1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMMCExpr.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/BinaryFormat/COFF.h" 22 #include "llvm/BinaryFormat/ELF.h" 23 #include "llvm/MC/MCAsmInfo.h" 24 #include "llvm/MC/MCAssembler.h" 25 #include "llvm/MC/MCContext.h" 26 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 27 #include "llvm/MC/MCELFStreamer.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCInstrInfo.h" 32 #include "llvm/MC/MCObjectFileInfo.h" 33 #include "llvm/MC/MCParser/MCAsmLexer.h" 34 #include "llvm/MC/MCParser/MCAsmParser.h" 35 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 36 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 37 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 38 #include "llvm/MC/MCRegisterInfo.h" 39 #include "llvm/MC/MCSection.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/MC/MCSubtargetInfo.h" 42 #include "llvm/MC/MCSymbol.h" 43 #include "llvm/Support/ARMBuildAttributes.h" 44 #include "llvm/Support/ARMEHABI.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/SourceMgr.h" 49 #include "llvm/Support/TargetParser.h" 50 #include "llvm/Support/TargetRegistry.h" 51 #include "llvm/Support/raw_ostream.h" 52 53 using namespace llvm; 54 55 namespace { 56 57 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 58 59 static cl::opt<ImplicitItModeTy> ImplicitItMode( 60 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 61 cl::desc("Allow conditional instructions outdside of an IT block"), 62 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 63 "Accept in both ISAs, emit implicit ITs in Thumb"), 64 clEnumValN(ImplicitItModeTy::Never, "never", 65 "Warn in ARM, reject in Thumb"), 66 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 67 "Accept in ARM, reject in Thumb"), 68 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 69 "Warn in ARM, emit implicit ITs in Thumb"))); 70 71 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 72 cl::init(false)); 73 74 class ARMOperand; 75 76 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 77 78 class UnwindContext { 79 MCAsmParser &Parser; 80 81 typedef SmallVector<SMLoc, 4> Locs; 82 83 Locs FnStartLocs; 84 Locs CantUnwindLocs; 85 Locs PersonalityLocs; 86 Locs PersonalityIndexLocs; 87 Locs HandlerDataLocs; 88 int FPReg; 89 90 public: 91 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 92 93 bool hasFnStart() const { return !FnStartLocs.empty(); } 94 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 95 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 96 bool hasPersonality() const { 97 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 98 } 99 100 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 101 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 102 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 103 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 104 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 105 106 void saveFPReg(int Reg) { FPReg = Reg; } 107 int getFPReg() const { return FPReg; } 108 109 void emitFnStartLocNotes() const { 110 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 111 FI != FE; ++FI) 112 Parser.Note(*FI, ".fnstart was specified here"); 113 } 114 void emitCantUnwindLocNotes() const { 115 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 116 UE = CantUnwindLocs.end(); UI != UE; ++UI) 117 Parser.Note(*UI, ".cantunwind was specified here"); 118 } 119 void emitHandlerDataLocNotes() const { 120 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 121 HE = HandlerDataLocs.end(); HI != HE; ++HI) 122 Parser.Note(*HI, ".handlerdata was specified here"); 123 } 124 void emitPersonalityLocNotes() const { 125 for (Locs::const_iterator PI = PersonalityLocs.begin(), 126 PE = PersonalityLocs.end(), 127 PII = PersonalityIndexLocs.begin(), 128 PIE = PersonalityIndexLocs.end(); 129 PI != PE || PII != PIE;) { 130 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 131 Parser.Note(*PI++, ".personality was specified here"); 132 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 133 Parser.Note(*PII++, ".personalityindex was specified here"); 134 else 135 llvm_unreachable(".personality and .personalityindex cannot be " 136 "at the same location"); 137 } 138 } 139 140 void reset() { 141 FnStartLocs = Locs(); 142 CantUnwindLocs = Locs(); 143 PersonalityLocs = Locs(); 144 HandlerDataLocs = Locs(); 145 PersonalityIndexLocs = Locs(); 146 FPReg = ARM::SP; 147 } 148 }; 149 150 class ARMAsmParser : public MCTargetAsmParser { 151 const MCInstrInfo &MII; 152 const MCRegisterInfo *MRI; 153 UnwindContext UC; 154 155 ARMTargetStreamer &getTargetStreamer() { 156 assert(getParser().getStreamer().getTargetStreamer() && 157 "do not have a target streamer"); 158 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 159 return static_cast<ARMTargetStreamer &>(TS); 160 } 161 162 // Map of register aliases registers via the .req directive. 163 StringMap<unsigned> RegisterReqs; 164 165 bool NextSymbolIsThumb; 166 167 bool useImplicitITThumb() const { 168 return ImplicitItMode == ImplicitItModeTy::Always || 169 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 170 } 171 172 bool useImplicitITARM() const { 173 return ImplicitItMode == ImplicitItModeTy::Always || 174 ImplicitItMode == ImplicitItModeTy::ARMOnly; 175 } 176 177 struct { 178 ARMCC::CondCodes Cond; // Condition for IT block. 179 unsigned Mask:4; // Condition mask for instructions. 180 // Starting at first 1 (from lsb). 181 // '1' condition as indicated in IT. 182 // '0' inverse of condition (else). 183 // Count of instructions in IT block is 184 // 4 - trailingzeroes(mask) 185 // Note that this does not have the same encoding 186 // as in the IT instruction, which also depends 187 // on the low bit of the condition code. 188 189 unsigned CurPosition; // Current position in parsing of IT 190 // block. In range [0,4], with 0 being the IT 191 // instruction itself. Initialized according to 192 // count of instructions in block. ~0U if no 193 // active IT block. 194 195 bool IsExplicit; // true - The IT instruction was present in the 196 // input, we should not modify it. 197 // false - The IT instruction was added 198 // implicitly, we can extend it if that 199 // would be legal. 200 } ITState; 201 202 llvm::SmallVector<MCInst, 4> PendingConditionalInsts; 203 204 void flushPendingInstructions(MCStreamer &Out) override { 205 if (!inImplicitITBlock()) { 206 assert(PendingConditionalInsts.size() == 0); 207 return; 208 } 209 210 // Emit the IT instruction 211 unsigned Mask = getITMaskEncoding(); 212 MCInst ITInst; 213 ITInst.setOpcode(ARM::t2IT); 214 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 215 ITInst.addOperand(MCOperand::createImm(Mask)); 216 Out.EmitInstruction(ITInst, getSTI()); 217 218 // Emit the conditonal instructions 219 assert(PendingConditionalInsts.size() <= 4); 220 for (const MCInst &Inst : PendingConditionalInsts) { 221 Out.EmitInstruction(Inst, getSTI()); 222 } 223 PendingConditionalInsts.clear(); 224 225 // Clear the IT state 226 ITState.Mask = 0; 227 ITState.CurPosition = ~0U; 228 } 229 230 bool inITBlock() { return ITState.CurPosition != ~0U; } 231 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 232 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 233 bool lastInITBlock() { 234 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 235 } 236 void forwardITPosition() { 237 if (!inITBlock()) return; 238 // Move to the next instruction in the IT block, if there is one. If not, 239 // mark the block as done, except for implicit IT blocks, which we leave 240 // open until we find an instruction that can't be added to it. 241 unsigned TZ = countTrailingZeros(ITState.Mask); 242 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 243 ITState.CurPosition = ~0U; // Done with the IT block after this. 244 } 245 246 // Rewind the state of the current IT block, removing the last slot from it. 247 void rewindImplicitITPosition() { 248 assert(inImplicitITBlock()); 249 assert(ITState.CurPosition > 1); 250 ITState.CurPosition--; 251 unsigned TZ = countTrailingZeros(ITState.Mask); 252 unsigned NewMask = 0; 253 NewMask |= ITState.Mask & (0xC << TZ); 254 NewMask |= 0x2 << TZ; 255 ITState.Mask = NewMask; 256 } 257 258 // Rewind the state of the current IT block, removing the last slot from it. 259 // If we were at the first slot, this closes the IT block. 260 void discardImplicitITBlock() { 261 assert(inImplicitITBlock()); 262 assert(ITState.CurPosition == 1); 263 ITState.CurPosition = ~0U; 264 return; 265 } 266 267 // Return the low-subreg of a given Q register. 268 unsigned getDRegFromQReg(unsigned QReg) const { 269 return MRI->getSubReg(QReg, ARM::dsub_0); 270 } 271 272 // Get the encoding of the IT mask, as it will appear in an IT instruction. 273 unsigned getITMaskEncoding() { 274 assert(inITBlock()); 275 unsigned Mask = ITState.Mask; 276 unsigned TZ = countTrailingZeros(Mask); 277 if ((ITState.Cond & 1) == 0) { 278 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 279 Mask ^= (0xE << TZ) & 0xF; 280 } 281 return Mask; 282 } 283 284 // Get the condition code corresponding to the current IT block slot. 285 ARMCC::CondCodes currentITCond() { 286 unsigned MaskBit; 287 if (ITState.CurPosition == 1) 288 MaskBit = 1; 289 else 290 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 291 292 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 293 } 294 295 // Invert the condition of the current IT block slot without changing any 296 // other slots in the same block. 297 void invertCurrentITCondition() { 298 if (ITState.CurPosition == 1) { 299 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 300 } else { 301 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 302 } 303 } 304 305 // Returns true if the current IT block is full (all 4 slots used). 306 bool isITBlockFull() { 307 return inITBlock() && (ITState.Mask & 1); 308 } 309 310 // Extend the current implicit IT block to have one more slot with the given 311 // condition code. 312 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 313 assert(inImplicitITBlock()); 314 assert(!isITBlockFull()); 315 assert(Cond == ITState.Cond || 316 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 317 unsigned TZ = countTrailingZeros(ITState.Mask); 318 unsigned NewMask = 0; 319 // Keep any existing condition bits. 320 NewMask |= ITState.Mask & (0xE << TZ); 321 // Insert the new condition bit. 322 NewMask |= (Cond == ITState.Cond) << TZ; 323 // Move the trailing 1 down one bit. 324 NewMask |= 1 << (TZ - 1); 325 ITState.Mask = NewMask; 326 } 327 328 // Create a new implicit IT block with a dummy condition code. 329 void startImplicitITBlock() { 330 assert(!inITBlock()); 331 ITState.Cond = ARMCC::AL; 332 ITState.Mask = 8; 333 ITState.CurPosition = 1; 334 ITState.IsExplicit = false; 335 return; 336 } 337 338 // Create a new explicit IT block with the given condition and mask. The mask 339 // should be in the parsed format, with a 1 implying 't', regardless of the 340 // low bit of the condition. 341 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 342 assert(!inITBlock()); 343 ITState.Cond = Cond; 344 ITState.Mask = Mask; 345 ITState.CurPosition = 0; 346 ITState.IsExplicit = true; 347 return; 348 } 349 350 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 351 return getParser().Note(L, Msg, Range); 352 } 353 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 354 return getParser().Warning(L, Msg, Range); 355 } 356 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 357 return getParser().Error(L, Msg, Range); 358 } 359 360 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 361 unsigned ListNo, bool IsARPop = false); 362 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 363 unsigned ListNo); 364 365 int tryParseRegister(); 366 bool tryParseRegisterWithWriteBack(OperandVector &); 367 int tryParseShiftRegister(OperandVector &); 368 bool parseRegisterList(OperandVector &); 369 bool parseMemory(OperandVector &); 370 bool parseOperand(OperandVector &, StringRef Mnemonic); 371 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 372 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 373 unsigned &ShiftAmount); 374 bool parseLiteralValues(unsigned Size, SMLoc L); 375 bool parseDirectiveThumb(SMLoc L); 376 bool parseDirectiveARM(SMLoc L); 377 bool parseDirectiveThumbFunc(SMLoc L); 378 bool parseDirectiveCode(SMLoc L); 379 bool parseDirectiveSyntax(SMLoc L); 380 bool parseDirectiveReq(StringRef Name, SMLoc L); 381 bool parseDirectiveUnreq(SMLoc L); 382 bool parseDirectiveArch(SMLoc L); 383 bool parseDirectiveEabiAttr(SMLoc L); 384 bool parseDirectiveCPU(SMLoc L); 385 bool parseDirectiveFPU(SMLoc L); 386 bool parseDirectiveFnStart(SMLoc L); 387 bool parseDirectiveFnEnd(SMLoc L); 388 bool parseDirectiveCantUnwind(SMLoc L); 389 bool parseDirectivePersonality(SMLoc L); 390 bool parseDirectiveHandlerData(SMLoc L); 391 bool parseDirectiveSetFP(SMLoc L); 392 bool parseDirectivePad(SMLoc L); 393 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 394 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 395 bool parseDirectiveLtorg(SMLoc L); 396 bool parseDirectiveEven(SMLoc L); 397 bool parseDirectivePersonalityIndex(SMLoc L); 398 bool parseDirectiveUnwindRaw(SMLoc L); 399 bool parseDirectiveTLSDescSeq(SMLoc L); 400 bool parseDirectiveMovSP(SMLoc L); 401 bool parseDirectiveObjectArch(SMLoc L); 402 bool parseDirectiveArchExtension(SMLoc L); 403 bool parseDirectiveAlign(SMLoc L); 404 bool parseDirectiveThumbSet(SMLoc L); 405 406 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 407 bool &CarrySetting, unsigned &ProcessorIMod, 408 StringRef &ITMask); 409 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 410 bool &CanAcceptCarrySet, 411 bool &CanAcceptPredicationCode); 412 413 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 414 OperandVector &Operands); 415 bool isThumb() const { 416 // FIXME: Can tablegen auto-generate this? 417 return getSTI().getFeatureBits()[ARM::ModeThumb]; 418 } 419 bool isThumbOne() const { 420 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 421 } 422 bool isThumbTwo() const { 423 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 424 } 425 bool hasThumb() const { 426 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 427 } 428 bool hasThumb2() const { 429 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 430 } 431 bool hasV6Ops() const { 432 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 433 } 434 bool hasV6T2Ops() const { 435 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 436 } 437 bool hasV6MOps() const { 438 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 439 } 440 bool hasV7Ops() const { 441 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 442 } 443 bool hasV8Ops() const { 444 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 445 } 446 bool hasV8MBaseline() const { 447 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 448 } 449 bool hasV8MMainline() const { 450 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 451 } 452 bool has8MSecExt() const { 453 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 454 } 455 bool hasARM() const { 456 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 457 } 458 bool hasDSP() const { 459 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 460 } 461 bool hasD16() const { 462 return getSTI().getFeatureBits()[ARM::FeatureD16]; 463 } 464 bool hasV8_1aOps() const { 465 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 466 } 467 bool hasRAS() const { 468 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 469 } 470 471 void SwitchMode() { 472 MCSubtargetInfo &STI = copySTI(); 473 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 474 setAvailableFeatures(FB); 475 } 476 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 477 bool isMClass() const { 478 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 479 } 480 481 /// @name Auto-generated Match Functions 482 /// { 483 484 #define GET_ASSEMBLER_HEADER 485 #include "ARMGenAsmMatcher.inc" 486 487 /// } 488 489 OperandMatchResultTy parseITCondCode(OperandVector &); 490 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 491 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 492 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 493 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 494 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 495 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 496 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 497 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 498 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 499 int High); 500 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 501 return parsePKHImm(O, "lsl", 0, 31); 502 } 503 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 504 return parsePKHImm(O, "asr", 1, 32); 505 } 506 OperandMatchResultTy parseSetEndImm(OperandVector &); 507 OperandMatchResultTy parseShifterImm(OperandVector &); 508 OperandMatchResultTy parseRotImm(OperandVector &); 509 OperandMatchResultTy parseModImm(OperandVector &); 510 OperandMatchResultTy parseBitfield(OperandVector &); 511 OperandMatchResultTy parsePostIdxReg(OperandVector &); 512 OperandMatchResultTy parseAM3Offset(OperandVector &); 513 OperandMatchResultTy parseFPImm(OperandVector &); 514 OperandMatchResultTy parseVectorList(OperandVector &); 515 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 516 SMLoc &EndLoc); 517 518 // Asm Match Converter Methods 519 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 520 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 521 522 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 523 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 524 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 525 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 526 bool isITBlockTerminator(MCInst &Inst) const; 527 528 public: 529 enum ARMMatchResultTy { 530 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 531 Match_RequiresNotITBlock, 532 Match_RequiresV6, 533 Match_RequiresThumb2, 534 Match_RequiresV8, 535 Match_RequiresFlagSetting, 536 #define GET_OPERAND_DIAGNOSTIC_TYPES 537 #include "ARMGenAsmMatcher.inc" 538 539 }; 540 541 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 542 const MCInstrInfo &MII, const MCTargetOptions &Options) 543 : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) { 544 MCAsmParserExtension::Initialize(Parser); 545 546 // Cache the MCRegisterInfo. 547 MRI = getContext().getRegisterInfo(); 548 549 // Initialize the set of available features. 550 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 551 552 // Add build attributes based on the selected target. 553 if (AddBuildAttributes) 554 getTargetStreamer().emitTargetAttributes(STI); 555 556 // Not in an ITBlock to start with. 557 ITState.CurPosition = ~0U; 558 559 NextSymbolIsThumb = false; 560 } 561 562 // Implementation of the MCTargetAsmParser interface: 563 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 564 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 565 SMLoc NameLoc, OperandVector &Operands) override; 566 bool ParseDirective(AsmToken DirectiveID) override; 567 568 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 569 unsigned Kind) override; 570 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 571 572 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 573 OperandVector &Operands, MCStreamer &Out, 574 uint64_t &ErrorInfo, 575 bool MatchingInlineAsm) override; 576 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 577 uint64_t &ErrorInfo, bool MatchingInlineAsm, 578 bool &EmitInITBlock, MCStreamer &Out); 579 void onLabelParsed(MCSymbol *Symbol) override; 580 }; 581 } // end anonymous namespace 582 583 namespace { 584 585 /// ARMOperand - Instances of this class represent a parsed ARM machine 586 /// operand. 587 class ARMOperand : public MCParsedAsmOperand { 588 enum KindTy { 589 k_CondCode, 590 k_CCOut, 591 k_ITCondMask, 592 k_CoprocNum, 593 k_CoprocReg, 594 k_CoprocOption, 595 k_Immediate, 596 k_MemBarrierOpt, 597 k_InstSyncBarrierOpt, 598 k_Memory, 599 k_PostIndexRegister, 600 k_MSRMask, 601 k_BankedReg, 602 k_ProcIFlags, 603 k_VectorIndex, 604 k_Register, 605 k_RegisterList, 606 k_DPRRegisterList, 607 k_SPRRegisterList, 608 k_VectorList, 609 k_VectorListAllLanes, 610 k_VectorListIndexed, 611 k_ShiftedRegister, 612 k_ShiftedImmediate, 613 k_ShifterImmediate, 614 k_RotateImmediate, 615 k_ModifiedImmediate, 616 k_ConstantPoolImmediate, 617 k_BitfieldDescriptor, 618 k_Token, 619 } Kind; 620 621 SMLoc StartLoc, EndLoc, AlignmentLoc; 622 SmallVector<unsigned, 8> Registers; 623 624 struct CCOp { 625 ARMCC::CondCodes Val; 626 }; 627 628 struct CopOp { 629 unsigned Val; 630 }; 631 632 struct CoprocOptionOp { 633 unsigned Val; 634 }; 635 636 struct ITMaskOp { 637 unsigned Mask:4; 638 }; 639 640 struct MBOptOp { 641 ARM_MB::MemBOpt Val; 642 }; 643 644 struct ISBOptOp { 645 ARM_ISB::InstSyncBOpt Val; 646 }; 647 648 struct IFlagsOp { 649 ARM_PROC::IFlags Val; 650 }; 651 652 struct MMaskOp { 653 unsigned Val; 654 }; 655 656 struct BankedRegOp { 657 unsigned Val; 658 }; 659 660 struct TokOp { 661 const char *Data; 662 unsigned Length; 663 }; 664 665 struct RegOp { 666 unsigned RegNum; 667 }; 668 669 // A vector register list is a sequential list of 1 to 4 registers. 670 struct VectorListOp { 671 unsigned RegNum; 672 unsigned Count; 673 unsigned LaneIndex; 674 bool isDoubleSpaced; 675 }; 676 677 struct VectorIndexOp { 678 unsigned Val; 679 }; 680 681 struct ImmOp { 682 const MCExpr *Val; 683 }; 684 685 /// Combined record for all forms of ARM address expressions. 686 struct MemoryOp { 687 unsigned BaseRegNum; 688 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 689 // was specified. 690 const MCConstantExpr *OffsetImm; // Offset immediate value 691 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 692 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 693 unsigned ShiftImm; // shift for OffsetReg. 694 unsigned Alignment; // 0 = no alignment specified 695 // n = alignment in bytes (2, 4, 8, 16, or 32) 696 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 697 }; 698 699 struct PostIdxRegOp { 700 unsigned RegNum; 701 bool isAdd; 702 ARM_AM::ShiftOpc ShiftTy; 703 unsigned ShiftImm; 704 }; 705 706 struct ShifterImmOp { 707 bool isASR; 708 unsigned Imm; 709 }; 710 711 struct RegShiftedRegOp { 712 ARM_AM::ShiftOpc ShiftTy; 713 unsigned SrcReg; 714 unsigned ShiftReg; 715 unsigned ShiftImm; 716 }; 717 718 struct RegShiftedImmOp { 719 ARM_AM::ShiftOpc ShiftTy; 720 unsigned SrcReg; 721 unsigned ShiftImm; 722 }; 723 724 struct RotImmOp { 725 unsigned Imm; 726 }; 727 728 struct ModImmOp { 729 unsigned Bits; 730 unsigned Rot; 731 }; 732 733 struct BitfieldOp { 734 unsigned LSB; 735 unsigned Width; 736 }; 737 738 union { 739 struct CCOp CC; 740 struct CopOp Cop; 741 struct CoprocOptionOp CoprocOption; 742 struct MBOptOp MBOpt; 743 struct ISBOptOp ISBOpt; 744 struct ITMaskOp ITMask; 745 struct IFlagsOp IFlags; 746 struct MMaskOp MMask; 747 struct BankedRegOp BankedReg; 748 struct TokOp Tok; 749 struct RegOp Reg; 750 struct VectorListOp VectorList; 751 struct VectorIndexOp VectorIndex; 752 struct ImmOp Imm; 753 struct MemoryOp Memory; 754 struct PostIdxRegOp PostIdxReg; 755 struct ShifterImmOp ShifterImm; 756 struct RegShiftedRegOp RegShiftedReg; 757 struct RegShiftedImmOp RegShiftedImm; 758 struct RotImmOp RotImm; 759 struct ModImmOp ModImm; 760 struct BitfieldOp Bitfield; 761 }; 762 763 public: 764 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 765 766 /// getStartLoc - Get the location of the first token of this operand. 767 SMLoc getStartLoc() const override { return StartLoc; } 768 /// getEndLoc - Get the location of the last token of this operand. 769 SMLoc getEndLoc() const override { return EndLoc; } 770 /// getLocRange - Get the range between the first and last token of this 771 /// operand. 772 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 773 774 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 775 SMLoc getAlignmentLoc() const { 776 assert(Kind == k_Memory && "Invalid access!"); 777 return AlignmentLoc; 778 } 779 780 ARMCC::CondCodes getCondCode() const { 781 assert(Kind == k_CondCode && "Invalid access!"); 782 return CC.Val; 783 } 784 785 unsigned getCoproc() const { 786 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 787 return Cop.Val; 788 } 789 790 StringRef getToken() const { 791 assert(Kind == k_Token && "Invalid access!"); 792 return StringRef(Tok.Data, Tok.Length); 793 } 794 795 unsigned getReg() const override { 796 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 797 return Reg.RegNum; 798 } 799 800 const SmallVectorImpl<unsigned> &getRegList() const { 801 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 802 Kind == k_SPRRegisterList) && "Invalid access!"); 803 return Registers; 804 } 805 806 const MCExpr *getImm() const { 807 assert(isImm() && "Invalid access!"); 808 return Imm.Val; 809 } 810 811 const MCExpr *getConstantPoolImm() const { 812 assert(isConstantPoolImm() && "Invalid access!"); 813 return Imm.Val; 814 } 815 816 unsigned getVectorIndex() const { 817 assert(Kind == k_VectorIndex && "Invalid access!"); 818 return VectorIndex.Val; 819 } 820 821 ARM_MB::MemBOpt getMemBarrierOpt() const { 822 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 823 return MBOpt.Val; 824 } 825 826 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 827 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 828 return ISBOpt.Val; 829 } 830 831 ARM_PROC::IFlags getProcIFlags() const { 832 assert(Kind == k_ProcIFlags && "Invalid access!"); 833 return IFlags.Val; 834 } 835 836 unsigned getMSRMask() const { 837 assert(Kind == k_MSRMask && "Invalid access!"); 838 return MMask.Val; 839 } 840 841 unsigned getBankedReg() const { 842 assert(Kind == k_BankedReg && "Invalid access!"); 843 return BankedReg.Val; 844 } 845 846 bool isCoprocNum() const { return Kind == k_CoprocNum; } 847 bool isCoprocReg() const { return Kind == k_CoprocReg; } 848 bool isCoprocOption() const { return Kind == k_CoprocOption; } 849 bool isCondCode() const { return Kind == k_CondCode; } 850 bool isCCOut() const { return Kind == k_CCOut; } 851 bool isITMask() const { return Kind == k_ITCondMask; } 852 bool isITCondCode() const { return Kind == k_CondCode; } 853 bool isImm() const override { 854 return Kind == k_Immediate; 855 } 856 857 bool isARMBranchTarget() const { 858 if (!isImm()) return false; 859 860 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 861 return CE->getValue() % 4 == 0; 862 return true; 863 } 864 865 866 bool isThumbBranchTarget() const { 867 if (!isImm()) return false; 868 869 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 870 return CE->getValue() % 2 == 0; 871 return true; 872 } 873 874 // checks whether this operand is an unsigned offset which fits is a field 875 // of specified width and scaled by a specific number of bits 876 template<unsigned width, unsigned scale> 877 bool isUnsignedOffset() const { 878 if (!isImm()) return false; 879 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 880 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 881 int64_t Val = CE->getValue(); 882 int64_t Align = 1LL << scale; 883 int64_t Max = Align * ((1LL << width) - 1); 884 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 885 } 886 return false; 887 } 888 // checks whether this operand is an signed offset which fits is a field 889 // of specified width and scaled by a specific number of bits 890 template<unsigned width, unsigned scale> 891 bool isSignedOffset() const { 892 if (!isImm()) return false; 893 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 894 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 895 int64_t Val = CE->getValue(); 896 int64_t Align = 1LL << scale; 897 int64_t Max = Align * ((1LL << (width-1)) - 1); 898 int64_t Min = -Align * (1LL << (width-1)); 899 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 900 } 901 return false; 902 } 903 904 // checks whether this operand is a memory operand computed as an offset 905 // applied to PC. the offset may have 8 bits of magnitude and is represented 906 // with two bits of shift. textually it may be either [pc, #imm], #imm or 907 // relocable expression... 908 bool isThumbMemPC() const { 909 int64_t Val = 0; 910 if (isImm()) { 911 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 912 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 913 if (!CE) return false; 914 Val = CE->getValue(); 915 } 916 else if (isMem()) { 917 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 918 if(Memory.BaseRegNum != ARM::PC) return false; 919 Val = Memory.OffsetImm->getValue(); 920 } 921 else return false; 922 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 923 } 924 bool isFPImm() const { 925 if (!isImm()) return false; 926 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 927 if (!CE) return false; 928 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 929 return Val != -1; 930 } 931 932 template<int64_t N, int64_t M> 933 bool isImmediate() const { 934 if (!isImm()) return false; 935 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 936 if (!CE) return false; 937 int64_t Value = CE->getValue(); 938 return Value >= N && Value <= M; 939 } 940 template<int64_t N, int64_t M> 941 bool isImmediateS4() const { 942 if (!isImm()) return false; 943 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 944 if (!CE) return false; 945 int64_t Value = CE->getValue(); 946 return ((Value & 3) == 0) && Value >= N && Value <= M; 947 } 948 bool isFBits16() const { 949 return isImmediate<0, 17>(); 950 } 951 bool isFBits32() const { 952 return isImmediate<1, 33>(); 953 } 954 bool isImm8s4() const { 955 return isImmediateS4<-1020, 1020>(); 956 } 957 bool isImm0_1020s4() const { 958 return isImmediateS4<0, 1020>(); 959 } 960 bool isImm0_508s4() const { 961 return isImmediateS4<0, 508>(); 962 } 963 bool isImm0_508s4Neg() const { 964 if (!isImm()) return false; 965 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 966 if (!CE) return false; 967 int64_t Value = -CE->getValue(); 968 // explicitly exclude zero. we want that to use the normal 0_508 version. 969 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 970 } 971 bool isImm0_4095Neg() const { 972 if (!isImm()) return false; 973 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 974 if (!CE) return false; 975 int64_t Value = -CE->getValue(); 976 return Value > 0 && Value < 4096; 977 } 978 bool isImm0_7() const { 979 return isImmediate<0, 7>(); 980 } 981 bool isImm1_16() const { 982 return isImmediate<1, 16>(); 983 } 984 bool isImm1_32() const { 985 return isImmediate<1, 32>(); 986 } 987 bool isImm8_255() const { 988 return isImmediate<8, 255>(); 989 } 990 bool isImm256_65535Expr() const { 991 if (!isImm()) return false; 992 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 993 // If it's not a constant expression, it'll generate a fixup and be 994 // handled later. 995 if (!CE) return true; 996 int64_t Value = CE->getValue(); 997 return Value >= 256 && Value < 65536; 998 } 999 bool isImm0_65535Expr() const { 1000 if (!isImm()) return false; 1001 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1002 // If it's not a constant expression, it'll generate a fixup and be 1003 // handled later. 1004 if (!CE) return true; 1005 int64_t Value = CE->getValue(); 1006 return Value >= 0 && Value < 65536; 1007 } 1008 bool isImm24bit() const { 1009 return isImmediate<0, 0xffffff + 1>(); 1010 } 1011 bool isImmThumbSR() const { 1012 return isImmediate<1, 33>(); 1013 } 1014 bool isPKHLSLImm() const { 1015 return isImmediate<0, 32>(); 1016 } 1017 bool isPKHASRImm() const { 1018 return isImmediate<0, 33>(); 1019 } 1020 bool isAdrLabel() const { 1021 // If we have an immediate that's not a constant, treat it as a label 1022 // reference needing a fixup. 1023 if (isImm() && !isa<MCConstantExpr>(getImm())) 1024 return true; 1025 1026 // If it is a constant, it must fit into a modified immediate encoding. 1027 if (!isImm()) return false; 1028 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1029 if (!CE) return false; 1030 int64_t Value = CE->getValue(); 1031 return (ARM_AM::getSOImmVal(Value) != -1 || 1032 ARM_AM::getSOImmVal(-Value) != -1); 1033 } 1034 bool isT2SOImm() const { 1035 // If we have an immediate that's not a constant, treat it as an expression 1036 // needing a fixup. 1037 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1038 // We want to avoid matching :upper16: and :lower16: as we want these 1039 // expressions to match in isImm0_65535Expr() 1040 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1041 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1042 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1043 } 1044 if (!isImm()) return false; 1045 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1046 if (!CE) return false; 1047 int64_t Value = CE->getValue(); 1048 return ARM_AM::getT2SOImmVal(Value) != -1; 1049 } 1050 bool isT2SOImmNot() const { 1051 if (!isImm()) return false; 1052 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1053 if (!CE) return false; 1054 int64_t Value = CE->getValue(); 1055 return ARM_AM::getT2SOImmVal(Value) == -1 && 1056 ARM_AM::getT2SOImmVal(~Value) != -1; 1057 } 1058 bool isT2SOImmNeg() const { 1059 if (!isImm()) return false; 1060 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1061 if (!CE) return false; 1062 int64_t Value = CE->getValue(); 1063 // Only use this when not representable as a plain so_imm. 1064 return ARM_AM::getT2SOImmVal(Value) == -1 && 1065 ARM_AM::getT2SOImmVal(-Value) != -1; 1066 } 1067 bool isSetEndImm() const { 1068 if (!isImm()) return false; 1069 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1070 if (!CE) return false; 1071 int64_t Value = CE->getValue(); 1072 return Value == 1 || Value == 0; 1073 } 1074 bool isReg() const override { return Kind == k_Register; } 1075 bool isRegList() const { return Kind == k_RegisterList; } 1076 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1077 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1078 bool isToken() const override { return Kind == k_Token; } 1079 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1080 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1081 bool isMem() const override { return Kind == k_Memory; } 1082 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1083 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1084 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1085 bool isRotImm() const { return Kind == k_RotateImmediate; } 1086 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1087 bool isModImmNot() const { 1088 if (!isImm()) return false; 1089 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1090 if (!CE) return false; 1091 int64_t Value = CE->getValue(); 1092 return ARM_AM::getSOImmVal(~Value) != -1; 1093 } 1094 bool isModImmNeg() const { 1095 if (!isImm()) return false; 1096 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1097 if (!CE) return false; 1098 int64_t Value = CE->getValue(); 1099 return ARM_AM::getSOImmVal(Value) == -1 && 1100 ARM_AM::getSOImmVal(-Value) != -1; 1101 } 1102 bool isThumbModImmNeg1_7() const { 1103 if (!isImm()) return false; 1104 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1105 if (!CE) return false; 1106 int32_t Value = -(int32_t)CE->getValue(); 1107 return 0 < Value && Value < 8; 1108 } 1109 bool isThumbModImmNeg8_255() const { 1110 if (!isImm()) return false; 1111 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1112 if (!CE) return false; 1113 int32_t Value = -(int32_t)CE->getValue(); 1114 return 7 < Value && Value < 256; 1115 } 1116 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1117 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1118 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1119 bool isPostIdxReg() const { 1120 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1121 } 1122 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1123 if (!isMem()) 1124 return false; 1125 // No offset of any kind. 1126 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1127 (alignOK || Memory.Alignment == Alignment); 1128 } 1129 bool isMemPCRelImm12() const { 1130 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1131 return false; 1132 // Base register must be PC. 1133 if (Memory.BaseRegNum != ARM::PC) 1134 return false; 1135 // Immediate offset in range [-4095, 4095]. 1136 if (!Memory.OffsetImm) return true; 1137 int64_t Val = Memory.OffsetImm->getValue(); 1138 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1139 } 1140 bool isAlignedMemory() const { 1141 return isMemNoOffset(true); 1142 } 1143 bool isAlignedMemoryNone() const { 1144 return isMemNoOffset(false, 0); 1145 } 1146 bool isDupAlignedMemoryNone() const { 1147 return isMemNoOffset(false, 0); 1148 } 1149 bool isAlignedMemory16() const { 1150 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1151 return true; 1152 return isMemNoOffset(false, 0); 1153 } 1154 bool isDupAlignedMemory16() const { 1155 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1156 return true; 1157 return isMemNoOffset(false, 0); 1158 } 1159 bool isAlignedMemory32() const { 1160 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1161 return true; 1162 return isMemNoOffset(false, 0); 1163 } 1164 bool isDupAlignedMemory32() const { 1165 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1166 return true; 1167 return isMemNoOffset(false, 0); 1168 } 1169 bool isAlignedMemory64() const { 1170 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1171 return true; 1172 return isMemNoOffset(false, 0); 1173 } 1174 bool isDupAlignedMemory64() const { 1175 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1176 return true; 1177 return isMemNoOffset(false, 0); 1178 } 1179 bool isAlignedMemory64or128() const { 1180 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1181 return true; 1182 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1183 return true; 1184 return isMemNoOffset(false, 0); 1185 } 1186 bool isDupAlignedMemory64or128() const { 1187 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1188 return true; 1189 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1190 return true; 1191 return isMemNoOffset(false, 0); 1192 } 1193 bool isAlignedMemory64or128or256() const { 1194 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1195 return true; 1196 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1197 return true; 1198 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1199 return true; 1200 return isMemNoOffset(false, 0); 1201 } 1202 bool isAddrMode2() const { 1203 if (!isMem() || Memory.Alignment != 0) return false; 1204 // Check for register offset. 1205 if (Memory.OffsetRegNum) return true; 1206 // Immediate offset in range [-4095, 4095]. 1207 if (!Memory.OffsetImm) return true; 1208 int64_t Val = Memory.OffsetImm->getValue(); 1209 return Val > -4096 && Val < 4096; 1210 } 1211 bool isAM2OffsetImm() const { 1212 if (!isImm()) return false; 1213 // Immediate offset in range [-4095, 4095]. 1214 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1215 if (!CE) return false; 1216 int64_t Val = CE->getValue(); 1217 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1218 } 1219 bool isAddrMode3() const { 1220 // If we have an immediate that's not a constant, treat it as a label 1221 // reference needing a fixup. If it is a constant, it's something else 1222 // and we reject it. 1223 if (isImm() && !isa<MCConstantExpr>(getImm())) 1224 return true; 1225 if (!isMem() || Memory.Alignment != 0) return false; 1226 // No shifts are legal for AM3. 1227 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1228 // Check for register offset. 1229 if (Memory.OffsetRegNum) return true; 1230 // Immediate offset in range [-255, 255]. 1231 if (!Memory.OffsetImm) return true; 1232 int64_t Val = Memory.OffsetImm->getValue(); 1233 // The #-0 offset is encoded as INT32_MIN, and we have to check 1234 // for this too. 1235 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1236 } 1237 bool isAM3Offset() const { 1238 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1239 return false; 1240 if (Kind == k_PostIndexRegister) 1241 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1242 // Immediate offset in range [-255, 255]. 1243 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1244 if (!CE) return false; 1245 int64_t Val = CE->getValue(); 1246 // Special case, #-0 is INT32_MIN. 1247 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1248 } 1249 bool isAddrMode5() const { 1250 // If we have an immediate that's not a constant, treat it as a label 1251 // reference needing a fixup. If it is a constant, it's something else 1252 // and we reject it. 1253 if (isImm() && !isa<MCConstantExpr>(getImm())) 1254 return true; 1255 if (!isMem() || Memory.Alignment != 0) return false; 1256 // Check for register offset. 1257 if (Memory.OffsetRegNum) return false; 1258 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1259 if (!Memory.OffsetImm) return true; 1260 int64_t Val = Memory.OffsetImm->getValue(); 1261 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1262 Val == INT32_MIN; 1263 } 1264 bool isAddrMode5FP16() const { 1265 // If we have an immediate that's not a constant, treat it as a label 1266 // reference needing a fixup. If it is a constant, it's something else 1267 // and we reject it. 1268 if (isImm() && !isa<MCConstantExpr>(getImm())) 1269 return true; 1270 if (!isMem() || Memory.Alignment != 0) return false; 1271 // Check for register offset. 1272 if (Memory.OffsetRegNum) return false; 1273 // Immediate offset in range [-510, 510] and a multiple of 2. 1274 if (!Memory.OffsetImm) return true; 1275 int64_t Val = Memory.OffsetImm->getValue(); 1276 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || Val == INT32_MIN; 1277 } 1278 bool isMemTBB() const { 1279 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1280 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1281 return false; 1282 return true; 1283 } 1284 bool isMemTBH() const { 1285 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1286 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1287 Memory.Alignment != 0 ) 1288 return false; 1289 return true; 1290 } 1291 bool isMemRegOffset() const { 1292 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1293 return false; 1294 return true; 1295 } 1296 bool isT2MemRegOffset() const { 1297 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1298 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1299 return false; 1300 // Only lsl #{0, 1, 2, 3} allowed. 1301 if (Memory.ShiftType == ARM_AM::no_shift) 1302 return true; 1303 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1304 return false; 1305 return true; 1306 } 1307 bool isMemThumbRR() const { 1308 // Thumb reg+reg addressing is simple. Just two registers, a base and 1309 // an offset. No shifts, negations or any other complicating factors. 1310 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1311 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1312 return false; 1313 return isARMLowRegister(Memory.BaseRegNum) && 1314 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1315 } 1316 bool isMemThumbRIs4() const { 1317 if (!isMem() || Memory.OffsetRegNum != 0 || 1318 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1319 return false; 1320 // Immediate offset, multiple of 4 in range [0, 124]. 1321 if (!Memory.OffsetImm) return true; 1322 int64_t Val = Memory.OffsetImm->getValue(); 1323 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1324 } 1325 bool isMemThumbRIs2() const { 1326 if (!isMem() || Memory.OffsetRegNum != 0 || 1327 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1328 return false; 1329 // Immediate offset, multiple of 4 in range [0, 62]. 1330 if (!Memory.OffsetImm) return true; 1331 int64_t Val = Memory.OffsetImm->getValue(); 1332 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1333 } 1334 bool isMemThumbRIs1() const { 1335 if (!isMem() || Memory.OffsetRegNum != 0 || 1336 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1337 return false; 1338 // Immediate offset in range [0, 31]. 1339 if (!Memory.OffsetImm) return true; 1340 int64_t Val = Memory.OffsetImm->getValue(); 1341 return Val >= 0 && Val <= 31; 1342 } 1343 bool isMemThumbSPI() const { 1344 if (!isMem() || Memory.OffsetRegNum != 0 || 1345 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1346 return false; 1347 // Immediate offset, multiple of 4 in range [0, 1020]. 1348 if (!Memory.OffsetImm) return true; 1349 int64_t Val = Memory.OffsetImm->getValue(); 1350 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1351 } 1352 bool isMemImm8s4Offset() const { 1353 // If we have an immediate that's not a constant, treat it as a label 1354 // reference needing a fixup. If it is a constant, it's something else 1355 // and we reject it. 1356 if (isImm() && !isa<MCConstantExpr>(getImm())) 1357 return true; 1358 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1359 return false; 1360 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1361 if (!Memory.OffsetImm) return true; 1362 int64_t Val = Memory.OffsetImm->getValue(); 1363 // Special case, #-0 is INT32_MIN. 1364 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1365 } 1366 bool isMemImm0_1020s4Offset() const { 1367 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1368 return false; 1369 // Immediate offset a multiple of 4 in range [0, 1020]. 1370 if (!Memory.OffsetImm) return true; 1371 int64_t Val = Memory.OffsetImm->getValue(); 1372 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1373 } 1374 bool isMemImm8Offset() const { 1375 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1376 return false; 1377 // Base reg of PC isn't allowed for these encodings. 1378 if (Memory.BaseRegNum == ARM::PC) return false; 1379 // Immediate offset in range [-255, 255]. 1380 if (!Memory.OffsetImm) return true; 1381 int64_t Val = Memory.OffsetImm->getValue(); 1382 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1383 } 1384 bool isMemPosImm8Offset() const { 1385 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1386 return false; 1387 // Immediate offset in range [0, 255]. 1388 if (!Memory.OffsetImm) return true; 1389 int64_t Val = Memory.OffsetImm->getValue(); 1390 return Val >= 0 && Val < 256; 1391 } 1392 bool isMemNegImm8Offset() const { 1393 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1394 return false; 1395 // Base reg of PC isn't allowed for these encodings. 1396 if (Memory.BaseRegNum == ARM::PC) return false; 1397 // Immediate offset in range [-255, -1]. 1398 if (!Memory.OffsetImm) return false; 1399 int64_t Val = Memory.OffsetImm->getValue(); 1400 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1401 } 1402 bool isMemUImm12Offset() const { 1403 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1404 return false; 1405 // Immediate offset in range [0, 4095]. 1406 if (!Memory.OffsetImm) return true; 1407 int64_t Val = Memory.OffsetImm->getValue(); 1408 return (Val >= 0 && Val < 4096); 1409 } 1410 bool isMemImm12Offset() const { 1411 // If we have an immediate that's not a constant, treat it as a label 1412 // reference needing a fixup. If it is a constant, it's something else 1413 // and we reject it. 1414 1415 if (isImm() && !isa<MCConstantExpr>(getImm())) 1416 return true; 1417 1418 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1419 return false; 1420 // Immediate offset in range [-4095, 4095]. 1421 if (!Memory.OffsetImm) return true; 1422 int64_t Val = Memory.OffsetImm->getValue(); 1423 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1424 } 1425 bool isConstPoolAsmImm() const { 1426 // Delay processing of Constant Pool Immediate, this will turn into 1427 // a constant. Match no other operand 1428 return (isConstantPoolImm()); 1429 } 1430 bool isPostIdxImm8() const { 1431 if (!isImm()) return false; 1432 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1433 if (!CE) return false; 1434 int64_t Val = CE->getValue(); 1435 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1436 } 1437 bool isPostIdxImm8s4() const { 1438 if (!isImm()) return false; 1439 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1440 if (!CE) return false; 1441 int64_t Val = CE->getValue(); 1442 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1443 (Val == INT32_MIN); 1444 } 1445 1446 bool isMSRMask() const { return Kind == k_MSRMask; } 1447 bool isBankedReg() const { return Kind == k_BankedReg; } 1448 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1449 1450 // NEON operands. 1451 bool isSingleSpacedVectorList() const { 1452 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1453 } 1454 bool isDoubleSpacedVectorList() const { 1455 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1456 } 1457 bool isVecListOneD() const { 1458 if (!isSingleSpacedVectorList()) return false; 1459 return VectorList.Count == 1; 1460 } 1461 1462 bool isVecListDPair() const { 1463 if (!isSingleSpacedVectorList()) return false; 1464 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1465 .contains(VectorList.RegNum)); 1466 } 1467 1468 bool isVecListThreeD() const { 1469 if (!isSingleSpacedVectorList()) return false; 1470 return VectorList.Count == 3; 1471 } 1472 1473 bool isVecListFourD() const { 1474 if (!isSingleSpacedVectorList()) return false; 1475 return VectorList.Count == 4; 1476 } 1477 1478 bool isVecListDPairSpaced() const { 1479 if (Kind != k_VectorList) return false; 1480 if (isSingleSpacedVectorList()) return false; 1481 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1482 .contains(VectorList.RegNum)); 1483 } 1484 1485 bool isVecListThreeQ() const { 1486 if (!isDoubleSpacedVectorList()) return false; 1487 return VectorList.Count == 3; 1488 } 1489 1490 bool isVecListFourQ() const { 1491 if (!isDoubleSpacedVectorList()) return false; 1492 return VectorList.Count == 4; 1493 } 1494 1495 bool isSingleSpacedVectorAllLanes() const { 1496 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1497 } 1498 bool isDoubleSpacedVectorAllLanes() const { 1499 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1500 } 1501 bool isVecListOneDAllLanes() const { 1502 if (!isSingleSpacedVectorAllLanes()) return false; 1503 return VectorList.Count == 1; 1504 } 1505 1506 bool isVecListDPairAllLanes() const { 1507 if (!isSingleSpacedVectorAllLanes()) return false; 1508 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1509 .contains(VectorList.RegNum)); 1510 } 1511 1512 bool isVecListDPairSpacedAllLanes() const { 1513 if (!isDoubleSpacedVectorAllLanes()) return false; 1514 return VectorList.Count == 2; 1515 } 1516 1517 bool isVecListThreeDAllLanes() const { 1518 if (!isSingleSpacedVectorAllLanes()) return false; 1519 return VectorList.Count == 3; 1520 } 1521 1522 bool isVecListThreeQAllLanes() const { 1523 if (!isDoubleSpacedVectorAllLanes()) return false; 1524 return VectorList.Count == 3; 1525 } 1526 1527 bool isVecListFourDAllLanes() const { 1528 if (!isSingleSpacedVectorAllLanes()) return false; 1529 return VectorList.Count == 4; 1530 } 1531 1532 bool isVecListFourQAllLanes() const { 1533 if (!isDoubleSpacedVectorAllLanes()) return false; 1534 return VectorList.Count == 4; 1535 } 1536 1537 bool isSingleSpacedVectorIndexed() const { 1538 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1539 } 1540 bool isDoubleSpacedVectorIndexed() const { 1541 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1542 } 1543 bool isVecListOneDByteIndexed() const { 1544 if (!isSingleSpacedVectorIndexed()) return false; 1545 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1546 } 1547 1548 bool isVecListOneDHWordIndexed() const { 1549 if (!isSingleSpacedVectorIndexed()) return false; 1550 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1551 } 1552 1553 bool isVecListOneDWordIndexed() const { 1554 if (!isSingleSpacedVectorIndexed()) return false; 1555 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1556 } 1557 1558 bool isVecListTwoDByteIndexed() const { 1559 if (!isSingleSpacedVectorIndexed()) return false; 1560 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1561 } 1562 1563 bool isVecListTwoDHWordIndexed() const { 1564 if (!isSingleSpacedVectorIndexed()) return false; 1565 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1566 } 1567 1568 bool isVecListTwoQWordIndexed() const { 1569 if (!isDoubleSpacedVectorIndexed()) return false; 1570 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1571 } 1572 1573 bool isVecListTwoQHWordIndexed() const { 1574 if (!isDoubleSpacedVectorIndexed()) return false; 1575 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1576 } 1577 1578 bool isVecListTwoDWordIndexed() const { 1579 if (!isSingleSpacedVectorIndexed()) return false; 1580 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1581 } 1582 1583 bool isVecListThreeDByteIndexed() const { 1584 if (!isSingleSpacedVectorIndexed()) return false; 1585 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1586 } 1587 1588 bool isVecListThreeDHWordIndexed() const { 1589 if (!isSingleSpacedVectorIndexed()) return false; 1590 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1591 } 1592 1593 bool isVecListThreeQWordIndexed() const { 1594 if (!isDoubleSpacedVectorIndexed()) return false; 1595 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1596 } 1597 1598 bool isVecListThreeQHWordIndexed() const { 1599 if (!isDoubleSpacedVectorIndexed()) return false; 1600 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1601 } 1602 1603 bool isVecListThreeDWordIndexed() const { 1604 if (!isSingleSpacedVectorIndexed()) return false; 1605 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1606 } 1607 1608 bool isVecListFourDByteIndexed() const { 1609 if (!isSingleSpacedVectorIndexed()) return false; 1610 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1611 } 1612 1613 bool isVecListFourDHWordIndexed() const { 1614 if (!isSingleSpacedVectorIndexed()) return false; 1615 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1616 } 1617 1618 bool isVecListFourQWordIndexed() const { 1619 if (!isDoubleSpacedVectorIndexed()) return false; 1620 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1621 } 1622 1623 bool isVecListFourQHWordIndexed() const { 1624 if (!isDoubleSpacedVectorIndexed()) return false; 1625 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1626 } 1627 1628 bool isVecListFourDWordIndexed() const { 1629 if (!isSingleSpacedVectorIndexed()) return false; 1630 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1631 } 1632 1633 bool isVectorIndex8() const { 1634 if (Kind != k_VectorIndex) return false; 1635 return VectorIndex.Val < 8; 1636 } 1637 bool isVectorIndex16() const { 1638 if (Kind != k_VectorIndex) return false; 1639 return VectorIndex.Val < 4; 1640 } 1641 bool isVectorIndex32() const { 1642 if (Kind != k_VectorIndex) return false; 1643 return VectorIndex.Val < 2; 1644 } 1645 1646 bool isNEONi8splat() const { 1647 if (!isImm()) return false; 1648 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1649 // Must be a constant. 1650 if (!CE) return false; 1651 int64_t Value = CE->getValue(); 1652 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1653 // value. 1654 return Value >= 0 && Value < 256; 1655 } 1656 1657 bool isNEONi16splat() const { 1658 if (isNEONByteReplicate(2)) 1659 return false; // Leave that for bytes replication and forbid by default. 1660 if (!isImm()) 1661 return false; 1662 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1663 // Must be a constant. 1664 if (!CE) return false; 1665 unsigned Value = CE->getValue(); 1666 return ARM_AM::isNEONi16splat(Value); 1667 } 1668 1669 bool isNEONi16splatNot() const { 1670 if (!isImm()) 1671 return false; 1672 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1673 // Must be a constant. 1674 if (!CE) return false; 1675 unsigned Value = CE->getValue(); 1676 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1677 } 1678 1679 bool isNEONi32splat() const { 1680 if (isNEONByteReplicate(4)) 1681 return false; // Leave that for bytes replication and forbid by default. 1682 if (!isImm()) 1683 return false; 1684 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1685 // Must be a constant. 1686 if (!CE) return false; 1687 unsigned Value = CE->getValue(); 1688 return ARM_AM::isNEONi32splat(Value); 1689 } 1690 1691 bool isNEONi32splatNot() const { 1692 if (!isImm()) 1693 return false; 1694 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1695 // Must be a constant. 1696 if (!CE) return false; 1697 unsigned Value = CE->getValue(); 1698 return ARM_AM::isNEONi32splat(~Value); 1699 } 1700 1701 bool isNEONByteReplicate(unsigned NumBytes) const { 1702 if (!isImm()) 1703 return false; 1704 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1705 // Must be a constant. 1706 if (!CE) 1707 return false; 1708 int64_t Value = CE->getValue(); 1709 if (!Value) 1710 return false; // Don't bother with zero. 1711 1712 unsigned char B = Value & 0xff; 1713 for (unsigned i = 1; i < NumBytes; ++i) { 1714 Value >>= 8; 1715 if ((Value & 0xff) != B) 1716 return false; 1717 } 1718 return true; 1719 } 1720 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1721 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1722 bool isNEONi32vmov() const { 1723 if (isNEONByteReplicate(4)) 1724 return false; // Let it to be classified as byte-replicate case. 1725 if (!isImm()) 1726 return false; 1727 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1728 // Must be a constant. 1729 if (!CE) 1730 return false; 1731 int64_t Value = CE->getValue(); 1732 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1733 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1734 // FIXME: This is probably wrong and a copy and paste from previous example 1735 return (Value >= 0 && Value < 256) || 1736 (Value >= 0x0100 && Value <= 0xff00) || 1737 (Value >= 0x010000 && Value <= 0xff0000) || 1738 (Value >= 0x01000000 && Value <= 0xff000000) || 1739 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1740 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1741 } 1742 bool isNEONi32vmovNeg() const { 1743 if (!isImm()) return false; 1744 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1745 // Must be a constant. 1746 if (!CE) return false; 1747 int64_t Value = ~CE->getValue(); 1748 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1749 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1750 // FIXME: This is probably wrong and a copy and paste from previous example 1751 return (Value >= 0 && Value < 256) || 1752 (Value >= 0x0100 && Value <= 0xff00) || 1753 (Value >= 0x010000 && Value <= 0xff0000) || 1754 (Value >= 0x01000000 && Value <= 0xff000000) || 1755 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1756 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1757 } 1758 1759 bool isNEONi64splat() const { 1760 if (!isImm()) return false; 1761 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1762 // Must be a constant. 1763 if (!CE) return false; 1764 uint64_t Value = CE->getValue(); 1765 // i64 value with each byte being either 0 or 0xff. 1766 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1767 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1768 return true; 1769 } 1770 1771 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1772 // Add as immediates when possible. Null MCExpr = 0. 1773 if (!Expr) 1774 Inst.addOperand(MCOperand::createImm(0)); 1775 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1776 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1777 else 1778 Inst.addOperand(MCOperand::createExpr(Expr)); 1779 } 1780 1781 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 1782 assert(N == 1 && "Invalid number of operands!"); 1783 addExpr(Inst, getImm()); 1784 } 1785 1786 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 1787 assert(N == 1 && "Invalid number of operands!"); 1788 addExpr(Inst, getImm()); 1789 } 1790 1791 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1792 assert(N == 2 && "Invalid number of operands!"); 1793 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1794 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1795 Inst.addOperand(MCOperand::createReg(RegNum)); 1796 } 1797 1798 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1799 assert(N == 1 && "Invalid number of operands!"); 1800 Inst.addOperand(MCOperand::createImm(getCoproc())); 1801 } 1802 1803 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1804 assert(N == 1 && "Invalid number of operands!"); 1805 Inst.addOperand(MCOperand::createImm(getCoproc())); 1806 } 1807 1808 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1809 assert(N == 1 && "Invalid number of operands!"); 1810 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1811 } 1812 1813 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1814 assert(N == 1 && "Invalid number of operands!"); 1815 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1816 } 1817 1818 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1819 assert(N == 1 && "Invalid number of operands!"); 1820 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1821 } 1822 1823 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1824 assert(N == 1 && "Invalid number of operands!"); 1825 Inst.addOperand(MCOperand::createReg(getReg())); 1826 } 1827 1828 void addRegOperands(MCInst &Inst, unsigned N) const { 1829 assert(N == 1 && "Invalid number of operands!"); 1830 Inst.addOperand(MCOperand::createReg(getReg())); 1831 } 1832 1833 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1834 assert(N == 3 && "Invalid number of operands!"); 1835 assert(isRegShiftedReg() && 1836 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1837 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1838 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1839 Inst.addOperand(MCOperand::createImm( 1840 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1841 } 1842 1843 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1844 assert(N == 2 && "Invalid number of operands!"); 1845 assert(isRegShiftedImm() && 1846 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1847 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1848 // Shift of #32 is encoded as 0 where permitted 1849 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1850 Inst.addOperand(MCOperand::createImm( 1851 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1852 } 1853 1854 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1855 assert(N == 1 && "Invalid number of operands!"); 1856 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1857 ShifterImm.Imm)); 1858 } 1859 1860 void addRegListOperands(MCInst &Inst, unsigned N) const { 1861 assert(N == 1 && "Invalid number of operands!"); 1862 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1863 for (SmallVectorImpl<unsigned>::const_iterator 1864 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1865 Inst.addOperand(MCOperand::createReg(*I)); 1866 } 1867 1868 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 1869 addRegListOperands(Inst, N); 1870 } 1871 1872 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 1873 addRegListOperands(Inst, N); 1874 } 1875 1876 void addRotImmOperands(MCInst &Inst, unsigned N) const { 1877 assert(N == 1 && "Invalid number of operands!"); 1878 // Encoded as val>>3. The printer handles display as 8, 16, 24. 1879 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 1880 } 1881 1882 void addModImmOperands(MCInst &Inst, unsigned N) const { 1883 assert(N == 1 && "Invalid number of operands!"); 1884 1885 // Support for fixups (MCFixup) 1886 if (isImm()) 1887 return addImmOperands(Inst, N); 1888 1889 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 1890 } 1891 1892 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 1893 assert(N == 1 && "Invalid number of operands!"); 1894 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1895 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 1896 Inst.addOperand(MCOperand::createImm(Enc)); 1897 } 1898 1899 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 1900 assert(N == 1 && "Invalid number of operands!"); 1901 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1902 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 1903 Inst.addOperand(MCOperand::createImm(Enc)); 1904 } 1905 1906 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 1907 assert(N == 1 && "Invalid number of operands!"); 1908 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1909 uint32_t Val = -CE->getValue(); 1910 Inst.addOperand(MCOperand::createImm(Val)); 1911 } 1912 1913 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 1914 assert(N == 1 && "Invalid number of operands!"); 1915 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1916 uint32_t Val = -CE->getValue(); 1917 Inst.addOperand(MCOperand::createImm(Val)); 1918 } 1919 1920 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 1921 assert(N == 1 && "Invalid number of operands!"); 1922 // Munge the lsb/width into a bitfield mask. 1923 unsigned lsb = Bitfield.LSB; 1924 unsigned width = Bitfield.Width; 1925 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 1926 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 1927 (32 - (lsb + width))); 1928 Inst.addOperand(MCOperand::createImm(Mask)); 1929 } 1930 1931 void addImmOperands(MCInst &Inst, unsigned N) const { 1932 assert(N == 1 && "Invalid number of operands!"); 1933 addExpr(Inst, getImm()); 1934 } 1935 1936 void addFBits16Operands(MCInst &Inst, unsigned N) const { 1937 assert(N == 1 && "Invalid number of operands!"); 1938 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1939 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 1940 } 1941 1942 void addFBits32Operands(MCInst &Inst, unsigned N) const { 1943 assert(N == 1 && "Invalid number of operands!"); 1944 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1945 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 1946 } 1947 1948 void addFPImmOperands(MCInst &Inst, unsigned N) const { 1949 assert(N == 1 && "Invalid number of operands!"); 1950 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1951 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1952 Inst.addOperand(MCOperand::createImm(Val)); 1953 } 1954 1955 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 1956 assert(N == 1 && "Invalid number of operands!"); 1957 // FIXME: We really want to scale the value here, but the LDRD/STRD 1958 // instruction don't encode operands that way yet. 1959 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1960 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1961 } 1962 1963 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 1964 assert(N == 1 && "Invalid number of operands!"); 1965 // The immediate is scaled by four in the encoding and is stored 1966 // in the MCInst as such. Lop off the low two bits here. 1967 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1968 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1969 } 1970 1971 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 1972 assert(N == 1 && "Invalid number of operands!"); 1973 // The immediate is scaled by four in the encoding and is stored 1974 // in the MCInst as such. Lop off the low two bits here. 1975 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1976 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 1977 } 1978 1979 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 1980 assert(N == 1 && "Invalid number of operands!"); 1981 // The immediate is scaled by four in the encoding and is stored 1982 // in the MCInst as such. Lop off the low two bits here. 1983 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1984 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1985 } 1986 1987 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 1988 assert(N == 1 && "Invalid number of operands!"); 1989 // The constant encodes as the immediate-1, and we store in the instruction 1990 // the bits as encoded, so subtract off one here. 1991 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1992 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1993 } 1994 1995 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 1996 assert(N == 1 && "Invalid number of operands!"); 1997 // The constant encodes as the immediate-1, and we store in the instruction 1998 // the bits as encoded, so subtract off one here. 1999 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2000 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2001 } 2002 2003 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2004 assert(N == 1 && "Invalid number of operands!"); 2005 // The constant encodes as the immediate, except for 32, which encodes as 2006 // zero. 2007 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2008 unsigned Imm = CE->getValue(); 2009 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2010 } 2011 2012 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2013 assert(N == 1 && "Invalid number of operands!"); 2014 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2015 // the instruction as well. 2016 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2017 int Val = CE->getValue(); 2018 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2019 } 2020 2021 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2022 assert(N == 1 && "Invalid number of operands!"); 2023 // The operand is actually a t2_so_imm, but we have its bitwise 2024 // negation in the assembly source, so twiddle it here. 2025 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2026 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2027 } 2028 2029 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2030 assert(N == 1 && "Invalid number of operands!"); 2031 // The operand is actually a t2_so_imm, but we have its 2032 // negation in the assembly source, so twiddle it here. 2033 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2034 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2035 } 2036 2037 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2038 assert(N == 1 && "Invalid number of operands!"); 2039 // The operand is actually an imm0_4095, but we have its 2040 // negation in the assembly source, so twiddle it here. 2041 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2042 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2043 } 2044 2045 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2046 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2047 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2048 return; 2049 } 2050 2051 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2052 assert(SR && "Unknown value type!"); 2053 Inst.addOperand(MCOperand::createExpr(SR)); 2054 } 2055 2056 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2057 assert(N == 1 && "Invalid number of operands!"); 2058 if (isImm()) { 2059 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2060 if (CE) { 2061 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2062 return; 2063 } 2064 2065 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2066 2067 assert(SR && "Unknown value type!"); 2068 Inst.addOperand(MCOperand::createExpr(SR)); 2069 return; 2070 } 2071 2072 assert(isMem() && "Unknown value type!"); 2073 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2074 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2075 } 2076 2077 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2078 assert(N == 1 && "Invalid number of operands!"); 2079 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2080 } 2081 2082 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2083 assert(N == 1 && "Invalid number of operands!"); 2084 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2085 } 2086 2087 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2088 assert(N == 1 && "Invalid number of operands!"); 2089 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2090 } 2091 2092 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2093 assert(N == 1 && "Invalid number of operands!"); 2094 int32_t Imm = Memory.OffsetImm->getValue(); 2095 Inst.addOperand(MCOperand::createImm(Imm)); 2096 } 2097 2098 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2099 assert(N == 1 && "Invalid number of operands!"); 2100 assert(isImm() && "Not an immediate!"); 2101 2102 // If we have an immediate that's not a constant, treat it as a label 2103 // reference needing a fixup. 2104 if (!isa<MCConstantExpr>(getImm())) { 2105 Inst.addOperand(MCOperand::createExpr(getImm())); 2106 return; 2107 } 2108 2109 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2110 int Val = CE->getValue(); 2111 Inst.addOperand(MCOperand::createImm(Val)); 2112 } 2113 2114 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2115 assert(N == 2 && "Invalid number of operands!"); 2116 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2117 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2118 } 2119 2120 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2121 addAlignedMemoryOperands(Inst, N); 2122 } 2123 2124 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2125 addAlignedMemoryOperands(Inst, N); 2126 } 2127 2128 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2129 addAlignedMemoryOperands(Inst, N); 2130 } 2131 2132 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2133 addAlignedMemoryOperands(Inst, N); 2134 } 2135 2136 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2137 addAlignedMemoryOperands(Inst, N); 2138 } 2139 2140 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2141 addAlignedMemoryOperands(Inst, N); 2142 } 2143 2144 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2145 addAlignedMemoryOperands(Inst, N); 2146 } 2147 2148 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2149 addAlignedMemoryOperands(Inst, N); 2150 } 2151 2152 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2153 addAlignedMemoryOperands(Inst, N); 2154 } 2155 2156 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2157 addAlignedMemoryOperands(Inst, N); 2158 } 2159 2160 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2161 addAlignedMemoryOperands(Inst, N); 2162 } 2163 2164 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2165 assert(N == 3 && "Invalid number of operands!"); 2166 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2167 if (!Memory.OffsetRegNum) { 2168 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2169 // Special case for #-0 2170 if (Val == INT32_MIN) Val = 0; 2171 if (Val < 0) Val = -Val; 2172 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2173 } else { 2174 // For register offset, we encode the shift type and negation flag 2175 // here. 2176 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2177 Memory.ShiftImm, Memory.ShiftType); 2178 } 2179 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2180 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2181 Inst.addOperand(MCOperand::createImm(Val)); 2182 } 2183 2184 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2185 assert(N == 2 && "Invalid number of operands!"); 2186 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2187 assert(CE && "non-constant AM2OffsetImm operand!"); 2188 int32_t Val = CE->getValue(); 2189 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2190 // Special case for #-0 2191 if (Val == INT32_MIN) Val = 0; 2192 if (Val < 0) Val = -Val; 2193 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2194 Inst.addOperand(MCOperand::createReg(0)); 2195 Inst.addOperand(MCOperand::createImm(Val)); 2196 } 2197 2198 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2199 assert(N == 3 && "Invalid number of operands!"); 2200 // If we have an immediate that's not a constant, treat it as a label 2201 // reference needing a fixup. If it is a constant, it's something else 2202 // and we reject it. 2203 if (isImm()) { 2204 Inst.addOperand(MCOperand::createExpr(getImm())); 2205 Inst.addOperand(MCOperand::createReg(0)); 2206 Inst.addOperand(MCOperand::createImm(0)); 2207 return; 2208 } 2209 2210 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2211 if (!Memory.OffsetRegNum) { 2212 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2213 // Special case for #-0 2214 if (Val == INT32_MIN) Val = 0; 2215 if (Val < 0) Val = -Val; 2216 Val = ARM_AM::getAM3Opc(AddSub, Val); 2217 } else { 2218 // For register offset, we encode the shift type and negation flag 2219 // here. 2220 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2221 } 2222 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2223 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2224 Inst.addOperand(MCOperand::createImm(Val)); 2225 } 2226 2227 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2228 assert(N == 2 && "Invalid number of operands!"); 2229 if (Kind == k_PostIndexRegister) { 2230 int32_t Val = 2231 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2232 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2233 Inst.addOperand(MCOperand::createImm(Val)); 2234 return; 2235 } 2236 2237 // Constant offset. 2238 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2239 int32_t Val = CE->getValue(); 2240 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2241 // Special case for #-0 2242 if (Val == INT32_MIN) Val = 0; 2243 if (Val < 0) Val = -Val; 2244 Val = ARM_AM::getAM3Opc(AddSub, Val); 2245 Inst.addOperand(MCOperand::createReg(0)); 2246 Inst.addOperand(MCOperand::createImm(Val)); 2247 } 2248 2249 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2250 assert(N == 2 && "Invalid number of operands!"); 2251 // If we have an immediate that's not a constant, treat it as a label 2252 // reference needing a fixup. If it is a constant, it's something else 2253 // and we reject it. 2254 if (isImm()) { 2255 Inst.addOperand(MCOperand::createExpr(getImm())); 2256 Inst.addOperand(MCOperand::createImm(0)); 2257 return; 2258 } 2259 2260 // The lower two bits are always zero and as such are not encoded. 2261 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2262 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2263 // Special case for #-0 2264 if (Val == INT32_MIN) Val = 0; 2265 if (Val < 0) Val = -Val; 2266 Val = ARM_AM::getAM5Opc(AddSub, Val); 2267 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2268 Inst.addOperand(MCOperand::createImm(Val)); 2269 } 2270 2271 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2272 assert(N == 2 && "Invalid number of operands!"); 2273 // If we have an immediate that's not a constant, treat it as a label 2274 // reference needing a fixup. If it is a constant, it's something else 2275 // and we reject it. 2276 if (isImm()) { 2277 Inst.addOperand(MCOperand::createExpr(getImm())); 2278 Inst.addOperand(MCOperand::createImm(0)); 2279 return; 2280 } 2281 2282 // The lower bit is always zero and as such is not encoded. 2283 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2284 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2285 // Special case for #-0 2286 if (Val == INT32_MIN) Val = 0; 2287 if (Val < 0) Val = -Val; 2288 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2289 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2290 Inst.addOperand(MCOperand::createImm(Val)); 2291 } 2292 2293 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2294 assert(N == 2 && "Invalid number of operands!"); 2295 // If we have an immediate that's not a constant, treat it as a label 2296 // reference needing a fixup. If it is a constant, it's something else 2297 // and we reject it. 2298 if (isImm()) { 2299 Inst.addOperand(MCOperand::createExpr(getImm())); 2300 Inst.addOperand(MCOperand::createImm(0)); 2301 return; 2302 } 2303 2304 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2305 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2306 Inst.addOperand(MCOperand::createImm(Val)); 2307 } 2308 2309 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2310 assert(N == 2 && "Invalid number of operands!"); 2311 // The lower two bits are always zero and as such are not encoded. 2312 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2313 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2314 Inst.addOperand(MCOperand::createImm(Val)); 2315 } 2316 2317 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2318 assert(N == 2 && "Invalid number of operands!"); 2319 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2320 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2321 Inst.addOperand(MCOperand::createImm(Val)); 2322 } 2323 2324 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2325 addMemImm8OffsetOperands(Inst, N); 2326 } 2327 2328 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2329 addMemImm8OffsetOperands(Inst, N); 2330 } 2331 2332 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2333 assert(N == 2 && "Invalid number of operands!"); 2334 // If this is an immediate, it's a label reference. 2335 if (isImm()) { 2336 addExpr(Inst, getImm()); 2337 Inst.addOperand(MCOperand::createImm(0)); 2338 return; 2339 } 2340 2341 // Otherwise, it's a normal memory reg+offset. 2342 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2343 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2344 Inst.addOperand(MCOperand::createImm(Val)); 2345 } 2346 2347 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2348 assert(N == 2 && "Invalid number of operands!"); 2349 // If this is an immediate, it's a label reference. 2350 if (isImm()) { 2351 addExpr(Inst, getImm()); 2352 Inst.addOperand(MCOperand::createImm(0)); 2353 return; 2354 } 2355 2356 // Otherwise, it's a normal memory reg+offset. 2357 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2358 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2359 Inst.addOperand(MCOperand::createImm(Val)); 2360 } 2361 2362 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2363 assert(N == 1 && "Invalid number of operands!"); 2364 // This is container for the immediate that we will create the constant 2365 // pool from 2366 addExpr(Inst, getConstantPoolImm()); 2367 return; 2368 } 2369 2370 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2371 assert(N == 2 && "Invalid number of operands!"); 2372 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2373 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2374 } 2375 2376 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2377 assert(N == 2 && "Invalid number of operands!"); 2378 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2379 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2380 } 2381 2382 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2383 assert(N == 3 && "Invalid number of operands!"); 2384 unsigned Val = 2385 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2386 Memory.ShiftImm, Memory.ShiftType); 2387 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2388 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2389 Inst.addOperand(MCOperand::createImm(Val)); 2390 } 2391 2392 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2393 assert(N == 3 && "Invalid number of operands!"); 2394 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2395 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2396 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2397 } 2398 2399 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2400 assert(N == 2 && "Invalid number of operands!"); 2401 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2402 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2403 } 2404 2405 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2406 assert(N == 2 && "Invalid number of operands!"); 2407 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2408 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2409 Inst.addOperand(MCOperand::createImm(Val)); 2410 } 2411 2412 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2413 assert(N == 2 && "Invalid number of operands!"); 2414 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2415 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2416 Inst.addOperand(MCOperand::createImm(Val)); 2417 } 2418 2419 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2420 assert(N == 2 && "Invalid number of operands!"); 2421 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2422 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2423 Inst.addOperand(MCOperand::createImm(Val)); 2424 } 2425 2426 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2427 assert(N == 2 && "Invalid number of operands!"); 2428 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2429 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2430 Inst.addOperand(MCOperand::createImm(Val)); 2431 } 2432 2433 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2434 assert(N == 1 && "Invalid number of operands!"); 2435 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2436 assert(CE && "non-constant post-idx-imm8 operand!"); 2437 int Imm = CE->getValue(); 2438 bool isAdd = Imm >= 0; 2439 if (Imm == INT32_MIN) Imm = 0; 2440 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2441 Inst.addOperand(MCOperand::createImm(Imm)); 2442 } 2443 2444 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2445 assert(N == 1 && "Invalid number of operands!"); 2446 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2447 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2448 int Imm = CE->getValue(); 2449 bool isAdd = Imm >= 0; 2450 if (Imm == INT32_MIN) Imm = 0; 2451 // Immediate is scaled by 4. 2452 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2453 Inst.addOperand(MCOperand::createImm(Imm)); 2454 } 2455 2456 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2457 assert(N == 2 && "Invalid number of operands!"); 2458 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2459 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2460 } 2461 2462 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2463 assert(N == 2 && "Invalid number of operands!"); 2464 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2465 // The sign, shift type, and shift amount are encoded in a single operand 2466 // using the AM2 encoding helpers. 2467 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2468 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2469 PostIdxReg.ShiftTy); 2470 Inst.addOperand(MCOperand::createImm(Imm)); 2471 } 2472 2473 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2474 assert(N == 1 && "Invalid number of operands!"); 2475 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2476 } 2477 2478 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2479 assert(N == 1 && "Invalid number of operands!"); 2480 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2481 } 2482 2483 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2484 assert(N == 1 && "Invalid number of operands!"); 2485 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2486 } 2487 2488 void addVecListOperands(MCInst &Inst, unsigned N) const { 2489 assert(N == 1 && "Invalid number of operands!"); 2490 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2491 } 2492 2493 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2494 assert(N == 2 && "Invalid number of operands!"); 2495 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2496 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2497 } 2498 2499 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2500 assert(N == 1 && "Invalid number of operands!"); 2501 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2502 } 2503 2504 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2505 assert(N == 1 && "Invalid number of operands!"); 2506 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2507 } 2508 2509 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2510 assert(N == 1 && "Invalid number of operands!"); 2511 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2512 } 2513 2514 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2515 assert(N == 1 && "Invalid number of operands!"); 2516 // The immediate encodes the type of constant as well as the value. 2517 // Mask in that this is an i8 splat. 2518 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2519 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2520 } 2521 2522 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2523 assert(N == 1 && "Invalid number of operands!"); 2524 // The immediate encodes the type of constant as well as the value. 2525 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2526 unsigned Value = CE->getValue(); 2527 Value = ARM_AM::encodeNEONi16splat(Value); 2528 Inst.addOperand(MCOperand::createImm(Value)); 2529 } 2530 2531 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2532 assert(N == 1 && "Invalid number of operands!"); 2533 // The immediate encodes the type of constant as well as the value. 2534 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2535 unsigned Value = CE->getValue(); 2536 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2537 Inst.addOperand(MCOperand::createImm(Value)); 2538 } 2539 2540 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2541 assert(N == 1 && "Invalid number of operands!"); 2542 // The immediate encodes the type of constant as well as the value. 2543 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2544 unsigned Value = CE->getValue(); 2545 Value = ARM_AM::encodeNEONi32splat(Value); 2546 Inst.addOperand(MCOperand::createImm(Value)); 2547 } 2548 2549 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2550 assert(N == 1 && "Invalid number of operands!"); 2551 // The immediate encodes the type of constant as well as the value. 2552 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2553 unsigned Value = CE->getValue(); 2554 Value = ARM_AM::encodeNEONi32splat(~Value); 2555 Inst.addOperand(MCOperand::createImm(Value)); 2556 } 2557 2558 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2559 assert(N == 1 && "Invalid number of operands!"); 2560 // The immediate encodes the type of constant as well as the value. 2561 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2562 unsigned Value = CE->getValue(); 2563 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2564 Inst.getOpcode() == ARM::VMOVv16i8) && 2565 "All vmvn instructions that wants to replicate non-zero byte " 2566 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2567 unsigned B = ((~Value) & 0xff); 2568 B |= 0xe00; // cmode = 0b1110 2569 Inst.addOperand(MCOperand::createImm(B)); 2570 } 2571 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2572 assert(N == 1 && "Invalid number of operands!"); 2573 // The immediate encodes the type of constant as well as the value. 2574 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2575 unsigned Value = CE->getValue(); 2576 if (Value >= 256 && Value <= 0xffff) 2577 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2578 else if (Value > 0xffff && Value <= 0xffffff) 2579 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2580 else if (Value > 0xffffff) 2581 Value = (Value >> 24) | 0x600; 2582 Inst.addOperand(MCOperand::createImm(Value)); 2583 } 2584 2585 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2586 assert(N == 1 && "Invalid number of operands!"); 2587 // The immediate encodes the type of constant as well as the value. 2588 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2589 unsigned Value = CE->getValue(); 2590 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2591 Inst.getOpcode() == ARM::VMOVv16i8) && 2592 "All instructions that wants to replicate non-zero byte " 2593 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2594 unsigned B = Value & 0xff; 2595 B |= 0xe00; // cmode = 0b1110 2596 Inst.addOperand(MCOperand::createImm(B)); 2597 } 2598 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2599 assert(N == 1 && "Invalid number of operands!"); 2600 // The immediate encodes the type of constant as well as the value. 2601 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2602 unsigned Value = ~CE->getValue(); 2603 if (Value >= 256 && Value <= 0xffff) 2604 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2605 else if (Value > 0xffff && Value <= 0xffffff) 2606 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2607 else if (Value > 0xffffff) 2608 Value = (Value >> 24) | 0x600; 2609 Inst.addOperand(MCOperand::createImm(Value)); 2610 } 2611 2612 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2613 assert(N == 1 && "Invalid number of operands!"); 2614 // The immediate encodes the type of constant as well as the value. 2615 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2616 uint64_t Value = CE->getValue(); 2617 unsigned Imm = 0; 2618 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2619 Imm |= (Value & 1) << i; 2620 } 2621 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2622 } 2623 2624 void print(raw_ostream &OS) const override; 2625 2626 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2627 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2628 Op->ITMask.Mask = Mask; 2629 Op->StartLoc = S; 2630 Op->EndLoc = S; 2631 return Op; 2632 } 2633 2634 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2635 SMLoc S) { 2636 auto Op = make_unique<ARMOperand>(k_CondCode); 2637 Op->CC.Val = CC; 2638 Op->StartLoc = S; 2639 Op->EndLoc = S; 2640 return Op; 2641 } 2642 2643 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2644 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2645 Op->Cop.Val = CopVal; 2646 Op->StartLoc = S; 2647 Op->EndLoc = S; 2648 return Op; 2649 } 2650 2651 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2652 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2653 Op->Cop.Val = CopVal; 2654 Op->StartLoc = S; 2655 Op->EndLoc = S; 2656 return Op; 2657 } 2658 2659 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2660 SMLoc E) { 2661 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2662 Op->Cop.Val = Val; 2663 Op->StartLoc = S; 2664 Op->EndLoc = E; 2665 return Op; 2666 } 2667 2668 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2669 auto Op = make_unique<ARMOperand>(k_CCOut); 2670 Op->Reg.RegNum = RegNum; 2671 Op->StartLoc = S; 2672 Op->EndLoc = S; 2673 return Op; 2674 } 2675 2676 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2677 auto Op = make_unique<ARMOperand>(k_Token); 2678 Op->Tok.Data = Str.data(); 2679 Op->Tok.Length = Str.size(); 2680 Op->StartLoc = S; 2681 Op->EndLoc = S; 2682 return Op; 2683 } 2684 2685 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2686 SMLoc E) { 2687 auto Op = make_unique<ARMOperand>(k_Register); 2688 Op->Reg.RegNum = RegNum; 2689 Op->StartLoc = S; 2690 Op->EndLoc = E; 2691 return Op; 2692 } 2693 2694 static std::unique_ptr<ARMOperand> 2695 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2696 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2697 SMLoc E) { 2698 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2699 Op->RegShiftedReg.ShiftTy = ShTy; 2700 Op->RegShiftedReg.SrcReg = SrcReg; 2701 Op->RegShiftedReg.ShiftReg = ShiftReg; 2702 Op->RegShiftedReg.ShiftImm = ShiftImm; 2703 Op->StartLoc = S; 2704 Op->EndLoc = E; 2705 return Op; 2706 } 2707 2708 static std::unique_ptr<ARMOperand> 2709 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2710 unsigned ShiftImm, SMLoc S, SMLoc E) { 2711 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2712 Op->RegShiftedImm.ShiftTy = ShTy; 2713 Op->RegShiftedImm.SrcReg = SrcReg; 2714 Op->RegShiftedImm.ShiftImm = ShiftImm; 2715 Op->StartLoc = S; 2716 Op->EndLoc = E; 2717 return Op; 2718 } 2719 2720 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2721 SMLoc S, SMLoc E) { 2722 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2723 Op->ShifterImm.isASR = isASR; 2724 Op->ShifterImm.Imm = Imm; 2725 Op->StartLoc = S; 2726 Op->EndLoc = E; 2727 return Op; 2728 } 2729 2730 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2731 SMLoc E) { 2732 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2733 Op->RotImm.Imm = Imm; 2734 Op->StartLoc = S; 2735 Op->EndLoc = E; 2736 return Op; 2737 } 2738 2739 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2740 SMLoc S, SMLoc E) { 2741 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2742 Op->ModImm.Bits = Bits; 2743 Op->ModImm.Rot = Rot; 2744 Op->StartLoc = S; 2745 Op->EndLoc = E; 2746 return Op; 2747 } 2748 2749 static std::unique_ptr<ARMOperand> 2750 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 2751 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 2752 Op->Imm.Val = Val; 2753 Op->StartLoc = S; 2754 Op->EndLoc = E; 2755 return Op; 2756 } 2757 2758 static std::unique_ptr<ARMOperand> 2759 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2760 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2761 Op->Bitfield.LSB = LSB; 2762 Op->Bitfield.Width = Width; 2763 Op->StartLoc = S; 2764 Op->EndLoc = E; 2765 return Op; 2766 } 2767 2768 static std::unique_ptr<ARMOperand> 2769 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2770 SMLoc StartLoc, SMLoc EndLoc) { 2771 assert (Regs.size() > 0 && "RegList contains no registers?"); 2772 KindTy Kind = k_RegisterList; 2773 2774 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2775 Kind = k_DPRRegisterList; 2776 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2777 contains(Regs.front().second)) 2778 Kind = k_SPRRegisterList; 2779 2780 // Sort based on the register encoding values. 2781 array_pod_sort(Regs.begin(), Regs.end()); 2782 2783 auto Op = make_unique<ARMOperand>(Kind); 2784 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2785 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2786 Op->Registers.push_back(I->second); 2787 Op->StartLoc = StartLoc; 2788 Op->EndLoc = EndLoc; 2789 return Op; 2790 } 2791 2792 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2793 unsigned Count, 2794 bool isDoubleSpaced, 2795 SMLoc S, SMLoc E) { 2796 auto Op = make_unique<ARMOperand>(k_VectorList); 2797 Op->VectorList.RegNum = RegNum; 2798 Op->VectorList.Count = Count; 2799 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2800 Op->StartLoc = S; 2801 Op->EndLoc = E; 2802 return Op; 2803 } 2804 2805 static std::unique_ptr<ARMOperand> 2806 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2807 SMLoc S, SMLoc E) { 2808 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2809 Op->VectorList.RegNum = RegNum; 2810 Op->VectorList.Count = Count; 2811 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2812 Op->StartLoc = S; 2813 Op->EndLoc = E; 2814 return Op; 2815 } 2816 2817 static std::unique_ptr<ARMOperand> 2818 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2819 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2820 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2821 Op->VectorList.RegNum = RegNum; 2822 Op->VectorList.Count = Count; 2823 Op->VectorList.LaneIndex = Index; 2824 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2825 Op->StartLoc = S; 2826 Op->EndLoc = E; 2827 return Op; 2828 } 2829 2830 static std::unique_ptr<ARMOperand> 2831 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2832 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2833 Op->VectorIndex.Val = Idx; 2834 Op->StartLoc = S; 2835 Op->EndLoc = E; 2836 return Op; 2837 } 2838 2839 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2840 SMLoc E) { 2841 auto Op = make_unique<ARMOperand>(k_Immediate); 2842 Op->Imm.Val = Val; 2843 Op->StartLoc = S; 2844 Op->EndLoc = E; 2845 return Op; 2846 } 2847 2848 static std::unique_ptr<ARMOperand> 2849 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2850 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2851 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2852 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2853 auto Op = make_unique<ARMOperand>(k_Memory); 2854 Op->Memory.BaseRegNum = BaseRegNum; 2855 Op->Memory.OffsetImm = OffsetImm; 2856 Op->Memory.OffsetRegNum = OffsetRegNum; 2857 Op->Memory.ShiftType = ShiftType; 2858 Op->Memory.ShiftImm = ShiftImm; 2859 Op->Memory.Alignment = Alignment; 2860 Op->Memory.isNegative = isNegative; 2861 Op->StartLoc = S; 2862 Op->EndLoc = E; 2863 Op->AlignmentLoc = AlignmentLoc; 2864 return Op; 2865 } 2866 2867 static std::unique_ptr<ARMOperand> 2868 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2869 unsigned ShiftImm, SMLoc S, SMLoc E) { 2870 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2871 Op->PostIdxReg.RegNum = RegNum; 2872 Op->PostIdxReg.isAdd = isAdd; 2873 Op->PostIdxReg.ShiftTy = ShiftTy; 2874 Op->PostIdxReg.ShiftImm = ShiftImm; 2875 Op->StartLoc = S; 2876 Op->EndLoc = E; 2877 return Op; 2878 } 2879 2880 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2881 SMLoc S) { 2882 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 2883 Op->MBOpt.Val = Opt; 2884 Op->StartLoc = S; 2885 Op->EndLoc = S; 2886 return Op; 2887 } 2888 2889 static std::unique_ptr<ARMOperand> 2890 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 2891 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 2892 Op->ISBOpt.Val = Opt; 2893 Op->StartLoc = S; 2894 Op->EndLoc = S; 2895 return Op; 2896 } 2897 2898 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 2899 SMLoc S) { 2900 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 2901 Op->IFlags.Val = IFlags; 2902 Op->StartLoc = S; 2903 Op->EndLoc = S; 2904 return Op; 2905 } 2906 2907 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 2908 auto Op = make_unique<ARMOperand>(k_MSRMask); 2909 Op->MMask.Val = MMask; 2910 Op->StartLoc = S; 2911 Op->EndLoc = S; 2912 return Op; 2913 } 2914 2915 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 2916 auto Op = make_unique<ARMOperand>(k_BankedReg); 2917 Op->BankedReg.Val = Reg; 2918 Op->StartLoc = S; 2919 Op->EndLoc = S; 2920 return Op; 2921 } 2922 }; 2923 2924 } // end anonymous namespace. 2925 2926 void ARMOperand::print(raw_ostream &OS) const { 2927 switch (Kind) { 2928 case k_CondCode: 2929 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 2930 break; 2931 case k_CCOut: 2932 OS << "<ccout " << getReg() << ">"; 2933 break; 2934 case k_ITCondMask: { 2935 static const char *const MaskStr[] = { 2936 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 2937 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 2938 }; 2939 assert((ITMask.Mask & 0xf) == ITMask.Mask); 2940 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 2941 break; 2942 } 2943 case k_CoprocNum: 2944 OS << "<coprocessor number: " << getCoproc() << ">"; 2945 break; 2946 case k_CoprocReg: 2947 OS << "<coprocessor register: " << getCoproc() << ">"; 2948 break; 2949 case k_CoprocOption: 2950 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 2951 break; 2952 case k_MSRMask: 2953 OS << "<mask: " << getMSRMask() << ">"; 2954 break; 2955 case k_BankedReg: 2956 OS << "<banked reg: " << getBankedReg() << ">"; 2957 break; 2958 case k_Immediate: 2959 OS << *getImm(); 2960 break; 2961 case k_MemBarrierOpt: 2962 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 2963 break; 2964 case k_InstSyncBarrierOpt: 2965 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 2966 break; 2967 case k_Memory: 2968 OS << "<memory " 2969 << " base:" << Memory.BaseRegNum; 2970 OS << ">"; 2971 break; 2972 case k_PostIndexRegister: 2973 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 2974 << PostIdxReg.RegNum; 2975 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 2976 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 2977 << PostIdxReg.ShiftImm; 2978 OS << ">"; 2979 break; 2980 case k_ProcIFlags: { 2981 OS << "<ARM_PROC::"; 2982 unsigned IFlags = getProcIFlags(); 2983 for (int i=2; i >= 0; --i) 2984 if (IFlags & (1 << i)) 2985 OS << ARM_PROC::IFlagsToString(1 << i); 2986 OS << ">"; 2987 break; 2988 } 2989 case k_Register: 2990 OS << "<register " << getReg() << ">"; 2991 break; 2992 case k_ShifterImmediate: 2993 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 2994 << " #" << ShifterImm.Imm << ">"; 2995 break; 2996 case k_ShiftedRegister: 2997 OS << "<so_reg_reg " 2998 << RegShiftedReg.SrcReg << " " 2999 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 3000 << " " << RegShiftedReg.ShiftReg << ">"; 3001 break; 3002 case k_ShiftedImmediate: 3003 OS << "<so_reg_imm " 3004 << RegShiftedImm.SrcReg << " " 3005 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 3006 << " #" << RegShiftedImm.ShiftImm << ">"; 3007 break; 3008 case k_RotateImmediate: 3009 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3010 break; 3011 case k_ModifiedImmediate: 3012 OS << "<mod_imm #" << ModImm.Bits << ", #" 3013 << ModImm.Rot << ")>"; 3014 break; 3015 case k_ConstantPoolImmediate: 3016 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3017 break; 3018 case k_BitfieldDescriptor: 3019 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3020 << ", width: " << Bitfield.Width << ">"; 3021 break; 3022 case k_RegisterList: 3023 case k_DPRRegisterList: 3024 case k_SPRRegisterList: { 3025 OS << "<register_list "; 3026 3027 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3028 for (SmallVectorImpl<unsigned>::const_iterator 3029 I = RegList.begin(), E = RegList.end(); I != E; ) { 3030 OS << *I; 3031 if (++I < E) OS << ", "; 3032 } 3033 3034 OS << ">"; 3035 break; 3036 } 3037 case k_VectorList: 3038 OS << "<vector_list " << VectorList.Count << " * " 3039 << VectorList.RegNum << ">"; 3040 break; 3041 case k_VectorListAllLanes: 3042 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3043 << VectorList.RegNum << ">"; 3044 break; 3045 case k_VectorListIndexed: 3046 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3047 << VectorList.Count << " * " << VectorList.RegNum << ">"; 3048 break; 3049 case k_Token: 3050 OS << "'" << getToken() << "'"; 3051 break; 3052 case k_VectorIndex: 3053 OS << "<vectorindex " << getVectorIndex() << ">"; 3054 break; 3055 } 3056 } 3057 3058 /// @name Auto-generated Match Functions 3059 /// { 3060 3061 static unsigned MatchRegisterName(StringRef Name); 3062 3063 /// } 3064 3065 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3066 SMLoc &StartLoc, SMLoc &EndLoc) { 3067 const AsmToken &Tok = getParser().getTok(); 3068 StartLoc = Tok.getLoc(); 3069 EndLoc = Tok.getEndLoc(); 3070 RegNo = tryParseRegister(); 3071 3072 return (RegNo == (unsigned)-1); 3073 } 3074 3075 /// Try to parse a register name. The token must be an Identifier when called, 3076 /// and if it is a register name the token is eaten and the register number is 3077 /// returned. Otherwise return -1. 3078 /// 3079 int ARMAsmParser::tryParseRegister() { 3080 MCAsmParser &Parser = getParser(); 3081 const AsmToken &Tok = Parser.getTok(); 3082 if (Tok.isNot(AsmToken::Identifier)) return -1; 3083 3084 std::string lowerCase = Tok.getString().lower(); 3085 unsigned RegNum = MatchRegisterName(lowerCase); 3086 if (!RegNum) { 3087 RegNum = StringSwitch<unsigned>(lowerCase) 3088 .Case("r13", ARM::SP) 3089 .Case("r14", ARM::LR) 3090 .Case("r15", ARM::PC) 3091 .Case("ip", ARM::R12) 3092 // Additional register name aliases for 'gas' compatibility. 3093 .Case("a1", ARM::R0) 3094 .Case("a2", ARM::R1) 3095 .Case("a3", ARM::R2) 3096 .Case("a4", ARM::R3) 3097 .Case("v1", ARM::R4) 3098 .Case("v2", ARM::R5) 3099 .Case("v3", ARM::R6) 3100 .Case("v4", ARM::R7) 3101 .Case("v5", ARM::R8) 3102 .Case("v6", ARM::R9) 3103 .Case("v7", ARM::R10) 3104 .Case("v8", ARM::R11) 3105 .Case("sb", ARM::R9) 3106 .Case("sl", ARM::R10) 3107 .Case("fp", ARM::R11) 3108 .Default(0); 3109 } 3110 if (!RegNum) { 3111 // Check for aliases registered via .req. Canonicalize to lower case. 3112 // That's more consistent since register names are case insensitive, and 3113 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3114 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3115 // If no match, return failure. 3116 if (Entry == RegisterReqs.end()) 3117 return -1; 3118 Parser.Lex(); // Eat identifier token. 3119 return Entry->getValue(); 3120 } 3121 3122 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3123 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3124 return -1; 3125 3126 Parser.Lex(); // Eat identifier token. 3127 3128 return RegNum; 3129 } 3130 3131 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3132 // If a recoverable error occurs, return 1. If an irrecoverable error 3133 // occurs, return -1. An irrecoverable error is one where tokens have been 3134 // consumed in the process of trying to parse the shifter (i.e., when it is 3135 // indeed a shifter operand, but malformed). 3136 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3137 MCAsmParser &Parser = getParser(); 3138 SMLoc S = Parser.getTok().getLoc(); 3139 const AsmToken &Tok = Parser.getTok(); 3140 if (Tok.isNot(AsmToken::Identifier)) 3141 return -1; 3142 3143 std::string lowerCase = Tok.getString().lower(); 3144 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3145 .Case("asl", ARM_AM::lsl) 3146 .Case("lsl", ARM_AM::lsl) 3147 .Case("lsr", ARM_AM::lsr) 3148 .Case("asr", ARM_AM::asr) 3149 .Case("ror", ARM_AM::ror) 3150 .Case("rrx", ARM_AM::rrx) 3151 .Default(ARM_AM::no_shift); 3152 3153 if (ShiftTy == ARM_AM::no_shift) 3154 return 1; 3155 3156 Parser.Lex(); // Eat the operator. 3157 3158 // The source register for the shift has already been added to the 3159 // operand list, so we need to pop it off and combine it into the shifted 3160 // register operand instead. 3161 std::unique_ptr<ARMOperand> PrevOp( 3162 (ARMOperand *)Operands.pop_back_val().release()); 3163 if (!PrevOp->isReg()) 3164 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3165 int SrcReg = PrevOp->getReg(); 3166 3167 SMLoc EndLoc; 3168 int64_t Imm = 0; 3169 int ShiftReg = 0; 3170 if (ShiftTy == ARM_AM::rrx) { 3171 // RRX Doesn't have an explicit shift amount. The encoder expects 3172 // the shift register to be the same as the source register. Seems odd, 3173 // but OK. 3174 ShiftReg = SrcReg; 3175 } else { 3176 // Figure out if this is shifted by a constant or a register (for non-RRX). 3177 if (Parser.getTok().is(AsmToken::Hash) || 3178 Parser.getTok().is(AsmToken::Dollar)) { 3179 Parser.Lex(); // Eat hash. 3180 SMLoc ImmLoc = Parser.getTok().getLoc(); 3181 const MCExpr *ShiftExpr = nullptr; 3182 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3183 Error(ImmLoc, "invalid immediate shift value"); 3184 return -1; 3185 } 3186 // The expression must be evaluatable as an immediate. 3187 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3188 if (!CE) { 3189 Error(ImmLoc, "invalid immediate shift value"); 3190 return -1; 3191 } 3192 // Range check the immediate. 3193 // lsl, ror: 0 <= imm <= 31 3194 // lsr, asr: 0 <= imm <= 32 3195 Imm = CE->getValue(); 3196 if (Imm < 0 || 3197 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3198 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3199 Error(ImmLoc, "immediate shift value out of range"); 3200 return -1; 3201 } 3202 // shift by zero is a nop. Always send it through as lsl. 3203 // ('as' compatibility) 3204 if (Imm == 0) 3205 ShiftTy = ARM_AM::lsl; 3206 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3207 SMLoc L = Parser.getTok().getLoc(); 3208 EndLoc = Parser.getTok().getEndLoc(); 3209 ShiftReg = tryParseRegister(); 3210 if (ShiftReg == -1) { 3211 Error(L, "expected immediate or register in shift operand"); 3212 return -1; 3213 } 3214 } else { 3215 Error(Parser.getTok().getLoc(), 3216 "expected immediate or register in shift operand"); 3217 return -1; 3218 } 3219 } 3220 3221 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3222 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3223 ShiftReg, Imm, 3224 S, EndLoc)); 3225 else 3226 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3227 S, EndLoc)); 3228 3229 return 0; 3230 } 3231 3232 3233 /// Try to parse a register name. The token must be an Identifier when called. 3234 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3235 /// if there is a "writeback". 'true' if it's not a register. 3236 /// 3237 /// TODO this is likely to change to allow different register types and or to 3238 /// parse for a specific register type. 3239 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3240 MCAsmParser &Parser = getParser(); 3241 const AsmToken &RegTok = Parser.getTok(); 3242 int RegNo = tryParseRegister(); 3243 if (RegNo == -1) 3244 return true; 3245 3246 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3247 RegTok.getEndLoc())); 3248 3249 const AsmToken &ExclaimTok = Parser.getTok(); 3250 if (ExclaimTok.is(AsmToken::Exclaim)) { 3251 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3252 ExclaimTok.getLoc())); 3253 Parser.Lex(); // Eat exclaim token 3254 return false; 3255 } 3256 3257 // Also check for an index operand. This is only legal for vector registers, 3258 // but that'll get caught OK in operand matching, so we don't need to 3259 // explicitly filter everything else out here. 3260 if (Parser.getTok().is(AsmToken::LBrac)) { 3261 SMLoc SIdx = Parser.getTok().getLoc(); 3262 Parser.Lex(); // Eat left bracket token. 3263 3264 const MCExpr *ImmVal; 3265 if (getParser().parseExpression(ImmVal)) 3266 return true; 3267 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3268 if (!MCE) 3269 return TokError("immediate value expected for vector index"); 3270 3271 if (Parser.getTok().isNot(AsmToken::RBrac)) 3272 return Error(Parser.getTok().getLoc(), "']' expected"); 3273 3274 SMLoc E = Parser.getTok().getEndLoc(); 3275 Parser.Lex(); // Eat right bracket token. 3276 3277 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3278 SIdx, E, 3279 getContext())); 3280 } 3281 3282 return false; 3283 } 3284 3285 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3286 /// instruction with a symbolic operand name. 3287 /// We accept "crN" syntax for GAS compatibility. 3288 /// <operand-name> ::= <prefix><number> 3289 /// If CoprocOp is 'c', then: 3290 /// <prefix> ::= c | cr 3291 /// If CoprocOp is 'p', then : 3292 /// <prefix> ::= p 3293 /// <number> ::= integer in range [0, 15] 3294 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3295 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3296 // but efficient. 3297 if (Name.size() < 2 || Name[0] != CoprocOp) 3298 return -1; 3299 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3300 3301 switch (Name.size()) { 3302 default: return -1; 3303 case 1: 3304 switch (Name[0]) { 3305 default: return -1; 3306 case '0': return 0; 3307 case '1': return 1; 3308 case '2': return 2; 3309 case '3': return 3; 3310 case '4': return 4; 3311 case '5': return 5; 3312 case '6': return 6; 3313 case '7': return 7; 3314 case '8': return 8; 3315 case '9': return 9; 3316 } 3317 case 2: 3318 if (Name[0] != '1') 3319 return -1; 3320 switch (Name[1]) { 3321 default: return -1; 3322 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3323 // However, old cores (v5/v6) did use them in that way. 3324 case '0': return 10; 3325 case '1': return 11; 3326 case '2': return 12; 3327 case '3': return 13; 3328 case '4': return 14; 3329 case '5': return 15; 3330 } 3331 } 3332 } 3333 3334 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3335 OperandMatchResultTy 3336 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3337 MCAsmParser &Parser = getParser(); 3338 SMLoc S = Parser.getTok().getLoc(); 3339 const AsmToken &Tok = Parser.getTok(); 3340 if (!Tok.is(AsmToken::Identifier)) 3341 return MatchOperand_NoMatch; 3342 unsigned CC = ARMCondCodeFromString(Tok.getString()); 3343 if (CC == ~0U) 3344 return MatchOperand_NoMatch; 3345 Parser.Lex(); // Eat the token. 3346 3347 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3348 3349 return MatchOperand_Success; 3350 } 3351 3352 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3353 /// token must be an Identifier when called, and if it is a coprocessor 3354 /// number, the token is eaten and the operand is added to the operand list. 3355 OperandMatchResultTy 3356 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3357 MCAsmParser &Parser = getParser(); 3358 SMLoc S = Parser.getTok().getLoc(); 3359 const AsmToken &Tok = Parser.getTok(); 3360 if (Tok.isNot(AsmToken::Identifier)) 3361 return MatchOperand_NoMatch; 3362 3363 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3364 if (Num == -1) 3365 return MatchOperand_NoMatch; 3366 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3367 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3368 return MatchOperand_NoMatch; 3369 3370 Parser.Lex(); // Eat identifier token. 3371 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3372 return MatchOperand_Success; 3373 } 3374 3375 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3376 /// token must be an Identifier when called, and if it is a coprocessor 3377 /// number, the token is eaten and the operand is added to the operand list. 3378 OperandMatchResultTy 3379 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3380 MCAsmParser &Parser = getParser(); 3381 SMLoc S = Parser.getTok().getLoc(); 3382 const AsmToken &Tok = Parser.getTok(); 3383 if (Tok.isNot(AsmToken::Identifier)) 3384 return MatchOperand_NoMatch; 3385 3386 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3387 if (Reg == -1) 3388 return MatchOperand_NoMatch; 3389 3390 Parser.Lex(); // Eat identifier token. 3391 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3392 return MatchOperand_Success; 3393 } 3394 3395 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3396 /// coproc_option : '{' imm0_255 '}' 3397 OperandMatchResultTy 3398 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3399 MCAsmParser &Parser = getParser(); 3400 SMLoc S = Parser.getTok().getLoc(); 3401 3402 // If this isn't a '{', this isn't a coprocessor immediate operand. 3403 if (Parser.getTok().isNot(AsmToken::LCurly)) 3404 return MatchOperand_NoMatch; 3405 Parser.Lex(); // Eat the '{' 3406 3407 const MCExpr *Expr; 3408 SMLoc Loc = Parser.getTok().getLoc(); 3409 if (getParser().parseExpression(Expr)) { 3410 Error(Loc, "illegal expression"); 3411 return MatchOperand_ParseFail; 3412 } 3413 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3414 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3415 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3416 return MatchOperand_ParseFail; 3417 } 3418 int Val = CE->getValue(); 3419 3420 // Check for and consume the closing '}' 3421 if (Parser.getTok().isNot(AsmToken::RCurly)) 3422 return MatchOperand_ParseFail; 3423 SMLoc E = Parser.getTok().getEndLoc(); 3424 Parser.Lex(); // Eat the '}' 3425 3426 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3427 return MatchOperand_Success; 3428 } 3429 3430 // For register list parsing, we need to map from raw GPR register numbering 3431 // to the enumeration values. The enumeration values aren't sorted by 3432 // register number due to our using "sp", "lr" and "pc" as canonical names. 3433 static unsigned getNextRegister(unsigned Reg) { 3434 // If this is a GPR, we need to do it manually, otherwise we can rely 3435 // on the sort ordering of the enumeration since the other reg-classes 3436 // are sane. 3437 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3438 return Reg + 1; 3439 switch(Reg) { 3440 default: llvm_unreachable("Invalid GPR number!"); 3441 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3442 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3443 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3444 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3445 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3446 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3447 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3448 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3449 } 3450 } 3451 3452 /// Parse a register list. 3453 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3454 MCAsmParser &Parser = getParser(); 3455 if (Parser.getTok().isNot(AsmToken::LCurly)) 3456 return TokError("Token is not a Left Curly Brace"); 3457 SMLoc S = Parser.getTok().getLoc(); 3458 Parser.Lex(); // Eat '{' token. 3459 SMLoc RegLoc = Parser.getTok().getLoc(); 3460 3461 // Check the first register in the list to see what register class 3462 // this is a list of. 3463 int Reg = tryParseRegister(); 3464 if (Reg == -1) 3465 return Error(RegLoc, "register expected"); 3466 3467 // The reglist instructions have at most 16 registers, so reserve 3468 // space for that many. 3469 int EReg = 0; 3470 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3471 3472 // Allow Q regs and just interpret them as the two D sub-registers. 3473 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3474 Reg = getDRegFromQReg(Reg); 3475 EReg = MRI->getEncodingValue(Reg); 3476 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3477 ++Reg; 3478 } 3479 const MCRegisterClass *RC; 3480 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3481 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3482 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3483 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3484 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3485 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3486 else 3487 return Error(RegLoc, "invalid register in register list"); 3488 3489 // Store the register. 3490 EReg = MRI->getEncodingValue(Reg); 3491 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3492 3493 // This starts immediately after the first register token in the list, 3494 // so we can see either a comma or a minus (range separator) as a legal 3495 // next token. 3496 while (Parser.getTok().is(AsmToken::Comma) || 3497 Parser.getTok().is(AsmToken::Minus)) { 3498 if (Parser.getTok().is(AsmToken::Minus)) { 3499 Parser.Lex(); // Eat the minus. 3500 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3501 int EndReg = tryParseRegister(); 3502 if (EndReg == -1) 3503 return Error(AfterMinusLoc, "register expected"); 3504 // Allow Q regs and just interpret them as the two D sub-registers. 3505 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3506 EndReg = getDRegFromQReg(EndReg) + 1; 3507 // If the register is the same as the start reg, there's nothing 3508 // more to do. 3509 if (Reg == EndReg) 3510 continue; 3511 // The register must be in the same register class as the first. 3512 if (!RC->contains(EndReg)) 3513 return Error(AfterMinusLoc, "invalid register in register list"); 3514 // Ranges must go from low to high. 3515 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3516 return Error(AfterMinusLoc, "bad range in register list"); 3517 3518 // Add all the registers in the range to the register list. 3519 while (Reg != EndReg) { 3520 Reg = getNextRegister(Reg); 3521 EReg = MRI->getEncodingValue(Reg); 3522 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3523 } 3524 continue; 3525 } 3526 Parser.Lex(); // Eat the comma. 3527 RegLoc = Parser.getTok().getLoc(); 3528 int OldReg = Reg; 3529 const AsmToken RegTok = Parser.getTok(); 3530 Reg = tryParseRegister(); 3531 if (Reg == -1) 3532 return Error(RegLoc, "register expected"); 3533 // Allow Q regs and just interpret them as the two D sub-registers. 3534 bool isQReg = false; 3535 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3536 Reg = getDRegFromQReg(Reg); 3537 isQReg = true; 3538 } 3539 // The register must be in the same register class as the first. 3540 if (!RC->contains(Reg)) 3541 return Error(RegLoc, "invalid register in register list"); 3542 // List must be monotonically increasing. 3543 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3544 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3545 Warning(RegLoc, "register list not in ascending order"); 3546 else 3547 return Error(RegLoc, "register list not in ascending order"); 3548 } 3549 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3550 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3551 ") in register list"); 3552 continue; 3553 } 3554 // VFP register lists must also be contiguous. 3555 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3556 Reg != OldReg + 1) 3557 return Error(RegLoc, "non-contiguous register range"); 3558 EReg = MRI->getEncodingValue(Reg); 3559 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3560 if (isQReg) { 3561 EReg = MRI->getEncodingValue(++Reg); 3562 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3563 } 3564 } 3565 3566 if (Parser.getTok().isNot(AsmToken::RCurly)) 3567 return Error(Parser.getTok().getLoc(), "'}' expected"); 3568 SMLoc E = Parser.getTok().getEndLoc(); 3569 Parser.Lex(); // Eat '}' token. 3570 3571 // Push the register list operand. 3572 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3573 3574 // The ARM system instruction variants for LDM/STM have a '^' token here. 3575 if (Parser.getTok().is(AsmToken::Caret)) { 3576 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3577 Parser.Lex(); // Eat '^' token. 3578 } 3579 3580 return false; 3581 } 3582 3583 // Helper function to parse the lane index for vector lists. 3584 OperandMatchResultTy ARMAsmParser:: 3585 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3586 MCAsmParser &Parser = getParser(); 3587 Index = 0; // Always return a defined index value. 3588 if (Parser.getTok().is(AsmToken::LBrac)) { 3589 Parser.Lex(); // Eat the '['. 3590 if (Parser.getTok().is(AsmToken::RBrac)) { 3591 // "Dn[]" is the 'all lanes' syntax. 3592 LaneKind = AllLanes; 3593 EndLoc = Parser.getTok().getEndLoc(); 3594 Parser.Lex(); // Eat the ']'. 3595 return MatchOperand_Success; 3596 } 3597 3598 // There's an optional '#' token here. Normally there wouldn't be, but 3599 // inline assemble puts one in, and it's friendly to accept that. 3600 if (Parser.getTok().is(AsmToken::Hash)) 3601 Parser.Lex(); // Eat '#' or '$'. 3602 3603 const MCExpr *LaneIndex; 3604 SMLoc Loc = Parser.getTok().getLoc(); 3605 if (getParser().parseExpression(LaneIndex)) { 3606 Error(Loc, "illegal expression"); 3607 return MatchOperand_ParseFail; 3608 } 3609 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3610 if (!CE) { 3611 Error(Loc, "lane index must be empty or an integer"); 3612 return MatchOperand_ParseFail; 3613 } 3614 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3615 Error(Parser.getTok().getLoc(), "']' expected"); 3616 return MatchOperand_ParseFail; 3617 } 3618 EndLoc = Parser.getTok().getEndLoc(); 3619 Parser.Lex(); // Eat the ']'. 3620 int64_t Val = CE->getValue(); 3621 3622 // FIXME: Make this range check context sensitive for .8, .16, .32. 3623 if (Val < 0 || Val > 7) { 3624 Error(Parser.getTok().getLoc(), "lane index out of range"); 3625 return MatchOperand_ParseFail; 3626 } 3627 Index = Val; 3628 LaneKind = IndexedLane; 3629 return MatchOperand_Success; 3630 } 3631 LaneKind = NoLanes; 3632 return MatchOperand_Success; 3633 } 3634 3635 // parse a vector register list 3636 OperandMatchResultTy 3637 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3638 MCAsmParser &Parser = getParser(); 3639 VectorLaneTy LaneKind; 3640 unsigned LaneIndex; 3641 SMLoc S = Parser.getTok().getLoc(); 3642 // As an extension (to match gas), support a plain D register or Q register 3643 // (without encosing curly braces) as a single or double entry list, 3644 // respectively. 3645 if (Parser.getTok().is(AsmToken::Identifier)) { 3646 SMLoc E = Parser.getTok().getEndLoc(); 3647 int Reg = tryParseRegister(); 3648 if (Reg == -1) 3649 return MatchOperand_NoMatch; 3650 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3651 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3652 if (Res != MatchOperand_Success) 3653 return Res; 3654 switch (LaneKind) { 3655 case NoLanes: 3656 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3657 break; 3658 case AllLanes: 3659 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3660 S, E)); 3661 break; 3662 case IndexedLane: 3663 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3664 LaneIndex, 3665 false, S, E)); 3666 break; 3667 } 3668 return MatchOperand_Success; 3669 } 3670 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3671 Reg = getDRegFromQReg(Reg); 3672 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3673 if (Res != MatchOperand_Success) 3674 return Res; 3675 switch (LaneKind) { 3676 case NoLanes: 3677 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3678 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3679 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3680 break; 3681 case AllLanes: 3682 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3683 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3684 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3685 S, E)); 3686 break; 3687 case IndexedLane: 3688 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3689 LaneIndex, 3690 false, S, E)); 3691 break; 3692 } 3693 return MatchOperand_Success; 3694 } 3695 Error(S, "vector register expected"); 3696 return MatchOperand_ParseFail; 3697 } 3698 3699 if (Parser.getTok().isNot(AsmToken::LCurly)) 3700 return MatchOperand_NoMatch; 3701 3702 Parser.Lex(); // Eat '{' token. 3703 SMLoc RegLoc = Parser.getTok().getLoc(); 3704 3705 int Reg = tryParseRegister(); 3706 if (Reg == -1) { 3707 Error(RegLoc, "register expected"); 3708 return MatchOperand_ParseFail; 3709 } 3710 unsigned Count = 1; 3711 int Spacing = 0; 3712 unsigned FirstReg = Reg; 3713 // The list is of D registers, but we also allow Q regs and just interpret 3714 // them as the two D sub-registers. 3715 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3716 FirstReg = Reg = getDRegFromQReg(Reg); 3717 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3718 // it's ambiguous with four-register single spaced. 3719 ++Reg; 3720 ++Count; 3721 } 3722 3723 SMLoc E; 3724 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3725 return MatchOperand_ParseFail; 3726 3727 while (Parser.getTok().is(AsmToken::Comma) || 3728 Parser.getTok().is(AsmToken::Minus)) { 3729 if (Parser.getTok().is(AsmToken::Minus)) { 3730 if (!Spacing) 3731 Spacing = 1; // Register range implies a single spaced list. 3732 else if (Spacing == 2) { 3733 Error(Parser.getTok().getLoc(), 3734 "sequential registers in double spaced list"); 3735 return MatchOperand_ParseFail; 3736 } 3737 Parser.Lex(); // Eat the minus. 3738 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3739 int EndReg = tryParseRegister(); 3740 if (EndReg == -1) { 3741 Error(AfterMinusLoc, "register expected"); 3742 return MatchOperand_ParseFail; 3743 } 3744 // Allow Q regs and just interpret them as the two D sub-registers. 3745 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3746 EndReg = getDRegFromQReg(EndReg) + 1; 3747 // If the register is the same as the start reg, there's nothing 3748 // more to do. 3749 if (Reg == EndReg) 3750 continue; 3751 // The register must be in the same register class as the first. 3752 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3753 Error(AfterMinusLoc, "invalid register in register list"); 3754 return MatchOperand_ParseFail; 3755 } 3756 // Ranges must go from low to high. 3757 if (Reg > EndReg) { 3758 Error(AfterMinusLoc, "bad range in register list"); 3759 return MatchOperand_ParseFail; 3760 } 3761 // Parse the lane specifier if present. 3762 VectorLaneTy NextLaneKind; 3763 unsigned NextLaneIndex; 3764 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3765 MatchOperand_Success) 3766 return MatchOperand_ParseFail; 3767 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3768 Error(AfterMinusLoc, "mismatched lane index in register list"); 3769 return MatchOperand_ParseFail; 3770 } 3771 3772 // Add all the registers in the range to the register list. 3773 Count += EndReg - Reg; 3774 Reg = EndReg; 3775 continue; 3776 } 3777 Parser.Lex(); // Eat the comma. 3778 RegLoc = Parser.getTok().getLoc(); 3779 int OldReg = Reg; 3780 Reg = tryParseRegister(); 3781 if (Reg == -1) { 3782 Error(RegLoc, "register expected"); 3783 return MatchOperand_ParseFail; 3784 } 3785 // vector register lists must be contiguous. 3786 // It's OK to use the enumeration values directly here rather, as the 3787 // VFP register classes have the enum sorted properly. 3788 // 3789 // The list is of D registers, but we also allow Q regs and just interpret 3790 // them as the two D sub-registers. 3791 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3792 if (!Spacing) 3793 Spacing = 1; // Register range implies a single spaced list. 3794 else if (Spacing == 2) { 3795 Error(RegLoc, 3796 "invalid register in double-spaced list (must be 'D' register')"); 3797 return MatchOperand_ParseFail; 3798 } 3799 Reg = getDRegFromQReg(Reg); 3800 if (Reg != OldReg + 1) { 3801 Error(RegLoc, "non-contiguous register range"); 3802 return MatchOperand_ParseFail; 3803 } 3804 ++Reg; 3805 Count += 2; 3806 // Parse the lane specifier if present. 3807 VectorLaneTy NextLaneKind; 3808 unsigned NextLaneIndex; 3809 SMLoc LaneLoc = Parser.getTok().getLoc(); 3810 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3811 MatchOperand_Success) 3812 return MatchOperand_ParseFail; 3813 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3814 Error(LaneLoc, "mismatched lane index in register list"); 3815 return MatchOperand_ParseFail; 3816 } 3817 continue; 3818 } 3819 // Normal D register. 3820 // Figure out the register spacing (single or double) of the list if 3821 // we don't know it already. 3822 if (!Spacing) 3823 Spacing = 1 + (Reg == OldReg + 2); 3824 3825 // Just check that it's contiguous and keep going. 3826 if (Reg != OldReg + Spacing) { 3827 Error(RegLoc, "non-contiguous register range"); 3828 return MatchOperand_ParseFail; 3829 } 3830 ++Count; 3831 // Parse the lane specifier if present. 3832 VectorLaneTy NextLaneKind; 3833 unsigned NextLaneIndex; 3834 SMLoc EndLoc = Parser.getTok().getLoc(); 3835 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3836 return MatchOperand_ParseFail; 3837 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3838 Error(EndLoc, "mismatched lane index in register list"); 3839 return MatchOperand_ParseFail; 3840 } 3841 } 3842 3843 if (Parser.getTok().isNot(AsmToken::RCurly)) { 3844 Error(Parser.getTok().getLoc(), "'}' expected"); 3845 return MatchOperand_ParseFail; 3846 } 3847 E = Parser.getTok().getEndLoc(); 3848 Parser.Lex(); // Eat '}' token. 3849 3850 switch (LaneKind) { 3851 case NoLanes: 3852 // Two-register operands have been converted to the 3853 // composite register classes. 3854 if (Count == 2) { 3855 const MCRegisterClass *RC = (Spacing == 1) ? 3856 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3857 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3858 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3859 } 3860 3861 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 3862 (Spacing == 2), S, E)); 3863 break; 3864 case AllLanes: 3865 // Two-register operands have been converted to the 3866 // composite register classes. 3867 if (Count == 2) { 3868 const MCRegisterClass *RC = (Spacing == 1) ? 3869 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3870 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3871 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3872 } 3873 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 3874 (Spacing == 2), 3875 S, E)); 3876 break; 3877 case IndexedLane: 3878 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 3879 LaneIndex, 3880 (Spacing == 2), 3881 S, E)); 3882 break; 3883 } 3884 return MatchOperand_Success; 3885 } 3886 3887 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 3888 OperandMatchResultTy 3889 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 3890 MCAsmParser &Parser = getParser(); 3891 SMLoc S = Parser.getTok().getLoc(); 3892 const AsmToken &Tok = Parser.getTok(); 3893 unsigned Opt; 3894 3895 if (Tok.is(AsmToken::Identifier)) { 3896 StringRef OptStr = Tok.getString(); 3897 3898 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 3899 .Case("sy", ARM_MB::SY) 3900 .Case("st", ARM_MB::ST) 3901 .Case("ld", ARM_MB::LD) 3902 .Case("sh", ARM_MB::ISH) 3903 .Case("ish", ARM_MB::ISH) 3904 .Case("shst", ARM_MB::ISHST) 3905 .Case("ishst", ARM_MB::ISHST) 3906 .Case("ishld", ARM_MB::ISHLD) 3907 .Case("nsh", ARM_MB::NSH) 3908 .Case("un", ARM_MB::NSH) 3909 .Case("nshst", ARM_MB::NSHST) 3910 .Case("nshld", ARM_MB::NSHLD) 3911 .Case("unst", ARM_MB::NSHST) 3912 .Case("osh", ARM_MB::OSH) 3913 .Case("oshst", ARM_MB::OSHST) 3914 .Case("oshld", ARM_MB::OSHLD) 3915 .Default(~0U); 3916 3917 // ishld, oshld, nshld and ld are only available from ARMv8. 3918 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 3919 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 3920 Opt = ~0U; 3921 3922 if (Opt == ~0U) 3923 return MatchOperand_NoMatch; 3924 3925 Parser.Lex(); // Eat identifier token. 3926 } else if (Tok.is(AsmToken::Hash) || 3927 Tok.is(AsmToken::Dollar) || 3928 Tok.is(AsmToken::Integer)) { 3929 if (Parser.getTok().isNot(AsmToken::Integer)) 3930 Parser.Lex(); // Eat '#' or '$'. 3931 SMLoc Loc = Parser.getTok().getLoc(); 3932 3933 const MCExpr *MemBarrierID; 3934 if (getParser().parseExpression(MemBarrierID)) { 3935 Error(Loc, "illegal expression"); 3936 return MatchOperand_ParseFail; 3937 } 3938 3939 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 3940 if (!CE) { 3941 Error(Loc, "constant expression expected"); 3942 return MatchOperand_ParseFail; 3943 } 3944 3945 int Val = CE->getValue(); 3946 if (Val & ~0xf) { 3947 Error(Loc, "immediate value out of range"); 3948 return MatchOperand_ParseFail; 3949 } 3950 3951 Opt = ARM_MB::RESERVED_0 + Val; 3952 } else 3953 return MatchOperand_ParseFail; 3954 3955 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 3956 return MatchOperand_Success; 3957 } 3958 3959 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 3960 OperandMatchResultTy 3961 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 3962 MCAsmParser &Parser = getParser(); 3963 SMLoc S = Parser.getTok().getLoc(); 3964 const AsmToken &Tok = Parser.getTok(); 3965 unsigned Opt; 3966 3967 if (Tok.is(AsmToken::Identifier)) { 3968 StringRef OptStr = Tok.getString(); 3969 3970 if (OptStr.equals_lower("sy")) 3971 Opt = ARM_ISB::SY; 3972 else 3973 return MatchOperand_NoMatch; 3974 3975 Parser.Lex(); // Eat identifier token. 3976 } else if (Tok.is(AsmToken::Hash) || 3977 Tok.is(AsmToken::Dollar) || 3978 Tok.is(AsmToken::Integer)) { 3979 if (Parser.getTok().isNot(AsmToken::Integer)) 3980 Parser.Lex(); // Eat '#' or '$'. 3981 SMLoc Loc = Parser.getTok().getLoc(); 3982 3983 const MCExpr *ISBarrierID; 3984 if (getParser().parseExpression(ISBarrierID)) { 3985 Error(Loc, "illegal expression"); 3986 return MatchOperand_ParseFail; 3987 } 3988 3989 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 3990 if (!CE) { 3991 Error(Loc, "constant expression expected"); 3992 return MatchOperand_ParseFail; 3993 } 3994 3995 int Val = CE->getValue(); 3996 if (Val & ~0xf) { 3997 Error(Loc, "immediate value out of range"); 3998 return MatchOperand_ParseFail; 3999 } 4000 4001 Opt = ARM_ISB::RESERVED_0 + Val; 4002 } else 4003 return MatchOperand_ParseFail; 4004 4005 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4006 (ARM_ISB::InstSyncBOpt)Opt, S)); 4007 return MatchOperand_Success; 4008 } 4009 4010 4011 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4012 OperandMatchResultTy 4013 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4014 MCAsmParser &Parser = getParser(); 4015 SMLoc S = Parser.getTok().getLoc(); 4016 const AsmToken &Tok = Parser.getTok(); 4017 if (!Tok.is(AsmToken::Identifier)) 4018 return MatchOperand_NoMatch; 4019 StringRef IFlagsStr = Tok.getString(); 4020 4021 // An iflags string of "none" is interpreted to mean that none of the AIF 4022 // bits are set. Not a terribly useful instruction, but a valid encoding. 4023 unsigned IFlags = 0; 4024 if (IFlagsStr != "none") { 4025 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4026 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 4027 .Case("a", ARM_PROC::A) 4028 .Case("i", ARM_PROC::I) 4029 .Case("f", ARM_PROC::F) 4030 .Default(~0U); 4031 4032 // If some specific iflag is already set, it means that some letter is 4033 // present more than once, this is not acceptable. 4034 if (Flag == ~0U || (IFlags & Flag)) 4035 return MatchOperand_NoMatch; 4036 4037 IFlags |= Flag; 4038 } 4039 } 4040 4041 Parser.Lex(); // Eat identifier token. 4042 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4043 return MatchOperand_Success; 4044 } 4045 4046 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4047 OperandMatchResultTy 4048 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4049 MCAsmParser &Parser = getParser(); 4050 SMLoc S = Parser.getTok().getLoc(); 4051 const AsmToken &Tok = Parser.getTok(); 4052 if (!Tok.is(AsmToken::Identifier)) 4053 return MatchOperand_NoMatch; 4054 StringRef Mask = Tok.getString(); 4055 4056 if (isMClass()) { 4057 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4058 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4059 return MatchOperand_NoMatch; 4060 4061 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4062 4063 Parser.Lex(); // Eat identifier token. 4064 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4065 return MatchOperand_Success; 4066 } 4067 4068 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4069 size_t Start = 0, Next = Mask.find('_'); 4070 StringRef Flags = ""; 4071 std::string SpecReg = Mask.slice(Start, Next).lower(); 4072 if (Next != StringRef::npos) 4073 Flags = Mask.slice(Next+1, Mask.size()); 4074 4075 // FlagsVal contains the complete mask: 4076 // 3-0: Mask 4077 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4078 unsigned FlagsVal = 0; 4079 4080 if (SpecReg == "apsr") { 4081 FlagsVal = StringSwitch<unsigned>(Flags) 4082 .Case("nzcvq", 0x8) // same as CPSR_f 4083 .Case("g", 0x4) // same as CPSR_s 4084 .Case("nzcvqg", 0xc) // same as CPSR_fs 4085 .Default(~0U); 4086 4087 if (FlagsVal == ~0U) { 4088 if (!Flags.empty()) 4089 return MatchOperand_NoMatch; 4090 else 4091 FlagsVal = 8; // No flag 4092 } 4093 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4094 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4095 if (Flags == "all" || Flags == "") 4096 Flags = "fc"; 4097 for (int i = 0, e = Flags.size(); i != e; ++i) { 4098 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4099 .Case("c", 1) 4100 .Case("x", 2) 4101 .Case("s", 4) 4102 .Case("f", 8) 4103 .Default(~0U); 4104 4105 // If some specific flag is already set, it means that some letter is 4106 // present more than once, this is not acceptable. 4107 if (Flag == ~0U || (FlagsVal & Flag)) 4108 return MatchOperand_NoMatch; 4109 FlagsVal |= Flag; 4110 } 4111 } else // No match for special register. 4112 return MatchOperand_NoMatch; 4113 4114 // Special register without flags is NOT equivalent to "fc" flags. 4115 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4116 // two lines would enable gas compatibility at the expense of breaking 4117 // round-tripping. 4118 // 4119 // if (!FlagsVal) 4120 // FlagsVal = 0x9; 4121 4122 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4123 if (SpecReg == "spsr") 4124 FlagsVal |= 16; 4125 4126 Parser.Lex(); // Eat identifier token. 4127 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4128 return MatchOperand_Success; 4129 } 4130 4131 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4132 /// use in the MRS/MSR instructions added to support virtualization. 4133 OperandMatchResultTy 4134 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4135 MCAsmParser &Parser = getParser(); 4136 SMLoc S = Parser.getTok().getLoc(); 4137 const AsmToken &Tok = Parser.getTok(); 4138 if (!Tok.is(AsmToken::Identifier)) 4139 return MatchOperand_NoMatch; 4140 StringRef RegName = Tok.getString(); 4141 4142 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 4143 if (!TheReg) 4144 return MatchOperand_NoMatch; 4145 unsigned Encoding = TheReg->Encoding; 4146 4147 Parser.Lex(); // Eat identifier token. 4148 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4149 return MatchOperand_Success; 4150 } 4151 4152 OperandMatchResultTy 4153 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4154 int High) { 4155 MCAsmParser &Parser = getParser(); 4156 const AsmToken &Tok = Parser.getTok(); 4157 if (Tok.isNot(AsmToken::Identifier)) { 4158 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4159 return MatchOperand_ParseFail; 4160 } 4161 StringRef ShiftName = Tok.getString(); 4162 std::string LowerOp = Op.lower(); 4163 std::string UpperOp = Op.upper(); 4164 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4165 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4166 return MatchOperand_ParseFail; 4167 } 4168 Parser.Lex(); // Eat shift type token. 4169 4170 // There must be a '#' and a shift amount. 4171 if (Parser.getTok().isNot(AsmToken::Hash) && 4172 Parser.getTok().isNot(AsmToken::Dollar)) { 4173 Error(Parser.getTok().getLoc(), "'#' expected"); 4174 return MatchOperand_ParseFail; 4175 } 4176 Parser.Lex(); // Eat hash token. 4177 4178 const MCExpr *ShiftAmount; 4179 SMLoc Loc = Parser.getTok().getLoc(); 4180 SMLoc EndLoc; 4181 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4182 Error(Loc, "illegal expression"); 4183 return MatchOperand_ParseFail; 4184 } 4185 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4186 if (!CE) { 4187 Error(Loc, "constant expression expected"); 4188 return MatchOperand_ParseFail; 4189 } 4190 int Val = CE->getValue(); 4191 if (Val < Low || Val > High) { 4192 Error(Loc, "immediate value out of range"); 4193 return MatchOperand_ParseFail; 4194 } 4195 4196 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4197 4198 return MatchOperand_Success; 4199 } 4200 4201 OperandMatchResultTy 4202 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4203 MCAsmParser &Parser = getParser(); 4204 const AsmToken &Tok = Parser.getTok(); 4205 SMLoc S = Tok.getLoc(); 4206 if (Tok.isNot(AsmToken::Identifier)) { 4207 Error(S, "'be' or 'le' operand expected"); 4208 return MatchOperand_ParseFail; 4209 } 4210 int Val = StringSwitch<int>(Tok.getString().lower()) 4211 .Case("be", 1) 4212 .Case("le", 0) 4213 .Default(-1); 4214 Parser.Lex(); // Eat the token. 4215 4216 if (Val == -1) { 4217 Error(S, "'be' or 'le' operand expected"); 4218 return MatchOperand_ParseFail; 4219 } 4220 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4221 getContext()), 4222 S, Tok.getEndLoc())); 4223 return MatchOperand_Success; 4224 } 4225 4226 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4227 /// instructions. Legal values are: 4228 /// lsl #n 'n' in [0,31] 4229 /// asr #n 'n' in [1,32] 4230 /// n == 32 encoded as n == 0. 4231 OperandMatchResultTy 4232 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4233 MCAsmParser &Parser = getParser(); 4234 const AsmToken &Tok = Parser.getTok(); 4235 SMLoc S = Tok.getLoc(); 4236 if (Tok.isNot(AsmToken::Identifier)) { 4237 Error(S, "shift operator 'asr' or 'lsl' expected"); 4238 return MatchOperand_ParseFail; 4239 } 4240 StringRef ShiftName = Tok.getString(); 4241 bool isASR; 4242 if (ShiftName == "lsl" || ShiftName == "LSL") 4243 isASR = false; 4244 else if (ShiftName == "asr" || ShiftName == "ASR") 4245 isASR = true; 4246 else { 4247 Error(S, "shift operator 'asr' or 'lsl' expected"); 4248 return MatchOperand_ParseFail; 4249 } 4250 Parser.Lex(); // Eat the operator. 4251 4252 // A '#' and a shift amount. 4253 if (Parser.getTok().isNot(AsmToken::Hash) && 4254 Parser.getTok().isNot(AsmToken::Dollar)) { 4255 Error(Parser.getTok().getLoc(), "'#' expected"); 4256 return MatchOperand_ParseFail; 4257 } 4258 Parser.Lex(); // Eat hash token. 4259 SMLoc ExLoc = Parser.getTok().getLoc(); 4260 4261 const MCExpr *ShiftAmount; 4262 SMLoc EndLoc; 4263 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4264 Error(ExLoc, "malformed shift expression"); 4265 return MatchOperand_ParseFail; 4266 } 4267 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4268 if (!CE) { 4269 Error(ExLoc, "shift amount must be an immediate"); 4270 return MatchOperand_ParseFail; 4271 } 4272 4273 int64_t Val = CE->getValue(); 4274 if (isASR) { 4275 // Shift amount must be in [1,32] 4276 if (Val < 1 || Val > 32) { 4277 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4278 return MatchOperand_ParseFail; 4279 } 4280 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4281 if (isThumb() && Val == 32) { 4282 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4283 return MatchOperand_ParseFail; 4284 } 4285 if (Val == 32) Val = 0; 4286 } else { 4287 // Shift amount must be in [1,32] 4288 if (Val < 0 || Val > 31) { 4289 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4290 return MatchOperand_ParseFail; 4291 } 4292 } 4293 4294 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4295 4296 return MatchOperand_Success; 4297 } 4298 4299 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4300 /// of instructions. Legal values are: 4301 /// ror #n 'n' in {0, 8, 16, 24} 4302 OperandMatchResultTy 4303 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4304 MCAsmParser &Parser = getParser(); 4305 const AsmToken &Tok = Parser.getTok(); 4306 SMLoc S = Tok.getLoc(); 4307 if (Tok.isNot(AsmToken::Identifier)) 4308 return MatchOperand_NoMatch; 4309 StringRef ShiftName = Tok.getString(); 4310 if (ShiftName != "ror" && ShiftName != "ROR") 4311 return MatchOperand_NoMatch; 4312 Parser.Lex(); // Eat the operator. 4313 4314 // A '#' and a rotate amount. 4315 if (Parser.getTok().isNot(AsmToken::Hash) && 4316 Parser.getTok().isNot(AsmToken::Dollar)) { 4317 Error(Parser.getTok().getLoc(), "'#' expected"); 4318 return MatchOperand_ParseFail; 4319 } 4320 Parser.Lex(); // Eat hash token. 4321 SMLoc ExLoc = Parser.getTok().getLoc(); 4322 4323 const MCExpr *ShiftAmount; 4324 SMLoc EndLoc; 4325 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4326 Error(ExLoc, "malformed rotate expression"); 4327 return MatchOperand_ParseFail; 4328 } 4329 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4330 if (!CE) { 4331 Error(ExLoc, "rotate amount must be an immediate"); 4332 return MatchOperand_ParseFail; 4333 } 4334 4335 int64_t Val = CE->getValue(); 4336 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4337 // normally, zero is represented in asm by omitting the rotate operand 4338 // entirely. 4339 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4340 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4341 return MatchOperand_ParseFail; 4342 } 4343 4344 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4345 4346 return MatchOperand_Success; 4347 } 4348 4349 OperandMatchResultTy 4350 ARMAsmParser::parseModImm(OperandVector &Operands) { 4351 MCAsmParser &Parser = getParser(); 4352 MCAsmLexer &Lexer = getLexer(); 4353 int64_t Imm1, Imm2; 4354 4355 SMLoc S = Parser.getTok().getLoc(); 4356 4357 // 1) A mod_imm operand can appear in the place of a register name: 4358 // add r0, #mod_imm 4359 // add r0, r0, #mod_imm 4360 // to correctly handle the latter, we bail out as soon as we see an 4361 // identifier. 4362 // 4363 // 2) Similarly, we do not want to parse into complex operands: 4364 // mov r0, #mod_imm 4365 // mov r0, :lower16:(_foo) 4366 if (Parser.getTok().is(AsmToken::Identifier) || 4367 Parser.getTok().is(AsmToken::Colon)) 4368 return MatchOperand_NoMatch; 4369 4370 // Hash (dollar) is optional as per the ARMARM 4371 if (Parser.getTok().is(AsmToken::Hash) || 4372 Parser.getTok().is(AsmToken::Dollar)) { 4373 // Avoid parsing into complex operands (#:) 4374 if (Lexer.peekTok().is(AsmToken::Colon)) 4375 return MatchOperand_NoMatch; 4376 4377 // Eat the hash (dollar) 4378 Parser.Lex(); 4379 } 4380 4381 SMLoc Sx1, Ex1; 4382 Sx1 = Parser.getTok().getLoc(); 4383 const MCExpr *Imm1Exp; 4384 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4385 Error(Sx1, "malformed expression"); 4386 return MatchOperand_ParseFail; 4387 } 4388 4389 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4390 4391 if (CE) { 4392 // Immediate must fit within 32-bits 4393 Imm1 = CE->getValue(); 4394 int Enc = ARM_AM::getSOImmVal(Imm1); 4395 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4396 // We have a match! 4397 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4398 (Enc & 0xF00) >> 7, 4399 Sx1, Ex1)); 4400 return MatchOperand_Success; 4401 } 4402 4403 // We have parsed an immediate which is not for us, fallback to a plain 4404 // immediate. This can happen for instruction aliases. For an example, 4405 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4406 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4407 // instruction with a mod_imm operand. The alias is defined such that the 4408 // parser method is shared, that's why we have to do this here. 4409 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4410 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4411 return MatchOperand_Success; 4412 } 4413 } else { 4414 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4415 // MCFixup). Fallback to a plain immediate. 4416 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4417 return MatchOperand_Success; 4418 } 4419 4420 // From this point onward, we expect the input to be a (#bits, #rot) pair 4421 if (Parser.getTok().isNot(AsmToken::Comma)) { 4422 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4423 return MatchOperand_ParseFail; 4424 } 4425 4426 if (Imm1 & ~0xFF) { 4427 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4428 return MatchOperand_ParseFail; 4429 } 4430 4431 // Eat the comma 4432 Parser.Lex(); 4433 4434 // Repeat for #rot 4435 SMLoc Sx2, Ex2; 4436 Sx2 = Parser.getTok().getLoc(); 4437 4438 // Eat the optional hash (dollar) 4439 if (Parser.getTok().is(AsmToken::Hash) || 4440 Parser.getTok().is(AsmToken::Dollar)) 4441 Parser.Lex(); 4442 4443 const MCExpr *Imm2Exp; 4444 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4445 Error(Sx2, "malformed expression"); 4446 return MatchOperand_ParseFail; 4447 } 4448 4449 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4450 4451 if (CE) { 4452 Imm2 = CE->getValue(); 4453 if (!(Imm2 & ~0x1E)) { 4454 // We have a match! 4455 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4456 return MatchOperand_Success; 4457 } 4458 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4459 return MatchOperand_ParseFail; 4460 } else { 4461 Error(Sx2, "constant expression expected"); 4462 return MatchOperand_ParseFail; 4463 } 4464 } 4465 4466 OperandMatchResultTy 4467 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4468 MCAsmParser &Parser = getParser(); 4469 SMLoc S = Parser.getTok().getLoc(); 4470 // The bitfield descriptor is really two operands, the LSB and the width. 4471 if (Parser.getTok().isNot(AsmToken::Hash) && 4472 Parser.getTok().isNot(AsmToken::Dollar)) { 4473 Error(Parser.getTok().getLoc(), "'#' expected"); 4474 return MatchOperand_ParseFail; 4475 } 4476 Parser.Lex(); // Eat hash token. 4477 4478 const MCExpr *LSBExpr; 4479 SMLoc E = Parser.getTok().getLoc(); 4480 if (getParser().parseExpression(LSBExpr)) { 4481 Error(E, "malformed immediate expression"); 4482 return MatchOperand_ParseFail; 4483 } 4484 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4485 if (!CE) { 4486 Error(E, "'lsb' operand must be an immediate"); 4487 return MatchOperand_ParseFail; 4488 } 4489 4490 int64_t LSB = CE->getValue(); 4491 // The LSB must be in the range [0,31] 4492 if (LSB < 0 || LSB > 31) { 4493 Error(E, "'lsb' operand must be in the range [0,31]"); 4494 return MatchOperand_ParseFail; 4495 } 4496 E = Parser.getTok().getLoc(); 4497 4498 // Expect another immediate operand. 4499 if (Parser.getTok().isNot(AsmToken::Comma)) { 4500 Error(Parser.getTok().getLoc(), "too few operands"); 4501 return MatchOperand_ParseFail; 4502 } 4503 Parser.Lex(); // Eat hash token. 4504 if (Parser.getTok().isNot(AsmToken::Hash) && 4505 Parser.getTok().isNot(AsmToken::Dollar)) { 4506 Error(Parser.getTok().getLoc(), "'#' expected"); 4507 return MatchOperand_ParseFail; 4508 } 4509 Parser.Lex(); // Eat hash token. 4510 4511 const MCExpr *WidthExpr; 4512 SMLoc EndLoc; 4513 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4514 Error(E, "malformed immediate expression"); 4515 return MatchOperand_ParseFail; 4516 } 4517 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4518 if (!CE) { 4519 Error(E, "'width' operand must be an immediate"); 4520 return MatchOperand_ParseFail; 4521 } 4522 4523 int64_t Width = CE->getValue(); 4524 // The LSB must be in the range [1,32-lsb] 4525 if (Width < 1 || Width > 32 - LSB) { 4526 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4527 return MatchOperand_ParseFail; 4528 } 4529 4530 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4531 4532 return MatchOperand_Success; 4533 } 4534 4535 OperandMatchResultTy 4536 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4537 // Check for a post-index addressing register operand. Specifically: 4538 // postidx_reg := '+' register {, shift} 4539 // | '-' register {, shift} 4540 // | register {, shift} 4541 4542 // This method must return MatchOperand_NoMatch without consuming any tokens 4543 // in the case where there is no match, as other alternatives take other 4544 // parse methods. 4545 MCAsmParser &Parser = getParser(); 4546 AsmToken Tok = Parser.getTok(); 4547 SMLoc S = Tok.getLoc(); 4548 bool haveEaten = false; 4549 bool isAdd = true; 4550 if (Tok.is(AsmToken::Plus)) { 4551 Parser.Lex(); // Eat the '+' token. 4552 haveEaten = true; 4553 } else if (Tok.is(AsmToken::Minus)) { 4554 Parser.Lex(); // Eat the '-' token. 4555 isAdd = false; 4556 haveEaten = true; 4557 } 4558 4559 SMLoc E = Parser.getTok().getEndLoc(); 4560 int Reg = tryParseRegister(); 4561 if (Reg == -1) { 4562 if (!haveEaten) 4563 return MatchOperand_NoMatch; 4564 Error(Parser.getTok().getLoc(), "register expected"); 4565 return MatchOperand_ParseFail; 4566 } 4567 4568 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4569 unsigned ShiftImm = 0; 4570 if (Parser.getTok().is(AsmToken::Comma)) { 4571 Parser.Lex(); // Eat the ','. 4572 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4573 return MatchOperand_ParseFail; 4574 4575 // FIXME: Only approximates end...may include intervening whitespace. 4576 E = Parser.getTok().getLoc(); 4577 } 4578 4579 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4580 ShiftImm, S, E)); 4581 4582 return MatchOperand_Success; 4583 } 4584 4585 OperandMatchResultTy 4586 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4587 // Check for a post-index addressing register operand. Specifically: 4588 // am3offset := '+' register 4589 // | '-' register 4590 // | register 4591 // | # imm 4592 // | # + imm 4593 // | # - imm 4594 4595 // This method must return MatchOperand_NoMatch without consuming any tokens 4596 // in the case where there is no match, as other alternatives take other 4597 // parse methods. 4598 MCAsmParser &Parser = getParser(); 4599 AsmToken Tok = Parser.getTok(); 4600 SMLoc S = Tok.getLoc(); 4601 4602 // Do immediates first, as we always parse those if we have a '#'. 4603 if (Parser.getTok().is(AsmToken::Hash) || 4604 Parser.getTok().is(AsmToken::Dollar)) { 4605 Parser.Lex(); // Eat '#' or '$'. 4606 // Explicitly look for a '-', as we need to encode negative zero 4607 // differently. 4608 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4609 const MCExpr *Offset; 4610 SMLoc E; 4611 if (getParser().parseExpression(Offset, E)) 4612 return MatchOperand_ParseFail; 4613 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4614 if (!CE) { 4615 Error(S, "constant expression expected"); 4616 return MatchOperand_ParseFail; 4617 } 4618 // Negative zero is encoded as the flag value INT32_MIN. 4619 int32_t Val = CE->getValue(); 4620 if (isNegative && Val == 0) 4621 Val = INT32_MIN; 4622 4623 Operands.push_back( 4624 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4625 4626 return MatchOperand_Success; 4627 } 4628 4629 4630 bool haveEaten = false; 4631 bool isAdd = true; 4632 if (Tok.is(AsmToken::Plus)) { 4633 Parser.Lex(); // Eat the '+' token. 4634 haveEaten = true; 4635 } else if (Tok.is(AsmToken::Minus)) { 4636 Parser.Lex(); // Eat the '-' token. 4637 isAdd = false; 4638 haveEaten = true; 4639 } 4640 4641 Tok = Parser.getTok(); 4642 int Reg = tryParseRegister(); 4643 if (Reg == -1) { 4644 if (!haveEaten) 4645 return MatchOperand_NoMatch; 4646 Error(Tok.getLoc(), "register expected"); 4647 return MatchOperand_ParseFail; 4648 } 4649 4650 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4651 0, S, Tok.getEndLoc())); 4652 4653 return MatchOperand_Success; 4654 } 4655 4656 /// Convert parsed operands to MCInst. Needed here because this instruction 4657 /// only has two register operands, but multiplication is commutative so 4658 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4659 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4660 const OperandVector &Operands) { 4661 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4662 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4663 // If we have a three-operand form, make sure to set Rn to be the operand 4664 // that isn't the same as Rd. 4665 unsigned RegOp = 4; 4666 if (Operands.size() == 6 && 4667 ((ARMOperand &)*Operands[4]).getReg() == 4668 ((ARMOperand &)*Operands[3]).getReg()) 4669 RegOp = 5; 4670 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4671 Inst.addOperand(Inst.getOperand(0)); 4672 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4673 } 4674 4675 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4676 const OperandVector &Operands) { 4677 int CondOp = -1, ImmOp = -1; 4678 switch(Inst.getOpcode()) { 4679 case ARM::tB: 4680 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4681 4682 case ARM::t2B: 4683 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4684 4685 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4686 } 4687 // first decide whether or not the branch should be conditional 4688 // by looking at it's location relative to an IT block 4689 if(inITBlock()) { 4690 // inside an IT block we cannot have any conditional branches. any 4691 // such instructions needs to be converted to unconditional form 4692 switch(Inst.getOpcode()) { 4693 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4694 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4695 } 4696 } else { 4697 // outside IT blocks we can only have unconditional branches with AL 4698 // condition code or conditional branches with non-AL condition code 4699 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4700 switch(Inst.getOpcode()) { 4701 case ARM::tB: 4702 case ARM::tBcc: 4703 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4704 break; 4705 case ARM::t2B: 4706 case ARM::t2Bcc: 4707 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4708 break; 4709 } 4710 } 4711 4712 // now decide on encoding size based on branch target range 4713 switch(Inst.getOpcode()) { 4714 // classify tB as either t2B or t1B based on range of immediate operand 4715 case ARM::tB: { 4716 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4717 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 4718 Inst.setOpcode(ARM::t2B); 4719 break; 4720 } 4721 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4722 case ARM::tBcc: { 4723 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4724 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 4725 Inst.setOpcode(ARM::t2Bcc); 4726 break; 4727 } 4728 } 4729 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4730 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4731 } 4732 4733 /// Parse an ARM memory expression, return false if successful else return true 4734 /// or an error. The first token must be a '[' when called. 4735 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4736 MCAsmParser &Parser = getParser(); 4737 SMLoc S, E; 4738 if (Parser.getTok().isNot(AsmToken::LBrac)) 4739 return TokError("Token is not a Left Bracket"); 4740 S = Parser.getTok().getLoc(); 4741 Parser.Lex(); // Eat left bracket token. 4742 4743 const AsmToken &BaseRegTok = Parser.getTok(); 4744 int BaseRegNum = tryParseRegister(); 4745 if (BaseRegNum == -1) 4746 return Error(BaseRegTok.getLoc(), "register expected"); 4747 4748 // The next token must either be a comma, a colon or a closing bracket. 4749 const AsmToken &Tok = Parser.getTok(); 4750 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4751 !Tok.is(AsmToken::RBrac)) 4752 return Error(Tok.getLoc(), "malformed memory operand"); 4753 4754 if (Tok.is(AsmToken::RBrac)) { 4755 E = Tok.getEndLoc(); 4756 Parser.Lex(); // Eat right bracket token. 4757 4758 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4759 ARM_AM::no_shift, 0, 0, false, 4760 S, E)); 4761 4762 // If there's a pre-indexing writeback marker, '!', just add it as a token 4763 // operand. It's rather odd, but syntactically valid. 4764 if (Parser.getTok().is(AsmToken::Exclaim)) { 4765 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4766 Parser.Lex(); // Eat the '!'. 4767 } 4768 4769 return false; 4770 } 4771 4772 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4773 "Lost colon or comma in memory operand?!"); 4774 if (Tok.is(AsmToken::Comma)) { 4775 Parser.Lex(); // Eat the comma. 4776 } 4777 4778 // If we have a ':', it's an alignment specifier. 4779 if (Parser.getTok().is(AsmToken::Colon)) { 4780 Parser.Lex(); // Eat the ':'. 4781 E = Parser.getTok().getLoc(); 4782 SMLoc AlignmentLoc = Tok.getLoc(); 4783 4784 const MCExpr *Expr; 4785 if (getParser().parseExpression(Expr)) 4786 return true; 4787 4788 // The expression has to be a constant. Memory references with relocations 4789 // don't come through here, as they use the <label> forms of the relevant 4790 // instructions. 4791 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4792 if (!CE) 4793 return Error (E, "constant expression expected"); 4794 4795 unsigned Align = 0; 4796 switch (CE->getValue()) { 4797 default: 4798 return Error(E, 4799 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4800 case 16: Align = 2; break; 4801 case 32: Align = 4; break; 4802 case 64: Align = 8; break; 4803 case 128: Align = 16; break; 4804 case 256: Align = 32; break; 4805 } 4806 4807 // Now we should have the closing ']' 4808 if (Parser.getTok().isNot(AsmToken::RBrac)) 4809 return Error(Parser.getTok().getLoc(), "']' expected"); 4810 E = Parser.getTok().getEndLoc(); 4811 Parser.Lex(); // Eat right bracket token. 4812 4813 // Don't worry about range checking the value here. That's handled by 4814 // the is*() predicates. 4815 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4816 ARM_AM::no_shift, 0, Align, 4817 false, S, E, AlignmentLoc)); 4818 4819 // If there's a pre-indexing writeback marker, '!', just add it as a token 4820 // operand. 4821 if (Parser.getTok().is(AsmToken::Exclaim)) { 4822 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4823 Parser.Lex(); // Eat the '!'. 4824 } 4825 4826 return false; 4827 } 4828 4829 // If we have a '#', it's an immediate offset, else assume it's a register 4830 // offset. Be friendly and also accept a plain integer (without a leading 4831 // hash) for gas compatibility. 4832 if (Parser.getTok().is(AsmToken::Hash) || 4833 Parser.getTok().is(AsmToken::Dollar) || 4834 Parser.getTok().is(AsmToken::Integer)) { 4835 if (Parser.getTok().isNot(AsmToken::Integer)) 4836 Parser.Lex(); // Eat '#' or '$'. 4837 E = Parser.getTok().getLoc(); 4838 4839 bool isNegative = getParser().getTok().is(AsmToken::Minus); 4840 const MCExpr *Offset; 4841 if (getParser().parseExpression(Offset)) 4842 return true; 4843 4844 // The expression has to be a constant. Memory references with relocations 4845 // don't come through here, as they use the <label> forms of the relevant 4846 // instructions. 4847 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4848 if (!CE) 4849 return Error (E, "constant expression expected"); 4850 4851 // If the constant was #-0, represent it as INT32_MIN. 4852 int32_t Val = CE->getValue(); 4853 if (isNegative && Val == 0) 4854 CE = MCConstantExpr::create(INT32_MIN, getContext()); 4855 4856 // Now we should have the closing ']' 4857 if (Parser.getTok().isNot(AsmToken::RBrac)) 4858 return Error(Parser.getTok().getLoc(), "']' expected"); 4859 E = Parser.getTok().getEndLoc(); 4860 Parser.Lex(); // Eat right bracket token. 4861 4862 // Don't worry about range checking the value here. That's handled by 4863 // the is*() predicates. 4864 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 4865 ARM_AM::no_shift, 0, 0, 4866 false, S, E)); 4867 4868 // If there's a pre-indexing writeback marker, '!', just add it as a token 4869 // operand. 4870 if (Parser.getTok().is(AsmToken::Exclaim)) { 4871 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4872 Parser.Lex(); // Eat the '!'. 4873 } 4874 4875 return false; 4876 } 4877 4878 // The register offset is optionally preceded by a '+' or '-' 4879 bool isNegative = false; 4880 if (Parser.getTok().is(AsmToken::Minus)) { 4881 isNegative = true; 4882 Parser.Lex(); // Eat the '-'. 4883 } else if (Parser.getTok().is(AsmToken::Plus)) { 4884 // Nothing to do. 4885 Parser.Lex(); // Eat the '+'. 4886 } 4887 4888 E = Parser.getTok().getLoc(); 4889 int OffsetRegNum = tryParseRegister(); 4890 if (OffsetRegNum == -1) 4891 return Error(E, "register expected"); 4892 4893 // If there's a shift operator, handle it. 4894 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 4895 unsigned ShiftImm = 0; 4896 if (Parser.getTok().is(AsmToken::Comma)) { 4897 Parser.Lex(); // Eat the ','. 4898 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 4899 return true; 4900 } 4901 4902 // Now we should have the closing ']' 4903 if (Parser.getTok().isNot(AsmToken::RBrac)) 4904 return Error(Parser.getTok().getLoc(), "']' expected"); 4905 E = Parser.getTok().getEndLoc(); 4906 Parser.Lex(); // Eat right bracket token. 4907 4908 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 4909 ShiftType, ShiftImm, 0, isNegative, 4910 S, E)); 4911 4912 // If there's a pre-indexing writeback marker, '!', just add it as a token 4913 // operand. 4914 if (Parser.getTok().is(AsmToken::Exclaim)) { 4915 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4916 Parser.Lex(); // Eat the '!'. 4917 } 4918 4919 return false; 4920 } 4921 4922 /// parseMemRegOffsetShift - one of these two: 4923 /// ( lsl | lsr | asr | ror ) , # shift_amount 4924 /// rrx 4925 /// return true if it parses a shift otherwise it returns false. 4926 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 4927 unsigned &Amount) { 4928 MCAsmParser &Parser = getParser(); 4929 SMLoc Loc = Parser.getTok().getLoc(); 4930 const AsmToken &Tok = Parser.getTok(); 4931 if (Tok.isNot(AsmToken::Identifier)) 4932 return true; 4933 StringRef ShiftName = Tok.getString(); 4934 if (ShiftName == "lsl" || ShiftName == "LSL" || 4935 ShiftName == "asl" || ShiftName == "ASL") 4936 St = ARM_AM::lsl; 4937 else if (ShiftName == "lsr" || ShiftName == "LSR") 4938 St = ARM_AM::lsr; 4939 else if (ShiftName == "asr" || ShiftName == "ASR") 4940 St = ARM_AM::asr; 4941 else if (ShiftName == "ror" || ShiftName == "ROR") 4942 St = ARM_AM::ror; 4943 else if (ShiftName == "rrx" || ShiftName == "RRX") 4944 St = ARM_AM::rrx; 4945 else 4946 return Error(Loc, "illegal shift operator"); 4947 Parser.Lex(); // Eat shift type token. 4948 4949 // rrx stands alone. 4950 Amount = 0; 4951 if (St != ARM_AM::rrx) { 4952 Loc = Parser.getTok().getLoc(); 4953 // A '#' and a shift amount. 4954 const AsmToken &HashTok = Parser.getTok(); 4955 if (HashTok.isNot(AsmToken::Hash) && 4956 HashTok.isNot(AsmToken::Dollar)) 4957 return Error(HashTok.getLoc(), "'#' expected"); 4958 Parser.Lex(); // Eat hash token. 4959 4960 const MCExpr *Expr; 4961 if (getParser().parseExpression(Expr)) 4962 return true; 4963 // Range check the immediate. 4964 // lsl, ror: 0 <= imm <= 31 4965 // lsr, asr: 0 <= imm <= 32 4966 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4967 if (!CE) 4968 return Error(Loc, "shift amount must be an immediate"); 4969 int64_t Imm = CE->getValue(); 4970 if (Imm < 0 || 4971 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 4972 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 4973 return Error(Loc, "immediate shift value out of range"); 4974 // If <ShiftTy> #0, turn it into a no_shift. 4975 if (Imm == 0) 4976 St = ARM_AM::lsl; 4977 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 4978 if (Imm == 32) 4979 Imm = 0; 4980 Amount = Imm; 4981 } 4982 4983 return false; 4984 } 4985 4986 /// parseFPImm - A floating point immediate expression operand. 4987 OperandMatchResultTy 4988 ARMAsmParser::parseFPImm(OperandVector &Operands) { 4989 MCAsmParser &Parser = getParser(); 4990 // Anything that can accept a floating point constant as an operand 4991 // needs to go through here, as the regular parseExpression is 4992 // integer only. 4993 // 4994 // This routine still creates a generic Immediate operand, containing 4995 // a bitcast of the 64-bit floating point value. The various operands 4996 // that accept floats can check whether the value is valid for them 4997 // via the standard is*() predicates. 4998 4999 SMLoc S = Parser.getTok().getLoc(); 5000 5001 if (Parser.getTok().isNot(AsmToken::Hash) && 5002 Parser.getTok().isNot(AsmToken::Dollar)) 5003 return MatchOperand_NoMatch; 5004 5005 // Disambiguate the VMOV forms that can accept an FP immediate. 5006 // vmov.f32 <sreg>, #imm 5007 // vmov.f64 <dreg>, #imm 5008 // vmov.f32 <dreg>, #imm @ vector f32x2 5009 // vmov.f32 <qreg>, #imm @ vector f32x4 5010 // 5011 // There are also the NEON VMOV instructions which expect an 5012 // integer constant. Make sure we don't try to parse an FPImm 5013 // for these: 5014 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5015 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5016 bool isVmovf = TyOp.isToken() && 5017 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5018 TyOp.getToken() == ".f16"); 5019 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5020 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5021 Mnemonic.getToken() == "fconsts"); 5022 if (!(isVmovf || isFconst)) 5023 return MatchOperand_NoMatch; 5024 5025 Parser.Lex(); // Eat '#' or '$'. 5026 5027 // Handle negation, as that still comes through as a separate token. 5028 bool isNegative = false; 5029 if (Parser.getTok().is(AsmToken::Minus)) { 5030 isNegative = true; 5031 Parser.Lex(); 5032 } 5033 const AsmToken &Tok = Parser.getTok(); 5034 SMLoc Loc = Tok.getLoc(); 5035 if (Tok.is(AsmToken::Real) && isVmovf) { 5036 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5037 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5038 // If we had a '-' in front, toggle the sign bit. 5039 IntVal ^= (uint64_t)isNegative << 31; 5040 Parser.Lex(); // Eat the token. 5041 Operands.push_back(ARMOperand::CreateImm( 5042 MCConstantExpr::create(IntVal, getContext()), 5043 S, Parser.getTok().getLoc())); 5044 return MatchOperand_Success; 5045 } 5046 // Also handle plain integers. Instructions which allow floating point 5047 // immediates also allow a raw encoded 8-bit value. 5048 if (Tok.is(AsmToken::Integer) && isFconst) { 5049 int64_t Val = Tok.getIntVal(); 5050 Parser.Lex(); // Eat the token. 5051 if (Val > 255 || Val < 0) { 5052 Error(Loc, "encoded floating point value out of range"); 5053 return MatchOperand_ParseFail; 5054 } 5055 float RealVal = ARM_AM::getFPImmFloat(Val); 5056 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5057 5058 Operands.push_back(ARMOperand::CreateImm( 5059 MCConstantExpr::create(Val, getContext()), S, 5060 Parser.getTok().getLoc())); 5061 return MatchOperand_Success; 5062 } 5063 5064 Error(Loc, "invalid floating point immediate"); 5065 return MatchOperand_ParseFail; 5066 } 5067 5068 /// Parse a arm instruction operand. For now this parses the operand regardless 5069 /// of the mnemonic. 5070 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5071 MCAsmParser &Parser = getParser(); 5072 SMLoc S, E; 5073 5074 // Check if the current operand has a custom associated parser, if so, try to 5075 // custom parse the operand, or fallback to the general approach. 5076 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5077 if (ResTy == MatchOperand_Success) 5078 return false; 5079 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5080 // there was a match, but an error occurred, in which case, just return that 5081 // the operand parsing failed. 5082 if (ResTy == MatchOperand_ParseFail) 5083 return true; 5084 5085 switch (getLexer().getKind()) { 5086 default: 5087 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5088 return true; 5089 case AsmToken::Identifier: { 5090 // If we've seen a branch mnemonic, the next operand must be a label. This 5091 // is true even if the label is a register name. So "br r1" means branch to 5092 // label "r1". 5093 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5094 if (!ExpectLabel) { 5095 if (!tryParseRegisterWithWriteBack(Operands)) 5096 return false; 5097 int Res = tryParseShiftRegister(Operands); 5098 if (Res == 0) // success 5099 return false; 5100 else if (Res == -1) // irrecoverable error 5101 return true; 5102 // If this is VMRS, check for the apsr_nzcv operand. 5103 if (Mnemonic == "vmrs" && 5104 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5105 S = Parser.getTok().getLoc(); 5106 Parser.Lex(); 5107 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5108 return false; 5109 } 5110 } 5111 5112 // Fall though for the Identifier case that is not a register or a 5113 // special name. 5114 LLVM_FALLTHROUGH; 5115 } 5116 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5117 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5118 case AsmToken::String: // quoted label names. 5119 case AsmToken::Dot: { // . as a branch target 5120 // This was not a register so parse other operands that start with an 5121 // identifier (like labels) as expressions and create them as immediates. 5122 const MCExpr *IdVal; 5123 S = Parser.getTok().getLoc(); 5124 if (getParser().parseExpression(IdVal)) 5125 return true; 5126 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5127 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5128 return false; 5129 } 5130 case AsmToken::LBrac: 5131 return parseMemory(Operands); 5132 case AsmToken::LCurly: 5133 return parseRegisterList(Operands); 5134 case AsmToken::Dollar: 5135 case AsmToken::Hash: { 5136 // #42 -> immediate. 5137 S = Parser.getTok().getLoc(); 5138 Parser.Lex(); 5139 5140 if (Parser.getTok().isNot(AsmToken::Colon)) { 5141 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5142 const MCExpr *ImmVal; 5143 if (getParser().parseExpression(ImmVal)) 5144 return true; 5145 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5146 if (CE) { 5147 int32_t Val = CE->getValue(); 5148 if (isNegative && Val == 0) 5149 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5150 } 5151 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5152 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5153 5154 // There can be a trailing '!' on operands that we want as a separate 5155 // '!' Token operand. Handle that here. For example, the compatibility 5156 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5157 if (Parser.getTok().is(AsmToken::Exclaim)) { 5158 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5159 Parser.getTok().getLoc())); 5160 Parser.Lex(); // Eat exclaim token 5161 } 5162 return false; 5163 } 5164 // w/ a ':' after the '#', it's just like a plain ':'. 5165 LLVM_FALLTHROUGH; 5166 } 5167 case AsmToken::Colon: { 5168 S = Parser.getTok().getLoc(); 5169 // ":lower16:" and ":upper16:" expression prefixes 5170 // FIXME: Check it's an expression prefix, 5171 // e.g. (FOO - :lower16:BAR) isn't legal. 5172 ARMMCExpr::VariantKind RefKind; 5173 if (parsePrefix(RefKind)) 5174 return true; 5175 5176 const MCExpr *SubExprVal; 5177 if (getParser().parseExpression(SubExprVal)) 5178 return true; 5179 5180 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5181 getContext()); 5182 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5183 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5184 return false; 5185 } 5186 case AsmToken::Equal: { 5187 S = Parser.getTok().getLoc(); 5188 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5189 return Error(S, "unexpected token in operand"); 5190 Parser.Lex(); // Eat '=' 5191 const MCExpr *SubExprVal; 5192 if (getParser().parseExpression(SubExprVal)) 5193 return true; 5194 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5195 5196 // execute-only: we assume that assembly programmers know what they are 5197 // doing and allow literal pool creation here 5198 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5199 return false; 5200 } 5201 } 5202 } 5203 5204 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5205 // :lower16: and :upper16:. 5206 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5207 MCAsmParser &Parser = getParser(); 5208 RefKind = ARMMCExpr::VK_ARM_None; 5209 5210 // consume an optional '#' (GNU compatibility) 5211 if (getLexer().is(AsmToken::Hash)) 5212 Parser.Lex(); 5213 5214 // :lower16: and :upper16: modifiers 5215 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5216 Parser.Lex(); // Eat ':' 5217 5218 if (getLexer().isNot(AsmToken::Identifier)) { 5219 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5220 return true; 5221 } 5222 5223 enum { 5224 COFF = (1 << MCObjectFileInfo::IsCOFF), 5225 ELF = (1 << MCObjectFileInfo::IsELF), 5226 MACHO = (1 << MCObjectFileInfo::IsMachO), 5227 WASM = (1 << MCObjectFileInfo::IsWasm), 5228 }; 5229 static const struct PrefixEntry { 5230 const char *Spelling; 5231 ARMMCExpr::VariantKind VariantKind; 5232 uint8_t SupportedFormats; 5233 } PrefixEntries[] = { 5234 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5235 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5236 }; 5237 5238 StringRef IDVal = Parser.getTok().getIdentifier(); 5239 5240 const auto &Prefix = 5241 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5242 [&IDVal](const PrefixEntry &PE) { 5243 return PE.Spelling == IDVal; 5244 }); 5245 if (Prefix == std::end(PrefixEntries)) { 5246 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5247 return true; 5248 } 5249 5250 uint8_t CurrentFormat; 5251 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5252 case MCObjectFileInfo::IsMachO: 5253 CurrentFormat = MACHO; 5254 break; 5255 case MCObjectFileInfo::IsELF: 5256 CurrentFormat = ELF; 5257 break; 5258 case MCObjectFileInfo::IsCOFF: 5259 CurrentFormat = COFF; 5260 break; 5261 case MCObjectFileInfo::IsWasm: 5262 CurrentFormat = WASM; 5263 break; 5264 } 5265 5266 if (~Prefix->SupportedFormats & CurrentFormat) { 5267 Error(Parser.getTok().getLoc(), 5268 "cannot represent relocation in the current file format"); 5269 return true; 5270 } 5271 5272 RefKind = Prefix->VariantKind; 5273 Parser.Lex(); 5274 5275 if (getLexer().isNot(AsmToken::Colon)) { 5276 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5277 return true; 5278 } 5279 Parser.Lex(); // Eat the last ':' 5280 5281 return false; 5282 } 5283 5284 /// \brief Given a mnemonic, split out possible predication code and carry 5285 /// setting letters to form a canonical mnemonic and flags. 5286 // 5287 // FIXME: Would be nice to autogen this. 5288 // FIXME: This is a bit of a maze of special cases. 5289 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5290 unsigned &PredicationCode, 5291 bool &CarrySetting, 5292 unsigned &ProcessorIMod, 5293 StringRef &ITMask) { 5294 PredicationCode = ARMCC::AL; 5295 CarrySetting = false; 5296 ProcessorIMod = 0; 5297 5298 // Ignore some mnemonics we know aren't predicated forms. 5299 // 5300 // FIXME: Would be nice to autogen this. 5301 if ((Mnemonic == "movs" && isThumb()) || 5302 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5303 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5304 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5305 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5306 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5307 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5308 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5309 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5310 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5311 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5312 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5313 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5314 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5315 Mnemonic == "bxns" || Mnemonic == "blxns" || 5316 Mnemonic == "vudot" || Mnemonic == "vsdot") 5317 return Mnemonic; 5318 5319 // First, split out any predication code. Ignore mnemonics we know aren't 5320 // predicated but do have a carry-set and so weren't caught above. 5321 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5322 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5323 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5324 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5325 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 5326 if (CC != ~0U) { 5327 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5328 PredicationCode = CC; 5329 } 5330 } 5331 5332 // Next, determine if we have a carry setting bit. We explicitly ignore all 5333 // the instructions we know end in 's'. 5334 if (Mnemonic.endswith("s") && 5335 !(Mnemonic == "cps" || Mnemonic == "mls" || 5336 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5337 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5338 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5339 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5340 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5341 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5342 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5343 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5344 Mnemonic == "bxns" || Mnemonic == "blxns" || 5345 (Mnemonic == "movs" && isThumb()))) { 5346 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5347 CarrySetting = true; 5348 } 5349 5350 // The "cps" instruction can have a interrupt mode operand which is glued into 5351 // the mnemonic. Check if this is the case, split it and parse the imod op 5352 if (Mnemonic.startswith("cps")) { 5353 // Split out any imod code. 5354 unsigned IMod = 5355 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5356 .Case("ie", ARM_PROC::IE) 5357 .Case("id", ARM_PROC::ID) 5358 .Default(~0U); 5359 if (IMod != ~0U) { 5360 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5361 ProcessorIMod = IMod; 5362 } 5363 } 5364 5365 // The "it" instruction has the condition mask on the end of the mnemonic. 5366 if (Mnemonic.startswith("it")) { 5367 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5368 Mnemonic = Mnemonic.slice(0, 2); 5369 } 5370 5371 return Mnemonic; 5372 } 5373 5374 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5375 /// inclusion of carry set or predication code operands. 5376 // 5377 // FIXME: It would be nice to autogen this. 5378 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5379 bool &CanAcceptCarrySet, 5380 bool &CanAcceptPredicationCode) { 5381 CanAcceptCarrySet = 5382 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5383 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5384 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5385 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5386 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5387 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5388 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5389 (!isThumb() && 5390 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5391 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5392 5393 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5394 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5395 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5396 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5397 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5398 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5399 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5400 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5401 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5402 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5403 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5404 Mnemonic == "vmovx" || Mnemonic == "vins" || 5405 Mnemonic == "vudot" || Mnemonic == "vsdot") { 5406 // These mnemonics are never predicable 5407 CanAcceptPredicationCode = false; 5408 } else if (!isThumb()) { 5409 // Some instructions are only predicable in Thumb mode 5410 CanAcceptPredicationCode = 5411 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5412 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5413 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5414 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5415 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5416 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5417 !Mnemonic.startswith("srs"); 5418 } else if (isThumbOne()) { 5419 if (hasV6MOps()) 5420 CanAcceptPredicationCode = Mnemonic != "movs"; 5421 else 5422 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5423 } else 5424 CanAcceptPredicationCode = true; 5425 } 5426 5427 // \brief Some Thumb instructions have two operand forms that are not 5428 // available as three operand, convert to two operand form if possible. 5429 // 5430 // FIXME: We would really like to be able to tablegen'erate this. 5431 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5432 bool CarrySetting, 5433 OperandVector &Operands) { 5434 if (Operands.size() != 6) 5435 return; 5436 5437 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5438 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5439 if (!Op3.isReg() || !Op4.isReg()) 5440 return; 5441 5442 auto Op3Reg = Op3.getReg(); 5443 auto Op4Reg = Op4.getReg(); 5444 5445 // For most Thumb2 cases we just generate the 3 operand form and reduce 5446 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5447 // won't accept SP or PC so we do the transformation here taking care 5448 // with immediate range in the 'add sp, sp #imm' case. 5449 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5450 if (isThumbTwo()) { 5451 if (Mnemonic != "add") 5452 return; 5453 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5454 (Op5.isReg() && Op5.getReg() == ARM::PC); 5455 if (!TryTransform) { 5456 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5457 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5458 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5459 Op5.isImm() && !Op5.isImm0_508s4()); 5460 } 5461 if (!TryTransform) 5462 return; 5463 } else if (!isThumbOne()) 5464 return; 5465 5466 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5467 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5468 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5469 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5470 return; 5471 5472 // If first 2 operands of a 3 operand instruction are the same 5473 // then transform to 2 operand version of the same instruction 5474 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5475 bool Transform = Op3Reg == Op4Reg; 5476 5477 // For communtative operations, we might be able to transform if we swap 5478 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5479 // as tADDrsp. 5480 const ARMOperand *LastOp = &Op5; 5481 bool Swap = false; 5482 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5483 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5484 Mnemonic == "and" || Mnemonic == "eor" || 5485 Mnemonic == "adc" || Mnemonic == "orr")) { 5486 Swap = true; 5487 LastOp = &Op4; 5488 Transform = true; 5489 } 5490 5491 // If both registers are the same then remove one of them from 5492 // the operand list, with certain exceptions. 5493 if (Transform) { 5494 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5495 // 2 operand forms don't exist. 5496 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5497 LastOp->isReg()) 5498 Transform = false; 5499 5500 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5501 // 3-bits because the ARMARM says not to. 5502 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5503 Transform = false; 5504 } 5505 5506 if (Transform) { 5507 if (Swap) 5508 std::swap(Op4, Op5); 5509 Operands.erase(Operands.begin() + 3); 5510 } 5511 } 5512 5513 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5514 OperandVector &Operands) { 5515 // FIXME: This is all horribly hacky. We really need a better way to deal 5516 // with optional operands like this in the matcher table. 5517 5518 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5519 // another does not. Specifically, the MOVW instruction does not. So we 5520 // special case it here and remove the defaulted (non-setting) cc_out 5521 // operand if that's the instruction we're trying to match. 5522 // 5523 // We do this as post-processing of the explicit operands rather than just 5524 // conditionally adding the cc_out in the first place because we need 5525 // to check the type of the parsed immediate operand. 5526 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5527 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5528 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5529 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5530 return true; 5531 5532 // Register-register 'add' for thumb does not have a cc_out operand 5533 // when there are only two register operands. 5534 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5535 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5536 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5537 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5538 return true; 5539 // Register-register 'add' for thumb does not have a cc_out operand 5540 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5541 // have to check the immediate range here since Thumb2 has a variant 5542 // that can handle a different range and has a cc_out operand. 5543 if (((isThumb() && Mnemonic == "add") || 5544 (isThumbTwo() && Mnemonic == "sub")) && 5545 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5546 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5547 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5548 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5549 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5550 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5551 return true; 5552 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5553 // imm0_4095 variant. That's the least-preferred variant when 5554 // selecting via the generic "add" mnemonic, so to know that we 5555 // should remove the cc_out operand, we have to explicitly check that 5556 // it's not one of the other variants. Ugh. 5557 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5558 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5559 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5560 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5561 // Nest conditions rather than one big 'if' statement for readability. 5562 // 5563 // If both registers are low, we're in an IT block, and the immediate is 5564 // in range, we should use encoding T1 instead, which has a cc_out. 5565 if (inITBlock() && 5566 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5567 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5568 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5569 return false; 5570 // Check against T3. If the second register is the PC, this is an 5571 // alternate form of ADR, which uses encoding T4, so check for that too. 5572 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5573 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5574 return false; 5575 5576 // Otherwise, we use encoding T4, which does not have a cc_out 5577 // operand. 5578 return true; 5579 } 5580 5581 // The thumb2 multiply instruction doesn't have a CCOut register, so 5582 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5583 // use the 16-bit encoding or not. 5584 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5585 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5586 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5587 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5588 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5589 // If the registers aren't low regs, the destination reg isn't the 5590 // same as one of the source regs, or the cc_out operand is zero 5591 // outside of an IT block, we have to use the 32-bit encoding, so 5592 // remove the cc_out operand. 5593 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5594 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5595 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5596 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5597 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5598 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5599 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5600 return true; 5601 5602 // Also check the 'mul' syntax variant that doesn't specify an explicit 5603 // destination register. 5604 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5605 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5606 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5607 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5608 // If the registers aren't low regs or the cc_out operand is zero 5609 // outside of an IT block, we have to use the 32-bit encoding, so 5610 // remove the cc_out operand. 5611 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5612 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5613 !inITBlock())) 5614 return true; 5615 5616 5617 5618 // Register-register 'add/sub' for thumb does not have a cc_out operand 5619 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5620 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5621 // right, this will result in better diagnostics (which operand is off) 5622 // anyway. 5623 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5624 (Operands.size() == 5 || Operands.size() == 6) && 5625 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5626 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5627 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5628 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5629 (Operands.size() == 6 && 5630 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5631 return true; 5632 5633 return false; 5634 } 5635 5636 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5637 OperandVector &Operands) { 5638 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5639 unsigned RegIdx = 3; 5640 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5641 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5642 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5643 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5644 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5645 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5646 RegIdx = 4; 5647 5648 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5649 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5650 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5651 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5652 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5653 return true; 5654 } 5655 return false; 5656 } 5657 5658 static bool isDataTypeToken(StringRef Tok) { 5659 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5660 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5661 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5662 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5663 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5664 Tok == ".f" || Tok == ".d"; 5665 } 5666 5667 // FIXME: This bit should probably be handled via an explicit match class 5668 // in the .td files that matches the suffix instead of having it be 5669 // a literal string token the way it is now. 5670 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5671 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5672 } 5673 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5674 unsigned VariantID); 5675 5676 static bool RequiresVFPRegListValidation(StringRef Inst, 5677 bool &AcceptSinglePrecisionOnly, 5678 bool &AcceptDoublePrecisionOnly) { 5679 if (Inst.size() < 7) 5680 return false; 5681 5682 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5683 StringRef AddressingMode = Inst.substr(4, 2); 5684 if (AddressingMode == "ia" || AddressingMode == "db" || 5685 AddressingMode == "ea" || AddressingMode == "fd") { 5686 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5687 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5688 return true; 5689 } 5690 } 5691 5692 return false; 5693 } 5694 5695 /// Parse an arm instruction mnemonic followed by its operands. 5696 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5697 SMLoc NameLoc, OperandVector &Operands) { 5698 MCAsmParser &Parser = getParser(); 5699 // FIXME: Can this be done via tablegen in some fashion? 5700 bool RequireVFPRegisterListCheck; 5701 bool AcceptSinglePrecisionOnly; 5702 bool AcceptDoublePrecisionOnly; 5703 RequireVFPRegisterListCheck = 5704 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5705 AcceptDoublePrecisionOnly); 5706 5707 // Apply mnemonic aliases before doing anything else, as the destination 5708 // mnemonic may include suffices and we want to handle them normally. 5709 // The generic tblgen'erated code does this later, at the start of 5710 // MatchInstructionImpl(), but that's too late for aliases that include 5711 // any sort of suffix. 5712 uint64_t AvailableFeatures = getAvailableFeatures(); 5713 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5714 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5715 5716 // First check for the ARM-specific .req directive. 5717 if (Parser.getTok().is(AsmToken::Identifier) && 5718 Parser.getTok().getIdentifier() == ".req") { 5719 parseDirectiveReq(Name, NameLoc); 5720 // We always return 'error' for this, as we're done with this 5721 // statement and don't need to match the 'instruction." 5722 return true; 5723 } 5724 5725 // Create the leading tokens for the mnemonic, split by '.' characters. 5726 size_t Start = 0, Next = Name.find('.'); 5727 StringRef Mnemonic = Name.slice(Start, Next); 5728 5729 // Split out the predication code and carry setting flag from the mnemonic. 5730 unsigned PredicationCode; 5731 unsigned ProcessorIMod; 5732 bool CarrySetting; 5733 StringRef ITMask; 5734 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5735 ProcessorIMod, ITMask); 5736 5737 // In Thumb1, only the branch (B) instruction can be predicated. 5738 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5739 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5740 } 5741 5742 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5743 5744 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5745 // is the mask as it will be for the IT encoding if the conditional 5746 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5747 // where the conditional bit0 is zero, the instruction post-processing 5748 // will adjust the mask accordingly. 5749 if (Mnemonic == "it") { 5750 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5751 if (ITMask.size() > 3) { 5752 return Error(Loc, "too many conditions on IT instruction"); 5753 } 5754 unsigned Mask = 8; 5755 for (unsigned i = ITMask.size(); i != 0; --i) { 5756 char pos = ITMask[i - 1]; 5757 if (pos != 't' && pos != 'e') { 5758 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5759 } 5760 Mask >>= 1; 5761 if (ITMask[i - 1] == 't') 5762 Mask |= 8; 5763 } 5764 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5765 } 5766 5767 // FIXME: This is all a pretty gross hack. We should automatically handle 5768 // optional operands like this via tblgen. 5769 5770 // Next, add the CCOut and ConditionCode operands, if needed. 5771 // 5772 // For mnemonics which can ever incorporate a carry setting bit or predication 5773 // code, our matching model involves us always generating CCOut and 5774 // ConditionCode operands to match the mnemonic "as written" and then we let 5775 // the matcher deal with finding the right instruction or generating an 5776 // appropriate error. 5777 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5778 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5779 5780 // If we had a carry-set on an instruction that can't do that, issue an 5781 // error. 5782 if (!CanAcceptCarrySet && CarrySetting) { 5783 return Error(NameLoc, "instruction '" + Mnemonic + 5784 "' can not set flags, but 's' suffix specified"); 5785 } 5786 // If we had a predication code on an instruction that can't do that, issue an 5787 // error. 5788 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 5789 return Error(NameLoc, "instruction '" + Mnemonic + 5790 "' is not predicable, but condition code specified"); 5791 } 5792 5793 // Add the carry setting operand, if necessary. 5794 if (CanAcceptCarrySet) { 5795 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 5796 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 5797 Loc)); 5798 } 5799 5800 // Add the predication code operand, if necessary. 5801 if (CanAcceptPredicationCode) { 5802 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 5803 CarrySetting); 5804 Operands.push_back(ARMOperand::CreateCondCode( 5805 ARMCC::CondCodes(PredicationCode), Loc)); 5806 } 5807 5808 // Add the processor imod operand, if necessary. 5809 if (ProcessorIMod) { 5810 Operands.push_back(ARMOperand::CreateImm( 5811 MCConstantExpr::create(ProcessorIMod, getContext()), 5812 NameLoc, NameLoc)); 5813 } else if (Mnemonic == "cps" && isMClass()) { 5814 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 5815 } 5816 5817 // Add the remaining tokens in the mnemonic. 5818 while (Next != StringRef::npos) { 5819 Start = Next; 5820 Next = Name.find('.', Start + 1); 5821 StringRef ExtraToken = Name.slice(Start, Next); 5822 5823 // Some NEON instructions have an optional datatype suffix that is 5824 // completely ignored. Check for that. 5825 if (isDataTypeToken(ExtraToken) && 5826 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 5827 continue; 5828 5829 // For for ARM mode generate an error if the .n qualifier is used. 5830 if (ExtraToken == ".n" && !isThumb()) { 5831 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5832 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 5833 "arm mode"); 5834 } 5835 5836 // The .n qualifier is always discarded as that is what the tables 5837 // and matcher expect. In ARM mode the .w qualifier has no effect, 5838 // so discard it to avoid errors that can be caused by the matcher. 5839 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 5840 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5841 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 5842 } 5843 } 5844 5845 // Read the remaining operands. 5846 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5847 // Read the first operand. 5848 if (parseOperand(Operands, Mnemonic)) { 5849 return true; 5850 } 5851 5852 while (parseOptionalToken(AsmToken::Comma)) { 5853 // Parse and remember the operand. 5854 if (parseOperand(Operands, Mnemonic)) { 5855 return true; 5856 } 5857 } 5858 } 5859 5860 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 5861 return true; 5862 5863 if (RequireVFPRegisterListCheck) { 5864 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 5865 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 5866 return Error(Op.getStartLoc(), 5867 "VFP/Neon single precision register expected"); 5868 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 5869 return Error(Op.getStartLoc(), 5870 "VFP/Neon double precision register expected"); 5871 } 5872 5873 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 5874 5875 // Some instructions, mostly Thumb, have forms for the same mnemonic that 5876 // do and don't have a cc_out optional-def operand. With some spot-checks 5877 // of the operand list, we can figure out which variant we're trying to 5878 // parse and adjust accordingly before actually matching. We shouldn't ever 5879 // try to remove a cc_out operand that was explicitly set on the 5880 // mnemonic, of course (CarrySetting == true). Reason number #317 the 5881 // table driven matcher doesn't fit well with the ARM instruction set. 5882 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 5883 Operands.erase(Operands.begin() + 1); 5884 5885 // Some instructions have the same mnemonic, but don't always 5886 // have a predicate. Distinguish them here and delete the 5887 // predicate if needed. 5888 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 5889 Operands.erase(Operands.begin() + 1); 5890 5891 // ARM mode 'blx' need special handling, as the register operand version 5892 // is predicable, but the label operand version is not. So, we can't rely 5893 // on the Mnemonic based checking to correctly figure out when to put 5894 // a k_CondCode operand in the list. If we're trying to match the label 5895 // version, remove the k_CondCode operand here. 5896 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 5897 static_cast<ARMOperand &>(*Operands[2]).isImm()) 5898 Operands.erase(Operands.begin() + 1); 5899 5900 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 5901 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 5902 // a single GPRPair reg operand is used in the .td file to replace the two 5903 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 5904 // expressed as a GPRPair, so we have to manually merge them. 5905 // FIXME: We would really like to be able to tablegen'erate this. 5906 if (!isThumb() && Operands.size() > 4 && 5907 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 5908 Mnemonic == "stlexd")) { 5909 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 5910 unsigned Idx = isLoad ? 2 : 3; 5911 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 5912 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 5913 5914 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 5915 // Adjust only if Op1 and Op2 are GPRs. 5916 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 5917 MRC.contains(Op2.getReg())) { 5918 unsigned Reg1 = Op1.getReg(); 5919 unsigned Reg2 = Op2.getReg(); 5920 unsigned Rt = MRI->getEncodingValue(Reg1); 5921 unsigned Rt2 = MRI->getEncodingValue(Reg2); 5922 5923 // Rt2 must be Rt + 1 and Rt must be even. 5924 if (Rt + 1 != Rt2 || (Rt & 1)) { 5925 return Error(Op2.getStartLoc(), 5926 isLoad ? "destination operands must be sequential" 5927 : "source operands must be sequential"); 5928 } 5929 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 5930 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 5931 Operands[Idx] = 5932 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 5933 Operands.erase(Operands.begin() + Idx + 1); 5934 } 5935 } 5936 5937 // GNU Assembler extension (compatibility) 5938 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 5939 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 5940 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5941 if (Op3.isMem()) { 5942 assert(Op2.isReg() && "expected register argument"); 5943 5944 unsigned SuperReg = MRI->getMatchingSuperReg( 5945 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 5946 5947 assert(SuperReg && "expected register pair"); 5948 5949 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 5950 5951 Operands.insert( 5952 Operands.begin() + 3, 5953 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 5954 } 5955 } 5956 5957 // FIXME: As said above, this is all a pretty gross hack. This instruction 5958 // does not fit with other "subs" and tblgen. 5959 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 5960 // so the Mnemonic is the original name "subs" and delete the predicate 5961 // operand so it will match the table entry. 5962 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 5963 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5964 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 5965 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5966 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 5967 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5968 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 5969 Operands.erase(Operands.begin() + 1); 5970 } 5971 return false; 5972 } 5973 5974 // Validate context-sensitive operand constraints. 5975 5976 // return 'true' if register list contains non-low GPR registers, 5977 // 'false' otherwise. If Reg is in the register list or is HiReg, set 5978 // 'containsReg' to true. 5979 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 5980 unsigned Reg, unsigned HiReg, 5981 bool &containsReg) { 5982 containsReg = false; 5983 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 5984 unsigned OpReg = Inst.getOperand(i).getReg(); 5985 if (OpReg == Reg) 5986 containsReg = true; 5987 // Anything other than a low register isn't legal here. 5988 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 5989 return true; 5990 } 5991 return false; 5992 } 5993 5994 // Check if the specified regisgter is in the register list of the inst, 5995 // starting at the indicated operand number. 5996 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 5997 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 5998 unsigned OpReg = Inst.getOperand(i).getReg(); 5999 if (OpReg == Reg) 6000 return true; 6001 } 6002 return false; 6003 } 6004 6005 // Return true if instruction has the interesting property of being 6006 // allowed in IT blocks, but not being predicable. 6007 static bool instIsBreakpoint(const MCInst &Inst) { 6008 return Inst.getOpcode() == ARM::tBKPT || 6009 Inst.getOpcode() == ARM::BKPT || 6010 Inst.getOpcode() == ARM::tHLT || 6011 Inst.getOpcode() == ARM::HLT; 6012 6013 } 6014 6015 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6016 const OperandVector &Operands, 6017 unsigned ListNo, bool IsARPop) { 6018 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6019 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6020 6021 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6022 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6023 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6024 6025 if (!IsARPop && ListContainsSP) 6026 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6027 "SP may not be in the register list"); 6028 else if (ListContainsPC && ListContainsLR) 6029 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6030 "PC and LR may not be in the register list simultaneously"); 6031 return false; 6032 } 6033 6034 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6035 const OperandVector &Operands, 6036 unsigned ListNo) { 6037 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6038 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6039 6040 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6041 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6042 6043 if (ListContainsSP && ListContainsPC) 6044 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6045 "SP and PC may not be in the register list"); 6046 else if (ListContainsSP) 6047 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6048 "SP may not be in the register list"); 6049 else if (ListContainsPC) 6050 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6051 "PC may not be in the register list"); 6052 return false; 6053 } 6054 6055 // FIXME: We would really like to be able to tablegen'erate this. 6056 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6057 const OperandVector &Operands) { 6058 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6059 SMLoc Loc = Operands[0]->getStartLoc(); 6060 6061 // Check the IT block state first. 6062 // NOTE: BKPT and HLT instructions have the interesting property of being 6063 // allowed in IT blocks, but not being predicable. They just always execute. 6064 if (inITBlock() && !instIsBreakpoint(Inst)) { 6065 // The instruction must be predicable. 6066 if (!MCID.isPredicable()) 6067 return Error(Loc, "instructions in IT block must be predicable"); 6068 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6069 if (Cond != currentITCond()) { 6070 // Find the condition code Operand to get its SMLoc information. 6071 SMLoc CondLoc; 6072 for (unsigned I = 1; I < Operands.size(); ++I) 6073 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6074 CondLoc = Operands[I]->getStartLoc(); 6075 return Error(CondLoc, "incorrect condition in IT block; got '" + 6076 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6077 "', but expected '" + 6078 ARMCondCodeToString(ARMCC::CondCodes(currentITCond())) + "'"); 6079 } 6080 // Check for non-'al' condition codes outside of the IT block. 6081 } else if (isThumbTwo() && MCID.isPredicable() && 6082 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6083 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6084 Inst.getOpcode() != ARM::t2Bcc) { 6085 return Error(Loc, "predicated instructions must be in IT block"); 6086 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6087 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6088 ARMCC::AL) { 6089 return Warning(Loc, "predicated instructions should be in IT block"); 6090 } 6091 6092 // PC-setting instructions in an IT block, but not the last instruction of 6093 // the block, are UNPREDICTABLE. 6094 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 6095 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 6096 } 6097 6098 const unsigned Opcode = Inst.getOpcode(); 6099 switch (Opcode) { 6100 case ARM::LDRD: 6101 case ARM::LDRD_PRE: 6102 case ARM::LDRD_POST: { 6103 const unsigned RtReg = Inst.getOperand(0).getReg(); 6104 6105 // Rt can't be R14. 6106 if (RtReg == ARM::LR) 6107 return Error(Operands[3]->getStartLoc(), 6108 "Rt can't be R14"); 6109 6110 const unsigned Rt = MRI->getEncodingValue(RtReg); 6111 // Rt must be even-numbered. 6112 if ((Rt & 1) == 1) 6113 return Error(Operands[3]->getStartLoc(), 6114 "Rt must be even-numbered"); 6115 6116 // Rt2 must be Rt + 1. 6117 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6118 if (Rt2 != Rt + 1) 6119 return Error(Operands[3]->getStartLoc(), 6120 "destination operands must be sequential"); 6121 6122 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6123 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6124 // For addressing modes with writeback, the base register needs to be 6125 // different from the destination registers. 6126 if (Rn == Rt || Rn == Rt2) 6127 return Error(Operands[3]->getStartLoc(), 6128 "base register needs to be different from destination " 6129 "registers"); 6130 } 6131 6132 return false; 6133 } 6134 case ARM::t2LDRDi8: 6135 case ARM::t2LDRD_PRE: 6136 case ARM::t2LDRD_POST: { 6137 // Rt2 must be different from Rt. 6138 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6139 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6140 if (Rt2 == Rt) 6141 return Error(Operands[3]->getStartLoc(), 6142 "destination operands can't be identical"); 6143 return false; 6144 } 6145 case ARM::t2BXJ: { 6146 const unsigned RmReg = Inst.getOperand(0).getReg(); 6147 // Rm = SP is no longer unpredictable in v8-A 6148 if (RmReg == ARM::SP && !hasV8Ops()) 6149 return Error(Operands[2]->getStartLoc(), 6150 "r13 (SP) is an unpredictable operand to BXJ"); 6151 return false; 6152 } 6153 case ARM::STRD: { 6154 // Rt2 must be Rt + 1. 6155 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6156 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6157 if (Rt2 != Rt + 1) 6158 return Error(Operands[3]->getStartLoc(), 6159 "source operands must be sequential"); 6160 return false; 6161 } 6162 case ARM::STRD_PRE: 6163 case ARM::STRD_POST: { 6164 // Rt2 must be Rt + 1. 6165 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6166 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6167 if (Rt2 != Rt + 1) 6168 return Error(Operands[3]->getStartLoc(), 6169 "source operands must be sequential"); 6170 return false; 6171 } 6172 case ARM::STR_PRE_IMM: 6173 case ARM::STR_PRE_REG: 6174 case ARM::STR_POST_IMM: 6175 case ARM::STR_POST_REG: 6176 case ARM::STRH_PRE: 6177 case ARM::STRH_POST: 6178 case ARM::STRB_PRE_IMM: 6179 case ARM::STRB_PRE_REG: 6180 case ARM::STRB_POST_IMM: 6181 case ARM::STRB_POST_REG: { 6182 // Rt must be different from Rn. 6183 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6184 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6185 6186 if (Rt == Rn) 6187 return Error(Operands[3]->getStartLoc(), 6188 "source register and base register can't be identical"); 6189 return false; 6190 } 6191 case ARM::LDR_PRE_IMM: 6192 case ARM::LDR_PRE_REG: 6193 case ARM::LDR_POST_IMM: 6194 case ARM::LDR_POST_REG: 6195 case ARM::LDRH_PRE: 6196 case ARM::LDRH_POST: 6197 case ARM::LDRSH_PRE: 6198 case ARM::LDRSH_POST: 6199 case ARM::LDRB_PRE_IMM: 6200 case ARM::LDRB_PRE_REG: 6201 case ARM::LDRB_POST_IMM: 6202 case ARM::LDRB_POST_REG: 6203 case ARM::LDRSB_PRE: 6204 case ARM::LDRSB_POST: { 6205 // Rt must be different from Rn. 6206 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6207 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6208 6209 if (Rt == Rn) 6210 return Error(Operands[3]->getStartLoc(), 6211 "destination register and base register can't be identical"); 6212 return false; 6213 } 6214 case ARM::SBFX: 6215 case ARM::UBFX: { 6216 // Width must be in range [1, 32-lsb]. 6217 unsigned LSB = Inst.getOperand(2).getImm(); 6218 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6219 if (Widthm1 >= 32 - LSB) 6220 return Error(Operands[5]->getStartLoc(), 6221 "bitfield width must be in range [1,32-lsb]"); 6222 return false; 6223 } 6224 // Notionally handles ARM::tLDMIA_UPD too. 6225 case ARM::tLDMIA: { 6226 // If we're parsing Thumb2, the .w variant is available and handles 6227 // most cases that are normally illegal for a Thumb1 LDM instruction. 6228 // We'll make the transformation in processInstruction() if necessary. 6229 // 6230 // Thumb LDM instructions are writeback iff the base register is not 6231 // in the register list. 6232 unsigned Rn = Inst.getOperand(0).getReg(); 6233 bool HasWritebackToken = 6234 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6235 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6236 bool ListContainsBase; 6237 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6238 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6239 "registers must be in range r0-r7"); 6240 // If we should have writeback, then there should be a '!' token. 6241 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6242 return Error(Operands[2]->getStartLoc(), 6243 "writeback operator '!' expected"); 6244 // If we should not have writeback, there must not be a '!'. This is 6245 // true even for the 32-bit wide encodings. 6246 if (ListContainsBase && HasWritebackToken) 6247 return Error(Operands[3]->getStartLoc(), 6248 "writeback operator '!' not allowed when base register " 6249 "in register list"); 6250 6251 if (validatetLDMRegList(Inst, Operands, 3)) 6252 return true; 6253 break; 6254 } 6255 case ARM::LDMIA_UPD: 6256 case ARM::LDMDB_UPD: 6257 case ARM::LDMIB_UPD: 6258 case ARM::LDMDA_UPD: 6259 // ARM variants loading and updating the same register are only officially 6260 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6261 if (!hasV7Ops()) 6262 break; 6263 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6264 return Error(Operands.back()->getStartLoc(), 6265 "writeback register not allowed in register list"); 6266 break; 6267 case ARM::t2LDMIA: 6268 case ARM::t2LDMDB: 6269 if (validatetLDMRegList(Inst, Operands, 3)) 6270 return true; 6271 break; 6272 case ARM::t2STMIA: 6273 case ARM::t2STMDB: 6274 if (validatetSTMRegList(Inst, Operands, 3)) 6275 return true; 6276 break; 6277 case ARM::t2LDMIA_UPD: 6278 case ARM::t2LDMDB_UPD: 6279 case ARM::t2STMIA_UPD: 6280 case ARM::t2STMDB_UPD: { 6281 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6282 return Error(Operands.back()->getStartLoc(), 6283 "writeback register not allowed in register list"); 6284 6285 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6286 if (validatetLDMRegList(Inst, Operands, 3)) 6287 return true; 6288 } else { 6289 if (validatetSTMRegList(Inst, Operands, 3)) 6290 return true; 6291 } 6292 break; 6293 } 6294 case ARM::sysLDMIA_UPD: 6295 case ARM::sysLDMDA_UPD: 6296 case ARM::sysLDMDB_UPD: 6297 case ARM::sysLDMIB_UPD: 6298 if (!listContainsReg(Inst, 3, ARM::PC)) 6299 return Error(Operands[4]->getStartLoc(), 6300 "writeback register only allowed on system LDM " 6301 "if PC in register-list"); 6302 break; 6303 case ARM::sysSTMIA_UPD: 6304 case ARM::sysSTMDA_UPD: 6305 case ARM::sysSTMDB_UPD: 6306 case ARM::sysSTMIB_UPD: 6307 return Error(Operands[2]->getStartLoc(), 6308 "system STM cannot have writeback register"); 6309 case ARM::tMUL: { 6310 // The second source operand must be the same register as the destination 6311 // operand. 6312 // 6313 // In this case, we must directly check the parsed operands because the 6314 // cvtThumbMultiply() function is written in such a way that it guarantees 6315 // this first statement is always true for the new Inst. Essentially, the 6316 // destination is unconditionally copied into the second source operand 6317 // without checking to see if it matches what we actually parsed. 6318 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6319 ((ARMOperand &)*Operands[5]).getReg()) && 6320 (((ARMOperand &)*Operands[3]).getReg() != 6321 ((ARMOperand &)*Operands[4]).getReg())) { 6322 return Error(Operands[3]->getStartLoc(), 6323 "destination register must match source register"); 6324 } 6325 break; 6326 } 6327 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6328 // so only issue a diagnostic for thumb1. The instructions will be 6329 // switched to the t2 encodings in processInstruction() if necessary. 6330 case ARM::tPOP: { 6331 bool ListContainsBase; 6332 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6333 !isThumbTwo()) 6334 return Error(Operands[2]->getStartLoc(), 6335 "registers must be in range r0-r7 or pc"); 6336 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6337 return true; 6338 break; 6339 } 6340 case ARM::tPUSH: { 6341 bool ListContainsBase; 6342 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6343 !isThumbTwo()) 6344 return Error(Operands[2]->getStartLoc(), 6345 "registers must be in range r0-r7 or lr"); 6346 if (validatetSTMRegList(Inst, Operands, 2)) 6347 return true; 6348 break; 6349 } 6350 case ARM::tSTMIA_UPD: { 6351 bool ListContainsBase, InvalidLowList; 6352 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6353 0, ListContainsBase); 6354 if (InvalidLowList && !isThumbTwo()) 6355 return Error(Operands[4]->getStartLoc(), 6356 "registers must be in range r0-r7"); 6357 6358 // This would be converted to a 32-bit stm, but that's not valid if the 6359 // writeback register is in the list. 6360 if (InvalidLowList && ListContainsBase) 6361 return Error(Operands[4]->getStartLoc(), 6362 "writeback operator '!' not allowed when base register " 6363 "in register list"); 6364 6365 if (validatetSTMRegList(Inst, Operands, 4)) 6366 return true; 6367 break; 6368 } 6369 case ARM::tADDrSP: { 6370 // If the non-SP source operand and the destination operand are not the 6371 // same, we need thumb2 (for the wide encoding), or we have an error. 6372 if (!isThumbTwo() && 6373 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6374 return Error(Operands[4]->getStartLoc(), 6375 "source register must be the same as destination"); 6376 } 6377 break; 6378 } 6379 // Final range checking for Thumb unconditional branch instructions. 6380 case ARM::tB: 6381 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6382 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6383 break; 6384 case ARM::t2B: { 6385 int op = (Operands[2]->isImm()) ? 2 : 3; 6386 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6387 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6388 break; 6389 } 6390 // Final range checking for Thumb conditional branch instructions. 6391 case ARM::tBcc: 6392 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6393 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6394 break; 6395 case ARM::t2Bcc: { 6396 int Op = (Operands[2]->isImm()) ? 2 : 3; 6397 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6398 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6399 break; 6400 } 6401 case ARM::tCBZ: 6402 case ARM::tCBNZ: { 6403 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6404 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6405 break; 6406 } 6407 case ARM::MOVi16: 6408 case ARM::MOVTi16: 6409 case ARM::t2MOVi16: 6410 case ARM::t2MOVTi16: 6411 { 6412 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6413 // especially when we turn it into a movw and the expression <symbol> does 6414 // not have a :lower16: or :upper16 as part of the expression. We don't 6415 // want the behavior of silently truncating, which can be unexpected and 6416 // lead to bugs that are difficult to find since this is an easy mistake 6417 // to make. 6418 int i = (Operands[3]->isImm()) ? 3 : 4; 6419 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6420 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6421 if (CE) break; 6422 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6423 if (!E) break; 6424 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6425 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6426 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6427 return Error( 6428 Op.getStartLoc(), 6429 "immediate expression for mov requires :lower16: or :upper16"); 6430 break; 6431 } 6432 case ARM::HINT: 6433 case ARM::t2HINT: { 6434 if (hasRAS()) { 6435 // ESB is not predicable (pred must be AL) 6436 unsigned Imm8 = Inst.getOperand(0).getImm(); 6437 unsigned Pred = Inst.getOperand(1).getImm(); 6438 if (Imm8 == 0x10 && Pred != ARMCC::AL) 6439 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6440 "predicable, but condition " 6441 "code specified"); 6442 } 6443 // Without the RAS extension, this behaves as any other unallocated hint. 6444 break; 6445 } 6446 } 6447 6448 return false; 6449 } 6450 6451 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6452 switch(Opc) { 6453 default: llvm_unreachable("unexpected opcode!"); 6454 // VST1LN 6455 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6456 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6457 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6458 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6459 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6460 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6461 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6462 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6463 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6464 6465 // VST2LN 6466 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6467 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6468 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6469 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6470 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6471 6472 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6473 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6474 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6475 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6476 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6477 6478 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6479 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6480 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6481 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6482 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6483 6484 // VST3LN 6485 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6486 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6487 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6488 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6489 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6490 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6491 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6492 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6493 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6494 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6495 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6496 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6497 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6498 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6499 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6500 6501 // VST3 6502 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6503 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6504 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6505 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6506 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6507 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6508 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6509 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6510 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6511 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6512 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6513 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6514 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6515 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6516 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6517 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6518 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6519 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6520 6521 // VST4LN 6522 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6523 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6524 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6525 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6526 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6527 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6528 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6529 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6530 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6531 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6532 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6533 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6534 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6535 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6536 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6537 6538 // VST4 6539 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6540 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6541 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6542 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6543 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6544 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6545 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6546 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6547 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6548 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6549 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6550 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6551 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6552 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6553 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6554 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6555 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6556 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6557 } 6558 } 6559 6560 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6561 switch(Opc) { 6562 default: llvm_unreachable("unexpected opcode!"); 6563 // VLD1LN 6564 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6565 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6566 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6567 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6568 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6569 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6570 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6571 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6572 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6573 6574 // VLD2LN 6575 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6576 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6577 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6578 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6579 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6580 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6581 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6582 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6583 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6584 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6585 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6586 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6587 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6588 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6589 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6590 6591 // VLD3DUP 6592 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6593 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6594 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6595 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6596 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6597 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6598 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6599 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6600 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6601 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6602 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6603 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6604 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6605 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6606 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6607 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6608 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6609 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6610 6611 // VLD3LN 6612 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6613 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6614 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6615 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6616 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6617 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6618 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6619 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6620 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6621 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6622 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6623 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6624 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6625 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6626 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6627 6628 // VLD3 6629 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6630 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6631 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6632 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6633 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6634 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6635 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6636 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6637 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6638 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6639 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6640 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6641 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6642 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6643 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6644 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6645 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6646 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6647 6648 // VLD4LN 6649 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6650 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6651 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6652 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6653 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6654 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6655 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6656 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6657 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6658 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6659 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6660 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6661 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6662 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6663 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6664 6665 // VLD4DUP 6666 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6667 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6668 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6669 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6670 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6671 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6672 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6673 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6674 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6675 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6676 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6677 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6678 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6679 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6680 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6681 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6682 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6683 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6684 6685 // VLD4 6686 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6687 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6688 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6689 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6690 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6691 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6692 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6693 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6694 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6695 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6696 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6697 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6698 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6699 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6700 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6701 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6702 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6703 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6704 } 6705 } 6706 6707 bool ARMAsmParser::processInstruction(MCInst &Inst, 6708 const OperandVector &Operands, 6709 MCStreamer &Out) { 6710 // Check if we have the wide qualifier, because if it's present we 6711 // must avoid selecting a 16-bit thumb instruction. 6712 bool HasWideQualifier = false; 6713 for (auto &Op : Operands) { 6714 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 6715 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 6716 HasWideQualifier = true; 6717 break; 6718 } 6719 } 6720 6721 switch (Inst.getOpcode()) { 6722 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6723 case ARM::LDRT_POST: 6724 case ARM::LDRBT_POST: { 6725 const unsigned Opcode = 6726 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6727 : ARM::LDRBT_POST_IMM; 6728 MCInst TmpInst; 6729 TmpInst.setOpcode(Opcode); 6730 TmpInst.addOperand(Inst.getOperand(0)); 6731 TmpInst.addOperand(Inst.getOperand(1)); 6732 TmpInst.addOperand(Inst.getOperand(1)); 6733 TmpInst.addOperand(MCOperand::createReg(0)); 6734 TmpInst.addOperand(MCOperand::createImm(0)); 6735 TmpInst.addOperand(Inst.getOperand(2)); 6736 TmpInst.addOperand(Inst.getOperand(3)); 6737 Inst = TmpInst; 6738 return true; 6739 } 6740 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6741 case ARM::STRT_POST: 6742 case ARM::STRBT_POST: { 6743 const unsigned Opcode = 6744 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6745 : ARM::STRBT_POST_IMM; 6746 MCInst TmpInst; 6747 TmpInst.setOpcode(Opcode); 6748 TmpInst.addOperand(Inst.getOperand(1)); 6749 TmpInst.addOperand(Inst.getOperand(0)); 6750 TmpInst.addOperand(Inst.getOperand(1)); 6751 TmpInst.addOperand(MCOperand::createReg(0)); 6752 TmpInst.addOperand(MCOperand::createImm(0)); 6753 TmpInst.addOperand(Inst.getOperand(2)); 6754 TmpInst.addOperand(Inst.getOperand(3)); 6755 Inst = TmpInst; 6756 return true; 6757 } 6758 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6759 case ARM::ADDri: { 6760 if (Inst.getOperand(1).getReg() != ARM::PC || 6761 Inst.getOperand(5).getReg() != 0 || 6762 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6763 return false; 6764 MCInst TmpInst; 6765 TmpInst.setOpcode(ARM::ADR); 6766 TmpInst.addOperand(Inst.getOperand(0)); 6767 if (Inst.getOperand(2).isImm()) { 6768 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6769 // before passing it to the ADR instruction. 6770 unsigned Enc = Inst.getOperand(2).getImm(); 6771 TmpInst.addOperand(MCOperand::createImm( 6772 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6773 } else { 6774 // Turn PC-relative expression into absolute expression. 6775 // Reading PC provides the start of the current instruction + 8 and 6776 // the transform to adr is biased by that. 6777 MCSymbol *Dot = getContext().createTempSymbol(); 6778 Out.EmitLabel(Dot); 6779 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6780 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 6781 MCSymbolRefExpr::VK_None, 6782 getContext()); 6783 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 6784 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 6785 getContext()); 6786 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 6787 getContext()); 6788 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 6789 } 6790 TmpInst.addOperand(Inst.getOperand(3)); 6791 TmpInst.addOperand(Inst.getOperand(4)); 6792 Inst = TmpInst; 6793 return true; 6794 } 6795 // Aliases for alternate PC+imm syntax of LDR instructions. 6796 case ARM::t2LDRpcrel: 6797 // Select the narrow version if the immediate will fit. 6798 if (Inst.getOperand(1).getImm() > 0 && 6799 Inst.getOperand(1).getImm() <= 0xff && 6800 !HasWideQualifier) 6801 Inst.setOpcode(ARM::tLDRpci); 6802 else 6803 Inst.setOpcode(ARM::t2LDRpci); 6804 return true; 6805 case ARM::t2LDRBpcrel: 6806 Inst.setOpcode(ARM::t2LDRBpci); 6807 return true; 6808 case ARM::t2LDRHpcrel: 6809 Inst.setOpcode(ARM::t2LDRHpci); 6810 return true; 6811 case ARM::t2LDRSBpcrel: 6812 Inst.setOpcode(ARM::t2LDRSBpci); 6813 return true; 6814 case ARM::t2LDRSHpcrel: 6815 Inst.setOpcode(ARM::t2LDRSHpci); 6816 return true; 6817 case ARM::LDRConstPool: 6818 case ARM::tLDRConstPool: 6819 case ARM::t2LDRConstPool: { 6820 // Pseudo instruction ldr rt, =immediate is converted to a 6821 // MOV rt, immediate if immediate is known and representable 6822 // otherwise we create a constant pool entry that we load from. 6823 MCInst TmpInst; 6824 if (Inst.getOpcode() == ARM::LDRConstPool) 6825 TmpInst.setOpcode(ARM::LDRi12); 6826 else if (Inst.getOpcode() == ARM::tLDRConstPool) 6827 TmpInst.setOpcode(ARM::tLDRpci); 6828 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 6829 TmpInst.setOpcode(ARM::t2LDRpci); 6830 const ARMOperand &PoolOperand = 6831 (HasWideQualifier ? 6832 static_cast<ARMOperand &>(*Operands[4]) : 6833 static_cast<ARMOperand &>(*Operands[3])); 6834 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 6835 // If SubExprVal is a constant we may be able to use a MOV 6836 if (isa<MCConstantExpr>(SubExprVal) && 6837 Inst.getOperand(0).getReg() != ARM::PC && 6838 Inst.getOperand(0).getReg() != ARM::SP) { 6839 int64_t Value = 6840 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 6841 bool UseMov = true; 6842 bool MovHasS = true; 6843 if (Inst.getOpcode() == ARM::LDRConstPool) { 6844 // ARM Constant 6845 if (ARM_AM::getSOImmVal(Value) != -1) { 6846 Value = ARM_AM::getSOImmVal(Value); 6847 TmpInst.setOpcode(ARM::MOVi); 6848 } 6849 else if (ARM_AM::getSOImmVal(~Value) != -1) { 6850 Value = ARM_AM::getSOImmVal(~Value); 6851 TmpInst.setOpcode(ARM::MVNi); 6852 } 6853 else if (hasV6T2Ops() && 6854 Value >=0 && Value < 65536) { 6855 TmpInst.setOpcode(ARM::MOVi16); 6856 MovHasS = false; 6857 } 6858 else 6859 UseMov = false; 6860 } 6861 else { 6862 // Thumb/Thumb2 Constant 6863 if (hasThumb2() && 6864 ARM_AM::getT2SOImmVal(Value) != -1) 6865 TmpInst.setOpcode(ARM::t2MOVi); 6866 else if (hasThumb2() && 6867 ARM_AM::getT2SOImmVal(~Value) != -1) { 6868 TmpInst.setOpcode(ARM::t2MVNi); 6869 Value = ~Value; 6870 } 6871 else if (hasV8MBaseline() && 6872 Value >=0 && Value < 65536) { 6873 TmpInst.setOpcode(ARM::t2MOVi16); 6874 MovHasS = false; 6875 } 6876 else 6877 UseMov = false; 6878 } 6879 if (UseMov) { 6880 TmpInst.addOperand(Inst.getOperand(0)); // Rt 6881 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 6882 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 6883 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 6884 if (MovHasS) 6885 TmpInst.addOperand(MCOperand::createReg(0)); // S 6886 Inst = TmpInst; 6887 return true; 6888 } 6889 } 6890 // No opportunity to use MOV/MVN create constant pool 6891 const MCExpr *CPLoc = 6892 getTargetStreamer().addConstantPoolEntry(SubExprVal, 6893 PoolOperand.getStartLoc()); 6894 TmpInst.addOperand(Inst.getOperand(0)); // Rt 6895 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 6896 if (TmpInst.getOpcode() == ARM::LDRi12) 6897 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 6898 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 6899 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 6900 Inst = TmpInst; 6901 return true; 6902 } 6903 // Handle NEON VST complex aliases. 6904 case ARM::VST1LNdWB_register_Asm_8: 6905 case ARM::VST1LNdWB_register_Asm_16: 6906 case ARM::VST1LNdWB_register_Asm_32: { 6907 MCInst TmpInst; 6908 // Shuffle the operands around so the lane index operand is in the 6909 // right place. 6910 unsigned Spacing; 6911 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6912 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6913 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6914 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6915 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6916 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6917 TmpInst.addOperand(Inst.getOperand(1)); // lane 6918 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6919 TmpInst.addOperand(Inst.getOperand(6)); 6920 Inst = TmpInst; 6921 return true; 6922 } 6923 6924 case ARM::VST2LNdWB_register_Asm_8: 6925 case ARM::VST2LNdWB_register_Asm_16: 6926 case ARM::VST2LNdWB_register_Asm_32: 6927 case ARM::VST2LNqWB_register_Asm_16: 6928 case ARM::VST2LNqWB_register_Asm_32: { 6929 MCInst TmpInst; 6930 // Shuffle the operands around so the lane index operand is in the 6931 // right place. 6932 unsigned Spacing; 6933 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6934 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6935 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6936 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6937 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6938 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6939 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6940 Spacing)); 6941 TmpInst.addOperand(Inst.getOperand(1)); // lane 6942 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6943 TmpInst.addOperand(Inst.getOperand(6)); 6944 Inst = TmpInst; 6945 return true; 6946 } 6947 6948 case ARM::VST3LNdWB_register_Asm_8: 6949 case ARM::VST3LNdWB_register_Asm_16: 6950 case ARM::VST3LNdWB_register_Asm_32: 6951 case ARM::VST3LNqWB_register_Asm_16: 6952 case ARM::VST3LNqWB_register_Asm_32: { 6953 MCInst TmpInst; 6954 // Shuffle the operands around so the lane index operand is in the 6955 // right place. 6956 unsigned Spacing; 6957 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6958 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6959 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6960 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6961 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6962 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6963 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6964 Spacing)); 6965 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6966 Spacing * 2)); 6967 TmpInst.addOperand(Inst.getOperand(1)); // lane 6968 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6969 TmpInst.addOperand(Inst.getOperand(6)); 6970 Inst = TmpInst; 6971 return true; 6972 } 6973 6974 case ARM::VST4LNdWB_register_Asm_8: 6975 case ARM::VST4LNdWB_register_Asm_16: 6976 case ARM::VST4LNdWB_register_Asm_32: 6977 case ARM::VST4LNqWB_register_Asm_16: 6978 case ARM::VST4LNqWB_register_Asm_32: { 6979 MCInst TmpInst; 6980 // Shuffle the operands around so the lane index operand is in the 6981 // right place. 6982 unsigned Spacing; 6983 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6984 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6985 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6986 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6987 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6988 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6989 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6990 Spacing)); 6991 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6992 Spacing * 2)); 6993 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6994 Spacing * 3)); 6995 TmpInst.addOperand(Inst.getOperand(1)); // lane 6996 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6997 TmpInst.addOperand(Inst.getOperand(6)); 6998 Inst = TmpInst; 6999 return true; 7000 } 7001 7002 case ARM::VST1LNdWB_fixed_Asm_8: 7003 case ARM::VST1LNdWB_fixed_Asm_16: 7004 case ARM::VST1LNdWB_fixed_Asm_32: { 7005 MCInst TmpInst; 7006 // Shuffle the operands around so the lane index operand is in the 7007 // right place. 7008 unsigned Spacing; 7009 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7010 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7011 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7012 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7013 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7014 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7015 TmpInst.addOperand(Inst.getOperand(1)); // lane 7016 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7017 TmpInst.addOperand(Inst.getOperand(5)); 7018 Inst = TmpInst; 7019 return true; 7020 } 7021 7022 case ARM::VST2LNdWB_fixed_Asm_8: 7023 case ARM::VST2LNdWB_fixed_Asm_16: 7024 case ARM::VST2LNdWB_fixed_Asm_32: 7025 case ARM::VST2LNqWB_fixed_Asm_16: 7026 case ARM::VST2LNqWB_fixed_Asm_32: { 7027 MCInst TmpInst; 7028 // Shuffle the operands around so the lane index operand is in the 7029 // right place. 7030 unsigned Spacing; 7031 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7032 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7033 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7034 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7035 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7036 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7037 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7038 Spacing)); 7039 TmpInst.addOperand(Inst.getOperand(1)); // lane 7040 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7041 TmpInst.addOperand(Inst.getOperand(5)); 7042 Inst = TmpInst; 7043 return true; 7044 } 7045 7046 case ARM::VST3LNdWB_fixed_Asm_8: 7047 case ARM::VST3LNdWB_fixed_Asm_16: 7048 case ARM::VST3LNdWB_fixed_Asm_32: 7049 case ARM::VST3LNqWB_fixed_Asm_16: 7050 case ARM::VST3LNqWB_fixed_Asm_32: { 7051 MCInst TmpInst; 7052 // Shuffle the operands around so the lane index operand is in the 7053 // right place. 7054 unsigned Spacing; 7055 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7056 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7057 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7058 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7059 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7060 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7061 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7062 Spacing)); 7063 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7064 Spacing * 2)); 7065 TmpInst.addOperand(Inst.getOperand(1)); // lane 7066 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7067 TmpInst.addOperand(Inst.getOperand(5)); 7068 Inst = TmpInst; 7069 return true; 7070 } 7071 7072 case ARM::VST4LNdWB_fixed_Asm_8: 7073 case ARM::VST4LNdWB_fixed_Asm_16: 7074 case ARM::VST4LNdWB_fixed_Asm_32: 7075 case ARM::VST4LNqWB_fixed_Asm_16: 7076 case ARM::VST4LNqWB_fixed_Asm_32: { 7077 MCInst TmpInst; 7078 // Shuffle the operands around so the lane index operand is in the 7079 // right place. 7080 unsigned Spacing; 7081 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7082 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7083 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7084 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7085 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7086 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7087 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7088 Spacing)); 7089 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7090 Spacing * 2)); 7091 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7092 Spacing * 3)); 7093 TmpInst.addOperand(Inst.getOperand(1)); // lane 7094 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7095 TmpInst.addOperand(Inst.getOperand(5)); 7096 Inst = TmpInst; 7097 return true; 7098 } 7099 7100 case ARM::VST1LNdAsm_8: 7101 case ARM::VST1LNdAsm_16: 7102 case ARM::VST1LNdAsm_32: { 7103 MCInst TmpInst; 7104 // Shuffle the operands around so the lane index operand is in the 7105 // right place. 7106 unsigned Spacing; 7107 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7108 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7109 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7110 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7111 TmpInst.addOperand(Inst.getOperand(1)); // lane 7112 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7113 TmpInst.addOperand(Inst.getOperand(5)); 7114 Inst = TmpInst; 7115 return true; 7116 } 7117 7118 case ARM::VST2LNdAsm_8: 7119 case ARM::VST2LNdAsm_16: 7120 case ARM::VST2LNdAsm_32: 7121 case ARM::VST2LNqAsm_16: 7122 case ARM::VST2LNqAsm_32: { 7123 MCInst TmpInst; 7124 // Shuffle the operands around so the lane index operand is in the 7125 // right place. 7126 unsigned Spacing; 7127 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7128 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7129 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7130 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7131 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7132 Spacing)); 7133 TmpInst.addOperand(Inst.getOperand(1)); // lane 7134 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7135 TmpInst.addOperand(Inst.getOperand(5)); 7136 Inst = TmpInst; 7137 return true; 7138 } 7139 7140 case ARM::VST3LNdAsm_8: 7141 case ARM::VST3LNdAsm_16: 7142 case ARM::VST3LNdAsm_32: 7143 case ARM::VST3LNqAsm_16: 7144 case ARM::VST3LNqAsm_32: { 7145 MCInst TmpInst; 7146 // Shuffle the operands around so the lane index operand is in the 7147 // right place. 7148 unsigned Spacing; 7149 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7150 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7151 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7152 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7153 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7154 Spacing)); 7155 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7156 Spacing * 2)); 7157 TmpInst.addOperand(Inst.getOperand(1)); // lane 7158 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7159 TmpInst.addOperand(Inst.getOperand(5)); 7160 Inst = TmpInst; 7161 return true; 7162 } 7163 7164 case ARM::VST4LNdAsm_8: 7165 case ARM::VST4LNdAsm_16: 7166 case ARM::VST4LNdAsm_32: 7167 case ARM::VST4LNqAsm_16: 7168 case ARM::VST4LNqAsm_32: { 7169 MCInst TmpInst; 7170 // Shuffle the operands around so the lane index operand is in the 7171 // right place. 7172 unsigned Spacing; 7173 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7174 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7175 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7176 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7177 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7178 Spacing)); 7179 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7180 Spacing * 2)); 7181 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7182 Spacing * 3)); 7183 TmpInst.addOperand(Inst.getOperand(1)); // lane 7184 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7185 TmpInst.addOperand(Inst.getOperand(5)); 7186 Inst = TmpInst; 7187 return true; 7188 } 7189 7190 // Handle NEON VLD complex aliases. 7191 case ARM::VLD1LNdWB_register_Asm_8: 7192 case ARM::VLD1LNdWB_register_Asm_16: 7193 case ARM::VLD1LNdWB_register_Asm_32: { 7194 MCInst TmpInst; 7195 // Shuffle the operands around so the lane index operand is in the 7196 // right place. 7197 unsigned Spacing; 7198 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7199 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7200 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7201 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7202 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7203 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7204 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7205 TmpInst.addOperand(Inst.getOperand(1)); // lane 7206 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7207 TmpInst.addOperand(Inst.getOperand(6)); 7208 Inst = TmpInst; 7209 return true; 7210 } 7211 7212 case ARM::VLD2LNdWB_register_Asm_8: 7213 case ARM::VLD2LNdWB_register_Asm_16: 7214 case ARM::VLD2LNdWB_register_Asm_32: 7215 case ARM::VLD2LNqWB_register_Asm_16: 7216 case ARM::VLD2LNqWB_register_Asm_32: { 7217 MCInst TmpInst; 7218 // Shuffle the operands around so the lane index operand is in the 7219 // right place. 7220 unsigned Spacing; 7221 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7222 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7223 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7224 Spacing)); 7225 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7226 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7227 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7228 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7229 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7230 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7231 Spacing)); 7232 TmpInst.addOperand(Inst.getOperand(1)); // lane 7233 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7234 TmpInst.addOperand(Inst.getOperand(6)); 7235 Inst = TmpInst; 7236 return true; 7237 } 7238 7239 case ARM::VLD3LNdWB_register_Asm_8: 7240 case ARM::VLD3LNdWB_register_Asm_16: 7241 case ARM::VLD3LNdWB_register_Asm_32: 7242 case ARM::VLD3LNqWB_register_Asm_16: 7243 case ARM::VLD3LNqWB_register_Asm_32: { 7244 MCInst TmpInst; 7245 // Shuffle the operands around so the lane index operand is in the 7246 // right place. 7247 unsigned Spacing; 7248 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7249 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7250 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7251 Spacing)); 7252 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7253 Spacing * 2)); 7254 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7255 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7256 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7257 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7258 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7259 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7260 Spacing)); 7261 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7262 Spacing * 2)); 7263 TmpInst.addOperand(Inst.getOperand(1)); // lane 7264 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7265 TmpInst.addOperand(Inst.getOperand(6)); 7266 Inst = TmpInst; 7267 return true; 7268 } 7269 7270 case ARM::VLD4LNdWB_register_Asm_8: 7271 case ARM::VLD4LNdWB_register_Asm_16: 7272 case ARM::VLD4LNdWB_register_Asm_32: 7273 case ARM::VLD4LNqWB_register_Asm_16: 7274 case ARM::VLD4LNqWB_register_Asm_32: { 7275 MCInst TmpInst; 7276 // Shuffle the operands around so the lane index operand is in the 7277 // right place. 7278 unsigned Spacing; 7279 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7280 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7281 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7282 Spacing)); 7283 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7284 Spacing * 2)); 7285 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7286 Spacing * 3)); 7287 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7288 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7289 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7290 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7291 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7292 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7293 Spacing)); 7294 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7295 Spacing * 2)); 7296 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7297 Spacing * 3)); 7298 TmpInst.addOperand(Inst.getOperand(1)); // lane 7299 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7300 TmpInst.addOperand(Inst.getOperand(6)); 7301 Inst = TmpInst; 7302 return true; 7303 } 7304 7305 case ARM::VLD1LNdWB_fixed_Asm_8: 7306 case ARM::VLD1LNdWB_fixed_Asm_16: 7307 case ARM::VLD1LNdWB_fixed_Asm_32: { 7308 MCInst TmpInst; 7309 // Shuffle the operands around so the lane index operand is in the 7310 // right place. 7311 unsigned Spacing; 7312 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7313 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7314 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7315 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7316 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7317 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7318 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7319 TmpInst.addOperand(Inst.getOperand(1)); // lane 7320 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7321 TmpInst.addOperand(Inst.getOperand(5)); 7322 Inst = TmpInst; 7323 return true; 7324 } 7325 7326 case ARM::VLD2LNdWB_fixed_Asm_8: 7327 case ARM::VLD2LNdWB_fixed_Asm_16: 7328 case ARM::VLD2LNdWB_fixed_Asm_32: 7329 case ARM::VLD2LNqWB_fixed_Asm_16: 7330 case ARM::VLD2LNqWB_fixed_Asm_32: { 7331 MCInst TmpInst; 7332 // Shuffle the operands around so the lane index operand is in the 7333 // right place. 7334 unsigned Spacing; 7335 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7336 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7337 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7338 Spacing)); 7339 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7340 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7341 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7342 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7343 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7344 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7345 Spacing)); 7346 TmpInst.addOperand(Inst.getOperand(1)); // lane 7347 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7348 TmpInst.addOperand(Inst.getOperand(5)); 7349 Inst = TmpInst; 7350 return true; 7351 } 7352 7353 case ARM::VLD3LNdWB_fixed_Asm_8: 7354 case ARM::VLD3LNdWB_fixed_Asm_16: 7355 case ARM::VLD3LNdWB_fixed_Asm_32: 7356 case ARM::VLD3LNqWB_fixed_Asm_16: 7357 case ARM::VLD3LNqWB_fixed_Asm_32: { 7358 MCInst TmpInst; 7359 // Shuffle the operands around so the lane index operand is in the 7360 // right place. 7361 unsigned Spacing; 7362 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7363 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7364 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7365 Spacing)); 7366 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7367 Spacing * 2)); 7368 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7369 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7370 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7371 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7372 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7373 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7374 Spacing)); 7375 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7376 Spacing * 2)); 7377 TmpInst.addOperand(Inst.getOperand(1)); // lane 7378 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7379 TmpInst.addOperand(Inst.getOperand(5)); 7380 Inst = TmpInst; 7381 return true; 7382 } 7383 7384 case ARM::VLD4LNdWB_fixed_Asm_8: 7385 case ARM::VLD4LNdWB_fixed_Asm_16: 7386 case ARM::VLD4LNdWB_fixed_Asm_32: 7387 case ARM::VLD4LNqWB_fixed_Asm_16: 7388 case ARM::VLD4LNqWB_fixed_Asm_32: { 7389 MCInst TmpInst; 7390 // Shuffle the operands around so the lane index operand is in the 7391 // right place. 7392 unsigned Spacing; 7393 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7394 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7395 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7396 Spacing)); 7397 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7398 Spacing * 2)); 7399 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7400 Spacing * 3)); 7401 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7402 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7403 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7404 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7405 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7406 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7407 Spacing)); 7408 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7409 Spacing * 2)); 7410 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7411 Spacing * 3)); 7412 TmpInst.addOperand(Inst.getOperand(1)); // lane 7413 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7414 TmpInst.addOperand(Inst.getOperand(5)); 7415 Inst = TmpInst; 7416 return true; 7417 } 7418 7419 case ARM::VLD1LNdAsm_8: 7420 case ARM::VLD1LNdAsm_16: 7421 case ARM::VLD1LNdAsm_32: { 7422 MCInst TmpInst; 7423 // Shuffle the operands around so the lane index operand is in the 7424 // right place. 7425 unsigned Spacing; 7426 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7427 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7428 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7429 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7430 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7431 TmpInst.addOperand(Inst.getOperand(1)); // lane 7432 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7433 TmpInst.addOperand(Inst.getOperand(5)); 7434 Inst = TmpInst; 7435 return true; 7436 } 7437 7438 case ARM::VLD2LNdAsm_8: 7439 case ARM::VLD2LNdAsm_16: 7440 case ARM::VLD2LNdAsm_32: 7441 case ARM::VLD2LNqAsm_16: 7442 case ARM::VLD2LNqAsm_32: { 7443 MCInst TmpInst; 7444 // Shuffle the operands around so the lane index operand is in the 7445 // right place. 7446 unsigned Spacing; 7447 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7448 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7449 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7450 Spacing)); 7451 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7452 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7453 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7454 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7455 Spacing)); 7456 TmpInst.addOperand(Inst.getOperand(1)); // lane 7457 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7458 TmpInst.addOperand(Inst.getOperand(5)); 7459 Inst = TmpInst; 7460 return true; 7461 } 7462 7463 case ARM::VLD3LNdAsm_8: 7464 case ARM::VLD3LNdAsm_16: 7465 case ARM::VLD3LNdAsm_32: 7466 case ARM::VLD3LNqAsm_16: 7467 case ARM::VLD3LNqAsm_32: { 7468 MCInst TmpInst; 7469 // Shuffle the operands around so the lane index operand is in the 7470 // right place. 7471 unsigned Spacing; 7472 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7473 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7474 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7475 Spacing)); 7476 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7477 Spacing * 2)); 7478 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7479 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7480 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7481 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7482 Spacing)); 7483 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7484 Spacing * 2)); 7485 TmpInst.addOperand(Inst.getOperand(1)); // lane 7486 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7487 TmpInst.addOperand(Inst.getOperand(5)); 7488 Inst = TmpInst; 7489 return true; 7490 } 7491 7492 case ARM::VLD4LNdAsm_8: 7493 case ARM::VLD4LNdAsm_16: 7494 case ARM::VLD4LNdAsm_32: 7495 case ARM::VLD4LNqAsm_16: 7496 case ARM::VLD4LNqAsm_32: { 7497 MCInst TmpInst; 7498 // Shuffle the operands around so the lane index operand is in the 7499 // right place. 7500 unsigned Spacing; 7501 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7502 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7503 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7504 Spacing)); 7505 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7506 Spacing * 2)); 7507 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7508 Spacing * 3)); 7509 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7510 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7511 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7512 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7513 Spacing)); 7514 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7515 Spacing * 2)); 7516 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7517 Spacing * 3)); 7518 TmpInst.addOperand(Inst.getOperand(1)); // lane 7519 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7520 TmpInst.addOperand(Inst.getOperand(5)); 7521 Inst = TmpInst; 7522 return true; 7523 } 7524 7525 // VLD3DUP single 3-element structure to all lanes instructions. 7526 case ARM::VLD3DUPdAsm_8: 7527 case ARM::VLD3DUPdAsm_16: 7528 case ARM::VLD3DUPdAsm_32: 7529 case ARM::VLD3DUPqAsm_8: 7530 case ARM::VLD3DUPqAsm_16: 7531 case ARM::VLD3DUPqAsm_32: { 7532 MCInst TmpInst; 7533 unsigned Spacing; 7534 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7535 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7536 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7537 Spacing)); 7538 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7539 Spacing * 2)); 7540 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7541 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7542 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7543 TmpInst.addOperand(Inst.getOperand(4)); 7544 Inst = TmpInst; 7545 return true; 7546 } 7547 7548 case ARM::VLD3DUPdWB_fixed_Asm_8: 7549 case ARM::VLD3DUPdWB_fixed_Asm_16: 7550 case ARM::VLD3DUPdWB_fixed_Asm_32: 7551 case ARM::VLD3DUPqWB_fixed_Asm_8: 7552 case ARM::VLD3DUPqWB_fixed_Asm_16: 7553 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7554 MCInst TmpInst; 7555 unsigned Spacing; 7556 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7557 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7558 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7559 Spacing)); 7560 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7561 Spacing * 2)); 7562 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7563 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7564 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7565 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7566 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7567 TmpInst.addOperand(Inst.getOperand(4)); 7568 Inst = TmpInst; 7569 return true; 7570 } 7571 7572 case ARM::VLD3DUPdWB_register_Asm_8: 7573 case ARM::VLD3DUPdWB_register_Asm_16: 7574 case ARM::VLD3DUPdWB_register_Asm_32: 7575 case ARM::VLD3DUPqWB_register_Asm_8: 7576 case ARM::VLD3DUPqWB_register_Asm_16: 7577 case ARM::VLD3DUPqWB_register_Asm_32: { 7578 MCInst TmpInst; 7579 unsigned Spacing; 7580 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7581 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7582 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7583 Spacing)); 7584 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7585 Spacing * 2)); 7586 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7587 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7588 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7589 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7590 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7591 TmpInst.addOperand(Inst.getOperand(5)); 7592 Inst = TmpInst; 7593 return true; 7594 } 7595 7596 // VLD3 multiple 3-element structure instructions. 7597 case ARM::VLD3dAsm_8: 7598 case ARM::VLD3dAsm_16: 7599 case ARM::VLD3dAsm_32: 7600 case ARM::VLD3qAsm_8: 7601 case ARM::VLD3qAsm_16: 7602 case ARM::VLD3qAsm_32: { 7603 MCInst TmpInst; 7604 unsigned Spacing; 7605 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7606 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7607 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7608 Spacing)); 7609 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7610 Spacing * 2)); 7611 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7612 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7613 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7614 TmpInst.addOperand(Inst.getOperand(4)); 7615 Inst = TmpInst; 7616 return true; 7617 } 7618 7619 case ARM::VLD3dWB_fixed_Asm_8: 7620 case ARM::VLD3dWB_fixed_Asm_16: 7621 case ARM::VLD3dWB_fixed_Asm_32: 7622 case ARM::VLD3qWB_fixed_Asm_8: 7623 case ARM::VLD3qWB_fixed_Asm_16: 7624 case ARM::VLD3qWB_fixed_Asm_32: { 7625 MCInst TmpInst; 7626 unsigned Spacing; 7627 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7628 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7629 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7630 Spacing)); 7631 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7632 Spacing * 2)); 7633 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7634 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7635 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7636 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7637 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7638 TmpInst.addOperand(Inst.getOperand(4)); 7639 Inst = TmpInst; 7640 return true; 7641 } 7642 7643 case ARM::VLD3dWB_register_Asm_8: 7644 case ARM::VLD3dWB_register_Asm_16: 7645 case ARM::VLD3dWB_register_Asm_32: 7646 case ARM::VLD3qWB_register_Asm_8: 7647 case ARM::VLD3qWB_register_Asm_16: 7648 case ARM::VLD3qWB_register_Asm_32: { 7649 MCInst TmpInst; 7650 unsigned Spacing; 7651 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7652 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7653 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7654 Spacing)); 7655 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7656 Spacing * 2)); 7657 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7658 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7659 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7660 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7661 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7662 TmpInst.addOperand(Inst.getOperand(5)); 7663 Inst = TmpInst; 7664 return true; 7665 } 7666 7667 // VLD4DUP single 3-element structure to all lanes instructions. 7668 case ARM::VLD4DUPdAsm_8: 7669 case ARM::VLD4DUPdAsm_16: 7670 case ARM::VLD4DUPdAsm_32: 7671 case ARM::VLD4DUPqAsm_8: 7672 case ARM::VLD4DUPqAsm_16: 7673 case ARM::VLD4DUPqAsm_32: { 7674 MCInst TmpInst; 7675 unsigned Spacing; 7676 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7677 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7678 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7679 Spacing)); 7680 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7681 Spacing * 2)); 7682 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7683 Spacing * 3)); 7684 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7685 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7686 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7687 TmpInst.addOperand(Inst.getOperand(4)); 7688 Inst = TmpInst; 7689 return true; 7690 } 7691 7692 case ARM::VLD4DUPdWB_fixed_Asm_8: 7693 case ARM::VLD4DUPdWB_fixed_Asm_16: 7694 case ARM::VLD4DUPdWB_fixed_Asm_32: 7695 case ARM::VLD4DUPqWB_fixed_Asm_8: 7696 case ARM::VLD4DUPqWB_fixed_Asm_16: 7697 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7698 MCInst TmpInst; 7699 unsigned Spacing; 7700 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7701 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7702 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7703 Spacing)); 7704 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7705 Spacing * 2)); 7706 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7707 Spacing * 3)); 7708 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7709 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7710 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7711 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7712 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7713 TmpInst.addOperand(Inst.getOperand(4)); 7714 Inst = TmpInst; 7715 return true; 7716 } 7717 7718 case ARM::VLD4DUPdWB_register_Asm_8: 7719 case ARM::VLD4DUPdWB_register_Asm_16: 7720 case ARM::VLD4DUPdWB_register_Asm_32: 7721 case ARM::VLD4DUPqWB_register_Asm_8: 7722 case ARM::VLD4DUPqWB_register_Asm_16: 7723 case ARM::VLD4DUPqWB_register_Asm_32: { 7724 MCInst TmpInst; 7725 unsigned Spacing; 7726 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7727 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7728 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7729 Spacing)); 7730 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7731 Spacing * 2)); 7732 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7733 Spacing * 3)); 7734 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7735 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7736 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7737 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7738 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7739 TmpInst.addOperand(Inst.getOperand(5)); 7740 Inst = TmpInst; 7741 return true; 7742 } 7743 7744 // VLD4 multiple 4-element structure instructions. 7745 case ARM::VLD4dAsm_8: 7746 case ARM::VLD4dAsm_16: 7747 case ARM::VLD4dAsm_32: 7748 case ARM::VLD4qAsm_8: 7749 case ARM::VLD4qAsm_16: 7750 case ARM::VLD4qAsm_32: { 7751 MCInst TmpInst; 7752 unsigned Spacing; 7753 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7754 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7755 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7756 Spacing)); 7757 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7758 Spacing * 2)); 7759 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7760 Spacing * 3)); 7761 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7762 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7763 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7764 TmpInst.addOperand(Inst.getOperand(4)); 7765 Inst = TmpInst; 7766 return true; 7767 } 7768 7769 case ARM::VLD4dWB_fixed_Asm_8: 7770 case ARM::VLD4dWB_fixed_Asm_16: 7771 case ARM::VLD4dWB_fixed_Asm_32: 7772 case ARM::VLD4qWB_fixed_Asm_8: 7773 case ARM::VLD4qWB_fixed_Asm_16: 7774 case ARM::VLD4qWB_fixed_Asm_32: { 7775 MCInst TmpInst; 7776 unsigned Spacing; 7777 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7778 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7779 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7780 Spacing)); 7781 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7782 Spacing * 2)); 7783 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7784 Spacing * 3)); 7785 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7786 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7787 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7788 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7789 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7790 TmpInst.addOperand(Inst.getOperand(4)); 7791 Inst = TmpInst; 7792 return true; 7793 } 7794 7795 case ARM::VLD4dWB_register_Asm_8: 7796 case ARM::VLD4dWB_register_Asm_16: 7797 case ARM::VLD4dWB_register_Asm_32: 7798 case ARM::VLD4qWB_register_Asm_8: 7799 case ARM::VLD4qWB_register_Asm_16: 7800 case ARM::VLD4qWB_register_Asm_32: { 7801 MCInst TmpInst; 7802 unsigned Spacing; 7803 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7804 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7805 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7806 Spacing)); 7807 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7808 Spacing * 2)); 7809 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7810 Spacing * 3)); 7811 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7812 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7813 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7814 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7815 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7816 TmpInst.addOperand(Inst.getOperand(5)); 7817 Inst = TmpInst; 7818 return true; 7819 } 7820 7821 // VST3 multiple 3-element structure instructions. 7822 case ARM::VST3dAsm_8: 7823 case ARM::VST3dAsm_16: 7824 case ARM::VST3dAsm_32: 7825 case ARM::VST3qAsm_8: 7826 case ARM::VST3qAsm_16: 7827 case ARM::VST3qAsm_32: { 7828 MCInst TmpInst; 7829 unsigned Spacing; 7830 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7831 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7832 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7833 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7834 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7835 Spacing)); 7836 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7837 Spacing * 2)); 7838 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7839 TmpInst.addOperand(Inst.getOperand(4)); 7840 Inst = TmpInst; 7841 return true; 7842 } 7843 7844 case ARM::VST3dWB_fixed_Asm_8: 7845 case ARM::VST3dWB_fixed_Asm_16: 7846 case ARM::VST3dWB_fixed_Asm_32: 7847 case ARM::VST3qWB_fixed_Asm_8: 7848 case ARM::VST3qWB_fixed_Asm_16: 7849 case ARM::VST3qWB_fixed_Asm_32: { 7850 MCInst TmpInst; 7851 unsigned Spacing; 7852 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7853 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7854 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7855 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7856 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7857 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7858 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7859 Spacing)); 7860 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7861 Spacing * 2)); 7862 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7863 TmpInst.addOperand(Inst.getOperand(4)); 7864 Inst = TmpInst; 7865 return true; 7866 } 7867 7868 case ARM::VST3dWB_register_Asm_8: 7869 case ARM::VST3dWB_register_Asm_16: 7870 case ARM::VST3dWB_register_Asm_32: 7871 case ARM::VST3qWB_register_Asm_8: 7872 case ARM::VST3qWB_register_Asm_16: 7873 case ARM::VST3qWB_register_Asm_32: { 7874 MCInst TmpInst; 7875 unsigned Spacing; 7876 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7877 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7878 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7879 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7880 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7881 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7882 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7883 Spacing)); 7884 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7885 Spacing * 2)); 7886 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7887 TmpInst.addOperand(Inst.getOperand(5)); 7888 Inst = TmpInst; 7889 return true; 7890 } 7891 7892 // VST4 multiple 3-element structure instructions. 7893 case ARM::VST4dAsm_8: 7894 case ARM::VST4dAsm_16: 7895 case ARM::VST4dAsm_32: 7896 case ARM::VST4qAsm_8: 7897 case ARM::VST4qAsm_16: 7898 case ARM::VST4qAsm_32: { 7899 MCInst TmpInst; 7900 unsigned Spacing; 7901 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7902 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7903 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7904 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7905 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7906 Spacing)); 7907 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7908 Spacing * 2)); 7909 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7910 Spacing * 3)); 7911 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7912 TmpInst.addOperand(Inst.getOperand(4)); 7913 Inst = TmpInst; 7914 return true; 7915 } 7916 7917 case ARM::VST4dWB_fixed_Asm_8: 7918 case ARM::VST4dWB_fixed_Asm_16: 7919 case ARM::VST4dWB_fixed_Asm_32: 7920 case ARM::VST4qWB_fixed_Asm_8: 7921 case ARM::VST4qWB_fixed_Asm_16: 7922 case ARM::VST4qWB_fixed_Asm_32: { 7923 MCInst TmpInst; 7924 unsigned Spacing; 7925 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7926 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7927 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7928 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7929 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7930 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7931 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7932 Spacing)); 7933 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7934 Spacing * 2)); 7935 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7936 Spacing * 3)); 7937 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7938 TmpInst.addOperand(Inst.getOperand(4)); 7939 Inst = TmpInst; 7940 return true; 7941 } 7942 7943 case ARM::VST4dWB_register_Asm_8: 7944 case ARM::VST4dWB_register_Asm_16: 7945 case ARM::VST4dWB_register_Asm_32: 7946 case ARM::VST4qWB_register_Asm_8: 7947 case ARM::VST4qWB_register_Asm_16: 7948 case ARM::VST4qWB_register_Asm_32: { 7949 MCInst TmpInst; 7950 unsigned Spacing; 7951 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7952 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7953 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7954 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7955 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7956 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7957 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7958 Spacing)); 7959 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7960 Spacing * 2)); 7961 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7962 Spacing * 3)); 7963 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7964 TmpInst.addOperand(Inst.getOperand(5)); 7965 Inst = TmpInst; 7966 return true; 7967 } 7968 7969 // Handle encoding choice for the shift-immediate instructions. 7970 case ARM::t2LSLri: 7971 case ARM::t2LSRri: 7972 case ARM::t2ASRri: { 7973 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7974 isARMLowRegister(Inst.getOperand(1).getReg()) && 7975 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 7976 !HasWideQualifier) { 7977 unsigned NewOpc; 7978 switch (Inst.getOpcode()) { 7979 default: llvm_unreachable("unexpected opcode"); 7980 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 7981 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 7982 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 7983 } 7984 // The Thumb1 operands aren't in the same order. Awesome, eh? 7985 MCInst TmpInst; 7986 TmpInst.setOpcode(NewOpc); 7987 TmpInst.addOperand(Inst.getOperand(0)); 7988 TmpInst.addOperand(Inst.getOperand(5)); 7989 TmpInst.addOperand(Inst.getOperand(1)); 7990 TmpInst.addOperand(Inst.getOperand(2)); 7991 TmpInst.addOperand(Inst.getOperand(3)); 7992 TmpInst.addOperand(Inst.getOperand(4)); 7993 Inst = TmpInst; 7994 return true; 7995 } 7996 return false; 7997 } 7998 7999 // Handle the Thumb2 mode MOV complex aliases. 8000 case ARM::t2MOVsr: 8001 case ARM::t2MOVSsr: { 8002 // Which instruction to expand to depends on the CCOut operand and 8003 // whether we're in an IT block if the register operands are low 8004 // registers. 8005 bool isNarrow = false; 8006 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8007 isARMLowRegister(Inst.getOperand(1).getReg()) && 8008 isARMLowRegister(Inst.getOperand(2).getReg()) && 8009 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8010 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 8011 !HasWideQualifier) 8012 isNarrow = true; 8013 MCInst TmpInst; 8014 unsigned newOpc; 8015 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8016 default: llvm_unreachable("unexpected opcode!"); 8017 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8018 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8019 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8020 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8021 } 8022 TmpInst.setOpcode(newOpc); 8023 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8024 if (isNarrow) 8025 TmpInst.addOperand(MCOperand::createReg( 8026 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8027 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8028 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8029 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8030 TmpInst.addOperand(Inst.getOperand(5)); 8031 if (!isNarrow) 8032 TmpInst.addOperand(MCOperand::createReg( 8033 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8034 Inst = TmpInst; 8035 return true; 8036 } 8037 case ARM::t2MOVsi: 8038 case ARM::t2MOVSsi: { 8039 // Which instruction to expand to depends on the CCOut operand and 8040 // whether we're in an IT block if the register operands are low 8041 // registers. 8042 bool isNarrow = false; 8043 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8044 isARMLowRegister(Inst.getOperand(1).getReg()) && 8045 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 8046 !HasWideQualifier) 8047 isNarrow = true; 8048 MCInst TmpInst; 8049 unsigned newOpc; 8050 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8051 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8052 bool isMov = false; 8053 // MOV rd, rm, LSL #0 is actually a MOV instruction 8054 if (Shift == ARM_AM::lsl && Amount == 0) { 8055 isMov = true; 8056 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 8057 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 8058 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 8059 // instead. 8060 if (inITBlock()) { 8061 isNarrow = false; 8062 } 8063 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 8064 } else { 8065 switch(Shift) { 8066 default: llvm_unreachable("unexpected opcode!"); 8067 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8068 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8069 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8070 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8071 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8072 } 8073 } 8074 if (Amount == 32) Amount = 0; 8075 TmpInst.setOpcode(newOpc); 8076 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8077 if (isNarrow && !isMov) 8078 TmpInst.addOperand(MCOperand::createReg( 8079 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8080 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8081 if (newOpc != ARM::t2RRX && !isMov) 8082 TmpInst.addOperand(MCOperand::createImm(Amount)); 8083 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8084 TmpInst.addOperand(Inst.getOperand(4)); 8085 if (!isNarrow) 8086 TmpInst.addOperand(MCOperand::createReg( 8087 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8088 Inst = TmpInst; 8089 return true; 8090 } 8091 // Handle the ARM mode MOV complex aliases. 8092 case ARM::ASRr: 8093 case ARM::LSRr: 8094 case ARM::LSLr: 8095 case ARM::RORr: { 8096 ARM_AM::ShiftOpc ShiftTy; 8097 switch(Inst.getOpcode()) { 8098 default: llvm_unreachable("unexpected opcode!"); 8099 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8100 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8101 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8102 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8103 } 8104 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8105 MCInst TmpInst; 8106 TmpInst.setOpcode(ARM::MOVsr); 8107 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8108 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8109 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8110 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8111 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8112 TmpInst.addOperand(Inst.getOperand(4)); 8113 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8114 Inst = TmpInst; 8115 return true; 8116 } 8117 case ARM::ASRi: 8118 case ARM::LSRi: 8119 case ARM::LSLi: 8120 case ARM::RORi: { 8121 ARM_AM::ShiftOpc ShiftTy; 8122 switch(Inst.getOpcode()) { 8123 default: llvm_unreachable("unexpected opcode!"); 8124 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8125 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8126 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8127 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8128 } 8129 // A shift by zero is a plain MOVr, not a MOVsi. 8130 unsigned Amt = Inst.getOperand(2).getImm(); 8131 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8132 // A shift by 32 should be encoded as 0 when permitted 8133 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8134 Amt = 0; 8135 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8136 MCInst TmpInst; 8137 TmpInst.setOpcode(Opc); 8138 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8139 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8140 if (Opc == ARM::MOVsi) 8141 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8142 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8143 TmpInst.addOperand(Inst.getOperand(4)); 8144 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8145 Inst = TmpInst; 8146 return true; 8147 } 8148 case ARM::RRXi: { 8149 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8150 MCInst TmpInst; 8151 TmpInst.setOpcode(ARM::MOVsi); 8152 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8153 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8154 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8155 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8156 TmpInst.addOperand(Inst.getOperand(3)); 8157 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8158 Inst = TmpInst; 8159 return true; 8160 } 8161 case ARM::t2LDMIA_UPD: { 8162 // If this is a load of a single register, then we should use 8163 // a post-indexed LDR instruction instead, per the ARM ARM. 8164 if (Inst.getNumOperands() != 5) 8165 return false; 8166 MCInst TmpInst; 8167 TmpInst.setOpcode(ARM::t2LDR_POST); 8168 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8169 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8170 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8171 TmpInst.addOperand(MCOperand::createImm(4)); 8172 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8173 TmpInst.addOperand(Inst.getOperand(3)); 8174 Inst = TmpInst; 8175 return true; 8176 } 8177 case ARM::t2STMDB_UPD: { 8178 // If this is a store of a single register, then we should use 8179 // a pre-indexed STR instruction instead, per the ARM ARM. 8180 if (Inst.getNumOperands() != 5) 8181 return false; 8182 MCInst TmpInst; 8183 TmpInst.setOpcode(ARM::t2STR_PRE); 8184 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8185 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8186 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8187 TmpInst.addOperand(MCOperand::createImm(-4)); 8188 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8189 TmpInst.addOperand(Inst.getOperand(3)); 8190 Inst = TmpInst; 8191 return true; 8192 } 8193 case ARM::LDMIA_UPD: 8194 // If this is a load of a single register via a 'pop', then we should use 8195 // a post-indexed LDR instruction instead, per the ARM ARM. 8196 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8197 Inst.getNumOperands() == 5) { 8198 MCInst TmpInst; 8199 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8200 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8201 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8202 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8203 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8204 TmpInst.addOperand(MCOperand::createImm(4)); 8205 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8206 TmpInst.addOperand(Inst.getOperand(3)); 8207 Inst = TmpInst; 8208 return true; 8209 } 8210 break; 8211 case ARM::STMDB_UPD: 8212 // If this is a store of a single register via a 'push', then we should use 8213 // a pre-indexed STR instruction instead, per the ARM ARM. 8214 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8215 Inst.getNumOperands() == 5) { 8216 MCInst TmpInst; 8217 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8218 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8219 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8220 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8221 TmpInst.addOperand(MCOperand::createImm(-4)); 8222 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8223 TmpInst.addOperand(Inst.getOperand(3)); 8224 Inst = TmpInst; 8225 } 8226 break; 8227 case ARM::t2ADDri12: 8228 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8229 // mnemonic was used (not "addw"), encoding T3 is preferred. 8230 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8231 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8232 break; 8233 Inst.setOpcode(ARM::t2ADDri); 8234 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8235 break; 8236 case ARM::t2SUBri12: 8237 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8238 // mnemonic was used (not "subw"), encoding T3 is preferred. 8239 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8240 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8241 break; 8242 Inst.setOpcode(ARM::t2SUBri); 8243 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8244 break; 8245 case ARM::tADDi8: 8246 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8247 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8248 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8249 // to encoding T1 if <Rd> is omitted." 8250 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8251 Inst.setOpcode(ARM::tADDi3); 8252 return true; 8253 } 8254 break; 8255 case ARM::tSUBi8: 8256 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8257 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8258 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8259 // to encoding T1 if <Rd> is omitted." 8260 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8261 Inst.setOpcode(ARM::tSUBi3); 8262 return true; 8263 } 8264 break; 8265 case ARM::t2ADDri: 8266 case ARM::t2SUBri: { 8267 // If the destination and first source operand are the same, and 8268 // the flags are compatible with the current IT status, use encoding T2 8269 // instead of T3. For compatibility with the system 'as'. Make sure the 8270 // wide encoding wasn't explicit. 8271 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8272 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8273 (Inst.getOperand(2).isImm() && 8274 (unsigned)Inst.getOperand(2).getImm() > 255) || 8275 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 8276 HasWideQualifier) 8277 break; 8278 MCInst TmpInst; 8279 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8280 ARM::tADDi8 : ARM::tSUBi8); 8281 TmpInst.addOperand(Inst.getOperand(0)); 8282 TmpInst.addOperand(Inst.getOperand(5)); 8283 TmpInst.addOperand(Inst.getOperand(0)); 8284 TmpInst.addOperand(Inst.getOperand(2)); 8285 TmpInst.addOperand(Inst.getOperand(3)); 8286 TmpInst.addOperand(Inst.getOperand(4)); 8287 Inst = TmpInst; 8288 return true; 8289 } 8290 case ARM::t2ADDrr: { 8291 // If the destination and first source operand are the same, and 8292 // there's no setting of the flags, use encoding T2 instead of T3. 8293 // Note that this is only for ADD, not SUB. This mirrors the system 8294 // 'as' behaviour. Also take advantage of ADD being commutative. 8295 // Make sure the wide encoding wasn't explicit. 8296 bool Swap = false; 8297 auto DestReg = Inst.getOperand(0).getReg(); 8298 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8299 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8300 Transform = true; 8301 Swap = true; 8302 } 8303 if (!Transform || 8304 Inst.getOperand(5).getReg() != 0 || 8305 HasWideQualifier) 8306 break; 8307 MCInst TmpInst; 8308 TmpInst.setOpcode(ARM::tADDhirr); 8309 TmpInst.addOperand(Inst.getOperand(0)); 8310 TmpInst.addOperand(Inst.getOperand(0)); 8311 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8312 TmpInst.addOperand(Inst.getOperand(3)); 8313 TmpInst.addOperand(Inst.getOperand(4)); 8314 Inst = TmpInst; 8315 return true; 8316 } 8317 case ARM::tADDrSP: { 8318 // If the non-SP source operand and the destination operand are not the 8319 // same, we need to use the 32-bit encoding if it's available. 8320 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8321 Inst.setOpcode(ARM::t2ADDrr); 8322 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8323 return true; 8324 } 8325 break; 8326 } 8327 case ARM::tB: 8328 // A Thumb conditional branch outside of an IT block is a tBcc. 8329 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8330 Inst.setOpcode(ARM::tBcc); 8331 return true; 8332 } 8333 break; 8334 case ARM::t2B: 8335 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8336 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8337 Inst.setOpcode(ARM::t2Bcc); 8338 return true; 8339 } 8340 break; 8341 case ARM::t2Bcc: 8342 // If the conditional is AL or we're in an IT block, we really want t2B. 8343 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8344 Inst.setOpcode(ARM::t2B); 8345 return true; 8346 } 8347 break; 8348 case ARM::tBcc: 8349 // If the conditional is AL, we really want tB. 8350 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8351 Inst.setOpcode(ARM::tB); 8352 return true; 8353 } 8354 break; 8355 case ARM::tLDMIA: { 8356 // If the register list contains any high registers, or if the writeback 8357 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8358 // instead if we're in Thumb2. Otherwise, this should have generated 8359 // an error in validateInstruction(). 8360 unsigned Rn = Inst.getOperand(0).getReg(); 8361 bool hasWritebackToken = 8362 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8363 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8364 bool listContainsBase; 8365 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8366 (!listContainsBase && !hasWritebackToken) || 8367 (listContainsBase && hasWritebackToken)) { 8368 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8369 assert (isThumbTwo()); 8370 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8371 // If we're switching to the updating version, we need to insert 8372 // the writeback tied operand. 8373 if (hasWritebackToken) 8374 Inst.insert(Inst.begin(), 8375 MCOperand::createReg(Inst.getOperand(0).getReg())); 8376 return true; 8377 } 8378 break; 8379 } 8380 case ARM::tSTMIA_UPD: { 8381 // If the register list contains any high registers, we need to use 8382 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8383 // should have generated an error in validateInstruction(). 8384 unsigned Rn = Inst.getOperand(0).getReg(); 8385 bool listContainsBase; 8386 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8387 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8388 assert (isThumbTwo()); 8389 Inst.setOpcode(ARM::t2STMIA_UPD); 8390 return true; 8391 } 8392 break; 8393 } 8394 case ARM::tPOP: { 8395 bool listContainsBase; 8396 // If the register list contains any high registers, we need to use 8397 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8398 // should have generated an error in validateInstruction(). 8399 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8400 return false; 8401 assert (isThumbTwo()); 8402 Inst.setOpcode(ARM::t2LDMIA_UPD); 8403 // Add the base register and writeback operands. 8404 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8405 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8406 return true; 8407 } 8408 case ARM::tPUSH: { 8409 bool listContainsBase; 8410 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8411 return false; 8412 assert (isThumbTwo()); 8413 Inst.setOpcode(ARM::t2STMDB_UPD); 8414 // Add the base register and writeback operands. 8415 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8416 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8417 return true; 8418 } 8419 case ARM::t2MOVi: { 8420 // If we can use the 16-bit encoding and the user didn't explicitly 8421 // request the 32-bit variant, transform it here. 8422 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8423 (Inst.getOperand(1).isImm() && 8424 (unsigned)Inst.getOperand(1).getImm() <= 255) && 8425 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8426 !HasWideQualifier) { 8427 // The operands aren't in the same order for tMOVi8... 8428 MCInst TmpInst; 8429 TmpInst.setOpcode(ARM::tMOVi8); 8430 TmpInst.addOperand(Inst.getOperand(0)); 8431 TmpInst.addOperand(Inst.getOperand(4)); 8432 TmpInst.addOperand(Inst.getOperand(1)); 8433 TmpInst.addOperand(Inst.getOperand(2)); 8434 TmpInst.addOperand(Inst.getOperand(3)); 8435 Inst = TmpInst; 8436 return true; 8437 } 8438 break; 8439 } 8440 case ARM::t2MOVr: { 8441 // If we can use the 16-bit encoding and the user didn't explicitly 8442 // request the 32-bit variant, transform it here. 8443 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8444 isARMLowRegister(Inst.getOperand(1).getReg()) && 8445 Inst.getOperand(2).getImm() == ARMCC::AL && 8446 Inst.getOperand(4).getReg() == ARM::CPSR && 8447 !HasWideQualifier) { 8448 // The operands aren't the same for tMOV[S]r... (no cc_out) 8449 MCInst TmpInst; 8450 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8451 TmpInst.addOperand(Inst.getOperand(0)); 8452 TmpInst.addOperand(Inst.getOperand(1)); 8453 TmpInst.addOperand(Inst.getOperand(2)); 8454 TmpInst.addOperand(Inst.getOperand(3)); 8455 Inst = TmpInst; 8456 return true; 8457 } 8458 break; 8459 } 8460 case ARM::t2SXTH: 8461 case ARM::t2SXTB: 8462 case ARM::t2UXTH: 8463 case ARM::t2UXTB: { 8464 // If we can use the 16-bit encoding and the user didn't explicitly 8465 // request the 32-bit variant, transform it here. 8466 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8467 isARMLowRegister(Inst.getOperand(1).getReg()) && 8468 Inst.getOperand(2).getImm() == 0 && 8469 !HasWideQualifier) { 8470 unsigned NewOpc; 8471 switch (Inst.getOpcode()) { 8472 default: llvm_unreachable("Illegal opcode!"); 8473 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8474 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8475 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8476 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8477 } 8478 // The operands aren't the same for thumb1 (no rotate operand). 8479 MCInst TmpInst; 8480 TmpInst.setOpcode(NewOpc); 8481 TmpInst.addOperand(Inst.getOperand(0)); 8482 TmpInst.addOperand(Inst.getOperand(1)); 8483 TmpInst.addOperand(Inst.getOperand(3)); 8484 TmpInst.addOperand(Inst.getOperand(4)); 8485 Inst = TmpInst; 8486 return true; 8487 } 8488 break; 8489 } 8490 case ARM::MOVsi: { 8491 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8492 // rrx shifts and asr/lsr of #32 is encoded as 0 8493 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8494 return false; 8495 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8496 // Shifting by zero is accepted as a vanilla 'MOVr' 8497 MCInst TmpInst; 8498 TmpInst.setOpcode(ARM::MOVr); 8499 TmpInst.addOperand(Inst.getOperand(0)); 8500 TmpInst.addOperand(Inst.getOperand(1)); 8501 TmpInst.addOperand(Inst.getOperand(3)); 8502 TmpInst.addOperand(Inst.getOperand(4)); 8503 TmpInst.addOperand(Inst.getOperand(5)); 8504 Inst = TmpInst; 8505 return true; 8506 } 8507 return false; 8508 } 8509 case ARM::ANDrsi: 8510 case ARM::ORRrsi: 8511 case ARM::EORrsi: 8512 case ARM::BICrsi: 8513 case ARM::SUBrsi: 8514 case ARM::ADDrsi: { 8515 unsigned newOpc; 8516 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8517 if (SOpc == ARM_AM::rrx) return false; 8518 switch (Inst.getOpcode()) { 8519 default: llvm_unreachable("unexpected opcode!"); 8520 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8521 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8522 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8523 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8524 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8525 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8526 } 8527 // If the shift is by zero, use the non-shifted instruction definition. 8528 // The exception is for right shifts, where 0 == 32 8529 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8530 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8531 MCInst TmpInst; 8532 TmpInst.setOpcode(newOpc); 8533 TmpInst.addOperand(Inst.getOperand(0)); 8534 TmpInst.addOperand(Inst.getOperand(1)); 8535 TmpInst.addOperand(Inst.getOperand(2)); 8536 TmpInst.addOperand(Inst.getOperand(4)); 8537 TmpInst.addOperand(Inst.getOperand(5)); 8538 TmpInst.addOperand(Inst.getOperand(6)); 8539 Inst = TmpInst; 8540 return true; 8541 } 8542 return false; 8543 } 8544 case ARM::ITasm: 8545 case ARM::t2IT: { 8546 MCOperand &MO = Inst.getOperand(1); 8547 unsigned Mask = MO.getImm(); 8548 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8549 8550 // Set up the IT block state according to the IT instruction we just 8551 // matched. 8552 assert(!inITBlock() && "nested IT blocks?!"); 8553 startExplicitITBlock(Cond, Mask); 8554 MO.setImm(getITMaskEncoding()); 8555 break; 8556 } 8557 case ARM::t2LSLrr: 8558 case ARM::t2LSRrr: 8559 case ARM::t2ASRrr: 8560 case ARM::t2SBCrr: 8561 case ARM::t2RORrr: 8562 case ARM::t2BICrr: 8563 { 8564 // Assemblers should use the narrow encodings of these instructions when permissible. 8565 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8566 isARMLowRegister(Inst.getOperand(2).getReg())) && 8567 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8568 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8569 !HasWideQualifier) { 8570 unsigned NewOpc; 8571 switch (Inst.getOpcode()) { 8572 default: llvm_unreachable("unexpected opcode"); 8573 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8574 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8575 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8576 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8577 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8578 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8579 } 8580 MCInst TmpInst; 8581 TmpInst.setOpcode(NewOpc); 8582 TmpInst.addOperand(Inst.getOperand(0)); 8583 TmpInst.addOperand(Inst.getOperand(5)); 8584 TmpInst.addOperand(Inst.getOperand(1)); 8585 TmpInst.addOperand(Inst.getOperand(2)); 8586 TmpInst.addOperand(Inst.getOperand(3)); 8587 TmpInst.addOperand(Inst.getOperand(4)); 8588 Inst = TmpInst; 8589 return true; 8590 } 8591 return false; 8592 } 8593 case ARM::t2ANDrr: 8594 case ARM::t2EORrr: 8595 case ARM::t2ADCrr: 8596 case ARM::t2ORRrr: 8597 { 8598 // Assemblers should use the narrow encodings of these instructions when permissible. 8599 // These instructions are special in that they are commutable, so shorter encodings 8600 // are available more often. 8601 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8602 isARMLowRegister(Inst.getOperand(2).getReg())) && 8603 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8604 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8605 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8606 !HasWideQualifier) { 8607 unsigned NewOpc; 8608 switch (Inst.getOpcode()) { 8609 default: llvm_unreachable("unexpected opcode"); 8610 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8611 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8612 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8613 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8614 } 8615 MCInst TmpInst; 8616 TmpInst.setOpcode(NewOpc); 8617 TmpInst.addOperand(Inst.getOperand(0)); 8618 TmpInst.addOperand(Inst.getOperand(5)); 8619 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8620 TmpInst.addOperand(Inst.getOperand(1)); 8621 TmpInst.addOperand(Inst.getOperand(2)); 8622 } else { 8623 TmpInst.addOperand(Inst.getOperand(2)); 8624 TmpInst.addOperand(Inst.getOperand(1)); 8625 } 8626 TmpInst.addOperand(Inst.getOperand(3)); 8627 TmpInst.addOperand(Inst.getOperand(4)); 8628 Inst = TmpInst; 8629 return true; 8630 } 8631 return false; 8632 } 8633 } 8634 return false; 8635 } 8636 8637 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8638 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8639 // suffix depending on whether they're in an IT block or not. 8640 unsigned Opc = Inst.getOpcode(); 8641 const MCInstrDesc &MCID = MII.get(Opc); 8642 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8643 assert(MCID.hasOptionalDef() && 8644 "optionally flag setting instruction missing optional def operand"); 8645 assert(MCID.NumOperands == Inst.getNumOperands() && 8646 "operand count mismatch!"); 8647 // Find the optional-def operand (cc_out). 8648 unsigned OpNo; 8649 for (OpNo = 0; 8650 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8651 ++OpNo) 8652 ; 8653 // If we're parsing Thumb1, reject it completely. 8654 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8655 return Match_RequiresFlagSetting; 8656 // If we're parsing Thumb2, which form is legal depends on whether we're 8657 // in an IT block. 8658 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8659 !inITBlock()) 8660 return Match_RequiresITBlock; 8661 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8662 inITBlock()) 8663 return Match_RequiresNotITBlock; 8664 // LSL with zero immediate is not allowed in an IT block 8665 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 8666 return Match_RequiresNotITBlock; 8667 } else if (isThumbOne()) { 8668 // Some high-register supporting Thumb1 encodings only allow both registers 8669 // to be from r0-r7 when in Thumb2. 8670 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8671 isARMLowRegister(Inst.getOperand(1).getReg()) && 8672 isARMLowRegister(Inst.getOperand(2).getReg())) 8673 return Match_RequiresThumb2; 8674 // Others only require ARMv6 or later. 8675 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8676 isARMLowRegister(Inst.getOperand(0).getReg()) && 8677 isARMLowRegister(Inst.getOperand(1).getReg())) 8678 return Match_RequiresV6; 8679 } 8680 8681 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 8682 // than the loop below can handle, so it uses the GPRnopc register class and 8683 // we do SP handling here. 8684 if (Opc == ARM::t2MOVr && !hasV8Ops()) 8685 { 8686 // SP as both source and destination is not allowed 8687 if (Inst.getOperand(0).getReg() == ARM::SP && 8688 Inst.getOperand(1).getReg() == ARM::SP) 8689 return Match_RequiresV8; 8690 // When flags-setting SP as either source or destination is not allowed 8691 if (Inst.getOperand(4).getReg() == ARM::CPSR && 8692 (Inst.getOperand(0).getReg() == ARM::SP || 8693 Inst.getOperand(1).getReg() == ARM::SP)) 8694 return Match_RequiresV8; 8695 } 8696 8697 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8698 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8699 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8700 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8701 return Match_RequiresV8; 8702 else if (Inst.getOperand(I).getReg() == ARM::PC) 8703 return Match_InvalidOperand; 8704 } 8705 8706 return Match_Success; 8707 } 8708 8709 namespace llvm { 8710 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 8711 return true; // In an assembly source, no need to second-guess 8712 } 8713 } 8714 8715 // Returns true if Inst is unpredictable if it is in and IT block, but is not 8716 // the last instruction in the block. 8717 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 8718 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8719 8720 // All branch & call instructions terminate IT blocks. 8721 if (MCID.isTerminator() || MCID.isCall() || MCID.isReturn() || 8722 MCID.isBranch() || MCID.isIndirectBranch()) 8723 return true; 8724 8725 // Any arithmetic instruction which writes to the PC also terminates the IT 8726 // block. 8727 for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) { 8728 MCOperand &Op = Inst.getOperand(OpIdx); 8729 if (Op.isReg() && Op.getReg() == ARM::PC) 8730 return true; 8731 } 8732 8733 if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI)) 8734 return true; 8735 8736 // Instructions with variable operand lists, which write to the variable 8737 // operands. We only care about Thumb instructions here, as ARM instructions 8738 // obviously can't be in an IT block. 8739 switch (Inst.getOpcode()) { 8740 case ARM::tLDMIA: 8741 case ARM::t2LDMIA: 8742 case ARM::t2LDMIA_UPD: 8743 case ARM::t2LDMDB: 8744 case ARM::t2LDMDB_UPD: 8745 if (listContainsReg(Inst, 3, ARM::PC)) 8746 return true; 8747 break; 8748 case ARM::tPOP: 8749 if (listContainsReg(Inst, 2, ARM::PC)) 8750 return true; 8751 break; 8752 } 8753 8754 return false; 8755 } 8756 8757 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 8758 uint64_t &ErrorInfo, 8759 bool MatchingInlineAsm, 8760 bool &EmitInITBlock, 8761 MCStreamer &Out) { 8762 // If we can't use an implicit IT block here, just match as normal. 8763 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 8764 return MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 8765 8766 // Try to match the instruction in an extension of the current IT block (if 8767 // there is one). 8768 if (inImplicitITBlock()) { 8769 extendImplicitITBlock(ITState.Cond); 8770 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 8771 Match_Success) { 8772 // The match succeded, but we still have to check that the instruction is 8773 // valid in this implicit IT block. 8774 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8775 if (MCID.isPredicable()) { 8776 ARMCC::CondCodes InstCond = 8777 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 8778 .getImm(); 8779 ARMCC::CondCodes ITCond = currentITCond(); 8780 if (InstCond == ITCond) { 8781 EmitInITBlock = true; 8782 return Match_Success; 8783 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 8784 invertCurrentITCondition(); 8785 EmitInITBlock = true; 8786 return Match_Success; 8787 } 8788 } 8789 } 8790 rewindImplicitITPosition(); 8791 } 8792 8793 // Finish the current IT block, and try to match outside any IT block. 8794 flushPendingInstructions(Out); 8795 unsigned PlainMatchResult = 8796 MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 8797 if (PlainMatchResult == Match_Success) { 8798 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8799 if (MCID.isPredicable()) { 8800 ARMCC::CondCodes InstCond = 8801 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 8802 .getImm(); 8803 // Some forms of the branch instruction have their own condition code 8804 // fields, so can be conditionally executed without an IT block. 8805 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 8806 EmitInITBlock = false; 8807 return Match_Success; 8808 } 8809 if (InstCond == ARMCC::AL) { 8810 EmitInITBlock = false; 8811 return Match_Success; 8812 } 8813 } else { 8814 EmitInITBlock = false; 8815 return Match_Success; 8816 } 8817 } 8818 8819 // Try to match in a new IT block. The matcher doesn't check the actual 8820 // condition, so we create an IT block with a dummy condition, and fix it up 8821 // once we know the actual condition. 8822 startImplicitITBlock(); 8823 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 8824 Match_Success) { 8825 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8826 if (MCID.isPredicable()) { 8827 ITState.Cond = 8828 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 8829 .getImm(); 8830 EmitInITBlock = true; 8831 return Match_Success; 8832 } 8833 } 8834 discardImplicitITBlock(); 8835 8836 // If none of these succeed, return the error we got when trying to match 8837 // outside any IT blocks. 8838 EmitInITBlock = false; 8839 return PlainMatchResult; 8840 } 8841 8842 std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS); 8843 8844 static const char *getSubtargetFeatureName(uint64_t Val); 8845 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 8846 OperandVector &Operands, 8847 MCStreamer &Out, uint64_t &ErrorInfo, 8848 bool MatchingInlineAsm) { 8849 MCInst Inst; 8850 unsigned MatchResult; 8851 bool PendConditionalInstruction = false; 8852 8853 MatchResult = MatchInstruction(Operands, Inst, ErrorInfo, MatchingInlineAsm, 8854 PendConditionalInstruction, Out); 8855 8856 SMLoc ErrorLoc; 8857 if (ErrorInfo < Operands.size()) { 8858 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8859 if (ErrorLoc == SMLoc()) 8860 ErrorLoc = IDLoc; 8861 } 8862 8863 switch (MatchResult) { 8864 case Match_Success: 8865 // Context sensitive operand constraints aren't handled by the matcher, 8866 // so check them here. 8867 if (validateInstruction(Inst, Operands)) { 8868 // Still progress the IT block, otherwise one wrong condition causes 8869 // nasty cascading errors. 8870 forwardITPosition(); 8871 return true; 8872 } 8873 8874 { // processInstruction() updates inITBlock state, we need to save it away 8875 bool wasInITBlock = inITBlock(); 8876 8877 // Some instructions need post-processing to, for example, tweak which 8878 // encoding is selected. Loop on it while changes happen so the 8879 // individual transformations can chain off each other. E.g., 8880 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 8881 while (processInstruction(Inst, Operands, Out)) 8882 ; 8883 8884 // Only after the instruction is fully processed, we can validate it 8885 if (wasInITBlock && hasV8Ops() && isThumb() && 8886 !isV8EligibleForIT(&Inst)) { 8887 Warning(IDLoc, "deprecated instruction in IT block"); 8888 } 8889 } 8890 8891 // Only move forward at the very end so that everything in validate 8892 // and process gets a consistent answer about whether we're in an IT 8893 // block. 8894 forwardITPosition(); 8895 8896 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 8897 // doesn't actually encode. 8898 if (Inst.getOpcode() == ARM::ITasm) 8899 return false; 8900 8901 Inst.setLoc(IDLoc); 8902 if (PendConditionalInstruction) { 8903 PendingConditionalInsts.push_back(Inst); 8904 if (isITBlockFull() || isITBlockTerminator(Inst)) 8905 flushPendingInstructions(Out); 8906 } else { 8907 Out.EmitInstruction(Inst, getSTI()); 8908 } 8909 return false; 8910 case Match_MissingFeature: { 8911 assert(ErrorInfo && "Unknown missing feature!"); 8912 // Special case the error message for the very common case where only 8913 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 8914 std::string Msg = "instruction requires:"; 8915 uint64_t Mask = 1; 8916 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 8917 if (ErrorInfo & Mask) { 8918 Msg += " "; 8919 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 8920 } 8921 Mask <<= 1; 8922 } 8923 return Error(IDLoc, Msg); 8924 } 8925 case Match_InvalidOperand: { 8926 SMLoc ErrorLoc = IDLoc; 8927 if (ErrorInfo != ~0ULL) { 8928 if (ErrorInfo >= Operands.size()) 8929 return Error(IDLoc, "too few operands for instruction"); 8930 8931 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8932 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8933 } 8934 8935 return Error(ErrorLoc, "invalid operand for instruction"); 8936 } 8937 case Match_MnemonicFail: { 8938 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 8939 std::string Suggestion = ARMMnemonicSpellCheck( 8940 ((ARMOperand &)*Operands[0]).getToken(), FBS); 8941 return Error(IDLoc, "invalid instruction" + Suggestion, 8942 ((ARMOperand &)*Operands[0]).getLocRange()); 8943 } 8944 case Match_RequiresNotITBlock: 8945 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 8946 case Match_RequiresITBlock: 8947 return Error(IDLoc, "instruction only valid inside IT block"); 8948 case Match_RequiresV6: 8949 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 8950 case Match_RequiresThumb2: 8951 return Error(IDLoc, "instruction variant requires Thumb2"); 8952 case Match_RequiresV8: 8953 return Error(IDLoc, "instruction variant requires ARMv8 or later"); 8954 case Match_RequiresFlagSetting: 8955 return Error(IDLoc, "no flag-preserving variant of this instruction available"); 8956 case Match_ImmRange0_1: 8957 return Error(ErrorLoc, "immediate operand must be in the range [0,1]"); 8958 case Match_ImmRange0_3: 8959 return Error(ErrorLoc, "immediate operand must be in the range [0,3]"); 8960 case Match_ImmRange0_7: 8961 return Error(ErrorLoc, "immediate operand must be in the range [0,7]"); 8962 case Match_ImmRange0_15: 8963 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 8964 case Match_ImmRange0_31: 8965 return Error(ErrorLoc, "immediate operand must be in the range [0,31]"); 8966 case Match_ImmRange0_32: 8967 return Error(ErrorLoc, "immediate operand must be in the range [0,32]"); 8968 case Match_ImmRange0_63: 8969 return Error(ErrorLoc, "immediate operand must be in the range [0,63]"); 8970 case Match_ImmRange0_239: 8971 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 8972 case Match_ImmRange0_255: 8973 return Error(ErrorLoc, "immediate operand must be in the range [0,255]"); 8974 case Match_ImmRange0_4095: 8975 return Error(ErrorLoc, "immediate operand must be in the range [0,4095]"); 8976 case Match_ImmRange0_65535: 8977 return Error(ErrorLoc, "immediate operand must be in the range [0,65535]"); 8978 case Match_ImmRange1_7: 8979 return Error(ErrorLoc, "immediate operand must be in the range [1,7]"); 8980 case Match_ImmRange1_8: 8981 return Error(ErrorLoc, "immediate operand must be in the range [1,8]"); 8982 case Match_ImmRange1_15: 8983 return Error(ErrorLoc, "immediate operand must be in the range [1,15]"); 8984 case Match_ImmRange1_16: 8985 return Error(ErrorLoc, "immediate operand must be in the range [1,16]"); 8986 case Match_ImmRange1_31: 8987 return Error(ErrorLoc, "immediate operand must be in the range [1,31]"); 8988 case Match_ImmRange1_32: 8989 return Error(ErrorLoc, "immediate operand must be in the range [1,32]"); 8990 case Match_ImmRange1_64: 8991 return Error(ErrorLoc, "immediate operand must be in the range [1,64]"); 8992 case Match_ImmRange8_8: 8993 return Error(ErrorLoc, "immediate operand must be 8."); 8994 case Match_ImmRange16_16: 8995 return Error(ErrorLoc, "immediate operand must be 16."); 8996 case Match_ImmRange32_32: 8997 return Error(ErrorLoc, "immediate operand must be 32."); 8998 case Match_ImmRange256_65535: 8999 return Error(ErrorLoc, "immediate operand must be in the range [255,65535]"); 9000 case Match_ImmRange0_16777215: 9001 return Error(ErrorLoc, "immediate operand must be in the range [0,0xffffff]"); 9002 case Match_AlignedMemoryRequiresNone: 9003 case Match_DupAlignedMemoryRequiresNone: 9004 case Match_AlignedMemoryRequires16: 9005 case Match_DupAlignedMemoryRequires16: 9006 case Match_AlignedMemoryRequires32: 9007 case Match_DupAlignedMemoryRequires32: 9008 case Match_AlignedMemoryRequires64: 9009 case Match_DupAlignedMemoryRequires64: 9010 case Match_AlignedMemoryRequires64or128: 9011 case Match_DupAlignedMemoryRequires64or128: 9012 case Match_AlignedMemoryRequires64or128or256: 9013 { 9014 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 9015 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9016 switch (MatchResult) { 9017 default: 9018 llvm_unreachable("Missing Match_Aligned type"); 9019 case Match_AlignedMemoryRequiresNone: 9020 case Match_DupAlignedMemoryRequiresNone: 9021 return Error(ErrorLoc, "alignment must be omitted"); 9022 case Match_AlignedMemoryRequires16: 9023 case Match_DupAlignedMemoryRequires16: 9024 return Error(ErrorLoc, "alignment must be 16 or omitted"); 9025 case Match_AlignedMemoryRequires32: 9026 case Match_DupAlignedMemoryRequires32: 9027 return Error(ErrorLoc, "alignment must be 32 or omitted"); 9028 case Match_AlignedMemoryRequires64: 9029 case Match_DupAlignedMemoryRequires64: 9030 return Error(ErrorLoc, "alignment must be 64 or omitted"); 9031 case Match_AlignedMemoryRequires64or128: 9032 case Match_DupAlignedMemoryRequires64or128: 9033 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 9034 case Match_AlignedMemoryRequires64or128or256: 9035 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 9036 } 9037 } 9038 } 9039 9040 llvm_unreachable("Implement any new match types added!"); 9041 } 9042 9043 /// parseDirective parses the arm specific directives 9044 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9045 const MCObjectFileInfo::Environment Format = 9046 getContext().getObjectFileInfo()->getObjectFileType(); 9047 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9048 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9049 9050 StringRef IDVal = DirectiveID.getIdentifier(); 9051 if (IDVal == ".word") 9052 parseLiteralValues(4, DirectiveID.getLoc()); 9053 else if (IDVal == ".short" || IDVal == ".hword") 9054 parseLiteralValues(2, DirectiveID.getLoc()); 9055 else if (IDVal == ".thumb") 9056 parseDirectiveThumb(DirectiveID.getLoc()); 9057 else if (IDVal == ".arm") 9058 parseDirectiveARM(DirectiveID.getLoc()); 9059 else if (IDVal == ".thumb_func") 9060 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9061 else if (IDVal == ".code") 9062 parseDirectiveCode(DirectiveID.getLoc()); 9063 else if (IDVal == ".syntax") 9064 parseDirectiveSyntax(DirectiveID.getLoc()); 9065 else if (IDVal == ".unreq") 9066 parseDirectiveUnreq(DirectiveID.getLoc()); 9067 else if (IDVal == ".fnend") 9068 parseDirectiveFnEnd(DirectiveID.getLoc()); 9069 else if (IDVal == ".cantunwind") 9070 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9071 else if (IDVal == ".personality") 9072 parseDirectivePersonality(DirectiveID.getLoc()); 9073 else if (IDVal == ".handlerdata") 9074 parseDirectiveHandlerData(DirectiveID.getLoc()); 9075 else if (IDVal == ".setfp") 9076 parseDirectiveSetFP(DirectiveID.getLoc()); 9077 else if (IDVal == ".pad") 9078 parseDirectivePad(DirectiveID.getLoc()); 9079 else if (IDVal == ".save") 9080 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9081 else if (IDVal == ".vsave") 9082 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9083 else if (IDVal == ".ltorg" || IDVal == ".pool") 9084 parseDirectiveLtorg(DirectiveID.getLoc()); 9085 else if (IDVal == ".even") 9086 parseDirectiveEven(DirectiveID.getLoc()); 9087 else if (IDVal == ".personalityindex") 9088 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9089 else if (IDVal == ".unwind_raw") 9090 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9091 else if (IDVal == ".movsp") 9092 parseDirectiveMovSP(DirectiveID.getLoc()); 9093 else if (IDVal == ".arch_extension") 9094 parseDirectiveArchExtension(DirectiveID.getLoc()); 9095 else if (IDVal == ".align") 9096 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9097 else if (IDVal == ".thumb_set") 9098 parseDirectiveThumbSet(DirectiveID.getLoc()); 9099 else if (!IsMachO && !IsCOFF) { 9100 if (IDVal == ".arch") 9101 parseDirectiveArch(DirectiveID.getLoc()); 9102 else if (IDVal == ".cpu") 9103 parseDirectiveCPU(DirectiveID.getLoc()); 9104 else if (IDVal == ".eabi_attribute") 9105 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9106 else if (IDVal == ".fpu") 9107 parseDirectiveFPU(DirectiveID.getLoc()); 9108 else if (IDVal == ".fnstart") 9109 parseDirectiveFnStart(DirectiveID.getLoc()); 9110 else if (IDVal == ".inst") 9111 parseDirectiveInst(DirectiveID.getLoc()); 9112 else if (IDVal == ".inst.n") 9113 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9114 else if (IDVal == ".inst.w") 9115 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9116 else if (IDVal == ".object_arch") 9117 parseDirectiveObjectArch(DirectiveID.getLoc()); 9118 else if (IDVal == ".tlsdescseq") 9119 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9120 else 9121 return true; 9122 } else 9123 return true; 9124 return false; 9125 } 9126 9127 /// parseLiteralValues 9128 /// ::= .hword expression [, expression]* 9129 /// ::= .short expression [, expression]* 9130 /// ::= .word expression [, expression]* 9131 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9132 auto parseOne = [&]() -> bool { 9133 const MCExpr *Value; 9134 if (getParser().parseExpression(Value)) 9135 return true; 9136 getParser().getStreamer().EmitValue(Value, Size, L); 9137 return false; 9138 }; 9139 return (parseMany(parseOne)); 9140 } 9141 9142 /// parseDirectiveThumb 9143 /// ::= .thumb 9144 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9145 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9146 check(!hasThumb(), L, "target does not support Thumb mode")) 9147 return true; 9148 9149 if (!isThumb()) 9150 SwitchMode(); 9151 9152 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9153 return false; 9154 } 9155 9156 /// parseDirectiveARM 9157 /// ::= .arm 9158 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9159 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9160 check(!hasARM(), L, "target does not support ARM mode")) 9161 return true; 9162 9163 if (isThumb()) 9164 SwitchMode(); 9165 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9166 return false; 9167 } 9168 9169 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9170 // We need to flush the current implicit IT block on a label, because it is 9171 // not legal to branch into an IT block. 9172 flushPendingInstructions(getStreamer()); 9173 if (NextSymbolIsThumb) { 9174 getParser().getStreamer().EmitThumbFunc(Symbol); 9175 NextSymbolIsThumb = false; 9176 } 9177 } 9178 9179 /// parseDirectiveThumbFunc 9180 /// ::= .thumbfunc symbol_name 9181 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9182 MCAsmParser &Parser = getParser(); 9183 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9184 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9185 9186 // Darwin asm has (optionally) function name after .thumb_func direction 9187 // ELF doesn't 9188 9189 if (IsMachO) { 9190 if (Parser.getTok().is(AsmToken::Identifier) || 9191 Parser.getTok().is(AsmToken::String)) { 9192 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9193 Parser.getTok().getIdentifier()); 9194 getParser().getStreamer().EmitThumbFunc(Func); 9195 Parser.Lex(); 9196 if (parseToken(AsmToken::EndOfStatement, 9197 "unexpected token in '.thumb_func' directive")) 9198 return true; 9199 return false; 9200 } 9201 } 9202 9203 if (parseToken(AsmToken::EndOfStatement, 9204 "unexpected token in '.thumb_func' directive")) 9205 return true; 9206 9207 NextSymbolIsThumb = true; 9208 return false; 9209 } 9210 9211 /// parseDirectiveSyntax 9212 /// ::= .syntax unified | divided 9213 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9214 MCAsmParser &Parser = getParser(); 9215 const AsmToken &Tok = Parser.getTok(); 9216 if (Tok.isNot(AsmToken::Identifier)) { 9217 Error(L, "unexpected token in .syntax directive"); 9218 return false; 9219 } 9220 9221 StringRef Mode = Tok.getString(); 9222 Parser.Lex(); 9223 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9224 "'.syntax divided' arm assembly not supported") || 9225 check(Mode != "unified" && Mode != "UNIFIED", L, 9226 "unrecognized syntax mode in .syntax directive") || 9227 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9228 return true; 9229 9230 // TODO tell the MC streamer the mode 9231 // getParser().getStreamer().Emit???(); 9232 return false; 9233 } 9234 9235 /// parseDirectiveCode 9236 /// ::= .code 16 | 32 9237 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9238 MCAsmParser &Parser = getParser(); 9239 const AsmToken &Tok = Parser.getTok(); 9240 if (Tok.isNot(AsmToken::Integer)) 9241 return Error(L, "unexpected token in .code directive"); 9242 int64_t Val = Parser.getTok().getIntVal(); 9243 if (Val != 16 && Val != 32) { 9244 Error(L, "invalid operand to .code directive"); 9245 return false; 9246 } 9247 Parser.Lex(); 9248 9249 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9250 return true; 9251 9252 if (Val == 16) { 9253 if (!hasThumb()) 9254 return Error(L, "target does not support Thumb mode"); 9255 9256 if (!isThumb()) 9257 SwitchMode(); 9258 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9259 } else { 9260 if (!hasARM()) 9261 return Error(L, "target does not support ARM mode"); 9262 9263 if (isThumb()) 9264 SwitchMode(); 9265 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9266 } 9267 9268 return false; 9269 } 9270 9271 /// parseDirectiveReq 9272 /// ::= name .req registername 9273 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9274 MCAsmParser &Parser = getParser(); 9275 Parser.Lex(); // Eat the '.req' token. 9276 unsigned Reg; 9277 SMLoc SRegLoc, ERegLoc; 9278 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9279 "register name expected") || 9280 parseToken(AsmToken::EndOfStatement, 9281 "unexpected input in .req directive.")) 9282 return true; 9283 9284 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9285 return Error(SRegLoc, 9286 "redefinition of '" + Name + "' does not match original."); 9287 9288 return false; 9289 } 9290 9291 /// parseDirectiveUneq 9292 /// ::= .unreq registername 9293 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9294 MCAsmParser &Parser = getParser(); 9295 if (Parser.getTok().isNot(AsmToken::Identifier)) 9296 return Error(L, "unexpected input in .unreq directive."); 9297 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9298 Parser.Lex(); // Eat the identifier. 9299 if (parseToken(AsmToken::EndOfStatement, 9300 "unexpected input in '.unreq' directive")) 9301 return true; 9302 return false; 9303 } 9304 9305 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9306 // before, if supported by the new target, or emit mapping symbols for the mode 9307 // switch. 9308 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9309 if (WasThumb != isThumb()) { 9310 if (WasThumb && hasThumb()) { 9311 // Stay in Thumb mode 9312 SwitchMode(); 9313 } else if (!WasThumb && hasARM()) { 9314 // Stay in ARM mode 9315 SwitchMode(); 9316 } else { 9317 // Mode switch forced, because the new arch doesn't support the old mode. 9318 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9319 : MCAF_Code32); 9320 // Warn about the implcit mode switch. GAS does not switch modes here, 9321 // but instead stays in the old mode, reporting an error on any following 9322 // instructions as the mode does not exist on the target. 9323 Warning(Loc, Twine("new target does not support ") + 9324 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9325 (!WasThumb ? "thumb" : "arm") + " mode"); 9326 } 9327 } 9328 } 9329 9330 /// parseDirectiveArch 9331 /// ::= .arch token 9332 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9333 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9334 ARM::ArchKind ID = ARM::parseArch(Arch); 9335 9336 if (ID == ARM::ArchKind::INVALID) 9337 return Error(L, "Unknown arch name"); 9338 9339 bool WasThumb = isThumb(); 9340 Triple T; 9341 MCSubtargetInfo &STI = copySTI(); 9342 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9343 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9344 FixModeAfterArchChange(WasThumb, L); 9345 9346 getTargetStreamer().emitArch(ID); 9347 return false; 9348 } 9349 9350 /// parseDirectiveEabiAttr 9351 /// ::= .eabi_attribute int, int [, "str"] 9352 /// ::= .eabi_attribute Tag_name, int [, "str"] 9353 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9354 MCAsmParser &Parser = getParser(); 9355 int64_t Tag; 9356 SMLoc TagLoc; 9357 TagLoc = Parser.getTok().getLoc(); 9358 if (Parser.getTok().is(AsmToken::Identifier)) { 9359 StringRef Name = Parser.getTok().getIdentifier(); 9360 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9361 if (Tag == -1) { 9362 Error(TagLoc, "attribute name not recognised: " + Name); 9363 return false; 9364 } 9365 Parser.Lex(); 9366 } else { 9367 const MCExpr *AttrExpr; 9368 9369 TagLoc = Parser.getTok().getLoc(); 9370 if (Parser.parseExpression(AttrExpr)) 9371 return true; 9372 9373 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9374 if (check(!CE, TagLoc, "expected numeric constant")) 9375 return true; 9376 9377 Tag = CE->getValue(); 9378 } 9379 9380 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9381 return true; 9382 9383 StringRef StringValue = ""; 9384 bool IsStringValue = false; 9385 9386 int64_t IntegerValue = 0; 9387 bool IsIntegerValue = false; 9388 9389 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9390 IsStringValue = true; 9391 else if (Tag == ARMBuildAttrs::compatibility) { 9392 IsStringValue = true; 9393 IsIntegerValue = true; 9394 } else if (Tag < 32 || Tag % 2 == 0) 9395 IsIntegerValue = true; 9396 else if (Tag % 2 == 1) 9397 IsStringValue = true; 9398 else 9399 llvm_unreachable("invalid tag type"); 9400 9401 if (IsIntegerValue) { 9402 const MCExpr *ValueExpr; 9403 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9404 if (Parser.parseExpression(ValueExpr)) 9405 return true; 9406 9407 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9408 if (!CE) 9409 return Error(ValueExprLoc, "expected numeric constant"); 9410 IntegerValue = CE->getValue(); 9411 } 9412 9413 if (Tag == ARMBuildAttrs::compatibility) { 9414 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9415 return true; 9416 } 9417 9418 if (IsStringValue) { 9419 if (Parser.getTok().isNot(AsmToken::String)) 9420 return Error(Parser.getTok().getLoc(), "bad string constant"); 9421 9422 StringValue = Parser.getTok().getStringContents(); 9423 Parser.Lex(); 9424 } 9425 9426 if (Parser.parseToken(AsmToken::EndOfStatement, 9427 "unexpected token in '.eabi_attribute' directive")) 9428 return true; 9429 9430 if (IsIntegerValue && IsStringValue) { 9431 assert(Tag == ARMBuildAttrs::compatibility); 9432 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9433 } else if (IsIntegerValue) 9434 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9435 else if (IsStringValue) 9436 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9437 return false; 9438 } 9439 9440 /// parseDirectiveCPU 9441 /// ::= .cpu str 9442 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9443 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9444 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9445 9446 // FIXME: This is using table-gen data, but should be moved to 9447 // ARMTargetParser once that is table-gen'd. 9448 if (!getSTI().isCPUStringValid(CPU)) 9449 return Error(L, "Unknown CPU name"); 9450 9451 bool WasThumb = isThumb(); 9452 MCSubtargetInfo &STI = copySTI(); 9453 STI.setDefaultFeatures(CPU, ""); 9454 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9455 FixModeAfterArchChange(WasThumb, L); 9456 9457 return false; 9458 } 9459 /// parseDirectiveFPU 9460 /// ::= .fpu str 9461 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9462 SMLoc FPUNameLoc = getTok().getLoc(); 9463 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9464 9465 unsigned ID = ARM::parseFPU(FPU); 9466 std::vector<StringRef> Features; 9467 if (!ARM::getFPUFeatures(ID, Features)) 9468 return Error(FPUNameLoc, "Unknown FPU name"); 9469 9470 MCSubtargetInfo &STI = copySTI(); 9471 for (auto Feature : Features) 9472 STI.ApplyFeatureFlag(Feature); 9473 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9474 9475 getTargetStreamer().emitFPU(ID); 9476 return false; 9477 } 9478 9479 /// parseDirectiveFnStart 9480 /// ::= .fnstart 9481 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9482 if (parseToken(AsmToken::EndOfStatement, 9483 "unexpected token in '.fnstart' directive")) 9484 return true; 9485 9486 if (UC.hasFnStart()) { 9487 Error(L, ".fnstart starts before the end of previous one"); 9488 UC.emitFnStartLocNotes(); 9489 return true; 9490 } 9491 9492 // Reset the unwind directives parser state 9493 UC.reset(); 9494 9495 getTargetStreamer().emitFnStart(); 9496 9497 UC.recordFnStart(L); 9498 return false; 9499 } 9500 9501 /// parseDirectiveFnEnd 9502 /// ::= .fnend 9503 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9504 if (parseToken(AsmToken::EndOfStatement, 9505 "unexpected token in '.fnend' directive")) 9506 return true; 9507 // Check the ordering of unwind directives 9508 if (!UC.hasFnStart()) 9509 return Error(L, ".fnstart must precede .fnend directive"); 9510 9511 // Reset the unwind directives parser state 9512 getTargetStreamer().emitFnEnd(); 9513 9514 UC.reset(); 9515 return false; 9516 } 9517 9518 /// parseDirectiveCantUnwind 9519 /// ::= .cantunwind 9520 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9521 if (parseToken(AsmToken::EndOfStatement, 9522 "unexpected token in '.cantunwind' directive")) 9523 return true; 9524 9525 UC.recordCantUnwind(L); 9526 // Check the ordering of unwind directives 9527 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9528 return true; 9529 9530 if (UC.hasHandlerData()) { 9531 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9532 UC.emitHandlerDataLocNotes(); 9533 return true; 9534 } 9535 if (UC.hasPersonality()) { 9536 Error(L, ".cantunwind can't be used with .personality directive"); 9537 UC.emitPersonalityLocNotes(); 9538 return true; 9539 } 9540 9541 getTargetStreamer().emitCantUnwind(); 9542 return false; 9543 } 9544 9545 /// parseDirectivePersonality 9546 /// ::= .personality name 9547 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9548 MCAsmParser &Parser = getParser(); 9549 bool HasExistingPersonality = UC.hasPersonality(); 9550 9551 // Parse the name of the personality routine 9552 if (Parser.getTok().isNot(AsmToken::Identifier)) 9553 return Error(L, "unexpected input in .personality directive."); 9554 StringRef Name(Parser.getTok().getIdentifier()); 9555 Parser.Lex(); 9556 9557 if (parseToken(AsmToken::EndOfStatement, 9558 "unexpected token in '.personality' directive")) 9559 return true; 9560 9561 UC.recordPersonality(L); 9562 9563 // Check the ordering of unwind directives 9564 if (!UC.hasFnStart()) 9565 return Error(L, ".fnstart must precede .personality directive"); 9566 if (UC.cantUnwind()) { 9567 Error(L, ".personality can't be used with .cantunwind directive"); 9568 UC.emitCantUnwindLocNotes(); 9569 return true; 9570 } 9571 if (UC.hasHandlerData()) { 9572 Error(L, ".personality must precede .handlerdata directive"); 9573 UC.emitHandlerDataLocNotes(); 9574 return true; 9575 } 9576 if (HasExistingPersonality) { 9577 Error(L, "multiple personality directives"); 9578 UC.emitPersonalityLocNotes(); 9579 return true; 9580 } 9581 9582 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9583 getTargetStreamer().emitPersonality(PR); 9584 return false; 9585 } 9586 9587 /// parseDirectiveHandlerData 9588 /// ::= .handlerdata 9589 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9590 if (parseToken(AsmToken::EndOfStatement, 9591 "unexpected token in '.handlerdata' directive")) 9592 return true; 9593 9594 UC.recordHandlerData(L); 9595 // Check the ordering of unwind directives 9596 if (!UC.hasFnStart()) 9597 return Error(L, ".fnstart must precede .personality directive"); 9598 if (UC.cantUnwind()) { 9599 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9600 UC.emitCantUnwindLocNotes(); 9601 return true; 9602 } 9603 9604 getTargetStreamer().emitHandlerData(); 9605 return false; 9606 } 9607 9608 /// parseDirectiveSetFP 9609 /// ::= .setfp fpreg, spreg [, offset] 9610 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9611 MCAsmParser &Parser = getParser(); 9612 // Check the ordering of unwind directives 9613 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9614 check(UC.hasHandlerData(), L, 9615 ".setfp must precede .handlerdata directive")) 9616 return true; 9617 9618 // Parse fpreg 9619 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9620 int FPReg = tryParseRegister(); 9621 9622 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9623 Parser.parseToken(AsmToken::Comma, "comma expected")) 9624 return true; 9625 9626 // Parse spreg 9627 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9628 int SPReg = tryParseRegister(); 9629 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9630 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9631 "register should be either $sp or the latest fp register")) 9632 return true; 9633 9634 // Update the frame pointer register 9635 UC.saveFPReg(FPReg); 9636 9637 // Parse offset 9638 int64_t Offset = 0; 9639 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9640 if (Parser.getTok().isNot(AsmToken::Hash) && 9641 Parser.getTok().isNot(AsmToken::Dollar)) 9642 return Error(Parser.getTok().getLoc(), "'#' expected"); 9643 Parser.Lex(); // skip hash token. 9644 9645 const MCExpr *OffsetExpr; 9646 SMLoc ExLoc = Parser.getTok().getLoc(); 9647 SMLoc EndLoc; 9648 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9649 return Error(ExLoc, "malformed setfp offset"); 9650 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9651 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9652 return true; 9653 Offset = CE->getValue(); 9654 } 9655 9656 if (Parser.parseToken(AsmToken::EndOfStatement)) 9657 return true; 9658 9659 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9660 static_cast<unsigned>(SPReg), Offset); 9661 return false; 9662 } 9663 9664 /// parseDirective 9665 /// ::= .pad offset 9666 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9667 MCAsmParser &Parser = getParser(); 9668 // Check the ordering of unwind directives 9669 if (!UC.hasFnStart()) 9670 return Error(L, ".fnstart must precede .pad directive"); 9671 if (UC.hasHandlerData()) 9672 return Error(L, ".pad must precede .handlerdata directive"); 9673 9674 // Parse the offset 9675 if (Parser.getTok().isNot(AsmToken::Hash) && 9676 Parser.getTok().isNot(AsmToken::Dollar)) 9677 return Error(Parser.getTok().getLoc(), "'#' expected"); 9678 Parser.Lex(); // skip hash token. 9679 9680 const MCExpr *OffsetExpr; 9681 SMLoc ExLoc = Parser.getTok().getLoc(); 9682 SMLoc EndLoc; 9683 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9684 return Error(ExLoc, "malformed pad offset"); 9685 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9686 if (!CE) 9687 return Error(ExLoc, "pad offset must be an immediate"); 9688 9689 if (parseToken(AsmToken::EndOfStatement, 9690 "unexpected token in '.pad' directive")) 9691 return true; 9692 9693 getTargetStreamer().emitPad(CE->getValue()); 9694 return false; 9695 } 9696 9697 /// parseDirectiveRegSave 9698 /// ::= .save { registers } 9699 /// ::= .vsave { registers } 9700 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9701 // Check the ordering of unwind directives 9702 if (!UC.hasFnStart()) 9703 return Error(L, ".fnstart must precede .save or .vsave directives"); 9704 if (UC.hasHandlerData()) 9705 return Error(L, ".save or .vsave must precede .handlerdata directive"); 9706 9707 // RAII object to make sure parsed operands are deleted. 9708 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9709 9710 // Parse the register list 9711 if (parseRegisterList(Operands) || 9712 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9713 return true; 9714 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9715 if (!IsVector && !Op.isRegList()) 9716 return Error(L, ".save expects GPR registers"); 9717 if (IsVector && !Op.isDPRRegList()) 9718 return Error(L, ".vsave expects DPR registers"); 9719 9720 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9721 return false; 9722 } 9723 9724 /// parseDirectiveInst 9725 /// ::= .inst opcode [, ...] 9726 /// ::= .inst.n opcode [, ...] 9727 /// ::= .inst.w opcode [, ...] 9728 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9729 int Width = 4; 9730 9731 if (isThumb()) { 9732 switch (Suffix) { 9733 case 'n': 9734 Width = 2; 9735 break; 9736 case 'w': 9737 break; 9738 default: 9739 return Error(Loc, "cannot determine Thumb instruction size, " 9740 "use inst.n/inst.w instead"); 9741 } 9742 } else { 9743 if (Suffix) 9744 return Error(Loc, "width suffixes are invalid in ARM mode"); 9745 } 9746 9747 auto parseOne = [&]() -> bool { 9748 const MCExpr *Expr; 9749 if (getParser().parseExpression(Expr)) 9750 return true; 9751 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9752 if (!Value) { 9753 return Error(Loc, "expected constant expression"); 9754 } 9755 9756 switch (Width) { 9757 case 2: 9758 if (Value->getValue() > 0xffff) 9759 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 9760 break; 9761 case 4: 9762 if (Value->getValue() > 0xffffffff) 9763 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 9764 " operand is too big"); 9765 break; 9766 default: 9767 llvm_unreachable("only supported widths are 2 and 4"); 9768 } 9769 9770 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9771 return false; 9772 }; 9773 9774 if (parseOptionalToken(AsmToken::EndOfStatement)) 9775 return Error(Loc, "expected expression following directive"); 9776 if (parseMany(parseOne)) 9777 return true; 9778 return false; 9779 } 9780 9781 /// parseDirectiveLtorg 9782 /// ::= .ltorg | .pool 9783 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9784 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9785 return true; 9786 getTargetStreamer().emitCurrentConstantPool(); 9787 return false; 9788 } 9789 9790 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9791 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 9792 9793 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9794 return true; 9795 9796 if (!Section) { 9797 getStreamer().InitSections(false); 9798 Section = getStreamer().getCurrentSectionOnly(); 9799 } 9800 9801 assert(Section && "must have section to emit alignment"); 9802 if (Section->UseCodeAlign()) 9803 getStreamer().EmitCodeAlignment(2); 9804 else 9805 getStreamer().EmitValueToAlignment(2); 9806 9807 return false; 9808 } 9809 9810 /// parseDirectivePersonalityIndex 9811 /// ::= .personalityindex index 9812 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9813 MCAsmParser &Parser = getParser(); 9814 bool HasExistingPersonality = UC.hasPersonality(); 9815 9816 const MCExpr *IndexExpression; 9817 SMLoc IndexLoc = Parser.getTok().getLoc(); 9818 if (Parser.parseExpression(IndexExpression) || 9819 parseToken(AsmToken::EndOfStatement, 9820 "unexpected token in '.personalityindex' directive")) { 9821 return true; 9822 } 9823 9824 UC.recordPersonalityIndex(L); 9825 9826 if (!UC.hasFnStart()) { 9827 return Error(L, ".fnstart must precede .personalityindex directive"); 9828 } 9829 if (UC.cantUnwind()) { 9830 Error(L, ".personalityindex cannot be used with .cantunwind"); 9831 UC.emitCantUnwindLocNotes(); 9832 return true; 9833 } 9834 if (UC.hasHandlerData()) { 9835 Error(L, ".personalityindex must precede .handlerdata directive"); 9836 UC.emitHandlerDataLocNotes(); 9837 return true; 9838 } 9839 if (HasExistingPersonality) { 9840 Error(L, "multiple personality directives"); 9841 UC.emitPersonalityLocNotes(); 9842 return true; 9843 } 9844 9845 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9846 if (!CE) 9847 return Error(IndexLoc, "index must be a constant number"); 9848 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 9849 return Error(IndexLoc, 9850 "personality routine index should be in range [0-3]"); 9851 9852 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9853 return false; 9854 } 9855 9856 /// parseDirectiveUnwindRaw 9857 /// ::= .unwind_raw offset, opcode [, opcode...] 9858 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9859 MCAsmParser &Parser = getParser(); 9860 int64_t StackOffset; 9861 const MCExpr *OffsetExpr; 9862 SMLoc OffsetLoc = getLexer().getLoc(); 9863 9864 if (!UC.hasFnStart()) 9865 return Error(L, ".fnstart must precede .unwind_raw directives"); 9866 if (getParser().parseExpression(OffsetExpr)) 9867 return Error(OffsetLoc, "expected expression"); 9868 9869 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9870 if (!CE) 9871 return Error(OffsetLoc, "offset must be a constant"); 9872 9873 StackOffset = CE->getValue(); 9874 9875 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 9876 return true; 9877 9878 SmallVector<uint8_t, 16> Opcodes; 9879 9880 auto parseOne = [&]() -> bool { 9881 const MCExpr *OE; 9882 SMLoc OpcodeLoc = getLexer().getLoc(); 9883 if (check(getLexer().is(AsmToken::EndOfStatement) || 9884 Parser.parseExpression(OE), 9885 OpcodeLoc, "expected opcode expression")) 9886 return true; 9887 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9888 if (!OC) 9889 return Error(OpcodeLoc, "opcode value must be a constant"); 9890 const int64_t Opcode = OC->getValue(); 9891 if (Opcode & ~0xff) 9892 return Error(OpcodeLoc, "invalid opcode"); 9893 Opcodes.push_back(uint8_t(Opcode)); 9894 return false; 9895 }; 9896 9897 // Must have at least 1 element 9898 SMLoc OpcodeLoc = getLexer().getLoc(); 9899 if (parseOptionalToken(AsmToken::EndOfStatement)) 9900 return Error(OpcodeLoc, "expected opcode expression"); 9901 if (parseMany(parseOne)) 9902 return true; 9903 9904 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9905 return false; 9906 } 9907 9908 /// parseDirectiveTLSDescSeq 9909 /// ::= .tlsdescseq tls-variable 9910 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 9911 MCAsmParser &Parser = getParser(); 9912 9913 if (getLexer().isNot(AsmToken::Identifier)) 9914 return TokError("expected variable after '.tlsdescseq' directive"); 9915 9916 const MCSymbolRefExpr *SRE = 9917 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 9918 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 9919 Lex(); 9920 9921 if (parseToken(AsmToken::EndOfStatement, 9922 "unexpected token in '.tlsdescseq' directive")) 9923 return true; 9924 9925 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 9926 return false; 9927 } 9928 9929 /// parseDirectiveMovSP 9930 /// ::= .movsp reg [, #offset] 9931 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 9932 MCAsmParser &Parser = getParser(); 9933 if (!UC.hasFnStart()) 9934 return Error(L, ".fnstart must precede .movsp directives"); 9935 if (UC.getFPReg() != ARM::SP) 9936 return Error(L, "unexpected .movsp directive"); 9937 9938 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9939 int SPReg = tryParseRegister(); 9940 if (SPReg == -1) 9941 return Error(SPRegLoc, "register expected"); 9942 if (SPReg == ARM::SP || SPReg == ARM::PC) 9943 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 9944 9945 int64_t Offset = 0; 9946 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9947 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 9948 return true; 9949 9950 const MCExpr *OffsetExpr; 9951 SMLoc OffsetLoc = Parser.getTok().getLoc(); 9952 9953 if (Parser.parseExpression(OffsetExpr)) 9954 return Error(OffsetLoc, "malformed offset expression"); 9955 9956 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9957 if (!CE) 9958 return Error(OffsetLoc, "offset must be an immediate constant"); 9959 9960 Offset = CE->getValue(); 9961 } 9962 9963 if (parseToken(AsmToken::EndOfStatement, 9964 "unexpected token in '.movsp' directive")) 9965 return true; 9966 9967 getTargetStreamer().emitMovSP(SPReg, Offset); 9968 UC.saveFPReg(SPReg); 9969 9970 return false; 9971 } 9972 9973 /// parseDirectiveObjectArch 9974 /// ::= .object_arch name 9975 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 9976 MCAsmParser &Parser = getParser(); 9977 if (getLexer().isNot(AsmToken::Identifier)) 9978 return Error(getLexer().getLoc(), "unexpected token"); 9979 9980 StringRef Arch = Parser.getTok().getString(); 9981 SMLoc ArchLoc = Parser.getTok().getLoc(); 9982 Lex(); 9983 9984 ARM::ArchKind ID = ARM::parseArch(Arch); 9985 9986 if (ID == ARM::ArchKind::INVALID) 9987 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 9988 if (parseToken(AsmToken::EndOfStatement)) 9989 return true; 9990 9991 getTargetStreamer().emitObjectArch(ID); 9992 return false; 9993 } 9994 9995 /// parseDirectiveAlign 9996 /// ::= .align 9997 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 9998 // NOTE: if this is not the end of the statement, fall back to the target 9999 // agnostic handling for this directive which will correctly handle this. 10000 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10001 // '.align' is target specifically handled to mean 2**2 byte alignment. 10002 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10003 assert(Section && "must have section to emit alignment"); 10004 if (Section->UseCodeAlign()) 10005 getStreamer().EmitCodeAlignment(4, 0); 10006 else 10007 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10008 return false; 10009 } 10010 return true; 10011 } 10012 10013 /// parseDirectiveThumbSet 10014 /// ::= .thumb_set name, value 10015 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10016 MCAsmParser &Parser = getParser(); 10017 10018 StringRef Name; 10019 if (check(Parser.parseIdentifier(Name), 10020 "expected identifier after '.thumb_set'") || 10021 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10022 return true; 10023 10024 MCSymbol *Sym; 10025 const MCExpr *Value; 10026 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10027 Parser, Sym, Value)) 10028 return true; 10029 10030 getTargetStreamer().emitThumbSet(Sym, Value); 10031 return false; 10032 } 10033 10034 /// Force static initialization. 10035 extern "C" void LLVMInitializeARMAsmParser() { 10036 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10037 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10038 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10039 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10040 } 10041 10042 #define GET_REGISTER_MATCHER 10043 #define GET_SUBTARGET_FEATURE_NAME 10044 #define GET_MATCHER_IMPLEMENTATION 10045 #include "ARMGenAsmMatcher.inc" 10046 10047 // FIXME: This structure should be moved inside ARMTargetParser 10048 // when we start to table-generate them, and we can use the ARM 10049 // flags below, that were generated by table-gen. 10050 static const struct { 10051 const unsigned Kind; 10052 const uint64_t ArchCheck; 10053 const FeatureBitset Features; 10054 } Extensions[] = { 10055 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10056 { ARM::AEK_CRYPTO, Feature_HasV8, 10057 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10058 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10059 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10060 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 10061 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10062 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10063 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10064 // FIXME: Only available in A-class, isel not predicated 10065 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10066 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10067 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10068 // FIXME: Unsupported extensions. 10069 { ARM::AEK_OS, Feature_None, {} }, 10070 { ARM::AEK_IWMMXT, Feature_None, {} }, 10071 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10072 { ARM::AEK_MAVERICK, Feature_None, {} }, 10073 { ARM::AEK_XSCALE, Feature_None, {} }, 10074 }; 10075 10076 /// parseDirectiveArchExtension 10077 /// ::= .arch_extension [no]feature 10078 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10079 MCAsmParser &Parser = getParser(); 10080 10081 if (getLexer().isNot(AsmToken::Identifier)) 10082 return Error(getLexer().getLoc(), "expected architecture extension name"); 10083 10084 StringRef Name = Parser.getTok().getString(); 10085 SMLoc ExtLoc = Parser.getTok().getLoc(); 10086 Lex(); 10087 10088 if (parseToken(AsmToken::EndOfStatement, 10089 "unexpected token in '.arch_extension' directive")) 10090 return true; 10091 10092 bool EnableFeature = true; 10093 if (Name.startswith_lower("no")) { 10094 EnableFeature = false; 10095 Name = Name.substr(2); 10096 } 10097 unsigned FeatureKind = ARM::parseArchExt(Name); 10098 if (FeatureKind == ARM::AEK_INVALID) 10099 return Error(ExtLoc, "unknown architectural extension: " + Name); 10100 10101 for (const auto &Extension : Extensions) { 10102 if (Extension.Kind != FeatureKind) 10103 continue; 10104 10105 if (Extension.Features.none()) 10106 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10107 10108 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10109 return Error(ExtLoc, "architectural extension '" + Name + 10110 "' is not " 10111 "allowed for the current base architecture"); 10112 10113 MCSubtargetInfo &STI = copySTI(); 10114 FeatureBitset ToggleFeatures = EnableFeature 10115 ? (~STI.getFeatureBits() & Extension.Features) 10116 : ( STI.getFeatureBits() & Extension.Features); 10117 10118 uint64_t Features = 10119 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10120 setAvailableFeatures(Features); 10121 return false; 10122 } 10123 10124 return Error(ExtLoc, "unknown architectural extension: " + Name); 10125 } 10126 10127 // Define this matcher function after the auto-generated include so we 10128 // have the match class enum definitions. 10129 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10130 unsigned Kind) { 10131 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10132 // If the kind is a token for a literal immediate, check if our asm 10133 // operand matches. This is for InstAliases which have a fixed-value 10134 // immediate in the syntax. 10135 switch (Kind) { 10136 default: break; 10137 case MCK__35_0: 10138 if (Op.isImm()) 10139 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10140 if (CE->getValue() == 0) 10141 return Match_Success; 10142 break; 10143 case MCK_ModImm: 10144 if (Op.isImm()) { 10145 const MCExpr *SOExpr = Op.getImm(); 10146 int64_t Value; 10147 if (!SOExpr->evaluateAsAbsolute(Value)) 10148 return Match_Success; 10149 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10150 "expression value must be representable in 32 bits"); 10151 } 10152 break; 10153 case MCK_rGPR: 10154 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10155 return Match_Success; 10156 break; 10157 case MCK_GPRPair: 10158 if (Op.isReg() && 10159 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10160 return Match_Success; 10161 break; 10162 } 10163 return Match_InvalidOperand; 10164 } 10165