1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMFeatures.h" 10 #include "InstPrinter/ARMInstPrinter.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMMCExpr.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCInstrInfo.h" 32 #include "llvm/MC/MCObjectFileInfo.h" 33 #include "llvm/MC/MCParser/MCAsmLexer.h" 34 #include "llvm/MC/MCParser/MCAsmParser.h" 35 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 36 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 37 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 38 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSubtargetInfo.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/MC/SubtargetFeature.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/ARMEHABI.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/SMLoc.h" 53 #include "llvm/Support/TargetParser.h" 54 #include "llvm/Support/TargetRegistry.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstddef> 59 #include <cstdint> 60 #include <iterator> 61 #include <limits> 62 #include <memory> 63 #include <string> 64 #include <utility> 65 #include <vector> 66 67 #define DEBUG_TYPE "asm-parser" 68 69 using namespace llvm; 70 71 namespace { 72 73 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 74 75 static cl::opt<ImplicitItModeTy> ImplicitItMode( 76 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 77 cl::desc("Allow conditional instructions outdside of an IT block"), 78 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 79 "Accept in both ISAs, emit implicit ITs in Thumb"), 80 clEnumValN(ImplicitItModeTy::Never, "never", 81 "Warn in ARM, reject in Thumb"), 82 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 83 "Accept in ARM, reject in Thumb"), 84 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 85 "Warn in ARM, emit implicit ITs in Thumb"))); 86 87 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 88 cl::init(false)); 89 90 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 91 92 class UnwindContext { 93 using Locs = SmallVector<SMLoc, 4>; 94 95 MCAsmParser &Parser; 96 Locs FnStartLocs; 97 Locs CantUnwindLocs; 98 Locs PersonalityLocs; 99 Locs PersonalityIndexLocs; 100 Locs HandlerDataLocs; 101 int FPReg; 102 103 public: 104 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 105 106 bool hasFnStart() const { return !FnStartLocs.empty(); } 107 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 108 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 109 110 bool hasPersonality() const { 111 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 112 } 113 114 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 115 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 116 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 117 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 118 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 119 120 void saveFPReg(int Reg) { FPReg = Reg; } 121 int getFPReg() const { return FPReg; } 122 123 void emitFnStartLocNotes() const { 124 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 125 FI != FE; ++FI) 126 Parser.Note(*FI, ".fnstart was specified here"); 127 } 128 129 void emitCantUnwindLocNotes() const { 130 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 131 UE = CantUnwindLocs.end(); UI != UE; ++UI) 132 Parser.Note(*UI, ".cantunwind was specified here"); 133 } 134 135 void emitHandlerDataLocNotes() const { 136 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 137 HE = HandlerDataLocs.end(); HI != HE; ++HI) 138 Parser.Note(*HI, ".handlerdata was specified here"); 139 } 140 141 void emitPersonalityLocNotes() const { 142 for (Locs::const_iterator PI = PersonalityLocs.begin(), 143 PE = PersonalityLocs.end(), 144 PII = PersonalityIndexLocs.begin(), 145 PIE = PersonalityIndexLocs.end(); 146 PI != PE || PII != PIE;) { 147 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 148 Parser.Note(*PI++, ".personality was specified here"); 149 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 150 Parser.Note(*PII++, ".personalityindex was specified here"); 151 else 152 llvm_unreachable(".personality and .personalityindex cannot be " 153 "at the same location"); 154 } 155 } 156 157 void reset() { 158 FnStartLocs = Locs(); 159 CantUnwindLocs = Locs(); 160 PersonalityLocs = Locs(); 161 HandlerDataLocs = Locs(); 162 PersonalityIndexLocs = Locs(); 163 FPReg = ARM::SP; 164 } 165 }; 166 167 class ARMAsmParser : public MCTargetAsmParser { 168 const MCRegisterInfo *MRI; 169 UnwindContext UC; 170 171 ARMTargetStreamer &getTargetStreamer() { 172 assert(getParser().getStreamer().getTargetStreamer() && 173 "do not have a target streamer"); 174 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 175 return static_cast<ARMTargetStreamer &>(TS); 176 } 177 178 // Map of register aliases registers via the .req directive. 179 StringMap<unsigned> RegisterReqs; 180 181 bool NextSymbolIsThumb; 182 183 bool useImplicitITThumb() const { 184 return ImplicitItMode == ImplicitItModeTy::Always || 185 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 186 } 187 188 bool useImplicitITARM() const { 189 return ImplicitItMode == ImplicitItModeTy::Always || 190 ImplicitItMode == ImplicitItModeTy::ARMOnly; 191 } 192 193 struct { 194 ARMCC::CondCodes Cond; // Condition for IT block. 195 unsigned Mask:4; // Condition mask for instructions. 196 // Starting at first 1 (from lsb). 197 // '1' condition as indicated in IT. 198 // '0' inverse of condition (else). 199 // Count of instructions in IT block is 200 // 4 - trailingzeroes(mask) 201 // Note that this does not have the same encoding 202 // as in the IT instruction, which also depends 203 // on the low bit of the condition code. 204 205 unsigned CurPosition; // Current position in parsing of IT 206 // block. In range [0,4], with 0 being the IT 207 // instruction itself. Initialized according to 208 // count of instructions in block. ~0U if no 209 // active IT block. 210 211 bool IsExplicit; // true - The IT instruction was present in the 212 // input, we should not modify it. 213 // false - The IT instruction was added 214 // implicitly, we can extend it if that 215 // would be legal. 216 } ITState; 217 218 SmallVector<MCInst, 4> PendingConditionalInsts; 219 220 void flushPendingInstructions(MCStreamer &Out) override { 221 if (!inImplicitITBlock()) { 222 assert(PendingConditionalInsts.size() == 0); 223 return; 224 } 225 226 // Emit the IT instruction 227 unsigned Mask = getITMaskEncoding(); 228 MCInst ITInst; 229 ITInst.setOpcode(ARM::t2IT); 230 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 231 ITInst.addOperand(MCOperand::createImm(Mask)); 232 Out.EmitInstruction(ITInst, getSTI()); 233 234 // Emit the conditonal instructions 235 assert(PendingConditionalInsts.size() <= 4); 236 for (const MCInst &Inst : PendingConditionalInsts) { 237 Out.EmitInstruction(Inst, getSTI()); 238 } 239 PendingConditionalInsts.clear(); 240 241 // Clear the IT state 242 ITState.Mask = 0; 243 ITState.CurPosition = ~0U; 244 } 245 246 bool inITBlock() { return ITState.CurPosition != ~0U; } 247 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 248 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 249 250 bool lastInITBlock() { 251 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 252 } 253 254 void forwardITPosition() { 255 if (!inITBlock()) return; 256 // Move to the next instruction in the IT block, if there is one. If not, 257 // mark the block as done, except for implicit IT blocks, which we leave 258 // open until we find an instruction that can't be added to it. 259 unsigned TZ = countTrailingZeros(ITState.Mask); 260 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 261 ITState.CurPosition = ~0U; // Done with the IT block after this. 262 } 263 264 // Rewind the state of the current IT block, removing the last slot from it. 265 void rewindImplicitITPosition() { 266 assert(inImplicitITBlock()); 267 assert(ITState.CurPosition > 1); 268 ITState.CurPosition--; 269 unsigned TZ = countTrailingZeros(ITState.Mask); 270 unsigned NewMask = 0; 271 NewMask |= ITState.Mask & (0xC << TZ); 272 NewMask |= 0x2 << TZ; 273 ITState.Mask = NewMask; 274 } 275 276 // Rewind the state of the current IT block, removing the last slot from it. 277 // If we were at the first slot, this closes the IT block. 278 void discardImplicitITBlock() { 279 assert(inImplicitITBlock()); 280 assert(ITState.CurPosition == 1); 281 ITState.CurPosition = ~0U; 282 } 283 284 // Return the low-subreg of a given Q register. 285 unsigned getDRegFromQReg(unsigned QReg) const { 286 return MRI->getSubReg(QReg, ARM::dsub_0); 287 } 288 289 // Get the encoding of the IT mask, as it will appear in an IT instruction. 290 unsigned getITMaskEncoding() { 291 assert(inITBlock()); 292 unsigned Mask = ITState.Mask; 293 unsigned TZ = countTrailingZeros(Mask); 294 if ((ITState.Cond & 1) == 0) { 295 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 296 Mask ^= (0xE << TZ) & 0xF; 297 } 298 return Mask; 299 } 300 301 // Get the condition code corresponding to the current IT block slot. 302 ARMCC::CondCodes currentITCond() { 303 unsigned MaskBit; 304 if (ITState.CurPosition == 1) 305 MaskBit = 1; 306 else 307 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 308 309 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 310 } 311 312 // Invert the condition of the current IT block slot without changing any 313 // other slots in the same block. 314 void invertCurrentITCondition() { 315 if (ITState.CurPosition == 1) { 316 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 317 } else { 318 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 319 } 320 } 321 322 // Returns true if the current IT block is full (all 4 slots used). 323 bool isITBlockFull() { 324 return inITBlock() && (ITState.Mask & 1); 325 } 326 327 // Extend the current implicit IT block to have one more slot with the given 328 // condition code. 329 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 330 assert(inImplicitITBlock()); 331 assert(!isITBlockFull()); 332 assert(Cond == ITState.Cond || 333 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 334 unsigned TZ = countTrailingZeros(ITState.Mask); 335 unsigned NewMask = 0; 336 // Keep any existing condition bits. 337 NewMask |= ITState.Mask & (0xE << TZ); 338 // Insert the new condition bit. 339 NewMask |= (Cond == ITState.Cond) << TZ; 340 // Move the trailing 1 down one bit. 341 NewMask |= 1 << (TZ - 1); 342 ITState.Mask = NewMask; 343 } 344 345 // Create a new implicit IT block with a dummy condition code. 346 void startImplicitITBlock() { 347 assert(!inITBlock()); 348 ITState.Cond = ARMCC::AL; 349 ITState.Mask = 8; 350 ITState.CurPosition = 1; 351 ITState.IsExplicit = false; 352 } 353 354 // Create a new explicit IT block with the given condition and mask. The mask 355 // should be in the parsed format, with a 1 implying 't', regardless of the 356 // low bit of the condition. 357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 358 assert(!inITBlock()); 359 ITState.Cond = Cond; 360 ITState.Mask = Mask; 361 ITState.CurPosition = 0; 362 ITState.IsExplicit = true; 363 } 364 365 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 366 return getParser().Note(L, Msg, Range); 367 } 368 369 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 370 return getParser().Warning(L, Msg, Range); 371 } 372 373 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 374 return getParser().Error(L, Msg, Range); 375 } 376 377 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 378 unsigned ListNo, bool IsARPop = false); 379 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 380 unsigned ListNo); 381 382 int tryParseRegister(); 383 bool tryParseRegisterWithWriteBack(OperandVector &); 384 int tryParseShiftRegister(OperandVector &); 385 bool parseRegisterList(OperandVector &); 386 bool parseMemory(OperandVector &); 387 bool parseOperand(OperandVector &, StringRef Mnemonic); 388 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 389 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 390 unsigned &ShiftAmount); 391 bool parseLiteralValues(unsigned Size, SMLoc L); 392 bool parseDirectiveThumb(SMLoc L); 393 bool parseDirectiveARM(SMLoc L); 394 bool parseDirectiveThumbFunc(SMLoc L); 395 bool parseDirectiveCode(SMLoc L); 396 bool parseDirectiveSyntax(SMLoc L); 397 bool parseDirectiveReq(StringRef Name, SMLoc L); 398 bool parseDirectiveUnreq(SMLoc L); 399 bool parseDirectiveArch(SMLoc L); 400 bool parseDirectiveEabiAttr(SMLoc L); 401 bool parseDirectiveCPU(SMLoc L); 402 bool parseDirectiveFPU(SMLoc L); 403 bool parseDirectiveFnStart(SMLoc L); 404 bool parseDirectiveFnEnd(SMLoc L); 405 bool parseDirectiveCantUnwind(SMLoc L); 406 bool parseDirectivePersonality(SMLoc L); 407 bool parseDirectiveHandlerData(SMLoc L); 408 bool parseDirectiveSetFP(SMLoc L); 409 bool parseDirectivePad(SMLoc L); 410 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 411 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 412 bool parseDirectiveLtorg(SMLoc L); 413 bool parseDirectiveEven(SMLoc L); 414 bool parseDirectivePersonalityIndex(SMLoc L); 415 bool parseDirectiveUnwindRaw(SMLoc L); 416 bool parseDirectiveTLSDescSeq(SMLoc L); 417 bool parseDirectiveMovSP(SMLoc L); 418 bool parseDirectiveObjectArch(SMLoc L); 419 bool parseDirectiveArchExtension(SMLoc L); 420 bool parseDirectiveAlign(SMLoc L); 421 bool parseDirectiveThumbSet(SMLoc L); 422 423 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 424 bool &CarrySetting, unsigned &ProcessorIMod, 425 StringRef &ITMask); 426 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 427 bool &CanAcceptCarrySet, 428 bool &CanAcceptPredicationCode); 429 430 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 431 OperandVector &Operands); 432 bool isThumb() const { 433 // FIXME: Can tablegen auto-generate this? 434 return getSTI().getFeatureBits()[ARM::ModeThumb]; 435 } 436 437 bool isThumbOne() const { 438 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 439 } 440 441 bool isThumbTwo() const { 442 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 443 } 444 445 bool hasThumb() const { 446 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 447 } 448 449 bool hasThumb2() const { 450 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 451 } 452 453 bool hasV6Ops() const { 454 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 455 } 456 457 bool hasV6T2Ops() const { 458 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 459 } 460 461 bool hasV6MOps() const { 462 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 463 } 464 465 bool hasV7Ops() const { 466 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 467 } 468 469 bool hasV8Ops() const { 470 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 471 } 472 473 bool hasV8MBaseline() const { 474 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 475 } 476 477 bool hasV8MMainline() const { 478 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 479 } 480 481 bool has8MSecExt() const { 482 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 483 } 484 485 bool hasARM() const { 486 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 487 } 488 489 bool hasDSP() const { 490 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 491 } 492 493 bool hasD16() const { 494 return getSTI().getFeatureBits()[ARM::FeatureD16]; 495 } 496 497 bool hasV8_1aOps() const { 498 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 499 } 500 501 bool hasRAS() const { 502 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 503 } 504 505 void SwitchMode() { 506 MCSubtargetInfo &STI = copySTI(); 507 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 508 setAvailableFeatures(FB); 509 } 510 511 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 512 513 bool isMClass() const { 514 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 515 } 516 517 /// @name Auto-generated Match Functions 518 /// { 519 520 #define GET_ASSEMBLER_HEADER 521 #include "ARMGenAsmMatcher.inc" 522 523 /// } 524 525 OperandMatchResultTy parseITCondCode(OperandVector &); 526 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 527 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 528 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 529 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 530 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 531 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 532 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 533 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 534 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 535 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 536 int High); 537 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 538 return parsePKHImm(O, "lsl", 0, 31); 539 } 540 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 541 return parsePKHImm(O, "asr", 1, 32); 542 } 543 OperandMatchResultTy parseSetEndImm(OperandVector &); 544 OperandMatchResultTy parseShifterImm(OperandVector &); 545 OperandMatchResultTy parseRotImm(OperandVector &); 546 OperandMatchResultTy parseModImm(OperandVector &); 547 OperandMatchResultTy parseBitfield(OperandVector &); 548 OperandMatchResultTy parsePostIdxReg(OperandVector &); 549 OperandMatchResultTy parseAM3Offset(OperandVector &); 550 OperandMatchResultTy parseFPImm(OperandVector &); 551 OperandMatchResultTy parseVectorList(OperandVector &); 552 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 553 SMLoc &EndLoc); 554 555 // Asm Match Converter Methods 556 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 557 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 558 559 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 560 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 561 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 562 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 563 bool isITBlockTerminator(MCInst &Inst) const; 564 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 565 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 566 bool Load, bool ARMMode, bool Writeback); 567 568 public: 569 enum ARMMatchResultTy { 570 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 571 Match_RequiresNotITBlock, 572 Match_RequiresV6, 573 Match_RequiresThumb2, 574 Match_RequiresV8, 575 Match_RequiresFlagSetting, 576 #define GET_OPERAND_DIAGNOSTIC_TYPES 577 #include "ARMGenAsmMatcher.inc" 578 579 }; 580 581 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 582 const MCInstrInfo &MII, const MCTargetOptions &Options) 583 : MCTargetAsmParser(Options, STI, MII), UC(Parser) { 584 MCAsmParserExtension::Initialize(Parser); 585 586 // Cache the MCRegisterInfo. 587 MRI = getContext().getRegisterInfo(); 588 589 // Initialize the set of available features. 590 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 591 592 // Add build attributes based on the selected target. 593 if (AddBuildAttributes) 594 getTargetStreamer().emitTargetAttributes(STI); 595 596 // Not in an ITBlock to start with. 597 ITState.CurPosition = ~0U; 598 599 NextSymbolIsThumb = false; 600 } 601 602 // Implementation of the MCTargetAsmParser interface: 603 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 604 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 605 SMLoc NameLoc, OperandVector &Operands) override; 606 bool ParseDirective(AsmToken DirectiveID) override; 607 608 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 609 unsigned Kind) override; 610 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 611 612 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 613 OperandVector &Operands, MCStreamer &Out, 614 uint64_t &ErrorInfo, 615 bool MatchingInlineAsm) override; 616 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 617 SmallVectorImpl<NearMissInfo> &NearMisses, 618 bool MatchingInlineAsm, bool &EmitInITBlock, 619 MCStreamer &Out); 620 621 struct NearMissMessage { 622 SMLoc Loc; 623 SmallString<128> Message; 624 }; 625 626 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 627 628 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 629 SmallVectorImpl<NearMissMessage> &NearMissesOut, 630 SMLoc IDLoc, OperandVector &Operands); 631 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 632 OperandVector &Operands); 633 634 void doBeforeLabelEmit(MCSymbol *Symbol) override; 635 636 void onLabelParsed(MCSymbol *Symbol) override; 637 }; 638 639 /// ARMOperand - Instances of this class represent a parsed ARM machine 640 /// operand. 641 class ARMOperand : public MCParsedAsmOperand { 642 enum KindTy { 643 k_CondCode, 644 k_CCOut, 645 k_ITCondMask, 646 k_CoprocNum, 647 k_CoprocReg, 648 k_CoprocOption, 649 k_Immediate, 650 k_MemBarrierOpt, 651 k_InstSyncBarrierOpt, 652 k_TraceSyncBarrierOpt, 653 k_Memory, 654 k_PostIndexRegister, 655 k_MSRMask, 656 k_BankedReg, 657 k_ProcIFlags, 658 k_VectorIndex, 659 k_Register, 660 k_RegisterList, 661 k_DPRRegisterList, 662 k_SPRRegisterList, 663 k_VectorList, 664 k_VectorListAllLanes, 665 k_VectorListIndexed, 666 k_ShiftedRegister, 667 k_ShiftedImmediate, 668 k_ShifterImmediate, 669 k_RotateImmediate, 670 k_ModifiedImmediate, 671 k_ConstantPoolImmediate, 672 k_BitfieldDescriptor, 673 k_Token, 674 } Kind; 675 676 SMLoc StartLoc, EndLoc, AlignmentLoc; 677 SmallVector<unsigned, 8> Registers; 678 679 struct CCOp { 680 ARMCC::CondCodes Val; 681 }; 682 683 struct CopOp { 684 unsigned Val; 685 }; 686 687 struct CoprocOptionOp { 688 unsigned Val; 689 }; 690 691 struct ITMaskOp { 692 unsigned Mask:4; 693 }; 694 695 struct MBOptOp { 696 ARM_MB::MemBOpt Val; 697 }; 698 699 struct ISBOptOp { 700 ARM_ISB::InstSyncBOpt Val; 701 }; 702 703 struct TSBOptOp { 704 ARM_TSB::TraceSyncBOpt Val; 705 }; 706 707 struct IFlagsOp { 708 ARM_PROC::IFlags Val; 709 }; 710 711 struct MMaskOp { 712 unsigned Val; 713 }; 714 715 struct BankedRegOp { 716 unsigned Val; 717 }; 718 719 struct TokOp { 720 const char *Data; 721 unsigned Length; 722 }; 723 724 struct RegOp { 725 unsigned RegNum; 726 }; 727 728 // A vector register list is a sequential list of 1 to 4 registers. 729 struct VectorListOp { 730 unsigned RegNum; 731 unsigned Count; 732 unsigned LaneIndex; 733 bool isDoubleSpaced; 734 }; 735 736 struct VectorIndexOp { 737 unsigned Val; 738 }; 739 740 struct ImmOp { 741 const MCExpr *Val; 742 }; 743 744 /// Combined record for all forms of ARM address expressions. 745 struct MemoryOp { 746 unsigned BaseRegNum; 747 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 748 // was specified. 749 const MCConstantExpr *OffsetImm; // Offset immediate value 750 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 751 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 752 unsigned ShiftImm; // shift for OffsetReg. 753 unsigned Alignment; // 0 = no alignment specified 754 // n = alignment in bytes (2, 4, 8, 16, or 32) 755 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 756 }; 757 758 struct PostIdxRegOp { 759 unsigned RegNum; 760 bool isAdd; 761 ARM_AM::ShiftOpc ShiftTy; 762 unsigned ShiftImm; 763 }; 764 765 struct ShifterImmOp { 766 bool isASR; 767 unsigned Imm; 768 }; 769 770 struct RegShiftedRegOp { 771 ARM_AM::ShiftOpc ShiftTy; 772 unsigned SrcReg; 773 unsigned ShiftReg; 774 unsigned ShiftImm; 775 }; 776 777 struct RegShiftedImmOp { 778 ARM_AM::ShiftOpc ShiftTy; 779 unsigned SrcReg; 780 unsigned ShiftImm; 781 }; 782 783 struct RotImmOp { 784 unsigned Imm; 785 }; 786 787 struct ModImmOp { 788 unsigned Bits; 789 unsigned Rot; 790 }; 791 792 struct BitfieldOp { 793 unsigned LSB; 794 unsigned Width; 795 }; 796 797 union { 798 struct CCOp CC; 799 struct CopOp Cop; 800 struct CoprocOptionOp CoprocOption; 801 struct MBOptOp MBOpt; 802 struct ISBOptOp ISBOpt; 803 struct TSBOptOp TSBOpt; 804 struct ITMaskOp ITMask; 805 struct IFlagsOp IFlags; 806 struct MMaskOp MMask; 807 struct BankedRegOp BankedReg; 808 struct TokOp Tok; 809 struct RegOp Reg; 810 struct VectorListOp VectorList; 811 struct VectorIndexOp VectorIndex; 812 struct ImmOp Imm; 813 struct MemoryOp Memory; 814 struct PostIdxRegOp PostIdxReg; 815 struct ShifterImmOp ShifterImm; 816 struct RegShiftedRegOp RegShiftedReg; 817 struct RegShiftedImmOp RegShiftedImm; 818 struct RotImmOp RotImm; 819 struct ModImmOp ModImm; 820 struct BitfieldOp Bitfield; 821 }; 822 823 public: 824 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 825 826 /// getStartLoc - Get the location of the first token of this operand. 827 SMLoc getStartLoc() const override { return StartLoc; } 828 829 /// getEndLoc - Get the location of the last token of this operand. 830 SMLoc getEndLoc() const override { return EndLoc; } 831 832 /// getLocRange - Get the range between the first and last token of this 833 /// operand. 834 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 835 836 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 837 SMLoc getAlignmentLoc() const { 838 assert(Kind == k_Memory && "Invalid access!"); 839 return AlignmentLoc; 840 } 841 842 ARMCC::CondCodes getCondCode() const { 843 assert(Kind == k_CondCode && "Invalid access!"); 844 return CC.Val; 845 } 846 847 unsigned getCoproc() const { 848 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 849 return Cop.Val; 850 } 851 852 StringRef getToken() const { 853 assert(Kind == k_Token && "Invalid access!"); 854 return StringRef(Tok.Data, Tok.Length); 855 } 856 857 unsigned getReg() const override { 858 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 859 return Reg.RegNum; 860 } 861 862 const SmallVectorImpl<unsigned> &getRegList() const { 863 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 864 Kind == k_SPRRegisterList) && "Invalid access!"); 865 return Registers; 866 } 867 868 const MCExpr *getImm() const { 869 assert(isImm() && "Invalid access!"); 870 return Imm.Val; 871 } 872 873 const MCExpr *getConstantPoolImm() const { 874 assert(isConstantPoolImm() && "Invalid access!"); 875 return Imm.Val; 876 } 877 878 unsigned getVectorIndex() const { 879 assert(Kind == k_VectorIndex && "Invalid access!"); 880 return VectorIndex.Val; 881 } 882 883 ARM_MB::MemBOpt getMemBarrierOpt() const { 884 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 885 return MBOpt.Val; 886 } 887 888 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 889 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 890 return ISBOpt.Val; 891 } 892 893 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 894 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 895 return TSBOpt.Val; 896 } 897 898 ARM_PROC::IFlags getProcIFlags() const { 899 assert(Kind == k_ProcIFlags && "Invalid access!"); 900 return IFlags.Val; 901 } 902 903 unsigned getMSRMask() const { 904 assert(Kind == k_MSRMask && "Invalid access!"); 905 return MMask.Val; 906 } 907 908 unsigned getBankedReg() const { 909 assert(Kind == k_BankedReg && "Invalid access!"); 910 return BankedReg.Val; 911 } 912 913 bool isCoprocNum() const { return Kind == k_CoprocNum; } 914 bool isCoprocReg() const { return Kind == k_CoprocReg; } 915 bool isCoprocOption() const { return Kind == k_CoprocOption; } 916 bool isCondCode() const { return Kind == k_CondCode; } 917 bool isCCOut() const { return Kind == k_CCOut; } 918 bool isITMask() const { return Kind == k_ITCondMask; } 919 bool isITCondCode() const { return Kind == k_CondCode; } 920 bool isImm() const override { 921 return Kind == k_Immediate; 922 } 923 924 bool isARMBranchTarget() const { 925 if (!isImm()) return false; 926 927 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 928 return CE->getValue() % 4 == 0; 929 return true; 930 } 931 932 933 bool isThumbBranchTarget() const { 934 if (!isImm()) return false; 935 936 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 937 return CE->getValue() % 2 == 0; 938 return true; 939 } 940 941 // checks whether this operand is an unsigned offset which fits is a field 942 // of specified width and scaled by a specific number of bits 943 template<unsigned width, unsigned scale> 944 bool isUnsignedOffset() const { 945 if (!isImm()) return false; 946 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 947 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 948 int64_t Val = CE->getValue(); 949 int64_t Align = 1LL << scale; 950 int64_t Max = Align * ((1LL << width) - 1); 951 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 952 } 953 return false; 954 } 955 956 // checks whether this operand is an signed offset which fits is a field 957 // of specified width and scaled by a specific number of bits 958 template<unsigned width, unsigned scale> 959 bool isSignedOffset() const { 960 if (!isImm()) return false; 961 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 962 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 963 int64_t Val = CE->getValue(); 964 int64_t Align = 1LL << scale; 965 int64_t Max = Align * ((1LL << (width-1)) - 1); 966 int64_t Min = -Align * (1LL << (width-1)); 967 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 968 } 969 return false; 970 } 971 972 // checks whether this operand is a memory operand computed as an offset 973 // applied to PC. the offset may have 8 bits of magnitude and is represented 974 // with two bits of shift. textually it may be either [pc, #imm], #imm or 975 // relocable expression... 976 bool isThumbMemPC() const { 977 int64_t Val = 0; 978 if (isImm()) { 979 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 980 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 981 if (!CE) return false; 982 Val = CE->getValue(); 983 } 984 else if (isMem()) { 985 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 986 if(Memory.BaseRegNum != ARM::PC) return false; 987 Val = Memory.OffsetImm->getValue(); 988 } 989 else return false; 990 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 991 } 992 993 bool isFPImm() const { 994 if (!isImm()) return false; 995 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 996 if (!CE) return false; 997 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 998 return Val != -1; 999 } 1000 1001 template<int64_t N, int64_t M> 1002 bool isImmediate() const { 1003 if (!isImm()) return false; 1004 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1005 if (!CE) return false; 1006 int64_t Value = CE->getValue(); 1007 return Value >= N && Value <= M; 1008 } 1009 1010 template<int64_t N, int64_t M> 1011 bool isImmediateS4() const { 1012 if (!isImm()) return false; 1013 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1014 if (!CE) return false; 1015 int64_t Value = CE->getValue(); 1016 return ((Value & 3) == 0) && Value >= N && Value <= M; 1017 } 1018 1019 bool isFBits16() const { 1020 return isImmediate<0, 17>(); 1021 } 1022 bool isFBits32() const { 1023 return isImmediate<1, 33>(); 1024 } 1025 bool isImm8s4() const { 1026 return isImmediateS4<-1020, 1020>(); 1027 } 1028 bool isImm0_1020s4() const { 1029 return isImmediateS4<0, 1020>(); 1030 } 1031 bool isImm0_508s4() const { 1032 return isImmediateS4<0, 508>(); 1033 } 1034 bool isImm0_508s4Neg() const { 1035 if (!isImm()) return false; 1036 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1037 if (!CE) return false; 1038 int64_t Value = -CE->getValue(); 1039 // explicitly exclude zero. we want that to use the normal 0_508 version. 1040 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1041 } 1042 1043 bool isImm0_4095Neg() const { 1044 if (!isImm()) return false; 1045 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1046 if (!CE) return false; 1047 // isImm0_4095Neg is used with 32-bit immediates only. 1048 // 32-bit immediates are zero extended to 64-bit when parsed, 1049 // thus simple -CE->getValue() results in a big negative number, 1050 // not a small positive number as intended 1051 if ((CE->getValue() >> 32) > 0) return false; 1052 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1053 return Value > 0 && Value < 4096; 1054 } 1055 1056 bool isImm0_7() const { 1057 return isImmediate<0, 7>(); 1058 } 1059 1060 bool isImm1_16() const { 1061 return isImmediate<1, 16>(); 1062 } 1063 1064 bool isImm1_32() const { 1065 return isImmediate<1, 32>(); 1066 } 1067 1068 bool isImm8_255() const { 1069 return isImmediate<8, 255>(); 1070 } 1071 1072 bool isImm256_65535Expr() const { 1073 if (!isImm()) return false; 1074 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1075 // If it's not a constant expression, it'll generate a fixup and be 1076 // handled later. 1077 if (!CE) return true; 1078 int64_t Value = CE->getValue(); 1079 return Value >= 256 && Value < 65536; 1080 } 1081 1082 bool isImm0_65535Expr() const { 1083 if (!isImm()) return false; 1084 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1085 // If it's not a constant expression, it'll generate a fixup and be 1086 // handled later. 1087 if (!CE) return true; 1088 int64_t Value = CE->getValue(); 1089 return Value >= 0 && Value < 65536; 1090 } 1091 1092 bool isImm24bit() const { 1093 return isImmediate<0, 0xffffff + 1>(); 1094 } 1095 1096 bool isImmThumbSR() const { 1097 return isImmediate<1, 33>(); 1098 } 1099 1100 bool isPKHLSLImm() const { 1101 return isImmediate<0, 32>(); 1102 } 1103 1104 bool isPKHASRImm() const { 1105 return isImmediate<0, 33>(); 1106 } 1107 1108 bool isAdrLabel() const { 1109 // If we have an immediate that's not a constant, treat it as a label 1110 // reference needing a fixup. 1111 if (isImm() && !isa<MCConstantExpr>(getImm())) 1112 return true; 1113 1114 // If it is a constant, it must fit into a modified immediate encoding. 1115 if (!isImm()) return false; 1116 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1117 if (!CE) return false; 1118 int64_t Value = CE->getValue(); 1119 return (ARM_AM::getSOImmVal(Value) != -1 || 1120 ARM_AM::getSOImmVal(-Value) != -1); 1121 } 1122 1123 bool isT2SOImm() const { 1124 // If we have an immediate that's not a constant, treat it as an expression 1125 // needing a fixup. 1126 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1127 // We want to avoid matching :upper16: and :lower16: as we want these 1128 // expressions to match in isImm0_65535Expr() 1129 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1130 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1131 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1132 } 1133 if (!isImm()) return false; 1134 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1135 if (!CE) return false; 1136 int64_t Value = CE->getValue(); 1137 return ARM_AM::getT2SOImmVal(Value) != -1; 1138 } 1139 1140 bool isT2SOImmNot() const { 1141 if (!isImm()) return false; 1142 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1143 if (!CE) return false; 1144 int64_t Value = CE->getValue(); 1145 return ARM_AM::getT2SOImmVal(Value) == -1 && 1146 ARM_AM::getT2SOImmVal(~Value) != -1; 1147 } 1148 1149 bool isT2SOImmNeg() const { 1150 if (!isImm()) return false; 1151 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1152 if (!CE) return false; 1153 int64_t Value = CE->getValue(); 1154 // Only use this when not representable as a plain so_imm. 1155 return ARM_AM::getT2SOImmVal(Value) == -1 && 1156 ARM_AM::getT2SOImmVal(-Value) != -1; 1157 } 1158 1159 bool isSetEndImm() const { 1160 if (!isImm()) return false; 1161 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1162 if (!CE) return false; 1163 int64_t Value = CE->getValue(); 1164 return Value == 1 || Value == 0; 1165 } 1166 1167 bool isReg() const override { return Kind == k_Register; } 1168 bool isRegList() const { return Kind == k_RegisterList; } 1169 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1170 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1171 bool isToken() const override { return Kind == k_Token; } 1172 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1173 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1174 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1175 bool isMem() const override { 1176 if (Kind != k_Memory) 1177 return false; 1178 if (Memory.BaseRegNum && 1179 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1180 return false; 1181 if (Memory.OffsetRegNum && 1182 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1183 return false; 1184 return true; 1185 } 1186 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1187 bool isRegShiftedReg() const { 1188 return Kind == k_ShiftedRegister && 1189 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1190 RegShiftedReg.SrcReg) && 1191 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1192 RegShiftedReg.ShiftReg); 1193 } 1194 bool isRegShiftedImm() const { 1195 return Kind == k_ShiftedImmediate && 1196 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1197 RegShiftedImm.SrcReg); 1198 } 1199 bool isRotImm() const { return Kind == k_RotateImmediate; } 1200 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1201 1202 bool isModImmNot() const { 1203 if (!isImm()) return false; 1204 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1205 if (!CE) return false; 1206 int64_t Value = CE->getValue(); 1207 return ARM_AM::getSOImmVal(~Value) != -1; 1208 } 1209 1210 bool isModImmNeg() const { 1211 if (!isImm()) return false; 1212 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1213 if (!CE) return false; 1214 int64_t Value = CE->getValue(); 1215 return ARM_AM::getSOImmVal(Value) == -1 && 1216 ARM_AM::getSOImmVal(-Value) != -1; 1217 } 1218 1219 bool isThumbModImmNeg1_7() const { 1220 if (!isImm()) return false; 1221 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1222 if (!CE) return false; 1223 int32_t Value = -(int32_t)CE->getValue(); 1224 return 0 < Value && Value < 8; 1225 } 1226 1227 bool isThumbModImmNeg8_255() const { 1228 if (!isImm()) return false; 1229 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1230 if (!CE) return false; 1231 int32_t Value = -(int32_t)CE->getValue(); 1232 return 7 < Value && Value < 256; 1233 } 1234 1235 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1236 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1237 bool isPostIdxRegShifted() const { 1238 return Kind == k_PostIndexRegister && 1239 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1240 } 1241 bool isPostIdxReg() const { 1242 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1243 } 1244 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1245 if (!isMem()) 1246 return false; 1247 // No offset of any kind. 1248 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1249 (alignOK || Memory.Alignment == Alignment); 1250 } 1251 bool isMemPCRelImm12() const { 1252 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1253 return false; 1254 // Base register must be PC. 1255 if (Memory.BaseRegNum != ARM::PC) 1256 return false; 1257 // Immediate offset in range [-4095, 4095]. 1258 if (!Memory.OffsetImm) return true; 1259 int64_t Val = Memory.OffsetImm->getValue(); 1260 return (Val > -4096 && Val < 4096) || 1261 (Val == std::numeric_limits<int32_t>::min()); 1262 } 1263 1264 bool isAlignedMemory() const { 1265 return isMemNoOffset(true); 1266 } 1267 1268 bool isAlignedMemoryNone() const { 1269 return isMemNoOffset(false, 0); 1270 } 1271 1272 bool isDupAlignedMemoryNone() const { 1273 return isMemNoOffset(false, 0); 1274 } 1275 1276 bool isAlignedMemory16() const { 1277 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1278 return true; 1279 return isMemNoOffset(false, 0); 1280 } 1281 1282 bool isDupAlignedMemory16() const { 1283 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1284 return true; 1285 return isMemNoOffset(false, 0); 1286 } 1287 1288 bool isAlignedMemory32() const { 1289 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1290 return true; 1291 return isMemNoOffset(false, 0); 1292 } 1293 1294 bool isDupAlignedMemory32() const { 1295 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1296 return true; 1297 return isMemNoOffset(false, 0); 1298 } 1299 1300 bool isAlignedMemory64() const { 1301 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1302 return true; 1303 return isMemNoOffset(false, 0); 1304 } 1305 1306 bool isDupAlignedMemory64() const { 1307 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1308 return true; 1309 return isMemNoOffset(false, 0); 1310 } 1311 1312 bool isAlignedMemory64or128() const { 1313 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1314 return true; 1315 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1316 return true; 1317 return isMemNoOffset(false, 0); 1318 } 1319 1320 bool isDupAlignedMemory64or128() const { 1321 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1322 return true; 1323 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1324 return true; 1325 return isMemNoOffset(false, 0); 1326 } 1327 1328 bool isAlignedMemory64or128or256() const { 1329 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1330 return true; 1331 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1332 return true; 1333 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1334 return true; 1335 return isMemNoOffset(false, 0); 1336 } 1337 1338 bool isAddrMode2() const { 1339 if (!isMem() || Memory.Alignment != 0) return false; 1340 // Check for register offset. 1341 if (Memory.OffsetRegNum) return true; 1342 // Immediate offset in range [-4095, 4095]. 1343 if (!Memory.OffsetImm) return true; 1344 int64_t Val = Memory.OffsetImm->getValue(); 1345 return Val > -4096 && Val < 4096; 1346 } 1347 1348 bool isAM2OffsetImm() const { 1349 if (!isImm()) return false; 1350 // Immediate offset in range [-4095, 4095]. 1351 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1352 if (!CE) return false; 1353 int64_t Val = CE->getValue(); 1354 return (Val == std::numeric_limits<int32_t>::min()) || 1355 (Val > -4096 && Val < 4096); 1356 } 1357 1358 bool isAddrMode3() const { 1359 // If we have an immediate that's not a constant, treat it as a label 1360 // reference needing a fixup. If it is a constant, it's something else 1361 // and we reject it. 1362 if (isImm() && !isa<MCConstantExpr>(getImm())) 1363 return true; 1364 if (!isMem() || Memory.Alignment != 0) return false; 1365 // No shifts are legal for AM3. 1366 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1367 // Check for register offset. 1368 if (Memory.OffsetRegNum) return true; 1369 // Immediate offset in range [-255, 255]. 1370 if (!Memory.OffsetImm) return true; 1371 int64_t Val = Memory.OffsetImm->getValue(); 1372 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1373 // have to check for this too. 1374 return (Val > -256 && Val < 256) || 1375 Val == std::numeric_limits<int32_t>::min(); 1376 } 1377 1378 bool isAM3Offset() const { 1379 if (isPostIdxReg()) 1380 return true; 1381 if (!isImm()) 1382 return false; 1383 // Immediate offset in range [-255, 255]. 1384 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1385 if (!CE) return false; 1386 int64_t Val = CE->getValue(); 1387 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1388 return (Val > -256 && Val < 256) || 1389 Val == std::numeric_limits<int32_t>::min(); 1390 } 1391 1392 bool isAddrMode5() const { 1393 // If we have an immediate that's not a constant, treat it as a label 1394 // reference needing a fixup. If it is a constant, it's something else 1395 // and we reject it. 1396 if (isImm() && !isa<MCConstantExpr>(getImm())) 1397 return true; 1398 if (!isMem() || Memory.Alignment != 0) return false; 1399 // Check for register offset. 1400 if (Memory.OffsetRegNum) return false; 1401 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1402 if (!Memory.OffsetImm) return true; 1403 int64_t Val = Memory.OffsetImm->getValue(); 1404 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1405 Val == std::numeric_limits<int32_t>::min(); 1406 } 1407 1408 bool isAddrMode5FP16() const { 1409 // If we have an immediate that's not a constant, treat it as a label 1410 // reference needing a fixup. If it is a constant, it's something else 1411 // and we reject it. 1412 if (isImm() && !isa<MCConstantExpr>(getImm())) 1413 return true; 1414 if (!isMem() || Memory.Alignment != 0) return false; 1415 // Check for register offset. 1416 if (Memory.OffsetRegNum) return false; 1417 // Immediate offset in range [-510, 510] and a multiple of 2. 1418 if (!Memory.OffsetImm) return true; 1419 int64_t Val = Memory.OffsetImm->getValue(); 1420 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1421 Val == std::numeric_limits<int32_t>::min(); 1422 } 1423 1424 bool isMemTBB() const { 1425 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1426 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1427 return false; 1428 return true; 1429 } 1430 1431 bool isMemTBH() const { 1432 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1433 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1434 Memory.Alignment != 0 ) 1435 return false; 1436 return true; 1437 } 1438 1439 bool isMemRegOffset() const { 1440 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1441 return false; 1442 return true; 1443 } 1444 1445 bool isT2MemRegOffset() const { 1446 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1447 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1448 return false; 1449 // Only lsl #{0, 1, 2, 3} allowed. 1450 if (Memory.ShiftType == ARM_AM::no_shift) 1451 return true; 1452 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1453 return false; 1454 return true; 1455 } 1456 1457 bool isMemThumbRR() const { 1458 // Thumb reg+reg addressing is simple. Just two registers, a base and 1459 // an offset. No shifts, negations or any other complicating factors. 1460 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1461 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1462 return false; 1463 return isARMLowRegister(Memory.BaseRegNum) && 1464 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1465 } 1466 1467 bool isMemThumbRIs4() const { 1468 if (!isMem() || Memory.OffsetRegNum != 0 || 1469 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1470 return false; 1471 // Immediate offset, multiple of 4 in range [0, 124]. 1472 if (!Memory.OffsetImm) return true; 1473 int64_t Val = Memory.OffsetImm->getValue(); 1474 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1475 } 1476 1477 bool isMemThumbRIs2() const { 1478 if (!isMem() || Memory.OffsetRegNum != 0 || 1479 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1480 return false; 1481 // Immediate offset, multiple of 4 in range [0, 62]. 1482 if (!Memory.OffsetImm) return true; 1483 int64_t Val = Memory.OffsetImm->getValue(); 1484 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1485 } 1486 1487 bool isMemThumbRIs1() const { 1488 if (!isMem() || Memory.OffsetRegNum != 0 || 1489 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1490 return false; 1491 // Immediate offset in range [0, 31]. 1492 if (!Memory.OffsetImm) return true; 1493 int64_t Val = Memory.OffsetImm->getValue(); 1494 return Val >= 0 && Val <= 31; 1495 } 1496 1497 bool isMemThumbSPI() const { 1498 if (!isMem() || Memory.OffsetRegNum != 0 || 1499 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1500 return false; 1501 // Immediate offset, multiple of 4 in range [0, 1020]. 1502 if (!Memory.OffsetImm) return true; 1503 int64_t Val = Memory.OffsetImm->getValue(); 1504 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1505 } 1506 1507 bool isMemImm8s4Offset() const { 1508 // If we have an immediate that's not a constant, treat it as a label 1509 // reference needing a fixup. If it is a constant, it's something else 1510 // and we reject it. 1511 if (isImm() && !isa<MCConstantExpr>(getImm())) 1512 return true; 1513 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1514 return false; 1515 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1516 if (!Memory.OffsetImm) return true; 1517 int64_t Val = Memory.OffsetImm->getValue(); 1518 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1519 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1520 Val == std::numeric_limits<int32_t>::min(); 1521 } 1522 1523 bool isMemImm0_1020s4Offset() const { 1524 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1525 return false; 1526 // Immediate offset a multiple of 4 in range [0, 1020]. 1527 if (!Memory.OffsetImm) return true; 1528 int64_t Val = Memory.OffsetImm->getValue(); 1529 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1530 } 1531 1532 bool isMemImm8Offset() const { 1533 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1534 return false; 1535 // Base reg of PC isn't allowed for these encodings. 1536 if (Memory.BaseRegNum == ARM::PC) return false; 1537 // Immediate offset in range [-255, 255]. 1538 if (!Memory.OffsetImm) return true; 1539 int64_t Val = Memory.OffsetImm->getValue(); 1540 return (Val == std::numeric_limits<int32_t>::min()) || 1541 (Val > -256 && Val < 256); 1542 } 1543 1544 bool isMemPosImm8Offset() const { 1545 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1546 return false; 1547 // Immediate offset in range [0, 255]. 1548 if (!Memory.OffsetImm) return true; 1549 int64_t Val = Memory.OffsetImm->getValue(); 1550 return Val >= 0 && Val < 256; 1551 } 1552 1553 bool isMemNegImm8Offset() const { 1554 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1555 return false; 1556 // Base reg of PC isn't allowed for these encodings. 1557 if (Memory.BaseRegNum == ARM::PC) return false; 1558 // Immediate offset in range [-255, -1]. 1559 if (!Memory.OffsetImm) return false; 1560 int64_t Val = Memory.OffsetImm->getValue(); 1561 return (Val == std::numeric_limits<int32_t>::min()) || 1562 (Val > -256 && Val < 0); 1563 } 1564 1565 bool isMemUImm12Offset() const { 1566 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1567 return false; 1568 // Immediate offset in range [0, 4095]. 1569 if (!Memory.OffsetImm) return true; 1570 int64_t Val = Memory.OffsetImm->getValue(); 1571 return (Val >= 0 && Val < 4096); 1572 } 1573 1574 bool isMemImm12Offset() const { 1575 // If we have an immediate that's not a constant, treat it as a label 1576 // reference needing a fixup. If it is a constant, it's something else 1577 // and we reject it. 1578 1579 if (isImm() && !isa<MCConstantExpr>(getImm())) 1580 return true; 1581 1582 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1583 return false; 1584 // Immediate offset in range [-4095, 4095]. 1585 if (!Memory.OffsetImm) return true; 1586 int64_t Val = Memory.OffsetImm->getValue(); 1587 return (Val > -4096 && Val < 4096) || 1588 (Val == std::numeric_limits<int32_t>::min()); 1589 } 1590 1591 bool isConstPoolAsmImm() const { 1592 // Delay processing of Constant Pool Immediate, this will turn into 1593 // a constant. Match no other operand 1594 return (isConstantPoolImm()); 1595 } 1596 1597 bool isPostIdxImm8() const { 1598 if (!isImm()) return false; 1599 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1600 if (!CE) return false; 1601 int64_t Val = CE->getValue(); 1602 return (Val > -256 && Val < 256) || 1603 (Val == std::numeric_limits<int32_t>::min()); 1604 } 1605 1606 bool isPostIdxImm8s4() const { 1607 if (!isImm()) return false; 1608 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1609 if (!CE) return false; 1610 int64_t Val = CE->getValue(); 1611 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1612 (Val == std::numeric_limits<int32_t>::min()); 1613 } 1614 1615 bool isMSRMask() const { return Kind == k_MSRMask; } 1616 bool isBankedReg() const { return Kind == k_BankedReg; } 1617 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1618 1619 // NEON operands. 1620 bool isSingleSpacedVectorList() const { 1621 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1622 } 1623 1624 bool isDoubleSpacedVectorList() const { 1625 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1626 } 1627 1628 bool isVecListOneD() const { 1629 if (!isSingleSpacedVectorList()) return false; 1630 return VectorList.Count == 1; 1631 } 1632 1633 bool isVecListDPair() const { 1634 if (!isSingleSpacedVectorList()) return false; 1635 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1636 .contains(VectorList.RegNum)); 1637 } 1638 1639 bool isVecListThreeD() const { 1640 if (!isSingleSpacedVectorList()) return false; 1641 return VectorList.Count == 3; 1642 } 1643 1644 bool isVecListFourD() const { 1645 if (!isSingleSpacedVectorList()) return false; 1646 return VectorList.Count == 4; 1647 } 1648 1649 bool isVecListDPairSpaced() const { 1650 if (Kind != k_VectorList) return false; 1651 if (isSingleSpacedVectorList()) return false; 1652 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1653 .contains(VectorList.RegNum)); 1654 } 1655 1656 bool isVecListThreeQ() const { 1657 if (!isDoubleSpacedVectorList()) return false; 1658 return VectorList.Count == 3; 1659 } 1660 1661 bool isVecListFourQ() const { 1662 if (!isDoubleSpacedVectorList()) return false; 1663 return VectorList.Count == 4; 1664 } 1665 1666 bool isSingleSpacedVectorAllLanes() const { 1667 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1668 } 1669 1670 bool isDoubleSpacedVectorAllLanes() const { 1671 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1672 } 1673 1674 bool isVecListOneDAllLanes() const { 1675 if (!isSingleSpacedVectorAllLanes()) return false; 1676 return VectorList.Count == 1; 1677 } 1678 1679 bool isVecListDPairAllLanes() const { 1680 if (!isSingleSpacedVectorAllLanes()) return false; 1681 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1682 .contains(VectorList.RegNum)); 1683 } 1684 1685 bool isVecListDPairSpacedAllLanes() const { 1686 if (!isDoubleSpacedVectorAllLanes()) return false; 1687 return VectorList.Count == 2; 1688 } 1689 1690 bool isVecListThreeDAllLanes() const { 1691 if (!isSingleSpacedVectorAllLanes()) return false; 1692 return VectorList.Count == 3; 1693 } 1694 1695 bool isVecListThreeQAllLanes() const { 1696 if (!isDoubleSpacedVectorAllLanes()) return false; 1697 return VectorList.Count == 3; 1698 } 1699 1700 bool isVecListFourDAllLanes() const { 1701 if (!isSingleSpacedVectorAllLanes()) return false; 1702 return VectorList.Count == 4; 1703 } 1704 1705 bool isVecListFourQAllLanes() const { 1706 if (!isDoubleSpacedVectorAllLanes()) return false; 1707 return VectorList.Count == 4; 1708 } 1709 1710 bool isSingleSpacedVectorIndexed() const { 1711 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1712 } 1713 1714 bool isDoubleSpacedVectorIndexed() const { 1715 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1716 } 1717 1718 bool isVecListOneDByteIndexed() const { 1719 if (!isSingleSpacedVectorIndexed()) return false; 1720 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1721 } 1722 1723 bool isVecListOneDHWordIndexed() const { 1724 if (!isSingleSpacedVectorIndexed()) return false; 1725 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1726 } 1727 1728 bool isVecListOneDWordIndexed() const { 1729 if (!isSingleSpacedVectorIndexed()) return false; 1730 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1731 } 1732 1733 bool isVecListTwoDByteIndexed() const { 1734 if (!isSingleSpacedVectorIndexed()) return false; 1735 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1736 } 1737 1738 bool isVecListTwoDHWordIndexed() const { 1739 if (!isSingleSpacedVectorIndexed()) return false; 1740 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1741 } 1742 1743 bool isVecListTwoQWordIndexed() const { 1744 if (!isDoubleSpacedVectorIndexed()) return false; 1745 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1746 } 1747 1748 bool isVecListTwoQHWordIndexed() const { 1749 if (!isDoubleSpacedVectorIndexed()) return false; 1750 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1751 } 1752 1753 bool isVecListTwoDWordIndexed() const { 1754 if (!isSingleSpacedVectorIndexed()) return false; 1755 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1756 } 1757 1758 bool isVecListThreeDByteIndexed() const { 1759 if (!isSingleSpacedVectorIndexed()) return false; 1760 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1761 } 1762 1763 bool isVecListThreeDHWordIndexed() const { 1764 if (!isSingleSpacedVectorIndexed()) return false; 1765 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1766 } 1767 1768 bool isVecListThreeQWordIndexed() const { 1769 if (!isDoubleSpacedVectorIndexed()) return false; 1770 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1771 } 1772 1773 bool isVecListThreeQHWordIndexed() const { 1774 if (!isDoubleSpacedVectorIndexed()) return false; 1775 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1776 } 1777 1778 bool isVecListThreeDWordIndexed() const { 1779 if (!isSingleSpacedVectorIndexed()) return false; 1780 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1781 } 1782 1783 bool isVecListFourDByteIndexed() const { 1784 if (!isSingleSpacedVectorIndexed()) return false; 1785 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1786 } 1787 1788 bool isVecListFourDHWordIndexed() const { 1789 if (!isSingleSpacedVectorIndexed()) return false; 1790 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1791 } 1792 1793 bool isVecListFourQWordIndexed() const { 1794 if (!isDoubleSpacedVectorIndexed()) return false; 1795 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1796 } 1797 1798 bool isVecListFourQHWordIndexed() const { 1799 if (!isDoubleSpacedVectorIndexed()) return false; 1800 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1801 } 1802 1803 bool isVecListFourDWordIndexed() const { 1804 if (!isSingleSpacedVectorIndexed()) return false; 1805 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1806 } 1807 1808 bool isVectorIndex8() const { 1809 if (Kind != k_VectorIndex) return false; 1810 return VectorIndex.Val < 8; 1811 } 1812 1813 bool isVectorIndex16() const { 1814 if (Kind != k_VectorIndex) return false; 1815 return VectorIndex.Val < 4; 1816 } 1817 1818 bool isVectorIndex32() const { 1819 if (Kind != k_VectorIndex) return false; 1820 return VectorIndex.Val < 2; 1821 } 1822 bool isVectorIndex64() const { 1823 if (Kind != k_VectorIndex) return false; 1824 return VectorIndex.Val < 1; 1825 } 1826 1827 bool isNEONi8splat() const { 1828 if (!isImm()) return false; 1829 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1830 // Must be a constant. 1831 if (!CE) return false; 1832 int64_t Value = CE->getValue(); 1833 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1834 // value. 1835 return Value >= 0 && Value < 256; 1836 } 1837 1838 bool isNEONi16splat() const { 1839 if (isNEONByteReplicate(2)) 1840 return false; // Leave that for bytes replication and forbid by default. 1841 if (!isImm()) 1842 return false; 1843 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1844 // Must be a constant. 1845 if (!CE) return false; 1846 unsigned Value = CE->getValue(); 1847 return ARM_AM::isNEONi16splat(Value); 1848 } 1849 1850 bool isNEONi16splatNot() const { 1851 if (!isImm()) 1852 return false; 1853 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1854 // Must be a constant. 1855 if (!CE) return false; 1856 unsigned Value = CE->getValue(); 1857 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1858 } 1859 1860 bool isNEONi32splat() const { 1861 if (isNEONByteReplicate(4)) 1862 return false; // Leave that for bytes replication and forbid by default. 1863 if (!isImm()) 1864 return false; 1865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1866 // Must be a constant. 1867 if (!CE) return false; 1868 unsigned Value = CE->getValue(); 1869 return ARM_AM::isNEONi32splat(Value); 1870 } 1871 1872 bool isNEONi32splatNot() const { 1873 if (!isImm()) 1874 return false; 1875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1876 // Must be a constant. 1877 if (!CE) return false; 1878 unsigned Value = CE->getValue(); 1879 return ARM_AM::isNEONi32splat(~Value); 1880 } 1881 1882 static bool isValidNEONi32vmovImm(int64_t Value) { 1883 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1884 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1885 return ((Value & 0xffffffffffffff00) == 0) || 1886 ((Value & 0xffffffffffff00ff) == 0) || 1887 ((Value & 0xffffffffff00ffff) == 0) || 1888 ((Value & 0xffffffff00ffffff) == 0) || 1889 ((Value & 0xffffffffffff00ff) == 0xff) || 1890 ((Value & 0xffffffffff00ffff) == 0xffff); 1891 } 1892 1893 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 1894 assert((Width == 8 || Width == 16 || Width == 32) && 1895 "Invalid element width"); 1896 assert(NumElems * Width <= 64 && "Invalid result width"); 1897 1898 if (!isImm()) 1899 return false; 1900 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1901 // Must be a constant. 1902 if (!CE) 1903 return false; 1904 int64_t Value = CE->getValue(); 1905 if (!Value) 1906 return false; // Don't bother with zero. 1907 if (Inv) 1908 Value = ~Value; 1909 1910 uint64_t Mask = (1ull << Width) - 1; 1911 uint64_t Elem = Value & Mask; 1912 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 1913 return false; 1914 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 1915 return false; 1916 1917 for (unsigned i = 1; i < NumElems; ++i) { 1918 Value >>= Width; 1919 if ((Value & Mask) != Elem) 1920 return false; 1921 } 1922 return true; 1923 } 1924 1925 bool isNEONByteReplicate(unsigned NumBytes) const { 1926 return isNEONReplicate(8, NumBytes, false); 1927 } 1928 1929 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 1930 assert((FromW == 8 || FromW == 16 || FromW == 32) && 1931 "Invalid source width"); 1932 assert((ToW == 16 || ToW == 32 || ToW == 64) && 1933 "Invalid destination width"); 1934 assert(FromW < ToW && "ToW is not less than FromW"); 1935 } 1936 1937 template<unsigned FromW, unsigned ToW> 1938 bool isNEONmovReplicate() const { 1939 checkNeonReplicateArgs(FromW, ToW); 1940 if (ToW == 64 && isNEONi64splat()) 1941 return false; 1942 return isNEONReplicate(FromW, ToW / FromW, false); 1943 } 1944 1945 template<unsigned FromW, unsigned ToW> 1946 bool isNEONinvReplicate() const { 1947 checkNeonReplicateArgs(FromW, ToW); 1948 return isNEONReplicate(FromW, ToW / FromW, true); 1949 } 1950 1951 bool isNEONi32vmov() const { 1952 if (isNEONByteReplicate(4)) 1953 return false; // Let it to be classified as byte-replicate case. 1954 if (!isImm()) 1955 return false; 1956 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1957 // Must be a constant. 1958 if (!CE) 1959 return false; 1960 return isValidNEONi32vmovImm(CE->getValue()); 1961 } 1962 1963 bool isNEONi32vmovNeg() const { 1964 if (!isImm()) return false; 1965 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1966 // Must be a constant. 1967 if (!CE) return false; 1968 return isValidNEONi32vmovImm(~CE->getValue()); 1969 } 1970 1971 bool isNEONi64splat() const { 1972 if (!isImm()) return false; 1973 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1974 // Must be a constant. 1975 if (!CE) return false; 1976 uint64_t Value = CE->getValue(); 1977 // i64 value with each byte being either 0 or 0xff. 1978 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1979 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1980 return true; 1981 } 1982 1983 template<int64_t Angle, int64_t Remainder> 1984 bool isComplexRotation() const { 1985 if (!isImm()) return false; 1986 1987 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1988 if (!CE) return false; 1989 uint64_t Value = CE->getValue(); 1990 1991 return (Value % Angle == Remainder && Value <= 270); 1992 } 1993 1994 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1995 // Add as immediates when possible. Null MCExpr = 0. 1996 if (!Expr) 1997 Inst.addOperand(MCOperand::createImm(0)); 1998 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1999 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2000 else 2001 Inst.addOperand(MCOperand::createExpr(Expr)); 2002 } 2003 2004 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2005 assert(N == 1 && "Invalid number of operands!"); 2006 addExpr(Inst, getImm()); 2007 } 2008 2009 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2010 assert(N == 1 && "Invalid number of operands!"); 2011 addExpr(Inst, getImm()); 2012 } 2013 2014 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2015 assert(N == 2 && "Invalid number of operands!"); 2016 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2017 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2018 Inst.addOperand(MCOperand::createReg(RegNum)); 2019 } 2020 2021 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2022 assert(N == 1 && "Invalid number of operands!"); 2023 Inst.addOperand(MCOperand::createImm(getCoproc())); 2024 } 2025 2026 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2027 assert(N == 1 && "Invalid number of operands!"); 2028 Inst.addOperand(MCOperand::createImm(getCoproc())); 2029 } 2030 2031 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2032 assert(N == 1 && "Invalid number of operands!"); 2033 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2034 } 2035 2036 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2037 assert(N == 1 && "Invalid number of operands!"); 2038 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2039 } 2040 2041 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2042 assert(N == 1 && "Invalid number of operands!"); 2043 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2044 } 2045 2046 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2047 assert(N == 1 && "Invalid number of operands!"); 2048 Inst.addOperand(MCOperand::createReg(getReg())); 2049 } 2050 2051 void addRegOperands(MCInst &Inst, unsigned N) const { 2052 assert(N == 1 && "Invalid number of operands!"); 2053 Inst.addOperand(MCOperand::createReg(getReg())); 2054 } 2055 2056 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2057 assert(N == 3 && "Invalid number of operands!"); 2058 assert(isRegShiftedReg() && 2059 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2060 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2061 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2062 Inst.addOperand(MCOperand::createImm( 2063 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2064 } 2065 2066 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2067 assert(N == 2 && "Invalid number of operands!"); 2068 assert(isRegShiftedImm() && 2069 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2070 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2071 // Shift of #32 is encoded as 0 where permitted 2072 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2073 Inst.addOperand(MCOperand::createImm( 2074 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2075 } 2076 2077 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2078 assert(N == 1 && "Invalid number of operands!"); 2079 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2080 ShifterImm.Imm)); 2081 } 2082 2083 void addRegListOperands(MCInst &Inst, unsigned N) const { 2084 assert(N == 1 && "Invalid number of operands!"); 2085 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2086 for (SmallVectorImpl<unsigned>::const_iterator 2087 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2088 Inst.addOperand(MCOperand::createReg(*I)); 2089 } 2090 2091 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2092 addRegListOperands(Inst, N); 2093 } 2094 2095 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2096 addRegListOperands(Inst, N); 2097 } 2098 2099 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2100 assert(N == 1 && "Invalid number of operands!"); 2101 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2102 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2103 } 2104 2105 void addModImmOperands(MCInst &Inst, unsigned N) const { 2106 assert(N == 1 && "Invalid number of operands!"); 2107 2108 // Support for fixups (MCFixup) 2109 if (isImm()) 2110 return addImmOperands(Inst, N); 2111 2112 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2113 } 2114 2115 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2116 assert(N == 1 && "Invalid number of operands!"); 2117 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2118 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2119 Inst.addOperand(MCOperand::createImm(Enc)); 2120 } 2121 2122 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2123 assert(N == 1 && "Invalid number of operands!"); 2124 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2125 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2126 Inst.addOperand(MCOperand::createImm(Enc)); 2127 } 2128 2129 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2130 assert(N == 1 && "Invalid number of operands!"); 2131 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2132 uint32_t Val = -CE->getValue(); 2133 Inst.addOperand(MCOperand::createImm(Val)); 2134 } 2135 2136 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2137 assert(N == 1 && "Invalid number of operands!"); 2138 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2139 uint32_t Val = -CE->getValue(); 2140 Inst.addOperand(MCOperand::createImm(Val)); 2141 } 2142 2143 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2144 assert(N == 1 && "Invalid number of operands!"); 2145 // Munge the lsb/width into a bitfield mask. 2146 unsigned lsb = Bitfield.LSB; 2147 unsigned width = Bitfield.Width; 2148 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2149 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2150 (32 - (lsb + width))); 2151 Inst.addOperand(MCOperand::createImm(Mask)); 2152 } 2153 2154 void addImmOperands(MCInst &Inst, unsigned N) const { 2155 assert(N == 1 && "Invalid number of operands!"); 2156 addExpr(Inst, getImm()); 2157 } 2158 2159 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2160 assert(N == 1 && "Invalid number of operands!"); 2161 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2162 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2163 } 2164 2165 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2166 assert(N == 1 && "Invalid number of operands!"); 2167 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2168 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2169 } 2170 2171 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2172 assert(N == 1 && "Invalid number of operands!"); 2173 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2174 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2175 Inst.addOperand(MCOperand::createImm(Val)); 2176 } 2177 2178 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2179 assert(N == 1 && "Invalid number of operands!"); 2180 // FIXME: We really want to scale the value here, but the LDRD/STRD 2181 // instruction don't encode operands that way yet. 2182 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2183 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2184 } 2185 2186 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2187 assert(N == 1 && "Invalid number of operands!"); 2188 // The immediate is scaled by four in the encoding and is stored 2189 // in the MCInst as such. Lop off the low two bits here. 2190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2191 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2192 } 2193 2194 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2195 assert(N == 1 && "Invalid number of operands!"); 2196 // The immediate is scaled by four in the encoding and is stored 2197 // in the MCInst as such. Lop off the low two bits here. 2198 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2199 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2200 } 2201 2202 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2203 assert(N == 1 && "Invalid number of operands!"); 2204 // The immediate is scaled by four in the encoding and is stored 2205 // in the MCInst as such. Lop off the low two bits here. 2206 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2207 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2208 } 2209 2210 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2211 assert(N == 1 && "Invalid number of operands!"); 2212 // The constant encodes as the immediate-1, and we store in the instruction 2213 // the bits as encoded, so subtract off one here. 2214 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2215 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2216 } 2217 2218 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2219 assert(N == 1 && "Invalid number of operands!"); 2220 // The constant encodes as the immediate-1, and we store in the instruction 2221 // the bits as encoded, so subtract off one here. 2222 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2223 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2224 } 2225 2226 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2227 assert(N == 1 && "Invalid number of operands!"); 2228 // The constant encodes as the immediate, except for 32, which encodes as 2229 // zero. 2230 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2231 unsigned Imm = CE->getValue(); 2232 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2233 } 2234 2235 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2236 assert(N == 1 && "Invalid number of operands!"); 2237 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2238 // the instruction as well. 2239 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2240 int Val = CE->getValue(); 2241 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2242 } 2243 2244 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2245 assert(N == 1 && "Invalid number of operands!"); 2246 // The operand is actually a t2_so_imm, but we have its bitwise 2247 // negation in the assembly source, so twiddle it here. 2248 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2249 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2250 } 2251 2252 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2253 assert(N == 1 && "Invalid number of operands!"); 2254 // The operand is actually a t2_so_imm, but we have its 2255 // negation in the assembly source, so twiddle it here. 2256 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2257 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2258 } 2259 2260 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2261 assert(N == 1 && "Invalid number of operands!"); 2262 // The operand is actually an imm0_4095, but we have its 2263 // negation in the assembly source, so twiddle it here. 2264 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2265 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2266 } 2267 2268 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2269 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2270 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2271 return; 2272 } 2273 2274 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2275 assert(SR && "Unknown value type!"); 2276 Inst.addOperand(MCOperand::createExpr(SR)); 2277 } 2278 2279 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2280 assert(N == 1 && "Invalid number of operands!"); 2281 if (isImm()) { 2282 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2283 if (CE) { 2284 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2285 return; 2286 } 2287 2288 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2289 2290 assert(SR && "Unknown value type!"); 2291 Inst.addOperand(MCOperand::createExpr(SR)); 2292 return; 2293 } 2294 2295 assert(isMem() && "Unknown value type!"); 2296 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2297 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2298 } 2299 2300 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2301 assert(N == 1 && "Invalid number of operands!"); 2302 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2303 } 2304 2305 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2306 assert(N == 1 && "Invalid number of operands!"); 2307 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2308 } 2309 2310 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2311 assert(N == 1 && "Invalid number of operands!"); 2312 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2313 } 2314 2315 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2316 assert(N == 1 && "Invalid number of operands!"); 2317 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2318 } 2319 2320 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2321 assert(N == 1 && "Invalid number of operands!"); 2322 int32_t Imm = Memory.OffsetImm->getValue(); 2323 Inst.addOperand(MCOperand::createImm(Imm)); 2324 } 2325 2326 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2327 assert(N == 1 && "Invalid number of operands!"); 2328 assert(isImm() && "Not an immediate!"); 2329 2330 // If we have an immediate that's not a constant, treat it as a label 2331 // reference needing a fixup. 2332 if (!isa<MCConstantExpr>(getImm())) { 2333 Inst.addOperand(MCOperand::createExpr(getImm())); 2334 return; 2335 } 2336 2337 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2338 int Val = CE->getValue(); 2339 Inst.addOperand(MCOperand::createImm(Val)); 2340 } 2341 2342 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2343 assert(N == 2 && "Invalid number of operands!"); 2344 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2345 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2346 } 2347 2348 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2349 addAlignedMemoryOperands(Inst, N); 2350 } 2351 2352 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2353 addAlignedMemoryOperands(Inst, N); 2354 } 2355 2356 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2357 addAlignedMemoryOperands(Inst, N); 2358 } 2359 2360 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2361 addAlignedMemoryOperands(Inst, N); 2362 } 2363 2364 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2365 addAlignedMemoryOperands(Inst, N); 2366 } 2367 2368 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2369 addAlignedMemoryOperands(Inst, N); 2370 } 2371 2372 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2373 addAlignedMemoryOperands(Inst, N); 2374 } 2375 2376 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2377 addAlignedMemoryOperands(Inst, N); 2378 } 2379 2380 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2381 addAlignedMemoryOperands(Inst, N); 2382 } 2383 2384 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2385 addAlignedMemoryOperands(Inst, N); 2386 } 2387 2388 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2389 addAlignedMemoryOperands(Inst, N); 2390 } 2391 2392 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2393 assert(N == 3 && "Invalid number of operands!"); 2394 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2395 if (!Memory.OffsetRegNum) { 2396 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2397 // Special case for #-0 2398 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2399 if (Val < 0) Val = -Val; 2400 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2401 } else { 2402 // For register offset, we encode the shift type and negation flag 2403 // here. 2404 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2405 Memory.ShiftImm, Memory.ShiftType); 2406 } 2407 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2408 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2409 Inst.addOperand(MCOperand::createImm(Val)); 2410 } 2411 2412 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2413 assert(N == 2 && "Invalid number of operands!"); 2414 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2415 assert(CE && "non-constant AM2OffsetImm operand!"); 2416 int32_t Val = CE->getValue(); 2417 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2418 // Special case for #-0 2419 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2420 if (Val < 0) Val = -Val; 2421 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2422 Inst.addOperand(MCOperand::createReg(0)); 2423 Inst.addOperand(MCOperand::createImm(Val)); 2424 } 2425 2426 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2427 assert(N == 3 && "Invalid number of operands!"); 2428 // If we have an immediate that's not a constant, treat it as a label 2429 // reference needing a fixup. If it is a constant, it's something else 2430 // and we reject it. 2431 if (isImm()) { 2432 Inst.addOperand(MCOperand::createExpr(getImm())); 2433 Inst.addOperand(MCOperand::createReg(0)); 2434 Inst.addOperand(MCOperand::createImm(0)); 2435 return; 2436 } 2437 2438 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2439 if (!Memory.OffsetRegNum) { 2440 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2441 // Special case for #-0 2442 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2443 if (Val < 0) Val = -Val; 2444 Val = ARM_AM::getAM3Opc(AddSub, Val); 2445 } else { 2446 // For register offset, we encode the shift type and negation flag 2447 // here. 2448 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2449 } 2450 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2451 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2452 Inst.addOperand(MCOperand::createImm(Val)); 2453 } 2454 2455 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2456 assert(N == 2 && "Invalid number of operands!"); 2457 if (Kind == k_PostIndexRegister) { 2458 int32_t Val = 2459 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2460 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2461 Inst.addOperand(MCOperand::createImm(Val)); 2462 return; 2463 } 2464 2465 // Constant offset. 2466 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2467 int32_t Val = CE->getValue(); 2468 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2469 // Special case for #-0 2470 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2471 if (Val < 0) Val = -Val; 2472 Val = ARM_AM::getAM3Opc(AddSub, Val); 2473 Inst.addOperand(MCOperand::createReg(0)); 2474 Inst.addOperand(MCOperand::createImm(Val)); 2475 } 2476 2477 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2478 assert(N == 2 && "Invalid number of operands!"); 2479 // If we have an immediate that's not a constant, treat it as a label 2480 // reference needing a fixup. If it is a constant, it's something else 2481 // and we reject it. 2482 if (isImm()) { 2483 Inst.addOperand(MCOperand::createExpr(getImm())); 2484 Inst.addOperand(MCOperand::createImm(0)); 2485 return; 2486 } 2487 2488 // The lower two bits are always zero and as such are not encoded. 2489 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2490 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2491 // Special case for #-0 2492 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2493 if (Val < 0) Val = -Val; 2494 Val = ARM_AM::getAM5Opc(AddSub, Val); 2495 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2496 Inst.addOperand(MCOperand::createImm(Val)); 2497 } 2498 2499 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2500 assert(N == 2 && "Invalid number of operands!"); 2501 // If we have an immediate that's not a constant, treat it as a label 2502 // reference needing a fixup. If it is a constant, it's something else 2503 // and we reject it. 2504 if (isImm()) { 2505 Inst.addOperand(MCOperand::createExpr(getImm())); 2506 Inst.addOperand(MCOperand::createImm(0)); 2507 return; 2508 } 2509 2510 // The lower bit is always zero and as such is not encoded. 2511 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2512 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2513 // Special case for #-0 2514 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2515 if (Val < 0) Val = -Val; 2516 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2517 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2518 Inst.addOperand(MCOperand::createImm(Val)); 2519 } 2520 2521 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2522 assert(N == 2 && "Invalid number of operands!"); 2523 // If we have an immediate that's not a constant, treat it as a label 2524 // reference needing a fixup. If it is a constant, it's something else 2525 // and we reject it. 2526 if (isImm()) { 2527 Inst.addOperand(MCOperand::createExpr(getImm())); 2528 Inst.addOperand(MCOperand::createImm(0)); 2529 return; 2530 } 2531 2532 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2533 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2534 Inst.addOperand(MCOperand::createImm(Val)); 2535 } 2536 2537 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2538 assert(N == 2 && "Invalid number of operands!"); 2539 // The lower two bits are always zero and as such are not encoded. 2540 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2541 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2542 Inst.addOperand(MCOperand::createImm(Val)); 2543 } 2544 2545 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2546 assert(N == 2 && "Invalid number of operands!"); 2547 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2548 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2549 Inst.addOperand(MCOperand::createImm(Val)); 2550 } 2551 2552 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2553 addMemImm8OffsetOperands(Inst, N); 2554 } 2555 2556 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2557 addMemImm8OffsetOperands(Inst, N); 2558 } 2559 2560 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2561 assert(N == 2 && "Invalid number of operands!"); 2562 // If this is an immediate, it's a label reference. 2563 if (isImm()) { 2564 addExpr(Inst, getImm()); 2565 Inst.addOperand(MCOperand::createImm(0)); 2566 return; 2567 } 2568 2569 // Otherwise, it's a normal memory reg+offset. 2570 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2571 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2572 Inst.addOperand(MCOperand::createImm(Val)); 2573 } 2574 2575 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2576 assert(N == 2 && "Invalid number of operands!"); 2577 // If this is an immediate, it's a label reference. 2578 if (isImm()) { 2579 addExpr(Inst, getImm()); 2580 Inst.addOperand(MCOperand::createImm(0)); 2581 return; 2582 } 2583 2584 // Otherwise, it's a normal memory reg+offset. 2585 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2586 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2587 Inst.addOperand(MCOperand::createImm(Val)); 2588 } 2589 2590 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2591 assert(N == 1 && "Invalid number of operands!"); 2592 // This is container for the immediate that we will create the constant 2593 // pool from 2594 addExpr(Inst, getConstantPoolImm()); 2595 return; 2596 } 2597 2598 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2599 assert(N == 2 && "Invalid number of operands!"); 2600 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2601 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2602 } 2603 2604 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2605 assert(N == 2 && "Invalid number of operands!"); 2606 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2607 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2608 } 2609 2610 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2611 assert(N == 3 && "Invalid number of operands!"); 2612 unsigned Val = 2613 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2614 Memory.ShiftImm, Memory.ShiftType); 2615 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2616 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2617 Inst.addOperand(MCOperand::createImm(Val)); 2618 } 2619 2620 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2621 assert(N == 3 && "Invalid number of operands!"); 2622 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2623 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2624 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2625 } 2626 2627 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2628 assert(N == 2 && "Invalid number of operands!"); 2629 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2630 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2631 } 2632 2633 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2634 assert(N == 2 && "Invalid number of operands!"); 2635 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2636 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2637 Inst.addOperand(MCOperand::createImm(Val)); 2638 } 2639 2640 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2641 assert(N == 2 && "Invalid number of operands!"); 2642 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2643 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2644 Inst.addOperand(MCOperand::createImm(Val)); 2645 } 2646 2647 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2648 assert(N == 2 && "Invalid number of operands!"); 2649 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2650 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2651 Inst.addOperand(MCOperand::createImm(Val)); 2652 } 2653 2654 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2655 assert(N == 2 && "Invalid number of operands!"); 2656 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2657 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2658 Inst.addOperand(MCOperand::createImm(Val)); 2659 } 2660 2661 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2662 assert(N == 1 && "Invalid number of operands!"); 2663 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2664 assert(CE && "non-constant post-idx-imm8 operand!"); 2665 int Imm = CE->getValue(); 2666 bool isAdd = Imm >= 0; 2667 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2668 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2669 Inst.addOperand(MCOperand::createImm(Imm)); 2670 } 2671 2672 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2673 assert(N == 1 && "Invalid number of operands!"); 2674 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2675 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2676 int Imm = CE->getValue(); 2677 bool isAdd = Imm >= 0; 2678 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2679 // Immediate is scaled by 4. 2680 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2681 Inst.addOperand(MCOperand::createImm(Imm)); 2682 } 2683 2684 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2685 assert(N == 2 && "Invalid number of operands!"); 2686 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2687 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2688 } 2689 2690 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2691 assert(N == 2 && "Invalid number of operands!"); 2692 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2693 // The sign, shift type, and shift amount are encoded in a single operand 2694 // using the AM2 encoding helpers. 2695 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2696 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2697 PostIdxReg.ShiftTy); 2698 Inst.addOperand(MCOperand::createImm(Imm)); 2699 } 2700 2701 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2702 assert(N == 1 && "Invalid number of operands!"); 2703 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2704 } 2705 2706 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2707 assert(N == 1 && "Invalid number of operands!"); 2708 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2709 } 2710 2711 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2712 assert(N == 1 && "Invalid number of operands!"); 2713 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2714 } 2715 2716 void addVecListOperands(MCInst &Inst, unsigned N) const { 2717 assert(N == 1 && "Invalid number of operands!"); 2718 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2719 } 2720 2721 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2722 assert(N == 2 && "Invalid number of operands!"); 2723 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2724 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2725 } 2726 2727 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2728 assert(N == 1 && "Invalid number of operands!"); 2729 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2730 } 2731 2732 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2733 assert(N == 1 && "Invalid number of operands!"); 2734 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2735 } 2736 2737 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2738 assert(N == 1 && "Invalid number of operands!"); 2739 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2740 } 2741 2742 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 2743 assert(N == 1 && "Invalid number of operands!"); 2744 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2745 } 2746 2747 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2748 assert(N == 1 && "Invalid number of operands!"); 2749 // The immediate encodes the type of constant as well as the value. 2750 // Mask in that this is an i8 splat. 2751 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2752 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2753 } 2754 2755 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2756 assert(N == 1 && "Invalid number of operands!"); 2757 // The immediate encodes the type of constant as well as the value. 2758 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2759 unsigned Value = CE->getValue(); 2760 Value = ARM_AM::encodeNEONi16splat(Value); 2761 Inst.addOperand(MCOperand::createImm(Value)); 2762 } 2763 2764 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2765 assert(N == 1 && "Invalid number of operands!"); 2766 // The immediate encodes the type of constant as well as the value. 2767 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2768 unsigned Value = CE->getValue(); 2769 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2770 Inst.addOperand(MCOperand::createImm(Value)); 2771 } 2772 2773 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2774 assert(N == 1 && "Invalid number of operands!"); 2775 // The immediate encodes the type of constant as well as the value. 2776 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2777 unsigned Value = CE->getValue(); 2778 Value = ARM_AM::encodeNEONi32splat(Value); 2779 Inst.addOperand(MCOperand::createImm(Value)); 2780 } 2781 2782 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2783 assert(N == 1 && "Invalid number of operands!"); 2784 // The immediate encodes the type of constant as well as the value. 2785 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2786 unsigned Value = CE->getValue(); 2787 Value = ARM_AM::encodeNEONi32splat(~Value); 2788 Inst.addOperand(MCOperand::createImm(Value)); 2789 } 2790 2791 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 2792 // The immediate encodes the type of constant as well as the value. 2793 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2794 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2795 Inst.getOpcode() == ARM::VMOVv16i8) && 2796 "All instructions that wants to replicate non-zero byte " 2797 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2798 unsigned Value = CE->getValue(); 2799 if (Inv) 2800 Value = ~Value; 2801 unsigned B = Value & 0xff; 2802 B |= 0xe00; // cmode = 0b1110 2803 Inst.addOperand(MCOperand::createImm(B)); 2804 } 2805 2806 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 2807 assert(N == 1 && "Invalid number of operands!"); 2808 addNEONi8ReplicateOperands(Inst, true); 2809 } 2810 2811 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 2812 if (Value >= 256 && Value <= 0xffff) 2813 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2814 else if (Value > 0xffff && Value <= 0xffffff) 2815 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2816 else if (Value > 0xffffff) 2817 Value = (Value >> 24) | 0x600; 2818 return Value; 2819 } 2820 2821 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2822 assert(N == 1 && "Invalid number of operands!"); 2823 // The immediate encodes the type of constant as well as the value. 2824 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2825 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 2826 Inst.addOperand(MCOperand::createImm(Value)); 2827 } 2828 2829 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 2830 assert(N == 1 && "Invalid number of operands!"); 2831 addNEONi8ReplicateOperands(Inst, false); 2832 } 2833 2834 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 2835 assert(N == 1 && "Invalid number of operands!"); 2836 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2837 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 2838 Inst.getOpcode() == ARM::VMOVv8i16 || 2839 Inst.getOpcode() == ARM::VMVNv4i16 || 2840 Inst.getOpcode() == ARM::VMVNv8i16) && 2841 "All instructions that want to replicate non-zero half-word " 2842 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 2843 uint64_t Value = CE->getValue(); 2844 unsigned Elem = Value & 0xffff; 2845 if (Elem >= 256) 2846 Elem = (Elem >> 8) | 0x200; 2847 Inst.addOperand(MCOperand::createImm(Elem)); 2848 } 2849 2850 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2851 assert(N == 1 && "Invalid number of operands!"); 2852 // The immediate encodes the type of constant as well as the value. 2853 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2854 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 2855 Inst.addOperand(MCOperand::createImm(Value)); 2856 } 2857 2858 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 2859 assert(N == 1 && "Invalid number of operands!"); 2860 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2861 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 2862 Inst.getOpcode() == ARM::VMOVv4i32 || 2863 Inst.getOpcode() == ARM::VMVNv2i32 || 2864 Inst.getOpcode() == ARM::VMVNv4i32) && 2865 "All instructions that want to replicate non-zero word " 2866 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 2867 uint64_t Value = CE->getValue(); 2868 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 2869 Inst.addOperand(MCOperand::createImm(Elem)); 2870 } 2871 2872 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2873 assert(N == 1 && "Invalid number of operands!"); 2874 // The immediate encodes the type of constant as well as the value. 2875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2876 uint64_t Value = CE->getValue(); 2877 unsigned Imm = 0; 2878 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2879 Imm |= (Value & 1) << i; 2880 } 2881 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2882 } 2883 2884 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 2885 assert(N == 1 && "Invalid number of operands!"); 2886 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2887 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 2888 } 2889 2890 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 2891 assert(N == 1 && "Invalid number of operands!"); 2892 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2893 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 2894 } 2895 2896 void print(raw_ostream &OS) const override; 2897 2898 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2899 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2900 Op->ITMask.Mask = Mask; 2901 Op->StartLoc = S; 2902 Op->EndLoc = S; 2903 return Op; 2904 } 2905 2906 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2907 SMLoc S) { 2908 auto Op = make_unique<ARMOperand>(k_CondCode); 2909 Op->CC.Val = CC; 2910 Op->StartLoc = S; 2911 Op->EndLoc = S; 2912 return Op; 2913 } 2914 2915 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2916 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2917 Op->Cop.Val = CopVal; 2918 Op->StartLoc = S; 2919 Op->EndLoc = S; 2920 return Op; 2921 } 2922 2923 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2924 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2925 Op->Cop.Val = CopVal; 2926 Op->StartLoc = S; 2927 Op->EndLoc = S; 2928 return Op; 2929 } 2930 2931 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2932 SMLoc E) { 2933 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2934 Op->Cop.Val = Val; 2935 Op->StartLoc = S; 2936 Op->EndLoc = E; 2937 return Op; 2938 } 2939 2940 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2941 auto Op = make_unique<ARMOperand>(k_CCOut); 2942 Op->Reg.RegNum = RegNum; 2943 Op->StartLoc = S; 2944 Op->EndLoc = S; 2945 return Op; 2946 } 2947 2948 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2949 auto Op = make_unique<ARMOperand>(k_Token); 2950 Op->Tok.Data = Str.data(); 2951 Op->Tok.Length = Str.size(); 2952 Op->StartLoc = S; 2953 Op->EndLoc = S; 2954 return Op; 2955 } 2956 2957 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2958 SMLoc E) { 2959 auto Op = make_unique<ARMOperand>(k_Register); 2960 Op->Reg.RegNum = RegNum; 2961 Op->StartLoc = S; 2962 Op->EndLoc = E; 2963 return Op; 2964 } 2965 2966 static std::unique_ptr<ARMOperand> 2967 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2968 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2969 SMLoc E) { 2970 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2971 Op->RegShiftedReg.ShiftTy = ShTy; 2972 Op->RegShiftedReg.SrcReg = SrcReg; 2973 Op->RegShiftedReg.ShiftReg = ShiftReg; 2974 Op->RegShiftedReg.ShiftImm = ShiftImm; 2975 Op->StartLoc = S; 2976 Op->EndLoc = E; 2977 return Op; 2978 } 2979 2980 static std::unique_ptr<ARMOperand> 2981 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2982 unsigned ShiftImm, SMLoc S, SMLoc E) { 2983 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2984 Op->RegShiftedImm.ShiftTy = ShTy; 2985 Op->RegShiftedImm.SrcReg = SrcReg; 2986 Op->RegShiftedImm.ShiftImm = ShiftImm; 2987 Op->StartLoc = S; 2988 Op->EndLoc = E; 2989 return Op; 2990 } 2991 2992 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2993 SMLoc S, SMLoc E) { 2994 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2995 Op->ShifterImm.isASR = isASR; 2996 Op->ShifterImm.Imm = Imm; 2997 Op->StartLoc = S; 2998 Op->EndLoc = E; 2999 return Op; 3000 } 3001 3002 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3003 SMLoc E) { 3004 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 3005 Op->RotImm.Imm = Imm; 3006 Op->StartLoc = S; 3007 Op->EndLoc = E; 3008 return Op; 3009 } 3010 3011 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3012 SMLoc S, SMLoc E) { 3013 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 3014 Op->ModImm.Bits = Bits; 3015 Op->ModImm.Rot = Rot; 3016 Op->StartLoc = S; 3017 Op->EndLoc = E; 3018 return Op; 3019 } 3020 3021 static std::unique_ptr<ARMOperand> 3022 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3023 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 3024 Op->Imm.Val = Val; 3025 Op->StartLoc = S; 3026 Op->EndLoc = E; 3027 return Op; 3028 } 3029 3030 static std::unique_ptr<ARMOperand> 3031 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3032 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 3033 Op->Bitfield.LSB = LSB; 3034 Op->Bitfield.Width = Width; 3035 Op->StartLoc = S; 3036 Op->EndLoc = E; 3037 return Op; 3038 } 3039 3040 static std::unique_ptr<ARMOperand> 3041 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3042 SMLoc StartLoc, SMLoc EndLoc) { 3043 assert(Regs.size() > 0 && "RegList contains no registers?"); 3044 KindTy Kind = k_RegisterList; 3045 3046 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 3047 Kind = k_DPRRegisterList; 3048 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 3049 contains(Regs.front().second)) 3050 Kind = k_SPRRegisterList; 3051 3052 // Sort based on the register encoding values. 3053 array_pod_sort(Regs.begin(), Regs.end()); 3054 3055 auto Op = make_unique<ARMOperand>(Kind); 3056 for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator 3057 I = Regs.begin(), E = Regs.end(); I != E; ++I) 3058 Op->Registers.push_back(I->second); 3059 Op->StartLoc = StartLoc; 3060 Op->EndLoc = EndLoc; 3061 return Op; 3062 } 3063 3064 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3065 unsigned Count, 3066 bool isDoubleSpaced, 3067 SMLoc S, SMLoc E) { 3068 auto Op = make_unique<ARMOperand>(k_VectorList); 3069 Op->VectorList.RegNum = RegNum; 3070 Op->VectorList.Count = Count; 3071 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3072 Op->StartLoc = S; 3073 Op->EndLoc = E; 3074 return Op; 3075 } 3076 3077 static std::unique_ptr<ARMOperand> 3078 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3079 SMLoc S, SMLoc E) { 3080 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 3081 Op->VectorList.RegNum = RegNum; 3082 Op->VectorList.Count = Count; 3083 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3084 Op->StartLoc = S; 3085 Op->EndLoc = E; 3086 return Op; 3087 } 3088 3089 static std::unique_ptr<ARMOperand> 3090 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3091 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3092 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 3093 Op->VectorList.RegNum = RegNum; 3094 Op->VectorList.Count = Count; 3095 Op->VectorList.LaneIndex = Index; 3096 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3097 Op->StartLoc = S; 3098 Op->EndLoc = E; 3099 return Op; 3100 } 3101 3102 static std::unique_ptr<ARMOperand> 3103 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3104 auto Op = make_unique<ARMOperand>(k_VectorIndex); 3105 Op->VectorIndex.Val = Idx; 3106 Op->StartLoc = S; 3107 Op->EndLoc = E; 3108 return Op; 3109 } 3110 3111 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3112 SMLoc E) { 3113 auto Op = make_unique<ARMOperand>(k_Immediate); 3114 Op->Imm.Val = Val; 3115 Op->StartLoc = S; 3116 Op->EndLoc = E; 3117 return Op; 3118 } 3119 3120 static std::unique_ptr<ARMOperand> 3121 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3122 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3123 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3124 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3125 auto Op = make_unique<ARMOperand>(k_Memory); 3126 Op->Memory.BaseRegNum = BaseRegNum; 3127 Op->Memory.OffsetImm = OffsetImm; 3128 Op->Memory.OffsetRegNum = OffsetRegNum; 3129 Op->Memory.ShiftType = ShiftType; 3130 Op->Memory.ShiftImm = ShiftImm; 3131 Op->Memory.Alignment = Alignment; 3132 Op->Memory.isNegative = isNegative; 3133 Op->StartLoc = S; 3134 Op->EndLoc = E; 3135 Op->AlignmentLoc = AlignmentLoc; 3136 return Op; 3137 } 3138 3139 static std::unique_ptr<ARMOperand> 3140 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3141 unsigned ShiftImm, SMLoc S, SMLoc E) { 3142 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 3143 Op->PostIdxReg.RegNum = RegNum; 3144 Op->PostIdxReg.isAdd = isAdd; 3145 Op->PostIdxReg.ShiftTy = ShiftTy; 3146 Op->PostIdxReg.ShiftImm = ShiftImm; 3147 Op->StartLoc = S; 3148 Op->EndLoc = E; 3149 return Op; 3150 } 3151 3152 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3153 SMLoc S) { 3154 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3155 Op->MBOpt.Val = Opt; 3156 Op->StartLoc = S; 3157 Op->EndLoc = S; 3158 return Op; 3159 } 3160 3161 static std::unique_ptr<ARMOperand> 3162 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3163 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3164 Op->ISBOpt.Val = Opt; 3165 Op->StartLoc = S; 3166 Op->EndLoc = S; 3167 return Op; 3168 } 3169 3170 static std::unique_ptr<ARMOperand> 3171 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3172 auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3173 Op->TSBOpt.Val = Opt; 3174 Op->StartLoc = S; 3175 Op->EndLoc = S; 3176 return Op; 3177 } 3178 3179 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3180 SMLoc S) { 3181 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3182 Op->IFlags.Val = IFlags; 3183 Op->StartLoc = S; 3184 Op->EndLoc = S; 3185 return Op; 3186 } 3187 3188 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3189 auto Op = make_unique<ARMOperand>(k_MSRMask); 3190 Op->MMask.Val = MMask; 3191 Op->StartLoc = S; 3192 Op->EndLoc = S; 3193 return Op; 3194 } 3195 3196 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3197 auto Op = make_unique<ARMOperand>(k_BankedReg); 3198 Op->BankedReg.Val = Reg; 3199 Op->StartLoc = S; 3200 Op->EndLoc = S; 3201 return Op; 3202 } 3203 }; 3204 3205 } // end anonymous namespace. 3206 3207 void ARMOperand::print(raw_ostream &OS) const { 3208 auto RegName = [](unsigned Reg) { 3209 if (Reg) 3210 return ARMInstPrinter::getRegisterName(Reg); 3211 else 3212 return "noreg"; 3213 }; 3214 3215 switch (Kind) { 3216 case k_CondCode: 3217 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3218 break; 3219 case k_CCOut: 3220 OS << "<ccout " << RegName(getReg()) << ">"; 3221 break; 3222 case k_ITCondMask: { 3223 static const char *const MaskStr[] = { 3224 "(invalid)", "(teee)", "(tee)", "(teet)", 3225 "(te)", "(tete)", "(tet)", "(tett)", 3226 "(t)", "(ttee)", "(tte)", "(ttet)", 3227 "(tt)", "(ttte)", "(ttt)", "(tttt)" 3228 }; 3229 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3230 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3231 break; 3232 } 3233 case k_CoprocNum: 3234 OS << "<coprocessor number: " << getCoproc() << ">"; 3235 break; 3236 case k_CoprocReg: 3237 OS << "<coprocessor register: " << getCoproc() << ">"; 3238 break; 3239 case k_CoprocOption: 3240 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3241 break; 3242 case k_MSRMask: 3243 OS << "<mask: " << getMSRMask() << ">"; 3244 break; 3245 case k_BankedReg: 3246 OS << "<banked reg: " << getBankedReg() << ">"; 3247 break; 3248 case k_Immediate: 3249 OS << *getImm(); 3250 break; 3251 case k_MemBarrierOpt: 3252 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3253 break; 3254 case k_InstSyncBarrierOpt: 3255 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3256 break; 3257 case k_TraceSyncBarrierOpt: 3258 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3259 break; 3260 case k_Memory: 3261 OS << "<memory"; 3262 if (Memory.BaseRegNum) 3263 OS << " base:" << RegName(Memory.BaseRegNum); 3264 if (Memory.OffsetImm) 3265 OS << " offset-imm:" << *Memory.OffsetImm; 3266 if (Memory.OffsetRegNum) 3267 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3268 << RegName(Memory.OffsetRegNum); 3269 if (Memory.ShiftType != ARM_AM::no_shift) { 3270 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3271 OS << " shift-imm:" << Memory.ShiftImm; 3272 } 3273 if (Memory.Alignment) 3274 OS << " alignment:" << Memory.Alignment; 3275 OS << ">"; 3276 break; 3277 case k_PostIndexRegister: 3278 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3279 << RegName(PostIdxReg.RegNum); 3280 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3281 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3282 << PostIdxReg.ShiftImm; 3283 OS << ">"; 3284 break; 3285 case k_ProcIFlags: { 3286 OS << "<ARM_PROC::"; 3287 unsigned IFlags = getProcIFlags(); 3288 for (int i=2; i >= 0; --i) 3289 if (IFlags & (1 << i)) 3290 OS << ARM_PROC::IFlagsToString(1 << i); 3291 OS << ">"; 3292 break; 3293 } 3294 case k_Register: 3295 OS << "<register " << RegName(getReg()) << ">"; 3296 break; 3297 case k_ShifterImmediate: 3298 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3299 << " #" << ShifterImm.Imm << ">"; 3300 break; 3301 case k_ShiftedRegister: 3302 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3303 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3304 << RegName(RegShiftedReg.ShiftReg) << ">"; 3305 break; 3306 case k_ShiftedImmediate: 3307 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3308 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3309 << RegShiftedImm.ShiftImm << ">"; 3310 break; 3311 case k_RotateImmediate: 3312 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3313 break; 3314 case k_ModifiedImmediate: 3315 OS << "<mod_imm #" << ModImm.Bits << ", #" 3316 << ModImm.Rot << ")>"; 3317 break; 3318 case k_ConstantPoolImmediate: 3319 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3320 break; 3321 case k_BitfieldDescriptor: 3322 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3323 << ", width: " << Bitfield.Width << ">"; 3324 break; 3325 case k_RegisterList: 3326 case k_DPRRegisterList: 3327 case k_SPRRegisterList: { 3328 OS << "<register_list "; 3329 3330 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3331 for (SmallVectorImpl<unsigned>::const_iterator 3332 I = RegList.begin(), E = RegList.end(); I != E; ) { 3333 OS << RegName(*I); 3334 if (++I < E) OS << ", "; 3335 } 3336 3337 OS << ">"; 3338 break; 3339 } 3340 case k_VectorList: 3341 OS << "<vector_list " << VectorList.Count << " * " 3342 << RegName(VectorList.RegNum) << ">"; 3343 break; 3344 case k_VectorListAllLanes: 3345 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3346 << RegName(VectorList.RegNum) << ">"; 3347 break; 3348 case k_VectorListIndexed: 3349 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3350 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 3351 break; 3352 case k_Token: 3353 OS << "'" << getToken() << "'"; 3354 break; 3355 case k_VectorIndex: 3356 OS << "<vectorindex " << getVectorIndex() << ">"; 3357 break; 3358 } 3359 } 3360 3361 /// @name Auto-generated Match Functions 3362 /// { 3363 3364 static unsigned MatchRegisterName(StringRef Name); 3365 3366 /// } 3367 3368 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3369 SMLoc &StartLoc, SMLoc &EndLoc) { 3370 const AsmToken &Tok = getParser().getTok(); 3371 StartLoc = Tok.getLoc(); 3372 EndLoc = Tok.getEndLoc(); 3373 RegNo = tryParseRegister(); 3374 3375 return (RegNo == (unsigned)-1); 3376 } 3377 3378 /// Try to parse a register name. The token must be an Identifier when called, 3379 /// and if it is a register name the token is eaten and the register number is 3380 /// returned. Otherwise return -1. 3381 int ARMAsmParser::tryParseRegister() { 3382 MCAsmParser &Parser = getParser(); 3383 const AsmToken &Tok = Parser.getTok(); 3384 if (Tok.isNot(AsmToken::Identifier)) return -1; 3385 3386 std::string lowerCase = Tok.getString().lower(); 3387 unsigned RegNum = MatchRegisterName(lowerCase); 3388 if (!RegNum) { 3389 RegNum = StringSwitch<unsigned>(lowerCase) 3390 .Case("r13", ARM::SP) 3391 .Case("r14", ARM::LR) 3392 .Case("r15", ARM::PC) 3393 .Case("ip", ARM::R12) 3394 // Additional register name aliases for 'gas' compatibility. 3395 .Case("a1", ARM::R0) 3396 .Case("a2", ARM::R1) 3397 .Case("a3", ARM::R2) 3398 .Case("a4", ARM::R3) 3399 .Case("v1", ARM::R4) 3400 .Case("v2", ARM::R5) 3401 .Case("v3", ARM::R6) 3402 .Case("v4", ARM::R7) 3403 .Case("v5", ARM::R8) 3404 .Case("v6", ARM::R9) 3405 .Case("v7", ARM::R10) 3406 .Case("v8", ARM::R11) 3407 .Case("sb", ARM::R9) 3408 .Case("sl", ARM::R10) 3409 .Case("fp", ARM::R11) 3410 .Default(0); 3411 } 3412 if (!RegNum) { 3413 // Check for aliases registered via .req. Canonicalize to lower case. 3414 // That's more consistent since register names are case insensitive, and 3415 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3416 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3417 // If no match, return failure. 3418 if (Entry == RegisterReqs.end()) 3419 return -1; 3420 Parser.Lex(); // Eat identifier token. 3421 return Entry->getValue(); 3422 } 3423 3424 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3425 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3426 return -1; 3427 3428 Parser.Lex(); // Eat identifier token. 3429 3430 return RegNum; 3431 } 3432 3433 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3434 // If a recoverable error occurs, return 1. If an irrecoverable error 3435 // occurs, return -1. An irrecoverable error is one where tokens have been 3436 // consumed in the process of trying to parse the shifter (i.e., when it is 3437 // indeed a shifter operand, but malformed). 3438 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3439 MCAsmParser &Parser = getParser(); 3440 SMLoc S = Parser.getTok().getLoc(); 3441 const AsmToken &Tok = Parser.getTok(); 3442 if (Tok.isNot(AsmToken::Identifier)) 3443 return -1; 3444 3445 std::string lowerCase = Tok.getString().lower(); 3446 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3447 .Case("asl", ARM_AM::lsl) 3448 .Case("lsl", ARM_AM::lsl) 3449 .Case("lsr", ARM_AM::lsr) 3450 .Case("asr", ARM_AM::asr) 3451 .Case("ror", ARM_AM::ror) 3452 .Case("rrx", ARM_AM::rrx) 3453 .Default(ARM_AM::no_shift); 3454 3455 if (ShiftTy == ARM_AM::no_shift) 3456 return 1; 3457 3458 Parser.Lex(); // Eat the operator. 3459 3460 // The source register for the shift has already been added to the 3461 // operand list, so we need to pop it off and combine it into the shifted 3462 // register operand instead. 3463 std::unique_ptr<ARMOperand> PrevOp( 3464 (ARMOperand *)Operands.pop_back_val().release()); 3465 if (!PrevOp->isReg()) 3466 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3467 int SrcReg = PrevOp->getReg(); 3468 3469 SMLoc EndLoc; 3470 int64_t Imm = 0; 3471 int ShiftReg = 0; 3472 if (ShiftTy == ARM_AM::rrx) { 3473 // RRX Doesn't have an explicit shift amount. The encoder expects 3474 // the shift register to be the same as the source register. Seems odd, 3475 // but OK. 3476 ShiftReg = SrcReg; 3477 } else { 3478 // Figure out if this is shifted by a constant or a register (for non-RRX). 3479 if (Parser.getTok().is(AsmToken::Hash) || 3480 Parser.getTok().is(AsmToken::Dollar)) { 3481 Parser.Lex(); // Eat hash. 3482 SMLoc ImmLoc = Parser.getTok().getLoc(); 3483 const MCExpr *ShiftExpr = nullptr; 3484 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3485 Error(ImmLoc, "invalid immediate shift value"); 3486 return -1; 3487 } 3488 // The expression must be evaluatable as an immediate. 3489 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3490 if (!CE) { 3491 Error(ImmLoc, "invalid immediate shift value"); 3492 return -1; 3493 } 3494 // Range check the immediate. 3495 // lsl, ror: 0 <= imm <= 31 3496 // lsr, asr: 0 <= imm <= 32 3497 Imm = CE->getValue(); 3498 if (Imm < 0 || 3499 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3500 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3501 Error(ImmLoc, "immediate shift value out of range"); 3502 return -1; 3503 } 3504 // shift by zero is a nop. Always send it through as lsl. 3505 // ('as' compatibility) 3506 if (Imm == 0) 3507 ShiftTy = ARM_AM::lsl; 3508 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3509 SMLoc L = Parser.getTok().getLoc(); 3510 EndLoc = Parser.getTok().getEndLoc(); 3511 ShiftReg = tryParseRegister(); 3512 if (ShiftReg == -1) { 3513 Error(L, "expected immediate or register in shift operand"); 3514 return -1; 3515 } 3516 } else { 3517 Error(Parser.getTok().getLoc(), 3518 "expected immediate or register in shift operand"); 3519 return -1; 3520 } 3521 } 3522 3523 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3524 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3525 ShiftReg, Imm, 3526 S, EndLoc)); 3527 else 3528 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3529 S, EndLoc)); 3530 3531 return 0; 3532 } 3533 3534 /// Try to parse a register name. The token must be an Identifier when called. 3535 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3536 /// if there is a "writeback". 'true' if it's not a register. 3537 /// 3538 /// TODO this is likely to change to allow different register types and or to 3539 /// parse for a specific register type. 3540 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3541 MCAsmParser &Parser = getParser(); 3542 SMLoc RegStartLoc = Parser.getTok().getLoc(); 3543 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 3544 int RegNo = tryParseRegister(); 3545 if (RegNo == -1) 3546 return true; 3547 3548 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 3549 3550 const AsmToken &ExclaimTok = Parser.getTok(); 3551 if (ExclaimTok.is(AsmToken::Exclaim)) { 3552 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3553 ExclaimTok.getLoc())); 3554 Parser.Lex(); // Eat exclaim token 3555 return false; 3556 } 3557 3558 // Also check for an index operand. This is only legal for vector registers, 3559 // but that'll get caught OK in operand matching, so we don't need to 3560 // explicitly filter everything else out here. 3561 if (Parser.getTok().is(AsmToken::LBrac)) { 3562 SMLoc SIdx = Parser.getTok().getLoc(); 3563 Parser.Lex(); // Eat left bracket token. 3564 3565 const MCExpr *ImmVal; 3566 if (getParser().parseExpression(ImmVal)) 3567 return true; 3568 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3569 if (!MCE) 3570 return TokError("immediate value expected for vector index"); 3571 3572 if (Parser.getTok().isNot(AsmToken::RBrac)) 3573 return Error(Parser.getTok().getLoc(), "']' expected"); 3574 3575 SMLoc E = Parser.getTok().getEndLoc(); 3576 Parser.Lex(); // Eat right bracket token. 3577 3578 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3579 SIdx, E, 3580 getContext())); 3581 } 3582 3583 return false; 3584 } 3585 3586 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3587 /// instruction with a symbolic operand name. 3588 /// We accept "crN" syntax for GAS compatibility. 3589 /// <operand-name> ::= <prefix><number> 3590 /// If CoprocOp is 'c', then: 3591 /// <prefix> ::= c | cr 3592 /// If CoprocOp is 'p', then : 3593 /// <prefix> ::= p 3594 /// <number> ::= integer in range [0, 15] 3595 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3596 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3597 // but efficient. 3598 if (Name.size() < 2 || Name[0] != CoprocOp) 3599 return -1; 3600 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3601 3602 switch (Name.size()) { 3603 default: return -1; 3604 case 1: 3605 switch (Name[0]) { 3606 default: return -1; 3607 case '0': return 0; 3608 case '1': return 1; 3609 case '2': return 2; 3610 case '3': return 3; 3611 case '4': return 4; 3612 case '5': return 5; 3613 case '6': return 6; 3614 case '7': return 7; 3615 case '8': return 8; 3616 case '9': return 9; 3617 } 3618 case 2: 3619 if (Name[0] != '1') 3620 return -1; 3621 switch (Name[1]) { 3622 default: return -1; 3623 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3624 // However, old cores (v5/v6) did use them in that way. 3625 case '0': return 10; 3626 case '1': return 11; 3627 case '2': return 12; 3628 case '3': return 13; 3629 case '4': return 14; 3630 case '5': return 15; 3631 } 3632 } 3633 } 3634 3635 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3636 OperandMatchResultTy 3637 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3638 MCAsmParser &Parser = getParser(); 3639 SMLoc S = Parser.getTok().getLoc(); 3640 const AsmToken &Tok = Parser.getTok(); 3641 if (!Tok.is(AsmToken::Identifier)) 3642 return MatchOperand_NoMatch; 3643 unsigned CC = ARMCondCodeFromString(Tok.getString()); 3644 if (CC == ~0U) 3645 return MatchOperand_NoMatch; 3646 Parser.Lex(); // Eat the token. 3647 3648 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3649 3650 return MatchOperand_Success; 3651 } 3652 3653 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3654 /// token must be an Identifier when called, and if it is a coprocessor 3655 /// number, the token is eaten and the operand is added to the operand list. 3656 OperandMatchResultTy 3657 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3658 MCAsmParser &Parser = getParser(); 3659 SMLoc S = Parser.getTok().getLoc(); 3660 const AsmToken &Tok = Parser.getTok(); 3661 if (Tok.isNot(AsmToken::Identifier)) 3662 return MatchOperand_NoMatch; 3663 3664 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3665 if (Num == -1) 3666 return MatchOperand_NoMatch; 3667 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3668 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3669 return MatchOperand_NoMatch; 3670 3671 Parser.Lex(); // Eat identifier token. 3672 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3673 return MatchOperand_Success; 3674 } 3675 3676 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3677 /// token must be an Identifier when called, and if it is a coprocessor 3678 /// number, the token is eaten and the operand is added to the operand list. 3679 OperandMatchResultTy 3680 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3681 MCAsmParser &Parser = getParser(); 3682 SMLoc S = Parser.getTok().getLoc(); 3683 const AsmToken &Tok = Parser.getTok(); 3684 if (Tok.isNot(AsmToken::Identifier)) 3685 return MatchOperand_NoMatch; 3686 3687 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3688 if (Reg == -1) 3689 return MatchOperand_NoMatch; 3690 3691 Parser.Lex(); // Eat identifier token. 3692 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3693 return MatchOperand_Success; 3694 } 3695 3696 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3697 /// coproc_option : '{' imm0_255 '}' 3698 OperandMatchResultTy 3699 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3700 MCAsmParser &Parser = getParser(); 3701 SMLoc S = Parser.getTok().getLoc(); 3702 3703 // If this isn't a '{', this isn't a coprocessor immediate operand. 3704 if (Parser.getTok().isNot(AsmToken::LCurly)) 3705 return MatchOperand_NoMatch; 3706 Parser.Lex(); // Eat the '{' 3707 3708 const MCExpr *Expr; 3709 SMLoc Loc = Parser.getTok().getLoc(); 3710 if (getParser().parseExpression(Expr)) { 3711 Error(Loc, "illegal expression"); 3712 return MatchOperand_ParseFail; 3713 } 3714 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3715 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3716 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3717 return MatchOperand_ParseFail; 3718 } 3719 int Val = CE->getValue(); 3720 3721 // Check for and consume the closing '}' 3722 if (Parser.getTok().isNot(AsmToken::RCurly)) 3723 return MatchOperand_ParseFail; 3724 SMLoc E = Parser.getTok().getEndLoc(); 3725 Parser.Lex(); // Eat the '}' 3726 3727 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3728 return MatchOperand_Success; 3729 } 3730 3731 // For register list parsing, we need to map from raw GPR register numbering 3732 // to the enumeration values. The enumeration values aren't sorted by 3733 // register number due to our using "sp", "lr" and "pc" as canonical names. 3734 static unsigned getNextRegister(unsigned Reg) { 3735 // If this is a GPR, we need to do it manually, otherwise we can rely 3736 // on the sort ordering of the enumeration since the other reg-classes 3737 // are sane. 3738 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3739 return Reg + 1; 3740 switch(Reg) { 3741 default: llvm_unreachable("Invalid GPR number!"); 3742 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3743 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3744 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3745 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3746 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3747 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3748 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3749 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3750 } 3751 } 3752 3753 /// Parse a register list. 3754 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3755 MCAsmParser &Parser = getParser(); 3756 if (Parser.getTok().isNot(AsmToken::LCurly)) 3757 return TokError("Token is not a Left Curly Brace"); 3758 SMLoc S = Parser.getTok().getLoc(); 3759 Parser.Lex(); // Eat '{' token. 3760 SMLoc RegLoc = Parser.getTok().getLoc(); 3761 3762 // Check the first register in the list to see what register class 3763 // this is a list of. 3764 int Reg = tryParseRegister(); 3765 if (Reg == -1) 3766 return Error(RegLoc, "register expected"); 3767 3768 // The reglist instructions have at most 16 registers, so reserve 3769 // space for that many. 3770 int EReg = 0; 3771 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3772 3773 // Allow Q regs and just interpret them as the two D sub-registers. 3774 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3775 Reg = getDRegFromQReg(Reg); 3776 EReg = MRI->getEncodingValue(Reg); 3777 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3778 ++Reg; 3779 } 3780 const MCRegisterClass *RC; 3781 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3782 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3783 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3784 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3785 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3786 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3787 else 3788 return Error(RegLoc, "invalid register in register list"); 3789 3790 // Store the register. 3791 EReg = MRI->getEncodingValue(Reg); 3792 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3793 3794 // This starts immediately after the first register token in the list, 3795 // so we can see either a comma or a minus (range separator) as a legal 3796 // next token. 3797 while (Parser.getTok().is(AsmToken::Comma) || 3798 Parser.getTok().is(AsmToken::Minus)) { 3799 if (Parser.getTok().is(AsmToken::Minus)) { 3800 Parser.Lex(); // Eat the minus. 3801 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3802 int EndReg = tryParseRegister(); 3803 if (EndReg == -1) 3804 return Error(AfterMinusLoc, "register expected"); 3805 // Allow Q regs and just interpret them as the two D sub-registers. 3806 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3807 EndReg = getDRegFromQReg(EndReg) + 1; 3808 // If the register is the same as the start reg, there's nothing 3809 // more to do. 3810 if (Reg == EndReg) 3811 continue; 3812 // The register must be in the same register class as the first. 3813 if (!RC->contains(EndReg)) 3814 return Error(AfterMinusLoc, "invalid register in register list"); 3815 // Ranges must go from low to high. 3816 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3817 return Error(AfterMinusLoc, "bad range in register list"); 3818 3819 // Add all the registers in the range to the register list. 3820 while (Reg != EndReg) { 3821 Reg = getNextRegister(Reg); 3822 EReg = MRI->getEncodingValue(Reg); 3823 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3824 } 3825 continue; 3826 } 3827 Parser.Lex(); // Eat the comma. 3828 RegLoc = Parser.getTok().getLoc(); 3829 int OldReg = Reg; 3830 const AsmToken RegTok = Parser.getTok(); 3831 Reg = tryParseRegister(); 3832 if (Reg == -1) 3833 return Error(RegLoc, "register expected"); 3834 // Allow Q regs and just interpret them as the two D sub-registers. 3835 bool isQReg = false; 3836 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3837 Reg = getDRegFromQReg(Reg); 3838 isQReg = true; 3839 } 3840 // The register must be in the same register class as the first. 3841 if (!RC->contains(Reg)) 3842 return Error(RegLoc, "invalid register in register list"); 3843 // List must be monotonically increasing. 3844 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3845 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3846 Warning(RegLoc, "register list not in ascending order"); 3847 else 3848 return Error(RegLoc, "register list not in ascending order"); 3849 } 3850 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3851 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3852 ") in register list"); 3853 continue; 3854 } 3855 // VFP register lists must also be contiguous. 3856 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3857 Reg != OldReg + 1) 3858 return Error(RegLoc, "non-contiguous register range"); 3859 EReg = MRI->getEncodingValue(Reg); 3860 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3861 if (isQReg) { 3862 EReg = MRI->getEncodingValue(++Reg); 3863 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3864 } 3865 } 3866 3867 if (Parser.getTok().isNot(AsmToken::RCurly)) 3868 return Error(Parser.getTok().getLoc(), "'}' expected"); 3869 SMLoc E = Parser.getTok().getEndLoc(); 3870 Parser.Lex(); // Eat '}' token. 3871 3872 // Push the register list operand. 3873 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3874 3875 // The ARM system instruction variants for LDM/STM have a '^' token here. 3876 if (Parser.getTok().is(AsmToken::Caret)) { 3877 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3878 Parser.Lex(); // Eat '^' token. 3879 } 3880 3881 return false; 3882 } 3883 3884 // Helper function to parse the lane index for vector lists. 3885 OperandMatchResultTy ARMAsmParser:: 3886 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3887 MCAsmParser &Parser = getParser(); 3888 Index = 0; // Always return a defined index value. 3889 if (Parser.getTok().is(AsmToken::LBrac)) { 3890 Parser.Lex(); // Eat the '['. 3891 if (Parser.getTok().is(AsmToken::RBrac)) { 3892 // "Dn[]" is the 'all lanes' syntax. 3893 LaneKind = AllLanes; 3894 EndLoc = Parser.getTok().getEndLoc(); 3895 Parser.Lex(); // Eat the ']'. 3896 return MatchOperand_Success; 3897 } 3898 3899 // There's an optional '#' token here. Normally there wouldn't be, but 3900 // inline assemble puts one in, and it's friendly to accept that. 3901 if (Parser.getTok().is(AsmToken::Hash)) 3902 Parser.Lex(); // Eat '#' or '$'. 3903 3904 const MCExpr *LaneIndex; 3905 SMLoc Loc = Parser.getTok().getLoc(); 3906 if (getParser().parseExpression(LaneIndex)) { 3907 Error(Loc, "illegal expression"); 3908 return MatchOperand_ParseFail; 3909 } 3910 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3911 if (!CE) { 3912 Error(Loc, "lane index must be empty or an integer"); 3913 return MatchOperand_ParseFail; 3914 } 3915 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3916 Error(Parser.getTok().getLoc(), "']' expected"); 3917 return MatchOperand_ParseFail; 3918 } 3919 EndLoc = Parser.getTok().getEndLoc(); 3920 Parser.Lex(); // Eat the ']'. 3921 int64_t Val = CE->getValue(); 3922 3923 // FIXME: Make this range check context sensitive for .8, .16, .32. 3924 if (Val < 0 || Val > 7) { 3925 Error(Parser.getTok().getLoc(), "lane index out of range"); 3926 return MatchOperand_ParseFail; 3927 } 3928 Index = Val; 3929 LaneKind = IndexedLane; 3930 return MatchOperand_Success; 3931 } 3932 LaneKind = NoLanes; 3933 return MatchOperand_Success; 3934 } 3935 3936 // parse a vector register list 3937 OperandMatchResultTy 3938 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3939 MCAsmParser &Parser = getParser(); 3940 VectorLaneTy LaneKind; 3941 unsigned LaneIndex; 3942 SMLoc S = Parser.getTok().getLoc(); 3943 // As an extension (to match gas), support a plain D register or Q register 3944 // (without encosing curly braces) as a single or double entry list, 3945 // respectively. 3946 if (Parser.getTok().is(AsmToken::Identifier)) { 3947 SMLoc E = Parser.getTok().getEndLoc(); 3948 int Reg = tryParseRegister(); 3949 if (Reg == -1) 3950 return MatchOperand_NoMatch; 3951 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3952 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3953 if (Res != MatchOperand_Success) 3954 return Res; 3955 switch (LaneKind) { 3956 case NoLanes: 3957 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3958 break; 3959 case AllLanes: 3960 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3961 S, E)); 3962 break; 3963 case IndexedLane: 3964 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3965 LaneIndex, 3966 false, S, E)); 3967 break; 3968 } 3969 return MatchOperand_Success; 3970 } 3971 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3972 Reg = getDRegFromQReg(Reg); 3973 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3974 if (Res != MatchOperand_Success) 3975 return Res; 3976 switch (LaneKind) { 3977 case NoLanes: 3978 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3979 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3980 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3981 break; 3982 case AllLanes: 3983 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3984 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3985 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3986 S, E)); 3987 break; 3988 case IndexedLane: 3989 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3990 LaneIndex, 3991 false, S, E)); 3992 break; 3993 } 3994 return MatchOperand_Success; 3995 } 3996 Error(S, "vector register expected"); 3997 return MatchOperand_ParseFail; 3998 } 3999 4000 if (Parser.getTok().isNot(AsmToken::LCurly)) 4001 return MatchOperand_NoMatch; 4002 4003 Parser.Lex(); // Eat '{' token. 4004 SMLoc RegLoc = Parser.getTok().getLoc(); 4005 4006 int Reg = tryParseRegister(); 4007 if (Reg == -1) { 4008 Error(RegLoc, "register expected"); 4009 return MatchOperand_ParseFail; 4010 } 4011 unsigned Count = 1; 4012 int Spacing = 0; 4013 unsigned FirstReg = Reg; 4014 // The list is of D registers, but we also allow Q regs and just interpret 4015 // them as the two D sub-registers. 4016 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4017 FirstReg = Reg = getDRegFromQReg(Reg); 4018 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4019 // it's ambiguous with four-register single spaced. 4020 ++Reg; 4021 ++Count; 4022 } 4023 4024 SMLoc E; 4025 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4026 return MatchOperand_ParseFail; 4027 4028 while (Parser.getTok().is(AsmToken::Comma) || 4029 Parser.getTok().is(AsmToken::Minus)) { 4030 if (Parser.getTok().is(AsmToken::Minus)) { 4031 if (!Spacing) 4032 Spacing = 1; // Register range implies a single spaced list. 4033 else if (Spacing == 2) { 4034 Error(Parser.getTok().getLoc(), 4035 "sequential registers in double spaced list"); 4036 return MatchOperand_ParseFail; 4037 } 4038 Parser.Lex(); // Eat the minus. 4039 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4040 int EndReg = tryParseRegister(); 4041 if (EndReg == -1) { 4042 Error(AfterMinusLoc, "register expected"); 4043 return MatchOperand_ParseFail; 4044 } 4045 // Allow Q regs and just interpret them as the two D sub-registers. 4046 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4047 EndReg = getDRegFromQReg(EndReg) + 1; 4048 // If the register is the same as the start reg, there's nothing 4049 // more to do. 4050 if (Reg == EndReg) 4051 continue; 4052 // The register must be in the same register class as the first. 4053 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 4054 Error(AfterMinusLoc, "invalid register in register list"); 4055 return MatchOperand_ParseFail; 4056 } 4057 // Ranges must go from low to high. 4058 if (Reg > EndReg) { 4059 Error(AfterMinusLoc, "bad range in register list"); 4060 return MatchOperand_ParseFail; 4061 } 4062 // Parse the lane specifier if present. 4063 VectorLaneTy NextLaneKind; 4064 unsigned NextLaneIndex; 4065 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4066 MatchOperand_Success) 4067 return MatchOperand_ParseFail; 4068 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4069 Error(AfterMinusLoc, "mismatched lane index in register list"); 4070 return MatchOperand_ParseFail; 4071 } 4072 4073 // Add all the registers in the range to the register list. 4074 Count += EndReg - Reg; 4075 Reg = EndReg; 4076 continue; 4077 } 4078 Parser.Lex(); // Eat the comma. 4079 RegLoc = Parser.getTok().getLoc(); 4080 int OldReg = Reg; 4081 Reg = tryParseRegister(); 4082 if (Reg == -1) { 4083 Error(RegLoc, "register expected"); 4084 return MatchOperand_ParseFail; 4085 } 4086 // vector register lists must be contiguous. 4087 // It's OK to use the enumeration values directly here rather, as the 4088 // VFP register classes have the enum sorted properly. 4089 // 4090 // The list is of D registers, but we also allow Q regs and just interpret 4091 // them as the two D sub-registers. 4092 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4093 if (!Spacing) 4094 Spacing = 1; // Register range implies a single spaced list. 4095 else if (Spacing == 2) { 4096 Error(RegLoc, 4097 "invalid register in double-spaced list (must be 'D' register')"); 4098 return MatchOperand_ParseFail; 4099 } 4100 Reg = getDRegFromQReg(Reg); 4101 if (Reg != OldReg + 1) { 4102 Error(RegLoc, "non-contiguous register range"); 4103 return MatchOperand_ParseFail; 4104 } 4105 ++Reg; 4106 Count += 2; 4107 // Parse the lane specifier if present. 4108 VectorLaneTy NextLaneKind; 4109 unsigned NextLaneIndex; 4110 SMLoc LaneLoc = Parser.getTok().getLoc(); 4111 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4112 MatchOperand_Success) 4113 return MatchOperand_ParseFail; 4114 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4115 Error(LaneLoc, "mismatched lane index in register list"); 4116 return MatchOperand_ParseFail; 4117 } 4118 continue; 4119 } 4120 // Normal D register. 4121 // Figure out the register spacing (single or double) of the list if 4122 // we don't know it already. 4123 if (!Spacing) 4124 Spacing = 1 + (Reg == OldReg + 2); 4125 4126 // Just check that it's contiguous and keep going. 4127 if (Reg != OldReg + Spacing) { 4128 Error(RegLoc, "non-contiguous register range"); 4129 return MatchOperand_ParseFail; 4130 } 4131 ++Count; 4132 // Parse the lane specifier if present. 4133 VectorLaneTy NextLaneKind; 4134 unsigned NextLaneIndex; 4135 SMLoc EndLoc = Parser.getTok().getLoc(); 4136 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4137 return MatchOperand_ParseFail; 4138 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4139 Error(EndLoc, "mismatched lane index in register list"); 4140 return MatchOperand_ParseFail; 4141 } 4142 } 4143 4144 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4145 Error(Parser.getTok().getLoc(), "'}' expected"); 4146 return MatchOperand_ParseFail; 4147 } 4148 E = Parser.getTok().getEndLoc(); 4149 Parser.Lex(); // Eat '}' token. 4150 4151 switch (LaneKind) { 4152 case NoLanes: 4153 // Two-register operands have been converted to the 4154 // composite register classes. 4155 if (Count == 2) { 4156 const MCRegisterClass *RC = (Spacing == 1) ? 4157 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4158 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4159 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4160 } 4161 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 4162 (Spacing == 2), S, E)); 4163 break; 4164 case AllLanes: 4165 // Two-register operands have been converted to the 4166 // composite register classes. 4167 if (Count == 2) { 4168 const MCRegisterClass *RC = (Spacing == 1) ? 4169 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4170 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4171 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4172 } 4173 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 4174 (Spacing == 2), 4175 S, E)); 4176 break; 4177 case IndexedLane: 4178 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4179 LaneIndex, 4180 (Spacing == 2), 4181 S, E)); 4182 break; 4183 } 4184 return MatchOperand_Success; 4185 } 4186 4187 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4188 OperandMatchResultTy 4189 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4190 MCAsmParser &Parser = getParser(); 4191 SMLoc S = Parser.getTok().getLoc(); 4192 const AsmToken &Tok = Parser.getTok(); 4193 unsigned Opt; 4194 4195 if (Tok.is(AsmToken::Identifier)) { 4196 StringRef OptStr = Tok.getString(); 4197 4198 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4199 .Case("sy", ARM_MB::SY) 4200 .Case("st", ARM_MB::ST) 4201 .Case("ld", ARM_MB::LD) 4202 .Case("sh", ARM_MB::ISH) 4203 .Case("ish", ARM_MB::ISH) 4204 .Case("shst", ARM_MB::ISHST) 4205 .Case("ishst", ARM_MB::ISHST) 4206 .Case("ishld", ARM_MB::ISHLD) 4207 .Case("nsh", ARM_MB::NSH) 4208 .Case("un", ARM_MB::NSH) 4209 .Case("nshst", ARM_MB::NSHST) 4210 .Case("nshld", ARM_MB::NSHLD) 4211 .Case("unst", ARM_MB::NSHST) 4212 .Case("osh", ARM_MB::OSH) 4213 .Case("oshst", ARM_MB::OSHST) 4214 .Case("oshld", ARM_MB::OSHLD) 4215 .Default(~0U); 4216 4217 // ishld, oshld, nshld and ld are only available from ARMv8. 4218 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4219 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4220 Opt = ~0U; 4221 4222 if (Opt == ~0U) 4223 return MatchOperand_NoMatch; 4224 4225 Parser.Lex(); // Eat identifier token. 4226 } else if (Tok.is(AsmToken::Hash) || 4227 Tok.is(AsmToken::Dollar) || 4228 Tok.is(AsmToken::Integer)) { 4229 if (Parser.getTok().isNot(AsmToken::Integer)) 4230 Parser.Lex(); // Eat '#' or '$'. 4231 SMLoc Loc = Parser.getTok().getLoc(); 4232 4233 const MCExpr *MemBarrierID; 4234 if (getParser().parseExpression(MemBarrierID)) { 4235 Error(Loc, "illegal expression"); 4236 return MatchOperand_ParseFail; 4237 } 4238 4239 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4240 if (!CE) { 4241 Error(Loc, "constant expression expected"); 4242 return MatchOperand_ParseFail; 4243 } 4244 4245 int Val = CE->getValue(); 4246 if (Val & ~0xf) { 4247 Error(Loc, "immediate value out of range"); 4248 return MatchOperand_ParseFail; 4249 } 4250 4251 Opt = ARM_MB::RESERVED_0 + Val; 4252 } else 4253 return MatchOperand_ParseFail; 4254 4255 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4256 return MatchOperand_Success; 4257 } 4258 4259 OperandMatchResultTy 4260 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 4261 MCAsmParser &Parser = getParser(); 4262 SMLoc S = Parser.getTok().getLoc(); 4263 const AsmToken &Tok = Parser.getTok(); 4264 4265 if (Tok.isNot(AsmToken::Identifier)) 4266 return MatchOperand_NoMatch; 4267 4268 if (!Tok.getString().equals_lower("csync")) 4269 return MatchOperand_NoMatch; 4270 4271 Parser.Lex(); // Eat identifier token. 4272 4273 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 4274 return MatchOperand_Success; 4275 } 4276 4277 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4278 OperandMatchResultTy 4279 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4280 MCAsmParser &Parser = getParser(); 4281 SMLoc S = Parser.getTok().getLoc(); 4282 const AsmToken &Tok = Parser.getTok(); 4283 unsigned Opt; 4284 4285 if (Tok.is(AsmToken::Identifier)) { 4286 StringRef OptStr = Tok.getString(); 4287 4288 if (OptStr.equals_lower("sy")) 4289 Opt = ARM_ISB::SY; 4290 else 4291 return MatchOperand_NoMatch; 4292 4293 Parser.Lex(); // Eat identifier token. 4294 } else if (Tok.is(AsmToken::Hash) || 4295 Tok.is(AsmToken::Dollar) || 4296 Tok.is(AsmToken::Integer)) { 4297 if (Parser.getTok().isNot(AsmToken::Integer)) 4298 Parser.Lex(); // Eat '#' or '$'. 4299 SMLoc Loc = Parser.getTok().getLoc(); 4300 4301 const MCExpr *ISBarrierID; 4302 if (getParser().parseExpression(ISBarrierID)) { 4303 Error(Loc, "illegal expression"); 4304 return MatchOperand_ParseFail; 4305 } 4306 4307 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4308 if (!CE) { 4309 Error(Loc, "constant expression expected"); 4310 return MatchOperand_ParseFail; 4311 } 4312 4313 int Val = CE->getValue(); 4314 if (Val & ~0xf) { 4315 Error(Loc, "immediate value out of range"); 4316 return MatchOperand_ParseFail; 4317 } 4318 4319 Opt = ARM_ISB::RESERVED_0 + Val; 4320 } else 4321 return MatchOperand_ParseFail; 4322 4323 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4324 (ARM_ISB::InstSyncBOpt)Opt, S)); 4325 return MatchOperand_Success; 4326 } 4327 4328 4329 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4330 OperandMatchResultTy 4331 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4332 MCAsmParser &Parser = getParser(); 4333 SMLoc S = Parser.getTok().getLoc(); 4334 const AsmToken &Tok = Parser.getTok(); 4335 if (!Tok.is(AsmToken::Identifier)) 4336 return MatchOperand_NoMatch; 4337 StringRef IFlagsStr = Tok.getString(); 4338 4339 // An iflags string of "none" is interpreted to mean that none of the AIF 4340 // bits are set. Not a terribly useful instruction, but a valid encoding. 4341 unsigned IFlags = 0; 4342 if (IFlagsStr != "none") { 4343 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4344 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4345 .Case("a", ARM_PROC::A) 4346 .Case("i", ARM_PROC::I) 4347 .Case("f", ARM_PROC::F) 4348 .Default(~0U); 4349 4350 // If some specific iflag is already set, it means that some letter is 4351 // present more than once, this is not acceptable. 4352 if (Flag == ~0U || (IFlags & Flag)) 4353 return MatchOperand_NoMatch; 4354 4355 IFlags |= Flag; 4356 } 4357 } 4358 4359 Parser.Lex(); // Eat identifier token. 4360 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4361 return MatchOperand_Success; 4362 } 4363 4364 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4365 OperandMatchResultTy 4366 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4367 MCAsmParser &Parser = getParser(); 4368 SMLoc S = Parser.getTok().getLoc(); 4369 const AsmToken &Tok = Parser.getTok(); 4370 4371 if (Tok.is(AsmToken::Integer)) { 4372 int64_t Val = Tok.getIntVal(); 4373 if (Val > 255 || Val < 0) { 4374 return MatchOperand_NoMatch; 4375 } 4376 unsigned SYSmvalue = Val & 0xFF; 4377 Parser.Lex(); 4378 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4379 return MatchOperand_Success; 4380 } 4381 4382 if (!Tok.is(AsmToken::Identifier)) 4383 return MatchOperand_NoMatch; 4384 StringRef Mask = Tok.getString(); 4385 4386 if (isMClass()) { 4387 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4388 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4389 return MatchOperand_NoMatch; 4390 4391 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4392 4393 Parser.Lex(); // Eat identifier token. 4394 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4395 return MatchOperand_Success; 4396 } 4397 4398 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4399 size_t Start = 0, Next = Mask.find('_'); 4400 StringRef Flags = ""; 4401 std::string SpecReg = Mask.slice(Start, Next).lower(); 4402 if (Next != StringRef::npos) 4403 Flags = Mask.slice(Next+1, Mask.size()); 4404 4405 // FlagsVal contains the complete mask: 4406 // 3-0: Mask 4407 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4408 unsigned FlagsVal = 0; 4409 4410 if (SpecReg == "apsr") { 4411 FlagsVal = StringSwitch<unsigned>(Flags) 4412 .Case("nzcvq", 0x8) // same as CPSR_f 4413 .Case("g", 0x4) // same as CPSR_s 4414 .Case("nzcvqg", 0xc) // same as CPSR_fs 4415 .Default(~0U); 4416 4417 if (FlagsVal == ~0U) { 4418 if (!Flags.empty()) 4419 return MatchOperand_NoMatch; 4420 else 4421 FlagsVal = 8; // No flag 4422 } 4423 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4424 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4425 if (Flags == "all" || Flags == "") 4426 Flags = "fc"; 4427 for (int i = 0, e = Flags.size(); i != e; ++i) { 4428 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4429 .Case("c", 1) 4430 .Case("x", 2) 4431 .Case("s", 4) 4432 .Case("f", 8) 4433 .Default(~0U); 4434 4435 // If some specific flag is already set, it means that some letter is 4436 // present more than once, this is not acceptable. 4437 if (Flag == ~0U || (FlagsVal & Flag)) 4438 return MatchOperand_NoMatch; 4439 FlagsVal |= Flag; 4440 } 4441 } else // No match for special register. 4442 return MatchOperand_NoMatch; 4443 4444 // Special register without flags is NOT equivalent to "fc" flags. 4445 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4446 // two lines would enable gas compatibility at the expense of breaking 4447 // round-tripping. 4448 // 4449 // if (!FlagsVal) 4450 // FlagsVal = 0x9; 4451 4452 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4453 if (SpecReg == "spsr") 4454 FlagsVal |= 16; 4455 4456 Parser.Lex(); // Eat identifier token. 4457 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4458 return MatchOperand_Success; 4459 } 4460 4461 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4462 /// use in the MRS/MSR instructions added to support virtualization. 4463 OperandMatchResultTy 4464 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4465 MCAsmParser &Parser = getParser(); 4466 SMLoc S = Parser.getTok().getLoc(); 4467 const AsmToken &Tok = Parser.getTok(); 4468 if (!Tok.is(AsmToken::Identifier)) 4469 return MatchOperand_NoMatch; 4470 StringRef RegName = Tok.getString(); 4471 4472 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 4473 if (!TheReg) 4474 return MatchOperand_NoMatch; 4475 unsigned Encoding = TheReg->Encoding; 4476 4477 Parser.Lex(); // Eat identifier token. 4478 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4479 return MatchOperand_Success; 4480 } 4481 4482 OperandMatchResultTy 4483 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4484 int High) { 4485 MCAsmParser &Parser = getParser(); 4486 const AsmToken &Tok = Parser.getTok(); 4487 if (Tok.isNot(AsmToken::Identifier)) { 4488 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4489 return MatchOperand_ParseFail; 4490 } 4491 StringRef ShiftName = Tok.getString(); 4492 std::string LowerOp = Op.lower(); 4493 std::string UpperOp = Op.upper(); 4494 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4495 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4496 return MatchOperand_ParseFail; 4497 } 4498 Parser.Lex(); // Eat shift type token. 4499 4500 // There must be a '#' and a shift amount. 4501 if (Parser.getTok().isNot(AsmToken::Hash) && 4502 Parser.getTok().isNot(AsmToken::Dollar)) { 4503 Error(Parser.getTok().getLoc(), "'#' expected"); 4504 return MatchOperand_ParseFail; 4505 } 4506 Parser.Lex(); // Eat hash token. 4507 4508 const MCExpr *ShiftAmount; 4509 SMLoc Loc = Parser.getTok().getLoc(); 4510 SMLoc EndLoc; 4511 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4512 Error(Loc, "illegal expression"); 4513 return MatchOperand_ParseFail; 4514 } 4515 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4516 if (!CE) { 4517 Error(Loc, "constant expression expected"); 4518 return MatchOperand_ParseFail; 4519 } 4520 int Val = CE->getValue(); 4521 if (Val < Low || Val > High) { 4522 Error(Loc, "immediate value out of range"); 4523 return MatchOperand_ParseFail; 4524 } 4525 4526 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4527 4528 return MatchOperand_Success; 4529 } 4530 4531 OperandMatchResultTy 4532 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4533 MCAsmParser &Parser = getParser(); 4534 const AsmToken &Tok = Parser.getTok(); 4535 SMLoc S = Tok.getLoc(); 4536 if (Tok.isNot(AsmToken::Identifier)) { 4537 Error(S, "'be' or 'le' operand expected"); 4538 return MatchOperand_ParseFail; 4539 } 4540 int Val = StringSwitch<int>(Tok.getString().lower()) 4541 .Case("be", 1) 4542 .Case("le", 0) 4543 .Default(-1); 4544 Parser.Lex(); // Eat the token. 4545 4546 if (Val == -1) { 4547 Error(S, "'be' or 'le' operand expected"); 4548 return MatchOperand_ParseFail; 4549 } 4550 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4551 getContext()), 4552 S, Tok.getEndLoc())); 4553 return MatchOperand_Success; 4554 } 4555 4556 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4557 /// instructions. Legal values are: 4558 /// lsl #n 'n' in [0,31] 4559 /// asr #n 'n' in [1,32] 4560 /// n == 32 encoded as n == 0. 4561 OperandMatchResultTy 4562 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4563 MCAsmParser &Parser = getParser(); 4564 const AsmToken &Tok = Parser.getTok(); 4565 SMLoc S = Tok.getLoc(); 4566 if (Tok.isNot(AsmToken::Identifier)) { 4567 Error(S, "shift operator 'asr' or 'lsl' expected"); 4568 return MatchOperand_ParseFail; 4569 } 4570 StringRef ShiftName = Tok.getString(); 4571 bool isASR; 4572 if (ShiftName == "lsl" || ShiftName == "LSL") 4573 isASR = false; 4574 else if (ShiftName == "asr" || ShiftName == "ASR") 4575 isASR = true; 4576 else { 4577 Error(S, "shift operator 'asr' or 'lsl' expected"); 4578 return MatchOperand_ParseFail; 4579 } 4580 Parser.Lex(); // Eat the operator. 4581 4582 // A '#' and a shift amount. 4583 if (Parser.getTok().isNot(AsmToken::Hash) && 4584 Parser.getTok().isNot(AsmToken::Dollar)) { 4585 Error(Parser.getTok().getLoc(), "'#' expected"); 4586 return MatchOperand_ParseFail; 4587 } 4588 Parser.Lex(); // Eat hash token. 4589 SMLoc ExLoc = Parser.getTok().getLoc(); 4590 4591 const MCExpr *ShiftAmount; 4592 SMLoc EndLoc; 4593 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4594 Error(ExLoc, "malformed shift expression"); 4595 return MatchOperand_ParseFail; 4596 } 4597 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4598 if (!CE) { 4599 Error(ExLoc, "shift amount must be an immediate"); 4600 return MatchOperand_ParseFail; 4601 } 4602 4603 int64_t Val = CE->getValue(); 4604 if (isASR) { 4605 // Shift amount must be in [1,32] 4606 if (Val < 1 || Val > 32) { 4607 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4608 return MatchOperand_ParseFail; 4609 } 4610 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4611 if (isThumb() && Val == 32) { 4612 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4613 return MatchOperand_ParseFail; 4614 } 4615 if (Val == 32) Val = 0; 4616 } else { 4617 // Shift amount must be in [1,32] 4618 if (Val < 0 || Val > 31) { 4619 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4620 return MatchOperand_ParseFail; 4621 } 4622 } 4623 4624 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4625 4626 return MatchOperand_Success; 4627 } 4628 4629 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4630 /// of instructions. Legal values are: 4631 /// ror #n 'n' in {0, 8, 16, 24} 4632 OperandMatchResultTy 4633 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4634 MCAsmParser &Parser = getParser(); 4635 const AsmToken &Tok = Parser.getTok(); 4636 SMLoc S = Tok.getLoc(); 4637 if (Tok.isNot(AsmToken::Identifier)) 4638 return MatchOperand_NoMatch; 4639 StringRef ShiftName = Tok.getString(); 4640 if (ShiftName != "ror" && ShiftName != "ROR") 4641 return MatchOperand_NoMatch; 4642 Parser.Lex(); // Eat the operator. 4643 4644 // A '#' and a rotate amount. 4645 if (Parser.getTok().isNot(AsmToken::Hash) && 4646 Parser.getTok().isNot(AsmToken::Dollar)) { 4647 Error(Parser.getTok().getLoc(), "'#' expected"); 4648 return MatchOperand_ParseFail; 4649 } 4650 Parser.Lex(); // Eat hash token. 4651 SMLoc ExLoc = Parser.getTok().getLoc(); 4652 4653 const MCExpr *ShiftAmount; 4654 SMLoc EndLoc; 4655 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4656 Error(ExLoc, "malformed rotate expression"); 4657 return MatchOperand_ParseFail; 4658 } 4659 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4660 if (!CE) { 4661 Error(ExLoc, "rotate amount must be an immediate"); 4662 return MatchOperand_ParseFail; 4663 } 4664 4665 int64_t Val = CE->getValue(); 4666 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4667 // normally, zero is represented in asm by omitting the rotate operand 4668 // entirely. 4669 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4670 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4671 return MatchOperand_ParseFail; 4672 } 4673 4674 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4675 4676 return MatchOperand_Success; 4677 } 4678 4679 OperandMatchResultTy 4680 ARMAsmParser::parseModImm(OperandVector &Operands) { 4681 MCAsmParser &Parser = getParser(); 4682 MCAsmLexer &Lexer = getLexer(); 4683 int64_t Imm1, Imm2; 4684 4685 SMLoc S = Parser.getTok().getLoc(); 4686 4687 // 1) A mod_imm operand can appear in the place of a register name: 4688 // add r0, #mod_imm 4689 // add r0, r0, #mod_imm 4690 // to correctly handle the latter, we bail out as soon as we see an 4691 // identifier. 4692 // 4693 // 2) Similarly, we do not want to parse into complex operands: 4694 // mov r0, #mod_imm 4695 // mov r0, :lower16:(_foo) 4696 if (Parser.getTok().is(AsmToken::Identifier) || 4697 Parser.getTok().is(AsmToken::Colon)) 4698 return MatchOperand_NoMatch; 4699 4700 // Hash (dollar) is optional as per the ARMARM 4701 if (Parser.getTok().is(AsmToken::Hash) || 4702 Parser.getTok().is(AsmToken::Dollar)) { 4703 // Avoid parsing into complex operands (#:) 4704 if (Lexer.peekTok().is(AsmToken::Colon)) 4705 return MatchOperand_NoMatch; 4706 4707 // Eat the hash (dollar) 4708 Parser.Lex(); 4709 } 4710 4711 SMLoc Sx1, Ex1; 4712 Sx1 = Parser.getTok().getLoc(); 4713 const MCExpr *Imm1Exp; 4714 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4715 Error(Sx1, "malformed expression"); 4716 return MatchOperand_ParseFail; 4717 } 4718 4719 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4720 4721 if (CE) { 4722 // Immediate must fit within 32-bits 4723 Imm1 = CE->getValue(); 4724 int Enc = ARM_AM::getSOImmVal(Imm1); 4725 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4726 // We have a match! 4727 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4728 (Enc & 0xF00) >> 7, 4729 Sx1, Ex1)); 4730 return MatchOperand_Success; 4731 } 4732 4733 // We have parsed an immediate which is not for us, fallback to a plain 4734 // immediate. This can happen for instruction aliases. For an example, 4735 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4736 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4737 // instruction with a mod_imm operand. The alias is defined such that the 4738 // parser method is shared, that's why we have to do this here. 4739 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4740 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4741 return MatchOperand_Success; 4742 } 4743 } else { 4744 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4745 // MCFixup). Fallback to a plain immediate. 4746 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4747 return MatchOperand_Success; 4748 } 4749 4750 // From this point onward, we expect the input to be a (#bits, #rot) pair 4751 if (Parser.getTok().isNot(AsmToken::Comma)) { 4752 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4753 return MatchOperand_ParseFail; 4754 } 4755 4756 if (Imm1 & ~0xFF) { 4757 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4758 return MatchOperand_ParseFail; 4759 } 4760 4761 // Eat the comma 4762 Parser.Lex(); 4763 4764 // Repeat for #rot 4765 SMLoc Sx2, Ex2; 4766 Sx2 = Parser.getTok().getLoc(); 4767 4768 // Eat the optional hash (dollar) 4769 if (Parser.getTok().is(AsmToken::Hash) || 4770 Parser.getTok().is(AsmToken::Dollar)) 4771 Parser.Lex(); 4772 4773 const MCExpr *Imm2Exp; 4774 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4775 Error(Sx2, "malformed expression"); 4776 return MatchOperand_ParseFail; 4777 } 4778 4779 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4780 4781 if (CE) { 4782 Imm2 = CE->getValue(); 4783 if (!(Imm2 & ~0x1E)) { 4784 // We have a match! 4785 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4786 return MatchOperand_Success; 4787 } 4788 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4789 return MatchOperand_ParseFail; 4790 } else { 4791 Error(Sx2, "constant expression expected"); 4792 return MatchOperand_ParseFail; 4793 } 4794 } 4795 4796 OperandMatchResultTy 4797 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4798 MCAsmParser &Parser = getParser(); 4799 SMLoc S = Parser.getTok().getLoc(); 4800 // The bitfield descriptor is really two operands, the LSB and the width. 4801 if (Parser.getTok().isNot(AsmToken::Hash) && 4802 Parser.getTok().isNot(AsmToken::Dollar)) { 4803 Error(Parser.getTok().getLoc(), "'#' expected"); 4804 return MatchOperand_ParseFail; 4805 } 4806 Parser.Lex(); // Eat hash token. 4807 4808 const MCExpr *LSBExpr; 4809 SMLoc E = Parser.getTok().getLoc(); 4810 if (getParser().parseExpression(LSBExpr)) { 4811 Error(E, "malformed immediate expression"); 4812 return MatchOperand_ParseFail; 4813 } 4814 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4815 if (!CE) { 4816 Error(E, "'lsb' operand must be an immediate"); 4817 return MatchOperand_ParseFail; 4818 } 4819 4820 int64_t LSB = CE->getValue(); 4821 // The LSB must be in the range [0,31] 4822 if (LSB < 0 || LSB > 31) { 4823 Error(E, "'lsb' operand must be in the range [0,31]"); 4824 return MatchOperand_ParseFail; 4825 } 4826 E = Parser.getTok().getLoc(); 4827 4828 // Expect another immediate operand. 4829 if (Parser.getTok().isNot(AsmToken::Comma)) { 4830 Error(Parser.getTok().getLoc(), "too few operands"); 4831 return MatchOperand_ParseFail; 4832 } 4833 Parser.Lex(); // Eat hash token. 4834 if (Parser.getTok().isNot(AsmToken::Hash) && 4835 Parser.getTok().isNot(AsmToken::Dollar)) { 4836 Error(Parser.getTok().getLoc(), "'#' expected"); 4837 return MatchOperand_ParseFail; 4838 } 4839 Parser.Lex(); // Eat hash token. 4840 4841 const MCExpr *WidthExpr; 4842 SMLoc EndLoc; 4843 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4844 Error(E, "malformed immediate expression"); 4845 return MatchOperand_ParseFail; 4846 } 4847 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4848 if (!CE) { 4849 Error(E, "'width' operand must be an immediate"); 4850 return MatchOperand_ParseFail; 4851 } 4852 4853 int64_t Width = CE->getValue(); 4854 // The LSB must be in the range [1,32-lsb] 4855 if (Width < 1 || Width > 32 - LSB) { 4856 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4857 return MatchOperand_ParseFail; 4858 } 4859 4860 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4861 4862 return MatchOperand_Success; 4863 } 4864 4865 OperandMatchResultTy 4866 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4867 // Check for a post-index addressing register operand. Specifically: 4868 // postidx_reg := '+' register {, shift} 4869 // | '-' register {, shift} 4870 // | register {, shift} 4871 4872 // This method must return MatchOperand_NoMatch without consuming any tokens 4873 // in the case where there is no match, as other alternatives take other 4874 // parse methods. 4875 MCAsmParser &Parser = getParser(); 4876 AsmToken Tok = Parser.getTok(); 4877 SMLoc S = Tok.getLoc(); 4878 bool haveEaten = false; 4879 bool isAdd = true; 4880 if (Tok.is(AsmToken::Plus)) { 4881 Parser.Lex(); // Eat the '+' token. 4882 haveEaten = true; 4883 } else if (Tok.is(AsmToken::Minus)) { 4884 Parser.Lex(); // Eat the '-' token. 4885 isAdd = false; 4886 haveEaten = true; 4887 } 4888 4889 SMLoc E = Parser.getTok().getEndLoc(); 4890 int Reg = tryParseRegister(); 4891 if (Reg == -1) { 4892 if (!haveEaten) 4893 return MatchOperand_NoMatch; 4894 Error(Parser.getTok().getLoc(), "register expected"); 4895 return MatchOperand_ParseFail; 4896 } 4897 4898 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4899 unsigned ShiftImm = 0; 4900 if (Parser.getTok().is(AsmToken::Comma)) { 4901 Parser.Lex(); // Eat the ','. 4902 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4903 return MatchOperand_ParseFail; 4904 4905 // FIXME: Only approximates end...may include intervening whitespace. 4906 E = Parser.getTok().getLoc(); 4907 } 4908 4909 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4910 ShiftImm, S, E)); 4911 4912 return MatchOperand_Success; 4913 } 4914 4915 OperandMatchResultTy 4916 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4917 // Check for a post-index addressing register operand. Specifically: 4918 // am3offset := '+' register 4919 // | '-' register 4920 // | register 4921 // | # imm 4922 // | # + imm 4923 // | # - imm 4924 4925 // This method must return MatchOperand_NoMatch without consuming any tokens 4926 // in the case where there is no match, as other alternatives take other 4927 // parse methods. 4928 MCAsmParser &Parser = getParser(); 4929 AsmToken Tok = Parser.getTok(); 4930 SMLoc S = Tok.getLoc(); 4931 4932 // Do immediates first, as we always parse those if we have a '#'. 4933 if (Parser.getTok().is(AsmToken::Hash) || 4934 Parser.getTok().is(AsmToken::Dollar)) { 4935 Parser.Lex(); // Eat '#' or '$'. 4936 // Explicitly look for a '-', as we need to encode negative zero 4937 // differently. 4938 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4939 const MCExpr *Offset; 4940 SMLoc E; 4941 if (getParser().parseExpression(Offset, E)) 4942 return MatchOperand_ParseFail; 4943 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4944 if (!CE) { 4945 Error(S, "constant expression expected"); 4946 return MatchOperand_ParseFail; 4947 } 4948 // Negative zero is encoded as the flag value 4949 // std::numeric_limits<int32_t>::min(). 4950 int32_t Val = CE->getValue(); 4951 if (isNegative && Val == 0) 4952 Val = std::numeric_limits<int32_t>::min(); 4953 4954 Operands.push_back( 4955 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4956 4957 return MatchOperand_Success; 4958 } 4959 4960 bool haveEaten = false; 4961 bool isAdd = true; 4962 if (Tok.is(AsmToken::Plus)) { 4963 Parser.Lex(); // Eat the '+' token. 4964 haveEaten = true; 4965 } else if (Tok.is(AsmToken::Minus)) { 4966 Parser.Lex(); // Eat the '-' token. 4967 isAdd = false; 4968 haveEaten = true; 4969 } 4970 4971 Tok = Parser.getTok(); 4972 int Reg = tryParseRegister(); 4973 if (Reg == -1) { 4974 if (!haveEaten) 4975 return MatchOperand_NoMatch; 4976 Error(Tok.getLoc(), "register expected"); 4977 return MatchOperand_ParseFail; 4978 } 4979 4980 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4981 0, S, Tok.getEndLoc())); 4982 4983 return MatchOperand_Success; 4984 } 4985 4986 /// Convert parsed operands to MCInst. Needed here because this instruction 4987 /// only has two register operands, but multiplication is commutative so 4988 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4989 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4990 const OperandVector &Operands) { 4991 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4992 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4993 // If we have a three-operand form, make sure to set Rn to be the operand 4994 // that isn't the same as Rd. 4995 unsigned RegOp = 4; 4996 if (Operands.size() == 6 && 4997 ((ARMOperand &)*Operands[4]).getReg() == 4998 ((ARMOperand &)*Operands[3]).getReg()) 4999 RegOp = 5; 5000 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5001 Inst.addOperand(Inst.getOperand(0)); 5002 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5003 } 5004 5005 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5006 const OperandVector &Operands) { 5007 int CondOp = -1, ImmOp = -1; 5008 switch(Inst.getOpcode()) { 5009 case ARM::tB: 5010 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5011 5012 case ARM::t2B: 5013 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5014 5015 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5016 } 5017 // first decide whether or not the branch should be conditional 5018 // by looking at it's location relative to an IT block 5019 if(inITBlock()) { 5020 // inside an IT block we cannot have any conditional branches. any 5021 // such instructions needs to be converted to unconditional form 5022 switch(Inst.getOpcode()) { 5023 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5024 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5025 } 5026 } else { 5027 // outside IT blocks we can only have unconditional branches with AL 5028 // condition code or conditional branches with non-AL condition code 5029 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5030 switch(Inst.getOpcode()) { 5031 case ARM::tB: 5032 case ARM::tBcc: 5033 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5034 break; 5035 case ARM::t2B: 5036 case ARM::t2Bcc: 5037 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5038 break; 5039 } 5040 } 5041 5042 // now decide on encoding size based on branch target range 5043 switch(Inst.getOpcode()) { 5044 // classify tB as either t2B or t1B based on range of immediate operand 5045 case ARM::tB: { 5046 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5047 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5048 Inst.setOpcode(ARM::t2B); 5049 break; 5050 } 5051 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5052 case ARM::tBcc: { 5053 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5054 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5055 Inst.setOpcode(ARM::t2Bcc); 5056 break; 5057 } 5058 } 5059 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5060 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5061 } 5062 5063 /// Parse an ARM memory expression, return false if successful else return true 5064 /// or an error. The first token must be a '[' when called. 5065 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5066 MCAsmParser &Parser = getParser(); 5067 SMLoc S, E; 5068 if (Parser.getTok().isNot(AsmToken::LBrac)) 5069 return TokError("Token is not a Left Bracket"); 5070 S = Parser.getTok().getLoc(); 5071 Parser.Lex(); // Eat left bracket token. 5072 5073 const AsmToken &BaseRegTok = Parser.getTok(); 5074 int BaseRegNum = tryParseRegister(); 5075 if (BaseRegNum == -1) 5076 return Error(BaseRegTok.getLoc(), "register expected"); 5077 5078 // The next token must either be a comma, a colon or a closing bracket. 5079 const AsmToken &Tok = Parser.getTok(); 5080 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5081 !Tok.is(AsmToken::RBrac)) 5082 return Error(Tok.getLoc(), "malformed memory operand"); 5083 5084 if (Tok.is(AsmToken::RBrac)) { 5085 E = Tok.getEndLoc(); 5086 Parser.Lex(); // Eat right bracket token. 5087 5088 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5089 ARM_AM::no_shift, 0, 0, false, 5090 S, E)); 5091 5092 // If there's a pre-indexing writeback marker, '!', just add it as a token 5093 // operand. It's rather odd, but syntactically valid. 5094 if (Parser.getTok().is(AsmToken::Exclaim)) { 5095 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5096 Parser.Lex(); // Eat the '!'. 5097 } 5098 5099 return false; 5100 } 5101 5102 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5103 "Lost colon or comma in memory operand?!"); 5104 if (Tok.is(AsmToken::Comma)) { 5105 Parser.Lex(); // Eat the comma. 5106 } 5107 5108 // If we have a ':', it's an alignment specifier. 5109 if (Parser.getTok().is(AsmToken::Colon)) { 5110 Parser.Lex(); // Eat the ':'. 5111 E = Parser.getTok().getLoc(); 5112 SMLoc AlignmentLoc = Tok.getLoc(); 5113 5114 const MCExpr *Expr; 5115 if (getParser().parseExpression(Expr)) 5116 return true; 5117 5118 // The expression has to be a constant. Memory references with relocations 5119 // don't come through here, as they use the <label> forms of the relevant 5120 // instructions. 5121 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5122 if (!CE) 5123 return Error (E, "constant expression expected"); 5124 5125 unsigned Align = 0; 5126 switch (CE->getValue()) { 5127 default: 5128 return Error(E, 5129 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5130 case 16: Align = 2; break; 5131 case 32: Align = 4; break; 5132 case 64: Align = 8; break; 5133 case 128: Align = 16; break; 5134 case 256: Align = 32; break; 5135 } 5136 5137 // Now we should have the closing ']' 5138 if (Parser.getTok().isNot(AsmToken::RBrac)) 5139 return Error(Parser.getTok().getLoc(), "']' expected"); 5140 E = Parser.getTok().getEndLoc(); 5141 Parser.Lex(); // Eat right bracket token. 5142 5143 // Don't worry about range checking the value here. That's handled by 5144 // the is*() predicates. 5145 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5146 ARM_AM::no_shift, 0, Align, 5147 false, S, E, AlignmentLoc)); 5148 5149 // If there's a pre-indexing writeback marker, '!', just add it as a token 5150 // operand. 5151 if (Parser.getTok().is(AsmToken::Exclaim)) { 5152 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5153 Parser.Lex(); // Eat the '!'. 5154 } 5155 5156 return false; 5157 } 5158 5159 // If we have a '#', it's an immediate offset, else assume it's a register 5160 // offset. Be friendly and also accept a plain integer (without a leading 5161 // hash) for gas compatibility. 5162 if (Parser.getTok().is(AsmToken::Hash) || 5163 Parser.getTok().is(AsmToken::Dollar) || 5164 Parser.getTok().is(AsmToken::Integer)) { 5165 if (Parser.getTok().isNot(AsmToken::Integer)) 5166 Parser.Lex(); // Eat '#' or '$'. 5167 E = Parser.getTok().getLoc(); 5168 5169 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5170 const MCExpr *Offset; 5171 if (getParser().parseExpression(Offset)) 5172 return true; 5173 5174 // The expression has to be a constant. Memory references with relocations 5175 // don't come through here, as they use the <label> forms of the relevant 5176 // instructions. 5177 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5178 if (!CE) 5179 return Error (E, "constant expression expected"); 5180 5181 // If the constant was #-0, represent it as 5182 // std::numeric_limits<int32_t>::min(). 5183 int32_t Val = CE->getValue(); 5184 if (isNegative && Val == 0) 5185 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5186 getContext()); 5187 5188 // Now we should have the closing ']' 5189 if (Parser.getTok().isNot(AsmToken::RBrac)) 5190 return Error(Parser.getTok().getLoc(), "']' expected"); 5191 E = Parser.getTok().getEndLoc(); 5192 Parser.Lex(); // Eat right bracket token. 5193 5194 // Don't worry about range checking the value here. That's handled by 5195 // the is*() predicates. 5196 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5197 ARM_AM::no_shift, 0, 0, 5198 false, S, E)); 5199 5200 // If there's a pre-indexing writeback marker, '!', just add it as a token 5201 // operand. 5202 if (Parser.getTok().is(AsmToken::Exclaim)) { 5203 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5204 Parser.Lex(); // Eat the '!'. 5205 } 5206 5207 return false; 5208 } 5209 5210 // The register offset is optionally preceded by a '+' or '-' 5211 bool isNegative = false; 5212 if (Parser.getTok().is(AsmToken::Minus)) { 5213 isNegative = true; 5214 Parser.Lex(); // Eat the '-'. 5215 } else if (Parser.getTok().is(AsmToken::Plus)) { 5216 // Nothing to do. 5217 Parser.Lex(); // Eat the '+'. 5218 } 5219 5220 E = Parser.getTok().getLoc(); 5221 int OffsetRegNum = tryParseRegister(); 5222 if (OffsetRegNum == -1) 5223 return Error(E, "register expected"); 5224 5225 // If there's a shift operator, handle it. 5226 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5227 unsigned ShiftImm = 0; 5228 if (Parser.getTok().is(AsmToken::Comma)) { 5229 Parser.Lex(); // Eat the ','. 5230 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5231 return true; 5232 } 5233 5234 // Now we should have the closing ']' 5235 if (Parser.getTok().isNot(AsmToken::RBrac)) 5236 return Error(Parser.getTok().getLoc(), "']' expected"); 5237 E = Parser.getTok().getEndLoc(); 5238 Parser.Lex(); // Eat right bracket token. 5239 5240 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5241 ShiftType, ShiftImm, 0, isNegative, 5242 S, E)); 5243 5244 // If there's a pre-indexing writeback marker, '!', just add it as a token 5245 // operand. 5246 if (Parser.getTok().is(AsmToken::Exclaim)) { 5247 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5248 Parser.Lex(); // Eat the '!'. 5249 } 5250 5251 return false; 5252 } 5253 5254 /// parseMemRegOffsetShift - one of these two: 5255 /// ( lsl | lsr | asr | ror ) , # shift_amount 5256 /// rrx 5257 /// return true if it parses a shift otherwise it returns false. 5258 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5259 unsigned &Amount) { 5260 MCAsmParser &Parser = getParser(); 5261 SMLoc Loc = Parser.getTok().getLoc(); 5262 const AsmToken &Tok = Parser.getTok(); 5263 if (Tok.isNot(AsmToken::Identifier)) 5264 return Error(Loc, "illegal shift operator"); 5265 StringRef ShiftName = Tok.getString(); 5266 if (ShiftName == "lsl" || ShiftName == "LSL" || 5267 ShiftName == "asl" || ShiftName == "ASL") 5268 St = ARM_AM::lsl; 5269 else if (ShiftName == "lsr" || ShiftName == "LSR") 5270 St = ARM_AM::lsr; 5271 else if (ShiftName == "asr" || ShiftName == "ASR") 5272 St = ARM_AM::asr; 5273 else if (ShiftName == "ror" || ShiftName == "ROR") 5274 St = ARM_AM::ror; 5275 else if (ShiftName == "rrx" || ShiftName == "RRX") 5276 St = ARM_AM::rrx; 5277 else 5278 return Error(Loc, "illegal shift operator"); 5279 Parser.Lex(); // Eat shift type token. 5280 5281 // rrx stands alone. 5282 Amount = 0; 5283 if (St != ARM_AM::rrx) { 5284 Loc = Parser.getTok().getLoc(); 5285 // A '#' and a shift amount. 5286 const AsmToken &HashTok = Parser.getTok(); 5287 if (HashTok.isNot(AsmToken::Hash) && 5288 HashTok.isNot(AsmToken::Dollar)) 5289 return Error(HashTok.getLoc(), "'#' expected"); 5290 Parser.Lex(); // Eat hash token. 5291 5292 const MCExpr *Expr; 5293 if (getParser().parseExpression(Expr)) 5294 return true; 5295 // Range check the immediate. 5296 // lsl, ror: 0 <= imm <= 31 5297 // lsr, asr: 0 <= imm <= 32 5298 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5299 if (!CE) 5300 return Error(Loc, "shift amount must be an immediate"); 5301 int64_t Imm = CE->getValue(); 5302 if (Imm < 0 || 5303 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5304 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5305 return Error(Loc, "immediate shift value out of range"); 5306 // If <ShiftTy> #0, turn it into a no_shift. 5307 if (Imm == 0) 5308 St = ARM_AM::lsl; 5309 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5310 if (Imm == 32) 5311 Imm = 0; 5312 Amount = Imm; 5313 } 5314 5315 return false; 5316 } 5317 5318 /// parseFPImm - A floating point immediate expression operand. 5319 OperandMatchResultTy 5320 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5321 MCAsmParser &Parser = getParser(); 5322 // Anything that can accept a floating point constant as an operand 5323 // needs to go through here, as the regular parseExpression is 5324 // integer only. 5325 // 5326 // This routine still creates a generic Immediate operand, containing 5327 // a bitcast of the 64-bit floating point value. The various operands 5328 // that accept floats can check whether the value is valid for them 5329 // via the standard is*() predicates. 5330 5331 SMLoc S = Parser.getTok().getLoc(); 5332 5333 if (Parser.getTok().isNot(AsmToken::Hash) && 5334 Parser.getTok().isNot(AsmToken::Dollar)) 5335 return MatchOperand_NoMatch; 5336 5337 // Disambiguate the VMOV forms that can accept an FP immediate. 5338 // vmov.f32 <sreg>, #imm 5339 // vmov.f64 <dreg>, #imm 5340 // vmov.f32 <dreg>, #imm @ vector f32x2 5341 // vmov.f32 <qreg>, #imm @ vector f32x4 5342 // 5343 // There are also the NEON VMOV instructions which expect an 5344 // integer constant. Make sure we don't try to parse an FPImm 5345 // for these: 5346 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5347 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5348 bool isVmovf = TyOp.isToken() && 5349 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5350 TyOp.getToken() == ".f16"); 5351 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5352 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5353 Mnemonic.getToken() == "fconsts"); 5354 if (!(isVmovf || isFconst)) 5355 return MatchOperand_NoMatch; 5356 5357 Parser.Lex(); // Eat '#' or '$'. 5358 5359 // Handle negation, as that still comes through as a separate token. 5360 bool isNegative = false; 5361 if (Parser.getTok().is(AsmToken::Minus)) { 5362 isNegative = true; 5363 Parser.Lex(); 5364 } 5365 const AsmToken &Tok = Parser.getTok(); 5366 SMLoc Loc = Tok.getLoc(); 5367 if (Tok.is(AsmToken::Real) && isVmovf) { 5368 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5369 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5370 // If we had a '-' in front, toggle the sign bit. 5371 IntVal ^= (uint64_t)isNegative << 31; 5372 Parser.Lex(); // Eat the token. 5373 Operands.push_back(ARMOperand::CreateImm( 5374 MCConstantExpr::create(IntVal, getContext()), 5375 S, Parser.getTok().getLoc())); 5376 return MatchOperand_Success; 5377 } 5378 // Also handle plain integers. Instructions which allow floating point 5379 // immediates also allow a raw encoded 8-bit value. 5380 if (Tok.is(AsmToken::Integer) && isFconst) { 5381 int64_t Val = Tok.getIntVal(); 5382 Parser.Lex(); // Eat the token. 5383 if (Val > 255 || Val < 0) { 5384 Error(Loc, "encoded floating point value out of range"); 5385 return MatchOperand_ParseFail; 5386 } 5387 float RealVal = ARM_AM::getFPImmFloat(Val); 5388 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5389 5390 Operands.push_back(ARMOperand::CreateImm( 5391 MCConstantExpr::create(Val, getContext()), S, 5392 Parser.getTok().getLoc())); 5393 return MatchOperand_Success; 5394 } 5395 5396 Error(Loc, "invalid floating point immediate"); 5397 return MatchOperand_ParseFail; 5398 } 5399 5400 /// Parse a arm instruction operand. For now this parses the operand regardless 5401 /// of the mnemonic. 5402 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5403 MCAsmParser &Parser = getParser(); 5404 SMLoc S, E; 5405 5406 // Check if the current operand has a custom associated parser, if so, try to 5407 // custom parse the operand, or fallback to the general approach. 5408 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5409 if (ResTy == MatchOperand_Success) 5410 return false; 5411 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5412 // there was a match, but an error occurred, in which case, just return that 5413 // the operand parsing failed. 5414 if (ResTy == MatchOperand_ParseFail) 5415 return true; 5416 5417 switch (getLexer().getKind()) { 5418 default: 5419 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5420 return true; 5421 case AsmToken::Identifier: { 5422 // If we've seen a branch mnemonic, the next operand must be a label. This 5423 // is true even if the label is a register name. So "br r1" means branch to 5424 // label "r1". 5425 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5426 if (!ExpectLabel) { 5427 if (!tryParseRegisterWithWriteBack(Operands)) 5428 return false; 5429 int Res = tryParseShiftRegister(Operands); 5430 if (Res == 0) // success 5431 return false; 5432 else if (Res == -1) // irrecoverable error 5433 return true; 5434 // If this is VMRS, check for the apsr_nzcv operand. 5435 if (Mnemonic == "vmrs" && 5436 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5437 S = Parser.getTok().getLoc(); 5438 Parser.Lex(); 5439 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5440 return false; 5441 } 5442 } 5443 5444 // Fall though for the Identifier case that is not a register or a 5445 // special name. 5446 LLVM_FALLTHROUGH; 5447 } 5448 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5449 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5450 case AsmToken::String: // quoted label names. 5451 case AsmToken::Dot: { // . as a branch target 5452 // This was not a register so parse other operands that start with an 5453 // identifier (like labels) as expressions and create them as immediates. 5454 const MCExpr *IdVal; 5455 S = Parser.getTok().getLoc(); 5456 if (getParser().parseExpression(IdVal)) 5457 return true; 5458 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5459 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5460 return false; 5461 } 5462 case AsmToken::LBrac: 5463 return parseMemory(Operands); 5464 case AsmToken::LCurly: 5465 return parseRegisterList(Operands); 5466 case AsmToken::Dollar: 5467 case AsmToken::Hash: 5468 // #42 -> immediate. 5469 S = Parser.getTok().getLoc(); 5470 Parser.Lex(); 5471 5472 if (Parser.getTok().isNot(AsmToken::Colon)) { 5473 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5474 const MCExpr *ImmVal; 5475 if (getParser().parseExpression(ImmVal)) 5476 return true; 5477 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5478 if (CE) { 5479 int32_t Val = CE->getValue(); 5480 if (isNegative && Val == 0) 5481 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5482 getContext()); 5483 } 5484 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5485 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5486 5487 // There can be a trailing '!' on operands that we want as a separate 5488 // '!' Token operand. Handle that here. For example, the compatibility 5489 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5490 if (Parser.getTok().is(AsmToken::Exclaim)) { 5491 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5492 Parser.getTok().getLoc())); 5493 Parser.Lex(); // Eat exclaim token 5494 } 5495 return false; 5496 } 5497 // w/ a ':' after the '#', it's just like a plain ':'. 5498 LLVM_FALLTHROUGH; 5499 5500 case AsmToken::Colon: { 5501 S = Parser.getTok().getLoc(); 5502 // ":lower16:" and ":upper16:" expression prefixes 5503 // FIXME: Check it's an expression prefix, 5504 // e.g. (FOO - :lower16:BAR) isn't legal. 5505 ARMMCExpr::VariantKind RefKind; 5506 if (parsePrefix(RefKind)) 5507 return true; 5508 5509 const MCExpr *SubExprVal; 5510 if (getParser().parseExpression(SubExprVal)) 5511 return true; 5512 5513 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5514 getContext()); 5515 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5516 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5517 return false; 5518 } 5519 case AsmToken::Equal: { 5520 S = Parser.getTok().getLoc(); 5521 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5522 return Error(S, "unexpected token in operand"); 5523 Parser.Lex(); // Eat '=' 5524 const MCExpr *SubExprVal; 5525 if (getParser().parseExpression(SubExprVal)) 5526 return true; 5527 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5528 5529 // execute-only: we assume that assembly programmers know what they are 5530 // doing and allow literal pool creation here 5531 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5532 return false; 5533 } 5534 } 5535 } 5536 5537 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5538 // :lower16: and :upper16:. 5539 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5540 MCAsmParser &Parser = getParser(); 5541 RefKind = ARMMCExpr::VK_ARM_None; 5542 5543 // consume an optional '#' (GNU compatibility) 5544 if (getLexer().is(AsmToken::Hash)) 5545 Parser.Lex(); 5546 5547 // :lower16: and :upper16: modifiers 5548 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5549 Parser.Lex(); // Eat ':' 5550 5551 if (getLexer().isNot(AsmToken::Identifier)) { 5552 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5553 return true; 5554 } 5555 5556 enum { 5557 COFF = (1 << MCObjectFileInfo::IsCOFF), 5558 ELF = (1 << MCObjectFileInfo::IsELF), 5559 MACHO = (1 << MCObjectFileInfo::IsMachO), 5560 WASM = (1 << MCObjectFileInfo::IsWasm), 5561 }; 5562 static const struct PrefixEntry { 5563 const char *Spelling; 5564 ARMMCExpr::VariantKind VariantKind; 5565 uint8_t SupportedFormats; 5566 } PrefixEntries[] = { 5567 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5568 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5569 }; 5570 5571 StringRef IDVal = Parser.getTok().getIdentifier(); 5572 5573 const auto &Prefix = 5574 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5575 [&IDVal](const PrefixEntry &PE) { 5576 return PE.Spelling == IDVal; 5577 }); 5578 if (Prefix == std::end(PrefixEntries)) { 5579 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5580 return true; 5581 } 5582 5583 uint8_t CurrentFormat; 5584 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5585 case MCObjectFileInfo::IsMachO: 5586 CurrentFormat = MACHO; 5587 break; 5588 case MCObjectFileInfo::IsELF: 5589 CurrentFormat = ELF; 5590 break; 5591 case MCObjectFileInfo::IsCOFF: 5592 CurrentFormat = COFF; 5593 break; 5594 case MCObjectFileInfo::IsWasm: 5595 CurrentFormat = WASM; 5596 break; 5597 } 5598 5599 if (~Prefix->SupportedFormats & CurrentFormat) { 5600 Error(Parser.getTok().getLoc(), 5601 "cannot represent relocation in the current file format"); 5602 return true; 5603 } 5604 5605 RefKind = Prefix->VariantKind; 5606 Parser.Lex(); 5607 5608 if (getLexer().isNot(AsmToken::Colon)) { 5609 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5610 return true; 5611 } 5612 Parser.Lex(); // Eat the last ':' 5613 5614 return false; 5615 } 5616 5617 /// Given a mnemonic, split out possible predication code and carry 5618 /// setting letters to form a canonical mnemonic and flags. 5619 // 5620 // FIXME: Would be nice to autogen this. 5621 // FIXME: This is a bit of a maze of special cases. 5622 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5623 unsigned &PredicationCode, 5624 bool &CarrySetting, 5625 unsigned &ProcessorIMod, 5626 StringRef &ITMask) { 5627 PredicationCode = ARMCC::AL; 5628 CarrySetting = false; 5629 ProcessorIMod = 0; 5630 5631 // Ignore some mnemonics we know aren't predicated forms. 5632 // 5633 // FIXME: Would be nice to autogen this. 5634 if ((Mnemonic == "movs" && isThumb()) || 5635 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5636 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5637 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5638 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5639 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5640 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5641 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5642 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5643 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5644 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5645 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5646 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5647 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5648 Mnemonic == "bxns" || Mnemonic == "blxns" || 5649 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5650 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 5651 Mnemonic == "vfmal" || Mnemonic == "vfmsl") 5652 return Mnemonic; 5653 5654 // First, split out any predication code. Ignore mnemonics we know aren't 5655 // predicated but do have a carry-set and so weren't caught above. 5656 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5657 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5658 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5659 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5660 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 5661 if (CC != ~0U) { 5662 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5663 PredicationCode = CC; 5664 } 5665 } 5666 5667 // Next, determine if we have a carry setting bit. We explicitly ignore all 5668 // the instructions we know end in 's'. 5669 if (Mnemonic.endswith("s") && 5670 !(Mnemonic == "cps" || Mnemonic == "mls" || 5671 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5672 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5673 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5674 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5675 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5676 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5677 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5678 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5679 Mnemonic == "bxns" || Mnemonic == "blxns" || 5680 (Mnemonic == "movs" && isThumb()))) { 5681 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5682 CarrySetting = true; 5683 } 5684 5685 // The "cps" instruction can have a interrupt mode operand which is glued into 5686 // the mnemonic. Check if this is the case, split it and parse the imod op 5687 if (Mnemonic.startswith("cps")) { 5688 // Split out any imod code. 5689 unsigned IMod = 5690 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5691 .Case("ie", ARM_PROC::IE) 5692 .Case("id", ARM_PROC::ID) 5693 .Default(~0U); 5694 if (IMod != ~0U) { 5695 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5696 ProcessorIMod = IMod; 5697 } 5698 } 5699 5700 // The "it" instruction has the condition mask on the end of the mnemonic. 5701 if (Mnemonic.startswith("it")) { 5702 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5703 Mnemonic = Mnemonic.slice(0, 2); 5704 } 5705 5706 return Mnemonic; 5707 } 5708 5709 /// Given a canonical mnemonic, determine if the instruction ever allows 5710 /// inclusion of carry set or predication code operands. 5711 // 5712 // FIXME: It would be nice to autogen this. 5713 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5714 bool &CanAcceptCarrySet, 5715 bool &CanAcceptPredicationCode) { 5716 CanAcceptCarrySet = 5717 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5718 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5719 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5720 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5721 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5722 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5723 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5724 (!isThumb() && 5725 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5726 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5727 5728 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5729 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5730 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5731 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5732 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5733 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5734 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5735 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5736 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5737 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5738 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5739 Mnemonic == "vmovx" || Mnemonic == "vins" || 5740 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5741 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 5742 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 5743 Mnemonic == "sb" || Mnemonic == "ssbb" || 5744 Mnemonic == "pssbb") { 5745 // These mnemonics are never predicable 5746 CanAcceptPredicationCode = false; 5747 } else if (!isThumb()) { 5748 // Some instructions are only predicable in Thumb mode 5749 CanAcceptPredicationCode = 5750 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5751 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5752 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 5753 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 5754 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 5755 Mnemonic != "stc2" && Mnemonic != "stc2l" && 5756 Mnemonic != "tsb" && 5757 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 5758 } else if (isThumbOne()) { 5759 if (hasV6MOps()) 5760 CanAcceptPredicationCode = Mnemonic != "movs"; 5761 else 5762 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5763 } else 5764 CanAcceptPredicationCode = true; 5765 } 5766 5767 // Some Thumb instructions have two operand forms that are not 5768 // available as three operand, convert to two operand form if possible. 5769 // 5770 // FIXME: We would really like to be able to tablegen'erate this. 5771 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5772 bool CarrySetting, 5773 OperandVector &Operands) { 5774 if (Operands.size() != 6) 5775 return; 5776 5777 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5778 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5779 if (!Op3.isReg() || !Op4.isReg()) 5780 return; 5781 5782 auto Op3Reg = Op3.getReg(); 5783 auto Op4Reg = Op4.getReg(); 5784 5785 // For most Thumb2 cases we just generate the 3 operand form and reduce 5786 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5787 // won't accept SP or PC so we do the transformation here taking care 5788 // with immediate range in the 'add sp, sp #imm' case. 5789 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5790 if (isThumbTwo()) { 5791 if (Mnemonic != "add") 5792 return; 5793 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5794 (Op5.isReg() && Op5.getReg() == ARM::PC); 5795 if (!TryTransform) { 5796 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5797 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5798 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5799 Op5.isImm() && !Op5.isImm0_508s4()); 5800 } 5801 if (!TryTransform) 5802 return; 5803 } else if (!isThumbOne()) 5804 return; 5805 5806 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5807 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5808 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5809 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5810 return; 5811 5812 // If first 2 operands of a 3 operand instruction are the same 5813 // then transform to 2 operand version of the same instruction 5814 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5815 bool Transform = Op3Reg == Op4Reg; 5816 5817 // For communtative operations, we might be able to transform if we swap 5818 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5819 // as tADDrsp. 5820 const ARMOperand *LastOp = &Op5; 5821 bool Swap = false; 5822 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5823 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5824 Mnemonic == "and" || Mnemonic == "eor" || 5825 Mnemonic == "adc" || Mnemonic == "orr")) { 5826 Swap = true; 5827 LastOp = &Op4; 5828 Transform = true; 5829 } 5830 5831 // If both registers are the same then remove one of them from 5832 // the operand list, with certain exceptions. 5833 if (Transform) { 5834 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5835 // 2 operand forms don't exist. 5836 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5837 LastOp->isReg()) 5838 Transform = false; 5839 5840 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5841 // 3-bits because the ARMARM says not to. 5842 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5843 Transform = false; 5844 } 5845 5846 if (Transform) { 5847 if (Swap) 5848 std::swap(Op4, Op5); 5849 Operands.erase(Operands.begin() + 3); 5850 } 5851 } 5852 5853 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5854 OperandVector &Operands) { 5855 // FIXME: This is all horribly hacky. We really need a better way to deal 5856 // with optional operands like this in the matcher table. 5857 5858 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5859 // another does not. Specifically, the MOVW instruction does not. So we 5860 // special case it here and remove the defaulted (non-setting) cc_out 5861 // operand if that's the instruction we're trying to match. 5862 // 5863 // We do this as post-processing of the explicit operands rather than just 5864 // conditionally adding the cc_out in the first place because we need 5865 // to check the type of the parsed immediate operand. 5866 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5867 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5868 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5869 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5870 return true; 5871 5872 // Register-register 'add' for thumb does not have a cc_out operand 5873 // when there are only two register operands. 5874 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5875 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5876 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5877 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5878 return true; 5879 // Register-register 'add' for thumb does not have a cc_out operand 5880 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5881 // have to check the immediate range here since Thumb2 has a variant 5882 // that can handle a different range and has a cc_out operand. 5883 if (((isThumb() && Mnemonic == "add") || 5884 (isThumbTwo() && Mnemonic == "sub")) && 5885 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5886 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5887 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5888 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5889 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5890 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5891 return true; 5892 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5893 // imm0_4095 variant. That's the least-preferred variant when 5894 // selecting via the generic "add" mnemonic, so to know that we 5895 // should remove the cc_out operand, we have to explicitly check that 5896 // it's not one of the other variants. Ugh. 5897 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5898 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5899 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5900 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5901 // Nest conditions rather than one big 'if' statement for readability. 5902 // 5903 // If both registers are low, we're in an IT block, and the immediate is 5904 // in range, we should use encoding T1 instead, which has a cc_out. 5905 if (inITBlock() && 5906 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5907 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5908 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5909 return false; 5910 // Check against T3. If the second register is the PC, this is an 5911 // alternate form of ADR, which uses encoding T4, so check for that too. 5912 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5913 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5914 return false; 5915 5916 // Otherwise, we use encoding T4, which does not have a cc_out 5917 // operand. 5918 return true; 5919 } 5920 5921 // The thumb2 multiply instruction doesn't have a CCOut register, so 5922 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5923 // use the 16-bit encoding or not. 5924 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5925 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5926 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5927 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5928 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5929 // If the registers aren't low regs, the destination reg isn't the 5930 // same as one of the source regs, or the cc_out operand is zero 5931 // outside of an IT block, we have to use the 32-bit encoding, so 5932 // remove the cc_out operand. 5933 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5934 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5935 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5936 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5937 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5938 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5939 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5940 return true; 5941 5942 // Also check the 'mul' syntax variant that doesn't specify an explicit 5943 // destination register. 5944 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5945 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5946 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5947 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5948 // If the registers aren't low regs or the cc_out operand is zero 5949 // outside of an IT block, we have to use the 32-bit encoding, so 5950 // remove the cc_out operand. 5951 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5952 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5953 !inITBlock())) 5954 return true; 5955 5956 // Register-register 'add/sub' for thumb does not have a cc_out operand 5957 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5958 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5959 // right, this will result in better diagnostics (which operand is off) 5960 // anyway. 5961 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5962 (Operands.size() == 5 || Operands.size() == 6) && 5963 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5964 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5965 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5966 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5967 (Operands.size() == 6 && 5968 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5969 return true; 5970 5971 return false; 5972 } 5973 5974 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5975 OperandVector &Operands) { 5976 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 5977 unsigned RegIdx = 3; 5978 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") && 5979 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5980 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5981 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5982 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5983 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5984 RegIdx = 4; 5985 5986 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5987 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5988 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5989 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5990 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5991 return true; 5992 } 5993 return false; 5994 } 5995 5996 static bool isDataTypeToken(StringRef Tok) { 5997 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5998 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5999 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6000 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6001 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6002 Tok == ".f" || Tok == ".d"; 6003 } 6004 6005 // FIXME: This bit should probably be handled via an explicit match class 6006 // in the .td files that matches the suffix instead of having it be 6007 // a literal string token the way it is now. 6008 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6009 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6010 } 6011 6012 static void applyMnemonicAliases(StringRef &Mnemonic, 6013 const FeatureBitset &Features, 6014 unsigned VariantID); 6015 6016 // The GNU assembler has aliases of ldrd and strd with the second register 6017 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6018 // 6019 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6020 // the assmebly parser could then generate confusing diagnostics refering to 6021 // it. If we do find anything that prevents us from doing the transformation we 6022 // bail out, and let the assembly parser report an error on the instruction as 6023 // it is written. 6024 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6025 OperandVector &Operands) { 6026 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6027 return; 6028 if (Operands.size() < 4) 6029 return; 6030 6031 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6032 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6033 6034 if (!Op2.isReg()) 6035 return; 6036 if (!Op3.isMem()) 6037 return; 6038 6039 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6040 if (!GPR.contains(Op2.getReg())) 6041 return; 6042 6043 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6044 if (!isThumb() && (RtEncoding & 1)) { 6045 // In ARM mode, the registers must be from an aligned pair, this 6046 // restriction does not apply in Thumb mode. 6047 return; 6048 } 6049 if (Op2.getReg() == ARM::PC) 6050 return; 6051 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6052 if (!PairedReg || PairedReg == ARM::PC || 6053 (PairedReg == ARM::SP && !hasV8Ops())) 6054 return; 6055 6056 Operands.insert( 6057 Operands.begin() + 3, 6058 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6059 } 6060 6061 /// Parse an arm instruction mnemonic followed by its operands. 6062 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6063 SMLoc NameLoc, OperandVector &Operands) { 6064 MCAsmParser &Parser = getParser(); 6065 6066 // Apply mnemonic aliases before doing anything else, as the destination 6067 // mnemonic may include suffices and we want to handle them normally. 6068 // The generic tblgen'erated code does this later, at the start of 6069 // MatchInstructionImpl(), but that's too late for aliases that include 6070 // any sort of suffix. 6071 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 6072 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6073 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6074 6075 // First check for the ARM-specific .req directive. 6076 if (Parser.getTok().is(AsmToken::Identifier) && 6077 Parser.getTok().getIdentifier() == ".req") { 6078 parseDirectiveReq(Name, NameLoc); 6079 // We always return 'error' for this, as we're done with this 6080 // statement and don't need to match the 'instruction." 6081 return true; 6082 } 6083 6084 // Create the leading tokens for the mnemonic, split by '.' characters. 6085 size_t Start = 0, Next = Name.find('.'); 6086 StringRef Mnemonic = Name.slice(Start, Next); 6087 6088 // Split out the predication code and carry setting flag from the mnemonic. 6089 unsigned PredicationCode; 6090 unsigned ProcessorIMod; 6091 bool CarrySetting; 6092 StringRef ITMask; 6093 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 6094 ProcessorIMod, ITMask); 6095 6096 // In Thumb1, only the branch (B) instruction can be predicated. 6097 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6098 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6099 } 6100 6101 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6102 6103 // Handle the IT instruction ITMask. Convert it to a bitmask. This 6104 // is the mask as it will be for the IT encoding if the conditional 6105 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 6106 // where the conditional bit0 is zero, the instruction post-processing 6107 // will adjust the mask accordingly. 6108 if (Mnemonic == "it") { 6109 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 6110 if (ITMask.size() > 3) { 6111 return Error(Loc, "too many conditions on IT instruction"); 6112 } 6113 unsigned Mask = 8; 6114 for (unsigned i = ITMask.size(); i != 0; --i) { 6115 char pos = ITMask[i - 1]; 6116 if (pos != 't' && pos != 'e') { 6117 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6118 } 6119 Mask >>= 1; 6120 if (ITMask[i - 1] == 't') 6121 Mask |= 8; 6122 } 6123 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6124 } 6125 6126 // FIXME: This is all a pretty gross hack. We should automatically handle 6127 // optional operands like this via tblgen. 6128 6129 // Next, add the CCOut and ConditionCode operands, if needed. 6130 // 6131 // For mnemonics which can ever incorporate a carry setting bit or predication 6132 // code, our matching model involves us always generating CCOut and 6133 // ConditionCode operands to match the mnemonic "as written" and then we let 6134 // the matcher deal with finding the right instruction or generating an 6135 // appropriate error. 6136 bool CanAcceptCarrySet, CanAcceptPredicationCode; 6137 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 6138 6139 // If we had a carry-set on an instruction that can't do that, issue an 6140 // error. 6141 if (!CanAcceptCarrySet && CarrySetting) { 6142 return Error(NameLoc, "instruction '" + Mnemonic + 6143 "' can not set flags, but 's' suffix specified"); 6144 } 6145 // If we had a predication code on an instruction that can't do that, issue an 6146 // error. 6147 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6148 return Error(NameLoc, "instruction '" + Mnemonic + 6149 "' is not predicable, but condition code specified"); 6150 } 6151 6152 // Add the carry setting operand, if necessary. 6153 if (CanAcceptCarrySet) { 6154 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6155 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6156 Loc)); 6157 } 6158 6159 // Add the predication code operand, if necessary. 6160 if (CanAcceptPredicationCode) { 6161 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6162 CarrySetting); 6163 Operands.push_back(ARMOperand::CreateCondCode( 6164 ARMCC::CondCodes(PredicationCode), Loc)); 6165 } 6166 6167 // Add the processor imod operand, if necessary. 6168 if (ProcessorIMod) { 6169 Operands.push_back(ARMOperand::CreateImm( 6170 MCConstantExpr::create(ProcessorIMod, getContext()), 6171 NameLoc, NameLoc)); 6172 } else if (Mnemonic == "cps" && isMClass()) { 6173 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6174 } 6175 6176 // Add the remaining tokens in the mnemonic. 6177 while (Next != StringRef::npos) { 6178 Start = Next; 6179 Next = Name.find('.', Start + 1); 6180 StringRef ExtraToken = Name.slice(Start, Next); 6181 6182 // Some NEON instructions have an optional datatype suffix that is 6183 // completely ignored. Check for that. 6184 if (isDataTypeToken(ExtraToken) && 6185 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6186 continue; 6187 6188 // For for ARM mode generate an error if the .n qualifier is used. 6189 if (ExtraToken == ".n" && !isThumb()) { 6190 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6191 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6192 "arm mode"); 6193 } 6194 6195 // The .n qualifier is always discarded as that is what the tables 6196 // and matcher expect. In ARM mode the .w qualifier has no effect, 6197 // so discard it to avoid errors that can be caused by the matcher. 6198 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6199 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6200 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6201 } 6202 } 6203 6204 // Read the remaining operands. 6205 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6206 // Read the first operand. 6207 if (parseOperand(Operands, Mnemonic)) { 6208 return true; 6209 } 6210 6211 while (parseOptionalToken(AsmToken::Comma)) { 6212 // Parse and remember the operand. 6213 if (parseOperand(Operands, Mnemonic)) { 6214 return true; 6215 } 6216 } 6217 } 6218 6219 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6220 return true; 6221 6222 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6223 6224 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6225 // do and don't have a cc_out optional-def operand. With some spot-checks 6226 // of the operand list, we can figure out which variant we're trying to 6227 // parse and adjust accordingly before actually matching. We shouldn't ever 6228 // try to remove a cc_out operand that was explicitly set on the 6229 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6230 // table driven matcher doesn't fit well with the ARM instruction set. 6231 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6232 Operands.erase(Operands.begin() + 1); 6233 6234 // Some instructions have the same mnemonic, but don't always 6235 // have a predicate. Distinguish them here and delete the 6236 // predicate if needed. 6237 if (PredicationCode == ARMCC::AL && 6238 shouldOmitPredicateOperand(Mnemonic, Operands)) 6239 Operands.erase(Operands.begin() + 1); 6240 6241 // ARM mode 'blx' need special handling, as the register operand version 6242 // is predicable, but the label operand version is not. So, we can't rely 6243 // on the Mnemonic based checking to correctly figure out when to put 6244 // a k_CondCode operand in the list. If we're trying to match the label 6245 // version, remove the k_CondCode operand here. 6246 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6247 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6248 Operands.erase(Operands.begin() + 1); 6249 6250 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6251 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6252 // a single GPRPair reg operand is used in the .td file to replace the two 6253 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6254 // expressed as a GPRPair, so we have to manually merge them. 6255 // FIXME: We would really like to be able to tablegen'erate this. 6256 if (!isThumb() && Operands.size() > 4 && 6257 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6258 Mnemonic == "stlexd")) { 6259 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6260 unsigned Idx = isLoad ? 2 : 3; 6261 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6262 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6263 6264 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6265 // Adjust only if Op1 and Op2 are GPRs. 6266 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6267 MRC.contains(Op2.getReg())) { 6268 unsigned Reg1 = Op1.getReg(); 6269 unsigned Reg2 = Op2.getReg(); 6270 unsigned Rt = MRI->getEncodingValue(Reg1); 6271 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6272 6273 // Rt2 must be Rt + 1 and Rt must be even. 6274 if (Rt + 1 != Rt2 || (Rt & 1)) { 6275 return Error(Op2.getStartLoc(), 6276 isLoad ? "destination operands must be sequential" 6277 : "source operands must be sequential"); 6278 } 6279 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6280 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6281 Operands[Idx] = 6282 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6283 Operands.erase(Operands.begin() + Idx + 1); 6284 } 6285 } 6286 6287 // GNU Assembler extension (compatibility). 6288 fixupGNULDRDAlias(Mnemonic, Operands); 6289 6290 // FIXME: As said above, this is all a pretty gross hack. This instruction 6291 // does not fit with other "subs" and tblgen. 6292 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6293 // so the Mnemonic is the original name "subs" and delete the predicate 6294 // operand so it will match the table entry. 6295 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6296 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6297 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6298 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6299 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6300 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6301 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6302 Operands.erase(Operands.begin() + 1); 6303 } 6304 return false; 6305 } 6306 6307 // Validate context-sensitive operand constraints. 6308 6309 // return 'true' if register list contains non-low GPR registers, 6310 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6311 // 'containsReg' to true. 6312 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6313 unsigned Reg, unsigned HiReg, 6314 bool &containsReg) { 6315 containsReg = false; 6316 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6317 unsigned OpReg = Inst.getOperand(i).getReg(); 6318 if (OpReg == Reg) 6319 containsReg = true; 6320 // Anything other than a low register isn't legal here. 6321 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6322 return true; 6323 } 6324 return false; 6325 } 6326 6327 // Check if the specified regisgter is in the register list of the inst, 6328 // starting at the indicated operand number. 6329 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6330 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6331 unsigned OpReg = Inst.getOperand(i).getReg(); 6332 if (OpReg == Reg) 6333 return true; 6334 } 6335 return false; 6336 } 6337 6338 // Return true if instruction has the interesting property of being 6339 // allowed in IT blocks, but not being predicable. 6340 static bool instIsBreakpoint(const MCInst &Inst) { 6341 return Inst.getOpcode() == ARM::tBKPT || 6342 Inst.getOpcode() == ARM::BKPT || 6343 Inst.getOpcode() == ARM::tHLT || 6344 Inst.getOpcode() == ARM::HLT; 6345 } 6346 6347 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6348 const OperandVector &Operands, 6349 unsigned ListNo, bool IsARPop) { 6350 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6351 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6352 6353 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6354 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6355 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6356 6357 if (!IsARPop && ListContainsSP) 6358 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6359 "SP may not be in the register list"); 6360 else if (ListContainsPC && ListContainsLR) 6361 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6362 "PC and LR may not be in the register list simultaneously"); 6363 return false; 6364 } 6365 6366 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6367 const OperandVector &Operands, 6368 unsigned ListNo) { 6369 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6370 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6371 6372 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6373 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6374 6375 if (ListContainsSP && ListContainsPC) 6376 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6377 "SP and PC may not be in the register list"); 6378 else if (ListContainsSP) 6379 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6380 "SP may not be in the register list"); 6381 else if (ListContainsPC) 6382 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6383 "PC may not be in the register list"); 6384 return false; 6385 } 6386 6387 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 6388 const OperandVector &Operands, 6389 bool Load, bool ARMMode, bool Writeback) { 6390 unsigned RtIndex = Load || !Writeback ? 0 : 1; 6391 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 6392 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 6393 6394 if (ARMMode) { 6395 // Rt can't be R14. 6396 if (Rt == 14) 6397 return Error(Operands[3]->getStartLoc(), 6398 "Rt can't be R14"); 6399 6400 // Rt must be even-numbered. 6401 if ((Rt & 1) == 1) 6402 return Error(Operands[3]->getStartLoc(), 6403 "Rt must be even-numbered"); 6404 6405 // Rt2 must be Rt + 1. 6406 if (Rt2 != Rt + 1) { 6407 if (Load) 6408 return Error(Operands[3]->getStartLoc(), 6409 "destination operands must be sequential"); 6410 else 6411 return Error(Operands[3]->getStartLoc(), 6412 "source operands must be sequential"); 6413 } 6414 6415 // FIXME: Diagnose m == 15 6416 // FIXME: Diagnose ldrd with m == t || m == t2. 6417 } 6418 6419 if (!ARMMode && Load) { 6420 if (Rt2 == Rt) 6421 return Error(Operands[3]->getStartLoc(), 6422 "destination operands can't be identical"); 6423 } 6424 6425 if (Writeback) { 6426 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6427 6428 if (Rn == Rt || Rn == Rt2) { 6429 if (Load) 6430 return Error(Operands[3]->getStartLoc(), 6431 "base register needs to be different from destination " 6432 "registers"); 6433 else 6434 return Error(Operands[3]->getStartLoc(), 6435 "source register and base register can't be identical"); 6436 } 6437 6438 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 6439 // (Except the immediate form of ldrd?) 6440 } 6441 6442 return false; 6443 } 6444 6445 6446 // FIXME: We would really like to be able to tablegen'erate this. 6447 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6448 const OperandVector &Operands) { 6449 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6450 SMLoc Loc = Operands[0]->getStartLoc(); 6451 6452 // Check the IT block state first. 6453 // NOTE: BKPT and HLT instructions have the interesting property of being 6454 // allowed in IT blocks, but not being predicable. They just always execute. 6455 if (inITBlock() && !instIsBreakpoint(Inst)) { 6456 // The instruction must be predicable. 6457 if (!MCID.isPredicable()) 6458 return Error(Loc, "instructions in IT block must be predicable"); 6459 ARMCC::CondCodes Cond = ARMCC::CondCodes( 6460 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 6461 if (Cond != currentITCond()) { 6462 // Find the condition code Operand to get its SMLoc information. 6463 SMLoc CondLoc; 6464 for (unsigned I = 1; I < Operands.size(); ++I) 6465 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6466 CondLoc = Operands[I]->getStartLoc(); 6467 return Error(CondLoc, "incorrect condition in IT block; got '" + 6468 StringRef(ARMCondCodeToString(Cond)) + 6469 "', but expected '" + 6470 ARMCondCodeToString(currentITCond()) + "'"); 6471 } 6472 // Check for non-'al' condition codes outside of the IT block. 6473 } else if (isThumbTwo() && MCID.isPredicable() && 6474 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6475 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6476 Inst.getOpcode() != ARM::t2Bcc) { 6477 return Error(Loc, "predicated instructions must be in IT block"); 6478 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6479 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6480 ARMCC::AL) { 6481 return Warning(Loc, "predicated instructions should be in IT block"); 6482 } else if (!MCID.isPredicable()) { 6483 // Check the instruction doesn't have a predicate operand anyway 6484 // that it's not allowed to use. Sometimes this happens in order 6485 // to keep instructions the same shape even though one cannot 6486 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 6487 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 6488 if (MCID.OpInfo[i].isPredicate()) { 6489 if (Inst.getOperand(i).getImm() != ARMCC::AL) 6490 return Error(Loc, "instruction is not predicable"); 6491 break; 6492 } 6493 } 6494 } 6495 6496 // PC-setting instructions in an IT block, but not the last instruction of 6497 // the block, are UNPREDICTABLE. 6498 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 6499 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 6500 } 6501 6502 const unsigned Opcode = Inst.getOpcode(); 6503 switch (Opcode) { 6504 case ARM::t2IT: { 6505 // Encoding is unpredictable if it ever results in a notional 'NV' 6506 // predicate. Since we don't parse 'NV' directly this means an 'AL' 6507 // predicate with an "else" mask bit. 6508 unsigned Cond = Inst.getOperand(0).getImm(); 6509 unsigned Mask = Inst.getOperand(1).getImm(); 6510 6511 // Mask hasn't been modified to the IT instruction encoding yet so 6512 // conditions only allowing a 't' are a block of 1s starting at bit 3 6513 // followed by all 0s. Easiest way is to just list the 4 possibilities. 6514 if (Cond == ARMCC::AL && Mask != 8 && Mask != 12 && Mask != 14 && 6515 Mask != 15) 6516 return Error(Loc, "unpredictable IT predicate sequence"); 6517 break; 6518 } 6519 case ARM::LDRD: 6520 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 6521 /*Writeback*/false)) 6522 return true; 6523 break; 6524 case ARM::LDRD_PRE: 6525 case ARM::LDRD_POST: 6526 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 6527 /*Writeback*/true)) 6528 return true; 6529 break; 6530 case ARM::t2LDRDi8: 6531 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 6532 /*Writeback*/false)) 6533 return true; 6534 break; 6535 case ARM::t2LDRD_PRE: 6536 case ARM::t2LDRD_POST: 6537 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 6538 /*Writeback*/true)) 6539 return true; 6540 break; 6541 case ARM::t2BXJ: { 6542 const unsigned RmReg = Inst.getOperand(0).getReg(); 6543 // Rm = SP is no longer unpredictable in v8-A 6544 if (RmReg == ARM::SP && !hasV8Ops()) 6545 return Error(Operands[2]->getStartLoc(), 6546 "r13 (SP) is an unpredictable operand to BXJ"); 6547 return false; 6548 } 6549 case ARM::STRD: 6550 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 6551 /*Writeback*/false)) 6552 return true; 6553 break; 6554 case ARM::STRD_PRE: 6555 case ARM::STRD_POST: 6556 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 6557 /*Writeback*/true)) 6558 return true; 6559 break; 6560 case ARM::t2STRD_PRE: 6561 case ARM::t2STRD_POST: 6562 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 6563 /*Writeback*/true)) 6564 return true; 6565 break; 6566 case ARM::STR_PRE_IMM: 6567 case ARM::STR_PRE_REG: 6568 case ARM::t2STR_PRE: 6569 case ARM::STR_POST_IMM: 6570 case ARM::STR_POST_REG: 6571 case ARM::t2STR_POST: 6572 case ARM::STRH_PRE: 6573 case ARM::t2STRH_PRE: 6574 case ARM::STRH_POST: 6575 case ARM::t2STRH_POST: 6576 case ARM::STRB_PRE_IMM: 6577 case ARM::STRB_PRE_REG: 6578 case ARM::t2STRB_PRE: 6579 case ARM::STRB_POST_IMM: 6580 case ARM::STRB_POST_REG: 6581 case ARM::t2STRB_POST: { 6582 // Rt must be different from Rn. 6583 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6584 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6585 6586 if (Rt == Rn) 6587 return Error(Operands[3]->getStartLoc(), 6588 "source register and base register can't be identical"); 6589 return false; 6590 } 6591 case ARM::LDR_PRE_IMM: 6592 case ARM::LDR_PRE_REG: 6593 case ARM::t2LDR_PRE: 6594 case ARM::LDR_POST_IMM: 6595 case ARM::LDR_POST_REG: 6596 case ARM::t2LDR_POST: 6597 case ARM::LDRH_PRE: 6598 case ARM::t2LDRH_PRE: 6599 case ARM::LDRH_POST: 6600 case ARM::t2LDRH_POST: 6601 case ARM::LDRSH_PRE: 6602 case ARM::t2LDRSH_PRE: 6603 case ARM::LDRSH_POST: 6604 case ARM::t2LDRSH_POST: 6605 case ARM::LDRB_PRE_IMM: 6606 case ARM::LDRB_PRE_REG: 6607 case ARM::t2LDRB_PRE: 6608 case ARM::LDRB_POST_IMM: 6609 case ARM::LDRB_POST_REG: 6610 case ARM::t2LDRB_POST: 6611 case ARM::LDRSB_PRE: 6612 case ARM::t2LDRSB_PRE: 6613 case ARM::LDRSB_POST: 6614 case ARM::t2LDRSB_POST: { 6615 // Rt must be different from Rn. 6616 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6617 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6618 6619 if (Rt == Rn) 6620 return Error(Operands[3]->getStartLoc(), 6621 "destination register and base register can't be identical"); 6622 return false; 6623 } 6624 case ARM::SBFX: 6625 case ARM::t2SBFX: 6626 case ARM::UBFX: 6627 case ARM::t2UBFX: { 6628 // Width must be in range [1, 32-lsb]. 6629 unsigned LSB = Inst.getOperand(2).getImm(); 6630 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6631 if (Widthm1 >= 32 - LSB) 6632 return Error(Operands[5]->getStartLoc(), 6633 "bitfield width must be in range [1,32-lsb]"); 6634 return false; 6635 } 6636 // Notionally handles ARM::tLDMIA_UPD too. 6637 case ARM::tLDMIA: { 6638 // If we're parsing Thumb2, the .w variant is available and handles 6639 // most cases that are normally illegal for a Thumb1 LDM instruction. 6640 // We'll make the transformation in processInstruction() if necessary. 6641 // 6642 // Thumb LDM instructions are writeback iff the base register is not 6643 // in the register list. 6644 unsigned Rn = Inst.getOperand(0).getReg(); 6645 bool HasWritebackToken = 6646 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6647 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6648 bool ListContainsBase; 6649 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6650 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6651 "registers must be in range r0-r7"); 6652 // If we should have writeback, then there should be a '!' token. 6653 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6654 return Error(Operands[2]->getStartLoc(), 6655 "writeback operator '!' expected"); 6656 // If we should not have writeback, there must not be a '!'. This is 6657 // true even for the 32-bit wide encodings. 6658 if (ListContainsBase && HasWritebackToken) 6659 return Error(Operands[3]->getStartLoc(), 6660 "writeback operator '!' not allowed when base register " 6661 "in register list"); 6662 6663 if (validatetLDMRegList(Inst, Operands, 3)) 6664 return true; 6665 break; 6666 } 6667 case ARM::LDMIA_UPD: 6668 case ARM::LDMDB_UPD: 6669 case ARM::LDMIB_UPD: 6670 case ARM::LDMDA_UPD: 6671 // ARM variants loading and updating the same register are only officially 6672 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6673 if (!hasV7Ops()) 6674 break; 6675 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6676 return Error(Operands.back()->getStartLoc(), 6677 "writeback register not allowed in register list"); 6678 break; 6679 case ARM::t2LDMIA: 6680 case ARM::t2LDMDB: 6681 if (validatetLDMRegList(Inst, Operands, 3)) 6682 return true; 6683 break; 6684 case ARM::t2STMIA: 6685 case ARM::t2STMDB: 6686 if (validatetSTMRegList(Inst, Operands, 3)) 6687 return true; 6688 break; 6689 case ARM::t2LDMIA_UPD: 6690 case ARM::t2LDMDB_UPD: 6691 case ARM::t2STMIA_UPD: 6692 case ARM::t2STMDB_UPD: 6693 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6694 return Error(Operands.back()->getStartLoc(), 6695 "writeback register not allowed in register list"); 6696 6697 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6698 if (validatetLDMRegList(Inst, Operands, 3)) 6699 return true; 6700 } else { 6701 if (validatetSTMRegList(Inst, Operands, 3)) 6702 return true; 6703 } 6704 break; 6705 6706 case ARM::sysLDMIA_UPD: 6707 case ARM::sysLDMDA_UPD: 6708 case ARM::sysLDMDB_UPD: 6709 case ARM::sysLDMIB_UPD: 6710 if (!listContainsReg(Inst, 3, ARM::PC)) 6711 return Error(Operands[4]->getStartLoc(), 6712 "writeback register only allowed on system LDM " 6713 "if PC in register-list"); 6714 break; 6715 case ARM::sysSTMIA_UPD: 6716 case ARM::sysSTMDA_UPD: 6717 case ARM::sysSTMDB_UPD: 6718 case ARM::sysSTMIB_UPD: 6719 return Error(Operands[2]->getStartLoc(), 6720 "system STM cannot have writeback register"); 6721 case ARM::tMUL: 6722 // The second source operand must be the same register as the destination 6723 // operand. 6724 // 6725 // In this case, we must directly check the parsed operands because the 6726 // cvtThumbMultiply() function is written in such a way that it guarantees 6727 // this first statement is always true for the new Inst. Essentially, the 6728 // destination is unconditionally copied into the second source operand 6729 // without checking to see if it matches what we actually parsed. 6730 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6731 ((ARMOperand &)*Operands[5]).getReg()) && 6732 (((ARMOperand &)*Operands[3]).getReg() != 6733 ((ARMOperand &)*Operands[4]).getReg())) { 6734 return Error(Operands[3]->getStartLoc(), 6735 "destination register must match source register"); 6736 } 6737 break; 6738 6739 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6740 // so only issue a diagnostic for thumb1. The instructions will be 6741 // switched to the t2 encodings in processInstruction() if necessary. 6742 case ARM::tPOP: { 6743 bool ListContainsBase; 6744 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6745 !isThumbTwo()) 6746 return Error(Operands[2]->getStartLoc(), 6747 "registers must be in range r0-r7 or pc"); 6748 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6749 return true; 6750 break; 6751 } 6752 case ARM::tPUSH: { 6753 bool ListContainsBase; 6754 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6755 !isThumbTwo()) 6756 return Error(Operands[2]->getStartLoc(), 6757 "registers must be in range r0-r7 or lr"); 6758 if (validatetSTMRegList(Inst, Operands, 2)) 6759 return true; 6760 break; 6761 } 6762 case ARM::tSTMIA_UPD: { 6763 bool ListContainsBase, InvalidLowList; 6764 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6765 0, ListContainsBase); 6766 if (InvalidLowList && !isThumbTwo()) 6767 return Error(Operands[4]->getStartLoc(), 6768 "registers must be in range r0-r7"); 6769 6770 // This would be converted to a 32-bit stm, but that's not valid if the 6771 // writeback register is in the list. 6772 if (InvalidLowList && ListContainsBase) 6773 return Error(Operands[4]->getStartLoc(), 6774 "writeback operator '!' not allowed when base register " 6775 "in register list"); 6776 6777 if (validatetSTMRegList(Inst, Operands, 4)) 6778 return true; 6779 break; 6780 } 6781 case ARM::tADDrSP: 6782 // If the non-SP source operand and the destination operand are not the 6783 // same, we need thumb2 (for the wide encoding), or we have an error. 6784 if (!isThumbTwo() && 6785 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6786 return Error(Operands[4]->getStartLoc(), 6787 "source register must be the same as destination"); 6788 } 6789 break; 6790 6791 // Final range checking for Thumb unconditional branch instructions. 6792 case ARM::tB: 6793 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6794 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6795 break; 6796 case ARM::t2B: { 6797 int op = (Operands[2]->isImm()) ? 2 : 3; 6798 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6799 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6800 break; 6801 } 6802 // Final range checking for Thumb conditional branch instructions. 6803 case ARM::tBcc: 6804 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6805 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6806 break; 6807 case ARM::t2Bcc: { 6808 int Op = (Operands[2]->isImm()) ? 2 : 3; 6809 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6810 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6811 break; 6812 } 6813 case ARM::tCBZ: 6814 case ARM::tCBNZ: { 6815 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6816 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6817 break; 6818 } 6819 case ARM::MOVi16: 6820 case ARM::MOVTi16: 6821 case ARM::t2MOVi16: 6822 case ARM::t2MOVTi16: 6823 { 6824 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6825 // especially when we turn it into a movw and the expression <symbol> does 6826 // not have a :lower16: or :upper16 as part of the expression. We don't 6827 // want the behavior of silently truncating, which can be unexpected and 6828 // lead to bugs that are difficult to find since this is an easy mistake 6829 // to make. 6830 int i = (Operands[3]->isImm()) ? 3 : 4; 6831 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6832 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6833 if (CE) break; 6834 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6835 if (!E) break; 6836 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6837 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6838 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6839 return Error( 6840 Op.getStartLoc(), 6841 "immediate expression for mov requires :lower16: or :upper16"); 6842 break; 6843 } 6844 case ARM::HINT: 6845 case ARM::t2HINT: { 6846 unsigned Imm8 = Inst.getOperand(0).getImm(); 6847 unsigned Pred = Inst.getOperand(1).getImm(); 6848 // ESB is not predicable (pred must be AL). Without the RAS extension, this 6849 // behaves as any other unallocated hint. 6850 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 6851 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6852 "predicable, but condition " 6853 "code specified"); 6854 if (Imm8 == 0x14 && Pred != ARMCC::AL) 6855 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 6856 "predicable, but condition " 6857 "code specified"); 6858 break; 6859 } 6860 case ARM::DSB: 6861 case ARM::t2DSB: { 6862 6863 if (Inst.getNumOperands() < 2) 6864 break; 6865 6866 unsigned Option = Inst.getOperand(0).getImm(); 6867 unsigned Pred = Inst.getOperand(1).getImm(); 6868 6869 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 6870 if (Option == 0 && Pred != ARMCC::AL) 6871 return Error(Operands[1]->getStartLoc(), 6872 "instruction 'ssbb' is not predicable, but condition code " 6873 "specified"); 6874 if (Option == 4 && Pred != ARMCC::AL) 6875 return Error(Operands[1]->getStartLoc(), 6876 "instruction 'pssbb' is not predicable, but condition code " 6877 "specified"); 6878 break; 6879 } 6880 case ARM::VMOVRRS: { 6881 // Source registers must be sequential. 6882 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6883 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6884 if (Sm1 != Sm + 1) 6885 return Error(Operands[5]->getStartLoc(), 6886 "source operands must be sequential"); 6887 break; 6888 } 6889 case ARM::VMOVSRR: { 6890 // Destination registers must be sequential. 6891 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6892 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6893 if (Sm1 != Sm + 1) 6894 return Error(Operands[3]->getStartLoc(), 6895 "destination operands must be sequential"); 6896 break; 6897 } 6898 case ARM::VLDMDIA: 6899 case ARM::VSTMDIA: { 6900 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 6901 auto &RegList = Op.getRegList(); 6902 if (RegList.size() < 1 || RegList.size() > 16) 6903 return Error(Operands[3]->getStartLoc(), 6904 "list of registers must be at least 1 and at most 16"); 6905 break; 6906 } 6907 } 6908 6909 return false; 6910 } 6911 6912 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6913 switch(Opc) { 6914 default: llvm_unreachable("unexpected opcode!"); 6915 // VST1LN 6916 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6917 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6918 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6919 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6920 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6921 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6922 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6923 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6924 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6925 6926 // VST2LN 6927 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6928 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6929 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6930 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6931 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6932 6933 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6934 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6935 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6936 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6937 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6938 6939 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6940 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6941 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6942 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6943 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6944 6945 // VST3LN 6946 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6947 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6948 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6949 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6950 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6951 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6952 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6953 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6954 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6955 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6956 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6957 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6958 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6959 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6960 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6961 6962 // VST3 6963 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6964 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6965 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6966 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6967 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6968 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6969 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6970 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6971 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6972 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6973 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6974 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6975 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6976 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6977 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6978 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6979 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6980 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6981 6982 // VST4LN 6983 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6984 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6985 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6986 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6987 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6988 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6989 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6990 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6991 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6992 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6993 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6994 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6995 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6996 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6997 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6998 6999 // VST4 7000 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 7001 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 7002 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 7003 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 7004 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 7005 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 7006 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 7007 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 7008 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 7009 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 7010 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 7011 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 7012 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 7013 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 7014 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 7015 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 7016 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 7017 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 7018 } 7019 } 7020 7021 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 7022 switch(Opc) { 7023 default: llvm_unreachable("unexpected opcode!"); 7024 // VLD1LN 7025 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 7026 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 7027 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 7028 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 7029 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 7030 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 7031 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 7032 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 7033 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 7034 7035 // VLD2LN 7036 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 7037 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 7038 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 7039 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 7040 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 7041 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 7042 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 7043 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 7044 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 7045 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 7046 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 7047 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 7048 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 7049 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 7050 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 7051 7052 // VLD3DUP 7053 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 7054 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 7055 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 7056 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 7057 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 7058 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 7059 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 7060 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 7061 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 7062 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 7063 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 7064 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 7065 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 7066 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 7067 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 7068 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 7069 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 7070 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 7071 7072 // VLD3LN 7073 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 7074 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 7075 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 7076 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 7077 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 7078 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 7079 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 7080 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 7081 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 7082 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 7083 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 7084 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 7085 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 7086 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 7087 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 7088 7089 // VLD3 7090 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 7091 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 7092 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 7093 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 7094 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 7095 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 7096 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 7097 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 7098 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 7099 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 7100 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 7101 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 7102 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 7103 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 7104 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 7105 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 7106 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 7107 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 7108 7109 // VLD4LN 7110 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 7111 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 7112 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 7113 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 7114 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 7115 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 7116 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 7117 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 7118 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 7119 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 7120 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 7121 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 7122 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 7123 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 7124 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 7125 7126 // VLD4DUP 7127 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 7128 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 7129 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 7130 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 7131 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 7132 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 7133 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 7134 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 7135 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 7136 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 7137 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 7138 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 7139 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 7140 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 7141 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 7142 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 7143 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 7144 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 7145 7146 // VLD4 7147 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 7148 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 7149 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 7150 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 7151 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 7152 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 7153 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 7154 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 7155 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 7156 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 7157 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 7158 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 7159 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 7160 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 7161 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 7162 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 7163 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 7164 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 7165 } 7166 } 7167 7168 bool ARMAsmParser::processInstruction(MCInst &Inst, 7169 const OperandVector &Operands, 7170 MCStreamer &Out) { 7171 // Check if we have the wide qualifier, because if it's present we 7172 // must avoid selecting a 16-bit thumb instruction. 7173 bool HasWideQualifier = false; 7174 for (auto &Op : Operands) { 7175 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 7176 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 7177 HasWideQualifier = true; 7178 break; 7179 } 7180 } 7181 7182 switch (Inst.getOpcode()) { 7183 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 7184 case ARM::LDRT_POST: 7185 case ARM::LDRBT_POST: { 7186 const unsigned Opcode = 7187 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 7188 : ARM::LDRBT_POST_IMM; 7189 MCInst TmpInst; 7190 TmpInst.setOpcode(Opcode); 7191 TmpInst.addOperand(Inst.getOperand(0)); 7192 TmpInst.addOperand(Inst.getOperand(1)); 7193 TmpInst.addOperand(Inst.getOperand(1)); 7194 TmpInst.addOperand(MCOperand::createReg(0)); 7195 TmpInst.addOperand(MCOperand::createImm(0)); 7196 TmpInst.addOperand(Inst.getOperand(2)); 7197 TmpInst.addOperand(Inst.getOperand(3)); 7198 Inst = TmpInst; 7199 return true; 7200 } 7201 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 7202 case ARM::STRT_POST: 7203 case ARM::STRBT_POST: { 7204 const unsigned Opcode = 7205 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 7206 : ARM::STRBT_POST_IMM; 7207 MCInst TmpInst; 7208 TmpInst.setOpcode(Opcode); 7209 TmpInst.addOperand(Inst.getOperand(1)); 7210 TmpInst.addOperand(Inst.getOperand(0)); 7211 TmpInst.addOperand(Inst.getOperand(1)); 7212 TmpInst.addOperand(MCOperand::createReg(0)); 7213 TmpInst.addOperand(MCOperand::createImm(0)); 7214 TmpInst.addOperand(Inst.getOperand(2)); 7215 TmpInst.addOperand(Inst.getOperand(3)); 7216 Inst = TmpInst; 7217 return true; 7218 } 7219 // Alias for alternate form of 'ADR Rd, #imm' instruction. 7220 case ARM::ADDri: { 7221 if (Inst.getOperand(1).getReg() != ARM::PC || 7222 Inst.getOperand(5).getReg() != 0 || 7223 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 7224 return false; 7225 MCInst TmpInst; 7226 TmpInst.setOpcode(ARM::ADR); 7227 TmpInst.addOperand(Inst.getOperand(0)); 7228 if (Inst.getOperand(2).isImm()) { 7229 // Immediate (mod_imm) will be in its encoded form, we must unencode it 7230 // before passing it to the ADR instruction. 7231 unsigned Enc = Inst.getOperand(2).getImm(); 7232 TmpInst.addOperand(MCOperand::createImm( 7233 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 7234 } else { 7235 // Turn PC-relative expression into absolute expression. 7236 // Reading PC provides the start of the current instruction + 8 and 7237 // the transform to adr is biased by that. 7238 MCSymbol *Dot = getContext().createTempSymbol(); 7239 Out.EmitLabel(Dot); 7240 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 7241 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 7242 MCSymbolRefExpr::VK_None, 7243 getContext()); 7244 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 7245 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 7246 getContext()); 7247 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 7248 getContext()); 7249 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 7250 } 7251 TmpInst.addOperand(Inst.getOperand(3)); 7252 TmpInst.addOperand(Inst.getOperand(4)); 7253 Inst = TmpInst; 7254 return true; 7255 } 7256 // Aliases for alternate PC+imm syntax of LDR instructions. 7257 case ARM::t2LDRpcrel: 7258 // Select the narrow version if the immediate will fit. 7259 if (Inst.getOperand(1).getImm() > 0 && 7260 Inst.getOperand(1).getImm() <= 0xff && 7261 !HasWideQualifier) 7262 Inst.setOpcode(ARM::tLDRpci); 7263 else 7264 Inst.setOpcode(ARM::t2LDRpci); 7265 return true; 7266 case ARM::t2LDRBpcrel: 7267 Inst.setOpcode(ARM::t2LDRBpci); 7268 return true; 7269 case ARM::t2LDRHpcrel: 7270 Inst.setOpcode(ARM::t2LDRHpci); 7271 return true; 7272 case ARM::t2LDRSBpcrel: 7273 Inst.setOpcode(ARM::t2LDRSBpci); 7274 return true; 7275 case ARM::t2LDRSHpcrel: 7276 Inst.setOpcode(ARM::t2LDRSHpci); 7277 return true; 7278 case ARM::LDRConstPool: 7279 case ARM::tLDRConstPool: 7280 case ARM::t2LDRConstPool: { 7281 // Pseudo instruction ldr rt, =immediate is converted to a 7282 // MOV rt, immediate if immediate is known and representable 7283 // otherwise we create a constant pool entry that we load from. 7284 MCInst TmpInst; 7285 if (Inst.getOpcode() == ARM::LDRConstPool) 7286 TmpInst.setOpcode(ARM::LDRi12); 7287 else if (Inst.getOpcode() == ARM::tLDRConstPool) 7288 TmpInst.setOpcode(ARM::tLDRpci); 7289 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 7290 TmpInst.setOpcode(ARM::t2LDRpci); 7291 const ARMOperand &PoolOperand = 7292 (HasWideQualifier ? 7293 static_cast<ARMOperand &>(*Operands[4]) : 7294 static_cast<ARMOperand &>(*Operands[3])); 7295 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 7296 // If SubExprVal is a constant we may be able to use a MOV 7297 if (isa<MCConstantExpr>(SubExprVal) && 7298 Inst.getOperand(0).getReg() != ARM::PC && 7299 Inst.getOperand(0).getReg() != ARM::SP) { 7300 int64_t Value = 7301 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 7302 bool UseMov = true; 7303 bool MovHasS = true; 7304 if (Inst.getOpcode() == ARM::LDRConstPool) { 7305 // ARM Constant 7306 if (ARM_AM::getSOImmVal(Value) != -1) { 7307 Value = ARM_AM::getSOImmVal(Value); 7308 TmpInst.setOpcode(ARM::MOVi); 7309 } 7310 else if (ARM_AM::getSOImmVal(~Value) != -1) { 7311 Value = ARM_AM::getSOImmVal(~Value); 7312 TmpInst.setOpcode(ARM::MVNi); 7313 } 7314 else if (hasV6T2Ops() && 7315 Value >=0 && Value < 65536) { 7316 TmpInst.setOpcode(ARM::MOVi16); 7317 MovHasS = false; 7318 } 7319 else 7320 UseMov = false; 7321 } 7322 else { 7323 // Thumb/Thumb2 Constant 7324 if (hasThumb2() && 7325 ARM_AM::getT2SOImmVal(Value) != -1) 7326 TmpInst.setOpcode(ARM::t2MOVi); 7327 else if (hasThumb2() && 7328 ARM_AM::getT2SOImmVal(~Value) != -1) { 7329 TmpInst.setOpcode(ARM::t2MVNi); 7330 Value = ~Value; 7331 } 7332 else if (hasV8MBaseline() && 7333 Value >=0 && Value < 65536) { 7334 TmpInst.setOpcode(ARM::t2MOVi16); 7335 MovHasS = false; 7336 } 7337 else 7338 UseMov = false; 7339 } 7340 if (UseMov) { 7341 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7342 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7343 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7344 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7345 if (MovHasS) 7346 TmpInst.addOperand(MCOperand::createReg(0)); // S 7347 Inst = TmpInst; 7348 return true; 7349 } 7350 } 7351 // No opportunity to use MOV/MVN create constant pool 7352 const MCExpr *CPLoc = 7353 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7354 PoolOperand.getStartLoc()); 7355 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7356 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7357 if (TmpInst.getOpcode() == ARM::LDRi12) 7358 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7359 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7360 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7361 Inst = TmpInst; 7362 return true; 7363 } 7364 // Handle NEON VST complex aliases. 7365 case ARM::VST1LNdWB_register_Asm_8: 7366 case ARM::VST1LNdWB_register_Asm_16: 7367 case ARM::VST1LNdWB_register_Asm_32: { 7368 MCInst TmpInst; 7369 // Shuffle the operands around so the lane index operand is in the 7370 // right place. 7371 unsigned Spacing; 7372 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7373 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7374 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7375 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7376 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7377 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7378 TmpInst.addOperand(Inst.getOperand(1)); // lane 7379 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7380 TmpInst.addOperand(Inst.getOperand(6)); 7381 Inst = TmpInst; 7382 return true; 7383 } 7384 7385 case ARM::VST2LNdWB_register_Asm_8: 7386 case ARM::VST2LNdWB_register_Asm_16: 7387 case ARM::VST2LNdWB_register_Asm_32: 7388 case ARM::VST2LNqWB_register_Asm_16: 7389 case ARM::VST2LNqWB_register_Asm_32: { 7390 MCInst TmpInst; 7391 // Shuffle the operands around so the lane index operand is in the 7392 // right place. 7393 unsigned Spacing; 7394 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7395 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7396 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7397 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7398 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7399 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7400 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7401 Spacing)); 7402 TmpInst.addOperand(Inst.getOperand(1)); // lane 7403 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7404 TmpInst.addOperand(Inst.getOperand(6)); 7405 Inst = TmpInst; 7406 return true; 7407 } 7408 7409 case ARM::VST3LNdWB_register_Asm_8: 7410 case ARM::VST3LNdWB_register_Asm_16: 7411 case ARM::VST3LNdWB_register_Asm_32: 7412 case ARM::VST3LNqWB_register_Asm_16: 7413 case ARM::VST3LNqWB_register_Asm_32: { 7414 MCInst TmpInst; 7415 // Shuffle the operands around so the lane index operand is in the 7416 // right place. 7417 unsigned Spacing; 7418 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7419 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7420 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7421 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7422 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7423 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7424 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7425 Spacing)); 7426 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7427 Spacing * 2)); 7428 TmpInst.addOperand(Inst.getOperand(1)); // lane 7429 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7430 TmpInst.addOperand(Inst.getOperand(6)); 7431 Inst = TmpInst; 7432 return true; 7433 } 7434 7435 case ARM::VST4LNdWB_register_Asm_8: 7436 case ARM::VST4LNdWB_register_Asm_16: 7437 case ARM::VST4LNdWB_register_Asm_32: 7438 case ARM::VST4LNqWB_register_Asm_16: 7439 case ARM::VST4LNqWB_register_Asm_32: { 7440 MCInst TmpInst; 7441 // Shuffle the operands around so the lane index operand is in the 7442 // right place. 7443 unsigned Spacing; 7444 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7445 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7446 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7447 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7448 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7449 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7450 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7451 Spacing)); 7452 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7453 Spacing * 2)); 7454 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7455 Spacing * 3)); 7456 TmpInst.addOperand(Inst.getOperand(1)); // lane 7457 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7458 TmpInst.addOperand(Inst.getOperand(6)); 7459 Inst = TmpInst; 7460 return true; 7461 } 7462 7463 case ARM::VST1LNdWB_fixed_Asm_8: 7464 case ARM::VST1LNdWB_fixed_Asm_16: 7465 case ARM::VST1LNdWB_fixed_Asm_32: { 7466 MCInst TmpInst; 7467 // Shuffle the operands around so the lane index operand is in the 7468 // right place. 7469 unsigned Spacing; 7470 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7471 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7472 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7473 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7474 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7475 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7476 TmpInst.addOperand(Inst.getOperand(1)); // lane 7477 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7478 TmpInst.addOperand(Inst.getOperand(5)); 7479 Inst = TmpInst; 7480 return true; 7481 } 7482 7483 case ARM::VST2LNdWB_fixed_Asm_8: 7484 case ARM::VST2LNdWB_fixed_Asm_16: 7485 case ARM::VST2LNdWB_fixed_Asm_32: 7486 case ARM::VST2LNqWB_fixed_Asm_16: 7487 case ARM::VST2LNqWB_fixed_Asm_32: { 7488 MCInst TmpInst; 7489 // Shuffle the operands around so the lane index operand is in the 7490 // right place. 7491 unsigned Spacing; 7492 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7493 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7494 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7495 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7496 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7497 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7498 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7499 Spacing)); 7500 TmpInst.addOperand(Inst.getOperand(1)); // lane 7501 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7502 TmpInst.addOperand(Inst.getOperand(5)); 7503 Inst = TmpInst; 7504 return true; 7505 } 7506 7507 case ARM::VST3LNdWB_fixed_Asm_8: 7508 case ARM::VST3LNdWB_fixed_Asm_16: 7509 case ARM::VST3LNdWB_fixed_Asm_32: 7510 case ARM::VST3LNqWB_fixed_Asm_16: 7511 case ARM::VST3LNqWB_fixed_Asm_32: { 7512 MCInst TmpInst; 7513 // Shuffle the operands around so the lane index operand is in the 7514 // right place. 7515 unsigned Spacing; 7516 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7517 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7518 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7519 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7520 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7521 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7522 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7523 Spacing)); 7524 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7525 Spacing * 2)); 7526 TmpInst.addOperand(Inst.getOperand(1)); // lane 7527 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7528 TmpInst.addOperand(Inst.getOperand(5)); 7529 Inst = TmpInst; 7530 return true; 7531 } 7532 7533 case ARM::VST4LNdWB_fixed_Asm_8: 7534 case ARM::VST4LNdWB_fixed_Asm_16: 7535 case ARM::VST4LNdWB_fixed_Asm_32: 7536 case ARM::VST4LNqWB_fixed_Asm_16: 7537 case ARM::VST4LNqWB_fixed_Asm_32: { 7538 MCInst TmpInst; 7539 // Shuffle the operands around so the lane index operand is in the 7540 // right place. 7541 unsigned Spacing; 7542 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7543 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7544 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7545 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7546 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7547 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7548 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7549 Spacing)); 7550 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7551 Spacing * 2)); 7552 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7553 Spacing * 3)); 7554 TmpInst.addOperand(Inst.getOperand(1)); // lane 7555 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7556 TmpInst.addOperand(Inst.getOperand(5)); 7557 Inst = TmpInst; 7558 return true; 7559 } 7560 7561 case ARM::VST1LNdAsm_8: 7562 case ARM::VST1LNdAsm_16: 7563 case ARM::VST1LNdAsm_32: { 7564 MCInst TmpInst; 7565 // Shuffle the operands around so the lane index operand is in the 7566 // right place. 7567 unsigned Spacing; 7568 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7569 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7570 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7571 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7572 TmpInst.addOperand(Inst.getOperand(1)); // lane 7573 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7574 TmpInst.addOperand(Inst.getOperand(5)); 7575 Inst = TmpInst; 7576 return true; 7577 } 7578 7579 case ARM::VST2LNdAsm_8: 7580 case ARM::VST2LNdAsm_16: 7581 case ARM::VST2LNdAsm_32: 7582 case ARM::VST2LNqAsm_16: 7583 case ARM::VST2LNqAsm_32: { 7584 MCInst TmpInst; 7585 // Shuffle the operands around so the lane index operand is in the 7586 // right place. 7587 unsigned Spacing; 7588 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7589 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7590 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7591 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7592 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7593 Spacing)); 7594 TmpInst.addOperand(Inst.getOperand(1)); // lane 7595 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7596 TmpInst.addOperand(Inst.getOperand(5)); 7597 Inst = TmpInst; 7598 return true; 7599 } 7600 7601 case ARM::VST3LNdAsm_8: 7602 case ARM::VST3LNdAsm_16: 7603 case ARM::VST3LNdAsm_32: 7604 case ARM::VST3LNqAsm_16: 7605 case ARM::VST3LNqAsm_32: { 7606 MCInst TmpInst; 7607 // Shuffle the operands around so the lane index operand is in the 7608 // right place. 7609 unsigned Spacing; 7610 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7611 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7612 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7613 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7614 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7615 Spacing)); 7616 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7617 Spacing * 2)); 7618 TmpInst.addOperand(Inst.getOperand(1)); // lane 7619 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7620 TmpInst.addOperand(Inst.getOperand(5)); 7621 Inst = TmpInst; 7622 return true; 7623 } 7624 7625 case ARM::VST4LNdAsm_8: 7626 case ARM::VST4LNdAsm_16: 7627 case ARM::VST4LNdAsm_32: 7628 case ARM::VST4LNqAsm_16: 7629 case ARM::VST4LNqAsm_32: { 7630 MCInst TmpInst; 7631 // Shuffle the operands around so the lane index operand is in the 7632 // right place. 7633 unsigned Spacing; 7634 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7635 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7636 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7637 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7638 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7639 Spacing)); 7640 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7641 Spacing * 2)); 7642 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7643 Spacing * 3)); 7644 TmpInst.addOperand(Inst.getOperand(1)); // lane 7645 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7646 TmpInst.addOperand(Inst.getOperand(5)); 7647 Inst = TmpInst; 7648 return true; 7649 } 7650 7651 // Handle NEON VLD complex aliases. 7652 case ARM::VLD1LNdWB_register_Asm_8: 7653 case ARM::VLD1LNdWB_register_Asm_16: 7654 case ARM::VLD1LNdWB_register_Asm_32: { 7655 MCInst TmpInst; 7656 // Shuffle the operands around so the lane index operand is in the 7657 // right place. 7658 unsigned Spacing; 7659 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7660 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7661 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7662 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7663 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7664 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7665 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7666 TmpInst.addOperand(Inst.getOperand(1)); // lane 7667 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7668 TmpInst.addOperand(Inst.getOperand(6)); 7669 Inst = TmpInst; 7670 return true; 7671 } 7672 7673 case ARM::VLD2LNdWB_register_Asm_8: 7674 case ARM::VLD2LNdWB_register_Asm_16: 7675 case ARM::VLD2LNdWB_register_Asm_32: 7676 case ARM::VLD2LNqWB_register_Asm_16: 7677 case ARM::VLD2LNqWB_register_Asm_32: { 7678 MCInst TmpInst; 7679 // Shuffle the operands around so the lane index operand is in the 7680 // right place. 7681 unsigned Spacing; 7682 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7683 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7684 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7685 Spacing)); 7686 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7687 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7688 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7689 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7690 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7691 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7692 Spacing)); 7693 TmpInst.addOperand(Inst.getOperand(1)); // lane 7694 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7695 TmpInst.addOperand(Inst.getOperand(6)); 7696 Inst = TmpInst; 7697 return true; 7698 } 7699 7700 case ARM::VLD3LNdWB_register_Asm_8: 7701 case ARM::VLD3LNdWB_register_Asm_16: 7702 case ARM::VLD3LNdWB_register_Asm_32: 7703 case ARM::VLD3LNqWB_register_Asm_16: 7704 case ARM::VLD3LNqWB_register_Asm_32: { 7705 MCInst TmpInst; 7706 // Shuffle the operands around so the lane index operand is in the 7707 // right place. 7708 unsigned Spacing; 7709 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7710 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7711 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7712 Spacing)); 7713 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7714 Spacing * 2)); 7715 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7716 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7717 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7718 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7719 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7720 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7721 Spacing)); 7722 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7723 Spacing * 2)); 7724 TmpInst.addOperand(Inst.getOperand(1)); // lane 7725 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7726 TmpInst.addOperand(Inst.getOperand(6)); 7727 Inst = TmpInst; 7728 return true; 7729 } 7730 7731 case ARM::VLD4LNdWB_register_Asm_8: 7732 case ARM::VLD4LNdWB_register_Asm_16: 7733 case ARM::VLD4LNdWB_register_Asm_32: 7734 case ARM::VLD4LNqWB_register_Asm_16: 7735 case ARM::VLD4LNqWB_register_Asm_32: { 7736 MCInst TmpInst; 7737 // Shuffle the operands around so the lane index operand is in the 7738 // right place. 7739 unsigned Spacing; 7740 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7741 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7742 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7743 Spacing)); 7744 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7745 Spacing * 2)); 7746 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7747 Spacing * 3)); 7748 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7749 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7750 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7751 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7752 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7753 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7754 Spacing)); 7755 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7756 Spacing * 2)); 7757 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7758 Spacing * 3)); 7759 TmpInst.addOperand(Inst.getOperand(1)); // lane 7760 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7761 TmpInst.addOperand(Inst.getOperand(6)); 7762 Inst = TmpInst; 7763 return true; 7764 } 7765 7766 case ARM::VLD1LNdWB_fixed_Asm_8: 7767 case ARM::VLD1LNdWB_fixed_Asm_16: 7768 case ARM::VLD1LNdWB_fixed_Asm_32: { 7769 MCInst TmpInst; 7770 // Shuffle the operands around so the lane index operand is in the 7771 // right place. 7772 unsigned Spacing; 7773 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7774 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7775 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7776 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7777 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7778 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7779 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7780 TmpInst.addOperand(Inst.getOperand(1)); // lane 7781 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7782 TmpInst.addOperand(Inst.getOperand(5)); 7783 Inst = TmpInst; 7784 return true; 7785 } 7786 7787 case ARM::VLD2LNdWB_fixed_Asm_8: 7788 case ARM::VLD2LNdWB_fixed_Asm_16: 7789 case ARM::VLD2LNdWB_fixed_Asm_32: 7790 case ARM::VLD2LNqWB_fixed_Asm_16: 7791 case ARM::VLD2LNqWB_fixed_Asm_32: { 7792 MCInst TmpInst; 7793 // Shuffle the operands around so the lane index operand is in the 7794 // right place. 7795 unsigned Spacing; 7796 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7797 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7798 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7799 Spacing)); 7800 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7801 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7802 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7803 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7804 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7805 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7806 Spacing)); 7807 TmpInst.addOperand(Inst.getOperand(1)); // lane 7808 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7809 TmpInst.addOperand(Inst.getOperand(5)); 7810 Inst = TmpInst; 7811 return true; 7812 } 7813 7814 case ARM::VLD3LNdWB_fixed_Asm_8: 7815 case ARM::VLD3LNdWB_fixed_Asm_16: 7816 case ARM::VLD3LNdWB_fixed_Asm_32: 7817 case ARM::VLD3LNqWB_fixed_Asm_16: 7818 case ARM::VLD3LNqWB_fixed_Asm_32: { 7819 MCInst TmpInst; 7820 // Shuffle the operands around so the lane index operand is in the 7821 // right place. 7822 unsigned Spacing; 7823 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7824 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7825 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7826 Spacing)); 7827 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7828 Spacing * 2)); 7829 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7830 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7831 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7832 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7833 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7834 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7835 Spacing)); 7836 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7837 Spacing * 2)); 7838 TmpInst.addOperand(Inst.getOperand(1)); // lane 7839 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7840 TmpInst.addOperand(Inst.getOperand(5)); 7841 Inst = TmpInst; 7842 return true; 7843 } 7844 7845 case ARM::VLD4LNdWB_fixed_Asm_8: 7846 case ARM::VLD4LNdWB_fixed_Asm_16: 7847 case ARM::VLD4LNdWB_fixed_Asm_32: 7848 case ARM::VLD4LNqWB_fixed_Asm_16: 7849 case ARM::VLD4LNqWB_fixed_Asm_32: { 7850 MCInst TmpInst; 7851 // Shuffle the operands around so the lane index operand is in the 7852 // right place. 7853 unsigned Spacing; 7854 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7855 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7856 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7857 Spacing)); 7858 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7859 Spacing * 2)); 7860 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7861 Spacing * 3)); 7862 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7863 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7864 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7865 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7866 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7867 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7868 Spacing)); 7869 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7870 Spacing * 2)); 7871 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7872 Spacing * 3)); 7873 TmpInst.addOperand(Inst.getOperand(1)); // lane 7874 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7875 TmpInst.addOperand(Inst.getOperand(5)); 7876 Inst = TmpInst; 7877 return true; 7878 } 7879 7880 case ARM::VLD1LNdAsm_8: 7881 case ARM::VLD1LNdAsm_16: 7882 case ARM::VLD1LNdAsm_32: { 7883 MCInst TmpInst; 7884 // Shuffle the operands around so the lane index operand is in the 7885 // right place. 7886 unsigned Spacing; 7887 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7888 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7889 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7890 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7891 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7892 TmpInst.addOperand(Inst.getOperand(1)); // lane 7893 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7894 TmpInst.addOperand(Inst.getOperand(5)); 7895 Inst = TmpInst; 7896 return true; 7897 } 7898 7899 case ARM::VLD2LNdAsm_8: 7900 case ARM::VLD2LNdAsm_16: 7901 case ARM::VLD2LNdAsm_32: 7902 case ARM::VLD2LNqAsm_16: 7903 case ARM::VLD2LNqAsm_32: { 7904 MCInst TmpInst; 7905 // Shuffle the operands around so the lane index operand is in the 7906 // right place. 7907 unsigned Spacing; 7908 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7909 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7910 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7911 Spacing)); 7912 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7913 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7914 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7915 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7916 Spacing)); 7917 TmpInst.addOperand(Inst.getOperand(1)); // lane 7918 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7919 TmpInst.addOperand(Inst.getOperand(5)); 7920 Inst = TmpInst; 7921 return true; 7922 } 7923 7924 case ARM::VLD3LNdAsm_8: 7925 case ARM::VLD3LNdAsm_16: 7926 case ARM::VLD3LNdAsm_32: 7927 case ARM::VLD3LNqAsm_16: 7928 case ARM::VLD3LNqAsm_32: { 7929 MCInst TmpInst; 7930 // Shuffle the operands around so the lane index operand is in the 7931 // right place. 7932 unsigned Spacing; 7933 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7934 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7935 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7936 Spacing)); 7937 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7938 Spacing * 2)); 7939 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7940 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7941 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7942 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7943 Spacing)); 7944 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7945 Spacing * 2)); 7946 TmpInst.addOperand(Inst.getOperand(1)); // lane 7947 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7948 TmpInst.addOperand(Inst.getOperand(5)); 7949 Inst = TmpInst; 7950 return true; 7951 } 7952 7953 case ARM::VLD4LNdAsm_8: 7954 case ARM::VLD4LNdAsm_16: 7955 case ARM::VLD4LNdAsm_32: 7956 case ARM::VLD4LNqAsm_16: 7957 case ARM::VLD4LNqAsm_32: { 7958 MCInst TmpInst; 7959 // Shuffle the operands around so the lane index operand is in the 7960 // right place. 7961 unsigned Spacing; 7962 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7963 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7964 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7965 Spacing)); 7966 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7967 Spacing * 2)); 7968 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7969 Spacing * 3)); 7970 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7971 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7972 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7973 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7974 Spacing)); 7975 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7976 Spacing * 2)); 7977 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7978 Spacing * 3)); 7979 TmpInst.addOperand(Inst.getOperand(1)); // lane 7980 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7981 TmpInst.addOperand(Inst.getOperand(5)); 7982 Inst = TmpInst; 7983 return true; 7984 } 7985 7986 // VLD3DUP single 3-element structure to all lanes instructions. 7987 case ARM::VLD3DUPdAsm_8: 7988 case ARM::VLD3DUPdAsm_16: 7989 case ARM::VLD3DUPdAsm_32: 7990 case ARM::VLD3DUPqAsm_8: 7991 case ARM::VLD3DUPqAsm_16: 7992 case ARM::VLD3DUPqAsm_32: { 7993 MCInst TmpInst; 7994 unsigned Spacing; 7995 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7996 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7997 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7998 Spacing)); 7999 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8000 Spacing * 2)); 8001 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8002 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8003 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8004 TmpInst.addOperand(Inst.getOperand(4)); 8005 Inst = TmpInst; 8006 return true; 8007 } 8008 8009 case ARM::VLD3DUPdWB_fixed_Asm_8: 8010 case ARM::VLD3DUPdWB_fixed_Asm_16: 8011 case ARM::VLD3DUPdWB_fixed_Asm_32: 8012 case ARM::VLD3DUPqWB_fixed_Asm_8: 8013 case ARM::VLD3DUPqWB_fixed_Asm_16: 8014 case ARM::VLD3DUPqWB_fixed_Asm_32: { 8015 MCInst TmpInst; 8016 unsigned Spacing; 8017 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8018 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8019 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8020 Spacing)); 8021 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8022 Spacing * 2)); 8023 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8024 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8025 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8026 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8027 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8028 TmpInst.addOperand(Inst.getOperand(4)); 8029 Inst = TmpInst; 8030 return true; 8031 } 8032 8033 case ARM::VLD3DUPdWB_register_Asm_8: 8034 case ARM::VLD3DUPdWB_register_Asm_16: 8035 case ARM::VLD3DUPdWB_register_Asm_32: 8036 case ARM::VLD3DUPqWB_register_Asm_8: 8037 case ARM::VLD3DUPqWB_register_Asm_16: 8038 case ARM::VLD3DUPqWB_register_Asm_32: { 8039 MCInst TmpInst; 8040 unsigned Spacing; 8041 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8042 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8043 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8044 Spacing)); 8045 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8046 Spacing * 2)); 8047 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8048 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8049 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8050 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8051 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8052 TmpInst.addOperand(Inst.getOperand(5)); 8053 Inst = TmpInst; 8054 return true; 8055 } 8056 8057 // VLD3 multiple 3-element structure instructions. 8058 case ARM::VLD3dAsm_8: 8059 case ARM::VLD3dAsm_16: 8060 case ARM::VLD3dAsm_32: 8061 case ARM::VLD3qAsm_8: 8062 case ARM::VLD3qAsm_16: 8063 case ARM::VLD3qAsm_32: { 8064 MCInst TmpInst; 8065 unsigned Spacing; 8066 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8067 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8068 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8069 Spacing)); 8070 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8071 Spacing * 2)); 8072 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8073 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8074 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8075 TmpInst.addOperand(Inst.getOperand(4)); 8076 Inst = TmpInst; 8077 return true; 8078 } 8079 8080 case ARM::VLD3dWB_fixed_Asm_8: 8081 case ARM::VLD3dWB_fixed_Asm_16: 8082 case ARM::VLD3dWB_fixed_Asm_32: 8083 case ARM::VLD3qWB_fixed_Asm_8: 8084 case ARM::VLD3qWB_fixed_Asm_16: 8085 case ARM::VLD3qWB_fixed_Asm_32: { 8086 MCInst TmpInst; 8087 unsigned Spacing; 8088 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8089 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8090 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8091 Spacing)); 8092 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8093 Spacing * 2)); 8094 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8095 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8096 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8097 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8098 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8099 TmpInst.addOperand(Inst.getOperand(4)); 8100 Inst = TmpInst; 8101 return true; 8102 } 8103 8104 case ARM::VLD3dWB_register_Asm_8: 8105 case ARM::VLD3dWB_register_Asm_16: 8106 case ARM::VLD3dWB_register_Asm_32: 8107 case ARM::VLD3qWB_register_Asm_8: 8108 case ARM::VLD3qWB_register_Asm_16: 8109 case ARM::VLD3qWB_register_Asm_32: { 8110 MCInst TmpInst; 8111 unsigned Spacing; 8112 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8113 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8114 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8115 Spacing)); 8116 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8117 Spacing * 2)); 8118 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8119 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8120 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8121 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8122 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8123 TmpInst.addOperand(Inst.getOperand(5)); 8124 Inst = TmpInst; 8125 return true; 8126 } 8127 8128 // VLD4DUP single 3-element structure to all lanes instructions. 8129 case ARM::VLD4DUPdAsm_8: 8130 case ARM::VLD4DUPdAsm_16: 8131 case ARM::VLD4DUPdAsm_32: 8132 case ARM::VLD4DUPqAsm_8: 8133 case ARM::VLD4DUPqAsm_16: 8134 case ARM::VLD4DUPqAsm_32: { 8135 MCInst TmpInst; 8136 unsigned Spacing; 8137 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8138 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8139 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8140 Spacing)); 8141 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8142 Spacing * 2)); 8143 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8144 Spacing * 3)); 8145 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8146 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8147 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8148 TmpInst.addOperand(Inst.getOperand(4)); 8149 Inst = TmpInst; 8150 return true; 8151 } 8152 8153 case ARM::VLD4DUPdWB_fixed_Asm_8: 8154 case ARM::VLD4DUPdWB_fixed_Asm_16: 8155 case ARM::VLD4DUPdWB_fixed_Asm_32: 8156 case ARM::VLD4DUPqWB_fixed_Asm_8: 8157 case ARM::VLD4DUPqWB_fixed_Asm_16: 8158 case ARM::VLD4DUPqWB_fixed_Asm_32: { 8159 MCInst TmpInst; 8160 unsigned Spacing; 8161 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8162 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8163 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8164 Spacing)); 8165 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8166 Spacing * 2)); 8167 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8168 Spacing * 3)); 8169 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8170 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8171 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8172 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8173 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8174 TmpInst.addOperand(Inst.getOperand(4)); 8175 Inst = TmpInst; 8176 return true; 8177 } 8178 8179 case ARM::VLD4DUPdWB_register_Asm_8: 8180 case ARM::VLD4DUPdWB_register_Asm_16: 8181 case ARM::VLD4DUPdWB_register_Asm_32: 8182 case ARM::VLD4DUPqWB_register_Asm_8: 8183 case ARM::VLD4DUPqWB_register_Asm_16: 8184 case ARM::VLD4DUPqWB_register_Asm_32: { 8185 MCInst TmpInst; 8186 unsigned Spacing; 8187 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8188 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8189 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8190 Spacing)); 8191 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8192 Spacing * 2)); 8193 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8194 Spacing * 3)); 8195 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8196 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8197 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8198 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8199 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8200 TmpInst.addOperand(Inst.getOperand(5)); 8201 Inst = TmpInst; 8202 return true; 8203 } 8204 8205 // VLD4 multiple 4-element structure instructions. 8206 case ARM::VLD4dAsm_8: 8207 case ARM::VLD4dAsm_16: 8208 case ARM::VLD4dAsm_32: 8209 case ARM::VLD4qAsm_8: 8210 case ARM::VLD4qAsm_16: 8211 case ARM::VLD4qAsm_32: { 8212 MCInst TmpInst; 8213 unsigned Spacing; 8214 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8215 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8216 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8217 Spacing)); 8218 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8219 Spacing * 2)); 8220 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8221 Spacing * 3)); 8222 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8223 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8224 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8225 TmpInst.addOperand(Inst.getOperand(4)); 8226 Inst = TmpInst; 8227 return true; 8228 } 8229 8230 case ARM::VLD4dWB_fixed_Asm_8: 8231 case ARM::VLD4dWB_fixed_Asm_16: 8232 case ARM::VLD4dWB_fixed_Asm_32: 8233 case ARM::VLD4qWB_fixed_Asm_8: 8234 case ARM::VLD4qWB_fixed_Asm_16: 8235 case ARM::VLD4qWB_fixed_Asm_32: { 8236 MCInst TmpInst; 8237 unsigned Spacing; 8238 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8239 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8240 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8241 Spacing)); 8242 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8243 Spacing * 2)); 8244 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8245 Spacing * 3)); 8246 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8247 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8248 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8249 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8250 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8251 TmpInst.addOperand(Inst.getOperand(4)); 8252 Inst = TmpInst; 8253 return true; 8254 } 8255 8256 case ARM::VLD4dWB_register_Asm_8: 8257 case ARM::VLD4dWB_register_Asm_16: 8258 case ARM::VLD4dWB_register_Asm_32: 8259 case ARM::VLD4qWB_register_Asm_8: 8260 case ARM::VLD4qWB_register_Asm_16: 8261 case ARM::VLD4qWB_register_Asm_32: { 8262 MCInst TmpInst; 8263 unsigned Spacing; 8264 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8265 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8266 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8267 Spacing)); 8268 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8269 Spacing * 2)); 8270 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8271 Spacing * 3)); 8272 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8273 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8274 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8275 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8276 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8277 TmpInst.addOperand(Inst.getOperand(5)); 8278 Inst = TmpInst; 8279 return true; 8280 } 8281 8282 // VST3 multiple 3-element structure instructions. 8283 case ARM::VST3dAsm_8: 8284 case ARM::VST3dAsm_16: 8285 case ARM::VST3dAsm_32: 8286 case ARM::VST3qAsm_8: 8287 case ARM::VST3qAsm_16: 8288 case ARM::VST3qAsm_32: { 8289 MCInst TmpInst; 8290 unsigned Spacing; 8291 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8292 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8293 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8294 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8295 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8296 Spacing)); 8297 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8298 Spacing * 2)); 8299 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8300 TmpInst.addOperand(Inst.getOperand(4)); 8301 Inst = TmpInst; 8302 return true; 8303 } 8304 8305 case ARM::VST3dWB_fixed_Asm_8: 8306 case ARM::VST3dWB_fixed_Asm_16: 8307 case ARM::VST3dWB_fixed_Asm_32: 8308 case ARM::VST3qWB_fixed_Asm_8: 8309 case ARM::VST3qWB_fixed_Asm_16: 8310 case ARM::VST3qWB_fixed_Asm_32: { 8311 MCInst TmpInst; 8312 unsigned Spacing; 8313 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8314 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8315 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8316 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8317 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8318 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8319 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8320 Spacing)); 8321 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8322 Spacing * 2)); 8323 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8324 TmpInst.addOperand(Inst.getOperand(4)); 8325 Inst = TmpInst; 8326 return true; 8327 } 8328 8329 case ARM::VST3dWB_register_Asm_8: 8330 case ARM::VST3dWB_register_Asm_16: 8331 case ARM::VST3dWB_register_Asm_32: 8332 case ARM::VST3qWB_register_Asm_8: 8333 case ARM::VST3qWB_register_Asm_16: 8334 case ARM::VST3qWB_register_Asm_32: { 8335 MCInst TmpInst; 8336 unsigned Spacing; 8337 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8338 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8339 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8340 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8341 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8342 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8343 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8344 Spacing)); 8345 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8346 Spacing * 2)); 8347 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8348 TmpInst.addOperand(Inst.getOperand(5)); 8349 Inst = TmpInst; 8350 return true; 8351 } 8352 8353 // VST4 multiple 3-element structure instructions. 8354 case ARM::VST4dAsm_8: 8355 case ARM::VST4dAsm_16: 8356 case ARM::VST4dAsm_32: 8357 case ARM::VST4qAsm_8: 8358 case ARM::VST4qAsm_16: 8359 case ARM::VST4qAsm_32: { 8360 MCInst TmpInst; 8361 unsigned Spacing; 8362 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8363 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8364 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8365 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8366 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8367 Spacing)); 8368 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8369 Spacing * 2)); 8370 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8371 Spacing * 3)); 8372 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8373 TmpInst.addOperand(Inst.getOperand(4)); 8374 Inst = TmpInst; 8375 return true; 8376 } 8377 8378 case ARM::VST4dWB_fixed_Asm_8: 8379 case ARM::VST4dWB_fixed_Asm_16: 8380 case ARM::VST4dWB_fixed_Asm_32: 8381 case ARM::VST4qWB_fixed_Asm_8: 8382 case ARM::VST4qWB_fixed_Asm_16: 8383 case ARM::VST4qWB_fixed_Asm_32: { 8384 MCInst TmpInst; 8385 unsigned Spacing; 8386 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8387 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8388 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8389 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8390 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8391 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8392 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8393 Spacing)); 8394 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8395 Spacing * 2)); 8396 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8397 Spacing * 3)); 8398 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8399 TmpInst.addOperand(Inst.getOperand(4)); 8400 Inst = TmpInst; 8401 return true; 8402 } 8403 8404 case ARM::VST4dWB_register_Asm_8: 8405 case ARM::VST4dWB_register_Asm_16: 8406 case ARM::VST4dWB_register_Asm_32: 8407 case ARM::VST4qWB_register_Asm_8: 8408 case ARM::VST4qWB_register_Asm_16: 8409 case ARM::VST4qWB_register_Asm_32: { 8410 MCInst TmpInst; 8411 unsigned Spacing; 8412 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8413 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8414 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8415 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8416 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8417 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8418 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8419 Spacing)); 8420 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8421 Spacing * 2)); 8422 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8423 Spacing * 3)); 8424 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8425 TmpInst.addOperand(Inst.getOperand(5)); 8426 Inst = TmpInst; 8427 return true; 8428 } 8429 8430 // Handle encoding choice for the shift-immediate instructions. 8431 case ARM::t2LSLri: 8432 case ARM::t2LSRri: 8433 case ARM::t2ASRri: 8434 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8435 isARMLowRegister(Inst.getOperand(1).getReg()) && 8436 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8437 !HasWideQualifier) { 8438 unsigned NewOpc; 8439 switch (Inst.getOpcode()) { 8440 default: llvm_unreachable("unexpected opcode"); 8441 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8442 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8443 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8444 } 8445 // The Thumb1 operands aren't in the same order. Awesome, eh? 8446 MCInst TmpInst; 8447 TmpInst.setOpcode(NewOpc); 8448 TmpInst.addOperand(Inst.getOperand(0)); 8449 TmpInst.addOperand(Inst.getOperand(5)); 8450 TmpInst.addOperand(Inst.getOperand(1)); 8451 TmpInst.addOperand(Inst.getOperand(2)); 8452 TmpInst.addOperand(Inst.getOperand(3)); 8453 TmpInst.addOperand(Inst.getOperand(4)); 8454 Inst = TmpInst; 8455 return true; 8456 } 8457 return false; 8458 8459 // Handle the Thumb2 mode MOV complex aliases. 8460 case ARM::t2MOVsr: 8461 case ARM::t2MOVSsr: { 8462 // Which instruction to expand to depends on the CCOut operand and 8463 // whether we're in an IT block if the register operands are low 8464 // registers. 8465 bool isNarrow = false; 8466 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8467 isARMLowRegister(Inst.getOperand(1).getReg()) && 8468 isARMLowRegister(Inst.getOperand(2).getReg()) && 8469 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8470 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 8471 !HasWideQualifier) 8472 isNarrow = true; 8473 MCInst TmpInst; 8474 unsigned newOpc; 8475 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8476 default: llvm_unreachable("unexpected opcode!"); 8477 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8478 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8479 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8480 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8481 } 8482 TmpInst.setOpcode(newOpc); 8483 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8484 if (isNarrow) 8485 TmpInst.addOperand(MCOperand::createReg( 8486 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8487 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8488 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8489 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8490 TmpInst.addOperand(Inst.getOperand(5)); 8491 if (!isNarrow) 8492 TmpInst.addOperand(MCOperand::createReg( 8493 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8494 Inst = TmpInst; 8495 return true; 8496 } 8497 case ARM::t2MOVsi: 8498 case ARM::t2MOVSsi: { 8499 // Which instruction to expand to depends on the CCOut operand and 8500 // whether we're in an IT block if the register operands are low 8501 // registers. 8502 bool isNarrow = false; 8503 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8504 isARMLowRegister(Inst.getOperand(1).getReg()) && 8505 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 8506 !HasWideQualifier) 8507 isNarrow = true; 8508 MCInst TmpInst; 8509 unsigned newOpc; 8510 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8511 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8512 bool isMov = false; 8513 // MOV rd, rm, LSL #0 is actually a MOV instruction 8514 if (Shift == ARM_AM::lsl && Amount == 0) { 8515 isMov = true; 8516 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 8517 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 8518 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 8519 // instead. 8520 if (inITBlock()) { 8521 isNarrow = false; 8522 } 8523 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 8524 } else { 8525 switch(Shift) { 8526 default: llvm_unreachable("unexpected opcode!"); 8527 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8528 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8529 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8530 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8531 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8532 } 8533 } 8534 if (Amount == 32) Amount = 0; 8535 TmpInst.setOpcode(newOpc); 8536 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8537 if (isNarrow && !isMov) 8538 TmpInst.addOperand(MCOperand::createReg( 8539 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8540 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8541 if (newOpc != ARM::t2RRX && !isMov) 8542 TmpInst.addOperand(MCOperand::createImm(Amount)); 8543 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8544 TmpInst.addOperand(Inst.getOperand(4)); 8545 if (!isNarrow) 8546 TmpInst.addOperand(MCOperand::createReg( 8547 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8548 Inst = TmpInst; 8549 return true; 8550 } 8551 // Handle the ARM mode MOV complex aliases. 8552 case ARM::ASRr: 8553 case ARM::LSRr: 8554 case ARM::LSLr: 8555 case ARM::RORr: { 8556 ARM_AM::ShiftOpc ShiftTy; 8557 switch(Inst.getOpcode()) { 8558 default: llvm_unreachable("unexpected opcode!"); 8559 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8560 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8561 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8562 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8563 } 8564 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8565 MCInst TmpInst; 8566 TmpInst.setOpcode(ARM::MOVsr); 8567 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8568 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8569 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8570 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8571 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8572 TmpInst.addOperand(Inst.getOperand(4)); 8573 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8574 Inst = TmpInst; 8575 return true; 8576 } 8577 case ARM::ASRi: 8578 case ARM::LSRi: 8579 case ARM::LSLi: 8580 case ARM::RORi: { 8581 ARM_AM::ShiftOpc ShiftTy; 8582 switch(Inst.getOpcode()) { 8583 default: llvm_unreachable("unexpected opcode!"); 8584 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8585 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8586 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8587 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8588 } 8589 // A shift by zero is a plain MOVr, not a MOVsi. 8590 unsigned Amt = Inst.getOperand(2).getImm(); 8591 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8592 // A shift by 32 should be encoded as 0 when permitted 8593 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8594 Amt = 0; 8595 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8596 MCInst TmpInst; 8597 TmpInst.setOpcode(Opc); 8598 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8599 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8600 if (Opc == ARM::MOVsi) 8601 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8602 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8603 TmpInst.addOperand(Inst.getOperand(4)); 8604 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8605 Inst = TmpInst; 8606 return true; 8607 } 8608 case ARM::RRXi: { 8609 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8610 MCInst TmpInst; 8611 TmpInst.setOpcode(ARM::MOVsi); 8612 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8613 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8614 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8615 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8616 TmpInst.addOperand(Inst.getOperand(3)); 8617 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8618 Inst = TmpInst; 8619 return true; 8620 } 8621 case ARM::t2LDMIA_UPD: { 8622 // If this is a load of a single register, then we should use 8623 // a post-indexed LDR instruction instead, per the ARM ARM. 8624 if (Inst.getNumOperands() != 5) 8625 return false; 8626 MCInst TmpInst; 8627 TmpInst.setOpcode(ARM::t2LDR_POST); 8628 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8629 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8630 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8631 TmpInst.addOperand(MCOperand::createImm(4)); 8632 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8633 TmpInst.addOperand(Inst.getOperand(3)); 8634 Inst = TmpInst; 8635 return true; 8636 } 8637 case ARM::t2STMDB_UPD: { 8638 // If this is a store of a single register, then we should use 8639 // a pre-indexed STR instruction instead, per the ARM ARM. 8640 if (Inst.getNumOperands() != 5) 8641 return false; 8642 MCInst TmpInst; 8643 TmpInst.setOpcode(ARM::t2STR_PRE); 8644 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8645 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8646 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8647 TmpInst.addOperand(MCOperand::createImm(-4)); 8648 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8649 TmpInst.addOperand(Inst.getOperand(3)); 8650 Inst = TmpInst; 8651 return true; 8652 } 8653 case ARM::LDMIA_UPD: 8654 // If this is a load of a single register via a 'pop', then we should use 8655 // a post-indexed LDR instruction instead, per the ARM ARM. 8656 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8657 Inst.getNumOperands() == 5) { 8658 MCInst TmpInst; 8659 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8660 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8661 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8662 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8663 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8664 TmpInst.addOperand(MCOperand::createImm(4)); 8665 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8666 TmpInst.addOperand(Inst.getOperand(3)); 8667 Inst = TmpInst; 8668 return true; 8669 } 8670 break; 8671 case ARM::STMDB_UPD: 8672 // If this is a store of a single register via a 'push', then we should use 8673 // a pre-indexed STR instruction instead, per the ARM ARM. 8674 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8675 Inst.getNumOperands() == 5) { 8676 MCInst TmpInst; 8677 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8678 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8679 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8680 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8681 TmpInst.addOperand(MCOperand::createImm(-4)); 8682 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8683 TmpInst.addOperand(Inst.getOperand(3)); 8684 Inst = TmpInst; 8685 } 8686 break; 8687 case ARM::t2ADDri12: 8688 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8689 // mnemonic was used (not "addw"), encoding T3 is preferred. 8690 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8691 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8692 break; 8693 Inst.setOpcode(ARM::t2ADDri); 8694 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8695 break; 8696 case ARM::t2SUBri12: 8697 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8698 // mnemonic was used (not "subw"), encoding T3 is preferred. 8699 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8700 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8701 break; 8702 Inst.setOpcode(ARM::t2SUBri); 8703 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8704 break; 8705 case ARM::tADDi8: 8706 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8707 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8708 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8709 // to encoding T1 if <Rd> is omitted." 8710 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8711 Inst.setOpcode(ARM::tADDi3); 8712 return true; 8713 } 8714 break; 8715 case ARM::tSUBi8: 8716 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8717 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8718 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8719 // to encoding T1 if <Rd> is omitted." 8720 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8721 Inst.setOpcode(ARM::tSUBi3); 8722 return true; 8723 } 8724 break; 8725 case ARM::t2ADDri: 8726 case ARM::t2SUBri: { 8727 // If the destination and first source operand are the same, and 8728 // the flags are compatible with the current IT status, use encoding T2 8729 // instead of T3. For compatibility with the system 'as'. Make sure the 8730 // wide encoding wasn't explicit. 8731 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8732 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8733 (Inst.getOperand(2).isImm() && 8734 (unsigned)Inst.getOperand(2).getImm() > 255) || 8735 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 8736 HasWideQualifier) 8737 break; 8738 MCInst TmpInst; 8739 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8740 ARM::tADDi8 : ARM::tSUBi8); 8741 TmpInst.addOperand(Inst.getOperand(0)); 8742 TmpInst.addOperand(Inst.getOperand(5)); 8743 TmpInst.addOperand(Inst.getOperand(0)); 8744 TmpInst.addOperand(Inst.getOperand(2)); 8745 TmpInst.addOperand(Inst.getOperand(3)); 8746 TmpInst.addOperand(Inst.getOperand(4)); 8747 Inst = TmpInst; 8748 return true; 8749 } 8750 case ARM::t2ADDrr: { 8751 // If the destination and first source operand are the same, and 8752 // there's no setting of the flags, use encoding T2 instead of T3. 8753 // Note that this is only for ADD, not SUB. This mirrors the system 8754 // 'as' behaviour. Also take advantage of ADD being commutative. 8755 // Make sure the wide encoding wasn't explicit. 8756 bool Swap = false; 8757 auto DestReg = Inst.getOperand(0).getReg(); 8758 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8759 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8760 Transform = true; 8761 Swap = true; 8762 } 8763 if (!Transform || 8764 Inst.getOperand(5).getReg() != 0 || 8765 HasWideQualifier) 8766 break; 8767 MCInst TmpInst; 8768 TmpInst.setOpcode(ARM::tADDhirr); 8769 TmpInst.addOperand(Inst.getOperand(0)); 8770 TmpInst.addOperand(Inst.getOperand(0)); 8771 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8772 TmpInst.addOperand(Inst.getOperand(3)); 8773 TmpInst.addOperand(Inst.getOperand(4)); 8774 Inst = TmpInst; 8775 return true; 8776 } 8777 case ARM::tADDrSP: 8778 // If the non-SP source operand and the destination operand are not the 8779 // same, we need to use the 32-bit encoding if it's available. 8780 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8781 Inst.setOpcode(ARM::t2ADDrr); 8782 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8783 return true; 8784 } 8785 break; 8786 case ARM::tB: 8787 // A Thumb conditional branch outside of an IT block is a tBcc. 8788 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8789 Inst.setOpcode(ARM::tBcc); 8790 return true; 8791 } 8792 break; 8793 case ARM::t2B: 8794 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8795 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8796 Inst.setOpcode(ARM::t2Bcc); 8797 return true; 8798 } 8799 break; 8800 case ARM::t2Bcc: 8801 // If the conditional is AL or we're in an IT block, we really want t2B. 8802 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8803 Inst.setOpcode(ARM::t2B); 8804 return true; 8805 } 8806 break; 8807 case ARM::tBcc: 8808 // If the conditional is AL, we really want tB. 8809 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8810 Inst.setOpcode(ARM::tB); 8811 return true; 8812 } 8813 break; 8814 case ARM::tLDMIA: { 8815 // If the register list contains any high registers, or if the writeback 8816 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8817 // instead if we're in Thumb2. Otherwise, this should have generated 8818 // an error in validateInstruction(). 8819 unsigned Rn = Inst.getOperand(0).getReg(); 8820 bool hasWritebackToken = 8821 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8822 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8823 bool listContainsBase; 8824 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8825 (!listContainsBase && !hasWritebackToken) || 8826 (listContainsBase && hasWritebackToken)) { 8827 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8828 assert(isThumbTwo()); 8829 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8830 // If we're switching to the updating version, we need to insert 8831 // the writeback tied operand. 8832 if (hasWritebackToken) 8833 Inst.insert(Inst.begin(), 8834 MCOperand::createReg(Inst.getOperand(0).getReg())); 8835 return true; 8836 } 8837 break; 8838 } 8839 case ARM::tSTMIA_UPD: { 8840 // If the register list contains any high registers, we need to use 8841 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8842 // should have generated an error in validateInstruction(). 8843 unsigned Rn = Inst.getOperand(0).getReg(); 8844 bool listContainsBase; 8845 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8846 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8847 assert(isThumbTwo()); 8848 Inst.setOpcode(ARM::t2STMIA_UPD); 8849 return true; 8850 } 8851 break; 8852 } 8853 case ARM::tPOP: { 8854 bool listContainsBase; 8855 // If the register list contains any high registers, we need to use 8856 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8857 // should have generated an error in validateInstruction(). 8858 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8859 return false; 8860 assert(isThumbTwo()); 8861 Inst.setOpcode(ARM::t2LDMIA_UPD); 8862 // Add the base register and writeback operands. 8863 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8864 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8865 return true; 8866 } 8867 case ARM::tPUSH: { 8868 bool listContainsBase; 8869 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8870 return false; 8871 assert(isThumbTwo()); 8872 Inst.setOpcode(ARM::t2STMDB_UPD); 8873 // Add the base register and writeback operands. 8874 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8875 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8876 return true; 8877 } 8878 case ARM::t2MOVi: 8879 // If we can use the 16-bit encoding and the user didn't explicitly 8880 // request the 32-bit variant, transform it here. 8881 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8882 (Inst.getOperand(1).isImm() && 8883 (unsigned)Inst.getOperand(1).getImm() <= 255) && 8884 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8885 !HasWideQualifier) { 8886 // The operands aren't in the same order for tMOVi8... 8887 MCInst TmpInst; 8888 TmpInst.setOpcode(ARM::tMOVi8); 8889 TmpInst.addOperand(Inst.getOperand(0)); 8890 TmpInst.addOperand(Inst.getOperand(4)); 8891 TmpInst.addOperand(Inst.getOperand(1)); 8892 TmpInst.addOperand(Inst.getOperand(2)); 8893 TmpInst.addOperand(Inst.getOperand(3)); 8894 Inst = TmpInst; 8895 return true; 8896 } 8897 break; 8898 8899 case ARM::t2MOVr: 8900 // If we can use the 16-bit encoding and the user didn't explicitly 8901 // request the 32-bit variant, transform it here. 8902 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8903 isARMLowRegister(Inst.getOperand(1).getReg()) && 8904 Inst.getOperand(2).getImm() == ARMCC::AL && 8905 Inst.getOperand(4).getReg() == ARM::CPSR && 8906 !HasWideQualifier) { 8907 // The operands aren't the same for tMOV[S]r... (no cc_out) 8908 MCInst TmpInst; 8909 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8910 TmpInst.addOperand(Inst.getOperand(0)); 8911 TmpInst.addOperand(Inst.getOperand(1)); 8912 TmpInst.addOperand(Inst.getOperand(2)); 8913 TmpInst.addOperand(Inst.getOperand(3)); 8914 Inst = TmpInst; 8915 return true; 8916 } 8917 break; 8918 8919 case ARM::t2SXTH: 8920 case ARM::t2SXTB: 8921 case ARM::t2UXTH: 8922 case ARM::t2UXTB: 8923 // If we can use the 16-bit encoding and the user didn't explicitly 8924 // request the 32-bit variant, transform it here. 8925 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8926 isARMLowRegister(Inst.getOperand(1).getReg()) && 8927 Inst.getOperand(2).getImm() == 0 && 8928 !HasWideQualifier) { 8929 unsigned NewOpc; 8930 switch (Inst.getOpcode()) { 8931 default: llvm_unreachable("Illegal opcode!"); 8932 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8933 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8934 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8935 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8936 } 8937 // The operands aren't the same for thumb1 (no rotate operand). 8938 MCInst TmpInst; 8939 TmpInst.setOpcode(NewOpc); 8940 TmpInst.addOperand(Inst.getOperand(0)); 8941 TmpInst.addOperand(Inst.getOperand(1)); 8942 TmpInst.addOperand(Inst.getOperand(3)); 8943 TmpInst.addOperand(Inst.getOperand(4)); 8944 Inst = TmpInst; 8945 return true; 8946 } 8947 break; 8948 8949 case ARM::MOVsi: { 8950 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8951 // rrx shifts and asr/lsr of #32 is encoded as 0 8952 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8953 return false; 8954 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8955 // Shifting by zero is accepted as a vanilla 'MOVr' 8956 MCInst TmpInst; 8957 TmpInst.setOpcode(ARM::MOVr); 8958 TmpInst.addOperand(Inst.getOperand(0)); 8959 TmpInst.addOperand(Inst.getOperand(1)); 8960 TmpInst.addOperand(Inst.getOperand(3)); 8961 TmpInst.addOperand(Inst.getOperand(4)); 8962 TmpInst.addOperand(Inst.getOperand(5)); 8963 Inst = TmpInst; 8964 return true; 8965 } 8966 return false; 8967 } 8968 case ARM::ANDrsi: 8969 case ARM::ORRrsi: 8970 case ARM::EORrsi: 8971 case ARM::BICrsi: 8972 case ARM::SUBrsi: 8973 case ARM::ADDrsi: { 8974 unsigned newOpc; 8975 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8976 if (SOpc == ARM_AM::rrx) return false; 8977 switch (Inst.getOpcode()) { 8978 default: llvm_unreachable("unexpected opcode!"); 8979 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8980 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8981 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8982 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8983 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8984 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8985 } 8986 // If the shift is by zero, use the non-shifted instruction definition. 8987 // The exception is for right shifts, where 0 == 32 8988 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8989 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8990 MCInst TmpInst; 8991 TmpInst.setOpcode(newOpc); 8992 TmpInst.addOperand(Inst.getOperand(0)); 8993 TmpInst.addOperand(Inst.getOperand(1)); 8994 TmpInst.addOperand(Inst.getOperand(2)); 8995 TmpInst.addOperand(Inst.getOperand(4)); 8996 TmpInst.addOperand(Inst.getOperand(5)); 8997 TmpInst.addOperand(Inst.getOperand(6)); 8998 Inst = TmpInst; 8999 return true; 9000 } 9001 return false; 9002 } 9003 case ARM::ITasm: 9004 case ARM::t2IT: { 9005 MCOperand &MO = Inst.getOperand(1); 9006 unsigned Mask = MO.getImm(); 9007 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 9008 9009 // Set up the IT block state according to the IT instruction we just 9010 // matched. 9011 assert(!inITBlock() && "nested IT blocks?!"); 9012 startExplicitITBlock(Cond, Mask); 9013 MO.setImm(getITMaskEncoding()); 9014 break; 9015 } 9016 case ARM::t2LSLrr: 9017 case ARM::t2LSRrr: 9018 case ARM::t2ASRrr: 9019 case ARM::t2SBCrr: 9020 case ARM::t2RORrr: 9021 case ARM::t2BICrr: 9022 // Assemblers should use the narrow encodings of these instructions when permissible. 9023 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 9024 isARMLowRegister(Inst.getOperand(2).getReg())) && 9025 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 9026 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9027 !HasWideQualifier) { 9028 unsigned NewOpc; 9029 switch (Inst.getOpcode()) { 9030 default: llvm_unreachable("unexpected opcode"); 9031 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 9032 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 9033 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 9034 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 9035 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 9036 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 9037 } 9038 MCInst TmpInst; 9039 TmpInst.setOpcode(NewOpc); 9040 TmpInst.addOperand(Inst.getOperand(0)); 9041 TmpInst.addOperand(Inst.getOperand(5)); 9042 TmpInst.addOperand(Inst.getOperand(1)); 9043 TmpInst.addOperand(Inst.getOperand(2)); 9044 TmpInst.addOperand(Inst.getOperand(3)); 9045 TmpInst.addOperand(Inst.getOperand(4)); 9046 Inst = TmpInst; 9047 return true; 9048 } 9049 return false; 9050 9051 case ARM::t2ANDrr: 9052 case ARM::t2EORrr: 9053 case ARM::t2ADCrr: 9054 case ARM::t2ORRrr: 9055 // Assemblers should use the narrow encodings of these instructions when permissible. 9056 // These instructions are special in that they are commutable, so shorter encodings 9057 // are available more often. 9058 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 9059 isARMLowRegister(Inst.getOperand(2).getReg())) && 9060 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 9061 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 9062 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9063 !HasWideQualifier) { 9064 unsigned NewOpc; 9065 switch (Inst.getOpcode()) { 9066 default: llvm_unreachable("unexpected opcode"); 9067 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 9068 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 9069 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 9070 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 9071 } 9072 MCInst TmpInst; 9073 TmpInst.setOpcode(NewOpc); 9074 TmpInst.addOperand(Inst.getOperand(0)); 9075 TmpInst.addOperand(Inst.getOperand(5)); 9076 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 9077 TmpInst.addOperand(Inst.getOperand(1)); 9078 TmpInst.addOperand(Inst.getOperand(2)); 9079 } else { 9080 TmpInst.addOperand(Inst.getOperand(2)); 9081 TmpInst.addOperand(Inst.getOperand(1)); 9082 } 9083 TmpInst.addOperand(Inst.getOperand(3)); 9084 TmpInst.addOperand(Inst.getOperand(4)); 9085 Inst = TmpInst; 9086 return true; 9087 } 9088 return false; 9089 } 9090 return false; 9091 } 9092 9093 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 9094 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 9095 // suffix depending on whether they're in an IT block or not. 9096 unsigned Opc = Inst.getOpcode(); 9097 const MCInstrDesc &MCID = MII.get(Opc); 9098 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 9099 assert(MCID.hasOptionalDef() && 9100 "optionally flag setting instruction missing optional def operand"); 9101 assert(MCID.NumOperands == Inst.getNumOperands() && 9102 "operand count mismatch!"); 9103 // Find the optional-def operand (cc_out). 9104 unsigned OpNo; 9105 for (OpNo = 0; 9106 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 9107 ++OpNo) 9108 ; 9109 // If we're parsing Thumb1, reject it completely. 9110 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 9111 return Match_RequiresFlagSetting; 9112 // If we're parsing Thumb2, which form is legal depends on whether we're 9113 // in an IT block. 9114 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 9115 !inITBlock()) 9116 return Match_RequiresITBlock; 9117 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 9118 inITBlock()) 9119 return Match_RequiresNotITBlock; 9120 // LSL with zero immediate is not allowed in an IT block 9121 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 9122 return Match_RequiresNotITBlock; 9123 } else if (isThumbOne()) { 9124 // Some high-register supporting Thumb1 encodings only allow both registers 9125 // to be from r0-r7 when in Thumb2. 9126 if (Opc == ARM::tADDhirr && !hasV6MOps() && 9127 isARMLowRegister(Inst.getOperand(1).getReg()) && 9128 isARMLowRegister(Inst.getOperand(2).getReg())) 9129 return Match_RequiresThumb2; 9130 // Others only require ARMv6 or later. 9131 else if (Opc == ARM::tMOVr && !hasV6Ops() && 9132 isARMLowRegister(Inst.getOperand(0).getReg()) && 9133 isARMLowRegister(Inst.getOperand(1).getReg())) 9134 return Match_RequiresV6; 9135 } 9136 9137 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 9138 // than the loop below can handle, so it uses the GPRnopc register class and 9139 // we do SP handling here. 9140 if (Opc == ARM::t2MOVr && !hasV8Ops()) 9141 { 9142 // SP as both source and destination is not allowed 9143 if (Inst.getOperand(0).getReg() == ARM::SP && 9144 Inst.getOperand(1).getReg() == ARM::SP) 9145 return Match_RequiresV8; 9146 // When flags-setting SP as either source or destination is not allowed 9147 if (Inst.getOperand(4).getReg() == ARM::CPSR && 9148 (Inst.getOperand(0).getReg() == ARM::SP || 9149 Inst.getOperand(1).getReg() == ARM::SP)) 9150 return Match_RequiresV8; 9151 } 9152 9153 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 9154 // ARMv8-A. 9155 if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) && 9156 Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops())) 9157 return Match_InvalidOperand; 9158 9159 for (unsigned I = 0; I < MCID.NumOperands; ++I) 9160 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 9161 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 9162 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 9163 return Match_RequiresV8; 9164 else if (Inst.getOperand(I).getReg() == ARM::PC) 9165 return Match_InvalidOperand; 9166 } 9167 9168 return Match_Success; 9169 } 9170 9171 namespace llvm { 9172 9173 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 9174 return true; // In an assembly source, no need to second-guess 9175 } 9176 9177 } // end namespace llvm 9178 9179 // Returns true if Inst is unpredictable if it is in and IT block, but is not 9180 // the last instruction in the block. 9181 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 9182 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9183 9184 // All branch & call instructions terminate IT blocks with the exception of 9185 // SVC. 9186 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 9187 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 9188 return true; 9189 9190 // Any arithmetic instruction which writes to the PC also terminates the IT 9191 // block. 9192 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 9193 return true; 9194 9195 return false; 9196 } 9197 9198 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 9199 SmallVectorImpl<NearMissInfo> &NearMisses, 9200 bool MatchingInlineAsm, 9201 bool &EmitInITBlock, 9202 MCStreamer &Out) { 9203 // If we can't use an implicit IT block here, just match as normal. 9204 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 9205 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 9206 9207 // Try to match the instruction in an extension of the current IT block (if 9208 // there is one). 9209 if (inImplicitITBlock()) { 9210 extendImplicitITBlock(ITState.Cond); 9211 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9212 Match_Success) { 9213 // The match succeded, but we still have to check that the instruction is 9214 // valid in this implicit IT block. 9215 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9216 if (MCID.isPredicable()) { 9217 ARMCC::CondCodes InstCond = 9218 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9219 .getImm(); 9220 ARMCC::CondCodes ITCond = currentITCond(); 9221 if (InstCond == ITCond) { 9222 EmitInITBlock = true; 9223 return Match_Success; 9224 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 9225 invertCurrentITCondition(); 9226 EmitInITBlock = true; 9227 return Match_Success; 9228 } 9229 } 9230 } 9231 rewindImplicitITPosition(); 9232 } 9233 9234 // Finish the current IT block, and try to match outside any IT block. 9235 flushPendingInstructions(Out); 9236 unsigned PlainMatchResult = 9237 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 9238 if (PlainMatchResult == Match_Success) { 9239 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9240 if (MCID.isPredicable()) { 9241 ARMCC::CondCodes InstCond = 9242 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9243 .getImm(); 9244 // Some forms of the branch instruction have their own condition code 9245 // fields, so can be conditionally executed without an IT block. 9246 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 9247 EmitInITBlock = false; 9248 return Match_Success; 9249 } 9250 if (InstCond == ARMCC::AL) { 9251 EmitInITBlock = false; 9252 return Match_Success; 9253 } 9254 } else { 9255 EmitInITBlock = false; 9256 return Match_Success; 9257 } 9258 } 9259 9260 // Try to match in a new IT block. The matcher doesn't check the actual 9261 // condition, so we create an IT block with a dummy condition, and fix it up 9262 // once we know the actual condition. 9263 startImplicitITBlock(); 9264 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9265 Match_Success) { 9266 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9267 if (MCID.isPredicable()) { 9268 ITState.Cond = 9269 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9270 .getImm(); 9271 EmitInITBlock = true; 9272 return Match_Success; 9273 } 9274 } 9275 discardImplicitITBlock(); 9276 9277 // If none of these succeed, return the error we got when trying to match 9278 // outside any IT blocks. 9279 EmitInITBlock = false; 9280 return PlainMatchResult; 9281 } 9282 9283 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 9284 unsigned VariantID = 0); 9285 9286 static const char *getSubtargetFeatureName(uint64_t Val); 9287 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 9288 OperandVector &Operands, 9289 MCStreamer &Out, uint64_t &ErrorInfo, 9290 bool MatchingInlineAsm) { 9291 MCInst Inst; 9292 unsigned MatchResult; 9293 bool PendConditionalInstruction = false; 9294 9295 SmallVector<NearMissInfo, 4> NearMisses; 9296 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 9297 PendConditionalInstruction, Out); 9298 9299 switch (MatchResult) { 9300 case Match_Success: 9301 LLVM_DEBUG(dbgs() << "Parsed as: "; 9302 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 9303 dbgs() << "\n"); 9304 9305 // Context sensitive operand constraints aren't handled by the matcher, 9306 // so check them here. 9307 if (validateInstruction(Inst, Operands)) { 9308 // Still progress the IT block, otherwise one wrong condition causes 9309 // nasty cascading errors. 9310 forwardITPosition(); 9311 return true; 9312 } 9313 9314 { // processInstruction() updates inITBlock state, we need to save it away 9315 bool wasInITBlock = inITBlock(); 9316 9317 // Some instructions need post-processing to, for example, tweak which 9318 // encoding is selected. Loop on it while changes happen so the 9319 // individual transformations can chain off each other. E.g., 9320 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9321 while (processInstruction(Inst, Operands, Out)) 9322 LLVM_DEBUG(dbgs() << "Changed to: "; 9323 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 9324 dbgs() << "\n"); 9325 9326 // Only after the instruction is fully processed, we can validate it 9327 if (wasInITBlock && hasV8Ops() && isThumb() && 9328 !isV8EligibleForIT(&Inst)) { 9329 Warning(IDLoc, "deprecated instruction in IT block"); 9330 } 9331 } 9332 9333 // Only move forward at the very end so that everything in validate 9334 // and process gets a consistent answer about whether we're in an IT 9335 // block. 9336 forwardITPosition(); 9337 9338 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9339 // doesn't actually encode. 9340 if (Inst.getOpcode() == ARM::ITasm) 9341 return false; 9342 9343 Inst.setLoc(IDLoc); 9344 if (PendConditionalInstruction) { 9345 PendingConditionalInsts.push_back(Inst); 9346 if (isITBlockFull() || isITBlockTerminator(Inst)) 9347 flushPendingInstructions(Out); 9348 } else { 9349 Out.EmitInstruction(Inst, getSTI()); 9350 } 9351 return false; 9352 case Match_NearMisses: 9353 ReportNearMisses(NearMisses, IDLoc, Operands); 9354 return true; 9355 case Match_MnemonicFail: { 9356 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 9357 std::string Suggestion = ARMMnemonicSpellCheck( 9358 ((ARMOperand &)*Operands[0]).getToken(), FBS); 9359 return Error(IDLoc, "invalid instruction" + Suggestion, 9360 ((ARMOperand &)*Operands[0]).getLocRange()); 9361 } 9362 } 9363 9364 llvm_unreachable("Implement any new match types added!"); 9365 } 9366 9367 /// parseDirective parses the arm specific directives 9368 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9369 const MCObjectFileInfo::Environment Format = 9370 getContext().getObjectFileInfo()->getObjectFileType(); 9371 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9372 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9373 9374 StringRef IDVal = DirectiveID.getIdentifier(); 9375 if (IDVal == ".word") 9376 parseLiteralValues(4, DirectiveID.getLoc()); 9377 else if (IDVal == ".short" || IDVal == ".hword") 9378 parseLiteralValues(2, DirectiveID.getLoc()); 9379 else if (IDVal == ".thumb") 9380 parseDirectiveThumb(DirectiveID.getLoc()); 9381 else if (IDVal == ".arm") 9382 parseDirectiveARM(DirectiveID.getLoc()); 9383 else if (IDVal == ".thumb_func") 9384 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9385 else if (IDVal == ".code") 9386 parseDirectiveCode(DirectiveID.getLoc()); 9387 else if (IDVal == ".syntax") 9388 parseDirectiveSyntax(DirectiveID.getLoc()); 9389 else if (IDVal == ".unreq") 9390 parseDirectiveUnreq(DirectiveID.getLoc()); 9391 else if (IDVal == ".fnend") 9392 parseDirectiveFnEnd(DirectiveID.getLoc()); 9393 else if (IDVal == ".cantunwind") 9394 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9395 else if (IDVal == ".personality") 9396 parseDirectivePersonality(DirectiveID.getLoc()); 9397 else if (IDVal == ".handlerdata") 9398 parseDirectiveHandlerData(DirectiveID.getLoc()); 9399 else if (IDVal == ".setfp") 9400 parseDirectiveSetFP(DirectiveID.getLoc()); 9401 else if (IDVal == ".pad") 9402 parseDirectivePad(DirectiveID.getLoc()); 9403 else if (IDVal == ".save") 9404 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9405 else if (IDVal == ".vsave") 9406 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9407 else if (IDVal == ".ltorg" || IDVal == ".pool") 9408 parseDirectiveLtorg(DirectiveID.getLoc()); 9409 else if (IDVal == ".even") 9410 parseDirectiveEven(DirectiveID.getLoc()); 9411 else if (IDVal == ".personalityindex") 9412 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9413 else if (IDVal == ".unwind_raw") 9414 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9415 else if (IDVal == ".movsp") 9416 parseDirectiveMovSP(DirectiveID.getLoc()); 9417 else if (IDVal == ".arch_extension") 9418 parseDirectiveArchExtension(DirectiveID.getLoc()); 9419 else if (IDVal == ".align") 9420 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9421 else if (IDVal == ".thumb_set") 9422 parseDirectiveThumbSet(DirectiveID.getLoc()); 9423 else if (IDVal == ".inst") 9424 parseDirectiveInst(DirectiveID.getLoc()); 9425 else if (IDVal == ".inst.n") 9426 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9427 else if (IDVal == ".inst.w") 9428 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9429 else if (!IsMachO && !IsCOFF) { 9430 if (IDVal == ".arch") 9431 parseDirectiveArch(DirectiveID.getLoc()); 9432 else if (IDVal == ".cpu") 9433 parseDirectiveCPU(DirectiveID.getLoc()); 9434 else if (IDVal == ".eabi_attribute") 9435 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9436 else if (IDVal == ".fpu") 9437 parseDirectiveFPU(DirectiveID.getLoc()); 9438 else if (IDVal == ".fnstart") 9439 parseDirectiveFnStart(DirectiveID.getLoc()); 9440 else if (IDVal == ".object_arch") 9441 parseDirectiveObjectArch(DirectiveID.getLoc()); 9442 else if (IDVal == ".tlsdescseq") 9443 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9444 else 9445 return true; 9446 } else 9447 return true; 9448 return false; 9449 } 9450 9451 /// parseLiteralValues 9452 /// ::= .hword expression [, expression]* 9453 /// ::= .short expression [, expression]* 9454 /// ::= .word expression [, expression]* 9455 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9456 auto parseOne = [&]() -> bool { 9457 const MCExpr *Value; 9458 if (getParser().parseExpression(Value)) 9459 return true; 9460 getParser().getStreamer().EmitValue(Value, Size, L); 9461 return false; 9462 }; 9463 return (parseMany(parseOne)); 9464 } 9465 9466 /// parseDirectiveThumb 9467 /// ::= .thumb 9468 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9469 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9470 check(!hasThumb(), L, "target does not support Thumb mode")) 9471 return true; 9472 9473 if (!isThumb()) 9474 SwitchMode(); 9475 9476 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9477 return false; 9478 } 9479 9480 /// parseDirectiveARM 9481 /// ::= .arm 9482 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9483 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9484 check(!hasARM(), L, "target does not support ARM mode")) 9485 return true; 9486 9487 if (isThumb()) 9488 SwitchMode(); 9489 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9490 return false; 9491 } 9492 9493 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 9494 // We need to flush the current implicit IT block on a label, because it is 9495 // not legal to branch into an IT block. 9496 flushPendingInstructions(getStreamer()); 9497 } 9498 9499 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9500 if (NextSymbolIsThumb) { 9501 getParser().getStreamer().EmitThumbFunc(Symbol); 9502 NextSymbolIsThumb = false; 9503 } 9504 } 9505 9506 /// parseDirectiveThumbFunc 9507 /// ::= .thumbfunc symbol_name 9508 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9509 MCAsmParser &Parser = getParser(); 9510 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9511 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9512 9513 // Darwin asm has (optionally) function name after .thumb_func direction 9514 // ELF doesn't 9515 9516 if (IsMachO) { 9517 if (Parser.getTok().is(AsmToken::Identifier) || 9518 Parser.getTok().is(AsmToken::String)) { 9519 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9520 Parser.getTok().getIdentifier()); 9521 getParser().getStreamer().EmitThumbFunc(Func); 9522 Parser.Lex(); 9523 if (parseToken(AsmToken::EndOfStatement, 9524 "unexpected token in '.thumb_func' directive")) 9525 return true; 9526 return false; 9527 } 9528 } 9529 9530 if (parseToken(AsmToken::EndOfStatement, 9531 "unexpected token in '.thumb_func' directive")) 9532 return true; 9533 9534 NextSymbolIsThumb = true; 9535 return false; 9536 } 9537 9538 /// parseDirectiveSyntax 9539 /// ::= .syntax unified | divided 9540 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9541 MCAsmParser &Parser = getParser(); 9542 const AsmToken &Tok = Parser.getTok(); 9543 if (Tok.isNot(AsmToken::Identifier)) { 9544 Error(L, "unexpected token in .syntax directive"); 9545 return false; 9546 } 9547 9548 StringRef Mode = Tok.getString(); 9549 Parser.Lex(); 9550 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9551 "'.syntax divided' arm assembly not supported") || 9552 check(Mode != "unified" && Mode != "UNIFIED", L, 9553 "unrecognized syntax mode in .syntax directive") || 9554 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9555 return true; 9556 9557 // TODO tell the MC streamer the mode 9558 // getParser().getStreamer().Emit???(); 9559 return false; 9560 } 9561 9562 /// parseDirectiveCode 9563 /// ::= .code 16 | 32 9564 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9565 MCAsmParser &Parser = getParser(); 9566 const AsmToken &Tok = Parser.getTok(); 9567 if (Tok.isNot(AsmToken::Integer)) 9568 return Error(L, "unexpected token in .code directive"); 9569 int64_t Val = Parser.getTok().getIntVal(); 9570 if (Val != 16 && Val != 32) { 9571 Error(L, "invalid operand to .code directive"); 9572 return false; 9573 } 9574 Parser.Lex(); 9575 9576 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9577 return true; 9578 9579 if (Val == 16) { 9580 if (!hasThumb()) 9581 return Error(L, "target does not support Thumb mode"); 9582 9583 if (!isThumb()) 9584 SwitchMode(); 9585 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9586 } else { 9587 if (!hasARM()) 9588 return Error(L, "target does not support ARM mode"); 9589 9590 if (isThumb()) 9591 SwitchMode(); 9592 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9593 } 9594 9595 return false; 9596 } 9597 9598 /// parseDirectiveReq 9599 /// ::= name .req registername 9600 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9601 MCAsmParser &Parser = getParser(); 9602 Parser.Lex(); // Eat the '.req' token. 9603 unsigned Reg; 9604 SMLoc SRegLoc, ERegLoc; 9605 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9606 "register name expected") || 9607 parseToken(AsmToken::EndOfStatement, 9608 "unexpected input in .req directive.")) 9609 return true; 9610 9611 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9612 return Error(SRegLoc, 9613 "redefinition of '" + Name + "' does not match original."); 9614 9615 return false; 9616 } 9617 9618 /// parseDirectiveUneq 9619 /// ::= .unreq registername 9620 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9621 MCAsmParser &Parser = getParser(); 9622 if (Parser.getTok().isNot(AsmToken::Identifier)) 9623 return Error(L, "unexpected input in .unreq directive."); 9624 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9625 Parser.Lex(); // Eat the identifier. 9626 if (parseToken(AsmToken::EndOfStatement, 9627 "unexpected input in '.unreq' directive")) 9628 return true; 9629 return false; 9630 } 9631 9632 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9633 // before, if supported by the new target, or emit mapping symbols for the mode 9634 // switch. 9635 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9636 if (WasThumb != isThumb()) { 9637 if (WasThumb && hasThumb()) { 9638 // Stay in Thumb mode 9639 SwitchMode(); 9640 } else if (!WasThumb && hasARM()) { 9641 // Stay in ARM mode 9642 SwitchMode(); 9643 } else { 9644 // Mode switch forced, because the new arch doesn't support the old mode. 9645 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9646 : MCAF_Code32); 9647 // Warn about the implcit mode switch. GAS does not switch modes here, 9648 // but instead stays in the old mode, reporting an error on any following 9649 // instructions as the mode does not exist on the target. 9650 Warning(Loc, Twine("new target does not support ") + 9651 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9652 (!WasThumb ? "thumb" : "arm") + " mode"); 9653 } 9654 } 9655 } 9656 9657 /// parseDirectiveArch 9658 /// ::= .arch token 9659 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9660 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9661 ARM::ArchKind ID = ARM::parseArch(Arch); 9662 9663 if (ID == ARM::ArchKind::INVALID) 9664 return Error(L, "Unknown arch name"); 9665 9666 bool WasThumb = isThumb(); 9667 Triple T; 9668 MCSubtargetInfo &STI = copySTI(); 9669 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9670 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9671 FixModeAfterArchChange(WasThumb, L); 9672 9673 getTargetStreamer().emitArch(ID); 9674 return false; 9675 } 9676 9677 /// parseDirectiveEabiAttr 9678 /// ::= .eabi_attribute int, int [, "str"] 9679 /// ::= .eabi_attribute Tag_name, int [, "str"] 9680 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9681 MCAsmParser &Parser = getParser(); 9682 int64_t Tag; 9683 SMLoc TagLoc; 9684 TagLoc = Parser.getTok().getLoc(); 9685 if (Parser.getTok().is(AsmToken::Identifier)) { 9686 StringRef Name = Parser.getTok().getIdentifier(); 9687 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9688 if (Tag == -1) { 9689 Error(TagLoc, "attribute name not recognised: " + Name); 9690 return false; 9691 } 9692 Parser.Lex(); 9693 } else { 9694 const MCExpr *AttrExpr; 9695 9696 TagLoc = Parser.getTok().getLoc(); 9697 if (Parser.parseExpression(AttrExpr)) 9698 return true; 9699 9700 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9701 if (check(!CE, TagLoc, "expected numeric constant")) 9702 return true; 9703 9704 Tag = CE->getValue(); 9705 } 9706 9707 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9708 return true; 9709 9710 StringRef StringValue = ""; 9711 bool IsStringValue = false; 9712 9713 int64_t IntegerValue = 0; 9714 bool IsIntegerValue = false; 9715 9716 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9717 IsStringValue = true; 9718 else if (Tag == ARMBuildAttrs::compatibility) { 9719 IsStringValue = true; 9720 IsIntegerValue = true; 9721 } else if (Tag < 32 || Tag % 2 == 0) 9722 IsIntegerValue = true; 9723 else if (Tag % 2 == 1) 9724 IsStringValue = true; 9725 else 9726 llvm_unreachable("invalid tag type"); 9727 9728 if (IsIntegerValue) { 9729 const MCExpr *ValueExpr; 9730 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9731 if (Parser.parseExpression(ValueExpr)) 9732 return true; 9733 9734 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9735 if (!CE) 9736 return Error(ValueExprLoc, "expected numeric constant"); 9737 IntegerValue = CE->getValue(); 9738 } 9739 9740 if (Tag == ARMBuildAttrs::compatibility) { 9741 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9742 return true; 9743 } 9744 9745 if (IsStringValue) { 9746 if (Parser.getTok().isNot(AsmToken::String)) 9747 return Error(Parser.getTok().getLoc(), "bad string constant"); 9748 9749 StringValue = Parser.getTok().getStringContents(); 9750 Parser.Lex(); 9751 } 9752 9753 if (Parser.parseToken(AsmToken::EndOfStatement, 9754 "unexpected token in '.eabi_attribute' directive")) 9755 return true; 9756 9757 if (IsIntegerValue && IsStringValue) { 9758 assert(Tag == ARMBuildAttrs::compatibility); 9759 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9760 } else if (IsIntegerValue) 9761 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9762 else if (IsStringValue) 9763 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9764 return false; 9765 } 9766 9767 /// parseDirectiveCPU 9768 /// ::= .cpu str 9769 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9770 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9771 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9772 9773 // FIXME: This is using table-gen data, but should be moved to 9774 // ARMTargetParser once that is table-gen'd. 9775 if (!getSTI().isCPUStringValid(CPU)) 9776 return Error(L, "Unknown CPU name"); 9777 9778 bool WasThumb = isThumb(); 9779 MCSubtargetInfo &STI = copySTI(); 9780 STI.setDefaultFeatures(CPU, ""); 9781 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9782 FixModeAfterArchChange(WasThumb, L); 9783 9784 return false; 9785 } 9786 9787 /// parseDirectiveFPU 9788 /// ::= .fpu str 9789 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9790 SMLoc FPUNameLoc = getTok().getLoc(); 9791 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9792 9793 unsigned ID = ARM::parseFPU(FPU); 9794 std::vector<StringRef> Features; 9795 if (!ARM::getFPUFeatures(ID, Features)) 9796 return Error(FPUNameLoc, "Unknown FPU name"); 9797 9798 MCSubtargetInfo &STI = copySTI(); 9799 for (auto Feature : Features) 9800 STI.ApplyFeatureFlag(Feature); 9801 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9802 9803 getTargetStreamer().emitFPU(ID); 9804 return false; 9805 } 9806 9807 /// parseDirectiveFnStart 9808 /// ::= .fnstart 9809 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9810 if (parseToken(AsmToken::EndOfStatement, 9811 "unexpected token in '.fnstart' directive")) 9812 return true; 9813 9814 if (UC.hasFnStart()) { 9815 Error(L, ".fnstart starts before the end of previous one"); 9816 UC.emitFnStartLocNotes(); 9817 return true; 9818 } 9819 9820 // Reset the unwind directives parser state 9821 UC.reset(); 9822 9823 getTargetStreamer().emitFnStart(); 9824 9825 UC.recordFnStart(L); 9826 return false; 9827 } 9828 9829 /// parseDirectiveFnEnd 9830 /// ::= .fnend 9831 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9832 if (parseToken(AsmToken::EndOfStatement, 9833 "unexpected token in '.fnend' directive")) 9834 return true; 9835 // Check the ordering of unwind directives 9836 if (!UC.hasFnStart()) 9837 return Error(L, ".fnstart must precede .fnend directive"); 9838 9839 // Reset the unwind directives parser state 9840 getTargetStreamer().emitFnEnd(); 9841 9842 UC.reset(); 9843 return false; 9844 } 9845 9846 /// parseDirectiveCantUnwind 9847 /// ::= .cantunwind 9848 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9849 if (parseToken(AsmToken::EndOfStatement, 9850 "unexpected token in '.cantunwind' directive")) 9851 return true; 9852 9853 UC.recordCantUnwind(L); 9854 // Check the ordering of unwind directives 9855 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9856 return true; 9857 9858 if (UC.hasHandlerData()) { 9859 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9860 UC.emitHandlerDataLocNotes(); 9861 return true; 9862 } 9863 if (UC.hasPersonality()) { 9864 Error(L, ".cantunwind can't be used with .personality directive"); 9865 UC.emitPersonalityLocNotes(); 9866 return true; 9867 } 9868 9869 getTargetStreamer().emitCantUnwind(); 9870 return false; 9871 } 9872 9873 /// parseDirectivePersonality 9874 /// ::= .personality name 9875 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9876 MCAsmParser &Parser = getParser(); 9877 bool HasExistingPersonality = UC.hasPersonality(); 9878 9879 // Parse the name of the personality routine 9880 if (Parser.getTok().isNot(AsmToken::Identifier)) 9881 return Error(L, "unexpected input in .personality directive."); 9882 StringRef Name(Parser.getTok().getIdentifier()); 9883 Parser.Lex(); 9884 9885 if (parseToken(AsmToken::EndOfStatement, 9886 "unexpected token in '.personality' directive")) 9887 return true; 9888 9889 UC.recordPersonality(L); 9890 9891 // Check the ordering of unwind directives 9892 if (!UC.hasFnStart()) 9893 return Error(L, ".fnstart must precede .personality directive"); 9894 if (UC.cantUnwind()) { 9895 Error(L, ".personality can't be used with .cantunwind directive"); 9896 UC.emitCantUnwindLocNotes(); 9897 return true; 9898 } 9899 if (UC.hasHandlerData()) { 9900 Error(L, ".personality must precede .handlerdata directive"); 9901 UC.emitHandlerDataLocNotes(); 9902 return true; 9903 } 9904 if (HasExistingPersonality) { 9905 Error(L, "multiple personality directives"); 9906 UC.emitPersonalityLocNotes(); 9907 return true; 9908 } 9909 9910 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9911 getTargetStreamer().emitPersonality(PR); 9912 return false; 9913 } 9914 9915 /// parseDirectiveHandlerData 9916 /// ::= .handlerdata 9917 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9918 if (parseToken(AsmToken::EndOfStatement, 9919 "unexpected token in '.handlerdata' directive")) 9920 return true; 9921 9922 UC.recordHandlerData(L); 9923 // Check the ordering of unwind directives 9924 if (!UC.hasFnStart()) 9925 return Error(L, ".fnstart must precede .personality directive"); 9926 if (UC.cantUnwind()) { 9927 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9928 UC.emitCantUnwindLocNotes(); 9929 return true; 9930 } 9931 9932 getTargetStreamer().emitHandlerData(); 9933 return false; 9934 } 9935 9936 /// parseDirectiveSetFP 9937 /// ::= .setfp fpreg, spreg [, offset] 9938 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9939 MCAsmParser &Parser = getParser(); 9940 // Check the ordering of unwind directives 9941 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9942 check(UC.hasHandlerData(), L, 9943 ".setfp must precede .handlerdata directive")) 9944 return true; 9945 9946 // Parse fpreg 9947 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9948 int FPReg = tryParseRegister(); 9949 9950 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9951 Parser.parseToken(AsmToken::Comma, "comma expected")) 9952 return true; 9953 9954 // Parse spreg 9955 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9956 int SPReg = tryParseRegister(); 9957 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9958 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9959 "register should be either $sp or the latest fp register")) 9960 return true; 9961 9962 // Update the frame pointer register 9963 UC.saveFPReg(FPReg); 9964 9965 // Parse offset 9966 int64_t Offset = 0; 9967 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9968 if (Parser.getTok().isNot(AsmToken::Hash) && 9969 Parser.getTok().isNot(AsmToken::Dollar)) 9970 return Error(Parser.getTok().getLoc(), "'#' expected"); 9971 Parser.Lex(); // skip hash token. 9972 9973 const MCExpr *OffsetExpr; 9974 SMLoc ExLoc = Parser.getTok().getLoc(); 9975 SMLoc EndLoc; 9976 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9977 return Error(ExLoc, "malformed setfp offset"); 9978 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9979 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9980 return true; 9981 Offset = CE->getValue(); 9982 } 9983 9984 if (Parser.parseToken(AsmToken::EndOfStatement)) 9985 return true; 9986 9987 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9988 static_cast<unsigned>(SPReg), Offset); 9989 return false; 9990 } 9991 9992 /// parseDirective 9993 /// ::= .pad offset 9994 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9995 MCAsmParser &Parser = getParser(); 9996 // Check the ordering of unwind directives 9997 if (!UC.hasFnStart()) 9998 return Error(L, ".fnstart must precede .pad directive"); 9999 if (UC.hasHandlerData()) 10000 return Error(L, ".pad must precede .handlerdata directive"); 10001 10002 // Parse the offset 10003 if (Parser.getTok().isNot(AsmToken::Hash) && 10004 Parser.getTok().isNot(AsmToken::Dollar)) 10005 return Error(Parser.getTok().getLoc(), "'#' expected"); 10006 Parser.Lex(); // skip hash token. 10007 10008 const MCExpr *OffsetExpr; 10009 SMLoc ExLoc = Parser.getTok().getLoc(); 10010 SMLoc EndLoc; 10011 if (getParser().parseExpression(OffsetExpr, EndLoc)) 10012 return Error(ExLoc, "malformed pad offset"); 10013 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10014 if (!CE) 10015 return Error(ExLoc, "pad offset must be an immediate"); 10016 10017 if (parseToken(AsmToken::EndOfStatement, 10018 "unexpected token in '.pad' directive")) 10019 return true; 10020 10021 getTargetStreamer().emitPad(CE->getValue()); 10022 return false; 10023 } 10024 10025 /// parseDirectiveRegSave 10026 /// ::= .save { registers } 10027 /// ::= .vsave { registers } 10028 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 10029 // Check the ordering of unwind directives 10030 if (!UC.hasFnStart()) 10031 return Error(L, ".fnstart must precede .save or .vsave directives"); 10032 if (UC.hasHandlerData()) 10033 return Error(L, ".save or .vsave must precede .handlerdata directive"); 10034 10035 // RAII object to make sure parsed operands are deleted. 10036 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 10037 10038 // Parse the register list 10039 if (parseRegisterList(Operands) || 10040 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10041 return true; 10042 ARMOperand &Op = (ARMOperand &)*Operands[0]; 10043 if (!IsVector && !Op.isRegList()) 10044 return Error(L, ".save expects GPR registers"); 10045 if (IsVector && !Op.isDPRRegList()) 10046 return Error(L, ".vsave expects DPR registers"); 10047 10048 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 10049 return false; 10050 } 10051 10052 /// parseDirectiveInst 10053 /// ::= .inst opcode [, ...] 10054 /// ::= .inst.n opcode [, ...] 10055 /// ::= .inst.w opcode [, ...] 10056 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 10057 int Width = 4; 10058 10059 if (isThumb()) { 10060 switch (Suffix) { 10061 case 'n': 10062 Width = 2; 10063 break; 10064 case 'w': 10065 break; 10066 default: 10067 Width = 0; 10068 break; 10069 } 10070 } else { 10071 if (Suffix) 10072 return Error(Loc, "width suffixes are invalid in ARM mode"); 10073 } 10074 10075 auto parseOne = [&]() -> bool { 10076 const MCExpr *Expr; 10077 if (getParser().parseExpression(Expr)) 10078 return true; 10079 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 10080 if (!Value) { 10081 return Error(Loc, "expected constant expression"); 10082 } 10083 10084 char CurSuffix = Suffix; 10085 switch (Width) { 10086 case 2: 10087 if (Value->getValue() > 0xffff) 10088 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 10089 break; 10090 case 4: 10091 if (Value->getValue() > 0xffffffff) 10092 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 10093 " operand is too big"); 10094 break; 10095 case 0: 10096 // Thumb mode, no width indicated. Guess from the opcode, if possible. 10097 if (Value->getValue() < 0xe800) 10098 CurSuffix = 'n'; 10099 else if (Value->getValue() >= 0xe8000000) 10100 CurSuffix = 'w'; 10101 else 10102 return Error(Loc, "cannot determine Thumb instruction size, " 10103 "use inst.n/inst.w instead"); 10104 break; 10105 default: 10106 llvm_unreachable("only supported widths are 2 and 4"); 10107 } 10108 10109 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 10110 return false; 10111 }; 10112 10113 if (parseOptionalToken(AsmToken::EndOfStatement)) 10114 return Error(Loc, "expected expression following directive"); 10115 if (parseMany(parseOne)) 10116 return true; 10117 return false; 10118 } 10119 10120 /// parseDirectiveLtorg 10121 /// ::= .ltorg | .pool 10122 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 10123 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10124 return true; 10125 getTargetStreamer().emitCurrentConstantPool(); 10126 return false; 10127 } 10128 10129 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 10130 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10131 10132 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10133 return true; 10134 10135 if (!Section) { 10136 getStreamer().InitSections(false); 10137 Section = getStreamer().getCurrentSectionOnly(); 10138 } 10139 10140 assert(Section && "must have section to emit alignment"); 10141 if (Section->UseCodeAlign()) 10142 getStreamer().EmitCodeAlignment(2); 10143 else 10144 getStreamer().EmitValueToAlignment(2); 10145 10146 return false; 10147 } 10148 10149 /// parseDirectivePersonalityIndex 10150 /// ::= .personalityindex index 10151 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 10152 MCAsmParser &Parser = getParser(); 10153 bool HasExistingPersonality = UC.hasPersonality(); 10154 10155 const MCExpr *IndexExpression; 10156 SMLoc IndexLoc = Parser.getTok().getLoc(); 10157 if (Parser.parseExpression(IndexExpression) || 10158 parseToken(AsmToken::EndOfStatement, 10159 "unexpected token in '.personalityindex' directive")) { 10160 return true; 10161 } 10162 10163 UC.recordPersonalityIndex(L); 10164 10165 if (!UC.hasFnStart()) { 10166 return Error(L, ".fnstart must precede .personalityindex directive"); 10167 } 10168 if (UC.cantUnwind()) { 10169 Error(L, ".personalityindex cannot be used with .cantunwind"); 10170 UC.emitCantUnwindLocNotes(); 10171 return true; 10172 } 10173 if (UC.hasHandlerData()) { 10174 Error(L, ".personalityindex must precede .handlerdata directive"); 10175 UC.emitHandlerDataLocNotes(); 10176 return true; 10177 } 10178 if (HasExistingPersonality) { 10179 Error(L, "multiple personality directives"); 10180 UC.emitPersonalityLocNotes(); 10181 return true; 10182 } 10183 10184 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 10185 if (!CE) 10186 return Error(IndexLoc, "index must be a constant number"); 10187 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 10188 return Error(IndexLoc, 10189 "personality routine index should be in range [0-3]"); 10190 10191 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 10192 return false; 10193 } 10194 10195 /// parseDirectiveUnwindRaw 10196 /// ::= .unwind_raw offset, opcode [, opcode...] 10197 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 10198 MCAsmParser &Parser = getParser(); 10199 int64_t StackOffset; 10200 const MCExpr *OffsetExpr; 10201 SMLoc OffsetLoc = getLexer().getLoc(); 10202 10203 if (!UC.hasFnStart()) 10204 return Error(L, ".fnstart must precede .unwind_raw directives"); 10205 if (getParser().parseExpression(OffsetExpr)) 10206 return Error(OffsetLoc, "expected expression"); 10207 10208 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10209 if (!CE) 10210 return Error(OffsetLoc, "offset must be a constant"); 10211 10212 StackOffset = CE->getValue(); 10213 10214 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 10215 return true; 10216 10217 SmallVector<uint8_t, 16> Opcodes; 10218 10219 auto parseOne = [&]() -> bool { 10220 const MCExpr *OE; 10221 SMLoc OpcodeLoc = getLexer().getLoc(); 10222 if (check(getLexer().is(AsmToken::EndOfStatement) || 10223 Parser.parseExpression(OE), 10224 OpcodeLoc, "expected opcode expression")) 10225 return true; 10226 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 10227 if (!OC) 10228 return Error(OpcodeLoc, "opcode value must be a constant"); 10229 const int64_t Opcode = OC->getValue(); 10230 if (Opcode & ~0xff) 10231 return Error(OpcodeLoc, "invalid opcode"); 10232 Opcodes.push_back(uint8_t(Opcode)); 10233 return false; 10234 }; 10235 10236 // Must have at least 1 element 10237 SMLoc OpcodeLoc = getLexer().getLoc(); 10238 if (parseOptionalToken(AsmToken::EndOfStatement)) 10239 return Error(OpcodeLoc, "expected opcode expression"); 10240 if (parseMany(parseOne)) 10241 return true; 10242 10243 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 10244 return false; 10245 } 10246 10247 /// parseDirectiveTLSDescSeq 10248 /// ::= .tlsdescseq tls-variable 10249 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 10250 MCAsmParser &Parser = getParser(); 10251 10252 if (getLexer().isNot(AsmToken::Identifier)) 10253 return TokError("expected variable after '.tlsdescseq' directive"); 10254 10255 const MCSymbolRefExpr *SRE = 10256 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10257 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10258 Lex(); 10259 10260 if (parseToken(AsmToken::EndOfStatement, 10261 "unexpected token in '.tlsdescseq' directive")) 10262 return true; 10263 10264 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10265 return false; 10266 } 10267 10268 /// parseDirectiveMovSP 10269 /// ::= .movsp reg [, #offset] 10270 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10271 MCAsmParser &Parser = getParser(); 10272 if (!UC.hasFnStart()) 10273 return Error(L, ".fnstart must precede .movsp directives"); 10274 if (UC.getFPReg() != ARM::SP) 10275 return Error(L, "unexpected .movsp directive"); 10276 10277 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10278 int SPReg = tryParseRegister(); 10279 if (SPReg == -1) 10280 return Error(SPRegLoc, "register expected"); 10281 if (SPReg == ARM::SP || SPReg == ARM::PC) 10282 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10283 10284 int64_t Offset = 0; 10285 if (Parser.parseOptionalToken(AsmToken::Comma)) { 10286 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 10287 return true; 10288 10289 const MCExpr *OffsetExpr; 10290 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10291 10292 if (Parser.parseExpression(OffsetExpr)) 10293 return Error(OffsetLoc, "malformed offset expression"); 10294 10295 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10296 if (!CE) 10297 return Error(OffsetLoc, "offset must be an immediate constant"); 10298 10299 Offset = CE->getValue(); 10300 } 10301 10302 if (parseToken(AsmToken::EndOfStatement, 10303 "unexpected token in '.movsp' directive")) 10304 return true; 10305 10306 getTargetStreamer().emitMovSP(SPReg, Offset); 10307 UC.saveFPReg(SPReg); 10308 10309 return false; 10310 } 10311 10312 /// parseDirectiveObjectArch 10313 /// ::= .object_arch name 10314 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10315 MCAsmParser &Parser = getParser(); 10316 if (getLexer().isNot(AsmToken::Identifier)) 10317 return Error(getLexer().getLoc(), "unexpected token"); 10318 10319 StringRef Arch = Parser.getTok().getString(); 10320 SMLoc ArchLoc = Parser.getTok().getLoc(); 10321 Lex(); 10322 10323 ARM::ArchKind ID = ARM::parseArch(Arch); 10324 10325 if (ID == ARM::ArchKind::INVALID) 10326 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10327 if (parseToken(AsmToken::EndOfStatement)) 10328 return true; 10329 10330 getTargetStreamer().emitObjectArch(ID); 10331 return false; 10332 } 10333 10334 /// parseDirectiveAlign 10335 /// ::= .align 10336 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10337 // NOTE: if this is not the end of the statement, fall back to the target 10338 // agnostic handling for this directive which will correctly handle this. 10339 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10340 // '.align' is target specifically handled to mean 2**2 byte alignment. 10341 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10342 assert(Section && "must have section to emit alignment"); 10343 if (Section->UseCodeAlign()) 10344 getStreamer().EmitCodeAlignment(4, 0); 10345 else 10346 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10347 return false; 10348 } 10349 return true; 10350 } 10351 10352 /// parseDirectiveThumbSet 10353 /// ::= .thumb_set name, value 10354 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10355 MCAsmParser &Parser = getParser(); 10356 10357 StringRef Name; 10358 if (check(Parser.parseIdentifier(Name), 10359 "expected identifier after '.thumb_set'") || 10360 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10361 return true; 10362 10363 MCSymbol *Sym; 10364 const MCExpr *Value; 10365 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10366 Parser, Sym, Value)) 10367 return true; 10368 10369 getTargetStreamer().emitThumbSet(Sym, Value); 10370 return false; 10371 } 10372 10373 /// Force static initialization. 10374 extern "C" void LLVMInitializeARMAsmParser() { 10375 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10376 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10377 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10378 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10379 } 10380 10381 #define GET_REGISTER_MATCHER 10382 #define GET_SUBTARGET_FEATURE_NAME 10383 #define GET_MATCHER_IMPLEMENTATION 10384 #define GET_MNEMONIC_SPELL_CHECKER 10385 #include "ARMGenAsmMatcher.inc" 10386 10387 // Some diagnostics need to vary with subtarget features, so they are handled 10388 // here. For example, the DPR class has either 16 or 32 registers, depending 10389 // on the FPU available. 10390 const char * 10391 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 10392 switch (MatchError) { 10393 // rGPR contains sp starting with ARMv8. 10394 case Match_rGPR: 10395 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 10396 : "operand must be a register in range [r0, r12] or r14"; 10397 // DPR contains 16 registers for some FPUs, and 32 for others. 10398 case Match_DPR: 10399 return hasD16() ? "operand must be a register in range [d0, d15]" 10400 : "operand must be a register in range [d0, d31]"; 10401 case Match_DPR_RegList: 10402 return hasD16() ? "operand must be a list of registers in range [d0, d15]" 10403 : "operand must be a list of registers in range [d0, d31]"; 10404 10405 // For all other diags, use the static string from tablegen. 10406 default: 10407 return getMatchKindDiag(MatchError); 10408 } 10409 } 10410 10411 // Process the list of near-misses, throwing away ones we don't want to report 10412 // to the user, and converting the rest to a source location and string that 10413 // should be reported. 10414 void 10415 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 10416 SmallVectorImpl<NearMissMessage> &NearMissesOut, 10417 SMLoc IDLoc, OperandVector &Operands) { 10418 // TODO: If operand didn't match, sub in a dummy one and run target 10419 // predicate, so that we can avoid reporting near-misses that are invalid? 10420 // TODO: Many operand types dont have SuperClasses set, so we report 10421 // redundant ones. 10422 // TODO: Some operands are superclasses of registers (e.g. 10423 // MCK_RegShiftedImm), we don't have any way to represent that currently. 10424 // TODO: This is not all ARM-specific, can some of it be factored out? 10425 10426 // Record some information about near-misses that we have already seen, so 10427 // that we can avoid reporting redundant ones. For example, if there are 10428 // variants of an instruction that take 8- and 16-bit immediates, we want 10429 // to only report the widest one. 10430 std::multimap<unsigned, unsigned> OperandMissesSeen; 10431 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 10432 bool ReportedTooFewOperands = false; 10433 10434 // Process the near-misses in reverse order, so that we see more general ones 10435 // first, and so can avoid emitting more specific ones. 10436 for (NearMissInfo &I : reverse(NearMissesIn)) { 10437 switch (I.getKind()) { 10438 case NearMissInfo::NearMissOperand: { 10439 SMLoc OperandLoc = 10440 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 10441 const char *OperandDiag = 10442 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 10443 10444 // If we have already emitted a message for a superclass, don't also report 10445 // the sub-class. We consider all operand classes that we don't have a 10446 // specialised diagnostic for to be equal for the propose of this check, 10447 // so that we don't report the generic error multiple times on the same 10448 // operand. 10449 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 10450 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 10451 if (std::any_of(PrevReports.first, PrevReports.second, 10452 [DupCheckMatchClass]( 10453 const std::pair<unsigned, unsigned> Pair) { 10454 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 10455 return Pair.second == DupCheckMatchClass; 10456 else 10457 return isSubclass((MatchClassKind)DupCheckMatchClass, 10458 (MatchClassKind)Pair.second); 10459 })) 10460 break; 10461 OperandMissesSeen.insert( 10462 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 10463 10464 NearMissMessage Message; 10465 Message.Loc = OperandLoc; 10466 if (OperandDiag) { 10467 Message.Message = OperandDiag; 10468 } else if (I.getOperandClass() == InvalidMatchClass) { 10469 Message.Message = "too many operands for instruction"; 10470 } else { 10471 Message.Message = "invalid operand for instruction"; 10472 LLVM_DEBUG( 10473 dbgs() << "Missing diagnostic string for operand class " 10474 << getMatchClassName((MatchClassKind)I.getOperandClass()) 10475 << I.getOperandClass() << ", error " << I.getOperandError() 10476 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 10477 } 10478 NearMissesOut.emplace_back(Message); 10479 break; 10480 } 10481 case NearMissInfo::NearMissFeature: { 10482 const FeatureBitset &MissingFeatures = I.getFeatures(); 10483 // Don't report the same set of features twice. 10484 if (FeatureMissesSeen.count(MissingFeatures)) 10485 break; 10486 FeatureMissesSeen.insert(MissingFeatures); 10487 10488 // Special case: don't report a feature set which includes arm-mode for 10489 // targets that don't have ARM mode. 10490 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 10491 break; 10492 // Don't report any near-misses that both require switching instruction 10493 // set, and adding other subtarget features. 10494 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 10495 MissingFeatures.count() > 1) 10496 break; 10497 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 10498 MissingFeatures.count() > 1) 10499 break; 10500 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 10501 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 10502 Feature_IsThumbBit})).any()) 10503 break; 10504 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 10505 break; 10506 10507 NearMissMessage Message; 10508 Message.Loc = IDLoc; 10509 raw_svector_ostream OS(Message.Message); 10510 10511 OS << "instruction requires:"; 10512 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 10513 if (MissingFeatures.test(i)) 10514 OS << ' ' << getSubtargetFeatureName(i); 10515 10516 NearMissesOut.emplace_back(Message); 10517 10518 break; 10519 } 10520 case NearMissInfo::NearMissPredicate: { 10521 NearMissMessage Message; 10522 Message.Loc = IDLoc; 10523 switch (I.getPredicateError()) { 10524 case Match_RequiresNotITBlock: 10525 Message.Message = "flag setting instruction only valid outside IT block"; 10526 break; 10527 case Match_RequiresITBlock: 10528 Message.Message = "instruction only valid inside IT block"; 10529 break; 10530 case Match_RequiresV6: 10531 Message.Message = "instruction variant requires ARMv6 or later"; 10532 break; 10533 case Match_RequiresThumb2: 10534 Message.Message = "instruction variant requires Thumb2"; 10535 break; 10536 case Match_RequiresV8: 10537 Message.Message = "instruction variant requires ARMv8 or later"; 10538 break; 10539 case Match_RequiresFlagSetting: 10540 Message.Message = "no flag-preserving variant of this instruction available"; 10541 break; 10542 case Match_InvalidOperand: 10543 Message.Message = "invalid operand for instruction"; 10544 break; 10545 default: 10546 llvm_unreachable("Unhandled target predicate error"); 10547 break; 10548 } 10549 NearMissesOut.emplace_back(Message); 10550 break; 10551 } 10552 case NearMissInfo::NearMissTooFewOperands: { 10553 if (!ReportedTooFewOperands) { 10554 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 10555 NearMissesOut.emplace_back(NearMissMessage{ 10556 EndLoc, StringRef("too few operands for instruction")}); 10557 ReportedTooFewOperands = true; 10558 } 10559 break; 10560 } 10561 case NearMissInfo::NoNearMiss: 10562 // This should never leave the matcher. 10563 llvm_unreachable("not a near-miss"); 10564 break; 10565 } 10566 } 10567 } 10568 10569 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 10570 SMLoc IDLoc, OperandVector &Operands) { 10571 SmallVector<NearMissMessage, 4> Messages; 10572 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 10573 10574 if (Messages.size() == 0) { 10575 // No near-misses were found, so the best we can do is "invalid 10576 // instruction". 10577 Error(IDLoc, "invalid instruction"); 10578 } else if (Messages.size() == 1) { 10579 // One near miss was found, report it as the sole error. 10580 Error(Messages[0].Loc, Messages[0].Message); 10581 } else { 10582 // More than one near miss, so report a generic "invalid instruction" 10583 // error, followed by notes for each of the near-misses. 10584 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 10585 for (auto &M : Messages) { 10586 Note(M.Loc, M.Message); 10587 } 10588 } 10589 } 10590 10591 /// parseDirectiveArchExtension 10592 /// ::= .arch_extension [no]feature 10593 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10594 // FIXME: This structure should be moved inside ARMTargetParser 10595 // when we start to table-generate them, and we can use the ARM 10596 // flags below, that were generated by table-gen. 10597 static const struct { 10598 const unsigned Kind; 10599 const FeatureBitset ArchCheck; 10600 const FeatureBitset Features; 10601 } Extensions[] = { 10602 { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} }, 10603 { ARM::AEK_CRYPTO, {Feature_HasV8Bit}, 10604 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10605 { ARM::AEK_FP, {Feature_HasV8Bit}, {ARM::FeatureFPARMv8} }, 10606 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 10607 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 10608 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 10609 { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit}, 10610 {ARM::FeatureMP} }, 10611 { ARM::AEK_SIMD, {Feature_HasV8Bit}, 10612 {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10613 { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} }, 10614 // FIXME: Only available in A-class, isel not predicated 10615 { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} }, 10616 { ARM::AEK_FP16, {Feature_HasV8_2aBit}, 10617 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10618 { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} }, 10619 // FIXME: Unsupported extensions. 10620 { ARM::AEK_OS, {}, {} }, 10621 { ARM::AEK_IWMMXT, {}, {} }, 10622 { ARM::AEK_IWMMXT2, {}, {} }, 10623 { ARM::AEK_MAVERICK, {}, {} }, 10624 { ARM::AEK_XSCALE, {}, {} }, 10625 }; 10626 10627 MCAsmParser &Parser = getParser(); 10628 10629 if (getLexer().isNot(AsmToken::Identifier)) 10630 return Error(getLexer().getLoc(), "expected architecture extension name"); 10631 10632 StringRef Name = Parser.getTok().getString(); 10633 SMLoc ExtLoc = Parser.getTok().getLoc(); 10634 Lex(); 10635 10636 if (parseToken(AsmToken::EndOfStatement, 10637 "unexpected token in '.arch_extension' directive")) 10638 return true; 10639 10640 bool EnableFeature = true; 10641 if (Name.startswith_lower("no")) { 10642 EnableFeature = false; 10643 Name = Name.substr(2); 10644 } 10645 unsigned FeatureKind = ARM::parseArchExt(Name); 10646 if (FeatureKind == ARM::AEK_INVALID) 10647 return Error(ExtLoc, "unknown architectural extension: " + Name); 10648 10649 for (const auto &Extension : Extensions) { 10650 if (Extension.Kind != FeatureKind) 10651 continue; 10652 10653 if (Extension.Features.none()) 10654 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10655 10656 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10657 return Error(ExtLoc, "architectural extension '" + Name + 10658 "' is not " 10659 "allowed for the current base architecture"); 10660 10661 MCSubtargetInfo &STI = copySTI(); 10662 FeatureBitset ToggleFeatures = EnableFeature 10663 ? (~STI.getFeatureBits() & Extension.Features) 10664 : ( STI.getFeatureBits() & Extension.Features); 10665 10666 FeatureBitset Features = 10667 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10668 setAvailableFeatures(Features); 10669 return false; 10670 } 10671 10672 return Error(ExtLoc, "unknown architectural extension: " + Name); 10673 } 10674 10675 // Define this matcher function after the auto-generated include so we 10676 // have the match class enum definitions. 10677 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10678 unsigned Kind) { 10679 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10680 // If the kind is a token for a literal immediate, check if our asm 10681 // operand matches. This is for InstAliases which have a fixed-value 10682 // immediate in the syntax. 10683 switch (Kind) { 10684 default: break; 10685 case MCK__35_0: 10686 if (Op.isImm()) 10687 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10688 if (CE->getValue() == 0) 10689 return Match_Success; 10690 break; 10691 case MCK_ModImm: 10692 if (Op.isImm()) { 10693 const MCExpr *SOExpr = Op.getImm(); 10694 int64_t Value; 10695 if (!SOExpr->evaluateAsAbsolute(Value)) 10696 return Match_Success; 10697 assert((Value >= std::numeric_limits<int32_t>::min() && 10698 Value <= std::numeric_limits<uint32_t>::max()) && 10699 "expression value must be representable in 32 bits"); 10700 } 10701 break; 10702 case MCK_rGPR: 10703 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10704 return Match_Success; 10705 return Match_rGPR; 10706 case MCK_GPRPair: 10707 if (Op.isReg() && 10708 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10709 return Match_Success; 10710 break; 10711 } 10712 return Match_InvalidOperand; 10713 } 10714