1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFPUName.h" 11 #include "ARMFeatures.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMArchName.h" 14 #include "MCTargetDesc/ARMBaseInfo.h" 15 #include "MCTargetDesc/ARMMCExpr.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringSwitch.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/MC/MCAsmInfo.h" 22 #include "llvm/MC/MCAssembler.h" 23 #include "llvm/MC/MCContext.h" 24 #include "llvm/MC/MCDisassembler.h" 25 #include "llvm/MC/MCELFStreamer.h" 26 #include "llvm/MC/MCExpr.h" 27 #include "llvm/MC/MCInst.h" 28 #include "llvm/MC/MCInstrDesc.h" 29 #include "llvm/MC/MCInstrInfo.h" 30 #include "llvm/MC/MCObjectFileInfo.h" 31 #include "llvm/MC/MCParser/MCAsmLexer.h" 32 #include "llvm/MC/MCParser/MCAsmParser.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/MC/MCSection.h" 36 #include "llvm/MC/MCStreamer.h" 37 #include "llvm/MC/MCSubtargetInfo.h" 38 #include "llvm/MC/MCSymbol.h" 39 #include "llvm/MC/MCTargetAsmParser.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/COFF.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ELF.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SourceMgr.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/raw_ostream.h" 49 50 using namespace llvm; 51 52 namespace { 53 54 class ARMOperand; 55 56 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 57 58 class UnwindContext { 59 MCAsmParser &Parser; 60 61 typedef SmallVector<SMLoc, 4> Locs; 62 63 Locs FnStartLocs; 64 Locs CantUnwindLocs; 65 Locs PersonalityLocs; 66 Locs PersonalityIndexLocs; 67 Locs HandlerDataLocs; 68 int FPReg; 69 70 public: 71 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 72 73 bool hasFnStart() const { return !FnStartLocs.empty(); } 74 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 75 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 76 bool hasPersonality() const { 77 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 78 } 79 80 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 81 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 82 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 83 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 84 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 85 86 void saveFPReg(int Reg) { FPReg = Reg; } 87 int getFPReg() const { return FPReg; } 88 89 void emitFnStartLocNotes() const { 90 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 91 FI != FE; ++FI) 92 Parser.Note(*FI, ".fnstart was specified here"); 93 } 94 void emitCantUnwindLocNotes() const { 95 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 96 UE = CantUnwindLocs.end(); UI != UE; ++UI) 97 Parser.Note(*UI, ".cantunwind was specified here"); 98 } 99 void emitHandlerDataLocNotes() const { 100 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 101 HE = HandlerDataLocs.end(); HI != HE; ++HI) 102 Parser.Note(*HI, ".handlerdata was specified here"); 103 } 104 void emitPersonalityLocNotes() const { 105 for (Locs::const_iterator PI = PersonalityLocs.begin(), 106 PE = PersonalityLocs.end(), 107 PII = PersonalityIndexLocs.begin(), 108 PIE = PersonalityIndexLocs.end(); 109 PI != PE || PII != PIE;) { 110 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 111 Parser.Note(*PI++, ".personality was specified here"); 112 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 113 Parser.Note(*PII++, ".personalityindex was specified here"); 114 else 115 llvm_unreachable(".personality and .personalityindex cannot be " 116 "at the same location"); 117 } 118 } 119 120 void reset() { 121 FnStartLocs = Locs(); 122 CantUnwindLocs = Locs(); 123 PersonalityLocs = Locs(); 124 HandlerDataLocs = Locs(); 125 PersonalityIndexLocs = Locs(); 126 FPReg = ARM::SP; 127 } 128 }; 129 130 class ARMAsmParser : public MCTargetAsmParser { 131 MCSubtargetInfo &STI; 132 const MCInstrInfo &MII; 133 const MCRegisterInfo *MRI; 134 UnwindContext UC; 135 136 ARMTargetStreamer &getTargetStreamer() { 137 assert(getParser().getStreamer().getTargetStreamer() && 138 "do not have a target streamer"); 139 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 140 return static_cast<ARMTargetStreamer &>(TS); 141 } 142 143 // Map of register aliases registers via the .req directive. 144 StringMap<unsigned> RegisterReqs; 145 146 bool NextSymbolIsThumb; 147 148 struct { 149 ARMCC::CondCodes Cond; // Condition for IT block. 150 unsigned Mask:4; // Condition mask for instructions. 151 // Starting at first 1 (from lsb). 152 // '1' condition as indicated in IT. 153 // '0' inverse of condition (else). 154 // Count of instructions in IT block is 155 // 4 - trailingzeroes(mask) 156 157 bool FirstCond; // Explicit flag for when we're parsing the 158 // First instruction in the IT block. It's 159 // implied in the mask, so needs special 160 // handling. 161 162 unsigned CurPosition; // Current position in parsing of IT 163 // block. In range [0,3]. Initialized 164 // according to count of instructions in block. 165 // ~0U if no active IT block. 166 } ITState; 167 bool inITBlock() { return ITState.CurPosition != ~0U; } 168 bool lastInITBlock() { 169 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 170 } 171 void forwardITPosition() { 172 if (!inITBlock()) return; 173 // Move to the next instruction in the IT block, if there is one. If not, 174 // mark the block as done. 175 unsigned TZ = countTrailingZeros(ITState.Mask); 176 if (++ITState.CurPosition == 5 - TZ) 177 ITState.CurPosition = ~0U; // Done with the IT block after this. 178 } 179 180 void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { 181 return getParser().Note(L, Msg, Ranges); 182 } 183 bool Warning(SMLoc L, const Twine &Msg, 184 ArrayRef<SMRange> Ranges = None) { 185 return getParser().Warning(L, Msg, Ranges); 186 } 187 bool Error(SMLoc L, const Twine &Msg, 188 ArrayRef<SMRange> Ranges = None) { 189 return getParser().Error(L, Msg, Ranges); 190 } 191 192 bool validatetLDMRegList(MCInst Inst, const OperandVector &Operands, 193 unsigned ListNo, bool IsARPop = false); 194 bool validatetSTMRegList(MCInst Inst, const OperandVector &Operands, 195 unsigned ListNo); 196 197 int tryParseRegister(); 198 bool tryParseRegisterWithWriteBack(OperandVector &); 199 int tryParseShiftRegister(OperandVector &); 200 bool parseRegisterList(OperandVector &); 201 bool parseMemory(OperandVector &); 202 bool parseOperand(OperandVector &, StringRef Mnemonic); 203 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 204 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 205 unsigned &ShiftAmount); 206 bool parseLiteralValues(unsigned Size, SMLoc L); 207 bool parseDirectiveThumb(SMLoc L); 208 bool parseDirectiveARM(SMLoc L); 209 bool parseDirectiveThumbFunc(SMLoc L); 210 bool parseDirectiveCode(SMLoc L); 211 bool parseDirectiveSyntax(SMLoc L); 212 bool parseDirectiveReq(StringRef Name, SMLoc L); 213 bool parseDirectiveUnreq(SMLoc L); 214 bool parseDirectiveArch(SMLoc L); 215 bool parseDirectiveEabiAttr(SMLoc L); 216 bool parseDirectiveCPU(SMLoc L); 217 bool parseDirectiveFPU(SMLoc L); 218 bool parseDirectiveFnStart(SMLoc L); 219 bool parseDirectiveFnEnd(SMLoc L); 220 bool parseDirectiveCantUnwind(SMLoc L); 221 bool parseDirectivePersonality(SMLoc L); 222 bool parseDirectiveHandlerData(SMLoc L); 223 bool parseDirectiveSetFP(SMLoc L); 224 bool parseDirectivePad(SMLoc L); 225 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 226 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 227 bool parseDirectiveLtorg(SMLoc L); 228 bool parseDirectiveEven(SMLoc L); 229 bool parseDirectivePersonalityIndex(SMLoc L); 230 bool parseDirectiveUnwindRaw(SMLoc L); 231 bool parseDirectiveTLSDescSeq(SMLoc L); 232 bool parseDirectiveMovSP(SMLoc L); 233 bool parseDirectiveObjectArch(SMLoc L); 234 bool parseDirectiveArchExtension(SMLoc L); 235 bool parseDirectiveAlign(SMLoc L); 236 bool parseDirectiveThumbSet(SMLoc L); 237 238 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 239 bool &CarrySetting, unsigned &ProcessorIMod, 240 StringRef &ITMask); 241 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 242 bool &CanAcceptCarrySet, 243 bool &CanAcceptPredicationCode); 244 245 bool isThumb() const { 246 // FIXME: Can tablegen auto-generate this? 247 return (STI.getFeatureBits() & ARM::ModeThumb) != 0; 248 } 249 bool isThumbOne() const { 250 return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0; 251 } 252 bool isThumbTwo() const { 253 return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2); 254 } 255 bool hasThumb() const { 256 return STI.getFeatureBits() & ARM::HasV4TOps; 257 } 258 bool hasV6Ops() const { 259 return STI.getFeatureBits() & ARM::HasV6Ops; 260 } 261 bool hasV6MOps() const { 262 return STI.getFeatureBits() & ARM::HasV6MOps; 263 } 264 bool hasV7Ops() const { 265 return STI.getFeatureBits() & ARM::HasV7Ops; 266 } 267 bool hasV8Ops() const { 268 return STI.getFeatureBits() & ARM::HasV8Ops; 269 } 270 bool hasARM() const { 271 return !(STI.getFeatureBits() & ARM::FeatureNoARM); 272 } 273 bool hasThumb2DSP() const { 274 return STI.getFeatureBits() & ARM::FeatureDSPThumb2; 275 } 276 bool hasD16() const { 277 return STI.getFeatureBits() & ARM::FeatureD16; 278 } 279 280 void SwitchMode() { 281 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 282 setAvailableFeatures(FB); 283 } 284 bool isMClass() const { 285 return STI.getFeatureBits() & ARM::FeatureMClass; 286 } 287 288 /// @name Auto-generated Match Functions 289 /// { 290 291 #define GET_ASSEMBLER_HEADER 292 #include "ARMGenAsmMatcher.inc" 293 294 /// } 295 296 OperandMatchResultTy parseITCondCode(OperandVector &); 297 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 298 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 299 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 300 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 301 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 302 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 303 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 304 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 305 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 306 int High); 307 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 308 return parsePKHImm(O, "lsl", 0, 31); 309 } 310 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 311 return parsePKHImm(O, "asr", 1, 32); 312 } 313 OperandMatchResultTy parseSetEndImm(OperandVector &); 314 OperandMatchResultTy parseShifterImm(OperandVector &); 315 OperandMatchResultTy parseRotImm(OperandVector &); 316 OperandMatchResultTy parseModImm(OperandVector &); 317 OperandMatchResultTy parseBitfield(OperandVector &); 318 OperandMatchResultTy parsePostIdxReg(OperandVector &); 319 OperandMatchResultTy parseAM3Offset(OperandVector &); 320 OperandMatchResultTy parseFPImm(OperandVector &); 321 OperandMatchResultTy parseVectorList(OperandVector &); 322 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 323 SMLoc &EndLoc); 324 325 // Asm Match Converter Methods 326 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 327 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 328 329 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 330 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 331 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 332 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 333 334 public: 335 enum ARMMatchResultTy { 336 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 337 Match_RequiresNotITBlock, 338 Match_RequiresV6, 339 Match_RequiresThumb2, 340 #define GET_OPERAND_DIAGNOSTIC_TYPES 341 #include "ARMGenAsmMatcher.inc" 342 343 }; 344 345 ARMAsmParser(MCSubtargetInfo & _STI, MCAsmParser & _Parser, 346 const MCInstrInfo &MII, const MCTargetOptions &Options) 347 : MCTargetAsmParser(), STI(_STI), MII(MII), UC(_Parser) { 348 MCAsmParserExtension::Initialize(_Parser); 349 350 // Cache the MCRegisterInfo. 351 MRI = getContext().getRegisterInfo(); 352 353 // Initialize the set of available features. 354 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 355 356 // Not in an ITBlock to start with. 357 ITState.CurPosition = ~0U; 358 359 NextSymbolIsThumb = false; 360 } 361 362 // Implementation of the MCTargetAsmParser interface: 363 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 364 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 365 SMLoc NameLoc, OperandVector &Operands) override; 366 bool ParseDirective(AsmToken DirectiveID) override; 367 368 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 369 unsigned Kind) override; 370 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 371 372 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 373 OperandVector &Operands, MCStreamer &Out, 374 uint64_t &ErrorInfo, 375 bool MatchingInlineAsm) override; 376 void onLabelParsed(MCSymbol *Symbol) override; 377 }; 378 } // end anonymous namespace 379 380 namespace { 381 382 /// ARMOperand - Instances of this class represent a parsed ARM machine 383 /// operand. 384 class ARMOperand : public MCParsedAsmOperand { 385 enum KindTy { 386 k_CondCode, 387 k_CCOut, 388 k_ITCondMask, 389 k_CoprocNum, 390 k_CoprocReg, 391 k_CoprocOption, 392 k_Immediate, 393 k_MemBarrierOpt, 394 k_InstSyncBarrierOpt, 395 k_Memory, 396 k_PostIndexRegister, 397 k_MSRMask, 398 k_BankedReg, 399 k_ProcIFlags, 400 k_VectorIndex, 401 k_Register, 402 k_RegisterList, 403 k_DPRRegisterList, 404 k_SPRRegisterList, 405 k_VectorList, 406 k_VectorListAllLanes, 407 k_VectorListIndexed, 408 k_ShiftedRegister, 409 k_ShiftedImmediate, 410 k_ShifterImmediate, 411 k_RotateImmediate, 412 k_ModifiedImmediate, 413 k_BitfieldDescriptor, 414 k_Token 415 } Kind; 416 417 SMLoc StartLoc, EndLoc, AlignmentLoc; 418 SmallVector<unsigned, 8> Registers; 419 420 struct CCOp { 421 ARMCC::CondCodes Val; 422 }; 423 424 struct CopOp { 425 unsigned Val; 426 }; 427 428 struct CoprocOptionOp { 429 unsigned Val; 430 }; 431 432 struct ITMaskOp { 433 unsigned Mask:4; 434 }; 435 436 struct MBOptOp { 437 ARM_MB::MemBOpt Val; 438 }; 439 440 struct ISBOptOp { 441 ARM_ISB::InstSyncBOpt Val; 442 }; 443 444 struct IFlagsOp { 445 ARM_PROC::IFlags Val; 446 }; 447 448 struct MMaskOp { 449 unsigned Val; 450 }; 451 452 struct BankedRegOp { 453 unsigned Val; 454 }; 455 456 struct TokOp { 457 const char *Data; 458 unsigned Length; 459 }; 460 461 struct RegOp { 462 unsigned RegNum; 463 }; 464 465 // A vector register list is a sequential list of 1 to 4 registers. 466 struct VectorListOp { 467 unsigned RegNum; 468 unsigned Count; 469 unsigned LaneIndex; 470 bool isDoubleSpaced; 471 }; 472 473 struct VectorIndexOp { 474 unsigned Val; 475 }; 476 477 struct ImmOp { 478 const MCExpr *Val; 479 }; 480 481 /// Combined record for all forms of ARM address expressions. 482 struct MemoryOp { 483 unsigned BaseRegNum; 484 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 485 // was specified. 486 const MCConstantExpr *OffsetImm; // Offset immediate value 487 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 488 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 489 unsigned ShiftImm; // shift for OffsetReg. 490 unsigned Alignment; // 0 = no alignment specified 491 // n = alignment in bytes (2, 4, 8, 16, or 32) 492 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 493 }; 494 495 struct PostIdxRegOp { 496 unsigned RegNum; 497 bool isAdd; 498 ARM_AM::ShiftOpc ShiftTy; 499 unsigned ShiftImm; 500 }; 501 502 struct ShifterImmOp { 503 bool isASR; 504 unsigned Imm; 505 }; 506 507 struct RegShiftedRegOp { 508 ARM_AM::ShiftOpc ShiftTy; 509 unsigned SrcReg; 510 unsigned ShiftReg; 511 unsigned ShiftImm; 512 }; 513 514 struct RegShiftedImmOp { 515 ARM_AM::ShiftOpc ShiftTy; 516 unsigned SrcReg; 517 unsigned ShiftImm; 518 }; 519 520 struct RotImmOp { 521 unsigned Imm; 522 }; 523 524 struct ModImmOp { 525 unsigned Bits; 526 unsigned Rot; 527 }; 528 529 struct BitfieldOp { 530 unsigned LSB; 531 unsigned Width; 532 }; 533 534 union { 535 struct CCOp CC; 536 struct CopOp Cop; 537 struct CoprocOptionOp CoprocOption; 538 struct MBOptOp MBOpt; 539 struct ISBOptOp ISBOpt; 540 struct ITMaskOp ITMask; 541 struct IFlagsOp IFlags; 542 struct MMaskOp MMask; 543 struct BankedRegOp BankedReg; 544 struct TokOp Tok; 545 struct RegOp Reg; 546 struct VectorListOp VectorList; 547 struct VectorIndexOp VectorIndex; 548 struct ImmOp Imm; 549 struct MemoryOp Memory; 550 struct PostIdxRegOp PostIdxReg; 551 struct ShifterImmOp ShifterImm; 552 struct RegShiftedRegOp RegShiftedReg; 553 struct RegShiftedImmOp RegShiftedImm; 554 struct RotImmOp RotImm; 555 struct ModImmOp ModImm; 556 struct BitfieldOp Bitfield; 557 }; 558 559 public: 560 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 561 ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() { 562 Kind = o.Kind; 563 StartLoc = o.StartLoc; 564 EndLoc = o.EndLoc; 565 switch (Kind) { 566 case k_CondCode: 567 CC = o.CC; 568 break; 569 case k_ITCondMask: 570 ITMask = o.ITMask; 571 break; 572 case k_Token: 573 Tok = o.Tok; 574 break; 575 case k_CCOut: 576 case k_Register: 577 Reg = o.Reg; 578 break; 579 case k_RegisterList: 580 case k_DPRRegisterList: 581 case k_SPRRegisterList: 582 Registers = o.Registers; 583 break; 584 case k_VectorList: 585 case k_VectorListAllLanes: 586 case k_VectorListIndexed: 587 VectorList = o.VectorList; 588 break; 589 case k_CoprocNum: 590 case k_CoprocReg: 591 Cop = o.Cop; 592 break; 593 case k_CoprocOption: 594 CoprocOption = o.CoprocOption; 595 break; 596 case k_Immediate: 597 Imm = o.Imm; 598 break; 599 case k_MemBarrierOpt: 600 MBOpt = o.MBOpt; 601 break; 602 case k_InstSyncBarrierOpt: 603 ISBOpt = o.ISBOpt; 604 case k_Memory: 605 Memory = o.Memory; 606 break; 607 case k_PostIndexRegister: 608 PostIdxReg = o.PostIdxReg; 609 break; 610 case k_MSRMask: 611 MMask = o.MMask; 612 break; 613 case k_BankedReg: 614 BankedReg = o.BankedReg; 615 break; 616 case k_ProcIFlags: 617 IFlags = o.IFlags; 618 break; 619 case k_ShifterImmediate: 620 ShifterImm = o.ShifterImm; 621 break; 622 case k_ShiftedRegister: 623 RegShiftedReg = o.RegShiftedReg; 624 break; 625 case k_ShiftedImmediate: 626 RegShiftedImm = o.RegShiftedImm; 627 break; 628 case k_RotateImmediate: 629 RotImm = o.RotImm; 630 break; 631 case k_ModifiedImmediate: 632 ModImm = o.ModImm; 633 break; 634 case k_BitfieldDescriptor: 635 Bitfield = o.Bitfield; 636 break; 637 case k_VectorIndex: 638 VectorIndex = o.VectorIndex; 639 break; 640 } 641 } 642 643 /// getStartLoc - Get the location of the first token of this operand. 644 SMLoc getStartLoc() const override { return StartLoc; } 645 /// getEndLoc - Get the location of the last token of this operand. 646 SMLoc getEndLoc() const override { return EndLoc; } 647 /// getLocRange - Get the range between the first and last token of this 648 /// operand. 649 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 650 651 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 652 SMLoc getAlignmentLoc() const { 653 assert(Kind == k_Memory && "Invalid access!"); 654 return AlignmentLoc; 655 } 656 657 ARMCC::CondCodes getCondCode() const { 658 assert(Kind == k_CondCode && "Invalid access!"); 659 return CC.Val; 660 } 661 662 unsigned getCoproc() const { 663 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 664 return Cop.Val; 665 } 666 667 StringRef getToken() const { 668 assert(Kind == k_Token && "Invalid access!"); 669 return StringRef(Tok.Data, Tok.Length); 670 } 671 672 unsigned getReg() const override { 673 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 674 return Reg.RegNum; 675 } 676 677 const SmallVectorImpl<unsigned> &getRegList() const { 678 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 679 Kind == k_SPRRegisterList) && "Invalid access!"); 680 return Registers; 681 } 682 683 const MCExpr *getImm() const { 684 assert(isImm() && "Invalid access!"); 685 return Imm.Val; 686 } 687 688 unsigned getVectorIndex() const { 689 assert(Kind == k_VectorIndex && "Invalid access!"); 690 return VectorIndex.Val; 691 } 692 693 ARM_MB::MemBOpt getMemBarrierOpt() const { 694 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 695 return MBOpt.Val; 696 } 697 698 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 699 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 700 return ISBOpt.Val; 701 } 702 703 ARM_PROC::IFlags getProcIFlags() const { 704 assert(Kind == k_ProcIFlags && "Invalid access!"); 705 return IFlags.Val; 706 } 707 708 unsigned getMSRMask() const { 709 assert(Kind == k_MSRMask && "Invalid access!"); 710 return MMask.Val; 711 } 712 713 unsigned getBankedReg() const { 714 assert(Kind == k_BankedReg && "Invalid access!"); 715 return BankedReg.Val; 716 } 717 718 bool isCoprocNum() const { return Kind == k_CoprocNum; } 719 bool isCoprocReg() const { return Kind == k_CoprocReg; } 720 bool isCoprocOption() const { return Kind == k_CoprocOption; } 721 bool isCondCode() const { return Kind == k_CondCode; } 722 bool isCCOut() const { return Kind == k_CCOut; } 723 bool isITMask() const { return Kind == k_ITCondMask; } 724 bool isITCondCode() const { return Kind == k_CondCode; } 725 bool isImm() const override { return Kind == k_Immediate; } 726 // checks whether this operand is an unsigned offset which fits is a field 727 // of specified width and scaled by a specific number of bits 728 template<unsigned width, unsigned scale> 729 bool isUnsignedOffset() const { 730 if (!isImm()) return false; 731 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 732 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 733 int64_t Val = CE->getValue(); 734 int64_t Align = 1LL << scale; 735 int64_t Max = Align * ((1LL << width) - 1); 736 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 737 } 738 return false; 739 } 740 // checks whether this operand is an signed offset which fits is a field 741 // of specified width and scaled by a specific number of bits 742 template<unsigned width, unsigned scale> 743 bool isSignedOffset() const { 744 if (!isImm()) return false; 745 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 746 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 747 int64_t Val = CE->getValue(); 748 int64_t Align = 1LL << scale; 749 int64_t Max = Align * ((1LL << (width-1)) - 1); 750 int64_t Min = -Align * (1LL << (width-1)); 751 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 752 } 753 return false; 754 } 755 756 // checks whether this operand is a memory operand computed as an offset 757 // applied to PC. the offset may have 8 bits of magnitude and is represented 758 // with two bits of shift. textually it may be either [pc, #imm], #imm or 759 // relocable expression... 760 bool isThumbMemPC() const { 761 int64_t Val = 0; 762 if (isImm()) { 763 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 764 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 765 if (!CE) return false; 766 Val = CE->getValue(); 767 } 768 else if (isMem()) { 769 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 770 if(Memory.BaseRegNum != ARM::PC) return false; 771 Val = Memory.OffsetImm->getValue(); 772 } 773 else return false; 774 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 775 } 776 bool isFPImm() const { 777 if (!isImm()) return false; 778 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 779 if (!CE) return false; 780 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 781 return Val != -1; 782 } 783 bool isFBits16() const { 784 if (!isImm()) return false; 785 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 786 if (!CE) return false; 787 int64_t Value = CE->getValue(); 788 return Value >= 0 && Value <= 16; 789 } 790 bool isFBits32() const { 791 if (!isImm()) return false; 792 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 793 if (!CE) return false; 794 int64_t Value = CE->getValue(); 795 return Value >= 1 && Value <= 32; 796 } 797 bool isImm8s4() const { 798 if (!isImm()) return false; 799 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 800 if (!CE) return false; 801 int64_t Value = CE->getValue(); 802 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 803 } 804 bool isImm0_1020s4() const { 805 if (!isImm()) return false; 806 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 807 if (!CE) return false; 808 int64_t Value = CE->getValue(); 809 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 810 } 811 bool isImm0_508s4() const { 812 if (!isImm()) return false; 813 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 814 if (!CE) return false; 815 int64_t Value = CE->getValue(); 816 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 817 } 818 bool isImm0_508s4Neg() const { 819 if (!isImm()) return false; 820 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 821 if (!CE) return false; 822 int64_t Value = -CE->getValue(); 823 // explicitly exclude zero. we want that to use the normal 0_508 version. 824 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 825 } 826 bool isImm0_239() const { 827 if (!isImm()) return false; 828 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 829 if (!CE) return false; 830 int64_t Value = CE->getValue(); 831 return Value >= 0 && Value < 240; 832 } 833 bool isImm0_255() const { 834 if (!isImm()) return false; 835 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 836 if (!CE) return false; 837 int64_t Value = CE->getValue(); 838 return Value >= 0 && Value < 256; 839 } 840 bool isImm0_4095() const { 841 if (!isImm()) return false; 842 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 843 if (!CE) return false; 844 int64_t Value = CE->getValue(); 845 return Value >= 0 && Value < 4096; 846 } 847 bool isImm0_4095Neg() const { 848 if (!isImm()) return false; 849 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 850 if (!CE) return false; 851 int64_t Value = -CE->getValue(); 852 return Value > 0 && Value < 4096; 853 } 854 bool isImm0_1() const { 855 if (!isImm()) return false; 856 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 857 if (!CE) return false; 858 int64_t Value = CE->getValue(); 859 return Value >= 0 && Value < 2; 860 } 861 bool isImm0_3() const { 862 if (!isImm()) return false; 863 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 864 if (!CE) return false; 865 int64_t Value = CE->getValue(); 866 return Value >= 0 && Value < 4; 867 } 868 bool isImm0_7() const { 869 if (!isImm()) return false; 870 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 871 if (!CE) return false; 872 int64_t Value = CE->getValue(); 873 return Value >= 0 && Value < 8; 874 } 875 bool isImm0_15() const { 876 if (!isImm()) return false; 877 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 878 if (!CE) return false; 879 int64_t Value = CE->getValue(); 880 return Value >= 0 && Value < 16; 881 } 882 bool isImm0_31() const { 883 if (!isImm()) return false; 884 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 885 if (!CE) return false; 886 int64_t Value = CE->getValue(); 887 return Value >= 0 && Value < 32; 888 } 889 bool isImm0_63() const { 890 if (!isImm()) return false; 891 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 892 if (!CE) return false; 893 int64_t Value = CE->getValue(); 894 return Value >= 0 && Value < 64; 895 } 896 bool isImm8() const { 897 if (!isImm()) return false; 898 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 899 if (!CE) return false; 900 int64_t Value = CE->getValue(); 901 return Value == 8; 902 } 903 bool isImm16() const { 904 if (!isImm()) return false; 905 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 906 if (!CE) return false; 907 int64_t Value = CE->getValue(); 908 return Value == 16; 909 } 910 bool isImm32() const { 911 if (!isImm()) return false; 912 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 913 if (!CE) return false; 914 int64_t Value = CE->getValue(); 915 return Value == 32; 916 } 917 bool isShrImm8() const { 918 if (!isImm()) return false; 919 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 920 if (!CE) return false; 921 int64_t Value = CE->getValue(); 922 return Value > 0 && Value <= 8; 923 } 924 bool isShrImm16() const { 925 if (!isImm()) return false; 926 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 927 if (!CE) return false; 928 int64_t Value = CE->getValue(); 929 return Value > 0 && Value <= 16; 930 } 931 bool isShrImm32() const { 932 if (!isImm()) return false; 933 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 934 if (!CE) return false; 935 int64_t Value = CE->getValue(); 936 return Value > 0 && Value <= 32; 937 } 938 bool isShrImm64() const { 939 if (!isImm()) return false; 940 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 941 if (!CE) return false; 942 int64_t Value = CE->getValue(); 943 return Value > 0 && Value <= 64; 944 } 945 bool isImm1_7() const { 946 if (!isImm()) return false; 947 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 948 if (!CE) return false; 949 int64_t Value = CE->getValue(); 950 return Value > 0 && Value < 8; 951 } 952 bool isImm1_15() const { 953 if (!isImm()) return false; 954 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 955 if (!CE) return false; 956 int64_t Value = CE->getValue(); 957 return Value > 0 && Value < 16; 958 } 959 bool isImm1_31() const { 960 if (!isImm()) return false; 961 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 962 if (!CE) return false; 963 int64_t Value = CE->getValue(); 964 return Value > 0 && Value < 32; 965 } 966 bool isImm1_16() const { 967 if (!isImm()) return false; 968 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 969 if (!CE) return false; 970 int64_t Value = CE->getValue(); 971 return Value > 0 && Value < 17; 972 } 973 bool isImm1_32() const { 974 if (!isImm()) return false; 975 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 976 if (!CE) return false; 977 int64_t Value = CE->getValue(); 978 return Value > 0 && Value < 33; 979 } 980 bool isImm0_32() const { 981 if (!isImm()) return false; 982 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 983 if (!CE) return false; 984 int64_t Value = CE->getValue(); 985 return Value >= 0 && Value < 33; 986 } 987 bool isImm0_65535() const { 988 if (!isImm()) return false; 989 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 990 if (!CE) return false; 991 int64_t Value = CE->getValue(); 992 return Value >= 0 && Value < 65536; 993 } 994 bool isImm256_65535Expr() const { 995 if (!isImm()) return false; 996 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 997 // If it's not a constant expression, it'll generate a fixup and be 998 // handled later. 999 if (!CE) return true; 1000 int64_t Value = CE->getValue(); 1001 return Value >= 256 && Value < 65536; 1002 } 1003 bool isImm0_65535Expr() const { 1004 if (!isImm()) return false; 1005 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1006 // If it's not a constant expression, it'll generate a fixup and be 1007 // handled later. 1008 if (!CE) return true; 1009 int64_t Value = CE->getValue(); 1010 return Value >= 0 && Value < 65536; 1011 } 1012 bool isImm24bit() const { 1013 if (!isImm()) return false; 1014 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1015 if (!CE) return false; 1016 int64_t Value = CE->getValue(); 1017 return Value >= 0 && Value <= 0xffffff; 1018 } 1019 bool isImmThumbSR() const { 1020 if (!isImm()) return false; 1021 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1022 if (!CE) return false; 1023 int64_t Value = CE->getValue(); 1024 return Value > 0 && Value < 33; 1025 } 1026 bool isPKHLSLImm() const { 1027 if (!isImm()) return false; 1028 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1029 if (!CE) return false; 1030 int64_t Value = CE->getValue(); 1031 return Value >= 0 && Value < 32; 1032 } 1033 bool isPKHASRImm() const { 1034 if (!isImm()) return false; 1035 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1036 if (!CE) return false; 1037 int64_t Value = CE->getValue(); 1038 return Value > 0 && Value <= 32; 1039 } 1040 bool isAdrLabel() const { 1041 // If we have an immediate that's not a constant, treat it as a label 1042 // reference needing a fixup. 1043 if (isImm() && !isa<MCConstantExpr>(getImm())) 1044 return true; 1045 1046 // If it is a constant, it must fit into a modified immediate encoding. 1047 if (!isImm()) return false; 1048 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1049 if (!CE) return false; 1050 int64_t Value = CE->getValue(); 1051 return (ARM_AM::getSOImmVal(Value) != -1 || 1052 ARM_AM::getSOImmVal(-Value) != -1);; 1053 } 1054 bool isT2SOImm() const { 1055 if (!isImm()) return false; 1056 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1057 if (!CE) return false; 1058 int64_t Value = CE->getValue(); 1059 return ARM_AM::getT2SOImmVal(Value) != -1; 1060 } 1061 bool isT2SOImmNot() const { 1062 if (!isImm()) return false; 1063 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1064 if (!CE) return false; 1065 int64_t Value = CE->getValue(); 1066 return ARM_AM::getT2SOImmVal(Value) == -1 && 1067 ARM_AM::getT2SOImmVal(~Value) != -1; 1068 } 1069 bool isT2SOImmNeg() const { 1070 if (!isImm()) return false; 1071 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1072 if (!CE) return false; 1073 int64_t Value = CE->getValue(); 1074 // Only use this when not representable as a plain so_imm. 1075 return ARM_AM::getT2SOImmVal(Value) == -1 && 1076 ARM_AM::getT2SOImmVal(-Value) != -1; 1077 } 1078 bool isSetEndImm() const { 1079 if (!isImm()) return false; 1080 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1081 if (!CE) return false; 1082 int64_t Value = CE->getValue(); 1083 return Value == 1 || Value == 0; 1084 } 1085 bool isReg() const override { return Kind == k_Register; } 1086 bool isRegList() const { return Kind == k_RegisterList; } 1087 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1088 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1089 bool isToken() const override { return Kind == k_Token; } 1090 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1091 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1092 bool isMem() const override { return Kind == k_Memory; } 1093 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1094 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1095 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1096 bool isRotImm() const { return Kind == k_RotateImmediate; } 1097 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1098 bool isModImmNot() const { 1099 if (!isImm()) return false; 1100 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1101 if (!CE) return false; 1102 int64_t Value = CE->getValue(); 1103 return ARM_AM::getSOImmVal(~Value) != -1; 1104 } 1105 bool isModImmNeg() const { 1106 if (!isImm()) return false; 1107 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1108 if (!CE) return false; 1109 int64_t Value = CE->getValue(); 1110 return ARM_AM::getSOImmVal(Value) == -1 && 1111 ARM_AM::getSOImmVal(-Value) != -1; 1112 } 1113 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1114 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1115 bool isPostIdxReg() const { 1116 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1117 } 1118 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1119 if (!isMem()) 1120 return false; 1121 // No offset of any kind. 1122 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1123 (alignOK || Memory.Alignment == Alignment); 1124 } 1125 bool isMemPCRelImm12() const { 1126 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1127 return false; 1128 // Base register must be PC. 1129 if (Memory.BaseRegNum != ARM::PC) 1130 return false; 1131 // Immediate offset in range [-4095, 4095]. 1132 if (!Memory.OffsetImm) return true; 1133 int64_t Val = Memory.OffsetImm->getValue(); 1134 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1135 } 1136 bool isAlignedMemory() const { 1137 return isMemNoOffset(true); 1138 } 1139 bool isAlignedMemoryNone() const { 1140 return isMemNoOffset(false, 0); 1141 } 1142 bool isDupAlignedMemoryNone() const { 1143 return isMemNoOffset(false, 0); 1144 } 1145 bool isAlignedMemory16() const { 1146 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1147 return true; 1148 return isMemNoOffset(false, 0); 1149 } 1150 bool isDupAlignedMemory16() const { 1151 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1152 return true; 1153 return isMemNoOffset(false, 0); 1154 } 1155 bool isAlignedMemory32() const { 1156 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1157 return true; 1158 return isMemNoOffset(false, 0); 1159 } 1160 bool isDupAlignedMemory32() const { 1161 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1162 return true; 1163 return isMemNoOffset(false, 0); 1164 } 1165 bool isAlignedMemory64() const { 1166 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1167 return true; 1168 return isMemNoOffset(false, 0); 1169 } 1170 bool isDupAlignedMemory64() const { 1171 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1172 return true; 1173 return isMemNoOffset(false, 0); 1174 } 1175 bool isAlignedMemory64or128() const { 1176 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1177 return true; 1178 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1179 return true; 1180 return isMemNoOffset(false, 0); 1181 } 1182 bool isDupAlignedMemory64or128() const { 1183 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1184 return true; 1185 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1186 return true; 1187 return isMemNoOffset(false, 0); 1188 } 1189 bool isAlignedMemory64or128or256() const { 1190 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1191 return true; 1192 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1193 return true; 1194 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1195 return true; 1196 return isMemNoOffset(false, 0); 1197 } 1198 bool isAddrMode2() const { 1199 if (!isMem() || Memory.Alignment != 0) return false; 1200 // Check for register offset. 1201 if (Memory.OffsetRegNum) return true; 1202 // Immediate offset in range [-4095, 4095]. 1203 if (!Memory.OffsetImm) return true; 1204 int64_t Val = Memory.OffsetImm->getValue(); 1205 return Val > -4096 && Val < 4096; 1206 } 1207 bool isAM2OffsetImm() const { 1208 if (!isImm()) return false; 1209 // Immediate offset in range [-4095, 4095]. 1210 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1211 if (!CE) return false; 1212 int64_t Val = CE->getValue(); 1213 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1214 } 1215 bool isAddrMode3() const { 1216 // If we have an immediate that's not a constant, treat it as a label 1217 // reference needing a fixup. If it is a constant, it's something else 1218 // and we reject it. 1219 if (isImm() && !isa<MCConstantExpr>(getImm())) 1220 return true; 1221 if (!isMem() || Memory.Alignment != 0) return false; 1222 // No shifts are legal for AM3. 1223 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1224 // Check for register offset. 1225 if (Memory.OffsetRegNum) return true; 1226 // Immediate offset in range [-255, 255]. 1227 if (!Memory.OffsetImm) return true; 1228 int64_t Val = Memory.OffsetImm->getValue(); 1229 // The #-0 offset is encoded as INT32_MIN, and we have to check 1230 // for this too. 1231 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1232 } 1233 bool isAM3Offset() const { 1234 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1235 return false; 1236 if (Kind == k_PostIndexRegister) 1237 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1238 // Immediate offset in range [-255, 255]. 1239 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1240 if (!CE) return false; 1241 int64_t Val = CE->getValue(); 1242 // Special case, #-0 is INT32_MIN. 1243 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1244 } 1245 bool isAddrMode5() const { 1246 // If we have an immediate that's not a constant, treat it as a label 1247 // reference needing a fixup. If it is a constant, it's something else 1248 // and we reject it. 1249 if (isImm() && !isa<MCConstantExpr>(getImm())) 1250 return true; 1251 if (!isMem() || Memory.Alignment != 0) return false; 1252 // Check for register offset. 1253 if (Memory.OffsetRegNum) return false; 1254 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1255 if (!Memory.OffsetImm) return true; 1256 int64_t Val = Memory.OffsetImm->getValue(); 1257 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1258 Val == INT32_MIN; 1259 } 1260 bool isMemTBB() const { 1261 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1262 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1263 return false; 1264 return true; 1265 } 1266 bool isMemTBH() const { 1267 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1268 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1269 Memory.Alignment != 0 ) 1270 return false; 1271 return true; 1272 } 1273 bool isMemRegOffset() const { 1274 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1275 return false; 1276 return true; 1277 } 1278 bool isT2MemRegOffset() const { 1279 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1280 Memory.Alignment != 0) 1281 return false; 1282 // Only lsl #{0, 1, 2, 3} allowed. 1283 if (Memory.ShiftType == ARM_AM::no_shift) 1284 return true; 1285 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1286 return false; 1287 return true; 1288 } 1289 bool isMemThumbRR() const { 1290 // Thumb reg+reg addressing is simple. Just two registers, a base and 1291 // an offset. No shifts, negations or any other complicating factors. 1292 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1293 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1294 return false; 1295 return isARMLowRegister(Memory.BaseRegNum) && 1296 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1297 } 1298 bool isMemThumbRIs4() const { 1299 if (!isMem() || Memory.OffsetRegNum != 0 || 1300 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1301 return false; 1302 // Immediate offset, multiple of 4 in range [0, 124]. 1303 if (!Memory.OffsetImm) return true; 1304 int64_t Val = Memory.OffsetImm->getValue(); 1305 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1306 } 1307 bool isMemThumbRIs2() const { 1308 if (!isMem() || Memory.OffsetRegNum != 0 || 1309 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1310 return false; 1311 // Immediate offset, multiple of 4 in range [0, 62]. 1312 if (!Memory.OffsetImm) return true; 1313 int64_t Val = Memory.OffsetImm->getValue(); 1314 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1315 } 1316 bool isMemThumbRIs1() const { 1317 if (!isMem() || Memory.OffsetRegNum != 0 || 1318 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1319 return false; 1320 // Immediate offset in range [0, 31]. 1321 if (!Memory.OffsetImm) return true; 1322 int64_t Val = Memory.OffsetImm->getValue(); 1323 return Val >= 0 && Val <= 31; 1324 } 1325 bool isMemThumbSPI() const { 1326 if (!isMem() || Memory.OffsetRegNum != 0 || 1327 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1328 return false; 1329 // Immediate offset, multiple of 4 in range [0, 1020]. 1330 if (!Memory.OffsetImm) return true; 1331 int64_t Val = Memory.OffsetImm->getValue(); 1332 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1333 } 1334 bool isMemImm8s4Offset() const { 1335 // If we have an immediate that's not a constant, treat it as a label 1336 // reference needing a fixup. If it is a constant, it's something else 1337 // and we reject it. 1338 if (isImm() && !isa<MCConstantExpr>(getImm())) 1339 return true; 1340 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1341 return false; 1342 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1343 if (!Memory.OffsetImm) return true; 1344 int64_t Val = Memory.OffsetImm->getValue(); 1345 // Special case, #-0 is INT32_MIN. 1346 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1347 } 1348 bool isMemImm0_1020s4Offset() const { 1349 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1350 return false; 1351 // Immediate offset a multiple of 4 in range [0, 1020]. 1352 if (!Memory.OffsetImm) return true; 1353 int64_t Val = Memory.OffsetImm->getValue(); 1354 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1355 } 1356 bool isMemImm8Offset() const { 1357 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1358 return false; 1359 // Base reg of PC isn't allowed for these encodings. 1360 if (Memory.BaseRegNum == ARM::PC) return false; 1361 // Immediate offset in range [-255, 255]. 1362 if (!Memory.OffsetImm) return true; 1363 int64_t Val = Memory.OffsetImm->getValue(); 1364 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1365 } 1366 bool isMemPosImm8Offset() const { 1367 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1368 return false; 1369 // Immediate offset in range [0, 255]. 1370 if (!Memory.OffsetImm) return true; 1371 int64_t Val = Memory.OffsetImm->getValue(); 1372 return Val >= 0 && Val < 256; 1373 } 1374 bool isMemNegImm8Offset() const { 1375 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1376 return false; 1377 // Base reg of PC isn't allowed for these encodings. 1378 if (Memory.BaseRegNum == ARM::PC) return false; 1379 // Immediate offset in range [-255, -1]. 1380 if (!Memory.OffsetImm) return false; 1381 int64_t Val = Memory.OffsetImm->getValue(); 1382 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1383 } 1384 bool isMemUImm12Offset() const { 1385 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1386 return false; 1387 // Immediate offset in range [0, 4095]. 1388 if (!Memory.OffsetImm) return true; 1389 int64_t Val = Memory.OffsetImm->getValue(); 1390 return (Val >= 0 && Val < 4096); 1391 } 1392 bool isMemImm12Offset() const { 1393 // If we have an immediate that's not a constant, treat it as a label 1394 // reference needing a fixup. If it is a constant, it's something else 1395 // and we reject it. 1396 if (isImm() && !isa<MCConstantExpr>(getImm())) 1397 return true; 1398 1399 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1400 return false; 1401 // Immediate offset in range [-4095, 4095]. 1402 if (!Memory.OffsetImm) return true; 1403 int64_t Val = Memory.OffsetImm->getValue(); 1404 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1405 } 1406 bool isPostIdxImm8() const { 1407 if (!isImm()) return false; 1408 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1409 if (!CE) return false; 1410 int64_t Val = CE->getValue(); 1411 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1412 } 1413 bool isPostIdxImm8s4() const { 1414 if (!isImm()) return false; 1415 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1416 if (!CE) return false; 1417 int64_t Val = CE->getValue(); 1418 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1419 (Val == INT32_MIN); 1420 } 1421 1422 bool isMSRMask() const { return Kind == k_MSRMask; } 1423 bool isBankedReg() const { return Kind == k_BankedReg; } 1424 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1425 1426 // NEON operands. 1427 bool isSingleSpacedVectorList() const { 1428 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1429 } 1430 bool isDoubleSpacedVectorList() const { 1431 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1432 } 1433 bool isVecListOneD() const { 1434 if (!isSingleSpacedVectorList()) return false; 1435 return VectorList.Count == 1; 1436 } 1437 1438 bool isVecListDPair() const { 1439 if (!isSingleSpacedVectorList()) return false; 1440 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1441 .contains(VectorList.RegNum)); 1442 } 1443 1444 bool isVecListThreeD() const { 1445 if (!isSingleSpacedVectorList()) return false; 1446 return VectorList.Count == 3; 1447 } 1448 1449 bool isVecListFourD() const { 1450 if (!isSingleSpacedVectorList()) return false; 1451 return VectorList.Count == 4; 1452 } 1453 1454 bool isVecListDPairSpaced() const { 1455 if (Kind != k_VectorList) return false; 1456 if (isSingleSpacedVectorList()) return false; 1457 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1458 .contains(VectorList.RegNum)); 1459 } 1460 1461 bool isVecListThreeQ() const { 1462 if (!isDoubleSpacedVectorList()) return false; 1463 return VectorList.Count == 3; 1464 } 1465 1466 bool isVecListFourQ() const { 1467 if (!isDoubleSpacedVectorList()) return false; 1468 return VectorList.Count == 4; 1469 } 1470 1471 bool isSingleSpacedVectorAllLanes() const { 1472 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1473 } 1474 bool isDoubleSpacedVectorAllLanes() const { 1475 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1476 } 1477 bool isVecListOneDAllLanes() const { 1478 if (!isSingleSpacedVectorAllLanes()) return false; 1479 return VectorList.Count == 1; 1480 } 1481 1482 bool isVecListDPairAllLanes() const { 1483 if (!isSingleSpacedVectorAllLanes()) return false; 1484 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1485 .contains(VectorList.RegNum)); 1486 } 1487 1488 bool isVecListDPairSpacedAllLanes() const { 1489 if (!isDoubleSpacedVectorAllLanes()) return false; 1490 return VectorList.Count == 2; 1491 } 1492 1493 bool isVecListThreeDAllLanes() const { 1494 if (!isSingleSpacedVectorAllLanes()) return false; 1495 return VectorList.Count == 3; 1496 } 1497 1498 bool isVecListThreeQAllLanes() const { 1499 if (!isDoubleSpacedVectorAllLanes()) return false; 1500 return VectorList.Count == 3; 1501 } 1502 1503 bool isVecListFourDAllLanes() const { 1504 if (!isSingleSpacedVectorAllLanes()) return false; 1505 return VectorList.Count == 4; 1506 } 1507 1508 bool isVecListFourQAllLanes() const { 1509 if (!isDoubleSpacedVectorAllLanes()) return false; 1510 return VectorList.Count == 4; 1511 } 1512 1513 bool isSingleSpacedVectorIndexed() const { 1514 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1515 } 1516 bool isDoubleSpacedVectorIndexed() const { 1517 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1518 } 1519 bool isVecListOneDByteIndexed() const { 1520 if (!isSingleSpacedVectorIndexed()) return false; 1521 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1522 } 1523 1524 bool isVecListOneDHWordIndexed() const { 1525 if (!isSingleSpacedVectorIndexed()) return false; 1526 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1527 } 1528 1529 bool isVecListOneDWordIndexed() const { 1530 if (!isSingleSpacedVectorIndexed()) return false; 1531 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1532 } 1533 1534 bool isVecListTwoDByteIndexed() const { 1535 if (!isSingleSpacedVectorIndexed()) return false; 1536 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1537 } 1538 1539 bool isVecListTwoDHWordIndexed() const { 1540 if (!isSingleSpacedVectorIndexed()) return false; 1541 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1542 } 1543 1544 bool isVecListTwoQWordIndexed() const { 1545 if (!isDoubleSpacedVectorIndexed()) return false; 1546 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1547 } 1548 1549 bool isVecListTwoQHWordIndexed() const { 1550 if (!isDoubleSpacedVectorIndexed()) return false; 1551 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1552 } 1553 1554 bool isVecListTwoDWordIndexed() const { 1555 if (!isSingleSpacedVectorIndexed()) return false; 1556 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1557 } 1558 1559 bool isVecListThreeDByteIndexed() const { 1560 if (!isSingleSpacedVectorIndexed()) return false; 1561 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1562 } 1563 1564 bool isVecListThreeDHWordIndexed() const { 1565 if (!isSingleSpacedVectorIndexed()) return false; 1566 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1567 } 1568 1569 bool isVecListThreeQWordIndexed() const { 1570 if (!isDoubleSpacedVectorIndexed()) return false; 1571 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1572 } 1573 1574 bool isVecListThreeQHWordIndexed() const { 1575 if (!isDoubleSpacedVectorIndexed()) return false; 1576 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1577 } 1578 1579 bool isVecListThreeDWordIndexed() const { 1580 if (!isSingleSpacedVectorIndexed()) return false; 1581 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1582 } 1583 1584 bool isVecListFourDByteIndexed() const { 1585 if (!isSingleSpacedVectorIndexed()) return false; 1586 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1587 } 1588 1589 bool isVecListFourDHWordIndexed() const { 1590 if (!isSingleSpacedVectorIndexed()) return false; 1591 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1592 } 1593 1594 bool isVecListFourQWordIndexed() const { 1595 if (!isDoubleSpacedVectorIndexed()) return false; 1596 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1597 } 1598 1599 bool isVecListFourQHWordIndexed() const { 1600 if (!isDoubleSpacedVectorIndexed()) return false; 1601 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1602 } 1603 1604 bool isVecListFourDWordIndexed() const { 1605 if (!isSingleSpacedVectorIndexed()) return false; 1606 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1607 } 1608 1609 bool isVectorIndex8() const { 1610 if (Kind != k_VectorIndex) return false; 1611 return VectorIndex.Val < 8; 1612 } 1613 bool isVectorIndex16() const { 1614 if (Kind != k_VectorIndex) return false; 1615 return VectorIndex.Val < 4; 1616 } 1617 bool isVectorIndex32() const { 1618 if (Kind != k_VectorIndex) return false; 1619 return VectorIndex.Val < 2; 1620 } 1621 1622 bool isNEONi8splat() const { 1623 if (!isImm()) return false; 1624 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1625 // Must be a constant. 1626 if (!CE) return false; 1627 int64_t Value = CE->getValue(); 1628 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1629 // value. 1630 return Value >= 0 && Value < 256; 1631 } 1632 1633 bool isNEONi16splat() const { 1634 if (isNEONByteReplicate(2)) 1635 return false; // Leave that for bytes replication and forbid by default. 1636 if (!isImm()) 1637 return false; 1638 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1639 // Must be a constant. 1640 if (!CE) return false; 1641 unsigned Value = CE->getValue(); 1642 return ARM_AM::isNEONi16splat(Value); 1643 } 1644 1645 bool isNEONi16splatNot() const { 1646 if (!isImm()) 1647 return false; 1648 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1649 // Must be a constant. 1650 if (!CE) return false; 1651 unsigned Value = CE->getValue(); 1652 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1653 } 1654 1655 bool isNEONi32splat() const { 1656 if (isNEONByteReplicate(4)) 1657 return false; // Leave that for bytes replication and forbid by default. 1658 if (!isImm()) 1659 return false; 1660 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1661 // Must be a constant. 1662 if (!CE) return false; 1663 unsigned Value = CE->getValue(); 1664 return ARM_AM::isNEONi32splat(Value); 1665 } 1666 1667 bool isNEONi32splatNot() const { 1668 if (!isImm()) 1669 return false; 1670 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1671 // Must be a constant. 1672 if (!CE) return false; 1673 unsigned Value = CE->getValue(); 1674 return ARM_AM::isNEONi32splat(~Value); 1675 } 1676 1677 bool isNEONByteReplicate(unsigned NumBytes) const { 1678 if (!isImm()) 1679 return false; 1680 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1681 // Must be a constant. 1682 if (!CE) 1683 return false; 1684 int64_t Value = CE->getValue(); 1685 if (!Value) 1686 return false; // Don't bother with zero. 1687 1688 unsigned char B = Value & 0xff; 1689 for (unsigned i = 1; i < NumBytes; ++i) { 1690 Value >>= 8; 1691 if ((Value & 0xff) != B) 1692 return false; 1693 } 1694 return true; 1695 } 1696 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1697 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1698 bool isNEONi32vmov() const { 1699 if (isNEONByteReplicate(4)) 1700 return false; // Let it to be classified as byte-replicate case. 1701 if (!isImm()) 1702 return false; 1703 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1704 // Must be a constant. 1705 if (!CE) 1706 return false; 1707 int64_t Value = CE->getValue(); 1708 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1709 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1710 // FIXME: This is probably wrong and a copy and paste from previous example 1711 return (Value >= 0 && Value < 256) || 1712 (Value >= 0x0100 && Value <= 0xff00) || 1713 (Value >= 0x010000 && Value <= 0xff0000) || 1714 (Value >= 0x01000000 && Value <= 0xff000000) || 1715 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1716 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1717 } 1718 bool isNEONi32vmovNeg() const { 1719 if (!isImm()) return false; 1720 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1721 // Must be a constant. 1722 if (!CE) return false; 1723 int64_t Value = ~CE->getValue(); 1724 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1725 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1726 // FIXME: This is probably wrong and a copy and paste from previous example 1727 return (Value >= 0 && Value < 256) || 1728 (Value >= 0x0100 && Value <= 0xff00) || 1729 (Value >= 0x010000 && Value <= 0xff0000) || 1730 (Value >= 0x01000000 && Value <= 0xff000000) || 1731 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1732 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1733 } 1734 1735 bool isNEONi64splat() const { 1736 if (!isImm()) return false; 1737 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1738 // Must be a constant. 1739 if (!CE) return false; 1740 uint64_t Value = CE->getValue(); 1741 // i64 value with each byte being either 0 or 0xff. 1742 for (unsigned i = 0; i < 8; ++i) 1743 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1744 return true; 1745 } 1746 1747 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1748 // Add as immediates when possible. Null MCExpr = 0. 1749 if (!Expr) 1750 Inst.addOperand(MCOperand::CreateImm(0)); 1751 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1752 Inst.addOperand(MCOperand::CreateImm(CE->getValue())); 1753 else 1754 Inst.addOperand(MCOperand::CreateExpr(Expr)); 1755 } 1756 1757 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1758 assert(N == 2 && "Invalid number of operands!"); 1759 Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode()))); 1760 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1761 Inst.addOperand(MCOperand::CreateReg(RegNum)); 1762 } 1763 1764 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1765 assert(N == 1 && "Invalid number of operands!"); 1766 Inst.addOperand(MCOperand::CreateImm(getCoproc())); 1767 } 1768 1769 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1770 assert(N == 1 && "Invalid number of operands!"); 1771 Inst.addOperand(MCOperand::CreateImm(getCoproc())); 1772 } 1773 1774 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1775 assert(N == 1 && "Invalid number of operands!"); 1776 Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val)); 1777 } 1778 1779 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1780 assert(N == 1 && "Invalid number of operands!"); 1781 Inst.addOperand(MCOperand::CreateImm(ITMask.Mask)); 1782 } 1783 1784 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1785 assert(N == 1 && "Invalid number of operands!"); 1786 Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode()))); 1787 } 1788 1789 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1790 assert(N == 1 && "Invalid number of operands!"); 1791 Inst.addOperand(MCOperand::CreateReg(getReg())); 1792 } 1793 1794 void addRegOperands(MCInst &Inst, unsigned N) const { 1795 assert(N == 1 && "Invalid number of operands!"); 1796 Inst.addOperand(MCOperand::CreateReg(getReg())); 1797 } 1798 1799 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1800 assert(N == 3 && "Invalid number of operands!"); 1801 assert(isRegShiftedReg() && 1802 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1803 Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg)); 1804 Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg)); 1805 Inst.addOperand(MCOperand::CreateImm( 1806 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1807 } 1808 1809 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1810 assert(N == 2 && "Invalid number of operands!"); 1811 assert(isRegShiftedImm() && 1812 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1813 Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg)); 1814 // Shift of #32 is encoded as 0 where permitted 1815 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1816 Inst.addOperand(MCOperand::CreateImm( 1817 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1818 } 1819 1820 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1821 assert(N == 1 && "Invalid number of operands!"); 1822 Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) | 1823 ShifterImm.Imm)); 1824 } 1825 1826 void addRegListOperands(MCInst &Inst, unsigned N) const { 1827 assert(N == 1 && "Invalid number of operands!"); 1828 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1829 for (SmallVectorImpl<unsigned>::const_iterator 1830 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1831 Inst.addOperand(MCOperand::CreateReg(*I)); 1832 } 1833 1834 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 1835 addRegListOperands(Inst, N); 1836 } 1837 1838 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 1839 addRegListOperands(Inst, N); 1840 } 1841 1842 void addRotImmOperands(MCInst &Inst, unsigned N) const { 1843 assert(N == 1 && "Invalid number of operands!"); 1844 // Encoded as val>>3. The printer handles display as 8, 16, 24. 1845 Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3)); 1846 } 1847 1848 void addModImmOperands(MCInst &Inst, unsigned N) const { 1849 assert(N == 1 && "Invalid number of operands!"); 1850 1851 // Support for fixups (MCFixup) 1852 if (isImm()) 1853 return addImmOperands(Inst, N); 1854 1855 Inst.addOperand(MCOperand::CreateImm(ModImm.Bits | (ModImm.Rot << 7))); 1856 } 1857 1858 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 1859 assert(N == 1 && "Invalid number of operands!"); 1860 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1861 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 1862 Inst.addOperand(MCOperand::CreateImm(Enc)); 1863 } 1864 1865 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 1866 assert(N == 1 && "Invalid number of operands!"); 1867 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1868 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 1869 Inst.addOperand(MCOperand::CreateImm(Enc)); 1870 } 1871 1872 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 1873 assert(N == 1 && "Invalid number of operands!"); 1874 // Munge the lsb/width into a bitfield mask. 1875 unsigned lsb = Bitfield.LSB; 1876 unsigned width = Bitfield.Width; 1877 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 1878 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 1879 (32 - (lsb + width))); 1880 Inst.addOperand(MCOperand::CreateImm(Mask)); 1881 } 1882 1883 void addImmOperands(MCInst &Inst, unsigned N) const { 1884 assert(N == 1 && "Invalid number of operands!"); 1885 addExpr(Inst, getImm()); 1886 } 1887 1888 void addFBits16Operands(MCInst &Inst, unsigned N) const { 1889 assert(N == 1 && "Invalid number of operands!"); 1890 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1891 Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue())); 1892 } 1893 1894 void addFBits32Operands(MCInst &Inst, unsigned N) const { 1895 assert(N == 1 && "Invalid number of operands!"); 1896 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1897 Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue())); 1898 } 1899 1900 void addFPImmOperands(MCInst &Inst, unsigned N) const { 1901 assert(N == 1 && "Invalid number of operands!"); 1902 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1903 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1904 Inst.addOperand(MCOperand::CreateImm(Val)); 1905 } 1906 1907 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 1908 assert(N == 1 && "Invalid number of operands!"); 1909 // FIXME: We really want to scale the value here, but the LDRD/STRD 1910 // instruction don't encode operands that way yet. 1911 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1912 Inst.addOperand(MCOperand::CreateImm(CE->getValue())); 1913 } 1914 1915 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 1916 assert(N == 1 && "Invalid number of operands!"); 1917 // The immediate is scaled by four in the encoding and is stored 1918 // in the MCInst as such. Lop off the low two bits here. 1919 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1920 Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4)); 1921 } 1922 1923 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 1924 assert(N == 1 && "Invalid number of operands!"); 1925 // The immediate is scaled by four in the encoding and is stored 1926 // in the MCInst as such. Lop off the low two bits here. 1927 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1928 Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4))); 1929 } 1930 1931 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 1932 assert(N == 1 && "Invalid number of operands!"); 1933 // The immediate is scaled by four in the encoding and is stored 1934 // in the MCInst as such. Lop off the low two bits here. 1935 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1936 Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4)); 1937 } 1938 1939 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 1940 assert(N == 1 && "Invalid number of operands!"); 1941 // The constant encodes as the immediate-1, and we store in the instruction 1942 // the bits as encoded, so subtract off one here. 1943 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1944 Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1)); 1945 } 1946 1947 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 1948 assert(N == 1 && "Invalid number of operands!"); 1949 // The constant encodes as the immediate-1, and we store in the instruction 1950 // the bits as encoded, so subtract off one here. 1951 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1952 Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1)); 1953 } 1954 1955 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 1956 assert(N == 1 && "Invalid number of operands!"); 1957 // The constant encodes as the immediate, except for 32, which encodes as 1958 // zero. 1959 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1960 unsigned Imm = CE->getValue(); 1961 Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm))); 1962 } 1963 1964 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 1965 assert(N == 1 && "Invalid number of operands!"); 1966 // An ASR value of 32 encodes as 0, so that's how we want to add it to 1967 // the instruction as well. 1968 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1969 int Val = CE->getValue(); 1970 Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val)); 1971 } 1972 1973 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 1974 assert(N == 1 && "Invalid number of operands!"); 1975 // The operand is actually a t2_so_imm, but we have its bitwise 1976 // negation in the assembly source, so twiddle it here. 1977 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1978 Inst.addOperand(MCOperand::CreateImm(~CE->getValue())); 1979 } 1980 1981 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 1982 assert(N == 1 && "Invalid number of operands!"); 1983 // The operand is actually a t2_so_imm, but we have its 1984 // negation in the assembly source, so twiddle it here. 1985 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1986 Inst.addOperand(MCOperand::CreateImm(-CE->getValue())); 1987 } 1988 1989 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 1990 assert(N == 1 && "Invalid number of operands!"); 1991 // The operand is actually an imm0_4095, but we have its 1992 // negation in the assembly source, so twiddle it here. 1993 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1994 Inst.addOperand(MCOperand::CreateImm(-CE->getValue())); 1995 } 1996 1997 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 1998 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 1999 Inst.addOperand(MCOperand::CreateImm(CE->getValue() >> 2)); 2000 return; 2001 } 2002 2003 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2004 assert(SR && "Unknown value type!"); 2005 Inst.addOperand(MCOperand::CreateExpr(SR)); 2006 } 2007 2008 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2009 assert(N == 1 && "Invalid number of operands!"); 2010 if (isImm()) { 2011 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2012 if (CE) { 2013 Inst.addOperand(MCOperand::CreateImm(CE->getValue())); 2014 return; 2015 } 2016 2017 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2018 assert(SR && "Unknown value type!"); 2019 Inst.addOperand(MCOperand::CreateExpr(SR)); 2020 return; 2021 } 2022 2023 assert(isMem() && "Unknown value type!"); 2024 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2025 Inst.addOperand(MCOperand::CreateImm(Memory.OffsetImm->getValue())); 2026 } 2027 2028 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2029 assert(N == 1 && "Invalid number of operands!"); 2030 Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt()))); 2031 } 2032 2033 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2034 assert(N == 1 && "Invalid number of operands!"); 2035 Inst.addOperand(MCOperand::CreateImm(unsigned(getInstSyncBarrierOpt()))); 2036 } 2037 2038 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2039 assert(N == 1 && "Invalid number of operands!"); 2040 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2041 } 2042 2043 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2044 assert(N == 1 && "Invalid number of operands!"); 2045 int32_t Imm = Memory.OffsetImm->getValue(); 2046 Inst.addOperand(MCOperand::CreateImm(Imm)); 2047 } 2048 2049 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2050 assert(N == 1 && "Invalid number of operands!"); 2051 assert(isImm() && "Not an immediate!"); 2052 2053 // If we have an immediate that's not a constant, treat it as a label 2054 // reference needing a fixup. 2055 if (!isa<MCConstantExpr>(getImm())) { 2056 Inst.addOperand(MCOperand::CreateExpr(getImm())); 2057 return; 2058 } 2059 2060 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2061 int Val = CE->getValue(); 2062 Inst.addOperand(MCOperand::CreateImm(Val)); 2063 } 2064 2065 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2066 assert(N == 2 && "Invalid number of operands!"); 2067 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2068 Inst.addOperand(MCOperand::CreateImm(Memory.Alignment)); 2069 } 2070 2071 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2072 addAlignedMemoryOperands(Inst, N); 2073 } 2074 2075 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2076 addAlignedMemoryOperands(Inst, N); 2077 } 2078 2079 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2080 addAlignedMemoryOperands(Inst, N); 2081 } 2082 2083 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2084 addAlignedMemoryOperands(Inst, N); 2085 } 2086 2087 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2088 addAlignedMemoryOperands(Inst, N); 2089 } 2090 2091 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2092 addAlignedMemoryOperands(Inst, N); 2093 } 2094 2095 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2096 addAlignedMemoryOperands(Inst, N); 2097 } 2098 2099 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2100 addAlignedMemoryOperands(Inst, N); 2101 } 2102 2103 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2104 addAlignedMemoryOperands(Inst, N); 2105 } 2106 2107 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2108 addAlignedMemoryOperands(Inst, N); 2109 } 2110 2111 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2112 addAlignedMemoryOperands(Inst, N); 2113 } 2114 2115 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2116 assert(N == 3 && "Invalid number of operands!"); 2117 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2118 if (!Memory.OffsetRegNum) { 2119 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2120 // Special case for #-0 2121 if (Val == INT32_MIN) Val = 0; 2122 if (Val < 0) Val = -Val; 2123 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2124 } else { 2125 // For register offset, we encode the shift type and negation flag 2126 // here. 2127 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2128 Memory.ShiftImm, Memory.ShiftType); 2129 } 2130 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2131 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); 2132 Inst.addOperand(MCOperand::CreateImm(Val)); 2133 } 2134 2135 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2136 assert(N == 2 && "Invalid number of operands!"); 2137 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2138 assert(CE && "non-constant AM2OffsetImm operand!"); 2139 int32_t Val = CE->getValue(); 2140 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2141 // Special case for #-0 2142 if (Val == INT32_MIN) Val = 0; 2143 if (Val < 0) Val = -Val; 2144 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2145 Inst.addOperand(MCOperand::CreateReg(0)); 2146 Inst.addOperand(MCOperand::CreateImm(Val)); 2147 } 2148 2149 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2150 assert(N == 3 && "Invalid number of operands!"); 2151 // If we have an immediate that's not a constant, treat it as a label 2152 // reference needing a fixup. If it is a constant, it's something else 2153 // and we reject it. 2154 if (isImm()) { 2155 Inst.addOperand(MCOperand::CreateExpr(getImm())); 2156 Inst.addOperand(MCOperand::CreateReg(0)); 2157 Inst.addOperand(MCOperand::CreateImm(0)); 2158 return; 2159 } 2160 2161 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2162 if (!Memory.OffsetRegNum) { 2163 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2164 // Special case for #-0 2165 if (Val == INT32_MIN) Val = 0; 2166 if (Val < 0) Val = -Val; 2167 Val = ARM_AM::getAM3Opc(AddSub, Val); 2168 } else { 2169 // For register offset, we encode the shift type and negation flag 2170 // here. 2171 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2172 } 2173 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2174 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); 2175 Inst.addOperand(MCOperand::CreateImm(Val)); 2176 } 2177 2178 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2179 assert(N == 2 && "Invalid number of operands!"); 2180 if (Kind == k_PostIndexRegister) { 2181 int32_t Val = 2182 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2183 Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum)); 2184 Inst.addOperand(MCOperand::CreateImm(Val)); 2185 return; 2186 } 2187 2188 // Constant offset. 2189 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2190 int32_t Val = CE->getValue(); 2191 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2192 // Special case for #-0 2193 if (Val == INT32_MIN) Val = 0; 2194 if (Val < 0) Val = -Val; 2195 Val = ARM_AM::getAM3Opc(AddSub, Val); 2196 Inst.addOperand(MCOperand::CreateReg(0)); 2197 Inst.addOperand(MCOperand::CreateImm(Val)); 2198 } 2199 2200 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2201 assert(N == 2 && "Invalid number of operands!"); 2202 // If we have an immediate that's not a constant, treat it as a label 2203 // reference needing a fixup. If it is a constant, it's something else 2204 // and we reject it. 2205 if (isImm()) { 2206 Inst.addOperand(MCOperand::CreateExpr(getImm())); 2207 Inst.addOperand(MCOperand::CreateImm(0)); 2208 return; 2209 } 2210 2211 // The lower two bits are always zero and as such are not encoded. 2212 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2213 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2214 // Special case for #-0 2215 if (Val == INT32_MIN) Val = 0; 2216 if (Val < 0) Val = -Val; 2217 Val = ARM_AM::getAM5Opc(AddSub, Val); 2218 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2219 Inst.addOperand(MCOperand::CreateImm(Val)); 2220 } 2221 2222 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2223 assert(N == 2 && "Invalid number of operands!"); 2224 // If we have an immediate that's not a constant, treat it as a label 2225 // reference needing a fixup. If it is a constant, it's something else 2226 // and we reject it. 2227 if (isImm()) { 2228 Inst.addOperand(MCOperand::CreateExpr(getImm())); 2229 Inst.addOperand(MCOperand::CreateImm(0)); 2230 return; 2231 } 2232 2233 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2234 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2235 Inst.addOperand(MCOperand::CreateImm(Val)); 2236 } 2237 2238 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2239 assert(N == 2 && "Invalid number of operands!"); 2240 // The lower two bits are always zero and as such are not encoded. 2241 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2242 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2243 Inst.addOperand(MCOperand::CreateImm(Val)); 2244 } 2245 2246 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2247 assert(N == 2 && "Invalid number of operands!"); 2248 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2249 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2250 Inst.addOperand(MCOperand::CreateImm(Val)); 2251 } 2252 2253 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2254 addMemImm8OffsetOperands(Inst, N); 2255 } 2256 2257 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2258 addMemImm8OffsetOperands(Inst, N); 2259 } 2260 2261 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2262 assert(N == 2 && "Invalid number of operands!"); 2263 // If this is an immediate, it's a label reference. 2264 if (isImm()) { 2265 addExpr(Inst, getImm()); 2266 Inst.addOperand(MCOperand::CreateImm(0)); 2267 return; 2268 } 2269 2270 // Otherwise, it's a normal memory reg+offset. 2271 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2272 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2273 Inst.addOperand(MCOperand::CreateImm(Val)); 2274 } 2275 2276 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2277 assert(N == 2 && "Invalid number of operands!"); 2278 // If this is an immediate, it's a label reference. 2279 if (isImm()) { 2280 addExpr(Inst, getImm()); 2281 Inst.addOperand(MCOperand::CreateImm(0)); 2282 return; 2283 } 2284 2285 // Otherwise, it's a normal memory reg+offset. 2286 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2287 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2288 Inst.addOperand(MCOperand::CreateImm(Val)); 2289 } 2290 2291 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2292 assert(N == 2 && "Invalid number of operands!"); 2293 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2294 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); 2295 } 2296 2297 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2298 assert(N == 2 && "Invalid number of operands!"); 2299 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2300 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); 2301 } 2302 2303 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2304 assert(N == 3 && "Invalid number of operands!"); 2305 unsigned Val = 2306 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2307 Memory.ShiftImm, Memory.ShiftType); 2308 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2309 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); 2310 Inst.addOperand(MCOperand::CreateImm(Val)); 2311 } 2312 2313 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2314 assert(N == 3 && "Invalid number of operands!"); 2315 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2316 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); 2317 Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm)); 2318 } 2319 2320 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2321 assert(N == 2 && "Invalid number of operands!"); 2322 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2323 Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum)); 2324 } 2325 2326 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2327 assert(N == 2 && "Invalid number of operands!"); 2328 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2329 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2330 Inst.addOperand(MCOperand::CreateImm(Val)); 2331 } 2332 2333 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2334 assert(N == 2 && "Invalid number of operands!"); 2335 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2336 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2337 Inst.addOperand(MCOperand::CreateImm(Val)); 2338 } 2339 2340 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2341 assert(N == 2 && "Invalid number of operands!"); 2342 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2343 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2344 Inst.addOperand(MCOperand::CreateImm(Val)); 2345 } 2346 2347 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2348 assert(N == 2 && "Invalid number of operands!"); 2349 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2350 Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum)); 2351 Inst.addOperand(MCOperand::CreateImm(Val)); 2352 } 2353 2354 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2355 assert(N == 1 && "Invalid number of operands!"); 2356 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2357 assert(CE && "non-constant post-idx-imm8 operand!"); 2358 int Imm = CE->getValue(); 2359 bool isAdd = Imm >= 0; 2360 if (Imm == INT32_MIN) Imm = 0; 2361 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2362 Inst.addOperand(MCOperand::CreateImm(Imm)); 2363 } 2364 2365 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2366 assert(N == 1 && "Invalid number of operands!"); 2367 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2368 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2369 int Imm = CE->getValue(); 2370 bool isAdd = Imm >= 0; 2371 if (Imm == INT32_MIN) Imm = 0; 2372 // Immediate is scaled by 4. 2373 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2374 Inst.addOperand(MCOperand::CreateImm(Imm)); 2375 } 2376 2377 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2378 assert(N == 2 && "Invalid number of operands!"); 2379 Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum)); 2380 Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd)); 2381 } 2382 2383 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2384 assert(N == 2 && "Invalid number of operands!"); 2385 Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum)); 2386 // The sign, shift type, and shift amount are encoded in a single operand 2387 // using the AM2 encoding helpers. 2388 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2389 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2390 PostIdxReg.ShiftTy); 2391 Inst.addOperand(MCOperand::CreateImm(Imm)); 2392 } 2393 2394 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2395 assert(N == 1 && "Invalid number of operands!"); 2396 Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask()))); 2397 } 2398 2399 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2400 assert(N == 1 && "Invalid number of operands!"); 2401 Inst.addOperand(MCOperand::CreateImm(unsigned(getBankedReg()))); 2402 } 2403 2404 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2405 assert(N == 1 && "Invalid number of operands!"); 2406 Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags()))); 2407 } 2408 2409 void addVecListOperands(MCInst &Inst, unsigned N) const { 2410 assert(N == 1 && "Invalid number of operands!"); 2411 Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum)); 2412 } 2413 2414 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2415 assert(N == 2 && "Invalid number of operands!"); 2416 Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum)); 2417 Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex)); 2418 } 2419 2420 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2421 assert(N == 1 && "Invalid number of operands!"); 2422 Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); 2423 } 2424 2425 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2426 assert(N == 1 && "Invalid number of operands!"); 2427 Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); 2428 } 2429 2430 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2431 assert(N == 1 && "Invalid number of operands!"); 2432 Inst.addOperand(MCOperand::CreateImm(getVectorIndex())); 2433 } 2434 2435 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2436 assert(N == 1 && "Invalid number of operands!"); 2437 // The immediate encodes the type of constant as well as the value. 2438 // Mask in that this is an i8 splat. 2439 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2440 Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00)); 2441 } 2442 2443 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2444 assert(N == 1 && "Invalid number of operands!"); 2445 // The immediate encodes the type of constant as well as the value. 2446 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2447 unsigned Value = CE->getValue(); 2448 Value = ARM_AM::encodeNEONi16splat(Value); 2449 Inst.addOperand(MCOperand::CreateImm(Value)); 2450 } 2451 2452 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2453 assert(N == 1 && "Invalid number of operands!"); 2454 // The immediate encodes the type of constant as well as the value. 2455 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2456 unsigned Value = CE->getValue(); 2457 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2458 Inst.addOperand(MCOperand::CreateImm(Value)); 2459 } 2460 2461 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2462 assert(N == 1 && "Invalid number of operands!"); 2463 // The immediate encodes the type of constant as well as the value. 2464 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2465 unsigned Value = CE->getValue(); 2466 Value = ARM_AM::encodeNEONi32splat(Value); 2467 Inst.addOperand(MCOperand::CreateImm(Value)); 2468 } 2469 2470 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2471 assert(N == 1 && "Invalid number of operands!"); 2472 // The immediate encodes the type of constant as well as the value. 2473 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2474 unsigned Value = CE->getValue(); 2475 Value = ARM_AM::encodeNEONi32splat(~Value); 2476 Inst.addOperand(MCOperand::CreateImm(Value)); 2477 } 2478 2479 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2480 assert(N == 1 && "Invalid number of operands!"); 2481 // The immediate encodes the type of constant as well as the value. 2482 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2483 unsigned Value = CE->getValue(); 2484 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2485 Inst.getOpcode() == ARM::VMOVv16i8) && 2486 "All vmvn instructions that wants to replicate non-zero byte " 2487 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2488 unsigned B = ((~Value) & 0xff); 2489 B |= 0xe00; // cmode = 0b1110 2490 Inst.addOperand(MCOperand::CreateImm(B)); 2491 } 2492 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2493 assert(N == 1 && "Invalid number of operands!"); 2494 // The immediate encodes the type of constant as well as the value. 2495 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2496 unsigned Value = CE->getValue(); 2497 if (Value >= 256 && Value <= 0xffff) 2498 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2499 else if (Value > 0xffff && Value <= 0xffffff) 2500 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2501 else if (Value > 0xffffff) 2502 Value = (Value >> 24) | 0x600; 2503 Inst.addOperand(MCOperand::CreateImm(Value)); 2504 } 2505 2506 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2507 assert(N == 1 && "Invalid number of operands!"); 2508 // The immediate encodes the type of constant as well as the value. 2509 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2510 unsigned Value = CE->getValue(); 2511 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2512 Inst.getOpcode() == ARM::VMOVv16i8) && 2513 "All instructions that wants to replicate non-zero byte " 2514 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2515 unsigned B = Value & 0xff; 2516 B |= 0xe00; // cmode = 0b1110 2517 Inst.addOperand(MCOperand::CreateImm(B)); 2518 } 2519 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2520 assert(N == 1 && "Invalid number of operands!"); 2521 // The immediate encodes the type of constant as well as the value. 2522 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2523 unsigned Value = ~CE->getValue(); 2524 if (Value >= 256 && Value <= 0xffff) 2525 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2526 else if (Value > 0xffff && Value <= 0xffffff) 2527 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2528 else if (Value > 0xffffff) 2529 Value = (Value >> 24) | 0x600; 2530 Inst.addOperand(MCOperand::CreateImm(Value)); 2531 } 2532 2533 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2534 assert(N == 1 && "Invalid number of operands!"); 2535 // The immediate encodes the type of constant as well as the value. 2536 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2537 uint64_t Value = CE->getValue(); 2538 unsigned Imm = 0; 2539 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2540 Imm |= (Value & 1) << i; 2541 } 2542 Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00)); 2543 } 2544 2545 void print(raw_ostream &OS) const override; 2546 2547 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2548 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2549 Op->ITMask.Mask = Mask; 2550 Op->StartLoc = S; 2551 Op->EndLoc = S; 2552 return Op; 2553 } 2554 2555 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2556 SMLoc S) { 2557 auto Op = make_unique<ARMOperand>(k_CondCode); 2558 Op->CC.Val = CC; 2559 Op->StartLoc = S; 2560 Op->EndLoc = S; 2561 return Op; 2562 } 2563 2564 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2565 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2566 Op->Cop.Val = CopVal; 2567 Op->StartLoc = S; 2568 Op->EndLoc = S; 2569 return Op; 2570 } 2571 2572 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2573 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2574 Op->Cop.Val = CopVal; 2575 Op->StartLoc = S; 2576 Op->EndLoc = S; 2577 return Op; 2578 } 2579 2580 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2581 SMLoc E) { 2582 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2583 Op->Cop.Val = Val; 2584 Op->StartLoc = S; 2585 Op->EndLoc = E; 2586 return Op; 2587 } 2588 2589 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2590 auto Op = make_unique<ARMOperand>(k_CCOut); 2591 Op->Reg.RegNum = RegNum; 2592 Op->StartLoc = S; 2593 Op->EndLoc = S; 2594 return Op; 2595 } 2596 2597 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2598 auto Op = make_unique<ARMOperand>(k_Token); 2599 Op->Tok.Data = Str.data(); 2600 Op->Tok.Length = Str.size(); 2601 Op->StartLoc = S; 2602 Op->EndLoc = S; 2603 return Op; 2604 } 2605 2606 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2607 SMLoc E) { 2608 auto Op = make_unique<ARMOperand>(k_Register); 2609 Op->Reg.RegNum = RegNum; 2610 Op->StartLoc = S; 2611 Op->EndLoc = E; 2612 return Op; 2613 } 2614 2615 static std::unique_ptr<ARMOperand> 2616 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2617 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2618 SMLoc E) { 2619 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2620 Op->RegShiftedReg.ShiftTy = ShTy; 2621 Op->RegShiftedReg.SrcReg = SrcReg; 2622 Op->RegShiftedReg.ShiftReg = ShiftReg; 2623 Op->RegShiftedReg.ShiftImm = ShiftImm; 2624 Op->StartLoc = S; 2625 Op->EndLoc = E; 2626 return Op; 2627 } 2628 2629 static std::unique_ptr<ARMOperand> 2630 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2631 unsigned ShiftImm, SMLoc S, SMLoc E) { 2632 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2633 Op->RegShiftedImm.ShiftTy = ShTy; 2634 Op->RegShiftedImm.SrcReg = SrcReg; 2635 Op->RegShiftedImm.ShiftImm = ShiftImm; 2636 Op->StartLoc = S; 2637 Op->EndLoc = E; 2638 return Op; 2639 } 2640 2641 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2642 SMLoc S, SMLoc E) { 2643 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2644 Op->ShifterImm.isASR = isASR; 2645 Op->ShifterImm.Imm = Imm; 2646 Op->StartLoc = S; 2647 Op->EndLoc = E; 2648 return Op; 2649 } 2650 2651 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2652 SMLoc E) { 2653 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2654 Op->RotImm.Imm = Imm; 2655 Op->StartLoc = S; 2656 Op->EndLoc = E; 2657 return Op; 2658 } 2659 2660 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2661 SMLoc S, SMLoc E) { 2662 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2663 Op->ModImm.Bits = Bits; 2664 Op->ModImm.Rot = Rot; 2665 Op->StartLoc = S; 2666 Op->EndLoc = E; 2667 return Op; 2668 } 2669 2670 static std::unique_ptr<ARMOperand> 2671 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2672 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2673 Op->Bitfield.LSB = LSB; 2674 Op->Bitfield.Width = Width; 2675 Op->StartLoc = S; 2676 Op->EndLoc = E; 2677 return Op; 2678 } 2679 2680 static std::unique_ptr<ARMOperand> 2681 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2682 SMLoc StartLoc, SMLoc EndLoc) { 2683 assert (Regs.size() > 0 && "RegList contains no registers?"); 2684 KindTy Kind = k_RegisterList; 2685 2686 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2687 Kind = k_DPRRegisterList; 2688 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2689 contains(Regs.front().second)) 2690 Kind = k_SPRRegisterList; 2691 2692 // Sort based on the register encoding values. 2693 array_pod_sort(Regs.begin(), Regs.end()); 2694 2695 auto Op = make_unique<ARMOperand>(Kind); 2696 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2697 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2698 Op->Registers.push_back(I->second); 2699 Op->StartLoc = StartLoc; 2700 Op->EndLoc = EndLoc; 2701 return Op; 2702 } 2703 2704 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2705 unsigned Count, 2706 bool isDoubleSpaced, 2707 SMLoc S, SMLoc E) { 2708 auto Op = make_unique<ARMOperand>(k_VectorList); 2709 Op->VectorList.RegNum = RegNum; 2710 Op->VectorList.Count = Count; 2711 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2712 Op->StartLoc = S; 2713 Op->EndLoc = E; 2714 return Op; 2715 } 2716 2717 static std::unique_ptr<ARMOperand> 2718 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2719 SMLoc S, SMLoc E) { 2720 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2721 Op->VectorList.RegNum = RegNum; 2722 Op->VectorList.Count = Count; 2723 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2724 Op->StartLoc = S; 2725 Op->EndLoc = E; 2726 return Op; 2727 } 2728 2729 static std::unique_ptr<ARMOperand> 2730 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2731 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2732 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2733 Op->VectorList.RegNum = RegNum; 2734 Op->VectorList.Count = Count; 2735 Op->VectorList.LaneIndex = Index; 2736 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2737 Op->StartLoc = S; 2738 Op->EndLoc = E; 2739 return Op; 2740 } 2741 2742 static std::unique_ptr<ARMOperand> 2743 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2744 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2745 Op->VectorIndex.Val = Idx; 2746 Op->StartLoc = S; 2747 Op->EndLoc = E; 2748 return Op; 2749 } 2750 2751 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2752 SMLoc E) { 2753 auto Op = make_unique<ARMOperand>(k_Immediate); 2754 Op->Imm.Val = Val; 2755 Op->StartLoc = S; 2756 Op->EndLoc = E; 2757 return Op; 2758 } 2759 2760 static std::unique_ptr<ARMOperand> 2761 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2762 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2763 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2764 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2765 auto Op = make_unique<ARMOperand>(k_Memory); 2766 Op->Memory.BaseRegNum = BaseRegNum; 2767 Op->Memory.OffsetImm = OffsetImm; 2768 Op->Memory.OffsetRegNum = OffsetRegNum; 2769 Op->Memory.ShiftType = ShiftType; 2770 Op->Memory.ShiftImm = ShiftImm; 2771 Op->Memory.Alignment = Alignment; 2772 Op->Memory.isNegative = isNegative; 2773 Op->StartLoc = S; 2774 Op->EndLoc = E; 2775 Op->AlignmentLoc = AlignmentLoc; 2776 return Op; 2777 } 2778 2779 static std::unique_ptr<ARMOperand> 2780 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2781 unsigned ShiftImm, SMLoc S, SMLoc E) { 2782 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2783 Op->PostIdxReg.RegNum = RegNum; 2784 Op->PostIdxReg.isAdd = isAdd; 2785 Op->PostIdxReg.ShiftTy = ShiftTy; 2786 Op->PostIdxReg.ShiftImm = ShiftImm; 2787 Op->StartLoc = S; 2788 Op->EndLoc = E; 2789 return Op; 2790 } 2791 2792 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2793 SMLoc S) { 2794 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 2795 Op->MBOpt.Val = Opt; 2796 Op->StartLoc = S; 2797 Op->EndLoc = S; 2798 return Op; 2799 } 2800 2801 static std::unique_ptr<ARMOperand> 2802 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 2803 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 2804 Op->ISBOpt.Val = Opt; 2805 Op->StartLoc = S; 2806 Op->EndLoc = S; 2807 return Op; 2808 } 2809 2810 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 2811 SMLoc S) { 2812 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 2813 Op->IFlags.Val = IFlags; 2814 Op->StartLoc = S; 2815 Op->EndLoc = S; 2816 return Op; 2817 } 2818 2819 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 2820 auto Op = make_unique<ARMOperand>(k_MSRMask); 2821 Op->MMask.Val = MMask; 2822 Op->StartLoc = S; 2823 Op->EndLoc = S; 2824 return Op; 2825 } 2826 2827 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 2828 auto Op = make_unique<ARMOperand>(k_BankedReg); 2829 Op->BankedReg.Val = Reg; 2830 Op->StartLoc = S; 2831 Op->EndLoc = S; 2832 return Op; 2833 } 2834 }; 2835 2836 } // end anonymous namespace. 2837 2838 void ARMOperand::print(raw_ostream &OS) const { 2839 switch (Kind) { 2840 case k_CondCode: 2841 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 2842 break; 2843 case k_CCOut: 2844 OS << "<ccout " << getReg() << ">"; 2845 break; 2846 case k_ITCondMask: { 2847 static const char *const MaskStr[] = { 2848 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 2849 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 2850 }; 2851 assert((ITMask.Mask & 0xf) == ITMask.Mask); 2852 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 2853 break; 2854 } 2855 case k_CoprocNum: 2856 OS << "<coprocessor number: " << getCoproc() << ">"; 2857 break; 2858 case k_CoprocReg: 2859 OS << "<coprocessor register: " << getCoproc() << ">"; 2860 break; 2861 case k_CoprocOption: 2862 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 2863 break; 2864 case k_MSRMask: 2865 OS << "<mask: " << getMSRMask() << ">"; 2866 break; 2867 case k_BankedReg: 2868 OS << "<banked reg: " << getBankedReg() << ">"; 2869 break; 2870 case k_Immediate: 2871 getImm()->print(OS); 2872 break; 2873 case k_MemBarrierOpt: 2874 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 2875 break; 2876 case k_InstSyncBarrierOpt: 2877 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 2878 break; 2879 case k_Memory: 2880 OS << "<memory " 2881 << " base:" << Memory.BaseRegNum; 2882 OS << ">"; 2883 break; 2884 case k_PostIndexRegister: 2885 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 2886 << PostIdxReg.RegNum; 2887 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 2888 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 2889 << PostIdxReg.ShiftImm; 2890 OS << ">"; 2891 break; 2892 case k_ProcIFlags: { 2893 OS << "<ARM_PROC::"; 2894 unsigned IFlags = getProcIFlags(); 2895 for (int i=2; i >= 0; --i) 2896 if (IFlags & (1 << i)) 2897 OS << ARM_PROC::IFlagsToString(1 << i); 2898 OS << ">"; 2899 break; 2900 } 2901 case k_Register: 2902 OS << "<register " << getReg() << ">"; 2903 break; 2904 case k_ShifterImmediate: 2905 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 2906 << " #" << ShifterImm.Imm << ">"; 2907 break; 2908 case k_ShiftedRegister: 2909 OS << "<so_reg_reg " 2910 << RegShiftedReg.SrcReg << " " 2911 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 2912 << " " << RegShiftedReg.ShiftReg << ">"; 2913 break; 2914 case k_ShiftedImmediate: 2915 OS << "<so_reg_imm " 2916 << RegShiftedImm.SrcReg << " " 2917 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 2918 << " #" << RegShiftedImm.ShiftImm << ">"; 2919 break; 2920 case k_RotateImmediate: 2921 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 2922 break; 2923 case k_ModifiedImmediate: 2924 OS << "<mod_imm #" << ModImm.Bits << ", #" 2925 << ModImm.Rot << ")>"; 2926 break; 2927 case k_BitfieldDescriptor: 2928 OS << "<bitfield " << "lsb: " << Bitfield.LSB 2929 << ", width: " << Bitfield.Width << ">"; 2930 break; 2931 case k_RegisterList: 2932 case k_DPRRegisterList: 2933 case k_SPRRegisterList: { 2934 OS << "<register_list "; 2935 2936 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2937 for (SmallVectorImpl<unsigned>::const_iterator 2938 I = RegList.begin(), E = RegList.end(); I != E; ) { 2939 OS << *I; 2940 if (++I < E) OS << ", "; 2941 } 2942 2943 OS << ">"; 2944 break; 2945 } 2946 case k_VectorList: 2947 OS << "<vector_list " << VectorList.Count << " * " 2948 << VectorList.RegNum << ">"; 2949 break; 2950 case k_VectorListAllLanes: 2951 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 2952 << VectorList.RegNum << ">"; 2953 break; 2954 case k_VectorListIndexed: 2955 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 2956 << VectorList.Count << " * " << VectorList.RegNum << ">"; 2957 break; 2958 case k_Token: 2959 OS << "'" << getToken() << "'"; 2960 break; 2961 case k_VectorIndex: 2962 OS << "<vectorindex " << getVectorIndex() << ">"; 2963 break; 2964 } 2965 } 2966 2967 /// @name Auto-generated Match Functions 2968 /// { 2969 2970 static unsigned MatchRegisterName(StringRef Name); 2971 2972 /// } 2973 2974 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 2975 SMLoc &StartLoc, SMLoc &EndLoc) { 2976 const AsmToken &Tok = getParser().getTok(); 2977 StartLoc = Tok.getLoc(); 2978 EndLoc = Tok.getEndLoc(); 2979 RegNo = tryParseRegister(); 2980 2981 return (RegNo == (unsigned)-1); 2982 } 2983 2984 /// Try to parse a register name. The token must be an Identifier when called, 2985 /// and if it is a register name the token is eaten and the register number is 2986 /// returned. Otherwise return -1. 2987 /// 2988 int ARMAsmParser::tryParseRegister() { 2989 MCAsmParser &Parser = getParser(); 2990 const AsmToken &Tok = Parser.getTok(); 2991 if (Tok.isNot(AsmToken::Identifier)) return -1; 2992 2993 std::string lowerCase = Tok.getString().lower(); 2994 unsigned RegNum = MatchRegisterName(lowerCase); 2995 if (!RegNum) { 2996 RegNum = StringSwitch<unsigned>(lowerCase) 2997 .Case("r13", ARM::SP) 2998 .Case("r14", ARM::LR) 2999 .Case("r15", ARM::PC) 3000 .Case("ip", ARM::R12) 3001 // Additional register name aliases for 'gas' compatibility. 3002 .Case("a1", ARM::R0) 3003 .Case("a2", ARM::R1) 3004 .Case("a3", ARM::R2) 3005 .Case("a4", ARM::R3) 3006 .Case("v1", ARM::R4) 3007 .Case("v2", ARM::R5) 3008 .Case("v3", ARM::R6) 3009 .Case("v4", ARM::R7) 3010 .Case("v5", ARM::R8) 3011 .Case("v6", ARM::R9) 3012 .Case("v7", ARM::R10) 3013 .Case("v8", ARM::R11) 3014 .Case("sb", ARM::R9) 3015 .Case("sl", ARM::R10) 3016 .Case("fp", ARM::R11) 3017 .Default(0); 3018 } 3019 if (!RegNum) { 3020 // Check for aliases registered via .req. Canonicalize to lower case. 3021 // That's more consistent since register names are case insensitive, and 3022 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3023 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3024 // If no match, return failure. 3025 if (Entry == RegisterReqs.end()) 3026 return -1; 3027 Parser.Lex(); // Eat identifier token. 3028 return Entry->getValue(); 3029 } 3030 3031 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3032 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3033 return -1; 3034 3035 Parser.Lex(); // Eat identifier token. 3036 3037 return RegNum; 3038 } 3039 3040 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3041 // If a recoverable error occurs, return 1. If an irrecoverable error 3042 // occurs, return -1. An irrecoverable error is one where tokens have been 3043 // consumed in the process of trying to parse the shifter (i.e., when it is 3044 // indeed a shifter operand, but malformed). 3045 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3046 MCAsmParser &Parser = getParser(); 3047 SMLoc S = Parser.getTok().getLoc(); 3048 const AsmToken &Tok = Parser.getTok(); 3049 if (Tok.isNot(AsmToken::Identifier)) 3050 return -1; 3051 3052 std::string lowerCase = Tok.getString().lower(); 3053 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3054 .Case("asl", ARM_AM::lsl) 3055 .Case("lsl", ARM_AM::lsl) 3056 .Case("lsr", ARM_AM::lsr) 3057 .Case("asr", ARM_AM::asr) 3058 .Case("ror", ARM_AM::ror) 3059 .Case("rrx", ARM_AM::rrx) 3060 .Default(ARM_AM::no_shift); 3061 3062 if (ShiftTy == ARM_AM::no_shift) 3063 return 1; 3064 3065 Parser.Lex(); // Eat the operator. 3066 3067 // The source register for the shift has already been added to the 3068 // operand list, so we need to pop it off and combine it into the shifted 3069 // register operand instead. 3070 std::unique_ptr<ARMOperand> PrevOp( 3071 (ARMOperand *)Operands.pop_back_val().release()); 3072 if (!PrevOp->isReg()) 3073 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3074 int SrcReg = PrevOp->getReg(); 3075 3076 SMLoc EndLoc; 3077 int64_t Imm = 0; 3078 int ShiftReg = 0; 3079 if (ShiftTy == ARM_AM::rrx) { 3080 // RRX Doesn't have an explicit shift amount. The encoder expects 3081 // the shift register to be the same as the source register. Seems odd, 3082 // but OK. 3083 ShiftReg = SrcReg; 3084 } else { 3085 // Figure out if this is shifted by a constant or a register (for non-RRX). 3086 if (Parser.getTok().is(AsmToken::Hash) || 3087 Parser.getTok().is(AsmToken::Dollar)) { 3088 Parser.Lex(); // Eat hash. 3089 SMLoc ImmLoc = Parser.getTok().getLoc(); 3090 const MCExpr *ShiftExpr = nullptr; 3091 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3092 Error(ImmLoc, "invalid immediate shift value"); 3093 return -1; 3094 } 3095 // The expression must be evaluatable as an immediate. 3096 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3097 if (!CE) { 3098 Error(ImmLoc, "invalid immediate shift value"); 3099 return -1; 3100 } 3101 // Range check the immediate. 3102 // lsl, ror: 0 <= imm <= 31 3103 // lsr, asr: 0 <= imm <= 32 3104 Imm = CE->getValue(); 3105 if (Imm < 0 || 3106 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3107 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3108 Error(ImmLoc, "immediate shift value out of range"); 3109 return -1; 3110 } 3111 // shift by zero is a nop. Always send it through as lsl. 3112 // ('as' compatibility) 3113 if (Imm == 0) 3114 ShiftTy = ARM_AM::lsl; 3115 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3116 SMLoc L = Parser.getTok().getLoc(); 3117 EndLoc = Parser.getTok().getEndLoc(); 3118 ShiftReg = tryParseRegister(); 3119 if (ShiftReg == -1) { 3120 Error(L, "expected immediate or register in shift operand"); 3121 return -1; 3122 } 3123 } else { 3124 Error(Parser.getTok().getLoc(), 3125 "expected immediate or register in shift operand"); 3126 return -1; 3127 } 3128 } 3129 3130 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3131 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3132 ShiftReg, Imm, 3133 S, EndLoc)); 3134 else 3135 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3136 S, EndLoc)); 3137 3138 return 0; 3139 } 3140 3141 3142 /// Try to parse a register name. The token must be an Identifier when called. 3143 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3144 /// if there is a "writeback". 'true' if it's not a register. 3145 /// 3146 /// TODO this is likely to change to allow different register types and or to 3147 /// parse for a specific register type. 3148 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3149 MCAsmParser &Parser = getParser(); 3150 const AsmToken &RegTok = Parser.getTok(); 3151 int RegNo = tryParseRegister(); 3152 if (RegNo == -1) 3153 return true; 3154 3155 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3156 RegTok.getEndLoc())); 3157 3158 const AsmToken &ExclaimTok = Parser.getTok(); 3159 if (ExclaimTok.is(AsmToken::Exclaim)) { 3160 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3161 ExclaimTok.getLoc())); 3162 Parser.Lex(); // Eat exclaim token 3163 return false; 3164 } 3165 3166 // Also check for an index operand. This is only legal for vector registers, 3167 // but that'll get caught OK in operand matching, so we don't need to 3168 // explicitly filter everything else out here. 3169 if (Parser.getTok().is(AsmToken::LBrac)) { 3170 SMLoc SIdx = Parser.getTok().getLoc(); 3171 Parser.Lex(); // Eat left bracket token. 3172 3173 const MCExpr *ImmVal; 3174 if (getParser().parseExpression(ImmVal)) 3175 return true; 3176 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3177 if (!MCE) 3178 return TokError("immediate value expected for vector index"); 3179 3180 if (Parser.getTok().isNot(AsmToken::RBrac)) 3181 return Error(Parser.getTok().getLoc(), "']' expected"); 3182 3183 SMLoc E = Parser.getTok().getEndLoc(); 3184 Parser.Lex(); // Eat right bracket token. 3185 3186 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3187 SIdx, E, 3188 getContext())); 3189 } 3190 3191 return false; 3192 } 3193 3194 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3195 /// instruction with a symbolic operand name. 3196 /// We accept "crN" syntax for GAS compatibility. 3197 /// <operand-name> ::= <prefix><number> 3198 /// If CoprocOp is 'c', then: 3199 /// <prefix> ::= c | cr 3200 /// If CoprocOp is 'p', then : 3201 /// <prefix> ::= p 3202 /// <number> ::= integer in range [0, 15] 3203 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3204 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3205 // but efficient. 3206 if (Name.size() < 2 || Name[0] != CoprocOp) 3207 return -1; 3208 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3209 3210 switch (Name.size()) { 3211 default: return -1; 3212 case 1: 3213 switch (Name[0]) { 3214 default: return -1; 3215 case '0': return 0; 3216 case '1': return 1; 3217 case '2': return 2; 3218 case '3': return 3; 3219 case '4': return 4; 3220 case '5': return 5; 3221 case '6': return 6; 3222 case '7': return 7; 3223 case '8': return 8; 3224 case '9': return 9; 3225 } 3226 case 2: 3227 if (Name[0] != '1') 3228 return -1; 3229 switch (Name[1]) { 3230 default: return -1; 3231 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3232 // However, old cores (v5/v6) did use them in that way. 3233 case '0': return 10; 3234 case '1': return 11; 3235 case '2': return 12; 3236 case '3': return 13; 3237 case '4': return 14; 3238 case '5': return 15; 3239 } 3240 } 3241 } 3242 3243 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3244 ARMAsmParser::OperandMatchResultTy 3245 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3246 MCAsmParser &Parser = getParser(); 3247 SMLoc S = Parser.getTok().getLoc(); 3248 const AsmToken &Tok = Parser.getTok(); 3249 if (!Tok.is(AsmToken::Identifier)) 3250 return MatchOperand_NoMatch; 3251 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3252 .Case("eq", ARMCC::EQ) 3253 .Case("ne", ARMCC::NE) 3254 .Case("hs", ARMCC::HS) 3255 .Case("cs", ARMCC::HS) 3256 .Case("lo", ARMCC::LO) 3257 .Case("cc", ARMCC::LO) 3258 .Case("mi", ARMCC::MI) 3259 .Case("pl", ARMCC::PL) 3260 .Case("vs", ARMCC::VS) 3261 .Case("vc", ARMCC::VC) 3262 .Case("hi", ARMCC::HI) 3263 .Case("ls", ARMCC::LS) 3264 .Case("ge", ARMCC::GE) 3265 .Case("lt", ARMCC::LT) 3266 .Case("gt", ARMCC::GT) 3267 .Case("le", ARMCC::LE) 3268 .Case("al", ARMCC::AL) 3269 .Default(~0U); 3270 if (CC == ~0U) 3271 return MatchOperand_NoMatch; 3272 Parser.Lex(); // Eat the token. 3273 3274 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3275 3276 return MatchOperand_Success; 3277 } 3278 3279 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3280 /// token must be an Identifier when called, and if it is a coprocessor 3281 /// number, the token is eaten and the operand is added to the operand list. 3282 ARMAsmParser::OperandMatchResultTy 3283 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3284 MCAsmParser &Parser = getParser(); 3285 SMLoc S = Parser.getTok().getLoc(); 3286 const AsmToken &Tok = Parser.getTok(); 3287 if (Tok.isNot(AsmToken::Identifier)) 3288 return MatchOperand_NoMatch; 3289 3290 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3291 if (Num == -1) 3292 return MatchOperand_NoMatch; 3293 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3294 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3295 return MatchOperand_NoMatch; 3296 3297 Parser.Lex(); // Eat identifier token. 3298 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3299 return MatchOperand_Success; 3300 } 3301 3302 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3303 /// token must be an Identifier when called, and if it is a coprocessor 3304 /// number, the token is eaten and the operand is added to the operand list. 3305 ARMAsmParser::OperandMatchResultTy 3306 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3307 MCAsmParser &Parser = getParser(); 3308 SMLoc S = Parser.getTok().getLoc(); 3309 const AsmToken &Tok = Parser.getTok(); 3310 if (Tok.isNot(AsmToken::Identifier)) 3311 return MatchOperand_NoMatch; 3312 3313 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3314 if (Reg == -1) 3315 return MatchOperand_NoMatch; 3316 3317 Parser.Lex(); // Eat identifier token. 3318 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3319 return MatchOperand_Success; 3320 } 3321 3322 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3323 /// coproc_option : '{' imm0_255 '}' 3324 ARMAsmParser::OperandMatchResultTy 3325 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3326 MCAsmParser &Parser = getParser(); 3327 SMLoc S = Parser.getTok().getLoc(); 3328 3329 // If this isn't a '{', this isn't a coprocessor immediate operand. 3330 if (Parser.getTok().isNot(AsmToken::LCurly)) 3331 return MatchOperand_NoMatch; 3332 Parser.Lex(); // Eat the '{' 3333 3334 const MCExpr *Expr; 3335 SMLoc Loc = Parser.getTok().getLoc(); 3336 if (getParser().parseExpression(Expr)) { 3337 Error(Loc, "illegal expression"); 3338 return MatchOperand_ParseFail; 3339 } 3340 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3341 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3342 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3343 return MatchOperand_ParseFail; 3344 } 3345 int Val = CE->getValue(); 3346 3347 // Check for and consume the closing '}' 3348 if (Parser.getTok().isNot(AsmToken::RCurly)) 3349 return MatchOperand_ParseFail; 3350 SMLoc E = Parser.getTok().getEndLoc(); 3351 Parser.Lex(); // Eat the '}' 3352 3353 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3354 return MatchOperand_Success; 3355 } 3356 3357 // For register list parsing, we need to map from raw GPR register numbering 3358 // to the enumeration values. The enumeration values aren't sorted by 3359 // register number due to our using "sp", "lr" and "pc" as canonical names. 3360 static unsigned getNextRegister(unsigned Reg) { 3361 // If this is a GPR, we need to do it manually, otherwise we can rely 3362 // on the sort ordering of the enumeration since the other reg-classes 3363 // are sane. 3364 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3365 return Reg + 1; 3366 switch(Reg) { 3367 default: llvm_unreachable("Invalid GPR number!"); 3368 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3369 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3370 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3371 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3372 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3373 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3374 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3375 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3376 } 3377 } 3378 3379 // Return the low-subreg of a given Q register. 3380 static unsigned getDRegFromQReg(unsigned QReg) { 3381 switch (QReg) { 3382 default: llvm_unreachable("expected a Q register!"); 3383 case ARM::Q0: return ARM::D0; 3384 case ARM::Q1: return ARM::D2; 3385 case ARM::Q2: return ARM::D4; 3386 case ARM::Q3: return ARM::D6; 3387 case ARM::Q4: return ARM::D8; 3388 case ARM::Q5: return ARM::D10; 3389 case ARM::Q6: return ARM::D12; 3390 case ARM::Q7: return ARM::D14; 3391 case ARM::Q8: return ARM::D16; 3392 case ARM::Q9: return ARM::D18; 3393 case ARM::Q10: return ARM::D20; 3394 case ARM::Q11: return ARM::D22; 3395 case ARM::Q12: return ARM::D24; 3396 case ARM::Q13: return ARM::D26; 3397 case ARM::Q14: return ARM::D28; 3398 case ARM::Q15: return ARM::D30; 3399 } 3400 } 3401 3402 /// Parse a register list. 3403 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3404 MCAsmParser &Parser = getParser(); 3405 assert(Parser.getTok().is(AsmToken::LCurly) && 3406 "Token is not a Left Curly Brace"); 3407 SMLoc S = Parser.getTok().getLoc(); 3408 Parser.Lex(); // Eat '{' token. 3409 SMLoc RegLoc = Parser.getTok().getLoc(); 3410 3411 // Check the first register in the list to see what register class 3412 // this is a list of. 3413 int Reg = tryParseRegister(); 3414 if (Reg == -1) 3415 return Error(RegLoc, "register expected"); 3416 3417 // The reglist instructions have at most 16 registers, so reserve 3418 // space for that many. 3419 int EReg = 0; 3420 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3421 3422 // Allow Q regs and just interpret them as the two D sub-registers. 3423 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3424 Reg = getDRegFromQReg(Reg); 3425 EReg = MRI->getEncodingValue(Reg); 3426 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3427 ++Reg; 3428 } 3429 const MCRegisterClass *RC; 3430 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3431 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3432 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3433 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3434 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3435 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3436 else 3437 return Error(RegLoc, "invalid register in register list"); 3438 3439 // Store the register. 3440 EReg = MRI->getEncodingValue(Reg); 3441 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3442 3443 // This starts immediately after the first register token in the list, 3444 // so we can see either a comma or a minus (range separator) as a legal 3445 // next token. 3446 while (Parser.getTok().is(AsmToken::Comma) || 3447 Parser.getTok().is(AsmToken::Minus)) { 3448 if (Parser.getTok().is(AsmToken::Minus)) { 3449 Parser.Lex(); // Eat the minus. 3450 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3451 int EndReg = tryParseRegister(); 3452 if (EndReg == -1) 3453 return Error(AfterMinusLoc, "register expected"); 3454 // Allow Q regs and just interpret them as the two D sub-registers. 3455 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3456 EndReg = getDRegFromQReg(EndReg) + 1; 3457 // If the register is the same as the start reg, there's nothing 3458 // more to do. 3459 if (Reg == EndReg) 3460 continue; 3461 // The register must be in the same register class as the first. 3462 if (!RC->contains(EndReg)) 3463 return Error(AfterMinusLoc, "invalid register in register list"); 3464 // Ranges must go from low to high. 3465 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3466 return Error(AfterMinusLoc, "bad range in register list"); 3467 3468 // Add all the registers in the range to the register list. 3469 while (Reg != EndReg) { 3470 Reg = getNextRegister(Reg); 3471 EReg = MRI->getEncodingValue(Reg); 3472 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3473 } 3474 continue; 3475 } 3476 Parser.Lex(); // Eat the comma. 3477 RegLoc = Parser.getTok().getLoc(); 3478 int OldReg = Reg; 3479 const AsmToken RegTok = Parser.getTok(); 3480 Reg = tryParseRegister(); 3481 if (Reg == -1) 3482 return Error(RegLoc, "register expected"); 3483 // Allow Q regs and just interpret them as the two D sub-registers. 3484 bool isQReg = false; 3485 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3486 Reg = getDRegFromQReg(Reg); 3487 isQReg = true; 3488 } 3489 // The register must be in the same register class as the first. 3490 if (!RC->contains(Reg)) 3491 return Error(RegLoc, "invalid register in register list"); 3492 // List must be monotonically increasing. 3493 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3494 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3495 Warning(RegLoc, "register list not in ascending order"); 3496 else 3497 return Error(RegLoc, "register list not in ascending order"); 3498 } 3499 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3500 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3501 ") in register list"); 3502 continue; 3503 } 3504 // VFP register lists must also be contiguous. 3505 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3506 Reg != OldReg + 1) 3507 return Error(RegLoc, "non-contiguous register range"); 3508 EReg = MRI->getEncodingValue(Reg); 3509 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3510 if (isQReg) { 3511 EReg = MRI->getEncodingValue(++Reg); 3512 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3513 } 3514 } 3515 3516 if (Parser.getTok().isNot(AsmToken::RCurly)) 3517 return Error(Parser.getTok().getLoc(), "'}' expected"); 3518 SMLoc E = Parser.getTok().getEndLoc(); 3519 Parser.Lex(); // Eat '}' token. 3520 3521 // Push the register list operand. 3522 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3523 3524 // The ARM system instruction variants for LDM/STM have a '^' token here. 3525 if (Parser.getTok().is(AsmToken::Caret)) { 3526 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3527 Parser.Lex(); // Eat '^' token. 3528 } 3529 3530 return false; 3531 } 3532 3533 // Helper function to parse the lane index for vector lists. 3534 ARMAsmParser::OperandMatchResultTy ARMAsmParser:: 3535 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3536 MCAsmParser &Parser = getParser(); 3537 Index = 0; // Always return a defined index value. 3538 if (Parser.getTok().is(AsmToken::LBrac)) { 3539 Parser.Lex(); // Eat the '['. 3540 if (Parser.getTok().is(AsmToken::RBrac)) { 3541 // "Dn[]" is the 'all lanes' syntax. 3542 LaneKind = AllLanes; 3543 EndLoc = Parser.getTok().getEndLoc(); 3544 Parser.Lex(); // Eat the ']'. 3545 return MatchOperand_Success; 3546 } 3547 3548 // There's an optional '#' token here. Normally there wouldn't be, but 3549 // inline assemble puts one in, and it's friendly to accept that. 3550 if (Parser.getTok().is(AsmToken::Hash)) 3551 Parser.Lex(); // Eat '#' or '$'. 3552 3553 const MCExpr *LaneIndex; 3554 SMLoc Loc = Parser.getTok().getLoc(); 3555 if (getParser().parseExpression(LaneIndex)) { 3556 Error(Loc, "illegal expression"); 3557 return MatchOperand_ParseFail; 3558 } 3559 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3560 if (!CE) { 3561 Error(Loc, "lane index must be empty or an integer"); 3562 return MatchOperand_ParseFail; 3563 } 3564 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3565 Error(Parser.getTok().getLoc(), "']' expected"); 3566 return MatchOperand_ParseFail; 3567 } 3568 EndLoc = Parser.getTok().getEndLoc(); 3569 Parser.Lex(); // Eat the ']'. 3570 int64_t Val = CE->getValue(); 3571 3572 // FIXME: Make this range check context sensitive for .8, .16, .32. 3573 if (Val < 0 || Val > 7) { 3574 Error(Parser.getTok().getLoc(), "lane index out of range"); 3575 return MatchOperand_ParseFail; 3576 } 3577 Index = Val; 3578 LaneKind = IndexedLane; 3579 return MatchOperand_Success; 3580 } 3581 LaneKind = NoLanes; 3582 return MatchOperand_Success; 3583 } 3584 3585 // parse a vector register list 3586 ARMAsmParser::OperandMatchResultTy 3587 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3588 MCAsmParser &Parser = getParser(); 3589 VectorLaneTy LaneKind; 3590 unsigned LaneIndex; 3591 SMLoc S = Parser.getTok().getLoc(); 3592 // As an extension (to match gas), support a plain D register or Q register 3593 // (without encosing curly braces) as a single or double entry list, 3594 // respectively. 3595 if (Parser.getTok().is(AsmToken::Identifier)) { 3596 SMLoc E = Parser.getTok().getEndLoc(); 3597 int Reg = tryParseRegister(); 3598 if (Reg == -1) 3599 return MatchOperand_NoMatch; 3600 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3601 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3602 if (Res != MatchOperand_Success) 3603 return Res; 3604 switch (LaneKind) { 3605 case NoLanes: 3606 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3607 break; 3608 case AllLanes: 3609 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3610 S, E)); 3611 break; 3612 case IndexedLane: 3613 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3614 LaneIndex, 3615 false, S, E)); 3616 break; 3617 } 3618 return MatchOperand_Success; 3619 } 3620 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3621 Reg = getDRegFromQReg(Reg); 3622 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3623 if (Res != MatchOperand_Success) 3624 return Res; 3625 switch (LaneKind) { 3626 case NoLanes: 3627 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3628 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3629 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3630 break; 3631 case AllLanes: 3632 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3633 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3634 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3635 S, E)); 3636 break; 3637 case IndexedLane: 3638 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3639 LaneIndex, 3640 false, S, E)); 3641 break; 3642 } 3643 return MatchOperand_Success; 3644 } 3645 Error(S, "vector register expected"); 3646 return MatchOperand_ParseFail; 3647 } 3648 3649 if (Parser.getTok().isNot(AsmToken::LCurly)) 3650 return MatchOperand_NoMatch; 3651 3652 Parser.Lex(); // Eat '{' token. 3653 SMLoc RegLoc = Parser.getTok().getLoc(); 3654 3655 int Reg = tryParseRegister(); 3656 if (Reg == -1) { 3657 Error(RegLoc, "register expected"); 3658 return MatchOperand_ParseFail; 3659 } 3660 unsigned Count = 1; 3661 int Spacing = 0; 3662 unsigned FirstReg = Reg; 3663 // The list is of D registers, but we also allow Q regs and just interpret 3664 // them as the two D sub-registers. 3665 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3666 FirstReg = Reg = getDRegFromQReg(Reg); 3667 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3668 // it's ambiguous with four-register single spaced. 3669 ++Reg; 3670 ++Count; 3671 } 3672 3673 SMLoc E; 3674 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3675 return MatchOperand_ParseFail; 3676 3677 while (Parser.getTok().is(AsmToken::Comma) || 3678 Parser.getTok().is(AsmToken::Minus)) { 3679 if (Parser.getTok().is(AsmToken::Minus)) { 3680 if (!Spacing) 3681 Spacing = 1; // Register range implies a single spaced list. 3682 else if (Spacing == 2) { 3683 Error(Parser.getTok().getLoc(), 3684 "sequential registers in double spaced list"); 3685 return MatchOperand_ParseFail; 3686 } 3687 Parser.Lex(); // Eat the minus. 3688 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3689 int EndReg = tryParseRegister(); 3690 if (EndReg == -1) { 3691 Error(AfterMinusLoc, "register expected"); 3692 return MatchOperand_ParseFail; 3693 } 3694 // Allow Q regs and just interpret them as the two D sub-registers. 3695 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3696 EndReg = getDRegFromQReg(EndReg) + 1; 3697 // If the register is the same as the start reg, there's nothing 3698 // more to do. 3699 if (Reg == EndReg) 3700 continue; 3701 // The register must be in the same register class as the first. 3702 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3703 Error(AfterMinusLoc, "invalid register in register list"); 3704 return MatchOperand_ParseFail; 3705 } 3706 // Ranges must go from low to high. 3707 if (Reg > EndReg) { 3708 Error(AfterMinusLoc, "bad range in register list"); 3709 return MatchOperand_ParseFail; 3710 } 3711 // Parse the lane specifier if present. 3712 VectorLaneTy NextLaneKind; 3713 unsigned NextLaneIndex; 3714 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3715 MatchOperand_Success) 3716 return MatchOperand_ParseFail; 3717 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3718 Error(AfterMinusLoc, "mismatched lane index in register list"); 3719 return MatchOperand_ParseFail; 3720 } 3721 3722 // Add all the registers in the range to the register list. 3723 Count += EndReg - Reg; 3724 Reg = EndReg; 3725 continue; 3726 } 3727 Parser.Lex(); // Eat the comma. 3728 RegLoc = Parser.getTok().getLoc(); 3729 int OldReg = Reg; 3730 Reg = tryParseRegister(); 3731 if (Reg == -1) { 3732 Error(RegLoc, "register expected"); 3733 return MatchOperand_ParseFail; 3734 } 3735 // vector register lists must be contiguous. 3736 // It's OK to use the enumeration values directly here rather, as the 3737 // VFP register classes have the enum sorted properly. 3738 // 3739 // The list is of D registers, but we also allow Q regs and just interpret 3740 // them as the two D sub-registers. 3741 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3742 if (!Spacing) 3743 Spacing = 1; // Register range implies a single spaced list. 3744 else if (Spacing == 2) { 3745 Error(RegLoc, 3746 "invalid register in double-spaced list (must be 'D' register')"); 3747 return MatchOperand_ParseFail; 3748 } 3749 Reg = getDRegFromQReg(Reg); 3750 if (Reg != OldReg + 1) { 3751 Error(RegLoc, "non-contiguous register range"); 3752 return MatchOperand_ParseFail; 3753 } 3754 ++Reg; 3755 Count += 2; 3756 // Parse the lane specifier if present. 3757 VectorLaneTy NextLaneKind; 3758 unsigned NextLaneIndex; 3759 SMLoc LaneLoc = Parser.getTok().getLoc(); 3760 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3761 MatchOperand_Success) 3762 return MatchOperand_ParseFail; 3763 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3764 Error(LaneLoc, "mismatched lane index in register list"); 3765 return MatchOperand_ParseFail; 3766 } 3767 continue; 3768 } 3769 // Normal D register. 3770 // Figure out the register spacing (single or double) of the list if 3771 // we don't know it already. 3772 if (!Spacing) 3773 Spacing = 1 + (Reg == OldReg + 2); 3774 3775 // Just check that it's contiguous and keep going. 3776 if (Reg != OldReg + Spacing) { 3777 Error(RegLoc, "non-contiguous register range"); 3778 return MatchOperand_ParseFail; 3779 } 3780 ++Count; 3781 // Parse the lane specifier if present. 3782 VectorLaneTy NextLaneKind; 3783 unsigned NextLaneIndex; 3784 SMLoc EndLoc = Parser.getTok().getLoc(); 3785 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3786 return MatchOperand_ParseFail; 3787 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3788 Error(EndLoc, "mismatched lane index in register list"); 3789 return MatchOperand_ParseFail; 3790 } 3791 } 3792 3793 if (Parser.getTok().isNot(AsmToken::RCurly)) { 3794 Error(Parser.getTok().getLoc(), "'}' expected"); 3795 return MatchOperand_ParseFail; 3796 } 3797 E = Parser.getTok().getEndLoc(); 3798 Parser.Lex(); // Eat '}' token. 3799 3800 switch (LaneKind) { 3801 case NoLanes: 3802 // Two-register operands have been converted to the 3803 // composite register classes. 3804 if (Count == 2) { 3805 const MCRegisterClass *RC = (Spacing == 1) ? 3806 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3807 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3808 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3809 } 3810 3811 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 3812 (Spacing == 2), S, E)); 3813 break; 3814 case AllLanes: 3815 // Two-register operands have been converted to the 3816 // composite register classes. 3817 if (Count == 2) { 3818 const MCRegisterClass *RC = (Spacing == 1) ? 3819 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3820 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3821 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3822 } 3823 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 3824 (Spacing == 2), 3825 S, E)); 3826 break; 3827 case IndexedLane: 3828 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 3829 LaneIndex, 3830 (Spacing == 2), 3831 S, E)); 3832 break; 3833 } 3834 return MatchOperand_Success; 3835 } 3836 3837 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 3838 ARMAsmParser::OperandMatchResultTy 3839 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 3840 MCAsmParser &Parser = getParser(); 3841 SMLoc S = Parser.getTok().getLoc(); 3842 const AsmToken &Tok = Parser.getTok(); 3843 unsigned Opt; 3844 3845 if (Tok.is(AsmToken::Identifier)) { 3846 StringRef OptStr = Tok.getString(); 3847 3848 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 3849 .Case("sy", ARM_MB::SY) 3850 .Case("st", ARM_MB::ST) 3851 .Case("ld", ARM_MB::LD) 3852 .Case("sh", ARM_MB::ISH) 3853 .Case("ish", ARM_MB::ISH) 3854 .Case("shst", ARM_MB::ISHST) 3855 .Case("ishst", ARM_MB::ISHST) 3856 .Case("ishld", ARM_MB::ISHLD) 3857 .Case("nsh", ARM_MB::NSH) 3858 .Case("un", ARM_MB::NSH) 3859 .Case("nshst", ARM_MB::NSHST) 3860 .Case("nshld", ARM_MB::NSHLD) 3861 .Case("unst", ARM_MB::NSHST) 3862 .Case("osh", ARM_MB::OSH) 3863 .Case("oshst", ARM_MB::OSHST) 3864 .Case("oshld", ARM_MB::OSHLD) 3865 .Default(~0U); 3866 3867 // ishld, oshld, nshld and ld are only available from ARMv8. 3868 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 3869 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 3870 Opt = ~0U; 3871 3872 if (Opt == ~0U) 3873 return MatchOperand_NoMatch; 3874 3875 Parser.Lex(); // Eat identifier token. 3876 } else if (Tok.is(AsmToken::Hash) || 3877 Tok.is(AsmToken::Dollar) || 3878 Tok.is(AsmToken::Integer)) { 3879 if (Parser.getTok().isNot(AsmToken::Integer)) 3880 Parser.Lex(); // Eat '#' or '$'. 3881 SMLoc Loc = Parser.getTok().getLoc(); 3882 3883 const MCExpr *MemBarrierID; 3884 if (getParser().parseExpression(MemBarrierID)) { 3885 Error(Loc, "illegal expression"); 3886 return MatchOperand_ParseFail; 3887 } 3888 3889 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 3890 if (!CE) { 3891 Error(Loc, "constant expression expected"); 3892 return MatchOperand_ParseFail; 3893 } 3894 3895 int Val = CE->getValue(); 3896 if (Val & ~0xf) { 3897 Error(Loc, "immediate value out of range"); 3898 return MatchOperand_ParseFail; 3899 } 3900 3901 Opt = ARM_MB::RESERVED_0 + Val; 3902 } else 3903 return MatchOperand_ParseFail; 3904 3905 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 3906 return MatchOperand_Success; 3907 } 3908 3909 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 3910 ARMAsmParser::OperandMatchResultTy 3911 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 3912 MCAsmParser &Parser = getParser(); 3913 SMLoc S = Parser.getTok().getLoc(); 3914 const AsmToken &Tok = Parser.getTok(); 3915 unsigned Opt; 3916 3917 if (Tok.is(AsmToken::Identifier)) { 3918 StringRef OptStr = Tok.getString(); 3919 3920 if (OptStr.equals_lower("sy")) 3921 Opt = ARM_ISB::SY; 3922 else 3923 return MatchOperand_NoMatch; 3924 3925 Parser.Lex(); // Eat identifier token. 3926 } else if (Tok.is(AsmToken::Hash) || 3927 Tok.is(AsmToken::Dollar) || 3928 Tok.is(AsmToken::Integer)) { 3929 if (Parser.getTok().isNot(AsmToken::Integer)) 3930 Parser.Lex(); // Eat '#' or '$'. 3931 SMLoc Loc = Parser.getTok().getLoc(); 3932 3933 const MCExpr *ISBarrierID; 3934 if (getParser().parseExpression(ISBarrierID)) { 3935 Error(Loc, "illegal expression"); 3936 return MatchOperand_ParseFail; 3937 } 3938 3939 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 3940 if (!CE) { 3941 Error(Loc, "constant expression expected"); 3942 return MatchOperand_ParseFail; 3943 } 3944 3945 int Val = CE->getValue(); 3946 if (Val & ~0xf) { 3947 Error(Loc, "immediate value out of range"); 3948 return MatchOperand_ParseFail; 3949 } 3950 3951 Opt = ARM_ISB::RESERVED_0 + Val; 3952 } else 3953 return MatchOperand_ParseFail; 3954 3955 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 3956 (ARM_ISB::InstSyncBOpt)Opt, S)); 3957 return MatchOperand_Success; 3958 } 3959 3960 3961 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 3962 ARMAsmParser::OperandMatchResultTy 3963 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 3964 MCAsmParser &Parser = getParser(); 3965 SMLoc S = Parser.getTok().getLoc(); 3966 const AsmToken &Tok = Parser.getTok(); 3967 if (!Tok.is(AsmToken::Identifier)) 3968 return MatchOperand_NoMatch; 3969 StringRef IFlagsStr = Tok.getString(); 3970 3971 // An iflags string of "none" is interpreted to mean that none of the AIF 3972 // bits are set. Not a terribly useful instruction, but a valid encoding. 3973 unsigned IFlags = 0; 3974 if (IFlagsStr != "none") { 3975 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 3976 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 3977 .Case("a", ARM_PROC::A) 3978 .Case("i", ARM_PROC::I) 3979 .Case("f", ARM_PROC::F) 3980 .Default(~0U); 3981 3982 // If some specific iflag is already set, it means that some letter is 3983 // present more than once, this is not acceptable. 3984 if (Flag == ~0U || (IFlags & Flag)) 3985 return MatchOperand_NoMatch; 3986 3987 IFlags |= Flag; 3988 } 3989 } 3990 3991 Parser.Lex(); // Eat identifier token. 3992 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 3993 return MatchOperand_Success; 3994 } 3995 3996 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 3997 ARMAsmParser::OperandMatchResultTy 3998 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 3999 MCAsmParser &Parser = getParser(); 4000 SMLoc S = Parser.getTok().getLoc(); 4001 const AsmToken &Tok = Parser.getTok(); 4002 if (!Tok.is(AsmToken::Identifier)) 4003 return MatchOperand_NoMatch; 4004 StringRef Mask = Tok.getString(); 4005 4006 if (isMClass()) { 4007 // See ARMv6-M 10.1.1 4008 std::string Name = Mask.lower(); 4009 unsigned FlagsVal = StringSwitch<unsigned>(Name) 4010 // Note: in the documentation: 4011 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 4012 // for MSR APSR_nzcvq. 4013 // but we do make it an alias here. This is so to get the "mask encoding" 4014 // bits correct on MSR APSR writes. 4015 // 4016 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 4017 // should really only be allowed when writing a special register. Note 4018 // they get dropped in the MRS instruction reading a special register as 4019 // the SYSm field is only 8 bits. 4020 .Case("apsr", 0x800) 4021 .Case("apsr_nzcvq", 0x800) 4022 .Case("apsr_g", 0x400) 4023 .Case("apsr_nzcvqg", 0xc00) 4024 .Case("iapsr", 0x801) 4025 .Case("iapsr_nzcvq", 0x801) 4026 .Case("iapsr_g", 0x401) 4027 .Case("iapsr_nzcvqg", 0xc01) 4028 .Case("eapsr", 0x802) 4029 .Case("eapsr_nzcvq", 0x802) 4030 .Case("eapsr_g", 0x402) 4031 .Case("eapsr_nzcvqg", 0xc02) 4032 .Case("xpsr", 0x803) 4033 .Case("xpsr_nzcvq", 0x803) 4034 .Case("xpsr_g", 0x403) 4035 .Case("xpsr_nzcvqg", 0xc03) 4036 .Case("ipsr", 0x805) 4037 .Case("epsr", 0x806) 4038 .Case("iepsr", 0x807) 4039 .Case("msp", 0x808) 4040 .Case("psp", 0x809) 4041 .Case("primask", 0x810) 4042 .Case("basepri", 0x811) 4043 .Case("basepri_max", 0x812) 4044 .Case("faultmask", 0x813) 4045 .Case("control", 0x814) 4046 .Default(~0U); 4047 4048 if (FlagsVal == ~0U) 4049 return MatchOperand_NoMatch; 4050 4051 if (!hasThumb2DSP() && (FlagsVal & 0x400)) 4052 // The _g and _nzcvqg versions are only valid if the DSP extension is 4053 // available. 4054 return MatchOperand_NoMatch; 4055 4056 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 4057 // basepri, basepri_max and faultmask only valid for V7m. 4058 return MatchOperand_NoMatch; 4059 4060 Parser.Lex(); // Eat identifier token. 4061 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4062 return MatchOperand_Success; 4063 } 4064 4065 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4066 size_t Start = 0, Next = Mask.find('_'); 4067 StringRef Flags = ""; 4068 std::string SpecReg = Mask.slice(Start, Next).lower(); 4069 if (Next != StringRef::npos) 4070 Flags = Mask.slice(Next+1, Mask.size()); 4071 4072 // FlagsVal contains the complete mask: 4073 // 3-0: Mask 4074 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4075 unsigned FlagsVal = 0; 4076 4077 if (SpecReg == "apsr") { 4078 FlagsVal = StringSwitch<unsigned>(Flags) 4079 .Case("nzcvq", 0x8) // same as CPSR_f 4080 .Case("g", 0x4) // same as CPSR_s 4081 .Case("nzcvqg", 0xc) // same as CPSR_fs 4082 .Default(~0U); 4083 4084 if (FlagsVal == ~0U) { 4085 if (!Flags.empty()) 4086 return MatchOperand_NoMatch; 4087 else 4088 FlagsVal = 8; // No flag 4089 } 4090 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4091 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4092 if (Flags == "all" || Flags == "") 4093 Flags = "fc"; 4094 for (int i = 0, e = Flags.size(); i != e; ++i) { 4095 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4096 .Case("c", 1) 4097 .Case("x", 2) 4098 .Case("s", 4) 4099 .Case("f", 8) 4100 .Default(~0U); 4101 4102 // If some specific flag is already set, it means that some letter is 4103 // present more than once, this is not acceptable. 4104 if (FlagsVal == ~0U || (FlagsVal & Flag)) 4105 return MatchOperand_NoMatch; 4106 FlagsVal |= Flag; 4107 } 4108 } else // No match for special register. 4109 return MatchOperand_NoMatch; 4110 4111 // Special register without flags is NOT equivalent to "fc" flags. 4112 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4113 // two lines would enable gas compatibility at the expense of breaking 4114 // round-tripping. 4115 // 4116 // if (!FlagsVal) 4117 // FlagsVal = 0x9; 4118 4119 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4120 if (SpecReg == "spsr") 4121 FlagsVal |= 16; 4122 4123 Parser.Lex(); // Eat identifier token. 4124 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4125 return MatchOperand_Success; 4126 } 4127 4128 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4129 /// use in the MRS/MSR instructions added to support virtualization. 4130 ARMAsmParser::OperandMatchResultTy 4131 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4132 MCAsmParser &Parser = getParser(); 4133 SMLoc S = Parser.getTok().getLoc(); 4134 const AsmToken &Tok = Parser.getTok(); 4135 if (!Tok.is(AsmToken::Identifier)) 4136 return MatchOperand_NoMatch; 4137 StringRef RegName = Tok.getString(); 4138 4139 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4140 // and bit 5 is R. 4141 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4142 .Case("r8_usr", 0x00) 4143 .Case("r9_usr", 0x01) 4144 .Case("r10_usr", 0x02) 4145 .Case("r11_usr", 0x03) 4146 .Case("r12_usr", 0x04) 4147 .Case("sp_usr", 0x05) 4148 .Case("lr_usr", 0x06) 4149 .Case("r8_fiq", 0x08) 4150 .Case("r9_fiq", 0x09) 4151 .Case("r10_fiq", 0x0a) 4152 .Case("r11_fiq", 0x0b) 4153 .Case("r12_fiq", 0x0c) 4154 .Case("sp_fiq", 0x0d) 4155 .Case("lr_fiq", 0x0e) 4156 .Case("lr_irq", 0x10) 4157 .Case("sp_irq", 0x11) 4158 .Case("lr_svc", 0x12) 4159 .Case("sp_svc", 0x13) 4160 .Case("lr_abt", 0x14) 4161 .Case("sp_abt", 0x15) 4162 .Case("lr_und", 0x16) 4163 .Case("sp_und", 0x17) 4164 .Case("lr_mon", 0x1c) 4165 .Case("sp_mon", 0x1d) 4166 .Case("elr_hyp", 0x1e) 4167 .Case("sp_hyp", 0x1f) 4168 .Case("spsr_fiq", 0x2e) 4169 .Case("spsr_irq", 0x30) 4170 .Case("spsr_svc", 0x32) 4171 .Case("spsr_abt", 0x34) 4172 .Case("spsr_und", 0x36) 4173 .Case("spsr_mon", 0x3c) 4174 .Case("spsr_hyp", 0x3e) 4175 .Default(~0U); 4176 4177 if (Encoding == ~0U) 4178 return MatchOperand_NoMatch; 4179 4180 Parser.Lex(); // Eat identifier token. 4181 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4182 return MatchOperand_Success; 4183 } 4184 4185 ARMAsmParser::OperandMatchResultTy 4186 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4187 int High) { 4188 MCAsmParser &Parser = getParser(); 4189 const AsmToken &Tok = Parser.getTok(); 4190 if (Tok.isNot(AsmToken::Identifier)) { 4191 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4192 return MatchOperand_ParseFail; 4193 } 4194 StringRef ShiftName = Tok.getString(); 4195 std::string LowerOp = Op.lower(); 4196 std::string UpperOp = Op.upper(); 4197 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4198 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4199 return MatchOperand_ParseFail; 4200 } 4201 Parser.Lex(); // Eat shift type token. 4202 4203 // There must be a '#' and a shift amount. 4204 if (Parser.getTok().isNot(AsmToken::Hash) && 4205 Parser.getTok().isNot(AsmToken::Dollar)) { 4206 Error(Parser.getTok().getLoc(), "'#' expected"); 4207 return MatchOperand_ParseFail; 4208 } 4209 Parser.Lex(); // Eat hash token. 4210 4211 const MCExpr *ShiftAmount; 4212 SMLoc Loc = Parser.getTok().getLoc(); 4213 SMLoc EndLoc; 4214 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4215 Error(Loc, "illegal expression"); 4216 return MatchOperand_ParseFail; 4217 } 4218 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4219 if (!CE) { 4220 Error(Loc, "constant expression expected"); 4221 return MatchOperand_ParseFail; 4222 } 4223 int Val = CE->getValue(); 4224 if (Val < Low || Val > High) { 4225 Error(Loc, "immediate value out of range"); 4226 return MatchOperand_ParseFail; 4227 } 4228 4229 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4230 4231 return MatchOperand_Success; 4232 } 4233 4234 ARMAsmParser::OperandMatchResultTy 4235 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4236 MCAsmParser &Parser = getParser(); 4237 const AsmToken &Tok = Parser.getTok(); 4238 SMLoc S = Tok.getLoc(); 4239 if (Tok.isNot(AsmToken::Identifier)) { 4240 Error(S, "'be' or 'le' operand expected"); 4241 return MatchOperand_ParseFail; 4242 } 4243 int Val = StringSwitch<int>(Tok.getString().lower()) 4244 .Case("be", 1) 4245 .Case("le", 0) 4246 .Default(-1); 4247 Parser.Lex(); // Eat the token. 4248 4249 if (Val == -1) { 4250 Error(S, "'be' or 'le' operand expected"); 4251 return MatchOperand_ParseFail; 4252 } 4253 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val, 4254 getContext()), 4255 S, Tok.getEndLoc())); 4256 return MatchOperand_Success; 4257 } 4258 4259 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4260 /// instructions. Legal values are: 4261 /// lsl #n 'n' in [0,31] 4262 /// asr #n 'n' in [1,32] 4263 /// n == 32 encoded as n == 0. 4264 ARMAsmParser::OperandMatchResultTy 4265 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4266 MCAsmParser &Parser = getParser(); 4267 const AsmToken &Tok = Parser.getTok(); 4268 SMLoc S = Tok.getLoc(); 4269 if (Tok.isNot(AsmToken::Identifier)) { 4270 Error(S, "shift operator 'asr' or 'lsl' expected"); 4271 return MatchOperand_ParseFail; 4272 } 4273 StringRef ShiftName = Tok.getString(); 4274 bool isASR; 4275 if (ShiftName == "lsl" || ShiftName == "LSL") 4276 isASR = false; 4277 else if (ShiftName == "asr" || ShiftName == "ASR") 4278 isASR = true; 4279 else { 4280 Error(S, "shift operator 'asr' or 'lsl' expected"); 4281 return MatchOperand_ParseFail; 4282 } 4283 Parser.Lex(); // Eat the operator. 4284 4285 // A '#' and a shift amount. 4286 if (Parser.getTok().isNot(AsmToken::Hash) && 4287 Parser.getTok().isNot(AsmToken::Dollar)) { 4288 Error(Parser.getTok().getLoc(), "'#' expected"); 4289 return MatchOperand_ParseFail; 4290 } 4291 Parser.Lex(); // Eat hash token. 4292 SMLoc ExLoc = Parser.getTok().getLoc(); 4293 4294 const MCExpr *ShiftAmount; 4295 SMLoc EndLoc; 4296 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4297 Error(ExLoc, "malformed shift expression"); 4298 return MatchOperand_ParseFail; 4299 } 4300 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4301 if (!CE) { 4302 Error(ExLoc, "shift amount must be an immediate"); 4303 return MatchOperand_ParseFail; 4304 } 4305 4306 int64_t Val = CE->getValue(); 4307 if (isASR) { 4308 // Shift amount must be in [1,32] 4309 if (Val < 1 || Val > 32) { 4310 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4311 return MatchOperand_ParseFail; 4312 } 4313 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4314 if (isThumb() && Val == 32) { 4315 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4316 return MatchOperand_ParseFail; 4317 } 4318 if (Val == 32) Val = 0; 4319 } else { 4320 // Shift amount must be in [1,32] 4321 if (Val < 0 || Val > 31) { 4322 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4323 return MatchOperand_ParseFail; 4324 } 4325 } 4326 4327 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4328 4329 return MatchOperand_Success; 4330 } 4331 4332 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4333 /// of instructions. Legal values are: 4334 /// ror #n 'n' in {0, 8, 16, 24} 4335 ARMAsmParser::OperandMatchResultTy 4336 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4337 MCAsmParser &Parser = getParser(); 4338 const AsmToken &Tok = Parser.getTok(); 4339 SMLoc S = Tok.getLoc(); 4340 if (Tok.isNot(AsmToken::Identifier)) 4341 return MatchOperand_NoMatch; 4342 StringRef ShiftName = Tok.getString(); 4343 if (ShiftName != "ror" && ShiftName != "ROR") 4344 return MatchOperand_NoMatch; 4345 Parser.Lex(); // Eat the operator. 4346 4347 // A '#' and a rotate amount. 4348 if (Parser.getTok().isNot(AsmToken::Hash) && 4349 Parser.getTok().isNot(AsmToken::Dollar)) { 4350 Error(Parser.getTok().getLoc(), "'#' expected"); 4351 return MatchOperand_ParseFail; 4352 } 4353 Parser.Lex(); // Eat hash token. 4354 SMLoc ExLoc = Parser.getTok().getLoc(); 4355 4356 const MCExpr *ShiftAmount; 4357 SMLoc EndLoc; 4358 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4359 Error(ExLoc, "malformed rotate expression"); 4360 return MatchOperand_ParseFail; 4361 } 4362 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4363 if (!CE) { 4364 Error(ExLoc, "rotate amount must be an immediate"); 4365 return MatchOperand_ParseFail; 4366 } 4367 4368 int64_t Val = CE->getValue(); 4369 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4370 // normally, zero is represented in asm by omitting the rotate operand 4371 // entirely. 4372 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4373 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4374 return MatchOperand_ParseFail; 4375 } 4376 4377 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4378 4379 return MatchOperand_Success; 4380 } 4381 4382 ARMAsmParser::OperandMatchResultTy 4383 ARMAsmParser::parseModImm(OperandVector &Operands) { 4384 MCAsmParser &Parser = getParser(); 4385 MCAsmLexer &Lexer = getLexer(); 4386 int64_t Imm1, Imm2; 4387 4388 SMLoc S = Parser.getTok().getLoc(); 4389 4390 // 1) A mod_imm operand can appear in the place of a register name: 4391 // add r0, #mod_imm 4392 // add r0, r0, #mod_imm 4393 // to correctly handle the latter, we bail out as soon as we see an 4394 // identifier. 4395 // 4396 // 2) Similarly, we do not want to parse into complex operands: 4397 // mov r0, #mod_imm 4398 // mov r0, :lower16:(_foo) 4399 if (Parser.getTok().is(AsmToken::Identifier) || 4400 Parser.getTok().is(AsmToken::Colon)) 4401 return MatchOperand_NoMatch; 4402 4403 // Hash (dollar) is optional as per the ARMARM 4404 if (Parser.getTok().is(AsmToken::Hash) || 4405 Parser.getTok().is(AsmToken::Dollar)) { 4406 // Avoid parsing into complex operands (#:) 4407 if (Lexer.peekTok().is(AsmToken::Colon)) 4408 return MatchOperand_NoMatch; 4409 4410 // Eat the hash (dollar) 4411 Parser.Lex(); 4412 } 4413 4414 SMLoc Sx1, Ex1; 4415 Sx1 = Parser.getTok().getLoc(); 4416 const MCExpr *Imm1Exp; 4417 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4418 Error(Sx1, "malformed expression"); 4419 return MatchOperand_ParseFail; 4420 } 4421 4422 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4423 4424 if (CE) { 4425 // Immediate must fit within 32-bits 4426 Imm1 = CE->getValue(); 4427 int Enc = ARM_AM::getSOImmVal(Imm1); 4428 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4429 // We have a match! 4430 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4431 (Enc & 0xF00) >> 7, 4432 Sx1, Ex1)); 4433 return MatchOperand_Success; 4434 } 4435 4436 // We have parsed an immediate which is not for us, fallback to a plain 4437 // immediate. This can happen for instruction aliases. For an example, 4438 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4439 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4440 // instruction with a mod_imm operand. The alias is defined such that the 4441 // parser method is shared, that's why we have to do this here. 4442 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4443 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4444 return MatchOperand_Success; 4445 } 4446 } else { 4447 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4448 // MCFixup). Fallback to a plain immediate. 4449 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4450 return MatchOperand_Success; 4451 } 4452 4453 // From this point onward, we expect the input to be a (#bits, #rot) pair 4454 if (Parser.getTok().isNot(AsmToken::Comma)) { 4455 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4456 return MatchOperand_ParseFail; 4457 } 4458 4459 if (Imm1 & ~0xFF) { 4460 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4461 return MatchOperand_ParseFail; 4462 } 4463 4464 // Eat the comma 4465 Parser.Lex(); 4466 4467 // Repeat for #rot 4468 SMLoc Sx2, Ex2; 4469 Sx2 = Parser.getTok().getLoc(); 4470 4471 // Eat the optional hash (dollar) 4472 if (Parser.getTok().is(AsmToken::Hash) || 4473 Parser.getTok().is(AsmToken::Dollar)) 4474 Parser.Lex(); 4475 4476 const MCExpr *Imm2Exp; 4477 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4478 Error(Sx2, "malformed expression"); 4479 return MatchOperand_ParseFail; 4480 } 4481 4482 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4483 4484 if (CE) { 4485 Imm2 = CE->getValue(); 4486 if (!(Imm2 & ~0x1E)) { 4487 // We have a match! 4488 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4489 return MatchOperand_Success; 4490 } 4491 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4492 return MatchOperand_ParseFail; 4493 } else { 4494 Error(Sx2, "constant expression expected"); 4495 return MatchOperand_ParseFail; 4496 } 4497 } 4498 4499 ARMAsmParser::OperandMatchResultTy 4500 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4501 MCAsmParser &Parser = getParser(); 4502 SMLoc S = Parser.getTok().getLoc(); 4503 // The bitfield descriptor is really two operands, the LSB and the width. 4504 if (Parser.getTok().isNot(AsmToken::Hash) && 4505 Parser.getTok().isNot(AsmToken::Dollar)) { 4506 Error(Parser.getTok().getLoc(), "'#' expected"); 4507 return MatchOperand_ParseFail; 4508 } 4509 Parser.Lex(); // Eat hash token. 4510 4511 const MCExpr *LSBExpr; 4512 SMLoc E = Parser.getTok().getLoc(); 4513 if (getParser().parseExpression(LSBExpr)) { 4514 Error(E, "malformed immediate expression"); 4515 return MatchOperand_ParseFail; 4516 } 4517 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4518 if (!CE) { 4519 Error(E, "'lsb' operand must be an immediate"); 4520 return MatchOperand_ParseFail; 4521 } 4522 4523 int64_t LSB = CE->getValue(); 4524 // The LSB must be in the range [0,31] 4525 if (LSB < 0 || LSB > 31) { 4526 Error(E, "'lsb' operand must be in the range [0,31]"); 4527 return MatchOperand_ParseFail; 4528 } 4529 E = Parser.getTok().getLoc(); 4530 4531 // Expect another immediate operand. 4532 if (Parser.getTok().isNot(AsmToken::Comma)) { 4533 Error(Parser.getTok().getLoc(), "too few operands"); 4534 return MatchOperand_ParseFail; 4535 } 4536 Parser.Lex(); // Eat hash token. 4537 if (Parser.getTok().isNot(AsmToken::Hash) && 4538 Parser.getTok().isNot(AsmToken::Dollar)) { 4539 Error(Parser.getTok().getLoc(), "'#' expected"); 4540 return MatchOperand_ParseFail; 4541 } 4542 Parser.Lex(); // Eat hash token. 4543 4544 const MCExpr *WidthExpr; 4545 SMLoc EndLoc; 4546 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4547 Error(E, "malformed immediate expression"); 4548 return MatchOperand_ParseFail; 4549 } 4550 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4551 if (!CE) { 4552 Error(E, "'width' operand must be an immediate"); 4553 return MatchOperand_ParseFail; 4554 } 4555 4556 int64_t Width = CE->getValue(); 4557 // The LSB must be in the range [1,32-lsb] 4558 if (Width < 1 || Width > 32 - LSB) { 4559 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4560 return MatchOperand_ParseFail; 4561 } 4562 4563 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4564 4565 return MatchOperand_Success; 4566 } 4567 4568 ARMAsmParser::OperandMatchResultTy 4569 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4570 // Check for a post-index addressing register operand. Specifically: 4571 // postidx_reg := '+' register {, shift} 4572 // | '-' register {, shift} 4573 // | register {, shift} 4574 4575 // This method must return MatchOperand_NoMatch without consuming any tokens 4576 // in the case where there is no match, as other alternatives take other 4577 // parse methods. 4578 MCAsmParser &Parser = getParser(); 4579 AsmToken Tok = Parser.getTok(); 4580 SMLoc S = Tok.getLoc(); 4581 bool haveEaten = false; 4582 bool isAdd = true; 4583 if (Tok.is(AsmToken::Plus)) { 4584 Parser.Lex(); // Eat the '+' token. 4585 haveEaten = true; 4586 } else if (Tok.is(AsmToken::Minus)) { 4587 Parser.Lex(); // Eat the '-' token. 4588 isAdd = false; 4589 haveEaten = true; 4590 } 4591 4592 SMLoc E = Parser.getTok().getEndLoc(); 4593 int Reg = tryParseRegister(); 4594 if (Reg == -1) { 4595 if (!haveEaten) 4596 return MatchOperand_NoMatch; 4597 Error(Parser.getTok().getLoc(), "register expected"); 4598 return MatchOperand_ParseFail; 4599 } 4600 4601 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4602 unsigned ShiftImm = 0; 4603 if (Parser.getTok().is(AsmToken::Comma)) { 4604 Parser.Lex(); // Eat the ','. 4605 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4606 return MatchOperand_ParseFail; 4607 4608 // FIXME: Only approximates end...may include intervening whitespace. 4609 E = Parser.getTok().getLoc(); 4610 } 4611 4612 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4613 ShiftImm, S, E)); 4614 4615 return MatchOperand_Success; 4616 } 4617 4618 ARMAsmParser::OperandMatchResultTy 4619 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4620 // Check for a post-index addressing register operand. Specifically: 4621 // am3offset := '+' register 4622 // | '-' register 4623 // | register 4624 // | # imm 4625 // | # + imm 4626 // | # - imm 4627 4628 // This method must return MatchOperand_NoMatch without consuming any tokens 4629 // in the case where there is no match, as other alternatives take other 4630 // parse methods. 4631 MCAsmParser &Parser = getParser(); 4632 AsmToken Tok = Parser.getTok(); 4633 SMLoc S = Tok.getLoc(); 4634 4635 // Do immediates first, as we always parse those if we have a '#'. 4636 if (Parser.getTok().is(AsmToken::Hash) || 4637 Parser.getTok().is(AsmToken::Dollar)) { 4638 Parser.Lex(); // Eat '#' or '$'. 4639 // Explicitly look for a '-', as we need to encode negative zero 4640 // differently. 4641 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4642 const MCExpr *Offset; 4643 SMLoc E; 4644 if (getParser().parseExpression(Offset, E)) 4645 return MatchOperand_ParseFail; 4646 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4647 if (!CE) { 4648 Error(S, "constant expression expected"); 4649 return MatchOperand_ParseFail; 4650 } 4651 // Negative zero is encoded as the flag value INT32_MIN. 4652 int32_t Val = CE->getValue(); 4653 if (isNegative && Val == 0) 4654 Val = INT32_MIN; 4655 4656 Operands.push_back( 4657 ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E)); 4658 4659 return MatchOperand_Success; 4660 } 4661 4662 4663 bool haveEaten = false; 4664 bool isAdd = true; 4665 if (Tok.is(AsmToken::Plus)) { 4666 Parser.Lex(); // Eat the '+' token. 4667 haveEaten = true; 4668 } else if (Tok.is(AsmToken::Minus)) { 4669 Parser.Lex(); // Eat the '-' token. 4670 isAdd = false; 4671 haveEaten = true; 4672 } 4673 4674 Tok = Parser.getTok(); 4675 int Reg = tryParseRegister(); 4676 if (Reg == -1) { 4677 if (!haveEaten) 4678 return MatchOperand_NoMatch; 4679 Error(Tok.getLoc(), "register expected"); 4680 return MatchOperand_ParseFail; 4681 } 4682 4683 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4684 0, S, Tok.getEndLoc())); 4685 4686 return MatchOperand_Success; 4687 } 4688 4689 /// Convert parsed operands to MCInst. Needed here because this instruction 4690 /// only has two register operands, but multiplication is commutative so 4691 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4692 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4693 const OperandVector &Operands) { 4694 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4695 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4696 // If we have a three-operand form, make sure to set Rn to be the operand 4697 // that isn't the same as Rd. 4698 unsigned RegOp = 4; 4699 if (Operands.size() == 6 && 4700 ((ARMOperand &)*Operands[4]).getReg() == 4701 ((ARMOperand &)*Operands[3]).getReg()) 4702 RegOp = 5; 4703 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4704 Inst.addOperand(Inst.getOperand(0)); 4705 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4706 } 4707 4708 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4709 const OperandVector &Operands) { 4710 int CondOp = -1, ImmOp = -1; 4711 switch(Inst.getOpcode()) { 4712 case ARM::tB: 4713 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4714 4715 case ARM::t2B: 4716 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4717 4718 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4719 } 4720 // first decide whether or not the branch should be conditional 4721 // by looking at it's location relative to an IT block 4722 if(inITBlock()) { 4723 // inside an IT block we cannot have any conditional branches. any 4724 // such instructions needs to be converted to unconditional form 4725 switch(Inst.getOpcode()) { 4726 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4727 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4728 } 4729 } else { 4730 // outside IT blocks we can only have unconditional branches with AL 4731 // condition code or conditional branches with non-AL condition code 4732 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4733 switch(Inst.getOpcode()) { 4734 case ARM::tB: 4735 case ARM::tBcc: 4736 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4737 break; 4738 case ARM::t2B: 4739 case ARM::t2Bcc: 4740 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4741 break; 4742 } 4743 } 4744 4745 // now decide on encoding size based on branch target range 4746 switch(Inst.getOpcode()) { 4747 // classify tB as either t2B or t1B based on range of immediate operand 4748 case ARM::tB: { 4749 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4750 if (!op.isSignedOffset<11, 1>() && isThumbTwo()) 4751 Inst.setOpcode(ARM::t2B); 4752 break; 4753 } 4754 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4755 case ARM::tBcc: { 4756 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4757 if (!op.isSignedOffset<8, 1>() && isThumbTwo()) 4758 Inst.setOpcode(ARM::t2Bcc); 4759 break; 4760 } 4761 } 4762 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4763 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4764 } 4765 4766 /// Parse an ARM memory expression, return false if successful else return true 4767 /// or an error. The first token must be a '[' when called. 4768 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4769 MCAsmParser &Parser = getParser(); 4770 SMLoc S, E; 4771 assert(Parser.getTok().is(AsmToken::LBrac) && 4772 "Token is not a Left Bracket"); 4773 S = Parser.getTok().getLoc(); 4774 Parser.Lex(); // Eat left bracket token. 4775 4776 const AsmToken &BaseRegTok = Parser.getTok(); 4777 int BaseRegNum = tryParseRegister(); 4778 if (BaseRegNum == -1) 4779 return Error(BaseRegTok.getLoc(), "register expected"); 4780 4781 // The next token must either be a comma, a colon or a closing bracket. 4782 const AsmToken &Tok = Parser.getTok(); 4783 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4784 !Tok.is(AsmToken::RBrac)) 4785 return Error(Tok.getLoc(), "malformed memory operand"); 4786 4787 if (Tok.is(AsmToken::RBrac)) { 4788 E = Tok.getEndLoc(); 4789 Parser.Lex(); // Eat right bracket token. 4790 4791 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4792 ARM_AM::no_shift, 0, 0, false, 4793 S, E)); 4794 4795 // If there's a pre-indexing writeback marker, '!', just add it as a token 4796 // operand. It's rather odd, but syntactically valid. 4797 if (Parser.getTok().is(AsmToken::Exclaim)) { 4798 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4799 Parser.Lex(); // Eat the '!'. 4800 } 4801 4802 return false; 4803 } 4804 4805 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4806 "Lost colon or comma in memory operand?!"); 4807 if (Tok.is(AsmToken::Comma)) { 4808 Parser.Lex(); // Eat the comma. 4809 } 4810 4811 // If we have a ':', it's an alignment specifier. 4812 if (Parser.getTok().is(AsmToken::Colon)) { 4813 Parser.Lex(); // Eat the ':'. 4814 E = Parser.getTok().getLoc(); 4815 SMLoc AlignmentLoc = Tok.getLoc(); 4816 4817 const MCExpr *Expr; 4818 if (getParser().parseExpression(Expr)) 4819 return true; 4820 4821 // The expression has to be a constant. Memory references with relocations 4822 // don't come through here, as they use the <label> forms of the relevant 4823 // instructions. 4824 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4825 if (!CE) 4826 return Error (E, "constant expression expected"); 4827 4828 unsigned Align = 0; 4829 switch (CE->getValue()) { 4830 default: 4831 return Error(E, 4832 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4833 case 16: Align = 2; break; 4834 case 32: Align = 4; break; 4835 case 64: Align = 8; break; 4836 case 128: Align = 16; break; 4837 case 256: Align = 32; break; 4838 } 4839 4840 // Now we should have the closing ']' 4841 if (Parser.getTok().isNot(AsmToken::RBrac)) 4842 return Error(Parser.getTok().getLoc(), "']' expected"); 4843 E = Parser.getTok().getEndLoc(); 4844 Parser.Lex(); // Eat right bracket token. 4845 4846 // Don't worry about range checking the value here. That's handled by 4847 // the is*() predicates. 4848 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4849 ARM_AM::no_shift, 0, Align, 4850 false, S, E, AlignmentLoc)); 4851 4852 // If there's a pre-indexing writeback marker, '!', just add it as a token 4853 // operand. 4854 if (Parser.getTok().is(AsmToken::Exclaim)) { 4855 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4856 Parser.Lex(); // Eat the '!'. 4857 } 4858 4859 return false; 4860 } 4861 4862 // If we have a '#', it's an immediate offset, else assume it's a register 4863 // offset. Be friendly and also accept a plain integer (without a leading 4864 // hash) for gas compatibility. 4865 if (Parser.getTok().is(AsmToken::Hash) || 4866 Parser.getTok().is(AsmToken::Dollar) || 4867 Parser.getTok().is(AsmToken::Integer)) { 4868 if (Parser.getTok().isNot(AsmToken::Integer)) 4869 Parser.Lex(); // Eat '#' or '$'. 4870 E = Parser.getTok().getLoc(); 4871 4872 bool isNegative = getParser().getTok().is(AsmToken::Minus); 4873 const MCExpr *Offset; 4874 if (getParser().parseExpression(Offset)) 4875 return true; 4876 4877 // The expression has to be a constant. Memory references with relocations 4878 // don't come through here, as they use the <label> forms of the relevant 4879 // instructions. 4880 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4881 if (!CE) 4882 return Error (E, "constant expression expected"); 4883 4884 // If the constant was #-0, represent it as INT32_MIN. 4885 int32_t Val = CE->getValue(); 4886 if (isNegative && Val == 0) 4887 CE = MCConstantExpr::Create(INT32_MIN, getContext()); 4888 4889 // Now we should have the closing ']' 4890 if (Parser.getTok().isNot(AsmToken::RBrac)) 4891 return Error(Parser.getTok().getLoc(), "']' expected"); 4892 E = Parser.getTok().getEndLoc(); 4893 Parser.Lex(); // Eat right bracket token. 4894 4895 // Don't worry about range checking the value here. That's handled by 4896 // the is*() predicates. 4897 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 4898 ARM_AM::no_shift, 0, 0, 4899 false, S, E)); 4900 4901 // If there's a pre-indexing writeback marker, '!', just add it as a token 4902 // operand. 4903 if (Parser.getTok().is(AsmToken::Exclaim)) { 4904 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4905 Parser.Lex(); // Eat the '!'. 4906 } 4907 4908 return false; 4909 } 4910 4911 // The register offset is optionally preceded by a '+' or '-' 4912 bool isNegative = false; 4913 if (Parser.getTok().is(AsmToken::Minus)) { 4914 isNegative = true; 4915 Parser.Lex(); // Eat the '-'. 4916 } else if (Parser.getTok().is(AsmToken::Plus)) { 4917 // Nothing to do. 4918 Parser.Lex(); // Eat the '+'. 4919 } 4920 4921 E = Parser.getTok().getLoc(); 4922 int OffsetRegNum = tryParseRegister(); 4923 if (OffsetRegNum == -1) 4924 return Error(E, "register expected"); 4925 4926 // If there's a shift operator, handle it. 4927 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 4928 unsigned ShiftImm = 0; 4929 if (Parser.getTok().is(AsmToken::Comma)) { 4930 Parser.Lex(); // Eat the ','. 4931 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 4932 return true; 4933 } 4934 4935 // Now we should have the closing ']' 4936 if (Parser.getTok().isNot(AsmToken::RBrac)) 4937 return Error(Parser.getTok().getLoc(), "']' expected"); 4938 E = Parser.getTok().getEndLoc(); 4939 Parser.Lex(); // Eat right bracket token. 4940 4941 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 4942 ShiftType, ShiftImm, 0, isNegative, 4943 S, E)); 4944 4945 // If there's a pre-indexing writeback marker, '!', just add it as a token 4946 // operand. 4947 if (Parser.getTok().is(AsmToken::Exclaim)) { 4948 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4949 Parser.Lex(); // Eat the '!'. 4950 } 4951 4952 return false; 4953 } 4954 4955 /// parseMemRegOffsetShift - one of these two: 4956 /// ( lsl | lsr | asr | ror ) , # shift_amount 4957 /// rrx 4958 /// return true if it parses a shift otherwise it returns false. 4959 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 4960 unsigned &Amount) { 4961 MCAsmParser &Parser = getParser(); 4962 SMLoc Loc = Parser.getTok().getLoc(); 4963 const AsmToken &Tok = Parser.getTok(); 4964 if (Tok.isNot(AsmToken::Identifier)) 4965 return true; 4966 StringRef ShiftName = Tok.getString(); 4967 if (ShiftName == "lsl" || ShiftName == "LSL" || 4968 ShiftName == "asl" || ShiftName == "ASL") 4969 St = ARM_AM::lsl; 4970 else if (ShiftName == "lsr" || ShiftName == "LSR") 4971 St = ARM_AM::lsr; 4972 else if (ShiftName == "asr" || ShiftName == "ASR") 4973 St = ARM_AM::asr; 4974 else if (ShiftName == "ror" || ShiftName == "ROR") 4975 St = ARM_AM::ror; 4976 else if (ShiftName == "rrx" || ShiftName == "RRX") 4977 St = ARM_AM::rrx; 4978 else 4979 return Error(Loc, "illegal shift operator"); 4980 Parser.Lex(); // Eat shift type token. 4981 4982 // rrx stands alone. 4983 Amount = 0; 4984 if (St != ARM_AM::rrx) { 4985 Loc = Parser.getTok().getLoc(); 4986 // A '#' and a shift amount. 4987 const AsmToken &HashTok = Parser.getTok(); 4988 if (HashTok.isNot(AsmToken::Hash) && 4989 HashTok.isNot(AsmToken::Dollar)) 4990 return Error(HashTok.getLoc(), "'#' expected"); 4991 Parser.Lex(); // Eat hash token. 4992 4993 const MCExpr *Expr; 4994 if (getParser().parseExpression(Expr)) 4995 return true; 4996 // Range check the immediate. 4997 // lsl, ror: 0 <= imm <= 31 4998 // lsr, asr: 0 <= imm <= 32 4999 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5000 if (!CE) 5001 return Error(Loc, "shift amount must be an immediate"); 5002 int64_t Imm = CE->getValue(); 5003 if (Imm < 0 || 5004 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5005 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5006 return Error(Loc, "immediate shift value out of range"); 5007 // If <ShiftTy> #0, turn it into a no_shift. 5008 if (Imm == 0) 5009 St = ARM_AM::lsl; 5010 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5011 if (Imm == 32) 5012 Imm = 0; 5013 Amount = Imm; 5014 } 5015 5016 return false; 5017 } 5018 5019 /// parseFPImm - A floating point immediate expression operand. 5020 ARMAsmParser::OperandMatchResultTy 5021 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5022 MCAsmParser &Parser = getParser(); 5023 // Anything that can accept a floating point constant as an operand 5024 // needs to go through here, as the regular parseExpression is 5025 // integer only. 5026 // 5027 // This routine still creates a generic Immediate operand, containing 5028 // a bitcast of the 64-bit floating point value. The various operands 5029 // that accept floats can check whether the value is valid for them 5030 // via the standard is*() predicates. 5031 5032 SMLoc S = Parser.getTok().getLoc(); 5033 5034 if (Parser.getTok().isNot(AsmToken::Hash) && 5035 Parser.getTok().isNot(AsmToken::Dollar)) 5036 return MatchOperand_NoMatch; 5037 5038 // Disambiguate the VMOV forms that can accept an FP immediate. 5039 // vmov.f32 <sreg>, #imm 5040 // vmov.f64 <dreg>, #imm 5041 // vmov.f32 <dreg>, #imm @ vector f32x2 5042 // vmov.f32 <qreg>, #imm @ vector f32x4 5043 // 5044 // There are also the NEON VMOV instructions which expect an 5045 // integer constant. Make sure we don't try to parse an FPImm 5046 // for these: 5047 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5048 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5049 bool isVmovf = TyOp.isToken() && 5050 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64"); 5051 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5052 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5053 Mnemonic.getToken() == "fconsts"); 5054 if (!(isVmovf || isFconst)) 5055 return MatchOperand_NoMatch; 5056 5057 Parser.Lex(); // Eat '#' or '$'. 5058 5059 // Handle negation, as that still comes through as a separate token. 5060 bool isNegative = false; 5061 if (Parser.getTok().is(AsmToken::Minus)) { 5062 isNegative = true; 5063 Parser.Lex(); 5064 } 5065 const AsmToken &Tok = Parser.getTok(); 5066 SMLoc Loc = Tok.getLoc(); 5067 if (Tok.is(AsmToken::Real) && isVmovf) { 5068 APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); 5069 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5070 // If we had a '-' in front, toggle the sign bit. 5071 IntVal ^= (uint64_t)isNegative << 31; 5072 Parser.Lex(); // Eat the token. 5073 Operands.push_back(ARMOperand::CreateImm( 5074 MCConstantExpr::Create(IntVal, getContext()), 5075 S, Parser.getTok().getLoc())); 5076 return MatchOperand_Success; 5077 } 5078 // Also handle plain integers. Instructions which allow floating point 5079 // immediates also allow a raw encoded 8-bit value. 5080 if (Tok.is(AsmToken::Integer) && isFconst) { 5081 int64_t Val = Tok.getIntVal(); 5082 Parser.Lex(); // Eat the token. 5083 if (Val > 255 || Val < 0) { 5084 Error(Loc, "encoded floating point value out of range"); 5085 return MatchOperand_ParseFail; 5086 } 5087 float RealVal = ARM_AM::getFPImmFloat(Val); 5088 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5089 5090 Operands.push_back(ARMOperand::CreateImm( 5091 MCConstantExpr::Create(Val, getContext()), S, 5092 Parser.getTok().getLoc())); 5093 return MatchOperand_Success; 5094 } 5095 5096 Error(Loc, "invalid floating point immediate"); 5097 return MatchOperand_ParseFail; 5098 } 5099 5100 /// Parse a arm instruction operand. For now this parses the operand regardless 5101 /// of the mnemonic. 5102 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5103 MCAsmParser &Parser = getParser(); 5104 SMLoc S, E; 5105 5106 // Check if the current operand has a custom associated parser, if so, try to 5107 // custom parse the operand, or fallback to the general approach. 5108 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5109 if (ResTy == MatchOperand_Success) 5110 return false; 5111 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5112 // there was a match, but an error occurred, in which case, just return that 5113 // the operand parsing failed. 5114 if (ResTy == MatchOperand_ParseFail) 5115 return true; 5116 5117 switch (getLexer().getKind()) { 5118 default: 5119 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5120 return true; 5121 case AsmToken::Identifier: { 5122 // If we've seen a branch mnemonic, the next operand must be a label. This 5123 // is true even if the label is a register name. So "br r1" means branch to 5124 // label "r1". 5125 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5126 if (!ExpectLabel) { 5127 if (!tryParseRegisterWithWriteBack(Operands)) 5128 return false; 5129 int Res = tryParseShiftRegister(Operands); 5130 if (Res == 0) // success 5131 return false; 5132 else if (Res == -1) // irrecoverable error 5133 return true; 5134 // If this is VMRS, check for the apsr_nzcv operand. 5135 if (Mnemonic == "vmrs" && 5136 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5137 S = Parser.getTok().getLoc(); 5138 Parser.Lex(); 5139 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5140 return false; 5141 } 5142 } 5143 5144 // Fall though for the Identifier case that is not a register or a 5145 // special name. 5146 } 5147 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5148 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5149 case AsmToken::String: // quoted label names. 5150 case AsmToken::Dot: { // . as a branch target 5151 // This was not a register so parse other operands that start with an 5152 // identifier (like labels) as expressions and create them as immediates. 5153 const MCExpr *IdVal; 5154 S = Parser.getTok().getLoc(); 5155 if (getParser().parseExpression(IdVal)) 5156 return true; 5157 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5158 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5159 return false; 5160 } 5161 case AsmToken::LBrac: 5162 return parseMemory(Operands); 5163 case AsmToken::LCurly: 5164 return parseRegisterList(Operands); 5165 case AsmToken::Dollar: 5166 case AsmToken::Hash: { 5167 // #42 -> immediate. 5168 S = Parser.getTok().getLoc(); 5169 Parser.Lex(); 5170 5171 if (Parser.getTok().isNot(AsmToken::Colon)) { 5172 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5173 const MCExpr *ImmVal; 5174 if (getParser().parseExpression(ImmVal)) 5175 return true; 5176 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5177 if (CE) { 5178 int32_t Val = CE->getValue(); 5179 if (isNegative && Val == 0) 5180 ImmVal = MCConstantExpr::Create(INT32_MIN, getContext()); 5181 } 5182 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5183 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5184 5185 // There can be a trailing '!' on operands that we want as a separate 5186 // '!' Token operand. Handle that here. For example, the compatibility 5187 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5188 if (Parser.getTok().is(AsmToken::Exclaim)) { 5189 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5190 Parser.getTok().getLoc())); 5191 Parser.Lex(); // Eat exclaim token 5192 } 5193 return false; 5194 } 5195 // w/ a ':' after the '#', it's just like a plain ':'. 5196 // FALLTHROUGH 5197 } 5198 case AsmToken::Colon: { 5199 // ":lower16:" and ":upper16:" expression prefixes 5200 // FIXME: Check it's an expression prefix, 5201 // e.g. (FOO - :lower16:BAR) isn't legal. 5202 ARMMCExpr::VariantKind RefKind; 5203 if (parsePrefix(RefKind)) 5204 return true; 5205 5206 const MCExpr *SubExprVal; 5207 if (getParser().parseExpression(SubExprVal)) 5208 return true; 5209 5210 const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal, 5211 getContext()); 5212 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5213 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5214 return false; 5215 } 5216 case AsmToken::Equal: { 5217 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5218 return Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5219 5220 Parser.Lex(); // Eat '=' 5221 const MCExpr *SubExprVal; 5222 if (getParser().parseExpression(SubExprVal)) 5223 return true; 5224 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5225 5226 const MCExpr *CPLoc = getTargetStreamer().addConstantPoolEntry(SubExprVal); 5227 Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E)); 5228 return false; 5229 } 5230 } 5231 } 5232 5233 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5234 // :lower16: and :upper16:. 5235 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5236 MCAsmParser &Parser = getParser(); 5237 RefKind = ARMMCExpr::VK_ARM_None; 5238 5239 // consume an optional '#' (GNU compatibility) 5240 if (getLexer().is(AsmToken::Hash)) 5241 Parser.Lex(); 5242 5243 // :lower16: and :upper16: modifiers 5244 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5245 Parser.Lex(); // Eat ':' 5246 5247 if (getLexer().isNot(AsmToken::Identifier)) { 5248 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5249 return true; 5250 } 5251 5252 enum { 5253 COFF = (1 << MCObjectFileInfo::IsCOFF), 5254 ELF = (1 << MCObjectFileInfo::IsELF), 5255 MACHO = (1 << MCObjectFileInfo::IsMachO) 5256 }; 5257 static const struct PrefixEntry { 5258 const char *Spelling; 5259 ARMMCExpr::VariantKind VariantKind; 5260 uint8_t SupportedFormats; 5261 } PrefixEntries[] = { 5262 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5263 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5264 }; 5265 5266 StringRef IDVal = Parser.getTok().getIdentifier(); 5267 5268 const auto &Prefix = 5269 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5270 [&IDVal](const PrefixEntry &PE) { 5271 return PE.Spelling == IDVal; 5272 }); 5273 if (Prefix == std::end(PrefixEntries)) { 5274 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5275 return true; 5276 } 5277 5278 uint8_t CurrentFormat; 5279 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5280 case MCObjectFileInfo::IsMachO: 5281 CurrentFormat = MACHO; 5282 break; 5283 case MCObjectFileInfo::IsELF: 5284 CurrentFormat = ELF; 5285 break; 5286 case MCObjectFileInfo::IsCOFF: 5287 CurrentFormat = COFF; 5288 break; 5289 } 5290 5291 if (~Prefix->SupportedFormats & CurrentFormat) { 5292 Error(Parser.getTok().getLoc(), 5293 "cannot represent relocation in the current file format"); 5294 return true; 5295 } 5296 5297 RefKind = Prefix->VariantKind; 5298 Parser.Lex(); 5299 5300 if (getLexer().isNot(AsmToken::Colon)) { 5301 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5302 return true; 5303 } 5304 Parser.Lex(); // Eat the last ':' 5305 5306 return false; 5307 } 5308 5309 /// \brief Given a mnemonic, split out possible predication code and carry 5310 /// setting letters to form a canonical mnemonic and flags. 5311 // 5312 // FIXME: Would be nice to autogen this. 5313 // FIXME: This is a bit of a maze of special cases. 5314 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5315 unsigned &PredicationCode, 5316 bool &CarrySetting, 5317 unsigned &ProcessorIMod, 5318 StringRef &ITMask) { 5319 PredicationCode = ARMCC::AL; 5320 CarrySetting = false; 5321 ProcessorIMod = 0; 5322 5323 // Ignore some mnemonics we know aren't predicated forms. 5324 // 5325 // FIXME: Would be nice to autogen this. 5326 if ((Mnemonic == "movs" && isThumb()) || 5327 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5328 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5329 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5330 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5331 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5332 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5333 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5334 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5335 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5336 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5337 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5338 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5339 Mnemonic.startswith("vsel")) 5340 return Mnemonic; 5341 5342 // First, split out any predication code. Ignore mnemonics we know aren't 5343 // predicated but do have a carry-set and so weren't caught above. 5344 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5345 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5346 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5347 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5348 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5349 .Case("eq", ARMCC::EQ) 5350 .Case("ne", ARMCC::NE) 5351 .Case("hs", ARMCC::HS) 5352 .Case("cs", ARMCC::HS) 5353 .Case("lo", ARMCC::LO) 5354 .Case("cc", ARMCC::LO) 5355 .Case("mi", ARMCC::MI) 5356 .Case("pl", ARMCC::PL) 5357 .Case("vs", ARMCC::VS) 5358 .Case("vc", ARMCC::VC) 5359 .Case("hi", ARMCC::HI) 5360 .Case("ls", ARMCC::LS) 5361 .Case("ge", ARMCC::GE) 5362 .Case("lt", ARMCC::LT) 5363 .Case("gt", ARMCC::GT) 5364 .Case("le", ARMCC::LE) 5365 .Case("al", ARMCC::AL) 5366 .Default(~0U); 5367 if (CC != ~0U) { 5368 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5369 PredicationCode = CC; 5370 } 5371 } 5372 5373 // Next, determine if we have a carry setting bit. We explicitly ignore all 5374 // the instructions we know end in 's'. 5375 if (Mnemonic.endswith("s") && 5376 !(Mnemonic == "cps" || Mnemonic == "mls" || 5377 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5378 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5379 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5380 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5381 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5382 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5383 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5384 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5385 (Mnemonic == "movs" && isThumb()))) { 5386 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5387 CarrySetting = true; 5388 } 5389 5390 // The "cps" instruction can have a interrupt mode operand which is glued into 5391 // the mnemonic. Check if this is the case, split it and parse the imod op 5392 if (Mnemonic.startswith("cps")) { 5393 // Split out any imod code. 5394 unsigned IMod = 5395 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5396 .Case("ie", ARM_PROC::IE) 5397 .Case("id", ARM_PROC::ID) 5398 .Default(~0U); 5399 if (IMod != ~0U) { 5400 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5401 ProcessorIMod = IMod; 5402 } 5403 } 5404 5405 // The "it" instruction has the condition mask on the end of the mnemonic. 5406 if (Mnemonic.startswith("it")) { 5407 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5408 Mnemonic = Mnemonic.slice(0, 2); 5409 } 5410 5411 return Mnemonic; 5412 } 5413 5414 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5415 /// inclusion of carry set or predication code operands. 5416 // 5417 // FIXME: It would be nice to autogen this. 5418 void ARMAsmParser:: 5419 getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5420 bool &CanAcceptCarrySet, bool &CanAcceptPredicationCode) { 5421 if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5422 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5423 Mnemonic == "add" || Mnemonic == "adc" || 5424 Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" || 5425 Mnemonic == "orr" || Mnemonic == "mvn" || 5426 Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" || 5427 Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" || 5428 Mnemonic == "vfm" || Mnemonic == "vfnm" || 5429 (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" || 5430 Mnemonic == "mla" || Mnemonic == "smlal" || 5431 Mnemonic == "umlal" || Mnemonic == "umull"))) { 5432 CanAcceptCarrySet = true; 5433 } else 5434 CanAcceptCarrySet = false; 5435 5436 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5437 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5438 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5439 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5440 Mnemonic.startswith("vsel") || 5441 Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" || 5442 Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || 5443 Mnemonic == "vrinta" || Mnemonic == "vrintn" || Mnemonic == "vrintp" || 5444 Mnemonic == "vrintm" || Mnemonic.startswith("aes") || Mnemonic == "hvc" || 5445 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5446 (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) { 5447 // These mnemonics are never predicable 5448 CanAcceptPredicationCode = false; 5449 } else if (!isThumb()) { 5450 // Some instructions are only predicable in Thumb mode 5451 CanAcceptPredicationCode 5452 = Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5453 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5454 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5455 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5456 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 5457 Mnemonic != "stc2" && Mnemonic != "stc2l" && 5458 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 5459 } else if (isThumbOne()) { 5460 if (hasV6MOps()) 5461 CanAcceptPredicationCode = Mnemonic != "movs"; 5462 else 5463 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5464 } else 5465 CanAcceptPredicationCode = true; 5466 } 5467 5468 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5469 OperandVector &Operands) { 5470 // FIXME: This is all horribly hacky. We really need a better way to deal 5471 // with optional operands like this in the matcher table. 5472 5473 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5474 // another does not. Specifically, the MOVW instruction does not. So we 5475 // special case it here and remove the defaulted (non-setting) cc_out 5476 // operand if that's the instruction we're trying to match. 5477 // 5478 // We do this as post-processing of the explicit operands rather than just 5479 // conditionally adding the cc_out in the first place because we need 5480 // to check the type of the parsed immediate operand. 5481 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5482 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5483 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5484 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5485 return true; 5486 5487 // Register-register 'add' for thumb does not have a cc_out operand 5488 // when there are only two register operands. 5489 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5490 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5491 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5492 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5493 return true; 5494 // Register-register 'add' for thumb does not have a cc_out operand 5495 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5496 // have to check the immediate range here since Thumb2 has a variant 5497 // that can handle a different range and has a cc_out operand. 5498 if (((isThumb() && Mnemonic == "add") || 5499 (isThumbTwo() && Mnemonic == "sub")) && 5500 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5501 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5502 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5503 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5504 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5505 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5506 return true; 5507 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5508 // imm0_4095 variant. That's the least-preferred variant when 5509 // selecting via the generic "add" mnemonic, so to know that we 5510 // should remove the cc_out operand, we have to explicitly check that 5511 // it's not one of the other variants. Ugh. 5512 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5513 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5514 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5515 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5516 // Nest conditions rather than one big 'if' statement for readability. 5517 // 5518 // If both registers are low, we're in an IT block, and the immediate is 5519 // in range, we should use encoding T1 instead, which has a cc_out. 5520 if (inITBlock() && 5521 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5522 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5523 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5524 return false; 5525 // Check against T3. If the second register is the PC, this is an 5526 // alternate form of ADR, which uses encoding T4, so check for that too. 5527 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5528 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5529 return false; 5530 5531 // Otherwise, we use encoding T4, which does not have a cc_out 5532 // operand. 5533 return true; 5534 } 5535 5536 // The thumb2 multiply instruction doesn't have a CCOut register, so 5537 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5538 // use the 16-bit encoding or not. 5539 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5540 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5541 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5542 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5543 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5544 // If the registers aren't low regs, the destination reg isn't the 5545 // same as one of the source regs, or the cc_out operand is zero 5546 // outside of an IT block, we have to use the 32-bit encoding, so 5547 // remove the cc_out operand. 5548 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5549 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5550 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5551 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5552 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5553 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5554 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5555 return true; 5556 5557 // Also check the 'mul' syntax variant that doesn't specify an explicit 5558 // destination register. 5559 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5560 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5561 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5562 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5563 // If the registers aren't low regs or the cc_out operand is zero 5564 // outside of an IT block, we have to use the 32-bit encoding, so 5565 // remove the cc_out operand. 5566 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5567 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5568 !inITBlock())) 5569 return true; 5570 5571 5572 5573 // Register-register 'add/sub' for thumb does not have a cc_out operand 5574 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5575 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5576 // right, this will result in better diagnostics (which operand is off) 5577 // anyway. 5578 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5579 (Operands.size() == 5 || Operands.size() == 6) && 5580 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5581 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5582 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5583 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5584 (Operands.size() == 6 && 5585 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5586 return true; 5587 5588 return false; 5589 } 5590 5591 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5592 OperandVector &Operands) { 5593 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5594 unsigned RegIdx = 3; 5595 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5596 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32") { 5597 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5598 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32") 5599 RegIdx = 4; 5600 5601 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5602 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5603 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5604 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5605 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5606 return true; 5607 } 5608 return false; 5609 } 5610 5611 static bool isDataTypeToken(StringRef Tok) { 5612 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5613 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5614 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5615 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5616 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5617 Tok == ".f" || Tok == ".d"; 5618 } 5619 5620 // FIXME: This bit should probably be handled via an explicit match class 5621 // in the .td files that matches the suffix instead of having it be 5622 // a literal string token the way it is now. 5623 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5624 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5625 } 5626 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5627 unsigned VariantID); 5628 5629 static bool RequiresVFPRegListValidation(StringRef Inst, 5630 bool &AcceptSinglePrecisionOnly, 5631 bool &AcceptDoublePrecisionOnly) { 5632 if (Inst.size() < 7) 5633 return false; 5634 5635 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5636 StringRef AddressingMode = Inst.substr(4, 2); 5637 if (AddressingMode == "ia" || AddressingMode == "db" || 5638 AddressingMode == "ea" || AddressingMode == "fd") { 5639 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5640 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5641 return true; 5642 } 5643 } 5644 5645 return false; 5646 } 5647 5648 /// Parse an arm instruction mnemonic followed by its operands. 5649 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5650 SMLoc NameLoc, OperandVector &Operands) { 5651 MCAsmParser &Parser = getParser(); 5652 // FIXME: Can this be done via tablegen in some fashion? 5653 bool RequireVFPRegisterListCheck; 5654 bool AcceptSinglePrecisionOnly; 5655 bool AcceptDoublePrecisionOnly; 5656 RequireVFPRegisterListCheck = 5657 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5658 AcceptDoublePrecisionOnly); 5659 5660 // Apply mnemonic aliases before doing anything else, as the destination 5661 // mnemonic may include suffices and we want to handle them normally. 5662 // The generic tblgen'erated code does this later, at the start of 5663 // MatchInstructionImpl(), but that's too late for aliases that include 5664 // any sort of suffix. 5665 uint64_t AvailableFeatures = getAvailableFeatures(); 5666 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5667 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5668 5669 // First check for the ARM-specific .req directive. 5670 if (Parser.getTok().is(AsmToken::Identifier) && 5671 Parser.getTok().getIdentifier() == ".req") { 5672 parseDirectiveReq(Name, NameLoc); 5673 // We always return 'error' for this, as we're done with this 5674 // statement and don't need to match the 'instruction." 5675 return true; 5676 } 5677 5678 // Create the leading tokens for the mnemonic, split by '.' characters. 5679 size_t Start = 0, Next = Name.find('.'); 5680 StringRef Mnemonic = Name.slice(Start, Next); 5681 5682 // Split out the predication code and carry setting flag from the mnemonic. 5683 unsigned PredicationCode; 5684 unsigned ProcessorIMod; 5685 bool CarrySetting; 5686 StringRef ITMask; 5687 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5688 ProcessorIMod, ITMask); 5689 5690 // In Thumb1, only the branch (B) instruction can be predicated. 5691 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5692 Parser.eatToEndOfStatement(); 5693 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5694 } 5695 5696 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5697 5698 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5699 // is the mask as it will be for the IT encoding if the conditional 5700 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5701 // where the conditional bit0 is zero, the instruction post-processing 5702 // will adjust the mask accordingly. 5703 if (Mnemonic == "it") { 5704 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5705 if (ITMask.size() > 3) { 5706 Parser.eatToEndOfStatement(); 5707 return Error(Loc, "too many conditions on IT instruction"); 5708 } 5709 unsigned Mask = 8; 5710 for (unsigned i = ITMask.size(); i != 0; --i) { 5711 char pos = ITMask[i - 1]; 5712 if (pos != 't' && pos != 'e') { 5713 Parser.eatToEndOfStatement(); 5714 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5715 } 5716 Mask >>= 1; 5717 if (ITMask[i - 1] == 't') 5718 Mask |= 8; 5719 } 5720 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5721 } 5722 5723 // FIXME: This is all a pretty gross hack. We should automatically handle 5724 // optional operands like this via tblgen. 5725 5726 // Next, add the CCOut and ConditionCode operands, if needed. 5727 // 5728 // For mnemonics which can ever incorporate a carry setting bit or predication 5729 // code, our matching model involves us always generating CCOut and 5730 // ConditionCode operands to match the mnemonic "as written" and then we let 5731 // the matcher deal with finding the right instruction or generating an 5732 // appropriate error. 5733 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5734 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5735 5736 // If we had a carry-set on an instruction that can't do that, issue an 5737 // error. 5738 if (!CanAcceptCarrySet && CarrySetting) { 5739 Parser.eatToEndOfStatement(); 5740 return Error(NameLoc, "instruction '" + Mnemonic + 5741 "' can not set flags, but 's' suffix specified"); 5742 } 5743 // If we had a predication code on an instruction that can't do that, issue an 5744 // error. 5745 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 5746 Parser.eatToEndOfStatement(); 5747 return Error(NameLoc, "instruction '" + Mnemonic + 5748 "' is not predicable, but condition code specified"); 5749 } 5750 5751 // Add the carry setting operand, if necessary. 5752 if (CanAcceptCarrySet) { 5753 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 5754 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 5755 Loc)); 5756 } 5757 5758 // Add the predication code operand, if necessary. 5759 if (CanAcceptPredicationCode) { 5760 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 5761 CarrySetting); 5762 Operands.push_back(ARMOperand::CreateCondCode( 5763 ARMCC::CondCodes(PredicationCode), Loc)); 5764 } 5765 5766 // Add the processor imod operand, if necessary. 5767 if (ProcessorIMod) { 5768 Operands.push_back(ARMOperand::CreateImm( 5769 MCConstantExpr::Create(ProcessorIMod, getContext()), 5770 NameLoc, NameLoc)); 5771 } else if (Mnemonic == "cps" && isMClass()) { 5772 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 5773 } 5774 5775 // Add the remaining tokens in the mnemonic. 5776 while (Next != StringRef::npos) { 5777 Start = Next; 5778 Next = Name.find('.', Start + 1); 5779 StringRef ExtraToken = Name.slice(Start, Next); 5780 5781 // Some NEON instructions have an optional datatype suffix that is 5782 // completely ignored. Check for that. 5783 if (isDataTypeToken(ExtraToken) && 5784 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 5785 continue; 5786 5787 // For for ARM mode generate an error if the .n qualifier is used. 5788 if (ExtraToken == ".n" && !isThumb()) { 5789 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5790 Parser.eatToEndOfStatement(); 5791 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 5792 "arm mode"); 5793 } 5794 5795 // The .n qualifier is always discarded as that is what the tables 5796 // and matcher expect. In ARM mode the .w qualifier has no effect, 5797 // so discard it to avoid errors that can be caused by the matcher. 5798 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 5799 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5800 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 5801 } 5802 } 5803 5804 // Read the remaining operands. 5805 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5806 // Read the first operand. 5807 if (parseOperand(Operands, Mnemonic)) { 5808 Parser.eatToEndOfStatement(); 5809 return true; 5810 } 5811 5812 while (getLexer().is(AsmToken::Comma)) { 5813 Parser.Lex(); // Eat the comma. 5814 5815 // Parse and remember the operand. 5816 if (parseOperand(Operands, Mnemonic)) { 5817 Parser.eatToEndOfStatement(); 5818 return true; 5819 } 5820 } 5821 } 5822 5823 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5824 SMLoc Loc = getLexer().getLoc(); 5825 Parser.eatToEndOfStatement(); 5826 return Error(Loc, "unexpected token in argument list"); 5827 } 5828 5829 Parser.Lex(); // Consume the EndOfStatement 5830 5831 if (RequireVFPRegisterListCheck) { 5832 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 5833 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 5834 return Error(Op.getStartLoc(), 5835 "VFP/Neon single precision register expected"); 5836 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 5837 return Error(Op.getStartLoc(), 5838 "VFP/Neon double precision register expected"); 5839 } 5840 5841 // Some instructions, mostly Thumb, have forms for the same mnemonic that 5842 // do and don't have a cc_out optional-def operand. With some spot-checks 5843 // of the operand list, we can figure out which variant we're trying to 5844 // parse and adjust accordingly before actually matching. We shouldn't ever 5845 // try to remove a cc_out operand that was explicitly set on the the 5846 // mnemonic, of course (CarrySetting == true). Reason number #317 the 5847 // table driven matcher doesn't fit well with the ARM instruction set. 5848 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 5849 Operands.erase(Operands.begin() + 1); 5850 5851 // Some instructions have the same mnemonic, but don't always 5852 // have a predicate. Distinguish them here and delete the 5853 // predicate if needed. 5854 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 5855 Operands.erase(Operands.begin() + 1); 5856 5857 // ARM mode 'blx' need special handling, as the register operand version 5858 // is predicable, but the label operand version is not. So, we can't rely 5859 // on the Mnemonic based checking to correctly figure out when to put 5860 // a k_CondCode operand in the list. If we're trying to match the label 5861 // version, remove the k_CondCode operand here. 5862 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 5863 static_cast<ARMOperand &>(*Operands[2]).isImm()) 5864 Operands.erase(Operands.begin() + 1); 5865 5866 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 5867 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 5868 // a single GPRPair reg operand is used in the .td file to replace the two 5869 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 5870 // expressed as a GPRPair, so we have to manually merge them. 5871 // FIXME: We would really like to be able to tablegen'erate this. 5872 if (!isThumb() && Operands.size() > 4 && 5873 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 5874 Mnemonic == "stlexd")) { 5875 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 5876 unsigned Idx = isLoad ? 2 : 3; 5877 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 5878 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 5879 5880 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 5881 // Adjust only if Op1 and Op2 are GPRs. 5882 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 5883 MRC.contains(Op2.getReg())) { 5884 unsigned Reg1 = Op1.getReg(); 5885 unsigned Reg2 = Op2.getReg(); 5886 unsigned Rt = MRI->getEncodingValue(Reg1); 5887 unsigned Rt2 = MRI->getEncodingValue(Reg2); 5888 5889 // Rt2 must be Rt + 1 and Rt must be even. 5890 if (Rt + 1 != Rt2 || (Rt & 1)) { 5891 Error(Op2.getStartLoc(), isLoad 5892 ? "destination operands must be sequential" 5893 : "source operands must be sequential"); 5894 return true; 5895 } 5896 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 5897 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 5898 Operands[Idx] = 5899 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 5900 Operands.erase(Operands.begin() + Idx + 1); 5901 } 5902 } 5903 5904 // If first 2 operands of a 3 operand instruction are the same 5905 // then transform to 2 operand version of the same instruction 5906 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5907 // FIXME: We would really like to be able to tablegen'erate this. 5908 if (isThumbOne() && Operands.size() == 6 && 5909 (Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5910 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5911 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5912 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) { 5913 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5914 ARMOperand &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5915 ARMOperand &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5916 5917 // If both registers are the same then remove one of them from 5918 // the operand list. 5919 if (Op3.isReg() && Op4.isReg() && Op3.getReg() == Op4.getReg()) { 5920 // If 3rd operand (variable Op5) is a register and the instruction is adds/sub 5921 // then do not transform as the backend already handles this instruction 5922 // correctly. 5923 if (!Op5.isReg() || !((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub")) { 5924 Operands.erase(Operands.begin() + 3); 5925 if (Mnemonic == "add" && !CarrySetting) { 5926 // Special case for 'add' (not 'adds') instruction must 5927 // remove the CCOut operand as well. 5928 Operands.erase(Operands.begin() + 1); 5929 } 5930 } 5931 } 5932 } 5933 5934 // If instruction is 'add' and first two register operands 5935 // use SP register, then remove one of the SP registers from 5936 // the instruction. 5937 // FIXME: We would really like to be able to tablegen'erate this. 5938 if (isThumbOne() && Operands.size() == 5 && Mnemonic == "add" && !CarrySetting) { 5939 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 5940 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5941 if (Op2.isReg() && Op3.isReg() && Op2.getReg() == ARM::SP && Op3.getReg() == ARM::SP) { 5942 Operands.erase(Operands.begin() + 2); 5943 } 5944 } 5945 5946 // GNU Assembler extension (compatibility) 5947 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 5948 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 5949 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5950 if (Op3.isMem()) { 5951 assert(Op2.isReg() && "expected register argument"); 5952 5953 unsigned SuperReg = MRI->getMatchingSuperReg( 5954 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 5955 5956 assert(SuperReg && "expected register pair"); 5957 5958 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 5959 5960 Operands.insert( 5961 Operands.begin() + 3, 5962 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 5963 } 5964 } 5965 5966 // FIXME: As said above, this is all a pretty gross hack. This instruction 5967 // does not fit with other "subs" and tblgen. 5968 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 5969 // so the Mnemonic is the original name "subs" and delete the predicate 5970 // operand so it will match the table entry. 5971 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 5972 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5973 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 5974 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5975 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 5976 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5977 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 5978 Operands.erase(Operands.begin() + 1); 5979 } 5980 return false; 5981 } 5982 5983 // Validate context-sensitive operand constraints. 5984 5985 // return 'true' if register list contains non-low GPR registers, 5986 // 'false' otherwise. If Reg is in the register list or is HiReg, set 5987 // 'containsReg' to true. 5988 static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg, 5989 unsigned HiReg, bool &containsReg) { 5990 containsReg = false; 5991 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 5992 unsigned OpReg = Inst.getOperand(i).getReg(); 5993 if (OpReg == Reg) 5994 containsReg = true; 5995 // Anything other than a low register isn't legal here. 5996 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 5997 return true; 5998 } 5999 return false; 6000 } 6001 6002 // Check if the specified regisgter is in the register list of the inst, 6003 // starting at the indicated operand number. 6004 static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) { 6005 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6006 unsigned OpReg = Inst.getOperand(i).getReg(); 6007 if (OpReg == Reg) 6008 return true; 6009 } 6010 return false; 6011 } 6012 6013 // Return true if instruction has the interesting property of being 6014 // allowed in IT blocks, but not being predicable. 6015 static bool instIsBreakpoint(const MCInst &Inst) { 6016 return Inst.getOpcode() == ARM::tBKPT || 6017 Inst.getOpcode() == ARM::BKPT || 6018 Inst.getOpcode() == ARM::tHLT || 6019 Inst.getOpcode() == ARM::HLT; 6020 6021 } 6022 6023 bool ARMAsmParser::validatetLDMRegList(MCInst Inst, 6024 const OperandVector &Operands, 6025 unsigned ListNo, bool IsARPop) { 6026 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6027 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6028 6029 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6030 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6031 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6032 6033 if (!IsARPop && ListContainsSP) 6034 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6035 "SP may not be in the register list"); 6036 else if (ListContainsPC && ListContainsLR) 6037 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6038 "PC and LR may not be in the register list simultaneously"); 6039 else if (inITBlock() && !lastInITBlock() && ListContainsPC) 6040 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6041 "instruction must be outside of IT block or the last " 6042 "instruction in an IT block"); 6043 return false; 6044 } 6045 6046 bool ARMAsmParser::validatetSTMRegList(MCInst Inst, 6047 const OperandVector &Operands, 6048 unsigned ListNo) { 6049 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6050 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6051 6052 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6053 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6054 6055 if (ListContainsSP && ListContainsPC) 6056 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6057 "SP and PC may not be in the register list"); 6058 else if (ListContainsSP) 6059 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6060 "SP may not be in the register list"); 6061 else if (ListContainsPC) 6062 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6063 "PC may not be in the register list"); 6064 return false; 6065 } 6066 6067 // FIXME: We would really like to be able to tablegen'erate this. 6068 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6069 const OperandVector &Operands) { 6070 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6071 SMLoc Loc = Operands[0]->getStartLoc(); 6072 6073 // Check the IT block state first. 6074 // NOTE: BKPT and HLT instructions have the interesting property of being 6075 // allowed in IT blocks, but not being predicable. They just always execute. 6076 if (inITBlock() && !instIsBreakpoint(Inst)) { 6077 unsigned Bit = 1; 6078 if (ITState.FirstCond) 6079 ITState.FirstCond = false; 6080 else 6081 Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 6082 // The instruction must be predicable. 6083 if (!MCID.isPredicable()) 6084 return Error(Loc, "instructions in IT block must be predicable"); 6085 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6086 unsigned ITCond = Bit ? ITState.Cond : 6087 ARMCC::getOppositeCondition(ITState.Cond); 6088 if (Cond != ITCond) { 6089 // Find the condition code Operand to get its SMLoc information. 6090 SMLoc CondLoc; 6091 for (unsigned I = 1; I < Operands.size(); ++I) 6092 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6093 CondLoc = Operands[I]->getStartLoc(); 6094 return Error(CondLoc, "incorrect condition in IT block; got '" + 6095 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6096 "', but expected '" + 6097 ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'"); 6098 } 6099 // Check for non-'al' condition codes outside of the IT block. 6100 } else if (isThumbTwo() && MCID.isPredicable() && 6101 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6102 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6103 Inst.getOpcode() != ARM::t2Bcc) 6104 return Error(Loc, "predicated instructions must be in IT block"); 6105 6106 const unsigned Opcode = Inst.getOpcode(); 6107 switch (Opcode) { 6108 case ARM::LDRD: 6109 case ARM::LDRD_PRE: 6110 case ARM::LDRD_POST: { 6111 const unsigned RtReg = Inst.getOperand(0).getReg(); 6112 6113 // Rt can't be R14. 6114 if (RtReg == ARM::LR) 6115 return Error(Operands[3]->getStartLoc(), 6116 "Rt can't be R14"); 6117 6118 const unsigned Rt = MRI->getEncodingValue(RtReg); 6119 // Rt must be even-numbered. 6120 if ((Rt & 1) == 1) 6121 return Error(Operands[3]->getStartLoc(), 6122 "Rt must be even-numbered"); 6123 6124 // Rt2 must be Rt + 1. 6125 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6126 if (Rt2 != Rt + 1) 6127 return Error(Operands[3]->getStartLoc(), 6128 "destination operands must be sequential"); 6129 6130 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6131 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6132 // For addressing modes with writeback, the base register needs to be 6133 // different from the destination registers. 6134 if (Rn == Rt || Rn == Rt2) 6135 return Error(Operands[3]->getStartLoc(), 6136 "base register needs to be different from destination " 6137 "registers"); 6138 } 6139 6140 return false; 6141 } 6142 case ARM::t2LDRDi8: 6143 case ARM::t2LDRD_PRE: 6144 case ARM::t2LDRD_POST: { 6145 // Rt2 must be different from Rt. 6146 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6147 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6148 if (Rt2 == Rt) 6149 return Error(Operands[3]->getStartLoc(), 6150 "destination operands can't be identical"); 6151 return false; 6152 } 6153 case ARM::STRD: { 6154 // Rt2 must be Rt + 1. 6155 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6156 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6157 if (Rt2 != Rt + 1) 6158 return Error(Operands[3]->getStartLoc(), 6159 "source operands must be sequential"); 6160 return false; 6161 } 6162 case ARM::STRD_PRE: 6163 case ARM::STRD_POST: { 6164 // Rt2 must be Rt + 1. 6165 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6166 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6167 if (Rt2 != Rt + 1) 6168 return Error(Operands[3]->getStartLoc(), 6169 "source operands must be sequential"); 6170 return false; 6171 } 6172 case ARM::STR_PRE_IMM: 6173 case ARM::STR_PRE_REG: 6174 case ARM::STR_POST_IMM: 6175 case ARM::STR_POST_REG: 6176 case ARM::STRH_PRE: 6177 case ARM::STRH_POST: 6178 case ARM::STRB_PRE_IMM: 6179 case ARM::STRB_PRE_REG: 6180 case ARM::STRB_POST_IMM: 6181 case ARM::STRB_POST_REG: { 6182 // Rt must be different from Rn. 6183 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6184 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6185 6186 if (Rt == Rn) 6187 return Error(Operands[3]->getStartLoc(), 6188 "source register and base register can't be identical"); 6189 return false; 6190 } 6191 case ARM::LDR_PRE_IMM: 6192 case ARM::LDR_PRE_REG: 6193 case ARM::LDR_POST_IMM: 6194 case ARM::LDR_POST_REG: 6195 case ARM::LDRH_PRE: 6196 case ARM::LDRH_POST: 6197 case ARM::LDRSH_PRE: 6198 case ARM::LDRSH_POST: 6199 case ARM::LDRB_PRE_IMM: 6200 case ARM::LDRB_PRE_REG: 6201 case ARM::LDRB_POST_IMM: 6202 case ARM::LDRB_POST_REG: 6203 case ARM::LDRSB_PRE: 6204 case ARM::LDRSB_POST: { 6205 // Rt must be different from Rn. 6206 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6207 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6208 6209 if (Rt == Rn) 6210 return Error(Operands[3]->getStartLoc(), 6211 "destination register and base register can't be identical"); 6212 return false; 6213 } 6214 case ARM::SBFX: 6215 case ARM::UBFX: { 6216 // Width must be in range [1, 32-lsb]. 6217 unsigned LSB = Inst.getOperand(2).getImm(); 6218 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6219 if (Widthm1 >= 32 - LSB) 6220 return Error(Operands[5]->getStartLoc(), 6221 "bitfield width must be in range [1,32-lsb]"); 6222 return false; 6223 } 6224 // Notionally handles ARM::tLDMIA_UPD too. 6225 case ARM::tLDMIA: { 6226 // If we're parsing Thumb2, the .w variant is available and handles 6227 // most cases that are normally illegal for a Thumb1 LDM instruction. 6228 // We'll make the transformation in processInstruction() if necessary. 6229 // 6230 // Thumb LDM instructions are writeback iff the base register is not 6231 // in the register list. 6232 unsigned Rn = Inst.getOperand(0).getReg(); 6233 bool HasWritebackToken = 6234 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6235 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6236 bool ListContainsBase; 6237 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6238 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6239 "registers must be in range r0-r7"); 6240 // If we should have writeback, then there should be a '!' token. 6241 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6242 return Error(Operands[2]->getStartLoc(), 6243 "writeback operator '!' expected"); 6244 // If we should not have writeback, there must not be a '!'. This is 6245 // true even for the 32-bit wide encodings. 6246 if (ListContainsBase && HasWritebackToken) 6247 return Error(Operands[3]->getStartLoc(), 6248 "writeback operator '!' not allowed when base register " 6249 "in register list"); 6250 6251 if (validatetLDMRegList(Inst, Operands, 3)) 6252 return true; 6253 break; 6254 } 6255 case ARM::LDMIA_UPD: 6256 case ARM::LDMDB_UPD: 6257 case ARM::LDMIB_UPD: 6258 case ARM::LDMDA_UPD: 6259 // ARM variants loading and updating the same register are only officially 6260 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6261 if (!hasV7Ops()) 6262 break; 6263 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6264 return Error(Operands.back()->getStartLoc(), 6265 "writeback register not allowed in register list"); 6266 break; 6267 case ARM::t2LDMIA: 6268 case ARM::t2LDMDB: 6269 if (validatetLDMRegList(Inst, Operands, 3)) 6270 return true; 6271 break; 6272 case ARM::t2STMIA: 6273 case ARM::t2STMDB: 6274 if (validatetSTMRegList(Inst, Operands, 3)) 6275 return true; 6276 break; 6277 case ARM::t2LDMIA_UPD: 6278 case ARM::t2LDMDB_UPD: 6279 case ARM::t2STMIA_UPD: 6280 case ARM::t2STMDB_UPD: { 6281 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6282 return Error(Operands.back()->getStartLoc(), 6283 "writeback register not allowed in register list"); 6284 6285 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6286 if (validatetLDMRegList(Inst, Operands, 3)) 6287 return true; 6288 } else { 6289 if (validatetSTMRegList(Inst, Operands, 3)) 6290 return true; 6291 } 6292 break; 6293 } 6294 case ARM::sysLDMIA_UPD: 6295 case ARM::sysLDMDA_UPD: 6296 case ARM::sysLDMDB_UPD: 6297 case ARM::sysLDMIB_UPD: 6298 if (!listContainsReg(Inst, 3, ARM::PC)) 6299 return Error(Operands[4]->getStartLoc(), 6300 "writeback register only allowed on system LDM " 6301 "if PC in register-list"); 6302 break; 6303 case ARM::sysSTMIA_UPD: 6304 case ARM::sysSTMDA_UPD: 6305 case ARM::sysSTMDB_UPD: 6306 case ARM::sysSTMIB_UPD: 6307 return Error(Operands[2]->getStartLoc(), 6308 "system STM cannot have writeback register"); 6309 case ARM::tMUL: { 6310 // The second source operand must be the same register as the destination 6311 // operand. 6312 // 6313 // In this case, we must directly check the parsed operands because the 6314 // cvtThumbMultiply() function is written in such a way that it guarantees 6315 // this first statement is always true for the new Inst. Essentially, the 6316 // destination is unconditionally copied into the second source operand 6317 // without checking to see if it matches what we actually parsed. 6318 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6319 ((ARMOperand &)*Operands[5]).getReg()) && 6320 (((ARMOperand &)*Operands[3]).getReg() != 6321 ((ARMOperand &)*Operands[4]).getReg())) { 6322 return Error(Operands[3]->getStartLoc(), 6323 "destination register must match source register"); 6324 } 6325 break; 6326 } 6327 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6328 // so only issue a diagnostic for thumb1. The instructions will be 6329 // switched to the t2 encodings in processInstruction() if necessary. 6330 case ARM::tPOP: { 6331 bool ListContainsBase; 6332 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6333 !isThumbTwo()) 6334 return Error(Operands[2]->getStartLoc(), 6335 "registers must be in range r0-r7 or pc"); 6336 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6337 return true; 6338 break; 6339 } 6340 case ARM::tPUSH: { 6341 bool ListContainsBase; 6342 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6343 !isThumbTwo()) 6344 return Error(Operands[2]->getStartLoc(), 6345 "registers must be in range r0-r7 or lr"); 6346 if (validatetSTMRegList(Inst, Operands, 2)) 6347 return true; 6348 break; 6349 } 6350 case ARM::tSTMIA_UPD: { 6351 bool ListContainsBase, InvalidLowList; 6352 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6353 0, ListContainsBase); 6354 if (InvalidLowList && !isThumbTwo()) 6355 return Error(Operands[4]->getStartLoc(), 6356 "registers must be in range r0-r7"); 6357 6358 // This would be converted to a 32-bit stm, but that's not valid if the 6359 // writeback register is in the list. 6360 if (InvalidLowList && ListContainsBase) 6361 return Error(Operands[4]->getStartLoc(), 6362 "writeback operator '!' not allowed when base register " 6363 "in register list"); 6364 6365 if (validatetSTMRegList(Inst, Operands, 4)) 6366 return true; 6367 break; 6368 } 6369 case ARM::tADDrSP: { 6370 // If the non-SP source operand and the destination operand are not the 6371 // same, we need thumb2 (for the wide encoding), or we have an error. 6372 if (!isThumbTwo() && 6373 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6374 return Error(Operands[4]->getStartLoc(), 6375 "source register must be the same as destination"); 6376 } 6377 break; 6378 } 6379 // Final range checking for Thumb unconditional branch instructions. 6380 case ARM::tB: 6381 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6382 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6383 break; 6384 case ARM::t2B: { 6385 int op = (Operands[2]->isImm()) ? 2 : 3; 6386 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6387 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6388 break; 6389 } 6390 // Final range checking for Thumb conditional branch instructions. 6391 case ARM::tBcc: 6392 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6393 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6394 break; 6395 case ARM::t2Bcc: { 6396 int Op = (Operands[2]->isImm()) ? 2 : 3; 6397 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6398 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6399 break; 6400 } 6401 case ARM::MOVi16: 6402 case ARM::t2MOVi16: 6403 case ARM::t2MOVTi16: 6404 { 6405 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6406 // especially when we turn it into a movw and the expression <symbol> does 6407 // not have a :lower16: or :upper16 as part of the expression. We don't 6408 // want the behavior of silently truncating, which can be unexpected and 6409 // lead to bugs that are difficult to find since this is an easy mistake 6410 // to make. 6411 int i = (Operands[3]->isImm()) ? 3 : 4; 6412 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6413 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6414 if (CE) break; 6415 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6416 if (!E) break; 6417 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6418 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6419 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6420 return Error( 6421 Op.getStartLoc(), 6422 "immediate expression for mov requires :lower16: or :upper16"); 6423 break; 6424 } 6425 } 6426 6427 return false; 6428 } 6429 6430 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6431 switch(Opc) { 6432 default: llvm_unreachable("unexpected opcode!"); 6433 // VST1LN 6434 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6435 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6436 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6437 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6438 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6439 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6440 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6441 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6442 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6443 6444 // VST2LN 6445 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6446 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6447 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6448 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6449 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6450 6451 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6452 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6453 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6454 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6455 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6456 6457 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6458 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6459 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6460 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6461 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6462 6463 // VST3LN 6464 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6465 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6466 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6467 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6468 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6469 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6470 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6471 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6472 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6473 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6474 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6475 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6476 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6477 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6478 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6479 6480 // VST3 6481 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6482 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6483 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6484 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6485 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6486 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6487 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6488 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6489 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6490 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6491 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6492 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6493 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6494 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6495 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6496 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6497 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6498 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6499 6500 // VST4LN 6501 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6502 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6503 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6504 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6505 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6506 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6507 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6508 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6509 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6510 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6511 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6512 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6513 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6514 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6515 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6516 6517 // VST4 6518 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6519 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6520 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6521 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6522 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6523 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6524 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6525 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6526 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6527 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6528 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6529 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6530 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6531 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6532 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6533 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6534 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6535 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6536 } 6537 } 6538 6539 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6540 switch(Opc) { 6541 default: llvm_unreachable("unexpected opcode!"); 6542 // VLD1LN 6543 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6544 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6545 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6546 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6547 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6548 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6549 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6550 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6551 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6552 6553 // VLD2LN 6554 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6555 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6556 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6557 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6558 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6559 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6560 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6561 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6562 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6563 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6564 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6565 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6566 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6567 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6568 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6569 6570 // VLD3DUP 6571 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6572 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6573 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6574 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6575 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6576 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6577 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6578 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6579 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6580 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6581 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6582 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6583 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6584 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6585 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6586 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6587 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6588 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6589 6590 // VLD3LN 6591 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6592 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6593 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6594 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6595 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6596 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6597 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6598 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6599 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6600 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6601 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6602 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6603 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6604 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6605 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6606 6607 // VLD3 6608 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6609 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6610 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6611 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6612 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6613 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6614 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6615 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6616 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6617 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6618 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6619 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6620 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6621 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6622 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6623 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6624 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6625 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6626 6627 // VLD4LN 6628 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6629 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6630 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6631 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6632 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6633 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6634 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6635 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6636 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6637 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6638 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6639 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6640 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6641 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6642 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6643 6644 // VLD4DUP 6645 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6646 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6647 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6648 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6649 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6650 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6651 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6652 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6653 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6654 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6655 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6656 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6657 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6658 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6659 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6660 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6661 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6662 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6663 6664 // VLD4 6665 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6666 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6667 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6668 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6669 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6670 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6671 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6672 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6673 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6674 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6675 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6676 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6677 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6678 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6679 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6680 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6681 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6682 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6683 } 6684 } 6685 6686 bool ARMAsmParser::processInstruction(MCInst &Inst, 6687 const OperandVector &Operands, 6688 MCStreamer &Out) { 6689 switch (Inst.getOpcode()) { 6690 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6691 case ARM::LDRT_POST: 6692 case ARM::LDRBT_POST: { 6693 const unsigned Opcode = 6694 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6695 : ARM::LDRBT_POST_IMM; 6696 MCInst TmpInst; 6697 TmpInst.setOpcode(Opcode); 6698 TmpInst.addOperand(Inst.getOperand(0)); 6699 TmpInst.addOperand(Inst.getOperand(1)); 6700 TmpInst.addOperand(Inst.getOperand(1)); 6701 TmpInst.addOperand(MCOperand::CreateReg(0)); 6702 TmpInst.addOperand(MCOperand::CreateImm(0)); 6703 TmpInst.addOperand(Inst.getOperand(2)); 6704 TmpInst.addOperand(Inst.getOperand(3)); 6705 Inst = TmpInst; 6706 return true; 6707 } 6708 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6709 case ARM::STRT_POST: 6710 case ARM::STRBT_POST: { 6711 const unsigned Opcode = 6712 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6713 : ARM::STRBT_POST_IMM; 6714 MCInst TmpInst; 6715 TmpInst.setOpcode(Opcode); 6716 TmpInst.addOperand(Inst.getOperand(1)); 6717 TmpInst.addOperand(Inst.getOperand(0)); 6718 TmpInst.addOperand(Inst.getOperand(1)); 6719 TmpInst.addOperand(MCOperand::CreateReg(0)); 6720 TmpInst.addOperand(MCOperand::CreateImm(0)); 6721 TmpInst.addOperand(Inst.getOperand(2)); 6722 TmpInst.addOperand(Inst.getOperand(3)); 6723 Inst = TmpInst; 6724 return true; 6725 } 6726 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6727 case ARM::ADDri: { 6728 if (Inst.getOperand(1).getReg() != ARM::PC || 6729 Inst.getOperand(5).getReg() != 0 || 6730 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6731 return false; 6732 MCInst TmpInst; 6733 TmpInst.setOpcode(ARM::ADR); 6734 TmpInst.addOperand(Inst.getOperand(0)); 6735 if (Inst.getOperand(2).isImm()) { 6736 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6737 // before passing it to the ADR instruction. 6738 unsigned Enc = Inst.getOperand(2).getImm(); 6739 TmpInst.addOperand(MCOperand::CreateImm( 6740 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6741 } else { 6742 // Turn PC-relative expression into absolute expression. 6743 // Reading PC provides the start of the current instruction + 8 and 6744 // the transform to adr is biased by that. 6745 MCSymbol *Dot = getContext().CreateTempSymbol(); 6746 Out.EmitLabel(Dot); 6747 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6748 const MCExpr *InstPC = MCSymbolRefExpr::Create(Dot, 6749 MCSymbolRefExpr::VK_None, 6750 getContext()); 6751 const MCExpr *Const8 = MCConstantExpr::Create(8, getContext()); 6752 const MCExpr *ReadPC = MCBinaryExpr::CreateAdd(InstPC, Const8, 6753 getContext()); 6754 const MCExpr *FixupAddr = MCBinaryExpr::CreateAdd(ReadPC, OpExpr, 6755 getContext()); 6756 TmpInst.addOperand(MCOperand::CreateExpr(FixupAddr)); 6757 } 6758 TmpInst.addOperand(Inst.getOperand(3)); 6759 TmpInst.addOperand(Inst.getOperand(4)); 6760 Inst = TmpInst; 6761 return true; 6762 } 6763 // Aliases for alternate PC+imm syntax of LDR instructions. 6764 case ARM::t2LDRpcrel: 6765 // Select the narrow version if the immediate will fit. 6766 if (Inst.getOperand(1).getImm() > 0 && 6767 Inst.getOperand(1).getImm() <= 0xff && 6768 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 6769 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 6770 Inst.setOpcode(ARM::tLDRpci); 6771 else 6772 Inst.setOpcode(ARM::t2LDRpci); 6773 return true; 6774 case ARM::t2LDRBpcrel: 6775 Inst.setOpcode(ARM::t2LDRBpci); 6776 return true; 6777 case ARM::t2LDRHpcrel: 6778 Inst.setOpcode(ARM::t2LDRHpci); 6779 return true; 6780 case ARM::t2LDRSBpcrel: 6781 Inst.setOpcode(ARM::t2LDRSBpci); 6782 return true; 6783 case ARM::t2LDRSHpcrel: 6784 Inst.setOpcode(ARM::t2LDRSHpci); 6785 return true; 6786 // Handle NEON VST complex aliases. 6787 case ARM::VST1LNdWB_register_Asm_8: 6788 case ARM::VST1LNdWB_register_Asm_16: 6789 case ARM::VST1LNdWB_register_Asm_32: { 6790 MCInst TmpInst; 6791 // Shuffle the operands around so the lane index operand is in the 6792 // right place. 6793 unsigned Spacing; 6794 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6795 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6796 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6797 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6798 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6799 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6800 TmpInst.addOperand(Inst.getOperand(1)); // lane 6801 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6802 TmpInst.addOperand(Inst.getOperand(6)); 6803 Inst = TmpInst; 6804 return true; 6805 } 6806 6807 case ARM::VST2LNdWB_register_Asm_8: 6808 case ARM::VST2LNdWB_register_Asm_16: 6809 case ARM::VST2LNdWB_register_Asm_32: 6810 case ARM::VST2LNqWB_register_Asm_16: 6811 case ARM::VST2LNqWB_register_Asm_32: { 6812 MCInst TmpInst; 6813 // Shuffle the operands around so the lane index operand is in the 6814 // right place. 6815 unsigned Spacing; 6816 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6817 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6818 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6819 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6820 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6821 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6822 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6823 Spacing)); 6824 TmpInst.addOperand(Inst.getOperand(1)); // lane 6825 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6826 TmpInst.addOperand(Inst.getOperand(6)); 6827 Inst = TmpInst; 6828 return true; 6829 } 6830 6831 case ARM::VST3LNdWB_register_Asm_8: 6832 case ARM::VST3LNdWB_register_Asm_16: 6833 case ARM::VST3LNdWB_register_Asm_32: 6834 case ARM::VST3LNqWB_register_Asm_16: 6835 case ARM::VST3LNqWB_register_Asm_32: { 6836 MCInst TmpInst; 6837 // Shuffle the operands around so the lane index operand is in the 6838 // right place. 6839 unsigned Spacing; 6840 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6841 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6842 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6843 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6844 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6845 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6846 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6847 Spacing)); 6848 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6849 Spacing * 2)); 6850 TmpInst.addOperand(Inst.getOperand(1)); // lane 6851 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6852 TmpInst.addOperand(Inst.getOperand(6)); 6853 Inst = TmpInst; 6854 return true; 6855 } 6856 6857 case ARM::VST4LNdWB_register_Asm_8: 6858 case ARM::VST4LNdWB_register_Asm_16: 6859 case ARM::VST4LNdWB_register_Asm_32: 6860 case ARM::VST4LNqWB_register_Asm_16: 6861 case ARM::VST4LNqWB_register_Asm_32: { 6862 MCInst TmpInst; 6863 // Shuffle the operands around so the lane index operand is in the 6864 // right place. 6865 unsigned Spacing; 6866 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6867 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6868 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6869 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6870 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6871 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6872 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6873 Spacing)); 6874 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6875 Spacing * 2)); 6876 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6877 Spacing * 3)); 6878 TmpInst.addOperand(Inst.getOperand(1)); // lane 6879 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6880 TmpInst.addOperand(Inst.getOperand(6)); 6881 Inst = TmpInst; 6882 return true; 6883 } 6884 6885 case ARM::VST1LNdWB_fixed_Asm_8: 6886 case ARM::VST1LNdWB_fixed_Asm_16: 6887 case ARM::VST1LNdWB_fixed_Asm_32: { 6888 MCInst TmpInst; 6889 // Shuffle the operands around so the lane index operand is in the 6890 // right place. 6891 unsigned Spacing; 6892 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6893 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6894 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6895 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6896 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 6897 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6898 TmpInst.addOperand(Inst.getOperand(1)); // lane 6899 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6900 TmpInst.addOperand(Inst.getOperand(5)); 6901 Inst = TmpInst; 6902 return true; 6903 } 6904 6905 case ARM::VST2LNdWB_fixed_Asm_8: 6906 case ARM::VST2LNdWB_fixed_Asm_16: 6907 case ARM::VST2LNdWB_fixed_Asm_32: 6908 case ARM::VST2LNqWB_fixed_Asm_16: 6909 case ARM::VST2LNqWB_fixed_Asm_32: { 6910 MCInst TmpInst; 6911 // Shuffle the operands around so the lane index operand is in the 6912 // right place. 6913 unsigned Spacing; 6914 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6915 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6916 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6917 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6918 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 6919 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6920 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6921 Spacing)); 6922 TmpInst.addOperand(Inst.getOperand(1)); // lane 6923 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6924 TmpInst.addOperand(Inst.getOperand(5)); 6925 Inst = TmpInst; 6926 return true; 6927 } 6928 6929 case ARM::VST3LNdWB_fixed_Asm_8: 6930 case ARM::VST3LNdWB_fixed_Asm_16: 6931 case ARM::VST3LNdWB_fixed_Asm_32: 6932 case ARM::VST3LNqWB_fixed_Asm_16: 6933 case ARM::VST3LNqWB_fixed_Asm_32: { 6934 MCInst TmpInst; 6935 // Shuffle the operands around so the lane index operand is in the 6936 // right place. 6937 unsigned Spacing; 6938 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6939 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6940 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6941 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6942 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 6943 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6944 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6945 Spacing)); 6946 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6947 Spacing * 2)); 6948 TmpInst.addOperand(Inst.getOperand(1)); // lane 6949 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6950 TmpInst.addOperand(Inst.getOperand(5)); 6951 Inst = TmpInst; 6952 return true; 6953 } 6954 6955 case ARM::VST4LNdWB_fixed_Asm_8: 6956 case ARM::VST4LNdWB_fixed_Asm_16: 6957 case ARM::VST4LNdWB_fixed_Asm_32: 6958 case ARM::VST4LNqWB_fixed_Asm_16: 6959 case ARM::VST4LNqWB_fixed_Asm_32: { 6960 MCInst TmpInst; 6961 // Shuffle the operands around so the lane index operand is in the 6962 // right place. 6963 unsigned Spacing; 6964 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6965 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6966 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6967 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6968 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 6969 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6970 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6971 Spacing)); 6972 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6973 Spacing * 2)); 6974 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 6975 Spacing * 3)); 6976 TmpInst.addOperand(Inst.getOperand(1)); // lane 6977 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6978 TmpInst.addOperand(Inst.getOperand(5)); 6979 Inst = TmpInst; 6980 return true; 6981 } 6982 6983 case ARM::VST1LNdAsm_8: 6984 case ARM::VST1LNdAsm_16: 6985 case ARM::VST1LNdAsm_32: { 6986 MCInst TmpInst; 6987 // Shuffle the operands around so the lane index operand is in the 6988 // right place. 6989 unsigned Spacing; 6990 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6991 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6992 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6993 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6994 TmpInst.addOperand(Inst.getOperand(1)); // lane 6995 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6996 TmpInst.addOperand(Inst.getOperand(5)); 6997 Inst = TmpInst; 6998 return true; 6999 } 7000 7001 case ARM::VST2LNdAsm_8: 7002 case ARM::VST2LNdAsm_16: 7003 case ARM::VST2LNdAsm_32: 7004 case ARM::VST2LNqAsm_16: 7005 case ARM::VST2LNqAsm_32: { 7006 MCInst TmpInst; 7007 // Shuffle the operands around so the lane index operand is in the 7008 // right place. 7009 unsigned Spacing; 7010 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7011 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7012 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7013 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7014 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7015 Spacing)); 7016 TmpInst.addOperand(Inst.getOperand(1)); // lane 7017 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7018 TmpInst.addOperand(Inst.getOperand(5)); 7019 Inst = TmpInst; 7020 return true; 7021 } 7022 7023 case ARM::VST3LNdAsm_8: 7024 case ARM::VST3LNdAsm_16: 7025 case ARM::VST3LNdAsm_32: 7026 case ARM::VST3LNqAsm_16: 7027 case ARM::VST3LNqAsm_32: { 7028 MCInst TmpInst; 7029 // Shuffle the operands around so the lane index operand is in the 7030 // right place. 7031 unsigned Spacing; 7032 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7033 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7034 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7035 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7036 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7037 Spacing)); 7038 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7039 Spacing * 2)); 7040 TmpInst.addOperand(Inst.getOperand(1)); // lane 7041 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7042 TmpInst.addOperand(Inst.getOperand(5)); 7043 Inst = TmpInst; 7044 return true; 7045 } 7046 7047 case ARM::VST4LNdAsm_8: 7048 case ARM::VST4LNdAsm_16: 7049 case ARM::VST4LNdAsm_32: 7050 case ARM::VST4LNqAsm_16: 7051 case ARM::VST4LNqAsm_32: { 7052 MCInst TmpInst; 7053 // Shuffle the operands around so the lane index operand is in the 7054 // right place. 7055 unsigned Spacing; 7056 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7057 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7058 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7059 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7060 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7061 Spacing)); 7062 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7063 Spacing * 2)); 7064 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7065 Spacing * 3)); 7066 TmpInst.addOperand(Inst.getOperand(1)); // lane 7067 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7068 TmpInst.addOperand(Inst.getOperand(5)); 7069 Inst = TmpInst; 7070 return true; 7071 } 7072 7073 // Handle NEON VLD complex aliases. 7074 case ARM::VLD1LNdWB_register_Asm_8: 7075 case ARM::VLD1LNdWB_register_Asm_16: 7076 case ARM::VLD1LNdWB_register_Asm_32: { 7077 MCInst TmpInst; 7078 // Shuffle the operands around so the lane index operand is in the 7079 // right place. 7080 unsigned Spacing; 7081 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7082 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7083 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7084 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7085 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7086 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7087 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7088 TmpInst.addOperand(Inst.getOperand(1)); // lane 7089 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7090 TmpInst.addOperand(Inst.getOperand(6)); 7091 Inst = TmpInst; 7092 return true; 7093 } 7094 7095 case ARM::VLD2LNdWB_register_Asm_8: 7096 case ARM::VLD2LNdWB_register_Asm_16: 7097 case ARM::VLD2LNdWB_register_Asm_32: 7098 case ARM::VLD2LNqWB_register_Asm_16: 7099 case ARM::VLD2LNqWB_register_Asm_32: { 7100 MCInst TmpInst; 7101 // Shuffle the operands around so the lane index operand is in the 7102 // right place. 7103 unsigned Spacing; 7104 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7105 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7106 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7107 Spacing)); 7108 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7109 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7110 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7111 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7112 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7113 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7114 Spacing)); 7115 TmpInst.addOperand(Inst.getOperand(1)); // lane 7116 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7117 TmpInst.addOperand(Inst.getOperand(6)); 7118 Inst = TmpInst; 7119 return true; 7120 } 7121 7122 case ARM::VLD3LNdWB_register_Asm_8: 7123 case ARM::VLD3LNdWB_register_Asm_16: 7124 case ARM::VLD3LNdWB_register_Asm_32: 7125 case ARM::VLD3LNqWB_register_Asm_16: 7126 case ARM::VLD3LNqWB_register_Asm_32: { 7127 MCInst TmpInst; 7128 // Shuffle the operands around so the lane index operand is in the 7129 // right place. 7130 unsigned Spacing; 7131 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7132 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7133 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7134 Spacing)); 7135 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7136 Spacing * 2)); 7137 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7138 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7139 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7140 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7141 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7142 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7143 Spacing)); 7144 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7145 Spacing * 2)); 7146 TmpInst.addOperand(Inst.getOperand(1)); // lane 7147 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7148 TmpInst.addOperand(Inst.getOperand(6)); 7149 Inst = TmpInst; 7150 return true; 7151 } 7152 7153 case ARM::VLD4LNdWB_register_Asm_8: 7154 case ARM::VLD4LNdWB_register_Asm_16: 7155 case ARM::VLD4LNdWB_register_Asm_32: 7156 case ARM::VLD4LNqWB_register_Asm_16: 7157 case ARM::VLD4LNqWB_register_Asm_32: { 7158 MCInst TmpInst; 7159 // Shuffle the operands around so the lane index operand is in the 7160 // right place. 7161 unsigned Spacing; 7162 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7163 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7164 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7165 Spacing)); 7166 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7167 Spacing * 2)); 7168 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7169 Spacing * 3)); 7170 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7171 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7172 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7173 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7174 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7175 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7176 Spacing)); 7177 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7178 Spacing * 2)); 7179 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7180 Spacing * 3)); 7181 TmpInst.addOperand(Inst.getOperand(1)); // lane 7182 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7183 TmpInst.addOperand(Inst.getOperand(6)); 7184 Inst = TmpInst; 7185 return true; 7186 } 7187 7188 case ARM::VLD1LNdWB_fixed_Asm_8: 7189 case ARM::VLD1LNdWB_fixed_Asm_16: 7190 case ARM::VLD1LNdWB_fixed_Asm_32: { 7191 MCInst TmpInst; 7192 // Shuffle the operands around so the lane index operand is in the 7193 // right place. 7194 unsigned Spacing; 7195 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7196 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7197 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7198 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7199 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7200 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7201 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7202 TmpInst.addOperand(Inst.getOperand(1)); // lane 7203 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7204 TmpInst.addOperand(Inst.getOperand(5)); 7205 Inst = TmpInst; 7206 return true; 7207 } 7208 7209 case ARM::VLD2LNdWB_fixed_Asm_8: 7210 case ARM::VLD2LNdWB_fixed_Asm_16: 7211 case ARM::VLD2LNdWB_fixed_Asm_32: 7212 case ARM::VLD2LNqWB_fixed_Asm_16: 7213 case ARM::VLD2LNqWB_fixed_Asm_32: { 7214 MCInst TmpInst; 7215 // Shuffle the operands around so the lane index operand is in the 7216 // right place. 7217 unsigned Spacing; 7218 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7219 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7220 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7221 Spacing)); 7222 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7223 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7224 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7225 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7226 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7227 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7228 Spacing)); 7229 TmpInst.addOperand(Inst.getOperand(1)); // lane 7230 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7231 TmpInst.addOperand(Inst.getOperand(5)); 7232 Inst = TmpInst; 7233 return true; 7234 } 7235 7236 case ARM::VLD3LNdWB_fixed_Asm_8: 7237 case ARM::VLD3LNdWB_fixed_Asm_16: 7238 case ARM::VLD3LNdWB_fixed_Asm_32: 7239 case ARM::VLD3LNqWB_fixed_Asm_16: 7240 case ARM::VLD3LNqWB_fixed_Asm_32: { 7241 MCInst TmpInst; 7242 // Shuffle the operands around so the lane index operand is in the 7243 // right place. 7244 unsigned Spacing; 7245 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7246 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7247 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7248 Spacing)); 7249 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7250 Spacing * 2)); 7251 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7252 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7253 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7254 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7255 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7256 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7257 Spacing)); 7258 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7259 Spacing * 2)); 7260 TmpInst.addOperand(Inst.getOperand(1)); // lane 7261 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7262 TmpInst.addOperand(Inst.getOperand(5)); 7263 Inst = TmpInst; 7264 return true; 7265 } 7266 7267 case ARM::VLD4LNdWB_fixed_Asm_8: 7268 case ARM::VLD4LNdWB_fixed_Asm_16: 7269 case ARM::VLD4LNdWB_fixed_Asm_32: 7270 case ARM::VLD4LNqWB_fixed_Asm_16: 7271 case ARM::VLD4LNqWB_fixed_Asm_32: { 7272 MCInst TmpInst; 7273 // Shuffle the operands around so the lane index operand is in the 7274 // right place. 7275 unsigned Spacing; 7276 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7277 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7278 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7279 Spacing)); 7280 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7281 Spacing * 2)); 7282 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7283 Spacing * 3)); 7284 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7285 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7286 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7287 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7288 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7289 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7290 Spacing)); 7291 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7292 Spacing * 2)); 7293 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7294 Spacing * 3)); 7295 TmpInst.addOperand(Inst.getOperand(1)); // lane 7296 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7297 TmpInst.addOperand(Inst.getOperand(5)); 7298 Inst = TmpInst; 7299 return true; 7300 } 7301 7302 case ARM::VLD1LNdAsm_8: 7303 case ARM::VLD1LNdAsm_16: 7304 case ARM::VLD1LNdAsm_32: { 7305 MCInst TmpInst; 7306 // Shuffle the operands around so the lane index operand is in the 7307 // right place. 7308 unsigned Spacing; 7309 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7310 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7311 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7312 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7313 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7314 TmpInst.addOperand(Inst.getOperand(1)); // lane 7315 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7316 TmpInst.addOperand(Inst.getOperand(5)); 7317 Inst = TmpInst; 7318 return true; 7319 } 7320 7321 case ARM::VLD2LNdAsm_8: 7322 case ARM::VLD2LNdAsm_16: 7323 case ARM::VLD2LNdAsm_32: 7324 case ARM::VLD2LNqAsm_16: 7325 case ARM::VLD2LNqAsm_32: { 7326 MCInst TmpInst; 7327 // Shuffle the operands around so the lane index operand is in the 7328 // right place. 7329 unsigned Spacing; 7330 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7331 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7332 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7333 Spacing)); 7334 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7335 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7336 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7337 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7338 Spacing)); 7339 TmpInst.addOperand(Inst.getOperand(1)); // lane 7340 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7341 TmpInst.addOperand(Inst.getOperand(5)); 7342 Inst = TmpInst; 7343 return true; 7344 } 7345 7346 case ARM::VLD3LNdAsm_8: 7347 case ARM::VLD3LNdAsm_16: 7348 case ARM::VLD3LNdAsm_32: 7349 case ARM::VLD3LNqAsm_16: 7350 case ARM::VLD3LNqAsm_32: { 7351 MCInst TmpInst; 7352 // Shuffle the operands around so the lane index operand is in the 7353 // right place. 7354 unsigned Spacing; 7355 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7356 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7357 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7358 Spacing)); 7359 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7360 Spacing * 2)); 7361 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7362 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7363 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7364 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7365 Spacing)); 7366 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7367 Spacing * 2)); 7368 TmpInst.addOperand(Inst.getOperand(1)); // lane 7369 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7370 TmpInst.addOperand(Inst.getOperand(5)); 7371 Inst = TmpInst; 7372 return true; 7373 } 7374 7375 case ARM::VLD4LNdAsm_8: 7376 case ARM::VLD4LNdAsm_16: 7377 case ARM::VLD4LNdAsm_32: 7378 case ARM::VLD4LNqAsm_16: 7379 case ARM::VLD4LNqAsm_32: { 7380 MCInst TmpInst; 7381 // Shuffle the operands around so the lane index operand is in the 7382 // right place. 7383 unsigned Spacing; 7384 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7385 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7386 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7387 Spacing)); 7388 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7389 Spacing * 2)); 7390 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7391 Spacing * 3)); 7392 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7393 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7394 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7395 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7396 Spacing)); 7397 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7398 Spacing * 2)); 7399 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7400 Spacing * 3)); 7401 TmpInst.addOperand(Inst.getOperand(1)); // lane 7402 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7403 TmpInst.addOperand(Inst.getOperand(5)); 7404 Inst = TmpInst; 7405 return true; 7406 } 7407 7408 // VLD3DUP single 3-element structure to all lanes instructions. 7409 case ARM::VLD3DUPdAsm_8: 7410 case ARM::VLD3DUPdAsm_16: 7411 case ARM::VLD3DUPdAsm_32: 7412 case ARM::VLD3DUPqAsm_8: 7413 case ARM::VLD3DUPqAsm_16: 7414 case ARM::VLD3DUPqAsm_32: { 7415 MCInst TmpInst; 7416 unsigned Spacing; 7417 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7418 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7419 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7420 Spacing)); 7421 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7422 Spacing * 2)); 7423 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7424 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7425 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7426 TmpInst.addOperand(Inst.getOperand(4)); 7427 Inst = TmpInst; 7428 return true; 7429 } 7430 7431 case ARM::VLD3DUPdWB_fixed_Asm_8: 7432 case ARM::VLD3DUPdWB_fixed_Asm_16: 7433 case ARM::VLD3DUPdWB_fixed_Asm_32: 7434 case ARM::VLD3DUPqWB_fixed_Asm_8: 7435 case ARM::VLD3DUPqWB_fixed_Asm_16: 7436 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7437 MCInst TmpInst; 7438 unsigned Spacing; 7439 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7440 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7441 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7442 Spacing)); 7443 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7444 Spacing * 2)); 7445 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7446 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7447 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7448 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7449 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7450 TmpInst.addOperand(Inst.getOperand(4)); 7451 Inst = TmpInst; 7452 return true; 7453 } 7454 7455 case ARM::VLD3DUPdWB_register_Asm_8: 7456 case ARM::VLD3DUPdWB_register_Asm_16: 7457 case ARM::VLD3DUPdWB_register_Asm_32: 7458 case ARM::VLD3DUPqWB_register_Asm_8: 7459 case ARM::VLD3DUPqWB_register_Asm_16: 7460 case ARM::VLD3DUPqWB_register_Asm_32: { 7461 MCInst TmpInst; 7462 unsigned Spacing; 7463 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7464 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7465 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7466 Spacing)); 7467 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7468 Spacing * 2)); 7469 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7470 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7471 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7472 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7473 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7474 TmpInst.addOperand(Inst.getOperand(5)); 7475 Inst = TmpInst; 7476 return true; 7477 } 7478 7479 // VLD3 multiple 3-element structure instructions. 7480 case ARM::VLD3dAsm_8: 7481 case ARM::VLD3dAsm_16: 7482 case ARM::VLD3dAsm_32: 7483 case ARM::VLD3qAsm_8: 7484 case ARM::VLD3qAsm_16: 7485 case ARM::VLD3qAsm_32: { 7486 MCInst TmpInst; 7487 unsigned Spacing; 7488 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7489 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7490 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7491 Spacing)); 7492 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7493 Spacing * 2)); 7494 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7495 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7496 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7497 TmpInst.addOperand(Inst.getOperand(4)); 7498 Inst = TmpInst; 7499 return true; 7500 } 7501 7502 case ARM::VLD3dWB_fixed_Asm_8: 7503 case ARM::VLD3dWB_fixed_Asm_16: 7504 case ARM::VLD3dWB_fixed_Asm_32: 7505 case ARM::VLD3qWB_fixed_Asm_8: 7506 case ARM::VLD3qWB_fixed_Asm_16: 7507 case ARM::VLD3qWB_fixed_Asm_32: { 7508 MCInst TmpInst; 7509 unsigned Spacing; 7510 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7511 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7512 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7513 Spacing)); 7514 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7515 Spacing * 2)); 7516 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7517 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7518 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7519 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7520 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7521 TmpInst.addOperand(Inst.getOperand(4)); 7522 Inst = TmpInst; 7523 return true; 7524 } 7525 7526 case ARM::VLD3dWB_register_Asm_8: 7527 case ARM::VLD3dWB_register_Asm_16: 7528 case ARM::VLD3dWB_register_Asm_32: 7529 case ARM::VLD3qWB_register_Asm_8: 7530 case ARM::VLD3qWB_register_Asm_16: 7531 case ARM::VLD3qWB_register_Asm_32: { 7532 MCInst TmpInst; 7533 unsigned Spacing; 7534 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7535 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7536 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7537 Spacing)); 7538 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7539 Spacing * 2)); 7540 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7541 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7542 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7543 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7544 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7545 TmpInst.addOperand(Inst.getOperand(5)); 7546 Inst = TmpInst; 7547 return true; 7548 } 7549 7550 // VLD4DUP single 3-element structure to all lanes instructions. 7551 case ARM::VLD4DUPdAsm_8: 7552 case ARM::VLD4DUPdAsm_16: 7553 case ARM::VLD4DUPdAsm_32: 7554 case ARM::VLD4DUPqAsm_8: 7555 case ARM::VLD4DUPqAsm_16: 7556 case ARM::VLD4DUPqAsm_32: { 7557 MCInst TmpInst; 7558 unsigned Spacing; 7559 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7560 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7561 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7562 Spacing)); 7563 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7564 Spacing * 2)); 7565 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7566 Spacing * 3)); 7567 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7568 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7569 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7570 TmpInst.addOperand(Inst.getOperand(4)); 7571 Inst = TmpInst; 7572 return true; 7573 } 7574 7575 case ARM::VLD4DUPdWB_fixed_Asm_8: 7576 case ARM::VLD4DUPdWB_fixed_Asm_16: 7577 case ARM::VLD4DUPdWB_fixed_Asm_32: 7578 case ARM::VLD4DUPqWB_fixed_Asm_8: 7579 case ARM::VLD4DUPqWB_fixed_Asm_16: 7580 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7581 MCInst TmpInst; 7582 unsigned Spacing; 7583 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7584 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7585 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7586 Spacing)); 7587 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7588 Spacing * 2)); 7589 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7590 Spacing * 3)); 7591 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7592 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7593 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7594 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7595 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7596 TmpInst.addOperand(Inst.getOperand(4)); 7597 Inst = TmpInst; 7598 return true; 7599 } 7600 7601 case ARM::VLD4DUPdWB_register_Asm_8: 7602 case ARM::VLD4DUPdWB_register_Asm_16: 7603 case ARM::VLD4DUPdWB_register_Asm_32: 7604 case ARM::VLD4DUPqWB_register_Asm_8: 7605 case ARM::VLD4DUPqWB_register_Asm_16: 7606 case ARM::VLD4DUPqWB_register_Asm_32: { 7607 MCInst TmpInst; 7608 unsigned Spacing; 7609 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7610 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7611 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7612 Spacing)); 7613 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7614 Spacing * 2)); 7615 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7616 Spacing * 3)); 7617 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7618 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7619 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7620 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7621 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7622 TmpInst.addOperand(Inst.getOperand(5)); 7623 Inst = TmpInst; 7624 return true; 7625 } 7626 7627 // VLD4 multiple 4-element structure instructions. 7628 case ARM::VLD4dAsm_8: 7629 case ARM::VLD4dAsm_16: 7630 case ARM::VLD4dAsm_32: 7631 case ARM::VLD4qAsm_8: 7632 case ARM::VLD4qAsm_16: 7633 case ARM::VLD4qAsm_32: { 7634 MCInst TmpInst; 7635 unsigned Spacing; 7636 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7637 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7638 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7639 Spacing)); 7640 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7641 Spacing * 2)); 7642 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7643 Spacing * 3)); 7644 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7645 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7646 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7647 TmpInst.addOperand(Inst.getOperand(4)); 7648 Inst = TmpInst; 7649 return true; 7650 } 7651 7652 case ARM::VLD4dWB_fixed_Asm_8: 7653 case ARM::VLD4dWB_fixed_Asm_16: 7654 case ARM::VLD4dWB_fixed_Asm_32: 7655 case ARM::VLD4qWB_fixed_Asm_8: 7656 case ARM::VLD4qWB_fixed_Asm_16: 7657 case ARM::VLD4qWB_fixed_Asm_32: { 7658 MCInst TmpInst; 7659 unsigned Spacing; 7660 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7661 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7662 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7663 Spacing)); 7664 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7665 Spacing * 2)); 7666 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7667 Spacing * 3)); 7668 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7669 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7670 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7671 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7672 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7673 TmpInst.addOperand(Inst.getOperand(4)); 7674 Inst = TmpInst; 7675 return true; 7676 } 7677 7678 case ARM::VLD4dWB_register_Asm_8: 7679 case ARM::VLD4dWB_register_Asm_16: 7680 case ARM::VLD4dWB_register_Asm_32: 7681 case ARM::VLD4qWB_register_Asm_8: 7682 case ARM::VLD4qWB_register_Asm_16: 7683 case ARM::VLD4qWB_register_Asm_32: { 7684 MCInst TmpInst; 7685 unsigned Spacing; 7686 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7687 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7688 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7689 Spacing)); 7690 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7691 Spacing * 2)); 7692 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7693 Spacing * 3)); 7694 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7695 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7696 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7697 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7698 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7699 TmpInst.addOperand(Inst.getOperand(5)); 7700 Inst = TmpInst; 7701 return true; 7702 } 7703 7704 // VST3 multiple 3-element structure instructions. 7705 case ARM::VST3dAsm_8: 7706 case ARM::VST3dAsm_16: 7707 case ARM::VST3dAsm_32: 7708 case ARM::VST3qAsm_8: 7709 case ARM::VST3qAsm_16: 7710 case ARM::VST3qAsm_32: { 7711 MCInst TmpInst; 7712 unsigned Spacing; 7713 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7714 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7715 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7716 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7717 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7718 Spacing)); 7719 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7720 Spacing * 2)); 7721 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7722 TmpInst.addOperand(Inst.getOperand(4)); 7723 Inst = TmpInst; 7724 return true; 7725 } 7726 7727 case ARM::VST3dWB_fixed_Asm_8: 7728 case ARM::VST3dWB_fixed_Asm_16: 7729 case ARM::VST3dWB_fixed_Asm_32: 7730 case ARM::VST3qWB_fixed_Asm_8: 7731 case ARM::VST3qWB_fixed_Asm_16: 7732 case ARM::VST3qWB_fixed_Asm_32: { 7733 MCInst TmpInst; 7734 unsigned Spacing; 7735 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7736 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7737 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7738 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7739 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7740 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7741 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7742 Spacing)); 7743 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7744 Spacing * 2)); 7745 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7746 TmpInst.addOperand(Inst.getOperand(4)); 7747 Inst = TmpInst; 7748 return true; 7749 } 7750 7751 case ARM::VST3dWB_register_Asm_8: 7752 case ARM::VST3dWB_register_Asm_16: 7753 case ARM::VST3dWB_register_Asm_32: 7754 case ARM::VST3qWB_register_Asm_8: 7755 case ARM::VST3qWB_register_Asm_16: 7756 case ARM::VST3qWB_register_Asm_32: { 7757 MCInst TmpInst; 7758 unsigned Spacing; 7759 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7760 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7761 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7762 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7763 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7764 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7765 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7766 Spacing)); 7767 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7768 Spacing * 2)); 7769 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7770 TmpInst.addOperand(Inst.getOperand(5)); 7771 Inst = TmpInst; 7772 return true; 7773 } 7774 7775 // VST4 multiple 3-element structure instructions. 7776 case ARM::VST4dAsm_8: 7777 case ARM::VST4dAsm_16: 7778 case ARM::VST4dAsm_32: 7779 case ARM::VST4qAsm_8: 7780 case ARM::VST4qAsm_16: 7781 case ARM::VST4qAsm_32: { 7782 MCInst TmpInst; 7783 unsigned Spacing; 7784 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7785 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7786 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7787 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7788 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7789 Spacing)); 7790 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7791 Spacing * 2)); 7792 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7793 Spacing * 3)); 7794 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7795 TmpInst.addOperand(Inst.getOperand(4)); 7796 Inst = TmpInst; 7797 return true; 7798 } 7799 7800 case ARM::VST4dWB_fixed_Asm_8: 7801 case ARM::VST4dWB_fixed_Asm_16: 7802 case ARM::VST4dWB_fixed_Asm_32: 7803 case ARM::VST4qWB_fixed_Asm_8: 7804 case ARM::VST4qWB_fixed_Asm_16: 7805 case ARM::VST4qWB_fixed_Asm_32: { 7806 MCInst TmpInst; 7807 unsigned Spacing; 7808 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7809 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7810 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7811 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7812 TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm 7813 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7814 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7815 Spacing)); 7816 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7817 Spacing * 2)); 7818 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7819 Spacing * 3)); 7820 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7821 TmpInst.addOperand(Inst.getOperand(4)); 7822 Inst = TmpInst; 7823 return true; 7824 } 7825 7826 case ARM::VST4dWB_register_Asm_8: 7827 case ARM::VST4dWB_register_Asm_16: 7828 case ARM::VST4dWB_register_Asm_32: 7829 case ARM::VST4qWB_register_Asm_8: 7830 case ARM::VST4qWB_register_Asm_16: 7831 case ARM::VST4qWB_register_Asm_32: { 7832 MCInst TmpInst; 7833 unsigned Spacing; 7834 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7835 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7836 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7837 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7838 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7839 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7840 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7841 Spacing)); 7842 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7843 Spacing * 2)); 7844 TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() + 7845 Spacing * 3)); 7846 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7847 TmpInst.addOperand(Inst.getOperand(5)); 7848 Inst = TmpInst; 7849 return true; 7850 } 7851 7852 // Handle encoding choice for the shift-immediate instructions. 7853 case ARM::t2LSLri: 7854 case ARM::t2LSRri: 7855 case ARM::t2ASRri: { 7856 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7857 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7858 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 7859 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 7860 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 7861 unsigned NewOpc; 7862 switch (Inst.getOpcode()) { 7863 default: llvm_unreachable("unexpected opcode"); 7864 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 7865 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 7866 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 7867 } 7868 // The Thumb1 operands aren't in the same order. Awesome, eh? 7869 MCInst TmpInst; 7870 TmpInst.setOpcode(NewOpc); 7871 TmpInst.addOperand(Inst.getOperand(0)); 7872 TmpInst.addOperand(Inst.getOperand(5)); 7873 TmpInst.addOperand(Inst.getOperand(1)); 7874 TmpInst.addOperand(Inst.getOperand(2)); 7875 TmpInst.addOperand(Inst.getOperand(3)); 7876 TmpInst.addOperand(Inst.getOperand(4)); 7877 Inst = TmpInst; 7878 return true; 7879 } 7880 return false; 7881 } 7882 7883 // Handle the Thumb2 mode MOV complex aliases. 7884 case ARM::t2MOVsr: 7885 case ARM::t2MOVSsr: { 7886 // Which instruction to expand to depends on the CCOut operand and 7887 // whether we're in an IT block if the register operands are low 7888 // registers. 7889 bool isNarrow = false; 7890 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7891 isARMLowRegister(Inst.getOperand(1).getReg()) && 7892 isARMLowRegister(Inst.getOperand(2).getReg()) && 7893 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7894 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 7895 isNarrow = true; 7896 MCInst TmpInst; 7897 unsigned newOpc; 7898 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 7899 default: llvm_unreachable("unexpected opcode!"); 7900 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 7901 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 7902 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 7903 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 7904 } 7905 TmpInst.setOpcode(newOpc); 7906 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7907 if (isNarrow) 7908 TmpInst.addOperand(MCOperand::CreateReg( 7909 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7910 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7911 TmpInst.addOperand(Inst.getOperand(2)); // Rm 7912 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7913 TmpInst.addOperand(Inst.getOperand(5)); 7914 if (!isNarrow) 7915 TmpInst.addOperand(MCOperand::CreateReg( 7916 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7917 Inst = TmpInst; 7918 return true; 7919 } 7920 case ARM::t2MOVsi: 7921 case ARM::t2MOVSsi: { 7922 // Which instruction to expand to depends on the CCOut operand and 7923 // whether we're in an IT block if the register operands are low 7924 // registers. 7925 bool isNarrow = false; 7926 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7927 isARMLowRegister(Inst.getOperand(1).getReg()) && 7928 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 7929 isNarrow = true; 7930 MCInst TmpInst; 7931 unsigned newOpc; 7932 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { 7933 default: llvm_unreachable("unexpected opcode!"); 7934 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 7935 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 7936 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 7937 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 7938 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 7939 } 7940 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 7941 if (Amount == 32) Amount = 0; 7942 TmpInst.setOpcode(newOpc); 7943 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7944 if (isNarrow) 7945 TmpInst.addOperand(MCOperand::CreateReg( 7946 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7947 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7948 if (newOpc != ARM::t2RRX) 7949 TmpInst.addOperand(MCOperand::CreateImm(Amount)); 7950 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7951 TmpInst.addOperand(Inst.getOperand(4)); 7952 if (!isNarrow) 7953 TmpInst.addOperand(MCOperand::CreateReg( 7954 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7955 Inst = TmpInst; 7956 return true; 7957 } 7958 // Handle the ARM mode MOV complex aliases. 7959 case ARM::ASRr: 7960 case ARM::LSRr: 7961 case ARM::LSLr: 7962 case ARM::RORr: { 7963 ARM_AM::ShiftOpc ShiftTy; 7964 switch(Inst.getOpcode()) { 7965 default: llvm_unreachable("unexpected opcode!"); 7966 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 7967 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 7968 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 7969 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 7970 } 7971 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 7972 MCInst TmpInst; 7973 TmpInst.setOpcode(ARM::MOVsr); 7974 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7975 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7976 TmpInst.addOperand(Inst.getOperand(2)); // Rm 7977 TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty 7978 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7979 TmpInst.addOperand(Inst.getOperand(4)); 7980 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 7981 Inst = TmpInst; 7982 return true; 7983 } 7984 case ARM::ASRi: 7985 case ARM::LSRi: 7986 case ARM::LSLi: 7987 case ARM::RORi: { 7988 ARM_AM::ShiftOpc ShiftTy; 7989 switch(Inst.getOpcode()) { 7990 default: llvm_unreachable("unexpected opcode!"); 7991 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 7992 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 7993 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 7994 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 7995 } 7996 // A shift by zero is a plain MOVr, not a MOVsi. 7997 unsigned Amt = Inst.getOperand(2).getImm(); 7998 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 7999 // A shift by 32 should be encoded as 0 when permitted 8000 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8001 Amt = 0; 8002 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8003 MCInst TmpInst; 8004 TmpInst.setOpcode(Opc); 8005 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8006 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8007 if (Opc == ARM::MOVsi) 8008 TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty 8009 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8010 TmpInst.addOperand(Inst.getOperand(4)); 8011 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8012 Inst = TmpInst; 8013 return true; 8014 } 8015 case ARM::RRXi: { 8016 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8017 MCInst TmpInst; 8018 TmpInst.setOpcode(ARM::MOVsi); 8019 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8020 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8021 TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty 8022 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8023 TmpInst.addOperand(Inst.getOperand(3)); 8024 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8025 Inst = TmpInst; 8026 return true; 8027 } 8028 case ARM::t2LDMIA_UPD: { 8029 // If this is a load of a single register, then we should use 8030 // a post-indexed LDR instruction instead, per the ARM ARM. 8031 if (Inst.getNumOperands() != 5) 8032 return false; 8033 MCInst TmpInst; 8034 TmpInst.setOpcode(ARM::t2LDR_POST); 8035 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8036 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8037 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8038 TmpInst.addOperand(MCOperand::CreateImm(4)); 8039 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8040 TmpInst.addOperand(Inst.getOperand(3)); 8041 Inst = TmpInst; 8042 return true; 8043 } 8044 case ARM::t2STMDB_UPD: { 8045 // If this is a store of a single register, then we should use 8046 // a pre-indexed STR instruction instead, per the ARM ARM. 8047 if (Inst.getNumOperands() != 5) 8048 return false; 8049 MCInst TmpInst; 8050 TmpInst.setOpcode(ARM::t2STR_PRE); 8051 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8052 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8053 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8054 TmpInst.addOperand(MCOperand::CreateImm(-4)); 8055 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8056 TmpInst.addOperand(Inst.getOperand(3)); 8057 Inst = TmpInst; 8058 return true; 8059 } 8060 case ARM::LDMIA_UPD: 8061 // If this is a load of a single register via a 'pop', then we should use 8062 // a post-indexed LDR instruction instead, per the ARM ARM. 8063 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8064 Inst.getNumOperands() == 5) { 8065 MCInst TmpInst; 8066 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8067 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8068 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8069 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8070 TmpInst.addOperand(MCOperand::CreateReg(0)); // am2offset 8071 TmpInst.addOperand(MCOperand::CreateImm(4)); 8072 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8073 TmpInst.addOperand(Inst.getOperand(3)); 8074 Inst = TmpInst; 8075 return true; 8076 } 8077 break; 8078 case ARM::STMDB_UPD: 8079 // If this is a store of a single register via a 'push', then we should use 8080 // a pre-indexed STR instruction instead, per the ARM ARM. 8081 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8082 Inst.getNumOperands() == 5) { 8083 MCInst TmpInst; 8084 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8085 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8086 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8087 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8088 TmpInst.addOperand(MCOperand::CreateImm(-4)); 8089 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8090 TmpInst.addOperand(Inst.getOperand(3)); 8091 Inst = TmpInst; 8092 } 8093 break; 8094 case ARM::t2ADDri12: 8095 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8096 // mnemonic was used (not "addw"), encoding T3 is preferred. 8097 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8098 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8099 break; 8100 Inst.setOpcode(ARM::t2ADDri); 8101 Inst.addOperand(MCOperand::CreateReg(0)); // cc_out 8102 break; 8103 case ARM::t2SUBri12: 8104 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8105 // mnemonic was used (not "subw"), encoding T3 is preferred. 8106 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8107 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8108 break; 8109 Inst.setOpcode(ARM::t2SUBri); 8110 Inst.addOperand(MCOperand::CreateReg(0)); // cc_out 8111 break; 8112 case ARM::tADDi8: 8113 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8114 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8115 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8116 // to encoding T1 if <Rd> is omitted." 8117 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8118 Inst.setOpcode(ARM::tADDi3); 8119 return true; 8120 } 8121 break; 8122 case ARM::tSUBi8: 8123 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8124 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8125 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8126 // to encoding T1 if <Rd> is omitted." 8127 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8128 Inst.setOpcode(ARM::tSUBi3); 8129 return true; 8130 } 8131 break; 8132 case ARM::t2ADDri: 8133 case ARM::t2SUBri: { 8134 // If the destination and first source operand are the same, and 8135 // the flags are compatible with the current IT status, use encoding T2 8136 // instead of T3. For compatibility with the system 'as'. Make sure the 8137 // wide encoding wasn't explicit. 8138 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8139 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8140 (unsigned)Inst.getOperand(2).getImm() > 255 || 8141 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8142 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8143 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8144 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8145 break; 8146 MCInst TmpInst; 8147 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8148 ARM::tADDi8 : ARM::tSUBi8); 8149 TmpInst.addOperand(Inst.getOperand(0)); 8150 TmpInst.addOperand(Inst.getOperand(5)); 8151 TmpInst.addOperand(Inst.getOperand(0)); 8152 TmpInst.addOperand(Inst.getOperand(2)); 8153 TmpInst.addOperand(Inst.getOperand(3)); 8154 TmpInst.addOperand(Inst.getOperand(4)); 8155 Inst = TmpInst; 8156 return true; 8157 } 8158 case ARM::t2ADDrr: { 8159 // If the destination and first source operand are the same, and 8160 // there's no setting of the flags, use encoding T2 instead of T3. 8161 // Note that this is only for ADD, not SUB. This mirrors the system 8162 // 'as' behaviour. Make sure the wide encoding wasn't explicit. 8163 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8164 Inst.getOperand(5).getReg() != 0 || 8165 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8166 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8167 break; 8168 MCInst TmpInst; 8169 TmpInst.setOpcode(ARM::tADDhirr); 8170 TmpInst.addOperand(Inst.getOperand(0)); 8171 TmpInst.addOperand(Inst.getOperand(0)); 8172 TmpInst.addOperand(Inst.getOperand(2)); 8173 TmpInst.addOperand(Inst.getOperand(3)); 8174 TmpInst.addOperand(Inst.getOperand(4)); 8175 Inst = TmpInst; 8176 return true; 8177 } 8178 case ARM::tADDrSP: { 8179 // If the non-SP source operand and the destination operand are not the 8180 // same, we need to use the 32-bit encoding if it's available. 8181 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8182 Inst.setOpcode(ARM::t2ADDrr); 8183 Inst.addOperand(MCOperand::CreateReg(0)); // cc_out 8184 return true; 8185 } 8186 break; 8187 } 8188 case ARM::tB: 8189 // A Thumb conditional branch outside of an IT block is a tBcc. 8190 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8191 Inst.setOpcode(ARM::tBcc); 8192 return true; 8193 } 8194 break; 8195 case ARM::t2B: 8196 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8197 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8198 Inst.setOpcode(ARM::t2Bcc); 8199 return true; 8200 } 8201 break; 8202 case ARM::t2Bcc: 8203 // If the conditional is AL or we're in an IT block, we really want t2B. 8204 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8205 Inst.setOpcode(ARM::t2B); 8206 return true; 8207 } 8208 break; 8209 case ARM::tBcc: 8210 // If the conditional is AL, we really want tB. 8211 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8212 Inst.setOpcode(ARM::tB); 8213 return true; 8214 } 8215 break; 8216 case ARM::tLDMIA: { 8217 // If the register list contains any high registers, or if the writeback 8218 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8219 // instead if we're in Thumb2. Otherwise, this should have generated 8220 // an error in validateInstruction(). 8221 unsigned Rn = Inst.getOperand(0).getReg(); 8222 bool hasWritebackToken = 8223 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8224 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8225 bool listContainsBase; 8226 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8227 (!listContainsBase && !hasWritebackToken) || 8228 (listContainsBase && hasWritebackToken)) { 8229 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8230 assert (isThumbTwo()); 8231 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8232 // If we're switching to the updating version, we need to insert 8233 // the writeback tied operand. 8234 if (hasWritebackToken) 8235 Inst.insert(Inst.begin(), 8236 MCOperand::CreateReg(Inst.getOperand(0).getReg())); 8237 return true; 8238 } 8239 break; 8240 } 8241 case ARM::tSTMIA_UPD: { 8242 // If the register list contains any high registers, we need to use 8243 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8244 // should have generated an error in validateInstruction(). 8245 unsigned Rn = Inst.getOperand(0).getReg(); 8246 bool listContainsBase; 8247 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8248 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8249 assert (isThumbTwo()); 8250 Inst.setOpcode(ARM::t2STMIA_UPD); 8251 return true; 8252 } 8253 break; 8254 } 8255 case ARM::tPOP: { 8256 bool listContainsBase; 8257 // If the register list contains any high registers, we need to use 8258 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8259 // should have generated an error in validateInstruction(). 8260 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8261 return false; 8262 assert (isThumbTwo()); 8263 Inst.setOpcode(ARM::t2LDMIA_UPD); 8264 // Add the base register and writeback operands. 8265 Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP)); 8266 Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP)); 8267 return true; 8268 } 8269 case ARM::tPUSH: { 8270 bool listContainsBase; 8271 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8272 return false; 8273 assert (isThumbTwo()); 8274 Inst.setOpcode(ARM::t2STMDB_UPD); 8275 // Add the base register and writeback operands. 8276 Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP)); 8277 Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP)); 8278 return true; 8279 } 8280 case ARM::t2MOVi: { 8281 // If we can use the 16-bit encoding and the user didn't explicitly 8282 // request the 32-bit variant, transform it here. 8283 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8284 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8285 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8286 Inst.getOperand(4).getReg() == ARM::CPSR) || 8287 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8288 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8289 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8290 // The operands aren't in the same order for tMOVi8... 8291 MCInst TmpInst; 8292 TmpInst.setOpcode(ARM::tMOVi8); 8293 TmpInst.addOperand(Inst.getOperand(0)); 8294 TmpInst.addOperand(Inst.getOperand(4)); 8295 TmpInst.addOperand(Inst.getOperand(1)); 8296 TmpInst.addOperand(Inst.getOperand(2)); 8297 TmpInst.addOperand(Inst.getOperand(3)); 8298 Inst = TmpInst; 8299 return true; 8300 } 8301 break; 8302 } 8303 case ARM::t2MOVr: { 8304 // If we can use the 16-bit encoding and the user didn't explicitly 8305 // request the 32-bit variant, transform it here. 8306 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8307 isARMLowRegister(Inst.getOperand(1).getReg()) && 8308 Inst.getOperand(2).getImm() == ARMCC::AL && 8309 Inst.getOperand(4).getReg() == ARM::CPSR && 8310 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8311 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8312 // The operands aren't the same for tMOV[S]r... (no cc_out) 8313 MCInst TmpInst; 8314 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8315 TmpInst.addOperand(Inst.getOperand(0)); 8316 TmpInst.addOperand(Inst.getOperand(1)); 8317 TmpInst.addOperand(Inst.getOperand(2)); 8318 TmpInst.addOperand(Inst.getOperand(3)); 8319 Inst = TmpInst; 8320 return true; 8321 } 8322 break; 8323 } 8324 case ARM::t2SXTH: 8325 case ARM::t2SXTB: 8326 case ARM::t2UXTH: 8327 case ARM::t2UXTB: { 8328 // If we can use the 16-bit encoding and the user didn't explicitly 8329 // request the 32-bit variant, transform it here. 8330 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8331 isARMLowRegister(Inst.getOperand(1).getReg()) && 8332 Inst.getOperand(2).getImm() == 0 && 8333 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8334 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8335 unsigned NewOpc; 8336 switch (Inst.getOpcode()) { 8337 default: llvm_unreachable("Illegal opcode!"); 8338 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8339 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8340 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8341 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8342 } 8343 // The operands aren't the same for thumb1 (no rotate operand). 8344 MCInst TmpInst; 8345 TmpInst.setOpcode(NewOpc); 8346 TmpInst.addOperand(Inst.getOperand(0)); 8347 TmpInst.addOperand(Inst.getOperand(1)); 8348 TmpInst.addOperand(Inst.getOperand(3)); 8349 TmpInst.addOperand(Inst.getOperand(4)); 8350 Inst = TmpInst; 8351 return true; 8352 } 8353 break; 8354 } 8355 case ARM::MOVsi: { 8356 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8357 // rrx shifts and asr/lsr of #32 is encoded as 0 8358 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8359 return false; 8360 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8361 // Shifting by zero is accepted as a vanilla 'MOVr' 8362 MCInst TmpInst; 8363 TmpInst.setOpcode(ARM::MOVr); 8364 TmpInst.addOperand(Inst.getOperand(0)); 8365 TmpInst.addOperand(Inst.getOperand(1)); 8366 TmpInst.addOperand(Inst.getOperand(3)); 8367 TmpInst.addOperand(Inst.getOperand(4)); 8368 TmpInst.addOperand(Inst.getOperand(5)); 8369 Inst = TmpInst; 8370 return true; 8371 } 8372 return false; 8373 } 8374 case ARM::ANDrsi: 8375 case ARM::ORRrsi: 8376 case ARM::EORrsi: 8377 case ARM::BICrsi: 8378 case ARM::SUBrsi: 8379 case ARM::ADDrsi: { 8380 unsigned newOpc; 8381 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8382 if (SOpc == ARM_AM::rrx) return false; 8383 switch (Inst.getOpcode()) { 8384 default: llvm_unreachable("unexpected opcode!"); 8385 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8386 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8387 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8388 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8389 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8390 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8391 } 8392 // If the shift is by zero, use the non-shifted instruction definition. 8393 // The exception is for right shifts, where 0 == 32 8394 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8395 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8396 MCInst TmpInst; 8397 TmpInst.setOpcode(newOpc); 8398 TmpInst.addOperand(Inst.getOperand(0)); 8399 TmpInst.addOperand(Inst.getOperand(1)); 8400 TmpInst.addOperand(Inst.getOperand(2)); 8401 TmpInst.addOperand(Inst.getOperand(4)); 8402 TmpInst.addOperand(Inst.getOperand(5)); 8403 TmpInst.addOperand(Inst.getOperand(6)); 8404 Inst = TmpInst; 8405 return true; 8406 } 8407 return false; 8408 } 8409 case ARM::ITasm: 8410 case ARM::t2IT: { 8411 // The mask bits for all but the first condition are represented as 8412 // the low bit of the condition code value implies 't'. We currently 8413 // always have 1 implies 't', so XOR toggle the bits if the low bit 8414 // of the condition code is zero. 8415 MCOperand &MO = Inst.getOperand(1); 8416 unsigned Mask = MO.getImm(); 8417 unsigned OrigMask = Mask; 8418 unsigned TZ = countTrailingZeros(Mask); 8419 if ((Inst.getOperand(0).getImm() & 1) == 0) { 8420 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 8421 Mask ^= (0xE << TZ) & 0xF; 8422 } 8423 MO.setImm(Mask); 8424 8425 // Set up the IT block state according to the IT instruction we just 8426 // matched. 8427 assert(!inITBlock() && "nested IT blocks?!"); 8428 ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8429 ITState.Mask = OrigMask; // Use the original mask, not the updated one. 8430 ITState.CurPosition = 0; 8431 ITState.FirstCond = true; 8432 break; 8433 } 8434 case ARM::t2LSLrr: 8435 case ARM::t2LSRrr: 8436 case ARM::t2ASRrr: 8437 case ARM::t2SBCrr: 8438 case ARM::t2RORrr: 8439 case ARM::t2BICrr: 8440 { 8441 // Assemblers should use the narrow encodings of these instructions when permissible. 8442 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8443 isARMLowRegister(Inst.getOperand(2).getReg())) && 8444 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8445 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8446 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8447 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8448 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8449 ".w"))) { 8450 unsigned NewOpc; 8451 switch (Inst.getOpcode()) { 8452 default: llvm_unreachable("unexpected opcode"); 8453 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8454 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8455 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8456 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8457 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8458 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8459 } 8460 MCInst TmpInst; 8461 TmpInst.setOpcode(NewOpc); 8462 TmpInst.addOperand(Inst.getOperand(0)); 8463 TmpInst.addOperand(Inst.getOperand(5)); 8464 TmpInst.addOperand(Inst.getOperand(1)); 8465 TmpInst.addOperand(Inst.getOperand(2)); 8466 TmpInst.addOperand(Inst.getOperand(3)); 8467 TmpInst.addOperand(Inst.getOperand(4)); 8468 Inst = TmpInst; 8469 return true; 8470 } 8471 return false; 8472 } 8473 case ARM::t2ANDrr: 8474 case ARM::t2EORrr: 8475 case ARM::t2ADCrr: 8476 case ARM::t2ORRrr: 8477 { 8478 // Assemblers should use the narrow encodings of these instructions when permissible. 8479 // These instructions are special in that they are commutable, so shorter encodings 8480 // are available more often. 8481 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8482 isARMLowRegister(Inst.getOperand(2).getReg())) && 8483 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8484 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8485 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8486 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8487 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8488 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8489 ".w"))) { 8490 unsigned NewOpc; 8491 switch (Inst.getOpcode()) { 8492 default: llvm_unreachable("unexpected opcode"); 8493 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8494 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8495 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8496 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8497 } 8498 MCInst TmpInst; 8499 TmpInst.setOpcode(NewOpc); 8500 TmpInst.addOperand(Inst.getOperand(0)); 8501 TmpInst.addOperand(Inst.getOperand(5)); 8502 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8503 TmpInst.addOperand(Inst.getOperand(1)); 8504 TmpInst.addOperand(Inst.getOperand(2)); 8505 } else { 8506 TmpInst.addOperand(Inst.getOperand(2)); 8507 TmpInst.addOperand(Inst.getOperand(1)); 8508 } 8509 TmpInst.addOperand(Inst.getOperand(3)); 8510 TmpInst.addOperand(Inst.getOperand(4)); 8511 Inst = TmpInst; 8512 return true; 8513 } 8514 return false; 8515 } 8516 } 8517 return false; 8518 } 8519 8520 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8521 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8522 // suffix depending on whether they're in an IT block or not. 8523 unsigned Opc = Inst.getOpcode(); 8524 const MCInstrDesc &MCID = MII.get(Opc); 8525 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8526 assert(MCID.hasOptionalDef() && 8527 "optionally flag setting instruction missing optional def operand"); 8528 assert(MCID.NumOperands == Inst.getNumOperands() && 8529 "operand count mismatch!"); 8530 // Find the optional-def operand (cc_out). 8531 unsigned OpNo; 8532 for (OpNo = 0; 8533 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8534 ++OpNo) 8535 ; 8536 // If we're parsing Thumb1, reject it completely. 8537 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8538 return Match_MnemonicFail; 8539 // If we're parsing Thumb2, which form is legal depends on whether we're 8540 // in an IT block. 8541 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8542 !inITBlock()) 8543 return Match_RequiresITBlock; 8544 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8545 inITBlock()) 8546 return Match_RequiresNotITBlock; 8547 } 8548 // Some high-register supporting Thumb1 encodings only allow both registers 8549 // to be from r0-r7 when in Thumb2. 8550 else if (Opc == ARM::tADDhirr && isThumbOne() && !hasV6MOps() && 8551 isARMLowRegister(Inst.getOperand(1).getReg()) && 8552 isARMLowRegister(Inst.getOperand(2).getReg())) 8553 return Match_RequiresThumb2; 8554 // Others only require ARMv6 or later. 8555 else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() && 8556 isARMLowRegister(Inst.getOperand(0).getReg()) && 8557 isARMLowRegister(Inst.getOperand(1).getReg())) 8558 return Match_RequiresV6; 8559 return Match_Success; 8560 } 8561 8562 namespace llvm { 8563 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { 8564 return true; // In an assembly source, no need to second-guess 8565 } 8566 } 8567 8568 static const char *getSubtargetFeatureName(uint64_t Val); 8569 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 8570 OperandVector &Operands, 8571 MCStreamer &Out, uint64_t &ErrorInfo, 8572 bool MatchingInlineAsm) { 8573 MCInst Inst; 8574 unsigned MatchResult; 8575 8576 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 8577 MatchingInlineAsm); 8578 switch (MatchResult) { 8579 case Match_Success: 8580 // Context sensitive operand constraints aren't handled by the matcher, 8581 // so check them here. 8582 if (validateInstruction(Inst, Operands)) { 8583 // Still progress the IT block, otherwise one wrong condition causes 8584 // nasty cascading errors. 8585 forwardITPosition(); 8586 return true; 8587 } 8588 8589 { // processInstruction() updates inITBlock state, we need to save it away 8590 bool wasInITBlock = inITBlock(); 8591 8592 // Some instructions need post-processing to, for example, tweak which 8593 // encoding is selected. Loop on it while changes happen so the 8594 // individual transformations can chain off each other. E.g., 8595 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 8596 while (processInstruction(Inst, Operands, Out)) 8597 ; 8598 8599 // Only after the instruction is fully processed, we can validate it 8600 if (wasInITBlock && hasV8Ops() && isThumb() && 8601 !isV8EligibleForIT(&Inst)) { 8602 Warning(IDLoc, "deprecated instruction in IT block"); 8603 } 8604 } 8605 8606 // Only move forward at the very end so that everything in validate 8607 // and process gets a consistent answer about whether we're in an IT 8608 // block. 8609 forwardITPosition(); 8610 8611 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 8612 // doesn't actually encode. 8613 if (Inst.getOpcode() == ARM::ITasm) 8614 return false; 8615 8616 Inst.setLoc(IDLoc); 8617 Out.EmitInstruction(Inst, STI); 8618 return false; 8619 case Match_MissingFeature: { 8620 assert(ErrorInfo && "Unknown missing feature!"); 8621 // Special case the error message for the very common case where only 8622 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 8623 std::string Msg = "instruction requires:"; 8624 uint64_t Mask = 1; 8625 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 8626 if (ErrorInfo & Mask) { 8627 Msg += " "; 8628 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 8629 } 8630 Mask <<= 1; 8631 } 8632 return Error(IDLoc, Msg); 8633 } 8634 case Match_InvalidOperand: { 8635 SMLoc ErrorLoc = IDLoc; 8636 if (ErrorInfo != ~0ULL) { 8637 if (ErrorInfo >= Operands.size()) 8638 return Error(IDLoc, "too few operands for instruction"); 8639 8640 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8641 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8642 } 8643 8644 return Error(ErrorLoc, "invalid operand for instruction"); 8645 } 8646 case Match_MnemonicFail: 8647 return Error(IDLoc, "invalid instruction", 8648 ((ARMOperand &)*Operands[0]).getLocRange()); 8649 case Match_RequiresNotITBlock: 8650 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 8651 case Match_RequiresITBlock: 8652 return Error(IDLoc, "instruction only valid inside IT block"); 8653 case Match_RequiresV6: 8654 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 8655 case Match_RequiresThumb2: 8656 return Error(IDLoc, "instruction variant requires Thumb2"); 8657 case Match_ImmRange0_15: { 8658 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8659 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8660 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 8661 } 8662 case Match_ImmRange0_239: { 8663 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8664 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8665 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 8666 } 8667 case Match_AlignedMemoryRequiresNone: 8668 case Match_DupAlignedMemoryRequiresNone: 8669 case Match_AlignedMemoryRequires16: 8670 case Match_DupAlignedMemoryRequires16: 8671 case Match_AlignedMemoryRequires32: 8672 case Match_DupAlignedMemoryRequires32: 8673 case Match_AlignedMemoryRequires64: 8674 case Match_DupAlignedMemoryRequires64: 8675 case Match_AlignedMemoryRequires64or128: 8676 case Match_DupAlignedMemoryRequires64or128: 8677 case Match_AlignedMemoryRequires64or128or256: 8678 { 8679 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 8680 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8681 switch (MatchResult) { 8682 default: 8683 llvm_unreachable("Missing Match_Aligned type"); 8684 case Match_AlignedMemoryRequiresNone: 8685 case Match_DupAlignedMemoryRequiresNone: 8686 return Error(ErrorLoc, "alignment must be omitted"); 8687 case Match_AlignedMemoryRequires16: 8688 case Match_DupAlignedMemoryRequires16: 8689 return Error(ErrorLoc, "alignment must be 16 or omitted"); 8690 case Match_AlignedMemoryRequires32: 8691 case Match_DupAlignedMemoryRequires32: 8692 return Error(ErrorLoc, "alignment must be 32 or omitted"); 8693 case Match_AlignedMemoryRequires64: 8694 case Match_DupAlignedMemoryRequires64: 8695 return Error(ErrorLoc, "alignment must be 64 or omitted"); 8696 case Match_AlignedMemoryRequires64or128: 8697 case Match_DupAlignedMemoryRequires64or128: 8698 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 8699 case Match_AlignedMemoryRequires64or128or256: 8700 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 8701 } 8702 } 8703 } 8704 8705 llvm_unreachable("Implement any new match types added!"); 8706 } 8707 8708 /// parseDirective parses the arm specific directives 8709 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 8710 const MCObjectFileInfo::Environment Format = 8711 getContext().getObjectFileInfo()->getObjectFileType(); 8712 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8713 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 8714 8715 StringRef IDVal = DirectiveID.getIdentifier(); 8716 if (IDVal == ".word") 8717 return parseLiteralValues(4, DirectiveID.getLoc()); 8718 else if (IDVal == ".short" || IDVal == ".hword") 8719 return parseLiteralValues(2, DirectiveID.getLoc()); 8720 else if (IDVal == ".thumb") 8721 return parseDirectiveThumb(DirectiveID.getLoc()); 8722 else if (IDVal == ".arm") 8723 return parseDirectiveARM(DirectiveID.getLoc()); 8724 else if (IDVal == ".thumb_func") 8725 return parseDirectiveThumbFunc(DirectiveID.getLoc()); 8726 else if (IDVal == ".code") 8727 return parseDirectiveCode(DirectiveID.getLoc()); 8728 else if (IDVal == ".syntax") 8729 return parseDirectiveSyntax(DirectiveID.getLoc()); 8730 else if (IDVal == ".unreq") 8731 return parseDirectiveUnreq(DirectiveID.getLoc()); 8732 else if (IDVal == ".fnend") 8733 return parseDirectiveFnEnd(DirectiveID.getLoc()); 8734 else if (IDVal == ".cantunwind") 8735 return parseDirectiveCantUnwind(DirectiveID.getLoc()); 8736 else if (IDVal == ".personality") 8737 return parseDirectivePersonality(DirectiveID.getLoc()); 8738 else if (IDVal == ".handlerdata") 8739 return parseDirectiveHandlerData(DirectiveID.getLoc()); 8740 else if (IDVal == ".setfp") 8741 return parseDirectiveSetFP(DirectiveID.getLoc()); 8742 else if (IDVal == ".pad") 8743 return parseDirectivePad(DirectiveID.getLoc()); 8744 else if (IDVal == ".save") 8745 return parseDirectiveRegSave(DirectiveID.getLoc(), false); 8746 else if (IDVal == ".vsave") 8747 return parseDirectiveRegSave(DirectiveID.getLoc(), true); 8748 else if (IDVal == ".ltorg" || IDVal == ".pool") 8749 return parseDirectiveLtorg(DirectiveID.getLoc()); 8750 else if (IDVal == ".even") 8751 return parseDirectiveEven(DirectiveID.getLoc()); 8752 else if (IDVal == ".personalityindex") 8753 return parseDirectivePersonalityIndex(DirectiveID.getLoc()); 8754 else if (IDVal == ".unwind_raw") 8755 return parseDirectiveUnwindRaw(DirectiveID.getLoc()); 8756 else if (IDVal == ".movsp") 8757 return parseDirectiveMovSP(DirectiveID.getLoc()); 8758 else if (IDVal == ".arch_extension") 8759 return parseDirectiveArchExtension(DirectiveID.getLoc()); 8760 else if (IDVal == ".align") 8761 return parseDirectiveAlign(DirectiveID.getLoc()); 8762 else if (IDVal == ".thumb_set") 8763 return parseDirectiveThumbSet(DirectiveID.getLoc()); 8764 8765 if (!IsMachO && !IsCOFF) { 8766 if (IDVal == ".arch") 8767 return parseDirectiveArch(DirectiveID.getLoc()); 8768 else if (IDVal == ".cpu") 8769 return parseDirectiveCPU(DirectiveID.getLoc()); 8770 else if (IDVal == ".eabi_attribute") 8771 return parseDirectiveEabiAttr(DirectiveID.getLoc()); 8772 else if (IDVal == ".fpu") 8773 return parseDirectiveFPU(DirectiveID.getLoc()); 8774 else if (IDVal == ".fnstart") 8775 return parseDirectiveFnStart(DirectiveID.getLoc()); 8776 else if (IDVal == ".inst") 8777 return parseDirectiveInst(DirectiveID.getLoc()); 8778 else if (IDVal == ".inst.n") 8779 return parseDirectiveInst(DirectiveID.getLoc(), 'n'); 8780 else if (IDVal == ".inst.w") 8781 return parseDirectiveInst(DirectiveID.getLoc(), 'w'); 8782 else if (IDVal == ".object_arch") 8783 return parseDirectiveObjectArch(DirectiveID.getLoc()); 8784 else if (IDVal == ".tlsdescseq") 8785 return parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 8786 } 8787 8788 return true; 8789 } 8790 8791 /// parseLiteralValues 8792 /// ::= .hword expression [, expression]* 8793 /// ::= .short expression [, expression]* 8794 /// ::= .word expression [, expression]* 8795 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 8796 MCAsmParser &Parser = getParser(); 8797 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8798 for (;;) { 8799 const MCExpr *Value; 8800 if (getParser().parseExpression(Value)) { 8801 Parser.eatToEndOfStatement(); 8802 return false; 8803 } 8804 8805 getParser().getStreamer().EmitValue(Value, Size); 8806 8807 if (getLexer().is(AsmToken::EndOfStatement)) 8808 break; 8809 8810 // FIXME: Improve diagnostic. 8811 if (getLexer().isNot(AsmToken::Comma)) { 8812 Error(L, "unexpected token in directive"); 8813 return false; 8814 } 8815 Parser.Lex(); 8816 } 8817 } 8818 8819 Parser.Lex(); 8820 return false; 8821 } 8822 8823 /// parseDirectiveThumb 8824 /// ::= .thumb 8825 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 8826 MCAsmParser &Parser = getParser(); 8827 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8828 Error(L, "unexpected token in directive"); 8829 return false; 8830 } 8831 Parser.Lex(); 8832 8833 if (!hasThumb()) { 8834 Error(L, "target does not support Thumb mode"); 8835 return false; 8836 } 8837 8838 if (!isThumb()) 8839 SwitchMode(); 8840 8841 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 8842 return false; 8843 } 8844 8845 /// parseDirectiveARM 8846 /// ::= .arm 8847 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 8848 MCAsmParser &Parser = getParser(); 8849 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8850 Error(L, "unexpected token in directive"); 8851 return false; 8852 } 8853 Parser.Lex(); 8854 8855 if (!hasARM()) { 8856 Error(L, "target does not support ARM mode"); 8857 return false; 8858 } 8859 8860 if (isThumb()) 8861 SwitchMode(); 8862 8863 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 8864 return false; 8865 } 8866 8867 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 8868 if (NextSymbolIsThumb) { 8869 getParser().getStreamer().EmitThumbFunc(Symbol); 8870 NextSymbolIsThumb = false; 8871 } 8872 } 8873 8874 /// parseDirectiveThumbFunc 8875 /// ::= .thumbfunc symbol_name 8876 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 8877 MCAsmParser &Parser = getParser(); 8878 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 8879 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8880 8881 // Darwin asm has (optionally) function name after .thumb_func direction 8882 // ELF doesn't 8883 if (IsMachO) { 8884 const AsmToken &Tok = Parser.getTok(); 8885 if (Tok.isNot(AsmToken::EndOfStatement)) { 8886 if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) { 8887 Error(L, "unexpected token in .thumb_func directive"); 8888 return false; 8889 } 8890 8891 MCSymbol *Func = 8892 getParser().getContext().GetOrCreateSymbol(Tok.getIdentifier()); 8893 getParser().getStreamer().EmitThumbFunc(Func); 8894 Parser.Lex(); // Consume the identifier token. 8895 return false; 8896 } 8897 } 8898 8899 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8900 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8901 Parser.eatToEndOfStatement(); 8902 return false; 8903 } 8904 8905 NextSymbolIsThumb = true; 8906 return false; 8907 } 8908 8909 /// parseDirectiveSyntax 8910 /// ::= .syntax unified | divided 8911 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 8912 MCAsmParser &Parser = getParser(); 8913 const AsmToken &Tok = Parser.getTok(); 8914 if (Tok.isNot(AsmToken::Identifier)) { 8915 Error(L, "unexpected token in .syntax directive"); 8916 return false; 8917 } 8918 8919 StringRef Mode = Tok.getString(); 8920 if (Mode == "unified" || Mode == "UNIFIED") { 8921 Parser.Lex(); 8922 } else if (Mode == "divided" || Mode == "DIVIDED") { 8923 Error(L, "'.syntax divided' arm asssembly not supported"); 8924 return false; 8925 } else { 8926 Error(L, "unrecognized syntax mode in .syntax directive"); 8927 return false; 8928 } 8929 8930 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8931 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8932 return false; 8933 } 8934 Parser.Lex(); 8935 8936 // TODO tell the MC streamer the mode 8937 // getParser().getStreamer().Emit???(); 8938 return false; 8939 } 8940 8941 /// parseDirectiveCode 8942 /// ::= .code 16 | 32 8943 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 8944 MCAsmParser &Parser = getParser(); 8945 const AsmToken &Tok = Parser.getTok(); 8946 if (Tok.isNot(AsmToken::Integer)) { 8947 Error(L, "unexpected token in .code directive"); 8948 return false; 8949 } 8950 int64_t Val = Parser.getTok().getIntVal(); 8951 if (Val != 16 && Val != 32) { 8952 Error(L, "invalid operand to .code directive"); 8953 return false; 8954 } 8955 Parser.Lex(); 8956 8957 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8958 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8959 return false; 8960 } 8961 Parser.Lex(); 8962 8963 if (Val == 16) { 8964 if (!hasThumb()) { 8965 Error(L, "target does not support Thumb mode"); 8966 return false; 8967 } 8968 8969 if (!isThumb()) 8970 SwitchMode(); 8971 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 8972 } else { 8973 if (!hasARM()) { 8974 Error(L, "target does not support ARM mode"); 8975 return false; 8976 } 8977 8978 if (isThumb()) 8979 SwitchMode(); 8980 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 8981 } 8982 8983 return false; 8984 } 8985 8986 /// parseDirectiveReq 8987 /// ::= name .req registername 8988 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 8989 MCAsmParser &Parser = getParser(); 8990 Parser.Lex(); // Eat the '.req' token. 8991 unsigned Reg; 8992 SMLoc SRegLoc, ERegLoc; 8993 if (ParseRegister(Reg, SRegLoc, ERegLoc)) { 8994 Parser.eatToEndOfStatement(); 8995 Error(SRegLoc, "register name expected"); 8996 return false; 8997 } 8998 8999 // Shouldn't be anything else. 9000 if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { 9001 Parser.eatToEndOfStatement(); 9002 Error(Parser.getTok().getLoc(), "unexpected input in .req directive."); 9003 return false; 9004 } 9005 9006 Parser.Lex(); // Consume the EndOfStatement 9007 9008 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) { 9009 Error(SRegLoc, "redefinition of '" + Name + "' does not match original."); 9010 return false; 9011 } 9012 9013 return false; 9014 } 9015 9016 /// parseDirectiveUneq 9017 /// ::= .unreq registername 9018 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9019 MCAsmParser &Parser = getParser(); 9020 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9021 Parser.eatToEndOfStatement(); 9022 Error(L, "unexpected input in .unreq directive."); 9023 return false; 9024 } 9025 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9026 Parser.Lex(); // Eat the identifier. 9027 return false; 9028 } 9029 9030 /// parseDirectiveArch 9031 /// ::= .arch token 9032 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9033 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9034 9035 unsigned ID = StringSwitch<unsigned>(Arch) 9036 #define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \ 9037 .Case(NAME, ARM::ID) 9038 #define ARM_ARCH_ALIAS(NAME, ID) \ 9039 .Case(NAME, ARM::ID) 9040 #include "MCTargetDesc/ARMArchName.def" 9041 .Default(ARM::INVALID_ARCH); 9042 9043 if (ID == ARM::INVALID_ARCH) { 9044 Error(L, "Unknown arch name"); 9045 return false; 9046 } 9047 9048 getTargetStreamer().emitArch(ID); 9049 return false; 9050 } 9051 9052 /// parseDirectiveEabiAttr 9053 /// ::= .eabi_attribute int, int [, "str"] 9054 /// ::= .eabi_attribute Tag_name, int [, "str"] 9055 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9056 MCAsmParser &Parser = getParser(); 9057 int64_t Tag; 9058 SMLoc TagLoc; 9059 TagLoc = Parser.getTok().getLoc(); 9060 if (Parser.getTok().is(AsmToken::Identifier)) { 9061 StringRef Name = Parser.getTok().getIdentifier(); 9062 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9063 if (Tag == -1) { 9064 Error(TagLoc, "attribute name not recognised: " + Name); 9065 Parser.eatToEndOfStatement(); 9066 return false; 9067 } 9068 Parser.Lex(); 9069 } else { 9070 const MCExpr *AttrExpr; 9071 9072 TagLoc = Parser.getTok().getLoc(); 9073 if (Parser.parseExpression(AttrExpr)) { 9074 Parser.eatToEndOfStatement(); 9075 return false; 9076 } 9077 9078 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9079 if (!CE) { 9080 Error(TagLoc, "expected numeric constant"); 9081 Parser.eatToEndOfStatement(); 9082 return false; 9083 } 9084 9085 Tag = CE->getValue(); 9086 } 9087 9088 if (Parser.getTok().isNot(AsmToken::Comma)) { 9089 Error(Parser.getTok().getLoc(), "comma expected"); 9090 Parser.eatToEndOfStatement(); 9091 return false; 9092 } 9093 Parser.Lex(); // skip comma 9094 9095 StringRef StringValue = ""; 9096 bool IsStringValue = false; 9097 9098 int64_t IntegerValue = 0; 9099 bool IsIntegerValue = false; 9100 9101 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9102 IsStringValue = true; 9103 else if (Tag == ARMBuildAttrs::compatibility) { 9104 IsStringValue = true; 9105 IsIntegerValue = true; 9106 } else if (Tag < 32 || Tag % 2 == 0) 9107 IsIntegerValue = true; 9108 else if (Tag % 2 == 1) 9109 IsStringValue = true; 9110 else 9111 llvm_unreachable("invalid tag type"); 9112 9113 if (IsIntegerValue) { 9114 const MCExpr *ValueExpr; 9115 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9116 if (Parser.parseExpression(ValueExpr)) { 9117 Parser.eatToEndOfStatement(); 9118 return false; 9119 } 9120 9121 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9122 if (!CE) { 9123 Error(ValueExprLoc, "expected numeric constant"); 9124 Parser.eatToEndOfStatement(); 9125 return false; 9126 } 9127 9128 IntegerValue = CE->getValue(); 9129 } 9130 9131 if (Tag == ARMBuildAttrs::compatibility) { 9132 if (Parser.getTok().isNot(AsmToken::Comma)) 9133 IsStringValue = false; 9134 if (Parser.getTok().isNot(AsmToken::Comma)) { 9135 Error(Parser.getTok().getLoc(), "comma expected"); 9136 Parser.eatToEndOfStatement(); 9137 return false; 9138 } else { 9139 Parser.Lex(); 9140 } 9141 } 9142 9143 if (IsStringValue) { 9144 if (Parser.getTok().isNot(AsmToken::String)) { 9145 Error(Parser.getTok().getLoc(), "bad string constant"); 9146 Parser.eatToEndOfStatement(); 9147 return false; 9148 } 9149 9150 StringValue = Parser.getTok().getStringContents(); 9151 Parser.Lex(); 9152 } 9153 9154 if (IsIntegerValue && IsStringValue) { 9155 assert(Tag == ARMBuildAttrs::compatibility); 9156 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9157 } else if (IsIntegerValue) 9158 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9159 else if (IsStringValue) 9160 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9161 return false; 9162 } 9163 9164 /// parseDirectiveCPU 9165 /// ::= .cpu str 9166 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9167 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9168 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9169 9170 if (!STI.isCPUStringValid(CPU)) { 9171 Error(L, "Unknown CPU name"); 9172 return false; 9173 } 9174 9175 // FIXME: This switches the CPU features globally, therefore it might 9176 // happen that code you would not expect to assemble will. For details 9177 // see: http://llvm.org/bugs/show_bug.cgi?id=20757 9178 STI.InitMCProcessorInfo(CPU, ""); 9179 STI.InitCPUSchedModel(CPU); 9180 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9181 9182 return false; 9183 } 9184 9185 // FIXME: This is duplicated in getARMFPUFeatures() in 9186 // tools/clang/lib/Driver/Tools.cpp 9187 static const struct { 9188 const unsigned ID; 9189 const uint64_t Enabled; 9190 const uint64_t Disabled; 9191 } FPUs[] = { 9192 {/* ID */ ARM::VFP, 9193 /* Enabled */ ARM::FeatureVFP2, 9194 /* Disabled */ ARM::FeatureNEON}, 9195 {/* ID */ ARM::VFPV2, 9196 /* Enabled */ ARM::FeatureVFP2, 9197 /* Disabled */ ARM::FeatureNEON}, 9198 {/* ID */ ARM::VFPV3, 9199 /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3, 9200 /* Disabled */ ARM::FeatureNEON | ARM::FeatureD16}, 9201 {/* ID */ ARM::VFPV3_D16, 9202 /* Enable */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureD16, 9203 /* Disabled */ ARM::FeatureNEON}, 9204 {/* ID */ ARM::VFPV4, 9205 /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4, 9206 /* Disabled */ ARM::FeatureNEON | ARM::FeatureD16}, 9207 {/* ID */ ARM::VFPV4_D16, 9208 /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 | 9209 ARM::FeatureD16, 9210 /* Disabled */ ARM::FeatureNEON}, 9211 {/* ID */ ARM::FPV5_D16, 9212 /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 | 9213 ARM::FeatureFPARMv8 | ARM::FeatureD16, 9214 /* Disabled */ ARM::FeatureNEON | ARM::FeatureCrypto}, 9215 {/* ID */ ARM::FP_ARMV8, 9216 /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 | 9217 ARM::FeatureFPARMv8, 9218 /* Disabled */ ARM::FeatureNEON | ARM::FeatureCrypto | ARM::FeatureD16}, 9219 {/* ID */ ARM::NEON, 9220 /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureNEON, 9221 /* Disabled */ ARM::FeatureD16}, 9222 {/* ID */ ARM::NEON_VFPV4, 9223 /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 | 9224 ARM::FeatureNEON, 9225 /* Disabled */ ARM::FeatureD16}, 9226 {/* ID */ ARM::NEON_FP_ARMV8, 9227 /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 | 9228 ARM::FeatureFPARMv8 | ARM::FeatureNEON, 9229 /* Disabled */ ARM::FeatureCrypto | ARM::FeatureD16}, 9230 {/* ID */ ARM::CRYPTO_NEON_FP_ARMV8, 9231 /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 | 9232 ARM::FeatureFPARMv8 | ARM::FeatureNEON | ARM::FeatureCrypto, 9233 /* Disabled */ ARM::FeatureD16}, 9234 {ARM::SOFTVFP, 0, 0}, 9235 }; 9236 9237 /// parseDirectiveFPU 9238 /// ::= .fpu str 9239 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9240 SMLoc FPUNameLoc = getTok().getLoc(); 9241 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9242 9243 unsigned ID = StringSwitch<unsigned>(FPU) 9244 #define ARM_FPU_NAME(NAME, ID) .Case(NAME, ARM::ID) 9245 #include "ARMFPUName.def" 9246 .Default(ARM::INVALID_FPU); 9247 9248 if (ID == ARM::INVALID_FPU) { 9249 Error(FPUNameLoc, "Unknown FPU name"); 9250 return false; 9251 } 9252 9253 for (const auto &Entry : FPUs) { 9254 if (Entry.ID != ID) 9255 continue; 9256 9257 // Need to toggle features that should be on but are off and that 9258 // should off but are on. 9259 uint64_t Toggle = (Entry.Enabled & ~STI.getFeatureBits()) | 9260 (Entry.Disabled & STI.getFeatureBits()); 9261 setAvailableFeatures(ComputeAvailableFeatures(STI.ToggleFeature(Toggle))); 9262 break; 9263 } 9264 9265 getTargetStreamer().emitFPU(ID); 9266 return false; 9267 } 9268 9269 /// parseDirectiveFnStart 9270 /// ::= .fnstart 9271 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9272 if (UC.hasFnStart()) { 9273 Error(L, ".fnstart starts before the end of previous one"); 9274 UC.emitFnStartLocNotes(); 9275 return false; 9276 } 9277 9278 // Reset the unwind directives parser state 9279 UC.reset(); 9280 9281 getTargetStreamer().emitFnStart(); 9282 9283 UC.recordFnStart(L); 9284 return false; 9285 } 9286 9287 /// parseDirectiveFnEnd 9288 /// ::= .fnend 9289 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9290 // Check the ordering of unwind directives 9291 if (!UC.hasFnStart()) { 9292 Error(L, ".fnstart must precede .fnend directive"); 9293 return false; 9294 } 9295 9296 // Reset the unwind directives parser state 9297 getTargetStreamer().emitFnEnd(); 9298 9299 UC.reset(); 9300 return false; 9301 } 9302 9303 /// parseDirectiveCantUnwind 9304 /// ::= .cantunwind 9305 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9306 UC.recordCantUnwind(L); 9307 9308 // Check the ordering of unwind directives 9309 if (!UC.hasFnStart()) { 9310 Error(L, ".fnstart must precede .cantunwind directive"); 9311 return false; 9312 } 9313 if (UC.hasHandlerData()) { 9314 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9315 UC.emitHandlerDataLocNotes(); 9316 return false; 9317 } 9318 if (UC.hasPersonality()) { 9319 Error(L, ".cantunwind can't be used with .personality directive"); 9320 UC.emitPersonalityLocNotes(); 9321 return false; 9322 } 9323 9324 getTargetStreamer().emitCantUnwind(); 9325 return false; 9326 } 9327 9328 /// parseDirectivePersonality 9329 /// ::= .personality name 9330 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9331 MCAsmParser &Parser = getParser(); 9332 bool HasExistingPersonality = UC.hasPersonality(); 9333 9334 UC.recordPersonality(L); 9335 9336 // Check the ordering of unwind directives 9337 if (!UC.hasFnStart()) { 9338 Error(L, ".fnstart must precede .personality directive"); 9339 return false; 9340 } 9341 if (UC.cantUnwind()) { 9342 Error(L, ".personality can't be used with .cantunwind directive"); 9343 UC.emitCantUnwindLocNotes(); 9344 return false; 9345 } 9346 if (UC.hasHandlerData()) { 9347 Error(L, ".personality must precede .handlerdata directive"); 9348 UC.emitHandlerDataLocNotes(); 9349 return false; 9350 } 9351 if (HasExistingPersonality) { 9352 Parser.eatToEndOfStatement(); 9353 Error(L, "multiple personality directives"); 9354 UC.emitPersonalityLocNotes(); 9355 return false; 9356 } 9357 9358 // Parse the name of the personality routine 9359 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9360 Parser.eatToEndOfStatement(); 9361 Error(L, "unexpected input in .personality directive."); 9362 return false; 9363 } 9364 StringRef Name(Parser.getTok().getIdentifier()); 9365 Parser.Lex(); 9366 9367 MCSymbol *PR = getParser().getContext().GetOrCreateSymbol(Name); 9368 getTargetStreamer().emitPersonality(PR); 9369 return false; 9370 } 9371 9372 /// parseDirectiveHandlerData 9373 /// ::= .handlerdata 9374 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9375 UC.recordHandlerData(L); 9376 9377 // Check the ordering of unwind directives 9378 if (!UC.hasFnStart()) { 9379 Error(L, ".fnstart must precede .personality directive"); 9380 return false; 9381 } 9382 if (UC.cantUnwind()) { 9383 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9384 UC.emitCantUnwindLocNotes(); 9385 return false; 9386 } 9387 9388 getTargetStreamer().emitHandlerData(); 9389 return false; 9390 } 9391 9392 /// parseDirectiveSetFP 9393 /// ::= .setfp fpreg, spreg [, offset] 9394 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9395 MCAsmParser &Parser = getParser(); 9396 // Check the ordering of unwind directives 9397 if (!UC.hasFnStart()) { 9398 Error(L, ".fnstart must precede .setfp directive"); 9399 return false; 9400 } 9401 if (UC.hasHandlerData()) { 9402 Error(L, ".setfp must precede .handlerdata directive"); 9403 return false; 9404 } 9405 9406 // Parse fpreg 9407 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9408 int FPReg = tryParseRegister(); 9409 if (FPReg == -1) { 9410 Error(FPRegLoc, "frame pointer register expected"); 9411 return false; 9412 } 9413 9414 // Consume comma 9415 if (Parser.getTok().isNot(AsmToken::Comma)) { 9416 Error(Parser.getTok().getLoc(), "comma expected"); 9417 return false; 9418 } 9419 Parser.Lex(); // skip comma 9420 9421 // Parse spreg 9422 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9423 int SPReg = tryParseRegister(); 9424 if (SPReg == -1) { 9425 Error(SPRegLoc, "stack pointer register expected"); 9426 return false; 9427 } 9428 9429 if (SPReg != ARM::SP && SPReg != UC.getFPReg()) { 9430 Error(SPRegLoc, "register should be either $sp or the latest fp register"); 9431 return false; 9432 } 9433 9434 // Update the frame pointer register 9435 UC.saveFPReg(FPReg); 9436 9437 // Parse offset 9438 int64_t Offset = 0; 9439 if (Parser.getTok().is(AsmToken::Comma)) { 9440 Parser.Lex(); // skip comma 9441 9442 if (Parser.getTok().isNot(AsmToken::Hash) && 9443 Parser.getTok().isNot(AsmToken::Dollar)) { 9444 Error(Parser.getTok().getLoc(), "'#' expected"); 9445 return false; 9446 } 9447 Parser.Lex(); // skip hash token. 9448 9449 const MCExpr *OffsetExpr; 9450 SMLoc ExLoc = Parser.getTok().getLoc(); 9451 SMLoc EndLoc; 9452 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9453 Error(ExLoc, "malformed setfp offset"); 9454 return false; 9455 } 9456 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9457 if (!CE) { 9458 Error(ExLoc, "setfp offset must be an immediate"); 9459 return false; 9460 } 9461 9462 Offset = CE->getValue(); 9463 } 9464 9465 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9466 static_cast<unsigned>(SPReg), Offset); 9467 return false; 9468 } 9469 9470 /// parseDirective 9471 /// ::= .pad offset 9472 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9473 MCAsmParser &Parser = getParser(); 9474 // Check the ordering of unwind directives 9475 if (!UC.hasFnStart()) { 9476 Error(L, ".fnstart must precede .pad directive"); 9477 return false; 9478 } 9479 if (UC.hasHandlerData()) { 9480 Error(L, ".pad must precede .handlerdata directive"); 9481 return false; 9482 } 9483 9484 // Parse the offset 9485 if (Parser.getTok().isNot(AsmToken::Hash) && 9486 Parser.getTok().isNot(AsmToken::Dollar)) { 9487 Error(Parser.getTok().getLoc(), "'#' expected"); 9488 return false; 9489 } 9490 Parser.Lex(); // skip hash token. 9491 9492 const MCExpr *OffsetExpr; 9493 SMLoc ExLoc = Parser.getTok().getLoc(); 9494 SMLoc EndLoc; 9495 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9496 Error(ExLoc, "malformed pad offset"); 9497 return false; 9498 } 9499 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9500 if (!CE) { 9501 Error(ExLoc, "pad offset must be an immediate"); 9502 return false; 9503 } 9504 9505 getTargetStreamer().emitPad(CE->getValue()); 9506 return false; 9507 } 9508 9509 /// parseDirectiveRegSave 9510 /// ::= .save { registers } 9511 /// ::= .vsave { registers } 9512 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9513 // Check the ordering of unwind directives 9514 if (!UC.hasFnStart()) { 9515 Error(L, ".fnstart must precede .save or .vsave directives"); 9516 return false; 9517 } 9518 if (UC.hasHandlerData()) { 9519 Error(L, ".save or .vsave must precede .handlerdata directive"); 9520 return false; 9521 } 9522 9523 // RAII object to make sure parsed operands are deleted. 9524 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9525 9526 // Parse the register list 9527 if (parseRegisterList(Operands)) 9528 return false; 9529 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9530 if (!IsVector && !Op.isRegList()) { 9531 Error(L, ".save expects GPR registers"); 9532 return false; 9533 } 9534 if (IsVector && !Op.isDPRRegList()) { 9535 Error(L, ".vsave expects DPR registers"); 9536 return false; 9537 } 9538 9539 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9540 return false; 9541 } 9542 9543 /// parseDirectiveInst 9544 /// ::= .inst opcode [, ...] 9545 /// ::= .inst.n opcode [, ...] 9546 /// ::= .inst.w opcode [, ...] 9547 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9548 MCAsmParser &Parser = getParser(); 9549 int Width; 9550 9551 if (isThumb()) { 9552 switch (Suffix) { 9553 case 'n': 9554 Width = 2; 9555 break; 9556 case 'w': 9557 Width = 4; 9558 break; 9559 default: 9560 Parser.eatToEndOfStatement(); 9561 Error(Loc, "cannot determine Thumb instruction size, " 9562 "use inst.n/inst.w instead"); 9563 return false; 9564 } 9565 } else { 9566 if (Suffix) { 9567 Parser.eatToEndOfStatement(); 9568 Error(Loc, "width suffixes are invalid in ARM mode"); 9569 return false; 9570 } 9571 Width = 4; 9572 } 9573 9574 if (getLexer().is(AsmToken::EndOfStatement)) { 9575 Parser.eatToEndOfStatement(); 9576 Error(Loc, "expected expression following directive"); 9577 return false; 9578 } 9579 9580 for (;;) { 9581 const MCExpr *Expr; 9582 9583 if (getParser().parseExpression(Expr)) { 9584 Error(Loc, "expected expression"); 9585 return false; 9586 } 9587 9588 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9589 if (!Value) { 9590 Error(Loc, "expected constant expression"); 9591 return false; 9592 } 9593 9594 switch (Width) { 9595 case 2: 9596 if (Value->getValue() > 0xffff) { 9597 Error(Loc, "inst.n operand is too big, use inst.w instead"); 9598 return false; 9599 } 9600 break; 9601 case 4: 9602 if (Value->getValue() > 0xffffffff) { 9603 Error(Loc, 9604 StringRef(Suffix ? "inst.w" : "inst") + " operand is too big"); 9605 return false; 9606 } 9607 break; 9608 default: 9609 llvm_unreachable("only supported widths are 2 and 4"); 9610 } 9611 9612 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9613 9614 if (getLexer().is(AsmToken::EndOfStatement)) 9615 break; 9616 9617 if (getLexer().isNot(AsmToken::Comma)) { 9618 Error(Loc, "unexpected token in directive"); 9619 return false; 9620 } 9621 9622 Parser.Lex(); 9623 } 9624 9625 Parser.Lex(); 9626 return false; 9627 } 9628 9629 /// parseDirectiveLtorg 9630 /// ::= .ltorg | .pool 9631 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9632 getTargetStreamer().emitCurrentConstantPool(); 9633 return false; 9634 } 9635 9636 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9637 const MCSection *Section = getStreamer().getCurrentSection().first; 9638 9639 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9640 TokError("unexpected token in directive"); 9641 return false; 9642 } 9643 9644 if (!Section) { 9645 getStreamer().InitSections(false); 9646 Section = getStreamer().getCurrentSection().first; 9647 } 9648 9649 assert(Section && "must have section to emit alignment"); 9650 if (Section->UseCodeAlign()) 9651 getStreamer().EmitCodeAlignment(2); 9652 else 9653 getStreamer().EmitValueToAlignment(2); 9654 9655 return false; 9656 } 9657 9658 /// parseDirectivePersonalityIndex 9659 /// ::= .personalityindex index 9660 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9661 MCAsmParser &Parser = getParser(); 9662 bool HasExistingPersonality = UC.hasPersonality(); 9663 9664 UC.recordPersonalityIndex(L); 9665 9666 if (!UC.hasFnStart()) { 9667 Parser.eatToEndOfStatement(); 9668 Error(L, ".fnstart must precede .personalityindex directive"); 9669 return false; 9670 } 9671 if (UC.cantUnwind()) { 9672 Parser.eatToEndOfStatement(); 9673 Error(L, ".personalityindex cannot be used with .cantunwind"); 9674 UC.emitCantUnwindLocNotes(); 9675 return false; 9676 } 9677 if (UC.hasHandlerData()) { 9678 Parser.eatToEndOfStatement(); 9679 Error(L, ".personalityindex must precede .handlerdata directive"); 9680 UC.emitHandlerDataLocNotes(); 9681 return false; 9682 } 9683 if (HasExistingPersonality) { 9684 Parser.eatToEndOfStatement(); 9685 Error(L, "multiple personality directives"); 9686 UC.emitPersonalityLocNotes(); 9687 return false; 9688 } 9689 9690 const MCExpr *IndexExpression; 9691 SMLoc IndexLoc = Parser.getTok().getLoc(); 9692 if (Parser.parseExpression(IndexExpression)) { 9693 Parser.eatToEndOfStatement(); 9694 return false; 9695 } 9696 9697 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9698 if (!CE) { 9699 Parser.eatToEndOfStatement(); 9700 Error(IndexLoc, "index must be a constant number"); 9701 return false; 9702 } 9703 if (CE->getValue() < 0 || 9704 CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) { 9705 Parser.eatToEndOfStatement(); 9706 Error(IndexLoc, "personality routine index should be in range [0-3]"); 9707 return false; 9708 } 9709 9710 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9711 return false; 9712 } 9713 9714 /// parseDirectiveUnwindRaw 9715 /// ::= .unwind_raw offset, opcode [, opcode...] 9716 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9717 MCAsmParser &Parser = getParser(); 9718 if (!UC.hasFnStart()) { 9719 Parser.eatToEndOfStatement(); 9720 Error(L, ".fnstart must precede .unwind_raw directives"); 9721 return false; 9722 } 9723 9724 int64_t StackOffset; 9725 9726 const MCExpr *OffsetExpr; 9727 SMLoc OffsetLoc = getLexer().getLoc(); 9728 if (getLexer().is(AsmToken::EndOfStatement) || 9729 getParser().parseExpression(OffsetExpr)) { 9730 Error(OffsetLoc, "expected expression"); 9731 Parser.eatToEndOfStatement(); 9732 return false; 9733 } 9734 9735 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9736 if (!CE) { 9737 Error(OffsetLoc, "offset must be a constant"); 9738 Parser.eatToEndOfStatement(); 9739 return false; 9740 } 9741 9742 StackOffset = CE->getValue(); 9743 9744 if (getLexer().isNot(AsmToken::Comma)) { 9745 Error(getLexer().getLoc(), "expected comma"); 9746 Parser.eatToEndOfStatement(); 9747 return false; 9748 } 9749 Parser.Lex(); 9750 9751 SmallVector<uint8_t, 16> Opcodes; 9752 for (;;) { 9753 const MCExpr *OE; 9754 9755 SMLoc OpcodeLoc = getLexer().getLoc(); 9756 if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) { 9757 Error(OpcodeLoc, "expected opcode expression"); 9758 Parser.eatToEndOfStatement(); 9759 return false; 9760 } 9761 9762 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9763 if (!OC) { 9764 Error(OpcodeLoc, "opcode value must be a constant"); 9765 Parser.eatToEndOfStatement(); 9766 return false; 9767 } 9768 9769 const int64_t Opcode = OC->getValue(); 9770 if (Opcode & ~0xff) { 9771 Error(OpcodeLoc, "invalid opcode"); 9772 Parser.eatToEndOfStatement(); 9773 return false; 9774 } 9775 9776 Opcodes.push_back(uint8_t(Opcode)); 9777 9778 if (getLexer().is(AsmToken::EndOfStatement)) 9779 break; 9780 9781 if (getLexer().isNot(AsmToken::Comma)) { 9782 Error(getLexer().getLoc(), "unexpected token in directive"); 9783 Parser.eatToEndOfStatement(); 9784 return false; 9785 } 9786 9787 Parser.Lex(); 9788 } 9789 9790 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9791 9792 Parser.Lex(); 9793 return false; 9794 } 9795 9796 /// parseDirectiveTLSDescSeq 9797 /// ::= .tlsdescseq tls-variable 9798 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 9799 MCAsmParser &Parser = getParser(); 9800 9801 if (getLexer().isNot(AsmToken::Identifier)) { 9802 TokError("expected variable after '.tlsdescseq' directive"); 9803 Parser.eatToEndOfStatement(); 9804 return false; 9805 } 9806 9807 const MCSymbolRefExpr *SRE = 9808 MCSymbolRefExpr::Create(Parser.getTok().getIdentifier(), 9809 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 9810 Lex(); 9811 9812 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9813 Error(Parser.getTok().getLoc(), "unexpected token"); 9814 Parser.eatToEndOfStatement(); 9815 return false; 9816 } 9817 9818 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 9819 return false; 9820 } 9821 9822 /// parseDirectiveMovSP 9823 /// ::= .movsp reg [, #offset] 9824 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 9825 MCAsmParser &Parser = getParser(); 9826 if (!UC.hasFnStart()) { 9827 Parser.eatToEndOfStatement(); 9828 Error(L, ".fnstart must precede .movsp directives"); 9829 return false; 9830 } 9831 if (UC.getFPReg() != ARM::SP) { 9832 Parser.eatToEndOfStatement(); 9833 Error(L, "unexpected .movsp directive"); 9834 return false; 9835 } 9836 9837 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9838 int SPReg = tryParseRegister(); 9839 if (SPReg == -1) { 9840 Parser.eatToEndOfStatement(); 9841 Error(SPRegLoc, "register expected"); 9842 return false; 9843 } 9844 9845 if (SPReg == ARM::SP || SPReg == ARM::PC) { 9846 Parser.eatToEndOfStatement(); 9847 Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 9848 return false; 9849 } 9850 9851 int64_t Offset = 0; 9852 if (Parser.getTok().is(AsmToken::Comma)) { 9853 Parser.Lex(); 9854 9855 if (Parser.getTok().isNot(AsmToken::Hash)) { 9856 Error(Parser.getTok().getLoc(), "expected #constant"); 9857 Parser.eatToEndOfStatement(); 9858 return false; 9859 } 9860 Parser.Lex(); 9861 9862 const MCExpr *OffsetExpr; 9863 SMLoc OffsetLoc = Parser.getTok().getLoc(); 9864 if (Parser.parseExpression(OffsetExpr)) { 9865 Parser.eatToEndOfStatement(); 9866 Error(OffsetLoc, "malformed offset expression"); 9867 return false; 9868 } 9869 9870 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9871 if (!CE) { 9872 Parser.eatToEndOfStatement(); 9873 Error(OffsetLoc, "offset must be an immediate constant"); 9874 return false; 9875 } 9876 9877 Offset = CE->getValue(); 9878 } 9879 9880 getTargetStreamer().emitMovSP(SPReg, Offset); 9881 UC.saveFPReg(SPReg); 9882 9883 return false; 9884 } 9885 9886 /// parseDirectiveObjectArch 9887 /// ::= .object_arch name 9888 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 9889 MCAsmParser &Parser = getParser(); 9890 if (getLexer().isNot(AsmToken::Identifier)) { 9891 Error(getLexer().getLoc(), "unexpected token"); 9892 Parser.eatToEndOfStatement(); 9893 return false; 9894 } 9895 9896 StringRef Arch = Parser.getTok().getString(); 9897 SMLoc ArchLoc = Parser.getTok().getLoc(); 9898 getLexer().Lex(); 9899 9900 unsigned ID = StringSwitch<unsigned>(Arch) 9901 #define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \ 9902 .Case(NAME, ARM::ID) 9903 #define ARM_ARCH_ALIAS(NAME, ID) \ 9904 .Case(NAME, ARM::ID) 9905 #include "MCTargetDesc/ARMArchName.def" 9906 #undef ARM_ARCH_NAME 9907 #undef ARM_ARCH_ALIAS 9908 .Default(ARM::INVALID_ARCH); 9909 9910 if (ID == ARM::INVALID_ARCH) { 9911 Error(ArchLoc, "unknown architecture '" + Arch + "'"); 9912 Parser.eatToEndOfStatement(); 9913 return false; 9914 } 9915 9916 getTargetStreamer().emitObjectArch(ID); 9917 9918 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9919 Error(getLexer().getLoc(), "unexpected token"); 9920 Parser.eatToEndOfStatement(); 9921 } 9922 9923 return false; 9924 } 9925 9926 /// parseDirectiveAlign 9927 /// ::= .align 9928 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 9929 // NOTE: if this is not the end of the statement, fall back to the target 9930 // agnostic handling for this directive which will correctly handle this. 9931 if (getLexer().isNot(AsmToken::EndOfStatement)) 9932 return true; 9933 9934 // '.align' is target specifically handled to mean 2**2 byte alignment. 9935 if (getStreamer().getCurrentSection().first->UseCodeAlign()) 9936 getStreamer().EmitCodeAlignment(4, 0); 9937 else 9938 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 9939 9940 return false; 9941 } 9942 9943 /// parseDirectiveThumbSet 9944 /// ::= .thumb_set name, value 9945 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 9946 MCAsmParser &Parser = getParser(); 9947 9948 StringRef Name; 9949 if (Parser.parseIdentifier(Name)) { 9950 TokError("expected identifier after '.thumb_set'"); 9951 Parser.eatToEndOfStatement(); 9952 return false; 9953 } 9954 9955 if (getLexer().isNot(AsmToken::Comma)) { 9956 TokError("expected comma after name '" + Name + "'"); 9957 Parser.eatToEndOfStatement(); 9958 return false; 9959 } 9960 Lex(); 9961 9962 const MCExpr *Value; 9963 if (Parser.parseExpression(Value)) { 9964 TokError("missing expression"); 9965 Parser.eatToEndOfStatement(); 9966 return false; 9967 } 9968 9969 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9970 TokError("unexpected token"); 9971 Parser.eatToEndOfStatement(); 9972 return false; 9973 } 9974 Lex(); 9975 9976 MCSymbol *Alias = getContext().GetOrCreateSymbol(Name); 9977 getTargetStreamer().emitThumbSet(Alias, Value); 9978 return false; 9979 } 9980 9981 /// Force static initialization. 9982 extern "C" void LLVMInitializeARMAsmParser() { 9983 RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget); 9984 RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget); 9985 RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget); 9986 RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget); 9987 } 9988 9989 #define GET_REGISTER_MATCHER 9990 #define GET_SUBTARGET_FEATURE_NAME 9991 #define GET_MATCHER_IMPLEMENTATION 9992 #include "ARMGenAsmMatcher.inc" 9993 9994 static const struct { 9995 const char *Name; 9996 const unsigned ArchCheck; 9997 const uint64_t Features; 9998 } Extensions[] = { 9999 { "crc", Feature_HasV8, ARM::FeatureCRC }, 10000 { "crypto", Feature_HasV8, 10001 ARM::FeatureCrypto | ARM::FeatureNEON | ARM::FeatureFPARMv8 }, 10002 { "fp", Feature_HasV8, ARM::FeatureFPARMv8 }, 10003 { "idiv", Feature_HasV7 | Feature_IsNotMClass, 10004 ARM::FeatureHWDiv | ARM::FeatureHWDivARM }, 10005 // FIXME: iWMMXT not supported 10006 { "iwmmxt", Feature_None, 0 }, 10007 // FIXME: iWMMXT2 not supported 10008 { "iwmmxt2", Feature_None, 0 }, 10009 // FIXME: Maverick not supported 10010 { "maverick", Feature_None, 0 }, 10011 { "mp", Feature_HasV7 | Feature_IsNotMClass, ARM::FeatureMP }, 10012 // FIXME: ARMv6-m OS Extensions feature not checked 10013 { "os", Feature_None, 0 }, 10014 // FIXME: Also available in ARMv6-K 10015 { "sec", Feature_HasV7, ARM::FeatureTrustZone }, 10016 { "simd", Feature_HasV8, ARM::FeatureNEON | ARM::FeatureFPARMv8 }, 10017 // FIXME: Only available in A-class, isel not predicated 10018 { "virt", Feature_HasV7, ARM::FeatureVirtualization }, 10019 // FIXME: xscale not supported 10020 { "xscale", Feature_None, 0 }, 10021 }; 10022 10023 /// parseDirectiveArchExtension 10024 /// ::= .arch_extension [no]feature 10025 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10026 MCAsmParser &Parser = getParser(); 10027 10028 if (getLexer().isNot(AsmToken::Identifier)) { 10029 Error(getLexer().getLoc(), "unexpected token"); 10030 Parser.eatToEndOfStatement(); 10031 return false; 10032 } 10033 10034 StringRef Name = Parser.getTok().getString(); 10035 SMLoc ExtLoc = Parser.getTok().getLoc(); 10036 getLexer().Lex(); 10037 10038 bool EnableFeature = true; 10039 if (Name.startswith_lower("no")) { 10040 EnableFeature = false; 10041 Name = Name.substr(2); 10042 } 10043 10044 for (const auto &Extension : Extensions) { 10045 if (Extension.Name != Name) 10046 continue; 10047 10048 if (!Extension.Features) 10049 report_fatal_error("unsupported architectural extension: " + Name); 10050 10051 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) { 10052 Error(ExtLoc, "architectural extension '" + Name + "' is not " 10053 "allowed for the current base architecture"); 10054 return false; 10055 } 10056 10057 uint64_t ToggleFeatures = EnableFeature 10058 ? (~STI.getFeatureBits() & Extension.Features) 10059 : ( STI.getFeatureBits() & Extension.Features); 10060 uint64_t Features = 10061 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10062 setAvailableFeatures(Features); 10063 return false; 10064 } 10065 10066 Error(ExtLoc, "unknown architectural extension: " + Name); 10067 Parser.eatToEndOfStatement(); 10068 return false; 10069 } 10070 10071 // Define this matcher function after the auto-generated include so we 10072 // have the match class enum definitions. 10073 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10074 unsigned Kind) { 10075 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10076 // If the kind is a token for a literal immediate, check if our asm 10077 // operand matches. This is for InstAliases which have a fixed-value 10078 // immediate in the syntax. 10079 switch (Kind) { 10080 default: break; 10081 case MCK__35_0: 10082 if (Op.isImm()) 10083 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10084 if (CE->getValue() == 0) 10085 return Match_Success; 10086 break; 10087 case MCK_ModImm: 10088 if (Op.isImm()) { 10089 const MCExpr *SOExpr = Op.getImm(); 10090 int64_t Value; 10091 if (!SOExpr->EvaluateAsAbsolute(Value)) 10092 return Match_Success; 10093 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10094 "expression value must be representable in 32 bits"); 10095 } 10096 break; 10097 case MCK_GPRPair: 10098 if (Op.isReg() && 10099 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10100 return Match_Success; 10101 break; 10102 } 10103 return Match_InvalidOperand; 10104 } 10105