1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ARMFeatures.h"
11 #include "Utils/ARMBaseInfo.h"
12 #include "MCTargetDesc/ARMAddressingModes.h"
13 #include "MCTargetDesc/ARMBaseInfo.h"
14 #include "MCTargetDesc/ARMMCExpr.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCInst.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCInstrInfo.h"
32 #include "llvm/MC/MCObjectFileInfo.h"
33 #include "llvm/MC/MCParser/MCAsmLexer.h"
34 #include "llvm/MC/MCParser/MCAsmParser.h"
35 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
36 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
37 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
38 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/MC/MCSection.h"
41 #include "llvm/MC/MCStreamer.h"
42 #include "llvm/MC/MCSubtargetInfo.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/MC/SubtargetFeature.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/ARMEHABI.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/SMLoc.h"
53 #include "llvm/Support/TargetParser.h"
54 #include "llvm/Support/TargetRegistry.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstddef>
59 #include <cstdint>
60 #include <iterator>
61 #include <limits>
62 #include <memory>
63 #include <string>
64 #include <utility>
65 #include <vector>
66 
67 #define DEBUG_TYPE "asm-parser"
68 
69 using namespace llvm;
70 
71 namespace {
72 
73 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
74 
75 static cl::opt<ImplicitItModeTy> ImplicitItMode(
76     "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
77     cl::desc("Allow conditional instructions outdside of an IT block"),
78     cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
79                           "Accept in both ISAs, emit implicit ITs in Thumb"),
80                clEnumValN(ImplicitItModeTy::Never, "never",
81                           "Warn in ARM, reject in Thumb"),
82                clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
83                           "Accept in ARM, reject in Thumb"),
84                clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
85                           "Warn in ARM, emit implicit ITs in Thumb")));
86 
87 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
88                                         cl::init(false));
89 
90 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
91 
92 class UnwindContext {
93   using Locs = SmallVector<SMLoc, 4>;
94 
95   MCAsmParser &Parser;
96   Locs FnStartLocs;
97   Locs CantUnwindLocs;
98   Locs PersonalityLocs;
99   Locs PersonalityIndexLocs;
100   Locs HandlerDataLocs;
101   int FPReg;
102 
103 public:
104   UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
105 
106   bool hasFnStart() const { return !FnStartLocs.empty(); }
107   bool cantUnwind() const { return !CantUnwindLocs.empty(); }
108   bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
109 
110   bool hasPersonality() const {
111     return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
112   }
113 
114   void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
115   void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
116   void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
117   void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
118   void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
119 
120   void saveFPReg(int Reg) { FPReg = Reg; }
121   int getFPReg() const { return FPReg; }
122 
123   void emitFnStartLocNotes() const {
124     for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
125          FI != FE; ++FI)
126       Parser.Note(*FI, ".fnstart was specified here");
127   }
128 
129   void emitCantUnwindLocNotes() const {
130     for (Locs::const_iterator UI = CantUnwindLocs.begin(),
131                               UE = CantUnwindLocs.end(); UI != UE; ++UI)
132       Parser.Note(*UI, ".cantunwind was specified here");
133   }
134 
135   void emitHandlerDataLocNotes() const {
136     for (Locs::const_iterator HI = HandlerDataLocs.begin(),
137                               HE = HandlerDataLocs.end(); HI != HE; ++HI)
138       Parser.Note(*HI, ".handlerdata was specified here");
139   }
140 
141   void emitPersonalityLocNotes() const {
142     for (Locs::const_iterator PI = PersonalityLocs.begin(),
143                               PE = PersonalityLocs.end(),
144                               PII = PersonalityIndexLocs.begin(),
145                               PIE = PersonalityIndexLocs.end();
146          PI != PE || PII != PIE;) {
147       if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
148         Parser.Note(*PI++, ".personality was specified here");
149       else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
150         Parser.Note(*PII++, ".personalityindex was specified here");
151       else
152         llvm_unreachable(".personality and .personalityindex cannot be "
153                          "at the same location");
154     }
155   }
156 
157   void reset() {
158     FnStartLocs = Locs();
159     CantUnwindLocs = Locs();
160     PersonalityLocs = Locs();
161     HandlerDataLocs = Locs();
162     PersonalityIndexLocs = Locs();
163     FPReg = ARM::SP;
164   }
165 };
166 
167 class ARMAsmParser : public MCTargetAsmParser {
168   const MCRegisterInfo *MRI;
169   UnwindContext UC;
170 
171   ARMTargetStreamer &getTargetStreamer() {
172     assert(getParser().getStreamer().getTargetStreamer() &&
173            "do not have a target streamer");
174     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
175     return static_cast<ARMTargetStreamer &>(TS);
176   }
177 
178   // Map of register aliases registers via the .req directive.
179   StringMap<unsigned> RegisterReqs;
180 
181   bool NextSymbolIsThumb;
182 
183   bool useImplicitITThumb() const {
184     return ImplicitItMode == ImplicitItModeTy::Always ||
185            ImplicitItMode == ImplicitItModeTy::ThumbOnly;
186   }
187 
188   bool useImplicitITARM() const {
189     return ImplicitItMode == ImplicitItModeTy::Always ||
190            ImplicitItMode == ImplicitItModeTy::ARMOnly;
191   }
192 
193   struct {
194     ARMCC::CondCodes Cond;    // Condition for IT block.
195     unsigned Mask:4;          // Condition mask for instructions.
196                               // Starting at first 1 (from lsb).
197                               //   '1'  condition as indicated in IT.
198                               //   '0'  inverse of condition (else).
199                               // Count of instructions in IT block is
200                               // 4 - trailingzeroes(mask)
201                               // Note that this does not have the same encoding
202                               // as in the IT instruction, which also depends
203                               // on the low bit of the condition code.
204 
205     unsigned CurPosition;     // Current position in parsing of IT
206                               // block. In range [0,4], with 0 being the IT
207                               // instruction itself. Initialized according to
208                               // count of instructions in block.  ~0U if no
209                               // active IT block.
210 
211     bool IsExplicit;          // true  - The IT instruction was present in the
212                               //         input, we should not modify it.
213                               // false - The IT instruction was added
214                               //         implicitly, we can extend it if that
215                               //         would be legal.
216   } ITState;
217 
218   SmallVector<MCInst, 4> PendingConditionalInsts;
219 
220   void flushPendingInstructions(MCStreamer &Out) override {
221     if (!inImplicitITBlock()) {
222       assert(PendingConditionalInsts.size() == 0);
223       return;
224     }
225 
226     // Emit the IT instruction
227     unsigned Mask = getITMaskEncoding();
228     MCInst ITInst;
229     ITInst.setOpcode(ARM::t2IT);
230     ITInst.addOperand(MCOperand::createImm(ITState.Cond));
231     ITInst.addOperand(MCOperand::createImm(Mask));
232     Out.EmitInstruction(ITInst, getSTI());
233 
234     // Emit the conditonal instructions
235     assert(PendingConditionalInsts.size() <= 4);
236     for (const MCInst &Inst : PendingConditionalInsts) {
237       Out.EmitInstruction(Inst, getSTI());
238     }
239     PendingConditionalInsts.clear();
240 
241     // Clear the IT state
242     ITState.Mask = 0;
243     ITState.CurPosition = ~0U;
244   }
245 
246   bool inITBlock() { return ITState.CurPosition != ~0U; }
247   bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
248   bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
249 
250   bool lastInITBlock() {
251     return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
252   }
253 
254   void forwardITPosition() {
255     if (!inITBlock()) return;
256     // Move to the next instruction in the IT block, if there is one. If not,
257     // mark the block as done, except for implicit IT blocks, which we leave
258     // open until we find an instruction that can't be added to it.
259     unsigned TZ = countTrailingZeros(ITState.Mask);
260     if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
261       ITState.CurPosition = ~0U; // Done with the IT block after this.
262   }
263 
264   // Rewind the state of the current IT block, removing the last slot from it.
265   void rewindImplicitITPosition() {
266     assert(inImplicitITBlock());
267     assert(ITState.CurPosition > 1);
268     ITState.CurPosition--;
269     unsigned TZ = countTrailingZeros(ITState.Mask);
270     unsigned NewMask = 0;
271     NewMask |= ITState.Mask & (0xC << TZ);
272     NewMask |= 0x2 << TZ;
273     ITState.Mask = NewMask;
274   }
275 
276   // Rewind the state of the current IT block, removing the last slot from it.
277   // If we were at the first slot, this closes the IT block.
278   void discardImplicitITBlock() {
279     assert(inImplicitITBlock());
280     assert(ITState.CurPosition == 1);
281     ITState.CurPosition = ~0U;
282   }
283 
284   // Return the low-subreg of a given Q register.
285   unsigned getDRegFromQReg(unsigned QReg) const {
286     return MRI->getSubReg(QReg, ARM::dsub_0);
287   }
288 
289   // Get the encoding of the IT mask, as it will appear in an IT instruction.
290   unsigned getITMaskEncoding() {
291     assert(inITBlock());
292     unsigned Mask = ITState.Mask;
293     unsigned TZ = countTrailingZeros(Mask);
294     if ((ITState.Cond & 1) == 0) {
295       assert(Mask && TZ <= 3 && "illegal IT mask value!");
296       Mask ^= (0xE << TZ) & 0xF;
297     }
298     return Mask;
299   }
300 
301   // Get the condition code corresponding to the current IT block slot.
302   ARMCC::CondCodes currentITCond() {
303     unsigned MaskBit;
304     if (ITState.CurPosition == 1)
305       MaskBit = 1;
306     else
307       MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
308 
309     return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond);
310   }
311 
312   // Invert the condition of the current IT block slot without changing any
313   // other slots in the same block.
314   void invertCurrentITCondition() {
315     if (ITState.CurPosition == 1) {
316       ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
317     } else {
318       ITState.Mask ^= 1 << (5 - ITState.CurPosition);
319     }
320   }
321 
322   // Returns true if the current IT block is full (all 4 slots used).
323   bool isITBlockFull() {
324     return inITBlock() && (ITState.Mask & 1);
325   }
326 
327   // Extend the current implicit IT block to have one more slot with the given
328   // condition code.
329   void extendImplicitITBlock(ARMCC::CondCodes Cond) {
330     assert(inImplicitITBlock());
331     assert(!isITBlockFull());
332     assert(Cond == ITState.Cond ||
333            Cond == ARMCC::getOppositeCondition(ITState.Cond));
334     unsigned TZ = countTrailingZeros(ITState.Mask);
335     unsigned NewMask = 0;
336     // Keep any existing condition bits.
337     NewMask |= ITState.Mask & (0xE << TZ);
338     // Insert the new condition bit.
339     NewMask |= (Cond == ITState.Cond) << TZ;
340     // Move the trailing 1 down one bit.
341     NewMask |= 1 << (TZ - 1);
342     ITState.Mask = NewMask;
343   }
344 
345   // Create a new implicit IT block with a dummy condition code.
346   void startImplicitITBlock() {
347     assert(!inITBlock());
348     ITState.Cond = ARMCC::AL;
349     ITState.Mask = 8;
350     ITState.CurPosition = 1;
351     ITState.IsExplicit = false;
352   }
353 
354   // Create a new explicit IT block with the given condition and mask. The mask
355   // should be in the parsed format, with a 1 implying 't', regardless of the
356   // low bit of the condition.
357   void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
358     assert(!inITBlock());
359     ITState.Cond = Cond;
360     ITState.Mask = Mask;
361     ITState.CurPosition = 0;
362     ITState.IsExplicit = true;
363   }
364 
365   void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
366     return getParser().Note(L, Msg, Range);
367   }
368 
369   bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
370     return getParser().Warning(L, Msg, Range);
371   }
372 
373   bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
374     return getParser().Error(L, Msg, Range);
375   }
376 
377   bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
378                            unsigned ListNo, bool IsARPop = false);
379   bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
380                            unsigned ListNo);
381 
382   int tryParseRegister();
383   bool tryParseRegisterWithWriteBack(OperandVector &);
384   int tryParseShiftRegister(OperandVector &);
385   bool parseRegisterList(OperandVector &);
386   bool parseMemory(OperandVector &);
387   bool parseOperand(OperandVector &, StringRef Mnemonic);
388   bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
389   bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
390                               unsigned &ShiftAmount);
391   bool parseLiteralValues(unsigned Size, SMLoc L);
392   bool parseDirectiveThumb(SMLoc L);
393   bool parseDirectiveARM(SMLoc L);
394   bool parseDirectiveThumbFunc(SMLoc L);
395   bool parseDirectiveCode(SMLoc L);
396   bool parseDirectiveSyntax(SMLoc L);
397   bool parseDirectiveReq(StringRef Name, SMLoc L);
398   bool parseDirectiveUnreq(SMLoc L);
399   bool parseDirectiveArch(SMLoc L);
400   bool parseDirectiveEabiAttr(SMLoc L);
401   bool parseDirectiveCPU(SMLoc L);
402   bool parseDirectiveFPU(SMLoc L);
403   bool parseDirectiveFnStart(SMLoc L);
404   bool parseDirectiveFnEnd(SMLoc L);
405   bool parseDirectiveCantUnwind(SMLoc L);
406   bool parseDirectivePersonality(SMLoc L);
407   bool parseDirectiveHandlerData(SMLoc L);
408   bool parseDirectiveSetFP(SMLoc L);
409   bool parseDirectivePad(SMLoc L);
410   bool parseDirectiveRegSave(SMLoc L, bool IsVector);
411   bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
412   bool parseDirectiveLtorg(SMLoc L);
413   bool parseDirectiveEven(SMLoc L);
414   bool parseDirectivePersonalityIndex(SMLoc L);
415   bool parseDirectiveUnwindRaw(SMLoc L);
416   bool parseDirectiveTLSDescSeq(SMLoc L);
417   bool parseDirectiveMovSP(SMLoc L);
418   bool parseDirectiveObjectArch(SMLoc L);
419   bool parseDirectiveArchExtension(SMLoc L);
420   bool parseDirectiveAlign(SMLoc L);
421   bool parseDirectiveThumbSet(SMLoc L);
422 
423   StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
424                           bool &CarrySetting, unsigned &ProcessorIMod,
425                           StringRef &ITMask);
426   void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
427                              bool &CanAcceptCarrySet,
428                              bool &CanAcceptPredicationCode);
429 
430   void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
431                                      OperandVector &Operands);
432   bool isThumb() const {
433     // FIXME: Can tablegen auto-generate this?
434     return getSTI().getFeatureBits()[ARM::ModeThumb];
435   }
436 
437   bool isThumbOne() const {
438     return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
439   }
440 
441   bool isThumbTwo() const {
442     return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
443   }
444 
445   bool hasThumb() const {
446     return getSTI().getFeatureBits()[ARM::HasV4TOps];
447   }
448 
449   bool hasThumb2() const {
450     return getSTI().getFeatureBits()[ARM::FeatureThumb2];
451   }
452 
453   bool hasV6Ops() const {
454     return getSTI().getFeatureBits()[ARM::HasV6Ops];
455   }
456 
457   bool hasV6T2Ops() const {
458     return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
459   }
460 
461   bool hasV6MOps() const {
462     return getSTI().getFeatureBits()[ARM::HasV6MOps];
463   }
464 
465   bool hasV7Ops() const {
466     return getSTI().getFeatureBits()[ARM::HasV7Ops];
467   }
468 
469   bool hasV8Ops() const {
470     return getSTI().getFeatureBits()[ARM::HasV8Ops];
471   }
472 
473   bool hasV8MBaseline() const {
474     return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
475   }
476 
477   bool hasV8MMainline() const {
478     return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
479   }
480 
481   bool has8MSecExt() const {
482     return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
483   }
484 
485   bool hasARM() const {
486     return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
487   }
488 
489   bool hasDSP() const {
490     return getSTI().getFeatureBits()[ARM::FeatureDSP];
491   }
492 
493   bool hasD16() const {
494     return getSTI().getFeatureBits()[ARM::FeatureD16];
495   }
496 
497   bool hasV8_1aOps() const {
498     return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
499   }
500 
501   bool hasRAS() const {
502     return getSTI().getFeatureBits()[ARM::FeatureRAS];
503   }
504 
505   void SwitchMode() {
506     MCSubtargetInfo &STI = copySTI();
507     uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
508     setAvailableFeatures(FB);
509   }
510 
511   void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
512 
513   bool isMClass() const {
514     return getSTI().getFeatureBits()[ARM::FeatureMClass];
515   }
516 
517   /// @name Auto-generated Match Functions
518   /// {
519 
520 #define GET_ASSEMBLER_HEADER
521 #include "ARMGenAsmMatcher.inc"
522 
523   /// }
524 
525   OperandMatchResultTy parseITCondCode(OperandVector &);
526   OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
527   OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
528   OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
529   OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
530   OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
531   OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
532   OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
533   OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
534   OperandMatchResultTy parseBankedRegOperand(OperandVector &);
535   OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
536                                    int High);
537   OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
538     return parsePKHImm(O, "lsl", 0, 31);
539   }
540   OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
541     return parsePKHImm(O, "asr", 1, 32);
542   }
543   OperandMatchResultTy parseSetEndImm(OperandVector &);
544   OperandMatchResultTy parseShifterImm(OperandVector &);
545   OperandMatchResultTy parseRotImm(OperandVector &);
546   OperandMatchResultTy parseModImm(OperandVector &);
547   OperandMatchResultTy parseBitfield(OperandVector &);
548   OperandMatchResultTy parsePostIdxReg(OperandVector &);
549   OperandMatchResultTy parseAM3Offset(OperandVector &);
550   OperandMatchResultTy parseFPImm(OperandVector &);
551   OperandMatchResultTy parseVectorList(OperandVector &);
552   OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
553                                        SMLoc &EndLoc);
554 
555   // Asm Match Converter Methods
556   void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
557   void cvtThumbBranches(MCInst &Inst, const OperandVector &);
558 
559   bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
560   bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
561   bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
562   bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
563   bool isITBlockTerminator(MCInst &Inst) const;
564   void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
565   bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
566                         bool Load, bool ARMMode, bool Writeback);
567 
568 public:
569   enum ARMMatchResultTy {
570     Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
571     Match_RequiresNotITBlock,
572     Match_RequiresV6,
573     Match_RequiresThumb2,
574     Match_RequiresV8,
575     Match_RequiresFlagSetting,
576 #define GET_OPERAND_DIAGNOSTIC_TYPES
577 #include "ARMGenAsmMatcher.inc"
578 
579   };
580 
581   ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
582                const MCInstrInfo &MII, const MCTargetOptions &Options)
583     : MCTargetAsmParser(Options, STI, MII), UC(Parser) {
584     MCAsmParserExtension::Initialize(Parser);
585 
586     // Cache the MCRegisterInfo.
587     MRI = getContext().getRegisterInfo();
588 
589     // Initialize the set of available features.
590     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
591 
592     // Add build attributes based on the selected target.
593     if (AddBuildAttributes)
594       getTargetStreamer().emitTargetAttributes(STI);
595 
596     // Not in an ITBlock to start with.
597     ITState.CurPosition = ~0U;
598 
599     NextSymbolIsThumb = false;
600   }
601 
602   // Implementation of the MCTargetAsmParser interface:
603   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
604   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
605                         SMLoc NameLoc, OperandVector &Operands) override;
606   bool ParseDirective(AsmToken DirectiveID) override;
607 
608   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
609                                       unsigned Kind) override;
610   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
611 
612   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
613                                OperandVector &Operands, MCStreamer &Out,
614                                uint64_t &ErrorInfo,
615                                bool MatchingInlineAsm) override;
616   unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
617                             SmallVectorImpl<NearMissInfo> &NearMisses,
618                             bool MatchingInlineAsm, bool &EmitInITBlock,
619                             MCStreamer &Out);
620 
621   struct NearMissMessage {
622     SMLoc Loc;
623     SmallString<128> Message;
624   };
625 
626   const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
627 
628   void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
629                         SmallVectorImpl<NearMissMessage> &NearMissesOut,
630                         SMLoc IDLoc, OperandVector &Operands);
631   void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
632                         OperandVector &Operands);
633 
634   void doBeforeLabelEmit(MCSymbol *Symbol) override;
635 
636   void onLabelParsed(MCSymbol *Symbol) override;
637 };
638 
639 /// ARMOperand - Instances of this class represent a parsed ARM machine
640 /// operand.
641 class ARMOperand : public MCParsedAsmOperand {
642   enum KindTy {
643     k_CondCode,
644     k_CCOut,
645     k_ITCondMask,
646     k_CoprocNum,
647     k_CoprocReg,
648     k_CoprocOption,
649     k_Immediate,
650     k_MemBarrierOpt,
651     k_InstSyncBarrierOpt,
652     k_TraceSyncBarrierOpt,
653     k_Memory,
654     k_PostIndexRegister,
655     k_MSRMask,
656     k_BankedReg,
657     k_ProcIFlags,
658     k_VectorIndex,
659     k_Register,
660     k_RegisterList,
661     k_DPRRegisterList,
662     k_SPRRegisterList,
663     k_VectorList,
664     k_VectorListAllLanes,
665     k_VectorListIndexed,
666     k_ShiftedRegister,
667     k_ShiftedImmediate,
668     k_ShifterImmediate,
669     k_RotateImmediate,
670     k_ModifiedImmediate,
671     k_ConstantPoolImmediate,
672     k_BitfieldDescriptor,
673     k_Token,
674   } Kind;
675 
676   SMLoc StartLoc, EndLoc, AlignmentLoc;
677   SmallVector<unsigned, 8> Registers;
678 
679   struct CCOp {
680     ARMCC::CondCodes Val;
681   };
682 
683   struct CopOp {
684     unsigned Val;
685   };
686 
687   struct CoprocOptionOp {
688     unsigned Val;
689   };
690 
691   struct ITMaskOp {
692     unsigned Mask:4;
693   };
694 
695   struct MBOptOp {
696     ARM_MB::MemBOpt Val;
697   };
698 
699   struct ISBOptOp {
700     ARM_ISB::InstSyncBOpt Val;
701   };
702 
703   struct TSBOptOp {
704     ARM_TSB::TraceSyncBOpt Val;
705   };
706 
707   struct IFlagsOp {
708     ARM_PROC::IFlags Val;
709   };
710 
711   struct MMaskOp {
712     unsigned Val;
713   };
714 
715   struct BankedRegOp {
716     unsigned Val;
717   };
718 
719   struct TokOp {
720     const char *Data;
721     unsigned Length;
722   };
723 
724   struct RegOp {
725     unsigned RegNum;
726   };
727 
728   // A vector register list is a sequential list of 1 to 4 registers.
729   struct VectorListOp {
730     unsigned RegNum;
731     unsigned Count;
732     unsigned LaneIndex;
733     bool isDoubleSpaced;
734   };
735 
736   struct VectorIndexOp {
737     unsigned Val;
738   };
739 
740   struct ImmOp {
741     const MCExpr *Val;
742   };
743 
744   /// Combined record for all forms of ARM address expressions.
745   struct MemoryOp {
746     unsigned BaseRegNum;
747     // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
748     // was specified.
749     const MCConstantExpr *OffsetImm;  // Offset immediate value
750     unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
751     ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
752     unsigned ShiftImm;        // shift for OffsetReg.
753     unsigned Alignment;       // 0 = no alignment specified
754     // n = alignment in bytes (2, 4, 8, 16, or 32)
755     unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
756   };
757 
758   struct PostIdxRegOp {
759     unsigned RegNum;
760     bool isAdd;
761     ARM_AM::ShiftOpc ShiftTy;
762     unsigned ShiftImm;
763   };
764 
765   struct ShifterImmOp {
766     bool isASR;
767     unsigned Imm;
768   };
769 
770   struct RegShiftedRegOp {
771     ARM_AM::ShiftOpc ShiftTy;
772     unsigned SrcReg;
773     unsigned ShiftReg;
774     unsigned ShiftImm;
775   };
776 
777   struct RegShiftedImmOp {
778     ARM_AM::ShiftOpc ShiftTy;
779     unsigned SrcReg;
780     unsigned ShiftImm;
781   };
782 
783   struct RotImmOp {
784     unsigned Imm;
785   };
786 
787   struct ModImmOp {
788     unsigned Bits;
789     unsigned Rot;
790   };
791 
792   struct BitfieldOp {
793     unsigned LSB;
794     unsigned Width;
795   };
796 
797   union {
798     struct CCOp CC;
799     struct CopOp Cop;
800     struct CoprocOptionOp CoprocOption;
801     struct MBOptOp MBOpt;
802     struct ISBOptOp ISBOpt;
803     struct TSBOptOp TSBOpt;
804     struct ITMaskOp ITMask;
805     struct IFlagsOp IFlags;
806     struct MMaskOp MMask;
807     struct BankedRegOp BankedReg;
808     struct TokOp Tok;
809     struct RegOp Reg;
810     struct VectorListOp VectorList;
811     struct VectorIndexOp VectorIndex;
812     struct ImmOp Imm;
813     struct MemoryOp Memory;
814     struct PostIdxRegOp PostIdxReg;
815     struct ShifterImmOp ShifterImm;
816     struct RegShiftedRegOp RegShiftedReg;
817     struct RegShiftedImmOp RegShiftedImm;
818     struct RotImmOp RotImm;
819     struct ModImmOp ModImm;
820     struct BitfieldOp Bitfield;
821   };
822 
823 public:
824   ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
825 
826   /// getStartLoc - Get the location of the first token of this operand.
827   SMLoc getStartLoc() const override { return StartLoc; }
828 
829   /// getEndLoc - Get the location of the last token of this operand.
830   SMLoc getEndLoc() const override { return EndLoc; }
831 
832   /// getLocRange - Get the range between the first and last token of this
833   /// operand.
834   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
835 
836   /// getAlignmentLoc - Get the location of the Alignment token of this operand.
837   SMLoc getAlignmentLoc() const {
838     assert(Kind == k_Memory && "Invalid access!");
839     return AlignmentLoc;
840   }
841 
842   ARMCC::CondCodes getCondCode() const {
843     assert(Kind == k_CondCode && "Invalid access!");
844     return CC.Val;
845   }
846 
847   unsigned getCoproc() const {
848     assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
849     return Cop.Val;
850   }
851 
852   StringRef getToken() const {
853     assert(Kind == k_Token && "Invalid access!");
854     return StringRef(Tok.Data, Tok.Length);
855   }
856 
857   unsigned getReg() const override {
858     assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
859     return Reg.RegNum;
860   }
861 
862   const SmallVectorImpl<unsigned> &getRegList() const {
863     assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
864             Kind == k_SPRRegisterList) && "Invalid access!");
865     return Registers;
866   }
867 
868   const MCExpr *getImm() const {
869     assert(isImm() && "Invalid access!");
870     return Imm.Val;
871   }
872 
873   const MCExpr *getConstantPoolImm() const {
874     assert(isConstantPoolImm() && "Invalid access!");
875     return Imm.Val;
876   }
877 
878   unsigned getVectorIndex() const {
879     assert(Kind == k_VectorIndex && "Invalid access!");
880     return VectorIndex.Val;
881   }
882 
883   ARM_MB::MemBOpt getMemBarrierOpt() const {
884     assert(Kind == k_MemBarrierOpt && "Invalid access!");
885     return MBOpt.Val;
886   }
887 
888   ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
889     assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
890     return ISBOpt.Val;
891   }
892 
893   ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
894     assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
895     return TSBOpt.Val;
896   }
897 
898   ARM_PROC::IFlags getProcIFlags() const {
899     assert(Kind == k_ProcIFlags && "Invalid access!");
900     return IFlags.Val;
901   }
902 
903   unsigned getMSRMask() const {
904     assert(Kind == k_MSRMask && "Invalid access!");
905     return MMask.Val;
906   }
907 
908   unsigned getBankedReg() const {
909     assert(Kind == k_BankedReg && "Invalid access!");
910     return BankedReg.Val;
911   }
912 
913   bool isCoprocNum() const { return Kind == k_CoprocNum; }
914   bool isCoprocReg() const { return Kind == k_CoprocReg; }
915   bool isCoprocOption() const { return Kind == k_CoprocOption; }
916   bool isCondCode() const { return Kind == k_CondCode; }
917   bool isCCOut() const { return Kind == k_CCOut; }
918   bool isITMask() const { return Kind == k_ITCondMask; }
919   bool isITCondCode() const { return Kind == k_CondCode; }
920   bool isImm() const override {
921     return Kind == k_Immediate;
922   }
923 
924   bool isARMBranchTarget() const {
925     if (!isImm()) return false;
926 
927     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
928       return CE->getValue() % 4 == 0;
929     return true;
930   }
931 
932 
933   bool isThumbBranchTarget() const {
934     if (!isImm()) return false;
935 
936     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
937       return CE->getValue() % 2 == 0;
938     return true;
939   }
940 
941   // checks whether this operand is an unsigned offset which fits is a field
942   // of specified width and scaled by a specific number of bits
943   template<unsigned width, unsigned scale>
944   bool isUnsignedOffset() const {
945     if (!isImm()) return false;
946     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
947     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
948       int64_t Val = CE->getValue();
949       int64_t Align = 1LL << scale;
950       int64_t Max = Align * ((1LL << width) - 1);
951       return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
952     }
953     return false;
954   }
955 
956   // checks whether this operand is an signed offset which fits is a field
957   // of specified width and scaled by a specific number of bits
958   template<unsigned width, unsigned scale>
959   bool isSignedOffset() const {
960     if (!isImm()) return false;
961     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
962     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
963       int64_t Val = CE->getValue();
964       int64_t Align = 1LL << scale;
965       int64_t Max = Align * ((1LL << (width-1)) - 1);
966       int64_t Min = -Align * (1LL << (width-1));
967       return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
968     }
969     return false;
970   }
971 
972   // checks whether this operand is a memory operand computed as an offset
973   // applied to PC. the offset may have 8 bits of magnitude and is represented
974   // with two bits of shift. textually it may be either [pc, #imm], #imm or
975   // relocable expression...
976   bool isThumbMemPC() const {
977     int64_t Val = 0;
978     if (isImm()) {
979       if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
980       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
981       if (!CE) return false;
982       Val = CE->getValue();
983     }
984     else if (isMem()) {
985       if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
986       if(Memory.BaseRegNum != ARM::PC) return false;
987       Val = Memory.OffsetImm->getValue();
988     }
989     else return false;
990     return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
991   }
992 
993   bool isFPImm() const {
994     if (!isImm()) return false;
995     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
996     if (!CE) return false;
997     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
998     return Val != -1;
999   }
1000 
1001   template<int64_t N, int64_t M>
1002   bool isImmediate() const {
1003     if (!isImm()) return false;
1004     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1005     if (!CE) return false;
1006     int64_t Value = CE->getValue();
1007     return Value >= N && Value <= M;
1008   }
1009 
1010   template<int64_t N, int64_t M>
1011   bool isImmediateS4() const {
1012     if (!isImm()) return false;
1013     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1014     if (!CE) return false;
1015     int64_t Value = CE->getValue();
1016     return ((Value & 3) == 0) && Value >= N && Value <= M;
1017   }
1018 
1019   bool isFBits16() const {
1020     return isImmediate<0, 17>();
1021   }
1022   bool isFBits32() const {
1023     return isImmediate<1, 33>();
1024   }
1025   bool isImm8s4() const {
1026     return isImmediateS4<-1020, 1020>();
1027   }
1028   bool isImm0_1020s4() const {
1029     return isImmediateS4<0, 1020>();
1030   }
1031   bool isImm0_508s4() const {
1032     return isImmediateS4<0, 508>();
1033   }
1034   bool isImm0_508s4Neg() const {
1035     if (!isImm()) return false;
1036     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1037     if (!CE) return false;
1038     int64_t Value = -CE->getValue();
1039     // explicitly exclude zero. we want that to use the normal 0_508 version.
1040     return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1041   }
1042 
1043   bool isImm0_4095Neg() const {
1044     if (!isImm()) return false;
1045     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1046     if (!CE) return false;
1047     // isImm0_4095Neg is used with 32-bit immediates only.
1048     // 32-bit immediates are zero extended to 64-bit when parsed,
1049     // thus simple -CE->getValue() results in a big negative number,
1050     // not a small positive number as intended
1051     if ((CE->getValue() >> 32) > 0) return false;
1052     uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1053     return Value > 0 && Value < 4096;
1054   }
1055 
1056   bool isImm0_7() const {
1057     return isImmediate<0, 7>();
1058   }
1059 
1060   bool isImm1_16() const {
1061     return isImmediate<1, 16>();
1062   }
1063 
1064   bool isImm1_32() const {
1065     return isImmediate<1, 32>();
1066   }
1067 
1068   bool isImm8_255() const {
1069     return isImmediate<8, 255>();
1070   }
1071 
1072   bool isImm256_65535Expr() const {
1073     if (!isImm()) return false;
1074     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1075     // If it's not a constant expression, it'll generate a fixup and be
1076     // handled later.
1077     if (!CE) return true;
1078     int64_t Value = CE->getValue();
1079     return Value >= 256 && Value < 65536;
1080   }
1081 
1082   bool isImm0_65535Expr() const {
1083     if (!isImm()) return false;
1084     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1085     // If it's not a constant expression, it'll generate a fixup and be
1086     // handled later.
1087     if (!CE) return true;
1088     int64_t Value = CE->getValue();
1089     return Value >= 0 && Value < 65536;
1090   }
1091 
1092   bool isImm24bit() const {
1093     return isImmediate<0, 0xffffff + 1>();
1094   }
1095 
1096   bool isImmThumbSR() const {
1097     return isImmediate<1, 33>();
1098   }
1099 
1100   bool isPKHLSLImm() const {
1101     return isImmediate<0, 32>();
1102   }
1103 
1104   bool isPKHASRImm() const {
1105     return isImmediate<0, 33>();
1106   }
1107 
1108   bool isAdrLabel() const {
1109     // If we have an immediate that's not a constant, treat it as a label
1110     // reference needing a fixup.
1111     if (isImm() && !isa<MCConstantExpr>(getImm()))
1112       return true;
1113 
1114     // If it is a constant, it must fit into a modified immediate encoding.
1115     if (!isImm()) return false;
1116     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1117     if (!CE) return false;
1118     int64_t Value = CE->getValue();
1119     return (ARM_AM::getSOImmVal(Value) != -1 ||
1120             ARM_AM::getSOImmVal(-Value) != -1);
1121   }
1122 
1123   bool isT2SOImm() const {
1124     // If we have an immediate that's not a constant, treat it as an expression
1125     // needing a fixup.
1126     if (isImm() && !isa<MCConstantExpr>(getImm())) {
1127       // We want to avoid matching :upper16: and :lower16: as we want these
1128       // expressions to match in isImm0_65535Expr()
1129       const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1130       return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1131                              ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1132     }
1133     if (!isImm()) return false;
1134     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1135     if (!CE) return false;
1136     int64_t Value = CE->getValue();
1137     return ARM_AM::getT2SOImmVal(Value) != -1;
1138   }
1139 
1140   bool isT2SOImmNot() const {
1141     if (!isImm()) return false;
1142     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1143     if (!CE) return false;
1144     int64_t Value = CE->getValue();
1145     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1146       ARM_AM::getT2SOImmVal(~Value) != -1;
1147   }
1148 
1149   bool isT2SOImmNeg() const {
1150     if (!isImm()) return false;
1151     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1152     if (!CE) return false;
1153     int64_t Value = CE->getValue();
1154     // Only use this when not representable as a plain so_imm.
1155     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1156       ARM_AM::getT2SOImmVal(-Value) != -1;
1157   }
1158 
1159   bool isSetEndImm() const {
1160     if (!isImm()) return false;
1161     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1162     if (!CE) return false;
1163     int64_t Value = CE->getValue();
1164     return Value == 1 || Value == 0;
1165   }
1166 
1167   bool isReg() const override { return Kind == k_Register; }
1168   bool isRegList() const { return Kind == k_RegisterList; }
1169   bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1170   bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1171   bool isToken() const override { return Kind == k_Token; }
1172   bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1173   bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1174   bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
1175   bool isMem() const override {
1176     if (Kind != k_Memory)
1177       return false;
1178     if (Memory.BaseRegNum &&
1179         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1180       return false;
1181     if (Memory.OffsetRegNum &&
1182         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1183       return false;
1184     return true;
1185   }
1186   bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1187   bool isRegShiftedReg() const {
1188     return Kind == k_ShiftedRegister &&
1189            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1190                RegShiftedReg.SrcReg) &&
1191            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1192                RegShiftedReg.ShiftReg);
1193   }
1194   bool isRegShiftedImm() const {
1195     return Kind == k_ShiftedImmediate &&
1196            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1197                RegShiftedImm.SrcReg);
1198   }
1199   bool isRotImm() const { return Kind == k_RotateImmediate; }
1200   bool isModImm() const { return Kind == k_ModifiedImmediate; }
1201 
1202   bool isModImmNot() const {
1203     if (!isImm()) return false;
1204     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1205     if (!CE) return false;
1206     int64_t Value = CE->getValue();
1207     return ARM_AM::getSOImmVal(~Value) != -1;
1208   }
1209 
1210   bool isModImmNeg() const {
1211     if (!isImm()) return false;
1212     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1213     if (!CE) return false;
1214     int64_t Value = CE->getValue();
1215     return ARM_AM::getSOImmVal(Value) == -1 &&
1216       ARM_AM::getSOImmVal(-Value) != -1;
1217   }
1218 
1219   bool isThumbModImmNeg1_7() const {
1220     if (!isImm()) return false;
1221     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1222     if (!CE) return false;
1223     int32_t Value = -(int32_t)CE->getValue();
1224     return 0 < Value && Value < 8;
1225   }
1226 
1227   bool isThumbModImmNeg8_255() const {
1228     if (!isImm()) return false;
1229     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1230     if (!CE) return false;
1231     int32_t Value = -(int32_t)CE->getValue();
1232     return 7 < Value && Value < 256;
1233   }
1234 
1235   bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
1236   bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1237   bool isPostIdxRegShifted() const {
1238     return Kind == k_PostIndexRegister &&
1239            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1240   }
1241   bool isPostIdxReg() const {
1242     return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1243   }
1244   bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1245     if (!isMem())
1246       return false;
1247     // No offset of any kind.
1248     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1249      (alignOK || Memory.Alignment == Alignment);
1250   }
1251   bool isMemPCRelImm12() const {
1252     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1253       return false;
1254     // Base register must be PC.
1255     if (Memory.BaseRegNum != ARM::PC)
1256       return false;
1257     // Immediate offset in range [-4095, 4095].
1258     if (!Memory.OffsetImm) return true;
1259     int64_t Val = Memory.OffsetImm->getValue();
1260     return (Val > -4096 && Val < 4096) ||
1261            (Val == std::numeric_limits<int32_t>::min());
1262   }
1263 
1264   bool isAlignedMemory() const {
1265     return isMemNoOffset(true);
1266   }
1267 
1268   bool isAlignedMemoryNone() const {
1269     return isMemNoOffset(false, 0);
1270   }
1271 
1272   bool isDupAlignedMemoryNone() const {
1273     return isMemNoOffset(false, 0);
1274   }
1275 
1276   bool isAlignedMemory16() const {
1277     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1278       return true;
1279     return isMemNoOffset(false, 0);
1280   }
1281 
1282   bool isDupAlignedMemory16() const {
1283     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1284       return true;
1285     return isMemNoOffset(false, 0);
1286   }
1287 
1288   bool isAlignedMemory32() const {
1289     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1290       return true;
1291     return isMemNoOffset(false, 0);
1292   }
1293 
1294   bool isDupAlignedMemory32() const {
1295     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1296       return true;
1297     return isMemNoOffset(false, 0);
1298   }
1299 
1300   bool isAlignedMemory64() const {
1301     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1302       return true;
1303     return isMemNoOffset(false, 0);
1304   }
1305 
1306   bool isDupAlignedMemory64() const {
1307     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1308       return true;
1309     return isMemNoOffset(false, 0);
1310   }
1311 
1312   bool isAlignedMemory64or128() const {
1313     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1314       return true;
1315     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1316       return true;
1317     return isMemNoOffset(false, 0);
1318   }
1319 
1320   bool isDupAlignedMemory64or128() const {
1321     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1322       return true;
1323     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1324       return true;
1325     return isMemNoOffset(false, 0);
1326   }
1327 
1328   bool isAlignedMemory64or128or256() const {
1329     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1330       return true;
1331     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1332       return true;
1333     if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1334       return true;
1335     return isMemNoOffset(false, 0);
1336   }
1337 
1338   bool isAddrMode2() const {
1339     if (!isMem() || Memory.Alignment != 0) return false;
1340     // Check for register offset.
1341     if (Memory.OffsetRegNum) return true;
1342     // Immediate offset in range [-4095, 4095].
1343     if (!Memory.OffsetImm) return true;
1344     int64_t Val = Memory.OffsetImm->getValue();
1345     return Val > -4096 && Val < 4096;
1346   }
1347 
1348   bool isAM2OffsetImm() const {
1349     if (!isImm()) return false;
1350     // Immediate offset in range [-4095, 4095].
1351     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1352     if (!CE) return false;
1353     int64_t Val = CE->getValue();
1354     return (Val == std::numeric_limits<int32_t>::min()) ||
1355            (Val > -4096 && Val < 4096);
1356   }
1357 
1358   bool isAddrMode3() const {
1359     // If we have an immediate that's not a constant, treat it as a label
1360     // reference needing a fixup. If it is a constant, it's something else
1361     // and we reject it.
1362     if (isImm() && !isa<MCConstantExpr>(getImm()))
1363       return true;
1364     if (!isMem() || Memory.Alignment != 0) return false;
1365     // No shifts are legal for AM3.
1366     if (Memory.ShiftType != ARM_AM::no_shift) return false;
1367     // Check for register offset.
1368     if (Memory.OffsetRegNum) return true;
1369     // Immediate offset in range [-255, 255].
1370     if (!Memory.OffsetImm) return true;
1371     int64_t Val = Memory.OffsetImm->getValue();
1372     // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
1373     // have to check for this too.
1374     return (Val > -256 && Val < 256) ||
1375            Val == std::numeric_limits<int32_t>::min();
1376   }
1377 
1378   bool isAM3Offset() const {
1379     if (isPostIdxReg())
1380       return true;
1381     if (!isImm())
1382       return false;
1383     // Immediate offset in range [-255, 255].
1384     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1385     if (!CE) return false;
1386     int64_t Val = CE->getValue();
1387     // Special case, #-0 is std::numeric_limits<int32_t>::min().
1388     return (Val > -256 && Val < 256) ||
1389            Val == std::numeric_limits<int32_t>::min();
1390   }
1391 
1392   bool isAddrMode5() const {
1393     // If we have an immediate that's not a constant, treat it as a label
1394     // reference needing a fixup. If it is a constant, it's something else
1395     // and we reject it.
1396     if (isImm() && !isa<MCConstantExpr>(getImm()))
1397       return true;
1398     if (!isMem() || Memory.Alignment != 0) return false;
1399     // Check for register offset.
1400     if (Memory.OffsetRegNum) return false;
1401     // Immediate offset in range [-1020, 1020] and a multiple of 4.
1402     if (!Memory.OffsetImm) return true;
1403     int64_t Val = Memory.OffsetImm->getValue();
1404     return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1405       Val == std::numeric_limits<int32_t>::min();
1406   }
1407 
1408   bool isAddrMode5FP16() const {
1409     // If we have an immediate that's not a constant, treat it as a label
1410     // reference needing a fixup. If it is a constant, it's something else
1411     // and we reject it.
1412     if (isImm() && !isa<MCConstantExpr>(getImm()))
1413       return true;
1414     if (!isMem() || Memory.Alignment != 0) return false;
1415     // Check for register offset.
1416     if (Memory.OffsetRegNum) return false;
1417     // Immediate offset in range [-510, 510] and a multiple of 2.
1418     if (!Memory.OffsetImm) return true;
1419     int64_t Val = Memory.OffsetImm->getValue();
1420     return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1421            Val == std::numeric_limits<int32_t>::min();
1422   }
1423 
1424   bool isMemTBB() const {
1425     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1426         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1427       return false;
1428     return true;
1429   }
1430 
1431   bool isMemTBH() const {
1432     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1433         Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1434         Memory.Alignment != 0 )
1435       return false;
1436     return true;
1437   }
1438 
1439   bool isMemRegOffset() const {
1440     if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1441       return false;
1442     return true;
1443   }
1444 
1445   bool isT2MemRegOffset() const {
1446     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1447         Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1448       return false;
1449     // Only lsl #{0, 1, 2, 3} allowed.
1450     if (Memory.ShiftType == ARM_AM::no_shift)
1451       return true;
1452     if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1453       return false;
1454     return true;
1455   }
1456 
1457   bool isMemThumbRR() const {
1458     // Thumb reg+reg addressing is simple. Just two registers, a base and
1459     // an offset. No shifts, negations or any other complicating factors.
1460     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1461         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1462       return false;
1463     return isARMLowRegister(Memory.BaseRegNum) &&
1464       (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1465   }
1466 
1467   bool isMemThumbRIs4() const {
1468     if (!isMem() || Memory.OffsetRegNum != 0 ||
1469         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1470       return false;
1471     // Immediate offset, multiple of 4 in range [0, 124].
1472     if (!Memory.OffsetImm) return true;
1473     int64_t Val = Memory.OffsetImm->getValue();
1474     return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1475   }
1476 
1477   bool isMemThumbRIs2() const {
1478     if (!isMem() || Memory.OffsetRegNum != 0 ||
1479         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1480       return false;
1481     // Immediate offset, multiple of 4 in range [0, 62].
1482     if (!Memory.OffsetImm) return true;
1483     int64_t Val = Memory.OffsetImm->getValue();
1484     return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1485   }
1486 
1487   bool isMemThumbRIs1() const {
1488     if (!isMem() || Memory.OffsetRegNum != 0 ||
1489         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1490       return false;
1491     // Immediate offset in range [0, 31].
1492     if (!Memory.OffsetImm) return true;
1493     int64_t Val = Memory.OffsetImm->getValue();
1494     return Val >= 0 && Val <= 31;
1495   }
1496 
1497   bool isMemThumbSPI() const {
1498     if (!isMem() || Memory.OffsetRegNum != 0 ||
1499         Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1500       return false;
1501     // Immediate offset, multiple of 4 in range [0, 1020].
1502     if (!Memory.OffsetImm) return true;
1503     int64_t Val = Memory.OffsetImm->getValue();
1504     return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1505   }
1506 
1507   bool isMemImm8s4Offset() const {
1508     // If we have an immediate that's not a constant, treat it as a label
1509     // reference needing a fixup. If it is a constant, it's something else
1510     // and we reject it.
1511     if (isImm() && !isa<MCConstantExpr>(getImm()))
1512       return true;
1513     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1514       return false;
1515     // Immediate offset a multiple of 4 in range [-1020, 1020].
1516     if (!Memory.OffsetImm) return true;
1517     int64_t Val = Memory.OffsetImm->getValue();
1518     // Special case, #-0 is std::numeric_limits<int32_t>::min().
1519     return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1520            Val == std::numeric_limits<int32_t>::min();
1521   }
1522 
1523   bool isMemImm0_1020s4Offset() const {
1524     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1525       return false;
1526     // Immediate offset a multiple of 4 in range [0, 1020].
1527     if (!Memory.OffsetImm) return true;
1528     int64_t Val = Memory.OffsetImm->getValue();
1529     return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1530   }
1531 
1532   bool isMemImm8Offset() const {
1533     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1534       return false;
1535     // Base reg of PC isn't allowed for these encodings.
1536     if (Memory.BaseRegNum == ARM::PC) return false;
1537     // Immediate offset in range [-255, 255].
1538     if (!Memory.OffsetImm) return true;
1539     int64_t Val = Memory.OffsetImm->getValue();
1540     return (Val == std::numeric_limits<int32_t>::min()) ||
1541            (Val > -256 && Val < 256);
1542   }
1543 
1544   bool isMemPosImm8Offset() const {
1545     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1546       return false;
1547     // Immediate offset in range [0, 255].
1548     if (!Memory.OffsetImm) return true;
1549     int64_t Val = Memory.OffsetImm->getValue();
1550     return Val >= 0 && Val < 256;
1551   }
1552 
1553   bool isMemNegImm8Offset() const {
1554     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1555       return false;
1556     // Base reg of PC isn't allowed for these encodings.
1557     if (Memory.BaseRegNum == ARM::PC) return false;
1558     // Immediate offset in range [-255, -1].
1559     if (!Memory.OffsetImm) return false;
1560     int64_t Val = Memory.OffsetImm->getValue();
1561     return (Val == std::numeric_limits<int32_t>::min()) ||
1562            (Val > -256 && Val < 0);
1563   }
1564 
1565   bool isMemUImm12Offset() const {
1566     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1567       return false;
1568     // Immediate offset in range [0, 4095].
1569     if (!Memory.OffsetImm) return true;
1570     int64_t Val = Memory.OffsetImm->getValue();
1571     return (Val >= 0 && Val < 4096);
1572   }
1573 
1574   bool isMemImm12Offset() const {
1575     // If we have an immediate that's not a constant, treat it as a label
1576     // reference needing a fixup. If it is a constant, it's something else
1577     // and we reject it.
1578 
1579     if (isImm() && !isa<MCConstantExpr>(getImm()))
1580       return true;
1581 
1582     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1583       return false;
1584     // Immediate offset in range [-4095, 4095].
1585     if (!Memory.OffsetImm) return true;
1586     int64_t Val = Memory.OffsetImm->getValue();
1587     return (Val > -4096 && Val < 4096) ||
1588            (Val == std::numeric_limits<int32_t>::min());
1589   }
1590 
1591   bool isConstPoolAsmImm() const {
1592     // Delay processing of Constant Pool Immediate, this will turn into
1593     // a constant. Match no other operand
1594     return (isConstantPoolImm());
1595   }
1596 
1597   bool isPostIdxImm8() const {
1598     if (!isImm()) return false;
1599     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1600     if (!CE) return false;
1601     int64_t Val = CE->getValue();
1602     return (Val > -256 && Val < 256) ||
1603            (Val == std::numeric_limits<int32_t>::min());
1604   }
1605 
1606   bool isPostIdxImm8s4() const {
1607     if (!isImm()) return false;
1608     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1609     if (!CE) return false;
1610     int64_t Val = CE->getValue();
1611     return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1612            (Val == std::numeric_limits<int32_t>::min());
1613   }
1614 
1615   bool isMSRMask() const { return Kind == k_MSRMask; }
1616   bool isBankedReg() const { return Kind == k_BankedReg; }
1617   bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1618 
1619   // NEON operands.
1620   bool isSingleSpacedVectorList() const {
1621     return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1622   }
1623 
1624   bool isDoubleSpacedVectorList() const {
1625     return Kind == k_VectorList && VectorList.isDoubleSpaced;
1626   }
1627 
1628   bool isVecListOneD() const {
1629     if (!isSingleSpacedVectorList()) return false;
1630     return VectorList.Count == 1;
1631   }
1632 
1633   bool isVecListDPair() const {
1634     if (!isSingleSpacedVectorList()) return false;
1635     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1636               .contains(VectorList.RegNum));
1637   }
1638 
1639   bool isVecListThreeD() const {
1640     if (!isSingleSpacedVectorList()) return false;
1641     return VectorList.Count == 3;
1642   }
1643 
1644   bool isVecListFourD() const {
1645     if (!isSingleSpacedVectorList()) return false;
1646     return VectorList.Count == 4;
1647   }
1648 
1649   bool isVecListDPairSpaced() const {
1650     if (Kind != k_VectorList) return false;
1651     if (isSingleSpacedVectorList()) return false;
1652     return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1653               .contains(VectorList.RegNum));
1654   }
1655 
1656   bool isVecListThreeQ() const {
1657     if (!isDoubleSpacedVectorList()) return false;
1658     return VectorList.Count == 3;
1659   }
1660 
1661   bool isVecListFourQ() const {
1662     if (!isDoubleSpacedVectorList()) return false;
1663     return VectorList.Count == 4;
1664   }
1665 
1666   bool isSingleSpacedVectorAllLanes() const {
1667     return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1668   }
1669 
1670   bool isDoubleSpacedVectorAllLanes() const {
1671     return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1672   }
1673 
1674   bool isVecListOneDAllLanes() const {
1675     if (!isSingleSpacedVectorAllLanes()) return false;
1676     return VectorList.Count == 1;
1677   }
1678 
1679   bool isVecListDPairAllLanes() const {
1680     if (!isSingleSpacedVectorAllLanes()) return false;
1681     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1682               .contains(VectorList.RegNum));
1683   }
1684 
1685   bool isVecListDPairSpacedAllLanes() const {
1686     if (!isDoubleSpacedVectorAllLanes()) return false;
1687     return VectorList.Count == 2;
1688   }
1689 
1690   bool isVecListThreeDAllLanes() const {
1691     if (!isSingleSpacedVectorAllLanes()) return false;
1692     return VectorList.Count == 3;
1693   }
1694 
1695   bool isVecListThreeQAllLanes() const {
1696     if (!isDoubleSpacedVectorAllLanes()) return false;
1697     return VectorList.Count == 3;
1698   }
1699 
1700   bool isVecListFourDAllLanes() const {
1701     if (!isSingleSpacedVectorAllLanes()) return false;
1702     return VectorList.Count == 4;
1703   }
1704 
1705   bool isVecListFourQAllLanes() const {
1706     if (!isDoubleSpacedVectorAllLanes()) return false;
1707     return VectorList.Count == 4;
1708   }
1709 
1710   bool isSingleSpacedVectorIndexed() const {
1711     return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1712   }
1713 
1714   bool isDoubleSpacedVectorIndexed() const {
1715     return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1716   }
1717 
1718   bool isVecListOneDByteIndexed() const {
1719     if (!isSingleSpacedVectorIndexed()) return false;
1720     return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1721   }
1722 
1723   bool isVecListOneDHWordIndexed() const {
1724     if (!isSingleSpacedVectorIndexed()) return false;
1725     return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1726   }
1727 
1728   bool isVecListOneDWordIndexed() const {
1729     if (!isSingleSpacedVectorIndexed()) return false;
1730     return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1731   }
1732 
1733   bool isVecListTwoDByteIndexed() const {
1734     if (!isSingleSpacedVectorIndexed()) return false;
1735     return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1736   }
1737 
1738   bool isVecListTwoDHWordIndexed() const {
1739     if (!isSingleSpacedVectorIndexed()) return false;
1740     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1741   }
1742 
1743   bool isVecListTwoQWordIndexed() const {
1744     if (!isDoubleSpacedVectorIndexed()) return false;
1745     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1746   }
1747 
1748   bool isVecListTwoQHWordIndexed() const {
1749     if (!isDoubleSpacedVectorIndexed()) return false;
1750     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1751   }
1752 
1753   bool isVecListTwoDWordIndexed() const {
1754     if (!isSingleSpacedVectorIndexed()) return false;
1755     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1756   }
1757 
1758   bool isVecListThreeDByteIndexed() const {
1759     if (!isSingleSpacedVectorIndexed()) return false;
1760     return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1761   }
1762 
1763   bool isVecListThreeDHWordIndexed() const {
1764     if (!isSingleSpacedVectorIndexed()) return false;
1765     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1766   }
1767 
1768   bool isVecListThreeQWordIndexed() const {
1769     if (!isDoubleSpacedVectorIndexed()) return false;
1770     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1771   }
1772 
1773   bool isVecListThreeQHWordIndexed() const {
1774     if (!isDoubleSpacedVectorIndexed()) return false;
1775     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1776   }
1777 
1778   bool isVecListThreeDWordIndexed() const {
1779     if (!isSingleSpacedVectorIndexed()) return false;
1780     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1781   }
1782 
1783   bool isVecListFourDByteIndexed() const {
1784     if (!isSingleSpacedVectorIndexed()) return false;
1785     return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1786   }
1787 
1788   bool isVecListFourDHWordIndexed() const {
1789     if (!isSingleSpacedVectorIndexed()) return false;
1790     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1791   }
1792 
1793   bool isVecListFourQWordIndexed() const {
1794     if (!isDoubleSpacedVectorIndexed()) return false;
1795     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1796   }
1797 
1798   bool isVecListFourQHWordIndexed() const {
1799     if (!isDoubleSpacedVectorIndexed()) return false;
1800     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1801   }
1802 
1803   bool isVecListFourDWordIndexed() const {
1804     if (!isSingleSpacedVectorIndexed()) return false;
1805     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1806   }
1807 
1808   bool isVectorIndex8() const {
1809     if (Kind != k_VectorIndex) return false;
1810     return VectorIndex.Val < 8;
1811   }
1812 
1813   bool isVectorIndex16() const {
1814     if (Kind != k_VectorIndex) return false;
1815     return VectorIndex.Val < 4;
1816   }
1817 
1818   bool isVectorIndex32() const {
1819     if (Kind != k_VectorIndex) return false;
1820     return VectorIndex.Val < 2;
1821   }
1822   bool isVectorIndex64() const {
1823     if (Kind != k_VectorIndex) return false;
1824     return VectorIndex.Val < 1;
1825   }
1826 
1827   bool isNEONi8splat() const {
1828     if (!isImm()) return false;
1829     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1830     // Must be a constant.
1831     if (!CE) return false;
1832     int64_t Value = CE->getValue();
1833     // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1834     // value.
1835     return Value >= 0 && Value < 256;
1836   }
1837 
1838   bool isNEONi16splat() const {
1839     if (isNEONByteReplicate(2))
1840       return false; // Leave that for bytes replication and forbid by default.
1841     if (!isImm())
1842       return false;
1843     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1844     // Must be a constant.
1845     if (!CE) return false;
1846     unsigned Value = CE->getValue();
1847     return ARM_AM::isNEONi16splat(Value);
1848   }
1849 
1850   bool isNEONi16splatNot() const {
1851     if (!isImm())
1852       return false;
1853     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1854     // Must be a constant.
1855     if (!CE) return false;
1856     unsigned Value = CE->getValue();
1857     return ARM_AM::isNEONi16splat(~Value & 0xffff);
1858   }
1859 
1860   bool isNEONi32splat() const {
1861     if (isNEONByteReplicate(4))
1862       return false; // Leave that for bytes replication and forbid by default.
1863     if (!isImm())
1864       return false;
1865     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1866     // Must be a constant.
1867     if (!CE) return false;
1868     unsigned Value = CE->getValue();
1869     return ARM_AM::isNEONi32splat(Value);
1870   }
1871 
1872   bool isNEONi32splatNot() const {
1873     if (!isImm())
1874       return false;
1875     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1876     // Must be a constant.
1877     if (!CE) return false;
1878     unsigned Value = CE->getValue();
1879     return ARM_AM::isNEONi32splat(~Value);
1880   }
1881 
1882   static bool isValidNEONi32vmovImm(int64_t Value) {
1883     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1884     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1885     return ((Value & 0xffffffffffffff00) == 0) ||
1886            ((Value & 0xffffffffffff00ff) == 0) ||
1887            ((Value & 0xffffffffff00ffff) == 0) ||
1888            ((Value & 0xffffffff00ffffff) == 0) ||
1889            ((Value & 0xffffffffffff00ff) == 0xff) ||
1890            ((Value & 0xffffffffff00ffff) == 0xffff);
1891   }
1892 
1893   bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
1894     assert((Width == 8 || Width == 16 || Width == 32) &&
1895            "Invalid element width");
1896     assert(NumElems * Width <= 64 && "Invalid result width");
1897 
1898     if (!isImm())
1899       return false;
1900     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1901     // Must be a constant.
1902     if (!CE)
1903       return false;
1904     int64_t Value = CE->getValue();
1905     if (!Value)
1906       return false; // Don't bother with zero.
1907     if (Inv)
1908       Value = ~Value;
1909 
1910     uint64_t Mask = (1ull << Width) - 1;
1911     uint64_t Elem = Value & Mask;
1912     if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
1913       return false;
1914     if (Width == 32 && !isValidNEONi32vmovImm(Elem))
1915       return false;
1916 
1917     for (unsigned i = 1; i < NumElems; ++i) {
1918       Value >>= Width;
1919       if ((Value & Mask) != Elem)
1920         return false;
1921     }
1922     return true;
1923   }
1924 
1925   bool isNEONByteReplicate(unsigned NumBytes) const {
1926     return isNEONReplicate(8, NumBytes, false);
1927   }
1928 
1929   static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
1930     assert((FromW == 8 || FromW == 16 || FromW == 32) &&
1931            "Invalid source width");
1932     assert((ToW == 16 || ToW == 32 || ToW == 64) &&
1933            "Invalid destination width");
1934     assert(FromW < ToW && "ToW is not less than FromW");
1935   }
1936 
1937   template<unsigned FromW, unsigned ToW>
1938   bool isNEONmovReplicate() const {
1939     checkNeonReplicateArgs(FromW, ToW);
1940     if (ToW == 64 && isNEONi64splat())
1941       return false;
1942     return isNEONReplicate(FromW, ToW / FromW, false);
1943   }
1944 
1945   template<unsigned FromW, unsigned ToW>
1946   bool isNEONinvReplicate() const {
1947     checkNeonReplicateArgs(FromW, ToW);
1948     return isNEONReplicate(FromW, ToW / FromW, true);
1949   }
1950 
1951   bool isNEONi32vmov() const {
1952     if (isNEONByteReplicate(4))
1953       return false; // Let it to be classified as byte-replicate case.
1954     if (!isImm())
1955       return false;
1956     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1957     // Must be a constant.
1958     if (!CE)
1959       return false;
1960     return isValidNEONi32vmovImm(CE->getValue());
1961   }
1962 
1963   bool isNEONi32vmovNeg() const {
1964     if (!isImm()) return false;
1965     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1966     // Must be a constant.
1967     if (!CE) return false;
1968     return isValidNEONi32vmovImm(~CE->getValue());
1969   }
1970 
1971   bool isNEONi64splat() const {
1972     if (!isImm()) return false;
1973     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1974     // Must be a constant.
1975     if (!CE) return false;
1976     uint64_t Value = CE->getValue();
1977     // i64 value with each byte being either 0 or 0xff.
1978     for (unsigned i = 0; i < 8; ++i, Value >>= 8)
1979       if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1980     return true;
1981   }
1982 
1983   template<int64_t Angle, int64_t Remainder>
1984   bool isComplexRotation() const {
1985     if (!isImm()) return false;
1986 
1987     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1988     if (!CE) return false;
1989     uint64_t Value = CE->getValue();
1990 
1991     return (Value % Angle == Remainder && Value <= 270);
1992   }
1993 
1994   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1995     // Add as immediates when possible.  Null MCExpr = 0.
1996     if (!Expr)
1997       Inst.addOperand(MCOperand::createImm(0));
1998     else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
1999       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2000     else
2001       Inst.addOperand(MCOperand::createExpr(Expr));
2002   }
2003 
2004   void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2005     assert(N == 1 && "Invalid number of operands!");
2006     addExpr(Inst, getImm());
2007   }
2008 
2009   void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2010     assert(N == 1 && "Invalid number of operands!");
2011     addExpr(Inst, getImm());
2012   }
2013 
2014   void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2015     assert(N == 2 && "Invalid number of operands!");
2016     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2017     unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2018     Inst.addOperand(MCOperand::createReg(RegNum));
2019   }
2020 
2021   void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2022     assert(N == 1 && "Invalid number of operands!");
2023     Inst.addOperand(MCOperand::createImm(getCoproc()));
2024   }
2025 
2026   void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2027     assert(N == 1 && "Invalid number of operands!");
2028     Inst.addOperand(MCOperand::createImm(getCoproc()));
2029   }
2030 
2031   void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2032     assert(N == 1 && "Invalid number of operands!");
2033     Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2034   }
2035 
2036   void addITMaskOperands(MCInst &Inst, unsigned N) const {
2037     assert(N == 1 && "Invalid number of operands!");
2038     Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2039   }
2040 
2041   void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2042     assert(N == 1 && "Invalid number of operands!");
2043     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2044   }
2045 
2046   void addCCOutOperands(MCInst &Inst, unsigned N) const {
2047     assert(N == 1 && "Invalid number of operands!");
2048     Inst.addOperand(MCOperand::createReg(getReg()));
2049   }
2050 
2051   void addRegOperands(MCInst &Inst, unsigned N) const {
2052     assert(N == 1 && "Invalid number of operands!");
2053     Inst.addOperand(MCOperand::createReg(getReg()));
2054   }
2055 
2056   void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2057     assert(N == 3 && "Invalid number of operands!");
2058     assert(isRegShiftedReg() &&
2059            "addRegShiftedRegOperands() on non-RegShiftedReg!");
2060     Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2061     Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2062     Inst.addOperand(MCOperand::createImm(
2063       ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2064   }
2065 
2066   void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2067     assert(N == 2 && "Invalid number of operands!");
2068     assert(isRegShiftedImm() &&
2069            "addRegShiftedImmOperands() on non-RegShiftedImm!");
2070     Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2071     // Shift of #32 is encoded as 0 where permitted
2072     unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2073     Inst.addOperand(MCOperand::createImm(
2074       ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2075   }
2076 
2077   void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2078     assert(N == 1 && "Invalid number of operands!");
2079     Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2080                                          ShifterImm.Imm));
2081   }
2082 
2083   void addRegListOperands(MCInst &Inst, unsigned N) const {
2084     assert(N == 1 && "Invalid number of operands!");
2085     const SmallVectorImpl<unsigned> &RegList = getRegList();
2086     for (SmallVectorImpl<unsigned>::const_iterator
2087            I = RegList.begin(), E = RegList.end(); I != E; ++I)
2088       Inst.addOperand(MCOperand::createReg(*I));
2089   }
2090 
2091   void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2092     addRegListOperands(Inst, N);
2093   }
2094 
2095   void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2096     addRegListOperands(Inst, N);
2097   }
2098 
2099   void addRotImmOperands(MCInst &Inst, unsigned N) const {
2100     assert(N == 1 && "Invalid number of operands!");
2101     // Encoded as val>>3. The printer handles display as 8, 16, 24.
2102     Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2103   }
2104 
2105   void addModImmOperands(MCInst &Inst, unsigned N) const {
2106     assert(N == 1 && "Invalid number of operands!");
2107 
2108     // Support for fixups (MCFixup)
2109     if (isImm())
2110       return addImmOperands(Inst, N);
2111 
2112     Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2113   }
2114 
2115   void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2116     assert(N == 1 && "Invalid number of operands!");
2117     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2118     uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2119     Inst.addOperand(MCOperand::createImm(Enc));
2120   }
2121 
2122   void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2123     assert(N == 1 && "Invalid number of operands!");
2124     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2125     uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2126     Inst.addOperand(MCOperand::createImm(Enc));
2127   }
2128 
2129   void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2130     assert(N == 1 && "Invalid number of operands!");
2131     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2132     uint32_t Val = -CE->getValue();
2133     Inst.addOperand(MCOperand::createImm(Val));
2134   }
2135 
2136   void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2137     assert(N == 1 && "Invalid number of operands!");
2138     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2139     uint32_t Val = -CE->getValue();
2140     Inst.addOperand(MCOperand::createImm(Val));
2141   }
2142 
2143   void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2144     assert(N == 1 && "Invalid number of operands!");
2145     // Munge the lsb/width into a bitfield mask.
2146     unsigned lsb = Bitfield.LSB;
2147     unsigned width = Bitfield.Width;
2148     // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2149     uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2150                       (32 - (lsb + width)));
2151     Inst.addOperand(MCOperand::createImm(Mask));
2152   }
2153 
2154   void addImmOperands(MCInst &Inst, unsigned N) const {
2155     assert(N == 1 && "Invalid number of operands!");
2156     addExpr(Inst, getImm());
2157   }
2158 
2159   void addFBits16Operands(MCInst &Inst, unsigned N) const {
2160     assert(N == 1 && "Invalid number of operands!");
2161     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2162     Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2163   }
2164 
2165   void addFBits32Operands(MCInst &Inst, unsigned N) const {
2166     assert(N == 1 && "Invalid number of operands!");
2167     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2168     Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2169   }
2170 
2171   void addFPImmOperands(MCInst &Inst, unsigned N) const {
2172     assert(N == 1 && "Invalid number of operands!");
2173     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2174     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2175     Inst.addOperand(MCOperand::createImm(Val));
2176   }
2177 
2178   void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2179     assert(N == 1 && "Invalid number of operands!");
2180     // FIXME: We really want to scale the value here, but the LDRD/STRD
2181     // instruction don't encode operands that way yet.
2182     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2183     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2184   }
2185 
2186   void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2187     assert(N == 1 && "Invalid number of operands!");
2188     // The immediate is scaled by four in the encoding and is stored
2189     // in the MCInst as such. Lop off the low two bits here.
2190     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2191     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2192   }
2193 
2194   void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2195     assert(N == 1 && "Invalid number of operands!");
2196     // The immediate is scaled by four in the encoding and is stored
2197     // in the MCInst as such. Lop off the low two bits here.
2198     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2199     Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2200   }
2201 
2202   void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2203     assert(N == 1 && "Invalid number of operands!");
2204     // The immediate is scaled by four in the encoding and is stored
2205     // in the MCInst as such. Lop off the low two bits here.
2206     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2207     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2208   }
2209 
2210   void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2211     assert(N == 1 && "Invalid number of operands!");
2212     // The constant encodes as the immediate-1, and we store in the instruction
2213     // the bits as encoded, so subtract off one here.
2214     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2215     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2216   }
2217 
2218   void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2219     assert(N == 1 && "Invalid number of operands!");
2220     // The constant encodes as the immediate-1, and we store in the instruction
2221     // the bits as encoded, so subtract off one here.
2222     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2223     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2224   }
2225 
2226   void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2227     assert(N == 1 && "Invalid number of operands!");
2228     // The constant encodes as the immediate, except for 32, which encodes as
2229     // zero.
2230     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2231     unsigned Imm = CE->getValue();
2232     Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2233   }
2234 
2235   void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2236     assert(N == 1 && "Invalid number of operands!");
2237     // An ASR value of 32 encodes as 0, so that's how we want to add it to
2238     // the instruction as well.
2239     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2240     int Val = CE->getValue();
2241     Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2242   }
2243 
2244   void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2245     assert(N == 1 && "Invalid number of operands!");
2246     // The operand is actually a t2_so_imm, but we have its bitwise
2247     // negation in the assembly source, so twiddle it here.
2248     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2249     Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
2250   }
2251 
2252   void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2253     assert(N == 1 && "Invalid number of operands!");
2254     // The operand is actually a t2_so_imm, but we have its
2255     // negation in the assembly source, so twiddle it here.
2256     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2257     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2258   }
2259 
2260   void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2261     assert(N == 1 && "Invalid number of operands!");
2262     // The operand is actually an imm0_4095, but we have its
2263     // negation in the assembly source, so twiddle it here.
2264     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2265     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2266   }
2267 
2268   void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2269     if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2270       Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2271       return;
2272     }
2273 
2274     const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2275     assert(SR && "Unknown value type!");
2276     Inst.addOperand(MCOperand::createExpr(SR));
2277   }
2278 
2279   void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2280     assert(N == 1 && "Invalid number of operands!");
2281     if (isImm()) {
2282       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2283       if (CE) {
2284         Inst.addOperand(MCOperand::createImm(CE->getValue()));
2285         return;
2286       }
2287 
2288       const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2289 
2290       assert(SR && "Unknown value type!");
2291       Inst.addOperand(MCOperand::createExpr(SR));
2292       return;
2293     }
2294 
2295     assert(isMem()  && "Unknown value type!");
2296     assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2297     Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue()));
2298   }
2299 
2300   void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2301     assert(N == 1 && "Invalid number of operands!");
2302     Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2303   }
2304 
2305   void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2306     assert(N == 1 && "Invalid number of operands!");
2307     Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2308   }
2309 
2310   void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2311     assert(N == 1 && "Invalid number of operands!");
2312     Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2313   }
2314 
2315   void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2316     assert(N == 1 && "Invalid number of operands!");
2317     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2318   }
2319 
2320   void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2321     assert(N == 1 && "Invalid number of operands!");
2322     int32_t Imm = Memory.OffsetImm->getValue();
2323     Inst.addOperand(MCOperand::createImm(Imm));
2324   }
2325 
2326   void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2327     assert(N == 1 && "Invalid number of operands!");
2328     assert(isImm() && "Not an immediate!");
2329 
2330     // If we have an immediate that's not a constant, treat it as a label
2331     // reference needing a fixup.
2332     if (!isa<MCConstantExpr>(getImm())) {
2333       Inst.addOperand(MCOperand::createExpr(getImm()));
2334       return;
2335     }
2336 
2337     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2338     int Val = CE->getValue();
2339     Inst.addOperand(MCOperand::createImm(Val));
2340   }
2341 
2342   void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2343     assert(N == 2 && "Invalid number of operands!");
2344     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2345     Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2346   }
2347 
2348   void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2349     addAlignedMemoryOperands(Inst, N);
2350   }
2351 
2352   void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2353     addAlignedMemoryOperands(Inst, N);
2354   }
2355 
2356   void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2357     addAlignedMemoryOperands(Inst, N);
2358   }
2359 
2360   void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2361     addAlignedMemoryOperands(Inst, N);
2362   }
2363 
2364   void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2365     addAlignedMemoryOperands(Inst, N);
2366   }
2367 
2368   void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2369     addAlignedMemoryOperands(Inst, N);
2370   }
2371 
2372   void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2373     addAlignedMemoryOperands(Inst, N);
2374   }
2375 
2376   void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2377     addAlignedMemoryOperands(Inst, N);
2378   }
2379 
2380   void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2381     addAlignedMemoryOperands(Inst, N);
2382   }
2383 
2384   void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2385     addAlignedMemoryOperands(Inst, N);
2386   }
2387 
2388   void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2389     addAlignedMemoryOperands(Inst, N);
2390   }
2391 
2392   void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2393     assert(N == 3 && "Invalid number of operands!");
2394     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2395     if (!Memory.OffsetRegNum) {
2396       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2397       // Special case for #-0
2398       if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2399       if (Val < 0) Val = -Val;
2400       Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2401     } else {
2402       // For register offset, we encode the shift type and negation flag
2403       // here.
2404       Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2405                               Memory.ShiftImm, Memory.ShiftType);
2406     }
2407     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2408     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2409     Inst.addOperand(MCOperand::createImm(Val));
2410   }
2411 
2412   void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2413     assert(N == 2 && "Invalid number of operands!");
2414     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2415     assert(CE && "non-constant AM2OffsetImm operand!");
2416     int32_t Val = CE->getValue();
2417     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2418     // Special case for #-0
2419     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2420     if (Val < 0) Val = -Val;
2421     Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2422     Inst.addOperand(MCOperand::createReg(0));
2423     Inst.addOperand(MCOperand::createImm(Val));
2424   }
2425 
2426   void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2427     assert(N == 3 && "Invalid number of operands!");
2428     // If we have an immediate that's not a constant, treat it as a label
2429     // reference needing a fixup. If it is a constant, it's something else
2430     // and we reject it.
2431     if (isImm()) {
2432       Inst.addOperand(MCOperand::createExpr(getImm()));
2433       Inst.addOperand(MCOperand::createReg(0));
2434       Inst.addOperand(MCOperand::createImm(0));
2435       return;
2436     }
2437 
2438     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2439     if (!Memory.OffsetRegNum) {
2440       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2441       // Special case for #-0
2442       if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2443       if (Val < 0) Val = -Val;
2444       Val = ARM_AM::getAM3Opc(AddSub, Val);
2445     } else {
2446       // For register offset, we encode the shift type and negation flag
2447       // here.
2448       Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
2449     }
2450     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2451     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2452     Inst.addOperand(MCOperand::createImm(Val));
2453   }
2454 
2455   void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
2456     assert(N == 2 && "Invalid number of operands!");
2457     if (Kind == k_PostIndexRegister) {
2458       int32_t Val =
2459         ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
2460       Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2461       Inst.addOperand(MCOperand::createImm(Val));
2462       return;
2463     }
2464 
2465     // Constant offset.
2466     const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
2467     int32_t Val = CE->getValue();
2468     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2469     // Special case for #-0
2470     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2471     if (Val < 0) Val = -Val;
2472     Val = ARM_AM::getAM3Opc(AddSub, Val);
2473     Inst.addOperand(MCOperand::createReg(0));
2474     Inst.addOperand(MCOperand::createImm(Val));
2475   }
2476 
2477   void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
2478     assert(N == 2 && "Invalid number of operands!");
2479     // If we have an immediate that's not a constant, treat it as a label
2480     // reference needing a fixup. If it is a constant, it's something else
2481     // and we reject it.
2482     if (isImm()) {
2483       Inst.addOperand(MCOperand::createExpr(getImm()));
2484       Inst.addOperand(MCOperand::createImm(0));
2485       return;
2486     }
2487 
2488     // The lower two bits are always zero and as such are not encoded.
2489     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2490     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2491     // Special case for #-0
2492     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2493     if (Val < 0) Val = -Val;
2494     Val = ARM_AM::getAM5Opc(AddSub, Val);
2495     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2496     Inst.addOperand(MCOperand::createImm(Val));
2497   }
2498 
2499   void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
2500     assert(N == 2 && "Invalid number of operands!");
2501     // If we have an immediate that's not a constant, treat it as a label
2502     // reference needing a fixup. If it is a constant, it's something else
2503     // and we reject it.
2504     if (isImm()) {
2505       Inst.addOperand(MCOperand::createExpr(getImm()));
2506       Inst.addOperand(MCOperand::createImm(0));
2507       return;
2508     }
2509 
2510     // The lower bit is always zero and as such is not encoded.
2511     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0;
2512     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2513     // Special case for #-0
2514     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2515     if (Val < 0) Val = -Val;
2516     Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
2517     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2518     Inst.addOperand(MCOperand::createImm(Val));
2519   }
2520 
2521   void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
2522     assert(N == 2 && "Invalid number of operands!");
2523     // If we have an immediate that's not a constant, treat it as a label
2524     // reference needing a fixup. If it is a constant, it's something else
2525     // and we reject it.
2526     if (isImm()) {
2527       Inst.addOperand(MCOperand::createExpr(getImm()));
2528       Inst.addOperand(MCOperand::createImm(0));
2529       return;
2530     }
2531 
2532     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2533     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2534     Inst.addOperand(MCOperand::createImm(Val));
2535   }
2536 
2537   void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
2538     assert(N == 2 && "Invalid number of operands!");
2539     // The lower two bits are always zero and as such are not encoded.
2540     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2541     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2542     Inst.addOperand(MCOperand::createImm(Val));
2543   }
2544 
2545   void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2546     assert(N == 2 && "Invalid number of operands!");
2547     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2548     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2549     Inst.addOperand(MCOperand::createImm(Val));
2550   }
2551 
2552   void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2553     addMemImm8OffsetOperands(Inst, N);
2554   }
2555 
2556   void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2557     addMemImm8OffsetOperands(Inst, N);
2558   }
2559 
2560   void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2561     assert(N == 2 && "Invalid number of operands!");
2562     // If this is an immediate, it's a label reference.
2563     if (isImm()) {
2564       addExpr(Inst, getImm());
2565       Inst.addOperand(MCOperand::createImm(0));
2566       return;
2567     }
2568 
2569     // Otherwise, it's a normal memory reg+offset.
2570     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2571     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2572     Inst.addOperand(MCOperand::createImm(Val));
2573   }
2574 
2575   void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2576     assert(N == 2 && "Invalid number of operands!");
2577     // If this is an immediate, it's a label reference.
2578     if (isImm()) {
2579       addExpr(Inst, getImm());
2580       Inst.addOperand(MCOperand::createImm(0));
2581       return;
2582     }
2583 
2584     // Otherwise, it's a normal memory reg+offset.
2585     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2586     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2587     Inst.addOperand(MCOperand::createImm(Val));
2588   }
2589 
2590   void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
2591     assert(N == 1 && "Invalid number of operands!");
2592     // This is container for the immediate that we will create the constant
2593     // pool from
2594     addExpr(Inst, getConstantPoolImm());
2595     return;
2596   }
2597 
2598   void addMemTBBOperands(MCInst &Inst, unsigned N) const {
2599     assert(N == 2 && "Invalid number of operands!");
2600     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2601     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2602   }
2603 
2604   void addMemTBHOperands(MCInst &Inst, unsigned N) const {
2605     assert(N == 2 && "Invalid number of operands!");
2606     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2607     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2608   }
2609 
2610   void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2611     assert(N == 3 && "Invalid number of operands!");
2612     unsigned Val =
2613       ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2614                         Memory.ShiftImm, Memory.ShiftType);
2615     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2616     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2617     Inst.addOperand(MCOperand::createImm(Val));
2618   }
2619 
2620   void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2621     assert(N == 3 && "Invalid number of operands!");
2622     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2623     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2624     Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
2625   }
2626 
2627   void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
2628     assert(N == 2 && "Invalid number of operands!");
2629     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2630     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2631   }
2632 
2633   void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
2634     assert(N == 2 && "Invalid number of operands!");
2635     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2636     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2637     Inst.addOperand(MCOperand::createImm(Val));
2638   }
2639 
2640   void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
2641     assert(N == 2 && "Invalid number of operands!");
2642     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
2643     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2644     Inst.addOperand(MCOperand::createImm(Val));
2645   }
2646 
2647   void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
2648     assert(N == 2 && "Invalid number of operands!");
2649     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
2650     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2651     Inst.addOperand(MCOperand::createImm(Val));
2652   }
2653 
2654   void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
2655     assert(N == 2 && "Invalid number of operands!");
2656     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2657     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2658     Inst.addOperand(MCOperand::createImm(Val));
2659   }
2660 
2661   void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
2662     assert(N == 1 && "Invalid number of operands!");
2663     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2664     assert(CE && "non-constant post-idx-imm8 operand!");
2665     int Imm = CE->getValue();
2666     bool isAdd = Imm >= 0;
2667     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
2668     Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
2669     Inst.addOperand(MCOperand::createImm(Imm));
2670   }
2671 
2672   void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
2673     assert(N == 1 && "Invalid number of operands!");
2674     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2675     assert(CE && "non-constant post-idx-imm8s4 operand!");
2676     int Imm = CE->getValue();
2677     bool isAdd = Imm >= 0;
2678     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
2679     // Immediate is scaled by 4.
2680     Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
2681     Inst.addOperand(MCOperand::createImm(Imm));
2682   }
2683 
2684   void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
2685     assert(N == 2 && "Invalid number of operands!");
2686     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2687     Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
2688   }
2689 
2690   void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
2691     assert(N == 2 && "Invalid number of operands!");
2692     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2693     // The sign, shift type, and shift amount are encoded in a single operand
2694     // using the AM2 encoding helpers.
2695     ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
2696     unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
2697                                      PostIdxReg.ShiftTy);
2698     Inst.addOperand(MCOperand::createImm(Imm));
2699   }
2700 
2701   void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
2702     assert(N == 1 && "Invalid number of operands!");
2703     Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
2704   }
2705 
2706   void addBankedRegOperands(MCInst &Inst, unsigned N) const {
2707     assert(N == 1 && "Invalid number of operands!");
2708     Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
2709   }
2710 
2711   void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
2712     assert(N == 1 && "Invalid number of operands!");
2713     Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
2714   }
2715 
2716   void addVecListOperands(MCInst &Inst, unsigned N) const {
2717     assert(N == 1 && "Invalid number of operands!");
2718     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
2719   }
2720 
2721   void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
2722     assert(N == 2 && "Invalid number of operands!");
2723     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
2724     Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
2725   }
2726 
2727   void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
2728     assert(N == 1 && "Invalid number of operands!");
2729     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2730   }
2731 
2732   void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
2733     assert(N == 1 && "Invalid number of operands!");
2734     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2735   }
2736 
2737   void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
2738     assert(N == 1 && "Invalid number of operands!");
2739     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2740   }
2741 
2742   void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
2743     assert(N == 1 && "Invalid number of operands!");
2744     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2745   }
2746 
2747   void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
2748     assert(N == 1 && "Invalid number of operands!");
2749     // The immediate encodes the type of constant as well as the value.
2750     // Mask in that this is an i8 splat.
2751     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2752     Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
2753   }
2754 
2755   void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
2756     assert(N == 1 && "Invalid number of operands!");
2757     // The immediate encodes the type of constant as well as the value.
2758     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2759     unsigned Value = CE->getValue();
2760     Value = ARM_AM::encodeNEONi16splat(Value);
2761     Inst.addOperand(MCOperand::createImm(Value));
2762   }
2763 
2764   void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
2765     assert(N == 1 && "Invalid number of operands!");
2766     // The immediate encodes the type of constant as well as the value.
2767     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2768     unsigned Value = CE->getValue();
2769     Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
2770     Inst.addOperand(MCOperand::createImm(Value));
2771   }
2772 
2773   void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
2774     assert(N == 1 && "Invalid number of operands!");
2775     // The immediate encodes the type of constant as well as the value.
2776     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2777     unsigned Value = CE->getValue();
2778     Value = ARM_AM::encodeNEONi32splat(Value);
2779     Inst.addOperand(MCOperand::createImm(Value));
2780   }
2781 
2782   void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
2783     assert(N == 1 && "Invalid number of operands!");
2784     // The immediate encodes the type of constant as well as the value.
2785     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2786     unsigned Value = CE->getValue();
2787     Value = ARM_AM::encodeNEONi32splat(~Value);
2788     Inst.addOperand(MCOperand::createImm(Value));
2789   }
2790 
2791   void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
2792     // The immediate encodes the type of constant as well as the value.
2793     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2794     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
2795             Inst.getOpcode() == ARM::VMOVv16i8) &&
2796           "All instructions that wants to replicate non-zero byte "
2797           "always must be replaced with VMOVv8i8 or VMOVv16i8.");
2798     unsigned Value = CE->getValue();
2799     if (Inv)
2800       Value = ~Value;
2801     unsigned B = Value & 0xff;
2802     B |= 0xe00; // cmode = 0b1110
2803     Inst.addOperand(MCOperand::createImm(B));
2804   }
2805 
2806   void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
2807     assert(N == 1 && "Invalid number of operands!");
2808     addNEONi8ReplicateOperands(Inst, true);
2809   }
2810 
2811   static unsigned encodeNeonVMOVImmediate(unsigned Value) {
2812     if (Value >= 256 && Value <= 0xffff)
2813       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2814     else if (Value > 0xffff && Value <= 0xffffff)
2815       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2816     else if (Value > 0xffffff)
2817       Value = (Value >> 24) | 0x600;
2818     return Value;
2819   }
2820 
2821   void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2822     assert(N == 1 && "Invalid number of operands!");
2823     // The immediate encodes the type of constant as well as the value.
2824     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2825     unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
2826     Inst.addOperand(MCOperand::createImm(Value));
2827   }
2828 
2829   void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
2830     assert(N == 1 && "Invalid number of operands!");
2831     addNEONi8ReplicateOperands(Inst, false);
2832   }
2833 
2834   void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
2835     assert(N == 1 && "Invalid number of operands!");
2836     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2837     assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
2838             Inst.getOpcode() == ARM::VMOVv8i16 ||
2839             Inst.getOpcode() == ARM::VMVNv4i16 ||
2840             Inst.getOpcode() == ARM::VMVNv8i16) &&
2841           "All instructions that want to replicate non-zero half-word "
2842           "always must be replaced with V{MOV,MVN}v{4,8}i16.");
2843     uint64_t Value = CE->getValue();
2844     unsigned Elem = Value & 0xffff;
2845     if (Elem >= 256)
2846       Elem = (Elem >> 8) | 0x200;
2847     Inst.addOperand(MCOperand::createImm(Elem));
2848   }
2849 
2850   void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2851     assert(N == 1 && "Invalid number of operands!");
2852     // The immediate encodes the type of constant as well as the value.
2853     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2854     unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
2855     Inst.addOperand(MCOperand::createImm(Value));
2856   }
2857 
2858   void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
2859     assert(N == 1 && "Invalid number of operands!");
2860     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2861     assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
2862             Inst.getOpcode() == ARM::VMOVv4i32 ||
2863             Inst.getOpcode() == ARM::VMVNv2i32 ||
2864             Inst.getOpcode() == ARM::VMVNv4i32) &&
2865           "All instructions that want to replicate non-zero word "
2866           "always must be replaced with V{MOV,MVN}v{2,4}i32.");
2867     uint64_t Value = CE->getValue();
2868     unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
2869     Inst.addOperand(MCOperand::createImm(Elem));
2870   }
2871 
2872   void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2873     assert(N == 1 && "Invalid number of operands!");
2874     // The immediate encodes the type of constant as well as the value.
2875     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2876     uint64_t Value = CE->getValue();
2877     unsigned Imm = 0;
2878     for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2879       Imm |= (Value & 1) << i;
2880     }
2881     Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
2882   }
2883 
2884   void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
2885     assert(N == 1 && "Invalid number of operands!");
2886     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2887     Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
2888   }
2889 
2890   void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
2891     assert(N == 1 && "Invalid number of operands!");
2892     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2893     Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
2894   }
2895 
2896   void print(raw_ostream &OS) const override;
2897 
2898   static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
2899     auto Op = make_unique<ARMOperand>(k_ITCondMask);
2900     Op->ITMask.Mask = Mask;
2901     Op->StartLoc = S;
2902     Op->EndLoc = S;
2903     return Op;
2904   }
2905 
2906   static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
2907                                                     SMLoc S) {
2908     auto Op = make_unique<ARMOperand>(k_CondCode);
2909     Op->CC.Val = CC;
2910     Op->StartLoc = S;
2911     Op->EndLoc = S;
2912     return Op;
2913   }
2914 
2915   static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
2916     auto Op = make_unique<ARMOperand>(k_CoprocNum);
2917     Op->Cop.Val = CopVal;
2918     Op->StartLoc = S;
2919     Op->EndLoc = S;
2920     return Op;
2921   }
2922 
2923   static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
2924     auto Op = make_unique<ARMOperand>(k_CoprocReg);
2925     Op->Cop.Val = CopVal;
2926     Op->StartLoc = S;
2927     Op->EndLoc = S;
2928     return Op;
2929   }
2930 
2931   static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
2932                                                         SMLoc E) {
2933     auto Op = make_unique<ARMOperand>(k_CoprocOption);
2934     Op->Cop.Val = Val;
2935     Op->StartLoc = S;
2936     Op->EndLoc = E;
2937     return Op;
2938   }
2939 
2940   static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
2941     auto Op = make_unique<ARMOperand>(k_CCOut);
2942     Op->Reg.RegNum = RegNum;
2943     Op->StartLoc = S;
2944     Op->EndLoc = S;
2945     return Op;
2946   }
2947 
2948   static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
2949     auto Op = make_unique<ARMOperand>(k_Token);
2950     Op->Tok.Data = Str.data();
2951     Op->Tok.Length = Str.size();
2952     Op->StartLoc = S;
2953     Op->EndLoc = S;
2954     return Op;
2955   }
2956 
2957   static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
2958                                                SMLoc E) {
2959     auto Op = make_unique<ARMOperand>(k_Register);
2960     Op->Reg.RegNum = RegNum;
2961     Op->StartLoc = S;
2962     Op->EndLoc = E;
2963     return Op;
2964   }
2965 
2966   static std::unique_ptr<ARMOperand>
2967   CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
2968                         unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
2969                         SMLoc E) {
2970     auto Op = make_unique<ARMOperand>(k_ShiftedRegister);
2971     Op->RegShiftedReg.ShiftTy = ShTy;
2972     Op->RegShiftedReg.SrcReg = SrcReg;
2973     Op->RegShiftedReg.ShiftReg = ShiftReg;
2974     Op->RegShiftedReg.ShiftImm = ShiftImm;
2975     Op->StartLoc = S;
2976     Op->EndLoc = E;
2977     return Op;
2978   }
2979 
2980   static std::unique_ptr<ARMOperand>
2981   CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
2982                          unsigned ShiftImm, SMLoc S, SMLoc E) {
2983     auto Op = make_unique<ARMOperand>(k_ShiftedImmediate);
2984     Op->RegShiftedImm.ShiftTy = ShTy;
2985     Op->RegShiftedImm.SrcReg = SrcReg;
2986     Op->RegShiftedImm.ShiftImm = ShiftImm;
2987     Op->StartLoc = S;
2988     Op->EndLoc = E;
2989     return Op;
2990   }
2991 
2992   static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
2993                                                       SMLoc S, SMLoc E) {
2994     auto Op = make_unique<ARMOperand>(k_ShifterImmediate);
2995     Op->ShifterImm.isASR = isASR;
2996     Op->ShifterImm.Imm = Imm;
2997     Op->StartLoc = S;
2998     Op->EndLoc = E;
2999     return Op;
3000   }
3001 
3002   static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3003                                                   SMLoc E) {
3004     auto Op = make_unique<ARMOperand>(k_RotateImmediate);
3005     Op->RotImm.Imm = Imm;
3006     Op->StartLoc = S;
3007     Op->EndLoc = E;
3008     return Op;
3009   }
3010 
3011   static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3012                                                   SMLoc S, SMLoc E) {
3013     auto Op = make_unique<ARMOperand>(k_ModifiedImmediate);
3014     Op->ModImm.Bits = Bits;
3015     Op->ModImm.Rot = Rot;
3016     Op->StartLoc = S;
3017     Op->EndLoc = E;
3018     return Op;
3019   }
3020 
3021   static std::unique_ptr<ARMOperand>
3022   CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3023     auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate);
3024     Op->Imm.Val = Val;
3025     Op->StartLoc = S;
3026     Op->EndLoc = E;
3027     return Op;
3028   }
3029 
3030   static std::unique_ptr<ARMOperand>
3031   CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3032     auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor);
3033     Op->Bitfield.LSB = LSB;
3034     Op->Bitfield.Width = Width;
3035     Op->StartLoc = S;
3036     Op->EndLoc = E;
3037     return Op;
3038   }
3039 
3040   static std::unique_ptr<ARMOperand>
3041   CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3042                 SMLoc StartLoc, SMLoc EndLoc) {
3043     assert(Regs.size() > 0 && "RegList contains no registers?");
3044     KindTy Kind = k_RegisterList;
3045 
3046     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
3047       Kind = k_DPRRegisterList;
3048     else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
3049              contains(Regs.front().second))
3050       Kind = k_SPRRegisterList;
3051 
3052     // Sort based on the register encoding values.
3053     array_pod_sort(Regs.begin(), Regs.end());
3054 
3055     auto Op = make_unique<ARMOperand>(Kind);
3056     for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator
3057            I = Regs.begin(), E = Regs.end(); I != E; ++I)
3058       Op->Registers.push_back(I->second);
3059     Op->StartLoc = StartLoc;
3060     Op->EndLoc = EndLoc;
3061     return Op;
3062   }
3063 
3064   static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3065                                                       unsigned Count,
3066                                                       bool isDoubleSpaced,
3067                                                       SMLoc S, SMLoc E) {
3068     auto Op = make_unique<ARMOperand>(k_VectorList);
3069     Op->VectorList.RegNum = RegNum;
3070     Op->VectorList.Count = Count;
3071     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3072     Op->StartLoc = S;
3073     Op->EndLoc = E;
3074     return Op;
3075   }
3076 
3077   static std::unique_ptr<ARMOperand>
3078   CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3079                            SMLoc S, SMLoc E) {
3080     auto Op = make_unique<ARMOperand>(k_VectorListAllLanes);
3081     Op->VectorList.RegNum = RegNum;
3082     Op->VectorList.Count = Count;
3083     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3084     Op->StartLoc = S;
3085     Op->EndLoc = E;
3086     return Op;
3087   }
3088 
3089   static std::unique_ptr<ARMOperand>
3090   CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3091                           bool isDoubleSpaced, SMLoc S, SMLoc E) {
3092     auto Op = make_unique<ARMOperand>(k_VectorListIndexed);
3093     Op->VectorList.RegNum = RegNum;
3094     Op->VectorList.Count = Count;
3095     Op->VectorList.LaneIndex = Index;
3096     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3097     Op->StartLoc = S;
3098     Op->EndLoc = E;
3099     return Op;
3100   }
3101 
3102   static std::unique_ptr<ARMOperand>
3103   CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3104     auto Op = make_unique<ARMOperand>(k_VectorIndex);
3105     Op->VectorIndex.Val = Idx;
3106     Op->StartLoc = S;
3107     Op->EndLoc = E;
3108     return Op;
3109   }
3110 
3111   static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3112                                                SMLoc E) {
3113     auto Op = make_unique<ARMOperand>(k_Immediate);
3114     Op->Imm.Val = Val;
3115     Op->StartLoc = S;
3116     Op->EndLoc = E;
3117     return Op;
3118   }
3119 
3120   static std::unique_ptr<ARMOperand>
3121   CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
3122             unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
3123             unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
3124             SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3125     auto Op = make_unique<ARMOperand>(k_Memory);
3126     Op->Memory.BaseRegNum = BaseRegNum;
3127     Op->Memory.OffsetImm = OffsetImm;
3128     Op->Memory.OffsetRegNum = OffsetRegNum;
3129     Op->Memory.ShiftType = ShiftType;
3130     Op->Memory.ShiftImm = ShiftImm;
3131     Op->Memory.Alignment = Alignment;
3132     Op->Memory.isNegative = isNegative;
3133     Op->StartLoc = S;
3134     Op->EndLoc = E;
3135     Op->AlignmentLoc = AlignmentLoc;
3136     return Op;
3137   }
3138 
3139   static std::unique_ptr<ARMOperand>
3140   CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3141                    unsigned ShiftImm, SMLoc S, SMLoc E) {
3142     auto Op = make_unique<ARMOperand>(k_PostIndexRegister);
3143     Op->PostIdxReg.RegNum = RegNum;
3144     Op->PostIdxReg.isAdd = isAdd;
3145     Op->PostIdxReg.ShiftTy = ShiftTy;
3146     Op->PostIdxReg.ShiftImm = ShiftImm;
3147     Op->StartLoc = S;
3148     Op->EndLoc = E;
3149     return Op;
3150   }
3151 
3152   static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3153                                                          SMLoc S) {
3154     auto Op = make_unique<ARMOperand>(k_MemBarrierOpt);
3155     Op->MBOpt.Val = Opt;
3156     Op->StartLoc = S;
3157     Op->EndLoc = S;
3158     return Op;
3159   }
3160 
3161   static std::unique_ptr<ARMOperand>
3162   CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3163     auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3164     Op->ISBOpt.Val = Opt;
3165     Op->StartLoc = S;
3166     Op->EndLoc = S;
3167     return Op;
3168   }
3169 
3170   static std::unique_ptr<ARMOperand>
3171   CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3172     auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3173     Op->TSBOpt.Val = Opt;
3174     Op->StartLoc = S;
3175     Op->EndLoc = S;
3176     return Op;
3177   }
3178 
3179   static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3180                                                       SMLoc S) {
3181     auto Op = make_unique<ARMOperand>(k_ProcIFlags);
3182     Op->IFlags.Val = IFlags;
3183     Op->StartLoc = S;
3184     Op->EndLoc = S;
3185     return Op;
3186   }
3187 
3188   static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3189     auto Op = make_unique<ARMOperand>(k_MSRMask);
3190     Op->MMask.Val = MMask;
3191     Op->StartLoc = S;
3192     Op->EndLoc = S;
3193     return Op;
3194   }
3195 
3196   static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3197     auto Op = make_unique<ARMOperand>(k_BankedReg);
3198     Op->BankedReg.Val = Reg;
3199     Op->StartLoc = S;
3200     Op->EndLoc = S;
3201     return Op;
3202   }
3203 };
3204 
3205 } // end anonymous namespace.
3206 
3207 void ARMOperand::print(raw_ostream &OS) const {
3208   switch (Kind) {
3209   case k_CondCode:
3210     OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3211     break;
3212   case k_CCOut:
3213     OS << "<ccout " << getReg() << ">";
3214     break;
3215   case k_ITCondMask: {
3216     static const char *const MaskStr[] = {
3217       "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
3218       "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
3219     };
3220     assert((ITMask.Mask & 0xf) == ITMask.Mask);
3221     OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3222     break;
3223   }
3224   case k_CoprocNum:
3225     OS << "<coprocessor number: " << getCoproc() << ">";
3226     break;
3227   case k_CoprocReg:
3228     OS << "<coprocessor register: " << getCoproc() << ">";
3229     break;
3230   case k_CoprocOption:
3231     OS << "<coprocessor option: " << CoprocOption.Val << ">";
3232     break;
3233   case k_MSRMask:
3234     OS << "<mask: " << getMSRMask() << ">";
3235     break;
3236   case k_BankedReg:
3237     OS << "<banked reg: " << getBankedReg() << ">";
3238     break;
3239   case k_Immediate:
3240     OS << *getImm();
3241     break;
3242   case k_MemBarrierOpt:
3243     OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3244     break;
3245   case k_InstSyncBarrierOpt:
3246     OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3247     break;
3248   case k_TraceSyncBarrierOpt:
3249     OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3250     break;
3251   case k_Memory:
3252     OS << "<memory "
3253        << " base:" << Memory.BaseRegNum;
3254     OS << ">";
3255     break;
3256   case k_PostIndexRegister:
3257     OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3258        << PostIdxReg.RegNum;
3259     if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3260       OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3261          << PostIdxReg.ShiftImm;
3262     OS << ">";
3263     break;
3264   case k_ProcIFlags: {
3265     OS << "<ARM_PROC::";
3266     unsigned IFlags = getProcIFlags();
3267     for (int i=2; i >= 0; --i)
3268       if (IFlags & (1 << i))
3269         OS << ARM_PROC::IFlagsToString(1 << i);
3270     OS << ">";
3271     break;
3272   }
3273   case k_Register:
3274     OS << "<register " << getReg() << ">";
3275     break;
3276   case k_ShifterImmediate:
3277     OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3278        << " #" << ShifterImm.Imm << ">";
3279     break;
3280   case k_ShiftedRegister:
3281     OS << "<so_reg_reg "
3282        << RegShiftedReg.SrcReg << " "
3283        << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
3284        << " " << RegShiftedReg.ShiftReg << ">";
3285     break;
3286   case k_ShiftedImmediate:
3287     OS << "<so_reg_imm "
3288        << RegShiftedImm.SrcReg << " "
3289        << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
3290        << " #" << RegShiftedImm.ShiftImm << ">";
3291     break;
3292   case k_RotateImmediate:
3293     OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
3294     break;
3295   case k_ModifiedImmediate:
3296     OS << "<mod_imm #" << ModImm.Bits << ", #"
3297        <<  ModImm.Rot << ")>";
3298     break;
3299   case k_ConstantPoolImmediate:
3300     OS << "<constant_pool_imm #" << *getConstantPoolImm();
3301     break;
3302   case k_BitfieldDescriptor:
3303     OS << "<bitfield " << "lsb: " << Bitfield.LSB
3304        << ", width: " << Bitfield.Width << ">";
3305     break;
3306   case k_RegisterList:
3307   case k_DPRRegisterList:
3308   case k_SPRRegisterList: {
3309     OS << "<register_list ";
3310 
3311     const SmallVectorImpl<unsigned> &RegList = getRegList();
3312     for (SmallVectorImpl<unsigned>::const_iterator
3313            I = RegList.begin(), E = RegList.end(); I != E; ) {
3314       OS << *I;
3315       if (++I < E) OS << ", ";
3316     }
3317 
3318     OS << ">";
3319     break;
3320   }
3321   case k_VectorList:
3322     OS << "<vector_list " << VectorList.Count << " * "
3323        << VectorList.RegNum << ">";
3324     break;
3325   case k_VectorListAllLanes:
3326     OS << "<vector_list(all lanes) " << VectorList.Count << " * "
3327        << VectorList.RegNum << ">";
3328     break;
3329   case k_VectorListIndexed:
3330     OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
3331        << VectorList.Count << " * " << VectorList.RegNum << ">";
3332     break;
3333   case k_Token:
3334     OS << "'" << getToken() << "'";
3335     break;
3336   case k_VectorIndex:
3337     OS << "<vectorindex " << getVectorIndex() << ">";
3338     break;
3339   }
3340 }
3341 
3342 /// @name Auto-generated Match Functions
3343 /// {
3344 
3345 static unsigned MatchRegisterName(StringRef Name);
3346 
3347 /// }
3348 
3349 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
3350                                  SMLoc &StartLoc, SMLoc &EndLoc) {
3351   const AsmToken &Tok = getParser().getTok();
3352   StartLoc = Tok.getLoc();
3353   EndLoc = Tok.getEndLoc();
3354   RegNo = tryParseRegister();
3355 
3356   return (RegNo == (unsigned)-1);
3357 }
3358 
3359 /// Try to parse a register name.  The token must be an Identifier when called,
3360 /// and if it is a register name the token is eaten and the register number is
3361 /// returned.  Otherwise return -1.
3362 int ARMAsmParser::tryParseRegister() {
3363   MCAsmParser &Parser = getParser();
3364   const AsmToken &Tok = Parser.getTok();
3365   if (Tok.isNot(AsmToken::Identifier)) return -1;
3366 
3367   std::string lowerCase = Tok.getString().lower();
3368   unsigned RegNum = MatchRegisterName(lowerCase);
3369   if (!RegNum) {
3370     RegNum = StringSwitch<unsigned>(lowerCase)
3371       .Case("r13", ARM::SP)
3372       .Case("r14", ARM::LR)
3373       .Case("r15", ARM::PC)
3374       .Case("ip", ARM::R12)
3375       // Additional register name aliases for 'gas' compatibility.
3376       .Case("a1", ARM::R0)
3377       .Case("a2", ARM::R1)
3378       .Case("a3", ARM::R2)
3379       .Case("a4", ARM::R3)
3380       .Case("v1", ARM::R4)
3381       .Case("v2", ARM::R5)
3382       .Case("v3", ARM::R6)
3383       .Case("v4", ARM::R7)
3384       .Case("v5", ARM::R8)
3385       .Case("v6", ARM::R9)
3386       .Case("v7", ARM::R10)
3387       .Case("v8", ARM::R11)
3388       .Case("sb", ARM::R9)
3389       .Case("sl", ARM::R10)
3390       .Case("fp", ARM::R11)
3391       .Default(0);
3392   }
3393   if (!RegNum) {
3394     // Check for aliases registered via .req. Canonicalize to lower case.
3395     // That's more consistent since register names are case insensitive, and
3396     // it's how the original entry was passed in from MC/MCParser/AsmParser.
3397     StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
3398     // If no match, return failure.
3399     if (Entry == RegisterReqs.end())
3400       return -1;
3401     Parser.Lex(); // Eat identifier token.
3402     return Entry->getValue();
3403   }
3404 
3405   // Some FPUs only have 16 D registers, so D16-D31 are invalid
3406   if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
3407     return -1;
3408 
3409   Parser.Lex(); // Eat identifier token.
3410 
3411   return RegNum;
3412 }
3413 
3414 // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
3415 // If a recoverable error occurs, return 1. If an irrecoverable error
3416 // occurs, return -1. An irrecoverable error is one where tokens have been
3417 // consumed in the process of trying to parse the shifter (i.e., when it is
3418 // indeed a shifter operand, but malformed).
3419 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
3420   MCAsmParser &Parser = getParser();
3421   SMLoc S = Parser.getTok().getLoc();
3422   const AsmToken &Tok = Parser.getTok();
3423   if (Tok.isNot(AsmToken::Identifier))
3424     return -1;
3425 
3426   std::string lowerCase = Tok.getString().lower();
3427   ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
3428       .Case("asl", ARM_AM::lsl)
3429       .Case("lsl", ARM_AM::lsl)
3430       .Case("lsr", ARM_AM::lsr)
3431       .Case("asr", ARM_AM::asr)
3432       .Case("ror", ARM_AM::ror)
3433       .Case("rrx", ARM_AM::rrx)
3434       .Default(ARM_AM::no_shift);
3435 
3436   if (ShiftTy == ARM_AM::no_shift)
3437     return 1;
3438 
3439   Parser.Lex(); // Eat the operator.
3440 
3441   // The source register for the shift has already been added to the
3442   // operand list, so we need to pop it off and combine it into the shifted
3443   // register operand instead.
3444   std::unique_ptr<ARMOperand> PrevOp(
3445       (ARMOperand *)Operands.pop_back_val().release());
3446   if (!PrevOp->isReg())
3447     return Error(PrevOp->getStartLoc(), "shift must be of a register");
3448   int SrcReg = PrevOp->getReg();
3449 
3450   SMLoc EndLoc;
3451   int64_t Imm = 0;
3452   int ShiftReg = 0;
3453   if (ShiftTy == ARM_AM::rrx) {
3454     // RRX Doesn't have an explicit shift amount. The encoder expects
3455     // the shift register to be the same as the source register. Seems odd,
3456     // but OK.
3457     ShiftReg = SrcReg;
3458   } else {
3459     // Figure out if this is shifted by a constant or a register (for non-RRX).
3460     if (Parser.getTok().is(AsmToken::Hash) ||
3461         Parser.getTok().is(AsmToken::Dollar)) {
3462       Parser.Lex(); // Eat hash.
3463       SMLoc ImmLoc = Parser.getTok().getLoc();
3464       const MCExpr *ShiftExpr = nullptr;
3465       if (getParser().parseExpression(ShiftExpr, EndLoc)) {
3466         Error(ImmLoc, "invalid immediate shift value");
3467         return -1;
3468       }
3469       // The expression must be evaluatable as an immediate.
3470       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
3471       if (!CE) {
3472         Error(ImmLoc, "invalid immediate shift value");
3473         return -1;
3474       }
3475       // Range check the immediate.
3476       // lsl, ror: 0 <= imm <= 31
3477       // lsr, asr: 0 <= imm <= 32
3478       Imm = CE->getValue();
3479       if (Imm < 0 ||
3480           ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
3481           ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
3482         Error(ImmLoc, "immediate shift value out of range");
3483         return -1;
3484       }
3485       // shift by zero is a nop. Always send it through as lsl.
3486       // ('as' compatibility)
3487       if (Imm == 0)
3488         ShiftTy = ARM_AM::lsl;
3489     } else if (Parser.getTok().is(AsmToken::Identifier)) {
3490       SMLoc L = Parser.getTok().getLoc();
3491       EndLoc = Parser.getTok().getEndLoc();
3492       ShiftReg = tryParseRegister();
3493       if (ShiftReg == -1) {
3494         Error(L, "expected immediate or register in shift operand");
3495         return -1;
3496       }
3497     } else {
3498       Error(Parser.getTok().getLoc(),
3499             "expected immediate or register in shift operand");
3500       return -1;
3501     }
3502   }
3503 
3504   if (ShiftReg && ShiftTy != ARM_AM::rrx)
3505     Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
3506                                                          ShiftReg, Imm,
3507                                                          S, EndLoc));
3508   else
3509     Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
3510                                                           S, EndLoc));
3511 
3512   return 0;
3513 }
3514 
3515 /// Try to parse a register name.  The token must be an Identifier when called.
3516 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
3517 /// if there is a "writeback". 'true' if it's not a register.
3518 ///
3519 /// TODO this is likely to change to allow different register types and or to
3520 /// parse for a specific register type.
3521 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
3522   MCAsmParser &Parser = getParser();
3523   SMLoc RegStartLoc = Parser.getTok().getLoc();
3524   SMLoc RegEndLoc = Parser.getTok().getEndLoc();
3525   int RegNo = tryParseRegister();
3526   if (RegNo == -1)
3527     return true;
3528 
3529   Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
3530 
3531   const AsmToken &ExclaimTok = Parser.getTok();
3532   if (ExclaimTok.is(AsmToken::Exclaim)) {
3533     Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
3534                                                ExclaimTok.getLoc()));
3535     Parser.Lex(); // Eat exclaim token
3536     return false;
3537   }
3538 
3539   // Also check for an index operand. This is only legal for vector registers,
3540   // but that'll get caught OK in operand matching, so we don't need to
3541   // explicitly filter everything else out here.
3542   if (Parser.getTok().is(AsmToken::LBrac)) {
3543     SMLoc SIdx = Parser.getTok().getLoc();
3544     Parser.Lex(); // Eat left bracket token.
3545 
3546     const MCExpr *ImmVal;
3547     if (getParser().parseExpression(ImmVal))
3548       return true;
3549     const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
3550     if (!MCE)
3551       return TokError("immediate value expected for vector index");
3552 
3553     if (Parser.getTok().isNot(AsmToken::RBrac))
3554       return Error(Parser.getTok().getLoc(), "']' expected");
3555 
3556     SMLoc E = Parser.getTok().getEndLoc();
3557     Parser.Lex(); // Eat right bracket token.
3558 
3559     Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
3560                                                      SIdx, E,
3561                                                      getContext()));
3562   }
3563 
3564   return false;
3565 }
3566 
3567 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
3568 /// instruction with a symbolic operand name.
3569 /// We accept "crN" syntax for GAS compatibility.
3570 /// <operand-name> ::= <prefix><number>
3571 /// If CoprocOp is 'c', then:
3572 ///   <prefix> ::= c | cr
3573 /// If CoprocOp is 'p', then :
3574 ///   <prefix> ::= p
3575 /// <number> ::= integer in range [0, 15]
3576 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
3577   // Use the same layout as the tablegen'erated register name matcher. Ugly,
3578   // but efficient.
3579   if (Name.size() < 2 || Name[0] != CoprocOp)
3580     return -1;
3581   Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
3582 
3583   switch (Name.size()) {
3584   default: return -1;
3585   case 1:
3586     switch (Name[0]) {
3587     default:  return -1;
3588     case '0': return 0;
3589     case '1': return 1;
3590     case '2': return 2;
3591     case '3': return 3;
3592     case '4': return 4;
3593     case '5': return 5;
3594     case '6': return 6;
3595     case '7': return 7;
3596     case '8': return 8;
3597     case '9': return 9;
3598     }
3599   case 2:
3600     if (Name[0] != '1')
3601       return -1;
3602     switch (Name[1]) {
3603     default:  return -1;
3604     // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
3605     // However, old cores (v5/v6) did use them in that way.
3606     case '0': return 10;
3607     case '1': return 11;
3608     case '2': return 12;
3609     case '3': return 13;
3610     case '4': return 14;
3611     case '5': return 15;
3612     }
3613   }
3614 }
3615 
3616 /// parseITCondCode - Try to parse a condition code for an IT instruction.
3617 OperandMatchResultTy
3618 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
3619   MCAsmParser &Parser = getParser();
3620   SMLoc S = Parser.getTok().getLoc();
3621   const AsmToken &Tok = Parser.getTok();
3622   if (!Tok.is(AsmToken::Identifier))
3623     return MatchOperand_NoMatch;
3624   unsigned CC = ARMCondCodeFromString(Tok.getString());
3625   if (CC == ~0U)
3626     return MatchOperand_NoMatch;
3627   Parser.Lex(); // Eat the token.
3628 
3629   Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
3630 
3631   return MatchOperand_Success;
3632 }
3633 
3634 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
3635 /// token must be an Identifier when called, and if it is a coprocessor
3636 /// number, the token is eaten and the operand is added to the operand list.
3637 OperandMatchResultTy
3638 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
3639   MCAsmParser &Parser = getParser();
3640   SMLoc S = Parser.getTok().getLoc();
3641   const AsmToken &Tok = Parser.getTok();
3642   if (Tok.isNot(AsmToken::Identifier))
3643     return MatchOperand_NoMatch;
3644 
3645   int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
3646   if (Num == -1)
3647     return MatchOperand_NoMatch;
3648   // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions
3649   if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11))
3650     return MatchOperand_NoMatch;
3651 
3652   Parser.Lex(); // Eat identifier token.
3653   Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
3654   return MatchOperand_Success;
3655 }
3656 
3657 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
3658 /// token must be an Identifier when called, and if it is a coprocessor
3659 /// number, the token is eaten and the operand is added to the operand list.
3660 OperandMatchResultTy
3661 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
3662   MCAsmParser &Parser = getParser();
3663   SMLoc S = Parser.getTok().getLoc();
3664   const AsmToken &Tok = Parser.getTok();
3665   if (Tok.isNot(AsmToken::Identifier))
3666     return MatchOperand_NoMatch;
3667 
3668   int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
3669   if (Reg == -1)
3670     return MatchOperand_NoMatch;
3671 
3672   Parser.Lex(); // Eat identifier token.
3673   Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
3674   return MatchOperand_Success;
3675 }
3676 
3677 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
3678 /// coproc_option : '{' imm0_255 '}'
3679 OperandMatchResultTy
3680 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
3681   MCAsmParser &Parser = getParser();
3682   SMLoc S = Parser.getTok().getLoc();
3683 
3684   // If this isn't a '{', this isn't a coprocessor immediate operand.
3685   if (Parser.getTok().isNot(AsmToken::LCurly))
3686     return MatchOperand_NoMatch;
3687   Parser.Lex(); // Eat the '{'
3688 
3689   const MCExpr *Expr;
3690   SMLoc Loc = Parser.getTok().getLoc();
3691   if (getParser().parseExpression(Expr)) {
3692     Error(Loc, "illegal expression");
3693     return MatchOperand_ParseFail;
3694   }
3695   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
3696   if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
3697     Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
3698     return MatchOperand_ParseFail;
3699   }
3700   int Val = CE->getValue();
3701 
3702   // Check for and consume the closing '}'
3703   if (Parser.getTok().isNot(AsmToken::RCurly))
3704     return MatchOperand_ParseFail;
3705   SMLoc E = Parser.getTok().getEndLoc();
3706   Parser.Lex(); // Eat the '}'
3707 
3708   Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
3709   return MatchOperand_Success;
3710 }
3711 
3712 // For register list parsing, we need to map from raw GPR register numbering
3713 // to the enumeration values. The enumeration values aren't sorted by
3714 // register number due to our using "sp", "lr" and "pc" as canonical names.
3715 static unsigned getNextRegister(unsigned Reg) {
3716   // If this is a GPR, we need to do it manually, otherwise we can rely
3717   // on the sort ordering of the enumeration since the other reg-classes
3718   // are sane.
3719   if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3720     return Reg + 1;
3721   switch(Reg) {
3722   default: llvm_unreachable("Invalid GPR number!");
3723   case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
3724   case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
3725   case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
3726   case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
3727   case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
3728   case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
3729   case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
3730   case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
3731   }
3732 }
3733 
3734 /// Parse a register list.
3735 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) {
3736   MCAsmParser &Parser = getParser();
3737   if (Parser.getTok().isNot(AsmToken::LCurly))
3738     return TokError("Token is not a Left Curly Brace");
3739   SMLoc S = Parser.getTok().getLoc();
3740   Parser.Lex(); // Eat '{' token.
3741   SMLoc RegLoc = Parser.getTok().getLoc();
3742 
3743   // Check the first register in the list to see what register class
3744   // this is a list of.
3745   int Reg = tryParseRegister();
3746   if (Reg == -1)
3747     return Error(RegLoc, "register expected");
3748 
3749   // The reglist instructions have at most 16 registers, so reserve
3750   // space for that many.
3751   int EReg = 0;
3752   SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
3753 
3754   // Allow Q regs and just interpret them as the two D sub-registers.
3755   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3756     Reg = getDRegFromQReg(Reg);
3757     EReg = MRI->getEncodingValue(Reg);
3758     Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3759     ++Reg;
3760   }
3761   const MCRegisterClass *RC;
3762   if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3763     RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
3764   else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
3765     RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
3766   else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
3767     RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
3768   else
3769     return Error(RegLoc, "invalid register in register list");
3770 
3771   // Store the register.
3772   EReg = MRI->getEncodingValue(Reg);
3773   Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3774 
3775   // This starts immediately after the first register token in the list,
3776   // so we can see either a comma or a minus (range separator) as a legal
3777   // next token.
3778   while (Parser.getTok().is(AsmToken::Comma) ||
3779          Parser.getTok().is(AsmToken::Minus)) {
3780     if (Parser.getTok().is(AsmToken::Minus)) {
3781       Parser.Lex(); // Eat the minus.
3782       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3783       int EndReg = tryParseRegister();
3784       if (EndReg == -1)
3785         return Error(AfterMinusLoc, "register expected");
3786       // Allow Q regs and just interpret them as the two D sub-registers.
3787       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3788         EndReg = getDRegFromQReg(EndReg) + 1;
3789       // If the register is the same as the start reg, there's nothing
3790       // more to do.
3791       if (Reg == EndReg)
3792         continue;
3793       // The register must be in the same register class as the first.
3794       if (!RC->contains(EndReg))
3795         return Error(AfterMinusLoc, "invalid register in register list");
3796       // Ranges must go from low to high.
3797       if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
3798         return Error(AfterMinusLoc, "bad range in register list");
3799 
3800       // Add all the registers in the range to the register list.
3801       while (Reg != EndReg) {
3802         Reg = getNextRegister(Reg);
3803         EReg = MRI->getEncodingValue(Reg);
3804         Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3805       }
3806       continue;
3807     }
3808     Parser.Lex(); // Eat the comma.
3809     RegLoc = Parser.getTok().getLoc();
3810     int OldReg = Reg;
3811     const AsmToken RegTok = Parser.getTok();
3812     Reg = tryParseRegister();
3813     if (Reg == -1)
3814       return Error(RegLoc, "register expected");
3815     // Allow Q regs and just interpret them as the two D sub-registers.
3816     bool isQReg = false;
3817     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3818       Reg = getDRegFromQReg(Reg);
3819       isQReg = true;
3820     }
3821     // The register must be in the same register class as the first.
3822     if (!RC->contains(Reg))
3823       return Error(RegLoc, "invalid register in register list");
3824     // List must be monotonically increasing.
3825     if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
3826       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3827         Warning(RegLoc, "register list not in ascending order");
3828       else
3829         return Error(RegLoc, "register list not in ascending order");
3830     }
3831     if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
3832       Warning(RegLoc, "duplicated register (" + RegTok.getString() +
3833               ") in register list");
3834       continue;
3835     }
3836     // VFP register lists must also be contiguous.
3837     if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
3838         Reg != OldReg + 1)
3839       return Error(RegLoc, "non-contiguous register range");
3840     EReg = MRI->getEncodingValue(Reg);
3841     Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3842     if (isQReg) {
3843       EReg = MRI->getEncodingValue(++Reg);
3844       Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3845     }
3846   }
3847 
3848   if (Parser.getTok().isNot(AsmToken::RCurly))
3849     return Error(Parser.getTok().getLoc(), "'}' expected");
3850   SMLoc E = Parser.getTok().getEndLoc();
3851   Parser.Lex(); // Eat '}' token.
3852 
3853   // Push the register list operand.
3854   Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
3855 
3856   // The ARM system instruction variants for LDM/STM have a '^' token here.
3857   if (Parser.getTok().is(AsmToken::Caret)) {
3858     Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
3859     Parser.Lex(); // Eat '^' token.
3860   }
3861 
3862   return false;
3863 }
3864 
3865 // Helper function to parse the lane index for vector lists.
3866 OperandMatchResultTy ARMAsmParser::
3867 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
3868   MCAsmParser &Parser = getParser();
3869   Index = 0; // Always return a defined index value.
3870   if (Parser.getTok().is(AsmToken::LBrac)) {
3871     Parser.Lex(); // Eat the '['.
3872     if (Parser.getTok().is(AsmToken::RBrac)) {
3873       // "Dn[]" is the 'all lanes' syntax.
3874       LaneKind = AllLanes;
3875       EndLoc = Parser.getTok().getEndLoc();
3876       Parser.Lex(); // Eat the ']'.
3877       return MatchOperand_Success;
3878     }
3879 
3880     // There's an optional '#' token here. Normally there wouldn't be, but
3881     // inline assemble puts one in, and it's friendly to accept that.
3882     if (Parser.getTok().is(AsmToken::Hash))
3883       Parser.Lex(); // Eat '#' or '$'.
3884 
3885     const MCExpr *LaneIndex;
3886     SMLoc Loc = Parser.getTok().getLoc();
3887     if (getParser().parseExpression(LaneIndex)) {
3888       Error(Loc, "illegal expression");
3889       return MatchOperand_ParseFail;
3890     }
3891     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
3892     if (!CE) {
3893       Error(Loc, "lane index must be empty or an integer");
3894       return MatchOperand_ParseFail;
3895     }
3896     if (Parser.getTok().isNot(AsmToken::RBrac)) {
3897       Error(Parser.getTok().getLoc(), "']' expected");
3898       return MatchOperand_ParseFail;
3899     }
3900     EndLoc = Parser.getTok().getEndLoc();
3901     Parser.Lex(); // Eat the ']'.
3902     int64_t Val = CE->getValue();
3903 
3904     // FIXME: Make this range check context sensitive for .8, .16, .32.
3905     if (Val < 0 || Val > 7) {
3906       Error(Parser.getTok().getLoc(), "lane index out of range");
3907       return MatchOperand_ParseFail;
3908     }
3909     Index = Val;
3910     LaneKind = IndexedLane;
3911     return MatchOperand_Success;
3912   }
3913   LaneKind = NoLanes;
3914   return MatchOperand_Success;
3915 }
3916 
3917 // parse a vector register list
3918 OperandMatchResultTy
3919 ARMAsmParser::parseVectorList(OperandVector &Operands) {
3920   MCAsmParser &Parser = getParser();
3921   VectorLaneTy LaneKind;
3922   unsigned LaneIndex;
3923   SMLoc S = Parser.getTok().getLoc();
3924   // As an extension (to match gas), support a plain D register or Q register
3925   // (without encosing curly braces) as a single or double entry list,
3926   // respectively.
3927   if (Parser.getTok().is(AsmToken::Identifier)) {
3928     SMLoc E = Parser.getTok().getEndLoc();
3929     int Reg = tryParseRegister();
3930     if (Reg == -1)
3931       return MatchOperand_NoMatch;
3932     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3933       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3934       if (Res != MatchOperand_Success)
3935         return Res;
3936       switch (LaneKind) {
3937       case NoLanes:
3938         Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3939         break;
3940       case AllLanes:
3941         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3942                                                                 S, E));
3943         break;
3944       case IndexedLane:
3945         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3946                                                                LaneIndex,
3947                                                                false, S, E));
3948         break;
3949       }
3950       return MatchOperand_Success;
3951     }
3952     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3953       Reg = getDRegFromQReg(Reg);
3954       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3955       if (Res != MatchOperand_Success)
3956         return Res;
3957       switch (LaneKind) {
3958       case NoLanes:
3959         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3960                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3961         Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3962         break;
3963       case AllLanes:
3964         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3965                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3966         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3967                                                                 S, E));
3968         break;
3969       case IndexedLane:
3970         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3971                                                                LaneIndex,
3972                                                                false, S, E));
3973         break;
3974       }
3975       return MatchOperand_Success;
3976     }
3977     Error(S, "vector register expected");
3978     return MatchOperand_ParseFail;
3979   }
3980 
3981   if (Parser.getTok().isNot(AsmToken::LCurly))
3982     return MatchOperand_NoMatch;
3983 
3984   Parser.Lex(); // Eat '{' token.
3985   SMLoc RegLoc = Parser.getTok().getLoc();
3986 
3987   int Reg = tryParseRegister();
3988   if (Reg == -1) {
3989     Error(RegLoc, "register expected");
3990     return MatchOperand_ParseFail;
3991   }
3992   unsigned Count = 1;
3993   int Spacing = 0;
3994   unsigned FirstReg = Reg;
3995   // The list is of D registers, but we also allow Q regs and just interpret
3996   // them as the two D sub-registers.
3997   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3998     FirstReg = Reg = getDRegFromQReg(Reg);
3999     Spacing = 1; // double-spacing requires explicit D registers, otherwise
4000                  // it's ambiguous with four-register single spaced.
4001     ++Reg;
4002     ++Count;
4003   }
4004 
4005   SMLoc E;
4006   if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4007     return MatchOperand_ParseFail;
4008 
4009   while (Parser.getTok().is(AsmToken::Comma) ||
4010          Parser.getTok().is(AsmToken::Minus)) {
4011     if (Parser.getTok().is(AsmToken::Minus)) {
4012       if (!Spacing)
4013         Spacing = 1; // Register range implies a single spaced list.
4014       else if (Spacing == 2) {
4015         Error(Parser.getTok().getLoc(),
4016               "sequential registers in double spaced list");
4017         return MatchOperand_ParseFail;
4018       }
4019       Parser.Lex(); // Eat the minus.
4020       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4021       int EndReg = tryParseRegister();
4022       if (EndReg == -1) {
4023         Error(AfterMinusLoc, "register expected");
4024         return MatchOperand_ParseFail;
4025       }
4026       // Allow Q regs and just interpret them as the two D sub-registers.
4027       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4028         EndReg = getDRegFromQReg(EndReg) + 1;
4029       // If the register is the same as the start reg, there's nothing
4030       // more to do.
4031       if (Reg == EndReg)
4032         continue;
4033       // The register must be in the same register class as the first.
4034       if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
4035         Error(AfterMinusLoc, "invalid register in register list");
4036         return MatchOperand_ParseFail;
4037       }
4038       // Ranges must go from low to high.
4039       if (Reg > EndReg) {
4040         Error(AfterMinusLoc, "bad range in register list");
4041         return MatchOperand_ParseFail;
4042       }
4043       // Parse the lane specifier if present.
4044       VectorLaneTy NextLaneKind;
4045       unsigned NextLaneIndex;
4046       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4047           MatchOperand_Success)
4048         return MatchOperand_ParseFail;
4049       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4050         Error(AfterMinusLoc, "mismatched lane index in register list");
4051         return MatchOperand_ParseFail;
4052       }
4053 
4054       // Add all the registers in the range to the register list.
4055       Count += EndReg - Reg;
4056       Reg = EndReg;
4057       continue;
4058     }
4059     Parser.Lex(); // Eat the comma.
4060     RegLoc = Parser.getTok().getLoc();
4061     int OldReg = Reg;
4062     Reg = tryParseRegister();
4063     if (Reg == -1) {
4064       Error(RegLoc, "register expected");
4065       return MatchOperand_ParseFail;
4066     }
4067     // vector register lists must be contiguous.
4068     // It's OK to use the enumeration values directly here rather, as the
4069     // VFP register classes have the enum sorted properly.
4070     //
4071     // The list is of D registers, but we also allow Q regs and just interpret
4072     // them as the two D sub-registers.
4073     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4074       if (!Spacing)
4075         Spacing = 1; // Register range implies a single spaced list.
4076       else if (Spacing == 2) {
4077         Error(RegLoc,
4078               "invalid register in double-spaced list (must be 'D' register')");
4079         return MatchOperand_ParseFail;
4080       }
4081       Reg = getDRegFromQReg(Reg);
4082       if (Reg != OldReg + 1) {
4083         Error(RegLoc, "non-contiguous register range");
4084         return MatchOperand_ParseFail;
4085       }
4086       ++Reg;
4087       Count += 2;
4088       // Parse the lane specifier if present.
4089       VectorLaneTy NextLaneKind;
4090       unsigned NextLaneIndex;
4091       SMLoc LaneLoc = Parser.getTok().getLoc();
4092       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4093           MatchOperand_Success)
4094         return MatchOperand_ParseFail;
4095       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4096         Error(LaneLoc, "mismatched lane index in register list");
4097         return MatchOperand_ParseFail;
4098       }
4099       continue;
4100     }
4101     // Normal D register.
4102     // Figure out the register spacing (single or double) of the list if
4103     // we don't know it already.
4104     if (!Spacing)
4105       Spacing = 1 + (Reg == OldReg + 2);
4106 
4107     // Just check that it's contiguous and keep going.
4108     if (Reg != OldReg + Spacing) {
4109       Error(RegLoc, "non-contiguous register range");
4110       return MatchOperand_ParseFail;
4111     }
4112     ++Count;
4113     // Parse the lane specifier if present.
4114     VectorLaneTy NextLaneKind;
4115     unsigned NextLaneIndex;
4116     SMLoc EndLoc = Parser.getTok().getLoc();
4117     if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4118       return MatchOperand_ParseFail;
4119     if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4120       Error(EndLoc, "mismatched lane index in register list");
4121       return MatchOperand_ParseFail;
4122     }
4123   }
4124 
4125   if (Parser.getTok().isNot(AsmToken::RCurly)) {
4126     Error(Parser.getTok().getLoc(), "'}' expected");
4127     return MatchOperand_ParseFail;
4128   }
4129   E = Parser.getTok().getEndLoc();
4130   Parser.Lex(); // Eat '}' token.
4131 
4132   switch (LaneKind) {
4133   case NoLanes:
4134     // Two-register operands have been converted to the
4135     // composite register classes.
4136     if (Count == 2) {
4137       const MCRegisterClass *RC = (Spacing == 1) ?
4138         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4139         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4140       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4141     }
4142     Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
4143                                                     (Spacing == 2), S, E));
4144     break;
4145   case AllLanes:
4146     // Two-register operands have been converted to the
4147     // composite register classes.
4148     if (Count == 2) {
4149       const MCRegisterClass *RC = (Spacing == 1) ?
4150         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4151         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4152       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4153     }
4154     Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
4155                                                             (Spacing == 2),
4156                                                             S, E));
4157     break;
4158   case IndexedLane:
4159     Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4160                                                            LaneIndex,
4161                                                            (Spacing == 2),
4162                                                            S, E));
4163     break;
4164   }
4165   return MatchOperand_Success;
4166 }
4167 
4168 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4169 OperandMatchResultTy
4170 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4171   MCAsmParser &Parser = getParser();
4172   SMLoc S = Parser.getTok().getLoc();
4173   const AsmToken &Tok = Parser.getTok();
4174   unsigned Opt;
4175 
4176   if (Tok.is(AsmToken::Identifier)) {
4177     StringRef OptStr = Tok.getString();
4178 
4179     Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4180       .Case("sy",    ARM_MB::SY)
4181       .Case("st",    ARM_MB::ST)
4182       .Case("ld",    ARM_MB::LD)
4183       .Case("sh",    ARM_MB::ISH)
4184       .Case("ish",   ARM_MB::ISH)
4185       .Case("shst",  ARM_MB::ISHST)
4186       .Case("ishst", ARM_MB::ISHST)
4187       .Case("ishld", ARM_MB::ISHLD)
4188       .Case("nsh",   ARM_MB::NSH)
4189       .Case("un",    ARM_MB::NSH)
4190       .Case("nshst", ARM_MB::NSHST)
4191       .Case("nshld", ARM_MB::NSHLD)
4192       .Case("unst",  ARM_MB::NSHST)
4193       .Case("osh",   ARM_MB::OSH)
4194       .Case("oshst", ARM_MB::OSHST)
4195       .Case("oshld", ARM_MB::OSHLD)
4196       .Default(~0U);
4197 
4198     // ishld, oshld, nshld and ld are only available from ARMv8.
4199     if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4200                         Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4201       Opt = ~0U;
4202 
4203     if (Opt == ~0U)
4204       return MatchOperand_NoMatch;
4205 
4206     Parser.Lex(); // Eat identifier token.
4207   } else if (Tok.is(AsmToken::Hash) ||
4208              Tok.is(AsmToken::Dollar) ||
4209              Tok.is(AsmToken::Integer)) {
4210     if (Parser.getTok().isNot(AsmToken::Integer))
4211       Parser.Lex(); // Eat '#' or '$'.
4212     SMLoc Loc = Parser.getTok().getLoc();
4213 
4214     const MCExpr *MemBarrierID;
4215     if (getParser().parseExpression(MemBarrierID)) {
4216       Error(Loc, "illegal expression");
4217       return MatchOperand_ParseFail;
4218     }
4219 
4220     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
4221     if (!CE) {
4222       Error(Loc, "constant expression expected");
4223       return MatchOperand_ParseFail;
4224     }
4225 
4226     int Val = CE->getValue();
4227     if (Val & ~0xf) {
4228       Error(Loc, "immediate value out of range");
4229       return MatchOperand_ParseFail;
4230     }
4231 
4232     Opt = ARM_MB::RESERVED_0 + Val;
4233   } else
4234     return MatchOperand_ParseFail;
4235 
4236   Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
4237   return MatchOperand_Success;
4238 }
4239 
4240 OperandMatchResultTy
4241 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
4242   MCAsmParser &Parser = getParser();
4243   SMLoc S = Parser.getTok().getLoc();
4244   const AsmToken &Tok = Parser.getTok();
4245 
4246   if (Tok.isNot(AsmToken::Identifier))
4247      return MatchOperand_NoMatch;
4248 
4249   if (!Tok.getString().equals_lower("csync"))
4250     return MatchOperand_NoMatch;
4251 
4252   Parser.Lex(); // Eat identifier token.
4253 
4254   Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
4255   return MatchOperand_Success;
4256 }
4257 
4258 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
4259 OperandMatchResultTy
4260 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
4261   MCAsmParser &Parser = getParser();
4262   SMLoc S = Parser.getTok().getLoc();
4263   const AsmToken &Tok = Parser.getTok();
4264   unsigned Opt;
4265 
4266   if (Tok.is(AsmToken::Identifier)) {
4267     StringRef OptStr = Tok.getString();
4268 
4269     if (OptStr.equals_lower("sy"))
4270       Opt = ARM_ISB::SY;
4271     else
4272       return MatchOperand_NoMatch;
4273 
4274     Parser.Lex(); // Eat identifier token.
4275   } else if (Tok.is(AsmToken::Hash) ||
4276              Tok.is(AsmToken::Dollar) ||
4277              Tok.is(AsmToken::Integer)) {
4278     if (Parser.getTok().isNot(AsmToken::Integer))
4279       Parser.Lex(); // Eat '#' or '$'.
4280     SMLoc Loc = Parser.getTok().getLoc();
4281 
4282     const MCExpr *ISBarrierID;
4283     if (getParser().parseExpression(ISBarrierID)) {
4284       Error(Loc, "illegal expression");
4285       return MatchOperand_ParseFail;
4286     }
4287 
4288     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
4289     if (!CE) {
4290       Error(Loc, "constant expression expected");
4291       return MatchOperand_ParseFail;
4292     }
4293 
4294     int Val = CE->getValue();
4295     if (Val & ~0xf) {
4296       Error(Loc, "immediate value out of range");
4297       return MatchOperand_ParseFail;
4298     }
4299 
4300     Opt = ARM_ISB::RESERVED_0 + Val;
4301   } else
4302     return MatchOperand_ParseFail;
4303 
4304   Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
4305           (ARM_ISB::InstSyncBOpt)Opt, S));
4306   return MatchOperand_Success;
4307 }
4308 
4309 
4310 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
4311 OperandMatchResultTy
4312 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
4313   MCAsmParser &Parser = getParser();
4314   SMLoc S = Parser.getTok().getLoc();
4315   const AsmToken &Tok = Parser.getTok();
4316   if (!Tok.is(AsmToken::Identifier))
4317     return MatchOperand_NoMatch;
4318   StringRef IFlagsStr = Tok.getString();
4319 
4320   // An iflags string of "none" is interpreted to mean that none of the AIF
4321   // bits are set.  Not a terribly useful instruction, but a valid encoding.
4322   unsigned IFlags = 0;
4323   if (IFlagsStr != "none") {
4324         for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
4325       unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
4326         .Case("a", ARM_PROC::A)
4327         .Case("i", ARM_PROC::I)
4328         .Case("f", ARM_PROC::F)
4329         .Default(~0U);
4330 
4331       // If some specific iflag is already set, it means that some letter is
4332       // present more than once, this is not acceptable.
4333       if (Flag == ~0U || (IFlags & Flag))
4334         return MatchOperand_NoMatch;
4335 
4336       IFlags |= Flag;
4337     }
4338   }
4339 
4340   Parser.Lex(); // Eat identifier token.
4341   Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
4342   return MatchOperand_Success;
4343 }
4344 
4345 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
4346 OperandMatchResultTy
4347 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
4348   MCAsmParser &Parser = getParser();
4349   SMLoc S = Parser.getTok().getLoc();
4350   const AsmToken &Tok = Parser.getTok();
4351 
4352   if (Tok.is(AsmToken::Integer)) {
4353     int64_t Val = Tok.getIntVal();
4354     if (Val > 255 || Val < 0) {
4355       return MatchOperand_NoMatch;
4356     }
4357     unsigned SYSmvalue = Val & 0xFF;
4358     Parser.Lex();
4359     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4360     return MatchOperand_Success;
4361   }
4362 
4363   if (!Tok.is(AsmToken::Identifier))
4364     return MatchOperand_NoMatch;
4365   StringRef Mask = Tok.getString();
4366 
4367   if (isMClass()) {
4368     auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
4369     if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
4370       return MatchOperand_NoMatch;
4371 
4372     unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
4373 
4374     Parser.Lex(); // Eat identifier token.
4375     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4376     return MatchOperand_Success;
4377   }
4378 
4379   // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
4380   size_t Start = 0, Next = Mask.find('_');
4381   StringRef Flags = "";
4382   std::string SpecReg = Mask.slice(Start, Next).lower();
4383   if (Next != StringRef::npos)
4384     Flags = Mask.slice(Next+1, Mask.size());
4385 
4386   // FlagsVal contains the complete mask:
4387   // 3-0: Mask
4388   // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4389   unsigned FlagsVal = 0;
4390 
4391   if (SpecReg == "apsr") {
4392     FlagsVal = StringSwitch<unsigned>(Flags)
4393     .Case("nzcvq",  0x8) // same as CPSR_f
4394     .Case("g",      0x4) // same as CPSR_s
4395     .Case("nzcvqg", 0xc) // same as CPSR_fs
4396     .Default(~0U);
4397 
4398     if (FlagsVal == ~0U) {
4399       if (!Flags.empty())
4400         return MatchOperand_NoMatch;
4401       else
4402         FlagsVal = 8; // No flag
4403     }
4404   } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
4405     // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
4406     if (Flags == "all" || Flags == "")
4407       Flags = "fc";
4408     for (int i = 0, e = Flags.size(); i != e; ++i) {
4409       unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
4410       .Case("c", 1)
4411       .Case("x", 2)
4412       .Case("s", 4)
4413       .Case("f", 8)
4414       .Default(~0U);
4415 
4416       // If some specific flag is already set, it means that some letter is
4417       // present more than once, this is not acceptable.
4418       if (Flag == ~0U || (FlagsVal & Flag))
4419         return MatchOperand_NoMatch;
4420       FlagsVal |= Flag;
4421     }
4422   } else // No match for special register.
4423     return MatchOperand_NoMatch;
4424 
4425   // Special register without flags is NOT equivalent to "fc" flags.
4426   // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
4427   // two lines would enable gas compatibility at the expense of breaking
4428   // round-tripping.
4429   //
4430   // if (!FlagsVal)
4431   //  FlagsVal = 0x9;
4432 
4433   // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4434   if (SpecReg == "spsr")
4435     FlagsVal |= 16;
4436 
4437   Parser.Lex(); // Eat identifier token.
4438   Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
4439   return MatchOperand_Success;
4440 }
4441 
4442 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
4443 /// use in the MRS/MSR instructions added to support virtualization.
4444 OperandMatchResultTy
4445 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
4446   MCAsmParser &Parser = getParser();
4447   SMLoc S = Parser.getTok().getLoc();
4448   const AsmToken &Tok = Parser.getTok();
4449   if (!Tok.is(AsmToken::Identifier))
4450     return MatchOperand_NoMatch;
4451   StringRef RegName = Tok.getString();
4452 
4453   auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
4454   if (!TheReg)
4455     return MatchOperand_NoMatch;
4456   unsigned Encoding = TheReg->Encoding;
4457 
4458   Parser.Lex(); // Eat identifier token.
4459   Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
4460   return MatchOperand_Success;
4461 }
4462 
4463 OperandMatchResultTy
4464 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
4465                           int High) {
4466   MCAsmParser &Parser = getParser();
4467   const AsmToken &Tok = Parser.getTok();
4468   if (Tok.isNot(AsmToken::Identifier)) {
4469     Error(Parser.getTok().getLoc(), Op + " operand expected.");
4470     return MatchOperand_ParseFail;
4471   }
4472   StringRef ShiftName = Tok.getString();
4473   std::string LowerOp = Op.lower();
4474   std::string UpperOp = Op.upper();
4475   if (ShiftName != LowerOp && ShiftName != UpperOp) {
4476     Error(Parser.getTok().getLoc(), Op + " operand expected.");
4477     return MatchOperand_ParseFail;
4478   }
4479   Parser.Lex(); // Eat shift type token.
4480 
4481   // There must be a '#' and a shift amount.
4482   if (Parser.getTok().isNot(AsmToken::Hash) &&
4483       Parser.getTok().isNot(AsmToken::Dollar)) {
4484     Error(Parser.getTok().getLoc(), "'#' expected");
4485     return MatchOperand_ParseFail;
4486   }
4487   Parser.Lex(); // Eat hash token.
4488 
4489   const MCExpr *ShiftAmount;
4490   SMLoc Loc = Parser.getTok().getLoc();
4491   SMLoc EndLoc;
4492   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4493     Error(Loc, "illegal expression");
4494     return MatchOperand_ParseFail;
4495   }
4496   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4497   if (!CE) {
4498     Error(Loc, "constant expression expected");
4499     return MatchOperand_ParseFail;
4500   }
4501   int Val = CE->getValue();
4502   if (Val < Low || Val > High) {
4503     Error(Loc, "immediate value out of range");
4504     return MatchOperand_ParseFail;
4505   }
4506 
4507   Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
4508 
4509   return MatchOperand_Success;
4510 }
4511 
4512 OperandMatchResultTy
4513 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
4514   MCAsmParser &Parser = getParser();
4515   const AsmToken &Tok = Parser.getTok();
4516   SMLoc S = Tok.getLoc();
4517   if (Tok.isNot(AsmToken::Identifier)) {
4518     Error(S, "'be' or 'le' operand expected");
4519     return MatchOperand_ParseFail;
4520   }
4521   int Val = StringSwitch<int>(Tok.getString().lower())
4522     .Case("be", 1)
4523     .Case("le", 0)
4524     .Default(-1);
4525   Parser.Lex(); // Eat the token.
4526 
4527   if (Val == -1) {
4528     Error(S, "'be' or 'le' operand expected");
4529     return MatchOperand_ParseFail;
4530   }
4531   Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
4532                                                                   getContext()),
4533                                            S, Tok.getEndLoc()));
4534   return MatchOperand_Success;
4535 }
4536 
4537 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
4538 /// instructions. Legal values are:
4539 ///     lsl #n  'n' in [0,31]
4540 ///     asr #n  'n' in [1,32]
4541 ///             n == 32 encoded as n == 0.
4542 OperandMatchResultTy
4543 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
4544   MCAsmParser &Parser = getParser();
4545   const AsmToken &Tok = Parser.getTok();
4546   SMLoc S = Tok.getLoc();
4547   if (Tok.isNot(AsmToken::Identifier)) {
4548     Error(S, "shift operator 'asr' or 'lsl' expected");
4549     return MatchOperand_ParseFail;
4550   }
4551   StringRef ShiftName = Tok.getString();
4552   bool isASR;
4553   if (ShiftName == "lsl" || ShiftName == "LSL")
4554     isASR = false;
4555   else if (ShiftName == "asr" || ShiftName == "ASR")
4556     isASR = true;
4557   else {
4558     Error(S, "shift operator 'asr' or 'lsl' expected");
4559     return MatchOperand_ParseFail;
4560   }
4561   Parser.Lex(); // Eat the operator.
4562 
4563   // A '#' and a shift amount.
4564   if (Parser.getTok().isNot(AsmToken::Hash) &&
4565       Parser.getTok().isNot(AsmToken::Dollar)) {
4566     Error(Parser.getTok().getLoc(), "'#' expected");
4567     return MatchOperand_ParseFail;
4568   }
4569   Parser.Lex(); // Eat hash token.
4570   SMLoc ExLoc = Parser.getTok().getLoc();
4571 
4572   const MCExpr *ShiftAmount;
4573   SMLoc EndLoc;
4574   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4575     Error(ExLoc, "malformed shift expression");
4576     return MatchOperand_ParseFail;
4577   }
4578   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4579   if (!CE) {
4580     Error(ExLoc, "shift amount must be an immediate");
4581     return MatchOperand_ParseFail;
4582   }
4583 
4584   int64_t Val = CE->getValue();
4585   if (isASR) {
4586     // Shift amount must be in [1,32]
4587     if (Val < 1 || Val > 32) {
4588       Error(ExLoc, "'asr' shift amount must be in range [1,32]");
4589       return MatchOperand_ParseFail;
4590     }
4591     // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
4592     if (isThumb() && Val == 32) {
4593       Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
4594       return MatchOperand_ParseFail;
4595     }
4596     if (Val == 32) Val = 0;
4597   } else {
4598     // Shift amount must be in [1,32]
4599     if (Val < 0 || Val > 31) {
4600       Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
4601       return MatchOperand_ParseFail;
4602     }
4603   }
4604 
4605   Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
4606 
4607   return MatchOperand_Success;
4608 }
4609 
4610 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
4611 /// of instructions. Legal values are:
4612 ///     ror #n  'n' in {0, 8, 16, 24}
4613 OperandMatchResultTy
4614 ARMAsmParser::parseRotImm(OperandVector &Operands) {
4615   MCAsmParser &Parser = getParser();
4616   const AsmToken &Tok = Parser.getTok();
4617   SMLoc S = Tok.getLoc();
4618   if (Tok.isNot(AsmToken::Identifier))
4619     return MatchOperand_NoMatch;
4620   StringRef ShiftName = Tok.getString();
4621   if (ShiftName != "ror" && ShiftName != "ROR")
4622     return MatchOperand_NoMatch;
4623   Parser.Lex(); // Eat the operator.
4624 
4625   // A '#' and a rotate amount.
4626   if (Parser.getTok().isNot(AsmToken::Hash) &&
4627       Parser.getTok().isNot(AsmToken::Dollar)) {
4628     Error(Parser.getTok().getLoc(), "'#' expected");
4629     return MatchOperand_ParseFail;
4630   }
4631   Parser.Lex(); // Eat hash token.
4632   SMLoc ExLoc = Parser.getTok().getLoc();
4633 
4634   const MCExpr *ShiftAmount;
4635   SMLoc EndLoc;
4636   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4637     Error(ExLoc, "malformed rotate expression");
4638     return MatchOperand_ParseFail;
4639   }
4640   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4641   if (!CE) {
4642     Error(ExLoc, "rotate amount must be an immediate");
4643     return MatchOperand_ParseFail;
4644   }
4645 
4646   int64_t Val = CE->getValue();
4647   // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
4648   // normally, zero is represented in asm by omitting the rotate operand
4649   // entirely.
4650   if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
4651     Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
4652     return MatchOperand_ParseFail;
4653   }
4654 
4655   Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
4656 
4657   return MatchOperand_Success;
4658 }
4659 
4660 OperandMatchResultTy
4661 ARMAsmParser::parseModImm(OperandVector &Operands) {
4662   MCAsmParser &Parser = getParser();
4663   MCAsmLexer &Lexer = getLexer();
4664   int64_t Imm1, Imm2;
4665 
4666   SMLoc S = Parser.getTok().getLoc();
4667 
4668   // 1) A mod_imm operand can appear in the place of a register name:
4669   //   add r0, #mod_imm
4670   //   add r0, r0, #mod_imm
4671   // to correctly handle the latter, we bail out as soon as we see an
4672   // identifier.
4673   //
4674   // 2) Similarly, we do not want to parse into complex operands:
4675   //   mov r0, #mod_imm
4676   //   mov r0, :lower16:(_foo)
4677   if (Parser.getTok().is(AsmToken::Identifier) ||
4678       Parser.getTok().is(AsmToken::Colon))
4679     return MatchOperand_NoMatch;
4680 
4681   // Hash (dollar) is optional as per the ARMARM
4682   if (Parser.getTok().is(AsmToken::Hash) ||
4683       Parser.getTok().is(AsmToken::Dollar)) {
4684     // Avoid parsing into complex operands (#:)
4685     if (Lexer.peekTok().is(AsmToken::Colon))
4686       return MatchOperand_NoMatch;
4687 
4688     // Eat the hash (dollar)
4689     Parser.Lex();
4690   }
4691 
4692   SMLoc Sx1, Ex1;
4693   Sx1 = Parser.getTok().getLoc();
4694   const MCExpr *Imm1Exp;
4695   if (getParser().parseExpression(Imm1Exp, Ex1)) {
4696     Error(Sx1, "malformed expression");
4697     return MatchOperand_ParseFail;
4698   }
4699 
4700   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
4701 
4702   if (CE) {
4703     // Immediate must fit within 32-bits
4704     Imm1 = CE->getValue();
4705     int Enc = ARM_AM::getSOImmVal(Imm1);
4706     if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
4707       // We have a match!
4708       Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
4709                                                   (Enc & 0xF00) >> 7,
4710                                                   Sx1, Ex1));
4711       return MatchOperand_Success;
4712     }
4713 
4714     // We have parsed an immediate which is not for us, fallback to a plain
4715     // immediate. This can happen for instruction aliases. For an example,
4716     // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
4717     // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
4718     // instruction with a mod_imm operand. The alias is defined such that the
4719     // parser method is shared, that's why we have to do this here.
4720     if (Parser.getTok().is(AsmToken::EndOfStatement)) {
4721       Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
4722       return MatchOperand_Success;
4723     }
4724   } else {
4725     // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
4726     // MCFixup). Fallback to a plain immediate.
4727     Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
4728     return MatchOperand_Success;
4729   }
4730 
4731   // From this point onward, we expect the input to be a (#bits, #rot) pair
4732   if (Parser.getTok().isNot(AsmToken::Comma)) {
4733     Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
4734     return MatchOperand_ParseFail;
4735   }
4736 
4737   if (Imm1 & ~0xFF) {
4738     Error(Sx1, "immediate operand must a number in the range [0, 255]");
4739     return MatchOperand_ParseFail;
4740   }
4741 
4742   // Eat the comma
4743   Parser.Lex();
4744 
4745   // Repeat for #rot
4746   SMLoc Sx2, Ex2;
4747   Sx2 = Parser.getTok().getLoc();
4748 
4749   // Eat the optional hash (dollar)
4750   if (Parser.getTok().is(AsmToken::Hash) ||
4751       Parser.getTok().is(AsmToken::Dollar))
4752     Parser.Lex();
4753 
4754   const MCExpr *Imm2Exp;
4755   if (getParser().parseExpression(Imm2Exp, Ex2)) {
4756     Error(Sx2, "malformed expression");
4757     return MatchOperand_ParseFail;
4758   }
4759 
4760   CE = dyn_cast<MCConstantExpr>(Imm2Exp);
4761 
4762   if (CE) {
4763     Imm2 = CE->getValue();
4764     if (!(Imm2 & ~0x1E)) {
4765       // We have a match!
4766       Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
4767       return MatchOperand_Success;
4768     }
4769     Error(Sx2, "immediate operand must an even number in the range [0, 30]");
4770     return MatchOperand_ParseFail;
4771   } else {
4772     Error(Sx2, "constant expression expected");
4773     return MatchOperand_ParseFail;
4774   }
4775 }
4776 
4777 OperandMatchResultTy
4778 ARMAsmParser::parseBitfield(OperandVector &Operands) {
4779   MCAsmParser &Parser = getParser();
4780   SMLoc S = Parser.getTok().getLoc();
4781   // The bitfield descriptor is really two operands, the LSB and the width.
4782   if (Parser.getTok().isNot(AsmToken::Hash) &&
4783       Parser.getTok().isNot(AsmToken::Dollar)) {
4784     Error(Parser.getTok().getLoc(), "'#' expected");
4785     return MatchOperand_ParseFail;
4786   }
4787   Parser.Lex(); // Eat hash token.
4788 
4789   const MCExpr *LSBExpr;
4790   SMLoc E = Parser.getTok().getLoc();
4791   if (getParser().parseExpression(LSBExpr)) {
4792     Error(E, "malformed immediate expression");
4793     return MatchOperand_ParseFail;
4794   }
4795   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
4796   if (!CE) {
4797     Error(E, "'lsb' operand must be an immediate");
4798     return MatchOperand_ParseFail;
4799   }
4800 
4801   int64_t LSB = CE->getValue();
4802   // The LSB must be in the range [0,31]
4803   if (LSB < 0 || LSB > 31) {
4804     Error(E, "'lsb' operand must be in the range [0,31]");
4805     return MatchOperand_ParseFail;
4806   }
4807   E = Parser.getTok().getLoc();
4808 
4809   // Expect another immediate operand.
4810   if (Parser.getTok().isNot(AsmToken::Comma)) {
4811     Error(Parser.getTok().getLoc(), "too few operands");
4812     return MatchOperand_ParseFail;
4813   }
4814   Parser.Lex(); // Eat hash token.
4815   if (Parser.getTok().isNot(AsmToken::Hash) &&
4816       Parser.getTok().isNot(AsmToken::Dollar)) {
4817     Error(Parser.getTok().getLoc(), "'#' expected");
4818     return MatchOperand_ParseFail;
4819   }
4820   Parser.Lex(); // Eat hash token.
4821 
4822   const MCExpr *WidthExpr;
4823   SMLoc EndLoc;
4824   if (getParser().parseExpression(WidthExpr, EndLoc)) {
4825     Error(E, "malformed immediate expression");
4826     return MatchOperand_ParseFail;
4827   }
4828   CE = dyn_cast<MCConstantExpr>(WidthExpr);
4829   if (!CE) {
4830     Error(E, "'width' operand must be an immediate");
4831     return MatchOperand_ParseFail;
4832   }
4833 
4834   int64_t Width = CE->getValue();
4835   // The LSB must be in the range [1,32-lsb]
4836   if (Width < 1 || Width > 32 - LSB) {
4837     Error(E, "'width' operand must be in the range [1,32-lsb]");
4838     return MatchOperand_ParseFail;
4839   }
4840 
4841   Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
4842 
4843   return MatchOperand_Success;
4844 }
4845 
4846 OperandMatchResultTy
4847 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
4848   // Check for a post-index addressing register operand. Specifically:
4849   // postidx_reg := '+' register {, shift}
4850   //              | '-' register {, shift}
4851   //              | register {, shift}
4852 
4853   // This method must return MatchOperand_NoMatch without consuming any tokens
4854   // in the case where there is no match, as other alternatives take other
4855   // parse methods.
4856   MCAsmParser &Parser = getParser();
4857   AsmToken Tok = Parser.getTok();
4858   SMLoc S = Tok.getLoc();
4859   bool haveEaten = false;
4860   bool isAdd = true;
4861   if (Tok.is(AsmToken::Plus)) {
4862     Parser.Lex(); // Eat the '+' token.
4863     haveEaten = true;
4864   } else if (Tok.is(AsmToken::Minus)) {
4865     Parser.Lex(); // Eat the '-' token.
4866     isAdd = false;
4867     haveEaten = true;
4868   }
4869 
4870   SMLoc E = Parser.getTok().getEndLoc();
4871   int Reg = tryParseRegister();
4872   if (Reg == -1) {
4873     if (!haveEaten)
4874       return MatchOperand_NoMatch;
4875     Error(Parser.getTok().getLoc(), "register expected");
4876     return MatchOperand_ParseFail;
4877   }
4878 
4879   ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
4880   unsigned ShiftImm = 0;
4881   if (Parser.getTok().is(AsmToken::Comma)) {
4882     Parser.Lex(); // Eat the ','.
4883     if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
4884       return MatchOperand_ParseFail;
4885 
4886     // FIXME: Only approximates end...may include intervening whitespace.
4887     E = Parser.getTok().getLoc();
4888   }
4889 
4890   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
4891                                                   ShiftImm, S, E));
4892 
4893   return MatchOperand_Success;
4894 }
4895 
4896 OperandMatchResultTy
4897 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
4898   // Check for a post-index addressing register operand. Specifically:
4899   // am3offset := '+' register
4900   //              | '-' register
4901   //              | register
4902   //              | # imm
4903   //              | # + imm
4904   //              | # - imm
4905 
4906   // This method must return MatchOperand_NoMatch without consuming any tokens
4907   // in the case where there is no match, as other alternatives take other
4908   // parse methods.
4909   MCAsmParser &Parser = getParser();
4910   AsmToken Tok = Parser.getTok();
4911   SMLoc S = Tok.getLoc();
4912 
4913   // Do immediates first, as we always parse those if we have a '#'.
4914   if (Parser.getTok().is(AsmToken::Hash) ||
4915       Parser.getTok().is(AsmToken::Dollar)) {
4916     Parser.Lex(); // Eat '#' or '$'.
4917     // Explicitly look for a '-', as we need to encode negative zero
4918     // differently.
4919     bool isNegative = Parser.getTok().is(AsmToken::Minus);
4920     const MCExpr *Offset;
4921     SMLoc E;
4922     if (getParser().parseExpression(Offset, E))
4923       return MatchOperand_ParseFail;
4924     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4925     if (!CE) {
4926       Error(S, "constant expression expected");
4927       return MatchOperand_ParseFail;
4928     }
4929     // Negative zero is encoded as the flag value
4930     // std::numeric_limits<int32_t>::min().
4931     int32_t Val = CE->getValue();
4932     if (isNegative && Val == 0)
4933       Val = std::numeric_limits<int32_t>::min();
4934 
4935     Operands.push_back(
4936       ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
4937 
4938     return MatchOperand_Success;
4939   }
4940 
4941   bool haveEaten = false;
4942   bool isAdd = true;
4943   if (Tok.is(AsmToken::Plus)) {
4944     Parser.Lex(); // Eat the '+' token.
4945     haveEaten = true;
4946   } else if (Tok.is(AsmToken::Minus)) {
4947     Parser.Lex(); // Eat the '-' token.
4948     isAdd = false;
4949     haveEaten = true;
4950   }
4951 
4952   Tok = Parser.getTok();
4953   int Reg = tryParseRegister();
4954   if (Reg == -1) {
4955     if (!haveEaten)
4956       return MatchOperand_NoMatch;
4957     Error(Tok.getLoc(), "register expected");
4958     return MatchOperand_ParseFail;
4959   }
4960 
4961   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
4962                                                   0, S, Tok.getEndLoc()));
4963 
4964   return MatchOperand_Success;
4965 }
4966 
4967 /// Convert parsed operands to MCInst.  Needed here because this instruction
4968 /// only has two register operands, but multiplication is commutative so
4969 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
4970 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
4971                                     const OperandVector &Operands) {
4972   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
4973   ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
4974   // If we have a three-operand form, make sure to set Rn to be the operand
4975   // that isn't the same as Rd.
4976   unsigned RegOp = 4;
4977   if (Operands.size() == 6 &&
4978       ((ARMOperand &)*Operands[4]).getReg() ==
4979           ((ARMOperand &)*Operands[3]).getReg())
4980     RegOp = 5;
4981   ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
4982   Inst.addOperand(Inst.getOperand(0));
4983   ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
4984 }
4985 
4986 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
4987                                     const OperandVector &Operands) {
4988   int CondOp = -1, ImmOp = -1;
4989   switch(Inst.getOpcode()) {
4990     case ARM::tB:
4991     case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
4992 
4993     case ARM::t2B:
4994     case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
4995 
4996     default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
4997   }
4998   // first decide whether or not the branch should be conditional
4999   // by looking at it's location relative to an IT block
5000   if(inITBlock()) {
5001     // inside an IT block we cannot have any conditional branches. any
5002     // such instructions needs to be converted to unconditional form
5003     switch(Inst.getOpcode()) {
5004       case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5005       case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5006     }
5007   } else {
5008     // outside IT blocks we can only have unconditional branches with AL
5009     // condition code or conditional branches with non-AL condition code
5010     unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5011     switch(Inst.getOpcode()) {
5012       case ARM::tB:
5013       case ARM::tBcc:
5014         Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5015         break;
5016       case ARM::t2B:
5017       case ARM::t2Bcc:
5018         Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5019         break;
5020     }
5021   }
5022 
5023   // now decide on encoding size based on branch target range
5024   switch(Inst.getOpcode()) {
5025     // classify tB as either t2B or t1B based on range of immediate operand
5026     case ARM::tB: {
5027       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5028       if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5029         Inst.setOpcode(ARM::t2B);
5030       break;
5031     }
5032     // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5033     case ARM::tBcc: {
5034       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5035       if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5036         Inst.setOpcode(ARM::t2Bcc);
5037       break;
5038     }
5039   }
5040   ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5041   ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5042 }
5043 
5044 /// Parse an ARM memory expression, return false if successful else return true
5045 /// or an error.  The first token must be a '[' when called.
5046 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5047   MCAsmParser &Parser = getParser();
5048   SMLoc S, E;
5049   if (Parser.getTok().isNot(AsmToken::LBrac))
5050     return TokError("Token is not a Left Bracket");
5051   S = Parser.getTok().getLoc();
5052   Parser.Lex(); // Eat left bracket token.
5053 
5054   const AsmToken &BaseRegTok = Parser.getTok();
5055   int BaseRegNum = tryParseRegister();
5056   if (BaseRegNum == -1)
5057     return Error(BaseRegTok.getLoc(), "register expected");
5058 
5059   // The next token must either be a comma, a colon or a closing bracket.
5060   const AsmToken &Tok = Parser.getTok();
5061   if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5062       !Tok.is(AsmToken::RBrac))
5063     return Error(Tok.getLoc(), "malformed memory operand");
5064 
5065   if (Tok.is(AsmToken::RBrac)) {
5066     E = Tok.getEndLoc();
5067     Parser.Lex(); // Eat right bracket token.
5068 
5069     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5070                                              ARM_AM::no_shift, 0, 0, false,
5071                                              S, E));
5072 
5073     // If there's a pre-indexing writeback marker, '!', just add it as a token
5074     // operand. It's rather odd, but syntactically valid.
5075     if (Parser.getTok().is(AsmToken::Exclaim)) {
5076       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5077       Parser.Lex(); // Eat the '!'.
5078     }
5079 
5080     return false;
5081   }
5082 
5083   assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5084          "Lost colon or comma in memory operand?!");
5085   if (Tok.is(AsmToken::Comma)) {
5086     Parser.Lex(); // Eat the comma.
5087   }
5088 
5089   // If we have a ':', it's an alignment specifier.
5090   if (Parser.getTok().is(AsmToken::Colon)) {
5091     Parser.Lex(); // Eat the ':'.
5092     E = Parser.getTok().getLoc();
5093     SMLoc AlignmentLoc = Tok.getLoc();
5094 
5095     const MCExpr *Expr;
5096     if (getParser().parseExpression(Expr))
5097      return true;
5098 
5099     // The expression has to be a constant. Memory references with relocations
5100     // don't come through here, as they use the <label> forms of the relevant
5101     // instructions.
5102     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5103     if (!CE)
5104       return Error (E, "constant expression expected");
5105 
5106     unsigned Align = 0;
5107     switch (CE->getValue()) {
5108     default:
5109       return Error(E,
5110                    "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5111     case 16:  Align = 2; break;
5112     case 32:  Align = 4; break;
5113     case 64:  Align = 8; break;
5114     case 128: Align = 16; break;
5115     case 256: Align = 32; break;
5116     }
5117 
5118     // Now we should have the closing ']'
5119     if (Parser.getTok().isNot(AsmToken::RBrac))
5120       return Error(Parser.getTok().getLoc(), "']' expected");
5121     E = Parser.getTok().getEndLoc();
5122     Parser.Lex(); // Eat right bracket token.
5123 
5124     // Don't worry about range checking the value here. That's handled by
5125     // the is*() predicates.
5126     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5127                                              ARM_AM::no_shift, 0, Align,
5128                                              false, S, E, AlignmentLoc));
5129 
5130     // If there's a pre-indexing writeback marker, '!', just add it as a token
5131     // operand.
5132     if (Parser.getTok().is(AsmToken::Exclaim)) {
5133       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5134       Parser.Lex(); // Eat the '!'.
5135     }
5136 
5137     return false;
5138   }
5139 
5140   // If we have a '#', it's an immediate offset, else assume it's a register
5141   // offset. Be friendly and also accept a plain integer (without a leading
5142   // hash) for gas compatibility.
5143   if (Parser.getTok().is(AsmToken::Hash) ||
5144       Parser.getTok().is(AsmToken::Dollar) ||
5145       Parser.getTok().is(AsmToken::Integer)) {
5146     if (Parser.getTok().isNot(AsmToken::Integer))
5147       Parser.Lex(); // Eat '#' or '$'.
5148     E = Parser.getTok().getLoc();
5149 
5150     bool isNegative = getParser().getTok().is(AsmToken::Minus);
5151     const MCExpr *Offset;
5152     if (getParser().parseExpression(Offset))
5153      return true;
5154 
5155     // The expression has to be a constant. Memory references with relocations
5156     // don't come through here, as they use the <label> forms of the relevant
5157     // instructions.
5158     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5159     if (!CE)
5160       return Error (E, "constant expression expected");
5161 
5162     // If the constant was #-0, represent it as
5163     // std::numeric_limits<int32_t>::min().
5164     int32_t Val = CE->getValue();
5165     if (isNegative && Val == 0)
5166       CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5167                                   getContext());
5168 
5169     // Now we should have the closing ']'
5170     if (Parser.getTok().isNot(AsmToken::RBrac))
5171       return Error(Parser.getTok().getLoc(), "']' expected");
5172     E = Parser.getTok().getEndLoc();
5173     Parser.Lex(); // Eat right bracket token.
5174 
5175     // Don't worry about range checking the value here. That's handled by
5176     // the is*() predicates.
5177     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
5178                                              ARM_AM::no_shift, 0, 0,
5179                                              false, S, E));
5180 
5181     // If there's a pre-indexing writeback marker, '!', just add it as a token
5182     // operand.
5183     if (Parser.getTok().is(AsmToken::Exclaim)) {
5184       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5185       Parser.Lex(); // Eat the '!'.
5186     }
5187 
5188     return false;
5189   }
5190 
5191   // The register offset is optionally preceded by a '+' or '-'
5192   bool isNegative = false;
5193   if (Parser.getTok().is(AsmToken::Minus)) {
5194     isNegative = true;
5195     Parser.Lex(); // Eat the '-'.
5196   } else if (Parser.getTok().is(AsmToken::Plus)) {
5197     // Nothing to do.
5198     Parser.Lex(); // Eat the '+'.
5199   }
5200 
5201   E = Parser.getTok().getLoc();
5202   int OffsetRegNum = tryParseRegister();
5203   if (OffsetRegNum == -1)
5204     return Error(E, "register expected");
5205 
5206   // If there's a shift operator, handle it.
5207   ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
5208   unsigned ShiftImm = 0;
5209   if (Parser.getTok().is(AsmToken::Comma)) {
5210     Parser.Lex(); // Eat the ','.
5211     if (parseMemRegOffsetShift(ShiftType, ShiftImm))
5212       return true;
5213   }
5214 
5215   // Now we should have the closing ']'
5216   if (Parser.getTok().isNot(AsmToken::RBrac))
5217     return Error(Parser.getTok().getLoc(), "']' expected");
5218   E = Parser.getTok().getEndLoc();
5219   Parser.Lex(); // Eat right bracket token.
5220 
5221   Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
5222                                            ShiftType, ShiftImm, 0, isNegative,
5223                                            S, E));
5224 
5225   // If there's a pre-indexing writeback marker, '!', just add it as a token
5226   // operand.
5227   if (Parser.getTok().is(AsmToken::Exclaim)) {
5228     Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5229     Parser.Lex(); // Eat the '!'.
5230   }
5231 
5232   return false;
5233 }
5234 
5235 /// parseMemRegOffsetShift - one of these two:
5236 ///   ( lsl | lsr | asr | ror ) , # shift_amount
5237 ///   rrx
5238 /// return true if it parses a shift otherwise it returns false.
5239 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
5240                                           unsigned &Amount) {
5241   MCAsmParser &Parser = getParser();
5242   SMLoc Loc = Parser.getTok().getLoc();
5243   const AsmToken &Tok = Parser.getTok();
5244   if (Tok.isNot(AsmToken::Identifier))
5245     return Error(Loc, "illegal shift operator");
5246   StringRef ShiftName = Tok.getString();
5247   if (ShiftName == "lsl" || ShiftName == "LSL" ||
5248       ShiftName == "asl" || ShiftName == "ASL")
5249     St = ARM_AM::lsl;
5250   else if (ShiftName == "lsr" || ShiftName == "LSR")
5251     St = ARM_AM::lsr;
5252   else if (ShiftName == "asr" || ShiftName == "ASR")
5253     St = ARM_AM::asr;
5254   else if (ShiftName == "ror" || ShiftName == "ROR")
5255     St = ARM_AM::ror;
5256   else if (ShiftName == "rrx" || ShiftName == "RRX")
5257     St = ARM_AM::rrx;
5258   else
5259     return Error(Loc, "illegal shift operator");
5260   Parser.Lex(); // Eat shift type token.
5261 
5262   // rrx stands alone.
5263   Amount = 0;
5264   if (St != ARM_AM::rrx) {
5265     Loc = Parser.getTok().getLoc();
5266     // A '#' and a shift amount.
5267     const AsmToken &HashTok = Parser.getTok();
5268     if (HashTok.isNot(AsmToken::Hash) &&
5269         HashTok.isNot(AsmToken::Dollar))
5270       return Error(HashTok.getLoc(), "'#' expected");
5271     Parser.Lex(); // Eat hash token.
5272 
5273     const MCExpr *Expr;
5274     if (getParser().parseExpression(Expr))
5275       return true;
5276     // Range check the immediate.
5277     // lsl, ror: 0 <= imm <= 31
5278     // lsr, asr: 0 <= imm <= 32
5279     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5280     if (!CE)
5281       return Error(Loc, "shift amount must be an immediate");
5282     int64_t Imm = CE->getValue();
5283     if (Imm < 0 ||
5284         ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
5285         ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
5286       return Error(Loc, "immediate shift value out of range");
5287     // If <ShiftTy> #0, turn it into a no_shift.
5288     if (Imm == 0)
5289       St = ARM_AM::lsl;
5290     // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
5291     if (Imm == 32)
5292       Imm = 0;
5293     Amount = Imm;
5294   }
5295 
5296   return false;
5297 }
5298 
5299 /// parseFPImm - A floating point immediate expression operand.
5300 OperandMatchResultTy
5301 ARMAsmParser::parseFPImm(OperandVector &Operands) {
5302   MCAsmParser &Parser = getParser();
5303   // Anything that can accept a floating point constant as an operand
5304   // needs to go through here, as the regular parseExpression is
5305   // integer only.
5306   //
5307   // This routine still creates a generic Immediate operand, containing
5308   // a bitcast of the 64-bit floating point value. The various operands
5309   // that accept floats can check whether the value is valid for them
5310   // via the standard is*() predicates.
5311 
5312   SMLoc S = Parser.getTok().getLoc();
5313 
5314   if (Parser.getTok().isNot(AsmToken::Hash) &&
5315       Parser.getTok().isNot(AsmToken::Dollar))
5316     return MatchOperand_NoMatch;
5317 
5318   // Disambiguate the VMOV forms that can accept an FP immediate.
5319   // vmov.f32 <sreg>, #imm
5320   // vmov.f64 <dreg>, #imm
5321   // vmov.f32 <dreg>, #imm  @ vector f32x2
5322   // vmov.f32 <qreg>, #imm  @ vector f32x4
5323   //
5324   // There are also the NEON VMOV instructions which expect an
5325   // integer constant. Make sure we don't try to parse an FPImm
5326   // for these:
5327   // vmov.i{8|16|32|64} <dreg|qreg>, #imm
5328   ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
5329   bool isVmovf = TyOp.isToken() &&
5330                  (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
5331                   TyOp.getToken() == ".f16");
5332   ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
5333   bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
5334                                          Mnemonic.getToken() == "fconsts");
5335   if (!(isVmovf || isFconst))
5336     return MatchOperand_NoMatch;
5337 
5338   Parser.Lex(); // Eat '#' or '$'.
5339 
5340   // Handle negation, as that still comes through as a separate token.
5341   bool isNegative = false;
5342   if (Parser.getTok().is(AsmToken::Minus)) {
5343     isNegative = true;
5344     Parser.Lex();
5345   }
5346   const AsmToken &Tok = Parser.getTok();
5347   SMLoc Loc = Tok.getLoc();
5348   if (Tok.is(AsmToken::Real) && isVmovf) {
5349     APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
5350     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
5351     // If we had a '-' in front, toggle the sign bit.
5352     IntVal ^= (uint64_t)isNegative << 31;
5353     Parser.Lex(); // Eat the token.
5354     Operands.push_back(ARMOperand::CreateImm(
5355           MCConstantExpr::create(IntVal, getContext()),
5356           S, Parser.getTok().getLoc()));
5357     return MatchOperand_Success;
5358   }
5359   // Also handle plain integers. Instructions which allow floating point
5360   // immediates also allow a raw encoded 8-bit value.
5361   if (Tok.is(AsmToken::Integer) && isFconst) {
5362     int64_t Val = Tok.getIntVal();
5363     Parser.Lex(); // Eat the token.
5364     if (Val > 255 || Val < 0) {
5365       Error(Loc, "encoded floating point value out of range");
5366       return MatchOperand_ParseFail;
5367     }
5368     float RealVal = ARM_AM::getFPImmFloat(Val);
5369     Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
5370 
5371     Operands.push_back(ARMOperand::CreateImm(
5372         MCConstantExpr::create(Val, getContext()), S,
5373         Parser.getTok().getLoc()));
5374     return MatchOperand_Success;
5375   }
5376 
5377   Error(Loc, "invalid floating point immediate");
5378   return MatchOperand_ParseFail;
5379 }
5380 
5381 /// Parse a arm instruction operand.  For now this parses the operand regardless
5382 /// of the mnemonic.
5383 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
5384   MCAsmParser &Parser = getParser();
5385   SMLoc S, E;
5386 
5387   // Check if the current operand has a custom associated parser, if so, try to
5388   // custom parse the operand, or fallback to the general approach.
5389   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
5390   if (ResTy == MatchOperand_Success)
5391     return false;
5392   // If there wasn't a custom match, try the generic matcher below. Otherwise,
5393   // there was a match, but an error occurred, in which case, just return that
5394   // the operand parsing failed.
5395   if (ResTy == MatchOperand_ParseFail)
5396     return true;
5397 
5398   switch (getLexer().getKind()) {
5399   default:
5400     Error(Parser.getTok().getLoc(), "unexpected token in operand");
5401     return true;
5402   case AsmToken::Identifier: {
5403     // If we've seen a branch mnemonic, the next operand must be a label.  This
5404     // is true even if the label is a register name.  So "br r1" means branch to
5405     // label "r1".
5406     bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
5407     if (!ExpectLabel) {
5408       if (!tryParseRegisterWithWriteBack(Operands))
5409         return false;
5410       int Res = tryParseShiftRegister(Operands);
5411       if (Res == 0) // success
5412         return false;
5413       else if (Res == -1) // irrecoverable error
5414         return true;
5415       // If this is VMRS, check for the apsr_nzcv operand.
5416       if (Mnemonic == "vmrs" &&
5417           Parser.getTok().getString().equals_lower("apsr_nzcv")) {
5418         S = Parser.getTok().getLoc();
5419         Parser.Lex();
5420         Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
5421         return false;
5422       }
5423     }
5424 
5425     // Fall though for the Identifier case that is not a register or a
5426     // special name.
5427     LLVM_FALLTHROUGH;
5428   }
5429   case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
5430   case AsmToken::Integer: // things like 1f and 2b as a branch targets
5431   case AsmToken::String:  // quoted label names.
5432   case AsmToken::Dot: {   // . as a branch target
5433     // This was not a register so parse other operands that start with an
5434     // identifier (like labels) as expressions and create them as immediates.
5435     const MCExpr *IdVal;
5436     S = Parser.getTok().getLoc();
5437     if (getParser().parseExpression(IdVal))
5438       return true;
5439     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5440     Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
5441     return false;
5442   }
5443   case AsmToken::LBrac:
5444     return parseMemory(Operands);
5445   case AsmToken::LCurly:
5446     return parseRegisterList(Operands);
5447   case AsmToken::Dollar:
5448   case AsmToken::Hash:
5449     // #42 -> immediate.
5450     S = Parser.getTok().getLoc();
5451     Parser.Lex();
5452 
5453     if (Parser.getTok().isNot(AsmToken::Colon)) {
5454       bool isNegative = Parser.getTok().is(AsmToken::Minus);
5455       const MCExpr *ImmVal;
5456       if (getParser().parseExpression(ImmVal))
5457         return true;
5458       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
5459       if (CE) {
5460         int32_t Val = CE->getValue();
5461         if (isNegative && Val == 0)
5462           ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5463                                           getContext());
5464       }
5465       E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5466       Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
5467 
5468       // There can be a trailing '!' on operands that we want as a separate
5469       // '!' Token operand. Handle that here. For example, the compatibility
5470       // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
5471       if (Parser.getTok().is(AsmToken::Exclaim)) {
5472         Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
5473                                                    Parser.getTok().getLoc()));
5474         Parser.Lex(); // Eat exclaim token
5475       }
5476       return false;
5477     }
5478     // w/ a ':' after the '#', it's just like a plain ':'.
5479     LLVM_FALLTHROUGH;
5480 
5481   case AsmToken::Colon: {
5482     S = Parser.getTok().getLoc();
5483     // ":lower16:" and ":upper16:" expression prefixes
5484     // FIXME: Check it's an expression prefix,
5485     // e.g. (FOO - :lower16:BAR) isn't legal.
5486     ARMMCExpr::VariantKind RefKind;
5487     if (parsePrefix(RefKind))
5488       return true;
5489 
5490     const MCExpr *SubExprVal;
5491     if (getParser().parseExpression(SubExprVal))
5492       return true;
5493 
5494     const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
5495                                               getContext());
5496     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5497     Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
5498     return false;
5499   }
5500   case AsmToken::Equal: {
5501     S = Parser.getTok().getLoc();
5502     if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
5503       return Error(S, "unexpected token in operand");
5504     Parser.Lex(); // Eat '='
5505     const MCExpr *SubExprVal;
5506     if (getParser().parseExpression(SubExprVal))
5507       return true;
5508     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5509 
5510     // execute-only: we assume that assembly programmers know what they are
5511     // doing and allow literal pool creation here
5512     Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
5513     return false;
5514   }
5515   }
5516 }
5517 
5518 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
5519 //  :lower16: and :upper16:.
5520 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
5521   MCAsmParser &Parser = getParser();
5522   RefKind = ARMMCExpr::VK_ARM_None;
5523 
5524   // consume an optional '#' (GNU compatibility)
5525   if (getLexer().is(AsmToken::Hash))
5526     Parser.Lex();
5527 
5528   // :lower16: and :upper16: modifiers
5529   assert(getLexer().is(AsmToken::Colon) && "expected a :");
5530   Parser.Lex(); // Eat ':'
5531 
5532   if (getLexer().isNot(AsmToken::Identifier)) {
5533     Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
5534     return true;
5535   }
5536 
5537   enum {
5538     COFF = (1 << MCObjectFileInfo::IsCOFF),
5539     ELF = (1 << MCObjectFileInfo::IsELF),
5540     MACHO = (1 << MCObjectFileInfo::IsMachO),
5541     WASM = (1 << MCObjectFileInfo::IsWasm),
5542   };
5543   static const struct PrefixEntry {
5544     const char *Spelling;
5545     ARMMCExpr::VariantKind VariantKind;
5546     uint8_t SupportedFormats;
5547   } PrefixEntries[] = {
5548     { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
5549     { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
5550   };
5551 
5552   StringRef IDVal = Parser.getTok().getIdentifier();
5553 
5554   const auto &Prefix =
5555       std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
5556                    [&IDVal](const PrefixEntry &PE) {
5557                       return PE.Spelling == IDVal;
5558                    });
5559   if (Prefix == std::end(PrefixEntries)) {
5560     Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
5561     return true;
5562   }
5563 
5564   uint8_t CurrentFormat;
5565   switch (getContext().getObjectFileInfo()->getObjectFileType()) {
5566   case MCObjectFileInfo::IsMachO:
5567     CurrentFormat = MACHO;
5568     break;
5569   case MCObjectFileInfo::IsELF:
5570     CurrentFormat = ELF;
5571     break;
5572   case MCObjectFileInfo::IsCOFF:
5573     CurrentFormat = COFF;
5574     break;
5575   case MCObjectFileInfo::IsWasm:
5576     CurrentFormat = WASM;
5577     break;
5578   }
5579 
5580   if (~Prefix->SupportedFormats & CurrentFormat) {
5581     Error(Parser.getTok().getLoc(),
5582           "cannot represent relocation in the current file format");
5583     return true;
5584   }
5585 
5586   RefKind = Prefix->VariantKind;
5587   Parser.Lex();
5588 
5589   if (getLexer().isNot(AsmToken::Colon)) {
5590     Error(Parser.getTok().getLoc(), "unexpected token after prefix");
5591     return true;
5592   }
5593   Parser.Lex(); // Eat the last ':'
5594 
5595   return false;
5596 }
5597 
5598 /// Given a mnemonic, split out possible predication code and carry
5599 /// setting letters to form a canonical mnemonic and flags.
5600 //
5601 // FIXME: Would be nice to autogen this.
5602 // FIXME: This is a bit of a maze of special cases.
5603 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
5604                                       unsigned &PredicationCode,
5605                                       bool &CarrySetting,
5606                                       unsigned &ProcessorIMod,
5607                                       StringRef &ITMask) {
5608   PredicationCode = ARMCC::AL;
5609   CarrySetting = false;
5610   ProcessorIMod = 0;
5611 
5612   // Ignore some mnemonics we know aren't predicated forms.
5613   //
5614   // FIXME: Would be nice to autogen this.
5615   if ((Mnemonic == "movs" && isThumb()) ||
5616       Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
5617       Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
5618       Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
5619       Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
5620       Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
5621       Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
5622       Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
5623       Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
5624       Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
5625       Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
5626       Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
5627       Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
5628       Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
5629       Mnemonic == "bxns"  || Mnemonic == "blxns" ||
5630       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
5631       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
5632       Mnemonic == "vfmal" || Mnemonic == "vfmsl")
5633     return Mnemonic;
5634 
5635   // First, split out any predication code. Ignore mnemonics we know aren't
5636   // predicated but do have a carry-set and so weren't caught above.
5637   if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
5638       Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
5639       Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
5640       Mnemonic != "sbcs" && Mnemonic != "rscs") {
5641     unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
5642     if (CC != ~0U) {
5643       Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
5644       PredicationCode = CC;
5645     }
5646   }
5647 
5648   // Next, determine if we have a carry setting bit. We explicitly ignore all
5649   // the instructions we know end in 's'.
5650   if (Mnemonic.endswith("s") &&
5651       !(Mnemonic == "cps" || Mnemonic == "mls" ||
5652         Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
5653         Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
5654         Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
5655         Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
5656         Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
5657         Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
5658         Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
5659         Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
5660         Mnemonic == "bxns" || Mnemonic == "blxns" ||
5661         (Mnemonic == "movs" && isThumb()))) {
5662     Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
5663     CarrySetting = true;
5664   }
5665 
5666   // The "cps" instruction can have a interrupt mode operand which is glued into
5667   // the mnemonic. Check if this is the case, split it and parse the imod op
5668   if (Mnemonic.startswith("cps")) {
5669     // Split out any imod code.
5670     unsigned IMod =
5671       StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
5672       .Case("ie", ARM_PROC::IE)
5673       .Case("id", ARM_PROC::ID)
5674       .Default(~0U);
5675     if (IMod != ~0U) {
5676       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
5677       ProcessorIMod = IMod;
5678     }
5679   }
5680 
5681   // The "it" instruction has the condition mask on the end of the mnemonic.
5682   if (Mnemonic.startswith("it")) {
5683     ITMask = Mnemonic.slice(2, Mnemonic.size());
5684     Mnemonic = Mnemonic.slice(0, 2);
5685   }
5686 
5687   return Mnemonic;
5688 }
5689 
5690 /// Given a canonical mnemonic, determine if the instruction ever allows
5691 /// inclusion of carry set or predication code operands.
5692 //
5693 // FIXME: It would be nice to autogen this.
5694 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
5695                                          bool &CanAcceptCarrySet,
5696                                          bool &CanAcceptPredicationCode) {
5697   CanAcceptCarrySet =
5698       Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
5699       Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
5700       Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
5701       Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
5702       Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
5703       Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
5704       Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
5705       (!isThumb() &&
5706        (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
5707         Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
5708 
5709   if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
5710       Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
5711       Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
5712       Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
5713       Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
5714       Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
5715       Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
5716       Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
5717       Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
5718       Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
5719       (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
5720       Mnemonic == "vmovx" || Mnemonic == "vins" ||
5721       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
5722       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
5723       Mnemonic == "vfmal" || Mnemonic == "vfmsl") {
5724     // These mnemonics are never predicable
5725     CanAcceptPredicationCode = false;
5726   } else if (!isThumb()) {
5727     // Some instructions are only predicable in Thumb mode
5728     CanAcceptPredicationCode =
5729         Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
5730         Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
5731         Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
5732         Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
5733         Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
5734         Mnemonic != "stc2" && Mnemonic != "stc2l" &&
5735         Mnemonic != "tsb" &&
5736         !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
5737   } else if (isThumbOne()) {
5738     if (hasV6MOps())
5739       CanAcceptPredicationCode = Mnemonic != "movs";
5740     else
5741       CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
5742   } else
5743     CanAcceptPredicationCode = true;
5744 }
5745 
5746 // Some Thumb instructions have two operand forms that are not
5747 // available as three operand, convert to two operand form if possible.
5748 //
5749 // FIXME: We would really like to be able to tablegen'erate this.
5750 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
5751                                                  bool CarrySetting,
5752                                                  OperandVector &Operands) {
5753   if (Operands.size() != 6)
5754     return;
5755 
5756   const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
5757         auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
5758   if (!Op3.isReg() || !Op4.isReg())
5759     return;
5760 
5761   auto Op3Reg = Op3.getReg();
5762   auto Op4Reg = Op4.getReg();
5763 
5764   // For most Thumb2 cases we just generate the 3 operand form and reduce
5765   // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
5766   // won't accept SP or PC so we do the transformation here taking care
5767   // with immediate range in the 'add sp, sp #imm' case.
5768   auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
5769   if (isThumbTwo()) {
5770     if (Mnemonic != "add")
5771       return;
5772     bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
5773                         (Op5.isReg() && Op5.getReg() == ARM::PC);
5774     if (!TryTransform) {
5775       TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
5776                       (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
5777                      !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
5778                        Op5.isImm() && !Op5.isImm0_508s4());
5779     }
5780     if (!TryTransform)
5781       return;
5782   } else if (!isThumbOne())
5783     return;
5784 
5785   if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
5786         Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
5787         Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
5788         Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
5789     return;
5790 
5791   // If first 2 operands of a 3 operand instruction are the same
5792   // then transform to 2 operand version of the same instruction
5793   // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
5794   bool Transform = Op3Reg == Op4Reg;
5795 
5796   // For communtative operations, we might be able to transform if we swap
5797   // Op4 and Op5.  The 'ADD Rdm, SP, Rdm' form is already handled specially
5798   // as tADDrsp.
5799   const ARMOperand *LastOp = &Op5;
5800   bool Swap = false;
5801   if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
5802       ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
5803        Mnemonic == "and" || Mnemonic == "eor" ||
5804        Mnemonic == "adc" || Mnemonic == "orr")) {
5805     Swap = true;
5806     LastOp = &Op4;
5807     Transform = true;
5808   }
5809 
5810   // If both registers are the same then remove one of them from
5811   // the operand list, with certain exceptions.
5812   if (Transform) {
5813     // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
5814     // 2 operand forms don't exist.
5815     if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
5816         LastOp->isReg())
5817       Transform = false;
5818 
5819     // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
5820     // 3-bits because the ARMARM says not to.
5821     if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
5822       Transform = false;
5823   }
5824 
5825   if (Transform) {
5826     if (Swap)
5827       std::swap(Op4, Op5);
5828     Operands.erase(Operands.begin() + 3);
5829   }
5830 }
5831 
5832 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
5833                                           OperandVector &Operands) {
5834   // FIXME: This is all horribly hacky. We really need a better way to deal
5835   // with optional operands like this in the matcher table.
5836 
5837   // The 'mov' mnemonic is special. One variant has a cc_out operand, while
5838   // another does not. Specifically, the MOVW instruction does not. So we
5839   // special case it here and remove the defaulted (non-setting) cc_out
5840   // operand if that's the instruction we're trying to match.
5841   //
5842   // We do this as post-processing of the explicit operands rather than just
5843   // conditionally adding the cc_out in the first place because we need
5844   // to check the type of the parsed immediate operand.
5845   if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
5846       !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
5847       static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
5848       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
5849     return true;
5850 
5851   // Register-register 'add' for thumb does not have a cc_out operand
5852   // when there are only two register operands.
5853   if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
5854       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5855       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5856       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
5857     return true;
5858   // Register-register 'add' for thumb does not have a cc_out operand
5859   // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
5860   // have to check the immediate range here since Thumb2 has a variant
5861   // that can handle a different range and has a cc_out operand.
5862   if (((isThumb() && Mnemonic == "add") ||
5863        (isThumbTwo() && Mnemonic == "sub")) &&
5864       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5865       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5866       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
5867       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5868       ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
5869        static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
5870     return true;
5871   // For Thumb2, add/sub immediate does not have a cc_out operand for the
5872   // imm0_4095 variant. That's the least-preferred variant when
5873   // selecting via the generic "add" mnemonic, so to know that we
5874   // should remove the cc_out operand, we have to explicitly check that
5875   // it's not one of the other variants. Ugh.
5876   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
5877       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5878       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5879       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
5880     // Nest conditions rather than one big 'if' statement for readability.
5881     //
5882     // If both registers are low, we're in an IT block, and the immediate is
5883     // in range, we should use encoding T1 instead, which has a cc_out.
5884     if (inITBlock() &&
5885         isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
5886         isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
5887         static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
5888       return false;
5889     // Check against T3. If the second register is the PC, this is an
5890     // alternate form of ADR, which uses encoding T4, so check for that too.
5891     if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
5892         static_cast<ARMOperand &>(*Operands[5]).isT2SOImm())
5893       return false;
5894 
5895     // Otherwise, we use encoding T4, which does not have a cc_out
5896     // operand.
5897     return true;
5898   }
5899 
5900   // The thumb2 multiply instruction doesn't have a CCOut register, so
5901   // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
5902   // use the 16-bit encoding or not.
5903   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
5904       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5905       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5906       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5907       static_cast<ARMOperand &>(*Operands[5]).isReg() &&
5908       // If the registers aren't low regs, the destination reg isn't the
5909       // same as one of the source regs, or the cc_out operand is zero
5910       // outside of an IT block, we have to use the 32-bit encoding, so
5911       // remove the cc_out operand.
5912       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
5913        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
5914        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
5915        !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
5916                             static_cast<ARMOperand &>(*Operands[5]).getReg() &&
5917                         static_cast<ARMOperand &>(*Operands[3]).getReg() !=
5918                             static_cast<ARMOperand &>(*Operands[4]).getReg())))
5919     return true;
5920 
5921   // Also check the 'mul' syntax variant that doesn't specify an explicit
5922   // destination register.
5923   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
5924       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5925       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5926       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5927       // If the registers aren't low regs  or the cc_out operand is zero
5928       // outside of an IT block, we have to use the 32-bit encoding, so
5929       // remove the cc_out operand.
5930       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
5931        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
5932        !inITBlock()))
5933     return true;
5934 
5935   // Register-register 'add/sub' for thumb does not have a cc_out operand
5936   // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
5937   // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
5938   // right, this will result in better diagnostics (which operand is off)
5939   // anyway.
5940   if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
5941       (Operands.size() == 5 || Operands.size() == 6) &&
5942       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5943       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
5944       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5945       (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
5946        (Operands.size() == 6 &&
5947         static_cast<ARMOperand &>(*Operands[5]).isImm())))
5948     return true;
5949 
5950   return false;
5951 }
5952 
5953 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
5954                                               OperandVector &Operands) {
5955   // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
5956   unsigned RegIdx = 3;
5957   if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") &&
5958       (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
5959        static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
5960     if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
5961         (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
5962          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
5963       RegIdx = 4;
5964 
5965     if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
5966         (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
5967              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
5968          ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
5969              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
5970       return true;
5971   }
5972   return false;
5973 }
5974 
5975 static bool isDataTypeToken(StringRef Tok) {
5976   return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
5977     Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
5978     Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
5979     Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
5980     Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
5981     Tok == ".f" || Tok == ".d";
5982 }
5983 
5984 // FIXME: This bit should probably be handled via an explicit match class
5985 // in the .td files that matches the suffix instead of having it be
5986 // a literal string token the way it is now.
5987 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
5988   return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
5989 }
5990 
5991 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features,
5992                                  unsigned VariantID);
5993 
5994 // The GNU assembler has aliases of ldrd and strd with the second register
5995 // omitted. We don't have a way to do that in tablegen, so fix it up here.
5996 //
5997 // We have to be careful to not emit an invalid Rt2 here, because the rest of
5998 // the assmebly parser could then generate confusing diagnostics refering to
5999 // it. If we do find anything that prevents us from doing the transformation we
6000 // bail out, and let the assembly parser report an error on the instruction as
6001 // it is written.
6002 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
6003                                      OperandVector &Operands) {
6004   if (Mnemonic != "ldrd" && Mnemonic != "strd")
6005     return;
6006   if (Operands.size() < 4)
6007     return;
6008 
6009   ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6010   ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6011 
6012   if (!Op2.isReg())
6013     return;
6014   if (!Op3.isMem())
6015     return;
6016 
6017   const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6018   if (!GPR.contains(Op2.getReg()))
6019     return;
6020 
6021   unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6022   if (!isThumb() && (RtEncoding & 1)) {
6023     // In ARM mode, the registers must be from an aligned pair, this
6024     // restriction does not apply in Thumb mode.
6025     return;
6026   }
6027   if (Op2.getReg() == ARM::PC)
6028     return;
6029   unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
6030   if (!PairedReg || PairedReg == ARM::PC ||
6031       (PairedReg == ARM::SP && !hasV8Ops()))
6032     return;
6033 
6034   Operands.insert(
6035       Operands.begin() + 3,
6036       ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
6037 }
6038 
6039 /// Parse an arm instruction mnemonic followed by its operands.
6040 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
6041                                     SMLoc NameLoc, OperandVector &Operands) {
6042   MCAsmParser &Parser = getParser();
6043 
6044   // Apply mnemonic aliases before doing anything else, as the destination
6045   // mnemonic may include suffices and we want to handle them normally.
6046   // The generic tblgen'erated code does this later, at the start of
6047   // MatchInstructionImpl(), but that's too late for aliases that include
6048   // any sort of suffix.
6049   uint64_t AvailableFeatures = getAvailableFeatures();
6050   unsigned AssemblerDialect = getParser().getAssemblerDialect();
6051   applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
6052 
6053   // First check for the ARM-specific .req directive.
6054   if (Parser.getTok().is(AsmToken::Identifier) &&
6055       Parser.getTok().getIdentifier() == ".req") {
6056     parseDirectiveReq(Name, NameLoc);
6057     // We always return 'error' for this, as we're done with this
6058     // statement and don't need to match the 'instruction."
6059     return true;
6060   }
6061 
6062   // Create the leading tokens for the mnemonic, split by '.' characters.
6063   size_t Start = 0, Next = Name.find('.');
6064   StringRef Mnemonic = Name.slice(Start, Next);
6065 
6066   // Split out the predication code and carry setting flag from the mnemonic.
6067   unsigned PredicationCode;
6068   unsigned ProcessorIMod;
6069   bool CarrySetting;
6070   StringRef ITMask;
6071   Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
6072                            ProcessorIMod, ITMask);
6073 
6074   // In Thumb1, only the branch (B) instruction can be predicated.
6075   if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
6076     return Error(NameLoc, "conditional execution not supported in Thumb1");
6077   }
6078 
6079   Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
6080 
6081   // Handle the IT instruction ITMask. Convert it to a bitmask. This
6082   // is the mask as it will be for the IT encoding if the conditional
6083   // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
6084   // where the conditional bit0 is zero, the instruction post-processing
6085   // will adjust the mask accordingly.
6086   if (Mnemonic == "it") {
6087     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
6088     if (ITMask.size() > 3) {
6089       return Error(Loc, "too many conditions on IT instruction");
6090     }
6091     unsigned Mask = 8;
6092     for (unsigned i = ITMask.size(); i != 0; --i) {
6093       char pos = ITMask[i - 1];
6094       if (pos != 't' && pos != 'e') {
6095         return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
6096       }
6097       Mask >>= 1;
6098       if (ITMask[i - 1] == 't')
6099         Mask |= 8;
6100     }
6101     Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
6102   }
6103 
6104   // FIXME: This is all a pretty gross hack. We should automatically handle
6105   // optional operands like this via tblgen.
6106 
6107   // Next, add the CCOut and ConditionCode operands, if needed.
6108   //
6109   // For mnemonics which can ever incorporate a carry setting bit or predication
6110   // code, our matching model involves us always generating CCOut and
6111   // ConditionCode operands to match the mnemonic "as written" and then we let
6112   // the matcher deal with finding the right instruction or generating an
6113   // appropriate error.
6114   bool CanAcceptCarrySet, CanAcceptPredicationCode;
6115   getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode);
6116 
6117   // If we had a carry-set on an instruction that can't do that, issue an
6118   // error.
6119   if (!CanAcceptCarrySet && CarrySetting) {
6120     return Error(NameLoc, "instruction '" + Mnemonic +
6121                  "' can not set flags, but 's' suffix specified");
6122   }
6123   // If we had a predication code on an instruction that can't do that, issue an
6124   // error.
6125   if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
6126     return Error(NameLoc, "instruction '" + Mnemonic +
6127                  "' is not predicable, but condition code specified");
6128   }
6129 
6130   // Add the carry setting operand, if necessary.
6131   if (CanAcceptCarrySet) {
6132     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
6133     Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
6134                                                Loc));
6135   }
6136 
6137   // Add the predication code operand, if necessary.
6138   if (CanAcceptPredicationCode) {
6139     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
6140                                       CarrySetting);
6141     Operands.push_back(ARMOperand::CreateCondCode(
6142                          ARMCC::CondCodes(PredicationCode), Loc));
6143   }
6144 
6145   // Add the processor imod operand, if necessary.
6146   if (ProcessorIMod) {
6147     Operands.push_back(ARMOperand::CreateImm(
6148           MCConstantExpr::create(ProcessorIMod, getContext()),
6149                                  NameLoc, NameLoc));
6150   } else if (Mnemonic == "cps" && isMClass()) {
6151     return Error(NameLoc, "instruction 'cps' requires effect for M-class");
6152   }
6153 
6154   // Add the remaining tokens in the mnemonic.
6155   while (Next != StringRef::npos) {
6156     Start = Next;
6157     Next = Name.find('.', Start + 1);
6158     StringRef ExtraToken = Name.slice(Start, Next);
6159 
6160     // Some NEON instructions have an optional datatype suffix that is
6161     // completely ignored. Check for that.
6162     if (isDataTypeToken(ExtraToken) &&
6163         doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
6164       continue;
6165 
6166     // For for ARM mode generate an error if the .n qualifier is used.
6167     if (ExtraToken == ".n" && !isThumb()) {
6168       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6169       return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
6170                    "arm mode");
6171     }
6172 
6173     // The .n qualifier is always discarded as that is what the tables
6174     // and matcher expect.  In ARM mode the .w qualifier has no effect,
6175     // so discard it to avoid errors that can be caused by the matcher.
6176     if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
6177       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6178       Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
6179     }
6180   }
6181 
6182   // Read the remaining operands.
6183   if (getLexer().isNot(AsmToken::EndOfStatement)) {
6184     // Read the first operand.
6185     if (parseOperand(Operands, Mnemonic)) {
6186       return true;
6187     }
6188 
6189     while (parseOptionalToken(AsmToken::Comma)) {
6190       // Parse and remember the operand.
6191       if (parseOperand(Operands, Mnemonic)) {
6192         return true;
6193       }
6194     }
6195   }
6196 
6197   if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
6198     return true;
6199 
6200   tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
6201 
6202   // Some instructions, mostly Thumb, have forms for the same mnemonic that
6203   // do and don't have a cc_out optional-def operand. With some spot-checks
6204   // of the operand list, we can figure out which variant we're trying to
6205   // parse and adjust accordingly before actually matching. We shouldn't ever
6206   // try to remove a cc_out operand that was explicitly set on the
6207   // mnemonic, of course (CarrySetting == true). Reason number #317 the
6208   // table driven matcher doesn't fit well with the ARM instruction set.
6209   if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
6210     Operands.erase(Operands.begin() + 1);
6211 
6212   // Some instructions have the same mnemonic, but don't always
6213   // have a predicate. Distinguish them here and delete the
6214   // predicate if needed.
6215   if (PredicationCode == ARMCC::AL &&
6216       shouldOmitPredicateOperand(Mnemonic, Operands))
6217     Operands.erase(Operands.begin() + 1);
6218 
6219   // ARM mode 'blx' need special handling, as the register operand version
6220   // is predicable, but the label operand version is not. So, we can't rely
6221   // on the Mnemonic based checking to correctly figure out when to put
6222   // a k_CondCode operand in the list. If we're trying to match the label
6223   // version, remove the k_CondCode operand here.
6224   if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
6225       static_cast<ARMOperand &>(*Operands[2]).isImm())
6226     Operands.erase(Operands.begin() + 1);
6227 
6228   // Adjust operands of ldrexd/strexd to MCK_GPRPair.
6229   // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
6230   // a single GPRPair reg operand is used in the .td file to replace the two
6231   // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
6232   // expressed as a GPRPair, so we have to manually merge them.
6233   // FIXME: We would really like to be able to tablegen'erate this.
6234   if (!isThumb() && Operands.size() > 4 &&
6235       (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
6236        Mnemonic == "stlexd")) {
6237     bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
6238     unsigned Idx = isLoad ? 2 : 3;
6239     ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
6240     ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
6241 
6242     const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
6243     // Adjust only if Op1 and Op2 are GPRs.
6244     if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
6245         MRC.contains(Op2.getReg())) {
6246       unsigned Reg1 = Op1.getReg();
6247       unsigned Reg2 = Op2.getReg();
6248       unsigned Rt = MRI->getEncodingValue(Reg1);
6249       unsigned Rt2 = MRI->getEncodingValue(Reg2);
6250 
6251       // Rt2 must be Rt + 1 and Rt must be even.
6252       if (Rt + 1 != Rt2 || (Rt & 1)) {
6253         return Error(Op2.getStartLoc(),
6254                      isLoad ? "destination operands must be sequential"
6255                             : "source operands must be sequential");
6256       }
6257       unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
6258           &(MRI->getRegClass(ARM::GPRPairRegClassID)));
6259       Operands[Idx] =
6260           ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
6261       Operands.erase(Operands.begin() + Idx + 1);
6262     }
6263   }
6264 
6265   // GNU Assembler extension (compatibility).
6266   fixupGNULDRDAlias(Mnemonic, Operands);
6267 
6268   // FIXME: As said above, this is all a pretty gross hack.  This instruction
6269   // does not fit with other "subs" and tblgen.
6270   // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
6271   // so the Mnemonic is the original name "subs" and delete the predicate
6272   // operand so it will match the table entry.
6273   if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
6274       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6275       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
6276       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6277       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
6278       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6279     Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
6280     Operands.erase(Operands.begin() + 1);
6281   }
6282   return false;
6283 }
6284 
6285 // Validate context-sensitive operand constraints.
6286 
6287 // return 'true' if register list contains non-low GPR registers,
6288 // 'false' otherwise. If Reg is in the register list or is HiReg, set
6289 // 'containsReg' to true.
6290 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
6291                                  unsigned Reg, unsigned HiReg,
6292                                  bool &containsReg) {
6293   containsReg = false;
6294   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
6295     unsigned OpReg = Inst.getOperand(i).getReg();
6296     if (OpReg == Reg)
6297       containsReg = true;
6298     // Anything other than a low register isn't legal here.
6299     if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
6300       return true;
6301   }
6302   return false;
6303 }
6304 
6305 // Check if the specified regisgter is in the register list of the inst,
6306 // starting at the indicated operand number.
6307 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
6308   for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
6309     unsigned OpReg = Inst.getOperand(i).getReg();
6310     if (OpReg == Reg)
6311       return true;
6312   }
6313   return false;
6314 }
6315 
6316 // Return true if instruction has the interesting property of being
6317 // allowed in IT blocks, but not being predicable.
6318 static bool instIsBreakpoint(const MCInst &Inst) {
6319     return Inst.getOpcode() == ARM::tBKPT ||
6320            Inst.getOpcode() == ARM::BKPT ||
6321            Inst.getOpcode() == ARM::tHLT ||
6322            Inst.getOpcode() == ARM::HLT;
6323 }
6324 
6325 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
6326                                        const OperandVector &Operands,
6327                                        unsigned ListNo, bool IsARPop) {
6328   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
6329   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
6330 
6331   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
6332   bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
6333   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
6334 
6335   if (!IsARPop && ListContainsSP)
6336     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6337                  "SP may not be in the register list");
6338   else if (ListContainsPC && ListContainsLR)
6339     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6340                  "PC and LR may not be in the register list simultaneously");
6341   return false;
6342 }
6343 
6344 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
6345                                        const OperandVector &Operands,
6346                                        unsigned ListNo) {
6347   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
6348   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
6349 
6350   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
6351   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
6352 
6353   if (ListContainsSP && ListContainsPC)
6354     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6355                  "SP and PC may not be in the register list");
6356   else if (ListContainsSP)
6357     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6358                  "SP may not be in the register list");
6359   else if (ListContainsPC)
6360     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6361                  "PC may not be in the register list");
6362   return false;
6363 }
6364 
6365 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
6366                                     const OperandVector &Operands,
6367                                     bool Load, bool ARMMode, bool Writeback) {
6368   unsigned RtIndex = Load || !Writeback ? 0 : 1;
6369   unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
6370   unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
6371 
6372   if (ARMMode) {
6373     // Rt can't be R14.
6374     if (Rt == 14)
6375       return Error(Operands[3]->getStartLoc(),
6376                   "Rt can't be R14");
6377 
6378     // Rt must be even-numbered.
6379     if ((Rt & 1) == 1)
6380       return Error(Operands[3]->getStartLoc(),
6381                    "Rt must be even-numbered");
6382 
6383     // Rt2 must be Rt + 1.
6384     if (Rt2 != Rt + 1) {
6385       if (Load)
6386         return Error(Operands[3]->getStartLoc(),
6387                      "destination operands must be sequential");
6388       else
6389         return Error(Operands[3]->getStartLoc(),
6390                      "source operands must be sequential");
6391     }
6392 
6393     // FIXME: Diagnose m == 15
6394     // FIXME: Diagnose ldrd with m == t || m == t2.
6395   }
6396 
6397   if (!ARMMode && Load) {
6398     if (Rt2 == Rt)
6399       return Error(Operands[3]->getStartLoc(),
6400                    "destination operands can't be identical");
6401   }
6402 
6403   if (Writeback) {
6404     unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
6405 
6406     if (Rn == Rt || Rn == Rt2) {
6407       if (Load)
6408         return Error(Operands[3]->getStartLoc(),
6409                      "base register needs to be different from destination "
6410                      "registers");
6411       else
6412         return Error(Operands[3]->getStartLoc(),
6413                      "source register and base register can't be identical");
6414     }
6415 
6416     // FIXME: Diagnose ldrd/strd with writeback and n == 15.
6417     // (Except the immediate form of ldrd?)
6418   }
6419 
6420   return false;
6421 }
6422 
6423 
6424 // FIXME: We would really like to be able to tablegen'erate this.
6425 bool ARMAsmParser::validateInstruction(MCInst &Inst,
6426                                        const OperandVector &Operands) {
6427   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
6428   SMLoc Loc = Operands[0]->getStartLoc();
6429 
6430   // Check the IT block state first.
6431   // NOTE: BKPT and HLT instructions have the interesting property of being
6432   // allowed in IT blocks, but not being predicable. They just always execute.
6433   if (inITBlock() && !instIsBreakpoint(Inst)) {
6434     // The instruction must be predicable.
6435     if (!MCID.isPredicable())
6436       return Error(Loc, "instructions in IT block must be predicable");
6437     ARMCC::CondCodes Cond = ARMCC::CondCodes(
6438         Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
6439     if (Cond != currentITCond()) {
6440       // Find the condition code Operand to get its SMLoc information.
6441       SMLoc CondLoc;
6442       for (unsigned I = 1; I < Operands.size(); ++I)
6443         if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
6444           CondLoc = Operands[I]->getStartLoc();
6445       return Error(CondLoc, "incorrect condition in IT block; got '" +
6446                                 StringRef(ARMCondCodeToString(Cond)) +
6447                                 "', but expected '" +
6448                                 ARMCondCodeToString(currentITCond()) + "'");
6449     }
6450   // Check for non-'al' condition codes outside of the IT block.
6451   } else if (isThumbTwo() && MCID.isPredicable() &&
6452              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
6453              ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
6454              Inst.getOpcode() != ARM::t2Bcc) {
6455     return Error(Loc, "predicated instructions must be in IT block");
6456   } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
6457              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
6458                  ARMCC::AL) {
6459     return Warning(Loc, "predicated instructions should be in IT block");
6460   }
6461 
6462   // PC-setting instructions in an IT block, but not the last instruction of
6463   // the block, are UNPREDICTABLE.
6464   if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
6465     return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
6466   }
6467 
6468   const unsigned Opcode = Inst.getOpcode();
6469   switch (Opcode) {
6470   case ARM::t2IT: {
6471     // Encoding is unpredictable if it ever results in a notional 'NV'
6472     // predicate. Since we don't parse 'NV' directly this means an 'AL'
6473     // predicate with an "else" mask bit.
6474     unsigned Cond = Inst.getOperand(0).getImm();
6475     unsigned Mask = Inst.getOperand(1).getImm();
6476 
6477     // Mask hasn't been modified to the IT instruction encoding yet so
6478     // conditions only allowing a 't' are a block of 1s starting at bit 3
6479     // followed by all 0s. Easiest way is to just list the 4 possibilities.
6480     if (Cond == ARMCC::AL && Mask != 8 && Mask != 12 && Mask != 14 &&
6481         Mask != 15)
6482       return Error(Loc, "unpredictable IT predicate sequence");
6483     break;
6484   }
6485   case ARM::LDRD:
6486     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
6487                          /*Writeback*/false))
6488       return true;
6489     break;
6490   case ARM::LDRD_PRE:
6491   case ARM::LDRD_POST:
6492     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
6493                          /*Writeback*/true))
6494       return true;
6495     break;
6496   case ARM::t2LDRDi8:
6497     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
6498                          /*Writeback*/false))
6499       return true;
6500     break;
6501   case ARM::t2LDRD_PRE:
6502   case ARM::t2LDRD_POST:
6503     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
6504                          /*Writeback*/true))
6505       return true;
6506     break;
6507   case ARM::t2BXJ: {
6508     const unsigned RmReg = Inst.getOperand(0).getReg();
6509     // Rm = SP is no longer unpredictable in v8-A
6510     if (RmReg == ARM::SP && !hasV8Ops())
6511       return Error(Operands[2]->getStartLoc(),
6512                    "r13 (SP) is an unpredictable operand to BXJ");
6513     return false;
6514   }
6515   case ARM::STRD:
6516     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
6517                          /*Writeback*/false))
6518       return true;
6519     break;
6520   case ARM::STRD_PRE:
6521   case ARM::STRD_POST:
6522     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
6523                          /*Writeback*/true))
6524       return true;
6525     break;
6526   case ARM::t2STRD_PRE:
6527   case ARM::t2STRD_POST:
6528     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
6529                          /*Writeback*/true))
6530       return true;
6531     break;
6532   case ARM::STR_PRE_IMM:
6533   case ARM::STR_PRE_REG:
6534   case ARM::t2STR_PRE:
6535   case ARM::STR_POST_IMM:
6536   case ARM::STR_POST_REG:
6537   case ARM::t2STR_POST:
6538   case ARM::STRH_PRE:
6539   case ARM::t2STRH_PRE:
6540   case ARM::STRH_POST:
6541   case ARM::t2STRH_POST:
6542   case ARM::STRB_PRE_IMM:
6543   case ARM::STRB_PRE_REG:
6544   case ARM::t2STRB_PRE:
6545   case ARM::STRB_POST_IMM:
6546   case ARM::STRB_POST_REG:
6547   case ARM::t2STRB_POST: {
6548     // Rt must be different from Rn.
6549     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6550     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6551 
6552     if (Rt == Rn)
6553       return Error(Operands[3]->getStartLoc(),
6554                    "source register and base register can't be identical");
6555     return false;
6556   }
6557   case ARM::LDR_PRE_IMM:
6558   case ARM::LDR_PRE_REG:
6559   case ARM::t2LDR_PRE:
6560   case ARM::LDR_POST_IMM:
6561   case ARM::LDR_POST_REG:
6562   case ARM::t2LDR_POST:
6563   case ARM::LDRH_PRE:
6564   case ARM::t2LDRH_PRE:
6565   case ARM::LDRH_POST:
6566   case ARM::t2LDRH_POST:
6567   case ARM::LDRSH_PRE:
6568   case ARM::t2LDRSH_PRE:
6569   case ARM::LDRSH_POST:
6570   case ARM::t2LDRSH_POST:
6571   case ARM::LDRB_PRE_IMM:
6572   case ARM::LDRB_PRE_REG:
6573   case ARM::t2LDRB_PRE:
6574   case ARM::LDRB_POST_IMM:
6575   case ARM::LDRB_POST_REG:
6576   case ARM::t2LDRB_POST:
6577   case ARM::LDRSB_PRE:
6578   case ARM::t2LDRSB_PRE:
6579   case ARM::LDRSB_POST:
6580   case ARM::t2LDRSB_POST: {
6581     // Rt must be different from Rn.
6582     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6583     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6584 
6585     if (Rt == Rn)
6586       return Error(Operands[3]->getStartLoc(),
6587                    "destination register and base register can't be identical");
6588     return false;
6589   }
6590   case ARM::SBFX:
6591   case ARM::t2SBFX:
6592   case ARM::UBFX:
6593   case ARM::t2UBFX: {
6594     // Width must be in range [1, 32-lsb].
6595     unsigned LSB = Inst.getOperand(2).getImm();
6596     unsigned Widthm1 = Inst.getOperand(3).getImm();
6597     if (Widthm1 >= 32 - LSB)
6598       return Error(Operands[5]->getStartLoc(),
6599                    "bitfield width must be in range [1,32-lsb]");
6600     return false;
6601   }
6602   // Notionally handles ARM::tLDMIA_UPD too.
6603   case ARM::tLDMIA: {
6604     // If we're parsing Thumb2, the .w variant is available and handles
6605     // most cases that are normally illegal for a Thumb1 LDM instruction.
6606     // We'll make the transformation in processInstruction() if necessary.
6607     //
6608     // Thumb LDM instructions are writeback iff the base register is not
6609     // in the register list.
6610     unsigned Rn = Inst.getOperand(0).getReg();
6611     bool HasWritebackToken =
6612         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6613          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
6614     bool ListContainsBase;
6615     if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
6616       return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
6617                    "registers must be in range r0-r7");
6618     // If we should have writeback, then there should be a '!' token.
6619     if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
6620       return Error(Operands[2]->getStartLoc(),
6621                    "writeback operator '!' expected");
6622     // If we should not have writeback, there must not be a '!'. This is
6623     // true even for the 32-bit wide encodings.
6624     if (ListContainsBase && HasWritebackToken)
6625       return Error(Operands[3]->getStartLoc(),
6626                    "writeback operator '!' not allowed when base register "
6627                    "in register list");
6628 
6629     if (validatetLDMRegList(Inst, Operands, 3))
6630       return true;
6631     break;
6632   }
6633   case ARM::LDMIA_UPD:
6634   case ARM::LDMDB_UPD:
6635   case ARM::LDMIB_UPD:
6636   case ARM::LDMDA_UPD:
6637     // ARM variants loading and updating the same register are only officially
6638     // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
6639     if (!hasV7Ops())
6640       break;
6641     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
6642       return Error(Operands.back()->getStartLoc(),
6643                    "writeback register not allowed in register list");
6644     break;
6645   case ARM::t2LDMIA:
6646   case ARM::t2LDMDB:
6647     if (validatetLDMRegList(Inst, Operands, 3))
6648       return true;
6649     break;
6650   case ARM::t2STMIA:
6651   case ARM::t2STMDB:
6652     if (validatetSTMRegList(Inst, Operands, 3))
6653       return true;
6654     break;
6655   case ARM::t2LDMIA_UPD:
6656   case ARM::t2LDMDB_UPD:
6657   case ARM::t2STMIA_UPD:
6658   case ARM::t2STMDB_UPD:
6659     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
6660       return Error(Operands.back()->getStartLoc(),
6661                    "writeback register not allowed in register list");
6662 
6663     if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
6664       if (validatetLDMRegList(Inst, Operands, 3))
6665         return true;
6666     } else {
6667       if (validatetSTMRegList(Inst, Operands, 3))
6668         return true;
6669     }
6670     break;
6671 
6672   case ARM::sysLDMIA_UPD:
6673   case ARM::sysLDMDA_UPD:
6674   case ARM::sysLDMDB_UPD:
6675   case ARM::sysLDMIB_UPD:
6676     if (!listContainsReg(Inst, 3, ARM::PC))
6677       return Error(Operands[4]->getStartLoc(),
6678                    "writeback register only allowed on system LDM "
6679                    "if PC in register-list");
6680     break;
6681   case ARM::sysSTMIA_UPD:
6682   case ARM::sysSTMDA_UPD:
6683   case ARM::sysSTMDB_UPD:
6684   case ARM::sysSTMIB_UPD:
6685     return Error(Operands[2]->getStartLoc(),
6686                  "system STM cannot have writeback register");
6687   case ARM::tMUL:
6688     // The second source operand must be the same register as the destination
6689     // operand.
6690     //
6691     // In this case, we must directly check the parsed operands because the
6692     // cvtThumbMultiply() function is written in such a way that it guarantees
6693     // this first statement is always true for the new Inst.  Essentially, the
6694     // destination is unconditionally copied into the second source operand
6695     // without checking to see if it matches what we actually parsed.
6696     if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
6697                                  ((ARMOperand &)*Operands[5]).getReg()) &&
6698         (((ARMOperand &)*Operands[3]).getReg() !=
6699          ((ARMOperand &)*Operands[4]).getReg())) {
6700       return Error(Operands[3]->getStartLoc(),
6701                    "destination register must match source register");
6702     }
6703     break;
6704 
6705   // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
6706   // so only issue a diagnostic for thumb1. The instructions will be
6707   // switched to the t2 encodings in processInstruction() if necessary.
6708   case ARM::tPOP: {
6709     bool ListContainsBase;
6710     if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
6711         !isThumbTwo())
6712       return Error(Operands[2]->getStartLoc(),
6713                    "registers must be in range r0-r7 or pc");
6714     if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
6715       return true;
6716     break;
6717   }
6718   case ARM::tPUSH: {
6719     bool ListContainsBase;
6720     if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
6721         !isThumbTwo())
6722       return Error(Operands[2]->getStartLoc(),
6723                    "registers must be in range r0-r7 or lr");
6724     if (validatetSTMRegList(Inst, Operands, 2))
6725       return true;
6726     break;
6727   }
6728   case ARM::tSTMIA_UPD: {
6729     bool ListContainsBase, InvalidLowList;
6730     InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
6731                                           0, ListContainsBase);
6732     if (InvalidLowList && !isThumbTwo())
6733       return Error(Operands[4]->getStartLoc(),
6734                    "registers must be in range r0-r7");
6735 
6736     // This would be converted to a 32-bit stm, but that's not valid if the
6737     // writeback register is in the list.
6738     if (InvalidLowList && ListContainsBase)
6739       return Error(Operands[4]->getStartLoc(),
6740                    "writeback operator '!' not allowed when base register "
6741                    "in register list");
6742 
6743     if (validatetSTMRegList(Inst, Operands, 4))
6744       return true;
6745     break;
6746   }
6747   case ARM::tADDrSP:
6748     // If the non-SP source operand and the destination operand are not the
6749     // same, we need thumb2 (for the wide encoding), or we have an error.
6750     if (!isThumbTwo() &&
6751         Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
6752       return Error(Operands[4]->getStartLoc(),
6753                    "source register must be the same as destination");
6754     }
6755     break;
6756 
6757   // Final range checking for Thumb unconditional branch instructions.
6758   case ARM::tB:
6759     if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
6760       return Error(Operands[2]->getStartLoc(), "branch target out of range");
6761     break;
6762   case ARM::t2B: {
6763     int op = (Operands[2]->isImm()) ? 2 : 3;
6764     if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
6765       return Error(Operands[op]->getStartLoc(), "branch target out of range");
6766     break;
6767   }
6768   // Final range checking for Thumb conditional branch instructions.
6769   case ARM::tBcc:
6770     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
6771       return Error(Operands[2]->getStartLoc(), "branch target out of range");
6772     break;
6773   case ARM::t2Bcc: {
6774     int Op = (Operands[2]->isImm()) ? 2 : 3;
6775     if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
6776       return Error(Operands[Op]->getStartLoc(), "branch target out of range");
6777     break;
6778   }
6779   case ARM::tCBZ:
6780   case ARM::tCBNZ: {
6781     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
6782       return Error(Operands[2]->getStartLoc(), "branch target out of range");
6783     break;
6784   }
6785   case ARM::MOVi16:
6786   case ARM::MOVTi16:
6787   case ARM::t2MOVi16:
6788   case ARM::t2MOVTi16:
6789     {
6790     // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
6791     // especially when we turn it into a movw and the expression <symbol> does
6792     // not have a :lower16: or :upper16 as part of the expression.  We don't
6793     // want the behavior of silently truncating, which can be unexpected and
6794     // lead to bugs that are difficult to find since this is an easy mistake
6795     // to make.
6796     int i = (Operands[3]->isImm()) ? 3 : 4;
6797     ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
6798     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
6799     if (CE) break;
6800     const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
6801     if (!E) break;
6802     const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
6803     if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
6804                        ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
6805       return Error(
6806           Op.getStartLoc(),
6807           "immediate expression for mov requires :lower16: or :upper16");
6808     break;
6809   }
6810   case ARM::HINT:
6811   case ARM::t2HINT: {
6812     unsigned Imm8 = Inst.getOperand(0).getImm();
6813     unsigned Pred = Inst.getOperand(1).getImm();
6814     // ESB is not predicable (pred must be AL). Without the RAS extension, this
6815     // behaves as any other unallocated hint.
6816     if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
6817       return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
6818                                                "predicable, but condition "
6819                                                "code specified");
6820     if (Imm8 == 0x14 && Pred != ARMCC::AL)
6821       return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
6822                                                "predicable, but condition "
6823                                                "code specified");
6824     break;
6825   }
6826   case ARM::VMOVRRS: {
6827     // Source registers must be sequential.
6828     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6829     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
6830     if (Sm1 != Sm + 1)
6831       return Error(Operands[5]->getStartLoc(),
6832                    "source operands must be sequential");
6833     break;
6834   }
6835   case ARM::VMOVSRR: {
6836     // Destination registers must be sequential.
6837     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6838     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6839     if (Sm1 != Sm + 1)
6840       return Error(Operands[3]->getStartLoc(),
6841                    "destination operands must be sequential");
6842     break;
6843   }
6844   }
6845 
6846   return false;
6847 }
6848 
6849 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
6850   switch(Opc) {
6851   default: llvm_unreachable("unexpected opcode!");
6852   // VST1LN
6853   case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
6854   case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
6855   case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
6856   case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
6857   case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
6858   case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
6859   case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
6860   case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
6861   case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
6862 
6863   // VST2LN
6864   case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
6865   case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
6866   case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
6867   case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
6868   case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
6869 
6870   case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
6871   case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
6872   case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
6873   case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
6874   case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
6875 
6876   case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
6877   case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
6878   case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
6879   case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
6880   case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
6881 
6882   // VST3LN
6883   case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
6884   case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
6885   case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
6886   case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
6887   case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
6888   case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
6889   case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
6890   case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
6891   case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
6892   case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
6893   case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
6894   case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
6895   case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
6896   case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
6897   case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
6898 
6899   // VST3
6900   case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
6901   case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
6902   case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
6903   case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
6904   case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
6905   case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
6906   case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
6907   case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
6908   case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
6909   case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
6910   case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
6911   case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
6912   case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
6913   case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
6914   case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
6915   case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
6916   case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
6917   case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
6918 
6919   // VST4LN
6920   case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
6921   case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
6922   case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
6923   case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
6924   case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
6925   case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
6926   case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
6927   case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
6928   case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
6929   case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
6930   case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
6931   case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
6932   case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
6933   case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
6934   case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
6935 
6936   // VST4
6937   case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
6938   case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
6939   case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
6940   case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
6941   case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
6942   case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
6943   case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
6944   case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
6945   case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
6946   case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
6947   case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
6948   case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
6949   case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
6950   case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
6951   case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
6952   case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
6953   case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
6954   case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
6955   }
6956 }
6957 
6958 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
6959   switch(Opc) {
6960   default: llvm_unreachable("unexpected opcode!");
6961   // VLD1LN
6962   case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
6963   case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
6964   case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
6965   case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
6966   case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
6967   case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
6968   case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
6969   case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
6970   case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
6971 
6972   // VLD2LN
6973   case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
6974   case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
6975   case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
6976   case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
6977   case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
6978   case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
6979   case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
6980   case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
6981   case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
6982   case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
6983   case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
6984   case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
6985   case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
6986   case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
6987   case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
6988 
6989   // VLD3DUP
6990   case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
6991   case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
6992   case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
6993   case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
6994   case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
6995   case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
6996   case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
6997   case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
6998   case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
6999   case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
7000   case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
7001   case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
7002   case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
7003   case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
7004   case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
7005   case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
7006   case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
7007   case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
7008 
7009   // VLD3LN
7010   case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
7011   case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
7012   case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
7013   case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
7014   case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
7015   case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
7016   case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
7017   case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
7018   case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
7019   case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
7020   case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
7021   case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
7022   case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
7023   case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
7024   case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
7025 
7026   // VLD3
7027   case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
7028   case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
7029   case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
7030   case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
7031   case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
7032   case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
7033   case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
7034   case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
7035   case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
7036   case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
7037   case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
7038   case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
7039   case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
7040   case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
7041   case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
7042   case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
7043   case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
7044   case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
7045 
7046   // VLD4LN
7047   case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
7048   case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
7049   case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
7050   case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
7051   case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
7052   case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
7053   case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
7054   case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
7055   case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
7056   case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
7057   case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
7058   case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
7059   case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
7060   case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
7061   case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
7062 
7063   // VLD4DUP
7064   case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
7065   case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
7066   case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
7067   case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
7068   case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
7069   case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
7070   case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
7071   case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
7072   case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
7073   case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
7074   case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
7075   case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
7076   case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
7077   case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
7078   case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
7079   case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
7080   case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
7081   case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
7082 
7083   // VLD4
7084   case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
7085   case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
7086   case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
7087   case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
7088   case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
7089   case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
7090   case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
7091   case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
7092   case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
7093   case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
7094   case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
7095   case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
7096   case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
7097   case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
7098   case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
7099   case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
7100   case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
7101   case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
7102   }
7103 }
7104 
7105 bool ARMAsmParser::processInstruction(MCInst &Inst,
7106                                       const OperandVector &Operands,
7107                                       MCStreamer &Out) {
7108   // Check if we have the wide qualifier, because if it's present we
7109   // must avoid selecting a 16-bit thumb instruction.
7110   bool HasWideQualifier = false;
7111   for (auto &Op : Operands) {
7112     ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
7113     if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
7114       HasWideQualifier = true;
7115       break;
7116     }
7117   }
7118 
7119   switch (Inst.getOpcode()) {
7120   // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
7121   case ARM::LDRT_POST:
7122   case ARM::LDRBT_POST: {
7123     const unsigned Opcode =
7124       (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
7125                                            : ARM::LDRBT_POST_IMM;
7126     MCInst TmpInst;
7127     TmpInst.setOpcode(Opcode);
7128     TmpInst.addOperand(Inst.getOperand(0));
7129     TmpInst.addOperand(Inst.getOperand(1));
7130     TmpInst.addOperand(Inst.getOperand(1));
7131     TmpInst.addOperand(MCOperand::createReg(0));
7132     TmpInst.addOperand(MCOperand::createImm(0));
7133     TmpInst.addOperand(Inst.getOperand(2));
7134     TmpInst.addOperand(Inst.getOperand(3));
7135     Inst = TmpInst;
7136     return true;
7137   }
7138   // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
7139   case ARM::STRT_POST:
7140   case ARM::STRBT_POST: {
7141     const unsigned Opcode =
7142       (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
7143                                            : ARM::STRBT_POST_IMM;
7144     MCInst TmpInst;
7145     TmpInst.setOpcode(Opcode);
7146     TmpInst.addOperand(Inst.getOperand(1));
7147     TmpInst.addOperand(Inst.getOperand(0));
7148     TmpInst.addOperand(Inst.getOperand(1));
7149     TmpInst.addOperand(MCOperand::createReg(0));
7150     TmpInst.addOperand(MCOperand::createImm(0));
7151     TmpInst.addOperand(Inst.getOperand(2));
7152     TmpInst.addOperand(Inst.getOperand(3));
7153     Inst = TmpInst;
7154     return true;
7155   }
7156   // Alias for alternate form of 'ADR Rd, #imm' instruction.
7157   case ARM::ADDri: {
7158     if (Inst.getOperand(1).getReg() != ARM::PC ||
7159         Inst.getOperand(5).getReg() != 0 ||
7160         !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
7161       return false;
7162     MCInst TmpInst;
7163     TmpInst.setOpcode(ARM::ADR);
7164     TmpInst.addOperand(Inst.getOperand(0));
7165     if (Inst.getOperand(2).isImm()) {
7166       // Immediate (mod_imm) will be in its encoded form, we must unencode it
7167       // before passing it to the ADR instruction.
7168       unsigned Enc = Inst.getOperand(2).getImm();
7169       TmpInst.addOperand(MCOperand::createImm(
7170         ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
7171     } else {
7172       // Turn PC-relative expression into absolute expression.
7173       // Reading PC provides the start of the current instruction + 8 and
7174       // the transform to adr is biased by that.
7175       MCSymbol *Dot = getContext().createTempSymbol();
7176       Out.EmitLabel(Dot);
7177       const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
7178       const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
7179                                                      MCSymbolRefExpr::VK_None,
7180                                                      getContext());
7181       const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
7182       const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
7183                                                      getContext());
7184       const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
7185                                                         getContext());
7186       TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
7187     }
7188     TmpInst.addOperand(Inst.getOperand(3));
7189     TmpInst.addOperand(Inst.getOperand(4));
7190     Inst = TmpInst;
7191     return true;
7192   }
7193   // Aliases for alternate PC+imm syntax of LDR instructions.
7194   case ARM::t2LDRpcrel:
7195     // Select the narrow version if the immediate will fit.
7196     if (Inst.getOperand(1).getImm() > 0 &&
7197         Inst.getOperand(1).getImm() <= 0xff &&
7198         !HasWideQualifier)
7199       Inst.setOpcode(ARM::tLDRpci);
7200     else
7201       Inst.setOpcode(ARM::t2LDRpci);
7202     return true;
7203   case ARM::t2LDRBpcrel:
7204     Inst.setOpcode(ARM::t2LDRBpci);
7205     return true;
7206   case ARM::t2LDRHpcrel:
7207     Inst.setOpcode(ARM::t2LDRHpci);
7208     return true;
7209   case ARM::t2LDRSBpcrel:
7210     Inst.setOpcode(ARM::t2LDRSBpci);
7211     return true;
7212   case ARM::t2LDRSHpcrel:
7213     Inst.setOpcode(ARM::t2LDRSHpci);
7214     return true;
7215   case ARM::LDRConstPool:
7216   case ARM::tLDRConstPool:
7217   case ARM::t2LDRConstPool: {
7218     // Pseudo instruction ldr rt, =immediate is converted to a
7219     // MOV rt, immediate if immediate is known and representable
7220     // otherwise we create a constant pool entry that we load from.
7221     MCInst TmpInst;
7222     if (Inst.getOpcode() == ARM::LDRConstPool)
7223       TmpInst.setOpcode(ARM::LDRi12);
7224     else if (Inst.getOpcode() == ARM::tLDRConstPool)
7225       TmpInst.setOpcode(ARM::tLDRpci);
7226     else if (Inst.getOpcode() == ARM::t2LDRConstPool)
7227       TmpInst.setOpcode(ARM::t2LDRpci);
7228     const ARMOperand &PoolOperand =
7229       (HasWideQualifier ?
7230        static_cast<ARMOperand &>(*Operands[4]) :
7231        static_cast<ARMOperand &>(*Operands[3]));
7232     const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
7233     // If SubExprVal is a constant we may be able to use a MOV
7234     if (isa<MCConstantExpr>(SubExprVal) &&
7235         Inst.getOperand(0).getReg() != ARM::PC &&
7236         Inst.getOperand(0).getReg() != ARM::SP) {
7237       int64_t Value =
7238         (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
7239       bool UseMov  = true;
7240       bool MovHasS = true;
7241       if (Inst.getOpcode() == ARM::LDRConstPool) {
7242         // ARM Constant
7243         if (ARM_AM::getSOImmVal(Value) != -1) {
7244           Value = ARM_AM::getSOImmVal(Value);
7245           TmpInst.setOpcode(ARM::MOVi);
7246         }
7247         else if (ARM_AM::getSOImmVal(~Value) != -1) {
7248           Value = ARM_AM::getSOImmVal(~Value);
7249           TmpInst.setOpcode(ARM::MVNi);
7250         }
7251         else if (hasV6T2Ops() &&
7252                  Value >=0 && Value < 65536) {
7253           TmpInst.setOpcode(ARM::MOVi16);
7254           MovHasS = false;
7255         }
7256         else
7257           UseMov = false;
7258       }
7259       else {
7260         // Thumb/Thumb2 Constant
7261         if (hasThumb2() &&
7262             ARM_AM::getT2SOImmVal(Value) != -1)
7263           TmpInst.setOpcode(ARM::t2MOVi);
7264         else if (hasThumb2() &&
7265                  ARM_AM::getT2SOImmVal(~Value) != -1) {
7266           TmpInst.setOpcode(ARM::t2MVNi);
7267           Value = ~Value;
7268         }
7269         else if (hasV8MBaseline() &&
7270                  Value >=0 && Value < 65536) {
7271           TmpInst.setOpcode(ARM::t2MOVi16);
7272           MovHasS = false;
7273         }
7274         else
7275           UseMov = false;
7276       }
7277       if (UseMov) {
7278         TmpInst.addOperand(Inst.getOperand(0));           // Rt
7279         TmpInst.addOperand(MCOperand::createImm(Value));  // Immediate
7280         TmpInst.addOperand(Inst.getOperand(2));           // CondCode
7281         TmpInst.addOperand(Inst.getOperand(3));           // CondCode
7282         if (MovHasS)
7283           TmpInst.addOperand(MCOperand::createReg(0));    // S
7284         Inst = TmpInst;
7285         return true;
7286       }
7287     }
7288     // No opportunity to use MOV/MVN create constant pool
7289     const MCExpr *CPLoc =
7290       getTargetStreamer().addConstantPoolEntry(SubExprVal,
7291                                                PoolOperand.getStartLoc());
7292     TmpInst.addOperand(Inst.getOperand(0));           // Rt
7293     TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
7294     if (TmpInst.getOpcode() == ARM::LDRi12)
7295       TmpInst.addOperand(MCOperand::createImm(0));    // unused offset
7296     TmpInst.addOperand(Inst.getOperand(2));           // CondCode
7297     TmpInst.addOperand(Inst.getOperand(3));           // CondCode
7298     Inst = TmpInst;
7299     return true;
7300   }
7301   // Handle NEON VST complex aliases.
7302   case ARM::VST1LNdWB_register_Asm_8:
7303   case ARM::VST1LNdWB_register_Asm_16:
7304   case ARM::VST1LNdWB_register_Asm_32: {
7305     MCInst TmpInst;
7306     // Shuffle the operands around so the lane index operand is in the
7307     // right place.
7308     unsigned Spacing;
7309     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7310     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7311     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7312     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7313     TmpInst.addOperand(Inst.getOperand(4)); // Rm
7314     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7315     TmpInst.addOperand(Inst.getOperand(1)); // lane
7316     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7317     TmpInst.addOperand(Inst.getOperand(6));
7318     Inst = TmpInst;
7319     return true;
7320   }
7321 
7322   case ARM::VST2LNdWB_register_Asm_8:
7323   case ARM::VST2LNdWB_register_Asm_16:
7324   case ARM::VST2LNdWB_register_Asm_32:
7325   case ARM::VST2LNqWB_register_Asm_16:
7326   case ARM::VST2LNqWB_register_Asm_32: {
7327     MCInst TmpInst;
7328     // Shuffle the operands around so the lane index operand is in the
7329     // right place.
7330     unsigned Spacing;
7331     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7332     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7333     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7334     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7335     TmpInst.addOperand(Inst.getOperand(4)); // Rm
7336     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7337     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7338                                             Spacing));
7339     TmpInst.addOperand(Inst.getOperand(1)); // lane
7340     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7341     TmpInst.addOperand(Inst.getOperand(6));
7342     Inst = TmpInst;
7343     return true;
7344   }
7345 
7346   case ARM::VST3LNdWB_register_Asm_8:
7347   case ARM::VST3LNdWB_register_Asm_16:
7348   case ARM::VST3LNdWB_register_Asm_32:
7349   case ARM::VST3LNqWB_register_Asm_16:
7350   case ARM::VST3LNqWB_register_Asm_32: {
7351     MCInst TmpInst;
7352     // Shuffle the operands around so the lane index operand is in the
7353     // right place.
7354     unsigned Spacing;
7355     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7356     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7357     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7358     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7359     TmpInst.addOperand(Inst.getOperand(4)); // Rm
7360     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7361     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7362                                             Spacing));
7363     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7364                                             Spacing * 2));
7365     TmpInst.addOperand(Inst.getOperand(1)); // lane
7366     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7367     TmpInst.addOperand(Inst.getOperand(6));
7368     Inst = TmpInst;
7369     return true;
7370   }
7371 
7372   case ARM::VST4LNdWB_register_Asm_8:
7373   case ARM::VST4LNdWB_register_Asm_16:
7374   case ARM::VST4LNdWB_register_Asm_32:
7375   case ARM::VST4LNqWB_register_Asm_16:
7376   case ARM::VST4LNqWB_register_Asm_32: {
7377     MCInst TmpInst;
7378     // Shuffle the operands around so the lane index operand is in the
7379     // right place.
7380     unsigned Spacing;
7381     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7382     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7383     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7384     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7385     TmpInst.addOperand(Inst.getOperand(4)); // Rm
7386     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7387     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7388                                             Spacing));
7389     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7390                                             Spacing * 2));
7391     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7392                                             Spacing * 3));
7393     TmpInst.addOperand(Inst.getOperand(1)); // lane
7394     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7395     TmpInst.addOperand(Inst.getOperand(6));
7396     Inst = TmpInst;
7397     return true;
7398   }
7399 
7400   case ARM::VST1LNdWB_fixed_Asm_8:
7401   case ARM::VST1LNdWB_fixed_Asm_16:
7402   case ARM::VST1LNdWB_fixed_Asm_32: {
7403     MCInst TmpInst;
7404     // Shuffle the operands around so the lane index operand is in the
7405     // right place.
7406     unsigned Spacing;
7407     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7408     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7409     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7410     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7411     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7412     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7413     TmpInst.addOperand(Inst.getOperand(1)); // lane
7414     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7415     TmpInst.addOperand(Inst.getOperand(5));
7416     Inst = TmpInst;
7417     return true;
7418   }
7419 
7420   case ARM::VST2LNdWB_fixed_Asm_8:
7421   case ARM::VST2LNdWB_fixed_Asm_16:
7422   case ARM::VST2LNdWB_fixed_Asm_32:
7423   case ARM::VST2LNqWB_fixed_Asm_16:
7424   case ARM::VST2LNqWB_fixed_Asm_32: {
7425     MCInst TmpInst;
7426     // Shuffle the operands around so the lane index operand is in the
7427     // right place.
7428     unsigned Spacing;
7429     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7430     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7431     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7432     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7433     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7434     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7435     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7436                                             Spacing));
7437     TmpInst.addOperand(Inst.getOperand(1)); // lane
7438     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7439     TmpInst.addOperand(Inst.getOperand(5));
7440     Inst = TmpInst;
7441     return true;
7442   }
7443 
7444   case ARM::VST3LNdWB_fixed_Asm_8:
7445   case ARM::VST3LNdWB_fixed_Asm_16:
7446   case ARM::VST3LNdWB_fixed_Asm_32:
7447   case ARM::VST3LNqWB_fixed_Asm_16:
7448   case ARM::VST3LNqWB_fixed_Asm_32: {
7449     MCInst TmpInst;
7450     // Shuffle the operands around so the lane index operand is in the
7451     // right place.
7452     unsigned Spacing;
7453     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7454     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7455     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7456     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7457     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7458     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7459     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7460                                             Spacing));
7461     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7462                                             Spacing * 2));
7463     TmpInst.addOperand(Inst.getOperand(1)); // lane
7464     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7465     TmpInst.addOperand(Inst.getOperand(5));
7466     Inst = TmpInst;
7467     return true;
7468   }
7469 
7470   case ARM::VST4LNdWB_fixed_Asm_8:
7471   case ARM::VST4LNdWB_fixed_Asm_16:
7472   case ARM::VST4LNdWB_fixed_Asm_32:
7473   case ARM::VST4LNqWB_fixed_Asm_16:
7474   case ARM::VST4LNqWB_fixed_Asm_32: {
7475     MCInst TmpInst;
7476     // Shuffle the operands around so the lane index operand is in the
7477     // right place.
7478     unsigned Spacing;
7479     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7480     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7481     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7482     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7483     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7484     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7485     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7486                                             Spacing));
7487     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7488                                             Spacing * 2));
7489     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7490                                             Spacing * 3));
7491     TmpInst.addOperand(Inst.getOperand(1)); // lane
7492     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7493     TmpInst.addOperand(Inst.getOperand(5));
7494     Inst = TmpInst;
7495     return true;
7496   }
7497 
7498   case ARM::VST1LNdAsm_8:
7499   case ARM::VST1LNdAsm_16:
7500   case ARM::VST1LNdAsm_32: {
7501     MCInst TmpInst;
7502     // Shuffle the operands around so the lane index operand is in the
7503     // right place.
7504     unsigned Spacing;
7505     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7506     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7507     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7508     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7509     TmpInst.addOperand(Inst.getOperand(1)); // lane
7510     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7511     TmpInst.addOperand(Inst.getOperand(5));
7512     Inst = TmpInst;
7513     return true;
7514   }
7515 
7516   case ARM::VST2LNdAsm_8:
7517   case ARM::VST2LNdAsm_16:
7518   case ARM::VST2LNdAsm_32:
7519   case ARM::VST2LNqAsm_16:
7520   case ARM::VST2LNqAsm_32: {
7521     MCInst TmpInst;
7522     // Shuffle the operands around so the lane index operand is in the
7523     // right place.
7524     unsigned Spacing;
7525     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7526     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7527     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7528     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7529     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7530                                             Spacing));
7531     TmpInst.addOperand(Inst.getOperand(1)); // lane
7532     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7533     TmpInst.addOperand(Inst.getOperand(5));
7534     Inst = TmpInst;
7535     return true;
7536   }
7537 
7538   case ARM::VST3LNdAsm_8:
7539   case ARM::VST3LNdAsm_16:
7540   case ARM::VST3LNdAsm_32:
7541   case ARM::VST3LNqAsm_16:
7542   case ARM::VST3LNqAsm_32: {
7543     MCInst TmpInst;
7544     // Shuffle the operands around so the lane index operand is in the
7545     // right place.
7546     unsigned Spacing;
7547     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7548     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7549     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7550     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7551     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7552                                             Spacing));
7553     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7554                                             Spacing * 2));
7555     TmpInst.addOperand(Inst.getOperand(1)); // lane
7556     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7557     TmpInst.addOperand(Inst.getOperand(5));
7558     Inst = TmpInst;
7559     return true;
7560   }
7561 
7562   case ARM::VST4LNdAsm_8:
7563   case ARM::VST4LNdAsm_16:
7564   case ARM::VST4LNdAsm_32:
7565   case ARM::VST4LNqAsm_16:
7566   case ARM::VST4LNqAsm_32: {
7567     MCInst TmpInst;
7568     // Shuffle the operands around so the lane index operand is in the
7569     // right place.
7570     unsigned Spacing;
7571     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7572     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7573     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7574     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7575     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7576                                             Spacing));
7577     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7578                                             Spacing * 2));
7579     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7580                                             Spacing * 3));
7581     TmpInst.addOperand(Inst.getOperand(1)); // lane
7582     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7583     TmpInst.addOperand(Inst.getOperand(5));
7584     Inst = TmpInst;
7585     return true;
7586   }
7587 
7588   // Handle NEON VLD complex aliases.
7589   case ARM::VLD1LNdWB_register_Asm_8:
7590   case ARM::VLD1LNdWB_register_Asm_16:
7591   case ARM::VLD1LNdWB_register_Asm_32: {
7592     MCInst TmpInst;
7593     // Shuffle the operands around so the lane index operand is in the
7594     // right place.
7595     unsigned Spacing;
7596     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7597     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7598     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7599     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7600     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7601     TmpInst.addOperand(Inst.getOperand(4)); // Rm
7602     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7603     TmpInst.addOperand(Inst.getOperand(1)); // lane
7604     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7605     TmpInst.addOperand(Inst.getOperand(6));
7606     Inst = TmpInst;
7607     return true;
7608   }
7609 
7610   case ARM::VLD2LNdWB_register_Asm_8:
7611   case ARM::VLD2LNdWB_register_Asm_16:
7612   case ARM::VLD2LNdWB_register_Asm_32:
7613   case ARM::VLD2LNqWB_register_Asm_16:
7614   case ARM::VLD2LNqWB_register_Asm_32: {
7615     MCInst TmpInst;
7616     // Shuffle the operands around so the lane index operand is in the
7617     // right place.
7618     unsigned Spacing;
7619     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7620     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7621     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7622                                             Spacing));
7623     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7624     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7625     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7626     TmpInst.addOperand(Inst.getOperand(4)); // Rm
7627     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7628     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7629                                             Spacing));
7630     TmpInst.addOperand(Inst.getOperand(1)); // lane
7631     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7632     TmpInst.addOperand(Inst.getOperand(6));
7633     Inst = TmpInst;
7634     return true;
7635   }
7636 
7637   case ARM::VLD3LNdWB_register_Asm_8:
7638   case ARM::VLD3LNdWB_register_Asm_16:
7639   case ARM::VLD3LNdWB_register_Asm_32:
7640   case ARM::VLD3LNqWB_register_Asm_16:
7641   case ARM::VLD3LNqWB_register_Asm_32: {
7642     MCInst TmpInst;
7643     // Shuffle the operands around so the lane index operand is in the
7644     // right place.
7645     unsigned Spacing;
7646     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7647     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7648     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7649                                             Spacing));
7650     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7651                                             Spacing * 2));
7652     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7653     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7654     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7655     TmpInst.addOperand(Inst.getOperand(4)); // Rm
7656     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7657     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7658                                             Spacing));
7659     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7660                                             Spacing * 2));
7661     TmpInst.addOperand(Inst.getOperand(1)); // lane
7662     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7663     TmpInst.addOperand(Inst.getOperand(6));
7664     Inst = TmpInst;
7665     return true;
7666   }
7667 
7668   case ARM::VLD4LNdWB_register_Asm_8:
7669   case ARM::VLD4LNdWB_register_Asm_16:
7670   case ARM::VLD4LNdWB_register_Asm_32:
7671   case ARM::VLD4LNqWB_register_Asm_16:
7672   case ARM::VLD4LNqWB_register_Asm_32: {
7673     MCInst TmpInst;
7674     // Shuffle the operands around so the lane index operand is in the
7675     // right place.
7676     unsigned Spacing;
7677     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7678     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7679     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7680                                             Spacing));
7681     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7682                                             Spacing * 2));
7683     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7684                                             Spacing * 3));
7685     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7686     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7687     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7688     TmpInst.addOperand(Inst.getOperand(4)); // Rm
7689     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7690     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7691                                             Spacing));
7692     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7693                                             Spacing * 2));
7694     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7695                                             Spacing * 3));
7696     TmpInst.addOperand(Inst.getOperand(1)); // lane
7697     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7698     TmpInst.addOperand(Inst.getOperand(6));
7699     Inst = TmpInst;
7700     return true;
7701   }
7702 
7703   case ARM::VLD1LNdWB_fixed_Asm_8:
7704   case ARM::VLD1LNdWB_fixed_Asm_16:
7705   case ARM::VLD1LNdWB_fixed_Asm_32: {
7706     MCInst TmpInst;
7707     // Shuffle the operands around so the lane index operand is in the
7708     // right place.
7709     unsigned Spacing;
7710     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7711     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7712     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7713     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7714     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7715     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7716     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7717     TmpInst.addOperand(Inst.getOperand(1)); // lane
7718     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7719     TmpInst.addOperand(Inst.getOperand(5));
7720     Inst = TmpInst;
7721     return true;
7722   }
7723 
7724   case ARM::VLD2LNdWB_fixed_Asm_8:
7725   case ARM::VLD2LNdWB_fixed_Asm_16:
7726   case ARM::VLD2LNdWB_fixed_Asm_32:
7727   case ARM::VLD2LNqWB_fixed_Asm_16:
7728   case ARM::VLD2LNqWB_fixed_Asm_32: {
7729     MCInst TmpInst;
7730     // Shuffle the operands around so the lane index operand is in the
7731     // right place.
7732     unsigned Spacing;
7733     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7734     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7735     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7736                                             Spacing));
7737     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7738     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7739     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7740     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7741     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7742     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7743                                             Spacing));
7744     TmpInst.addOperand(Inst.getOperand(1)); // lane
7745     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7746     TmpInst.addOperand(Inst.getOperand(5));
7747     Inst = TmpInst;
7748     return true;
7749   }
7750 
7751   case ARM::VLD3LNdWB_fixed_Asm_8:
7752   case ARM::VLD3LNdWB_fixed_Asm_16:
7753   case ARM::VLD3LNdWB_fixed_Asm_32:
7754   case ARM::VLD3LNqWB_fixed_Asm_16:
7755   case ARM::VLD3LNqWB_fixed_Asm_32: {
7756     MCInst TmpInst;
7757     // Shuffle the operands around so the lane index operand is in the
7758     // right place.
7759     unsigned Spacing;
7760     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7761     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7762     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7763                                             Spacing));
7764     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7765                                             Spacing * 2));
7766     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7767     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7768     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7769     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7770     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7771     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7772                                             Spacing));
7773     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7774                                             Spacing * 2));
7775     TmpInst.addOperand(Inst.getOperand(1)); // lane
7776     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7777     TmpInst.addOperand(Inst.getOperand(5));
7778     Inst = TmpInst;
7779     return true;
7780   }
7781 
7782   case ARM::VLD4LNdWB_fixed_Asm_8:
7783   case ARM::VLD4LNdWB_fixed_Asm_16:
7784   case ARM::VLD4LNdWB_fixed_Asm_32:
7785   case ARM::VLD4LNqWB_fixed_Asm_16:
7786   case ARM::VLD4LNqWB_fixed_Asm_32: {
7787     MCInst TmpInst;
7788     // Shuffle the operands around so the lane index operand is in the
7789     // right place.
7790     unsigned Spacing;
7791     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7792     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7793     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7794                                             Spacing));
7795     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7796                                             Spacing * 2));
7797     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7798                                             Spacing * 3));
7799     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7800     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7801     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7802     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7803     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7804     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7805                                             Spacing));
7806     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7807                                             Spacing * 2));
7808     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7809                                             Spacing * 3));
7810     TmpInst.addOperand(Inst.getOperand(1)); // lane
7811     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7812     TmpInst.addOperand(Inst.getOperand(5));
7813     Inst = TmpInst;
7814     return true;
7815   }
7816 
7817   case ARM::VLD1LNdAsm_8:
7818   case ARM::VLD1LNdAsm_16:
7819   case ARM::VLD1LNdAsm_32: {
7820     MCInst TmpInst;
7821     // Shuffle the operands around so the lane index operand is in the
7822     // right place.
7823     unsigned Spacing;
7824     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7825     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7826     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7827     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7828     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7829     TmpInst.addOperand(Inst.getOperand(1)); // lane
7830     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7831     TmpInst.addOperand(Inst.getOperand(5));
7832     Inst = TmpInst;
7833     return true;
7834   }
7835 
7836   case ARM::VLD2LNdAsm_8:
7837   case ARM::VLD2LNdAsm_16:
7838   case ARM::VLD2LNdAsm_32:
7839   case ARM::VLD2LNqAsm_16:
7840   case ARM::VLD2LNqAsm_32: {
7841     MCInst TmpInst;
7842     // Shuffle the operands around so the lane index operand is in the
7843     // right place.
7844     unsigned Spacing;
7845     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7846     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7847     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7848                                             Spacing));
7849     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7850     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7851     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7852     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7853                                             Spacing));
7854     TmpInst.addOperand(Inst.getOperand(1)); // lane
7855     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7856     TmpInst.addOperand(Inst.getOperand(5));
7857     Inst = TmpInst;
7858     return true;
7859   }
7860 
7861   case ARM::VLD3LNdAsm_8:
7862   case ARM::VLD3LNdAsm_16:
7863   case ARM::VLD3LNdAsm_32:
7864   case ARM::VLD3LNqAsm_16:
7865   case ARM::VLD3LNqAsm_32: {
7866     MCInst TmpInst;
7867     // Shuffle the operands around so the lane index operand is in the
7868     // right place.
7869     unsigned Spacing;
7870     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7871     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7872     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7873                                             Spacing));
7874     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7875                                             Spacing * 2));
7876     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7877     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7878     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7879     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7880                                             Spacing));
7881     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7882                                             Spacing * 2));
7883     TmpInst.addOperand(Inst.getOperand(1)); // lane
7884     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7885     TmpInst.addOperand(Inst.getOperand(5));
7886     Inst = TmpInst;
7887     return true;
7888   }
7889 
7890   case ARM::VLD4LNdAsm_8:
7891   case ARM::VLD4LNdAsm_16:
7892   case ARM::VLD4LNdAsm_32:
7893   case ARM::VLD4LNqAsm_16:
7894   case ARM::VLD4LNqAsm_32: {
7895     MCInst TmpInst;
7896     // Shuffle the operands around so the lane index operand is in the
7897     // right place.
7898     unsigned Spacing;
7899     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7900     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7901     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7902                                             Spacing));
7903     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7904                                             Spacing * 2));
7905     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7906                                             Spacing * 3));
7907     TmpInst.addOperand(Inst.getOperand(2)); // Rn
7908     TmpInst.addOperand(Inst.getOperand(3)); // alignment
7909     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7910     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7911                                             Spacing));
7912     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7913                                             Spacing * 2));
7914     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7915                                             Spacing * 3));
7916     TmpInst.addOperand(Inst.getOperand(1)); // lane
7917     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7918     TmpInst.addOperand(Inst.getOperand(5));
7919     Inst = TmpInst;
7920     return true;
7921   }
7922 
7923   // VLD3DUP single 3-element structure to all lanes instructions.
7924   case ARM::VLD3DUPdAsm_8:
7925   case ARM::VLD3DUPdAsm_16:
7926   case ARM::VLD3DUPdAsm_32:
7927   case ARM::VLD3DUPqAsm_8:
7928   case ARM::VLD3DUPqAsm_16:
7929   case ARM::VLD3DUPqAsm_32: {
7930     MCInst TmpInst;
7931     unsigned Spacing;
7932     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7933     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7934     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7935                                             Spacing));
7936     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7937                                             Spacing * 2));
7938     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7939     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7940     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7941     TmpInst.addOperand(Inst.getOperand(4));
7942     Inst = TmpInst;
7943     return true;
7944   }
7945 
7946   case ARM::VLD3DUPdWB_fixed_Asm_8:
7947   case ARM::VLD3DUPdWB_fixed_Asm_16:
7948   case ARM::VLD3DUPdWB_fixed_Asm_32:
7949   case ARM::VLD3DUPqWB_fixed_Asm_8:
7950   case ARM::VLD3DUPqWB_fixed_Asm_16:
7951   case ARM::VLD3DUPqWB_fixed_Asm_32: {
7952     MCInst TmpInst;
7953     unsigned Spacing;
7954     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7955     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7956     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7957                                             Spacing));
7958     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7959                                             Spacing * 2));
7960     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7961     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7962     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7963     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7964     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7965     TmpInst.addOperand(Inst.getOperand(4));
7966     Inst = TmpInst;
7967     return true;
7968   }
7969 
7970   case ARM::VLD3DUPdWB_register_Asm_8:
7971   case ARM::VLD3DUPdWB_register_Asm_16:
7972   case ARM::VLD3DUPdWB_register_Asm_32:
7973   case ARM::VLD3DUPqWB_register_Asm_8:
7974   case ARM::VLD3DUPqWB_register_Asm_16:
7975   case ARM::VLD3DUPqWB_register_Asm_32: {
7976     MCInst TmpInst;
7977     unsigned Spacing;
7978     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7979     TmpInst.addOperand(Inst.getOperand(0)); // Vd
7980     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7981                                             Spacing));
7982     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7983                                             Spacing * 2));
7984     TmpInst.addOperand(Inst.getOperand(1)); // Rn
7985     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7986     TmpInst.addOperand(Inst.getOperand(2)); // alignment
7987     TmpInst.addOperand(Inst.getOperand(3)); // Rm
7988     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7989     TmpInst.addOperand(Inst.getOperand(5));
7990     Inst = TmpInst;
7991     return true;
7992   }
7993 
7994   // VLD3 multiple 3-element structure instructions.
7995   case ARM::VLD3dAsm_8:
7996   case ARM::VLD3dAsm_16:
7997   case ARM::VLD3dAsm_32:
7998   case ARM::VLD3qAsm_8:
7999   case ARM::VLD3qAsm_16:
8000   case ARM::VLD3qAsm_32: {
8001     MCInst TmpInst;
8002     unsigned Spacing;
8003     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8004     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8005     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8006                                             Spacing));
8007     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8008                                             Spacing * 2));
8009     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8010     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8011     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8012     TmpInst.addOperand(Inst.getOperand(4));
8013     Inst = TmpInst;
8014     return true;
8015   }
8016 
8017   case ARM::VLD3dWB_fixed_Asm_8:
8018   case ARM::VLD3dWB_fixed_Asm_16:
8019   case ARM::VLD3dWB_fixed_Asm_32:
8020   case ARM::VLD3qWB_fixed_Asm_8:
8021   case ARM::VLD3qWB_fixed_Asm_16:
8022   case ARM::VLD3qWB_fixed_Asm_32: {
8023     MCInst TmpInst;
8024     unsigned Spacing;
8025     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8026     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8027     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8028                                             Spacing));
8029     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8030                                             Spacing * 2));
8031     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8032     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8033     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8034     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8035     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8036     TmpInst.addOperand(Inst.getOperand(4));
8037     Inst = TmpInst;
8038     return true;
8039   }
8040 
8041   case ARM::VLD3dWB_register_Asm_8:
8042   case ARM::VLD3dWB_register_Asm_16:
8043   case ARM::VLD3dWB_register_Asm_32:
8044   case ARM::VLD3qWB_register_Asm_8:
8045   case ARM::VLD3qWB_register_Asm_16:
8046   case ARM::VLD3qWB_register_Asm_32: {
8047     MCInst TmpInst;
8048     unsigned Spacing;
8049     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8050     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8051     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8052                                             Spacing));
8053     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8054                                             Spacing * 2));
8055     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8056     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8057     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8058     TmpInst.addOperand(Inst.getOperand(3)); // Rm
8059     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8060     TmpInst.addOperand(Inst.getOperand(5));
8061     Inst = TmpInst;
8062     return true;
8063   }
8064 
8065   // VLD4DUP single 3-element structure to all lanes instructions.
8066   case ARM::VLD4DUPdAsm_8:
8067   case ARM::VLD4DUPdAsm_16:
8068   case ARM::VLD4DUPdAsm_32:
8069   case ARM::VLD4DUPqAsm_8:
8070   case ARM::VLD4DUPqAsm_16:
8071   case ARM::VLD4DUPqAsm_32: {
8072     MCInst TmpInst;
8073     unsigned Spacing;
8074     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8075     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8076     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8077                                             Spacing));
8078     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8079                                             Spacing * 2));
8080     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8081                                             Spacing * 3));
8082     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8083     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8084     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8085     TmpInst.addOperand(Inst.getOperand(4));
8086     Inst = TmpInst;
8087     return true;
8088   }
8089 
8090   case ARM::VLD4DUPdWB_fixed_Asm_8:
8091   case ARM::VLD4DUPdWB_fixed_Asm_16:
8092   case ARM::VLD4DUPdWB_fixed_Asm_32:
8093   case ARM::VLD4DUPqWB_fixed_Asm_8:
8094   case ARM::VLD4DUPqWB_fixed_Asm_16:
8095   case ARM::VLD4DUPqWB_fixed_Asm_32: {
8096     MCInst TmpInst;
8097     unsigned Spacing;
8098     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8099     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8100     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8101                                             Spacing));
8102     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8103                                             Spacing * 2));
8104     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8105                                             Spacing * 3));
8106     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8107     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8108     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8109     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8110     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8111     TmpInst.addOperand(Inst.getOperand(4));
8112     Inst = TmpInst;
8113     return true;
8114   }
8115 
8116   case ARM::VLD4DUPdWB_register_Asm_8:
8117   case ARM::VLD4DUPdWB_register_Asm_16:
8118   case ARM::VLD4DUPdWB_register_Asm_32:
8119   case ARM::VLD4DUPqWB_register_Asm_8:
8120   case ARM::VLD4DUPqWB_register_Asm_16:
8121   case ARM::VLD4DUPqWB_register_Asm_32: {
8122     MCInst TmpInst;
8123     unsigned Spacing;
8124     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8125     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8126     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8127                                             Spacing));
8128     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8129                                             Spacing * 2));
8130     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8131                                             Spacing * 3));
8132     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8133     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8134     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8135     TmpInst.addOperand(Inst.getOperand(3)); // Rm
8136     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8137     TmpInst.addOperand(Inst.getOperand(5));
8138     Inst = TmpInst;
8139     return true;
8140   }
8141 
8142   // VLD4 multiple 4-element structure instructions.
8143   case ARM::VLD4dAsm_8:
8144   case ARM::VLD4dAsm_16:
8145   case ARM::VLD4dAsm_32:
8146   case ARM::VLD4qAsm_8:
8147   case ARM::VLD4qAsm_16:
8148   case ARM::VLD4qAsm_32: {
8149     MCInst TmpInst;
8150     unsigned Spacing;
8151     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8152     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8153     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8154                                             Spacing));
8155     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8156                                             Spacing * 2));
8157     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8158                                             Spacing * 3));
8159     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8160     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8161     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8162     TmpInst.addOperand(Inst.getOperand(4));
8163     Inst = TmpInst;
8164     return true;
8165   }
8166 
8167   case ARM::VLD4dWB_fixed_Asm_8:
8168   case ARM::VLD4dWB_fixed_Asm_16:
8169   case ARM::VLD4dWB_fixed_Asm_32:
8170   case ARM::VLD4qWB_fixed_Asm_8:
8171   case ARM::VLD4qWB_fixed_Asm_16:
8172   case ARM::VLD4qWB_fixed_Asm_32: {
8173     MCInst TmpInst;
8174     unsigned Spacing;
8175     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8176     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8177     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8178                                             Spacing));
8179     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8180                                             Spacing * 2));
8181     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8182                                             Spacing * 3));
8183     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8184     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8185     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8186     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8187     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8188     TmpInst.addOperand(Inst.getOperand(4));
8189     Inst = TmpInst;
8190     return true;
8191   }
8192 
8193   case ARM::VLD4dWB_register_Asm_8:
8194   case ARM::VLD4dWB_register_Asm_16:
8195   case ARM::VLD4dWB_register_Asm_32:
8196   case ARM::VLD4qWB_register_Asm_8:
8197   case ARM::VLD4qWB_register_Asm_16:
8198   case ARM::VLD4qWB_register_Asm_32: {
8199     MCInst TmpInst;
8200     unsigned Spacing;
8201     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8202     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8203     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8204                                             Spacing));
8205     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8206                                             Spacing * 2));
8207     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8208                                             Spacing * 3));
8209     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8210     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8211     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8212     TmpInst.addOperand(Inst.getOperand(3)); // Rm
8213     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8214     TmpInst.addOperand(Inst.getOperand(5));
8215     Inst = TmpInst;
8216     return true;
8217   }
8218 
8219   // VST3 multiple 3-element structure instructions.
8220   case ARM::VST3dAsm_8:
8221   case ARM::VST3dAsm_16:
8222   case ARM::VST3dAsm_32:
8223   case ARM::VST3qAsm_8:
8224   case ARM::VST3qAsm_16:
8225   case ARM::VST3qAsm_32: {
8226     MCInst TmpInst;
8227     unsigned Spacing;
8228     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8229     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8230     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8231     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8232     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8233                                             Spacing));
8234     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8235                                             Spacing * 2));
8236     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8237     TmpInst.addOperand(Inst.getOperand(4));
8238     Inst = TmpInst;
8239     return true;
8240   }
8241 
8242   case ARM::VST3dWB_fixed_Asm_8:
8243   case ARM::VST3dWB_fixed_Asm_16:
8244   case ARM::VST3dWB_fixed_Asm_32:
8245   case ARM::VST3qWB_fixed_Asm_8:
8246   case ARM::VST3qWB_fixed_Asm_16:
8247   case ARM::VST3qWB_fixed_Asm_32: {
8248     MCInst TmpInst;
8249     unsigned Spacing;
8250     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8251     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8252     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8253     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8254     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8255     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8256     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8257                                             Spacing));
8258     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8259                                             Spacing * 2));
8260     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8261     TmpInst.addOperand(Inst.getOperand(4));
8262     Inst = TmpInst;
8263     return true;
8264   }
8265 
8266   case ARM::VST3dWB_register_Asm_8:
8267   case ARM::VST3dWB_register_Asm_16:
8268   case ARM::VST3dWB_register_Asm_32:
8269   case ARM::VST3qWB_register_Asm_8:
8270   case ARM::VST3qWB_register_Asm_16:
8271   case ARM::VST3qWB_register_Asm_32: {
8272     MCInst TmpInst;
8273     unsigned Spacing;
8274     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8275     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8276     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8277     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8278     TmpInst.addOperand(Inst.getOperand(3)); // Rm
8279     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8280     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8281                                             Spacing));
8282     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8283                                             Spacing * 2));
8284     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8285     TmpInst.addOperand(Inst.getOperand(5));
8286     Inst = TmpInst;
8287     return true;
8288   }
8289 
8290   // VST4 multiple 3-element structure instructions.
8291   case ARM::VST4dAsm_8:
8292   case ARM::VST4dAsm_16:
8293   case ARM::VST4dAsm_32:
8294   case ARM::VST4qAsm_8:
8295   case ARM::VST4qAsm_16:
8296   case ARM::VST4qAsm_32: {
8297     MCInst TmpInst;
8298     unsigned Spacing;
8299     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8300     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8301     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8302     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8303     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8304                                             Spacing));
8305     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8306                                             Spacing * 2));
8307     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8308                                             Spacing * 3));
8309     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8310     TmpInst.addOperand(Inst.getOperand(4));
8311     Inst = TmpInst;
8312     return true;
8313   }
8314 
8315   case ARM::VST4dWB_fixed_Asm_8:
8316   case ARM::VST4dWB_fixed_Asm_16:
8317   case ARM::VST4dWB_fixed_Asm_32:
8318   case ARM::VST4qWB_fixed_Asm_8:
8319   case ARM::VST4qWB_fixed_Asm_16:
8320   case ARM::VST4qWB_fixed_Asm_32: {
8321     MCInst TmpInst;
8322     unsigned Spacing;
8323     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8324     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8325     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8326     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8327     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8328     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8329     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8330                                             Spacing));
8331     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8332                                             Spacing * 2));
8333     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8334                                             Spacing * 3));
8335     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8336     TmpInst.addOperand(Inst.getOperand(4));
8337     Inst = TmpInst;
8338     return true;
8339   }
8340 
8341   case ARM::VST4dWB_register_Asm_8:
8342   case ARM::VST4dWB_register_Asm_16:
8343   case ARM::VST4dWB_register_Asm_32:
8344   case ARM::VST4qWB_register_Asm_8:
8345   case ARM::VST4qWB_register_Asm_16:
8346   case ARM::VST4qWB_register_Asm_32: {
8347     MCInst TmpInst;
8348     unsigned Spacing;
8349     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8350     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8351     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8352     TmpInst.addOperand(Inst.getOperand(2)); // alignment
8353     TmpInst.addOperand(Inst.getOperand(3)); // Rm
8354     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8355     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8356                                             Spacing));
8357     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8358                                             Spacing * 2));
8359     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8360                                             Spacing * 3));
8361     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8362     TmpInst.addOperand(Inst.getOperand(5));
8363     Inst = TmpInst;
8364     return true;
8365   }
8366 
8367   // Handle encoding choice for the shift-immediate instructions.
8368   case ARM::t2LSLri:
8369   case ARM::t2LSRri:
8370   case ARM::t2ASRri:
8371     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8372         isARMLowRegister(Inst.getOperand(1).getReg()) &&
8373         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8374         !HasWideQualifier) {
8375       unsigned NewOpc;
8376       switch (Inst.getOpcode()) {
8377       default: llvm_unreachable("unexpected opcode");
8378       case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
8379       case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
8380       case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
8381       }
8382       // The Thumb1 operands aren't in the same order. Awesome, eh?
8383       MCInst TmpInst;
8384       TmpInst.setOpcode(NewOpc);
8385       TmpInst.addOperand(Inst.getOperand(0));
8386       TmpInst.addOperand(Inst.getOperand(5));
8387       TmpInst.addOperand(Inst.getOperand(1));
8388       TmpInst.addOperand(Inst.getOperand(2));
8389       TmpInst.addOperand(Inst.getOperand(3));
8390       TmpInst.addOperand(Inst.getOperand(4));
8391       Inst = TmpInst;
8392       return true;
8393     }
8394     return false;
8395 
8396   // Handle the Thumb2 mode MOV complex aliases.
8397   case ARM::t2MOVsr:
8398   case ARM::t2MOVSsr: {
8399     // Which instruction to expand to depends on the CCOut operand and
8400     // whether we're in an IT block if the register operands are low
8401     // registers.
8402     bool isNarrow = false;
8403     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8404         isARMLowRegister(Inst.getOperand(1).getReg()) &&
8405         isARMLowRegister(Inst.getOperand(2).getReg()) &&
8406         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
8407         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
8408         !HasWideQualifier)
8409       isNarrow = true;
8410     MCInst TmpInst;
8411     unsigned newOpc;
8412     switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
8413     default: llvm_unreachable("unexpected opcode!");
8414     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
8415     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
8416     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
8417     case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
8418     }
8419     TmpInst.setOpcode(newOpc);
8420     TmpInst.addOperand(Inst.getOperand(0)); // Rd
8421     if (isNarrow)
8422       TmpInst.addOperand(MCOperand::createReg(
8423           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
8424     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8425     TmpInst.addOperand(Inst.getOperand(2)); // Rm
8426     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8427     TmpInst.addOperand(Inst.getOperand(5));
8428     if (!isNarrow)
8429       TmpInst.addOperand(MCOperand::createReg(
8430           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
8431     Inst = TmpInst;
8432     return true;
8433   }
8434   case ARM::t2MOVsi:
8435   case ARM::t2MOVSsi: {
8436     // Which instruction to expand to depends on the CCOut operand and
8437     // whether we're in an IT block if the register operands are low
8438     // registers.
8439     bool isNarrow = false;
8440     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8441         isARMLowRegister(Inst.getOperand(1).getReg()) &&
8442         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
8443         !HasWideQualifier)
8444       isNarrow = true;
8445     MCInst TmpInst;
8446     unsigned newOpc;
8447     unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
8448     unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
8449     bool isMov = false;
8450     // MOV rd, rm, LSL #0 is actually a MOV instruction
8451     if (Shift == ARM_AM::lsl && Amount == 0) {
8452       isMov = true;
8453       // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
8454       // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
8455       // unpredictable in an IT block so the 32-bit encoding T3 has to be used
8456       // instead.
8457       if (inITBlock()) {
8458         isNarrow = false;
8459       }
8460       newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
8461     } else {
8462       switch(Shift) {
8463       default: llvm_unreachable("unexpected opcode!");
8464       case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
8465       case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
8466       case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
8467       case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
8468       case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
8469       }
8470     }
8471     if (Amount == 32) Amount = 0;
8472     TmpInst.setOpcode(newOpc);
8473     TmpInst.addOperand(Inst.getOperand(0)); // Rd
8474     if (isNarrow && !isMov)
8475       TmpInst.addOperand(MCOperand::createReg(
8476           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
8477     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8478     if (newOpc != ARM::t2RRX && !isMov)
8479       TmpInst.addOperand(MCOperand::createImm(Amount));
8480     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8481     TmpInst.addOperand(Inst.getOperand(4));
8482     if (!isNarrow)
8483       TmpInst.addOperand(MCOperand::createReg(
8484           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
8485     Inst = TmpInst;
8486     return true;
8487   }
8488   // Handle the ARM mode MOV complex aliases.
8489   case ARM::ASRr:
8490   case ARM::LSRr:
8491   case ARM::LSLr:
8492   case ARM::RORr: {
8493     ARM_AM::ShiftOpc ShiftTy;
8494     switch(Inst.getOpcode()) {
8495     default: llvm_unreachable("unexpected opcode!");
8496     case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
8497     case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
8498     case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
8499     case ARM::RORr: ShiftTy = ARM_AM::ror; break;
8500     }
8501     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
8502     MCInst TmpInst;
8503     TmpInst.setOpcode(ARM::MOVsr);
8504     TmpInst.addOperand(Inst.getOperand(0)); // Rd
8505     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8506     TmpInst.addOperand(Inst.getOperand(2)); // Rm
8507     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8508     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8509     TmpInst.addOperand(Inst.getOperand(4));
8510     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
8511     Inst = TmpInst;
8512     return true;
8513   }
8514   case ARM::ASRi:
8515   case ARM::LSRi:
8516   case ARM::LSLi:
8517   case ARM::RORi: {
8518     ARM_AM::ShiftOpc ShiftTy;
8519     switch(Inst.getOpcode()) {
8520     default: llvm_unreachable("unexpected opcode!");
8521     case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
8522     case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
8523     case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
8524     case ARM::RORi: ShiftTy = ARM_AM::ror; break;
8525     }
8526     // A shift by zero is a plain MOVr, not a MOVsi.
8527     unsigned Amt = Inst.getOperand(2).getImm();
8528     unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
8529     // A shift by 32 should be encoded as 0 when permitted
8530     if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
8531       Amt = 0;
8532     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
8533     MCInst TmpInst;
8534     TmpInst.setOpcode(Opc);
8535     TmpInst.addOperand(Inst.getOperand(0)); // Rd
8536     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8537     if (Opc == ARM::MOVsi)
8538       TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8539     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8540     TmpInst.addOperand(Inst.getOperand(4));
8541     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
8542     Inst = TmpInst;
8543     return true;
8544   }
8545   case ARM::RRXi: {
8546     unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
8547     MCInst TmpInst;
8548     TmpInst.setOpcode(ARM::MOVsi);
8549     TmpInst.addOperand(Inst.getOperand(0)); // Rd
8550     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8551     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8552     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8553     TmpInst.addOperand(Inst.getOperand(3));
8554     TmpInst.addOperand(Inst.getOperand(4)); // cc_out
8555     Inst = TmpInst;
8556     return true;
8557   }
8558   case ARM::t2LDMIA_UPD: {
8559     // If this is a load of a single register, then we should use
8560     // a post-indexed LDR instruction instead, per the ARM ARM.
8561     if (Inst.getNumOperands() != 5)
8562       return false;
8563     MCInst TmpInst;
8564     TmpInst.setOpcode(ARM::t2LDR_POST);
8565     TmpInst.addOperand(Inst.getOperand(4)); // Rt
8566     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8567     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8568     TmpInst.addOperand(MCOperand::createImm(4));
8569     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8570     TmpInst.addOperand(Inst.getOperand(3));
8571     Inst = TmpInst;
8572     return true;
8573   }
8574   case ARM::t2STMDB_UPD: {
8575     // If this is a store of a single register, then we should use
8576     // a pre-indexed STR instruction instead, per the ARM ARM.
8577     if (Inst.getNumOperands() != 5)
8578       return false;
8579     MCInst TmpInst;
8580     TmpInst.setOpcode(ARM::t2STR_PRE);
8581     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8582     TmpInst.addOperand(Inst.getOperand(4)); // Rt
8583     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8584     TmpInst.addOperand(MCOperand::createImm(-4));
8585     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8586     TmpInst.addOperand(Inst.getOperand(3));
8587     Inst = TmpInst;
8588     return true;
8589   }
8590   case ARM::LDMIA_UPD:
8591     // If this is a load of a single register via a 'pop', then we should use
8592     // a post-indexed LDR instruction instead, per the ARM ARM.
8593     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
8594         Inst.getNumOperands() == 5) {
8595       MCInst TmpInst;
8596       TmpInst.setOpcode(ARM::LDR_POST_IMM);
8597       TmpInst.addOperand(Inst.getOperand(4)); // Rt
8598       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8599       TmpInst.addOperand(Inst.getOperand(1)); // Rn
8600       TmpInst.addOperand(MCOperand::createReg(0));  // am2offset
8601       TmpInst.addOperand(MCOperand::createImm(4));
8602       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8603       TmpInst.addOperand(Inst.getOperand(3));
8604       Inst = TmpInst;
8605       return true;
8606     }
8607     break;
8608   case ARM::STMDB_UPD:
8609     // If this is a store of a single register via a 'push', then we should use
8610     // a pre-indexed STR instruction instead, per the ARM ARM.
8611     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
8612         Inst.getNumOperands() == 5) {
8613       MCInst TmpInst;
8614       TmpInst.setOpcode(ARM::STR_PRE_IMM);
8615       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8616       TmpInst.addOperand(Inst.getOperand(4)); // Rt
8617       TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
8618       TmpInst.addOperand(MCOperand::createImm(-4));
8619       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8620       TmpInst.addOperand(Inst.getOperand(3));
8621       Inst = TmpInst;
8622     }
8623     break;
8624   case ARM::t2ADDri12:
8625     // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
8626     // mnemonic was used (not "addw"), encoding T3 is preferred.
8627     if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" ||
8628         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
8629       break;
8630     Inst.setOpcode(ARM::t2ADDri);
8631     Inst.addOperand(MCOperand::createReg(0)); // cc_out
8632     break;
8633   case ARM::t2SUBri12:
8634     // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
8635     // mnemonic was used (not "subw"), encoding T3 is preferred.
8636     if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" ||
8637         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
8638       break;
8639     Inst.setOpcode(ARM::t2SUBri);
8640     Inst.addOperand(MCOperand::createReg(0)); // cc_out
8641     break;
8642   case ARM::tADDi8:
8643     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8644     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8645     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8646     // to encoding T1 if <Rd> is omitted."
8647     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
8648       Inst.setOpcode(ARM::tADDi3);
8649       return true;
8650     }
8651     break;
8652   case ARM::tSUBi8:
8653     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8654     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8655     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8656     // to encoding T1 if <Rd> is omitted."
8657     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
8658       Inst.setOpcode(ARM::tSUBi3);
8659       return true;
8660     }
8661     break;
8662   case ARM::t2ADDri:
8663   case ARM::t2SUBri: {
8664     // If the destination and first source operand are the same, and
8665     // the flags are compatible with the current IT status, use encoding T2
8666     // instead of T3. For compatibility with the system 'as'. Make sure the
8667     // wide encoding wasn't explicit.
8668     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
8669         !isARMLowRegister(Inst.getOperand(0).getReg()) ||
8670         (Inst.getOperand(2).isImm() &&
8671          (unsigned)Inst.getOperand(2).getImm() > 255) ||
8672         Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
8673         HasWideQualifier)
8674       break;
8675     MCInst TmpInst;
8676     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
8677                       ARM::tADDi8 : ARM::tSUBi8);
8678     TmpInst.addOperand(Inst.getOperand(0));
8679     TmpInst.addOperand(Inst.getOperand(5));
8680     TmpInst.addOperand(Inst.getOperand(0));
8681     TmpInst.addOperand(Inst.getOperand(2));
8682     TmpInst.addOperand(Inst.getOperand(3));
8683     TmpInst.addOperand(Inst.getOperand(4));
8684     Inst = TmpInst;
8685     return true;
8686   }
8687   case ARM::t2ADDrr: {
8688     // If the destination and first source operand are the same, and
8689     // there's no setting of the flags, use encoding T2 instead of T3.
8690     // Note that this is only for ADD, not SUB. This mirrors the system
8691     // 'as' behaviour.  Also take advantage of ADD being commutative.
8692     // Make sure the wide encoding wasn't explicit.
8693     bool Swap = false;
8694     auto DestReg = Inst.getOperand(0).getReg();
8695     bool Transform = DestReg == Inst.getOperand(1).getReg();
8696     if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
8697       Transform = true;
8698       Swap = true;
8699     }
8700     if (!Transform ||
8701         Inst.getOperand(5).getReg() != 0 ||
8702         HasWideQualifier)
8703       break;
8704     MCInst TmpInst;
8705     TmpInst.setOpcode(ARM::tADDhirr);
8706     TmpInst.addOperand(Inst.getOperand(0));
8707     TmpInst.addOperand(Inst.getOperand(0));
8708     TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
8709     TmpInst.addOperand(Inst.getOperand(3));
8710     TmpInst.addOperand(Inst.getOperand(4));
8711     Inst = TmpInst;
8712     return true;
8713   }
8714   case ARM::tADDrSP:
8715     // If the non-SP source operand and the destination operand are not the
8716     // same, we need to use the 32-bit encoding if it's available.
8717     if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
8718       Inst.setOpcode(ARM::t2ADDrr);
8719       Inst.addOperand(MCOperand::createReg(0)); // cc_out
8720       return true;
8721     }
8722     break;
8723   case ARM::tB:
8724     // A Thumb conditional branch outside of an IT block is a tBcc.
8725     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
8726       Inst.setOpcode(ARM::tBcc);
8727       return true;
8728     }
8729     break;
8730   case ARM::t2B:
8731     // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
8732     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
8733       Inst.setOpcode(ARM::t2Bcc);
8734       return true;
8735     }
8736     break;
8737   case ARM::t2Bcc:
8738     // If the conditional is AL or we're in an IT block, we really want t2B.
8739     if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
8740       Inst.setOpcode(ARM::t2B);
8741       return true;
8742     }
8743     break;
8744   case ARM::tBcc:
8745     // If the conditional is AL, we really want tB.
8746     if (Inst.getOperand(1).getImm() == ARMCC::AL) {
8747       Inst.setOpcode(ARM::tB);
8748       return true;
8749     }
8750     break;
8751   case ARM::tLDMIA: {
8752     // If the register list contains any high registers, or if the writeback
8753     // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
8754     // instead if we're in Thumb2. Otherwise, this should have generated
8755     // an error in validateInstruction().
8756     unsigned Rn = Inst.getOperand(0).getReg();
8757     bool hasWritebackToken =
8758         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
8759          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
8760     bool listContainsBase;
8761     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
8762         (!listContainsBase && !hasWritebackToken) ||
8763         (listContainsBase && hasWritebackToken)) {
8764       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8765       assert(isThumbTwo());
8766       Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
8767       // If we're switching to the updating version, we need to insert
8768       // the writeback tied operand.
8769       if (hasWritebackToken)
8770         Inst.insert(Inst.begin(),
8771                     MCOperand::createReg(Inst.getOperand(0).getReg()));
8772       return true;
8773     }
8774     break;
8775   }
8776   case ARM::tSTMIA_UPD: {
8777     // If the register list contains any high registers, we need to use
8778     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8779     // should have generated an error in validateInstruction().
8780     unsigned Rn = Inst.getOperand(0).getReg();
8781     bool listContainsBase;
8782     if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
8783       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8784       assert(isThumbTwo());
8785       Inst.setOpcode(ARM::t2STMIA_UPD);
8786       return true;
8787     }
8788     break;
8789   }
8790   case ARM::tPOP: {
8791     bool listContainsBase;
8792     // If the register list contains any high registers, we need to use
8793     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8794     // should have generated an error in validateInstruction().
8795     if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
8796       return false;
8797     assert(isThumbTwo());
8798     Inst.setOpcode(ARM::t2LDMIA_UPD);
8799     // Add the base register and writeback operands.
8800     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8801     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8802     return true;
8803   }
8804   case ARM::tPUSH: {
8805     bool listContainsBase;
8806     if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
8807       return false;
8808     assert(isThumbTwo());
8809     Inst.setOpcode(ARM::t2STMDB_UPD);
8810     // Add the base register and writeback operands.
8811     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8812     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8813     return true;
8814   }
8815   case ARM::t2MOVi:
8816     // If we can use the 16-bit encoding and the user didn't explicitly
8817     // request the 32-bit variant, transform it here.
8818     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8819         (Inst.getOperand(1).isImm() &&
8820          (unsigned)Inst.getOperand(1).getImm() <= 255) &&
8821         Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8822         !HasWideQualifier) {
8823       // The operands aren't in the same order for tMOVi8...
8824       MCInst TmpInst;
8825       TmpInst.setOpcode(ARM::tMOVi8);
8826       TmpInst.addOperand(Inst.getOperand(0));
8827       TmpInst.addOperand(Inst.getOperand(4));
8828       TmpInst.addOperand(Inst.getOperand(1));
8829       TmpInst.addOperand(Inst.getOperand(2));
8830       TmpInst.addOperand(Inst.getOperand(3));
8831       Inst = TmpInst;
8832       return true;
8833     }
8834     break;
8835 
8836   case ARM::t2MOVr:
8837     // If we can use the 16-bit encoding and the user didn't explicitly
8838     // request the 32-bit variant, transform it here.
8839     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8840         isARMLowRegister(Inst.getOperand(1).getReg()) &&
8841         Inst.getOperand(2).getImm() == ARMCC::AL &&
8842         Inst.getOperand(4).getReg() == ARM::CPSR &&
8843         !HasWideQualifier) {
8844       // The operands aren't the same for tMOV[S]r... (no cc_out)
8845       MCInst TmpInst;
8846       TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
8847       TmpInst.addOperand(Inst.getOperand(0));
8848       TmpInst.addOperand(Inst.getOperand(1));
8849       TmpInst.addOperand(Inst.getOperand(2));
8850       TmpInst.addOperand(Inst.getOperand(3));
8851       Inst = TmpInst;
8852       return true;
8853     }
8854     break;
8855 
8856   case ARM::t2SXTH:
8857   case ARM::t2SXTB:
8858   case ARM::t2UXTH:
8859   case ARM::t2UXTB:
8860     // If we can use the 16-bit encoding and the user didn't explicitly
8861     // request the 32-bit variant, transform it here.
8862     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8863         isARMLowRegister(Inst.getOperand(1).getReg()) &&
8864         Inst.getOperand(2).getImm() == 0 &&
8865         !HasWideQualifier) {
8866       unsigned NewOpc;
8867       switch (Inst.getOpcode()) {
8868       default: llvm_unreachable("Illegal opcode!");
8869       case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
8870       case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
8871       case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
8872       case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
8873       }
8874       // The operands aren't the same for thumb1 (no rotate operand).
8875       MCInst TmpInst;
8876       TmpInst.setOpcode(NewOpc);
8877       TmpInst.addOperand(Inst.getOperand(0));
8878       TmpInst.addOperand(Inst.getOperand(1));
8879       TmpInst.addOperand(Inst.getOperand(3));
8880       TmpInst.addOperand(Inst.getOperand(4));
8881       Inst = TmpInst;
8882       return true;
8883     }
8884     break;
8885 
8886   case ARM::MOVsi: {
8887     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
8888     // rrx shifts and asr/lsr of #32 is encoded as 0
8889     if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
8890       return false;
8891     if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
8892       // Shifting by zero is accepted as a vanilla 'MOVr'
8893       MCInst TmpInst;
8894       TmpInst.setOpcode(ARM::MOVr);
8895       TmpInst.addOperand(Inst.getOperand(0));
8896       TmpInst.addOperand(Inst.getOperand(1));
8897       TmpInst.addOperand(Inst.getOperand(3));
8898       TmpInst.addOperand(Inst.getOperand(4));
8899       TmpInst.addOperand(Inst.getOperand(5));
8900       Inst = TmpInst;
8901       return true;
8902     }
8903     return false;
8904   }
8905   case ARM::ANDrsi:
8906   case ARM::ORRrsi:
8907   case ARM::EORrsi:
8908   case ARM::BICrsi:
8909   case ARM::SUBrsi:
8910   case ARM::ADDrsi: {
8911     unsigned newOpc;
8912     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
8913     if (SOpc == ARM_AM::rrx) return false;
8914     switch (Inst.getOpcode()) {
8915     default: llvm_unreachable("unexpected opcode!");
8916     case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
8917     case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
8918     case ARM::EORrsi: newOpc = ARM::EORrr; break;
8919     case ARM::BICrsi: newOpc = ARM::BICrr; break;
8920     case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
8921     case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
8922     }
8923     // If the shift is by zero, use the non-shifted instruction definition.
8924     // The exception is for right shifts, where 0 == 32
8925     if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
8926         !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
8927       MCInst TmpInst;
8928       TmpInst.setOpcode(newOpc);
8929       TmpInst.addOperand(Inst.getOperand(0));
8930       TmpInst.addOperand(Inst.getOperand(1));
8931       TmpInst.addOperand(Inst.getOperand(2));
8932       TmpInst.addOperand(Inst.getOperand(4));
8933       TmpInst.addOperand(Inst.getOperand(5));
8934       TmpInst.addOperand(Inst.getOperand(6));
8935       Inst = TmpInst;
8936       return true;
8937     }
8938     return false;
8939   }
8940   case ARM::ITasm:
8941   case ARM::t2IT: {
8942     MCOperand &MO = Inst.getOperand(1);
8943     unsigned Mask = MO.getImm();
8944     ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
8945 
8946     // Set up the IT block state according to the IT instruction we just
8947     // matched.
8948     assert(!inITBlock() && "nested IT blocks?!");
8949     startExplicitITBlock(Cond, Mask);
8950     MO.setImm(getITMaskEncoding());
8951     break;
8952   }
8953   case ARM::t2LSLrr:
8954   case ARM::t2LSRrr:
8955   case ARM::t2ASRrr:
8956   case ARM::t2SBCrr:
8957   case ARM::t2RORrr:
8958   case ARM::t2BICrr:
8959     // Assemblers should use the narrow encodings of these instructions when permissible.
8960     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
8961          isARMLowRegister(Inst.getOperand(2).getReg())) &&
8962         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
8963         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8964         !HasWideQualifier) {
8965       unsigned NewOpc;
8966       switch (Inst.getOpcode()) {
8967         default: llvm_unreachable("unexpected opcode");
8968         case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
8969         case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
8970         case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
8971         case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
8972         case ARM::t2RORrr: NewOpc = ARM::tROR; break;
8973         case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
8974       }
8975       MCInst TmpInst;
8976       TmpInst.setOpcode(NewOpc);
8977       TmpInst.addOperand(Inst.getOperand(0));
8978       TmpInst.addOperand(Inst.getOperand(5));
8979       TmpInst.addOperand(Inst.getOperand(1));
8980       TmpInst.addOperand(Inst.getOperand(2));
8981       TmpInst.addOperand(Inst.getOperand(3));
8982       TmpInst.addOperand(Inst.getOperand(4));
8983       Inst = TmpInst;
8984       return true;
8985     }
8986     return false;
8987 
8988   case ARM::t2ANDrr:
8989   case ARM::t2EORrr:
8990   case ARM::t2ADCrr:
8991   case ARM::t2ORRrr:
8992     // Assemblers should use the narrow encodings of these instructions when permissible.
8993     // These instructions are special in that they are commutable, so shorter encodings
8994     // are available more often.
8995     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
8996          isARMLowRegister(Inst.getOperand(2).getReg())) &&
8997         (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
8998          Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
8999         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9000         !HasWideQualifier) {
9001       unsigned NewOpc;
9002       switch (Inst.getOpcode()) {
9003         default: llvm_unreachable("unexpected opcode");
9004         case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
9005         case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
9006         case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
9007         case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
9008       }
9009       MCInst TmpInst;
9010       TmpInst.setOpcode(NewOpc);
9011       TmpInst.addOperand(Inst.getOperand(0));
9012       TmpInst.addOperand(Inst.getOperand(5));
9013       if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
9014         TmpInst.addOperand(Inst.getOperand(1));
9015         TmpInst.addOperand(Inst.getOperand(2));
9016       } else {
9017         TmpInst.addOperand(Inst.getOperand(2));
9018         TmpInst.addOperand(Inst.getOperand(1));
9019       }
9020       TmpInst.addOperand(Inst.getOperand(3));
9021       TmpInst.addOperand(Inst.getOperand(4));
9022       Inst = TmpInst;
9023       return true;
9024     }
9025     return false;
9026   }
9027   return false;
9028 }
9029 
9030 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
9031   // 16-bit thumb arithmetic instructions either require or preclude the 'S'
9032   // suffix depending on whether they're in an IT block or not.
9033   unsigned Opc = Inst.getOpcode();
9034   const MCInstrDesc &MCID = MII.get(Opc);
9035   if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
9036     assert(MCID.hasOptionalDef() &&
9037            "optionally flag setting instruction missing optional def operand");
9038     assert(MCID.NumOperands == Inst.getNumOperands() &&
9039            "operand count mismatch!");
9040     // Find the optional-def operand (cc_out).
9041     unsigned OpNo;
9042     for (OpNo = 0;
9043          !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
9044          ++OpNo)
9045       ;
9046     // If we're parsing Thumb1, reject it completely.
9047     if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
9048       return Match_RequiresFlagSetting;
9049     // If we're parsing Thumb2, which form is legal depends on whether we're
9050     // in an IT block.
9051     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
9052         !inITBlock())
9053       return Match_RequiresITBlock;
9054     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
9055         inITBlock())
9056       return Match_RequiresNotITBlock;
9057     // LSL with zero immediate is not allowed in an IT block
9058     if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
9059       return Match_RequiresNotITBlock;
9060   } else if (isThumbOne()) {
9061     // Some high-register supporting Thumb1 encodings only allow both registers
9062     // to be from r0-r7 when in Thumb2.
9063     if (Opc == ARM::tADDhirr && !hasV6MOps() &&
9064         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9065         isARMLowRegister(Inst.getOperand(2).getReg()))
9066       return Match_RequiresThumb2;
9067     // Others only require ARMv6 or later.
9068     else if (Opc == ARM::tMOVr && !hasV6Ops() &&
9069              isARMLowRegister(Inst.getOperand(0).getReg()) &&
9070              isARMLowRegister(Inst.getOperand(1).getReg()))
9071       return Match_RequiresV6;
9072   }
9073 
9074   // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
9075   // than the loop below can handle, so it uses the GPRnopc register class and
9076   // we do SP handling here.
9077   if (Opc == ARM::t2MOVr && !hasV8Ops())
9078   {
9079     // SP as both source and destination is not allowed
9080     if (Inst.getOperand(0).getReg() == ARM::SP &&
9081         Inst.getOperand(1).getReg() == ARM::SP)
9082       return Match_RequiresV8;
9083     // When flags-setting SP as either source or destination is not allowed
9084     if (Inst.getOperand(4).getReg() == ARM::CPSR &&
9085         (Inst.getOperand(0).getReg() == ARM::SP ||
9086          Inst.getOperand(1).getReg() == ARM::SP))
9087       return Match_RequiresV8;
9088   }
9089 
9090   // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
9091   // ARMv8-A.
9092   if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) &&
9093       Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops()))
9094     return Match_InvalidOperand;
9095 
9096   for (unsigned I = 0; I < MCID.NumOperands; ++I)
9097     if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
9098       // rGPRRegClass excludes PC, and also excluded SP before ARMv8
9099       if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops())
9100         return Match_RequiresV8;
9101       else if (Inst.getOperand(I).getReg() == ARM::PC)
9102         return Match_InvalidOperand;
9103     }
9104 
9105   return Match_Success;
9106 }
9107 
9108 namespace llvm {
9109 
9110 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
9111   return true; // In an assembly source, no need to second-guess
9112 }
9113 
9114 } // end namespace llvm
9115 
9116 // Returns true if Inst is unpredictable if it is in and IT block, but is not
9117 // the last instruction in the block.
9118 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
9119   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9120 
9121   // All branch & call instructions terminate IT blocks with the exception of
9122   // SVC.
9123   if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
9124       MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
9125     return true;
9126 
9127   // Any arithmetic instruction which writes to the PC also terminates the IT
9128   // block.
9129   for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) {
9130     MCOperand &Op = Inst.getOperand(OpIdx);
9131     if (Op.isReg() && Op.getReg() == ARM::PC)
9132       return true;
9133   }
9134 
9135   if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI))
9136     return true;
9137 
9138   // Instructions with variable operand lists, which write to the variable
9139   // operands. We only care about Thumb instructions here, as ARM instructions
9140   // obviously can't be in an IT block.
9141   switch (Inst.getOpcode()) {
9142   case ARM::tLDMIA:
9143   case ARM::t2LDMIA:
9144   case ARM::t2LDMIA_UPD:
9145   case ARM::t2LDMDB:
9146   case ARM::t2LDMDB_UPD:
9147     if (listContainsReg(Inst, 3, ARM::PC))
9148       return true;
9149     break;
9150   case ARM::tPOP:
9151     if (listContainsReg(Inst, 2, ARM::PC))
9152       return true;
9153     break;
9154   }
9155 
9156   return false;
9157 }
9158 
9159 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
9160                                           SmallVectorImpl<NearMissInfo> &NearMisses,
9161                                           bool MatchingInlineAsm,
9162                                           bool &EmitInITBlock,
9163                                           MCStreamer &Out) {
9164   // If we can't use an implicit IT block here, just match as normal.
9165   if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
9166     return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
9167 
9168   // Try to match the instruction in an extension of the current IT block (if
9169   // there is one).
9170   if (inImplicitITBlock()) {
9171     extendImplicitITBlock(ITState.Cond);
9172     if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
9173             Match_Success) {
9174       // The match succeded, but we still have to check that the instruction is
9175       // valid in this implicit IT block.
9176       const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9177       if (MCID.isPredicable()) {
9178         ARMCC::CondCodes InstCond =
9179             (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9180                 .getImm();
9181         ARMCC::CondCodes ITCond = currentITCond();
9182         if (InstCond == ITCond) {
9183           EmitInITBlock = true;
9184           return Match_Success;
9185         } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
9186           invertCurrentITCondition();
9187           EmitInITBlock = true;
9188           return Match_Success;
9189         }
9190       }
9191     }
9192     rewindImplicitITPosition();
9193   }
9194 
9195   // Finish the current IT block, and try to match outside any IT block.
9196   flushPendingInstructions(Out);
9197   unsigned PlainMatchResult =
9198       MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
9199   if (PlainMatchResult == Match_Success) {
9200     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9201     if (MCID.isPredicable()) {
9202       ARMCC::CondCodes InstCond =
9203           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9204               .getImm();
9205       // Some forms of the branch instruction have their own condition code
9206       // fields, so can be conditionally executed without an IT block.
9207       if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
9208         EmitInITBlock = false;
9209         return Match_Success;
9210       }
9211       if (InstCond == ARMCC::AL) {
9212         EmitInITBlock = false;
9213         return Match_Success;
9214       }
9215     } else {
9216       EmitInITBlock = false;
9217       return Match_Success;
9218     }
9219   }
9220 
9221   // Try to match in a new IT block. The matcher doesn't check the actual
9222   // condition, so we create an IT block with a dummy condition, and fix it up
9223   // once we know the actual condition.
9224   startImplicitITBlock();
9225   if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
9226       Match_Success) {
9227     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9228     if (MCID.isPredicable()) {
9229       ITState.Cond =
9230           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9231               .getImm();
9232       EmitInITBlock = true;
9233       return Match_Success;
9234     }
9235   }
9236   discardImplicitITBlock();
9237 
9238   // If none of these succeed, return the error we got when trying to match
9239   // outside any IT blocks.
9240   EmitInITBlock = false;
9241   return PlainMatchResult;
9242 }
9243 
9244 static std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS,
9245                                          unsigned VariantID = 0);
9246 
9247 static const char *getSubtargetFeatureName(uint64_t Val);
9248 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
9249                                            OperandVector &Operands,
9250                                            MCStreamer &Out, uint64_t &ErrorInfo,
9251                                            bool MatchingInlineAsm) {
9252   MCInst Inst;
9253   unsigned MatchResult;
9254   bool PendConditionalInstruction = false;
9255 
9256   SmallVector<NearMissInfo, 4> NearMisses;
9257   MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
9258                                  PendConditionalInstruction, Out);
9259 
9260   switch (MatchResult) {
9261   case Match_Success:
9262     // Context sensitive operand constraints aren't handled by the matcher,
9263     // so check them here.
9264     if (validateInstruction(Inst, Operands)) {
9265       // Still progress the IT block, otherwise one wrong condition causes
9266       // nasty cascading errors.
9267       forwardITPosition();
9268       return true;
9269     }
9270 
9271     { // processInstruction() updates inITBlock state, we need to save it away
9272       bool wasInITBlock = inITBlock();
9273 
9274       // Some instructions need post-processing to, for example, tweak which
9275       // encoding is selected. Loop on it while changes happen so the
9276       // individual transformations can chain off each other. E.g.,
9277       // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
9278       while (processInstruction(Inst, Operands, Out))
9279         ;
9280 
9281       // Only after the instruction is fully processed, we can validate it
9282       if (wasInITBlock && hasV8Ops() && isThumb() &&
9283           !isV8EligibleForIT(&Inst)) {
9284         Warning(IDLoc, "deprecated instruction in IT block");
9285       }
9286     }
9287 
9288     // Only move forward at the very end so that everything in validate
9289     // and process gets a consistent answer about whether we're in an IT
9290     // block.
9291     forwardITPosition();
9292 
9293     // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
9294     // doesn't actually encode.
9295     if (Inst.getOpcode() == ARM::ITasm)
9296       return false;
9297 
9298     Inst.setLoc(IDLoc);
9299     if (PendConditionalInstruction) {
9300       PendingConditionalInsts.push_back(Inst);
9301       if (isITBlockFull() || isITBlockTerminator(Inst))
9302         flushPendingInstructions(Out);
9303     } else {
9304       Out.EmitInstruction(Inst, getSTI());
9305     }
9306     return false;
9307   case Match_NearMisses:
9308     ReportNearMisses(NearMisses, IDLoc, Operands);
9309     return true;
9310   case Match_MnemonicFail: {
9311     uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
9312     std::string Suggestion = ARMMnemonicSpellCheck(
9313       ((ARMOperand &)*Operands[0]).getToken(), FBS);
9314     return Error(IDLoc, "invalid instruction" + Suggestion,
9315                  ((ARMOperand &)*Operands[0]).getLocRange());
9316   }
9317   }
9318 
9319   llvm_unreachable("Implement any new match types added!");
9320 }
9321 
9322 /// parseDirective parses the arm specific directives
9323 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
9324   const MCObjectFileInfo::Environment Format =
9325     getContext().getObjectFileInfo()->getObjectFileType();
9326   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
9327   bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
9328 
9329   StringRef IDVal = DirectiveID.getIdentifier();
9330   if (IDVal == ".word")
9331     parseLiteralValues(4, DirectiveID.getLoc());
9332   else if (IDVal == ".short" || IDVal == ".hword")
9333     parseLiteralValues(2, DirectiveID.getLoc());
9334   else if (IDVal == ".thumb")
9335     parseDirectiveThumb(DirectiveID.getLoc());
9336   else if (IDVal == ".arm")
9337     parseDirectiveARM(DirectiveID.getLoc());
9338   else if (IDVal == ".thumb_func")
9339     parseDirectiveThumbFunc(DirectiveID.getLoc());
9340   else if (IDVal == ".code")
9341     parseDirectiveCode(DirectiveID.getLoc());
9342   else if (IDVal == ".syntax")
9343     parseDirectiveSyntax(DirectiveID.getLoc());
9344   else if (IDVal == ".unreq")
9345     parseDirectiveUnreq(DirectiveID.getLoc());
9346   else if (IDVal == ".fnend")
9347     parseDirectiveFnEnd(DirectiveID.getLoc());
9348   else if (IDVal == ".cantunwind")
9349     parseDirectiveCantUnwind(DirectiveID.getLoc());
9350   else if (IDVal == ".personality")
9351     parseDirectivePersonality(DirectiveID.getLoc());
9352   else if (IDVal == ".handlerdata")
9353     parseDirectiveHandlerData(DirectiveID.getLoc());
9354   else if (IDVal == ".setfp")
9355     parseDirectiveSetFP(DirectiveID.getLoc());
9356   else if (IDVal == ".pad")
9357     parseDirectivePad(DirectiveID.getLoc());
9358   else if (IDVal == ".save")
9359     parseDirectiveRegSave(DirectiveID.getLoc(), false);
9360   else if (IDVal == ".vsave")
9361     parseDirectiveRegSave(DirectiveID.getLoc(), true);
9362   else if (IDVal == ".ltorg" || IDVal == ".pool")
9363     parseDirectiveLtorg(DirectiveID.getLoc());
9364   else if (IDVal == ".even")
9365     parseDirectiveEven(DirectiveID.getLoc());
9366   else if (IDVal == ".personalityindex")
9367     parseDirectivePersonalityIndex(DirectiveID.getLoc());
9368   else if (IDVal == ".unwind_raw")
9369     parseDirectiveUnwindRaw(DirectiveID.getLoc());
9370   else if (IDVal == ".movsp")
9371     parseDirectiveMovSP(DirectiveID.getLoc());
9372   else if (IDVal == ".arch_extension")
9373     parseDirectiveArchExtension(DirectiveID.getLoc());
9374   else if (IDVal == ".align")
9375     return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
9376   else if (IDVal == ".thumb_set")
9377     parseDirectiveThumbSet(DirectiveID.getLoc());
9378   else if (IDVal == ".inst")
9379     parseDirectiveInst(DirectiveID.getLoc());
9380   else if (IDVal == ".inst.n")
9381     parseDirectiveInst(DirectiveID.getLoc(), 'n');
9382   else if (IDVal == ".inst.w")
9383     parseDirectiveInst(DirectiveID.getLoc(), 'w');
9384   else if (!IsMachO && !IsCOFF) {
9385     if (IDVal == ".arch")
9386       parseDirectiveArch(DirectiveID.getLoc());
9387     else if (IDVal == ".cpu")
9388       parseDirectiveCPU(DirectiveID.getLoc());
9389     else if (IDVal == ".eabi_attribute")
9390       parseDirectiveEabiAttr(DirectiveID.getLoc());
9391     else if (IDVal == ".fpu")
9392       parseDirectiveFPU(DirectiveID.getLoc());
9393     else if (IDVal == ".fnstart")
9394       parseDirectiveFnStart(DirectiveID.getLoc());
9395     else if (IDVal == ".object_arch")
9396       parseDirectiveObjectArch(DirectiveID.getLoc());
9397     else if (IDVal == ".tlsdescseq")
9398       parseDirectiveTLSDescSeq(DirectiveID.getLoc());
9399     else
9400       return true;
9401   } else
9402     return true;
9403   return false;
9404 }
9405 
9406 /// parseLiteralValues
9407 ///  ::= .hword expression [, expression]*
9408 ///  ::= .short expression [, expression]*
9409 ///  ::= .word expression [, expression]*
9410 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
9411   auto parseOne = [&]() -> bool {
9412     const MCExpr *Value;
9413     if (getParser().parseExpression(Value))
9414       return true;
9415     getParser().getStreamer().EmitValue(Value, Size, L);
9416     return false;
9417   };
9418   return (parseMany(parseOne));
9419 }
9420 
9421 /// parseDirectiveThumb
9422 ///  ::= .thumb
9423 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
9424   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
9425       check(!hasThumb(), L, "target does not support Thumb mode"))
9426     return true;
9427 
9428   if (!isThumb())
9429     SwitchMode();
9430 
9431   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
9432   return false;
9433 }
9434 
9435 /// parseDirectiveARM
9436 ///  ::= .arm
9437 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
9438   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
9439       check(!hasARM(), L, "target does not support ARM mode"))
9440     return true;
9441 
9442   if (isThumb())
9443     SwitchMode();
9444   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
9445   return false;
9446 }
9447 
9448 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
9449   // We need to flush the current implicit IT block on a label, because it is
9450   // not legal to branch into an IT block.
9451   flushPendingInstructions(getStreamer());
9452 }
9453 
9454 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
9455   if (NextSymbolIsThumb) {
9456     getParser().getStreamer().EmitThumbFunc(Symbol);
9457     NextSymbolIsThumb = false;
9458   }
9459 }
9460 
9461 /// parseDirectiveThumbFunc
9462 ///  ::= .thumbfunc symbol_name
9463 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
9464   MCAsmParser &Parser = getParser();
9465   const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
9466   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
9467 
9468   // Darwin asm has (optionally) function name after .thumb_func direction
9469   // ELF doesn't
9470 
9471   if (IsMachO) {
9472     if (Parser.getTok().is(AsmToken::Identifier) ||
9473         Parser.getTok().is(AsmToken::String)) {
9474       MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
9475           Parser.getTok().getIdentifier());
9476       getParser().getStreamer().EmitThumbFunc(Func);
9477       Parser.Lex();
9478       if (parseToken(AsmToken::EndOfStatement,
9479                      "unexpected token in '.thumb_func' directive"))
9480         return true;
9481       return false;
9482     }
9483   }
9484 
9485   if (parseToken(AsmToken::EndOfStatement,
9486                  "unexpected token in '.thumb_func' directive"))
9487     return true;
9488 
9489   NextSymbolIsThumb = true;
9490   return false;
9491 }
9492 
9493 /// parseDirectiveSyntax
9494 ///  ::= .syntax unified | divided
9495 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
9496   MCAsmParser &Parser = getParser();
9497   const AsmToken &Tok = Parser.getTok();
9498   if (Tok.isNot(AsmToken::Identifier)) {
9499     Error(L, "unexpected token in .syntax directive");
9500     return false;
9501   }
9502 
9503   StringRef Mode = Tok.getString();
9504   Parser.Lex();
9505   if (check(Mode == "divided" || Mode == "DIVIDED", L,
9506             "'.syntax divided' arm assembly not supported") ||
9507       check(Mode != "unified" && Mode != "UNIFIED", L,
9508             "unrecognized syntax mode in .syntax directive") ||
9509       parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
9510     return true;
9511 
9512   // TODO tell the MC streamer the mode
9513   // getParser().getStreamer().Emit???();
9514   return false;
9515 }
9516 
9517 /// parseDirectiveCode
9518 ///  ::= .code 16 | 32
9519 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
9520   MCAsmParser &Parser = getParser();
9521   const AsmToken &Tok = Parser.getTok();
9522   if (Tok.isNot(AsmToken::Integer))
9523     return Error(L, "unexpected token in .code directive");
9524   int64_t Val = Parser.getTok().getIntVal();
9525   if (Val != 16 && Val != 32) {
9526     Error(L, "invalid operand to .code directive");
9527     return false;
9528   }
9529   Parser.Lex();
9530 
9531   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
9532     return true;
9533 
9534   if (Val == 16) {
9535     if (!hasThumb())
9536       return Error(L, "target does not support Thumb mode");
9537 
9538     if (!isThumb())
9539       SwitchMode();
9540     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
9541   } else {
9542     if (!hasARM())
9543       return Error(L, "target does not support ARM mode");
9544 
9545     if (isThumb())
9546       SwitchMode();
9547     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
9548   }
9549 
9550   return false;
9551 }
9552 
9553 /// parseDirectiveReq
9554 ///  ::= name .req registername
9555 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
9556   MCAsmParser &Parser = getParser();
9557   Parser.Lex(); // Eat the '.req' token.
9558   unsigned Reg;
9559   SMLoc SRegLoc, ERegLoc;
9560   if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
9561             "register name expected") ||
9562       parseToken(AsmToken::EndOfStatement,
9563                  "unexpected input in .req directive."))
9564     return true;
9565 
9566   if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
9567     return Error(SRegLoc,
9568                  "redefinition of '" + Name + "' does not match original.");
9569 
9570   return false;
9571 }
9572 
9573 /// parseDirectiveUneq
9574 ///  ::= .unreq registername
9575 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
9576   MCAsmParser &Parser = getParser();
9577   if (Parser.getTok().isNot(AsmToken::Identifier))
9578     return Error(L, "unexpected input in .unreq directive.");
9579   RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
9580   Parser.Lex(); // Eat the identifier.
9581   if (parseToken(AsmToken::EndOfStatement,
9582                  "unexpected input in '.unreq' directive"))
9583     return true;
9584   return false;
9585 }
9586 
9587 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
9588 // before, if supported by the new target, or emit mapping symbols for the mode
9589 // switch.
9590 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
9591   if (WasThumb != isThumb()) {
9592     if (WasThumb && hasThumb()) {
9593       // Stay in Thumb mode
9594       SwitchMode();
9595     } else if (!WasThumb && hasARM()) {
9596       // Stay in ARM mode
9597       SwitchMode();
9598     } else {
9599       // Mode switch forced, because the new arch doesn't support the old mode.
9600       getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16
9601                                                             : MCAF_Code32);
9602       // Warn about the implcit mode switch. GAS does not switch modes here,
9603       // but instead stays in the old mode, reporting an error on any following
9604       // instructions as the mode does not exist on the target.
9605       Warning(Loc, Twine("new target does not support ") +
9606                        (WasThumb ? "thumb" : "arm") + " mode, switching to " +
9607                        (!WasThumb ? "thumb" : "arm") + " mode");
9608     }
9609   }
9610 }
9611 
9612 /// parseDirectiveArch
9613 ///  ::= .arch token
9614 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
9615   StringRef Arch = getParser().parseStringToEndOfStatement().trim();
9616   ARM::ArchKind ID = ARM::parseArch(Arch);
9617 
9618   if (ID == ARM::ArchKind::INVALID)
9619     return Error(L, "Unknown arch name");
9620 
9621   bool WasThumb = isThumb();
9622   Triple T;
9623   MCSubtargetInfo &STI = copySTI();
9624   STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str());
9625   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9626   FixModeAfterArchChange(WasThumb, L);
9627 
9628   getTargetStreamer().emitArch(ID);
9629   return false;
9630 }
9631 
9632 /// parseDirectiveEabiAttr
9633 ///  ::= .eabi_attribute int, int [, "str"]
9634 ///  ::= .eabi_attribute Tag_name, int [, "str"]
9635 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
9636   MCAsmParser &Parser = getParser();
9637   int64_t Tag;
9638   SMLoc TagLoc;
9639   TagLoc = Parser.getTok().getLoc();
9640   if (Parser.getTok().is(AsmToken::Identifier)) {
9641     StringRef Name = Parser.getTok().getIdentifier();
9642     Tag = ARMBuildAttrs::AttrTypeFromString(Name);
9643     if (Tag == -1) {
9644       Error(TagLoc, "attribute name not recognised: " + Name);
9645       return false;
9646     }
9647     Parser.Lex();
9648   } else {
9649     const MCExpr *AttrExpr;
9650 
9651     TagLoc = Parser.getTok().getLoc();
9652     if (Parser.parseExpression(AttrExpr))
9653       return true;
9654 
9655     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
9656     if (check(!CE, TagLoc, "expected numeric constant"))
9657       return true;
9658 
9659     Tag = CE->getValue();
9660   }
9661 
9662   if (Parser.parseToken(AsmToken::Comma, "comma expected"))
9663     return true;
9664 
9665   StringRef StringValue = "";
9666   bool IsStringValue = false;
9667 
9668   int64_t IntegerValue = 0;
9669   bool IsIntegerValue = false;
9670 
9671   if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
9672     IsStringValue = true;
9673   else if (Tag == ARMBuildAttrs::compatibility) {
9674     IsStringValue = true;
9675     IsIntegerValue = true;
9676   } else if (Tag < 32 || Tag % 2 == 0)
9677     IsIntegerValue = true;
9678   else if (Tag % 2 == 1)
9679     IsStringValue = true;
9680   else
9681     llvm_unreachable("invalid tag type");
9682 
9683   if (IsIntegerValue) {
9684     const MCExpr *ValueExpr;
9685     SMLoc ValueExprLoc = Parser.getTok().getLoc();
9686     if (Parser.parseExpression(ValueExpr))
9687       return true;
9688 
9689     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
9690     if (!CE)
9691       return Error(ValueExprLoc, "expected numeric constant");
9692     IntegerValue = CE->getValue();
9693   }
9694 
9695   if (Tag == ARMBuildAttrs::compatibility) {
9696     if (Parser.parseToken(AsmToken::Comma, "comma expected"))
9697       return true;
9698   }
9699 
9700   if (IsStringValue) {
9701     if (Parser.getTok().isNot(AsmToken::String))
9702       return Error(Parser.getTok().getLoc(), "bad string constant");
9703 
9704     StringValue = Parser.getTok().getStringContents();
9705     Parser.Lex();
9706   }
9707 
9708   if (Parser.parseToken(AsmToken::EndOfStatement,
9709                         "unexpected token in '.eabi_attribute' directive"))
9710     return true;
9711 
9712   if (IsIntegerValue && IsStringValue) {
9713     assert(Tag == ARMBuildAttrs::compatibility);
9714     getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
9715   } else if (IsIntegerValue)
9716     getTargetStreamer().emitAttribute(Tag, IntegerValue);
9717   else if (IsStringValue)
9718     getTargetStreamer().emitTextAttribute(Tag, StringValue);
9719   return false;
9720 }
9721 
9722 /// parseDirectiveCPU
9723 ///  ::= .cpu str
9724 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
9725   StringRef CPU = getParser().parseStringToEndOfStatement().trim();
9726   getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
9727 
9728   // FIXME: This is using table-gen data, but should be moved to
9729   // ARMTargetParser once that is table-gen'd.
9730   if (!getSTI().isCPUStringValid(CPU))
9731     return Error(L, "Unknown CPU name");
9732 
9733   bool WasThumb = isThumb();
9734   MCSubtargetInfo &STI = copySTI();
9735   STI.setDefaultFeatures(CPU, "");
9736   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9737   FixModeAfterArchChange(WasThumb, L);
9738 
9739   return false;
9740 }
9741 
9742 /// parseDirectiveFPU
9743 ///  ::= .fpu str
9744 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
9745   SMLoc FPUNameLoc = getTok().getLoc();
9746   StringRef FPU = getParser().parseStringToEndOfStatement().trim();
9747 
9748   unsigned ID = ARM::parseFPU(FPU);
9749   std::vector<StringRef> Features;
9750   if (!ARM::getFPUFeatures(ID, Features))
9751     return Error(FPUNameLoc, "Unknown FPU name");
9752 
9753   MCSubtargetInfo &STI = copySTI();
9754   for (auto Feature : Features)
9755     STI.ApplyFeatureFlag(Feature);
9756   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9757 
9758   getTargetStreamer().emitFPU(ID);
9759   return false;
9760 }
9761 
9762 /// parseDirectiveFnStart
9763 ///  ::= .fnstart
9764 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
9765   if (parseToken(AsmToken::EndOfStatement,
9766                  "unexpected token in '.fnstart' directive"))
9767     return true;
9768 
9769   if (UC.hasFnStart()) {
9770     Error(L, ".fnstart starts before the end of previous one");
9771     UC.emitFnStartLocNotes();
9772     return true;
9773   }
9774 
9775   // Reset the unwind directives parser state
9776   UC.reset();
9777 
9778   getTargetStreamer().emitFnStart();
9779 
9780   UC.recordFnStart(L);
9781   return false;
9782 }
9783 
9784 /// parseDirectiveFnEnd
9785 ///  ::= .fnend
9786 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
9787   if (parseToken(AsmToken::EndOfStatement,
9788                  "unexpected token in '.fnend' directive"))
9789     return true;
9790   // Check the ordering of unwind directives
9791   if (!UC.hasFnStart())
9792     return Error(L, ".fnstart must precede .fnend directive");
9793 
9794   // Reset the unwind directives parser state
9795   getTargetStreamer().emitFnEnd();
9796 
9797   UC.reset();
9798   return false;
9799 }
9800 
9801 /// parseDirectiveCantUnwind
9802 ///  ::= .cantunwind
9803 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
9804   if (parseToken(AsmToken::EndOfStatement,
9805                  "unexpected token in '.cantunwind' directive"))
9806     return true;
9807 
9808   UC.recordCantUnwind(L);
9809   // Check the ordering of unwind directives
9810   if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
9811     return true;
9812 
9813   if (UC.hasHandlerData()) {
9814     Error(L, ".cantunwind can't be used with .handlerdata directive");
9815     UC.emitHandlerDataLocNotes();
9816     return true;
9817   }
9818   if (UC.hasPersonality()) {
9819     Error(L, ".cantunwind can't be used with .personality directive");
9820     UC.emitPersonalityLocNotes();
9821     return true;
9822   }
9823 
9824   getTargetStreamer().emitCantUnwind();
9825   return false;
9826 }
9827 
9828 /// parseDirectivePersonality
9829 ///  ::= .personality name
9830 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
9831   MCAsmParser &Parser = getParser();
9832   bool HasExistingPersonality = UC.hasPersonality();
9833 
9834   // Parse the name of the personality routine
9835   if (Parser.getTok().isNot(AsmToken::Identifier))
9836     return Error(L, "unexpected input in .personality directive.");
9837   StringRef Name(Parser.getTok().getIdentifier());
9838   Parser.Lex();
9839 
9840   if (parseToken(AsmToken::EndOfStatement,
9841                  "unexpected token in '.personality' directive"))
9842     return true;
9843 
9844   UC.recordPersonality(L);
9845 
9846   // Check the ordering of unwind directives
9847   if (!UC.hasFnStart())
9848     return Error(L, ".fnstart must precede .personality directive");
9849   if (UC.cantUnwind()) {
9850     Error(L, ".personality can't be used with .cantunwind directive");
9851     UC.emitCantUnwindLocNotes();
9852     return true;
9853   }
9854   if (UC.hasHandlerData()) {
9855     Error(L, ".personality must precede .handlerdata directive");
9856     UC.emitHandlerDataLocNotes();
9857     return true;
9858   }
9859   if (HasExistingPersonality) {
9860     Error(L, "multiple personality directives");
9861     UC.emitPersonalityLocNotes();
9862     return true;
9863   }
9864 
9865   MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
9866   getTargetStreamer().emitPersonality(PR);
9867   return false;
9868 }
9869 
9870 /// parseDirectiveHandlerData
9871 ///  ::= .handlerdata
9872 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
9873   if (parseToken(AsmToken::EndOfStatement,
9874                  "unexpected token in '.handlerdata' directive"))
9875     return true;
9876 
9877   UC.recordHandlerData(L);
9878   // Check the ordering of unwind directives
9879   if (!UC.hasFnStart())
9880     return Error(L, ".fnstart must precede .personality directive");
9881   if (UC.cantUnwind()) {
9882     Error(L, ".handlerdata can't be used with .cantunwind directive");
9883     UC.emitCantUnwindLocNotes();
9884     return true;
9885   }
9886 
9887   getTargetStreamer().emitHandlerData();
9888   return false;
9889 }
9890 
9891 /// parseDirectiveSetFP
9892 ///  ::= .setfp fpreg, spreg [, offset]
9893 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
9894   MCAsmParser &Parser = getParser();
9895   // Check the ordering of unwind directives
9896   if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
9897       check(UC.hasHandlerData(), L,
9898             ".setfp must precede .handlerdata directive"))
9899     return true;
9900 
9901   // Parse fpreg
9902   SMLoc FPRegLoc = Parser.getTok().getLoc();
9903   int FPReg = tryParseRegister();
9904 
9905   if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
9906       Parser.parseToken(AsmToken::Comma, "comma expected"))
9907     return true;
9908 
9909   // Parse spreg
9910   SMLoc SPRegLoc = Parser.getTok().getLoc();
9911   int SPReg = tryParseRegister();
9912   if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
9913       check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
9914             "register should be either $sp or the latest fp register"))
9915     return true;
9916 
9917   // Update the frame pointer register
9918   UC.saveFPReg(FPReg);
9919 
9920   // Parse offset
9921   int64_t Offset = 0;
9922   if (Parser.parseOptionalToken(AsmToken::Comma)) {
9923     if (Parser.getTok().isNot(AsmToken::Hash) &&
9924         Parser.getTok().isNot(AsmToken::Dollar))
9925       return Error(Parser.getTok().getLoc(), "'#' expected");
9926     Parser.Lex(); // skip hash token.
9927 
9928     const MCExpr *OffsetExpr;
9929     SMLoc ExLoc = Parser.getTok().getLoc();
9930     SMLoc EndLoc;
9931     if (getParser().parseExpression(OffsetExpr, EndLoc))
9932       return Error(ExLoc, "malformed setfp offset");
9933     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
9934     if (check(!CE, ExLoc, "setfp offset must be an immediate"))
9935       return true;
9936     Offset = CE->getValue();
9937   }
9938 
9939   if (Parser.parseToken(AsmToken::EndOfStatement))
9940     return true;
9941 
9942   getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
9943                                 static_cast<unsigned>(SPReg), Offset);
9944   return false;
9945 }
9946 
9947 /// parseDirective
9948 ///  ::= .pad offset
9949 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
9950   MCAsmParser &Parser = getParser();
9951   // Check the ordering of unwind directives
9952   if (!UC.hasFnStart())
9953     return Error(L, ".fnstart must precede .pad directive");
9954   if (UC.hasHandlerData())
9955     return Error(L, ".pad must precede .handlerdata directive");
9956 
9957   // Parse the offset
9958   if (Parser.getTok().isNot(AsmToken::Hash) &&
9959       Parser.getTok().isNot(AsmToken::Dollar))
9960     return Error(Parser.getTok().getLoc(), "'#' expected");
9961   Parser.Lex(); // skip hash token.
9962 
9963   const MCExpr *OffsetExpr;
9964   SMLoc ExLoc = Parser.getTok().getLoc();
9965   SMLoc EndLoc;
9966   if (getParser().parseExpression(OffsetExpr, EndLoc))
9967     return Error(ExLoc, "malformed pad offset");
9968   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
9969   if (!CE)
9970     return Error(ExLoc, "pad offset must be an immediate");
9971 
9972   if (parseToken(AsmToken::EndOfStatement,
9973                  "unexpected token in '.pad' directive"))
9974     return true;
9975 
9976   getTargetStreamer().emitPad(CE->getValue());
9977   return false;
9978 }
9979 
9980 /// parseDirectiveRegSave
9981 ///  ::= .save  { registers }
9982 ///  ::= .vsave { registers }
9983 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
9984   // Check the ordering of unwind directives
9985   if (!UC.hasFnStart())
9986     return Error(L, ".fnstart must precede .save or .vsave directives");
9987   if (UC.hasHandlerData())
9988     return Error(L, ".save or .vsave must precede .handlerdata directive");
9989 
9990   // RAII object to make sure parsed operands are deleted.
9991   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
9992 
9993   // Parse the register list
9994   if (parseRegisterList(Operands) ||
9995       parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
9996     return true;
9997   ARMOperand &Op = (ARMOperand &)*Operands[0];
9998   if (!IsVector && !Op.isRegList())
9999     return Error(L, ".save expects GPR registers");
10000   if (IsVector && !Op.isDPRRegList())
10001     return Error(L, ".vsave expects DPR registers");
10002 
10003   getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
10004   return false;
10005 }
10006 
10007 /// parseDirectiveInst
10008 ///  ::= .inst opcode [, ...]
10009 ///  ::= .inst.n opcode [, ...]
10010 ///  ::= .inst.w opcode [, ...]
10011 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
10012   int Width = 4;
10013 
10014   if (isThumb()) {
10015     switch (Suffix) {
10016     case 'n':
10017       Width = 2;
10018       break;
10019     case 'w':
10020       break;
10021     default:
10022       Width = 0;
10023       break;
10024     }
10025   } else {
10026     if (Suffix)
10027       return Error(Loc, "width suffixes are invalid in ARM mode");
10028   }
10029 
10030   auto parseOne = [&]() -> bool {
10031     const MCExpr *Expr;
10032     if (getParser().parseExpression(Expr))
10033       return true;
10034     const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
10035     if (!Value) {
10036       return Error(Loc, "expected constant expression");
10037     }
10038 
10039     char CurSuffix = Suffix;
10040     switch (Width) {
10041     case 2:
10042       if (Value->getValue() > 0xffff)
10043         return Error(Loc, "inst.n operand is too big, use inst.w instead");
10044       break;
10045     case 4:
10046       if (Value->getValue() > 0xffffffff)
10047         return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
10048                               " operand is too big");
10049       break;
10050     case 0:
10051       // Thumb mode, no width indicated. Guess from the opcode, if possible.
10052       if (Value->getValue() < 0xe800)
10053         CurSuffix = 'n';
10054       else if (Value->getValue() >= 0xe8000000)
10055         CurSuffix = 'w';
10056       else
10057         return Error(Loc, "cannot determine Thumb instruction size, "
10058                           "use inst.n/inst.w instead");
10059       break;
10060     default:
10061       llvm_unreachable("only supported widths are 2 and 4");
10062     }
10063 
10064     getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
10065     return false;
10066   };
10067 
10068   if (parseOptionalToken(AsmToken::EndOfStatement))
10069     return Error(Loc, "expected expression following directive");
10070   if (parseMany(parseOne))
10071     return true;
10072   return false;
10073 }
10074 
10075 /// parseDirectiveLtorg
10076 ///  ::= .ltorg | .pool
10077 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
10078   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10079     return true;
10080   getTargetStreamer().emitCurrentConstantPool();
10081   return false;
10082 }
10083 
10084 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
10085   const MCSection *Section = getStreamer().getCurrentSectionOnly();
10086 
10087   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10088     return true;
10089 
10090   if (!Section) {
10091     getStreamer().InitSections(false);
10092     Section = getStreamer().getCurrentSectionOnly();
10093   }
10094 
10095   assert(Section && "must have section to emit alignment");
10096   if (Section->UseCodeAlign())
10097     getStreamer().EmitCodeAlignment(2);
10098   else
10099     getStreamer().EmitValueToAlignment(2);
10100 
10101   return false;
10102 }
10103 
10104 /// parseDirectivePersonalityIndex
10105 ///   ::= .personalityindex index
10106 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
10107   MCAsmParser &Parser = getParser();
10108   bool HasExistingPersonality = UC.hasPersonality();
10109 
10110   const MCExpr *IndexExpression;
10111   SMLoc IndexLoc = Parser.getTok().getLoc();
10112   if (Parser.parseExpression(IndexExpression) ||
10113       parseToken(AsmToken::EndOfStatement,
10114                  "unexpected token in '.personalityindex' directive")) {
10115     return true;
10116   }
10117 
10118   UC.recordPersonalityIndex(L);
10119 
10120   if (!UC.hasFnStart()) {
10121     return Error(L, ".fnstart must precede .personalityindex directive");
10122   }
10123   if (UC.cantUnwind()) {
10124     Error(L, ".personalityindex cannot be used with .cantunwind");
10125     UC.emitCantUnwindLocNotes();
10126     return true;
10127   }
10128   if (UC.hasHandlerData()) {
10129     Error(L, ".personalityindex must precede .handlerdata directive");
10130     UC.emitHandlerDataLocNotes();
10131     return true;
10132   }
10133   if (HasExistingPersonality) {
10134     Error(L, "multiple personality directives");
10135     UC.emitPersonalityLocNotes();
10136     return true;
10137   }
10138 
10139   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
10140   if (!CE)
10141     return Error(IndexLoc, "index must be a constant number");
10142   if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
10143     return Error(IndexLoc,
10144                  "personality routine index should be in range [0-3]");
10145 
10146   getTargetStreamer().emitPersonalityIndex(CE->getValue());
10147   return false;
10148 }
10149 
10150 /// parseDirectiveUnwindRaw
10151 ///   ::= .unwind_raw offset, opcode [, opcode...]
10152 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
10153   MCAsmParser &Parser = getParser();
10154   int64_t StackOffset;
10155   const MCExpr *OffsetExpr;
10156   SMLoc OffsetLoc = getLexer().getLoc();
10157 
10158   if (!UC.hasFnStart())
10159     return Error(L, ".fnstart must precede .unwind_raw directives");
10160   if (getParser().parseExpression(OffsetExpr))
10161     return Error(OffsetLoc, "expected expression");
10162 
10163   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10164   if (!CE)
10165     return Error(OffsetLoc, "offset must be a constant");
10166 
10167   StackOffset = CE->getValue();
10168 
10169   if (Parser.parseToken(AsmToken::Comma, "expected comma"))
10170     return true;
10171 
10172   SmallVector<uint8_t, 16> Opcodes;
10173 
10174   auto parseOne = [&]() -> bool {
10175     const MCExpr *OE;
10176     SMLoc OpcodeLoc = getLexer().getLoc();
10177     if (check(getLexer().is(AsmToken::EndOfStatement) ||
10178                   Parser.parseExpression(OE),
10179               OpcodeLoc, "expected opcode expression"))
10180       return true;
10181     const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
10182     if (!OC)
10183       return Error(OpcodeLoc, "opcode value must be a constant");
10184     const int64_t Opcode = OC->getValue();
10185     if (Opcode & ~0xff)
10186       return Error(OpcodeLoc, "invalid opcode");
10187     Opcodes.push_back(uint8_t(Opcode));
10188     return false;
10189   };
10190 
10191   // Must have at least 1 element
10192   SMLoc OpcodeLoc = getLexer().getLoc();
10193   if (parseOptionalToken(AsmToken::EndOfStatement))
10194     return Error(OpcodeLoc, "expected opcode expression");
10195   if (parseMany(parseOne))
10196     return true;
10197 
10198   getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
10199   return false;
10200 }
10201 
10202 /// parseDirectiveTLSDescSeq
10203 ///   ::= .tlsdescseq tls-variable
10204 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
10205   MCAsmParser &Parser = getParser();
10206 
10207   if (getLexer().isNot(AsmToken::Identifier))
10208     return TokError("expected variable after '.tlsdescseq' directive");
10209 
10210   const MCSymbolRefExpr *SRE =
10211     MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
10212                             MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
10213   Lex();
10214 
10215   if (parseToken(AsmToken::EndOfStatement,
10216                  "unexpected token in '.tlsdescseq' directive"))
10217     return true;
10218 
10219   getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
10220   return false;
10221 }
10222 
10223 /// parseDirectiveMovSP
10224 ///  ::= .movsp reg [, #offset]
10225 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
10226   MCAsmParser &Parser = getParser();
10227   if (!UC.hasFnStart())
10228     return Error(L, ".fnstart must precede .movsp directives");
10229   if (UC.getFPReg() != ARM::SP)
10230     return Error(L, "unexpected .movsp directive");
10231 
10232   SMLoc SPRegLoc = Parser.getTok().getLoc();
10233   int SPReg = tryParseRegister();
10234   if (SPReg == -1)
10235     return Error(SPRegLoc, "register expected");
10236   if (SPReg == ARM::SP || SPReg == ARM::PC)
10237     return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
10238 
10239   int64_t Offset = 0;
10240   if (Parser.parseOptionalToken(AsmToken::Comma)) {
10241     if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
10242       return true;
10243 
10244     const MCExpr *OffsetExpr;
10245     SMLoc OffsetLoc = Parser.getTok().getLoc();
10246 
10247     if (Parser.parseExpression(OffsetExpr))
10248       return Error(OffsetLoc, "malformed offset expression");
10249 
10250     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10251     if (!CE)
10252       return Error(OffsetLoc, "offset must be an immediate constant");
10253 
10254     Offset = CE->getValue();
10255   }
10256 
10257   if (parseToken(AsmToken::EndOfStatement,
10258                  "unexpected token in '.movsp' directive"))
10259     return true;
10260 
10261   getTargetStreamer().emitMovSP(SPReg, Offset);
10262   UC.saveFPReg(SPReg);
10263 
10264   return false;
10265 }
10266 
10267 /// parseDirectiveObjectArch
10268 ///   ::= .object_arch name
10269 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
10270   MCAsmParser &Parser = getParser();
10271   if (getLexer().isNot(AsmToken::Identifier))
10272     return Error(getLexer().getLoc(), "unexpected token");
10273 
10274   StringRef Arch = Parser.getTok().getString();
10275   SMLoc ArchLoc = Parser.getTok().getLoc();
10276   Lex();
10277 
10278   ARM::ArchKind ID = ARM::parseArch(Arch);
10279 
10280   if (ID == ARM::ArchKind::INVALID)
10281     return Error(ArchLoc, "unknown architecture '" + Arch + "'");
10282   if (parseToken(AsmToken::EndOfStatement))
10283     return true;
10284 
10285   getTargetStreamer().emitObjectArch(ID);
10286   return false;
10287 }
10288 
10289 /// parseDirectiveAlign
10290 ///   ::= .align
10291 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
10292   // NOTE: if this is not the end of the statement, fall back to the target
10293   // agnostic handling for this directive which will correctly handle this.
10294   if (parseOptionalToken(AsmToken::EndOfStatement)) {
10295     // '.align' is target specifically handled to mean 2**2 byte alignment.
10296     const MCSection *Section = getStreamer().getCurrentSectionOnly();
10297     assert(Section && "must have section to emit alignment");
10298     if (Section->UseCodeAlign())
10299       getStreamer().EmitCodeAlignment(4, 0);
10300     else
10301       getStreamer().EmitValueToAlignment(4, 0, 1, 0);
10302     return false;
10303   }
10304   return true;
10305 }
10306 
10307 /// parseDirectiveThumbSet
10308 ///  ::= .thumb_set name, value
10309 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
10310   MCAsmParser &Parser = getParser();
10311 
10312   StringRef Name;
10313   if (check(Parser.parseIdentifier(Name),
10314             "expected identifier after '.thumb_set'") ||
10315       parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
10316     return true;
10317 
10318   MCSymbol *Sym;
10319   const MCExpr *Value;
10320   if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
10321                                                Parser, Sym, Value))
10322     return true;
10323 
10324   getTargetStreamer().emitThumbSet(Sym, Value);
10325   return false;
10326 }
10327 
10328 /// Force static initialization.
10329 extern "C" void LLVMInitializeARMAsmParser() {
10330   RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
10331   RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
10332   RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
10333   RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
10334 }
10335 
10336 #define GET_REGISTER_MATCHER
10337 #define GET_SUBTARGET_FEATURE_NAME
10338 #define GET_MATCHER_IMPLEMENTATION
10339 #define GET_MNEMONIC_SPELL_CHECKER
10340 #include "ARMGenAsmMatcher.inc"
10341 
10342 // Some diagnostics need to vary with subtarget features, so they are handled
10343 // here. For example, the DPR class has either 16 or 32 registers, depending
10344 // on the FPU available.
10345 const char *
10346 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
10347   switch (MatchError) {
10348   // rGPR contains sp starting with ARMv8.
10349   case Match_rGPR:
10350     return hasV8Ops() ? "operand must be a register in range [r0, r14]"
10351                       : "operand must be a register in range [r0, r12] or r14";
10352   // DPR contains 16 registers for some FPUs, and 32 for others.
10353   case Match_DPR:
10354     return hasD16() ? "operand must be a register in range [d0, d15]"
10355                     : "operand must be a register in range [d0, d31]";
10356   case Match_DPR_RegList:
10357     return hasD16() ? "operand must be a list of registers in range [d0, d15]"
10358                     : "operand must be a list of registers in range [d0, d31]";
10359 
10360   // For all other diags, use the static string from tablegen.
10361   default:
10362     return getMatchKindDiag(MatchError);
10363   }
10364 }
10365 
10366 // Process the list of near-misses, throwing away ones we don't want to report
10367 // to the user, and converting the rest to a source location and string that
10368 // should be reported.
10369 void
10370 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
10371                                SmallVectorImpl<NearMissMessage> &NearMissesOut,
10372                                SMLoc IDLoc, OperandVector &Operands) {
10373   // TODO: If operand didn't match, sub in a dummy one and run target
10374   // predicate, so that we can avoid reporting near-misses that are invalid?
10375   // TODO: Many operand types dont have SuperClasses set, so we report
10376   // redundant ones.
10377   // TODO: Some operands are superclasses of registers (e.g.
10378   // MCK_RegShiftedImm), we don't have any way to represent that currently.
10379   // TODO: This is not all ARM-specific, can some of it be factored out?
10380 
10381   // Record some information about near-misses that we have already seen, so
10382   // that we can avoid reporting redundant ones. For example, if there are
10383   // variants of an instruction that take 8- and 16-bit immediates, we want
10384   // to only report the widest one.
10385   std::multimap<unsigned, unsigned> OperandMissesSeen;
10386   SmallSet<uint64_t, 4> FeatureMissesSeen;
10387   bool ReportedTooFewOperands = false;
10388 
10389   // Process the near-misses in reverse order, so that we see more general ones
10390   // first, and so can avoid emitting more specific ones.
10391   for (NearMissInfo &I : reverse(NearMissesIn)) {
10392     switch (I.getKind()) {
10393     case NearMissInfo::NearMissOperand: {
10394       SMLoc OperandLoc =
10395           ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
10396       const char *OperandDiag =
10397           getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
10398 
10399       // If we have already emitted a message for a superclass, don't also report
10400       // the sub-class. We consider all operand classes that we don't have a
10401       // specialised diagnostic for to be equal for the propose of this check,
10402       // so that we don't report the generic error multiple times on the same
10403       // operand.
10404       unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
10405       auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
10406       if (std::any_of(PrevReports.first, PrevReports.second,
10407                       [DupCheckMatchClass](
10408                           const std::pair<unsigned, unsigned> Pair) {
10409             if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
10410               return Pair.second == DupCheckMatchClass;
10411             else
10412               return isSubclass((MatchClassKind)DupCheckMatchClass,
10413                                 (MatchClassKind)Pair.second);
10414           }))
10415         break;
10416       OperandMissesSeen.insert(
10417           std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
10418 
10419       NearMissMessage Message;
10420       Message.Loc = OperandLoc;
10421       if (OperandDiag) {
10422         Message.Message = OperandDiag;
10423       } else if (I.getOperandClass() == InvalidMatchClass) {
10424         Message.Message = "too many operands for instruction";
10425       } else {
10426         Message.Message = "invalid operand for instruction";
10427         LLVM_DEBUG(
10428             dbgs() << "Missing diagnostic string for operand class "
10429                    << getMatchClassName((MatchClassKind)I.getOperandClass())
10430                    << I.getOperandClass() << ", error " << I.getOperandError()
10431                    << ", opcode " << MII.getName(I.getOpcode()) << "\n");
10432       }
10433       NearMissesOut.emplace_back(Message);
10434       break;
10435     }
10436     case NearMissInfo::NearMissFeature: {
10437       uint64_t MissingFeatures = I.getFeatures();
10438       // Don't report the same set of features twice.
10439       if (FeatureMissesSeen.count(MissingFeatures))
10440         break;
10441       FeatureMissesSeen.insert(MissingFeatures);
10442 
10443       // Special case: don't report a feature set which includes arm-mode for
10444       // targets that don't have ARM mode.
10445       if ((MissingFeatures & Feature_IsARM) && !hasARM())
10446         break;
10447       // Don't report any near-misses that both require switching instruction
10448       // set, and adding other subtarget features.
10449       if (isThumb() && (MissingFeatures & Feature_IsARM) &&
10450           (MissingFeatures & ~Feature_IsARM))
10451         break;
10452       if (!isThumb() && (MissingFeatures & Feature_IsThumb) &&
10453           (MissingFeatures & ~Feature_IsThumb))
10454         break;
10455       if (!isThumb() && (MissingFeatures & Feature_IsThumb2) &&
10456           (MissingFeatures & ~(Feature_IsThumb2 | Feature_IsThumb)))
10457         break;
10458       if (isMClass() && (MissingFeatures & Feature_HasNEON))
10459         break;
10460 
10461       NearMissMessage Message;
10462       Message.Loc = IDLoc;
10463       raw_svector_ostream OS(Message.Message);
10464 
10465       OS << "instruction requires:";
10466       uint64_t Mask = 1;
10467       for (unsigned MaskPos = 0; MaskPos < (sizeof(MissingFeatures) * 8 - 1);
10468            ++MaskPos) {
10469         if (MissingFeatures & Mask) {
10470           OS << " " << getSubtargetFeatureName(MissingFeatures & Mask);
10471         }
10472         Mask <<= 1;
10473       }
10474       NearMissesOut.emplace_back(Message);
10475 
10476       break;
10477     }
10478     case NearMissInfo::NearMissPredicate: {
10479       NearMissMessage Message;
10480       Message.Loc = IDLoc;
10481       switch (I.getPredicateError()) {
10482       case Match_RequiresNotITBlock:
10483         Message.Message = "flag setting instruction only valid outside IT block";
10484         break;
10485       case Match_RequiresITBlock:
10486         Message.Message = "instruction only valid inside IT block";
10487         break;
10488       case Match_RequiresV6:
10489         Message.Message = "instruction variant requires ARMv6 or later";
10490         break;
10491       case Match_RequiresThumb2:
10492         Message.Message = "instruction variant requires Thumb2";
10493         break;
10494       case Match_RequiresV8:
10495         Message.Message = "instruction variant requires ARMv8 or later";
10496         break;
10497       case Match_RequiresFlagSetting:
10498         Message.Message = "no flag-preserving variant of this instruction available";
10499         break;
10500       case Match_InvalidOperand:
10501         Message.Message = "invalid operand for instruction";
10502         break;
10503       default:
10504         llvm_unreachable("Unhandled target predicate error");
10505         break;
10506       }
10507       NearMissesOut.emplace_back(Message);
10508       break;
10509     }
10510     case NearMissInfo::NearMissTooFewOperands: {
10511       if (!ReportedTooFewOperands) {
10512         SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
10513         NearMissesOut.emplace_back(NearMissMessage{
10514             EndLoc, StringRef("too few operands for instruction")});
10515         ReportedTooFewOperands = true;
10516       }
10517       break;
10518     }
10519     case NearMissInfo::NoNearMiss:
10520       // This should never leave the matcher.
10521       llvm_unreachable("not a near-miss");
10522       break;
10523     }
10524   }
10525 }
10526 
10527 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
10528                                     SMLoc IDLoc, OperandVector &Operands) {
10529   SmallVector<NearMissMessage, 4> Messages;
10530   FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
10531 
10532   if (Messages.size() == 0) {
10533     // No near-misses were found, so the best we can do is "invalid
10534     // instruction".
10535     Error(IDLoc, "invalid instruction");
10536   } else if (Messages.size() == 1) {
10537     // One near miss was found, report it as the sole error.
10538     Error(Messages[0].Loc, Messages[0].Message);
10539   } else {
10540     // More than one near miss, so report a generic "invalid instruction"
10541     // error, followed by notes for each of the near-misses.
10542     Error(IDLoc, "invalid instruction, any one of the following would fix this:");
10543     for (auto &M : Messages) {
10544       Note(M.Loc, M.Message);
10545     }
10546   }
10547 }
10548 
10549 // FIXME: This structure should be moved inside ARMTargetParser
10550 // when we start to table-generate them, and we can use the ARM
10551 // flags below, that were generated by table-gen.
10552 static const struct {
10553   const unsigned Kind;
10554   const uint64_t ArchCheck;
10555   const FeatureBitset Features;
10556 } Extensions[] = {
10557   { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} },
10558   { ARM::AEK_CRYPTO,  Feature_HasV8,
10559     {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} },
10560   { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} },
10561   { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass,
10562     {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} },
10563   { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} },
10564   { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} },
10565   { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} },
10566   // FIXME: Only available in A-class, isel not predicated
10567   { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} },
10568   { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} },
10569   { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} },
10570   // FIXME: Unsupported extensions.
10571   { ARM::AEK_OS, Feature_None, {} },
10572   { ARM::AEK_IWMMXT, Feature_None, {} },
10573   { ARM::AEK_IWMMXT2, Feature_None, {} },
10574   { ARM::AEK_MAVERICK, Feature_None, {} },
10575   { ARM::AEK_XSCALE, Feature_None, {} },
10576 };
10577 
10578 /// parseDirectiveArchExtension
10579 ///   ::= .arch_extension [no]feature
10580 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
10581   MCAsmParser &Parser = getParser();
10582 
10583   if (getLexer().isNot(AsmToken::Identifier))
10584     return Error(getLexer().getLoc(), "expected architecture extension name");
10585 
10586   StringRef Name = Parser.getTok().getString();
10587   SMLoc ExtLoc = Parser.getTok().getLoc();
10588   Lex();
10589 
10590   if (parseToken(AsmToken::EndOfStatement,
10591                  "unexpected token in '.arch_extension' directive"))
10592     return true;
10593 
10594   bool EnableFeature = true;
10595   if (Name.startswith_lower("no")) {
10596     EnableFeature = false;
10597     Name = Name.substr(2);
10598   }
10599   unsigned FeatureKind = ARM::parseArchExt(Name);
10600   if (FeatureKind == ARM::AEK_INVALID)
10601     return Error(ExtLoc, "unknown architectural extension: " + Name);
10602 
10603   for (const auto &Extension : Extensions) {
10604     if (Extension.Kind != FeatureKind)
10605       continue;
10606 
10607     if (Extension.Features.none())
10608       return Error(ExtLoc, "unsupported architectural extension: " + Name);
10609 
10610     if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
10611       return Error(ExtLoc, "architectural extension '" + Name +
10612                                "' is not "
10613                                "allowed for the current base architecture");
10614 
10615     MCSubtargetInfo &STI = copySTI();
10616     FeatureBitset ToggleFeatures = EnableFeature
10617       ? (~STI.getFeatureBits() & Extension.Features)
10618       : ( STI.getFeatureBits() & Extension.Features);
10619 
10620     uint64_t Features =
10621         ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
10622     setAvailableFeatures(Features);
10623     return false;
10624   }
10625 
10626   return Error(ExtLoc, "unknown architectural extension: " + Name);
10627 }
10628 
10629 // Define this matcher function after the auto-generated include so we
10630 // have the match class enum definitions.
10631 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
10632                                                   unsigned Kind) {
10633   ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
10634   // If the kind is a token for a literal immediate, check if our asm
10635   // operand matches. This is for InstAliases which have a fixed-value
10636   // immediate in the syntax.
10637   switch (Kind) {
10638   default: break;
10639   case MCK__35_0:
10640     if (Op.isImm())
10641       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
10642         if (CE->getValue() == 0)
10643           return Match_Success;
10644     break;
10645   case MCK_ModImm:
10646     if (Op.isImm()) {
10647       const MCExpr *SOExpr = Op.getImm();
10648       int64_t Value;
10649       if (!SOExpr->evaluateAsAbsolute(Value))
10650         return Match_Success;
10651       assert((Value >= std::numeric_limits<int32_t>::min() &&
10652               Value <= std::numeric_limits<uint32_t>::max()) &&
10653              "expression value must be representable in 32 bits");
10654     }
10655     break;
10656   case MCK_rGPR:
10657     if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
10658       return Match_Success;
10659     return Match_rGPR;
10660   case MCK_GPRPair:
10661     if (Op.isReg() &&
10662         MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
10663       return Match_Success;
10664     break;
10665   }
10666   return Match_InvalidOperand;
10667 }
10668