1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMMCExpr.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCInstrInfo.h" 32 #include "llvm/MC/MCObjectFileInfo.h" 33 #include "llvm/MC/MCParser/MCAsmLexer.h" 34 #include "llvm/MC/MCParser/MCAsmParser.h" 35 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 36 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 37 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 38 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSubtargetInfo.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/MC/SubtargetFeature.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/ARMEHABI.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/SMLoc.h" 53 #include "llvm/Support/TargetParser.h" 54 #include "llvm/Support/TargetRegistry.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstddef> 59 #include <cstdint> 60 #include <iterator> 61 #include <limits> 62 #include <memory> 63 #include <string> 64 #include <utility> 65 #include <vector> 66 67 #define DEBUG_TYPE "asm-parser" 68 69 using namespace llvm; 70 71 namespace { 72 73 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 74 75 static cl::opt<ImplicitItModeTy> ImplicitItMode( 76 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 77 cl::desc("Allow conditional instructions outdside of an IT block"), 78 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 79 "Accept in both ISAs, emit implicit ITs in Thumb"), 80 clEnumValN(ImplicitItModeTy::Never, "never", 81 "Warn in ARM, reject in Thumb"), 82 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 83 "Accept in ARM, reject in Thumb"), 84 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 85 "Warn in ARM, emit implicit ITs in Thumb"))); 86 87 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 88 cl::init(false)); 89 90 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 91 92 class UnwindContext { 93 using Locs = SmallVector<SMLoc, 4>; 94 95 MCAsmParser &Parser; 96 Locs FnStartLocs; 97 Locs CantUnwindLocs; 98 Locs PersonalityLocs; 99 Locs PersonalityIndexLocs; 100 Locs HandlerDataLocs; 101 int FPReg; 102 103 public: 104 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 105 106 bool hasFnStart() const { return !FnStartLocs.empty(); } 107 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 108 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 109 110 bool hasPersonality() const { 111 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 112 } 113 114 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 115 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 116 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 117 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 118 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 119 120 void saveFPReg(int Reg) { FPReg = Reg; } 121 int getFPReg() const { return FPReg; } 122 123 void emitFnStartLocNotes() const { 124 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 125 FI != FE; ++FI) 126 Parser.Note(*FI, ".fnstart was specified here"); 127 } 128 129 void emitCantUnwindLocNotes() const { 130 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 131 UE = CantUnwindLocs.end(); UI != UE; ++UI) 132 Parser.Note(*UI, ".cantunwind was specified here"); 133 } 134 135 void emitHandlerDataLocNotes() const { 136 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 137 HE = HandlerDataLocs.end(); HI != HE; ++HI) 138 Parser.Note(*HI, ".handlerdata was specified here"); 139 } 140 141 void emitPersonalityLocNotes() const { 142 for (Locs::const_iterator PI = PersonalityLocs.begin(), 143 PE = PersonalityLocs.end(), 144 PII = PersonalityIndexLocs.begin(), 145 PIE = PersonalityIndexLocs.end(); 146 PI != PE || PII != PIE;) { 147 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 148 Parser.Note(*PI++, ".personality was specified here"); 149 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 150 Parser.Note(*PII++, ".personalityindex was specified here"); 151 else 152 llvm_unreachable(".personality and .personalityindex cannot be " 153 "at the same location"); 154 } 155 } 156 157 void reset() { 158 FnStartLocs = Locs(); 159 CantUnwindLocs = Locs(); 160 PersonalityLocs = Locs(); 161 HandlerDataLocs = Locs(); 162 PersonalityIndexLocs = Locs(); 163 FPReg = ARM::SP; 164 } 165 }; 166 167 class ARMAsmParser : public MCTargetAsmParser { 168 const MCRegisterInfo *MRI; 169 UnwindContext UC; 170 171 ARMTargetStreamer &getTargetStreamer() { 172 assert(getParser().getStreamer().getTargetStreamer() && 173 "do not have a target streamer"); 174 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 175 return static_cast<ARMTargetStreamer &>(TS); 176 } 177 178 // Map of register aliases registers via the .req directive. 179 StringMap<unsigned> RegisterReqs; 180 181 bool NextSymbolIsThumb; 182 183 bool useImplicitITThumb() const { 184 return ImplicitItMode == ImplicitItModeTy::Always || 185 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 186 } 187 188 bool useImplicitITARM() const { 189 return ImplicitItMode == ImplicitItModeTy::Always || 190 ImplicitItMode == ImplicitItModeTy::ARMOnly; 191 } 192 193 struct { 194 ARMCC::CondCodes Cond; // Condition for IT block. 195 unsigned Mask:4; // Condition mask for instructions. 196 // Starting at first 1 (from lsb). 197 // '1' condition as indicated in IT. 198 // '0' inverse of condition (else). 199 // Count of instructions in IT block is 200 // 4 - trailingzeroes(mask) 201 // Note that this does not have the same encoding 202 // as in the IT instruction, which also depends 203 // on the low bit of the condition code. 204 205 unsigned CurPosition; // Current position in parsing of IT 206 // block. In range [0,4], with 0 being the IT 207 // instruction itself. Initialized according to 208 // count of instructions in block. ~0U if no 209 // active IT block. 210 211 bool IsExplicit; // true - The IT instruction was present in the 212 // input, we should not modify it. 213 // false - The IT instruction was added 214 // implicitly, we can extend it if that 215 // would be legal. 216 } ITState; 217 218 SmallVector<MCInst, 4> PendingConditionalInsts; 219 220 void flushPendingInstructions(MCStreamer &Out) override { 221 if (!inImplicitITBlock()) { 222 assert(PendingConditionalInsts.size() == 0); 223 return; 224 } 225 226 // Emit the IT instruction 227 unsigned Mask = getITMaskEncoding(); 228 MCInst ITInst; 229 ITInst.setOpcode(ARM::t2IT); 230 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 231 ITInst.addOperand(MCOperand::createImm(Mask)); 232 Out.EmitInstruction(ITInst, getSTI()); 233 234 // Emit the conditonal instructions 235 assert(PendingConditionalInsts.size() <= 4); 236 for (const MCInst &Inst : PendingConditionalInsts) { 237 Out.EmitInstruction(Inst, getSTI()); 238 } 239 PendingConditionalInsts.clear(); 240 241 // Clear the IT state 242 ITState.Mask = 0; 243 ITState.CurPosition = ~0U; 244 } 245 246 bool inITBlock() { return ITState.CurPosition != ~0U; } 247 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 248 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 249 250 bool lastInITBlock() { 251 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 252 } 253 254 void forwardITPosition() { 255 if (!inITBlock()) return; 256 // Move to the next instruction in the IT block, if there is one. If not, 257 // mark the block as done, except for implicit IT blocks, which we leave 258 // open until we find an instruction that can't be added to it. 259 unsigned TZ = countTrailingZeros(ITState.Mask); 260 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 261 ITState.CurPosition = ~0U; // Done with the IT block after this. 262 } 263 264 // Rewind the state of the current IT block, removing the last slot from it. 265 void rewindImplicitITPosition() { 266 assert(inImplicitITBlock()); 267 assert(ITState.CurPosition > 1); 268 ITState.CurPosition--; 269 unsigned TZ = countTrailingZeros(ITState.Mask); 270 unsigned NewMask = 0; 271 NewMask |= ITState.Mask & (0xC << TZ); 272 NewMask |= 0x2 << TZ; 273 ITState.Mask = NewMask; 274 } 275 276 // Rewind the state of the current IT block, removing the last slot from it. 277 // If we were at the first slot, this closes the IT block. 278 void discardImplicitITBlock() { 279 assert(inImplicitITBlock()); 280 assert(ITState.CurPosition == 1); 281 ITState.CurPosition = ~0U; 282 } 283 284 // Return the low-subreg of a given Q register. 285 unsigned getDRegFromQReg(unsigned QReg) const { 286 return MRI->getSubReg(QReg, ARM::dsub_0); 287 } 288 289 // Get the encoding of the IT mask, as it will appear in an IT instruction. 290 unsigned getITMaskEncoding() { 291 assert(inITBlock()); 292 unsigned Mask = ITState.Mask; 293 unsigned TZ = countTrailingZeros(Mask); 294 if ((ITState.Cond & 1) == 0) { 295 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 296 Mask ^= (0xE << TZ) & 0xF; 297 } 298 return Mask; 299 } 300 301 // Get the condition code corresponding to the current IT block slot. 302 ARMCC::CondCodes currentITCond() { 303 unsigned MaskBit; 304 if (ITState.CurPosition == 1) 305 MaskBit = 1; 306 else 307 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 308 309 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 310 } 311 312 // Invert the condition of the current IT block slot without changing any 313 // other slots in the same block. 314 void invertCurrentITCondition() { 315 if (ITState.CurPosition == 1) { 316 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 317 } else { 318 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 319 } 320 } 321 322 // Returns true if the current IT block is full (all 4 slots used). 323 bool isITBlockFull() { 324 return inITBlock() && (ITState.Mask & 1); 325 } 326 327 // Extend the current implicit IT block to have one more slot with the given 328 // condition code. 329 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 330 assert(inImplicitITBlock()); 331 assert(!isITBlockFull()); 332 assert(Cond == ITState.Cond || 333 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 334 unsigned TZ = countTrailingZeros(ITState.Mask); 335 unsigned NewMask = 0; 336 // Keep any existing condition bits. 337 NewMask |= ITState.Mask & (0xE << TZ); 338 // Insert the new condition bit. 339 NewMask |= (Cond == ITState.Cond) << TZ; 340 // Move the trailing 1 down one bit. 341 NewMask |= 1 << (TZ - 1); 342 ITState.Mask = NewMask; 343 } 344 345 // Create a new implicit IT block with a dummy condition code. 346 void startImplicitITBlock() { 347 assert(!inITBlock()); 348 ITState.Cond = ARMCC::AL; 349 ITState.Mask = 8; 350 ITState.CurPosition = 1; 351 ITState.IsExplicit = false; 352 } 353 354 // Create a new explicit IT block with the given condition and mask. The mask 355 // should be in the parsed format, with a 1 implying 't', regardless of the 356 // low bit of the condition. 357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 358 assert(!inITBlock()); 359 ITState.Cond = Cond; 360 ITState.Mask = Mask; 361 ITState.CurPosition = 0; 362 ITState.IsExplicit = true; 363 } 364 365 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 366 return getParser().Note(L, Msg, Range); 367 } 368 369 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 370 return getParser().Warning(L, Msg, Range); 371 } 372 373 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 374 return getParser().Error(L, Msg, Range); 375 } 376 377 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 378 unsigned ListNo, bool IsARPop = false); 379 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 380 unsigned ListNo); 381 382 int tryParseRegister(); 383 bool tryParseRegisterWithWriteBack(OperandVector &); 384 int tryParseShiftRegister(OperandVector &); 385 bool parseRegisterList(OperandVector &); 386 bool parseMemory(OperandVector &); 387 bool parseOperand(OperandVector &, StringRef Mnemonic); 388 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 389 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 390 unsigned &ShiftAmount); 391 bool parseLiteralValues(unsigned Size, SMLoc L); 392 bool parseDirectiveThumb(SMLoc L); 393 bool parseDirectiveARM(SMLoc L); 394 bool parseDirectiveThumbFunc(SMLoc L); 395 bool parseDirectiveCode(SMLoc L); 396 bool parseDirectiveSyntax(SMLoc L); 397 bool parseDirectiveReq(StringRef Name, SMLoc L); 398 bool parseDirectiveUnreq(SMLoc L); 399 bool parseDirectiveArch(SMLoc L); 400 bool parseDirectiveEabiAttr(SMLoc L); 401 bool parseDirectiveCPU(SMLoc L); 402 bool parseDirectiveFPU(SMLoc L); 403 bool parseDirectiveFnStart(SMLoc L); 404 bool parseDirectiveFnEnd(SMLoc L); 405 bool parseDirectiveCantUnwind(SMLoc L); 406 bool parseDirectivePersonality(SMLoc L); 407 bool parseDirectiveHandlerData(SMLoc L); 408 bool parseDirectiveSetFP(SMLoc L); 409 bool parseDirectivePad(SMLoc L); 410 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 411 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 412 bool parseDirectiveLtorg(SMLoc L); 413 bool parseDirectiveEven(SMLoc L); 414 bool parseDirectivePersonalityIndex(SMLoc L); 415 bool parseDirectiveUnwindRaw(SMLoc L); 416 bool parseDirectiveTLSDescSeq(SMLoc L); 417 bool parseDirectiveMovSP(SMLoc L); 418 bool parseDirectiveObjectArch(SMLoc L); 419 bool parseDirectiveArchExtension(SMLoc L); 420 bool parseDirectiveAlign(SMLoc L); 421 bool parseDirectiveThumbSet(SMLoc L); 422 423 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 424 bool &CarrySetting, unsigned &ProcessorIMod, 425 StringRef &ITMask); 426 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 427 bool &CanAcceptCarrySet, 428 bool &CanAcceptPredicationCode); 429 430 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 431 OperandVector &Operands); 432 bool isThumb() const { 433 // FIXME: Can tablegen auto-generate this? 434 return getSTI().getFeatureBits()[ARM::ModeThumb]; 435 } 436 437 bool isThumbOne() const { 438 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 439 } 440 441 bool isThumbTwo() const { 442 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 443 } 444 445 bool hasThumb() const { 446 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 447 } 448 449 bool hasThumb2() const { 450 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 451 } 452 453 bool hasV6Ops() const { 454 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 455 } 456 457 bool hasV6T2Ops() const { 458 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 459 } 460 461 bool hasV6MOps() const { 462 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 463 } 464 465 bool hasV7Ops() const { 466 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 467 } 468 469 bool hasV8Ops() const { 470 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 471 } 472 473 bool hasV8MBaseline() const { 474 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 475 } 476 477 bool hasV8MMainline() const { 478 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 479 } 480 481 bool has8MSecExt() const { 482 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 483 } 484 485 bool hasARM() const { 486 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 487 } 488 489 bool hasDSP() const { 490 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 491 } 492 493 bool hasD16() const { 494 return getSTI().getFeatureBits()[ARM::FeatureD16]; 495 } 496 497 bool hasV8_1aOps() const { 498 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 499 } 500 501 bool hasRAS() const { 502 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 503 } 504 505 void SwitchMode() { 506 MCSubtargetInfo &STI = copySTI(); 507 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 508 setAvailableFeatures(FB); 509 } 510 511 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 512 513 bool isMClass() const { 514 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 515 } 516 517 /// @name Auto-generated Match Functions 518 /// { 519 520 #define GET_ASSEMBLER_HEADER 521 #include "ARMGenAsmMatcher.inc" 522 523 /// } 524 525 OperandMatchResultTy parseITCondCode(OperandVector &); 526 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 527 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 528 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 529 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 530 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 531 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 532 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 533 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 534 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 535 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 536 int High); 537 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 538 return parsePKHImm(O, "lsl", 0, 31); 539 } 540 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 541 return parsePKHImm(O, "asr", 1, 32); 542 } 543 OperandMatchResultTy parseSetEndImm(OperandVector &); 544 OperandMatchResultTy parseShifterImm(OperandVector &); 545 OperandMatchResultTy parseRotImm(OperandVector &); 546 OperandMatchResultTy parseModImm(OperandVector &); 547 OperandMatchResultTy parseBitfield(OperandVector &); 548 OperandMatchResultTy parsePostIdxReg(OperandVector &); 549 OperandMatchResultTy parseAM3Offset(OperandVector &); 550 OperandMatchResultTy parseFPImm(OperandVector &); 551 OperandMatchResultTy parseVectorList(OperandVector &); 552 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 553 SMLoc &EndLoc); 554 555 // Asm Match Converter Methods 556 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 557 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 558 559 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 560 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 561 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 562 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 563 bool isITBlockTerminator(MCInst &Inst) const; 564 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 565 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 566 bool Load, bool ARMMode, bool Writeback); 567 568 public: 569 enum ARMMatchResultTy { 570 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 571 Match_RequiresNotITBlock, 572 Match_RequiresV6, 573 Match_RequiresThumb2, 574 Match_RequiresV8, 575 Match_RequiresFlagSetting, 576 #define GET_OPERAND_DIAGNOSTIC_TYPES 577 #include "ARMGenAsmMatcher.inc" 578 579 }; 580 581 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 582 const MCInstrInfo &MII, const MCTargetOptions &Options) 583 : MCTargetAsmParser(Options, STI, MII), UC(Parser) { 584 MCAsmParserExtension::Initialize(Parser); 585 586 // Cache the MCRegisterInfo. 587 MRI = getContext().getRegisterInfo(); 588 589 // Initialize the set of available features. 590 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 591 592 // Add build attributes based on the selected target. 593 if (AddBuildAttributes) 594 getTargetStreamer().emitTargetAttributes(STI); 595 596 // Not in an ITBlock to start with. 597 ITState.CurPosition = ~0U; 598 599 NextSymbolIsThumb = false; 600 } 601 602 // Implementation of the MCTargetAsmParser interface: 603 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 604 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 605 SMLoc NameLoc, OperandVector &Operands) override; 606 bool ParseDirective(AsmToken DirectiveID) override; 607 608 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 609 unsigned Kind) override; 610 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 611 612 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 613 OperandVector &Operands, MCStreamer &Out, 614 uint64_t &ErrorInfo, 615 bool MatchingInlineAsm) override; 616 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 617 SmallVectorImpl<NearMissInfo> &NearMisses, 618 bool MatchingInlineAsm, bool &EmitInITBlock, 619 MCStreamer &Out); 620 621 struct NearMissMessage { 622 SMLoc Loc; 623 SmallString<128> Message; 624 }; 625 626 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 627 628 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 629 SmallVectorImpl<NearMissMessage> &NearMissesOut, 630 SMLoc IDLoc, OperandVector &Operands); 631 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 632 OperandVector &Operands); 633 634 void doBeforeLabelEmit(MCSymbol *Symbol) override; 635 636 void onLabelParsed(MCSymbol *Symbol) override; 637 }; 638 639 /// ARMOperand - Instances of this class represent a parsed ARM machine 640 /// operand. 641 class ARMOperand : public MCParsedAsmOperand { 642 enum KindTy { 643 k_CondCode, 644 k_CCOut, 645 k_ITCondMask, 646 k_CoprocNum, 647 k_CoprocReg, 648 k_CoprocOption, 649 k_Immediate, 650 k_MemBarrierOpt, 651 k_InstSyncBarrierOpt, 652 k_TraceSyncBarrierOpt, 653 k_Memory, 654 k_PostIndexRegister, 655 k_MSRMask, 656 k_BankedReg, 657 k_ProcIFlags, 658 k_VectorIndex, 659 k_Register, 660 k_RegisterList, 661 k_DPRRegisterList, 662 k_SPRRegisterList, 663 k_VectorList, 664 k_VectorListAllLanes, 665 k_VectorListIndexed, 666 k_ShiftedRegister, 667 k_ShiftedImmediate, 668 k_ShifterImmediate, 669 k_RotateImmediate, 670 k_ModifiedImmediate, 671 k_ConstantPoolImmediate, 672 k_BitfieldDescriptor, 673 k_Token, 674 } Kind; 675 676 SMLoc StartLoc, EndLoc, AlignmentLoc; 677 SmallVector<unsigned, 8> Registers; 678 679 struct CCOp { 680 ARMCC::CondCodes Val; 681 }; 682 683 struct CopOp { 684 unsigned Val; 685 }; 686 687 struct CoprocOptionOp { 688 unsigned Val; 689 }; 690 691 struct ITMaskOp { 692 unsigned Mask:4; 693 }; 694 695 struct MBOptOp { 696 ARM_MB::MemBOpt Val; 697 }; 698 699 struct ISBOptOp { 700 ARM_ISB::InstSyncBOpt Val; 701 }; 702 703 struct TSBOptOp { 704 ARM_TSB::TraceSyncBOpt Val; 705 }; 706 707 struct IFlagsOp { 708 ARM_PROC::IFlags Val; 709 }; 710 711 struct MMaskOp { 712 unsigned Val; 713 }; 714 715 struct BankedRegOp { 716 unsigned Val; 717 }; 718 719 struct TokOp { 720 const char *Data; 721 unsigned Length; 722 }; 723 724 struct RegOp { 725 unsigned RegNum; 726 }; 727 728 // A vector register list is a sequential list of 1 to 4 registers. 729 struct VectorListOp { 730 unsigned RegNum; 731 unsigned Count; 732 unsigned LaneIndex; 733 bool isDoubleSpaced; 734 }; 735 736 struct VectorIndexOp { 737 unsigned Val; 738 }; 739 740 struct ImmOp { 741 const MCExpr *Val; 742 }; 743 744 /// Combined record for all forms of ARM address expressions. 745 struct MemoryOp { 746 unsigned BaseRegNum; 747 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 748 // was specified. 749 const MCConstantExpr *OffsetImm; // Offset immediate value 750 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 751 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 752 unsigned ShiftImm; // shift for OffsetReg. 753 unsigned Alignment; // 0 = no alignment specified 754 // n = alignment in bytes (2, 4, 8, 16, or 32) 755 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 756 }; 757 758 struct PostIdxRegOp { 759 unsigned RegNum; 760 bool isAdd; 761 ARM_AM::ShiftOpc ShiftTy; 762 unsigned ShiftImm; 763 }; 764 765 struct ShifterImmOp { 766 bool isASR; 767 unsigned Imm; 768 }; 769 770 struct RegShiftedRegOp { 771 ARM_AM::ShiftOpc ShiftTy; 772 unsigned SrcReg; 773 unsigned ShiftReg; 774 unsigned ShiftImm; 775 }; 776 777 struct RegShiftedImmOp { 778 ARM_AM::ShiftOpc ShiftTy; 779 unsigned SrcReg; 780 unsigned ShiftImm; 781 }; 782 783 struct RotImmOp { 784 unsigned Imm; 785 }; 786 787 struct ModImmOp { 788 unsigned Bits; 789 unsigned Rot; 790 }; 791 792 struct BitfieldOp { 793 unsigned LSB; 794 unsigned Width; 795 }; 796 797 union { 798 struct CCOp CC; 799 struct CopOp Cop; 800 struct CoprocOptionOp CoprocOption; 801 struct MBOptOp MBOpt; 802 struct ISBOptOp ISBOpt; 803 struct TSBOptOp TSBOpt; 804 struct ITMaskOp ITMask; 805 struct IFlagsOp IFlags; 806 struct MMaskOp MMask; 807 struct BankedRegOp BankedReg; 808 struct TokOp Tok; 809 struct RegOp Reg; 810 struct VectorListOp VectorList; 811 struct VectorIndexOp VectorIndex; 812 struct ImmOp Imm; 813 struct MemoryOp Memory; 814 struct PostIdxRegOp PostIdxReg; 815 struct ShifterImmOp ShifterImm; 816 struct RegShiftedRegOp RegShiftedReg; 817 struct RegShiftedImmOp RegShiftedImm; 818 struct RotImmOp RotImm; 819 struct ModImmOp ModImm; 820 struct BitfieldOp Bitfield; 821 }; 822 823 public: 824 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 825 826 /// getStartLoc - Get the location of the first token of this operand. 827 SMLoc getStartLoc() const override { return StartLoc; } 828 829 /// getEndLoc - Get the location of the last token of this operand. 830 SMLoc getEndLoc() const override { return EndLoc; } 831 832 /// getLocRange - Get the range between the first and last token of this 833 /// operand. 834 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 835 836 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 837 SMLoc getAlignmentLoc() const { 838 assert(Kind == k_Memory && "Invalid access!"); 839 return AlignmentLoc; 840 } 841 842 ARMCC::CondCodes getCondCode() const { 843 assert(Kind == k_CondCode && "Invalid access!"); 844 return CC.Val; 845 } 846 847 unsigned getCoproc() const { 848 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 849 return Cop.Val; 850 } 851 852 StringRef getToken() const { 853 assert(Kind == k_Token && "Invalid access!"); 854 return StringRef(Tok.Data, Tok.Length); 855 } 856 857 unsigned getReg() const override { 858 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 859 return Reg.RegNum; 860 } 861 862 const SmallVectorImpl<unsigned> &getRegList() const { 863 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 864 Kind == k_SPRRegisterList) && "Invalid access!"); 865 return Registers; 866 } 867 868 const MCExpr *getImm() const { 869 assert(isImm() && "Invalid access!"); 870 return Imm.Val; 871 } 872 873 const MCExpr *getConstantPoolImm() const { 874 assert(isConstantPoolImm() && "Invalid access!"); 875 return Imm.Val; 876 } 877 878 unsigned getVectorIndex() const { 879 assert(Kind == k_VectorIndex && "Invalid access!"); 880 return VectorIndex.Val; 881 } 882 883 ARM_MB::MemBOpt getMemBarrierOpt() const { 884 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 885 return MBOpt.Val; 886 } 887 888 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 889 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 890 return ISBOpt.Val; 891 } 892 893 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 894 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 895 return TSBOpt.Val; 896 } 897 898 ARM_PROC::IFlags getProcIFlags() const { 899 assert(Kind == k_ProcIFlags && "Invalid access!"); 900 return IFlags.Val; 901 } 902 903 unsigned getMSRMask() const { 904 assert(Kind == k_MSRMask && "Invalid access!"); 905 return MMask.Val; 906 } 907 908 unsigned getBankedReg() const { 909 assert(Kind == k_BankedReg && "Invalid access!"); 910 return BankedReg.Val; 911 } 912 913 bool isCoprocNum() const { return Kind == k_CoprocNum; } 914 bool isCoprocReg() const { return Kind == k_CoprocReg; } 915 bool isCoprocOption() const { return Kind == k_CoprocOption; } 916 bool isCondCode() const { return Kind == k_CondCode; } 917 bool isCCOut() const { return Kind == k_CCOut; } 918 bool isITMask() const { return Kind == k_ITCondMask; } 919 bool isITCondCode() const { return Kind == k_CondCode; } 920 bool isImm() const override { 921 return Kind == k_Immediate; 922 } 923 924 bool isARMBranchTarget() const { 925 if (!isImm()) return false; 926 927 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 928 return CE->getValue() % 4 == 0; 929 return true; 930 } 931 932 933 bool isThumbBranchTarget() const { 934 if (!isImm()) return false; 935 936 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 937 return CE->getValue() % 2 == 0; 938 return true; 939 } 940 941 // checks whether this operand is an unsigned offset which fits is a field 942 // of specified width and scaled by a specific number of bits 943 template<unsigned width, unsigned scale> 944 bool isUnsignedOffset() const { 945 if (!isImm()) return false; 946 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 947 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 948 int64_t Val = CE->getValue(); 949 int64_t Align = 1LL << scale; 950 int64_t Max = Align * ((1LL << width) - 1); 951 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 952 } 953 return false; 954 } 955 956 // checks whether this operand is an signed offset which fits is a field 957 // of specified width and scaled by a specific number of bits 958 template<unsigned width, unsigned scale> 959 bool isSignedOffset() const { 960 if (!isImm()) return false; 961 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 962 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 963 int64_t Val = CE->getValue(); 964 int64_t Align = 1LL << scale; 965 int64_t Max = Align * ((1LL << (width-1)) - 1); 966 int64_t Min = -Align * (1LL << (width-1)); 967 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 968 } 969 return false; 970 } 971 972 // checks whether this operand is a memory operand computed as an offset 973 // applied to PC. the offset may have 8 bits of magnitude and is represented 974 // with two bits of shift. textually it may be either [pc, #imm], #imm or 975 // relocable expression... 976 bool isThumbMemPC() const { 977 int64_t Val = 0; 978 if (isImm()) { 979 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 980 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 981 if (!CE) return false; 982 Val = CE->getValue(); 983 } 984 else if (isMem()) { 985 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 986 if(Memory.BaseRegNum != ARM::PC) return false; 987 Val = Memory.OffsetImm->getValue(); 988 } 989 else return false; 990 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 991 } 992 993 bool isFPImm() const { 994 if (!isImm()) return false; 995 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 996 if (!CE) return false; 997 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 998 return Val != -1; 999 } 1000 1001 template<int64_t N, int64_t M> 1002 bool isImmediate() const { 1003 if (!isImm()) return false; 1004 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1005 if (!CE) return false; 1006 int64_t Value = CE->getValue(); 1007 return Value >= N && Value <= M; 1008 } 1009 1010 template<int64_t N, int64_t M> 1011 bool isImmediateS4() const { 1012 if (!isImm()) return false; 1013 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1014 if (!CE) return false; 1015 int64_t Value = CE->getValue(); 1016 return ((Value & 3) == 0) && Value >= N && Value <= M; 1017 } 1018 1019 bool isFBits16() const { 1020 return isImmediate<0, 17>(); 1021 } 1022 bool isFBits32() const { 1023 return isImmediate<1, 33>(); 1024 } 1025 bool isImm8s4() const { 1026 return isImmediateS4<-1020, 1020>(); 1027 } 1028 bool isImm0_1020s4() const { 1029 return isImmediateS4<0, 1020>(); 1030 } 1031 bool isImm0_508s4() const { 1032 return isImmediateS4<0, 508>(); 1033 } 1034 bool isImm0_508s4Neg() const { 1035 if (!isImm()) return false; 1036 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1037 if (!CE) return false; 1038 int64_t Value = -CE->getValue(); 1039 // explicitly exclude zero. we want that to use the normal 0_508 version. 1040 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1041 } 1042 1043 bool isImm0_4095Neg() const { 1044 if (!isImm()) return false; 1045 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1046 if (!CE) return false; 1047 // isImm0_4095Neg is used with 32-bit immediates only. 1048 // 32-bit immediates are zero extended to 64-bit when parsed, 1049 // thus simple -CE->getValue() results in a big negative number, 1050 // not a small positive number as intended 1051 if ((CE->getValue() >> 32) > 0) return false; 1052 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1053 return Value > 0 && Value < 4096; 1054 } 1055 1056 bool isImm0_7() const { 1057 return isImmediate<0, 7>(); 1058 } 1059 1060 bool isImm1_16() const { 1061 return isImmediate<1, 16>(); 1062 } 1063 1064 bool isImm1_32() const { 1065 return isImmediate<1, 32>(); 1066 } 1067 1068 bool isImm8_255() const { 1069 return isImmediate<8, 255>(); 1070 } 1071 1072 bool isImm256_65535Expr() const { 1073 if (!isImm()) return false; 1074 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1075 // If it's not a constant expression, it'll generate a fixup and be 1076 // handled later. 1077 if (!CE) return true; 1078 int64_t Value = CE->getValue(); 1079 return Value >= 256 && Value < 65536; 1080 } 1081 1082 bool isImm0_65535Expr() const { 1083 if (!isImm()) return false; 1084 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1085 // If it's not a constant expression, it'll generate a fixup and be 1086 // handled later. 1087 if (!CE) return true; 1088 int64_t Value = CE->getValue(); 1089 return Value >= 0 && Value < 65536; 1090 } 1091 1092 bool isImm24bit() const { 1093 return isImmediate<0, 0xffffff + 1>(); 1094 } 1095 1096 bool isImmThumbSR() const { 1097 return isImmediate<1, 33>(); 1098 } 1099 1100 bool isPKHLSLImm() const { 1101 return isImmediate<0, 32>(); 1102 } 1103 1104 bool isPKHASRImm() const { 1105 return isImmediate<0, 33>(); 1106 } 1107 1108 bool isAdrLabel() const { 1109 // If we have an immediate that's not a constant, treat it as a label 1110 // reference needing a fixup. 1111 if (isImm() && !isa<MCConstantExpr>(getImm())) 1112 return true; 1113 1114 // If it is a constant, it must fit into a modified immediate encoding. 1115 if (!isImm()) return false; 1116 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1117 if (!CE) return false; 1118 int64_t Value = CE->getValue(); 1119 return (ARM_AM::getSOImmVal(Value) != -1 || 1120 ARM_AM::getSOImmVal(-Value) != -1); 1121 } 1122 1123 bool isT2SOImm() const { 1124 // If we have an immediate that's not a constant, treat it as an expression 1125 // needing a fixup. 1126 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1127 // We want to avoid matching :upper16: and :lower16: as we want these 1128 // expressions to match in isImm0_65535Expr() 1129 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1130 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1131 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1132 } 1133 if (!isImm()) return false; 1134 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1135 if (!CE) return false; 1136 int64_t Value = CE->getValue(); 1137 return ARM_AM::getT2SOImmVal(Value) != -1; 1138 } 1139 1140 bool isT2SOImmNot() const { 1141 if (!isImm()) return false; 1142 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1143 if (!CE) return false; 1144 int64_t Value = CE->getValue(); 1145 return ARM_AM::getT2SOImmVal(Value) == -1 && 1146 ARM_AM::getT2SOImmVal(~Value) != -1; 1147 } 1148 1149 bool isT2SOImmNeg() const { 1150 if (!isImm()) return false; 1151 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1152 if (!CE) return false; 1153 int64_t Value = CE->getValue(); 1154 // Only use this when not representable as a plain so_imm. 1155 return ARM_AM::getT2SOImmVal(Value) == -1 && 1156 ARM_AM::getT2SOImmVal(-Value) != -1; 1157 } 1158 1159 bool isSetEndImm() const { 1160 if (!isImm()) return false; 1161 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1162 if (!CE) return false; 1163 int64_t Value = CE->getValue(); 1164 return Value == 1 || Value == 0; 1165 } 1166 1167 bool isReg() const override { return Kind == k_Register; } 1168 bool isRegList() const { return Kind == k_RegisterList; } 1169 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1170 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1171 bool isToken() const override { return Kind == k_Token; } 1172 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1173 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1174 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1175 bool isMem() const override { 1176 if (Kind != k_Memory) 1177 return false; 1178 if (Memory.BaseRegNum && 1179 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1180 return false; 1181 if (Memory.OffsetRegNum && 1182 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1183 return false; 1184 return true; 1185 } 1186 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1187 bool isRegShiftedReg() const { 1188 return Kind == k_ShiftedRegister && 1189 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1190 RegShiftedReg.SrcReg) && 1191 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1192 RegShiftedReg.ShiftReg); 1193 } 1194 bool isRegShiftedImm() const { 1195 return Kind == k_ShiftedImmediate && 1196 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1197 RegShiftedImm.SrcReg); 1198 } 1199 bool isRotImm() const { return Kind == k_RotateImmediate; } 1200 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1201 1202 bool isModImmNot() const { 1203 if (!isImm()) return false; 1204 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1205 if (!CE) return false; 1206 int64_t Value = CE->getValue(); 1207 return ARM_AM::getSOImmVal(~Value) != -1; 1208 } 1209 1210 bool isModImmNeg() const { 1211 if (!isImm()) return false; 1212 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1213 if (!CE) return false; 1214 int64_t Value = CE->getValue(); 1215 return ARM_AM::getSOImmVal(Value) == -1 && 1216 ARM_AM::getSOImmVal(-Value) != -1; 1217 } 1218 1219 bool isThumbModImmNeg1_7() const { 1220 if (!isImm()) return false; 1221 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1222 if (!CE) return false; 1223 int32_t Value = -(int32_t)CE->getValue(); 1224 return 0 < Value && Value < 8; 1225 } 1226 1227 bool isThumbModImmNeg8_255() const { 1228 if (!isImm()) return false; 1229 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1230 if (!CE) return false; 1231 int32_t Value = -(int32_t)CE->getValue(); 1232 return 7 < Value && Value < 256; 1233 } 1234 1235 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1236 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1237 bool isPostIdxRegShifted() const { 1238 return Kind == k_PostIndexRegister && 1239 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1240 } 1241 bool isPostIdxReg() const { 1242 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1243 } 1244 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1245 if (!isMem()) 1246 return false; 1247 // No offset of any kind. 1248 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1249 (alignOK || Memory.Alignment == Alignment); 1250 } 1251 bool isMemPCRelImm12() const { 1252 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1253 return false; 1254 // Base register must be PC. 1255 if (Memory.BaseRegNum != ARM::PC) 1256 return false; 1257 // Immediate offset in range [-4095, 4095]. 1258 if (!Memory.OffsetImm) return true; 1259 int64_t Val = Memory.OffsetImm->getValue(); 1260 return (Val > -4096 && Val < 4096) || 1261 (Val == std::numeric_limits<int32_t>::min()); 1262 } 1263 1264 bool isAlignedMemory() const { 1265 return isMemNoOffset(true); 1266 } 1267 1268 bool isAlignedMemoryNone() const { 1269 return isMemNoOffset(false, 0); 1270 } 1271 1272 bool isDupAlignedMemoryNone() const { 1273 return isMemNoOffset(false, 0); 1274 } 1275 1276 bool isAlignedMemory16() const { 1277 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1278 return true; 1279 return isMemNoOffset(false, 0); 1280 } 1281 1282 bool isDupAlignedMemory16() const { 1283 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1284 return true; 1285 return isMemNoOffset(false, 0); 1286 } 1287 1288 bool isAlignedMemory32() const { 1289 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1290 return true; 1291 return isMemNoOffset(false, 0); 1292 } 1293 1294 bool isDupAlignedMemory32() const { 1295 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1296 return true; 1297 return isMemNoOffset(false, 0); 1298 } 1299 1300 bool isAlignedMemory64() const { 1301 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1302 return true; 1303 return isMemNoOffset(false, 0); 1304 } 1305 1306 bool isDupAlignedMemory64() const { 1307 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1308 return true; 1309 return isMemNoOffset(false, 0); 1310 } 1311 1312 bool isAlignedMemory64or128() const { 1313 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1314 return true; 1315 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1316 return true; 1317 return isMemNoOffset(false, 0); 1318 } 1319 1320 bool isDupAlignedMemory64or128() const { 1321 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1322 return true; 1323 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1324 return true; 1325 return isMemNoOffset(false, 0); 1326 } 1327 1328 bool isAlignedMemory64or128or256() const { 1329 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1330 return true; 1331 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1332 return true; 1333 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1334 return true; 1335 return isMemNoOffset(false, 0); 1336 } 1337 1338 bool isAddrMode2() const { 1339 if (!isMem() || Memory.Alignment != 0) return false; 1340 // Check for register offset. 1341 if (Memory.OffsetRegNum) return true; 1342 // Immediate offset in range [-4095, 4095]. 1343 if (!Memory.OffsetImm) return true; 1344 int64_t Val = Memory.OffsetImm->getValue(); 1345 return Val > -4096 && Val < 4096; 1346 } 1347 1348 bool isAM2OffsetImm() const { 1349 if (!isImm()) return false; 1350 // Immediate offset in range [-4095, 4095]. 1351 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1352 if (!CE) return false; 1353 int64_t Val = CE->getValue(); 1354 return (Val == std::numeric_limits<int32_t>::min()) || 1355 (Val > -4096 && Val < 4096); 1356 } 1357 1358 bool isAddrMode3() const { 1359 // If we have an immediate that's not a constant, treat it as a label 1360 // reference needing a fixup. If it is a constant, it's something else 1361 // and we reject it. 1362 if (isImm() && !isa<MCConstantExpr>(getImm())) 1363 return true; 1364 if (!isMem() || Memory.Alignment != 0) return false; 1365 // No shifts are legal for AM3. 1366 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1367 // Check for register offset. 1368 if (Memory.OffsetRegNum) return true; 1369 // Immediate offset in range [-255, 255]. 1370 if (!Memory.OffsetImm) return true; 1371 int64_t Val = Memory.OffsetImm->getValue(); 1372 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1373 // have to check for this too. 1374 return (Val > -256 && Val < 256) || 1375 Val == std::numeric_limits<int32_t>::min(); 1376 } 1377 1378 bool isAM3Offset() const { 1379 if (isPostIdxReg()) 1380 return true; 1381 if (!isImm()) 1382 return false; 1383 // Immediate offset in range [-255, 255]. 1384 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1385 if (!CE) return false; 1386 int64_t Val = CE->getValue(); 1387 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1388 return (Val > -256 && Val < 256) || 1389 Val == std::numeric_limits<int32_t>::min(); 1390 } 1391 1392 bool isAddrMode5() const { 1393 // If we have an immediate that's not a constant, treat it as a label 1394 // reference needing a fixup. If it is a constant, it's something else 1395 // and we reject it. 1396 if (isImm() && !isa<MCConstantExpr>(getImm())) 1397 return true; 1398 if (!isMem() || Memory.Alignment != 0) return false; 1399 // Check for register offset. 1400 if (Memory.OffsetRegNum) return false; 1401 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1402 if (!Memory.OffsetImm) return true; 1403 int64_t Val = Memory.OffsetImm->getValue(); 1404 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1405 Val == std::numeric_limits<int32_t>::min(); 1406 } 1407 1408 bool isAddrMode5FP16() const { 1409 // If we have an immediate that's not a constant, treat it as a label 1410 // reference needing a fixup. If it is a constant, it's something else 1411 // and we reject it. 1412 if (isImm() && !isa<MCConstantExpr>(getImm())) 1413 return true; 1414 if (!isMem() || Memory.Alignment != 0) return false; 1415 // Check for register offset. 1416 if (Memory.OffsetRegNum) return false; 1417 // Immediate offset in range [-510, 510] and a multiple of 2. 1418 if (!Memory.OffsetImm) return true; 1419 int64_t Val = Memory.OffsetImm->getValue(); 1420 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1421 Val == std::numeric_limits<int32_t>::min(); 1422 } 1423 1424 bool isMemTBB() const { 1425 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1426 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1427 return false; 1428 return true; 1429 } 1430 1431 bool isMemTBH() const { 1432 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1433 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1434 Memory.Alignment != 0 ) 1435 return false; 1436 return true; 1437 } 1438 1439 bool isMemRegOffset() const { 1440 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1441 return false; 1442 return true; 1443 } 1444 1445 bool isT2MemRegOffset() const { 1446 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1447 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1448 return false; 1449 // Only lsl #{0, 1, 2, 3} allowed. 1450 if (Memory.ShiftType == ARM_AM::no_shift) 1451 return true; 1452 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1453 return false; 1454 return true; 1455 } 1456 1457 bool isMemThumbRR() const { 1458 // Thumb reg+reg addressing is simple. Just two registers, a base and 1459 // an offset. No shifts, negations or any other complicating factors. 1460 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1461 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1462 return false; 1463 return isARMLowRegister(Memory.BaseRegNum) && 1464 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1465 } 1466 1467 bool isMemThumbRIs4() const { 1468 if (!isMem() || Memory.OffsetRegNum != 0 || 1469 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1470 return false; 1471 // Immediate offset, multiple of 4 in range [0, 124]. 1472 if (!Memory.OffsetImm) return true; 1473 int64_t Val = Memory.OffsetImm->getValue(); 1474 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1475 } 1476 1477 bool isMemThumbRIs2() const { 1478 if (!isMem() || Memory.OffsetRegNum != 0 || 1479 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1480 return false; 1481 // Immediate offset, multiple of 4 in range [0, 62]. 1482 if (!Memory.OffsetImm) return true; 1483 int64_t Val = Memory.OffsetImm->getValue(); 1484 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1485 } 1486 1487 bool isMemThumbRIs1() const { 1488 if (!isMem() || Memory.OffsetRegNum != 0 || 1489 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1490 return false; 1491 // Immediate offset in range [0, 31]. 1492 if (!Memory.OffsetImm) return true; 1493 int64_t Val = Memory.OffsetImm->getValue(); 1494 return Val >= 0 && Val <= 31; 1495 } 1496 1497 bool isMemThumbSPI() const { 1498 if (!isMem() || Memory.OffsetRegNum != 0 || 1499 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1500 return false; 1501 // Immediate offset, multiple of 4 in range [0, 1020]. 1502 if (!Memory.OffsetImm) return true; 1503 int64_t Val = Memory.OffsetImm->getValue(); 1504 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1505 } 1506 1507 bool isMemImm8s4Offset() const { 1508 // If we have an immediate that's not a constant, treat it as a label 1509 // reference needing a fixup. If it is a constant, it's something else 1510 // and we reject it. 1511 if (isImm() && !isa<MCConstantExpr>(getImm())) 1512 return true; 1513 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1514 return false; 1515 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1516 if (!Memory.OffsetImm) return true; 1517 int64_t Val = Memory.OffsetImm->getValue(); 1518 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1519 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1520 Val == std::numeric_limits<int32_t>::min(); 1521 } 1522 1523 bool isMemImm0_1020s4Offset() const { 1524 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1525 return false; 1526 // Immediate offset a multiple of 4 in range [0, 1020]. 1527 if (!Memory.OffsetImm) return true; 1528 int64_t Val = Memory.OffsetImm->getValue(); 1529 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1530 } 1531 1532 bool isMemImm8Offset() const { 1533 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1534 return false; 1535 // Base reg of PC isn't allowed for these encodings. 1536 if (Memory.BaseRegNum == ARM::PC) return false; 1537 // Immediate offset in range [-255, 255]. 1538 if (!Memory.OffsetImm) return true; 1539 int64_t Val = Memory.OffsetImm->getValue(); 1540 return (Val == std::numeric_limits<int32_t>::min()) || 1541 (Val > -256 && Val < 256); 1542 } 1543 1544 bool isMemPosImm8Offset() const { 1545 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1546 return false; 1547 // Immediate offset in range [0, 255]. 1548 if (!Memory.OffsetImm) return true; 1549 int64_t Val = Memory.OffsetImm->getValue(); 1550 return Val >= 0 && Val < 256; 1551 } 1552 1553 bool isMemNegImm8Offset() const { 1554 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1555 return false; 1556 // Base reg of PC isn't allowed for these encodings. 1557 if (Memory.BaseRegNum == ARM::PC) return false; 1558 // Immediate offset in range [-255, -1]. 1559 if (!Memory.OffsetImm) return false; 1560 int64_t Val = Memory.OffsetImm->getValue(); 1561 return (Val == std::numeric_limits<int32_t>::min()) || 1562 (Val > -256 && Val < 0); 1563 } 1564 1565 bool isMemUImm12Offset() const { 1566 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1567 return false; 1568 // Immediate offset in range [0, 4095]. 1569 if (!Memory.OffsetImm) return true; 1570 int64_t Val = Memory.OffsetImm->getValue(); 1571 return (Val >= 0 && Val < 4096); 1572 } 1573 1574 bool isMemImm12Offset() const { 1575 // If we have an immediate that's not a constant, treat it as a label 1576 // reference needing a fixup. If it is a constant, it's something else 1577 // and we reject it. 1578 1579 if (isImm() && !isa<MCConstantExpr>(getImm())) 1580 return true; 1581 1582 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1583 return false; 1584 // Immediate offset in range [-4095, 4095]. 1585 if (!Memory.OffsetImm) return true; 1586 int64_t Val = Memory.OffsetImm->getValue(); 1587 return (Val > -4096 && Val < 4096) || 1588 (Val == std::numeric_limits<int32_t>::min()); 1589 } 1590 1591 bool isConstPoolAsmImm() const { 1592 // Delay processing of Constant Pool Immediate, this will turn into 1593 // a constant. Match no other operand 1594 return (isConstantPoolImm()); 1595 } 1596 1597 bool isPostIdxImm8() const { 1598 if (!isImm()) return false; 1599 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1600 if (!CE) return false; 1601 int64_t Val = CE->getValue(); 1602 return (Val > -256 && Val < 256) || 1603 (Val == std::numeric_limits<int32_t>::min()); 1604 } 1605 1606 bool isPostIdxImm8s4() const { 1607 if (!isImm()) return false; 1608 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1609 if (!CE) return false; 1610 int64_t Val = CE->getValue(); 1611 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1612 (Val == std::numeric_limits<int32_t>::min()); 1613 } 1614 1615 bool isMSRMask() const { return Kind == k_MSRMask; } 1616 bool isBankedReg() const { return Kind == k_BankedReg; } 1617 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1618 1619 // NEON operands. 1620 bool isSingleSpacedVectorList() const { 1621 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1622 } 1623 1624 bool isDoubleSpacedVectorList() const { 1625 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1626 } 1627 1628 bool isVecListOneD() const { 1629 if (!isSingleSpacedVectorList()) return false; 1630 return VectorList.Count == 1; 1631 } 1632 1633 bool isVecListDPair() const { 1634 if (!isSingleSpacedVectorList()) return false; 1635 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1636 .contains(VectorList.RegNum)); 1637 } 1638 1639 bool isVecListThreeD() const { 1640 if (!isSingleSpacedVectorList()) return false; 1641 return VectorList.Count == 3; 1642 } 1643 1644 bool isVecListFourD() const { 1645 if (!isSingleSpacedVectorList()) return false; 1646 return VectorList.Count == 4; 1647 } 1648 1649 bool isVecListDPairSpaced() const { 1650 if (Kind != k_VectorList) return false; 1651 if (isSingleSpacedVectorList()) return false; 1652 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1653 .contains(VectorList.RegNum)); 1654 } 1655 1656 bool isVecListThreeQ() const { 1657 if (!isDoubleSpacedVectorList()) return false; 1658 return VectorList.Count == 3; 1659 } 1660 1661 bool isVecListFourQ() const { 1662 if (!isDoubleSpacedVectorList()) return false; 1663 return VectorList.Count == 4; 1664 } 1665 1666 bool isSingleSpacedVectorAllLanes() const { 1667 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1668 } 1669 1670 bool isDoubleSpacedVectorAllLanes() const { 1671 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1672 } 1673 1674 bool isVecListOneDAllLanes() const { 1675 if (!isSingleSpacedVectorAllLanes()) return false; 1676 return VectorList.Count == 1; 1677 } 1678 1679 bool isVecListDPairAllLanes() const { 1680 if (!isSingleSpacedVectorAllLanes()) return false; 1681 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1682 .contains(VectorList.RegNum)); 1683 } 1684 1685 bool isVecListDPairSpacedAllLanes() const { 1686 if (!isDoubleSpacedVectorAllLanes()) return false; 1687 return VectorList.Count == 2; 1688 } 1689 1690 bool isVecListThreeDAllLanes() const { 1691 if (!isSingleSpacedVectorAllLanes()) return false; 1692 return VectorList.Count == 3; 1693 } 1694 1695 bool isVecListThreeQAllLanes() const { 1696 if (!isDoubleSpacedVectorAllLanes()) return false; 1697 return VectorList.Count == 3; 1698 } 1699 1700 bool isVecListFourDAllLanes() const { 1701 if (!isSingleSpacedVectorAllLanes()) return false; 1702 return VectorList.Count == 4; 1703 } 1704 1705 bool isVecListFourQAllLanes() const { 1706 if (!isDoubleSpacedVectorAllLanes()) return false; 1707 return VectorList.Count == 4; 1708 } 1709 1710 bool isSingleSpacedVectorIndexed() const { 1711 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1712 } 1713 1714 bool isDoubleSpacedVectorIndexed() const { 1715 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1716 } 1717 1718 bool isVecListOneDByteIndexed() const { 1719 if (!isSingleSpacedVectorIndexed()) return false; 1720 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1721 } 1722 1723 bool isVecListOneDHWordIndexed() const { 1724 if (!isSingleSpacedVectorIndexed()) return false; 1725 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1726 } 1727 1728 bool isVecListOneDWordIndexed() const { 1729 if (!isSingleSpacedVectorIndexed()) return false; 1730 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1731 } 1732 1733 bool isVecListTwoDByteIndexed() const { 1734 if (!isSingleSpacedVectorIndexed()) return false; 1735 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1736 } 1737 1738 bool isVecListTwoDHWordIndexed() const { 1739 if (!isSingleSpacedVectorIndexed()) return false; 1740 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1741 } 1742 1743 bool isVecListTwoQWordIndexed() const { 1744 if (!isDoubleSpacedVectorIndexed()) return false; 1745 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1746 } 1747 1748 bool isVecListTwoQHWordIndexed() const { 1749 if (!isDoubleSpacedVectorIndexed()) return false; 1750 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1751 } 1752 1753 bool isVecListTwoDWordIndexed() const { 1754 if (!isSingleSpacedVectorIndexed()) return false; 1755 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1756 } 1757 1758 bool isVecListThreeDByteIndexed() const { 1759 if (!isSingleSpacedVectorIndexed()) return false; 1760 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1761 } 1762 1763 bool isVecListThreeDHWordIndexed() const { 1764 if (!isSingleSpacedVectorIndexed()) return false; 1765 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1766 } 1767 1768 bool isVecListThreeQWordIndexed() const { 1769 if (!isDoubleSpacedVectorIndexed()) return false; 1770 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1771 } 1772 1773 bool isVecListThreeQHWordIndexed() const { 1774 if (!isDoubleSpacedVectorIndexed()) return false; 1775 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1776 } 1777 1778 bool isVecListThreeDWordIndexed() const { 1779 if (!isSingleSpacedVectorIndexed()) return false; 1780 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1781 } 1782 1783 bool isVecListFourDByteIndexed() const { 1784 if (!isSingleSpacedVectorIndexed()) return false; 1785 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1786 } 1787 1788 bool isVecListFourDHWordIndexed() const { 1789 if (!isSingleSpacedVectorIndexed()) return false; 1790 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1791 } 1792 1793 bool isVecListFourQWordIndexed() const { 1794 if (!isDoubleSpacedVectorIndexed()) return false; 1795 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1796 } 1797 1798 bool isVecListFourQHWordIndexed() const { 1799 if (!isDoubleSpacedVectorIndexed()) return false; 1800 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1801 } 1802 1803 bool isVecListFourDWordIndexed() const { 1804 if (!isSingleSpacedVectorIndexed()) return false; 1805 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1806 } 1807 1808 bool isVectorIndex8() const { 1809 if (Kind != k_VectorIndex) return false; 1810 return VectorIndex.Val < 8; 1811 } 1812 1813 bool isVectorIndex16() const { 1814 if (Kind != k_VectorIndex) return false; 1815 return VectorIndex.Val < 4; 1816 } 1817 1818 bool isVectorIndex32() const { 1819 if (Kind != k_VectorIndex) return false; 1820 return VectorIndex.Val < 2; 1821 } 1822 bool isVectorIndex64() const { 1823 if (Kind != k_VectorIndex) return false; 1824 return VectorIndex.Val < 1; 1825 } 1826 1827 bool isNEONi8splat() const { 1828 if (!isImm()) return false; 1829 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1830 // Must be a constant. 1831 if (!CE) return false; 1832 int64_t Value = CE->getValue(); 1833 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1834 // value. 1835 return Value >= 0 && Value < 256; 1836 } 1837 1838 bool isNEONi16splat() const { 1839 if (isNEONByteReplicate(2)) 1840 return false; // Leave that for bytes replication and forbid by default. 1841 if (!isImm()) 1842 return false; 1843 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1844 // Must be a constant. 1845 if (!CE) return false; 1846 unsigned Value = CE->getValue(); 1847 return ARM_AM::isNEONi16splat(Value); 1848 } 1849 1850 bool isNEONi16splatNot() const { 1851 if (!isImm()) 1852 return false; 1853 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1854 // Must be a constant. 1855 if (!CE) return false; 1856 unsigned Value = CE->getValue(); 1857 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1858 } 1859 1860 bool isNEONi32splat() const { 1861 if (isNEONByteReplicate(4)) 1862 return false; // Leave that for bytes replication and forbid by default. 1863 if (!isImm()) 1864 return false; 1865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1866 // Must be a constant. 1867 if (!CE) return false; 1868 unsigned Value = CE->getValue(); 1869 return ARM_AM::isNEONi32splat(Value); 1870 } 1871 1872 bool isNEONi32splatNot() const { 1873 if (!isImm()) 1874 return false; 1875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1876 // Must be a constant. 1877 if (!CE) return false; 1878 unsigned Value = CE->getValue(); 1879 return ARM_AM::isNEONi32splat(~Value); 1880 } 1881 1882 static bool isValidNEONi32vmovImm(int64_t Value) { 1883 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1884 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1885 return ((Value & 0xffffffffffffff00) == 0) || 1886 ((Value & 0xffffffffffff00ff) == 0) || 1887 ((Value & 0xffffffffff00ffff) == 0) || 1888 ((Value & 0xffffffff00ffffff) == 0) || 1889 ((Value & 0xffffffffffff00ff) == 0xff) || 1890 ((Value & 0xffffffffff00ffff) == 0xffff); 1891 } 1892 1893 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 1894 assert((Width == 8 || Width == 16 || Width == 32) && 1895 "Invalid element width"); 1896 assert(NumElems * Width <= 64 && "Invalid result width"); 1897 1898 if (!isImm()) 1899 return false; 1900 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1901 // Must be a constant. 1902 if (!CE) 1903 return false; 1904 int64_t Value = CE->getValue(); 1905 if (!Value) 1906 return false; // Don't bother with zero. 1907 if (Inv) 1908 Value = ~Value; 1909 1910 uint64_t Mask = (1ull << Width) - 1; 1911 uint64_t Elem = Value & Mask; 1912 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 1913 return false; 1914 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 1915 return false; 1916 1917 for (unsigned i = 1; i < NumElems; ++i) { 1918 Value >>= Width; 1919 if ((Value & Mask) != Elem) 1920 return false; 1921 } 1922 return true; 1923 } 1924 1925 bool isNEONByteReplicate(unsigned NumBytes) const { 1926 return isNEONReplicate(8, NumBytes, false); 1927 } 1928 1929 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 1930 assert((FromW == 8 || FromW == 16 || FromW == 32) && 1931 "Invalid source width"); 1932 assert((ToW == 16 || ToW == 32 || ToW == 64) && 1933 "Invalid destination width"); 1934 assert(FromW < ToW && "ToW is not less than FromW"); 1935 } 1936 1937 template<unsigned FromW, unsigned ToW> 1938 bool isNEONmovReplicate() const { 1939 checkNeonReplicateArgs(FromW, ToW); 1940 if (ToW == 64 && isNEONi64splat()) 1941 return false; 1942 return isNEONReplicate(FromW, ToW / FromW, false); 1943 } 1944 1945 template<unsigned FromW, unsigned ToW> 1946 bool isNEONinvReplicate() const { 1947 checkNeonReplicateArgs(FromW, ToW); 1948 return isNEONReplicate(FromW, ToW / FromW, true); 1949 } 1950 1951 bool isNEONi32vmov() const { 1952 if (isNEONByteReplicate(4)) 1953 return false; // Let it to be classified as byte-replicate case. 1954 if (!isImm()) 1955 return false; 1956 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1957 // Must be a constant. 1958 if (!CE) 1959 return false; 1960 return isValidNEONi32vmovImm(CE->getValue()); 1961 } 1962 1963 bool isNEONi32vmovNeg() const { 1964 if (!isImm()) return false; 1965 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1966 // Must be a constant. 1967 if (!CE) return false; 1968 return isValidNEONi32vmovImm(~CE->getValue()); 1969 } 1970 1971 bool isNEONi64splat() const { 1972 if (!isImm()) return false; 1973 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1974 // Must be a constant. 1975 if (!CE) return false; 1976 uint64_t Value = CE->getValue(); 1977 // i64 value with each byte being either 0 or 0xff. 1978 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1979 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1980 return true; 1981 } 1982 1983 template<int64_t Angle, int64_t Remainder> 1984 bool isComplexRotation() const { 1985 if (!isImm()) return false; 1986 1987 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1988 if (!CE) return false; 1989 uint64_t Value = CE->getValue(); 1990 1991 return (Value % Angle == Remainder && Value <= 270); 1992 } 1993 1994 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1995 // Add as immediates when possible. Null MCExpr = 0. 1996 if (!Expr) 1997 Inst.addOperand(MCOperand::createImm(0)); 1998 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1999 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2000 else 2001 Inst.addOperand(MCOperand::createExpr(Expr)); 2002 } 2003 2004 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2005 assert(N == 1 && "Invalid number of operands!"); 2006 addExpr(Inst, getImm()); 2007 } 2008 2009 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2010 assert(N == 1 && "Invalid number of operands!"); 2011 addExpr(Inst, getImm()); 2012 } 2013 2014 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2015 assert(N == 2 && "Invalid number of operands!"); 2016 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2017 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2018 Inst.addOperand(MCOperand::createReg(RegNum)); 2019 } 2020 2021 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2022 assert(N == 1 && "Invalid number of operands!"); 2023 Inst.addOperand(MCOperand::createImm(getCoproc())); 2024 } 2025 2026 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2027 assert(N == 1 && "Invalid number of operands!"); 2028 Inst.addOperand(MCOperand::createImm(getCoproc())); 2029 } 2030 2031 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2032 assert(N == 1 && "Invalid number of operands!"); 2033 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2034 } 2035 2036 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2037 assert(N == 1 && "Invalid number of operands!"); 2038 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2039 } 2040 2041 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2042 assert(N == 1 && "Invalid number of operands!"); 2043 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2044 } 2045 2046 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2047 assert(N == 1 && "Invalid number of operands!"); 2048 Inst.addOperand(MCOperand::createReg(getReg())); 2049 } 2050 2051 void addRegOperands(MCInst &Inst, unsigned N) const { 2052 assert(N == 1 && "Invalid number of operands!"); 2053 Inst.addOperand(MCOperand::createReg(getReg())); 2054 } 2055 2056 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2057 assert(N == 3 && "Invalid number of operands!"); 2058 assert(isRegShiftedReg() && 2059 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2060 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2061 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2062 Inst.addOperand(MCOperand::createImm( 2063 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2064 } 2065 2066 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2067 assert(N == 2 && "Invalid number of operands!"); 2068 assert(isRegShiftedImm() && 2069 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2070 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2071 // Shift of #32 is encoded as 0 where permitted 2072 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2073 Inst.addOperand(MCOperand::createImm( 2074 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2075 } 2076 2077 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2078 assert(N == 1 && "Invalid number of operands!"); 2079 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2080 ShifterImm.Imm)); 2081 } 2082 2083 void addRegListOperands(MCInst &Inst, unsigned N) const { 2084 assert(N == 1 && "Invalid number of operands!"); 2085 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2086 for (SmallVectorImpl<unsigned>::const_iterator 2087 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2088 Inst.addOperand(MCOperand::createReg(*I)); 2089 } 2090 2091 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2092 addRegListOperands(Inst, N); 2093 } 2094 2095 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2096 addRegListOperands(Inst, N); 2097 } 2098 2099 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2100 assert(N == 1 && "Invalid number of operands!"); 2101 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2102 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2103 } 2104 2105 void addModImmOperands(MCInst &Inst, unsigned N) const { 2106 assert(N == 1 && "Invalid number of operands!"); 2107 2108 // Support for fixups (MCFixup) 2109 if (isImm()) 2110 return addImmOperands(Inst, N); 2111 2112 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2113 } 2114 2115 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2116 assert(N == 1 && "Invalid number of operands!"); 2117 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2118 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2119 Inst.addOperand(MCOperand::createImm(Enc)); 2120 } 2121 2122 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2123 assert(N == 1 && "Invalid number of operands!"); 2124 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2125 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2126 Inst.addOperand(MCOperand::createImm(Enc)); 2127 } 2128 2129 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2130 assert(N == 1 && "Invalid number of operands!"); 2131 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2132 uint32_t Val = -CE->getValue(); 2133 Inst.addOperand(MCOperand::createImm(Val)); 2134 } 2135 2136 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2137 assert(N == 1 && "Invalid number of operands!"); 2138 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2139 uint32_t Val = -CE->getValue(); 2140 Inst.addOperand(MCOperand::createImm(Val)); 2141 } 2142 2143 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2144 assert(N == 1 && "Invalid number of operands!"); 2145 // Munge the lsb/width into a bitfield mask. 2146 unsigned lsb = Bitfield.LSB; 2147 unsigned width = Bitfield.Width; 2148 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2149 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2150 (32 - (lsb + width))); 2151 Inst.addOperand(MCOperand::createImm(Mask)); 2152 } 2153 2154 void addImmOperands(MCInst &Inst, unsigned N) const { 2155 assert(N == 1 && "Invalid number of operands!"); 2156 addExpr(Inst, getImm()); 2157 } 2158 2159 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2160 assert(N == 1 && "Invalid number of operands!"); 2161 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2162 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2163 } 2164 2165 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2166 assert(N == 1 && "Invalid number of operands!"); 2167 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2168 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2169 } 2170 2171 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2172 assert(N == 1 && "Invalid number of operands!"); 2173 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2174 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2175 Inst.addOperand(MCOperand::createImm(Val)); 2176 } 2177 2178 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2179 assert(N == 1 && "Invalid number of operands!"); 2180 // FIXME: We really want to scale the value here, but the LDRD/STRD 2181 // instruction don't encode operands that way yet. 2182 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2183 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2184 } 2185 2186 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2187 assert(N == 1 && "Invalid number of operands!"); 2188 // The immediate is scaled by four in the encoding and is stored 2189 // in the MCInst as such. Lop off the low two bits here. 2190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2191 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2192 } 2193 2194 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2195 assert(N == 1 && "Invalid number of operands!"); 2196 // The immediate is scaled by four in the encoding and is stored 2197 // in the MCInst as such. Lop off the low two bits here. 2198 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2199 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2200 } 2201 2202 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2203 assert(N == 1 && "Invalid number of operands!"); 2204 // The immediate is scaled by four in the encoding and is stored 2205 // in the MCInst as such. Lop off the low two bits here. 2206 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2207 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2208 } 2209 2210 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2211 assert(N == 1 && "Invalid number of operands!"); 2212 // The constant encodes as the immediate-1, and we store in the instruction 2213 // the bits as encoded, so subtract off one here. 2214 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2215 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2216 } 2217 2218 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2219 assert(N == 1 && "Invalid number of operands!"); 2220 // The constant encodes as the immediate-1, and we store in the instruction 2221 // the bits as encoded, so subtract off one here. 2222 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2223 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2224 } 2225 2226 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2227 assert(N == 1 && "Invalid number of operands!"); 2228 // The constant encodes as the immediate, except for 32, which encodes as 2229 // zero. 2230 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2231 unsigned Imm = CE->getValue(); 2232 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2233 } 2234 2235 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2236 assert(N == 1 && "Invalid number of operands!"); 2237 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2238 // the instruction as well. 2239 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2240 int Val = CE->getValue(); 2241 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2242 } 2243 2244 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2245 assert(N == 1 && "Invalid number of operands!"); 2246 // The operand is actually a t2_so_imm, but we have its bitwise 2247 // negation in the assembly source, so twiddle it here. 2248 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2249 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2250 } 2251 2252 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2253 assert(N == 1 && "Invalid number of operands!"); 2254 // The operand is actually a t2_so_imm, but we have its 2255 // negation in the assembly source, so twiddle it here. 2256 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2257 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2258 } 2259 2260 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2261 assert(N == 1 && "Invalid number of operands!"); 2262 // The operand is actually an imm0_4095, but we have its 2263 // negation in the assembly source, so twiddle it here. 2264 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2265 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2266 } 2267 2268 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2269 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2270 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2271 return; 2272 } 2273 2274 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2275 assert(SR && "Unknown value type!"); 2276 Inst.addOperand(MCOperand::createExpr(SR)); 2277 } 2278 2279 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2280 assert(N == 1 && "Invalid number of operands!"); 2281 if (isImm()) { 2282 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2283 if (CE) { 2284 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2285 return; 2286 } 2287 2288 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2289 2290 assert(SR && "Unknown value type!"); 2291 Inst.addOperand(MCOperand::createExpr(SR)); 2292 return; 2293 } 2294 2295 assert(isMem() && "Unknown value type!"); 2296 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2297 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2298 } 2299 2300 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2301 assert(N == 1 && "Invalid number of operands!"); 2302 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2303 } 2304 2305 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2306 assert(N == 1 && "Invalid number of operands!"); 2307 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2308 } 2309 2310 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2311 assert(N == 1 && "Invalid number of operands!"); 2312 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2313 } 2314 2315 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2316 assert(N == 1 && "Invalid number of operands!"); 2317 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2318 } 2319 2320 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2321 assert(N == 1 && "Invalid number of operands!"); 2322 int32_t Imm = Memory.OffsetImm->getValue(); 2323 Inst.addOperand(MCOperand::createImm(Imm)); 2324 } 2325 2326 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2327 assert(N == 1 && "Invalid number of operands!"); 2328 assert(isImm() && "Not an immediate!"); 2329 2330 // If we have an immediate that's not a constant, treat it as a label 2331 // reference needing a fixup. 2332 if (!isa<MCConstantExpr>(getImm())) { 2333 Inst.addOperand(MCOperand::createExpr(getImm())); 2334 return; 2335 } 2336 2337 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2338 int Val = CE->getValue(); 2339 Inst.addOperand(MCOperand::createImm(Val)); 2340 } 2341 2342 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2343 assert(N == 2 && "Invalid number of operands!"); 2344 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2345 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2346 } 2347 2348 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2349 addAlignedMemoryOperands(Inst, N); 2350 } 2351 2352 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2353 addAlignedMemoryOperands(Inst, N); 2354 } 2355 2356 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2357 addAlignedMemoryOperands(Inst, N); 2358 } 2359 2360 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2361 addAlignedMemoryOperands(Inst, N); 2362 } 2363 2364 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2365 addAlignedMemoryOperands(Inst, N); 2366 } 2367 2368 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2369 addAlignedMemoryOperands(Inst, N); 2370 } 2371 2372 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2373 addAlignedMemoryOperands(Inst, N); 2374 } 2375 2376 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2377 addAlignedMemoryOperands(Inst, N); 2378 } 2379 2380 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2381 addAlignedMemoryOperands(Inst, N); 2382 } 2383 2384 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2385 addAlignedMemoryOperands(Inst, N); 2386 } 2387 2388 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2389 addAlignedMemoryOperands(Inst, N); 2390 } 2391 2392 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2393 assert(N == 3 && "Invalid number of operands!"); 2394 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2395 if (!Memory.OffsetRegNum) { 2396 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2397 // Special case for #-0 2398 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2399 if (Val < 0) Val = -Val; 2400 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2401 } else { 2402 // For register offset, we encode the shift type and negation flag 2403 // here. 2404 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2405 Memory.ShiftImm, Memory.ShiftType); 2406 } 2407 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2408 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2409 Inst.addOperand(MCOperand::createImm(Val)); 2410 } 2411 2412 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2413 assert(N == 2 && "Invalid number of operands!"); 2414 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2415 assert(CE && "non-constant AM2OffsetImm operand!"); 2416 int32_t Val = CE->getValue(); 2417 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2418 // Special case for #-0 2419 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2420 if (Val < 0) Val = -Val; 2421 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2422 Inst.addOperand(MCOperand::createReg(0)); 2423 Inst.addOperand(MCOperand::createImm(Val)); 2424 } 2425 2426 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2427 assert(N == 3 && "Invalid number of operands!"); 2428 // If we have an immediate that's not a constant, treat it as a label 2429 // reference needing a fixup. If it is a constant, it's something else 2430 // and we reject it. 2431 if (isImm()) { 2432 Inst.addOperand(MCOperand::createExpr(getImm())); 2433 Inst.addOperand(MCOperand::createReg(0)); 2434 Inst.addOperand(MCOperand::createImm(0)); 2435 return; 2436 } 2437 2438 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2439 if (!Memory.OffsetRegNum) { 2440 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2441 // Special case for #-0 2442 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2443 if (Val < 0) Val = -Val; 2444 Val = ARM_AM::getAM3Opc(AddSub, Val); 2445 } else { 2446 // For register offset, we encode the shift type and negation flag 2447 // here. 2448 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2449 } 2450 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2451 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2452 Inst.addOperand(MCOperand::createImm(Val)); 2453 } 2454 2455 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2456 assert(N == 2 && "Invalid number of operands!"); 2457 if (Kind == k_PostIndexRegister) { 2458 int32_t Val = 2459 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2460 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2461 Inst.addOperand(MCOperand::createImm(Val)); 2462 return; 2463 } 2464 2465 // Constant offset. 2466 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2467 int32_t Val = CE->getValue(); 2468 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2469 // Special case for #-0 2470 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2471 if (Val < 0) Val = -Val; 2472 Val = ARM_AM::getAM3Opc(AddSub, Val); 2473 Inst.addOperand(MCOperand::createReg(0)); 2474 Inst.addOperand(MCOperand::createImm(Val)); 2475 } 2476 2477 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2478 assert(N == 2 && "Invalid number of operands!"); 2479 // If we have an immediate that's not a constant, treat it as a label 2480 // reference needing a fixup. If it is a constant, it's something else 2481 // and we reject it. 2482 if (isImm()) { 2483 Inst.addOperand(MCOperand::createExpr(getImm())); 2484 Inst.addOperand(MCOperand::createImm(0)); 2485 return; 2486 } 2487 2488 // The lower two bits are always zero and as such are not encoded. 2489 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2490 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2491 // Special case for #-0 2492 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2493 if (Val < 0) Val = -Val; 2494 Val = ARM_AM::getAM5Opc(AddSub, Val); 2495 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2496 Inst.addOperand(MCOperand::createImm(Val)); 2497 } 2498 2499 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2500 assert(N == 2 && "Invalid number of operands!"); 2501 // If we have an immediate that's not a constant, treat it as a label 2502 // reference needing a fixup. If it is a constant, it's something else 2503 // and we reject it. 2504 if (isImm()) { 2505 Inst.addOperand(MCOperand::createExpr(getImm())); 2506 Inst.addOperand(MCOperand::createImm(0)); 2507 return; 2508 } 2509 2510 // The lower bit is always zero and as such is not encoded. 2511 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2512 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2513 // Special case for #-0 2514 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2515 if (Val < 0) Val = -Val; 2516 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2517 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2518 Inst.addOperand(MCOperand::createImm(Val)); 2519 } 2520 2521 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2522 assert(N == 2 && "Invalid number of operands!"); 2523 // If we have an immediate that's not a constant, treat it as a label 2524 // reference needing a fixup. If it is a constant, it's something else 2525 // and we reject it. 2526 if (isImm()) { 2527 Inst.addOperand(MCOperand::createExpr(getImm())); 2528 Inst.addOperand(MCOperand::createImm(0)); 2529 return; 2530 } 2531 2532 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2533 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2534 Inst.addOperand(MCOperand::createImm(Val)); 2535 } 2536 2537 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2538 assert(N == 2 && "Invalid number of operands!"); 2539 // The lower two bits are always zero and as such are not encoded. 2540 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2541 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2542 Inst.addOperand(MCOperand::createImm(Val)); 2543 } 2544 2545 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2546 assert(N == 2 && "Invalid number of operands!"); 2547 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2548 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2549 Inst.addOperand(MCOperand::createImm(Val)); 2550 } 2551 2552 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2553 addMemImm8OffsetOperands(Inst, N); 2554 } 2555 2556 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2557 addMemImm8OffsetOperands(Inst, N); 2558 } 2559 2560 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2561 assert(N == 2 && "Invalid number of operands!"); 2562 // If this is an immediate, it's a label reference. 2563 if (isImm()) { 2564 addExpr(Inst, getImm()); 2565 Inst.addOperand(MCOperand::createImm(0)); 2566 return; 2567 } 2568 2569 // Otherwise, it's a normal memory reg+offset. 2570 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2571 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2572 Inst.addOperand(MCOperand::createImm(Val)); 2573 } 2574 2575 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2576 assert(N == 2 && "Invalid number of operands!"); 2577 // If this is an immediate, it's a label reference. 2578 if (isImm()) { 2579 addExpr(Inst, getImm()); 2580 Inst.addOperand(MCOperand::createImm(0)); 2581 return; 2582 } 2583 2584 // Otherwise, it's a normal memory reg+offset. 2585 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2586 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2587 Inst.addOperand(MCOperand::createImm(Val)); 2588 } 2589 2590 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2591 assert(N == 1 && "Invalid number of operands!"); 2592 // This is container for the immediate that we will create the constant 2593 // pool from 2594 addExpr(Inst, getConstantPoolImm()); 2595 return; 2596 } 2597 2598 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2599 assert(N == 2 && "Invalid number of operands!"); 2600 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2601 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2602 } 2603 2604 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2605 assert(N == 2 && "Invalid number of operands!"); 2606 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2607 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2608 } 2609 2610 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2611 assert(N == 3 && "Invalid number of operands!"); 2612 unsigned Val = 2613 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2614 Memory.ShiftImm, Memory.ShiftType); 2615 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2616 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2617 Inst.addOperand(MCOperand::createImm(Val)); 2618 } 2619 2620 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2621 assert(N == 3 && "Invalid number of operands!"); 2622 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2623 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2624 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2625 } 2626 2627 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2628 assert(N == 2 && "Invalid number of operands!"); 2629 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2630 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2631 } 2632 2633 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2634 assert(N == 2 && "Invalid number of operands!"); 2635 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2636 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2637 Inst.addOperand(MCOperand::createImm(Val)); 2638 } 2639 2640 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2641 assert(N == 2 && "Invalid number of operands!"); 2642 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2643 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2644 Inst.addOperand(MCOperand::createImm(Val)); 2645 } 2646 2647 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2648 assert(N == 2 && "Invalid number of operands!"); 2649 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2650 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2651 Inst.addOperand(MCOperand::createImm(Val)); 2652 } 2653 2654 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2655 assert(N == 2 && "Invalid number of operands!"); 2656 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2657 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2658 Inst.addOperand(MCOperand::createImm(Val)); 2659 } 2660 2661 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2662 assert(N == 1 && "Invalid number of operands!"); 2663 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2664 assert(CE && "non-constant post-idx-imm8 operand!"); 2665 int Imm = CE->getValue(); 2666 bool isAdd = Imm >= 0; 2667 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2668 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2669 Inst.addOperand(MCOperand::createImm(Imm)); 2670 } 2671 2672 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2673 assert(N == 1 && "Invalid number of operands!"); 2674 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2675 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2676 int Imm = CE->getValue(); 2677 bool isAdd = Imm >= 0; 2678 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2679 // Immediate is scaled by 4. 2680 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2681 Inst.addOperand(MCOperand::createImm(Imm)); 2682 } 2683 2684 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2685 assert(N == 2 && "Invalid number of operands!"); 2686 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2687 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2688 } 2689 2690 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2691 assert(N == 2 && "Invalid number of operands!"); 2692 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2693 // The sign, shift type, and shift amount are encoded in a single operand 2694 // using the AM2 encoding helpers. 2695 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2696 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2697 PostIdxReg.ShiftTy); 2698 Inst.addOperand(MCOperand::createImm(Imm)); 2699 } 2700 2701 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2702 assert(N == 1 && "Invalid number of operands!"); 2703 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2704 } 2705 2706 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2707 assert(N == 1 && "Invalid number of operands!"); 2708 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2709 } 2710 2711 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2712 assert(N == 1 && "Invalid number of operands!"); 2713 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2714 } 2715 2716 void addVecListOperands(MCInst &Inst, unsigned N) const { 2717 assert(N == 1 && "Invalid number of operands!"); 2718 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2719 } 2720 2721 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2722 assert(N == 2 && "Invalid number of operands!"); 2723 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2724 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2725 } 2726 2727 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2728 assert(N == 1 && "Invalid number of operands!"); 2729 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2730 } 2731 2732 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2733 assert(N == 1 && "Invalid number of operands!"); 2734 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2735 } 2736 2737 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2738 assert(N == 1 && "Invalid number of operands!"); 2739 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2740 } 2741 2742 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 2743 assert(N == 1 && "Invalid number of operands!"); 2744 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2745 } 2746 2747 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2748 assert(N == 1 && "Invalid number of operands!"); 2749 // The immediate encodes the type of constant as well as the value. 2750 // Mask in that this is an i8 splat. 2751 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2752 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2753 } 2754 2755 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2756 assert(N == 1 && "Invalid number of operands!"); 2757 // The immediate encodes the type of constant as well as the value. 2758 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2759 unsigned Value = CE->getValue(); 2760 Value = ARM_AM::encodeNEONi16splat(Value); 2761 Inst.addOperand(MCOperand::createImm(Value)); 2762 } 2763 2764 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2765 assert(N == 1 && "Invalid number of operands!"); 2766 // The immediate encodes the type of constant as well as the value. 2767 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2768 unsigned Value = CE->getValue(); 2769 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2770 Inst.addOperand(MCOperand::createImm(Value)); 2771 } 2772 2773 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2774 assert(N == 1 && "Invalid number of operands!"); 2775 // The immediate encodes the type of constant as well as the value. 2776 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2777 unsigned Value = CE->getValue(); 2778 Value = ARM_AM::encodeNEONi32splat(Value); 2779 Inst.addOperand(MCOperand::createImm(Value)); 2780 } 2781 2782 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2783 assert(N == 1 && "Invalid number of operands!"); 2784 // The immediate encodes the type of constant as well as the value. 2785 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2786 unsigned Value = CE->getValue(); 2787 Value = ARM_AM::encodeNEONi32splat(~Value); 2788 Inst.addOperand(MCOperand::createImm(Value)); 2789 } 2790 2791 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 2792 // The immediate encodes the type of constant as well as the value. 2793 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2794 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2795 Inst.getOpcode() == ARM::VMOVv16i8) && 2796 "All instructions that wants to replicate non-zero byte " 2797 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2798 unsigned Value = CE->getValue(); 2799 if (Inv) 2800 Value = ~Value; 2801 unsigned B = Value & 0xff; 2802 B |= 0xe00; // cmode = 0b1110 2803 Inst.addOperand(MCOperand::createImm(B)); 2804 } 2805 2806 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 2807 assert(N == 1 && "Invalid number of operands!"); 2808 addNEONi8ReplicateOperands(Inst, true); 2809 } 2810 2811 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 2812 if (Value >= 256 && Value <= 0xffff) 2813 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2814 else if (Value > 0xffff && Value <= 0xffffff) 2815 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2816 else if (Value > 0xffffff) 2817 Value = (Value >> 24) | 0x600; 2818 return Value; 2819 } 2820 2821 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2822 assert(N == 1 && "Invalid number of operands!"); 2823 // The immediate encodes the type of constant as well as the value. 2824 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2825 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 2826 Inst.addOperand(MCOperand::createImm(Value)); 2827 } 2828 2829 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 2830 assert(N == 1 && "Invalid number of operands!"); 2831 addNEONi8ReplicateOperands(Inst, false); 2832 } 2833 2834 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 2835 assert(N == 1 && "Invalid number of operands!"); 2836 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2837 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 2838 Inst.getOpcode() == ARM::VMOVv8i16 || 2839 Inst.getOpcode() == ARM::VMVNv4i16 || 2840 Inst.getOpcode() == ARM::VMVNv8i16) && 2841 "All instructions that want to replicate non-zero half-word " 2842 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 2843 uint64_t Value = CE->getValue(); 2844 unsigned Elem = Value & 0xffff; 2845 if (Elem >= 256) 2846 Elem = (Elem >> 8) | 0x200; 2847 Inst.addOperand(MCOperand::createImm(Elem)); 2848 } 2849 2850 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2851 assert(N == 1 && "Invalid number of operands!"); 2852 // The immediate encodes the type of constant as well as the value. 2853 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2854 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 2855 Inst.addOperand(MCOperand::createImm(Value)); 2856 } 2857 2858 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 2859 assert(N == 1 && "Invalid number of operands!"); 2860 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2861 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 2862 Inst.getOpcode() == ARM::VMOVv4i32 || 2863 Inst.getOpcode() == ARM::VMVNv2i32 || 2864 Inst.getOpcode() == ARM::VMVNv4i32) && 2865 "All instructions that want to replicate non-zero word " 2866 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 2867 uint64_t Value = CE->getValue(); 2868 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 2869 Inst.addOperand(MCOperand::createImm(Elem)); 2870 } 2871 2872 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2873 assert(N == 1 && "Invalid number of operands!"); 2874 // The immediate encodes the type of constant as well as the value. 2875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2876 uint64_t Value = CE->getValue(); 2877 unsigned Imm = 0; 2878 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2879 Imm |= (Value & 1) << i; 2880 } 2881 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2882 } 2883 2884 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 2885 assert(N == 1 && "Invalid number of operands!"); 2886 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2887 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 2888 } 2889 2890 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 2891 assert(N == 1 && "Invalid number of operands!"); 2892 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2893 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 2894 } 2895 2896 void print(raw_ostream &OS) const override; 2897 2898 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2899 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2900 Op->ITMask.Mask = Mask; 2901 Op->StartLoc = S; 2902 Op->EndLoc = S; 2903 return Op; 2904 } 2905 2906 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2907 SMLoc S) { 2908 auto Op = make_unique<ARMOperand>(k_CondCode); 2909 Op->CC.Val = CC; 2910 Op->StartLoc = S; 2911 Op->EndLoc = S; 2912 return Op; 2913 } 2914 2915 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2916 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2917 Op->Cop.Val = CopVal; 2918 Op->StartLoc = S; 2919 Op->EndLoc = S; 2920 return Op; 2921 } 2922 2923 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2924 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2925 Op->Cop.Val = CopVal; 2926 Op->StartLoc = S; 2927 Op->EndLoc = S; 2928 return Op; 2929 } 2930 2931 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2932 SMLoc E) { 2933 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2934 Op->Cop.Val = Val; 2935 Op->StartLoc = S; 2936 Op->EndLoc = E; 2937 return Op; 2938 } 2939 2940 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2941 auto Op = make_unique<ARMOperand>(k_CCOut); 2942 Op->Reg.RegNum = RegNum; 2943 Op->StartLoc = S; 2944 Op->EndLoc = S; 2945 return Op; 2946 } 2947 2948 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2949 auto Op = make_unique<ARMOperand>(k_Token); 2950 Op->Tok.Data = Str.data(); 2951 Op->Tok.Length = Str.size(); 2952 Op->StartLoc = S; 2953 Op->EndLoc = S; 2954 return Op; 2955 } 2956 2957 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2958 SMLoc E) { 2959 auto Op = make_unique<ARMOperand>(k_Register); 2960 Op->Reg.RegNum = RegNum; 2961 Op->StartLoc = S; 2962 Op->EndLoc = E; 2963 return Op; 2964 } 2965 2966 static std::unique_ptr<ARMOperand> 2967 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2968 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2969 SMLoc E) { 2970 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2971 Op->RegShiftedReg.ShiftTy = ShTy; 2972 Op->RegShiftedReg.SrcReg = SrcReg; 2973 Op->RegShiftedReg.ShiftReg = ShiftReg; 2974 Op->RegShiftedReg.ShiftImm = ShiftImm; 2975 Op->StartLoc = S; 2976 Op->EndLoc = E; 2977 return Op; 2978 } 2979 2980 static std::unique_ptr<ARMOperand> 2981 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2982 unsigned ShiftImm, SMLoc S, SMLoc E) { 2983 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2984 Op->RegShiftedImm.ShiftTy = ShTy; 2985 Op->RegShiftedImm.SrcReg = SrcReg; 2986 Op->RegShiftedImm.ShiftImm = ShiftImm; 2987 Op->StartLoc = S; 2988 Op->EndLoc = E; 2989 return Op; 2990 } 2991 2992 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2993 SMLoc S, SMLoc E) { 2994 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2995 Op->ShifterImm.isASR = isASR; 2996 Op->ShifterImm.Imm = Imm; 2997 Op->StartLoc = S; 2998 Op->EndLoc = E; 2999 return Op; 3000 } 3001 3002 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3003 SMLoc E) { 3004 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 3005 Op->RotImm.Imm = Imm; 3006 Op->StartLoc = S; 3007 Op->EndLoc = E; 3008 return Op; 3009 } 3010 3011 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3012 SMLoc S, SMLoc E) { 3013 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 3014 Op->ModImm.Bits = Bits; 3015 Op->ModImm.Rot = Rot; 3016 Op->StartLoc = S; 3017 Op->EndLoc = E; 3018 return Op; 3019 } 3020 3021 static std::unique_ptr<ARMOperand> 3022 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3023 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 3024 Op->Imm.Val = Val; 3025 Op->StartLoc = S; 3026 Op->EndLoc = E; 3027 return Op; 3028 } 3029 3030 static std::unique_ptr<ARMOperand> 3031 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3032 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 3033 Op->Bitfield.LSB = LSB; 3034 Op->Bitfield.Width = Width; 3035 Op->StartLoc = S; 3036 Op->EndLoc = E; 3037 return Op; 3038 } 3039 3040 static std::unique_ptr<ARMOperand> 3041 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3042 SMLoc StartLoc, SMLoc EndLoc) { 3043 assert(Regs.size() > 0 && "RegList contains no registers?"); 3044 KindTy Kind = k_RegisterList; 3045 3046 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 3047 Kind = k_DPRRegisterList; 3048 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 3049 contains(Regs.front().second)) 3050 Kind = k_SPRRegisterList; 3051 3052 // Sort based on the register encoding values. 3053 array_pod_sort(Regs.begin(), Regs.end()); 3054 3055 auto Op = make_unique<ARMOperand>(Kind); 3056 for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator 3057 I = Regs.begin(), E = Regs.end(); I != E; ++I) 3058 Op->Registers.push_back(I->second); 3059 Op->StartLoc = StartLoc; 3060 Op->EndLoc = EndLoc; 3061 return Op; 3062 } 3063 3064 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3065 unsigned Count, 3066 bool isDoubleSpaced, 3067 SMLoc S, SMLoc E) { 3068 auto Op = make_unique<ARMOperand>(k_VectorList); 3069 Op->VectorList.RegNum = RegNum; 3070 Op->VectorList.Count = Count; 3071 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3072 Op->StartLoc = S; 3073 Op->EndLoc = E; 3074 return Op; 3075 } 3076 3077 static std::unique_ptr<ARMOperand> 3078 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3079 SMLoc S, SMLoc E) { 3080 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 3081 Op->VectorList.RegNum = RegNum; 3082 Op->VectorList.Count = Count; 3083 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3084 Op->StartLoc = S; 3085 Op->EndLoc = E; 3086 return Op; 3087 } 3088 3089 static std::unique_ptr<ARMOperand> 3090 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3091 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3092 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 3093 Op->VectorList.RegNum = RegNum; 3094 Op->VectorList.Count = Count; 3095 Op->VectorList.LaneIndex = Index; 3096 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3097 Op->StartLoc = S; 3098 Op->EndLoc = E; 3099 return Op; 3100 } 3101 3102 static std::unique_ptr<ARMOperand> 3103 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3104 auto Op = make_unique<ARMOperand>(k_VectorIndex); 3105 Op->VectorIndex.Val = Idx; 3106 Op->StartLoc = S; 3107 Op->EndLoc = E; 3108 return Op; 3109 } 3110 3111 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3112 SMLoc E) { 3113 auto Op = make_unique<ARMOperand>(k_Immediate); 3114 Op->Imm.Val = Val; 3115 Op->StartLoc = S; 3116 Op->EndLoc = E; 3117 return Op; 3118 } 3119 3120 static std::unique_ptr<ARMOperand> 3121 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3122 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3123 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3124 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3125 auto Op = make_unique<ARMOperand>(k_Memory); 3126 Op->Memory.BaseRegNum = BaseRegNum; 3127 Op->Memory.OffsetImm = OffsetImm; 3128 Op->Memory.OffsetRegNum = OffsetRegNum; 3129 Op->Memory.ShiftType = ShiftType; 3130 Op->Memory.ShiftImm = ShiftImm; 3131 Op->Memory.Alignment = Alignment; 3132 Op->Memory.isNegative = isNegative; 3133 Op->StartLoc = S; 3134 Op->EndLoc = E; 3135 Op->AlignmentLoc = AlignmentLoc; 3136 return Op; 3137 } 3138 3139 static std::unique_ptr<ARMOperand> 3140 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3141 unsigned ShiftImm, SMLoc S, SMLoc E) { 3142 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 3143 Op->PostIdxReg.RegNum = RegNum; 3144 Op->PostIdxReg.isAdd = isAdd; 3145 Op->PostIdxReg.ShiftTy = ShiftTy; 3146 Op->PostIdxReg.ShiftImm = ShiftImm; 3147 Op->StartLoc = S; 3148 Op->EndLoc = E; 3149 return Op; 3150 } 3151 3152 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3153 SMLoc S) { 3154 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3155 Op->MBOpt.Val = Opt; 3156 Op->StartLoc = S; 3157 Op->EndLoc = S; 3158 return Op; 3159 } 3160 3161 static std::unique_ptr<ARMOperand> 3162 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3163 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3164 Op->ISBOpt.Val = Opt; 3165 Op->StartLoc = S; 3166 Op->EndLoc = S; 3167 return Op; 3168 } 3169 3170 static std::unique_ptr<ARMOperand> 3171 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3172 auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3173 Op->TSBOpt.Val = Opt; 3174 Op->StartLoc = S; 3175 Op->EndLoc = S; 3176 return Op; 3177 } 3178 3179 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3180 SMLoc S) { 3181 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3182 Op->IFlags.Val = IFlags; 3183 Op->StartLoc = S; 3184 Op->EndLoc = S; 3185 return Op; 3186 } 3187 3188 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3189 auto Op = make_unique<ARMOperand>(k_MSRMask); 3190 Op->MMask.Val = MMask; 3191 Op->StartLoc = S; 3192 Op->EndLoc = S; 3193 return Op; 3194 } 3195 3196 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3197 auto Op = make_unique<ARMOperand>(k_BankedReg); 3198 Op->BankedReg.Val = Reg; 3199 Op->StartLoc = S; 3200 Op->EndLoc = S; 3201 return Op; 3202 } 3203 }; 3204 3205 } // end anonymous namespace. 3206 3207 void ARMOperand::print(raw_ostream &OS) const { 3208 switch (Kind) { 3209 case k_CondCode: 3210 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3211 break; 3212 case k_CCOut: 3213 OS << "<ccout " << getReg() << ">"; 3214 break; 3215 case k_ITCondMask: { 3216 static const char *const MaskStr[] = { 3217 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 3218 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 3219 }; 3220 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3221 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3222 break; 3223 } 3224 case k_CoprocNum: 3225 OS << "<coprocessor number: " << getCoproc() << ">"; 3226 break; 3227 case k_CoprocReg: 3228 OS << "<coprocessor register: " << getCoproc() << ">"; 3229 break; 3230 case k_CoprocOption: 3231 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3232 break; 3233 case k_MSRMask: 3234 OS << "<mask: " << getMSRMask() << ">"; 3235 break; 3236 case k_BankedReg: 3237 OS << "<banked reg: " << getBankedReg() << ">"; 3238 break; 3239 case k_Immediate: 3240 OS << *getImm(); 3241 break; 3242 case k_MemBarrierOpt: 3243 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3244 break; 3245 case k_InstSyncBarrierOpt: 3246 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3247 break; 3248 case k_TraceSyncBarrierOpt: 3249 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3250 break; 3251 case k_Memory: 3252 OS << "<memory " 3253 << " base:" << Memory.BaseRegNum; 3254 OS << ">"; 3255 break; 3256 case k_PostIndexRegister: 3257 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3258 << PostIdxReg.RegNum; 3259 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3260 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3261 << PostIdxReg.ShiftImm; 3262 OS << ">"; 3263 break; 3264 case k_ProcIFlags: { 3265 OS << "<ARM_PROC::"; 3266 unsigned IFlags = getProcIFlags(); 3267 for (int i=2; i >= 0; --i) 3268 if (IFlags & (1 << i)) 3269 OS << ARM_PROC::IFlagsToString(1 << i); 3270 OS << ">"; 3271 break; 3272 } 3273 case k_Register: 3274 OS << "<register " << getReg() << ">"; 3275 break; 3276 case k_ShifterImmediate: 3277 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3278 << " #" << ShifterImm.Imm << ">"; 3279 break; 3280 case k_ShiftedRegister: 3281 OS << "<so_reg_reg " 3282 << RegShiftedReg.SrcReg << " " 3283 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 3284 << " " << RegShiftedReg.ShiftReg << ">"; 3285 break; 3286 case k_ShiftedImmediate: 3287 OS << "<so_reg_imm " 3288 << RegShiftedImm.SrcReg << " " 3289 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 3290 << " #" << RegShiftedImm.ShiftImm << ">"; 3291 break; 3292 case k_RotateImmediate: 3293 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3294 break; 3295 case k_ModifiedImmediate: 3296 OS << "<mod_imm #" << ModImm.Bits << ", #" 3297 << ModImm.Rot << ")>"; 3298 break; 3299 case k_ConstantPoolImmediate: 3300 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3301 break; 3302 case k_BitfieldDescriptor: 3303 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3304 << ", width: " << Bitfield.Width << ">"; 3305 break; 3306 case k_RegisterList: 3307 case k_DPRRegisterList: 3308 case k_SPRRegisterList: { 3309 OS << "<register_list "; 3310 3311 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3312 for (SmallVectorImpl<unsigned>::const_iterator 3313 I = RegList.begin(), E = RegList.end(); I != E; ) { 3314 OS << *I; 3315 if (++I < E) OS << ", "; 3316 } 3317 3318 OS << ">"; 3319 break; 3320 } 3321 case k_VectorList: 3322 OS << "<vector_list " << VectorList.Count << " * " 3323 << VectorList.RegNum << ">"; 3324 break; 3325 case k_VectorListAllLanes: 3326 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3327 << VectorList.RegNum << ">"; 3328 break; 3329 case k_VectorListIndexed: 3330 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3331 << VectorList.Count << " * " << VectorList.RegNum << ">"; 3332 break; 3333 case k_Token: 3334 OS << "'" << getToken() << "'"; 3335 break; 3336 case k_VectorIndex: 3337 OS << "<vectorindex " << getVectorIndex() << ">"; 3338 break; 3339 } 3340 } 3341 3342 /// @name Auto-generated Match Functions 3343 /// { 3344 3345 static unsigned MatchRegisterName(StringRef Name); 3346 3347 /// } 3348 3349 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3350 SMLoc &StartLoc, SMLoc &EndLoc) { 3351 const AsmToken &Tok = getParser().getTok(); 3352 StartLoc = Tok.getLoc(); 3353 EndLoc = Tok.getEndLoc(); 3354 RegNo = tryParseRegister(); 3355 3356 return (RegNo == (unsigned)-1); 3357 } 3358 3359 /// Try to parse a register name. The token must be an Identifier when called, 3360 /// and if it is a register name the token is eaten and the register number is 3361 /// returned. Otherwise return -1. 3362 int ARMAsmParser::tryParseRegister() { 3363 MCAsmParser &Parser = getParser(); 3364 const AsmToken &Tok = Parser.getTok(); 3365 if (Tok.isNot(AsmToken::Identifier)) return -1; 3366 3367 std::string lowerCase = Tok.getString().lower(); 3368 unsigned RegNum = MatchRegisterName(lowerCase); 3369 if (!RegNum) { 3370 RegNum = StringSwitch<unsigned>(lowerCase) 3371 .Case("r13", ARM::SP) 3372 .Case("r14", ARM::LR) 3373 .Case("r15", ARM::PC) 3374 .Case("ip", ARM::R12) 3375 // Additional register name aliases for 'gas' compatibility. 3376 .Case("a1", ARM::R0) 3377 .Case("a2", ARM::R1) 3378 .Case("a3", ARM::R2) 3379 .Case("a4", ARM::R3) 3380 .Case("v1", ARM::R4) 3381 .Case("v2", ARM::R5) 3382 .Case("v3", ARM::R6) 3383 .Case("v4", ARM::R7) 3384 .Case("v5", ARM::R8) 3385 .Case("v6", ARM::R9) 3386 .Case("v7", ARM::R10) 3387 .Case("v8", ARM::R11) 3388 .Case("sb", ARM::R9) 3389 .Case("sl", ARM::R10) 3390 .Case("fp", ARM::R11) 3391 .Default(0); 3392 } 3393 if (!RegNum) { 3394 // Check for aliases registered via .req. Canonicalize to lower case. 3395 // That's more consistent since register names are case insensitive, and 3396 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3397 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3398 // If no match, return failure. 3399 if (Entry == RegisterReqs.end()) 3400 return -1; 3401 Parser.Lex(); // Eat identifier token. 3402 return Entry->getValue(); 3403 } 3404 3405 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3406 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3407 return -1; 3408 3409 Parser.Lex(); // Eat identifier token. 3410 3411 return RegNum; 3412 } 3413 3414 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3415 // If a recoverable error occurs, return 1. If an irrecoverable error 3416 // occurs, return -1. An irrecoverable error is one where tokens have been 3417 // consumed in the process of trying to parse the shifter (i.e., when it is 3418 // indeed a shifter operand, but malformed). 3419 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3420 MCAsmParser &Parser = getParser(); 3421 SMLoc S = Parser.getTok().getLoc(); 3422 const AsmToken &Tok = Parser.getTok(); 3423 if (Tok.isNot(AsmToken::Identifier)) 3424 return -1; 3425 3426 std::string lowerCase = Tok.getString().lower(); 3427 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3428 .Case("asl", ARM_AM::lsl) 3429 .Case("lsl", ARM_AM::lsl) 3430 .Case("lsr", ARM_AM::lsr) 3431 .Case("asr", ARM_AM::asr) 3432 .Case("ror", ARM_AM::ror) 3433 .Case("rrx", ARM_AM::rrx) 3434 .Default(ARM_AM::no_shift); 3435 3436 if (ShiftTy == ARM_AM::no_shift) 3437 return 1; 3438 3439 Parser.Lex(); // Eat the operator. 3440 3441 // The source register for the shift has already been added to the 3442 // operand list, so we need to pop it off and combine it into the shifted 3443 // register operand instead. 3444 std::unique_ptr<ARMOperand> PrevOp( 3445 (ARMOperand *)Operands.pop_back_val().release()); 3446 if (!PrevOp->isReg()) 3447 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3448 int SrcReg = PrevOp->getReg(); 3449 3450 SMLoc EndLoc; 3451 int64_t Imm = 0; 3452 int ShiftReg = 0; 3453 if (ShiftTy == ARM_AM::rrx) { 3454 // RRX Doesn't have an explicit shift amount. The encoder expects 3455 // the shift register to be the same as the source register. Seems odd, 3456 // but OK. 3457 ShiftReg = SrcReg; 3458 } else { 3459 // Figure out if this is shifted by a constant or a register (for non-RRX). 3460 if (Parser.getTok().is(AsmToken::Hash) || 3461 Parser.getTok().is(AsmToken::Dollar)) { 3462 Parser.Lex(); // Eat hash. 3463 SMLoc ImmLoc = Parser.getTok().getLoc(); 3464 const MCExpr *ShiftExpr = nullptr; 3465 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3466 Error(ImmLoc, "invalid immediate shift value"); 3467 return -1; 3468 } 3469 // The expression must be evaluatable as an immediate. 3470 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3471 if (!CE) { 3472 Error(ImmLoc, "invalid immediate shift value"); 3473 return -1; 3474 } 3475 // Range check the immediate. 3476 // lsl, ror: 0 <= imm <= 31 3477 // lsr, asr: 0 <= imm <= 32 3478 Imm = CE->getValue(); 3479 if (Imm < 0 || 3480 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3481 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3482 Error(ImmLoc, "immediate shift value out of range"); 3483 return -1; 3484 } 3485 // shift by zero is a nop. Always send it through as lsl. 3486 // ('as' compatibility) 3487 if (Imm == 0) 3488 ShiftTy = ARM_AM::lsl; 3489 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3490 SMLoc L = Parser.getTok().getLoc(); 3491 EndLoc = Parser.getTok().getEndLoc(); 3492 ShiftReg = tryParseRegister(); 3493 if (ShiftReg == -1) { 3494 Error(L, "expected immediate or register in shift operand"); 3495 return -1; 3496 } 3497 } else { 3498 Error(Parser.getTok().getLoc(), 3499 "expected immediate or register in shift operand"); 3500 return -1; 3501 } 3502 } 3503 3504 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3505 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3506 ShiftReg, Imm, 3507 S, EndLoc)); 3508 else 3509 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3510 S, EndLoc)); 3511 3512 return 0; 3513 } 3514 3515 /// Try to parse a register name. The token must be an Identifier when called. 3516 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3517 /// if there is a "writeback". 'true' if it's not a register. 3518 /// 3519 /// TODO this is likely to change to allow different register types and or to 3520 /// parse for a specific register type. 3521 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3522 MCAsmParser &Parser = getParser(); 3523 SMLoc RegStartLoc = Parser.getTok().getLoc(); 3524 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 3525 int RegNo = tryParseRegister(); 3526 if (RegNo == -1) 3527 return true; 3528 3529 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 3530 3531 const AsmToken &ExclaimTok = Parser.getTok(); 3532 if (ExclaimTok.is(AsmToken::Exclaim)) { 3533 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3534 ExclaimTok.getLoc())); 3535 Parser.Lex(); // Eat exclaim token 3536 return false; 3537 } 3538 3539 // Also check for an index operand. This is only legal for vector registers, 3540 // but that'll get caught OK in operand matching, so we don't need to 3541 // explicitly filter everything else out here. 3542 if (Parser.getTok().is(AsmToken::LBrac)) { 3543 SMLoc SIdx = Parser.getTok().getLoc(); 3544 Parser.Lex(); // Eat left bracket token. 3545 3546 const MCExpr *ImmVal; 3547 if (getParser().parseExpression(ImmVal)) 3548 return true; 3549 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3550 if (!MCE) 3551 return TokError("immediate value expected for vector index"); 3552 3553 if (Parser.getTok().isNot(AsmToken::RBrac)) 3554 return Error(Parser.getTok().getLoc(), "']' expected"); 3555 3556 SMLoc E = Parser.getTok().getEndLoc(); 3557 Parser.Lex(); // Eat right bracket token. 3558 3559 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3560 SIdx, E, 3561 getContext())); 3562 } 3563 3564 return false; 3565 } 3566 3567 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3568 /// instruction with a symbolic operand name. 3569 /// We accept "crN" syntax for GAS compatibility. 3570 /// <operand-name> ::= <prefix><number> 3571 /// If CoprocOp is 'c', then: 3572 /// <prefix> ::= c | cr 3573 /// If CoprocOp is 'p', then : 3574 /// <prefix> ::= p 3575 /// <number> ::= integer in range [0, 15] 3576 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3577 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3578 // but efficient. 3579 if (Name.size() < 2 || Name[0] != CoprocOp) 3580 return -1; 3581 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3582 3583 switch (Name.size()) { 3584 default: return -1; 3585 case 1: 3586 switch (Name[0]) { 3587 default: return -1; 3588 case '0': return 0; 3589 case '1': return 1; 3590 case '2': return 2; 3591 case '3': return 3; 3592 case '4': return 4; 3593 case '5': return 5; 3594 case '6': return 6; 3595 case '7': return 7; 3596 case '8': return 8; 3597 case '9': return 9; 3598 } 3599 case 2: 3600 if (Name[0] != '1') 3601 return -1; 3602 switch (Name[1]) { 3603 default: return -1; 3604 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3605 // However, old cores (v5/v6) did use them in that way. 3606 case '0': return 10; 3607 case '1': return 11; 3608 case '2': return 12; 3609 case '3': return 13; 3610 case '4': return 14; 3611 case '5': return 15; 3612 } 3613 } 3614 } 3615 3616 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3617 OperandMatchResultTy 3618 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3619 MCAsmParser &Parser = getParser(); 3620 SMLoc S = Parser.getTok().getLoc(); 3621 const AsmToken &Tok = Parser.getTok(); 3622 if (!Tok.is(AsmToken::Identifier)) 3623 return MatchOperand_NoMatch; 3624 unsigned CC = ARMCondCodeFromString(Tok.getString()); 3625 if (CC == ~0U) 3626 return MatchOperand_NoMatch; 3627 Parser.Lex(); // Eat the token. 3628 3629 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3630 3631 return MatchOperand_Success; 3632 } 3633 3634 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3635 /// token must be an Identifier when called, and if it is a coprocessor 3636 /// number, the token is eaten and the operand is added to the operand list. 3637 OperandMatchResultTy 3638 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3639 MCAsmParser &Parser = getParser(); 3640 SMLoc S = Parser.getTok().getLoc(); 3641 const AsmToken &Tok = Parser.getTok(); 3642 if (Tok.isNot(AsmToken::Identifier)) 3643 return MatchOperand_NoMatch; 3644 3645 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3646 if (Num == -1) 3647 return MatchOperand_NoMatch; 3648 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3649 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3650 return MatchOperand_NoMatch; 3651 3652 Parser.Lex(); // Eat identifier token. 3653 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3654 return MatchOperand_Success; 3655 } 3656 3657 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3658 /// token must be an Identifier when called, and if it is a coprocessor 3659 /// number, the token is eaten and the operand is added to the operand list. 3660 OperandMatchResultTy 3661 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3662 MCAsmParser &Parser = getParser(); 3663 SMLoc S = Parser.getTok().getLoc(); 3664 const AsmToken &Tok = Parser.getTok(); 3665 if (Tok.isNot(AsmToken::Identifier)) 3666 return MatchOperand_NoMatch; 3667 3668 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3669 if (Reg == -1) 3670 return MatchOperand_NoMatch; 3671 3672 Parser.Lex(); // Eat identifier token. 3673 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3674 return MatchOperand_Success; 3675 } 3676 3677 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3678 /// coproc_option : '{' imm0_255 '}' 3679 OperandMatchResultTy 3680 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3681 MCAsmParser &Parser = getParser(); 3682 SMLoc S = Parser.getTok().getLoc(); 3683 3684 // If this isn't a '{', this isn't a coprocessor immediate operand. 3685 if (Parser.getTok().isNot(AsmToken::LCurly)) 3686 return MatchOperand_NoMatch; 3687 Parser.Lex(); // Eat the '{' 3688 3689 const MCExpr *Expr; 3690 SMLoc Loc = Parser.getTok().getLoc(); 3691 if (getParser().parseExpression(Expr)) { 3692 Error(Loc, "illegal expression"); 3693 return MatchOperand_ParseFail; 3694 } 3695 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3696 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3697 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3698 return MatchOperand_ParseFail; 3699 } 3700 int Val = CE->getValue(); 3701 3702 // Check for and consume the closing '}' 3703 if (Parser.getTok().isNot(AsmToken::RCurly)) 3704 return MatchOperand_ParseFail; 3705 SMLoc E = Parser.getTok().getEndLoc(); 3706 Parser.Lex(); // Eat the '}' 3707 3708 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3709 return MatchOperand_Success; 3710 } 3711 3712 // For register list parsing, we need to map from raw GPR register numbering 3713 // to the enumeration values. The enumeration values aren't sorted by 3714 // register number due to our using "sp", "lr" and "pc" as canonical names. 3715 static unsigned getNextRegister(unsigned Reg) { 3716 // If this is a GPR, we need to do it manually, otherwise we can rely 3717 // on the sort ordering of the enumeration since the other reg-classes 3718 // are sane. 3719 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3720 return Reg + 1; 3721 switch(Reg) { 3722 default: llvm_unreachable("Invalid GPR number!"); 3723 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3724 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3725 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3726 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3727 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3728 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3729 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3730 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3731 } 3732 } 3733 3734 /// Parse a register list. 3735 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3736 MCAsmParser &Parser = getParser(); 3737 if (Parser.getTok().isNot(AsmToken::LCurly)) 3738 return TokError("Token is not a Left Curly Brace"); 3739 SMLoc S = Parser.getTok().getLoc(); 3740 Parser.Lex(); // Eat '{' token. 3741 SMLoc RegLoc = Parser.getTok().getLoc(); 3742 3743 // Check the first register in the list to see what register class 3744 // this is a list of. 3745 int Reg = tryParseRegister(); 3746 if (Reg == -1) 3747 return Error(RegLoc, "register expected"); 3748 3749 // The reglist instructions have at most 16 registers, so reserve 3750 // space for that many. 3751 int EReg = 0; 3752 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3753 3754 // Allow Q regs and just interpret them as the two D sub-registers. 3755 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3756 Reg = getDRegFromQReg(Reg); 3757 EReg = MRI->getEncodingValue(Reg); 3758 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3759 ++Reg; 3760 } 3761 const MCRegisterClass *RC; 3762 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3763 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3764 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3765 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3766 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3767 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3768 else 3769 return Error(RegLoc, "invalid register in register list"); 3770 3771 // Store the register. 3772 EReg = MRI->getEncodingValue(Reg); 3773 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3774 3775 // This starts immediately after the first register token in the list, 3776 // so we can see either a comma or a minus (range separator) as a legal 3777 // next token. 3778 while (Parser.getTok().is(AsmToken::Comma) || 3779 Parser.getTok().is(AsmToken::Minus)) { 3780 if (Parser.getTok().is(AsmToken::Minus)) { 3781 Parser.Lex(); // Eat the minus. 3782 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3783 int EndReg = tryParseRegister(); 3784 if (EndReg == -1) 3785 return Error(AfterMinusLoc, "register expected"); 3786 // Allow Q regs and just interpret them as the two D sub-registers. 3787 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3788 EndReg = getDRegFromQReg(EndReg) + 1; 3789 // If the register is the same as the start reg, there's nothing 3790 // more to do. 3791 if (Reg == EndReg) 3792 continue; 3793 // The register must be in the same register class as the first. 3794 if (!RC->contains(EndReg)) 3795 return Error(AfterMinusLoc, "invalid register in register list"); 3796 // Ranges must go from low to high. 3797 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3798 return Error(AfterMinusLoc, "bad range in register list"); 3799 3800 // Add all the registers in the range to the register list. 3801 while (Reg != EndReg) { 3802 Reg = getNextRegister(Reg); 3803 EReg = MRI->getEncodingValue(Reg); 3804 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3805 } 3806 continue; 3807 } 3808 Parser.Lex(); // Eat the comma. 3809 RegLoc = Parser.getTok().getLoc(); 3810 int OldReg = Reg; 3811 const AsmToken RegTok = Parser.getTok(); 3812 Reg = tryParseRegister(); 3813 if (Reg == -1) 3814 return Error(RegLoc, "register expected"); 3815 // Allow Q regs and just interpret them as the two D sub-registers. 3816 bool isQReg = false; 3817 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3818 Reg = getDRegFromQReg(Reg); 3819 isQReg = true; 3820 } 3821 // The register must be in the same register class as the first. 3822 if (!RC->contains(Reg)) 3823 return Error(RegLoc, "invalid register in register list"); 3824 // List must be monotonically increasing. 3825 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3826 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3827 Warning(RegLoc, "register list not in ascending order"); 3828 else 3829 return Error(RegLoc, "register list not in ascending order"); 3830 } 3831 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3832 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3833 ") in register list"); 3834 continue; 3835 } 3836 // VFP register lists must also be contiguous. 3837 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3838 Reg != OldReg + 1) 3839 return Error(RegLoc, "non-contiguous register range"); 3840 EReg = MRI->getEncodingValue(Reg); 3841 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3842 if (isQReg) { 3843 EReg = MRI->getEncodingValue(++Reg); 3844 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3845 } 3846 } 3847 3848 if (Parser.getTok().isNot(AsmToken::RCurly)) 3849 return Error(Parser.getTok().getLoc(), "'}' expected"); 3850 SMLoc E = Parser.getTok().getEndLoc(); 3851 Parser.Lex(); // Eat '}' token. 3852 3853 // Push the register list operand. 3854 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3855 3856 // The ARM system instruction variants for LDM/STM have a '^' token here. 3857 if (Parser.getTok().is(AsmToken::Caret)) { 3858 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3859 Parser.Lex(); // Eat '^' token. 3860 } 3861 3862 return false; 3863 } 3864 3865 // Helper function to parse the lane index for vector lists. 3866 OperandMatchResultTy ARMAsmParser:: 3867 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3868 MCAsmParser &Parser = getParser(); 3869 Index = 0; // Always return a defined index value. 3870 if (Parser.getTok().is(AsmToken::LBrac)) { 3871 Parser.Lex(); // Eat the '['. 3872 if (Parser.getTok().is(AsmToken::RBrac)) { 3873 // "Dn[]" is the 'all lanes' syntax. 3874 LaneKind = AllLanes; 3875 EndLoc = Parser.getTok().getEndLoc(); 3876 Parser.Lex(); // Eat the ']'. 3877 return MatchOperand_Success; 3878 } 3879 3880 // There's an optional '#' token here. Normally there wouldn't be, but 3881 // inline assemble puts one in, and it's friendly to accept that. 3882 if (Parser.getTok().is(AsmToken::Hash)) 3883 Parser.Lex(); // Eat '#' or '$'. 3884 3885 const MCExpr *LaneIndex; 3886 SMLoc Loc = Parser.getTok().getLoc(); 3887 if (getParser().parseExpression(LaneIndex)) { 3888 Error(Loc, "illegal expression"); 3889 return MatchOperand_ParseFail; 3890 } 3891 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3892 if (!CE) { 3893 Error(Loc, "lane index must be empty or an integer"); 3894 return MatchOperand_ParseFail; 3895 } 3896 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3897 Error(Parser.getTok().getLoc(), "']' expected"); 3898 return MatchOperand_ParseFail; 3899 } 3900 EndLoc = Parser.getTok().getEndLoc(); 3901 Parser.Lex(); // Eat the ']'. 3902 int64_t Val = CE->getValue(); 3903 3904 // FIXME: Make this range check context sensitive for .8, .16, .32. 3905 if (Val < 0 || Val > 7) { 3906 Error(Parser.getTok().getLoc(), "lane index out of range"); 3907 return MatchOperand_ParseFail; 3908 } 3909 Index = Val; 3910 LaneKind = IndexedLane; 3911 return MatchOperand_Success; 3912 } 3913 LaneKind = NoLanes; 3914 return MatchOperand_Success; 3915 } 3916 3917 // parse a vector register list 3918 OperandMatchResultTy 3919 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3920 MCAsmParser &Parser = getParser(); 3921 VectorLaneTy LaneKind; 3922 unsigned LaneIndex; 3923 SMLoc S = Parser.getTok().getLoc(); 3924 // As an extension (to match gas), support a plain D register or Q register 3925 // (without encosing curly braces) as a single or double entry list, 3926 // respectively. 3927 if (Parser.getTok().is(AsmToken::Identifier)) { 3928 SMLoc E = Parser.getTok().getEndLoc(); 3929 int Reg = tryParseRegister(); 3930 if (Reg == -1) 3931 return MatchOperand_NoMatch; 3932 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3933 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3934 if (Res != MatchOperand_Success) 3935 return Res; 3936 switch (LaneKind) { 3937 case NoLanes: 3938 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3939 break; 3940 case AllLanes: 3941 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3942 S, E)); 3943 break; 3944 case IndexedLane: 3945 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3946 LaneIndex, 3947 false, S, E)); 3948 break; 3949 } 3950 return MatchOperand_Success; 3951 } 3952 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3953 Reg = getDRegFromQReg(Reg); 3954 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3955 if (Res != MatchOperand_Success) 3956 return Res; 3957 switch (LaneKind) { 3958 case NoLanes: 3959 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3960 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3961 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3962 break; 3963 case AllLanes: 3964 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3965 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3966 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3967 S, E)); 3968 break; 3969 case IndexedLane: 3970 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3971 LaneIndex, 3972 false, S, E)); 3973 break; 3974 } 3975 return MatchOperand_Success; 3976 } 3977 Error(S, "vector register expected"); 3978 return MatchOperand_ParseFail; 3979 } 3980 3981 if (Parser.getTok().isNot(AsmToken::LCurly)) 3982 return MatchOperand_NoMatch; 3983 3984 Parser.Lex(); // Eat '{' token. 3985 SMLoc RegLoc = Parser.getTok().getLoc(); 3986 3987 int Reg = tryParseRegister(); 3988 if (Reg == -1) { 3989 Error(RegLoc, "register expected"); 3990 return MatchOperand_ParseFail; 3991 } 3992 unsigned Count = 1; 3993 int Spacing = 0; 3994 unsigned FirstReg = Reg; 3995 // The list is of D registers, but we also allow Q regs and just interpret 3996 // them as the two D sub-registers. 3997 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3998 FirstReg = Reg = getDRegFromQReg(Reg); 3999 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4000 // it's ambiguous with four-register single spaced. 4001 ++Reg; 4002 ++Count; 4003 } 4004 4005 SMLoc E; 4006 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4007 return MatchOperand_ParseFail; 4008 4009 while (Parser.getTok().is(AsmToken::Comma) || 4010 Parser.getTok().is(AsmToken::Minus)) { 4011 if (Parser.getTok().is(AsmToken::Minus)) { 4012 if (!Spacing) 4013 Spacing = 1; // Register range implies a single spaced list. 4014 else if (Spacing == 2) { 4015 Error(Parser.getTok().getLoc(), 4016 "sequential registers in double spaced list"); 4017 return MatchOperand_ParseFail; 4018 } 4019 Parser.Lex(); // Eat the minus. 4020 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4021 int EndReg = tryParseRegister(); 4022 if (EndReg == -1) { 4023 Error(AfterMinusLoc, "register expected"); 4024 return MatchOperand_ParseFail; 4025 } 4026 // Allow Q regs and just interpret them as the two D sub-registers. 4027 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4028 EndReg = getDRegFromQReg(EndReg) + 1; 4029 // If the register is the same as the start reg, there's nothing 4030 // more to do. 4031 if (Reg == EndReg) 4032 continue; 4033 // The register must be in the same register class as the first. 4034 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 4035 Error(AfterMinusLoc, "invalid register in register list"); 4036 return MatchOperand_ParseFail; 4037 } 4038 // Ranges must go from low to high. 4039 if (Reg > EndReg) { 4040 Error(AfterMinusLoc, "bad range in register list"); 4041 return MatchOperand_ParseFail; 4042 } 4043 // Parse the lane specifier if present. 4044 VectorLaneTy NextLaneKind; 4045 unsigned NextLaneIndex; 4046 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4047 MatchOperand_Success) 4048 return MatchOperand_ParseFail; 4049 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4050 Error(AfterMinusLoc, "mismatched lane index in register list"); 4051 return MatchOperand_ParseFail; 4052 } 4053 4054 // Add all the registers in the range to the register list. 4055 Count += EndReg - Reg; 4056 Reg = EndReg; 4057 continue; 4058 } 4059 Parser.Lex(); // Eat the comma. 4060 RegLoc = Parser.getTok().getLoc(); 4061 int OldReg = Reg; 4062 Reg = tryParseRegister(); 4063 if (Reg == -1) { 4064 Error(RegLoc, "register expected"); 4065 return MatchOperand_ParseFail; 4066 } 4067 // vector register lists must be contiguous. 4068 // It's OK to use the enumeration values directly here rather, as the 4069 // VFP register classes have the enum sorted properly. 4070 // 4071 // The list is of D registers, but we also allow Q regs and just interpret 4072 // them as the two D sub-registers. 4073 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4074 if (!Spacing) 4075 Spacing = 1; // Register range implies a single spaced list. 4076 else if (Spacing == 2) { 4077 Error(RegLoc, 4078 "invalid register in double-spaced list (must be 'D' register')"); 4079 return MatchOperand_ParseFail; 4080 } 4081 Reg = getDRegFromQReg(Reg); 4082 if (Reg != OldReg + 1) { 4083 Error(RegLoc, "non-contiguous register range"); 4084 return MatchOperand_ParseFail; 4085 } 4086 ++Reg; 4087 Count += 2; 4088 // Parse the lane specifier if present. 4089 VectorLaneTy NextLaneKind; 4090 unsigned NextLaneIndex; 4091 SMLoc LaneLoc = Parser.getTok().getLoc(); 4092 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4093 MatchOperand_Success) 4094 return MatchOperand_ParseFail; 4095 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4096 Error(LaneLoc, "mismatched lane index in register list"); 4097 return MatchOperand_ParseFail; 4098 } 4099 continue; 4100 } 4101 // Normal D register. 4102 // Figure out the register spacing (single or double) of the list if 4103 // we don't know it already. 4104 if (!Spacing) 4105 Spacing = 1 + (Reg == OldReg + 2); 4106 4107 // Just check that it's contiguous and keep going. 4108 if (Reg != OldReg + Spacing) { 4109 Error(RegLoc, "non-contiguous register range"); 4110 return MatchOperand_ParseFail; 4111 } 4112 ++Count; 4113 // Parse the lane specifier if present. 4114 VectorLaneTy NextLaneKind; 4115 unsigned NextLaneIndex; 4116 SMLoc EndLoc = Parser.getTok().getLoc(); 4117 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4118 return MatchOperand_ParseFail; 4119 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4120 Error(EndLoc, "mismatched lane index in register list"); 4121 return MatchOperand_ParseFail; 4122 } 4123 } 4124 4125 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4126 Error(Parser.getTok().getLoc(), "'}' expected"); 4127 return MatchOperand_ParseFail; 4128 } 4129 E = Parser.getTok().getEndLoc(); 4130 Parser.Lex(); // Eat '}' token. 4131 4132 switch (LaneKind) { 4133 case NoLanes: 4134 // Two-register operands have been converted to the 4135 // composite register classes. 4136 if (Count == 2) { 4137 const MCRegisterClass *RC = (Spacing == 1) ? 4138 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4139 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4140 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4141 } 4142 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 4143 (Spacing == 2), S, E)); 4144 break; 4145 case AllLanes: 4146 // Two-register operands have been converted to the 4147 // composite register classes. 4148 if (Count == 2) { 4149 const MCRegisterClass *RC = (Spacing == 1) ? 4150 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4151 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4152 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4153 } 4154 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 4155 (Spacing == 2), 4156 S, E)); 4157 break; 4158 case IndexedLane: 4159 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4160 LaneIndex, 4161 (Spacing == 2), 4162 S, E)); 4163 break; 4164 } 4165 return MatchOperand_Success; 4166 } 4167 4168 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4169 OperandMatchResultTy 4170 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4171 MCAsmParser &Parser = getParser(); 4172 SMLoc S = Parser.getTok().getLoc(); 4173 const AsmToken &Tok = Parser.getTok(); 4174 unsigned Opt; 4175 4176 if (Tok.is(AsmToken::Identifier)) { 4177 StringRef OptStr = Tok.getString(); 4178 4179 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4180 .Case("sy", ARM_MB::SY) 4181 .Case("st", ARM_MB::ST) 4182 .Case("ld", ARM_MB::LD) 4183 .Case("sh", ARM_MB::ISH) 4184 .Case("ish", ARM_MB::ISH) 4185 .Case("shst", ARM_MB::ISHST) 4186 .Case("ishst", ARM_MB::ISHST) 4187 .Case("ishld", ARM_MB::ISHLD) 4188 .Case("nsh", ARM_MB::NSH) 4189 .Case("un", ARM_MB::NSH) 4190 .Case("nshst", ARM_MB::NSHST) 4191 .Case("nshld", ARM_MB::NSHLD) 4192 .Case("unst", ARM_MB::NSHST) 4193 .Case("osh", ARM_MB::OSH) 4194 .Case("oshst", ARM_MB::OSHST) 4195 .Case("oshld", ARM_MB::OSHLD) 4196 .Default(~0U); 4197 4198 // ishld, oshld, nshld and ld are only available from ARMv8. 4199 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4200 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4201 Opt = ~0U; 4202 4203 if (Opt == ~0U) 4204 return MatchOperand_NoMatch; 4205 4206 Parser.Lex(); // Eat identifier token. 4207 } else if (Tok.is(AsmToken::Hash) || 4208 Tok.is(AsmToken::Dollar) || 4209 Tok.is(AsmToken::Integer)) { 4210 if (Parser.getTok().isNot(AsmToken::Integer)) 4211 Parser.Lex(); // Eat '#' or '$'. 4212 SMLoc Loc = Parser.getTok().getLoc(); 4213 4214 const MCExpr *MemBarrierID; 4215 if (getParser().parseExpression(MemBarrierID)) { 4216 Error(Loc, "illegal expression"); 4217 return MatchOperand_ParseFail; 4218 } 4219 4220 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4221 if (!CE) { 4222 Error(Loc, "constant expression expected"); 4223 return MatchOperand_ParseFail; 4224 } 4225 4226 int Val = CE->getValue(); 4227 if (Val & ~0xf) { 4228 Error(Loc, "immediate value out of range"); 4229 return MatchOperand_ParseFail; 4230 } 4231 4232 Opt = ARM_MB::RESERVED_0 + Val; 4233 } else 4234 return MatchOperand_ParseFail; 4235 4236 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4237 return MatchOperand_Success; 4238 } 4239 4240 OperandMatchResultTy 4241 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 4242 MCAsmParser &Parser = getParser(); 4243 SMLoc S = Parser.getTok().getLoc(); 4244 const AsmToken &Tok = Parser.getTok(); 4245 4246 if (Tok.isNot(AsmToken::Identifier)) 4247 return MatchOperand_NoMatch; 4248 4249 if (!Tok.getString().equals_lower("csync")) 4250 return MatchOperand_NoMatch; 4251 4252 Parser.Lex(); // Eat identifier token. 4253 4254 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 4255 return MatchOperand_Success; 4256 } 4257 4258 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4259 OperandMatchResultTy 4260 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4261 MCAsmParser &Parser = getParser(); 4262 SMLoc S = Parser.getTok().getLoc(); 4263 const AsmToken &Tok = Parser.getTok(); 4264 unsigned Opt; 4265 4266 if (Tok.is(AsmToken::Identifier)) { 4267 StringRef OptStr = Tok.getString(); 4268 4269 if (OptStr.equals_lower("sy")) 4270 Opt = ARM_ISB::SY; 4271 else 4272 return MatchOperand_NoMatch; 4273 4274 Parser.Lex(); // Eat identifier token. 4275 } else if (Tok.is(AsmToken::Hash) || 4276 Tok.is(AsmToken::Dollar) || 4277 Tok.is(AsmToken::Integer)) { 4278 if (Parser.getTok().isNot(AsmToken::Integer)) 4279 Parser.Lex(); // Eat '#' or '$'. 4280 SMLoc Loc = Parser.getTok().getLoc(); 4281 4282 const MCExpr *ISBarrierID; 4283 if (getParser().parseExpression(ISBarrierID)) { 4284 Error(Loc, "illegal expression"); 4285 return MatchOperand_ParseFail; 4286 } 4287 4288 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4289 if (!CE) { 4290 Error(Loc, "constant expression expected"); 4291 return MatchOperand_ParseFail; 4292 } 4293 4294 int Val = CE->getValue(); 4295 if (Val & ~0xf) { 4296 Error(Loc, "immediate value out of range"); 4297 return MatchOperand_ParseFail; 4298 } 4299 4300 Opt = ARM_ISB::RESERVED_0 + Val; 4301 } else 4302 return MatchOperand_ParseFail; 4303 4304 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4305 (ARM_ISB::InstSyncBOpt)Opt, S)); 4306 return MatchOperand_Success; 4307 } 4308 4309 4310 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4311 OperandMatchResultTy 4312 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4313 MCAsmParser &Parser = getParser(); 4314 SMLoc S = Parser.getTok().getLoc(); 4315 const AsmToken &Tok = Parser.getTok(); 4316 if (!Tok.is(AsmToken::Identifier)) 4317 return MatchOperand_NoMatch; 4318 StringRef IFlagsStr = Tok.getString(); 4319 4320 // An iflags string of "none" is interpreted to mean that none of the AIF 4321 // bits are set. Not a terribly useful instruction, but a valid encoding. 4322 unsigned IFlags = 0; 4323 if (IFlagsStr != "none") { 4324 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4325 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4326 .Case("a", ARM_PROC::A) 4327 .Case("i", ARM_PROC::I) 4328 .Case("f", ARM_PROC::F) 4329 .Default(~0U); 4330 4331 // If some specific iflag is already set, it means that some letter is 4332 // present more than once, this is not acceptable. 4333 if (Flag == ~0U || (IFlags & Flag)) 4334 return MatchOperand_NoMatch; 4335 4336 IFlags |= Flag; 4337 } 4338 } 4339 4340 Parser.Lex(); // Eat identifier token. 4341 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4342 return MatchOperand_Success; 4343 } 4344 4345 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4346 OperandMatchResultTy 4347 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4348 MCAsmParser &Parser = getParser(); 4349 SMLoc S = Parser.getTok().getLoc(); 4350 const AsmToken &Tok = Parser.getTok(); 4351 4352 if (Tok.is(AsmToken::Integer)) { 4353 int64_t Val = Tok.getIntVal(); 4354 if (Val > 255 || Val < 0) { 4355 return MatchOperand_NoMatch; 4356 } 4357 unsigned SYSmvalue = Val & 0xFF; 4358 Parser.Lex(); 4359 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4360 return MatchOperand_Success; 4361 } 4362 4363 if (!Tok.is(AsmToken::Identifier)) 4364 return MatchOperand_NoMatch; 4365 StringRef Mask = Tok.getString(); 4366 4367 if (isMClass()) { 4368 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4369 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4370 return MatchOperand_NoMatch; 4371 4372 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4373 4374 Parser.Lex(); // Eat identifier token. 4375 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4376 return MatchOperand_Success; 4377 } 4378 4379 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4380 size_t Start = 0, Next = Mask.find('_'); 4381 StringRef Flags = ""; 4382 std::string SpecReg = Mask.slice(Start, Next).lower(); 4383 if (Next != StringRef::npos) 4384 Flags = Mask.slice(Next+1, Mask.size()); 4385 4386 // FlagsVal contains the complete mask: 4387 // 3-0: Mask 4388 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4389 unsigned FlagsVal = 0; 4390 4391 if (SpecReg == "apsr") { 4392 FlagsVal = StringSwitch<unsigned>(Flags) 4393 .Case("nzcvq", 0x8) // same as CPSR_f 4394 .Case("g", 0x4) // same as CPSR_s 4395 .Case("nzcvqg", 0xc) // same as CPSR_fs 4396 .Default(~0U); 4397 4398 if (FlagsVal == ~0U) { 4399 if (!Flags.empty()) 4400 return MatchOperand_NoMatch; 4401 else 4402 FlagsVal = 8; // No flag 4403 } 4404 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4405 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4406 if (Flags == "all" || Flags == "") 4407 Flags = "fc"; 4408 for (int i = 0, e = Flags.size(); i != e; ++i) { 4409 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4410 .Case("c", 1) 4411 .Case("x", 2) 4412 .Case("s", 4) 4413 .Case("f", 8) 4414 .Default(~0U); 4415 4416 // If some specific flag is already set, it means that some letter is 4417 // present more than once, this is not acceptable. 4418 if (Flag == ~0U || (FlagsVal & Flag)) 4419 return MatchOperand_NoMatch; 4420 FlagsVal |= Flag; 4421 } 4422 } else // No match for special register. 4423 return MatchOperand_NoMatch; 4424 4425 // Special register without flags is NOT equivalent to "fc" flags. 4426 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4427 // two lines would enable gas compatibility at the expense of breaking 4428 // round-tripping. 4429 // 4430 // if (!FlagsVal) 4431 // FlagsVal = 0x9; 4432 4433 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4434 if (SpecReg == "spsr") 4435 FlagsVal |= 16; 4436 4437 Parser.Lex(); // Eat identifier token. 4438 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4439 return MatchOperand_Success; 4440 } 4441 4442 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4443 /// use in the MRS/MSR instructions added to support virtualization. 4444 OperandMatchResultTy 4445 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4446 MCAsmParser &Parser = getParser(); 4447 SMLoc S = Parser.getTok().getLoc(); 4448 const AsmToken &Tok = Parser.getTok(); 4449 if (!Tok.is(AsmToken::Identifier)) 4450 return MatchOperand_NoMatch; 4451 StringRef RegName = Tok.getString(); 4452 4453 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 4454 if (!TheReg) 4455 return MatchOperand_NoMatch; 4456 unsigned Encoding = TheReg->Encoding; 4457 4458 Parser.Lex(); // Eat identifier token. 4459 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4460 return MatchOperand_Success; 4461 } 4462 4463 OperandMatchResultTy 4464 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4465 int High) { 4466 MCAsmParser &Parser = getParser(); 4467 const AsmToken &Tok = Parser.getTok(); 4468 if (Tok.isNot(AsmToken::Identifier)) { 4469 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4470 return MatchOperand_ParseFail; 4471 } 4472 StringRef ShiftName = Tok.getString(); 4473 std::string LowerOp = Op.lower(); 4474 std::string UpperOp = Op.upper(); 4475 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4476 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4477 return MatchOperand_ParseFail; 4478 } 4479 Parser.Lex(); // Eat shift type token. 4480 4481 // There must be a '#' and a shift amount. 4482 if (Parser.getTok().isNot(AsmToken::Hash) && 4483 Parser.getTok().isNot(AsmToken::Dollar)) { 4484 Error(Parser.getTok().getLoc(), "'#' expected"); 4485 return MatchOperand_ParseFail; 4486 } 4487 Parser.Lex(); // Eat hash token. 4488 4489 const MCExpr *ShiftAmount; 4490 SMLoc Loc = Parser.getTok().getLoc(); 4491 SMLoc EndLoc; 4492 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4493 Error(Loc, "illegal expression"); 4494 return MatchOperand_ParseFail; 4495 } 4496 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4497 if (!CE) { 4498 Error(Loc, "constant expression expected"); 4499 return MatchOperand_ParseFail; 4500 } 4501 int Val = CE->getValue(); 4502 if (Val < Low || Val > High) { 4503 Error(Loc, "immediate value out of range"); 4504 return MatchOperand_ParseFail; 4505 } 4506 4507 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4508 4509 return MatchOperand_Success; 4510 } 4511 4512 OperandMatchResultTy 4513 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4514 MCAsmParser &Parser = getParser(); 4515 const AsmToken &Tok = Parser.getTok(); 4516 SMLoc S = Tok.getLoc(); 4517 if (Tok.isNot(AsmToken::Identifier)) { 4518 Error(S, "'be' or 'le' operand expected"); 4519 return MatchOperand_ParseFail; 4520 } 4521 int Val = StringSwitch<int>(Tok.getString().lower()) 4522 .Case("be", 1) 4523 .Case("le", 0) 4524 .Default(-1); 4525 Parser.Lex(); // Eat the token. 4526 4527 if (Val == -1) { 4528 Error(S, "'be' or 'le' operand expected"); 4529 return MatchOperand_ParseFail; 4530 } 4531 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4532 getContext()), 4533 S, Tok.getEndLoc())); 4534 return MatchOperand_Success; 4535 } 4536 4537 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4538 /// instructions. Legal values are: 4539 /// lsl #n 'n' in [0,31] 4540 /// asr #n 'n' in [1,32] 4541 /// n == 32 encoded as n == 0. 4542 OperandMatchResultTy 4543 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4544 MCAsmParser &Parser = getParser(); 4545 const AsmToken &Tok = Parser.getTok(); 4546 SMLoc S = Tok.getLoc(); 4547 if (Tok.isNot(AsmToken::Identifier)) { 4548 Error(S, "shift operator 'asr' or 'lsl' expected"); 4549 return MatchOperand_ParseFail; 4550 } 4551 StringRef ShiftName = Tok.getString(); 4552 bool isASR; 4553 if (ShiftName == "lsl" || ShiftName == "LSL") 4554 isASR = false; 4555 else if (ShiftName == "asr" || ShiftName == "ASR") 4556 isASR = true; 4557 else { 4558 Error(S, "shift operator 'asr' or 'lsl' expected"); 4559 return MatchOperand_ParseFail; 4560 } 4561 Parser.Lex(); // Eat the operator. 4562 4563 // A '#' and a shift amount. 4564 if (Parser.getTok().isNot(AsmToken::Hash) && 4565 Parser.getTok().isNot(AsmToken::Dollar)) { 4566 Error(Parser.getTok().getLoc(), "'#' expected"); 4567 return MatchOperand_ParseFail; 4568 } 4569 Parser.Lex(); // Eat hash token. 4570 SMLoc ExLoc = Parser.getTok().getLoc(); 4571 4572 const MCExpr *ShiftAmount; 4573 SMLoc EndLoc; 4574 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4575 Error(ExLoc, "malformed shift expression"); 4576 return MatchOperand_ParseFail; 4577 } 4578 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4579 if (!CE) { 4580 Error(ExLoc, "shift amount must be an immediate"); 4581 return MatchOperand_ParseFail; 4582 } 4583 4584 int64_t Val = CE->getValue(); 4585 if (isASR) { 4586 // Shift amount must be in [1,32] 4587 if (Val < 1 || Val > 32) { 4588 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4589 return MatchOperand_ParseFail; 4590 } 4591 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4592 if (isThumb() && Val == 32) { 4593 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4594 return MatchOperand_ParseFail; 4595 } 4596 if (Val == 32) Val = 0; 4597 } else { 4598 // Shift amount must be in [1,32] 4599 if (Val < 0 || Val > 31) { 4600 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4601 return MatchOperand_ParseFail; 4602 } 4603 } 4604 4605 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4606 4607 return MatchOperand_Success; 4608 } 4609 4610 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4611 /// of instructions. Legal values are: 4612 /// ror #n 'n' in {0, 8, 16, 24} 4613 OperandMatchResultTy 4614 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4615 MCAsmParser &Parser = getParser(); 4616 const AsmToken &Tok = Parser.getTok(); 4617 SMLoc S = Tok.getLoc(); 4618 if (Tok.isNot(AsmToken::Identifier)) 4619 return MatchOperand_NoMatch; 4620 StringRef ShiftName = Tok.getString(); 4621 if (ShiftName != "ror" && ShiftName != "ROR") 4622 return MatchOperand_NoMatch; 4623 Parser.Lex(); // Eat the operator. 4624 4625 // A '#' and a rotate amount. 4626 if (Parser.getTok().isNot(AsmToken::Hash) && 4627 Parser.getTok().isNot(AsmToken::Dollar)) { 4628 Error(Parser.getTok().getLoc(), "'#' expected"); 4629 return MatchOperand_ParseFail; 4630 } 4631 Parser.Lex(); // Eat hash token. 4632 SMLoc ExLoc = Parser.getTok().getLoc(); 4633 4634 const MCExpr *ShiftAmount; 4635 SMLoc EndLoc; 4636 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4637 Error(ExLoc, "malformed rotate expression"); 4638 return MatchOperand_ParseFail; 4639 } 4640 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4641 if (!CE) { 4642 Error(ExLoc, "rotate amount must be an immediate"); 4643 return MatchOperand_ParseFail; 4644 } 4645 4646 int64_t Val = CE->getValue(); 4647 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4648 // normally, zero is represented in asm by omitting the rotate operand 4649 // entirely. 4650 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4651 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4652 return MatchOperand_ParseFail; 4653 } 4654 4655 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4656 4657 return MatchOperand_Success; 4658 } 4659 4660 OperandMatchResultTy 4661 ARMAsmParser::parseModImm(OperandVector &Operands) { 4662 MCAsmParser &Parser = getParser(); 4663 MCAsmLexer &Lexer = getLexer(); 4664 int64_t Imm1, Imm2; 4665 4666 SMLoc S = Parser.getTok().getLoc(); 4667 4668 // 1) A mod_imm operand can appear in the place of a register name: 4669 // add r0, #mod_imm 4670 // add r0, r0, #mod_imm 4671 // to correctly handle the latter, we bail out as soon as we see an 4672 // identifier. 4673 // 4674 // 2) Similarly, we do not want to parse into complex operands: 4675 // mov r0, #mod_imm 4676 // mov r0, :lower16:(_foo) 4677 if (Parser.getTok().is(AsmToken::Identifier) || 4678 Parser.getTok().is(AsmToken::Colon)) 4679 return MatchOperand_NoMatch; 4680 4681 // Hash (dollar) is optional as per the ARMARM 4682 if (Parser.getTok().is(AsmToken::Hash) || 4683 Parser.getTok().is(AsmToken::Dollar)) { 4684 // Avoid parsing into complex operands (#:) 4685 if (Lexer.peekTok().is(AsmToken::Colon)) 4686 return MatchOperand_NoMatch; 4687 4688 // Eat the hash (dollar) 4689 Parser.Lex(); 4690 } 4691 4692 SMLoc Sx1, Ex1; 4693 Sx1 = Parser.getTok().getLoc(); 4694 const MCExpr *Imm1Exp; 4695 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4696 Error(Sx1, "malformed expression"); 4697 return MatchOperand_ParseFail; 4698 } 4699 4700 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4701 4702 if (CE) { 4703 // Immediate must fit within 32-bits 4704 Imm1 = CE->getValue(); 4705 int Enc = ARM_AM::getSOImmVal(Imm1); 4706 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4707 // We have a match! 4708 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4709 (Enc & 0xF00) >> 7, 4710 Sx1, Ex1)); 4711 return MatchOperand_Success; 4712 } 4713 4714 // We have parsed an immediate which is not for us, fallback to a plain 4715 // immediate. This can happen for instruction aliases. For an example, 4716 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4717 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4718 // instruction with a mod_imm operand. The alias is defined such that the 4719 // parser method is shared, that's why we have to do this here. 4720 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4721 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4722 return MatchOperand_Success; 4723 } 4724 } else { 4725 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4726 // MCFixup). Fallback to a plain immediate. 4727 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4728 return MatchOperand_Success; 4729 } 4730 4731 // From this point onward, we expect the input to be a (#bits, #rot) pair 4732 if (Parser.getTok().isNot(AsmToken::Comma)) { 4733 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4734 return MatchOperand_ParseFail; 4735 } 4736 4737 if (Imm1 & ~0xFF) { 4738 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4739 return MatchOperand_ParseFail; 4740 } 4741 4742 // Eat the comma 4743 Parser.Lex(); 4744 4745 // Repeat for #rot 4746 SMLoc Sx2, Ex2; 4747 Sx2 = Parser.getTok().getLoc(); 4748 4749 // Eat the optional hash (dollar) 4750 if (Parser.getTok().is(AsmToken::Hash) || 4751 Parser.getTok().is(AsmToken::Dollar)) 4752 Parser.Lex(); 4753 4754 const MCExpr *Imm2Exp; 4755 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4756 Error(Sx2, "malformed expression"); 4757 return MatchOperand_ParseFail; 4758 } 4759 4760 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4761 4762 if (CE) { 4763 Imm2 = CE->getValue(); 4764 if (!(Imm2 & ~0x1E)) { 4765 // We have a match! 4766 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4767 return MatchOperand_Success; 4768 } 4769 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4770 return MatchOperand_ParseFail; 4771 } else { 4772 Error(Sx2, "constant expression expected"); 4773 return MatchOperand_ParseFail; 4774 } 4775 } 4776 4777 OperandMatchResultTy 4778 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4779 MCAsmParser &Parser = getParser(); 4780 SMLoc S = Parser.getTok().getLoc(); 4781 // The bitfield descriptor is really two operands, the LSB and the width. 4782 if (Parser.getTok().isNot(AsmToken::Hash) && 4783 Parser.getTok().isNot(AsmToken::Dollar)) { 4784 Error(Parser.getTok().getLoc(), "'#' expected"); 4785 return MatchOperand_ParseFail; 4786 } 4787 Parser.Lex(); // Eat hash token. 4788 4789 const MCExpr *LSBExpr; 4790 SMLoc E = Parser.getTok().getLoc(); 4791 if (getParser().parseExpression(LSBExpr)) { 4792 Error(E, "malformed immediate expression"); 4793 return MatchOperand_ParseFail; 4794 } 4795 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4796 if (!CE) { 4797 Error(E, "'lsb' operand must be an immediate"); 4798 return MatchOperand_ParseFail; 4799 } 4800 4801 int64_t LSB = CE->getValue(); 4802 // The LSB must be in the range [0,31] 4803 if (LSB < 0 || LSB > 31) { 4804 Error(E, "'lsb' operand must be in the range [0,31]"); 4805 return MatchOperand_ParseFail; 4806 } 4807 E = Parser.getTok().getLoc(); 4808 4809 // Expect another immediate operand. 4810 if (Parser.getTok().isNot(AsmToken::Comma)) { 4811 Error(Parser.getTok().getLoc(), "too few operands"); 4812 return MatchOperand_ParseFail; 4813 } 4814 Parser.Lex(); // Eat hash token. 4815 if (Parser.getTok().isNot(AsmToken::Hash) && 4816 Parser.getTok().isNot(AsmToken::Dollar)) { 4817 Error(Parser.getTok().getLoc(), "'#' expected"); 4818 return MatchOperand_ParseFail; 4819 } 4820 Parser.Lex(); // Eat hash token. 4821 4822 const MCExpr *WidthExpr; 4823 SMLoc EndLoc; 4824 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4825 Error(E, "malformed immediate expression"); 4826 return MatchOperand_ParseFail; 4827 } 4828 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4829 if (!CE) { 4830 Error(E, "'width' operand must be an immediate"); 4831 return MatchOperand_ParseFail; 4832 } 4833 4834 int64_t Width = CE->getValue(); 4835 // The LSB must be in the range [1,32-lsb] 4836 if (Width < 1 || Width > 32 - LSB) { 4837 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4838 return MatchOperand_ParseFail; 4839 } 4840 4841 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4842 4843 return MatchOperand_Success; 4844 } 4845 4846 OperandMatchResultTy 4847 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4848 // Check for a post-index addressing register operand. Specifically: 4849 // postidx_reg := '+' register {, shift} 4850 // | '-' register {, shift} 4851 // | register {, shift} 4852 4853 // This method must return MatchOperand_NoMatch without consuming any tokens 4854 // in the case where there is no match, as other alternatives take other 4855 // parse methods. 4856 MCAsmParser &Parser = getParser(); 4857 AsmToken Tok = Parser.getTok(); 4858 SMLoc S = Tok.getLoc(); 4859 bool haveEaten = false; 4860 bool isAdd = true; 4861 if (Tok.is(AsmToken::Plus)) { 4862 Parser.Lex(); // Eat the '+' token. 4863 haveEaten = true; 4864 } else if (Tok.is(AsmToken::Minus)) { 4865 Parser.Lex(); // Eat the '-' token. 4866 isAdd = false; 4867 haveEaten = true; 4868 } 4869 4870 SMLoc E = Parser.getTok().getEndLoc(); 4871 int Reg = tryParseRegister(); 4872 if (Reg == -1) { 4873 if (!haveEaten) 4874 return MatchOperand_NoMatch; 4875 Error(Parser.getTok().getLoc(), "register expected"); 4876 return MatchOperand_ParseFail; 4877 } 4878 4879 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4880 unsigned ShiftImm = 0; 4881 if (Parser.getTok().is(AsmToken::Comma)) { 4882 Parser.Lex(); // Eat the ','. 4883 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4884 return MatchOperand_ParseFail; 4885 4886 // FIXME: Only approximates end...may include intervening whitespace. 4887 E = Parser.getTok().getLoc(); 4888 } 4889 4890 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4891 ShiftImm, S, E)); 4892 4893 return MatchOperand_Success; 4894 } 4895 4896 OperandMatchResultTy 4897 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4898 // Check for a post-index addressing register operand. Specifically: 4899 // am3offset := '+' register 4900 // | '-' register 4901 // | register 4902 // | # imm 4903 // | # + imm 4904 // | # - imm 4905 4906 // This method must return MatchOperand_NoMatch without consuming any tokens 4907 // in the case where there is no match, as other alternatives take other 4908 // parse methods. 4909 MCAsmParser &Parser = getParser(); 4910 AsmToken Tok = Parser.getTok(); 4911 SMLoc S = Tok.getLoc(); 4912 4913 // Do immediates first, as we always parse those if we have a '#'. 4914 if (Parser.getTok().is(AsmToken::Hash) || 4915 Parser.getTok().is(AsmToken::Dollar)) { 4916 Parser.Lex(); // Eat '#' or '$'. 4917 // Explicitly look for a '-', as we need to encode negative zero 4918 // differently. 4919 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4920 const MCExpr *Offset; 4921 SMLoc E; 4922 if (getParser().parseExpression(Offset, E)) 4923 return MatchOperand_ParseFail; 4924 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4925 if (!CE) { 4926 Error(S, "constant expression expected"); 4927 return MatchOperand_ParseFail; 4928 } 4929 // Negative zero is encoded as the flag value 4930 // std::numeric_limits<int32_t>::min(). 4931 int32_t Val = CE->getValue(); 4932 if (isNegative && Val == 0) 4933 Val = std::numeric_limits<int32_t>::min(); 4934 4935 Operands.push_back( 4936 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4937 4938 return MatchOperand_Success; 4939 } 4940 4941 bool haveEaten = false; 4942 bool isAdd = true; 4943 if (Tok.is(AsmToken::Plus)) { 4944 Parser.Lex(); // Eat the '+' token. 4945 haveEaten = true; 4946 } else if (Tok.is(AsmToken::Minus)) { 4947 Parser.Lex(); // Eat the '-' token. 4948 isAdd = false; 4949 haveEaten = true; 4950 } 4951 4952 Tok = Parser.getTok(); 4953 int Reg = tryParseRegister(); 4954 if (Reg == -1) { 4955 if (!haveEaten) 4956 return MatchOperand_NoMatch; 4957 Error(Tok.getLoc(), "register expected"); 4958 return MatchOperand_ParseFail; 4959 } 4960 4961 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4962 0, S, Tok.getEndLoc())); 4963 4964 return MatchOperand_Success; 4965 } 4966 4967 /// Convert parsed operands to MCInst. Needed here because this instruction 4968 /// only has two register operands, but multiplication is commutative so 4969 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4970 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4971 const OperandVector &Operands) { 4972 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4973 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4974 // If we have a three-operand form, make sure to set Rn to be the operand 4975 // that isn't the same as Rd. 4976 unsigned RegOp = 4; 4977 if (Operands.size() == 6 && 4978 ((ARMOperand &)*Operands[4]).getReg() == 4979 ((ARMOperand &)*Operands[3]).getReg()) 4980 RegOp = 5; 4981 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4982 Inst.addOperand(Inst.getOperand(0)); 4983 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4984 } 4985 4986 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4987 const OperandVector &Operands) { 4988 int CondOp = -1, ImmOp = -1; 4989 switch(Inst.getOpcode()) { 4990 case ARM::tB: 4991 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4992 4993 case ARM::t2B: 4994 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4995 4996 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4997 } 4998 // first decide whether or not the branch should be conditional 4999 // by looking at it's location relative to an IT block 5000 if(inITBlock()) { 5001 // inside an IT block we cannot have any conditional branches. any 5002 // such instructions needs to be converted to unconditional form 5003 switch(Inst.getOpcode()) { 5004 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5005 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5006 } 5007 } else { 5008 // outside IT blocks we can only have unconditional branches with AL 5009 // condition code or conditional branches with non-AL condition code 5010 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5011 switch(Inst.getOpcode()) { 5012 case ARM::tB: 5013 case ARM::tBcc: 5014 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5015 break; 5016 case ARM::t2B: 5017 case ARM::t2Bcc: 5018 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5019 break; 5020 } 5021 } 5022 5023 // now decide on encoding size based on branch target range 5024 switch(Inst.getOpcode()) { 5025 // classify tB as either t2B or t1B based on range of immediate operand 5026 case ARM::tB: { 5027 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5028 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5029 Inst.setOpcode(ARM::t2B); 5030 break; 5031 } 5032 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5033 case ARM::tBcc: { 5034 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5035 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5036 Inst.setOpcode(ARM::t2Bcc); 5037 break; 5038 } 5039 } 5040 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5041 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5042 } 5043 5044 /// Parse an ARM memory expression, return false if successful else return true 5045 /// or an error. The first token must be a '[' when called. 5046 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5047 MCAsmParser &Parser = getParser(); 5048 SMLoc S, E; 5049 if (Parser.getTok().isNot(AsmToken::LBrac)) 5050 return TokError("Token is not a Left Bracket"); 5051 S = Parser.getTok().getLoc(); 5052 Parser.Lex(); // Eat left bracket token. 5053 5054 const AsmToken &BaseRegTok = Parser.getTok(); 5055 int BaseRegNum = tryParseRegister(); 5056 if (BaseRegNum == -1) 5057 return Error(BaseRegTok.getLoc(), "register expected"); 5058 5059 // The next token must either be a comma, a colon or a closing bracket. 5060 const AsmToken &Tok = Parser.getTok(); 5061 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5062 !Tok.is(AsmToken::RBrac)) 5063 return Error(Tok.getLoc(), "malformed memory operand"); 5064 5065 if (Tok.is(AsmToken::RBrac)) { 5066 E = Tok.getEndLoc(); 5067 Parser.Lex(); // Eat right bracket token. 5068 5069 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5070 ARM_AM::no_shift, 0, 0, false, 5071 S, E)); 5072 5073 // If there's a pre-indexing writeback marker, '!', just add it as a token 5074 // operand. It's rather odd, but syntactically valid. 5075 if (Parser.getTok().is(AsmToken::Exclaim)) { 5076 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5077 Parser.Lex(); // Eat the '!'. 5078 } 5079 5080 return false; 5081 } 5082 5083 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5084 "Lost colon or comma in memory operand?!"); 5085 if (Tok.is(AsmToken::Comma)) { 5086 Parser.Lex(); // Eat the comma. 5087 } 5088 5089 // If we have a ':', it's an alignment specifier. 5090 if (Parser.getTok().is(AsmToken::Colon)) { 5091 Parser.Lex(); // Eat the ':'. 5092 E = Parser.getTok().getLoc(); 5093 SMLoc AlignmentLoc = Tok.getLoc(); 5094 5095 const MCExpr *Expr; 5096 if (getParser().parseExpression(Expr)) 5097 return true; 5098 5099 // The expression has to be a constant. Memory references with relocations 5100 // don't come through here, as they use the <label> forms of the relevant 5101 // instructions. 5102 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5103 if (!CE) 5104 return Error (E, "constant expression expected"); 5105 5106 unsigned Align = 0; 5107 switch (CE->getValue()) { 5108 default: 5109 return Error(E, 5110 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5111 case 16: Align = 2; break; 5112 case 32: Align = 4; break; 5113 case 64: Align = 8; break; 5114 case 128: Align = 16; break; 5115 case 256: Align = 32; break; 5116 } 5117 5118 // Now we should have the closing ']' 5119 if (Parser.getTok().isNot(AsmToken::RBrac)) 5120 return Error(Parser.getTok().getLoc(), "']' expected"); 5121 E = Parser.getTok().getEndLoc(); 5122 Parser.Lex(); // Eat right bracket token. 5123 5124 // Don't worry about range checking the value here. That's handled by 5125 // the is*() predicates. 5126 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5127 ARM_AM::no_shift, 0, Align, 5128 false, S, E, AlignmentLoc)); 5129 5130 // If there's a pre-indexing writeback marker, '!', just add it as a token 5131 // operand. 5132 if (Parser.getTok().is(AsmToken::Exclaim)) { 5133 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5134 Parser.Lex(); // Eat the '!'. 5135 } 5136 5137 return false; 5138 } 5139 5140 // If we have a '#', it's an immediate offset, else assume it's a register 5141 // offset. Be friendly and also accept a plain integer (without a leading 5142 // hash) for gas compatibility. 5143 if (Parser.getTok().is(AsmToken::Hash) || 5144 Parser.getTok().is(AsmToken::Dollar) || 5145 Parser.getTok().is(AsmToken::Integer)) { 5146 if (Parser.getTok().isNot(AsmToken::Integer)) 5147 Parser.Lex(); // Eat '#' or '$'. 5148 E = Parser.getTok().getLoc(); 5149 5150 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5151 const MCExpr *Offset; 5152 if (getParser().parseExpression(Offset)) 5153 return true; 5154 5155 // The expression has to be a constant. Memory references with relocations 5156 // don't come through here, as they use the <label> forms of the relevant 5157 // instructions. 5158 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5159 if (!CE) 5160 return Error (E, "constant expression expected"); 5161 5162 // If the constant was #-0, represent it as 5163 // std::numeric_limits<int32_t>::min(). 5164 int32_t Val = CE->getValue(); 5165 if (isNegative && Val == 0) 5166 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5167 getContext()); 5168 5169 // Now we should have the closing ']' 5170 if (Parser.getTok().isNot(AsmToken::RBrac)) 5171 return Error(Parser.getTok().getLoc(), "']' expected"); 5172 E = Parser.getTok().getEndLoc(); 5173 Parser.Lex(); // Eat right bracket token. 5174 5175 // Don't worry about range checking the value here. That's handled by 5176 // the is*() predicates. 5177 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5178 ARM_AM::no_shift, 0, 0, 5179 false, S, E)); 5180 5181 // If there's a pre-indexing writeback marker, '!', just add it as a token 5182 // operand. 5183 if (Parser.getTok().is(AsmToken::Exclaim)) { 5184 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5185 Parser.Lex(); // Eat the '!'. 5186 } 5187 5188 return false; 5189 } 5190 5191 // The register offset is optionally preceded by a '+' or '-' 5192 bool isNegative = false; 5193 if (Parser.getTok().is(AsmToken::Minus)) { 5194 isNegative = true; 5195 Parser.Lex(); // Eat the '-'. 5196 } else if (Parser.getTok().is(AsmToken::Plus)) { 5197 // Nothing to do. 5198 Parser.Lex(); // Eat the '+'. 5199 } 5200 5201 E = Parser.getTok().getLoc(); 5202 int OffsetRegNum = tryParseRegister(); 5203 if (OffsetRegNum == -1) 5204 return Error(E, "register expected"); 5205 5206 // If there's a shift operator, handle it. 5207 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5208 unsigned ShiftImm = 0; 5209 if (Parser.getTok().is(AsmToken::Comma)) { 5210 Parser.Lex(); // Eat the ','. 5211 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5212 return true; 5213 } 5214 5215 // Now we should have the closing ']' 5216 if (Parser.getTok().isNot(AsmToken::RBrac)) 5217 return Error(Parser.getTok().getLoc(), "']' expected"); 5218 E = Parser.getTok().getEndLoc(); 5219 Parser.Lex(); // Eat right bracket token. 5220 5221 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5222 ShiftType, ShiftImm, 0, isNegative, 5223 S, E)); 5224 5225 // If there's a pre-indexing writeback marker, '!', just add it as a token 5226 // operand. 5227 if (Parser.getTok().is(AsmToken::Exclaim)) { 5228 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5229 Parser.Lex(); // Eat the '!'. 5230 } 5231 5232 return false; 5233 } 5234 5235 /// parseMemRegOffsetShift - one of these two: 5236 /// ( lsl | lsr | asr | ror ) , # shift_amount 5237 /// rrx 5238 /// return true if it parses a shift otherwise it returns false. 5239 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5240 unsigned &Amount) { 5241 MCAsmParser &Parser = getParser(); 5242 SMLoc Loc = Parser.getTok().getLoc(); 5243 const AsmToken &Tok = Parser.getTok(); 5244 if (Tok.isNot(AsmToken::Identifier)) 5245 return Error(Loc, "illegal shift operator"); 5246 StringRef ShiftName = Tok.getString(); 5247 if (ShiftName == "lsl" || ShiftName == "LSL" || 5248 ShiftName == "asl" || ShiftName == "ASL") 5249 St = ARM_AM::lsl; 5250 else if (ShiftName == "lsr" || ShiftName == "LSR") 5251 St = ARM_AM::lsr; 5252 else if (ShiftName == "asr" || ShiftName == "ASR") 5253 St = ARM_AM::asr; 5254 else if (ShiftName == "ror" || ShiftName == "ROR") 5255 St = ARM_AM::ror; 5256 else if (ShiftName == "rrx" || ShiftName == "RRX") 5257 St = ARM_AM::rrx; 5258 else 5259 return Error(Loc, "illegal shift operator"); 5260 Parser.Lex(); // Eat shift type token. 5261 5262 // rrx stands alone. 5263 Amount = 0; 5264 if (St != ARM_AM::rrx) { 5265 Loc = Parser.getTok().getLoc(); 5266 // A '#' and a shift amount. 5267 const AsmToken &HashTok = Parser.getTok(); 5268 if (HashTok.isNot(AsmToken::Hash) && 5269 HashTok.isNot(AsmToken::Dollar)) 5270 return Error(HashTok.getLoc(), "'#' expected"); 5271 Parser.Lex(); // Eat hash token. 5272 5273 const MCExpr *Expr; 5274 if (getParser().parseExpression(Expr)) 5275 return true; 5276 // Range check the immediate. 5277 // lsl, ror: 0 <= imm <= 31 5278 // lsr, asr: 0 <= imm <= 32 5279 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5280 if (!CE) 5281 return Error(Loc, "shift amount must be an immediate"); 5282 int64_t Imm = CE->getValue(); 5283 if (Imm < 0 || 5284 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5285 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5286 return Error(Loc, "immediate shift value out of range"); 5287 // If <ShiftTy> #0, turn it into a no_shift. 5288 if (Imm == 0) 5289 St = ARM_AM::lsl; 5290 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5291 if (Imm == 32) 5292 Imm = 0; 5293 Amount = Imm; 5294 } 5295 5296 return false; 5297 } 5298 5299 /// parseFPImm - A floating point immediate expression operand. 5300 OperandMatchResultTy 5301 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5302 MCAsmParser &Parser = getParser(); 5303 // Anything that can accept a floating point constant as an operand 5304 // needs to go through here, as the regular parseExpression is 5305 // integer only. 5306 // 5307 // This routine still creates a generic Immediate operand, containing 5308 // a bitcast of the 64-bit floating point value. The various operands 5309 // that accept floats can check whether the value is valid for them 5310 // via the standard is*() predicates. 5311 5312 SMLoc S = Parser.getTok().getLoc(); 5313 5314 if (Parser.getTok().isNot(AsmToken::Hash) && 5315 Parser.getTok().isNot(AsmToken::Dollar)) 5316 return MatchOperand_NoMatch; 5317 5318 // Disambiguate the VMOV forms that can accept an FP immediate. 5319 // vmov.f32 <sreg>, #imm 5320 // vmov.f64 <dreg>, #imm 5321 // vmov.f32 <dreg>, #imm @ vector f32x2 5322 // vmov.f32 <qreg>, #imm @ vector f32x4 5323 // 5324 // There are also the NEON VMOV instructions which expect an 5325 // integer constant. Make sure we don't try to parse an FPImm 5326 // for these: 5327 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5328 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5329 bool isVmovf = TyOp.isToken() && 5330 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5331 TyOp.getToken() == ".f16"); 5332 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5333 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5334 Mnemonic.getToken() == "fconsts"); 5335 if (!(isVmovf || isFconst)) 5336 return MatchOperand_NoMatch; 5337 5338 Parser.Lex(); // Eat '#' or '$'. 5339 5340 // Handle negation, as that still comes through as a separate token. 5341 bool isNegative = false; 5342 if (Parser.getTok().is(AsmToken::Minus)) { 5343 isNegative = true; 5344 Parser.Lex(); 5345 } 5346 const AsmToken &Tok = Parser.getTok(); 5347 SMLoc Loc = Tok.getLoc(); 5348 if (Tok.is(AsmToken::Real) && isVmovf) { 5349 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5350 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5351 // If we had a '-' in front, toggle the sign bit. 5352 IntVal ^= (uint64_t)isNegative << 31; 5353 Parser.Lex(); // Eat the token. 5354 Operands.push_back(ARMOperand::CreateImm( 5355 MCConstantExpr::create(IntVal, getContext()), 5356 S, Parser.getTok().getLoc())); 5357 return MatchOperand_Success; 5358 } 5359 // Also handle plain integers. Instructions which allow floating point 5360 // immediates also allow a raw encoded 8-bit value. 5361 if (Tok.is(AsmToken::Integer) && isFconst) { 5362 int64_t Val = Tok.getIntVal(); 5363 Parser.Lex(); // Eat the token. 5364 if (Val > 255 || Val < 0) { 5365 Error(Loc, "encoded floating point value out of range"); 5366 return MatchOperand_ParseFail; 5367 } 5368 float RealVal = ARM_AM::getFPImmFloat(Val); 5369 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5370 5371 Operands.push_back(ARMOperand::CreateImm( 5372 MCConstantExpr::create(Val, getContext()), S, 5373 Parser.getTok().getLoc())); 5374 return MatchOperand_Success; 5375 } 5376 5377 Error(Loc, "invalid floating point immediate"); 5378 return MatchOperand_ParseFail; 5379 } 5380 5381 /// Parse a arm instruction operand. For now this parses the operand regardless 5382 /// of the mnemonic. 5383 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5384 MCAsmParser &Parser = getParser(); 5385 SMLoc S, E; 5386 5387 // Check if the current operand has a custom associated parser, if so, try to 5388 // custom parse the operand, or fallback to the general approach. 5389 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5390 if (ResTy == MatchOperand_Success) 5391 return false; 5392 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5393 // there was a match, but an error occurred, in which case, just return that 5394 // the operand parsing failed. 5395 if (ResTy == MatchOperand_ParseFail) 5396 return true; 5397 5398 switch (getLexer().getKind()) { 5399 default: 5400 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5401 return true; 5402 case AsmToken::Identifier: { 5403 // If we've seen a branch mnemonic, the next operand must be a label. This 5404 // is true even if the label is a register name. So "br r1" means branch to 5405 // label "r1". 5406 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5407 if (!ExpectLabel) { 5408 if (!tryParseRegisterWithWriteBack(Operands)) 5409 return false; 5410 int Res = tryParseShiftRegister(Operands); 5411 if (Res == 0) // success 5412 return false; 5413 else if (Res == -1) // irrecoverable error 5414 return true; 5415 // If this is VMRS, check for the apsr_nzcv operand. 5416 if (Mnemonic == "vmrs" && 5417 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5418 S = Parser.getTok().getLoc(); 5419 Parser.Lex(); 5420 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5421 return false; 5422 } 5423 } 5424 5425 // Fall though for the Identifier case that is not a register or a 5426 // special name. 5427 LLVM_FALLTHROUGH; 5428 } 5429 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5430 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5431 case AsmToken::String: // quoted label names. 5432 case AsmToken::Dot: { // . as a branch target 5433 // This was not a register so parse other operands that start with an 5434 // identifier (like labels) as expressions and create them as immediates. 5435 const MCExpr *IdVal; 5436 S = Parser.getTok().getLoc(); 5437 if (getParser().parseExpression(IdVal)) 5438 return true; 5439 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5440 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5441 return false; 5442 } 5443 case AsmToken::LBrac: 5444 return parseMemory(Operands); 5445 case AsmToken::LCurly: 5446 return parseRegisterList(Operands); 5447 case AsmToken::Dollar: 5448 case AsmToken::Hash: 5449 // #42 -> immediate. 5450 S = Parser.getTok().getLoc(); 5451 Parser.Lex(); 5452 5453 if (Parser.getTok().isNot(AsmToken::Colon)) { 5454 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5455 const MCExpr *ImmVal; 5456 if (getParser().parseExpression(ImmVal)) 5457 return true; 5458 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5459 if (CE) { 5460 int32_t Val = CE->getValue(); 5461 if (isNegative && Val == 0) 5462 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5463 getContext()); 5464 } 5465 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5466 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5467 5468 // There can be a trailing '!' on operands that we want as a separate 5469 // '!' Token operand. Handle that here. For example, the compatibility 5470 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5471 if (Parser.getTok().is(AsmToken::Exclaim)) { 5472 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5473 Parser.getTok().getLoc())); 5474 Parser.Lex(); // Eat exclaim token 5475 } 5476 return false; 5477 } 5478 // w/ a ':' after the '#', it's just like a plain ':'. 5479 LLVM_FALLTHROUGH; 5480 5481 case AsmToken::Colon: { 5482 S = Parser.getTok().getLoc(); 5483 // ":lower16:" and ":upper16:" expression prefixes 5484 // FIXME: Check it's an expression prefix, 5485 // e.g. (FOO - :lower16:BAR) isn't legal. 5486 ARMMCExpr::VariantKind RefKind; 5487 if (parsePrefix(RefKind)) 5488 return true; 5489 5490 const MCExpr *SubExprVal; 5491 if (getParser().parseExpression(SubExprVal)) 5492 return true; 5493 5494 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5495 getContext()); 5496 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5497 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5498 return false; 5499 } 5500 case AsmToken::Equal: { 5501 S = Parser.getTok().getLoc(); 5502 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5503 return Error(S, "unexpected token in operand"); 5504 Parser.Lex(); // Eat '=' 5505 const MCExpr *SubExprVal; 5506 if (getParser().parseExpression(SubExprVal)) 5507 return true; 5508 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5509 5510 // execute-only: we assume that assembly programmers know what they are 5511 // doing and allow literal pool creation here 5512 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5513 return false; 5514 } 5515 } 5516 } 5517 5518 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5519 // :lower16: and :upper16:. 5520 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5521 MCAsmParser &Parser = getParser(); 5522 RefKind = ARMMCExpr::VK_ARM_None; 5523 5524 // consume an optional '#' (GNU compatibility) 5525 if (getLexer().is(AsmToken::Hash)) 5526 Parser.Lex(); 5527 5528 // :lower16: and :upper16: modifiers 5529 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5530 Parser.Lex(); // Eat ':' 5531 5532 if (getLexer().isNot(AsmToken::Identifier)) { 5533 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5534 return true; 5535 } 5536 5537 enum { 5538 COFF = (1 << MCObjectFileInfo::IsCOFF), 5539 ELF = (1 << MCObjectFileInfo::IsELF), 5540 MACHO = (1 << MCObjectFileInfo::IsMachO), 5541 WASM = (1 << MCObjectFileInfo::IsWasm), 5542 }; 5543 static const struct PrefixEntry { 5544 const char *Spelling; 5545 ARMMCExpr::VariantKind VariantKind; 5546 uint8_t SupportedFormats; 5547 } PrefixEntries[] = { 5548 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5549 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5550 }; 5551 5552 StringRef IDVal = Parser.getTok().getIdentifier(); 5553 5554 const auto &Prefix = 5555 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5556 [&IDVal](const PrefixEntry &PE) { 5557 return PE.Spelling == IDVal; 5558 }); 5559 if (Prefix == std::end(PrefixEntries)) { 5560 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5561 return true; 5562 } 5563 5564 uint8_t CurrentFormat; 5565 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5566 case MCObjectFileInfo::IsMachO: 5567 CurrentFormat = MACHO; 5568 break; 5569 case MCObjectFileInfo::IsELF: 5570 CurrentFormat = ELF; 5571 break; 5572 case MCObjectFileInfo::IsCOFF: 5573 CurrentFormat = COFF; 5574 break; 5575 case MCObjectFileInfo::IsWasm: 5576 CurrentFormat = WASM; 5577 break; 5578 } 5579 5580 if (~Prefix->SupportedFormats & CurrentFormat) { 5581 Error(Parser.getTok().getLoc(), 5582 "cannot represent relocation in the current file format"); 5583 return true; 5584 } 5585 5586 RefKind = Prefix->VariantKind; 5587 Parser.Lex(); 5588 5589 if (getLexer().isNot(AsmToken::Colon)) { 5590 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5591 return true; 5592 } 5593 Parser.Lex(); // Eat the last ':' 5594 5595 return false; 5596 } 5597 5598 /// Given a mnemonic, split out possible predication code and carry 5599 /// setting letters to form a canonical mnemonic and flags. 5600 // 5601 // FIXME: Would be nice to autogen this. 5602 // FIXME: This is a bit of a maze of special cases. 5603 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5604 unsigned &PredicationCode, 5605 bool &CarrySetting, 5606 unsigned &ProcessorIMod, 5607 StringRef &ITMask) { 5608 PredicationCode = ARMCC::AL; 5609 CarrySetting = false; 5610 ProcessorIMod = 0; 5611 5612 // Ignore some mnemonics we know aren't predicated forms. 5613 // 5614 // FIXME: Would be nice to autogen this. 5615 if ((Mnemonic == "movs" && isThumb()) || 5616 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5617 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5618 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5619 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5620 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5621 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5622 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5623 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5624 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5625 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5626 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5627 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5628 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5629 Mnemonic == "bxns" || Mnemonic == "blxns" || 5630 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5631 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 5632 Mnemonic == "vfmal" || Mnemonic == "vfmsl") 5633 return Mnemonic; 5634 5635 // First, split out any predication code. Ignore mnemonics we know aren't 5636 // predicated but do have a carry-set and so weren't caught above. 5637 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5638 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5639 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5640 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5641 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 5642 if (CC != ~0U) { 5643 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5644 PredicationCode = CC; 5645 } 5646 } 5647 5648 // Next, determine if we have a carry setting bit. We explicitly ignore all 5649 // the instructions we know end in 's'. 5650 if (Mnemonic.endswith("s") && 5651 !(Mnemonic == "cps" || Mnemonic == "mls" || 5652 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5653 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5654 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5655 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5656 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5657 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5658 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5659 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5660 Mnemonic == "bxns" || Mnemonic == "blxns" || 5661 (Mnemonic == "movs" && isThumb()))) { 5662 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5663 CarrySetting = true; 5664 } 5665 5666 // The "cps" instruction can have a interrupt mode operand which is glued into 5667 // the mnemonic. Check if this is the case, split it and parse the imod op 5668 if (Mnemonic.startswith("cps")) { 5669 // Split out any imod code. 5670 unsigned IMod = 5671 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5672 .Case("ie", ARM_PROC::IE) 5673 .Case("id", ARM_PROC::ID) 5674 .Default(~0U); 5675 if (IMod != ~0U) { 5676 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5677 ProcessorIMod = IMod; 5678 } 5679 } 5680 5681 // The "it" instruction has the condition mask on the end of the mnemonic. 5682 if (Mnemonic.startswith("it")) { 5683 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5684 Mnemonic = Mnemonic.slice(0, 2); 5685 } 5686 5687 return Mnemonic; 5688 } 5689 5690 /// Given a canonical mnemonic, determine if the instruction ever allows 5691 /// inclusion of carry set or predication code operands. 5692 // 5693 // FIXME: It would be nice to autogen this. 5694 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5695 bool &CanAcceptCarrySet, 5696 bool &CanAcceptPredicationCode) { 5697 CanAcceptCarrySet = 5698 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5699 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5700 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5701 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5702 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5703 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5704 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5705 (!isThumb() && 5706 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5707 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5708 5709 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5710 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5711 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5712 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5713 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5714 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5715 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5716 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5717 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5718 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5719 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5720 Mnemonic == "vmovx" || Mnemonic == "vins" || 5721 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5722 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 5723 Mnemonic == "vfmal" || Mnemonic == "vfmsl") { 5724 // These mnemonics are never predicable 5725 CanAcceptPredicationCode = false; 5726 } else if (!isThumb()) { 5727 // Some instructions are only predicable in Thumb mode 5728 CanAcceptPredicationCode = 5729 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5730 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5731 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 5732 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 5733 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 5734 Mnemonic != "stc2" && Mnemonic != "stc2l" && 5735 Mnemonic != "tsb" && 5736 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 5737 } else if (isThumbOne()) { 5738 if (hasV6MOps()) 5739 CanAcceptPredicationCode = Mnemonic != "movs"; 5740 else 5741 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5742 } else 5743 CanAcceptPredicationCode = true; 5744 } 5745 5746 // Some Thumb instructions have two operand forms that are not 5747 // available as three operand, convert to two operand form if possible. 5748 // 5749 // FIXME: We would really like to be able to tablegen'erate this. 5750 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5751 bool CarrySetting, 5752 OperandVector &Operands) { 5753 if (Operands.size() != 6) 5754 return; 5755 5756 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5757 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5758 if (!Op3.isReg() || !Op4.isReg()) 5759 return; 5760 5761 auto Op3Reg = Op3.getReg(); 5762 auto Op4Reg = Op4.getReg(); 5763 5764 // For most Thumb2 cases we just generate the 3 operand form and reduce 5765 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5766 // won't accept SP or PC so we do the transformation here taking care 5767 // with immediate range in the 'add sp, sp #imm' case. 5768 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5769 if (isThumbTwo()) { 5770 if (Mnemonic != "add") 5771 return; 5772 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5773 (Op5.isReg() && Op5.getReg() == ARM::PC); 5774 if (!TryTransform) { 5775 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5776 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5777 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5778 Op5.isImm() && !Op5.isImm0_508s4()); 5779 } 5780 if (!TryTransform) 5781 return; 5782 } else if (!isThumbOne()) 5783 return; 5784 5785 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5786 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5787 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5788 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5789 return; 5790 5791 // If first 2 operands of a 3 operand instruction are the same 5792 // then transform to 2 operand version of the same instruction 5793 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5794 bool Transform = Op3Reg == Op4Reg; 5795 5796 // For communtative operations, we might be able to transform if we swap 5797 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5798 // as tADDrsp. 5799 const ARMOperand *LastOp = &Op5; 5800 bool Swap = false; 5801 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5802 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5803 Mnemonic == "and" || Mnemonic == "eor" || 5804 Mnemonic == "adc" || Mnemonic == "orr")) { 5805 Swap = true; 5806 LastOp = &Op4; 5807 Transform = true; 5808 } 5809 5810 // If both registers are the same then remove one of them from 5811 // the operand list, with certain exceptions. 5812 if (Transform) { 5813 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5814 // 2 operand forms don't exist. 5815 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5816 LastOp->isReg()) 5817 Transform = false; 5818 5819 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5820 // 3-bits because the ARMARM says not to. 5821 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5822 Transform = false; 5823 } 5824 5825 if (Transform) { 5826 if (Swap) 5827 std::swap(Op4, Op5); 5828 Operands.erase(Operands.begin() + 3); 5829 } 5830 } 5831 5832 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5833 OperandVector &Operands) { 5834 // FIXME: This is all horribly hacky. We really need a better way to deal 5835 // with optional operands like this in the matcher table. 5836 5837 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5838 // another does not. Specifically, the MOVW instruction does not. So we 5839 // special case it here and remove the defaulted (non-setting) cc_out 5840 // operand if that's the instruction we're trying to match. 5841 // 5842 // We do this as post-processing of the explicit operands rather than just 5843 // conditionally adding the cc_out in the first place because we need 5844 // to check the type of the parsed immediate operand. 5845 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5846 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5847 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5848 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5849 return true; 5850 5851 // Register-register 'add' for thumb does not have a cc_out operand 5852 // when there are only two register operands. 5853 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5854 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5855 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5856 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5857 return true; 5858 // Register-register 'add' for thumb does not have a cc_out operand 5859 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5860 // have to check the immediate range here since Thumb2 has a variant 5861 // that can handle a different range and has a cc_out operand. 5862 if (((isThumb() && Mnemonic == "add") || 5863 (isThumbTwo() && Mnemonic == "sub")) && 5864 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5865 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5866 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5867 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5868 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5869 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5870 return true; 5871 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5872 // imm0_4095 variant. That's the least-preferred variant when 5873 // selecting via the generic "add" mnemonic, so to know that we 5874 // should remove the cc_out operand, we have to explicitly check that 5875 // it's not one of the other variants. Ugh. 5876 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5877 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5878 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5879 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5880 // Nest conditions rather than one big 'if' statement for readability. 5881 // 5882 // If both registers are low, we're in an IT block, and the immediate is 5883 // in range, we should use encoding T1 instead, which has a cc_out. 5884 if (inITBlock() && 5885 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5886 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5887 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5888 return false; 5889 // Check against T3. If the second register is the PC, this is an 5890 // alternate form of ADR, which uses encoding T4, so check for that too. 5891 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5892 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5893 return false; 5894 5895 // Otherwise, we use encoding T4, which does not have a cc_out 5896 // operand. 5897 return true; 5898 } 5899 5900 // The thumb2 multiply instruction doesn't have a CCOut register, so 5901 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5902 // use the 16-bit encoding or not. 5903 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5904 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5905 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5906 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5907 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5908 // If the registers aren't low regs, the destination reg isn't the 5909 // same as one of the source regs, or the cc_out operand is zero 5910 // outside of an IT block, we have to use the 32-bit encoding, so 5911 // remove the cc_out operand. 5912 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5913 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5914 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5915 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5916 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5917 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5918 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5919 return true; 5920 5921 // Also check the 'mul' syntax variant that doesn't specify an explicit 5922 // destination register. 5923 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5924 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5925 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5926 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5927 // If the registers aren't low regs or the cc_out operand is zero 5928 // outside of an IT block, we have to use the 32-bit encoding, so 5929 // remove the cc_out operand. 5930 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5931 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5932 !inITBlock())) 5933 return true; 5934 5935 // Register-register 'add/sub' for thumb does not have a cc_out operand 5936 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5937 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5938 // right, this will result in better diagnostics (which operand is off) 5939 // anyway. 5940 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5941 (Operands.size() == 5 || Operands.size() == 6) && 5942 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5943 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5944 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5945 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5946 (Operands.size() == 6 && 5947 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5948 return true; 5949 5950 return false; 5951 } 5952 5953 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5954 OperandVector &Operands) { 5955 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 5956 unsigned RegIdx = 3; 5957 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") && 5958 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5959 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5960 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5961 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5962 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5963 RegIdx = 4; 5964 5965 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5966 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5967 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5968 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5969 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5970 return true; 5971 } 5972 return false; 5973 } 5974 5975 static bool isDataTypeToken(StringRef Tok) { 5976 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5977 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5978 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5979 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5980 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5981 Tok == ".f" || Tok == ".d"; 5982 } 5983 5984 // FIXME: This bit should probably be handled via an explicit match class 5985 // in the .td files that matches the suffix instead of having it be 5986 // a literal string token the way it is now. 5987 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5988 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5989 } 5990 5991 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5992 unsigned VariantID); 5993 5994 // The GNU assembler has aliases of ldrd and strd with the second register 5995 // omitted. We don't have a way to do that in tablegen, so fix it up here. 5996 // 5997 // We have to be careful to not emit an invalid Rt2 here, because the rest of 5998 // the assmebly parser could then generate confusing diagnostics refering to 5999 // it. If we do find anything that prevents us from doing the transformation we 6000 // bail out, and let the assembly parser report an error on the instruction as 6001 // it is written. 6002 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6003 OperandVector &Operands) { 6004 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6005 return; 6006 if (Operands.size() < 4) 6007 return; 6008 6009 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6010 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6011 6012 if (!Op2.isReg()) 6013 return; 6014 if (!Op3.isMem()) 6015 return; 6016 6017 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6018 if (!GPR.contains(Op2.getReg())) 6019 return; 6020 6021 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6022 if (!isThumb() && (RtEncoding & 1)) { 6023 // In ARM mode, the registers must be from an aligned pair, this 6024 // restriction does not apply in Thumb mode. 6025 return; 6026 } 6027 if (Op2.getReg() == ARM::PC) 6028 return; 6029 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6030 if (!PairedReg || PairedReg == ARM::PC || 6031 (PairedReg == ARM::SP && !hasV8Ops())) 6032 return; 6033 6034 Operands.insert( 6035 Operands.begin() + 3, 6036 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6037 } 6038 6039 /// Parse an arm instruction mnemonic followed by its operands. 6040 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6041 SMLoc NameLoc, OperandVector &Operands) { 6042 MCAsmParser &Parser = getParser(); 6043 6044 // Apply mnemonic aliases before doing anything else, as the destination 6045 // mnemonic may include suffices and we want to handle them normally. 6046 // The generic tblgen'erated code does this later, at the start of 6047 // MatchInstructionImpl(), but that's too late for aliases that include 6048 // any sort of suffix. 6049 uint64_t AvailableFeatures = getAvailableFeatures(); 6050 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6051 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6052 6053 // First check for the ARM-specific .req directive. 6054 if (Parser.getTok().is(AsmToken::Identifier) && 6055 Parser.getTok().getIdentifier() == ".req") { 6056 parseDirectiveReq(Name, NameLoc); 6057 // We always return 'error' for this, as we're done with this 6058 // statement and don't need to match the 'instruction." 6059 return true; 6060 } 6061 6062 // Create the leading tokens for the mnemonic, split by '.' characters. 6063 size_t Start = 0, Next = Name.find('.'); 6064 StringRef Mnemonic = Name.slice(Start, Next); 6065 6066 // Split out the predication code and carry setting flag from the mnemonic. 6067 unsigned PredicationCode; 6068 unsigned ProcessorIMod; 6069 bool CarrySetting; 6070 StringRef ITMask; 6071 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 6072 ProcessorIMod, ITMask); 6073 6074 // In Thumb1, only the branch (B) instruction can be predicated. 6075 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6076 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6077 } 6078 6079 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6080 6081 // Handle the IT instruction ITMask. Convert it to a bitmask. This 6082 // is the mask as it will be for the IT encoding if the conditional 6083 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 6084 // where the conditional bit0 is zero, the instruction post-processing 6085 // will adjust the mask accordingly. 6086 if (Mnemonic == "it") { 6087 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 6088 if (ITMask.size() > 3) { 6089 return Error(Loc, "too many conditions on IT instruction"); 6090 } 6091 unsigned Mask = 8; 6092 for (unsigned i = ITMask.size(); i != 0; --i) { 6093 char pos = ITMask[i - 1]; 6094 if (pos != 't' && pos != 'e') { 6095 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6096 } 6097 Mask >>= 1; 6098 if (ITMask[i - 1] == 't') 6099 Mask |= 8; 6100 } 6101 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6102 } 6103 6104 // FIXME: This is all a pretty gross hack. We should automatically handle 6105 // optional operands like this via tblgen. 6106 6107 // Next, add the CCOut and ConditionCode operands, if needed. 6108 // 6109 // For mnemonics which can ever incorporate a carry setting bit or predication 6110 // code, our matching model involves us always generating CCOut and 6111 // ConditionCode operands to match the mnemonic "as written" and then we let 6112 // the matcher deal with finding the right instruction or generating an 6113 // appropriate error. 6114 bool CanAcceptCarrySet, CanAcceptPredicationCode; 6115 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 6116 6117 // If we had a carry-set on an instruction that can't do that, issue an 6118 // error. 6119 if (!CanAcceptCarrySet && CarrySetting) { 6120 return Error(NameLoc, "instruction '" + Mnemonic + 6121 "' can not set flags, but 's' suffix specified"); 6122 } 6123 // If we had a predication code on an instruction that can't do that, issue an 6124 // error. 6125 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6126 return Error(NameLoc, "instruction '" + Mnemonic + 6127 "' is not predicable, but condition code specified"); 6128 } 6129 6130 // Add the carry setting operand, if necessary. 6131 if (CanAcceptCarrySet) { 6132 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6133 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6134 Loc)); 6135 } 6136 6137 // Add the predication code operand, if necessary. 6138 if (CanAcceptPredicationCode) { 6139 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6140 CarrySetting); 6141 Operands.push_back(ARMOperand::CreateCondCode( 6142 ARMCC::CondCodes(PredicationCode), Loc)); 6143 } 6144 6145 // Add the processor imod operand, if necessary. 6146 if (ProcessorIMod) { 6147 Operands.push_back(ARMOperand::CreateImm( 6148 MCConstantExpr::create(ProcessorIMod, getContext()), 6149 NameLoc, NameLoc)); 6150 } else if (Mnemonic == "cps" && isMClass()) { 6151 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6152 } 6153 6154 // Add the remaining tokens in the mnemonic. 6155 while (Next != StringRef::npos) { 6156 Start = Next; 6157 Next = Name.find('.', Start + 1); 6158 StringRef ExtraToken = Name.slice(Start, Next); 6159 6160 // Some NEON instructions have an optional datatype suffix that is 6161 // completely ignored. Check for that. 6162 if (isDataTypeToken(ExtraToken) && 6163 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6164 continue; 6165 6166 // For for ARM mode generate an error if the .n qualifier is used. 6167 if (ExtraToken == ".n" && !isThumb()) { 6168 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6169 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6170 "arm mode"); 6171 } 6172 6173 // The .n qualifier is always discarded as that is what the tables 6174 // and matcher expect. In ARM mode the .w qualifier has no effect, 6175 // so discard it to avoid errors that can be caused by the matcher. 6176 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6177 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6178 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6179 } 6180 } 6181 6182 // Read the remaining operands. 6183 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6184 // Read the first operand. 6185 if (parseOperand(Operands, Mnemonic)) { 6186 return true; 6187 } 6188 6189 while (parseOptionalToken(AsmToken::Comma)) { 6190 // Parse and remember the operand. 6191 if (parseOperand(Operands, Mnemonic)) { 6192 return true; 6193 } 6194 } 6195 } 6196 6197 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6198 return true; 6199 6200 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6201 6202 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6203 // do and don't have a cc_out optional-def operand. With some spot-checks 6204 // of the operand list, we can figure out which variant we're trying to 6205 // parse and adjust accordingly before actually matching. We shouldn't ever 6206 // try to remove a cc_out operand that was explicitly set on the 6207 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6208 // table driven matcher doesn't fit well with the ARM instruction set. 6209 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6210 Operands.erase(Operands.begin() + 1); 6211 6212 // Some instructions have the same mnemonic, but don't always 6213 // have a predicate. Distinguish them here and delete the 6214 // predicate if needed. 6215 if (PredicationCode == ARMCC::AL && 6216 shouldOmitPredicateOperand(Mnemonic, Operands)) 6217 Operands.erase(Operands.begin() + 1); 6218 6219 // ARM mode 'blx' need special handling, as the register operand version 6220 // is predicable, but the label operand version is not. So, we can't rely 6221 // on the Mnemonic based checking to correctly figure out when to put 6222 // a k_CondCode operand in the list. If we're trying to match the label 6223 // version, remove the k_CondCode operand here. 6224 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6225 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6226 Operands.erase(Operands.begin() + 1); 6227 6228 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6229 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6230 // a single GPRPair reg operand is used in the .td file to replace the two 6231 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6232 // expressed as a GPRPair, so we have to manually merge them. 6233 // FIXME: We would really like to be able to tablegen'erate this. 6234 if (!isThumb() && Operands.size() > 4 && 6235 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6236 Mnemonic == "stlexd")) { 6237 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6238 unsigned Idx = isLoad ? 2 : 3; 6239 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6240 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6241 6242 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6243 // Adjust only if Op1 and Op2 are GPRs. 6244 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6245 MRC.contains(Op2.getReg())) { 6246 unsigned Reg1 = Op1.getReg(); 6247 unsigned Reg2 = Op2.getReg(); 6248 unsigned Rt = MRI->getEncodingValue(Reg1); 6249 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6250 6251 // Rt2 must be Rt + 1 and Rt must be even. 6252 if (Rt + 1 != Rt2 || (Rt & 1)) { 6253 return Error(Op2.getStartLoc(), 6254 isLoad ? "destination operands must be sequential" 6255 : "source operands must be sequential"); 6256 } 6257 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6258 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6259 Operands[Idx] = 6260 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6261 Operands.erase(Operands.begin() + Idx + 1); 6262 } 6263 } 6264 6265 // GNU Assembler extension (compatibility). 6266 fixupGNULDRDAlias(Mnemonic, Operands); 6267 6268 // FIXME: As said above, this is all a pretty gross hack. This instruction 6269 // does not fit with other "subs" and tblgen. 6270 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6271 // so the Mnemonic is the original name "subs" and delete the predicate 6272 // operand so it will match the table entry. 6273 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6274 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6275 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6276 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6277 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6278 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6279 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6280 Operands.erase(Operands.begin() + 1); 6281 } 6282 return false; 6283 } 6284 6285 // Validate context-sensitive operand constraints. 6286 6287 // return 'true' if register list contains non-low GPR registers, 6288 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6289 // 'containsReg' to true. 6290 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6291 unsigned Reg, unsigned HiReg, 6292 bool &containsReg) { 6293 containsReg = false; 6294 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6295 unsigned OpReg = Inst.getOperand(i).getReg(); 6296 if (OpReg == Reg) 6297 containsReg = true; 6298 // Anything other than a low register isn't legal here. 6299 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6300 return true; 6301 } 6302 return false; 6303 } 6304 6305 // Check if the specified regisgter is in the register list of the inst, 6306 // starting at the indicated operand number. 6307 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6308 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6309 unsigned OpReg = Inst.getOperand(i).getReg(); 6310 if (OpReg == Reg) 6311 return true; 6312 } 6313 return false; 6314 } 6315 6316 // Return true if instruction has the interesting property of being 6317 // allowed in IT blocks, but not being predicable. 6318 static bool instIsBreakpoint(const MCInst &Inst) { 6319 return Inst.getOpcode() == ARM::tBKPT || 6320 Inst.getOpcode() == ARM::BKPT || 6321 Inst.getOpcode() == ARM::tHLT || 6322 Inst.getOpcode() == ARM::HLT; 6323 } 6324 6325 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6326 const OperandVector &Operands, 6327 unsigned ListNo, bool IsARPop) { 6328 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6329 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6330 6331 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6332 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6333 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6334 6335 if (!IsARPop && ListContainsSP) 6336 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6337 "SP may not be in the register list"); 6338 else if (ListContainsPC && ListContainsLR) 6339 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6340 "PC and LR may not be in the register list simultaneously"); 6341 return false; 6342 } 6343 6344 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6345 const OperandVector &Operands, 6346 unsigned ListNo) { 6347 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6348 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6349 6350 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6351 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6352 6353 if (ListContainsSP && ListContainsPC) 6354 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6355 "SP and PC may not be in the register list"); 6356 else if (ListContainsSP) 6357 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6358 "SP may not be in the register list"); 6359 else if (ListContainsPC) 6360 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6361 "PC may not be in the register list"); 6362 return false; 6363 } 6364 6365 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 6366 const OperandVector &Operands, 6367 bool Load, bool ARMMode, bool Writeback) { 6368 unsigned RtIndex = Load || !Writeback ? 0 : 1; 6369 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 6370 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 6371 6372 if (ARMMode) { 6373 // Rt can't be R14. 6374 if (Rt == 14) 6375 return Error(Operands[3]->getStartLoc(), 6376 "Rt can't be R14"); 6377 6378 // Rt must be even-numbered. 6379 if ((Rt & 1) == 1) 6380 return Error(Operands[3]->getStartLoc(), 6381 "Rt must be even-numbered"); 6382 6383 // Rt2 must be Rt + 1. 6384 if (Rt2 != Rt + 1) { 6385 if (Load) 6386 return Error(Operands[3]->getStartLoc(), 6387 "destination operands must be sequential"); 6388 else 6389 return Error(Operands[3]->getStartLoc(), 6390 "source operands must be sequential"); 6391 } 6392 6393 // FIXME: Diagnose m == 15 6394 // FIXME: Diagnose ldrd with m == t || m == t2. 6395 } 6396 6397 if (!ARMMode && Load) { 6398 if (Rt2 == Rt) 6399 return Error(Operands[3]->getStartLoc(), 6400 "destination operands can't be identical"); 6401 } 6402 6403 if (Writeback) { 6404 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6405 6406 if (Rn == Rt || Rn == Rt2) { 6407 if (Load) 6408 return Error(Operands[3]->getStartLoc(), 6409 "base register needs to be different from destination " 6410 "registers"); 6411 else 6412 return Error(Operands[3]->getStartLoc(), 6413 "source register and base register can't be identical"); 6414 } 6415 6416 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 6417 // (Except the immediate form of ldrd?) 6418 } 6419 6420 return false; 6421 } 6422 6423 6424 // FIXME: We would really like to be able to tablegen'erate this. 6425 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6426 const OperandVector &Operands) { 6427 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6428 SMLoc Loc = Operands[0]->getStartLoc(); 6429 6430 // Check the IT block state first. 6431 // NOTE: BKPT and HLT instructions have the interesting property of being 6432 // allowed in IT blocks, but not being predicable. They just always execute. 6433 if (inITBlock() && !instIsBreakpoint(Inst)) { 6434 // The instruction must be predicable. 6435 if (!MCID.isPredicable()) 6436 return Error(Loc, "instructions in IT block must be predicable"); 6437 ARMCC::CondCodes Cond = ARMCC::CondCodes( 6438 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 6439 if (Cond != currentITCond()) { 6440 // Find the condition code Operand to get its SMLoc information. 6441 SMLoc CondLoc; 6442 for (unsigned I = 1; I < Operands.size(); ++I) 6443 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6444 CondLoc = Operands[I]->getStartLoc(); 6445 return Error(CondLoc, "incorrect condition in IT block; got '" + 6446 StringRef(ARMCondCodeToString(Cond)) + 6447 "', but expected '" + 6448 ARMCondCodeToString(currentITCond()) + "'"); 6449 } 6450 // Check for non-'al' condition codes outside of the IT block. 6451 } else if (isThumbTwo() && MCID.isPredicable() && 6452 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6453 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6454 Inst.getOpcode() != ARM::t2Bcc) { 6455 return Error(Loc, "predicated instructions must be in IT block"); 6456 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6457 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6458 ARMCC::AL) { 6459 return Warning(Loc, "predicated instructions should be in IT block"); 6460 } 6461 6462 // PC-setting instructions in an IT block, but not the last instruction of 6463 // the block, are UNPREDICTABLE. 6464 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 6465 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 6466 } 6467 6468 const unsigned Opcode = Inst.getOpcode(); 6469 switch (Opcode) { 6470 case ARM::t2IT: { 6471 // Encoding is unpredictable if it ever results in a notional 'NV' 6472 // predicate. Since we don't parse 'NV' directly this means an 'AL' 6473 // predicate with an "else" mask bit. 6474 unsigned Cond = Inst.getOperand(0).getImm(); 6475 unsigned Mask = Inst.getOperand(1).getImm(); 6476 6477 // Mask hasn't been modified to the IT instruction encoding yet so 6478 // conditions only allowing a 't' are a block of 1s starting at bit 3 6479 // followed by all 0s. Easiest way is to just list the 4 possibilities. 6480 if (Cond == ARMCC::AL && Mask != 8 && Mask != 12 && Mask != 14 && 6481 Mask != 15) 6482 return Error(Loc, "unpredictable IT predicate sequence"); 6483 break; 6484 } 6485 case ARM::LDRD: 6486 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 6487 /*Writeback*/false)) 6488 return true; 6489 break; 6490 case ARM::LDRD_PRE: 6491 case ARM::LDRD_POST: 6492 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 6493 /*Writeback*/true)) 6494 return true; 6495 break; 6496 case ARM::t2LDRDi8: 6497 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 6498 /*Writeback*/false)) 6499 return true; 6500 break; 6501 case ARM::t2LDRD_PRE: 6502 case ARM::t2LDRD_POST: 6503 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 6504 /*Writeback*/true)) 6505 return true; 6506 break; 6507 case ARM::t2BXJ: { 6508 const unsigned RmReg = Inst.getOperand(0).getReg(); 6509 // Rm = SP is no longer unpredictable in v8-A 6510 if (RmReg == ARM::SP && !hasV8Ops()) 6511 return Error(Operands[2]->getStartLoc(), 6512 "r13 (SP) is an unpredictable operand to BXJ"); 6513 return false; 6514 } 6515 case ARM::STRD: 6516 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 6517 /*Writeback*/false)) 6518 return true; 6519 break; 6520 case ARM::STRD_PRE: 6521 case ARM::STRD_POST: 6522 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 6523 /*Writeback*/true)) 6524 return true; 6525 break; 6526 case ARM::t2STRD_PRE: 6527 case ARM::t2STRD_POST: 6528 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 6529 /*Writeback*/true)) 6530 return true; 6531 break; 6532 case ARM::STR_PRE_IMM: 6533 case ARM::STR_PRE_REG: 6534 case ARM::t2STR_PRE: 6535 case ARM::STR_POST_IMM: 6536 case ARM::STR_POST_REG: 6537 case ARM::t2STR_POST: 6538 case ARM::STRH_PRE: 6539 case ARM::t2STRH_PRE: 6540 case ARM::STRH_POST: 6541 case ARM::t2STRH_POST: 6542 case ARM::STRB_PRE_IMM: 6543 case ARM::STRB_PRE_REG: 6544 case ARM::t2STRB_PRE: 6545 case ARM::STRB_POST_IMM: 6546 case ARM::STRB_POST_REG: 6547 case ARM::t2STRB_POST: { 6548 // Rt must be different from Rn. 6549 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6550 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6551 6552 if (Rt == Rn) 6553 return Error(Operands[3]->getStartLoc(), 6554 "source register and base register can't be identical"); 6555 return false; 6556 } 6557 case ARM::LDR_PRE_IMM: 6558 case ARM::LDR_PRE_REG: 6559 case ARM::t2LDR_PRE: 6560 case ARM::LDR_POST_IMM: 6561 case ARM::LDR_POST_REG: 6562 case ARM::t2LDR_POST: 6563 case ARM::LDRH_PRE: 6564 case ARM::t2LDRH_PRE: 6565 case ARM::LDRH_POST: 6566 case ARM::t2LDRH_POST: 6567 case ARM::LDRSH_PRE: 6568 case ARM::t2LDRSH_PRE: 6569 case ARM::LDRSH_POST: 6570 case ARM::t2LDRSH_POST: 6571 case ARM::LDRB_PRE_IMM: 6572 case ARM::LDRB_PRE_REG: 6573 case ARM::t2LDRB_PRE: 6574 case ARM::LDRB_POST_IMM: 6575 case ARM::LDRB_POST_REG: 6576 case ARM::t2LDRB_POST: 6577 case ARM::LDRSB_PRE: 6578 case ARM::t2LDRSB_PRE: 6579 case ARM::LDRSB_POST: 6580 case ARM::t2LDRSB_POST: { 6581 // Rt must be different from Rn. 6582 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6583 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6584 6585 if (Rt == Rn) 6586 return Error(Operands[3]->getStartLoc(), 6587 "destination register and base register can't be identical"); 6588 return false; 6589 } 6590 case ARM::SBFX: 6591 case ARM::t2SBFX: 6592 case ARM::UBFX: 6593 case ARM::t2UBFX: { 6594 // Width must be in range [1, 32-lsb]. 6595 unsigned LSB = Inst.getOperand(2).getImm(); 6596 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6597 if (Widthm1 >= 32 - LSB) 6598 return Error(Operands[5]->getStartLoc(), 6599 "bitfield width must be in range [1,32-lsb]"); 6600 return false; 6601 } 6602 // Notionally handles ARM::tLDMIA_UPD too. 6603 case ARM::tLDMIA: { 6604 // If we're parsing Thumb2, the .w variant is available and handles 6605 // most cases that are normally illegal for a Thumb1 LDM instruction. 6606 // We'll make the transformation in processInstruction() if necessary. 6607 // 6608 // Thumb LDM instructions are writeback iff the base register is not 6609 // in the register list. 6610 unsigned Rn = Inst.getOperand(0).getReg(); 6611 bool HasWritebackToken = 6612 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6613 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6614 bool ListContainsBase; 6615 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6616 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6617 "registers must be in range r0-r7"); 6618 // If we should have writeback, then there should be a '!' token. 6619 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6620 return Error(Operands[2]->getStartLoc(), 6621 "writeback operator '!' expected"); 6622 // If we should not have writeback, there must not be a '!'. This is 6623 // true even for the 32-bit wide encodings. 6624 if (ListContainsBase && HasWritebackToken) 6625 return Error(Operands[3]->getStartLoc(), 6626 "writeback operator '!' not allowed when base register " 6627 "in register list"); 6628 6629 if (validatetLDMRegList(Inst, Operands, 3)) 6630 return true; 6631 break; 6632 } 6633 case ARM::LDMIA_UPD: 6634 case ARM::LDMDB_UPD: 6635 case ARM::LDMIB_UPD: 6636 case ARM::LDMDA_UPD: 6637 // ARM variants loading and updating the same register are only officially 6638 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6639 if (!hasV7Ops()) 6640 break; 6641 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6642 return Error(Operands.back()->getStartLoc(), 6643 "writeback register not allowed in register list"); 6644 break; 6645 case ARM::t2LDMIA: 6646 case ARM::t2LDMDB: 6647 if (validatetLDMRegList(Inst, Operands, 3)) 6648 return true; 6649 break; 6650 case ARM::t2STMIA: 6651 case ARM::t2STMDB: 6652 if (validatetSTMRegList(Inst, Operands, 3)) 6653 return true; 6654 break; 6655 case ARM::t2LDMIA_UPD: 6656 case ARM::t2LDMDB_UPD: 6657 case ARM::t2STMIA_UPD: 6658 case ARM::t2STMDB_UPD: 6659 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6660 return Error(Operands.back()->getStartLoc(), 6661 "writeback register not allowed in register list"); 6662 6663 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6664 if (validatetLDMRegList(Inst, Operands, 3)) 6665 return true; 6666 } else { 6667 if (validatetSTMRegList(Inst, Operands, 3)) 6668 return true; 6669 } 6670 break; 6671 6672 case ARM::sysLDMIA_UPD: 6673 case ARM::sysLDMDA_UPD: 6674 case ARM::sysLDMDB_UPD: 6675 case ARM::sysLDMIB_UPD: 6676 if (!listContainsReg(Inst, 3, ARM::PC)) 6677 return Error(Operands[4]->getStartLoc(), 6678 "writeback register only allowed on system LDM " 6679 "if PC in register-list"); 6680 break; 6681 case ARM::sysSTMIA_UPD: 6682 case ARM::sysSTMDA_UPD: 6683 case ARM::sysSTMDB_UPD: 6684 case ARM::sysSTMIB_UPD: 6685 return Error(Operands[2]->getStartLoc(), 6686 "system STM cannot have writeback register"); 6687 case ARM::tMUL: 6688 // The second source operand must be the same register as the destination 6689 // operand. 6690 // 6691 // In this case, we must directly check the parsed operands because the 6692 // cvtThumbMultiply() function is written in such a way that it guarantees 6693 // this first statement is always true for the new Inst. Essentially, the 6694 // destination is unconditionally copied into the second source operand 6695 // without checking to see if it matches what we actually parsed. 6696 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6697 ((ARMOperand &)*Operands[5]).getReg()) && 6698 (((ARMOperand &)*Operands[3]).getReg() != 6699 ((ARMOperand &)*Operands[4]).getReg())) { 6700 return Error(Operands[3]->getStartLoc(), 6701 "destination register must match source register"); 6702 } 6703 break; 6704 6705 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6706 // so only issue a diagnostic for thumb1. The instructions will be 6707 // switched to the t2 encodings in processInstruction() if necessary. 6708 case ARM::tPOP: { 6709 bool ListContainsBase; 6710 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6711 !isThumbTwo()) 6712 return Error(Operands[2]->getStartLoc(), 6713 "registers must be in range r0-r7 or pc"); 6714 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6715 return true; 6716 break; 6717 } 6718 case ARM::tPUSH: { 6719 bool ListContainsBase; 6720 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6721 !isThumbTwo()) 6722 return Error(Operands[2]->getStartLoc(), 6723 "registers must be in range r0-r7 or lr"); 6724 if (validatetSTMRegList(Inst, Operands, 2)) 6725 return true; 6726 break; 6727 } 6728 case ARM::tSTMIA_UPD: { 6729 bool ListContainsBase, InvalidLowList; 6730 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6731 0, ListContainsBase); 6732 if (InvalidLowList && !isThumbTwo()) 6733 return Error(Operands[4]->getStartLoc(), 6734 "registers must be in range r0-r7"); 6735 6736 // This would be converted to a 32-bit stm, but that's not valid if the 6737 // writeback register is in the list. 6738 if (InvalidLowList && ListContainsBase) 6739 return Error(Operands[4]->getStartLoc(), 6740 "writeback operator '!' not allowed when base register " 6741 "in register list"); 6742 6743 if (validatetSTMRegList(Inst, Operands, 4)) 6744 return true; 6745 break; 6746 } 6747 case ARM::tADDrSP: 6748 // If the non-SP source operand and the destination operand are not the 6749 // same, we need thumb2 (for the wide encoding), or we have an error. 6750 if (!isThumbTwo() && 6751 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6752 return Error(Operands[4]->getStartLoc(), 6753 "source register must be the same as destination"); 6754 } 6755 break; 6756 6757 // Final range checking for Thumb unconditional branch instructions. 6758 case ARM::tB: 6759 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6760 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6761 break; 6762 case ARM::t2B: { 6763 int op = (Operands[2]->isImm()) ? 2 : 3; 6764 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6765 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6766 break; 6767 } 6768 // Final range checking for Thumb conditional branch instructions. 6769 case ARM::tBcc: 6770 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6771 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6772 break; 6773 case ARM::t2Bcc: { 6774 int Op = (Operands[2]->isImm()) ? 2 : 3; 6775 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6776 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6777 break; 6778 } 6779 case ARM::tCBZ: 6780 case ARM::tCBNZ: { 6781 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6782 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6783 break; 6784 } 6785 case ARM::MOVi16: 6786 case ARM::MOVTi16: 6787 case ARM::t2MOVi16: 6788 case ARM::t2MOVTi16: 6789 { 6790 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6791 // especially when we turn it into a movw and the expression <symbol> does 6792 // not have a :lower16: or :upper16 as part of the expression. We don't 6793 // want the behavior of silently truncating, which can be unexpected and 6794 // lead to bugs that are difficult to find since this is an easy mistake 6795 // to make. 6796 int i = (Operands[3]->isImm()) ? 3 : 4; 6797 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6798 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6799 if (CE) break; 6800 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6801 if (!E) break; 6802 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6803 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6804 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6805 return Error( 6806 Op.getStartLoc(), 6807 "immediate expression for mov requires :lower16: or :upper16"); 6808 break; 6809 } 6810 case ARM::HINT: 6811 case ARM::t2HINT: { 6812 unsigned Imm8 = Inst.getOperand(0).getImm(); 6813 unsigned Pred = Inst.getOperand(1).getImm(); 6814 // ESB is not predicable (pred must be AL). Without the RAS extension, this 6815 // behaves as any other unallocated hint. 6816 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 6817 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6818 "predicable, but condition " 6819 "code specified"); 6820 if (Imm8 == 0x14 && Pred != ARMCC::AL) 6821 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 6822 "predicable, but condition " 6823 "code specified"); 6824 break; 6825 } 6826 case ARM::VMOVRRS: { 6827 // Source registers must be sequential. 6828 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6829 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6830 if (Sm1 != Sm + 1) 6831 return Error(Operands[5]->getStartLoc(), 6832 "source operands must be sequential"); 6833 break; 6834 } 6835 case ARM::VMOVSRR: { 6836 // Destination registers must be sequential. 6837 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6838 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6839 if (Sm1 != Sm + 1) 6840 return Error(Operands[3]->getStartLoc(), 6841 "destination operands must be sequential"); 6842 break; 6843 } 6844 } 6845 6846 return false; 6847 } 6848 6849 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6850 switch(Opc) { 6851 default: llvm_unreachable("unexpected opcode!"); 6852 // VST1LN 6853 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6854 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6855 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6856 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6857 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6858 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6859 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6860 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6861 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6862 6863 // VST2LN 6864 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6865 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6866 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6867 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6868 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6869 6870 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6871 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6872 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6873 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6874 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6875 6876 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6877 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6878 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6879 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6880 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6881 6882 // VST3LN 6883 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6884 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6885 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6886 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6887 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6888 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6889 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6890 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6891 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6892 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6893 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6894 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6895 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6896 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6897 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6898 6899 // VST3 6900 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6901 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6902 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6903 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6904 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6905 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6906 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6907 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6908 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6909 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6910 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6911 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6912 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6913 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6914 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6915 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6916 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6917 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6918 6919 // VST4LN 6920 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6921 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6922 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6923 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6924 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6925 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6926 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6927 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6928 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6929 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6930 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6931 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6932 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6933 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6934 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6935 6936 // VST4 6937 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6938 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6939 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6940 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6941 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6942 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6943 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6944 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6945 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6946 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6947 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6948 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6949 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6950 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6951 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6952 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6953 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6954 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6955 } 6956 } 6957 6958 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6959 switch(Opc) { 6960 default: llvm_unreachable("unexpected opcode!"); 6961 // VLD1LN 6962 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6963 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6964 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6965 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6966 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6967 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6968 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6969 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6970 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6971 6972 // VLD2LN 6973 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6974 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6975 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6976 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6977 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6978 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6979 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6980 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6981 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6982 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6983 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6984 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6985 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6986 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6987 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6988 6989 // VLD3DUP 6990 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6991 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6992 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6993 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6994 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6995 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6996 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6997 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6998 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6999 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 7000 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 7001 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 7002 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 7003 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 7004 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 7005 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 7006 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 7007 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 7008 7009 // VLD3LN 7010 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 7011 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 7012 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 7013 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 7014 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 7015 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 7016 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 7017 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 7018 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 7019 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 7020 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 7021 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 7022 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 7023 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 7024 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 7025 7026 // VLD3 7027 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 7028 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 7029 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 7030 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 7031 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 7032 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 7033 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 7034 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 7035 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 7036 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 7037 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 7038 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 7039 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 7040 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 7041 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 7042 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 7043 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 7044 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 7045 7046 // VLD4LN 7047 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 7048 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 7049 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 7050 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 7051 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 7052 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 7053 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 7054 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 7055 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 7056 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 7057 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 7058 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 7059 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 7060 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 7061 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 7062 7063 // VLD4DUP 7064 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 7065 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 7066 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 7067 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 7068 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 7069 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 7070 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 7071 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 7072 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 7073 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 7074 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 7075 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 7076 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 7077 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 7078 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 7079 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 7080 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 7081 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 7082 7083 // VLD4 7084 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 7085 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 7086 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 7087 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 7088 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 7089 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 7090 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 7091 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 7092 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 7093 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 7094 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 7095 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 7096 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 7097 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 7098 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 7099 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 7100 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 7101 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 7102 } 7103 } 7104 7105 bool ARMAsmParser::processInstruction(MCInst &Inst, 7106 const OperandVector &Operands, 7107 MCStreamer &Out) { 7108 // Check if we have the wide qualifier, because if it's present we 7109 // must avoid selecting a 16-bit thumb instruction. 7110 bool HasWideQualifier = false; 7111 for (auto &Op : Operands) { 7112 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 7113 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 7114 HasWideQualifier = true; 7115 break; 7116 } 7117 } 7118 7119 switch (Inst.getOpcode()) { 7120 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 7121 case ARM::LDRT_POST: 7122 case ARM::LDRBT_POST: { 7123 const unsigned Opcode = 7124 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 7125 : ARM::LDRBT_POST_IMM; 7126 MCInst TmpInst; 7127 TmpInst.setOpcode(Opcode); 7128 TmpInst.addOperand(Inst.getOperand(0)); 7129 TmpInst.addOperand(Inst.getOperand(1)); 7130 TmpInst.addOperand(Inst.getOperand(1)); 7131 TmpInst.addOperand(MCOperand::createReg(0)); 7132 TmpInst.addOperand(MCOperand::createImm(0)); 7133 TmpInst.addOperand(Inst.getOperand(2)); 7134 TmpInst.addOperand(Inst.getOperand(3)); 7135 Inst = TmpInst; 7136 return true; 7137 } 7138 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 7139 case ARM::STRT_POST: 7140 case ARM::STRBT_POST: { 7141 const unsigned Opcode = 7142 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 7143 : ARM::STRBT_POST_IMM; 7144 MCInst TmpInst; 7145 TmpInst.setOpcode(Opcode); 7146 TmpInst.addOperand(Inst.getOperand(1)); 7147 TmpInst.addOperand(Inst.getOperand(0)); 7148 TmpInst.addOperand(Inst.getOperand(1)); 7149 TmpInst.addOperand(MCOperand::createReg(0)); 7150 TmpInst.addOperand(MCOperand::createImm(0)); 7151 TmpInst.addOperand(Inst.getOperand(2)); 7152 TmpInst.addOperand(Inst.getOperand(3)); 7153 Inst = TmpInst; 7154 return true; 7155 } 7156 // Alias for alternate form of 'ADR Rd, #imm' instruction. 7157 case ARM::ADDri: { 7158 if (Inst.getOperand(1).getReg() != ARM::PC || 7159 Inst.getOperand(5).getReg() != 0 || 7160 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 7161 return false; 7162 MCInst TmpInst; 7163 TmpInst.setOpcode(ARM::ADR); 7164 TmpInst.addOperand(Inst.getOperand(0)); 7165 if (Inst.getOperand(2).isImm()) { 7166 // Immediate (mod_imm) will be in its encoded form, we must unencode it 7167 // before passing it to the ADR instruction. 7168 unsigned Enc = Inst.getOperand(2).getImm(); 7169 TmpInst.addOperand(MCOperand::createImm( 7170 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 7171 } else { 7172 // Turn PC-relative expression into absolute expression. 7173 // Reading PC provides the start of the current instruction + 8 and 7174 // the transform to adr is biased by that. 7175 MCSymbol *Dot = getContext().createTempSymbol(); 7176 Out.EmitLabel(Dot); 7177 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 7178 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 7179 MCSymbolRefExpr::VK_None, 7180 getContext()); 7181 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 7182 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 7183 getContext()); 7184 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 7185 getContext()); 7186 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 7187 } 7188 TmpInst.addOperand(Inst.getOperand(3)); 7189 TmpInst.addOperand(Inst.getOperand(4)); 7190 Inst = TmpInst; 7191 return true; 7192 } 7193 // Aliases for alternate PC+imm syntax of LDR instructions. 7194 case ARM::t2LDRpcrel: 7195 // Select the narrow version if the immediate will fit. 7196 if (Inst.getOperand(1).getImm() > 0 && 7197 Inst.getOperand(1).getImm() <= 0xff && 7198 !HasWideQualifier) 7199 Inst.setOpcode(ARM::tLDRpci); 7200 else 7201 Inst.setOpcode(ARM::t2LDRpci); 7202 return true; 7203 case ARM::t2LDRBpcrel: 7204 Inst.setOpcode(ARM::t2LDRBpci); 7205 return true; 7206 case ARM::t2LDRHpcrel: 7207 Inst.setOpcode(ARM::t2LDRHpci); 7208 return true; 7209 case ARM::t2LDRSBpcrel: 7210 Inst.setOpcode(ARM::t2LDRSBpci); 7211 return true; 7212 case ARM::t2LDRSHpcrel: 7213 Inst.setOpcode(ARM::t2LDRSHpci); 7214 return true; 7215 case ARM::LDRConstPool: 7216 case ARM::tLDRConstPool: 7217 case ARM::t2LDRConstPool: { 7218 // Pseudo instruction ldr rt, =immediate is converted to a 7219 // MOV rt, immediate if immediate is known and representable 7220 // otherwise we create a constant pool entry that we load from. 7221 MCInst TmpInst; 7222 if (Inst.getOpcode() == ARM::LDRConstPool) 7223 TmpInst.setOpcode(ARM::LDRi12); 7224 else if (Inst.getOpcode() == ARM::tLDRConstPool) 7225 TmpInst.setOpcode(ARM::tLDRpci); 7226 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 7227 TmpInst.setOpcode(ARM::t2LDRpci); 7228 const ARMOperand &PoolOperand = 7229 (HasWideQualifier ? 7230 static_cast<ARMOperand &>(*Operands[4]) : 7231 static_cast<ARMOperand &>(*Operands[3])); 7232 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 7233 // If SubExprVal is a constant we may be able to use a MOV 7234 if (isa<MCConstantExpr>(SubExprVal) && 7235 Inst.getOperand(0).getReg() != ARM::PC && 7236 Inst.getOperand(0).getReg() != ARM::SP) { 7237 int64_t Value = 7238 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 7239 bool UseMov = true; 7240 bool MovHasS = true; 7241 if (Inst.getOpcode() == ARM::LDRConstPool) { 7242 // ARM Constant 7243 if (ARM_AM::getSOImmVal(Value) != -1) { 7244 Value = ARM_AM::getSOImmVal(Value); 7245 TmpInst.setOpcode(ARM::MOVi); 7246 } 7247 else if (ARM_AM::getSOImmVal(~Value) != -1) { 7248 Value = ARM_AM::getSOImmVal(~Value); 7249 TmpInst.setOpcode(ARM::MVNi); 7250 } 7251 else if (hasV6T2Ops() && 7252 Value >=0 && Value < 65536) { 7253 TmpInst.setOpcode(ARM::MOVi16); 7254 MovHasS = false; 7255 } 7256 else 7257 UseMov = false; 7258 } 7259 else { 7260 // Thumb/Thumb2 Constant 7261 if (hasThumb2() && 7262 ARM_AM::getT2SOImmVal(Value) != -1) 7263 TmpInst.setOpcode(ARM::t2MOVi); 7264 else if (hasThumb2() && 7265 ARM_AM::getT2SOImmVal(~Value) != -1) { 7266 TmpInst.setOpcode(ARM::t2MVNi); 7267 Value = ~Value; 7268 } 7269 else if (hasV8MBaseline() && 7270 Value >=0 && Value < 65536) { 7271 TmpInst.setOpcode(ARM::t2MOVi16); 7272 MovHasS = false; 7273 } 7274 else 7275 UseMov = false; 7276 } 7277 if (UseMov) { 7278 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7279 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7280 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7281 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7282 if (MovHasS) 7283 TmpInst.addOperand(MCOperand::createReg(0)); // S 7284 Inst = TmpInst; 7285 return true; 7286 } 7287 } 7288 // No opportunity to use MOV/MVN create constant pool 7289 const MCExpr *CPLoc = 7290 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7291 PoolOperand.getStartLoc()); 7292 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7293 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7294 if (TmpInst.getOpcode() == ARM::LDRi12) 7295 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7296 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7297 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7298 Inst = TmpInst; 7299 return true; 7300 } 7301 // Handle NEON VST complex aliases. 7302 case ARM::VST1LNdWB_register_Asm_8: 7303 case ARM::VST1LNdWB_register_Asm_16: 7304 case ARM::VST1LNdWB_register_Asm_32: { 7305 MCInst TmpInst; 7306 // Shuffle the operands around so the lane index operand is in the 7307 // right place. 7308 unsigned Spacing; 7309 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7310 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7311 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7312 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7313 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7314 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7315 TmpInst.addOperand(Inst.getOperand(1)); // lane 7316 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7317 TmpInst.addOperand(Inst.getOperand(6)); 7318 Inst = TmpInst; 7319 return true; 7320 } 7321 7322 case ARM::VST2LNdWB_register_Asm_8: 7323 case ARM::VST2LNdWB_register_Asm_16: 7324 case ARM::VST2LNdWB_register_Asm_32: 7325 case ARM::VST2LNqWB_register_Asm_16: 7326 case ARM::VST2LNqWB_register_Asm_32: { 7327 MCInst TmpInst; 7328 // Shuffle the operands around so the lane index operand is in the 7329 // right place. 7330 unsigned Spacing; 7331 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7332 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7333 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7334 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7335 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7336 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7337 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7338 Spacing)); 7339 TmpInst.addOperand(Inst.getOperand(1)); // lane 7340 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7341 TmpInst.addOperand(Inst.getOperand(6)); 7342 Inst = TmpInst; 7343 return true; 7344 } 7345 7346 case ARM::VST3LNdWB_register_Asm_8: 7347 case ARM::VST3LNdWB_register_Asm_16: 7348 case ARM::VST3LNdWB_register_Asm_32: 7349 case ARM::VST3LNqWB_register_Asm_16: 7350 case ARM::VST3LNqWB_register_Asm_32: { 7351 MCInst TmpInst; 7352 // Shuffle the operands around so the lane index operand is in the 7353 // right place. 7354 unsigned Spacing; 7355 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7356 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7357 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7358 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7359 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7360 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7361 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7362 Spacing)); 7363 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7364 Spacing * 2)); 7365 TmpInst.addOperand(Inst.getOperand(1)); // lane 7366 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7367 TmpInst.addOperand(Inst.getOperand(6)); 7368 Inst = TmpInst; 7369 return true; 7370 } 7371 7372 case ARM::VST4LNdWB_register_Asm_8: 7373 case ARM::VST4LNdWB_register_Asm_16: 7374 case ARM::VST4LNdWB_register_Asm_32: 7375 case ARM::VST4LNqWB_register_Asm_16: 7376 case ARM::VST4LNqWB_register_Asm_32: { 7377 MCInst TmpInst; 7378 // Shuffle the operands around so the lane index operand is in the 7379 // right place. 7380 unsigned Spacing; 7381 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7382 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7383 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7384 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7385 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7386 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7387 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7388 Spacing)); 7389 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7390 Spacing * 2)); 7391 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7392 Spacing * 3)); 7393 TmpInst.addOperand(Inst.getOperand(1)); // lane 7394 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7395 TmpInst.addOperand(Inst.getOperand(6)); 7396 Inst = TmpInst; 7397 return true; 7398 } 7399 7400 case ARM::VST1LNdWB_fixed_Asm_8: 7401 case ARM::VST1LNdWB_fixed_Asm_16: 7402 case ARM::VST1LNdWB_fixed_Asm_32: { 7403 MCInst TmpInst; 7404 // Shuffle the operands around so the lane index operand is in the 7405 // right place. 7406 unsigned Spacing; 7407 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7408 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7409 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7410 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7411 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7412 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7413 TmpInst.addOperand(Inst.getOperand(1)); // lane 7414 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7415 TmpInst.addOperand(Inst.getOperand(5)); 7416 Inst = TmpInst; 7417 return true; 7418 } 7419 7420 case ARM::VST2LNdWB_fixed_Asm_8: 7421 case ARM::VST2LNdWB_fixed_Asm_16: 7422 case ARM::VST2LNdWB_fixed_Asm_32: 7423 case ARM::VST2LNqWB_fixed_Asm_16: 7424 case ARM::VST2LNqWB_fixed_Asm_32: { 7425 MCInst TmpInst; 7426 // Shuffle the operands around so the lane index operand is in the 7427 // right place. 7428 unsigned Spacing; 7429 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7430 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7431 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7432 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7433 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7434 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7435 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7436 Spacing)); 7437 TmpInst.addOperand(Inst.getOperand(1)); // lane 7438 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7439 TmpInst.addOperand(Inst.getOperand(5)); 7440 Inst = TmpInst; 7441 return true; 7442 } 7443 7444 case ARM::VST3LNdWB_fixed_Asm_8: 7445 case ARM::VST3LNdWB_fixed_Asm_16: 7446 case ARM::VST3LNdWB_fixed_Asm_32: 7447 case ARM::VST3LNqWB_fixed_Asm_16: 7448 case ARM::VST3LNqWB_fixed_Asm_32: { 7449 MCInst TmpInst; 7450 // Shuffle the operands around so the lane index operand is in the 7451 // right place. 7452 unsigned Spacing; 7453 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7454 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7455 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7456 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7457 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7458 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7459 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7460 Spacing)); 7461 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7462 Spacing * 2)); 7463 TmpInst.addOperand(Inst.getOperand(1)); // lane 7464 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7465 TmpInst.addOperand(Inst.getOperand(5)); 7466 Inst = TmpInst; 7467 return true; 7468 } 7469 7470 case ARM::VST4LNdWB_fixed_Asm_8: 7471 case ARM::VST4LNdWB_fixed_Asm_16: 7472 case ARM::VST4LNdWB_fixed_Asm_32: 7473 case ARM::VST4LNqWB_fixed_Asm_16: 7474 case ARM::VST4LNqWB_fixed_Asm_32: { 7475 MCInst TmpInst; 7476 // Shuffle the operands around so the lane index operand is in the 7477 // right place. 7478 unsigned Spacing; 7479 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7480 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7481 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7482 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7483 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7484 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7485 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7486 Spacing)); 7487 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7488 Spacing * 2)); 7489 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7490 Spacing * 3)); 7491 TmpInst.addOperand(Inst.getOperand(1)); // lane 7492 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7493 TmpInst.addOperand(Inst.getOperand(5)); 7494 Inst = TmpInst; 7495 return true; 7496 } 7497 7498 case ARM::VST1LNdAsm_8: 7499 case ARM::VST1LNdAsm_16: 7500 case ARM::VST1LNdAsm_32: { 7501 MCInst TmpInst; 7502 // Shuffle the operands around so the lane index operand is in the 7503 // right place. 7504 unsigned Spacing; 7505 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7506 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7507 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7508 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7509 TmpInst.addOperand(Inst.getOperand(1)); // lane 7510 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7511 TmpInst.addOperand(Inst.getOperand(5)); 7512 Inst = TmpInst; 7513 return true; 7514 } 7515 7516 case ARM::VST2LNdAsm_8: 7517 case ARM::VST2LNdAsm_16: 7518 case ARM::VST2LNdAsm_32: 7519 case ARM::VST2LNqAsm_16: 7520 case ARM::VST2LNqAsm_32: { 7521 MCInst TmpInst; 7522 // Shuffle the operands around so the lane index operand is in the 7523 // right place. 7524 unsigned Spacing; 7525 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7526 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7527 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7528 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7529 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7530 Spacing)); 7531 TmpInst.addOperand(Inst.getOperand(1)); // lane 7532 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7533 TmpInst.addOperand(Inst.getOperand(5)); 7534 Inst = TmpInst; 7535 return true; 7536 } 7537 7538 case ARM::VST3LNdAsm_8: 7539 case ARM::VST3LNdAsm_16: 7540 case ARM::VST3LNdAsm_32: 7541 case ARM::VST3LNqAsm_16: 7542 case ARM::VST3LNqAsm_32: { 7543 MCInst TmpInst; 7544 // Shuffle the operands around so the lane index operand is in the 7545 // right place. 7546 unsigned Spacing; 7547 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7548 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7549 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7550 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7551 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7552 Spacing)); 7553 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7554 Spacing * 2)); 7555 TmpInst.addOperand(Inst.getOperand(1)); // lane 7556 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7557 TmpInst.addOperand(Inst.getOperand(5)); 7558 Inst = TmpInst; 7559 return true; 7560 } 7561 7562 case ARM::VST4LNdAsm_8: 7563 case ARM::VST4LNdAsm_16: 7564 case ARM::VST4LNdAsm_32: 7565 case ARM::VST4LNqAsm_16: 7566 case ARM::VST4LNqAsm_32: { 7567 MCInst TmpInst; 7568 // Shuffle the operands around so the lane index operand is in the 7569 // right place. 7570 unsigned Spacing; 7571 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7572 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7573 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7574 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7575 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7576 Spacing)); 7577 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7578 Spacing * 2)); 7579 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7580 Spacing * 3)); 7581 TmpInst.addOperand(Inst.getOperand(1)); // lane 7582 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7583 TmpInst.addOperand(Inst.getOperand(5)); 7584 Inst = TmpInst; 7585 return true; 7586 } 7587 7588 // Handle NEON VLD complex aliases. 7589 case ARM::VLD1LNdWB_register_Asm_8: 7590 case ARM::VLD1LNdWB_register_Asm_16: 7591 case ARM::VLD1LNdWB_register_Asm_32: { 7592 MCInst TmpInst; 7593 // Shuffle the operands around so the lane index operand is in the 7594 // right place. 7595 unsigned Spacing; 7596 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7597 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7598 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7599 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7600 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7601 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7602 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7603 TmpInst.addOperand(Inst.getOperand(1)); // lane 7604 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7605 TmpInst.addOperand(Inst.getOperand(6)); 7606 Inst = TmpInst; 7607 return true; 7608 } 7609 7610 case ARM::VLD2LNdWB_register_Asm_8: 7611 case ARM::VLD2LNdWB_register_Asm_16: 7612 case ARM::VLD2LNdWB_register_Asm_32: 7613 case ARM::VLD2LNqWB_register_Asm_16: 7614 case ARM::VLD2LNqWB_register_Asm_32: { 7615 MCInst TmpInst; 7616 // Shuffle the operands around so the lane index operand is in the 7617 // right place. 7618 unsigned Spacing; 7619 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7620 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7621 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7622 Spacing)); 7623 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7624 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7625 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7626 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7627 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7628 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7629 Spacing)); 7630 TmpInst.addOperand(Inst.getOperand(1)); // lane 7631 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7632 TmpInst.addOperand(Inst.getOperand(6)); 7633 Inst = TmpInst; 7634 return true; 7635 } 7636 7637 case ARM::VLD3LNdWB_register_Asm_8: 7638 case ARM::VLD3LNdWB_register_Asm_16: 7639 case ARM::VLD3LNdWB_register_Asm_32: 7640 case ARM::VLD3LNqWB_register_Asm_16: 7641 case ARM::VLD3LNqWB_register_Asm_32: { 7642 MCInst TmpInst; 7643 // Shuffle the operands around so the lane index operand is in the 7644 // right place. 7645 unsigned Spacing; 7646 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7647 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7648 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7649 Spacing)); 7650 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7651 Spacing * 2)); 7652 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7653 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7654 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7655 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7656 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7657 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7658 Spacing)); 7659 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7660 Spacing * 2)); 7661 TmpInst.addOperand(Inst.getOperand(1)); // lane 7662 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7663 TmpInst.addOperand(Inst.getOperand(6)); 7664 Inst = TmpInst; 7665 return true; 7666 } 7667 7668 case ARM::VLD4LNdWB_register_Asm_8: 7669 case ARM::VLD4LNdWB_register_Asm_16: 7670 case ARM::VLD4LNdWB_register_Asm_32: 7671 case ARM::VLD4LNqWB_register_Asm_16: 7672 case ARM::VLD4LNqWB_register_Asm_32: { 7673 MCInst TmpInst; 7674 // Shuffle the operands around so the lane index operand is in the 7675 // right place. 7676 unsigned Spacing; 7677 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7678 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7679 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7680 Spacing)); 7681 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7682 Spacing * 2)); 7683 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7684 Spacing * 3)); 7685 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7686 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7687 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7688 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7689 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7690 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7691 Spacing)); 7692 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7693 Spacing * 2)); 7694 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7695 Spacing * 3)); 7696 TmpInst.addOperand(Inst.getOperand(1)); // lane 7697 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7698 TmpInst.addOperand(Inst.getOperand(6)); 7699 Inst = TmpInst; 7700 return true; 7701 } 7702 7703 case ARM::VLD1LNdWB_fixed_Asm_8: 7704 case ARM::VLD1LNdWB_fixed_Asm_16: 7705 case ARM::VLD1LNdWB_fixed_Asm_32: { 7706 MCInst TmpInst; 7707 // Shuffle the operands around so the lane index operand is in the 7708 // right place. 7709 unsigned Spacing; 7710 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7711 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7712 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7713 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7714 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7715 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7716 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7717 TmpInst.addOperand(Inst.getOperand(1)); // lane 7718 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7719 TmpInst.addOperand(Inst.getOperand(5)); 7720 Inst = TmpInst; 7721 return true; 7722 } 7723 7724 case ARM::VLD2LNdWB_fixed_Asm_8: 7725 case ARM::VLD2LNdWB_fixed_Asm_16: 7726 case ARM::VLD2LNdWB_fixed_Asm_32: 7727 case ARM::VLD2LNqWB_fixed_Asm_16: 7728 case ARM::VLD2LNqWB_fixed_Asm_32: { 7729 MCInst TmpInst; 7730 // Shuffle the operands around so the lane index operand is in the 7731 // right place. 7732 unsigned Spacing; 7733 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7734 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7735 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7736 Spacing)); 7737 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7738 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7739 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7740 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7741 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7742 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7743 Spacing)); 7744 TmpInst.addOperand(Inst.getOperand(1)); // lane 7745 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7746 TmpInst.addOperand(Inst.getOperand(5)); 7747 Inst = TmpInst; 7748 return true; 7749 } 7750 7751 case ARM::VLD3LNdWB_fixed_Asm_8: 7752 case ARM::VLD3LNdWB_fixed_Asm_16: 7753 case ARM::VLD3LNdWB_fixed_Asm_32: 7754 case ARM::VLD3LNqWB_fixed_Asm_16: 7755 case ARM::VLD3LNqWB_fixed_Asm_32: { 7756 MCInst TmpInst; 7757 // Shuffle the operands around so the lane index operand is in the 7758 // right place. 7759 unsigned Spacing; 7760 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7761 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7762 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7763 Spacing)); 7764 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7765 Spacing * 2)); 7766 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7767 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7768 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7769 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7770 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7771 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7772 Spacing)); 7773 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7774 Spacing * 2)); 7775 TmpInst.addOperand(Inst.getOperand(1)); // lane 7776 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7777 TmpInst.addOperand(Inst.getOperand(5)); 7778 Inst = TmpInst; 7779 return true; 7780 } 7781 7782 case ARM::VLD4LNdWB_fixed_Asm_8: 7783 case ARM::VLD4LNdWB_fixed_Asm_16: 7784 case ARM::VLD4LNdWB_fixed_Asm_32: 7785 case ARM::VLD4LNqWB_fixed_Asm_16: 7786 case ARM::VLD4LNqWB_fixed_Asm_32: { 7787 MCInst TmpInst; 7788 // Shuffle the operands around so the lane index operand is in the 7789 // right place. 7790 unsigned Spacing; 7791 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7792 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7793 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7794 Spacing)); 7795 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7796 Spacing * 2)); 7797 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7798 Spacing * 3)); 7799 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7800 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7801 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7802 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7803 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7804 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7805 Spacing)); 7806 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7807 Spacing * 2)); 7808 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7809 Spacing * 3)); 7810 TmpInst.addOperand(Inst.getOperand(1)); // lane 7811 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7812 TmpInst.addOperand(Inst.getOperand(5)); 7813 Inst = TmpInst; 7814 return true; 7815 } 7816 7817 case ARM::VLD1LNdAsm_8: 7818 case ARM::VLD1LNdAsm_16: 7819 case ARM::VLD1LNdAsm_32: { 7820 MCInst TmpInst; 7821 // Shuffle the operands around so the lane index operand is in the 7822 // right place. 7823 unsigned Spacing; 7824 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7825 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7826 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7827 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7828 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7829 TmpInst.addOperand(Inst.getOperand(1)); // lane 7830 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7831 TmpInst.addOperand(Inst.getOperand(5)); 7832 Inst = TmpInst; 7833 return true; 7834 } 7835 7836 case ARM::VLD2LNdAsm_8: 7837 case ARM::VLD2LNdAsm_16: 7838 case ARM::VLD2LNdAsm_32: 7839 case ARM::VLD2LNqAsm_16: 7840 case ARM::VLD2LNqAsm_32: { 7841 MCInst TmpInst; 7842 // Shuffle the operands around so the lane index operand is in the 7843 // right place. 7844 unsigned Spacing; 7845 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7846 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7847 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7848 Spacing)); 7849 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7850 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7851 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7852 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7853 Spacing)); 7854 TmpInst.addOperand(Inst.getOperand(1)); // lane 7855 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7856 TmpInst.addOperand(Inst.getOperand(5)); 7857 Inst = TmpInst; 7858 return true; 7859 } 7860 7861 case ARM::VLD3LNdAsm_8: 7862 case ARM::VLD3LNdAsm_16: 7863 case ARM::VLD3LNdAsm_32: 7864 case ARM::VLD3LNqAsm_16: 7865 case ARM::VLD3LNqAsm_32: { 7866 MCInst TmpInst; 7867 // Shuffle the operands around so the lane index operand is in the 7868 // right place. 7869 unsigned Spacing; 7870 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7871 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7872 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7873 Spacing)); 7874 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7875 Spacing * 2)); 7876 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7877 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7878 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7879 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7880 Spacing)); 7881 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7882 Spacing * 2)); 7883 TmpInst.addOperand(Inst.getOperand(1)); // lane 7884 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7885 TmpInst.addOperand(Inst.getOperand(5)); 7886 Inst = TmpInst; 7887 return true; 7888 } 7889 7890 case ARM::VLD4LNdAsm_8: 7891 case ARM::VLD4LNdAsm_16: 7892 case ARM::VLD4LNdAsm_32: 7893 case ARM::VLD4LNqAsm_16: 7894 case ARM::VLD4LNqAsm_32: { 7895 MCInst TmpInst; 7896 // Shuffle the operands around so the lane index operand is in the 7897 // right place. 7898 unsigned Spacing; 7899 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7900 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7901 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7902 Spacing)); 7903 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7904 Spacing * 2)); 7905 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7906 Spacing * 3)); 7907 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7908 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7909 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7910 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7911 Spacing)); 7912 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7913 Spacing * 2)); 7914 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7915 Spacing * 3)); 7916 TmpInst.addOperand(Inst.getOperand(1)); // lane 7917 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7918 TmpInst.addOperand(Inst.getOperand(5)); 7919 Inst = TmpInst; 7920 return true; 7921 } 7922 7923 // VLD3DUP single 3-element structure to all lanes instructions. 7924 case ARM::VLD3DUPdAsm_8: 7925 case ARM::VLD3DUPdAsm_16: 7926 case ARM::VLD3DUPdAsm_32: 7927 case ARM::VLD3DUPqAsm_8: 7928 case ARM::VLD3DUPqAsm_16: 7929 case ARM::VLD3DUPqAsm_32: { 7930 MCInst TmpInst; 7931 unsigned Spacing; 7932 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7933 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7934 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7935 Spacing)); 7936 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7937 Spacing * 2)); 7938 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7939 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7940 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7941 TmpInst.addOperand(Inst.getOperand(4)); 7942 Inst = TmpInst; 7943 return true; 7944 } 7945 7946 case ARM::VLD3DUPdWB_fixed_Asm_8: 7947 case ARM::VLD3DUPdWB_fixed_Asm_16: 7948 case ARM::VLD3DUPdWB_fixed_Asm_32: 7949 case ARM::VLD3DUPqWB_fixed_Asm_8: 7950 case ARM::VLD3DUPqWB_fixed_Asm_16: 7951 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7952 MCInst TmpInst; 7953 unsigned Spacing; 7954 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7955 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7956 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7957 Spacing)); 7958 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7959 Spacing * 2)); 7960 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7961 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7962 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7963 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7964 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7965 TmpInst.addOperand(Inst.getOperand(4)); 7966 Inst = TmpInst; 7967 return true; 7968 } 7969 7970 case ARM::VLD3DUPdWB_register_Asm_8: 7971 case ARM::VLD3DUPdWB_register_Asm_16: 7972 case ARM::VLD3DUPdWB_register_Asm_32: 7973 case ARM::VLD3DUPqWB_register_Asm_8: 7974 case ARM::VLD3DUPqWB_register_Asm_16: 7975 case ARM::VLD3DUPqWB_register_Asm_32: { 7976 MCInst TmpInst; 7977 unsigned Spacing; 7978 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7979 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7980 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7981 Spacing)); 7982 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7983 Spacing * 2)); 7984 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7985 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7986 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7987 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7988 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7989 TmpInst.addOperand(Inst.getOperand(5)); 7990 Inst = TmpInst; 7991 return true; 7992 } 7993 7994 // VLD3 multiple 3-element structure instructions. 7995 case ARM::VLD3dAsm_8: 7996 case ARM::VLD3dAsm_16: 7997 case ARM::VLD3dAsm_32: 7998 case ARM::VLD3qAsm_8: 7999 case ARM::VLD3qAsm_16: 8000 case ARM::VLD3qAsm_32: { 8001 MCInst TmpInst; 8002 unsigned Spacing; 8003 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8004 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8005 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8006 Spacing)); 8007 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8008 Spacing * 2)); 8009 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8010 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8011 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8012 TmpInst.addOperand(Inst.getOperand(4)); 8013 Inst = TmpInst; 8014 return true; 8015 } 8016 8017 case ARM::VLD3dWB_fixed_Asm_8: 8018 case ARM::VLD3dWB_fixed_Asm_16: 8019 case ARM::VLD3dWB_fixed_Asm_32: 8020 case ARM::VLD3qWB_fixed_Asm_8: 8021 case ARM::VLD3qWB_fixed_Asm_16: 8022 case ARM::VLD3qWB_fixed_Asm_32: { 8023 MCInst TmpInst; 8024 unsigned Spacing; 8025 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8026 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8027 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8028 Spacing)); 8029 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8030 Spacing * 2)); 8031 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8032 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8033 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8034 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8035 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8036 TmpInst.addOperand(Inst.getOperand(4)); 8037 Inst = TmpInst; 8038 return true; 8039 } 8040 8041 case ARM::VLD3dWB_register_Asm_8: 8042 case ARM::VLD3dWB_register_Asm_16: 8043 case ARM::VLD3dWB_register_Asm_32: 8044 case ARM::VLD3qWB_register_Asm_8: 8045 case ARM::VLD3qWB_register_Asm_16: 8046 case ARM::VLD3qWB_register_Asm_32: { 8047 MCInst TmpInst; 8048 unsigned Spacing; 8049 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8050 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8051 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8052 Spacing)); 8053 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8054 Spacing * 2)); 8055 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8056 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8057 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8058 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8059 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8060 TmpInst.addOperand(Inst.getOperand(5)); 8061 Inst = TmpInst; 8062 return true; 8063 } 8064 8065 // VLD4DUP single 3-element structure to all lanes instructions. 8066 case ARM::VLD4DUPdAsm_8: 8067 case ARM::VLD4DUPdAsm_16: 8068 case ARM::VLD4DUPdAsm_32: 8069 case ARM::VLD4DUPqAsm_8: 8070 case ARM::VLD4DUPqAsm_16: 8071 case ARM::VLD4DUPqAsm_32: { 8072 MCInst TmpInst; 8073 unsigned Spacing; 8074 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8075 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8076 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8077 Spacing)); 8078 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8079 Spacing * 2)); 8080 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8081 Spacing * 3)); 8082 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8083 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8084 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8085 TmpInst.addOperand(Inst.getOperand(4)); 8086 Inst = TmpInst; 8087 return true; 8088 } 8089 8090 case ARM::VLD4DUPdWB_fixed_Asm_8: 8091 case ARM::VLD4DUPdWB_fixed_Asm_16: 8092 case ARM::VLD4DUPdWB_fixed_Asm_32: 8093 case ARM::VLD4DUPqWB_fixed_Asm_8: 8094 case ARM::VLD4DUPqWB_fixed_Asm_16: 8095 case ARM::VLD4DUPqWB_fixed_Asm_32: { 8096 MCInst TmpInst; 8097 unsigned Spacing; 8098 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8099 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8100 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8101 Spacing)); 8102 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8103 Spacing * 2)); 8104 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8105 Spacing * 3)); 8106 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8107 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8108 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8109 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8110 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8111 TmpInst.addOperand(Inst.getOperand(4)); 8112 Inst = TmpInst; 8113 return true; 8114 } 8115 8116 case ARM::VLD4DUPdWB_register_Asm_8: 8117 case ARM::VLD4DUPdWB_register_Asm_16: 8118 case ARM::VLD4DUPdWB_register_Asm_32: 8119 case ARM::VLD4DUPqWB_register_Asm_8: 8120 case ARM::VLD4DUPqWB_register_Asm_16: 8121 case ARM::VLD4DUPqWB_register_Asm_32: { 8122 MCInst TmpInst; 8123 unsigned Spacing; 8124 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8125 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8126 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8127 Spacing)); 8128 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8129 Spacing * 2)); 8130 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8131 Spacing * 3)); 8132 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8133 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8134 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8135 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8136 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8137 TmpInst.addOperand(Inst.getOperand(5)); 8138 Inst = TmpInst; 8139 return true; 8140 } 8141 8142 // VLD4 multiple 4-element structure instructions. 8143 case ARM::VLD4dAsm_8: 8144 case ARM::VLD4dAsm_16: 8145 case ARM::VLD4dAsm_32: 8146 case ARM::VLD4qAsm_8: 8147 case ARM::VLD4qAsm_16: 8148 case ARM::VLD4qAsm_32: { 8149 MCInst TmpInst; 8150 unsigned Spacing; 8151 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8152 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8153 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8154 Spacing)); 8155 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8156 Spacing * 2)); 8157 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8158 Spacing * 3)); 8159 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8160 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8161 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8162 TmpInst.addOperand(Inst.getOperand(4)); 8163 Inst = TmpInst; 8164 return true; 8165 } 8166 8167 case ARM::VLD4dWB_fixed_Asm_8: 8168 case ARM::VLD4dWB_fixed_Asm_16: 8169 case ARM::VLD4dWB_fixed_Asm_32: 8170 case ARM::VLD4qWB_fixed_Asm_8: 8171 case ARM::VLD4qWB_fixed_Asm_16: 8172 case ARM::VLD4qWB_fixed_Asm_32: { 8173 MCInst TmpInst; 8174 unsigned Spacing; 8175 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8176 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8177 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8178 Spacing)); 8179 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8180 Spacing * 2)); 8181 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8182 Spacing * 3)); 8183 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8184 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8185 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8186 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8187 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8188 TmpInst.addOperand(Inst.getOperand(4)); 8189 Inst = TmpInst; 8190 return true; 8191 } 8192 8193 case ARM::VLD4dWB_register_Asm_8: 8194 case ARM::VLD4dWB_register_Asm_16: 8195 case ARM::VLD4dWB_register_Asm_32: 8196 case ARM::VLD4qWB_register_Asm_8: 8197 case ARM::VLD4qWB_register_Asm_16: 8198 case ARM::VLD4qWB_register_Asm_32: { 8199 MCInst TmpInst; 8200 unsigned Spacing; 8201 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8202 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8203 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8204 Spacing)); 8205 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8206 Spacing * 2)); 8207 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8208 Spacing * 3)); 8209 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8210 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8211 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8212 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8213 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8214 TmpInst.addOperand(Inst.getOperand(5)); 8215 Inst = TmpInst; 8216 return true; 8217 } 8218 8219 // VST3 multiple 3-element structure instructions. 8220 case ARM::VST3dAsm_8: 8221 case ARM::VST3dAsm_16: 8222 case ARM::VST3dAsm_32: 8223 case ARM::VST3qAsm_8: 8224 case ARM::VST3qAsm_16: 8225 case ARM::VST3qAsm_32: { 8226 MCInst TmpInst; 8227 unsigned Spacing; 8228 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8229 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8230 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8231 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8232 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8233 Spacing)); 8234 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8235 Spacing * 2)); 8236 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8237 TmpInst.addOperand(Inst.getOperand(4)); 8238 Inst = TmpInst; 8239 return true; 8240 } 8241 8242 case ARM::VST3dWB_fixed_Asm_8: 8243 case ARM::VST3dWB_fixed_Asm_16: 8244 case ARM::VST3dWB_fixed_Asm_32: 8245 case ARM::VST3qWB_fixed_Asm_8: 8246 case ARM::VST3qWB_fixed_Asm_16: 8247 case ARM::VST3qWB_fixed_Asm_32: { 8248 MCInst TmpInst; 8249 unsigned Spacing; 8250 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8251 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8252 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8253 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8254 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8255 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8256 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8257 Spacing)); 8258 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8259 Spacing * 2)); 8260 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8261 TmpInst.addOperand(Inst.getOperand(4)); 8262 Inst = TmpInst; 8263 return true; 8264 } 8265 8266 case ARM::VST3dWB_register_Asm_8: 8267 case ARM::VST3dWB_register_Asm_16: 8268 case ARM::VST3dWB_register_Asm_32: 8269 case ARM::VST3qWB_register_Asm_8: 8270 case ARM::VST3qWB_register_Asm_16: 8271 case ARM::VST3qWB_register_Asm_32: { 8272 MCInst TmpInst; 8273 unsigned Spacing; 8274 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8275 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8276 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8277 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8278 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8279 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8280 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8281 Spacing)); 8282 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8283 Spacing * 2)); 8284 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8285 TmpInst.addOperand(Inst.getOperand(5)); 8286 Inst = TmpInst; 8287 return true; 8288 } 8289 8290 // VST4 multiple 3-element structure instructions. 8291 case ARM::VST4dAsm_8: 8292 case ARM::VST4dAsm_16: 8293 case ARM::VST4dAsm_32: 8294 case ARM::VST4qAsm_8: 8295 case ARM::VST4qAsm_16: 8296 case ARM::VST4qAsm_32: { 8297 MCInst TmpInst; 8298 unsigned Spacing; 8299 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8300 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8301 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8302 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8303 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8304 Spacing)); 8305 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8306 Spacing * 2)); 8307 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8308 Spacing * 3)); 8309 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8310 TmpInst.addOperand(Inst.getOperand(4)); 8311 Inst = TmpInst; 8312 return true; 8313 } 8314 8315 case ARM::VST4dWB_fixed_Asm_8: 8316 case ARM::VST4dWB_fixed_Asm_16: 8317 case ARM::VST4dWB_fixed_Asm_32: 8318 case ARM::VST4qWB_fixed_Asm_8: 8319 case ARM::VST4qWB_fixed_Asm_16: 8320 case ARM::VST4qWB_fixed_Asm_32: { 8321 MCInst TmpInst; 8322 unsigned Spacing; 8323 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8324 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8325 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8326 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8327 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8328 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8329 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8330 Spacing)); 8331 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8332 Spacing * 2)); 8333 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8334 Spacing * 3)); 8335 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8336 TmpInst.addOperand(Inst.getOperand(4)); 8337 Inst = TmpInst; 8338 return true; 8339 } 8340 8341 case ARM::VST4dWB_register_Asm_8: 8342 case ARM::VST4dWB_register_Asm_16: 8343 case ARM::VST4dWB_register_Asm_32: 8344 case ARM::VST4qWB_register_Asm_8: 8345 case ARM::VST4qWB_register_Asm_16: 8346 case ARM::VST4qWB_register_Asm_32: { 8347 MCInst TmpInst; 8348 unsigned Spacing; 8349 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8350 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8351 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8352 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8353 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8354 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8355 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8356 Spacing)); 8357 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8358 Spacing * 2)); 8359 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8360 Spacing * 3)); 8361 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8362 TmpInst.addOperand(Inst.getOperand(5)); 8363 Inst = TmpInst; 8364 return true; 8365 } 8366 8367 // Handle encoding choice for the shift-immediate instructions. 8368 case ARM::t2LSLri: 8369 case ARM::t2LSRri: 8370 case ARM::t2ASRri: 8371 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8372 isARMLowRegister(Inst.getOperand(1).getReg()) && 8373 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8374 !HasWideQualifier) { 8375 unsigned NewOpc; 8376 switch (Inst.getOpcode()) { 8377 default: llvm_unreachable("unexpected opcode"); 8378 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8379 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8380 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8381 } 8382 // The Thumb1 operands aren't in the same order. Awesome, eh? 8383 MCInst TmpInst; 8384 TmpInst.setOpcode(NewOpc); 8385 TmpInst.addOperand(Inst.getOperand(0)); 8386 TmpInst.addOperand(Inst.getOperand(5)); 8387 TmpInst.addOperand(Inst.getOperand(1)); 8388 TmpInst.addOperand(Inst.getOperand(2)); 8389 TmpInst.addOperand(Inst.getOperand(3)); 8390 TmpInst.addOperand(Inst.getOperand(4)); 8391 Inst = TmpInst; 8392 return true; 8393 } 8394 return false; 8395 8396 // Handle the Thumb2 mode MOV complex aliases. 8397 case ARM::t2MOVsr: 8398 case ARM::t2MOVSsr: { 8399 // Which instruction to expand to depends on the CCOut operand and 8400 // whether we're in an IT block if the register operands are low 8401 // registers. 8402 bool isNarrow = false; 8403 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8404 isARMLowRegister(Inst.getOperand(1).getReg()) && 8405 isARMLowRegister(Inst.getOperand(2).getReg()) && 8406 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8407 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 8408 !HasWideQualifier) 8409 isNarrow = true; 8410 MCInst TmpInst; 8411 unsigned newOpc; 8412 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8413 default: llvm_unreachable("unexpected opcode!"); 8414 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8415 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8416 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8417 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8418 } 8419 TmpInst.setOpcode(newOpc); 8420 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8421 if (isNarrow) 8422 TmpInst.addOperand(MCOperand::createReg( 8423 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8424 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8425 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8426 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8427 TmpInst.addOperand(Inst.getOperand(5)); 8428 if (!isNarrow) 8429 TmpInst.addOperand(MCOperand::createReg( 8430 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8431 Inst = TmpInst; 8432 return true; 8433 } 8434 case ARM::t2MOVsi: 8435 case ARM::t2MOVSsi: { 8436 // Which instruction to expand to depends on the CCOut operand and 8437 // whether we're in an IT block if the register operands are low 8438 // registers. 8439 bool isNarrow = false; 8440 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8441 isARMLowRegister(Inst.getOperand(1).getReg()) && 8442 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 8443 !HasWideQualifier) 8444 isNarrow = true; 8445 MCInst TmpInst; 8446 unsigned newOpc; 8447 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8448 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8449 bool isMov = false; 8450 // MOV rd, rm, LSL #0 is actually a MOV instruction 8451 if (Shift == ARM_AM::lsl && Amount == 0) { 8452 isMov = true; 8453 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 8454 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 8455 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 8456 // instead. 8457 if (inITBlock()) { 8458 isNarrow = false; 8459 } 8460 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 8461 } else { 8462 switch(Shift) { 8463 default: llvm_unreachable("unexpected opcode!"); 8464 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8465 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8466 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8467 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8468 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8469 } 8470 } 8471 if (Amount == 32) Amount = 0; 8472 TmpInst.setOpcode(newOpc); 8473 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8474 if (isNarrow && !isMov) 8475 TmpInst.addOperand(MCOperand::createReg( 8476 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8477 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8478 if (newOpc != ARM::t2RRX && !isMov) 8479 TmpInst.addOperand(MCOperand::createImm(Amount)); 8480 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8481 TmpInst.addOperand(Inst.getOperand(4)); 8482 if (!isNarrow) 8483 TmpInst.addOperand(MCOperand::createReg( 8484 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8485 Inst = TmpInst; 8486 return true; 8487 } 8488 // Handle the ARM mode MOV complex aliases. 8489 case ARM::ASRr: 8490 case ARM::LSRr: 8491 case ARM::LSLr: 8492 case ARM::RORr: { 8493 ARM_AM::ShiftOpc ShiftTy; 8494 switch(Inst.getOpcode()) { 8495 default: llvm_unreachable("unexpected opcode!"); 8496 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8497 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8498 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8499 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8500 } 8501 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8502 MCInst TmpInst; 8503 TmpInst.setOpcode(ARM::MOVsr); 8504 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8505 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8506 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8507 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8508 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8509 TmpInst.addOperand(Inst.getOperand(4)); 8510 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8511 Inst = TmpInst; 8512 return true; 8513 } 8514 case ARM::ASRi: 8515 case ARM::LSRi: 8516 case ARM::LSLi: 8517 case ARM::RORi: { 8518 ARM_AM::ShiftOpc ShiftTy; 8519 switch(Inst.getOpcode()) { 8520 default: llvm_unreachable("unexpected opcode!"); 8521 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8522 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8523 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8524 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8525 } 8526 // A shift by zero is a plain MOVr, not a MOVsi. 8527 unsigned Amt = Inst.getOperand(2).getImm(); 8528 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8529 // A shift by 32 should be encoded as 0 when permitted 8530 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8531 Amt = 0; 8532 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8533 MCInst TmpInst; 8534 TmpInst.setOpcode(Opc); 8535 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8536 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8537 if (Opc == ARM::MOVsi) 8538 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8539 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8540 TmpInst.addOperand(Inst.getOperand(4)); 8541 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8542 Inst = TmpInst; 8543 return true; 8544 } 8545 case ARM::RRXi: { 8546 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8547 MCInst TmpInst; 8548 TmpInst.setOpcode(ARM::MOVsi); 8549 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8550 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8551 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8552 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8553 TmpInst.addOperand(Inst.getOperand(3)); 8554 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8555 Inst = TmpInst; 8556 return true; 8557 } 8558 case ARM::t2LDMIA_UPD: { 8559 // If this is a load of a single register, then we should use 8560 // a post-indexed LDR instruction instead, per the ARM ARM. 8561 if (Inst.getNumOperands() != 5) 8562 return false; 8563 MCInst TmpInst; 8564 TmpInst.setOpcode(ARM::t2LDR_POST); 8565 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8566 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8567 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8568 TmpInst.addOperand(MCOperand::createImm(4)); 8569 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8570 TmpInst.addOperand(Inst.getOperand(3)); 8571 Inst = TmpInst; 8572 return true; 8573 } 8574 case ARM::t2STMDB_UPD: { 8575 // If this is a store of a single register, then we should use 8576 // a pre-indexed STR instruction instead, per the ARM ARM. 8577 if (Inst.getNumOperands() != 5) 8578 return false; 8579 MCInst TmpInst; 8580 TmpInst.setOpcode(ARM::t2STR_PRE); 8581 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8582 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8583 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8584 TmpInst.addOperand(MCOperand::createImm(-4)); 8585 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8586 TmpInst.addOperand(Inst.getOperand(3)); 8587 Inst = TmpInst; 8588 return true; 8589 } 8590 case ARM::LDMIA_UPD: 8591 // If this is a load of a single register via a 'pop', then we should use 8592 // a post-indexed LDR instruction instead, per the ARM ARM. 8593 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8594 Inst.getNumOperands() == 5) { 8595 MCInst TmpInst; 8596 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8597 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8598 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8599 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8600 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8601 TmpInst.addOperand(MCOperand::createImm(4)); 8602 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8603 TmpInst.addOperand(Inst.getOperand(3)); 8604 Inst = TmpInst; 8605 return true; 8606 } 8607 break; 8608 case ARM::STMDB_UPD: 8609 // If this is a store of a single register via a 'push', then we should use 8610 // a pre-indexed STR instruction instead, per the ARM ARM. 8611 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8612 Inst.getNumOperands() == 5) { 8613 MCInst TmpInst; 8614 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8615 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8616 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8617 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8618 TmpInst.addOperand(MCOperand::createImm(-4)); 8619 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8620 TmpInst.addOperand(Inst.getOperand(3)); 8621 Inst = TmpInst; 8622 } 8623 break; 8624 case ARM::t2ADDri12: 8625 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8626 // mnemonic was used (not "addw"), encoding T3 is preferred. 8627 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8628 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8629 break; 8630 Inst.setOpcode(ARM::t2ADDri); 8631 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8632 break; 8633 case ARM::t2SUBri12: 8634 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8635 // mnemonic was used (not "subw"), encoding T3 is preferred. 8636 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8637 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8638 break; 8639 Inst.setOpcode(ARM::t2SUBri); 8640 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8641 break; 8642 case ARM::tADDi8: 8643 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8644 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8645 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8646 // to encoding T1 if <Rd> is omitted." 8647 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8648 Inst.setOpcode(ARM::tADDi3); 8649 return true; 8650 } 8651 break; 8652 case ARM::tSUBi8: 8653 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8654 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8655 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8656 // to encoding T1 if <Rd> is omitted." 8657 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8658 Inst.setOpcode(ARM::tSUBi3); 8659 return true; 8660 } 8661 break; 8662 case ARM::t2ADDri: 8663 case ARM::t2SUBri: { 8664 // If the destination and first source operand are the same, and 8665 // the flags are compatible with the current IT status, use encoding T2 8666 // instead of T3. For compatibility with the system 'as'. Make sure the 8667 // wide encoding wasn't explicit. 8668 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8669 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8670 (Inst.getOperand(2).isImm() && 8671 (unsigned)Inst.getOperand(2).getImm() > 255) || 8672 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 8673 HasWideQualifier) 8674 break; 8675 MCInst TmpInst; 8676 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8677 ARM::tADDi8 : ARM::tSUBi8); 8678 TmpInst.addOperand(Inst.getOperand(0)); 8679 TmpInst.addOperand(Inst.getOperand(5)); 8680 TmpInst.addOperand(Inst.getOperand(0)); 8681 TmpInst.addOperand(Inst.getOperand(2)); 8682 TmpInst.addOperand(Inst.getOperand(3)); 8683 TmpInst.addOperand(Inst.getOperand(4)); 8684 Inst = TmpInst; 8685 return true; 8686 } 8687 case ARM::t2ADDrr: { 8688 // If the destination and first source operand are the same, and 8689 // there's no setting of the flags, use encoding T2 instead of T3. 8690 // Note that this is only for ADD, not SUB. This mirrors the system 8691 // 'as' behaviour. Also take advantage of ADD being commutative. 8692 // Make sure the wide encoding wasn't explicit. 8693 bool Swap = false; 8694 auto DestReg = Inst.getOperand(0).getReg(); 8695 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8696 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8697 Transform = true; 8698 Swap = true; 8699 } 8700 if (!Transform || 8701 Inst.getOperand(5).getReg() != 0 || 8702 HasWideQualifier) 8703 break; 8704 MCInst TmpInst; 8705 TmpInst.setOpcode(ARM::tADDhirr); 8706 TmpInst.addOperand(Inst.getOperand(0)); 8707 TmpInst.addOperand(Inst.getOperand(0)); 8708 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8709 TmpInst.addOperand(Inst.getOperand(3)); 8710 TmpInst.addOperand(Inst.getOperand(4)); 8711 Inst = TmpInst; 8712 return true; 8713 } 8714 case ARM::tADDrSP: 8715 // If the non-SP source operand and the destination operand are not the 8716 // same, we need to use the 32-bit encoding if it's available. 8717 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8718 Inst.setOpcode(ARM::t2ADDrr); 8719 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8720 return true; 8721 } 8722 break; 8723 case ARM::tB: 8724 // A Thumb conditional branch outside of an IT block is a tBcc. 8725 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8726 Inst.setOpcode(ARM::tBcc); 8727 return true; 8728 } 8729 break; 8730 case ARM::t2B: 8731 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8732 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8733 Inst.setOpcode(ARM::t2Bcc); 8734 return true; 8735 } 8736 break; 8737 case ARM::t2Bcc: 8738 // If the conditional is AL or we're in an IT block, we really want t2B. 8739 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8740 Inst.setOpcode(ARM::t2B); 8741 return true; 8742 } 8743 break; 8744 case ARM::tBcc: 8745 // If the conditional is AL, we really want tB. 8746 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8747 Inst.setOpcode(ARM::tB); 8748 return true; 8749 } 8750 break; 8751 case ARM::tLDMIA: { 8752 // If the register list contains any high registers, or if the writeback 8753 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8754 // instead if we're in Thumb2. Otherwise, this should have generated 8755 // an error in validateInstruction(). 8756 unsigned Rn = Inst.getOperand(0).getReg(); 8757 bool hasWritebackToken = 8758 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8759 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8760 bool listContainsBase; 8761 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8762 (!listContainsBase && !hasWritebackToken) || 8763 (listContainsBase && hasWritebackToken)) { 8764 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8765 assert(isThumbTwo()); 8766 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8767 // If we're switching to the updating version, we need to insert 8768 // the writeback tied operand. 8769 if (hasWritebackToken) 8770 Inst.insert(Inst.begin(), 8771 MCOperand::createReg(Inst.getOperand(0).getReg())); 8772 return true; 8773 } 8774 break; 8775 } 8776 case ARM::tSTMIA_UPD: { 8777 // If the register list contains any high registers, we need to use 8778 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8779 // should have generated an error in validateInstruction(). 8780 unsigned Rn = Inst.getOperand(0).getReg(); 8781 bool listContainsBase; 8782 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8783 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8784 assert(isThumbTwo()); 8785 Inst.setOpcode(ARM::t2STMIA_UPD); 8786 return true; 8787 } 8788 break; 8789 } 8790 case ARM::tPOP: { 8791 bool listContainsBase; 8792 // If the register list contains any high registers, we need to use 8793 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8794 // should have generated an error in validateInstruction(). 8795 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8796 return false; 8797 assert(isThumbTwo()); 8798 Inst.setOpcode(ARM::t2LDMIA_UPD); 8799 // Add the base register and writeback operands. 8800 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8801 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8802 return true; 8803 } 8804 case ARM::tPUSH: { 8805 bool listContainsBase; 8806 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8807 return false; 8808 assert(isThumbTwo()); 8809 Inst.setOpcode(ARM::t2STMDB_UPD); 8810 // Add the base register and writeback operands. 8811 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8812 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8813 return true; 8814 } 8815 case ARM::t2MOVi: 8816 // If we can use the 16-bit encoding and the user didn't explicitly 8817 // request the 32-bit variant, transform it here. 8818 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8819 (Inst.getOperand(1).isImm() && 8820 (unsigned)Inst.getOperand(1).getImm() <= 255) && 8821 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8822 !HasWideQualifier) { 8823 // The operands aren't in the same order for tMOVi8... 8824 MCInst TmpInst; 8825 TmpInst.setOpcode(ARM::tMOVi8); 8826 TmpInst.addOperand(Inst.getOperand(0)); 8827 TmpInst.addOperand(Inst.getOperand(4)); 8828 TmpInst.addOperand(Inst.getOperand(1)); 8829 TmpInst.addOperand(Inst.getOperand(2)); 8830 TmpInst.addOperand(Inst.getOperand(3)); 8831 Inst = TmpInst; 8832 return true; 8833 } 8834 break; 8835 8836 case ARM::t2MOVr: 8837 // If we can use the 16-bit encoding and the user didn't explicitly 8838 // request the 32-bit variant, transform it here. 8839 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8840 isARMLowRegister(Inst.getOperand(1).getReg()) && 8841 Inst.getOperand(2).getImm() == ARMCC::AL && 8842 Inst.getOperand(4).getReg() == ARM::CPSR && 8843 !HasWideQualifier) { 8844 // The operands aren't the same for tMOV[S]r... (no cc_out) 8845 MCInst TmpInst; 8846 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8847 TmpInst.addOperand(Inst.getOperand(0)); 8848 TmpInst.addOperand(Inst.getOperand(1)); 8849 TmpInst.addOperand(Inst.getOperand(2)); 8850 TmpInst.addOperand(Inst.getOperand(3)); 8851 Inst = TmpInst; 8852 return true; 8853 } 8854 break; 8855 8856 case ARM::t2SXTH: 8857 case ARM::t2SXTB: 8858 case ARM::t2UXTH: 8859 case ARM::t2UXTB: 8860 // If we can use the 16-bit encoding and the user didn't explicitly 8861 // request the 32-bit variant, transform it here. 8862 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8863 isARMLowRegister(Inst.getOperand(1).getReg()) && 8864 Inst.getOperand(2).getImm() == 0 && 8865 !HasWideQualifier) { 8866 unsigned NewOpc; 8867 switch (Inst.getOpcode()) { 8868 default: llvm_unreachable("Illegal opcode!"); 8869 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8870 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8871 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8872 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8873 } 8874 // The operands aren't the same for thumb1 (no rotate operand). 8875 MCInst TmpInst; 8876 TmpInst.setOpcode(NewOpc); 8877 TmpInst.addOperand(Inst.getOperand(0)); 8878 TmpInst.addOperand(Inst.getOperand(1)); 8879 TmpInst.addOperand(Inst.getOperand(3)); 8880 TmpInst.addOperand(Inst.getOperand(4)); 8881 Inst = TmpInst; 8882 return true; 8883 } 8884 break; 8885 8886 case ARM::MOVsi: { 8887 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8888 // rrx shifts and asr/lsr of #32 is encoded as 0 8889 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8890 return false; 8891 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8892 // Shifting by zero is accepted as a vanilla 'MOVr' 8893 MCInst TmpInst; 8894 TmpInst.setOpcode(ARM::MOVr); 8895 TmpInst.addOperand(Inst.getOperand(0)); 8896 TmpInst.addOperand(Inst.getOperand(1)); 8897 TmpInst.addOperand(Inst.getOperand(3)); 8898 TmpInst.addOperand(Inst.getOperand(4)); 8899 TmpInst.addOperand(Inst.getOperand(5)); 8900 Inst = TmpInst; 8901 return true; 8902 } 8903 return false; 8904 } 8905 case ARM::ANDrsi: 8906 case ARM::ORRrsi: 8907 case ARM::EORrsi: 8908 case ARM::BICrsi: 8909 case ARM::SUBrsi: 8910 case ARM::ADDrsi: { 8911 unsigned newOpc; 8912 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8913 if (SOpc == ARM_AM::rrx) return false; 8914 switch (Inst.getOpcode()) { 8915 default: llvm_unreachable("unexpected opcode!"); 8916 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8917 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8918 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8919 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8920 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8921 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8922 } 8923 // If the shift is by zero, use the non-shifted instruction definition. 8924 // The exception is for right shifts, where 0 == 32 8925 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8926 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8927 MCInst TmpInst; 8928 TmpInst.setOpcode(newOpc); 8929 TmpInst.addOperand(Inst.getOperand(0)); 8930 TmpInst.addOperand(Inst.getOperand(1)); 8931 TmpInst.addOperand(Inst.getOperand(2)); 8932 TmpInst.addOperand(Inst.getOperand(4)); 8933 TmpInst.addOperand(Inst.getOperand(5)); 8934 TmpInst.addOperand(Inst.getOperand(6)); 8935 Inst = TmpInst; 8936 return true; 8937 } 8938 return false; 8939 } 8940 case ARM::ITasm: 8941 case ARM::t2IT: { 8942 MCOperand &MO = Inst.getOperand(1); 8943 unsigned Mask = MO.getImm(); 8944 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8945 8946 // Set up the IT block state according to the IT instruction we just 8947 // matched. 8948 assert(!inITBlock() && "nested IT blocks?!"); 8949 startExplicitITBlock(Cond, Mask); 8950 MO.setImm(getITMaskEncoding()); 8951 break; 8952 } 8953 case ARM::t2LSLrr: 8954 case ARM::t2LSRrr: 8955 case ARM::t2ASRrr: 8956 case ARM::t2SBCrr: 8957 case ARM::t2RORrr: 8958 case ARM::t2BICrr: 8959 // Assemblers should use the narrow encodings of these instructions when permissible. 8960 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8961 isARMLowRegister(Inst.getOperand(2).getReg())) && 8962 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8963 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8964 !HasWideQualifier) { 8965 unsigned NewOpc; 8966 switch (Inst.getOpcode()) { 8967 default: llvm_unreachable("unexpected opcode"); 8968 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8969 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8970 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8971 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8972 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8973 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8974 } 8975 MCInst TmpInst; 8976 TmpInst.setOpcode(NewOpc); 8977 TmpInst.addOperand(Inst.getOperand(0)); 8978 TmpInst.addOperand(Inst.getOperand(5)); 8979 TmpInst.addOperand(Inst.getOperand(1)); 8980 TmpInst.addOperand(Inst.getOperand(2)); 8981 TmpInst.addOperand(Inst.getOperand(3)); 8982 TmpInst.addOperand(Inst.getOperand(4)); 8983 Inst = TmpInst; 8984 return true; 8985 } 8986 return false; 8987 8988 case ARM::t2ANDrr: 8989 case ARM::t2EORrr: 8990 case ARM::t2ADCrr: 8991 case ARM::t2ORRrr: 8992 // Assemblers should use the narrow encodings of these instructions when permissible. 8993 // These instructions are special in that they are commutable, so shorter encodings 8994 // are available more often. 8995 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8996 isARMLowRegister(Inst.getOperand(2).getReg())) && 8997 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8998 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8999 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9000 !HasWideQualifier) { 9001 unsigned NewOpc; 9002 switch (Inst.getOpcode()) { 9003 default: llvm_unreachable("unexpected opcode"); 9004 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 9005 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 9006 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 9007 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 9008 } 9009 MCInst TmpInst; 9010 TmpInst.setOpcode(NewOpc); 9011 TmpInst.addOperand(Inst.getOperand(0)); 9012 TmpInst.addOperand(Inst.getOperand(5)); 9013 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 9014 TmpInst.addOperand(Inst.getOperand(1)); 9015 TmpInst.addOperand(Inst.getOperand(2)); 9016 } else { 9017 TmpInst.addOperand(Inst.getOperand(2)); 9018 TmpInst.addOperand(Inst.getOperand(1)); 9019 } 9020 TmpInst.addOperand(Inst.getOperand(3)); 9021 TmpInst.addOperand(Inst.getOperand(4)); 9022 Inst = TmpInst; 9023 return true; 9024 } 9025 return false; 9026 } 9027 return false; 9028 } 9029 9030 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 9031 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 9032 // suffix depending on whether they're in an IT block or not. 9033 unsigned Opc = Inst.getOpcode(); 9034 const MCInstrDesc &MCID = MII.get(Opc); 9035 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 9036 assert(MCID.hasOptionalDef() && 9037 "optionally flag setting instruction missing optional def operand"); 9038 assert(MCID.NumOperands == Inst.getNumOperands() && 9039 "operand count mismatch!"); 9040 // Find the optional-def operand (cc_out). 9041 unsigned OpNo; 9042 for (OpNo = 0; 9043 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 9044 ++OpNo) 9045 ; 9046 // If we're parsing Thumb1, reject it completely. 9047 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 9048 return Match_RequiresFlagSetting; 9049 // If we're parsing Thumb2, which form is legal depends on whether we're 9050 // in an IT block. 9051 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 9052 !inITBlock()) 9053 return Match_RequiresITBlock; 9054 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 9055 inITBlock()) 9056 return Match_RequiresNotITBlock; 9057 // LSL with zero immediate is not allowed in an IT block 9058 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 9059 return Match_RequiresNotITBlock; 9060 } else if (isThumbOne()) { 9061 // Some high-register supporting Thumb1 encodings only allow both registers 9062 // to be from r0-r7 when in Thumb2. 9063 if (Opc == ARM::tADDhirr && !hasV6MOps() && 9064 isARMLowRegister(Inst.getOperand(1).getReg()) && 9065 isARMLowRegister(Inst.getOperand(2).getReg())) 9066 return Match_RequiresThumb2; 9067 // Others only require ARMv6 or later. 9068 else if (Opc == ARM::tMOVr && !hasV6Ops() && 9069 isARMLowRegister(Inst.getOperand(0).getReg()) && 9070 isARMLowRegister(Inst.getOperand(1).getReg())) 9071 return Match_RequiresV6; 9072 } 9073 9074 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 9075 // than the loop below can handle, so it uses the GPRnopc register class and 9076 // we do SP handling here. 9077 if (Opc == ARM::t2MOVr && !hasV8Ops()) 9078 { 9079 // SP as both source and destination is not allowed 9080 if (Inst.getOperand(0).getReg() == ARM::SP && 9081 Inst.getOperand(1).getReg() == ARM::SP) 9082 return Match_RequiresV8; 9083 // When flags-setting SP as either source or destination is not allowed 9084 if (Inst.getOperand(4).getReg() == ARM::CPSR && 9085 (Inst.getOperand(0).getReg() == ARM::SP || 9086 Inst.getOperand(1).getReg() == ARM::SP)) 9087 return Match_RequiresV8; 9088 } 9089 9090 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 9091 // ARMv8-A. 9092 if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) && 9093 Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops())) 9094 return Match_InvalidOperand; 9095 9096 for (unsigned I = 0; I < MCID.NumOperands; ++I) 9097 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 9098 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 9099 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 9100 return Match_RequiresV8; 9101 else if (Inst.getOperand(I).getReg() == ARM::PC) 9102 return Match_InvalidOperand; 9103 } 9104 9105 return Match_Success; 9106 } 9107 9108 namespace llvm { 9109 9110 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 9111 return true; // In an assembly source, no need to second-guess 9112 } 9113 9114 } // end namespace llvm 9115 9116 // Returns true if Inst is unpredictable if it is in and IT block, but is not 9117 // the last instruction in the block. 9118 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 9119 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9120 9121 // All branch & call instructions terminate IT blocks with the exception of 9122 // SVC. 9123 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 9124 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 9125 return true; 9126 9127 // Any arithmetic instruction which writes to the PC also terminates the IT 9128 // block. 9129 for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) { 9130 MCOperand &Op = Inst.getOperand(OpIdx); 9131 if (Op.isReg() && Op.getReg() == ARM::PC) 9132 return true; 9133 } 9134 9135 if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI)) 9136 return true; 9137 9138 // Instructions with variable operand lists, which write to the variable 9139 // operands. We only care about Thumb instructions here, as ARM instructions 9140 // obviously can't be in an IT block. 9141 switch (Inst.getOpcode()) { 9142 case ARM::tLDMIA: 9143 case ARM::t2LDMIA: 9144 case ARM::t2LDMIA_UPD: 9145 case ARM::t2LDMDB: 9146 case ARM::t2LDMDB_UPD: 9147 if (listContainsReg(Inst, 3, ARM::PC)) 9148 return true; 9149 break; 9150 case ARM::tPOP: 9151 if (listContainsReg(Inst, 2, ARM::PC)) 9152 return true; 9153 break; 9154 } 9155 9156 return false; 9157 } 9158 9159 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 9160 SmallVectorImpl<NearMissInfo> &NearMisses, 9161 bool MatchingInlineAsm, 9162 bool &EmitInITBlock, 9163 MCStreamer &Out) { 9164 // If we can't use an implicit IT block here, just match as normal. 9165 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 9166 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 9167 9168 // Try to match the instruction in an extension of the current IT block (if 9169 // there is one). 9170 if (inImplicitITBlock()) { 9171 extendImplicitITBlock(ITState.Cond); 9172 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9173 Match_Success) { 9174 // The match succeded, but we still have to check that the instruction is 9175 // valid in this implicit IT block. 9176 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9177 if (MCID.isPredicable()) { 9178 ARMCC::CondCodes InstCond = 9179 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9180 .getImm(); 9181 ARMCC::CondCodes ITCond = currentITCond(); 9182 if (InstCond == ITCond) { 9183 EmitInITBlock = true; 9184 return Match_Success; 9185 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 9186 invertCurrentITCondition(); 9187 EmitInITBlock = true; 9188 return Match_Success; 9189 } 9190 } 9191 } 9192 rewindImplicitITPosition(); 9193 } 9194 9195 // Finish the current IT block, and try to match outside any IT block. 9196 flushPendingInstructions(Out); 9197 unsigned PlainMatchResult = 9198 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 9199 if (PlainMatchResult == Match_Success) { 9200 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9201 if (MCID.isPredicable()) { 9202 ARMCC::CondCodes InstCond = 9203 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9204 .getImm(); 9205 // Some forms of the branch instruction have their own condition code 9206 // fields, so can be conditionally executed without an IT block. 9207 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 9208 EmitInITBlock = false; 9209 return Match_Success; 9210 } 9211 if (InstCond == ARMCC::AL) { 9212 EmitInITBlock = false; 9213 return Match_Success; 9214 } 9215 } else { 9216 EmitInITBlock = false; 9217 return Match_Success; 9218 } 9219 } 9220 9221 // Try to match in a new IT block. The matcher doesn't check the actual 9222 // condition, so we create an IT block with a dummy condition, and fix it up 9223 // once we know the actual condition. 9224 startImplicitITBlock(); 9225 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9226 Match_Success) { 9227 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9228 if (MCID.isPredicable()) { 9229 ITState.Cond = 9230 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9231 .getImm(); 9232 EmitInITBlock = true; 9233 return Match_Success; 9234 } 9235 } 9236 discardImplicitITBlock(); 9237 9238 // If none of these succeed, return the error we got when trying to match 9239 // outside any IT blocks. 9240 EmitInITBlock = false; 9241 return PlainMatchResult; 9242 } 9243 9244 static std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS, 9245 unsigned VariantID = 0); 9246 9247 static const char *getSubtargetFeatureName(uint64_t Val); 9248 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 9249 OperandVector &Operands, 9250 MCStreamer &Out, uint64_t &ErrorInfo, 9251 bool MatchingInlineAsm) { 9252 MCInst Inst; 9253 unsigned MatchResult; 9254 bool PendConditionalInstruction = false; 9255 9256 SmallVector<NearMissInfo, 4> NearMisses; 9257 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 9258 PendConditionalInstruction, Out); 9259 9260 switch (MatchResult) { 9261 case Match_Success: 9262 // Context sensitive operand constraints aren't handled by the matcher, 9263 // so check them here. 9264 if (validateInstruction(Inst, Operands)) { 9265 // Still progress the IT block, otherwise one wrong condition causes 9266 // nasty cascading errors. 9267 forwardITPosition(); 9268 return true; 9269 } 9270 9271 { // processInstruction() updates inITBlock state, we need to save it away 9272 bool wasInITBlock = inITBlock(); 9273 9274 // Some instructions need post-processing to, for example, tweak which 9275 // encoding is selected. Loop on it while changes happen so the 9276 // individual transformations can chain off each other. E.g., 9277 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9278 while (processInstruction(Inst, Operands, Out)) 9279 ; 9280 9281 // Only after the instruction is fully processed, we can validate it 9282 if (wasInITBlock && hasV8Ops() && isThumb() && 9283 !isV8EligibleForIT(&Inst)) { 9284 Warning(IDLoc, "deprecated instruction in IT block"); 9285 } 9286 } 9287 9288 // Only move forward at the very end so that everything in validate 9289 // and process gets a consistent answer about whether we're in an IT 9290 // block. 9291 forwardITPosition(); 9292 9293 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9294 // doesn't actually encode. 9295 if (Inst.getOpcode() == ARM::ITasm) 9296 return false; 9297 9298 Inst.setLoc(IDLoc); 9299 if (PendConditionalInstruction) { 9300 PendingConditionalInsts.push_back(Inst); 9301 if (isITBlockFull() || isITBlockTerminator(Inst)) 9302 flushPendingInstructions(Out); 9303 } else { 9304 Out.EmitInstruction(Inst, getSTI()); 9305 } 9306 return false; 9307 case Match_NearMisses: 9308 ReportNearMisses(NearMisses, IDLoc, Operands); 9309 return true; 9310 case Match_MnemonicFail: { 9311 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 9312 std::string Suggestion = ARMMnemonicSpellCheck( 9313 ((ARMOperand &)*Operands[0]).getToken(), FBS); 9314 return Error(IDLoc, "invalid instruction" + Suggestion, 9315 ((ARMOperand &)*Operands[0]).getLocRange()); 9316 } 9317 } 9318 9319 llvm_unreachable("Implement any new match types added!"); 9320 } 9321 9322 /// parseDirective parses the arm specific directives 9323 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9324 const MCObjectFileInfo::Environment Format = 9325 getContext().getObjectFileInfo()->getObjectFileType(); 9326 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9327 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9328 9329 StringRef IDVal = DirectiveID.getIdentifier(); 9330 if (IDVal == ".word") 9331 parseLiteralValues(4, DirectiveID.getLoc()); 9332 else if (IDVal == ".short" || IDVal == ".hword") 9333 parseLiteralValues(2, DirectiveID.getLoc()); 9334 else if (IDVal == ".thumb") 9335 parseDirectiveThumb(DirectiveID.getLoc()); 9336 else if (IDVal == ".arm") 9337 parseDirectiveARM(DirectiveID.getLoc()); 9338 else if (IDVal == ".thumb_func") 9339 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9340 else if (IDVal == ".code") 9341 parseDirectiveCode(DirectiveID.getLoc()); 9342 else if (IDVal == ".syntax") 9343 parseDirectiveSyntax(DirectiveID.getLoc()); 9344 else if (IDVal == ".unreq") 9345 parseDirectiveUnreq(DirectiveID.getLoc()); 9346 else if (IDVal == ".fnend") 9347 parseDirectiveFnEnd(DirectiveID.getLoc()); 9348 else if (IDVal == ".cantunwind") 9349 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9350 else if (IDVal == ".personality") 9351 parseDirectivePersonality(DirectiveID.getLoc()); 9352 else if (IDVal == ".handlerdata") 9353 parseDirectiveHandlerData(DirectiveID.getLoc()); 9354 else if (IDVal == ".setfp") 9355 parseDirectiveSetFP(DirectiveID.getLoc()); 9356 else if (IDVal == ".pad") 9357 parseDirectivePad(DirectiveID.getLoc()); 9358 else if (IDVal == ".save") 9359 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9360 else if (IDVal == ".vsave") 9361 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9362 else if (IDVal == ".ltorg" || IDVal == ".pool") 9363 parseDirectiveLtorg(DirectiveID.getLoc()); 9364 else if (IDVal == ".even") 9365 parseDirectiveEven(DirectiveID.getLoc()); 9366 else if (IDVal == ".personalityindex") 9367 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9368 else if (IDVal == ".unwind_raw") 9369 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9370 else if (IDVal == ".movsp") 9371 parseDirectiveMovSP(DirectiveID.getLoc()); 9372 else if (IDVal == ".arch_extension") 9373 parseDirectiveArchExtension(DirectiveID.getLoc()); 9374 else if (IDVal == ".align") 9375 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9376 else if (IDVal == ".thumb_set") 9377 parseDirectiveThumbSet(DirectiveID.getLoc()); 9378 else if (IDVal == ".inst") 9379 parseDirectiveInst(DirectiveID.getLoc()); 9380 else if (IDVal == ".inst.n") 9381 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9382 else if (IDVal == ".inst.w") 9383 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9384 else if (!IsMachO && !IsCOFF) { 9385 if (IDVal == ".arch") 9386 parseDirectiveArch(DirectiveID.getLoc()); 9387 else if (IDVal == ".cpu") 9388 parseDirectiveCPU(DirectiveID.getLoc()); 9389 else if (IDVal == ".eabi_attribute") 9390 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9391 else if (IDVal == ".fpu") 9392 parseDirectiveFPU(DirectiveID.getLoc()); 9393 else if (IDVal == ".fnstart") 9394 parseDirectiveFnStart(DirectiveID.getLoc()); 9395 else if (IDVal == ".object_arch") 9396 parseDirectiveObjectArch(DirectiveID.getLoc()); 9397 else if (IDVal == ".tlsdescseq") 9398 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9399 else 9400 return true; 9401 } else 9402 return true; 9403 return false; 9404 } 9405 9406 /// parseLiteralValues 9407 /// ::= .hword expression [, expression]* 9408 /// ::= .short expression [, expression]* 9409 /// ::= .word expression [, expression]* 9410 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9411 auto parseOne = [&]() -> bool { 9412 const MCExpr *Value; 9413 if (getParser().parseExpression(Value)) 9414 return true; 9415 getParser().getStreamer().EmitValue(Value, Size, L); 9416 return false; 9417 }; 9418 return (parseMany(parseOne)); 9419 } 9420 9421 /// parseDirectiveThumb 9422 /// ::= .thumb 9423 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9424 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9425 check(!hasThumb(), L, "target does not support Thumb mode")) 9426 return true; 9427 9428 if (!isThumb()) 9429 SwitchMode(); 9430 9431 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9432 return false; 9433 } 9434 9435 /// parseDirectiveARM 9436 /// ::= .arm 9437 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9438 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9439 check(!hasARM(), L, "target does not support ARM mode")) 9440 return true; 9441 9442 if (isThumb()) 9443 SwitchMode(); 9444 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9445 return false; 9446 } 9447 9448 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 9449 // We need to flush the current implicit IT block on a label, because it is 9450 // not legal to branch into an IT block. 9451 flushPendingInstructions(getStreamer()); 9452 } 9453 9454 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9455 if (NextSymbolIsThumb) { 9456 getParser().getStreamer().EmitThumbFunc(Symbol); 9457 NextSymbolIsThumb = false; 9458 } 9459 } 9460 9461 /// parseDirectiveThumbFunc 9462 /// ::= .thumbfunc symbol_name 9463 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9464 MCAsmParser &Parser = getParser(); 9465 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9466 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9467 9468 // Darwin asm has (optionally) function name after .thumb_func direction 9469 // ELF doesn't 9470 9471 if (IsMachO) { 9472 if (Parser.getTok().is(AsmToken::Identifier) || 9473 Parser.getTok().is(AsmToken::String)) { 9474 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9475 Parser.getTok().getIdentifier()); 9476 getParser().getStreamer().EmitThumbFunc(Func); 9477 Parser.Lex(); 9478 if (parseToken(AsmToken::EndOfStatement, 9479 "unexpected token in '.thumb_func' directive")) 9480 return true; 9481 return false; 9482 } 9483 } 9484 9485 if (parseToken(AsmToken::EndOfStatement, 9486 "unexpected token in '.thumb_func' directive")) 9487 return true; 9488 9489 NextSymbolIsThumb = true; 9490 return false; 9491 } 9492 9493 /// parseDirectiveSyntax 9494 /// ::= .syntax unified | divided 9495 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9496 MCAsmParser &Parser = getParser(); 9497 const AsmToken &Tok = Parser.getTok(); 9498 if (Tok.isNot(AsmToken::Identifier)) { 9499 Error(L, "unexpected token in .syntax directive"); 9500 return false; 9501 } 9502 9503 StringRef Mode = Tok.getString(); 9504 Parser.Lex(); 9505 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9506 "'.syntax divided' arm assembly not supported") || 9507 check(Mode != "unified" && Mode != "UNIFIED", L, 9508 "unrecognized syntax mode in .syntax directive") || 9509 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9510 return true; 9511 9512 // TODO tell the MC streamer the mode 9513 // getParser().getStreamer().Emit???(); 9514 return false; 9515 } 9516 9517 /// parseDirectiveCode 9518 /// ::= .code 16 | 32 9519 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9520 MCAsmParser &Parser = getParser(); 9521 const AsmToken &Tok = Parser.getTok(); 9522 if (Tok.isNot(AsmToken::Integer)) 9523 return Error(L, "unexpected token in .code directive"); 9524 int64_t Val = Parser.getTok().getIntVal(); 9525 if (Val != 16 && Val != 32) { 9526 Error(L, "invalid operand to .code directive"); 9527 return false; 9528 } 9529 Parser.Lex(); 9530 9531 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9532 return true; 9533 9534 if (Val == 16) { 9535 if (!hasThumb()) 9536 return Error(L, "target does not support Thumb mode"); 9537 9538 if (!isThumb()) 9539 SwitchMode(); 9540 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9541 } else { 9542 if (!hasARM()) 9543 return Error(L, "target does not support ARM mode"); 9544 9545 if (isThumb()) 9546 SwitchMode(); 9547 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9548 } 9549 9550 return false; 9551 } 9552 9553 /// parseDirectiveReq 9554 /// ::= name .req registername 9555 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9556 MCAsmParser &Parser = getParser(); 9557 Parser.Lex(); // Eat the '.req' token. 9558 unsigned Reg; 9559 SMLoc SRegLoc, ERegLoc; 9560 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9561 "register name expected") || 9562 parseToken(AsmToken::EndOfStatement, 9563 "unexpected input in .req directive.")) 9564 return true; 9565 9566 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9567 return Error(SRegLoc, 9568 "redefinition of '" + Name + "' does not match original."); 9569 9570 return false; 9571 } 9572 9573 /// parseDirectiveUneq 9574 /// ::= .unreq registername 9575 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9576 MCAsmParser &Parser = getParser(); 9577 if (Parser.getTok().isNot(AsmToken::Identifier)) 9578 return Error(L, "unexpected input in .unreq directive."); 9579 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9580 Parser.Lex(); // Eat the identifier. 9581 if (parseToken(AsmToken::EndOfStatement, 9582 "unexpected input in '.unreq' directive")) 9583 return true; 9584 return false; 9585 } 9586 9587 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9588 // before, if supported by the new target, or emit mapping symbols for the mode 9589 // switch. 9590 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9591 if (WasThumb != isThumb()) { 9592 if (WasThumb && hasThumb()) { 9593 // Stay in Thumb mode 9594 SwitchMode(); 9595 } else if (!WasThumb && hasARM()) { 9596 // Stay in ARM mode 9597 SwitchMode(); 9598 } else { 9599 // Mode switch forced, because the new arch doesn't support the old mode. 9600 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9601 : MCAF_Code32); 9602 // Warn about the implcit mode switch. GAS does not switch modes here, 9603 // but instead stays in the old mode, reporting an error on any following 9604 // instructions as the mode does not exist on the target. 9605 Warning(Loc, Twine("new target does not support ") + 9606 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9607 (!WasThumb ? "thumb" : "arm") + " mode"); 9608 } 9609 } 9610 } 9611 9612 /// parseDirectiveArch 9613 /// ::= .arch token 9614 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9615 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9616 ARM::ArchKind ID = ARM::parseArch(Arch); 9617 9618 if (ID == ARM::ArchKind::INVALID) 9619 return Error(L, "Unknown arch name"); 9620 9621 bool WasThumb = isThumb(); 9622 Triple T; 9623 MCSubtargetInfo &STI = copySTI(); 9624 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9625 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9626 FixModeAfterArchChange(WasThumb, L); 9627 9628 getTargetStreamer().emitArch(ID); 9629 return false; 9630 } 9631 9632 /// parseDirectiveEabiAttr 9633 /// ::= .eabi_attribute int, int [, "str"] 9634 /// ::= .eabi_attribute Tag_name, int [, "str"] 9635 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9636 MCAsmParser &Parser = getParser(); 9637 int64_t Tag; 9638 SMLoc TagLoc; 9639 TagLoc = Parser.getTok().getLoc(); 9640 if (Parser.getTok().is(AsmToken::Identifier)) { 9641 StringRef Name = Parser.getTok().getIdentifier(); 9642 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9643 if (Tag == -1) { 9644 Error(TagLoc, "attribute name not recognised: " + Name); 9645 return false; 9646 } 9647 Parser.Lex(); 9648 } else { 9649 const MCExpr *AttrExpr; 9650 9651 TagLoc = Parser.getTok().getLoc(); 9652 if (Parser.parseExpression(AttrExpr)) 9653 return true; 9654 9655 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9656 if (check(!CE, TagLoc, "expected numeric constant")) 9657 return true; 9658 9659 Tag = CE->getValue(); 9660 } 9661 9662 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9663 return true; 9664 9665 StringRef StringValue = ""; 9666 bool IsStringValue = false; 9667 9668 int64_t IntegerValue = 0; 9669 bool IsIntegerValue = false; 9670 9671 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9672 IsStringValue = true; 9673 else if (Tag == ARMBuildAttrs::compatibility) { 9674 IsStringValue = true; 9675 IsIntegerValue = true; 9676 } else if (Tag < 32 || Tag % 2 == 0) 9677 IsIntegerValue = true; 9678 else if (Tag % 2 == 1) 9679 IsStringValue = true; 9680 else 9681 llvm_unreachable("invalid tag type"); 9682 9683 if (IsIntegerValue) { 9684 const MCExpr *ValueExpr; 9685 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9686 if (Parser.parseExpression(ValueExpr)) 9687 return true; 9688 9689 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9690 if (!CE) 9691 return Error(ValueExprLoc, "expected numeric constant"); 9692 IntegerValue = CE->getValue(); 9693 } 9694 9695 if (Tag == ARMBuildAttrs::compatibility) { 9696 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9697 return true; 9698 } 9699 9700 if (IsStringValue) { 9701 if (Parser.getTok().isNot(AsmToken::String)) 9702 return Error(Parser.getTok().getLoc(), "bad string constant"); 9703 9704 StringValue = Parser.getTok().getStringContents(); 9705 Parser.Lex(); 9706 } 9707 9708 if (Parser.parseToken(AsmToken::EndOfStatement, 9709 "unexpected token in '.eabi_attribute' directive")) 9710 return true; 9711 9712 if (IsIntegerValue && IsStringValue) { 9713 assert(Tag == ARMBuildAttrs::compatibility); 9714 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9715 } else if (IsIntegerValue) 9716 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9717 else if (IsStringValue) 9718 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9719 return false; 9720 } 9721 9722 /// parseDirectiveCPU 9723 /// ::= .cpu str 9724 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9725 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9726 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9727 9728 // FIXME: This is using table-gen data, but should be moved to 9729 // ARMTargetParser once that is table-gen'd. 9730 if (!getSTI().isCPUStringValid(CPU)) 9731 return Error(L, "Unknown CPU name"); 9732 9733 bool WasThumb = isThumb(); 9734 MCSubtargetInfo &STI = copySTI(); 9735 STI.setDefaultFeatures(CPU, ""); 9736 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9737 FixModeAfterArchChange(WasThumb, L); 9738 9739 return false; 9740 } 9741 9742 /// parseDirectiveFPU 9743 /// ::= .fpu str 9744 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9745 SMLoc FPUNameLoc = getTok().getLoc(); 9746 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9747 9748 unsigned ID = ARM::parseFPU(FPU); 9749 std::vector<StringRef> Features; 9750 if (!ARM::getFPUFeatures(ID, Features)) 9751 return Error(FPUNameLoc, "Unknown FPU name"); 9752 9753 MCSubtargetInfo &STI = copySTI(); 9754 for (auto Feature : Features) 9755 STI.ApplyFeatureFlag(Feature); 9756 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9757 9758 getTargetStreamer().emitFPU(ID); 9759 return false; 9760 } 9761 9762 /// parseDirectiveFnStart 9763 /// ::= .fnstart 9764 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9765 if (parseToken(AsmToken::EndOfStatement, 9766 "unexpected token in '.fnstart' directive")) 9767 return true; 9768 9769 if (UC.hasFnStart()) { 9770 Error(L, ".fnstart starts before the end of previous one"); 9771 UC.emitFnStartLocNotes(); 9772 return true; 9773 } 9774 9775 // Reset the unwind directives parser state 9776 UC.reset(); 9777 9778 getTargetStreamer().emitFnStart(); 9779 9780 UC.recordFnStart(L); 9781 return false; 9782 } 9783 9784 /// parseDirectiveFnEnd 9785 /// ::= .fnend 9786 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9787 if (parseToken(AsmToken::EndOfStatement, 9788 "unexpected token in '.fnend' directive")) 9789 return true; 9790 // Check the ordering of unwind directives 9791 if (!UC.hasFnStart()) 9792 return Error(L, ".fnstart must precede .fnend directive"); 9793 9794 // Reset the unwind directives parser state 9795 getTargetStreamer().emitFnEnd(); 9796 9797 UC.reset(); 9798 return false; 9799 } 9800 9801 /// parseDirectiveCantUnwind 9802 /// ::= .cantunwind 9803 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9804 if (parseToken(AsmToken::EndOfStatement, 9805 "unexpected token in '.cantunwind' directive")) 9806 return true; 9807 9808 UC.recordCantUnwind(L); 9809 // Check the ordering of unwind directives 9810 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9811 return true; 9812 9813 if (UC.hasHandlerData()) { 9814 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9815 UC.emitHandlerDataLocNotes(); 9816 return true; 9817 } 9818 if (UC.hasPersonality()) { 9819 Error(L, ".cantunwind can't be used with .personality directive"); 9820 UC.emitPersonalityLocNotes(); 9821 return true; 9822 } 9823 9824 getTargetStreamer().emitCantUnwind(); 9825 return false; 9826 } 9827 9828 /// parseDirectivePersonality 9829 /// ::= .personality name 9830 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9831 MCAsmParser &Parser = getParser(); 9832 bool HasExistingPersonality = UC.hasPersonality(); 9833 9834 // Parse the name of the personality routine 9835 if (Parser.getTok().isNot(AsmToken::Identifier)) 9836 return Error(L, "unexpected input in .personality directive."); 9837 StringRef Name(Parser.getTok().getIdentifier()); 9838 Parser.Lex(); 9839 9840 if (parseToken(AsmToken::EndOfStatement, 9841 "unexpected token in '.personality' directive")) 9842 return true; 9843 9844 UC.recordPersonality(L); 9845 9846 // Check the ordering of unwind directives 9847 if (!UC.hasFnStart()) 9848 return Error(L, ".fnstart must precede .personality directive"); 9849 if (UC.cantUnwind()) { 9850 Error(L, ".personality can't be used with .cantunwind directive"); 9851 UC.emitCantUnwindLocNotes(); 9852 return true; 9853 } 9854 if (UC.hasHandlerData()) { 9855 Error(L, ".personality must precede .handlerdata directive"); 9856 UC.emitHandlerDataLocNotes(); 9857 return true; 9858 } 9859 if (HasExistingPersonality) { 9860 Error(L, "multiple personality directives"); 9861 UC.emitPersonalityLocNotes(); 9862 return true; 9863 } 9864 9865 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9866 getTargetStreamer().emitPersonality(PR); 9867 return false; 9868 } 9869 9870 /// parseDirectiveHandlerData 9871 /// ::= .handlerdata 9872 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9873 if (parseToken(AsmToken::EndOfStatement, 9874 "unexpected token in '.handlerdata' directive")) 9875 return true; 9876 9877 UC.recordHandlerData(L); 9878 // Check the ordering of unwind directives 9879 if (!UC.hasFnStart()) 9880 return Error(L, ".fnstart must precede .personality directive"); 9881 if (UC.cantUnwind()) { 9882 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9883 UC.emitCantUnwindLocNotes(); 9884 return true; 9885 } 9886 9887 getTargetStreamer().emitHandlerData(); 9888 return false; 9889 } 9890 9891 /// parseDirectiveSetFP 9892 /// ::= .setfp fpreg, spreg [, offset] 9893 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9894 MCAsmParser &Parser = getParser(); 9895 // Check the ordering of unwind directives 9896 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9897 check(UC.hasHandlerData(), L, 9898 ".setfp must precede .handlerdata directive")) 9899 return true; 9900 9901 // Parse fpreg 9902 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9903 int FPReg = tryParseRegister(); 9904 9905 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9906 Parser.parseToken(AsmToken::Comma, "comma expected")) 9907 return true; 9908 9909 // Parse spreg 9910 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9911 int SPReg = tryParseRegister(); 9912 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9913 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9914 "register should be either $sp or the latest fp register")) 9915 return true; 9916 9917 // Update the frame pointer register 9918 UC.saveFPReg(FPReg); 9919 9920 // Parse offset 9921 int64_t Offset = 0; 9922 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9923 if (Parser.getTok().isNot(AsmToken::Hash) && 9924 Parser.getTok().isNot(AsmToken::Dollar)) 9925 return Error(Parser.getTok().getLoc(), "'#' expected"); 9926 Parser.Lex(); // skip hash token. 9927 9928 const MCExpr *OffsetExpr; 9929 SMLoc ExLoc = Parser.getTok().getLoc(); 9930 SMLoc EndLoc; 9931 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9932 return Error(ExLoc, "malformed setfp offset"); 9933 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9934 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9935 return true; 9936 Offset = CE->getValue(); 9937 } 9938 9939 if (Parser.parseToken(AsmToken::EndOfStatement)) 9940 return true; 9941 9942 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9943 static_cast<unsigned>(SPReg), Offset); 9944 return false; 9945 } 9946 9947 /// parseDirective 9948 /// ::= .pad offset 9949 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9950 MCAsmParser &Parser = getParser(); 9951 // Check the ordering of unwind directives 9952 if (!UC.hasFnStart()) 9953 return Error(L, ".fnstart must precede .pad directive"); 9954 if (UC.hasHandlerData()) 9955 return Error(L, ".pad must precede .handlerdata directive"); 9956 9957 // Parse the offset 9958 if (Parser.getTok().isNot(AsmToken::Hash) && 9959 Parser.getTok().isNot(AsmToken::Dollar)) 9960 return Error(Parser.getTok().getLoc(), "'#' expected"); 9961 Parser.Lex(); // skip hash token. 9962 9963 const MCExpr *OffsetExpr; 9964 SMLoc ExLoc = Parser.getTok().getLoc(); 9965 SMLoc EndLoc; 9966 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9967 return Error(ExLoc, "malformed pad offset"); 9968 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9969 if (!CE) 9970 return Error(ExLoc, "pad offset must be an immediate"); 9971 9972 if (parseToken(AsmToken::EndOfStatement, 9973 "unexpected token in '.pad' directive")) 9974 return true; 9975 9976 getTargetStreamer().emitPad(CE->getValue()); 9977 return false; 9978 } 9979 9980 /// parseDirectiveRegSave 9981 /// ::= .save { registers } 9982 /// ::= .vsave { registers } 9983 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9984 // Check the ordering of unwind directives 9985 if (!UC.hasFnStart()) 9986 return Error(L, ".fnstart must precede .save or .vsave directives"); 9987 if (UC.hasHandlerData()) 9988 return Error(L, ".save or .vsave must precede .handlerdata directive"); 9989 9990 // RAII object to make sure parsed operands are deleted. 9991 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9992 9993 // Parse the register list 9994 if (parseRegisterList(Operands) || 9995 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9996 return true; 9997 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9998 if (!IsVector && !Op.isRegList()) 9999 return Error(L, ".save expects GPR registers"); 10000 if (IsVector && !Op.isDPRRegList()) 10001 return Error(L, ".vsave expects DPR registers"); 10002 10003 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 10004 return false; 10005 } 10006 10007 /// parseDirectiveInst 10008 /// ::= .inst opcode [, ...] 10009 /// ::= .inst.n opcode [, ...] 10010 /// ::= .inst.w opcode [, ...] 10011 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 10012 int Width = 4; 10013 10014 if (isThumb()) { 10015 switch (Suffix) { 10016 case 'n': 10017 Width = 2; 10018 break; 10019 case 'w': 10020 break; 10021 default: 10022 Width = 0; 10023 break; 10024 } 10025 } else { 10026 if (Suffix) 10027 return Error(Loc, "width suffixes are invalid in ARM mode"); 10028 } 10029 10030 auto parseOne = [&]() -> bool { 10031 const MCExpr *Expr; 10032 if (getParser().parseExpression(Expr)) 10033 return true; 10034 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 10035 if (!Value) { 10036 return Error(Loc, "expected constant expression"); 10037 } 10038 10039 char CurSuffix = Suffix; 10040 switch (Width) { 10041 case 2: 10042 if (Value->getValue() > 0xffff) 10043 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 10044 break; 10045 case 4: 10046 if (Value->getValue() > 0xffffffff) 10047 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 10048 " operand is too big"); 10049 break; 10050 case 0: 10051 // Thumb mode, no width indicated. Guess from the opcode, if possible. 10052 if (Value->getValue() < 0xe800) 10053 CurSuffix = 'n'; 10054 else if (Value->getValue() >= 0xe8000000) 10055 CurSuffix = 'w'; 10056 else 10057 return Error(Loc, "cannot determine Thumb instruction size, " 10058 "use inst.n/inst.w instead"); 10059 break; 10060 default: 10061 llvm_unreachable("only supported widths are 2 and 4"); 10062 } 10063 10064 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 10065 return false; 10066 }; 10067 10068 if (parseOptionalToken(AsmToken::EndOfStatement)) 10069 return Error(Loc, "expected expression following directive"); 10070 if (parseMany(parseOne)) 10071 return true; 10072 return false; 10073 } 10074 10075 /// parseDirectiveLtorg 10076 /// ::= .ltorg | .pool 10077 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 10078 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10079 return true; 10080 getTargetStreamer().emitCurrentConstantPool(); 10081 return false; 10082 } 10083 10084 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 10085 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10086 10087 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10088 return true; 10089 10090 if (!Section) { 10091 getStreamer().InitSections(false); 10092 Section = getStreamer().getCurrentSectionOnly(); 10093 } 10094 10095 assert(Section && "must have section to emit alignment"); 10096 if (Section->UseCodeAlign()) 10097 getStreamer().EmitCodeAlignment(2); 10098 else 10099 getStreamer().EmitValueToAlignment(2); 10100 10101 return false; 10102 } 10103 10104 /// parseDirectivePersonalityIndex 10105 /// ::= .personalityindex index 10106 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 10107 MCAsmParser &Parser = getParser(); 10108 bool HasExistingPersonality = UC.hasPersonality(); 10109 10110 const MCExpr *IndexExpression; 10111 SMLoc IndexLoc = Parser.getTok().getLoc(); 10112 if (Parser.parseExpression(IndexExpression) || 10113 parseToken(AsmToken::EndOfStatement, 10114 "unexpected token in '.personalityindex' directive")) { 10115 return true; 10116 } 10117 10118 UC.recordPersonalityIndex(L); 10119 10120 if (!UC.hasFnStart()) { 10121 return Error(L, ".fnstart must precede .personalityindex directive"); 10122 } 10123 if (UC.cantUnwind()) { 10124 Error(L, ".personalityindex cannot be used with .cantunwind"); 10125 UC.emitCantUnwindLocNotes(); 10126 return true; 10127 } 10128 if (UC.hasHandlerData()) { 10129 Error(L, ".personalityindex must precede .handlerdata directive"); 10130 UC.emitHandlerDataLocNotes(); 10131 return true; 10132 } 10133 if (HasExistingPersonality) { 10134 Error(L, "multiple personality directives"); 10135 UC.emitPersonalityLocNotes(); 10136 return true; 10137 } 10138 10139 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 10140 if (!CE) 10141 return Error(IndexLoc, "index must be a constant number"); 10142 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 10143 return Error(IndexLoc, 10144 "personality routine index should be in range [0-3]"); 10145 10146 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 10147 return false; 10148 } 10149 10150 /// parseDirectiveUnwindRaw 10151 /// ::= .unwind_raw offset, opcode [, opcode...] 10152 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 10153 MCAsmParser &Parser = getParser(); 10154 int64_t StackOffset; 10155 const MCExpr *OffsetExpr; 10156 SMLoc OffsetLoc = getLexer().getLoc(); 10157 10158 if (!UC.hasFnStart()) 10159 return Error(L, ".fnstart must precede .unwind_raw directives"); 10160 if (getParser().parseExpression(OffsetExpr)) 10161 return Error(OffsetLoc, "expected expression"); 10162 10163 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10164 if (!CE) 10165 return Error(OffsetLoc, "offset must be a constant"); 10166 10167 StackOffset = CE->getValue(); 10168 10169 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 10170 return true; 10171 10172 SmallVector<uint8_t, 16> Opcodes; 10173 10174 auto parseOne = [&]() -> bool { 10175 const MCExpr *OE; 10176 SMLoc OpcodeLoc = getLexer().getLoc(); 10177 if (check(getLexer().is(AsmToken::EndOfStatement) || 10178 Parser.parseExpression(OE), 10179 OpcodeLoc, "expected opcode expression")) 10180 return true; 10181 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 10182 if (!OC) 10183 return Error(OpcodeLoc, "opcode value must be a constant"); 10184 const int64_t Opcode = OC->getValue(); 10185 if (Opcode & ~0xff) 10186 return Error(OpcodeLoc, "invalid opcode"); 10187 Opcodes.push_back(uint8_t(Opcode)); 10188 return false; 10189 }; 10190 10191 // Must have at least 1 element 10192 SMLoc OpcodeLoc = getLexer().getLoc(); 10193 if (parseOptionalToken(AsmToken::EndOfStatement)) 10194 return Error(OpcodeLoc, "expected opcode expression"); 10195 if (parseMany(parseOne)) 10196 return true; 10197 10198 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 10199 return false; 10200 } 10201 10202 /// parseDirectiveTLSDescSeq 10203 /// ::= .tlsdescseq tls-variable 10204 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 10205 MCAsmParser &Parser = getParser(); 10206 10207 if (getLexer().isNot(AsmToken::Identifier)) 10208 return TokError("expected variable after '.tlsdescseq' directive"); 10209 10210 const MCSymbolRefExpr *SRE = 10211 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10212 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10213 Lex(); 10214 10215 if (parseToken(AsmToken::EndOfStatement, 10216 "unexpected token in '.tlsdescseq' directive")) 10217 return true; 10218 10219 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10220 return false; 10221 } 10222 10223 /// parseDirectiveMovSP 10224 /// ::= .movsp reg [, #offset] 10225 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10226 MCAsmParser &Parser = getParser(); 10227 if (!UC.hasFnStart()) 10228 return Error(L, ".fnstart must precede .movsp directives"); 10229 if (UC.getFPReg() != ARM::SP) 10230 return Error(L, "unexpected .movsp directive"); 10231 10232 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10233 int SPReg = tryParseRegister(); 10234 if (SPReg == -1) 10235 return Error(SPRegLoc, "register expected"); 10236 if (SPReg == ARM::SP || SPReg == ARM::PC) 10237 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10238 10239 int64_t Offset = 0; 10240 if (Parser.parseOptionalToken(AsmToken::Comma)) { 10241 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 10242 return true; 10243 10244 const MCExpr *OffsetExpr; 10245 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10246 10247 if (Parser.parseExpression(OffsetExpr)) 10248 return Error(OffsetLoc, "malformed offset expression"); 10249 10250 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10251 if (!CE) 10252 return Error(OffsetLoc, "offset must be an immediate constant"); 10253 10254 Offset = CE->getValue(); 10255 } 10256 10257 if (parseToken(AsmToken::EndOfStatement, 10258 "unexpected token in '.movsp' directive")) 10259 return true; 10260 10261 getTargetStreamer().emitMovSP(SPReg, Offset); 10262 UC.saveFPReg(SPReg); 10263 10264 return false; 10265 } 10266 10267 /// parseDirectiveObjectArch 10268 /// ::= .object_arch name 10269 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10270 MCAsmParser &Parser = getParser(); 10271 if (getLexer().isNot(AsmToken::Identifier)) 10272 return Error(getLexer().getLoc(), "unexpected token"); 10273 10274 StringRef Arch = Parser.getTok().getString(); 10275 SMLoc ArchLoc = Parser.getTok().getLoc(); 10276 Lex(); 10277 10278 ARM::ArchKind ID = ARM::parseArch(Arch); 10279 10280 if (ID == ARM::ArchKind::INVALID) 10281 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10282 if (parseToken(AsmToken::EndOfStatement)) 10283 return true; 10284 10285 getTargetStreamer().emitObjectArch(ID); 10286 return false; 10287 } 10288 10289 /// parseDirectiveAlign 10290 /// ::= .align 10291 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10292 // NOTE: if this is not the end of the statement, fall back to the target 10293 // agnostic handling for this directive which will correctly handle this. 10294 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10295 // '.align' is target specifically handled to mean 2**2 byte alignment. 10296 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10297 assert(Section && "must have section to emit alignment"); 10298 if (Section->UseCodeAlign()) 10299 getStreamer().EmitCodeAlignment(4, 0); 10300 else 10301 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10302 return false; 10303 } 10304 return true; 10305 } 10306 10307 /// parseDirectiveThumbSet 10308 /// ::= .thumb_set name, value 10309 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10310 MCAsmParser &Parser = getParser(); 10311 10312 StringRef Name; 10313 if (check(Parser.parseIdentifier(Name), 10314 "expected identifier after '.thumb_set'") || 10315 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10316 return true; 10317 10318 MCSymbol *Sym; 10319 const MCExpr *Value; 10320 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10321 Parser, Sym, Value)) 10322 return true; 10323 10324 getTargetStreamer().emitThumbSet(Sym, Value); 10325 return false; 10326 } 10327 10328 /// Force static initialization. 10329 extern "C" void LLVMInitializeARMAsmParser() { 10330 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10331 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10332 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10333 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10334 } 10335 10336 #define GET_REGISTER_MATCHER 10337 #define GET_SUBTARGET_FEATURE_NAME 10338 #define GET_MATCHER_IMPLEMENTATION 10339 #define GET_MNEMONIC_SPELL_CHECKER 10340 #include "ARMGenAsmMatcher.inc" 10341 10342 // Some diagnostics need to vary with subtarget features, so they are handled 10343 // here. For example, the DPR class has either 16 or 32 registers, depending 10344 // on the FPU available. 10345 const char * 10346 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 10347 switch (MatchError) { 10348 // rGPR contains sp starting with ARMv8. 10349 case Match_rGPR: 10350 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 10351 : "operand must be a register in range [r0, r12] or r14"; 10352 // DPR contains 16 registers for some FPUs, and 32 for others. 10353 case Match_DPR: 10354 return hasD16() ? "operand must be a register in range [d0, d15]" 10355 : "operand must be a register in range [d0, d31]"; 10356 case Match_DPR_RegList: 10357 return hasD16() ? "operand must be a list of registers in range [d0, d15]" 10358 : "operand must be a list of registers in range [d0, d31]"; 10359 10360 // For all other diags, use the static string from tablegen. 10361 default: 10362 return getMatchKindDiag(MatchError); 10363 } 10364 } 10365 10366 // Process the list of near-misses, throwing away ones we don't want to report 10367 // to the user, and converting the rest to a source location and string that 10368 // should be reported. 10369 void 10370 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 10371 SmallVectorImpl<NearMissMessage> &NearMissesOut, 10372 SMLoc IDLoc, OperandVector &Operands) { 10373 // TODO: If operand didn't match, sub in a dummy one and run target 10374 // predicate, so that we can avoid reporting near-misses that are invalid? 10375 // TODO: Many operand types dont have SuperClasses set, so we report 10376 // redundant ones. 10377 // TODO: Some operands are superclasses of registers (e.g. 10378 // MCK_RegShiftedImm), we don't have any way to represent that currently. 10379 // TODO: This is not all ARM-specific, can some of it be factored out? 10380 10381 // Record some information about near-misses that we have already seen, so 10382 // that we can avoid reporting redundant ones. For example, if there are 10383 // variants of an instruction that take 8- and 16-bit immediates, we want 10384 // to only report the widest one. 10385 std::multimap<unsigned, unsigned> OperandMissesSeen; 10386 SmallSet<uint64_t, 4> FeatureMissesSeen; 10387 bool ReportedTooFewOperands = false; 10388 10389 // Process the near-misses in reverse order, so that we see more general ones 10390 // first, and so can avoid emitting more specific ones. 10391 for (NearMissInfo &I : reverse(NearMissesIn)) { 10392 switch (I.getKind()) { 10393 case NearMissInfo::NearMissOperand: { 10394 SMLoc OperandLoc = 10395 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 10396 const char *OperandDiag = 10397 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 10398 10399 // If we have already emitted a message for a superclass, don't also report 10400 // the sub-class. We consider all operand classes that we don't have a 10401 // specialised diagnostic for to be equal for the propose of this check, 10402 // so that we don't report the generic error multiple times on the same 10403 // operand. 10404 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 10405 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 10406 if (std::any_of(PrevReports.first, PrevReports.second, 10407 [DupCheckMatchClass]( 10408 const std::pair<unsigned, unsigned> Pair) { 10409 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 10410 return Pair.second == DupCheckMatchClass; 10411 else 10412 return isSubclass((MatchClassKind)DupCheckMatchClass, 10413 (MatchClassKind)Pair.second); 10414 })) 10415 break; 10416 OperandMissesSeen.insert( 10417 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 10418 10419 NearMissMessage Message; 10420 Message.Loc = OperandLoc; 10421 if (OperandDiag) { 10422 Message.Message = OperandDiag; 10423 } else if (I.getOperandClass() == InvalidMatchClass) { 10424 Message.Message = "too many operands for instruction"; 10425 } else { 10426 Message.Message = "invalid operand for instruction"; 10427 LLVM_DEBUG( 10428 dbgs() << "Missing diagnostic string for operand class " 10429 << getMatchClassName((MatchClassKind)I.getOperandClass()) 10430 << I.getOperandClass() << ", error " << I.getOperandError() 10431 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 10432 } 10433 NearMissesOut.emplace_back(Message); 10434 break; 10435 } 10436 case NearMissInfo::NearMissFeature: { 10437 uint64_t MissingFeatures = I.getFeatures(); 10438 // Don't report the same set of features twice. 10439 if (FeatureMissesSeen.count(MissingFeatures)) 10440 break; 10441 FeatureMissesSeen.insert(MissingFeatures); 10442 10443 // Special case: don't report a feature set which includes arm-mode for 10444 // targets that don't have ARM mode. 10445 if ((MissingFeatures & Feature_IsARM) && !hasARM()) 10446 break; 10447 // Don't report any near-misses that both require switching instruction 10448 // set, and adding other subtarget features. 10449 if (isThumb() && (MissingFeatures & Feature_IsARM) && 10450 (MissingFeatures & ~Feature_IsARM)) 10451 break; 10452 if (!isThumb() && (MissingFeatures & Feature_IsThumb) && 10453 (MissingFeatures & ~Feature_IsThumb)) 10454 break; 10455 if (!isThumb() && (MissingFeatures & Feature_IsThumb2) && 10456 (MissingFeatures & ~(Feature_IsThumb2 | Feature_IsThumb))) 10457 break; 10458 if (isMClass() && (MissingFeatures & Feature_HasNEON)) 10459 break; 10460 10461 NearMissMessage Message; 10462 Message.Loc = IDLoc; 10463 raw_svector_ostream OS(Message.Message); 10464 10465 OS << "instruction requires:"; 10466 uint64_t Mask = 1; 10467 for (unsigned MaskPos = 0; MaskPos < (sizeof(MissingFeatures) * 8 - 1); 10468 ++MaskPos) { 10469 if (MissingFeatures & Mask) { 10470 OS << " " << getSubtargetFeatureName(MissingFeatures & Mask); 10471 } 10472 Mask <<= 1; 10473 } 10474 NearMissesOut.emplace_back(Message); 10475 10476 break; 10477 } 10478 case NearMissInfo::NearMissPredicate: { 10479 NearMissMessage Message; 10480 Message.Loc = IDLoc; 10481 switch (I.getPredicateError()) { 10482 case Match_RequiresNotITBlock: 10483 Message.Message = "flag setting instruction only valid outside IT block"; 10484 break; 10485 case Match_RequiresITBlock: 10486 Message.Message = "instruction only valid inside IT block"; 10487 break; 10488 case Match_RequiresV6: 10489 Message.Message = "instruction variant requires ARMv6 or later"; 10490 break; 10491 case Match_RequiresThumb2: 10492 Message.Message = "instruction variant requires Thumb2"; 10493 break; 10494 case Match_RequiresV8: 10495 Message.Message = "instruction variant requires ARMv8 or later"; 10496 break; 10497 case Match_RequiresFlagSetting: 10498 Message.Message = "no flag-preserving variant of this instruction available"; 10499 break; 10500 case Match_InvalidOperand: 10501 Message.Message = "invalid operand for instruction"; 10502 break; 10503 default: 10504 llvm_unreachable("Unhandled target predicate error"); 10505 break; 10506 } 10507 NearMissesOut.emplace_back(Message); 10508 break; 10509 } 10510 case NearMissInfo::NearMissTooFewOperands: { 10511 if (!ReportedTooFewOperands) { 10512 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 10513 NearMissesOut.emplace_back(NearMissMessage{ 10514 EndLoc, StringRef("too few operands for instruction")}); 10515 ReportedTooFewOperands = true; 10516 } 10517 break; 10518 } 10519 case NearMissInfo::NoNearMiss: 10520 // This should never leave the matcher. 10521 llvm_unreachable("not a near-miss"); 10522 break; 10523 } 10524 } 10525 } 10526 10527 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 10528 SMLoc IDLoc, OperandVector &Operands) { 10529 SmallVector<NearMissMessage, 4> Messages; 10530 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 10531 10532 if (Messages.size() == 0) { 10533 // No near-misses were found, so the best we can do is "invalid 10534 // instruction". 10535 Error(IDLoc, "invalid instruction"); 10536 } else if (Messages.size() == 1) { 10537 // One near miss was found, report it as the sole error. 10538 Error(Messages[0].Loc, Messages[0].Message); 10539 } else { 10540 // More than one near miss, so report a generic "invalid instruction" 10541 // error, followed by notes for each of the near-misses. 10542 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 10543 for (auto &M : Messages) { 10544 Note(M.Loc, M.Message); 10545 } 10546 } 10547 } 10548 10549 // FIXME: This structure should be moved inside ARMTargetParser 10550 // when we start to table-generate them, and we can use the ARM 10551 // flags below, that were generated by table-gen. 10552 static const struct { 10553 const unsigned Kind; 10554 const uint64_t ArchCheck; 10555 const FeatureBitset Features; 10556 } Extensions[] = { 10557 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10558 { ARM::AEK_CRYPTO, Feature_HasV8, 10559 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10560 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10561 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10562 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 10563 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10564 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10565 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10566 // FIXME: Only available in A-class, isel not predicated 10567 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10568 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10569 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10570 // FIXME: Unsupported extensions. 10571 { ARM::AEK_OS, Feature_None, {} }, 10572 { ARM::AEK_IWMMXT, Feature_None, {} }, 10573 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10574 { ARM::AEK_MAVERICK, Feature_None, {} }, 10575 { ARM::AEK_XSCALE, Feature_None, {} }, 10576 }; 10577 10578 /// parseDirectiveArchExtension 10579 /// ::= .arch_extension [no]feature 10580 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10581 MCAsmParser &Parser = getParser(); 10582 10583 if (getLexer().isNot(AsmToken::Identifier)) 10584 return Error(getLexer().getLoc(), "expected architecture extension name"); 10585 10586 StringRef Name = Parser.getTok().getString(); 10587 SMLoc ExtLoc = Parser.getTok().getLoc(); 10588 Lex(); 10589 10590 if (parseToken(AsmToken::EndOfStatement, 10591 "unexpected token in '.arch_extension' directive")) 10592 return true; 10593 10594 bool EnableFeature = true; 10595 if (Name.startswith_lower("no")) { 10596 EnableFeature = false; 10597 Name = Name.substr(2); 10598 } 10599 unsigned FeatureKind = ARM::parseArchExt(Name); 10600 if (FeatureKind == ARM::AEK_INVALID) 10601 return Error(ExtLoc, "unknown architectural extension: " + Name); 10602 10603 for (const auto &Extension : Extensions) { 10604 if (Extension.Kind != FeatureKind) 10605 continue; 10606 10607 if (Extension.Features.none()) 10608 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10609 10610 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10611 return Error(ExtLoc, "architectural extension '" + Name + 10612 "' is not " 10613 "allowed for the current base architecture"); 10614 10615 MCSubtargetInfo &STI = copySTI(); 10616 FeatureBitset ToggleFeatures = EnableFeature 10617 ? (~STI.getFeatureBits() & Extension.Features) 10618 : ( STI.getFeatureBits() & Extension.Features); 10619 10620 uint64_t Features = 10621 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10622 setAvailableFeatures(Features); 10623 return false; 10624 } 10625 10626 return Error(ExtLoc, "unknown architectural extension: " + Name); 10627 } 10628 10629 // Define this matcher function after the auto-generated include so we 10630 // have the match class enum definitions. 10631 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10632 unsigned Kind) { 10633 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10634 // If the kind is a token for a literal immediate, check if our asm 10635 // operand matches. This is for InstAliases which have a fixed-value 10636 // immediate in the syntax. 10637 switch (Kind) { 10638 default: break; 10639 case MCK__35_0: 10640 if (Op.isImm()) 10641 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10642 if (CE->getValue() == 0) 10643 return Match_Success; 10644 break; 10645 case MCK_ModImm: 10646 if (Op.isImm()) { 10647 const MCExpr *SOExpr = Op.getImm(); 10648 int64_t Value; 10649 if (!SOExpr->evaluateAsAbsolute(Value)) 10650 return Match_Success; 10651 assert((Value >= std::numeric_limits<int32_t>::min() && 10652 Value <= std::numeric_limits<uint32_t>::max()) && 10653 "expression value must be representable in 32 bits"); 10654 } 10655 break; 10656 case MCK_rGPR: 10657 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10658 return Match_Success; 10659 return Match_rGPR; 10660 case MCK_GPRPair: 10661 if (Op.isReg() && 10662 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10663 return Match_Success; 10664 break; 10665 } 10666 return Match_InvalidOperand; 10667 } 10668