDB: 6551 if (validatetSTMRegList(Inst, Operands, 3)) 6552 return true; 6553 break; 6554 case ARM::t2LDMIA_UPD: 6555 case ARM::t2LDMDB_UPD: 6556 case ARM::t2STMIA_UPD: 6557 case ARM::t2STMDB_UPD: { 6558 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6559 return Error(Operands.back()->getStartLoc(), 6560 "writeback register not allowed in register list"); 6561 6562 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6563 if (validatetLDMRegList(Inst, Operands, 3)) 6564 return true; 6565 } else { 6566 if (validatetSTMRegList(Inst, Operands, 3)) 6567 return true; 6568 } 6569 break; 6570 } 6571 case ARM::sysLDMIA_UPD: 6572 case ARM::sysLDMDA_UPD: 6573 case ARM::sysLDMDB_UPD: 6574 case ARM::sysLDMIB_UPD: 6575 if (!listContainsReg(Inst, 3, ARM::PC)) 6576 return Error(Operands[4]->getStartLoc(), 6577 "writeback register only allowed on system LDM " 6578 "if PC in register-list"); 6579 break; 6580 case ARM::sysSTMIA_UPD: 6581 case ARM::sysSTMDA_UPD: 6582 case ARM::sysSTMDB_UPD: 6583 case ARM::sysSTMIB_UPD: 6584 return Error(Operands[2]->getStartLoc(), 6585 "system STM cannot have writeback register"); 6586 case ARM::tMUL: { 6587 // The second source operand must be the same register as the destination 6588 // operand. 6589 // 6590 // In this case, we must directly check the parsed operands because the 6591 // cvtThumbMultiply() function is written in such a way that it guarantees 6592 // this first statement is always true for the new Inst. Essentially, the 6593 // destination is unconditionally copied into the second source operand 6594 // without checking to see if it matches what we actually parsed. 6595 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6596 ((ARMOperand &)*Operands[5]).getReg()) && 6597 (((ARMOperand &)*Operands[3]).getReg() != 6598 ((ARMOperand &)*Operands[4]).getReg())) { 6599 return Error(Operands[3]->getStartLoc(), 6600 "destination register must match source register"); 6601 } 6602 break; 6603 } 6604 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6605 // so only issue a diagnostic for thumb1. The instructions will be 6606 // switched to the t2 encodings in processInstruction() if necessary. 6607 case ARM::tPOP: { 6608 bool ListContainsBase; 6609 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6610 !isThumbTwo()) 6611 return Error(Operands[2]->getStartLoc(), 6612 "registers must be in range r0-r7 or pc"); 6613 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6614 return true; 6615 break; 6616 } 6617 case ARM::tPUSH: { 6618 bool ListContainsBase; 6619 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6620 !isThumbTwo()) 6621 return Error(Operands[2]->getStartLoc(), 6622 "registers must be in range r0-r7 or lr"); 6623 if (validatetSTMRegList(Inst, Operands, 2)) 6624 return true; 6625 break; 6626 } 6627 case ARM::tSTMIA_UPD: { 6628 bool ListContainsBase, InvalidLowList; 6629 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6630 0, ListContainsBase); 6631 if (InvalidLowList && !isThumbTwo()) 6632 return Error(Operands[4]->getStartLoc(), 6633 "registers must be in range r0-r7"); 6634 6635 // This would be converted to a 32-bit stm, but that's not valid if the 6636 // writeback register is in the list. 6637 if (InvalidLowList && ListContainsBase) 6638 return Error(Operands[4]->getStartLoc(), 6639 "writeback operator '!' not allowed when base register " 6640 "in register list"); 6641 6642 if (validatetSTMRegList(Inst, Operands, 4)) 6643 return true; 6644 break; 6645 } 6646 case ARM::tADDrSP: { 6647 // If the non-SP source operand and the destination operand are not the 6648 // same, we need thumb2 (for the wide encoding), or we have an error. 6649 if (!isThumbTwo() && 6650 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6651 return Error(Operands[4]->getStartLoc(), 6652 "source register must be the same as destination"); 6653 } 6654 break; 6655 } 6656 // Final range checking for Thumb unconditional branch instructions. 6657 case ARM::tB: 6658 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6659 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6660 break; 6661 case ARM::t2B: { 6662 int op = (Operands[2]->isImm()) ? 2 : 3; 6663 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6664 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6665 break; 6666 } 6667 // Final range checking for Thumb conditional branch instructions. 6668 case ARM::tBcc: 6669 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6670 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6671 break; 6672 case ARM::t2Bcc: { 6673 int Op = (Operands[2]->isImm()) ? 2 : 3; 6674 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6675 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6676 break; 6677 } 6678 case ARM::tCBZ: 6679 case ARM::tCBNZ: { 6680 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6681 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6682 break; 6683 } 6684 case ARM::MOVi16: 6685 case ARM::MOVTi16: 6686 case ARM::t2MOVi16: 6687 case ARM::t2MOVTi16: 6688 { 6689 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6690 // especially when we turn it into a movw and the expression <symbol> does 6691 // not have a :lower16: or :upper16 as part of the expression. We don't 6692 // want the behavior of silently truncating, which can be unexpected and 6693 // lead to bugs that are difficult to find since this is an easy mistake 6694 // to make. 6695 int i = (Operands[3]->isImm()) ? 3 : 4; 6696 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6697 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6698 if (CE) break; 6699 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6700 if (!E) break; 6701 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6702 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6703 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6704 return Error( 6705 Op.getStartLoc(), 6706 "immediate expression for mov requires :lower16: or :upper16"); 6707 break; 6708 } 6709 case ARM::HINT: 6710 case ARM::t2HINT: { 6711 if (hasRAS()) { 6712 // ESB is not predicable (pred must be AL) 6713 unsigned Imm8 = Inst.getOperand(0).getImm(); 6714 unsigned Pred = Inst.getOperand(1).getImm(); 6715 if (Imm8 == 0x10 && Pred != ARMCC::AL) 6716 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6717 "predicable, but condition " 6718 "code specified"); 6719 } 6720 // Without the RAS extension, this behaves as any other unallocated hint. 6721 break; 6722 } 6723 } 6724 6725 return false; 6726 } 6727 6728 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6729 switch(Opc) { 6730 default: llvm_unreachable("unexpected opcode!"); 6731 // VST1LN 6732 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6733 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6734 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6735 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6736 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6737 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6738 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6739 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6740 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6741 6742 // VST2LN 6743 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6744 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6745 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6746 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6747 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6748 6749 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6750 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6751 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6752 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6753 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6754 6755 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6756 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6757 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6758 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6759 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6760 6761 // VST3LN 6762 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6763 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6764 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6765 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6766 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6767 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6768 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6769 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6770 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6771 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6772 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6773 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6774 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6775 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6776 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6777 6778 // VST3 6779 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6780 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6781 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6782 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6783 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6784 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6785 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6786 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6787 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6788 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6789 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6790 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6791 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6792 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6793 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6794 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6795 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6796 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6797 6798 // VST4LN 6799 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6800 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6801 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6802 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6803 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6804 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6805 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6806 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6807 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6808 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6809 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6810 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6811 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6812 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6813 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6814 6815 // VST4 6816 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6817 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6818 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6819 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6820 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6821 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6822 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6823 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6824 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6825 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6826 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6827 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6828 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6829 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6830 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6831 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6832 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6833 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6834 } 6835 } 6836 6837 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6838 switch(Opc) { 6839 default: llvm_unreachable("unexpected opcode!"); 6840 // VLD1LN 6841 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6842 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6843 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6844 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6845 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6846 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6847 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6848 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6849 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6850 6851 // VLD2LN 6852 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6853 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6854 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6855 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6856 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6857 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6858 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6859 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6860 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6861 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6862 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6863 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6864 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6865 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6866 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6867 6868 // VLD3DUP 6869 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6870 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6871 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6872 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6873 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6874 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6875 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6876 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6877 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6878 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6879 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6880 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6881 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6882 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6883 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6884 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6885 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6886 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6887 6888 // VLD3LN 6889 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6890 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6891 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6892 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6893 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6894 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6895 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6896 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6897 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6898 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6899 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6900 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6901 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6902 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6903 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6904 6905 // VLD3 6906 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6907 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6908 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6909 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6910 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6911 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6912 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6913 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6914 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6915 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6916 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6917 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6918 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6919 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6920 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6921 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6922 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6923 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6924 6925 // VLD4LN 6926 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6927 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6928 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6929 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6930 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6931 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6932 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6933 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6934 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6935 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6936 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6937 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6938 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6939 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6940 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6941 6942 // VLD4DUP 6943 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6944 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6945 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6946 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6947 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6948 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6949 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6950 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6951 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6952 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6953 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6954 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6955 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6956 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6957 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6958 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6959 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6960 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6961 6962 // VLD4 6963 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6964 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6965 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6966 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6967 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6968 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6969 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6970 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6971 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6972 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6973 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6974 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6975 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6976 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6977 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6978 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6979 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6980 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6981 } 6982 } 6983 6984 bool ARMAsmParser::processInstruction(MCInst &Inst, 6985 const OperandVector &Operands, 6986 MCStreamer &Out) { 6987 switch (Inst.getOpcode()) { 6988 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6989 case ARM::LDRT_POST: 6990 case ARM::LDRBT_POST: { 6991 const unsigned Opcode = 6992 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6993 : ARM::LDRBT_POST_IMM; 6994 MCInst TmpInst; 6995 TmpInst.setOpcode(Opcode); 6996 TmpInst.addOperand(Inst.getOperand(0)); 6997 TmpInst.addOperand(Inst.getOperand(1)); 6998 TmpInst.addOperand(Inst.getOperand(1)); 6999 TmpInst.addOperand(MCOperand::createReg(0)); 7000 TmpInst.addOperand(MCOperand::createImm(0)); 7001 TmpInst.addOperand(Inst.getOperand(2)); 7002 TmpInst.addOperand(Inst.getOperand(3)); 7003 Inst = TmpInst; 7004 return true; 7005 } 7006 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 7007 case ARM::STRT_POST: 7008 case ARM::STRBT_POST: { 7009 const unsigned Opcode = 7010 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 7011 : ARM::STRBT_POST_IMM; 7012 MCInst TmpInst; 7013 TmpInst.setOpcode(Opcode); 7014 TmpInst.addOperand(Inst.getOperand(1)); 7015 TmpInst.addOperand(Inst.getOperand(0)); 7016 TmpInst.addOperand(Inst.getOperand(1)); 7017 TmpInst.addOperand(MCOperand::createReg(0)); 7018 TmpInst.addOperand(MCOperand::createImm(0)); 7019 TmpInst.addOperand(Inst.getOperand(2)); 7020 TmpInst.addOperand(Inst.getOperand(3)); 7021 Inst = TmpInst; 7022 return true; 7023 } 7024 // Alias for alternate form of 'ADR Rd, #imm' instruction. 7025 case ARM::ADDri: { 7026 if (Inst.getOperand(1).getReg() != ARM::PC || 7027 Inst.getOperand(5).getReg() != 0 || 7028 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 7029 return false; 7030 MCInst TmpInst; 7031 TmpInst.setOpcode(ARM::ADR); 7032 TmpInst.addOperand(Inst.getOperand(0)); 7033 if (Inst.getOperand(2).isImm()) { 7034 // Immediate (mod_imm) will be in its encoded form, we must unencode it 7035 // before passing it to the ADR instruction. 7036 unsigned Enc = Inst.getOperand(2).getImm(); 7037 TmpInst.addOperand(MCOperand::createImm( 7038 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 7039 } else { 7040 // Turn PC-relative expression into absolute expression. 7041 // Reading PC provides the start of the current instruction + 8 and 7042 // the transform to adr is biased by that. 7043 MCSymbol *Dot = getContext().createTempSymbol(); 7044 Out.EmitLabel(Dot); 7045 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 7046 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 7047 MCSymbolRefExpr::VK_None, 7048 getContext()); 7049 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 7050 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 7051 getContext()); 7052 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 7053 getContext()); 7054 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 7055 } 7056 TmpInst.addOperand(Inst.getOperand(3)); 7057 TmpInst.addOperand(Inst.getOperand(4)); 7058 Inst = TmpInst; 7059 return true; 7060 } 7061 // Aliases for alternate PC+imm syntax of LDR instructions. 7062 case ARM::t2LDRpcrel: 7063 // Select the narrow version if the immediate will fit. 7064 if (Inst.getOperand(1).getImm() > 0 && 7065 Inst.getOperand(1).getImm() <= 0xff && 7066 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 7067 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 7068 Inst.setOpcode(ARM::tLDRpci); 7069 else 7070 Inst.setOpcode(ARM::t2LDRpci); 7071 return true; 7072 case ARM::t2LDRBpcrel: 7073 Inst.setOpcode(ARM::t2LDRBpci); 7074 return true; 7075 case ARM::t2LDRHpcrel: 7076 Inst.setOpcode(ARM::t2LDRHpci); 7077 return true; 7078 case ARM::t2LDRSBpcrel: 7079 Inst.setOpcode(ARM::t2LDRSBpci); 7080 return true; 7081 case ARM::t2LDRSHpcrel: 7082 Inst.setOpcode(ARM::t2LDRSHpci); 7083 return true; 7084 case ARM::LDRConstPool: 7085 case ARM::tLDRConstPool: 7086 case ARM::t2LDRConstPool: { 7087 // Pseudo instruction ldr rt, =immediate is converted to a 7088 // MOV rt, immediate if immediate is known and representable 7089 // otherwise we create a constant pool entry that we load from. 7090 MCInst TmpInst; 7091 if (Inst.getOpcode() == ARM::LDRConstPool) 7092 TmpInst.setOpcode(ARM::LDRi12); 7093 else if (Inst.getOpcode() == ARM::tLDRConstPool) 7094 TmpInst.setOpcode(ARM::tLDRpci); 7095 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 7096 TmpInst.setOpcode(ARM::t2LDRpci); 7097 const ARMOperand &PoolOperand = 7098 (static_cast<ARMOperand &>(*Operands[2]).isToken() && 7099 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w") ? 7100 static_cast<ARMOperand &>(*Operands[4]) : 7101 static_cast<ARMOperand &>(*Operands[3]); 7102 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 7103 // If SubExprVal is a constant we may be able to use a MOV 7104 if (isa<MCConstantExpr>(SubExprVal) && 7105 Inst.getOperand(0).getReg() != ARM::PC && 7106 Inst.getOperand(0).getReg() != ARM::SP) { 7107 int64_t Value = 7108 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 7109 bool UseMov = true; 7110 bool MovHasS = true; 7111 if (Inst.getOpcode() == ARM::LDRConstPool) { 7112 // ARM Constant 7113 if (ARM_AM::getSOImmVal(Value) != -1) { 7114 Value = ARM_AM::getSOImmVal(Value); 7115 TmpInst.setOpcode(ARM::MOVi); 7116 } 7117 else if (ARM_AM::getSOImmVal(~Value) != -1) { 7118 Value = ARM_AM::getSOImmVal(~Value); 7119 TmpInst.setOpcode(ARM::MVNi); 7120 } 7121 else if (hasV6T2Ops() && 7122 Value >=0 && Value < 65536) { 7123 TmpInst.setOpcode(ARM::MOVi16); 7124 MovHasS = false; 7125 } 7126 else 7127 UseMov = false; 7128 } 7129 else { 7130 // Thumb/Thumb2 Constant 7131 if (hasThumb2() && 7132 ARM_AM::getT2SOImmVal(Value) != -1) 7133 TmpInst.setOpcode(ARM::t2MOVi); 7134 else if (hasThumb2() && 7135 ARM_AM::getT2SOImmVal(~Value) != -1) { 7136 TmpInst.setOpcode(ARM::t2MVNi); 7137 Value = ~Value; 7138 } 7139 else if (hasV8MBaseline() && 7140 Value >=0 && Value < 65536) { 7141 TmpInst.setOpcode(ARM::t2MOVi16); 7142 MovHasS = false; 7143 } 7144 else 7145 UseMov = false; 7146 } 7147 if (UseMov) { 7148 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7149 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7150 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7151 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7152 if (MovHasS) 7153 TmpInst.addOperand(MCOperand::createReg(0)); // S 7154 Inst = TmpInst; 7155 return true; 7156 } 7157 } 7158 // No opportunity to use MOV/MVN create constant pool 7159 const MCExpr *CPLoc = 7160 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7161 PoolOperand.getStartLoc()); 7162 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7163 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7164 if (TmpInst.getOpcode() == ARM::LDRi12) 7165 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7166 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7167 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7168 Inst = TmpInst; 7169 return true; 7170 } 7171 // Handle NEON VST complex aliases. 7172 case ARM::VST1LNdWB_register_Asm_8: 7173 case ARM::VST1LNdWB_register_Asm_16: 7174 case ARM::VST1LNdWB_register_Asm_32: { 7175 MCInst TmpInst; 7176 // Shuffle the operands around so the lane index operand is in the 7177 // right place. 7178 unsigned Spacing; 7179 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7180 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7181 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7182 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7183 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7184 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7185 TmpInst.addOperand(Inst.getOperand(1)); // lane 7186 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7187 TmpInst.addOperand(Inst.getOperand(6)); 7188 Inst = TmpInst; 7189 return true; 7190 } 7191 7192 case ARM::VST2LNdWB_register_Asm_8: 7193 case ARM::VST2LNdWB_register_Asm_16: 7194 case ARM::VST2LNdWB_register_Asm_32: 7195 case ARM::VST2LNqWB_register_Asm_16: 7196 case ARM::VST2LNqWB_register_Asm_32: { 7197 MCInst TmpInst; 7198 // Shuffle the operands around so the lane index operand is in the 7199 // right place. 7200 unsigned Spacing; 7201 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7202 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7203 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7204 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7205 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7206 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7207 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7208 Spacing)); 7209 TmpInst.addOperand(Inst.getOperand(1)); // lane 7210 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7211 TmpInst.addOperand(Inst.getOperand(6)); 7212 Inst = TmpInst; 7213 return true; 7214 } 7215 7216 case ARM::VST3LNdWB_register_Asm_8: 7217 case ARM::VST3LNdWB_register_Asm_16: 7218 case ARM::VST3LNdWB_register_Asm_32: 7219 case ARM::VST3LNqWB_register_Asm_16: 7220 case ARM::VST3LNqWB_register_Asm_32: { 7221 MCInst TmpInst; 7222 // Shuffle the operands around so the lane index operand is in the 7223 // right place. 7224 unsigned Spacing; 7225 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7226 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7227 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7228 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7229 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7230 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7231 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7232 Spacing)); 7233 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7234 Spacing * 2)); 7235 TmpInst.addOperand(Inst.getOperand(1)); // lane 7236 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7237 TmpInst.addOperand(Inst.getOperand(6)); 7238 Inst = TmpInst; 7239 return true; 7240 } 7241 7242 case ARM::VST4LNdWB_register_Asm_8: 7243 case ARM::VST4LNdWB_register_Asm_16: 7244 case ARM::VST4LNdWB_register_Asm_32: 7245 case ARM::VST4LNqWB_register_Asm_16: 7246 case ARM::VST4LNqWB_register_Asm_32: { 7247 MCInst TmpInst; 7248 // Shuffle the operands around so the lane index operand is in the 7249 // right place. 7250 unsigned Spacing; 7251 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7252 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7253 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7254 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7255 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7256 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7257 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7258 Spacing)); 7259 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7260 Spacing * 2)); 7261 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7262 Spacing * 3)); 7263 TmpInst.addOperand(Inst.getOperand(1)); // lane 7264 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7265 TmpInst.addOperand(Inst.getOperand(6)); 7266 Inst = TmpInst; 7267 return true; 7268 } 7269 7270 case ARM::VST1LNdWB_fixed_Asm_8: 7271 case ARM::VST1LNdWB_fixed_Asm_16: 7272 case ARM::VST1LNdWB_fixed_Asm_32: { 7273 MCInst TmpInst; 7274 // Shuffle the operands around so the lane index operand is in the 7275 // right place. 7276 unsigned Spacing; 7277 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7278 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7279 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7280 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7281 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7282 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7283 TmpInst.addOperand(Inst.getOperand(1)); // lane 7284 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7285 TmpInst.addOperand(Inst.getOperand(5)); 7286 Inst = TmpInst; 7287 return true; 7288 } 7289 7290 case ARM::VST2LNdWB_fixed_Asm_8: 7291 case ARM::VST2LNdWB_fixed_Asm_16: 7292 case ARM::VST2LNdWB_fixed_Asm_32: 7293 case ARM::VST2LNqWB_fixed_Asm_16: 7294 case ARM::VST2LNqWB_fixed_Asm_32: { 7295 MCInst TmpInst; 7296 // Shuffle the operands around so the lane index operand is in the 7297 // right place. 7298 unsigned Spacing; 7299 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7300 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7301 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7302 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7303 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7304 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7305 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7306 Spacing)); 7307 TmpInst.addOperand(Inst.getOperand(1)); // lane 7308 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7309 TmpInst.addOperand(Inst.getOperand(5)); 7310 Inst = TmpInst; 7311 return true; 7312 } 7313 7314 case ARM::VST3LNdWB_fixed_Asm_8: 7315 case ARM::VST3LNdWB_fixed_Asm_16: 7316 case ARM::VST3LNdWB_fixed_Asm_32: 7317 case ARM::VST3LNqWB_fixed_Asm_16: 7318 case ARM::VST3LNqWB_fixed_Asm_32: { 7319 MCInst TmpInst; 7320 // Shuffle the operands around so the lane index operand is in the 7321 // right place. 7322 unsigned Spacing; 7323 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7324 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7325 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7326 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7327 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7328 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7329 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7330 Spacing)); 7331 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7332 Spacing * 2)); 7333 TmpInst.addOperand(Inst.getOperand(1)); // lane 7334 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7335 TmpInst.addOperand(Inst.getOperand(5)); 7336 Inst = TmpInst; 7337 return true; 7338 } 7339 7340 case ARM::VST4LNdWB_fixed_Asm_8: 7341 case ARM::VST4LNdWB_fixed_Asm_16: 7342 case ARM::VST4LNdWB_fixed_Asm_32: 7343 case ARM::VST4LNqWB_fixed_Asm_16: 7344 case ARM::VST4LNqWB_fixed_Asm_32: { 7345 MCInst TmpInst; 7346 // Shuffle the operands around so the lane index operand is in the 7347 // right place. 7348 unsigned Spacing; 7349 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7350 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7351 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7352 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7353 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7354 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7355 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7356 Spacing)); 7357 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7358 Spacing * 2)); 7359 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7360 Spacing * 3)); 7361 TmpInst.addOperand(Inst.getOperand(1)); // lane 7362 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7363 TmpInst.addOperand(Inst.getOperand(5)); 7364 Inst = TmpInst; 7365 return true; 7366 } 7367 7368 case ARM::VST1LNdAsm_8: 7369 case ARM::VST1LNdAsm_16: 7370 case ARM::VST1LNdAsm_32: { 7371 MCInst TmpInst; 7372 // Shuffle the operands around so the lane index operand is in the 7373 // right place. 7374 unsigned Spacing; 7375 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7376 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7377 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7378 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7379 TmpInst.addOperand(Inst.getOperand(1)); // lane 7380 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7381 TmpInst.addOperand(Inst.getOperand(5)); 7382 Inst = TmpInst; 7383 return true; 7384 } 7385 7386 case ARM::VST2LNdAsm_8: 7387 case ARM::VST2LNdAsm_16: 7388 case ARM::VST2LNdAsm_32: 7389 case ARM::VST2LNqAsm_16: 7390 case ARM::VST2LNqAsm_32: { 7391 MCInst TmpInst; 7392 // Shuffle the operands around so the lane index operand is in the 7393 // right place. 7394 unsigned Spacing; 7395 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7396 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7397 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7398 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7399 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7400 Spacing)); 7401 TmpInst.addOperand(Inst.getOperand(1)); // lane 7402 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7403 TmpInst.addOperand(Inst.getOperand(5)); 7404 Inst = TmpInst; 7405 return true; 7406 } 7407 7408 case ARM::VST3LNdAsm_8: 7409 case ARM::VST3LNdAsm_16: 7410 case ARM::VST3LNdAsm_32: 7411 case ARM::VST3LNqAsm_16: 7412 case ARM::VST3LNqAsm_32: { 7413 MCInst TmpInst; 7414 // Shuffle the operands around so the lane index operand is in the 7415 // right place. 7416 unsigned Spacing; 7417 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7418 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7419 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7420 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7421 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7422 Spacing)); 7423 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7424 Spacing * 2)); 7425 TmpInst.addOperand(Inst.getOperand(1)); // lane 7426 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7427 TmpInst.addOperand(Inst.getOperand(5)); 7428 Inst = TmpInst; 7429 return true; 7430 } 7431 7432 case ARM::VST4LNdAsm_8: 7433 case ARM::VST4LNdAsm_16: 7434 case ARM::VST4LNdAsm_32: 7435 case ARM::VST4LNqAsm_16: 7436 case ARM::VST4LNqAsm_32: { 7437 MCInst TmpInst; 7438 // Shuffle the operands around so the lane index operand is in the 7439 // right place. 7440 unsigned Spacing; 7441 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7442 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7443 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7444 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7445 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7446 Spacing)); 7447 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7448 Spacing * 2)); 7449 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7450 Spacing * 3)); 7451 TmpInst.addOperand(Inst.getOperand(1)); // lane 7452 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7453 TmpInst.addOperand(Inst.getOperand(5)); 7454 Inst = TmpInst; 7455 return true; 7456 } 7457 7458 // Handle NEON VLD complex aliases. 7459 case ARM::VLD1LNdWB_register_Asm_8: 7460 case ARM::VLD1LNdWB_register_Asm_16: 7461 case ARM::VLD1LNdWB_register_Asm_32: { 7462 MCInst TmpInst; 7463 // Shuffle the operands around so the lane index operand is in the 7464 // right place. 7465 unsigned Spacing; 7466 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7467 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7468 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7469 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7470 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7471 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7472 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7473 TmpInst.addOperand(Inst.getOperand(1)); // lane 7474 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7475 TmpInst.addOperand(Inst.getOperand(6)); 7476 Inst = TmpInst; 7477 return true; 7478 } 7479 7480 case ARM::VLD2LNdWB_register_Asm_8: 7481 case ARM::VLD2LNdWB_register_Asm_16: 7482 case ARM::VLD2LNdWB_register_Asm_32: 7483 case ARM::VLD2LNqWB_register_Asm_16: 7484 case ARM::VLD2LNqWB_register_Asm_32: { 7485 MCInst TmpInst; 7486 // Shuffle the operands around so the lane index operand is in the 7487 // right place. 7488 unsigned Spacing; 7489 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7490 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7491 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7492 Spacing)); 7493 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7494 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7495 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7496 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7497 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7498 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7499 Spacing)); 7500 TmpInst.addOperand(Inst.getOperand(1)); // lane 7501 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7502 TmpInst.addOperand(Inst.getOperand(6)); 7503 Inst = TmpInst; 7504 return true; 7505 } 7506 7507 case ARM::VLD3LNdWB_register_Asm_8: 7508 case ARM::VLD3LNdWB_register_Asm_16: 7509 case ARM::VLD3LNdWB_register_Asm_32: 7510 case ARM::VLD3LNqWB_register_Asm_16: 7511 case ARM::VLD3LNqWB_register_Asm_32: { 7512 MCInst TmpInst; 7513 // Shuffle the operands around so the lane index operand is in the 7514 // right place. 7515 unsigned Spacing; 7516 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7517 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7518 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7519 Spacing)); 7520 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7521 Spacing * 2)); 7522 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7523 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7524 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7525 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7526 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7527 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7528 Spacing)); 7529 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7530 Spacing * 2)); 7531 TmpInst.addOperand(Inst.getOperand(1)); // lane 7532 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7533 TmpInst.addOperand(Inst.getOperand(6)); 7534 Inst = TmpInst; 7535 return true; 7536 } 7537 7538 case ARM::VLD4LNdWB_register_Asm_8: 7539 case ARM::VLD4LNdWB_register_Asm_16: 7540 case ARM::VLD4LNdWB_register_Asm_32: 7541 case ARM::VLD4LNqWB_register_Asm_16: 7542 case ARM::VLD4LNqWB_register_Asm_32: { 7543 MCInst TmpInst; 7544 // Shuffle the operands around so the lane index operand is in the 7545 // right place. 7546 unsigned Spacing; 7547 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7548 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7549 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7550 Spacing)); 7551 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7552 Spacing * 2)); 7553 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7554 Spacing * 3)); 7555 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7556 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7557 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7558 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7559 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7560 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7561 Spacing)); 7562 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7563 Spacing * 2)); 7564 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7565 Spacing * 3)); 7566 TmpInst.addOperand(Inst.getOperand(1)); // lane 7567 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7568 TmpInst.addOperand(Inst.getOperand(6)); 7569 Inst = TmpInst; 7570 return true; 7571 } 7572 7573 case ARM::VLD1LNdWB_fixed_Asm_8: 7574 case ARM::VLD1LNdWB_fixed_Asm_16: 7575 case ARM::VLD1LNdWB_fixed_Asm_32: { 7576 MCInst TmpInst; 7577 // Shuffle the operands around so the lane index operand is in the 7578 // right place. 7579 unsigned Spacing; 7580 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7581 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7582 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7583 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7584 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7585 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7586 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7587 TmpInst.addOperand(Inst.getOperand(1)); // lane 7588 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7589 TmpInst.addOperand(Inst.getOperand(5)); 7590 Inst = TmpInst; 7591 return true; 7592 } 7593 7594 case ARM::VLD2LNdWB_fixed_Asm_8: 7595 case ARM::VLD2LNdWB_fixed_Asm_16: 7596 case ARM::VLD2LNdWB_fixed_Asm_32: 7597 case ARM::VLD2LNqWB_fixed_Asm_16: 7598 case ARM::VLD2LNqWB_fixed_Asm_32: { 7599 MCInst TmpInst; 7600 // Shuffle the operands around so the lane index operand is in the 7601 // right place. 7602 unsigned Spacing; 7603 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7604 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7605 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7606 Spacing)); 7607 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7608 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7609 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7610 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7611 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7612 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7613 Spacing)); 7614 TmpInst.addOperand(Inst.getOperand(1)); // lane 7615 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7616 TmpInst.addOperand(Inst.getOperand(5)); 7617 Inst = TmpInst; 7618 return true; 7619 } 7620 7621 case ARM::VLD3LNdWB_fixed_Asm_8: 7622 case ARM::VLD3LNdWB_fixed_Asm_16: 7623 case ARM::VLD3LNdWB_fixed_Asm_32: 7624 case ARM::VLD3LNqWB_fixed_Asm_16: 7625 case ARM::VLD3LNqWB_fixed_Asm_32: { 7626 MCInst TmpInst; 7627 // Shuffle the operands around so the lane index operand is in the 7628 // right place. 7629 unsigned Spacing; 7630 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7631 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7632 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7633 Spacing)); 7634 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7635 Spacing * 2)); 7636 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7637 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7638 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7639 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7640 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7641 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7642 Spacing)); 7643 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7644 Spacing * 2)); 7645 TmpInst.addOperand(Inst.getOperand(1)); // lane 7646 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7647 TmpInst.addOperand(Inst.getOperand(5)); 7648 Inst = TmpInst; 7649 return true; 7650 } 7651 7652 case ARM::VLD4LNdWB_fixed_Asm_8: 7653 case ARM::VLD4LNdWB_fixed_Asm_16: 7654 case ARM::VLD4LNdWB_fixed_Asm_32: 7655 case ARM::VLD4LNqWB_fixed_Asm_16: 7656 case ARM::VLD4LNqWB_fixed_Asm_32: { 7657 MCInst TmpInst; 7658 // Shuffle the operands around so the lane index operand is in the 7659 // right place. 7660 unsigned Spacing; 7661 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7662 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7663 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7664 Spacing)); 7665 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7666 Spacing * 2)); 7667 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7668 Spacing * 3)); 7669 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7670 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7671 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7672 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7673 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7674 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7675 Spacing)); 7676 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7677 Spacing * 2)); 7678 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7679 Spacing * 3)); 7680 TmpInst.addOperand(Inst.getOperand(1)); // lane 7681 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7682 TmpInst.addOperand(Inst.getOperand(5)); 7683 Inst = TmpInst; 7684 return true; 7685 } 7686 7687 case ARM::VLD1LNdAsm_8: 7688 case ARM::VLD1LNdAsm_16: 7689 case ARM::VLD1LNdAsm_32: { 7690 MCInst TmpInst; 7691 // Shuffle the operands around so the lane index operand is in the 7692 // right place. 7693 unsigned Spacing; 7694 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7695 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7696 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7697 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7698 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7699 TmpInst.addOperand(Inst.getOperand(1)); // lane 7700 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7701 TmpInst.addOperand(Inst.getOperand(5)); 7702 Inst = TmpInst; 7703 return true; 7704 } 7705 7706 case ARM::VLD2LNdAsm_8: 7707 case ARM::VLD2LNdAsm_16: 7708 case ARM::VLD2LNdAsm_32: 7709 case ARM::VLD2LNqAsm_16: 7710 case ARM::VLD2LNqAsm_32: { 7711 MCInst TmpInst; 7712 // Shuffle the operands around so the lane index operand is in the 7713 // right place. 7714 unsigned Spacing; 7715 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7716 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7717 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7718 Spacing)); 7719 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7720 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7721 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7722 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7723 Spacing)); 7724 TmpInst.addOperand(Inst.getOperand(1)); // lane 7725 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7726 TmpInst.addOperand(Inst.getOperand(5)); 7727 Inst = TmpInst; 7728 return true; 7729 } 7730 7731 case ARM::VLD3LNdAsm_8: 7732 case ARM::VLD3LNdAsm_16: 7733 case ARM::VLD3LNdAsm_32: 7734 case ARM::VLD3LNqAsm_16: 7735 case ARM::VLD3LNqAsm_32: { 7736 MCInst TmpInst; 7737 // Shuffle the operands around so the lane index operand is in the 7738 // right place. 7739 unsigned Spacing; 7740 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7741 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7742 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7743 Spacing)); 7744 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7745 Spacing * 2)); 7746 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7747 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7748 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7749 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7750 Spacing)); 7751 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7752 Spacing * 2)); 7753 TmpInst.addOperand(Inst.getOperand(1)); // lane 7754 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7755 TmpInst.addOperand(Inst.getOperand(5)); 7756 Inst = TmpInst; 7757 return true; 7758 } 7759 7760 case ARM::VLD4LNdAsm_8: 7761 case ARM::VLD4LNdAsm_16: 7762 case ARM::VLD4LNdAsm_32: 7763 case ARM::VLD4LNqAsm_16: 7764 case ARM::VLD4LNqAsm_32: { 7765 MCInst TmpInst; 7766 // Shuffle the operands around so the lane index operand is in the 7767 // right place. 7768 unsigned Spacing; 7769 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7770 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7771 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7772 Spacing)); 7773 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7774 Spacing * 2)); 7775 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7776 Spacing * 3)); 7777 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7778 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7779 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7780 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7781 Spacing)); 7782 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7783 Spacing * 2)); 7784 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7785 Spacing * 3)); 7786 TmpInst.addOperand(Inst.getOperand(1)); // lane 7787 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7788 TmpInst.addOperand(Inst.getOperand(5)); 7789 Inst = TmpInst; 7790 return true; 7791 } 7792 7793 // VLD3DUP single 3-element structure to all lanes instructions. 7794 case ARM::VLD3DUPdAsm_8: 7795 case ARM::VLD3DUPdAsm_16: 7796 case ARM::VLD3DUPdAsm_32: 7797 case ARM::VLD3DUPqAsm_8: 7798 case ARM::VLD3DUPqAsm_16: 7799 case ARM::VLD3DUPqAsm_32: { 7800 MCInst TmpInst; 7801 unsigned Spacing; 7802 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7803 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7804 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7805 Spacing)); 7806 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7807 Spacing * 2)); 7808 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7809 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7810 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7811 TmpInst.addOperand(Inst.getOperand(4)); 7812 Inst = TmpInst; 7813 return true; 7814 } 7815 7816 case ARM::VLD3DUPdWB_fixed_Asm_8: 7817 case ARM::VLD3DUPdWB_fixed_Asm_16: 7818 case ARM::VLD3DUPdWB_fixed_Asm_32: 7819 case ARM::VLD3DUPqWB_fixed_Asm_8: 7820 case ARM::VLD3DUPqWB_fixed_Asm_16: 7821 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7822 MCInst TmpInst; 7823 unsigned Spacing; 7824 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7825 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7826 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7827 Spacing)); 7828 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7829 Spacing * 2)); 7830 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7831 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7832 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7833 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7834 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7835 TmpInst.addOperand(Inst.getOperand(4)); 7836 Inst = TmpInst; 7837 return true; 7838 } 7839 7840 case ARM::VLD3DUPdWB_register_Asm_8: 7841 case ARM::VLD3DUPdWB_register_Asm_16: 7842 case ARM::VLD3DUPdWB_register_Asm_32: 7843 case ARM::VLD3DUPqWB_register_Asm_8: 7844 case ARM::VLD3DUPqWB_register_Asm_16: 7845 case ARM::VLD3DUPqWB_register_Asm_32: { 7846 MCInst TmpInst; 7847 unsigned Spacing; 7848 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7849 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7850 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7851 Spacing)); 7852 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7853 Spacing * 2)); 7854 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7855 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7856 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7857 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7858 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7859 TmpInst.addOperand(Inst.getOperand(5)); 7860 Inst = TmpInst; 7861 return true; 7862 } 7863 7864 // VLD3 multiple 3-element structure instructions. 7865 case ARM::VLD3dAsm_8: 7866 case ARM::VLD3dAsm_16: 7867 case ARM::VLD3dAsm_32: 7868 case ARM::VLD3qAsm_8: 7869 case ARM::VLD3qAsm_16: 7870 case ARM::VLD3qAsm_32: { 7871 MCInst TmpInst; 7872 unsigned Spacing; 7873 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7874 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7875 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7876 Spacing)); 7877 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7878 Spacing * 2)); 7879 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7880 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7881 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7882 TmpInst.addOperand(Inst.getOperand(4)); 7883 Inst = TmpInst; 7884 return true; 7885 } 7886 7887 case ARM::VLD3dWB_fixed_Asm_8: 7888 case ARM::VLD3dWB_fixed_Asm_16: 7889 case ARM::VLD3dWB_fixed_Asm_32: 7890 case ARM::VLD3qWB_fixed_Asm_8: 7891 case ARM::VLD3qWB_fixed_Asm_16: 7892 case ARM::VLD3qWB_fixed_Asm_32: { 7893 MCInst TmpInst; 7894 unsigned Spacing; 7895 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7896 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7897 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7898 Spacing)); 7899 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7900 Spacing * 2)); 7901 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7902 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7903 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7904 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7905 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7906 TmpInst.addOperand(Inst.getOperand(4)); 7907 Inst = TmpInst; 7908 return true; 7909 } 7910 7911 case ARM::VLD3dWB_register_Asm_8: 7912 case ARM::VLD3dWB_register_Asm_16: 7913 case ARM::VLD3dWB_register_Asm_32: 7914 case ARM::VLD3qWB_register_Asm_8: 7915 case ARM::VLD3qWB_register_Asm_16: 7916 case ARM::VLD3qWB_register_Asm_32: { 7917 MCInst TmpInst; 7918 unsigned Spacing; 7919 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7920 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7921 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7922 Spacing)); 7923 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7924 Spacing * 2)); 7925 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7926 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7927 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7928 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7929 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7930 TmpInst.addOperand(Inst.getOperand(5)); 7931 Inst = TmpInst; 7932 return true; 7933 } 7934 7935 // VLD4DUP single 3-element structure to all lanes instructions. 7936 case ARM::VLD4DUPdAsm_8: 7937 case ARM::VLD4DUPdAsm_16: 7938 case ARM::VLD4DUPdAsm_32: 7939 case ARM::VLD4DUPqAsm_8: 7940 case ARM::VLD4DUPqAsm_16: 7941 case ARM::VLD4DUPqAsm_32: { 7942 MCInst TmpInst; 7943 unsigned Spacing; 7944 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7945 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7946 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7947 Spacing)); 7948 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7949 Spacing * 2)); 7950 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7951 Spacing * 3)); 7952 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7953 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7954 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7955 TmpInst.addOperand(Inst.getOperand(4)); 7956 Inst = TmpInst; 7957 return true; 7958 } 7959 7960 case ARM::VLD4DUPdWB_fixed_Asm_8: 7961 case ARM::VLD4DUPdWB_fixed_Asm_16: 7962 case ARM::VLD4DUPdWB_fixed_Asm_32: 7963 case ARM::VLD4DUPqWB_fixed_Asm_8: 7964 case ARM::VLD4DUPqWB_fixed_Asm_16: 7965 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7966 MCInst TmpInst; 7967 unsigned Spacing; 7968 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7969 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7970 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7971 Spacing)); 7972 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7973 Spacing * 2)); 7974 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7975 Spacing * 3)); 7976 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7977 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7978 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7979 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7980 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7981 TmpInst.addOperand(Inst.getOperand(4)); 7982 Inst = TmpInst; 7983 return true; 7984 } 7985 7986 case ARM::VLD4DUPdWB_register_Asm_8: 7987 case ARM::VLD4DUPdWB_register_Asm_16: 7988 case ARM::VLD4DUPdWB_register_Asm_32: 7989 case ARM::VLD4DUPqWB_register_Asm_8: 7990 case ARM::VLD4DUPqWB_register_Asm_16: 7991 case ARM::VLD4DUPqWB_register_Asm_32: { 7992 MCInst TmpInst; 7993 unsigned Spacing; 7994 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7995 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7996 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7997 Spacing)); 7998 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7999 Spacing * 2)); 8000 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8001 Spacing * 3)); 8002 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8003 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8004 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8005 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8006 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8007 TmpInst.addOperand(Inst.getOperand(5)); 8008 Inst = TmpInst; 8009 return true; 8010 } 8011 8012 // VLD4 multiple 4-element structure instructions. 8013 case ARM::VLD4dAsm_8: 8014 case ARM::VLD4dAsm_16: 8015 case ARM::VLD4dAsm_32: 8016 case ARM::VLD4qAsm_8: 8017 case ARM::VLD4qAsm_16: 8018 case ARM::VLD4qAsm_32: { 8019 MCInst TmpInst; 8020 unsigned Spacing; 8021 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8022 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8023 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8024 Spacing)); 8025 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8026 Spacing * 2)); 8027 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8028 Spacing * 3)); 8029 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8030 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8031 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8032 TmpInst.addOperand(Inst.getOperand(4)); 8033 Inst = TmpInst; 8034 return true; 8035 } 8036 8037 case ARM::VLD4dWB_fixed_Asm_8: 8038 case ARM::VLD4dWB_fixed_Asm_16: 8039 case ARM::VLD4dWB_fixed_Asm_32: 8040 case ARM::VLD4qWB_fixed_Asm_8: 8041 case ARM::VLD4qWB_fixed_Asm_16: 8042 case ARM::VLD4qWB_fixed_Asm_32: { 8043 MCInst TmpInst; 8044 unsigned Spacing; 8045 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8046 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8047 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8048 Spacing)); 8049 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8050 Spacing * 2)); 8051 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8052 Spacing * 3)); 8053 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8054 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8055 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8056 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8057 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8058 TmpInst.addOperand(Inst.getOperand(4)); 8059 Inst = TmpInst; 8060 return true; 8061 } 8062 8063 case ARM::VLD4dWB_register_Asm_8: 8064 case ARM::VLD4dWB_register_Asm_16: 8065 case ARM::VLD4dWB_register_Asm_32: 8066 case ARM::VLD4qWB_register_Asm_8: 8067 case ARM::VLD4qWB_register_Asm_16: 8068 case ARM::VLD4qWB_register_Asm_32: { 8069 MCInst TmpInst; 8070 unsigned Spacing; 8071 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8072 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8073 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8074 Spacing)); 8075 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8076 Spacing * 2)); 8077 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8078 Spacing * 3)); 8079 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8080 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8081 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8082 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8083 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8084 TmpInst.addOperand(Inst.getOperand(5)); 8085 Inst = TmpInst; 8086 return true; 8087 } 8088 8089 // VST3 multiple 3-element structure instructions. 8090 case ARM::VST3dAsm_8: 8091 case ARM::VST3dAsm_16: 8092 case ARM::VST3dAsm_32: 8093 case ARM::VST3qAsm_8: 8094 case ARM::VST3qAsm_16: 8095 case ARM::VST3qAsm_32: { 8096 MCInst TmpInst; 8097 unsigned Spacing; 8098 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8099 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8100 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8101 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8102 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8103 Spacing)); 8104 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8105 Spacing * 2)); 8106 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8107 TmpInst.addOperand(Inst.getOperand(4)); 8108 Inst = TmpInst; 8109 return true; 8110 } 8111 8112 case ARM::VST3dWB_fixed_Asm_8: 8113 case ARM::VST3dWB_fixed_Asm_16: 8114 case ARM::VST3dWB_fixed_Asm_32: 8115 case ARM::VST3qWB_fixed_Asm_8: 8116 case ARM::VST3qWB_fixed_Asm_16: 8117 case ARM::VST3qWB_fixed_Asm_32: { 8118 MCInst TmpInst; 8119 unsigned Spacing; 8120 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8121 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8122 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8123 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8124 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8125 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8126 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8127 Spacing)); 8128 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8129 Spacing * 2)); 8130 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8131 TmpInst.addOperand(Inst.getOperand(4)); 8132 Inst = TmpInst; 8133 return true; 8134 } 8135 8136 case ARM::VST3dWB_register_Asm_8: 8137 case ARM::VST3dWB_register_Asm_16: 8138 case ARM::VST3dWB_register_Asm_32: 8139 case ARM::VST3qWB_register_Asm_8: 8140 case ARM::VST3qWB_register_Asm_16: 8141 case ARM::VST3qWB_register_Asm_32: { 8142 MCInst TmpInst; 8143 unsigned Spacing; 8144 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8145 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8146 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8147 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8148 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8149 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8150 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8151 Spacing)); 8152 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8153 Spacing * 2)); 8154 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8155 TmpInst.addOperand(Inst.getOperand(5)); 8156 Inst = TmpInst; 8157 return true; 8158 } 8159 8160 // VST4 multiple 3-element structure instructions. 8161 case ARM::VST4dAsm_8: 8162 case ARM::VST4dAsm_16: 8163 case ARM::VST4dAsm_32: 8164 case ARM::VST4qAsm_8: 8165 case ARM::VST4qAsm_16: 8166 case ARM::VST4qAsm_32: { 8167 MCInst TmpInst; 8168 unsigned Spacing; 8169 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8170 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8171 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8172 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8173 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8174 Spacing)); 8175 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8176 Spacing * 2)); 8177 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8178 Spacing * 3)); 8179 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8180 TmpInst.addOperand(Inst.getOperand(4)); 8181 Inst = TmpInst; 8182 return true; 8183 } 8184 8185 case ARM::VST4dWB_fixed_Asm_8: 8186 case ARM::VST4dWB_fixed_Asm_16: 8187 case ARM::VST4dWB_fixed_Asm_32: 8188 case ARM::VST4qWB_fixed_Asm_8: 8189 case ARM::VST4qWB_fixed_Asm_16: 8190 case ARM::VST4qWB_fixed_Asm_32: { 8191 MCInst TmpInst; 8192 unsigned Spacing; 8193 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8194 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8195 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8196 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8197 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8198 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8199 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8200 Spacing)); 8201 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8202 Spacing * 2)); 8203 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8204 Spacing * 3)); 8205 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8206 TmpInst.addOperand(Inst.getOperand(4)); 8207 Inst = TmpInst; 8208 return true; 8209 } 8210 8211 case ARM::VST4dWB_register_Asm_8: 8212 case ARM::VST4dWB_register_Asm_16: 8213 case ARM::VST4dWB_register_Asm_32: 8214 case ARM::VST4qWB_register_Asm_8: 8215 case ARM::VST4qWB_register_Asm_16: 8216 case ARM::VST4qWB_register_Asm_32: { 8217 MCInst TmpInst; 8218 unsigned Spacing; 8219 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8220 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8221 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8222 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8223 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8224 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8225 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8226 Spacing)); 8227 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8228 Spacing * 2)); 8229 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8230 Spacing * 3)); 8231 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8232 TmpInst.addOperand(Inst.getOperand(5)); 8233 Inst = TmpInst; 8234 return true; 8235 } 8236 8237 // Handle encoding choice for the shift-immediate instructions. 8238 case ARM::t2LSLri: 8239 case ARM::t2LSRri: 8240 case ARM::t2ASRri: { 8241 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8242 isARMLowRegister(Inst.getOperand(1).getReg()) && 8243 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8244 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 8245 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 8246 unsigned NewOpc; 8247 switch (Inst.getOpcode()) { 8248 default: llvm_unreachable("unexpected opcode"); 8249 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8250 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8251 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8252 } 8253 // The Thumb1 operands aren't in the same order. Awesome, eh? 8254 MCInst TmpInst; 8255 TmpInst.setOpcode(NewOpc); 8256 TmpInst.addOperand(Inst.getOperand(0)); 8257 TmpInst.addOperand(Inst.getOperand(5)); 8258 TmpInst.addOperand(Inst.getOperand(1)); 8259 TmpInst.addOperand(Inst.getOperand(2)); 8260 TmpInst.addOperand(Inst.getOperand(3)); 8261 TmpInst.addOperand(Inst.getOperand(4)); 8262 Inst = TmpInst; 8263 return true; 8264 } 8265 return false; 8266 } 8267 8268 // Handle the Thumb2 mode MOV complex aliases. 8269 case ARM::t2MOVsr: 8270 case ARM::t2MOVSsr: { 8271 // Which instruction to expand to depends on the CCOut operand and 8272 // whether we're in an IT block if the register operands are low 8273 // registers. 8274 bool isNarrow = false; 8275 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8276 isARMLowRegister(Inst.getOperand(1).getReg()) && 8277 isARMLowRegister(Inst.getOperand(2).getReg()) && 8278 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8279 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 8280 isNarrow = true; 8281 MCInst TmpInst; 8282 unsigned newOpc; 8283 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8284 default: llvm_unreachable("unexpected opcode!"); 8285 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8286 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8287 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8288 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8289 } 8290 TmpInst.setOpcode(newOpc); 8291 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8292 if (isNarrow) 8293 TmpInst.addOperand(MCOperand::createReg( 8294 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8295 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8296 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8297 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8298 TmpInst.addOperand(Inst.getOperand(5)); 8299 if (!isNarrow) 8300 TmpInst.addOperand(MCOperand::createReg( 8301 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8302 Inst = TmpInst; 8303 return true; 8304 } 8305 case ARM::t2MOVsi: 8306 case ARM::t2MOVSsi: { 8307 // Which instruction to expand to depends on the CCOut operand and 8308 // whether we're in an IT block if the register operands are low 8309 // registers. 8310 bool isNarrow = false; 8311 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8312 isARMLowRegister(Inst.getOperand(1).getReg()) && 8313 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 8314 isNarrow = true; 8315 MCInst TmpInst; 8316 unsigned newOpc; 8317 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8318 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8319 bool isMov = false; 8320 // MOV rd, rm, LSL #0 is actually a MOV instruction 8321 if (Shift == ARM_AM::lsl && Amount == 0) { 8322 isMov = true; 8323 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 8324 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 8325 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 8326 // instead. 8327 if (inITBlock()) { 8328 isNarrow = false; 8329 } 8330 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 8331 } else { 8332 switch(Shift) { 8333 default: llvm_unreachable("unexpected opcode!"); 8334 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8335 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8336 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8337 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8338 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8339 } 8340 } 8341 if (Amount == 32) Amount = 0; 8342 TmpInst.setOpcode(newOpc); 8343 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8344 if (isNarrow && !isMov) 8345 TmpInst.addOperand(MCOperand::createReg( 8346 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8347 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8348 if (newOpc != ARM::t2RRX && !isMov) 8349 TmpInst.addOperand(MCOperand::createImm(Amount)); 8350 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8351 TmpInst.addOperand(Inst.getOperand(4)); 8352 if (!isNarrow) 8353 TmpInst.addOperand(MCOperand::createReg( 8354 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8355 Inst = TmpInst; 8356 return true; 8357 } 8358 // Handle the ARM mode MOV complex aliases. 8359 case ARM::ASRr: 8360 case ARM::LSRr: 8361 case ARM::LSLr: 8362 case ARM::RORr: { 8363 ARM_AM::ShiftOpc ShiftTy; 8364 switch(Inst.getOpcode()) { 8365 default: llvm_unreachable("unexpected opcode!"); 8366 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8367 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8368 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8369 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8370 } 8371 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8372 MCInst TmpInst; 8373 TmpInst.setOpcode(ARM::MOVsr); 8374 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8375 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8376 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8377 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8378 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8379 TmpInst.addOperand(Inst.getOperand(4)); 8380 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8381 Inst = TmpInst; 8382 return true; 8383 } 8384 case ARM::ASRi: 8385 case ARM::LSRi: 8386 case ARM::LSLi: 8387 case ARM::RORi: { 8388 ARM_AM::ShiftOpc ShiftTy; 8389 switch(Inst.getOpcode()) { 8390 default: llvm_unreachable("unexpected opcode!"); 8391 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8392 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8393 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8394 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8395 } 8396 // A shift by zero is a plain MOVr, not a MOVsi. 8397 unsigned Amt = Inst.getOperand(2).getImm(); 8398 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8399 // A shift by 32 should be encoded as 0 when permitted 8400 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8401 Amt = 0; 8402 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8403 MCInst TmpInst; 8404 TmpInst.setOpcode(Opc); 8405 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8406 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8407 if (Opc == ARM::MOVsi) 8408 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8409 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8410 TmpInst.addOperand(Inst.getOperand(4)); 8411 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8412 Inst = TmpInst; 8413 return true; 8414 } 8415 case ARM::RRXi: { 8416 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8417 MCInst TmpInst; 8418 TmpInst.setOpcode(ARM::MOVsi); 8419 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8420 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8421 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8422 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8423 TmpInst.addOperand(Inst.getOperand(3)); 8424 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8425 Inst = TmpInst; 8426 return true; 8427 } 8428 case ARM::t2LDMIA_UPD: { 8429 // If this is a load of a single register, then we should use 8430 // a post-indexed LDR instruction instead, per the ARM ARM. 8431 if (Inst.getNumOperands() != 5) 8432 return false; 8433 MCInst TmpInst; 8434 TmpInst.setOpcode(ARM::t2LDR_POST); 8435 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8436 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8437 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8438 TmpInst.addOperand(MCOperand::createImm(4)); 8439 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8440 TmpInst.addOperand(Inst.getOperand(3)); 8441 Inst = TmpInst; 8442 return true; 8443 } 8444 case ARM::t2STMDB_UPD: { 8445 // If this is a store of a single register, then we should use 8446 // a pre-indexed STR instruction instead, per the ARM ARM. 8447 if (Inst.getNumOperands() != 5) 8448 return false; 8449 MCInst TmpInst; 8450 TmpInst.setOpcode(ARM::t2STR_PRE); 8451 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8452 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8453 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8454 TmpInst.addOperand(MCOperand::createImm(-4)); 8455 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8456 TmpInst.addOperand(Inst.getOperand(3)); 8457 Inst = TmpInst; 8458 return true; 8459 } 8460 case ARM::LDMIA_UPD: 8461 // If this is a load of a single register via a 'pop', then we should use 8462 // a post-indexed LDR instruction instead, per the ARM ARM. 8463 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8464 Inst.getNumOperands() == 5) { 8465 MCInst TmpInst; 8466 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8467 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8468 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8469 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8470 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8471 TmpInst.addOperand(MCOperand::createImm(4)); 8472 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8473 TmpInst.addOperand(Inst.getOperand(3)); 8474 Inst = TmpInst; 8475 return true; 8476 } 8477 break; 8478 case ARM::STMDB_UPD: 8479 // If this is a store of a single register via a 'push', then we should use 8480 // a pre-indexed STR instruction instead, per the ARM ARM. 8481 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8482 Inst.getNumOperands() == 5) { 8483 MCInst TmpInst; 8484 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8485 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8486 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8487 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8488 TmpInst.addOperand(MCOperand::createImm(-4)); 8489 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8490 TmpInst.addOperand(Inst.getOperand(3)); 8491 Inst = TmpInst; 8492 } 8493 break; 8494 case ARM::t2ADDri12: 8495 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8496 // mnemonic was used (not "addw"), encoding T3 is preferred. 8497 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8498 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8499 break; 8500 Inst.setOpcode(ARM::t2ADDri); 8501 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8502 break; 8503 case ARM::t2SUBri12: 8504 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8505 // mnemonic was used (not "subw"), encoding T3 is preferred. 8506 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8507 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8508 break; 8509 Inst.setOpcode(ARM::t2SUBri); 8510 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8511 break; 8512 case ARM::tADDi8: 8513 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8514 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8515 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8516 // to encoding T1 if <Rd> is omitted." 8517 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8518 Inst.setOpcode(ARM::tADDi3); 8519 return true; 8520 } 8521 break; 8522 case ARM::tSUBi8: 8523 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8524 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8525 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8526 // to encoding T1 if <Rd> is omitted." 8527 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8528 Inst.setOpcode(ARM::tSUBi3); 8529 return true; 8530 } 8531 break; 8532 case ARM::t2ADDri: 8533 case ARM::t2SUBri: { 8534 // If the destination and first source operand are the same, and 8535 // the flags are compatible with the current IT status, use encoding T2 8536 // instead of T3. For compatibility with the system 'as'. Make sure the 8537 // wide encoding wasn't explicit. 8538 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8539 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8540 (unsigned)Inst.getOperand(2).getImm() > 255 || 8541 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8542 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8543 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8544 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8545 break; 8546 MCInst TmpInst; 8547 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8548 ARM::tADDi8 : ARM::tSUBi8); 8549 TmpInst.addOperand(Inst.getOperand(0)); 8550 TmpInst.addOperand(Inst.getOperand(5)); 8551 TmpInst.addOperand(Inst.getOperand(0)); 8552 TmpInst.addOperand(Inst.getOperand(2)); 8553 TmpInst.addOperand(Inst.getOperand(3)); 8554 TmpInst.addOperand(Inst.getOperand(4)); 8555 Inst = TmpInst; 8556 return true; 8557 } 8558 case ARM::t2ADDrr: { 8559 // If the destination and first source operand are the same, and 8560 // there's no setting of the flags, use encoding T2 instead of T3. 8561 // Note that this is only for ADD, not SUB. This mirrors the system 8562 // 'as' behaviour. Also take advantage of ADD being commutative. 8563 // Make sure the wide encoding wasn't explicit. 8564 bool Swap = false; 8565 auto DestReg = Inst.getOperand(0).getReg(); 8566 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8567 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8568 Transform = true; 8569 Swap = true; 8570 } 8571 if (!Transform || 8572 Inst.getOperand(5).getReg() != 0 || 8573 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8574 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8575 break; 8576 MCInst TmpInst; 8577 TmpInst.setOpcode(ARM::tADDhirr); 8578 TmpInst.addOperand(Inst.getOperand(0)); 8579 TmpInst.addOperand(Inst.getOperand(0)); 8580 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8581 TmpInst.addOperand(Inst.getOperand(3)); 8582 TmpInst.addOperand(Inst.getOperand(4)); 8583 Inst = TmpInst; 8584 return true; 8585 } 8586 case ARM::tADDrSP: { 8587 // If the non-SP source operand and the destination operand are not the 8588 // same, we need to use the 32-bit encoding if it's available. 8589 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8590 Inst.setOpcode(ARM::t2ADDrr); 8591 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8592 return true; 8593 } 8594 break; 8595 } 8596 case ARM::tB: 8597 // A Thumb conditional branch outside of an IT block is a tBcc. 8598 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8599 Inst.setOpcode(ARM::tBcc); 8600 return true; 8601 } 8602 break; 8603 case ARM::t2B: 8604 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8605 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8606 Inst.setOpcode(ARM::t2Bcc); 8607 return true; 8608 } 8609 break; 8610 case ARM::t2Bcc: 8611 // If the conditional is AL or we're in an IT block, we really want t2B. 8612 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8613 Inst.setOpcode(ARM::t2B); 8614 return true; 8615 } 8616 break; 8617 case ARM::tBcc: 8618 // If the conditional is AL, we really want tB. 8619 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8620 Inst.setOpcode(ARM::tB); 8621 return true; 8622 } 8623 break; 8624 case ARM::tLDMIA: { 8625 // If the register list contains any high registers, or if the writeback 8626 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8627 // instead if we're in Thumb2. Otherwise, this should have generated 8628 // an error in validateInstruction(). 8629 unsigned Rn = Inst.getOperand(0).getReg(); 8630 bool hasWritebackToken = 8631 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8632 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8633 bool listContainsBase; 8634 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8635 (!listContainsBase && !hasWritebackToken) || 8636 (listContainsBase && hasWritebackToken)) { 8637 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8638 assert (isThumbTwo()); 8639 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8640 // If we're switching to the updating version, we need to insert 8641 // the writeback tied operand. 8642 if (hasWritebackToken) 8643 Inst.insert(Inst.begin(), 8644 MCOperand::createReg(Inst.getOperand(0).getReg())); 8645 return true; 8646 } 8647 break; 8648 } 8649 case ARM::tSTMIA_UPD: { 8650 // If the register list contains any high registers, we need to use 8651 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8652 // should have generated an error in validateInstruction(). 8653 unsigned Rn = Inst.getOperand(0).getReg(); 8654 bool listContainsBase; 8655 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8656 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8657 assert (isThumbTwo()); 8658 Inst.setOpcode(ARM::t2STMIA_UPD); 8659 return true; 8660 } 8661 break; 8662 } 8663 case ARM::tPOP: { 8664 bool listContainsBase; 8665 // If the register list contains any high registers, we need to use 8666 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8667 // should have generated an error in validateInstruction(). 8668 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8669 return false; 8670 assert (isThumbTwo()); 8671 Inst.setOpcode(ARM::t2LDMIA_UPD); 8672 // Add the base register and writeback operands. 8673 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8674 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8675 return true; 8676 } 8677 case ARM::tPUSH: { 8678 bool listContainsBase; 8679 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8680 return false; 8681 assert (isThumbTwo()); 8682 Inst.setOpcode(ARM::t2STMDB_UPD); 8683 // Add the base register and writeback operands. 8684 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8685 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8686 return true; 8687 } 8688 case ARM::t2MOVi: { 8689 // If we can use the 16-bit encoding and the user didn't explicitly 8690 // request the 32-bit variant, transform it here. 8691 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8692 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8693 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8694 Inst.getOperand(4).getReg() == ARM::CPSR) || 8695 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8696 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8697 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8698 // The operands aren't in the same order for tMOVi8... 8699 MCInst TmpInst; 8700 TmpInst.setOpcode(ARM::tMOVi8); 8701 TmpInst.addOperand(Inst.getOperand(0)); 8702 TmpInst.addOperand(Inst.getOperand(4)); 8703 TmpInst.addOperand(Inst.getOperand(1)); 8704 TmpInst.addOperand(Inst.getOperand(2)); 8705 TmpInst.addOperand(Inst.getOperand(3)); 8706 Inst = TmpInst; 8707 return true; 8708 } 8709 break; 8710 } 8711 case ARM::t2MOVr: { 8712 // If we can use the 16-bit encoding and the user didn't explicitly 8713 // request the 32-bit variant, transform it here. 8714 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8715 isARMLowRegister(Inst.getOperand(1).getReg()) && 8716 Inst.getOperand(2).getImm() == ARMCC::AL && 8717 Inst.getOperand(4).getReg() == ARM::CPSR && 8718 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8719 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8720 // The operands aren't the same for tMOV[S]r... (no cc_out) 8721 MCInst TmpInst; 8722 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8723 TmpInst.addOperand(Inst.getOperand(0)); 8724 TmpInst.addOperand(Inst.getOperand(1)); 8725 TmpInst.addOperand(Inst.getOperand(2)); 8726 TmpInst.addOperand(Inst.getOperand(3)); 8727 Inst = TmpInst; 8728 return true; 8729 } 8730 break; 8731 } 8732 case ARM::t2SXTH: 8733 case ARM::t2SXTB: 8734 case ARM::t2UXTH: 8735 case ARM::t2UXTB: { 8736 // If we can use the 16-bit encoding and the user didn't explicitly 8737 // request the 32-bit variant, transform it here. 8738 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8739 isARMLowRegister(Inst.getOperand(1).getReg()) && 8740 Inst.getOperand(2).getImm() == 0 && 8741 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8742 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8743 unsigned NewOpc; 8744 switch (Inst.getOpcode()) { 8745 default: llvm_unreachable("Illegal opcode!"); 8746 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8747 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8748 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8749 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8750 } 8751 // The operands aren't the same for thumb1 (no rotate operand). 8752 MCInst TmpInst; 8753 TmpInst.setOpcode(NewOpc); 8754 TmpInst.addOperand(Inst.getOperand(0)); 8755 TmpInst.addOperand(Inst.getOperand(1)); 8756 TmpInst.addOperand(Inst.getOperand(3)); 8757 TmpInst.addOperand(Inst.getOperand(4)); 8758 Inst = TmpInst; 8759 return true; 8760 } 8761 break; 8762 } 8763 case ARM::MOVsi: { 8764 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8765 // rrx shifts and asr/lsr of #32 is encoded as 0 8766 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8767 return false; 8768 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8769 // Shifting by zero is accepted as a vanilla 'MOVr' 8770 MCInst TmpInst; 8771 TmpInst.setOpcode(ARM::MOVr); 8772 TmpInst.addOperand(Inst.getOperand(0)); 8773 TmpInst.addOperand(Inst.getOperand(1)); 8774 TmpInst.addOperand(Inst.getOperand(3)); 8775 TmpInst.addOperand(Inst.getOperand(4)); 8776 TmpInst.addOperand(Inst.getOperand(5)); 8777 Inst = TmpInst; 8778 return true; 8779 } 8780 return false; 8781 } 8782 case ARM::ANDrsi: 8783 case ARM::ORRrsi: 8784 case ARM::EORrsi: 8785 case ARM::BICrsi: 8786 case ARM::SUBrsi: 8787 case ARM::ADDrsi: { 8788 unsigned newOpc; 8789 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8790 if (SOpc == ARM_AM::rrx) return false; 8791 switch (Inst.getOpcode()) { 8792 default: llvm_unreachable("unexpected opcode!"); 8793 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8794 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8795 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8796 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8797 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8798 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8799 } 8800 // If the shift is by zero, use the non-shifted instruction definition. 8801 // The exception is for right shifts, where 0 == 32 8802 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8803 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8804 MCInst TmpInst; 8805 TmpInst.setOpcode(newOpc); 8806 TmpInst.addOperand(Inst.getOperand(0)); 8807 TmpInst.addOperand(Inst.getOperand(1)); 8808 TmpInst.addOperand(Inst.getOperand(2)); 8809 TmpInst.addOperand(Inst.getOperand(4)); 8810 TmpInst.addOperand(Inst.getOperand(5)); 8811 TmpInst.addOperand(Inst.getOperand(6)); 8812 Inst = TmpInst; 8813 return true; 8814 } 8815 return false; 8816 } 8817 case ARM::ITasm: 8818 case ARM::t2IT: { 8819 MCOperand &MO = Inst.getOperand(1); 8820 unsigned Mask = MO.getImm(); 8821 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8822 8823 // Set up the IT block state according to the IT instruction we just 8824 // matched. 8825 assert(!inITBlock() && "nested IT blocks?!"); 8826 startExplicitITBlock(Cond, Mask); 8827 MO.setImm(getITMaskEncoding()); 8828 break; 8829 } 8830 case ARM::t2LSLrr: 8831 case ARM::t2LSRrr: 8832 case ARM::t2ASRrr: 8833 case ARM::t2SBCrr: 8834 case ARM::t2RORrr: 8835 case ARM::t2BICrr: 8836 { 8837 // Assemblers should use the narrow encodings of these instructions when permissible. 8838 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8839 isARMLowRegister(Inst.getOperand(2).getReg())) && 8840 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8841 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8842 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8843 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8844 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8845 ".w"))) { 8846 unsigned NewOpc; 8847 switch (Inst.getOpcode()) { 8848 default: llvm_unreachable("unexpected opcode"); 8849 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8850 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8851 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8852 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8853 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8854 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8855 } 8856 MCInst TmpInst; 8857 TmpInst.setOpcode(NewOpc); 8858 TmpInst.addOperand(Inst.getOperand(0)); 8859 TmpInst.addOperand(Inst.getOperand(5)); 8860 TmpInst.addOperand(Inst.getOperand(1)); 8861 TmpInst.addOperand(Inst.getOperand(2)); 8862 TmpInst.addOperand(Inst.getOperand(3)); 8863 TmpInst.addOperand(Inst.getOperand(4)); 8864 Inst = TmpInst; 8865 return true; 8866 } 8867 return false; 8868 } 8869 case ARM::t2ANDrr: 8870 case ARM::t2EORrr: 8871 case ARM::t2ADCrr: 8872 case ARM::t2ORRrr: 8873 { 8874 // Assemblers should use the narrow encodings of these instructions when permissible. 8875 // These instructions are special in that they are commutable, so shorter encodings 8876 // are available more often. 8877 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8878 isARMLowRegister(Inst.getOperand(2).getReg())) && 8879 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8880 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8881 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8882 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8883 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8884 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8885 ".w"))) { 8886 unsigned NewOpc; 8887 switch (Inst.getOpcode()) { 8888 default: llvm_unreachable("unexpected opcode"); 8889 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8890 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8891 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8892 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8893 } 8894 MCInst TmpInst; 8895 TmpInst.setOpcode(NewOpc); 8896 TmpInst.addOperand(Inst.getOperand(0)); 8897 TmpInst.addOperand(Inst.getOperand(5)); 8898 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8899 TmpInst.addOperand(Inst.getOperand(1)); 8900 TmpInst.addOperand(Inst.getOperand(2)); 8901 } else { 8902 TmpInst.addOperand(Inst.getOperand(2)); 8903 TmpInst.addOperand(Inst.getOperand(1)); 8904 } 8905 TmpInst.addOperand(Inst.getOperand(3)); 8906 TmpInst.addOperand(Inst.getOperand(4)); 8907 Inst = TmpInst; 8908 return true; 8909 } 8910 return false; 8911 } 8912 } 8913 return false; 8914 } 8915 8916 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8917 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8918 // suffix depending on whether they're in an IT block or not. 8919 unsigned Opc = Inst.getOpcode(); 8920 const MCInstrDesc &MCID = MII.get(Opc); 8921 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8922 assert(MCID.hasOptionalDef() && 8923 "optionally flag setting instruction missing optional def operand"); 8924 assert(MCID.NumOperands == Inst.getNumOperands() && 8925 "operand count mismatch!"); 8926 // Find the optional-def operand (cc_out). 8927 unsigned OpNo; 8928 for (OpNo = 0; 8929 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8930 ++OpNo) 8931 ; 8932 // If we're parsing Thumb1, reject it completely. 8933 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8934 return Match_RequiresFlagSetting; 8935 // If we're parsing Thumb2, which form is legal depends on whether we're 8936 // in an IT block. 8937 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8938 !inITBlock()) 8939 return Match_RequiresITBlock; 8940 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8941 inITBlock()) 8942 return Match_RequiresNotITBlock; 8943 // LSL with zero immediate is not allowed in an IT block 8944 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 8945 return Match_RequiresNotITBlock; 8946 } else if (isThumbOne()) { 8947 // Some high-register supporting Thumb1 encodings only allow both registers 8948 // to be from r0-r7 when in Thumb2. 8949 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8950 isARMLowRegister(Inst.getOperand(1).getReg()) && 8951 isARMLowRegister(Inst.getOperand(2).getReg())) 8952 return Match_RequiresThumb2; 8953 // Others only require ARMv6 or later. 8954 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8955 isARMLowRegister(Inst.getOperand(0).getReg()) && 8956 isARMLowRegister(Inst.getOperand(1).getReg())) 8957 return Match_RequiresV6; 8958 } 8959 8960 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 8961 // than the loop below can handle, so it uses the GPRnopc register class and 8962 // we do SP handling here. 8963 if (Opc == ARM::t2MOVr && !hasV8Ops()) 8964 { 8965 // SP as both source and destination is not allowed 8966 if (Inst.getOperand(0).getReg() == ARM::SP && 8967 Inst.getOperand(1).getReg() == ARM::SP) 8968 return Match_RequiresV8; 8969 // When flags-setting SP as either source or destination is not allowed 8970 if (Inst.getOperand(4).getReg() == ARM::CPSR && 8971 (Inst.getOperand(0).getReg() == ARM::SP || 8972 Inst.getOperand(1).getReg() == ARM::SP)) 8973 return Match_RequiresV8; 8974 } 8975 8976 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8977 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8978 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8979 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8980 return Match_RequiresV8; 8981 else if (Inst.getOperand(I).getReg() == ARM::PC) 8982 return Match_InvalidOperand; 8983 } 8984 8985 return Match_Success; 8986 } 8987 8988 namespace llvm { 8989 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 8990 return true; // In an assembly source, no need to second-guess 8991 } 8992 } 8993 8994 // Returns true if Inst is unpredictable if it is in and IT block, but is not 8995 // the last instruction in the block. 8996 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 8997 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8998 8999 // All branch & call instructions terminate IT blocks. 9000 if (MCID.isTerminator() || MCID.isCall() || MCID.isReturn() || 9001 MCID.isBranch() || MCID.isIndirectBranch()) 9002 return true; 9003 9004 // Any arithmetic instruction which writes to the PC also terminates the IT 9005 // block. 9006 for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) { 9007 MCOperand &Op = Inst.getOperand(OpIdx); 9008 if (Op.isReg() && Op.getReg() == ARM::PC) 9009 return true; 9010 } 9011 9012 if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI)) 9013 return true; 9014 9015 // Instructions with variable operand lists, which write to the variable 9016 // operands. We only care about Thumb instructions here, as ARM instructions 9017 // obviously can't be in an IT block. 9018 switch (Inst.getOpcode()) { 9019 case ARM::tLDMIA: 9020 case ARM::t2LDMIA: 9021 case ARM::t2LDMIA_UPD: 9022 case ARM::t2LDMDB: 9023 case ARM::t2LDMDB_UPD: 9024 if (listContainsReg(Inst, 3, ARM::PC)) 9025 return true; 9026 break; 9027 case ARM::tPOP: 9028 if (listContainsReg(Inst, 2, ARM::PC)) 9029 return true; 9030 break; 9031 } 9032 9033 return false; 9034 } 9035 9036 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 9037 uint64_t &ErrorInfo, 9038 bool MatchingInlineAsm, 9039 bool &EmitInITBlock, 9040 MCStreamer &Out) { 9041 // If we can't use an implicit IT block here, just match as normal. 9042 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 9043 return MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 9044 9045 // Try to match the instruction in an extension of the current IT block (if 9046 // there is one). 9047 if (inImplicitITBlock()) { 9048 extendImplicitITBlock(ITState.Cond); 9049 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 9050 Match_Success) { 9051 // The match succeded, but we still have to check that the instruction is 9052 // valid in this implicit IT block. 9053 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9054 if (MCID.isPredicable()) { 9055 ARMCC::CondCodes InstCond = 9056 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9057 .getImm(); 9058 ARMCC::CondCodes ITCond = currentITCond(); 9059 if (InstCond == ITCond) { 9060 EmitInITBlock = true; 9061 return Match_Success; 9062 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 9063 invertCurrentITCondition(); 9064 EmitInITBlock = true; 9065 return Match_Success; 9066 } 9067 } 9068 } 9069 rewindImplicitITPosition(); 9070 } 9071 9072 // Finish the current IT block, and try to match outside any IT block. 9073 flushPendingInstructions(Out); 9074 unsigned PlainMatchResult = 9075 MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 9076 if (PlainMatchResult == Match_Success) { 9077 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9078 if (MCID.isPredicable()) { 9079 ARMCC::CondCodes InstCond = 9080 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9081 .getImm(); 9082 // Some forms of the branch instruction have their own condition code 9083 // fields, so can be conditionally executed without an IT block. 9084 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 9085 EmitInITBlock = false; 9086 return Match_Success; 9087 } 9088 if (InstCond == ARMCC::AL) { 9089 EmitInITBlock = false; 9090 return Match_Success; 9091 } 9092 } else { 9093 EmitInITBlock = false; 9094 return Match_Success; 9095 } 9096 } 9097 9098 // Try to match in a new IT block. The matcher doesn't check the actual 9099 // condition, so we create an IT block with a dummy condition, and fix it up 9100 // once we know the actual condition. 9101 startImplicitITBlock(); 9102 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 9103 Match_Success) { 9104 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9105 if (MCID.isPredicable()) { 9106 ITState.Cond = 9107 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9108 .getImm(); 9109 EmitInITBlock = true; 9110 return Match_Success; 9111 } 9112 } 9113 discardImplicitITBlock(); 9114 9115 // If none of these succeed, return the error we got when trying to match 9116 // outside any IT blocks. 9117 EmitInITBlock = false; 9118 return PlainMatchResult; 9119 } 9120 9121 static const char *getSubtargetFeatureName(uint64_t Val); 9122 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 9123 OperandVector &Operands, 9124 MCStreamer &Out, uint64_t &ErrorInfo, 9125 bool MatchingInlineAsm) { 9126 MCInst Inst; 9127 unsigned MatchResult; 9128 bool PendConditionalInstruction = false; 9129 9130 MatchResult = MatchInstruction(Operands, Inst, ErrorInfo, MatchingInlineAsm, 9131 PendConditionalInstruction, Out); 9132 9133 switch (MatchResult) { 9134 case Match_Success: 9135 // Context sensitive operand constraints aren't handled by the matcher, 9136 // so check them here. 9137 if (validateInstruction(Inst, Operands)) { 9138 // Still progress the IT block, otherwise one wrong condition causes 9139 // nasty cascading errors. 9140 forwardITPosition(); 9141 return true; 9142 } 9143 9144 { // processInstruction() updates inITBlock state, we need to save it away 9145 bool wasInITBlock = inITBlock(); 9146 9147 // Some instructions need post-processing to, for example, tweak which 9148 // encoding is selected. Loop on it while changes happen so the 9149 // individual transformations can chain off each other. E.g., 9150 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9151 while (processInstruction(Inst, Operands, Out)) 9152 ; 9153 9154 // Only after the instruction is fully processed, we can validate it 9155 if (wasInITBlock && hasV8Ops() && isThumb() && 9156 !isV8EligibleForIT(&Inst)) { 9157 Warning(IDLoc, "deprecated instruction in IT block"); 9158 } 9159 } 9160 9161 // Only move forward at the very end so that everything in validate 9162 // and process gets a consistent answer about whether we're in an IT 9163 // block. 9164 forwardITPosition(); 9165 9166 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9167 // doesn't actually encode. 9168 if (Inst.getOpcode() == ARM::ITasm) 9169 return false; 9170 9171 Inst.setLoc(IDLoc); 9172 if (PendConditionalInstruction) { 9173 PendingConditionalInsts.push_back(Inst); 9174 if (isITBlockFull() || isITBlockTerminator(Inst)) 9175 flushPendingInstructions(Out); 9176 } else { 9177 Out.EmitInstruction(Inst, getSTI()); 9178 } 9179 return false; 9180 case Match_MissingFeature: { 9181 assert(ErrorInfo && "Unknown missing feature!"); 9182 // Special case the error message for the very common case where only 9183 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 9184 std::string Msg = "instruction requires:"; 9185 uint64_t Mask = 1; 9186 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 9187 if (ErrorInfo & Mask) { 9188 Msg += " "; 9189 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 9190 } 9191 Mask <<= 1; 9192 } 9193 return Error(IDLoc, Msg); 9194 } 9195 case Match_InvalidOperand: { 9196 SMLoc ErrorLoc = IDLoc; 9197 if (ErrorInfo != ~0ULL) { 9198 if (ErrorInfo >= Operands.size()) 9199 return Error(IDLoc, "too few operands for instruction"); 9200 9201 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9202 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9203 } 9204 9205 return Error(ErrorLoc, "invalid operand for instruction"); 9206 } 9207 case Match_MnemonicFail: 9208 return Error(IDLoc, "invalid instruction", 9209 ((ARMOperand &)*Operands[0]).getLocRange()); 9210 case Match_RequiresNotITBlock: 9211 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 9212 case Match_RequiresITBlock: 9213 return Error(IDLoc, "instruction only valid inside IT block"); 9214 case Match_RequiresV6: 9215 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 9216 case Match_RequiresThumb2: 9217 return Error(IDLoc, "instruction variant requires Thumb2"); 9218 case Match_RequiresV8: 9219 return Error(IDLoc, "instruction variant requires ARMv8 or later"); 9220 case Match_RequiresFlagSetting: 9221 return Error(IDLoc, "no flag-preserving variant of this instruction available"); 9222 case Match_ImmRange0_15: { 9223 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9224 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9225 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 9226 } 9227 case Match_ImmRange0_239: { 9228 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9229 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9230 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 9231 } 9232 case Match_AlignedMemoryRequiresNone: 9233 case Match_DupAlignedMemoryRequiresNone: 9234 case Match_AlignedMemoryRequires16: 9235 case Match_DupAlignedMemoryRequires16: 9236 case Match_AlignedMemoryRequires32: 9237 case Match_DupAlignedMemoryRequires32: 9238 case Match_AlignedMemoryRequires64: 9239 case Match_DupAlignedMemoryRequires64: 9240 case Match_AlignedMemoryRequires64or128: 9241 case Match_DupAlignedMemoryRequires64or128: 9242 case Match_AlignedMemoryRequires64or128or256: 9243 { 9244 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 9245 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9246 switch (MatchResult) { 9247 default: 9248 llvm_unreachable("Missing Match_Aligned type"); 9249 case Match_AlignedMemoryRequiresNone: 9250 case Match_DupAlignedMemoryRequiresNone: 9251 return Error(ErrorLoc, "alignment must be omitted"); 9252 case Match_AlignedMemoryRequires16: 9253 case Match_DupAlignedMemoryRequires16: 9254 return Error(ErrorLoc, "alignment must be 16 or omitted"); 9255 case Match_AlignedMemoryRequires32: 9256 case Match_DupAlignedMemoryRequires32: 9257 return Error(ErrorLoc, "alignment must be 32 or omitted"); 9258 case Match_AlignedMemoryRequires64: 9259 case Match_DupAlignedMemoryRequires64: 9260 return Error(ErrorLoc, "alignment must be 64 or omitted"); 9261 case Match_AlignedMemoryRequires64or128: 9262 case Match_DupAlignedMemoryRequires64or128: 9263 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 9264 case Match_AlignedMemoryRequires64or128or256: 9265 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 9266 } 9267 } 9268 } 9269 9270 llvm_unreachable("Implement any new match types added!"); 9271 } 9272 9273 /// parseDirective parses the arm specific directives 9274 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9275 const MCObjectFileInfo::Environment Format = 9276 getContext().getObjectFileInfo()->getObjectFileType(); 9277 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9278 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9279 9280 StringRef IDVal = DirectiveID.getIdentifier(); 9281 if (IDVal == ".word") 9282 parseLiteralValues(4, DirectiveID.getLoc()); 9283 else if (IDVal == ".short" || IDVal == ".hword") 9284 parseLiteralValues(2, DirectiveID.getLoc()); 9285 else if (IDVal == ".thumb") 9286 parseDirectiveThumb(DirectiveID.getLoc()); 9287 else if (IDVal == ".arm") 9288 parseDirectiveARM(DirectiveID.getLoc()); 9289 else if (IDVal == ".thumb_func") 9290 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9291 else if (IDVal == ".code") 9292 parseDirectiveCode(DirectiveID.getLoc()); 9293 else if (IDVal == ".syntax") 9294 parseDirectiveSyntax(DirectiveID.getLoc()); 9295 else if (IDVal == ".unreq") 9296 parseDirectiveUnreq(DirectiveID.getLoc()); 9297 else if (IDVal == ".fnend") 9298 parseDirectiveFnEnd(DirectiveID.getLoc()); 9299 else if (IDVal == ".cantunwind") 9300 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9301 else if (IDVal == ".personality") 9302 parseDirectivePersonality(DirectiveID.getLoc()); 9303 else if (IDVal == ".handlerdata") 9304 parseDirectiveHandlerData(DirectiveID.getLoc()); 9305 else if (IDVal == ".setfp") 9306 parseDirectiveSetFP(DirectiveID.getLoc()); 9307 else if (IDVal == ".pad") 9308 parseDirectivePad(DirectiveID.getLoc()); 9309 else if (IDVal == ".save") 9310 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9311 else if (IDVal == ".vsave") 9312 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9313 else if (IDVal == ".ltorg" || IDVal == ".pool") 9314 parseDirectiveLtorg(DirectiveID.getLoc()); 9315 else if (IDVal == ".even") 9316 parseDirectiveEven(DirectiveID.getLoc()); 9317 else if (IDVal == ".personalityindex") 9318 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9319 else if (IDVal == ".unwind_raw") 9320 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9321 else if (IDVal == ".movsp") 9322 parseDirectiveMovSP(DirectiveID.getLoc()); 9323 else if (IDVal == ".arch_extension") 9324 parseDirectiveArchExtension(DirectiveID.getLoc()); 9325 else if (IDVal == ".align") 9326 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9327 else if (IDVal == ".thumb_set") 9328 parseDirectiveThumbSet(DirectiveID.getLoc()); 9329 else if (!IsMachO && !IsCOFF) { 9330 if (IDVal == ".arch") 9331 parseDirectiveArch(DirectiveID.getLoc()); 9332 else if (IDVal == ".cpu") 9333 parseDirectiveCPU(DirectiveID.getLoc()); 9334 else if (IDVal == ".eabi_attribute") 9335 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9336 else if (IDVal == ".fpu") 9337 parseDirectiveFPU(DirectiveID.getLoc()); 9338 else if (IDVal == ".fnstart") 9339 parseDirectiveFnStart(DirectiveID.getLoc()); 9340 else if (IDVal == ".inst") 9341 parseDirectiveInst(DirectiveID.getLoc()); 9342 else if (IDVal == ".inst.n") 9343 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9344 else if (IDVal == ".inst.w") 9345 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9346 else if (IDVal == ".object_arch") 9347 parseDirectiveObjectArch(DirectiveID.getLoc()); 9348 else if (IDVal == ".tlsdescseq") 9349 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9350 else 9351 return true; 9352 } else 9353 return true; 9354 return false; 9355 } 9356 9357 /// parseLiteralValues 9358 /// ::= .hword expression [, expression]* 9359 /// ::= .short expression [, expression]* 9360 /// ::= .word expression [, expression]* 9361 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9362 auto parseOne = [&]() -> bool { 9363 const MCExpr *Value; 9364 if (getParser().parseExpression(Value)) 9365 return true; 9366 getParser().getStreamer().EmitValue(Value, Size, L); 9367 return false; 9368 }; 9369 return (parseMany(parseOne)); 9370 } 9371 9372 /// parseDirectiveThumb 9373 /// ::= .thumb 9374 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9375 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9376 check(!hasThumb(), L, "target does not support Thumb mode")) 9377 return true; 9378 9379 if (!isThumb()) 9380 SwitchMode(); 9381 9382 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9383 return false; 9384 } 9385 9386 /// parseDirectiveARM 9387 /// ::= .arm 9388 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9389 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9390 check(!hasARM(), L, "target does not support ARM mode")) 9391 return true; 9392 9393 if (isThumb()) 9394 SwitchMode(); 9395 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9396 return false; 9397 } 9398 9399 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9400 // We need to flush the current implicit IT block on a label, because it is 9401 // not legal to branch into an IT block. 9402 flushPendingInstructions(getStreamer()); 9403 if (NextSymbolIsThumb) { 9404 getParser().getStreamer().EmitThumbFunc(Symbol); 9405 NextSymbolIsThumb = false; 9406 } 9407 } 9408 9409 /// parseDirectiveThumbFunc 9410 /// ::= .thumbfunc symbol_name 9411 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9412 MCAsmParser &Parser = getParser(); 9413 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9414 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9415 9416 // Darwin asm has (optionally) function name after .thumb_func direction 9417 // ELF doesn't 9418 9419 if (IsMachO) { 9420 if (Parser.getTok().is(AsmToken::Identifier) || 9421 Parser.getTok().is(AsmToken::String)) { 9422 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9423 Parser.getTok().getIdentifier()); 9424 getParser().getStreamer().EmitThumbFunc(Func); 9425 Parser.Lex(); 9426 if (parseToken(AsmToken::EndOfStatement, 9427 "unexpected token in '.thumb_func' directive")) 9428 return true; 9429 return false; 9430 } 9431 } 9432 9433 if (parseToken(AsmToken::EndOfStatement, 9434 "unexpected token in '.thumb_func' directive")) 9435 return true; 9436 9437 NextSymbolIsThumb = true; 9438 return false; 9439 } 9440 9441 /// parseDirectiveSyntax 9442 /// ::= .syntax unified | divided 9443 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9444 MCAsmParser &Parser = getParser(); 9445 const AsmToken &Tok = Parser.getTok(); 9446 if (Tok.isNot(AsmToken::Identifier)) { 9447 Error(L, "unexpected token in .syntax directive"); 9448 return false; 9449 } 9450 9451 StringRef Mode = Tok.getString(); 9452 Parser.Lex(); 9453 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9454 "'.syntax divided' arm assembly not supported") || 9455 check(Mode != "unified" && Mode != "UNIFIED", L, 9456 "unrecognized syntax mode in .syntax directive") || 9457 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9458 return true; 9459 9460 // TODO tell the MC streamer the mode 9461 // getParser().getStreamer().Emit???(); 9462 return false; 9463 } 9464 9465 /// parseDirectiveCode 9466 /// ::= .code 16 | 32 9467 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9468 MCAsmParser &Parser = getParser(); 9469 const AsmToken &Tok = Parser.getTok(); 9470 if (Tok.isNot(AsmToken::Integer)) 9471 return Error(L, "unexpected token in .code directive"); 9472 int64_t Val = Parser.getTok().getIntVal(); 9473 if (Val != 16 && Val != 32) { 9474 Error(L, "invalid operand to .code directive"); 9475 return false; 9476 } 9477 Parser.Lex(); 9478 9479 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9480 return true; 9481 9482 if (Val == 16) { 9483 if (!hasThumb()) 9484 return Error(L, "target does not support Thumb mode"); 9485 9486 if (!isThumb()) 9487 SwitchMode(); 9488 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9489 } else { 9490 if (!hasARM()) 9491 return Error(L, "target does not support ARM mode"); 9492 9493 if (isThumb()) 9494 SwitchMode(); 9495 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9496 } 9497 9498 return false; 9499 } 9500 9501 /// parseDirectiveReq 9502 /// ::= name .req registername 9503 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9504 MCAsmParser &Parser = getParser(); 9505 Parser.Lex(); // Eat the '.req' token. 9506 unsigned Reg; 9507 SMLoc SRegLoc, ERegLoc; 9508 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9509 "register name expected") || 9510 parseToken(AsmToken::EndOfStatement, 9511 "unexpected input in .req directive.")) 9512 return true; 9513 9514 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9515 return Error(SRegLoc, 9516 "redefinition of '" + Name + "' does not match original."); 9517 9518 return false; 9519 } 9520 9521 /// parseDirectiveUneq 9522 /// ::= .unreq registername 9523 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9524 MCAsmParser &Parser = getParser(); 9525 if (Parser.getTok().isNot(AsmToken::Identifier)) 9526 return Error(L, "unexpected input in .unreq directive."); 9527 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9528 Parser.Lex(); // Eat the identifier. 9529 if (parseToken(AsmToken::EndOfStatement, 9530 "unexpected input in '.unreq' directive")) 9531 return true; 9532 return false; 9533 } 9534 9535 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9536 // before, if supported by the new target, or emit mapping symbols for the mode 9537 // switch. 9538 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9539 if (WasThumb != isThumb()) { 9540 if (WasThumb && hasThumb()) { 9541 // Stay in Thumb mode 9542 SwitchMode(); 9543 } else if (!WasThumb && hasARM()) { 9544 // Stay in ARM mode 9545 SwitchMode(); 9546 } else { 9547 // Mode switch forced, because the new arch doesn't support the old mode. 9548 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9549 : MCAF_Code32); 9550 // Warn about the implcit mode switch. GAS does not switch modes here, 9551 // but instead stays in the old mode, reporting an error on any following 9552 // instructions as the mode does not exist on the target. 9553 Warning(Loc, Twine("new target does not support ") + 9554 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9555 (!WasThumb ? "thumb" : "arm") + " mode"); 9556 } 9557 } 9558 } 9559 9560 /// parseDirectiveArch 9561 /// ::= .arch token 9562 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9563 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9564 unsigned ID = ARM::parseArch(Arch); 9565 9566 if (ID == ARM::AK_INVALID) 9567 return Error(L, "Unknown arch name"); 9568 9569 bool WasThumb = isThumb(); 9570 Triple T; 9571 MCSubtargetInfo &STI = copySTI(); 9572 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9573 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9574 FixModeAfterArchChange(WasThumb, L); 9575 9576 getTargetStreamer().emitArch(ID); 9577 return false; 9578 } 9579 9580 /// parseDirectiveEabiAttr 9581 /// ::= .eabi_attribute int, int [, "str"] 9582 /// ::= .eabi_attribute Tag_name, int [, "str"] 9583 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9584 MCAsmParser &Parser = getParser(); 9585 int64_t Tag; 9586 SMLoc TagLoc; 9587 TagLoc = Parser.getTok().getLoc(); 9588 if (Parser.getTok().is(AsmToken::Identifier)) { 9589 StringRef Name = Parser.getTok().getIdentifier(); 9590 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9591 if (Tag == -1) { 9592 Error(TagLoc, "attribute name not recognised: " + Name); 9593 return false; 9594 } 9595 Parser.Lex(); 9596 } else { 9597 const MCExpr *AttrExpr; 9598 9599 TagLoc = Parser.getTok().getLoc(); 9600 if (Parser.parseExpression(AttrExpr)) 9601 return true; 9602 9603 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9604 if (check(!CE, TagLoc, "expected numeric constant")) 9605 return true; 9606 9607 Tag = CE->getValue(); 9608 } 9609 9610 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9611 return true; 9612 9613 StringRef StringValue = ""; 9614 bool IsStringValue = false; 9615 9616 int64_t IntegerValue = 0; 9617 bool IsIntegerValue = false; 9618 9619 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9620 IsStringValue = true; 9621 else if (Tag == ARMBuildAttrs::compatibility) { 9622 IsStringValue = true; 9623 IsIntegerValue = true; 9624 } else if (Tag < 32 || Tag % 2 == 0) 9625 IsIntegerValue = true; 9626 else if (Tag % 2 == 1) 9627 IsStringValue = true; 9628 else 9629 llvm_unreachable("invalid tag type"); 9630 9631 if (IsIntegerValue) { 9632 const MCExpr *ValueExpr; 9633 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9634 if (Parser.parseExpression(ValueExpr)) 9635 return true; 9636 9637 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9638 if (!CE) 9639 return Error(ValueExprLoc, "expected numeric constant"); 9640 IntegerValue = CE->getValue(); 9641 } 9642 9643 if (Tag == ARMBuildAttrs::compatibility) { 9644 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9645 return true; 9646 } 9647 9648 if (IsStringValue) { 9649 if (Parser.getTok().isNot(AsmToken::String)) 9650 return Error(Parser.getTok().getLoc(), "bad string constant"); 9651 9652 StringValue = Parser.getTok().getStringContents(); 9653 Parser.Lex(); 9654 } 9655 9656 if (Parser.parseToken(AsmToken::EndOfStatement, 9657 "unexpected token in '.eabi_attribute' directive")) 9658 return true; 9659 9660 if (IsIntegerValue && IsStringValue) { 9661 assert(Tag == ARMBuildAttrs::compatibility); 9662 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9663 } else if (IsIntegerValue) 9664 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9665 else if (IsStringValue) 9666 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9667 return false; 9668 } 9669 9670 /// parseDirectiveCPU 9671 /// ::= .cpu str 9672 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9673 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9674 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9675 9676 // FIXME: This is using table-gen data, but should be moved to 9677 // ARMTargetParser once that is table-gen'd. 9678 if (!getSTI().isCPUStringValid(CPU)) 9679 return Error(L, "Unknown CPU name"); 9680 9681 bool WasThumb = isThumb(); 9682 MCSubtargetInfo &STI = copySTI(); 9683 STI.setDefaultFeatures(CPU, ""); 9684 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9685 FixModeAfterArchChange(WasThumb, L); 9686 9687 return false; 9688 } 9689 /// parseDirectiveFPU 9690 /// ::= .fpu str 9691 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9692 SMLoc FPUNameLoc = getTok().getLoc(); 9693 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9694 9695 unsigned ID = ARM::parseFPU(FPU); 9696 std::vector<StringRef> Features; 9697 if (!ARM::getFPUFeatures(ID, Features)) 9698 return Error(FPUNameLoc, "Unknown FPU name"); 9699 9700 MCSubtargetInfo &STI = copySTI(); 9701 for (auto Feature : Features) 9702 STI.ApplyFeatureFlag(Feature); 9703 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9704 9705 getTargetStreamer().emitFPU(ID); 9706 return false; 9707 } 9708 9709 /// parseDirectiveFnStart 9710 /// ::= .fnstart 9711 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9712 if (parseToken(AsmToken::EndOfStatement, 9713 "unexpected token in '.fnstart' directive")) 9714 return true; 9715 9716 if (UC.hasFnStart()) { 9717 Error(L, ".fnstart starts before the end of previous one"); 9718 UC.emitFnStartLocNotes(); 9719 return true; 9720 } 9721 9722 // Reset the unwind directives parser state 9723 UC.reset(); 9724 9725 getTargetStreamer().emitFnStart(); 9726 9727 UC.recordFnStart(L); 9728 return false; 9729 } 9730 9731 /// parseDirectiveFnEnd 9732 /// ::= .fnend 9733 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9734 if (parseToken(AsmToken::EndOfStatement, 9735 "unexpected token in '.fnend' directive")) 9736 return true; 9737 // Check the ordering of unwind directives 9738 if (!UC.hasFnStart()) 9739 return Error(L, ".fnstart must precede .fnend directive"); 9740 9741 // Reset the unwind directives parser state 9742 getTargetStreamer().emitFnEnd(); 9743 9744 UC.reset(); 9745 return false; 9746 } 9747 9748 /// parseDirectiveCantUnwind 9749 /// ::= .cantunwind 9750 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9751 if (parseToken(AsmToken::EndOfStatement, 9752 "unexpected token in '.cantunwind' directive")) 9753 return true; 9754 9755 UC.recordCantUnwind(L); 9756 // Check the ordering of unwind directives 9757 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9758 return true; 9759 9760 if (UC.hasHandlerData()) { 9761 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9762 UC.emitHandlerDataLocNotes(); 9763 return true; 9764 } 9765 if (UC.hasPersonality()) { 9766 Error(L, ".cantunwind can't be used with .personality directive"); 9767 UC.emitPersonalityLocNotes(); 9768 return true; 9769 } 9770 9771 getTargetStreamer().emitCantUnwind(); 9772 return false; 9773 } 9774 9775 /// parseDirectivePersonality 9776 /// ::= .personality name 9777 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9778 MCAsmParser &Parser = getParser(); 9779 bool HasExistingPersonality = UC.hasPersonality(); 9780 9781 // Parse the name of the personality routine 9782 if (Parser.getTok().isNot(AsmToken::Identifier)) 9783 return Error(L, "unexpected input in .personality directive."); 9784 StringRef Name(Parser.getTok().getIdentifier()); 9785 Parser.Lex(); 9786 9787 if (parseToken(AsmToken::EndOfStatement, 9788 "unexpected token in '.personality' directive")) 9789 return true; 9790 9791 UC.recordPersonality(L); 9792 9793 // Check the ordering of unwind directives 9794 if (!UC.hasFnStart()) 9795 return Error(L, ".fnstart must precede .personality directive"); 9796 if (UC.cantUnwind()) { 9797 Error(L, ".personality can't be used with .cantunwind directive"); 9798 UC.emitCantUnwindLocNotes(); 9799 return true; 9800 } 9801 if (UC.hasHandlerData()) { 9802 Error(L, ".personality must precede .handlerdata directive"); 9803 UC.emitHandlerDataLocNotes(); 9804 return true; 9805 } 9806 if (HasExistingPersonality) { 9807 Error(L, "multiple personality directives"); 9808 UC.emitPersonalityLocNotes(); 9809 return true; 9810 } 9811 9812 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9813 getTargetStreamer().emitPersonality(PR); 9814 return false; 9815 } 9816 9817 /// parseDirectiveHandlerData 9818 /// ::= .handlerdata 9819 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9820 if (parseToken(AsmToken::EndOfStatement, 9821 "unexpected token in '.handlerdata' directive")) 9822 return true; 9823 9824 UC.recordHandlerData(L); 9825 // Check the ordering of unwind directives 9826 if (!UC.hasFnStart()) 9827 return Error(L, ".fnstart must precede .personality directive"); 9828 if (UC.cantUnwind()) { 9829 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9830 UC.emitCantUnwindLocNotes(); 9831 return true; 9832 } 9833 9834 getTargetStreamer().emitHandlerData(); 9835 return false; 9836 } 9837 9838 /// parseDirectiveSetFP 9839 /// ::= .setfp fpreg, spreg [, offset] 9840 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9841 MCAsmParser &Parser = getParser(); 9842 // Check the ordering of unwind directives 9843 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9844 check(UC.hasHandlerData(), L, 9845 ".setfp must precede .handlerdata directive")) 9846 return true; 9847 9848 // Parse fpreg 9849 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9850 int FPReg = tryParseRegister(); 9851 9852 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9853 Parser.parseToken(AsmToken::Comma, "comma expected")) 9854 return true; 9855 9856 // Parse spreg 9857 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9858 int SPReg = tryParseRegister(); 9859 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9860 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9861 "register should be either $sp or the latest fp register")) 9862 return true; 9863 9864 // Update the frame pointer register 9865 UC.saveFPReg(FPReg); 9866 9867 // Parse offset 9868 int64_t Offset = 0; 9869 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9870 if (Parser.getTok().isNot(AsmToken::Hash) && 9871 Parser.getTok().isNot(AsmToken::Dollar)) 9872 return Error(Parser.getTok().getLoc(), "'#' expected"); 9873 Parser.Lex(); // skip hash token. 9874 9875 const MCExpr *OffsetExpr; 9876 SMLoc ExLoc = Parser.getTok().getLoc(); 9877 SMLoc EndLoc; 9878 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9879 return Error(ExLoc, "malformed setfp offset"); 9880 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9881 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9882 return true; 9883 Offset = CE->getValue(); 9884 } 9885 9886 if (Parser.parseToken(AsmToken::EndOfStatement)) 9887 return true; 9888 9889 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9890 static_cast<unsigned>(SPReg), Offset); 9891 return false; 9892 } 9893 9894 /// parseDirective 9895 /// ::= .pad offset 9896 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9897 MCAsmParser &Parser = getParser(); 9898 // Check the ordering of unwind directives 9899 if (!UC.hasFnStart()) 9900 return Error(L, ".fnstart must precede .pad directive"); 9901 if (UC.hasHandlerData()) 9902 return Error(L, ".pad must precede .handlerdata directive"); 9903 9904 // Parse the offset 9905 if (Parser.getTok().isNot(AsmToken::Hash) && 9906 Parser.getTok().isNot(AsmToken::Dollar)) 9907 return Error(Parser.getTok().getLoc(), "'#' expected"); 9908 Parser.Lex(); // skip hash token. 9909 9910 const MCExpr *OffsetExpr; 9911 SMLoc ExLoc = Parser.getTok().getLoc(); 9912 SMLoc EndLoc; 9913 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9914 return Error(ExLoc, "malformed pad offset"); 9915 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9916 if (!CE) 9917 return Error(ExLoc, "pad offset must be an immediate"); 9918 9919 if (parseToken(AsmToken::EndOfStatement, 9920 "unexpected token in '.pad' directive")) 9921 return true; 9922 9923 getTargetStreamer().emitPad(CE->getValue()); 9924 return false; 9925 } 9926 9927 /// parseDirectiveRegSave 9928 /// ::= .save { registers } 9929 /// ::= .vsave { registers } 9930 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9931 // Check the ordering of unwind directives 9932 if (!UC.hasFnStart()) 9933 return Error(L, ".fnstart must precede .save or .vsave directives"); 9934 if (UC.hasHandlerData()) 9935 return Error(L, ".save or .vsave must precede .handlerdata directive"); 9936 9937 // RAII object to make sure parsed operands are deleted. 9938 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9939 9940 // Parse the register list 9941 if (parseRegisterList(Operands) || 9942 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9943 return true; 9944 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9945 if (!IsVector && !Op.isRegList()) 9946 return Error(L, ".save expects GPR registers"); 9947 if (IsVector && !Op.isDPRRegList()) 9948 return Error(L, ".vsave expects DPR registers"); 9949 9950 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9951 return false; 9952 } 9953 9954 /// parseDirectiveInst 9955 /// ::= .inst opcode [, ...] 9956 /// ::= .inst.n opcode [, ...] 9957 /// ::= .inst.w opcode [, ...] 9958 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9959 int Width = 4; 9960 9961 if (isThumb()) { 9962 switch (Suffix) { 9963 case 'n': 9964 Width = 2; 9965 break; 9966 case 'w': 9967 break; 9968 default: 9969 return Error(Loc, "cannot determine Thumb instruction size, " 9970 "use inst.n/inst.w instead"); 9971 } 9972 } else { 9973 if (Suffix) 9974 return Error(Loc, "width suffixes are invalid in ARM mode"); 9975 } 9976 9977 auto parseOne = [&]() -> bool { 9978 const MCExpr *Expr; 9979 if (getParser().parseExpression(Expr)) 9980 return true; 9981 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9982 if (!Value) { 9983 return Error(Loc, "expected constant expression"); 9984 } 9985 9986 switch (Width) { 9987 case 2: 9988 if (Value->getValue() > 0xffff) 9989 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 9990 break; 9991 case 4: 9992 if (Value->getValue() > 0xffffffff) 9993 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 9994 " operand is too big"); 9995 break; 9996 default: 9997 llvm_unreachable("only supported widths are 2 and 4"); 9998 } 9999 10000 getTargetStreamer().emitInst(Value->getValue(), Suffix); 10001 return false; 10002 }; 10003 10004 if (parseOptionalToken(AsmToken::EndOfStatement)) 10005 return Error(Loc, "expected expression following directive"); 10006 if (parseMany(parseOne)) 10007 return true; 10008 return false; 10009 } 10010 10011 /// parseDirectiveLtorg 10012 /// ::= .ltorg | .pool 10013 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 10014 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10015 return true; 10016 getTargetStreamer().emitCurrentConstantPool(); 10017 return false; 10018 } 10019 10020 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 10021 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10022 10023 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10024 return true; 10025 10026 if (!Section) { 10027 getStreamer().InitSections(false); 10028 Section = getStreamer().getCurrentSectionOnly(); 10029 } 10030 10031 assert(Section && "must have section to emit alignment"); 10032 if (Section->UseCodeAlign()) 10033 getStreamer().EmitCodeAlignment(2); 10034 else 10035 getStreamer().EmitValueToAlignment(2); 10036 10037 return false; 10038 } 10039 10040 /// parseDirectivePersonalityIndex 10041 /// ::= .personalityindex index 10042 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 10043 MCAsmParser &Parser = getParser(); 10044 bool HasExistingPersonality = UC.hasPersonality(); 10045 10046 const MCExpr *IndexExpression; 10047 SMLoc IndexLoc = Parser.getTok().getLoc(); 10048 if (Parser.parseExpression(IndexExpression) || 10049 parseToken(AsmToken::EndOfStatement, 10050 "unexpected token in '.personalityindex' directive")) { 10051 return true; 10052 } 10053 10054 UC.recordPersonalityIndex(L); 10055 10056 if (!UC.hasFnStart()) { 10057 return Error(L, ".fnstart must precede .personalityindex directive"); 10058 } 10059 if (UC.cantUnwind()) { 10060 Error(L, ".personalityindex cannot be used with .cantunwind"); 10061 UC.emitCantUnwindLocNotes(); 10062 return true; 10063 } 10064 if (UC.hasHandlerData()) { 10065 Error(L, ".personalityindex must precede .handlerdata directive"); 10066 UC.emitHandlerDataLocNotes(); 10067 return true; 10068 } 10069 if (HasExistingPersonality) { 10070 Error(L, "multiple personality directives"); 10071 UC.emitPersonalityLocNotes(); 10072 return true; 10073 } 10074 10075 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 10076 if (!CE) 10077 return Error(IndexLoc, "index must be a constant number"); 10078 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 10079 return Error(IndexLoc, 10080 "personality routine index should be in range [0-3]"); 10081 10082 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 10083 return false; 10084 } 10085 10086 /// parseDirectiveUnwindRaw 10087 /// ::= .unwind_raw offset, opcode [, opcode...] 10088 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 10089 MCAsmParser &Parser = getParser(); 10090 int64_t StackOffset; 10091 const MCExpr *OffsetExpr; 10092 SMLoc OffsetLoc = getLexer().getLoc(); 10093 10094 if (!UC.hasFnStart()) 10095 return Error(L, ".fnstart must precede .unwind_raw directives"); 10096 if (getParser().parseExpression(OffsetExpr)) 10097 return Error(OffsetLoc, "expected expression"); 10098 10099 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10100 if (!CE) 10101 return Error(OffsetLoc, "offset must be a constant"); 10102 10103 StackOffset = CE->getValue(); 10104 10105 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 10106 return true; 10107 10108 SmallVector<uint8_t, 16> Opcodes; 10109 10110 auto parseOne = [&]() -> bool { 10111 const MCExpr *OE; 10112 SMLoc OpcodeLoc = getLexer().getLoc(); 10113 if (check(getLexer().is(AsmToken::EndOfStatement) || 10114 Parser.parseExpression(OE), 10115 OpcodeLoc, "expected opcode expression")) 10116 return true; 10117 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 10118 if (!OC) 10119 return Error(OpcodeLoc, "opcode value must be a constant"); 10120 const int64_t Opcode = OC->getValue(); 10121 if (Opcode & ~0xff) 10122 return Error(OpcodeLoc, "invalid opcode"); 10123 Opcodes.push_back(uint8_t(Opcode)); 10124 return false; 10125 }; 10126 10127 // Must have at least 1 element 10128 SMLoc OpcodeLoc = getLexer().getLoc(); 10129 if (parseOptionalToken(AsmToken::EndOfStatement)) 10130 return Error(OpcodeLoc, "expected opcode expression"); 10131 if (parseMany(parseOne)) 10132 return true; 10133 10134 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 10135 return false; 10136 } 10137 10138 /// parseDirectiveTLSDescSeq 10139 /// ::= .tlsdescseq tls-variable 10140 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 10141 MCAsmParser &Parser = getParser(); 10142 10143 if (getLexer().isNot(AsmToken::Identifier)) 10144 return TokError("expected variable after '.tlsdescseq' directive"); 10145 10146 const MCSymbolRefExpr *SRE = 10147 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10148 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10149 Lex(); 10150 10151 if (parseToken(AsmToken::EndOfStatement, 10152 "unexpected token in '.tlsdescseq' directive")) 10153 return true; 10154 10155 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10156 return false; 10157 } 10158 10159 /// parseDirectiveMovSP 10160 /// ::= .movsp reg [, #offset] 10161 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10162 MCAsmParser &Parser = getParser(); 10163 if (!UC.hasFnStart()) 10164 return Error(L, ".fnstart must precede .movsp directives"); 10165 if (UC.getFPReg() != ARM::SP) 10166 return Error(L, "unexpected .movsp directive"); 10167 10168 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10169 int SPReg = tryParseRegister(); 10170 if (SPReg == -1) 10171 return Error(SPRegLoc, "register expected"); 10172 if (SPReg == ARM::SP || SPReg == ARM::PC) 10173 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10174 10175 int64_t Offset = 0; 10176 if (Parser.parseOptionalToken(AsmToken::Comma)) { 10177 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 10178 return true; 10179 10180 const MCExpr *OffsetExpr; 10181 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10182 10183 if (Parser.parseExpression(OffsetExpr)) 10184 return Error(OffsetLoc, "malformed offset expression"); 10185 10186 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10187 if (!CE) 10188 return Error(OffsetLoc, "offset must be an immediate constant"); 10189 10190 Offset = CE->getValue(); 10191 } 10192 10193 if (parseToken(AsmToken::EndOfStatement, 10194 "unexpected token in '.movsp' directive")) 10195 return true; 10196 10197 getTargetStreamer().emitMovSP(SPReg, Offset); 10198 UC.saveFPReg(SPReg); 10199 10200 return false; 10201 } 10202 10203 /// parseDirectiveObjectArch 10204 /// ::= .object_arch name 10205 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10206 MCAsmParser &Parser = getParser(); 10207 if (getLexer().isNot(AsmToken::Identifier)) 10208 return Error(getLexer().getLoc(), "unexpected token"); 10209 10210 StringRef Arch = Parser.getTok().getString(); 10211 SMLoc ArchLoc = Parser.getTok().getLoc(); 10212 Lex(); 10213 10214 unsigned ID = ARM::parseArch(Arch); 10215 10216 if (ID == ARM::AK_INVALID) 10217 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10218 if (parseToken(AsmToken::EndOfStatement)) 10219 return true; 10220 10221 getTargetStreamer().emitObjectArch(ID); 10222 return false; 10223 } 10224 10225 /// parseDirectiveAlign 10226 /// ::= .align 10227 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10228 // NOTE: if this is not the end of the statement, fall back to the target 10229 // agnostic handling for this directive which will correctly handle this. 10230 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10231 // '.align' is target specifically handled to mean 2**2 byte alignment. 10232 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10233 assert(Section && "must have section to emit alignment"); 10234 if (Section->UseCodeAlign()) 10235 getStreamer().EmitCodeAlignment(4, 0); 10236 else 10237 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10238 return false; 10239 } 10240 return true; 10241 } 10242 10243 /// parseDirectiveThumbSet 10244 /// ::= .thumb_set name, value 10245 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10246 MCAsmParser &Parser = getParser(); 10247 10248 StringRef Name; 10249 if (check(Parser.parseIdentifier(Name), 10250 "expected identifier after '.thumb_set'") || 10251 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10252 return true; 10253 10254 MCSymbol *Sym; 10255 const MCExpr *Value; 10256 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10257 Parser, Sym, Value)) 10258 return true; 10259 10260 getTargetStreamer().emitThumbSet(Sym, Value); 10261 return false; 10262 } 10263 10264 /// Force static initialization. 10265 extern "C" void LLVMInitializeARMAsmParser() { 10266 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10267 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10268 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10269 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10270 } 10271 10272 #define GET_REGISTER_MATCHER 10273 #define GET_SUBTARGET_FEATURE_NAME 10274 #define GET_MATCHER_IMPLEMENTATION 10275 #include "ARMGenAsmMatcher.inc" 10276 10277 // FIXME: This structure should be moved inside ARMTargetParser 10278 // when we start to table-generate them, and we can use the ARM 10279 // flags below, that were generated by table-gen. 10280 static const struct { 10281 const unsigned Kind; 10282 const uint64_t ArchCheck; 10283 const FeatureBitset Features; 10284 } Extensions[] = { 10285 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10286 { ARM::AEK_CRYPTO, Feature_HasV8, 10287 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10288 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10289 { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10290 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 10291 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10292 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10293 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10294 // FIXME: Only available in A-class, isel not predicated 10295 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10296 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10297 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10298 // FIXME: Unsupported extensions. 10299 { ARM::AEK_OS, Feature_None, {} }, 10300 { ARM::AEK_IWMMXT, Feature_None, {} }, 10301 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10302 { ARM::AEK_MAVERICK, Feature_None, {} }, 10303 { ARM::AEK_XSCALE, Feature_None, {} }, 10304 }; 10305 10306 /// parseDirectiveArchExtension 10307 /// ::= .arch_extension [no]feature 10308 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10309 MCAsmParser &Parser = getParser(); 10310 10311 if (getLexer().isNot(AsmToken::Identifier)) 10312 return Error(getLexer().getLoc(), "expected architecture extension name"); 10313 10314 StringRef Name = Parser.getTok().getString(); 10315 SMLoc ExtLoc = Parser.getTok().getLoc(); 10316 Lex(); 10317 10318 if (parseToken(AsmToken::EndOfStatement, 10319 "unexpected token in '.arch_extension' directive")) 10320 return true; 10321 10322 bool EnableFeature = true; 10323 if (Name.startswith_lower("no")) { 10324 EnableFeature = false; 10325 Name = Name.substr(2); 10326 } 10327 unsigned FeatureKind = ARM::parseArchExt(Name); 10328 if (FeatureKind == ARM::AEK_INVALID) 10329 return Error(ExtLoc, "unknown architectural extension: " + Name); 10330 10331 for (const auto &Extension : Extensions) { 10332 if (Extension.Kind != FeatureKind) 10333 continue; 10334 10335 if (Extension.Features.none()) 10336 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10337 10338 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10339 return Error(ExtLoc, "architectural extension '" + Name + 10340 "' is not " 10341 "allowed for the current base architecture"); 10342 10343 MCSubtargetInfo &STI = copySTI(); 10344 FeatureBitset ToggleFeatures = EnableFeature 10345 ? (~STI.getFeatureBits() & Extension.Features) 10346 : ( STI.getFeatureBits() & Extension.Features); 10347 10348 uint64_t Features = 10349 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10350 setAvailableFeatures(Features); 10351 return false; 10352 } 10353 10354 return Error(ExtLoc, "unknown architectural extension: " + Name); 10355 } 10356 10357 // Define this matcher function after the auto-generated include so we 10358 // have the match class enum definitions. 10359 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10360 unsigned Kind) { 10361 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10362 // If the kind is a token for a literal immediate, check if our asm 10363 // operand matches. This is for InstAliases which have a fixed-value 10364 // immediate in the syntax. 10365 switch (Kind) { 10366 default: break; 10367 case MCK__35_0: 10368 if (Op.isImm()) 10369 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10370 if (CE->getValue() == 0) 10371 return Match_Success; 10372 break; 10373 case MCK_ModImm: 10374 if (Op.isImm()) { 10375 const MCExpr *SOExpr = Op.getImm(); 10376 int64_t Value; 10377 if (!SOExpr->evaluateAsAbsolute(Value)) 10378 return Match_Success; 10379 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10380 "expression value must be representable in 32 bits"); 10381 } 10382 break; 10383 case MCK_rGPR: 10384 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10385 return Match_Success; 10386 break; 10387 case MCK_GPRPair: 10388 if (Op.isReg() && 10389 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10390 return Match_Success; 10391 break; 10392 } 10393 return Match_InvalidOperand; 10394 } 10395