1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMFeatures.h" 10 #include "ARMBaseInstrInfo.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMInstPrinter.h" 15 #include "MCTargetDesc/ARMMCExpr.h" 16 #include "MCTargetDesc/ARMMCTargetDesc.h" 17 #include "TargetInfo/ARMTargetInfo.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCInstrDesc.h" 33 #include "llvm/MC/MCInstrInfo.h" 34 #include "llvm/MC/MCObjectFileInfo.h" 35 #include "llvm/MC/MCParser/MCAsmLexer.h" 36 #include "llvm/MC/MCParser/MCAsmParser.h" 37 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 38 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 40 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSubtargetInfo.h" 45 #include "llvm/MC/MCSymbol.h" 46 #include "llvm/MC/SubtargetFeature.h" 47 #include "llvm/Support/ARMBuildAttributes.h" 48 #include "llvm/Support/ARMEHABI.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/SMLoc.h" 55 #include "llvm/Support/TargetParser.h" 56 #include "llvm/Support/TargetRegistry.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <utility> 67 #include <vector> 68 69 #define DEBUG_TYPE "asm-parser" 70 71 using namespace llvm; 72 73 namespace llvm { 74 extern const MCInstrDesc ARMInsts[]; 75 } // end namespace llvm 76 77 namespace { 78 79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 80 81 static cl::opt<ImplicitItModeTy> ImplicitItMode( 82 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 83 cl::desc("Allow conditional instructions outdside of an IT block"), 84 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 85 "Accept in both ISAs, emit implicit ITs in Thumb"), 86 clEnumValN(ImplicitItModeTy::Never, "never", 87 "Warn in ARM, reject in Thumb"), 88 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 89 "Accept in ARM, reject in Thumb"), 90 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 91 "Warn in ARM, emit implicit ITs in Thumb"))); 92 93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 94 cl::init(false)); 95 96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 97 98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) { 99 // Position==0 means we're not in an IT block at all. Position==1 100 // means we want the first state bit, which is always 0 (Then). 101 // Position==2 means we want the second state bit, stored at bit 3 102 // of Mask, and so on downwards. So (5 - Position) will shift the 103 // right bit down to bit 0, including the always-0 bit at bit 4 for 104 // the mandatory initial Then. 105 return (Mask >> (5 - Position) & 1); 106 } 107 108 class UnwindContext { 109 using Locs = SmallVector<SMLoc, 4>; 110 111 MCAsmParser &Parser; 112 Locs FnStartLocs; 113 Locs CantUnwindLocs; 114 Locs PersonalityLocs; 115 Locs PersonalityIndexLocs; 116 Locs HandlerDataLocs; 117 int FPReg; 118 119 public: 120 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 121 122 bool hasFnStart() const { return !FnStartLocs.empty(); } 123 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 124 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 125 126 bool hasPersonality() const { 127 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 128 } 129 130 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 131 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 132 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 133 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 134 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 135 136 void saveFPReg(int Reg) { FPReg = Reg; } 137 int getFPReg() const { return FPReg; } 138 139 void emitFnStartLocNotes() const { 140 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 141 FI != FE; ++FI) 142 Parser.Note(*FI, ".fnstart was specified here"); 143 } 144 145 void emitCantUnwindLocNotes() const { 146 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 147 UE = CantUnwindLocs.end(); UI != UE; ++UI) 148 Parser.Note(*UI, ".cantunwind was specified here"); 149 } 150 151 void emitHandlerDataLocNotes() const { 152 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 153 HE = HandlerDataLocs.end(); HI != HE; ++HI) 154 Parser.Note(*HI, ".handlerdata was specified here"); 155 } 156 157 void emitPersonalityLocNotes() const { 158 for (Locs::const_iterator PI = PersonalityLocs.begin(), 159 PE = PersonalityLocs.end(), 160 PII = PersonalityIndexLocs.begin(), 161 PIE = PersonalityIndexLocs.end(); 162 PI != PE || PII != PIE;) { 163 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 164 Parser.Note(*PI++, ".personality was specified here"); 165 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 166 Parser.Note(*PII++, ".personalityindex was specified here"); 167 else 168 llvm_unreachable(".personality and .personalityindex cannot be " 169 "at the same location"); 170 } 171 } 172 173 void reset() { 174 FnStartLocs = Locs(); 175 CantUnwindLocs = Locs(); 176 PersonalityLocs = Locs(); 177 HandlerDataLocs = Locs(); 178 PersonalityIndexLocs = Locs(); 179 FPReg = ARM::SP; 180 } 181 }; 182 183 184 class ARMAsmParser : public MCTargetAsmParser { 185 const MCRegisterInfo *MRI; 186 UnwindContext UC; 187 188 ARMTargetStreamer &getTargetStreamer() { 189 assert(getParser().getStreamer().getTargetStreamer() && 190 "do not have a target streamer"); 191 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 192 return static_cast<ARMTargetStreamer &>(TS); 193 } 194 195 // Map of register aliases registers via the .req directive. 196 StringMap<unsigned> RegisterReqs; 197 198 bool NextSymbolIsThumb; 199 200 bool useImplicitITThumb() const { 201 return ImplicitItMode == ImplicitItModeTy::Always || 202 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 203 } 204 205 bool useImplicitITARM() const { 206 return ImplicitItMode == ImplicitItModeTy::Always || 207 ImplicitItMode == ImplicitItModeTy::ARMOnly; 208 } 209 210 struct { 211 ARMCC::CondCodes Cond; // Condition for IT block. 212 unsigned Mask:4; // Condition mask for instructions. 213 // Starting at first 1 (from lsb). 214 // '1' condition as indicated in IT. 215 // '0' inverse of condition (else). 216 // Count of instructions in IT block is 217 // 4 - trailingzeroes(mask) 218 // Note that this does not have the same encoding 219 // as in the IT instruction, which also depends 220 // on the low bit of the condition code. 221 222 unsigned CurPosition; // Current position in parsing of IT 223 // block. In range [0,4], with 0 being the IT 224 // instruction itself. Initialized according to 225 // count of instructions in block. ~0U if no 226 // active IT block. 227 228 bool IsExplicit; // true - The IT instruction was present in the 229 // input, we should not modify it. 230 // false - The IT instruction was added 231 // implicitly, we can extend it if that 232 // would be legal. 233 } ITState; 234 235 SmallVector<MCInst, 4> PendingConditionalInsts; 236 237 void flushPendingInstructions(MCStreamer &Out) override { 238 if (!inImplicitITBlock()) { 239 assert(PendingConditionalInsts.size() == 0); 240 return; 241 } 242 243 // Emit the IT instruction 244 MCInst ITInst; 245 ITInst.setOpcode(ARM::t2IT); 246 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 247 ITInst.addOperand(MCOperand::createImm(ITState.Mask)); 248 Out.EmitInstruction(ITInst, getSTI()); 249 250 // Emit the conditonal instructions 251 assert(PendingConditionalInsts.size() <= 4); 252 for (const MCInst &Inst : PendingConditionalInsts) { 253 Out.EmitInstruction(Inst, getSTI()); 254 } 255 PendingConditionalInsts.clear(); 256 257 // Clear the IT state 258 ITState.Mask = 0; 259 ITState.CurPosition = ~0U; 260 } 261 262 bool inITBlock() { return ITState.CurPosition != ~0U; } 263 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 264 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 265 266 bool lastInITBlock() { 267 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 268 } 269 270 void forwardITPosition() { 271 if (!inITBlock()) return; 272 // Move to the next instruction in the IT block, if there is one. If not, 273 // mark the block as done, except for implicit IT blocks, which we leave 274 // open until we find an instruction that can't be added to it. 275 unsigned TZ = countTrailingZeros(ITState.Mask); 276 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 277 ITState.CurPosition = ~0U; // Done with the IT block after this. 278 } 279 280 // Rewind the state of the current IT block, removing the last slot from it. 281 void rewindImplicitITPosition() { 282 assert(inImplicitITBlock()); 283 assert(ITState.CurPosition > 1); 284 ITState.CurPosition--; 285 unsigned TZ = countTrailingZeros(ITState.Mask); 286 unsigned NewMask = 0; 287 NewMask |= ITState.Mask & (0xC << TZ); 288 NewMask |= 0x2 << TZ; 289 ITState.Mask = NewMask; 290 } 291 292 // Rewind the state of the current IT block, removing the last slot from it. 293 // If we were at the first slot, this closes the IT block. 294 void discardImplicitITBlock() { 295 assert(inImplicitITBlock()); 296 assert(ITState.CurPosition == 1); 297 ITState.CurPosition = ~0U; 298 } 299 300 // Return the low-subreg of a given Q register. 301 unsigned getDRegFromQReg(unsigned QReg) const { 302 return MRI->getSubReg(QReg, ARM::dsub_0); 303 } 304 305 // Get the condition code corresponding to the current IT block slot. 306 ARMCC::CondCodes currentITCond() { 307 unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition); 308 return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond; 309 } 310 311 // Invert the condition of the current IT block slot without changing any 312 // other slots in the same block. 313 void invertCurrentITCondition() { 314 if (ITState.CurPosition == 1) { 315 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 316 } else { 317 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 318 } 319 } 320 321 // Returns true if the current IT block is full (all 4 slots used). 322 bool isITBlockFull() { 323 return inITBlock() && (ITState.Mask & 1); 324 } 325 326 // Extend the current implicit IT block to have one more slot with the given 327 // condition code. 328 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 329 assert(inImplicitITBlock()); 330 assert(!isITBlockFull()); 331 assert(Cond == ITState.Cond || 332 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 333 unsigned TZ = countTrailingZeros(ITState.Mask); 334 unsigned NewMask = 0; 335 // Keep any existing condition bits. 336 NewMask |= ITState.Mask & (0xE << TZ); 337 // Insert the new condition bit. 338 NewMask |= (Cond != ITState.Cond) << TZ; 339 // Move the trailing 1 down one bit. 340 NewMask |= 1 << (TZ - 1); 341 ITState.Mask = NewMask; 342 } 343 344 // Create a new implicit IT block with a dummy condition code. 345 void startImplicitITBlock() { 346 assert(!inITBlock()); 347 ITState.Cond = ARMCC::AL; 348 ITState.Mask = 8; 349 ITState.CurPosition = 1; 350 ITState.IsExplicit = false; 351 } 352 353 // Create a new explicit IT block with the given condition and mask. 354 // The mask should be in the format used in ARMOperand and 355 // MCOperand, with a 1 implying 'e', regardless of the low bit of 356 // the condition. 357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 358 assert(!inITBlock()); 359 ITState.Cond = Cond; 360 ITState.Mask = Mask; 361 ITState.CurPosition = 0; 362 ITState.IsExplicit = true; 363 } 364 365 struct { 366 unsigned Mask : 4; 367 unsigned CurPosition; 368 } VPTState; 369 bool inVPTBlock() { return VPTState.CurPosition != ~0U; } 370 void forwardVPTPosition() { 371 if (!inVPTBlock()) return; 372 unsigned TZ = countTrailingZeros(VPTState.Mask); 373 if (++VPTState.CurPosition == 5 - TZ) 374 VPTState.CurPosition = ~0U; 375 } 376 377 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 378 return getParser().Note(L, Msg, Range); 379 } 380 381 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 382 return getParser().Warning(L, Msg, Range); 383 } 384 385 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 386 return getParser().Error(L, Msg, Range); 387 } 388 389 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 390 unsigned ListNo, bool IsARPop = false); 391 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 392 unsigned ListNo); 393 394 int tryParseRegister(); 395 bool tryParseRegisterWithWriteBack(OperandVector &); 396 int tryParseShiftRegister(OperandVector &); 397 bool parseRegisterList(OperandVector &, bool EnforceOrder = true); 398 bool parseMemory(OperandVector &); 399 bool parseOperand(OperandVector &, StringRef Mnemonic); 400 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 401 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 402 unsigned &ShiftAmount); 403 bool parseLiteralValues(unsigned Size, SMLoc L); 404 bool parseDirectiveThumb(SMLoc L); 405 bool parseDirectiveARM(SMLoc L); 406 bool parseDirectiveThumbFunc(SMLoc L); 407 bool parseDirectiveCode(SMLoc L); 408 bool parseDirectiveSyntax(SMLoc L); 409 bool parseDirectiveReq(StringRef Name, SMLoc L); 410 bool parseDirectiveUnreq(SMLoc L); 411 bool parseDirectiveArch(SMLoc L); 412 bool parseDirectiveEabiAttr(SMLoc L); 413 bool parseDirectiveCPU(SMLoc L); 414 bool parseDirectiveFPU(SMLoc L); 415 bool parseDirectiveFnStart(SMLoc L); 416 bool parseDirectiveFnEnd(SMLoc L); 417 bool parseDirectiveCantUnwind(SMLoc L); 418 bool parseDirectivePersonality(SMLoc L); 419 bool parseDirectiveHandlerData(SMLoc L); 420 bool parseDirectiveSetFP(SMLoc L); 421 bool parseDirectivePad(SMLoc L); 422 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 423 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 424 bool parseDirectiveLtorg(SMLoc L); 425 bool parseDirectiveEven(SMLoc L); 426 bool parseDirectivePersonalityIndex(SMLoc L); 427 bool parseDirectiveUnwindRaw(SMLoc L); 428 bool parseDirectiveTLSDescSeq(SMLoc L); 429 bool parseDirectiveMovSP(SMLoc L); 430 bool parseDirectiveObjectArch(SMLoc L); 431 bool parseDirectiveArchExtension(SMLoc L); 432 bool parseDirectiveAlign(SMLoc L); 433 bool parseDirectiveThumbSet(SMLoc L); 434 435 bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken); 436 StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken, 437 unsigned &PredicationCode, 438 unsigned &VPTPredicationCode, bool &CarrySetting, 439 unsigned &ProcessorIMod, StringRef &ITMask); 440 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken, 441 StringRef FullInst, bool &CanAcceptCarrySet, 442 bool &CanAcceptPredicationCode, 443 bool &CanAcceptVPTPredicationCode); 444 445 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 446 OperandVector &Operands); 447 bool isThumb() const { 448 // FIXME: Can tablegen auto-generate this? 449 return getSTI().getFeatureBits()[ARM::ModeThumb]; 450 } 451 452 bool isThumbOne() const { 453 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 454 } 455 456 bool isThumbTwo() const { 457 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 458 } 459 460 bool hasThumb() const { 461 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 462 } 463 464 bool hasThumb2() const { 465 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 466 } 467 468 bool hasV6Ops() const { 469 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 470 } 471 472 bool hasV6T2Ops() const { 473 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 474 } 475 476 bool hasV6MOps() const { 477 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 478 } 479 480 bool hasV7Ops() const { 481 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 482 } 483 484 bool hasV8Ops() const { 485 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 486 } 487 488 bool hasV8MBaseline() const { 489 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 490 } 491 492 bool hasV8MMainline() const { 493 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 494 } 495 bool hasV8_1MMainline() const { 496 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps]; 497 } 498 bool hasMVE() const { 499 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps]; 500 } 501 bool hasMVEFloat() const { 502 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps]; 503 } 504 bool has8MSecExt() const { 505 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 506 } 507 508 bool hasARM() const { 509 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 510 } 511 512 bool hasDSP() const { 513 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 514 } 515 516 bool hasD32() const { 517 return getSTI().getFeatureBits()[ARM::FeatureD32]; 518 } 519 520 bool hasV8_1aOps() const { 521 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 522 } 523 524 bool hasRAS() const { 525 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 526 } 527 528 void SwitchMode() { 529 MCSubtargetInfo &STI = copySTI(); 530 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 531 setAvailableFeatures(FB); 532 } 533 534 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 535 536 bool isMClass() const { 537 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 538 } 539 540 /// @name Auto-generated Match Functions 541 /// { 542 543 #define GET_ASSEMBLER_HEADER 544 #include "ARMGenAsmMatcher.inc" 545 546 /// } 547 548 OperandMatchResultTy parseITCondCode(OperandVector &); 549 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 550 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 551 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 552 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 553 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 554 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 555 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 556 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 557 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 558 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 559 int High); 560 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 561 return parsePKHImm(O, "lsl", 0, 31); 562 } 563 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 564 return parsePKHImm(O, "asr", 1, 32); 565 } 566 OperandMatchResultTy parseSetEndImm(OperandVector &); 567 OperandMatchResultTy parseShifterImm(OperandVector &); 568 OperandMatchResultTy parseRotImm(OperandVector &); 569 OperandMatchResultTy parseModImm(OperandVector &); 570 OperandMatchResultTy parseBitfield(OperandVector &); 571 OperandMatchResultTy parsePostIdxReg(OperandVector &); 572 OperandMatchResultTy parseAM3Offset(OperandVector &); 573 OperandMatchResultTy parseFPImm(OperandVector &); 574 OperandMatchResultTy parseVectorList(OperandVector &); 575 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 576 SMLoc &EndLoc); 577 578 // Asm Match Converter Methods 579 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 580 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 581 void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); 582 583 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 584 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 585 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 586 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 587 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 588 bool isITBlockTerminator(MCInst &Inst) const; 589 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 590 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 591 bool Load, bool ARMMode, bool Writeback); 592 593 public: 594 enum ARMMatchResultTy { 595 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 596 Match_RequiresNotITBlock, 597 Match_RequiresV6, 598 Match_RequiresThumb2, 599 Match_RequiresV8, 600 Match_RequiresFlagSetting, 601 #define GET_OPERAND_DIAGNOSTIC_TYPES 602 #include "ARMGenAsmMatcher.inc" 603 604 }; 605 606 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 607 const MCInstrInfo &MII, const MCTargetOptions &Options) 608 : MCTargetAsmParser(Options, STI, MII), UC(Parser) { 609 MCAsmParserExtension::Initialize(Parser); 610 611 // Cache the MCRegisterInfo. 612 MRI = getContext().getRegisterInfo(); 613 614 // Initialize the set of available features. 615 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 616 617 // Add build attributes based on the selected target. 618 if (AddBuildAttributes) 619 getTargetStreamer().emitTargetAttributes(STI); 620 621 // Not in an ITBlock to start with. 622 ITState.CurPosition = ~0U; 623 624 VPTState.CurPosition = ~0U; 625 626 NextSymbolIsThumb = false; 627 } 628 629 // Implementation of the MCTargetAsmParser interface: 630 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 631 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 632 SMLoc NameLoc, OperandVector &Operands) override; 633 bool ParseDirective(AsmToken DirectiveID) override; 634 635 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 636 unsigned Kind) override; 637 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 638 639 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 640 OperandVector &Operands, MCStreamer &Out, 641 uint64_t &ErrorInfo, 642 bool MatchingInlineAsm) override; 643 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 644 SmallVectorImpl<NearMissInfo> &NearMisses, 645 bool MatchingInlineAsm, bool &EmitInITBlock, 646 MCStreamer &Out); 647 648 struct NearMissMessage { 649 SMLoc Loc; 650 SmallString<128> Message; 651 }; 652 653 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 654 655 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 656 SmallVectorImpl<NearMissMessage> &NearMissesOut, 657 SMLoc IDLoc, OperandVector &Operands); 658 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 659 OperandVector &Operands); 660 661 void doBeforeLabelEmit(MCSymbol *Symbol) override; 662 663 void onLabelParsed(MCSymbol *Symbol) override; 664 }; 665 666 /// ARMOperand - Instances of this class represent a parsed ARM machine 667 /// operand. 668 class ARMOperand : public MCParsedAsmOperand { 669 enum KindTy { 670 k_CondCode, 671 k_VPTPred, 672 k_CCOut, 673 k_ITCondMask, 674 k_CoprocNum, 675 k_CoprocReg, 676 k_CoprocOption, 677 k_Immediate, 678 k_MemBarrierOpt, 679 k_InstSyncBarrierOpt, 680 k_TraceSyncBarrierOpt, 681 k_Memory, 682 k_PostIndexRegister, 683 k_MSRMask, 684 k_BankedReg, 685 k_ProcIFlags, 686 k_VectorIndex, 687 k_Register, 688 k_RegisterList, 689 k_RegisterListWithAPSR, 690 k_DPRRegisterList, 691 k_SPRRegisterList, 692 k_FPSRegisterListWithVPR, 693 k_FPDRegisterListWithVPR, 694 k_VectorList, 695 k_VectorListAllLanes, 696 k_VectorListIndexed, 697 k_ShiftedRegister, 698 k_ShiftedImmediate, 699 k_ShifterImmediate, 700 k_RotateImmediate, 701 k_ModifiedImmediate, 702 k_ConstantPoolImmediate, 703 k_BitfieldDescriptor, 704 k_Token, 705 } Kind; 706 707 SMLoc StartLoc, EndLoc, AlignmentLoc; 708 SmallVector<unsigned, 8> Registers; 709 710 struct CCOp { 711 ARMCC::CondCodes Val; 712 }; 713 714 struct VCCOp { 715 ARMVCC::VPTCodes Val; 716 }; 717 718 struct CopOp { 719 unsigned Val; 720 }; 721 722 struct CoprocOptionOp { 723 unsigned Val; 724 }; 725 726 struct ITMaskOp { 727 unsigned Mask:4; 728 }; 729 730 struct MBOptOp { 731 ARM_MB::MemBOpt Val; 732 }; 733 734 struct ISBOptOp { 735 ARM_ISB::InstSyncBOpt Val; 736 }; 737 738 struct TSBOptOp { 739 ARM_TSB::TraceSyncBOpt Val; 740 }; 741 742 struct IFlagsOp { 743 ARM_PROC::IFlags Val; 744 }; 745 746 struct MMaskOp { 747 unsigned Val; 748 }; 749 750 struct BankedRegOp { 751 unsigned Val; 752 }; 753 754 struct TokOp { 755 const char *Data; 756 unsigned Length; 757 }; 758 759 struct RegOp { 760 unsigned RegNum; 761 }; 762 763 // A vector register list is a sequential list of 1 to 4 registers. 764 struct VectorListOp { 765 unsigned RegNum; 766 unsigned Count; 767 unsigned LaneIndex; 768 bool isDoubleSpaced; 769 }; 770 771 struct VectorIndexOp { 772 unsigned Val; 773 }; 774 775 struct ImmOp { 776 const MCExpr *Val; 777 }; 778 779 /// Combined record for all forms of ARM address expressions. 780 struct MemoryOp { 781 unsigned BaseRegNum; 782 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 783 // was specified. 784 const MCConstantExpr *OffsetImm; // Offset immediate value 785 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 786 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 787 unsigned ShiftImm; // shift for OffsetReg. 788 unsigned Alignment; // 0 = no alignment specified 789 // n = alignment in bytes (2, 4, 8, 16, or 32) 790 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 791 }; 792 793 struct PostIdxRegOp { 794 unsigned RegNum; 795 bool isAdd; 796 ARM_AM::ShiftOpc ShiftTy; 797 unsigned ShiftImm; 798 }; 799 800 struct ShifterImmOp { 801 bool isASR; 802 unsigned Imm; 803 }; 804 805 struct RegShiftedRegOp { 806 ARM_AM::ShiftOpc ShiftTy; 807 unsigned SrcReg; 808 unsigned ShiftReg; 809 unsigned ShiftImm; 810 }; 811 812 struct RegShiftedImmOp { 813 ARM_AM::ShiftOpc ShiftTy; 814 unsigned SrcReg; 815 unsigned ShiftImm; 816 }; 817 818 struct RotImmOp { 819 unsigned Imm; 820 }; 821 822 struct ModImmOp { 823 unsigned Bits; 824 unsigned Rot; 825 }; 826 827 struct BitfieldOp { 828 unsigned LSB; 829 unsigned Width; 830 }; 831 832 union { 833 struct CCOp CC; 834 struct VCCOp VCC; 835 struct CopOp Cop; 836 struct CoprocOptionOp CoprocOption; 837 struct MBOptOp MBOpt; 838 struct ISBOptOp ISBOpt; 839 struct TSBOptOp TSBOpt; 840 struct ITMaskOp ITMask; 841 struct IFlagsOp IFlags; 842 struct MMaskOp MMask; 843 struct BankedRegOp BankedReg; 844 struct TokOp Tok; 845 struct RegOp Reg; 846 struct VectorListOp VectorList; 847 struct VectorIndexOp VectorIndex; 848 struct ImmOp Imm; 849 struct MemoryOp Memory; 850 struct PostIdxRegOp PostIdxReg; 851 struct ShifterImmOp ShifterImm; 852 struct RegShiftedRegOp RegShiftedReg; 853 struct RegShiftedImmOp RegShiftedImm; 854 struct RotImmOp RotImm; 855 struct ModImmOp ModImm; 856 struct BitfieldOp Bitfield; 857 }; 858 859 public: 860 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 861 862 /// getStartLoc - Get the location of the first token of this operand. 863 SMLoc getStartLoc() const override { return StartLoc; } 864 865 /// getEndLoc - Get the location of the last token of this operand. 866 SMLoc getEndLoc() const override { return EndLoc; } 867 868 /// getLocRange - Get the range between the first and last token of this 869 /// operand. 870 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 871 872 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 873 SMLoc getAlignmentLoc() const { 874 assert(Kind == k_Memory && "Invalid access!"); 875 return AlignmentLoc; 876 } 877 878 ARMCC::CondCodes getCondCode() const { 879 assert(Kind == k_CondCode && "Invalid access!"); 880 return CC.Val; 881 } 882 883 ARMVCC::VPTCodes getVPTPred() const { 884 assert(isVPTPred() && "Invalid access!"); 885 return VCC.Val; 886 } 887 888 unsigned getCoproc() const { 889 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 890 return Cop.Val; 891 } 892 893 StringRef getToken() const { 894 assert(Kind == k_Token && "Invalid access!"); 895 return StringRef(Tok.Data, Tok.Length); 896 } 897 898 unsigned getReg() const override { 899 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 900 return Reg.RegNum; 901 } 902 903 const SmallVectorImpl<unsigned> &getRegList() const { 904 assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || 905 Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || 906 Kind == k_FPSRegisterListWithVPR || 907 Kind == k_FPDRegisterListWithVPR) && 908 "Invalid access!"); 909 return Registers; 910 } 911 912 const MCExpr *getImm() const { 913 assert(isImm() && "Invalid access!"); 914 return Imm.Val; 915 } 916 917 const MCExpr *getConstantPoolImm() const { 918 assert(isConstantPoolImm() && "Invalid access!"); 919 return Imm.Val; 920 } 921 922 unsigned getVectorIndex() const { 923 assert(Kind == k_VectorIndex && "Invalid access!"); 924 return VectorIndex.Val; 925 } 926 927 ARM_MB::MemBOpt getMemBarrierOpt() const { 928 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 929 return MBOpt.Val; 930 } 931 932 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 933 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 934 return ISBOpt.Val; 935 } 936 937 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 938 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 939 return TSBOpt.Val; 940 } 941 942 ARM_PROC::IFlags getProcIFlags() const { 943 assert(Kind == k_ProcIFlags && "Invalid access!"); 944 return IFlags.Val; 945 } 946 947 unsigned getMSRMask() const { 948 assert(Kind == k_MSRMask && "Invalid access!"); 949 return MMask.Val; 950 } 951 952 unsigned getBankedReg() const { 953 assert(Kind == k_BankedReg && "Invalid access!"); 954 return BankedReg.Val; 955 } 956 957 bool isCoprocNum() const { return Kind == k_CoprocNum; } 958 bool isCoprocReg() const { return Kind == k_CoprocReg; } 959 bool isCoprocOption() const { return Kind == k_CoprocOption; } 960 bool isCondCode() const { return Kind == k_CondCode; } 961 bool isVPTPred() const { return Kind == k_VPTPred; } 962 bool isCCOut() const { return Kind == k_CCOut; } 963 bool isITMask() const { return Kind == k_ITCondMask; } 964 bool isITCondCode() const { return Kind == k_CondCode; } 965 bool isImm() const override { 966 return Kind == k_Immediate; 967 } 968 969 bool isARMBranchTarget() const { 970 if (!isImm()) return false; 971 972 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 973 return CE->getValue() % 4 == 0; 974 return true; 975 } 976 977 978 bool isThumbBranchTarget() const { 979 if (!isImm()) return false; 980 981 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 982 return CE->getValue() % 2 == 0; 983 return true; 984 } 985 986 // checks whether this operand is an unsigned offset which fits is a field 987 // of specified width and scaled by a specific number of bits 988 template<unsigned width, unsigned scale> 989 bool isUnsignedOffset() const { 990 if (!isImm()) return false; 991 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 992 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 993 int64_t Val = CE->getValue(); 994 int64_t Align = 1LL << scale; 995 int64_t Max = Align * ((1LL << width) - 1); 996 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 997 } 998 return false; 999 } 1000 1001 // checks whether this operand is an signed offset which fits is a field 1002 // of specified width and scaled by a specific number of bits 1003 template<unsigned width, unsigned scale> 1004 bool isSignedOffset() const { 1005 if (!isImm()) return false; 1006 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1007 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1008 int64_t Val = CE->getValue(); 1009 int64_t Align = 1LL << scale; 1010 int64_t Max = Align * ((1LL << (width-1)) - 1); 1011 int64_t Min = -Align * (1LL << (width-1)); 1012 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 1013 } 1014 return false; 1015 } 1016 1017 // checks whether this operand is an offset suitable for the LE / 1018 // LETP instructions in Arm v8.1M 1019 bool isLEOffset() const { 1020 if (!isImm()) return false; 1021 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1022 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1023 int64_t Val = CE->getValue(); 1024 return Val < 0 && Val >= -4094 && (Val & 1) == 0; 1025 } 1026 return false; 1027 } 1028 1029 // checks whether this operand is a memory operand computed as an offset 1030 // applied to PC. the offset may have 8 bits of magnitude and is represented 1031 // with two bits of shift. textually it may be either [pc, #imm], #imm or 1032 // relocable expression... 1033 bool isThumbMemPC() const { 1034 int64_t Val = 0; 1035 if (isImm()) { 1036 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1037 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 1038 if (!CE) return false; 1039 Val = CE->getValue(); 1040 } 1041 else if (isGPRMem()) { 1042 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 1043 if(Memory.BaseRegNum != ARM::PC) return false; 1044 Val = Memory.OffsetImm->getValue(); 1045 } 1046 else return false; 1047 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 1048 } 1049 1050 bool isFPImm() const { 1051 if (!isImm()) return false; 1052 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1053 if (!CE) return false; 1054 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1055 return Val != -1; 1056 } 1057 1058 template<int64_t N, int64_t M> 1059 bool isImmediate() const { 1060 if (!isImm()) return false; 1061 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1062 if (!CE) return false; 1063 int64_t Value = CE->getValue(); 1064 return Value >= N && Value <= M; 1065 } 1066 1067 template<int64_t N, int64_t M> 1068 bool isImmediateS4() const { 1069 if (!isImm()) return false; 1070 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1071 if (!CE) return false; 1072 int64_t Value = CE->getValue(); 1073 return ((Value & 3) == 0) && Value >= N && Value <= M; 1074 } 1075 template<int64_t N, int64_t M> 1076 bool isImmediateS2() const { 1077 if (!isImm()) return false; 1078 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1079 if (!CE) return false; 1080 int64_t Value = CE->getValue(); 1081 return ((Value & 1) == 0) && Value >= N && Value <= M; 1082 } 1083 bool isFBits16() const { 1084 return isImmediate<0, 17>(); 1085 } 1086 bool isFBits32() const { 1087 return isImmediate<1, 33>(); 1088 } 1089 bool isImm8s4() const { 1090 return isImmediateS4<-1020, 1020>(); 1091 } 1092 bool isImm7s4() const { 1093 return isImmediateS4<-508, 508>(); 1094 } 1095 bool isImm7Shift0() const { 1096 return isImmediate<-127, 127>(); 1097 } 1098 bool isImm7Shift1() const { 1099 return isImmediateS2<-255, 255>(); 1100 } 1101 bool isImm7Shift2() const { 1102 return isImmediateS4<-511, 511>(); 1103 } 1104 bool isImm7() const { 1105 return isImmediate<-127, 127>(); 1106 } 1107 bool isImm0_1020s4() const { 1108 return isImmediateS4<0, 1020>(); 1109 } 1110 bool isImm0_508s4() const { 1111 return isImmediateS4<0, 508>(); 1112 } 1113 bool isImm0_508s4Neg() const { 1114 if (!isImm()) return false; 1115 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1116 if (!CE) return false; 1117 int64_t Value = -CE->getValue(); 1118 // explicitly exclude zero. we want that to use the normal 0_508 version. 1119 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1120 } 1121 1122 bool isImm0_4095Neg() const { 1123 if (!isImm()) return false; 1124 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1125 if (!CE) return false; 1126 // isImm0_4095Neg is used with 32-bit immediates only. 1127 // 32-bit immediates are zero extended to 64-bit when parsed, 1128 // thus simple -CE->getValue() results in a big negative number, 1129 // not a small positive number as intended 1130 if ((CE->getValue() >> 32) > 0) return false; 1131 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1132 return Value > 0 && Value < 4096; 1133 } 1134 1135 bool isImm0_7() const { 1136 return isImmediate<0, 7>(); 1137 } 1138 1139 bool isImm1_16() const { 1140 return isImmediate<1, 16>(); 1141 } 1142 1143 bool isImm1_32() const { 1144 return isImmediate<1, 32>(); 1145 } 1146 1147 bool isImm8_255() const { 1148 return isImmediate<8, 255>(); 1149 } 1150 1151 bool isImm256_65535Expr() const { 1152 if (!isImm()) return false; 1153 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1154 // If it's not a constant expression, it'll generate a fixup and be 1155 // handled later. 1156 if (!CE) return true; 1157 int64_t Value = CE->getValue(); 1158 return Value >= 256 && Value < 65536; 1159 } 1160 1161 bool isImm0_65535Expr() const { 1162 if (!isImm()) return false; 1163 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1164 // If it's not a constant expression, it'll generate a fixup and be 1165 // handled later. 1166 if (!CE) return true; 1167 int64_t Value = CE->getValue(); 1168 return Value >= 0 && Value < 65536; 1169 } 1170 1171 bool isImm24bit() const { 1172 return isImmediate<0, 0xffffff + 1>(); 1173 } 1174 1175 bool isImmThumbSR() const { 1176 return isImmediate<1, 33>(); 1177 } 1178 1179 template<int shift> 1180 bool isExpImmValue(uint64_t Value) const { 1181 uint64_t mask = (1 << shift) - 1; 1182 if ((Value & mask) != 0 || (Value >> shift) > 0xff) 1183 return false; 1184 return true; 1185 } 1186 1187 template<int shift> 1188 bool isExpImm() const { 1189 if (!isImm()) return false; 1190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1191 if (!CE) return false; 1192 1193 return isExpImmValue<shift>(CE->getValue()); 1194 } 1195 1196 template<int shift, int size> 1197 bool isInvertedExpImm() const { 1198 if (!isImm()) return false; 1199 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1200 if (!CE) return false; 1201 1202 uint64_t OriginalValue = CE->getValue(); 1203 uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1); 1204 return isExpImmValue<shift>(InvertedValue); 1205 } 1206 1207 bool isPKHLSLImm() const { 1208 return isImmediate<0, 32>(); 1209 } 1210 1211 bool isPKHASRImm() const { 1212 return isImmediate<0, 33>(); 1213 } 1214 1215 bool isAdrLabel() const { 1216 // If we have an immediate that's not a constant, treat it as a label 1217 // reference needing a fixup. 1218 if (isImm() && !isa<MCConstantExpr>(getImm())) 1219 return true; 1220 1221 // If it is a constant, it must fit into a modified immediate encoding. 1222 if (!isImm()) return false; 1223 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1224 if (!CE) return false; 1225 int64_t Value = CE->getValue(); 1226 return (ARM_AM::getSOImmVal(Value) != -1 || 1227 ARM_AM::getSOImmVal(-Value) != -1); 1228 } 1229 1230 bool isT2SOImm() const { 1231 // If we have an immediate that's not a constant, treat it as an expression 1232 // needing a fixup. 1233 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1234 // We want to avoid matching :upper16: and :lower16: as we want these 1235 // expressions to match in isImm0_65535Expr() 1236 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1237 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1238 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1239 } 1240 if (!isImm()) return false; 1241 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1242 if (!CE) return false; 1243 int64_t Value = CE->getValue(); 1244 return ARM_AM::getT2SOImmVal(Value) != -1; 1245 } 1246 1247 bool isT2SOImmNot() const { 1248 if (!isImm()) return false; 1249 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1250 if (!CE) return false; 1251 int64_t Value = CE->getValue(); 1252 return ARM_AM::getT2SOImmVal(Value) == -1 && 1253 ARM_AM::getT2SOImmVal(~Value) != -1; 1254 } 1255 1256 bool isT2SOImmNeg() const { 1257 if (!isImm()) return false; 1258 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1259 if (!CE) return false; 1260 int64_t Value = CE->getValue(); 1261 // Only use this when not representable as a plain so_imm. 1262 return ARM_AM::getT2SOImmVal(Value) == -1 && 1263 ARM_AM::getT2SOImmVal(-Value) != -1; 1264 } 1265 1266 bool isSetEndImm() const { 1267 if (!isImm()) return false; 1268 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1269 if (!CE) return false; 1270 int64_t Value = CE->getValue(); 1271 return Value == 1 || Value == 0; 1272 } 1273 1274 bool isReg() const override { return Kind == k_Register; } 1275 bool isRegList() const { return Kind == k_RegisterList; } 1276 bool isRegListWithAPSR() const { 1277 return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; 1278 } 1279 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1280 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1281 bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } 1282 bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } 1283 bool isToken() const override { return Kind == k_Token; } 1284 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1285 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1286 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1287 bool isMem() const override { 1288 return isGPRMem() || isMVEMem(); 1289 } 1290 bool isMVEMem() const { 1291 if (Kind != k_Memory) 1292 return false; 1293 if (Memory.BaseRegNum && 1294 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) && 1295 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum)) 1296 return false; 1297 if (Memory.OffsetRegNum && 1298 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1299 Memory.OffsetRegNum)) 1300 return false; 1301 return true; 1302 } 1303 bool isGPRMem() const { 1304 if (Kind != k_Memory) 1305 return false; 1306 if (Memory.BaseRegNum && 1307 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1308 return false; 1309 if (Memory.OffsetRegNum && 1310 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1311 return false; 1312 return true; 1313 } 1314 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1315 bool isRegShiftedReg() const { 1316 return Kind == k_ShiftedRegister && 1317 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1318 RegShiftedReg.SrcReg) && 1319 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1320 RegShiftedReg.ShiftReg); 1321 } 1322 bool isRegShiftedImm() const { 1323 return Kind == k_ShiftedImmediate && 1324 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1325 RegShiftedImm.SrcReg); 1326 } 1327 bool isRotImm() const { return Kind == k_RotateImmediate; } 1328 1329 template<unsigned Min, unsigned Max> 1330 bool isPowerTwoInRange() const { 1331 if (!isImm()) return false; 1332 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1333 if (!CE) return false; 1334 int64_t Value = CE->getValue(); 1335 return Value > 0 && countPopulation((uint64_t)Value) == 1 && 1336 Value >= Min && Value <= Max; 1337 } 1338 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1339 1340 bool isModImmNot() const { 1341 if (!isImm()) return false; 1342 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1343 if (!CE) return false; 1344 int64_t Value = CE->getValue(); 1345 return ARM_AM::getSOImmVal(~Value) != -1; 1346 } 1347 1348 bool isModImmNeg() const { 1349 if (!isImm()) return false; 1350 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1351 if (!CE) return false; 1352 int64_t Value = CE->getValue(); 1353 return ARM_AM::getSOImmVal(Value) == -1 && 1354 ARM_AM::getSOImmVal(-Value) != -1; 1355 } 1356 1357 bool isThumbModImmNeg1_7() const { 1358 if (!isImm()) return false; 1359 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1360 if (!CE) return false; 1361 int32_t Value = -(int32_t)CE->getValue(); 1362 return 0 < Value && Value < 8; 1363 } 1364 1365 bool isThumbModImmNeg8_255() const { 1366 if (!isImm()) return false; 1367 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1368 if (!CE) return false; 1369 int32_t Value = -(int32_t)CE->getValue(); 1370 return 7 < Value && Value < 256; 1371 } 1372 1373 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1374 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1375 bool isPostIdxRegShifted() const { 1376 return Kind == k_PostIndexRegister && 1377 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1378 } 1379 bool isPostIdxReg() const { 1380 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1381 } 1382 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1383 if (!isGPRMem()) 1384 return false; 1385 // No offset of any kind. 1386 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1387 (alignOK || Memory.Alignment == Alignment); 1388 } 1389 bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { 1390 if (!isGPRMem()) 1391 return false; 1392 1393 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1394 Memory.BaseRegNum)) 1395 return false; 1396 1397 // No offset of any kind. 1398 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1399 (alignOK || Memory.Alignment == Alignment); 1400 } 1401 bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { 1402 if (!isGPRMem()) 1403 return false; 1404 1405 if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( 1406 Memory.BaseRegNum)) 1407 return false; 1408 1409 // No offset of any kind. 1410 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1411 (alignOK || Memory.Alignment == Alignment); 1412 } 1413 bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { 1414 if (!isGPRMem()) 1415 return false; 1416 1417 if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( 1418 Memory.BaseRegNum)) 1419 return false; 1420 1421 // No offset of any kind. 1422 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1423 (alignOK || Memory.Alignment == Alignment); 1424 } 1425 bool isMemPCRelImm12() const { 1426 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1427 return false; 1428 // Base register must be PC. 1429 if (Memory.BaseRegNum != ARM::PC) 1430 return false; 1431 // Immediate offset in range [-4095, 4095]. 1432 if (!Memory.OffsetImm) return true; 1433 int64_t Val = Memory.OffsetImm->getValue(); 1434 return (Val > -4096 && Val < 4096) || 1435 (Val == std::numeric_limits<int32_t>::min()); 1436 } 1437 1438 bool isAlignedMemory() const { 1439 return isMemNoOffset(true); 1440 } 1441 1442 bool isAlignedMemoryNone() const { 1443 return isMemNoOffset(false, 0); 1444 } 1445 1446 bool isDupAlignedMemoryNone() const { 1447 return isMemNoOffset(false, 0); 1448 } 1449 1450 bool isAlignedMemory16() const { 1451 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1452 return true; 1453 return isMemNoOffset(false, 0); 1454 } 1455 1456 bool isDupAlignedMemory16() const { 1457 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1458 return true; 1459 return isMemNoOffset(false, 0); 1460 } 1461 1462 bool isAlignedMemory32() const { 1463 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1464 return true; 1465 return isMemNoOffset(false, 0); 1466 } 1467 1468 bool isDupAlignedMemory32() const { 1469 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1470 return true; 1471 return isMemNoOffset(false, 0); 1472 } 1473 1474 bool isAlignedMemory64() const { 1475 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1476 return true; 1477 return isMemNoOffset(false, 0); 1478 } 1479 1480 bool isDupAlignedMemory64() const { 1481 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1482 return true; 1483 return isMemNoOffset(false, 0); 1484 } 1485 1486 bool isAlignedMemory64or128() const { 1487 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1488 return true; 1489 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1490 return true; 1491 return isMemNoOffset(false, 0); 1492 } 1493 1494 bool isDupAlignedMemory64or128() const { 1495 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1496 return true; 1497 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1498 return true; 1499 return isMemNoOffset(false, 0); 1500 } 1501 1502 bool isAlignedMemory64or128or256() const { 1503 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1504 return true; 1505 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1506 return true; 1507 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1508 return true; 1509 return isMemNoOffset(false, 0); 1510 } 1511 1512 bool isAddrMode2() const { 1513 if (!isGPRMem() || Memory.Alignment != 0) return false; 1514 // Check for register offset. 1515 if (Memory.OffsetRegNum) return true; 1516 // Immediate offset in range [-4095, 4095]. 1517 if (!Memory.OffsetImm) return true; 1518 int64_t Val = Memory.OffsetImm->getValue(); 1519 return Val > -4096 && Val < 4096; 1520 } 1521 1522 bool isAM2OffsetImm() const { 1523 if (!isImm()) return false; 1524 // Immediate offset in range [-4095, 4095]. 1525 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1526 if (!CE) return false; 1527 int64_t Val = CE->getValue(); 1528 return (Val == std::numeric_limits<int32_t>::min()) || 1529 (Val > -4096 && Val < 4096); 1530 } 1531 1532 bool isAddrMode3() const { 1533 // If we have an immediate that's not a constant, treat it as a label 1534 // reference needing a fixup. If it is a constant, it's something else 1535 // and we reject it. 1536 if (isImm() && !isa<MCConstantExpr>(getImm())) 1537 return true; 1538 if (!isGPRMem() || Memory.Alignment != 0) return false; 1539 // No shifts are legal for AM3. 1540 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1541 // Check for register offset. 1542 if (Memory.OffsetRegNum) return true; 1543 // Immediate offset in range [-255, 255]. 1544 if (!Memory.OffsetImm) return true; 1545 int64_t Val = Memory.OffsetImm->getValue(); 1546 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1547 // have to check for this too. 1548 return (Val > -256 && Val < 256) || 1549 Val == std::numeric_limits<int32_t>::min(); 1550 } 1551 1552 bool isAM3Offset() const { 1553 if (isPostIdxReg()) 1554 return true; 1555 if (!isImm()) 1556 return false; 1557 // Immediate offset in range [-255, 255]. 1558 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1559 if (!CE) return false; 1560 int64_t Val = CE->getValue(); 1561 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1562 return (Val > -256 && Val < 256) || 1563 Val == std::numeric_limits<int32_t>::min(); 1564 } 1565 1566 bool isAddrMode5() const { 1567 // If we have an immediate that's not a constant, treat it as a label 1568 // reference needing a fixup. If it is a constant, it's something else 1569 // and we reject it. 1570 if (isImm() && !isa<MCConstantExpr>(getImm())) 1571 return true; 1572 if (!isGPRMem() || Memory.Alignment != 0) return false; 1573 // Check for register offset. 1574 if (Memory.OffsetRegNum) return false; 1575 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1576 if (!Memory.OffsetImm) return true; 1577 int64_t Val = Memory.OffsetImm->getValue(); 1578 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1579 Val == std::numeric_limits<int32_t>::min(); 1580 } 1581 1582 bool isAddrMode5FP16() const { 1583 // If we have an immediate that's not a constant, treat it as a label 1584 // reference needing a fixup. If it is a constant, it's something else 1585 // and we reject it. 1586 if (isImm() && !isa<MCConstantExpr>(getImm())) 1587 return true; 1588 if (!isGPRMem() || Memory.Alignment != 0) return false; 1589 // Check for register offset. 1590 if (Memory.OffsetRegNum) return false; 1591 // Immediate offset in range [-510, 510] and a multiple of 2. 1592 if (!Memory.OffsetImm) return true; 1593 int64_t Val = Memory.OffsetImm->getValue(); 1594 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1595 Val == std::numeric_limits<int32_t>::min(); 1596 } 1597 1598 bool isMemTBB() const { 1599 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1600 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1601 return false; 1602 return true; 1603 } 1604 1605 bool isMemTBH() const { 1606 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1607 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1608 Memory.Alignment != 0 ) 1609 return false; 1610 return true; 1611 } 1612 1613 bool isMemRegOffset() const { 1614 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1615 return false; 1616 return true; 1617 } 1618 1619 bool isT2MemRegOffset() const { 1620 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1621 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1622 return false; 1623 // Only lsl #{0, 1, 2, 3} allowed. 1624 if (Memory.ShiftType == ARM_AM::no_shift) 1625 return true; 1626 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1627 return false; 1628 return true; 1629 } 1630 1631 bool isMemThumbRR() const { 1632 // Thumb reg+reg addressing is simple. Just two registers, a base and 1633 // an offset. No shifts, negations or any other complicating factors. 1634 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1635 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1636 return false; 1637 return isARMLowRegister(Memory.BaseRegNum) && 1638 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1639 } 1640 1641 bool isMemThumbRIs4() const { 1642 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1643 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1644 return false; 1645 // Immediate offset, multiple of 4 in range [0, 124]. 1646 if (!Memory.OffsetImm) return true; 1647 int64_t Val = Memory.OffsetImm->getValue(); 1648 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1649 } 1650 1651 bool isMemThumbRIs2() const { 1652 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1653 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1654 return false; 1655 // Immediate offset, multiple of 4 in range [0, 62]. 1656 if (!Memory.OffsetImm) return true; 1657 int64_t Val = Memory.OffsetImm->getValue(); 1658 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1659 } 1660 1661 bool isMemThumbRIs1() const { 1662 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1663 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1664 return false; 1665 // Immediate offset in range [0, 31]. 1666 if (!Memory.OffsetImm) return true; 1667 int64_t Val = Memory.OffsetImm->getValue(); 1668 return Val >= 0 && Val <= 31; 1669 } 1670 1671 bool isMemThumbSPI() const { 1672 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1673 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1674 return false; 1675 // Immediate offset, multiple of 4 in range [0, 1020]. 1676 if (!Memory.OffsetImm) return true; 1677 int64_t Val = Memory.OffsetImm->getValue(); 1678 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1679 } 1680 1681 bool isMemImm8s4Offset() const { 1682 // If we have an immediate that's not a constant, treat it as a label 1683 // reference needing a fixup. If it is a constant, it's something else 1684 // and we reject it. 1685 if (isImm() && !isa<MCConstantExpr>(getImm())) 1686 return true; 1687 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1688 return false; 1689 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1690 if (!Memory.OffsetImm) return true; 1691 int64_t Val = Memory.OffsetImm->getValue(); 1692 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1693 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1694 Val == std::numeric_limits<int32_t>::min(); 1695 } 1696 bool isMemImm7s4Offset() const { 1697 // If we have an immediate that's not a constant, treat it as a label 1698 // reference needing a fixup. If it is a constant, it's something else 1699 // and we reject it. 1700 if (isImm() && !isa<MCConstantExpr>(getImm())) 1701 return true; 1702 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1703 !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1704 Memory.BaseRegNum)) 1705 return false; 1706 // Immediate offset a multiple of 4 in range [-508, 508]. 1707 if (!Memory.OffsetImm) return true; 1708 int64_t Val = Memory.OffsetImm->getValue(); 1709 // Special case, #-0 is INT32_MIN. 1710 return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; 1711 } 1712 bool isMemImm0_1020s4Offset() const { 1713 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1714 return false; 1715 // Immediate offset a multiple of 4 in range [0, 1020]. 1716 if (!Memory.OffsetImm) return true; 1717 int64_t Val = Memory.OffsetImm->getValue(); 1718 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1719 } 1720 1721 bool isMemImm8Offset() const { 1722 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1723 return false; 1724 // Base reg of PC isn't allowed for these encodings. 1725 if (Memory.BaseRegNum == ARM::PC) return false; 1726 // Immediate offset in range [-255, 255]. 1727 if (!Memory.OffsetImm) return true; 1728 int64_t Val = Memory.OffsetImm->getValue(); 1729 return (Val == std::numeric_limits<int32_t>::min()) || 1730 (Val > -256 && Val < 256); 1731 } 1732 1733 template<unsigned Bits, unsigned RegClassID> 1734 bool isMemImm7ShiftedOffset() const { 1735 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1736 !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum)) 1737 return false; 1738 1739 // Expect an immediate offset equal to an element of the range 1740 // [-127, 127], shifted left by Bits. 1741 1742 if (!Memory.OffsetImm) return true; 1743 int64_t Val = Memory.OffsetImm->getValue(); 1744 1745 // INT32_MIN is a special-case value (indicating the encoding with 1746 // zero offset and the subtract bit set) 1747 if (Val == INT32_MIN) 1748 return true; 1749 1750 unsigned Divisor = 1U << Bits; 1751 1752 // Check that the low bits are zero 1753 if (Val % Divisor != 0) 1754 return false; 1755 1756 // Check that the remaining offset is within range. 1757 Val /= Divisor; 1758 return (Val >= -127 && Val <= 127); 1759 } 1760 1761 template <int shift> bool isMemRegRQOffset() const { 1762 if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0) 1763 return false; 1764 1765 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1766 Memory.BaseRegNum)) 1767 return false; 1768 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1769 Memory.OffsetRegNum)) 1770 return false; 1771 1772 if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) 1773 return false; 1774 1775 if (shift > 0 && 1776 (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) 1777 return false; 1778 1779 return true; 1780 } 1781 1782 template <int shift> bool isMemRegQOffset() const { 1783 if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1784 return false; 1785 1786 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1787 Memory.BaseRegNum)) 1788 return false; 1789 1790 if(!Memory.OffsetImm) return true; 1791 static_assert(shift < 56, 1792 "Such that we dont shift by a value higher than 62"); 1793 int64_t Val = Memory.OffsetImm->getValue(); 1794 1795 // The value must be a multiple of (1 << shift) 1796 if ((Val & ((1U << shift) - 1)) != 0) 1797 return false; 1798 1799 // And be in the right range, depending on the amount that it is shifted 1800 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set 1801 // separately. 1802 int64_t Range = (1U << (7+shift)) - 1; 1803 return (Val == INT32_MIN) || (Val > -Range && Val < Range); 1804 } 1805 1806 bool isMemPosImm8Offset() const { 1807 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1808 return false; 1809 // Immediate offset in range [0, 255]. 1810 if (!Memory.OffsetImm) return true; 1811 int64_t Val = Memory.OffsetImm->getValue(); 1812 return Val >= 0 && Val < 256; 1813 } 1814 1815 bool isMemNegImm8Offset() const { 1816 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1817 return false; 1818 // Base reg of PC isn't allowed for these encodings. 1819 if (Memory.BaseRegNum == ARM::PC) return false; 1820 // Immediate offset in range [-255, -1]. 1821 if (!Memory.OffsetImm) return false; 1822 int64_t Val = Memory.OffsetImm->getValue(); 1823 return (Val == std::numeric_limits<int32_t>::min()) || 1824 (Val > -256 && Val < 0); 1825 } 1826 1827 bool isMemUImm12Offset() const { 1828 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1829 return false; 1830 // Immediate offset in range [0, 4095]. 1831 if (!Memory.OffsetImm) return true; 1832 int64_t Val = Memory.OffsetImm->getValue(); 1833 return (Val >= 0 && Val < 4096); 1834 } 1835 1836 bool isMemImm12Offset() const { 1837 // If we have an immediate that's not a constant, treat it as a label 1838 // reference needing a fixup. If it is a constant, it's something else 1839 // and we reject it. 1840 1841 if (isImm() && !isa<MCConstantExpr>(getImm())) 1842 return true; 1843 1844 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1845 return false; 1846 // Immediate offset in range [-4095, 4095]. 1847 if (!Memory.OffsetImm) return true; 1848 int64_t Val = Memory.OffsetImm->getValue(); 1849 return (Val > -4096 && Val < 4096) || 1850 (Val == std::numeric_limits<int32_t>::min()); 1851 } 1852 1853 bool isConstPoolAsmImm() const { 1854 // Delay processing of Constant Pool Immediate, this will turn into 1855 // a constant. Match no other operand 1856 return (isConstantPoolImm()); 1857 } 1858 1859 bool isPostIdxImm8() const { 1860 if (!isImm()) return false; 1861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1862 if (!CE) return false; 1863 int64_t Val = CE->getValue(); 1864 return (Val > -256 && Val < 256) || 1865 (Val == std::numeric_limits<int32_t>::min()); 1866 } 1867 1868 bool isPostIdxImm8s4() const { 1869 if (!isImm()) return false; 1870 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1871 if (!CE) return false; 1872 int64_t Val = CE->getValue(); 1873 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1874 (Val == std::numeric_limits<int32_t>::min()); 1875 } 1876 1877 bool isMSRMask() const { return Kind == k_MSRMask; } 1878 bool isBankedReg() const { return Kind == k_BankedReg; } 1879 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1880 1881 // NEON operands. 1882 bool isSingleSpacedVectorList() const { 1883 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1884 } 1885 1886 bool isDoubleSpacedVectorList() const { 1887 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1888 } 1889 1890 bool isVecListOneD() const { 1891 if (!isSingleSpacedVectorList()) return false; 1892 return VectorList.Count == 1; 1893 } 1894 1895 bool isVecListTwoMQ() const { 1896 return isSingleSpacedVectorList() && VectorList.Count == 2 && 1897 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1898 VectorList.RegNum); 1899 } 1900 1901 bool isVecListDPair() const { 1902 if (!isSingleSpacedVectorList()) return false; 1903 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1904 .contains(VectorList.RegNum)); 1905 } 1906 1907 bool isVecListThreeD() const { 1908 if (!isSingleSpacedVectorList()) return false; 1909 return VectorList.Count == 3; 1910 } 1911 1912 bool isVecListFourD() const { 1913 if (!isSingleSpacedVectorList()) return false; 1914 return VectorList.Count == 4; 1915 } 1916 1917 bool isVecListDPairSpaced() const { 1918 if (Kind != k_VectorList) return false; 1919 if (isSingleSpacedVectorList()) return false; 1920 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1921 .contains(VectorList.RegNum)); 1922 } 1923 1924 bool isVecListThreeQ() const { 1925 if (!isDoubleSpacedVectorList()) return false; 1926 return VectorList.Count == 3; 1927 } 1928 1929 bool isVecListFourQ() const { 1930 if (!isDoubleSpacedVectorList()) return false; 1931 return VectorList.Count == 4; 1932 } 1933 1934 bool isVecListFourMQ() const { 1935 return isSingleSpacedVectorList() && VectorList.Count == 4 && 1936 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1937 VectorList.RegNum); 1938 } 1939 1940 bool isSingleSpacedVectorAllLanes() const { 1941 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1942 } 1943 1944 bool isDoubleSpacedVectorAllLanes() const { 1945 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1946 } 1947 1948 bool isVecListOneDAllLanes() const { 1949 if (!isSingleSpacedVectorAllLanes()) return false; 1950 return VectorList.Count == 1; 1951 } 1952 1953 bool isVecListDPairAllLanes() const { 1954 if (!isSingleSpacedVectorAllLanes()) return false; 1955 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1956 .contains(VectorList.RegNum)); 1957 } 1958 1959 bool isVecListDPairSpacedAllLanes() const { 1960 if (!isDoubleSpacedVectorAllLanes()) return false; 1961 return VectorList.Count == 2; 1962 } 1963 1964 bool isVecListThreeDAllLanes() const { 1965 if (!isSingleSpacedVectorAllLanes()) return false; 1966 return VectorList.Count == 3; 1967 } 1968 1969 bool isVecListThreeQAllLanes() const { 1970 if (!isDoubleSpacedVectorAllLanes()) return false; 1971 return VectorList.Count == 3; 1972 } 1973 1974 bool isVecListFourDAllLanes() const { 1975 if (!isSingleSpacedVectorAllLanes()) return false; 1976 return VectorList.Count == 4; 1977 } 1978 1979 bool isVecListFourQAllLanes() const { 1980 if (!isDoubleSpacedVectorAllLanes()) return false; 1981 return VectorList.Count == 4; 1982 } 1983 1984 bool isSingleSpacedVectorIndexed() const { 1985 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1986 } 1987 1988 bool isDoubleSpacedVectorIndexed() const { 1989 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1990 } 1991 1992 bool isVecListOneDByteIndexed() const { 1993 if (!isSingleSpacedVectorIndexed()) return false; 1994 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1995 } 1996 1997 bool isVecListOneDHWordIndexed() const { 1998 if (!isSingleSpacedVectorIndexed()) return false; 1999 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 2000 } 2001 2002 bool isVecListOneDWordIndexed() const { 2003 if (!isSingleSpacedVectorIndexed()) return false; 2004 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 2005 } 2006 2007 bool isVecListTwoDByteIndexed() const { 2008 if (!isSingleSpacedVectorIndexed()) return false; 2009 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 2010 } 2011 2012 bool isVecListTwoDHWordIndexed() const { 2013 if (!isSingleSpacedVectorIndexed()) return false; 2014 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2015 } 2016 2017 bool isVecListTwoQWordIndexed() const { 2018 if (!isDoubleSpacedVectorIndexed()) return false; 2019 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2020 } 2021 2022 bool isVecListTwoQHWordIndexed() const { 2023 if (!isDoubleSpacedVectorIndexed()) return false; 2024 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2025 } 2026 2027 bool isVecListTwoDWordIndexed() const { 2028 if (!isSingleSpacedVectorIndexed()) return false; 2029 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2030 } 2031 2032 bool isVecListThreeDByteIndexed() const { 2033 if (!isSingleSpacedVectorIndexed()) return false; 2034 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 2035 } 2036 2037 bool isVecListThreeDHWordIndexed() const { 2038 if (!isSingleSpacedVectorIndexed()) return false; 2039 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2040 } 2041 2042 bool isVecListThreeQWordIndexed() const { 2043 if (!isDoubleSpacedVectorIndexed()) return false; 2044 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2045 } 2046 2047 bool isVecListThreeQHWordIndexed() const { 2048 if (!isDoubleSpacedVectorIndexed()) return false; 2049 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2050 } 2051 2052 bool isVecListThreeDWordIndexed() const { 2053 if (!isSingleSpacedVectorIndexed()) return false; 2054 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2055 } 2056 2057 bool isVecListFourDByteIndexed() const { 2058 if (!isSingleSpacedVectorIndexed()) return false; 2059 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 2060 } 2061 2062 bool isVecListFourDHWordIndexed() const { 2063 if (!isSingleSpacedVectorIndexed()) return false; 2064 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2065 } 2066 2067 bool isVecListFourQWordIndexed() const { 2068 if (!isDoubleSpacedVectorIndexed()) return false; 2069 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2070 } 2071 2072 bool isVecListFourQHWordIndexed() const { 2073 if (!isDoubleSpacedVectorIndexed()) return false; 2074 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2075 } 2076 2077 bool isVecListFourDWordIndexed() const { 2078 if (!isSingleSpacedVectorIndexed()) return false; 2079 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2080 } 2081 2082 bool isVectorIndex() const { return Kind == k_VectorIndex; } 2083 2084 template <unsigned NumLanes> 2085 bool isVectorIndexInRange() const { 2086 if (Kind != k_VectorIndex) return false; 2087 return VectorIndex.Val < NumLanes; 2088 } 2089 2090 bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } 2091 bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } 2092 bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } 2093 bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } 2094 2095 template<int PermittedValue, int OtherPermittedValue> 2096 bool isMVEPairVectorIndex() const { 2097 if (Kind != k_VectorIndex) return false; 2098 return VectorIndex.Val == PermittedValue || 2099 VectorIndex.Val == OtherPermittedValue; 2100 } 2101 2102 bool isNEONi8splat() const { 2103 if (!isImm()) return false; 2104 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2105 // Must be a constant. 2106 if (!CE) return false; 2107 int64_t Value = CE->getValue(); 2108 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 2109 // value. 2110 return Value >= 0 && Value < 256; 2111 } 2112 2113 bool isNEONi16splat() const { 2114 if (isNEONByteReplicate(2)) 2115 return false; // Leave that for bytes replication and forbid by default. 2116 if (!isImm()) 2117 return false; 2118 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2119 // Must be a constant. 2120 if (!CE) return false; 2121 unsigned Value = CE->getValue(); 2122 return ARM_AM::isNEONi16splat(Value); 2123 } 2124 2125 bool isNEONi16splatNot() const { 2126 if (!isImm()) 2127 return false; 2128 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2129 // Must be a constant. 2130 if (!CE) return false; 2131 unsigned Value = CE->getValue(); 2132 return ARM_AM::isNEONi16splat(~Value & 0xffff); 2133 } 2134 2135 bool isNEONi32splat() const { 2136 if (isNEONByteReplicate(4)) 2137 return false; // Leave that for bytes replication and forbid by default. 2138 if (!isImm()) 2139 return false; 2140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2141 // Must be a constant. 2142 if (!CE) return false; 2143 unsigned Value = CE->getValue(); 2144 return ARM_AM::isNEONi32splat(Value); 2145 } 2146 2147 bool isNEONi32splatNot() const { 2148 if (!isImm()) 2149 return false; 2150 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2151 // Must be a constant. 2152 if (!CE) return false; 2153 unsigned Value = CE->getValue(); 2154 return ARM_AM::isNEONi32splat(~Value); 2155 } 2156 2157 static bool isValidNEONi32vmovImm(int64_t Value) { 2158 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 2159 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 2160 return ((Value & 0xffffffffffffff00) == 0) || 2161 ((Value & 0xffffffffffff00ff) == 0) || 2162 ((Value & 0xffffffffff00ffff) == 0) || 2163 ((Value & 0xffffffff00ffffff) == 0) || 2164 ((Value & 0xffffffffffff00ff) == 0xff) || 2165 ((Value & 0xffffffffff00ffff) == 0xffff); 2166 } 2167 2168 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 2169 assert((Width == 8 || Width == 16 || Width == 32) && 2170 "Invalid element width"); 2171 assert(NumElems * Width <= 64 && "Invalid result width"); 2172 2173 if (!isImm()) 2174 return false; 2175 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2176 // Must be a constant. 2177 if (!CE) 2178 return false; 2179 int64_t Value = CE->getValue(); 2180 if (!Value) 2181 return false; // Don't bother with zero. 2182 if (Inv) 2183 Value = ~Value; 2184 2185 uint64_t Mask = (1ull << Width) - 1; 2186 uint64_t Elem = Value & Mask; 2187 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 2188 return false; 2189 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 2190 return false; 2191 2192 for (unsigned i = 1; i < NumElems; ++i) { 2193 Value >>= Width; 2194 if ((Value & Mask) != Elem) 2195 return false; 2196 } 2197 return true; 2198 } 2199 2200 bool isNEONByteReplicate(unsigned NumBytes) const { 2201 return isNEONReplicate(8, NumBytes, false); 2202 } 2203 2204 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 2205 assert((FromW == 8 || FromW == 16 || FromW == 32) && 2206 "Invalid source width"); 2207 assert((ToW == 16 || ToW == 32 || ToW == 64) && 2208 "Invalid destination width"); 2209 assert(FromW < ToW && "ToW is not less than FromW"); 2210 } 2211 2212 template<unsigned FromW, unsigned ToW> 2213 bool isNEONmovReplicate() const { 2214 checkNeonReplicateArgs(FromW, ToW); 2215 if (ToW == 64 && isNEONi64splat()) 2216 return false; 2217 return isNEONReplicate(FromW, ToW / FromW, false); 2218 } 2219 2220 template<unsigned FromW, unsigned ToW> 2221 bool isNEONinvReplicate() const { 2222 checkNeonReplicateArgs(FromW, ToW); 2223 return isNEONReplicate(FromW, ToW / FromW, true); 2224 } 2225 2226 bool isNEONi32vmov() const { 2227 if (isNEONByteReplicate(4)) 2228 return false; // Let it to be classified as byte-replicate case. 2229 if (!isImm()) 2230 return false; 2231 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2232 // Must be a constant. 2233 if (!CE) 2234 return false; 2235 return isValidNEONi32vmovImm(CE->getValue()); 2236 } 2237 2238 bool isNEONi32vmovNeg() const { 2239 if (!isImm()) return false; 2240 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2241 // Must be a constant. 2242 if (!CE) return false; 2243 return isValidNEONi32vmovImm(~CE->getValue()); 2244 } 2245 2246 bool isNEONi64splat() const { 2247 if (!isImm()) return false; 2248 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2249 // Must be a constant. 2250 if (!CE) return false; 2251 uint64_t Value = CE->getValue(); 2252 // i64 value with each byte being either 0 or 0xff. 2253 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 2254 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 2255 return true; 2256 } 2257 2258 template<int64_t Angle, int64_t Remainder> 2259 bool isComplexRotation() const { 2260 if (!isImm()) return false; 2261 2262 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2263 if (!CE) return false; 2264 uint64_t Value = CE->getValue(); 2265 2266 return (Value % Angle == Remainder && Value <= 270); 2267 } 2268 2269 bool isMVELongShift() const { 2270 if (!isImm()) return false; 2271 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2272 // Must be a constant. 2273 if (!CE) return false; 2274 uint64_t Value = CE->getValue(); 2275 return Value >= 1 && Value <= 32; 2276 } 2277 2278 bool isMveSaturateOp() const { 2279 if (!isImm()) return false; 2280 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2281 if (!CE) return false; 2282 uint64_t Value = CE->getValue(); 2283 return Value == 48 || Value == 64; 2284 } 2285 2286 bool isITCondCodeNoAL() const { 2287 if (!isITCondCode()) return false; 2288 ARMCC::CondCodes CC = getCondCode(); 2289 return CC != ARMCC::AL; 2290 } 2291 2292 bool isITCondCodeRestrictedI() const { 2293 if (!isITCondCode()) 2294 return false; 2295 ARMCC::CondCodes CC = getCondCode(); 2296 return CC == ARMCC::EQ || CC == ARMCC::NE; 2297 } 2298 2299 bool isITCondCodeRestrictedS() const { 2300 if (!isITCondCode()) 2301 return false; 2302 ARMCC::CondCodes CC = getCondCode(); 2303 return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || 2304 CC == ARMCC::GE; 2305 } 2306 2307 bool isITCondCodeRestrictedU() const { 2308 if (!isITCondCode()) 2309 return false; 2310 ARMCC::CondCodes CC = getCondCode(); 2311 return CC == ARMCC::HS || CC == ARMCC::HI; 2312 } 2313 2314 bool isITCondCodeRestrictedFP() const { 2315 if (!isITCondCode()) 2316 return false; 2317 ARMCC::CondCodes CC = getCondCode(); 2318 return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || 2319 CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; 2320 } 2321 2322 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 2323 // Add as immediates when possible. Null MCExpr = 0. 2324 if (!Expr) 2325 Inst.addOperand(MCOperand::createImm(0)); 2326 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 2327 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2328 else 2329 Inst.addOperand(MCOperand::createExpr(Expr)); 2330 } 2331 2332 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2333 assert(N == 1 && "Invalid number of operands!"); 2334 addExpr(Inst, getImm()); 2335 } 2336 2337 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2338 assert(N == 1 && "Invalid number of operands!"); 2339 addExpr(Inst, getImm()); 2340 } 2341 2342 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2343 assert(N == 2 && "Invalid number of operands!"); 2344 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2345 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2346 Inst.addOperand(MCOperand::createReg(RegNum)); 2347 } 2348 2349 void addVPTPredNOperands(MCInst &Inst, unsigned N) const { 2350 assert(N == 2 && "Invalid number of operands!"); 2351 Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred()))); 2352 unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; 2353 Inst.addOperand(MCOperand::createReg(RegNum)); 2354 } 2355 2356 void addVPTPredROperands(MCInst &Inst, unsigned N) const { 2357 assert(N == 3 && "Invalid number of operands!"); 2358 addVPTPredNOperands(Inst, N-1); 2359 unsigned RegNum; 2360 if (getVPTPred() == ARMVCC::None) { 2361 RegNum = 0; 2362 } else { 2363 unsigned NextOpIndex = Inst.getNumOperands(); 2364 const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()]; 2365 int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO); 2366 assert(TiedOp >= 0 && 2367 "Inactive register in vpred_r is not tied to an output!"); 2368 RegNum = Inst.getOperand(TiedOp).getReg(); 2369 } 2370 Inst.addOperand(MCOperand::createReg(RegNum)); 2371 } 2372 2373 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2374 assert(N == 1 && "Invalid number of operands!"); 2375 Inst.addOperand(MCOperand::createImm(getCoproc())); 2376 } 2377 2378 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2379 assert(N == 1 && "Invalid number of operands!"); 2380 Inst.addOperand(MCOperand::createImm(getCoproc())); 2381 } 2382 2383 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2384 assert(N == 1 && "Invalid number of operands!"); 2385 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2386 } 2387 2388 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2389 assert(N == 1 && "Invalid number of operands!"); 2390 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2391 } 2392 2393 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2394 assert(N == 1 && "Invalid number of operands!"); 2395 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2396 } 2397 2398 void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { 2399 assert(N == 1 && "Invalid number of operands!"); 2400 Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode())))); 2401 } 2402 2403 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2404 assert(N == 1 && "Invalid number of operands!"); 2405 Inst.addOperand(MCOperand::createReg(getReg())); 2406 } 2407 2408 void addRegOperands(MCInst &Inst, unsigned N) const { 2409 assert(N == 1 && "Invalid number of operands!"); 2410 Inst.addOperand(MCOperand::createReg(getReg())); 2411 } 2412 2413 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2414 assert(N == 3 && "Invalid number of operands!"); 2415 assert(isRegShiftedReg() && 2416 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2417 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2418 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2419 Inst.addOperand(MCOperand::createImm( 2420 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2421 } 2422 2423 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2424 assert(N == 2 && "Invalid number of operands!"); 2425 assert(isRegShiftedImm() && 2426 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2427 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2428 // Shift of #32 is encoded as 0 where permitted 2429 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2430 Inst.addOperand(MCOperand::createImm( 2431 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2432 } 2433 2434 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2435 assert(N == 1 && "Invalid number of operands!"); 2436 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2437 ShifterImm.Imm)); 2438 } 2439 2440 void addRegListOperands(MCInst &Inst, unsigned N) const { 2441 assert(N == 1 && "Invalid number of operands!"); 2442 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2443 for (SmallVectorImpl<unsigned>::const_iterator 2444 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2445 Inst.addOperand(MCOperand::createReg(*I)); 2446 } 2447 2448 void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { 2449 assert(N == 1 && "Invalid number of operands!"); 2450 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2451 for (SmallVectorImpl<unsigned>::const_iterator 2452 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2453 Inst.addOperand(MCOperand::createReg(*I)); 2454 } 2455 2456 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2457 addRegListOperands(Inst, N); 2458 } 2459 2460 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2461 addRegListOperands(Inst, N); 2462 } 2463 2464 void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2465 addRegListOperands(Inst, N); 2466 } 2467 2468 void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2469 addRegListOperands(Inst, N); 2470 } 2471 2472 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2473 assert(N == 1 && "Invalid number of operands!"); 2474 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2475 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2476 } 2477 2478 void addModImmOperands(MCInst &Inst, unsigned N) const { 2479 assert(N == 1 && "Invalid number of operands!"); 2480 2481 // Support for fixups (MCFixup) 2482 if (isImm()) 2483 return addImmOperands(Inst, N); 2484 2485 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2486 } 2487 2488 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2489 assert(N == 1 && "Invalid number of operands!"); 2490 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2491 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2492 Inst.addOperand(MCOperand::createImm(Enc)); 2493 } 2494 2495 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2496 assert(N == 1 && "Invalid number of operands!"); 2497 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2498 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2499 Inst.addOperand(MCOperand::createImm(Enc)); 2500 } 2501 2502 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2503 assert(N == 1 && "Invalid number of operands!"); 2504 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2505 uint32_t Val = -CE->getValue(); 2506 Inst.addOperand(MCOperand::createImm(Val)); 2507 } 2508 2509 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2510 assert(N == 1 && "Invalid number of operands!"); 2511 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2512 uint32_t Val = -CE->getValue(); 2513 Inst.addOperand(MCOperand::createImm(Val)); 2514 } 2515 2516 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2517 assert(N == 1 && "Invalid number of operands!"); 2518 // Munge the lsb/width into a bitfield mask. 2519 unsigned lsb = Bitfield.LSB; 2520 unsigned width = Bitfield.Width; 2521 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2522 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2523 (32 - (lsb + width))); 2524 Inst.addOperand(MCOperand::createImm(Mask)); 2525 } 2526 2527 void addImmOperands(MCInst &Inst, unsigned N) const { 2528 assert(N == 1 && "Invalid number of operands!"); 2529 addExpr(Inst, getImm()); 2530 } 2531 2532 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2533 assert(N == 1 && "Invalid number of operands!"); 2534 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2535 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2536 } 2537 2538 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2539 assert(N == 1 && "Invalid number of operands!"); 2540 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2541 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2542 } 2543 2544 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2545 assert(N == 1 && "Invalid number of operands!"); 2546 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2547 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2548 Inst.addOperand(MCOperand::createImm(Val)); 2549 } 2550 2551 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2552 assert(N == 1 && "Invalid number of operands!"); 2553 // FIXME: We really want to scale the value here, but the LDRD/STRD 2554 // instruction don't encode operands that way yet. 2555 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2556 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2557 } 2558 2559 void addImm7s4Operands(MCInst &Inst, unsigned N) const { 2560 assert(N == 1 && "Invalid number of operands!"); 2561 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR 2562 // instruction don't encode operands that way yet. 2563 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2564 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2565 } 2566 2567 void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { 2568 assert(N == 1 && "Invalid number of operands!"); 2569 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2570 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2571 } 2572 2573 void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { 2574 assert(N == 1 && "Invalid number of operands!"); 2575 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2576 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2577 } 2578 2579 void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { 2580 assert(N == 1 && "Invalid number of operands!"); 2581 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2582 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2583 } 2584 2585 void addImm7Operands(MCInst &Inst, unsigned N) const { 2586 assert(N == 1 && "Invalid number of operands!"); 2587 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2588 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2589 } 2590 2591 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2592 assert(N == 1 && "Invalid number of operands!"); 2593 // The immediate is scaled by four in the encoding and is stored 2594 // in the MCInst as such. Lop off the low two bits here. 2595 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2596 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2597 } 2598 2599 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2600 assert(N == 1 && "Invalid number of operands!"); 2601 // The immediate is scaled by four in the encoding and is stored 2602 // in the MCInst as such. Lop off the low two bits here. 2603 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2604 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2605 } 2606 2607 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2608 assert(N == 1 && "Invalid number of operands!"); 2609 // The immediate is scaled by four in the encoding and is stored 2610 // in the MCInst as such. Lop off the low two bits here. 2611 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2612 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2613 } 2614 2615 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2616 assert(N == 1 && "Invalid number of operands!"); 2617 // The constant encodes as the immediate-1, and we store in the instruction 2618 // the bits as encoded, so subtract off one here. 2619 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2620 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2621 } 2622 2623 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2624 assert(N == 1 && "Invalid number of operands!"); 2625 // The constant encodes as the immediate-1, and we store in the instruction 2626 // the bits as encoded, so subtract off one here. 2627 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2628 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2629 } 2630 2631 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2632 assert(N == 1 && "Invalid number of operands!"); 2633 // The constant encodes as the immediate, except for 32, which encodes as 2634 // zero. 2635 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2636 unsigned Imm = CE->getValue(); 2637 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2638 } 2639 2640 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2641 assert(N == 1 && "Invalid number of operands!"); 2642 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2643 // the instruction as well. 2644 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2645 int Val = CE->getValue(); 2646 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2647 } 2648 2649 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2650 assert(N == 1 && "Invalid number of operands!"); 2651 // The operand is actually a t2_so_imm, but we have its bitwise 2652 // negation in the assembly source, so twiddle it here. 2653 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2654 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2655 } 2656 2657 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2658 assert(N == 1 && "Invalid number of operands!"); 2659 // The operand is actually a t2_so_imm, but we have its 2660 // negation in the assembly source, so twiddle it here. 2661 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2662 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2663 } 2664 2665 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2666 assert(N == 1 && "Invalid number of operands!"); 2667 // The operand is actually an imm0_4095, but we have its 2668 // negation in the assembly source, so twiddle it here. 2669 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2670 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2671 } 2672 2673 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2674 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2675 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2676 return; 2677 } 2678 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2679 Inst.addOperand(MCOperand::createExpr(SR)); 2680 } 2681 2682 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2683 assert(N == 1 && "Invalid number of operands!"); 2684 if (isImm()) { 2685 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2686 if (CE) { 2687 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2688 return; 2689 } 2690 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2691 Inst.addOperand(MCOperand::createExpr(SR)); 2692 return; 2693 } 2694 2695 assert(isGPRMem() && "Unknown value type!"); 2696 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2697 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2698 } 2699 2700 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2701 assert(N == 1 && "Invalid number of operands!"); 2702 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2703 } 2704 2705 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2706 assert(N == 1 && "Invalid number of operands!"); 2707 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2708 } 2709 2710 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2711 assert(N == 1 && "Invalid number of operands!"); 2712 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2713 } 2714 2715 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2716 assert(N == 1 && "Invalid number of operands!"); 2717 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2718 } 2719 2720 void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { 2721 assert(N == 1 && "Invalid number of operands!"); 2722 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2723 } 2724 2725 void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { 2726 assert(N == 1 && "Invalid number of operands!"); 2727 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2728 } 2729 2730 void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { 2731 assert(N == 1 && "Invalid number of operands!"); 2732 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2733 } 2734 2735 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2736 assert(N == 1 && "Invalid number of operands!"); 2737 int32_t Imm = Memory.OffsetImm->getValue(); 2738 Inst.addOperand(MCOperand::createImm(Imm)); 2739 } 2740 2741 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2742 assert(N == 1 && "Invalid number of operands!"); 2743 assert(isImm() && "Not an immediate!"); 2744 2745 // If we have an immediate that's not a constant, treat it as a label 2746 // reference needing a fixup. 2747 if (!isa<MCConstantExpr>(getImm())) { 2748 Inst.addOperand(MCOperand::createExpr(getImm())); 2749 return; 2750 } 2751 2752 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2753 int Val = CE->getValue(); 2754 Inst.addOperand(MCOperand::createImm(Val)); 2755 } 2756 2757 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2758 assert(N == 2 && "Invalid number of operands!"); 2759 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2760 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2761 } 2762 2763 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2764 addAlignedMemoryOperands(Inst, N); 2765 } 2766 2767 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2768 addAlignedMemoryOperands(Inst, N); 2769 } 2770 2771 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2772 addAlignedMemoryOperands(Inst, N); 2773 } 2774 2775 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2776 addAlignedMemoryOperands(Inst, N); 2777 } 2778 2779 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2780 addAlignedMemoryOperands(Inst, N); 2781 } 2782 2783 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2784 addAlignedMemoryOperands(Inst, N); 2785 } 2786 2787 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2788 addAlignedMemoryOperands(Inst, N); 2789 } 2790 2791 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2792 addAlignedMemoryOperands(Inst, N); 2793 } 2794 2795 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2796 addAlignedMemoryOperands(Inst, N); 2797 } 2798 2799 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2800 addAlignedMemoryOperands(Inst, N); 2801 } 2802 2803 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2804 addAlignedMemoryOperands(Inst, N); 2805 } 2806 2807 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2808 assert(N == 3 && "Invalid number of operands!"); 2809 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2810 if (!Memory.OffsetRegNum) { 2811 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2812 // Special case for #-0 2813 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2814 if (Val < 0) Val = -Val; 2815 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2816 } else { 2817 // For register offset, we encode the shift type and negation flag 2818 // here. 2819 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2820 Memory.ShiftImm, Memory.ShiftType); 2821 } 2822 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2823 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2824 Inst.addOperand(MCOperand::createImm(Val)); 2825 } 2826 2827 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2828 assert(N == 2 && "Invalid number of operands!"); 2829 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2830 assert(CE && "non-constant AM2OffsetImm operand!"); 2831 int32_t Val = CE->getValue(); 2832 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2833 // Special case for #-0 2834 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2835 if (Val < 0) Val = -Val; 2836 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2837 Inst.addOperand(MCOperand::createReg(0)); 2838 Inst.addOperand(MCOperand::createImm(Val)); 2839 } 2840 2841 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2842 assert(N == 3 && "Invalid number of operands!"); 2843 // If we have an immediate that's not a constant, treat it as a label 2844 // reference needing a fixup. If it is a constant, it's something else 2845 // and we reject it. 2846 if (isImm()) { 2847 Inst.addOperand(MCOperand::createExpr(getImm())); 2848 Inst.addOperand(MCOperand::createReg(0)); 2849 Inst.addOperand(MCOperand::createImm(0)); 2850 return; 2851 } 2852 2853 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2854 if (!Memory.OffsetRegNum) { 2855 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2856 // Special case for #-0 2857 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2858 if (Val < 0) Val = -Val; 2859 Val = ARM_AM::getAM3Opc(AddSub, Val); 2860 } else { 2861 // For register offset, we encode the shift type and negation flag 2862 // here. 2863 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2864 } 2865 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2866 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2867 Inst.addOperand(MCOperand::createImm(Val)); 2868 } 2869 2870 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2871 assert(N == 2 && "Invalid number of operands!"); 2872 if (Kind == k_PostIndexRegister) { 2873 int32_t Val = 2874 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2875 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2876 Inst.addOperand(MCOperand::createImm(Val)); 2877 return; 2878 } 2879 2880 // Constant offset. 2881 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2882 int32_t Val = CE->getValue(); 2883 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2884 // Special case for #-0 2885 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2886 if (Val < 0) Val = -Val; 2887 Val = ARM_AM::getAM3Opc(AddSub, Val); 2888 Inst.addOperand(MCOperand::createReg(0)); 2889 Inst.addOperand(MCOperand::createImm(Val)); 2890 } 2891 2892 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2893 assert(N == 2 && "Invalid number of operands!"); 2894 // If we have an immediate that's not a constant, treat it as a label 2895 // reference needing a fixup. If it is a constant, it's something else 2896 // and we reject it. 2897 if (isImm()) { 2898 Inst.addOperand(MCOperand::createExpr(getImm())); 2899 Inst.addOperand(MCOperand::createImm(0)); 2900 return; 2901 } 2902 2903 // The lower two bits are always zero and as such are not encoded. 2904 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2905 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2906 // Special case for #-0 2907 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2908 if (Val < 0) Val = -Val; 2909 Val = ARM_AM::getAM5Opc(AddSub, Val); 2910 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2911 Inst.addOperand(MCOperand::createImm(Val)); 2912 } 2913 2914 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2915 assert(N == 2 && "Invalid number of operands!"); 2916 // If we have an immediate that's not a constant, treat it as a label 2917 // reference needing a fixup. If it is a constant, it's something else 2918 // and we reject it. 2919 if (isImm()) { 2920 Inst.addOperand(MCOperand::createExpr(getImm())); 2921 Inst.addOperand(MCOperand::createImm(0)); 2922 return; 2923 } 2924 2925 // The lower bit is always zero and as such is not encoded. 2926 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2927 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2928 // Special case for #-0 2929 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2930 if (Val < 0) Val = -Val; 2931 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2932 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2933 Inst.addOperand(MCOperand::createImm(Val)); 2934 } 2935 2936 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2937 assert(N == 2 && "Invalid number of operands!"); 2938 // If we have an immediate that's not a constant, treat it as a label 2939 // reference needing a fixup. If it is a constant, it's something else 2940 // and we reject it. 2941 if (isImm()) { 2942 Inst.addOperand(MCOperand::createExpr(getImm())); 2943 Inst.addOperand(MCOperand::createImm(0)); 2944 return; 2945 } 2946 2947 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2948 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2949 Inst.addOperand(MCOperand::createImm(Val)); 2950 } 2951 2952 void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { 2953 assert(N == 2 && "Invalid number of operands!"); 2954 // If we have an immediate that's not a constant, treat it as a label 2955 // reference needing a fixup. If it is a constant, it's something else 2956 // and we reject it. 2957 if (isImm()) { 2958 Inst.addOperand(MCOperand::createExpr(getImm())); 2959 Inst.addOperand(MCOperand::createImm(0)); 2960 return; 2961 } 2962 2963 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2964 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2965 Inst.addOperand(MCOperand::createImm(Val)); 2966 } 2967 2968 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2969 assert(N == 2 && "Invalid number of operands!"); 2970 // The lower two bits are always zero and as such are not encoded. 2971 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2972 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2973 Inst.addOperand(MCOperand::createImm(Val)); 2974 } 2975 2976 void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { 2977 assert(N == 2 && "Invalid number of operands!"); 2978 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2979 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2980 Inst.addOperand(MCOperand::createImm(Val)); 2981 } 2982 2983 void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { 2984 assert(N == 2 && "Invalid number of operands!"); 2985 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2986 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2987 } 2988 2989 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2990 assert(N == 2 && "Invalid number of operands!"); 2991 // If this is an immediate, it's a label reference. 2992 if (isImm()) { 2993 addExpr(Inst, getImm()); 2994 Inst.addOperand(MCOperand::createImm(0)); 2995 return; 2996 } 2997 2998 // Otherwise, it's a normal memory reg+offset. 2999 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3000 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3001 Inst.addOperand(MCOperand::createImm(Val)); 3002 } 3003 3004 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3005 assert(N == 2 && "Invalid number of operands!"); 3006 // If this is an immediate, it's a label reference. 3007 if (isImm()) { 3008 addExpr(Inst, getImm()); 3009 Inst.addOperand(MCOperand::createImm(0)); 3010 return; 3011 } 3012 3013 // Otherwise, it's a normal memory reg+offset. 3014 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3015 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3016 Inst.addOperand(MCOperand::createImm(Val)); 3017 } 3018 3019 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 3020 assert(N == 1 && "Invalid number of operands!"); 3021 // This is container for the immediate that we will create the constant 3022 // pool from 3023 addExpr(Inst, getConstantPoolImm()); 3024 return; 3025 } 3026 3027 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 3028 assert(N == 2 && "Invalid number of operands!"); 3029 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3030 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3031 } 3032 3033 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 3034 assert(N == 2 && "Invalid number of operands!"); 3035 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3036 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3037 } 3038 3039 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3040 assert(N == 3 && "Invalid number of operands!"); 3041 unsigned Val = 3042 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 3043 Memory.ShiftImm, Memory.ShiftType); 3044 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3045 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3046 Inst.addOperand(MCOperand::createImm(Val)); 3047 } 3048 3049 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3050 assert(N == 3 && "Invalid number of operands!"); 3051 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3052 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3053 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 3054 } 3055 3056 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 3057 assert(N == 2 && "Invalid number of operands!"); 3058 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3059 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3060 } 3061 3062 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 3063 assert(N == 2 && "Invalid number of operands!"); 3064 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3065 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3066 Inst.addOperand(MCOperand::createImm(Val)); 3067 } 3068 3069 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 3070 assert(N == 2 && "Invalid number of operands!"); 3071 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 3072 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3073 Inst.addOperand(MCOperand::createImm(Val)); 3074 } 3075 3076 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 3077 assert(N == 2 && "Invalid number of operands!"); 3078 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 3079 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3080 Inst.addOperand(MCOperand::createImm(Val)); 3081 } 3082 3083 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 3084 assert(N == 2 && "Invalid number of operands!"); 3085 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3086 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3087 Inst.addOperand(MCOperand::createImm(Val)); 3088 } 3089 3090 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 3091 assert(N == 1 && "Invalid number of operands!"); 3092 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3093 assert(CE && "non-constant post-idx-imm8 operand!"); 3094 int Imm = CE->getValue(); 3095 bool isAdd = Imm >= 0; 3096 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3097 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 3098 Inst.addOperand(MCOperand::createImm(Imm)); 3099 } 3100 3101 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 3102 assert(N == 1 && "Invalid number of operands!"); 3103 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3104 assert(CE && "non-constant post-idx-imm8s4 operand!"); 3105 int Imm = CE->getValue(); 3106 bool isAdd = Imm >= 0; 3107 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3108 // Immediate is scaled by 4. 3109 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 3110 Inst.addOperand(MCOperand::createImm(Imm)); 3111 } 3112 3113 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 3114 assert(N == 2 && "Invalid number of operands!"); 3115 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3116 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 3117 } 3118 3119 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 3120 assert(N == 2 && "Invalid number of operands!"); 3121 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3122 // The sign, shift type, and shift amount are encoded in a single operand 3123 // using the AM2 encoding helpers. 3124 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 3125 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 3126 PostIdxReg.ShiftTy); 3127 Inst.addOperand(MCOperand::createImm(Imm)); 3128 } 3129 3130 void addPowerTwoOperands(MCInst &Inst, unsigned N) const { 3131 assert(N == 1 && "Invalid number of operands!"); 3132 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3133 Inst.addOperand(MCOperand::createImm(CE->getValue())); 3134 } 3135 3136 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 3137 assert(N == 1 && "Invalid number of operands!"); 3138 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 3139 } 3140 3141 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 3142 assert(N == 1 && "Invalid number of operands!"); 3143 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 3144 } 3145 3146 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 3147 assert(N == 1 && "Invalid number of operands!"); 3148 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 3149 } 3150 3151 void addVecListOperands(MCInst &Inst, unsigned N) const { 3152 assert(N == 1 && "Invalid number of operands!"); 3153 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3154 } 3155 3156 void addMVEVecListOperands(MCInst &Inst, unsigned N) const { 3157 assert(N == 1 && "Invalid number of operands!"); 3158 3159 // When we come here, the VectorList field will identify a range 3160 // of q-registers by its base register and length, and it will 3161 // have already been error-checked to be the expected length of 3162 // range and contain only q-regs in the range q0-q7. So we can 3163 // count on the base register being in the range q0-q6 (for 2 3164 // regs) or q0-q4 (for 4) 3165 // 3166 // The MVE instructions taking a register range of this kind will 3167 // need an operand in the QQPR or QQQQPR class, representing the 3168 // entire range as a unit. So we must translate into that class, 3169 // by finding the index of the base register in the MQPR reg 3170 // class, and returning the super-register at the corresponding 3171 // index in the target class. 3172 3173 const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; 3174 const MCRegisterClass *RC_out = (VectorList.Count == 2) ? 3175 &ARMMCRegisterClasses[ARM::QQPRRegClassID] : 3176 &ARMMCRegisterClasses[ARM::QQQQPRRegClassID]; 3177 3178 unsigned I, E = RC_out->getNumRegs(); 3179 for (I = 0; I < E; I++) 3180 if (RC_in->getRegister(I) == VectorList.RegNum) 3181 break; 3182 assert(I < E && "Invalid vector list start register!"); 3183 3184 Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I))); 3185 } 3186 3187 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 3188 assert(N == 2 && "Invalid number of operands!"); 3189 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3190 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 3191 } 3192 3193 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 3194 assert(N == 1 && "Invalid number of operands!"); 3195 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3196 } 3197 3198 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 3199 assert(N == 1 && "Invalid number of operands!"); 3200 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3201 } 3202 3203 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 3204 assert(N == 1 && "Invalid number of operands!"); 3205 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3206 } 3207 3208 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 3209 assert(N == 1 && "Invalid number of operands!"); 3210 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3211 } 3212 3213 void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { 3214 assert(N == 1 && "Invalid number of operands!"); 3215 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3216 } 3217 3218 void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { 3219 assert(N == 1 && "Invalid number of operands!"); 3220 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3221 } 3222 3223 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 3224 assert(N == 1 && "Invalid number of operands!"); 3225 // The immediate encodes the type of constant as well as the value. 3226 // Mask in that this is an i8 splat. 3227 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3228 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 3229 } 3230 3231 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 3232 assert(N == 1 && "Invalid number of operands!"); 3233 // The immediate encodes the type of constant as well as the value. 3234 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3235 unsigned Value = CE->getValue(); 3236 Value = ARM_AM::encodeNEONi16splat(Value); 3237 Inst.addOperand(MCOperand::createImm(Value)); 3238 } 3239 3240 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 3241 assert(N == 1 && "Invalid number of operands!"); 3242 // The immediate encodes the type of constant as well as the value. 3243 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3244 unsigned Value = CE->getValue(); 3245 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 3246 Inst.addOperand(MCOperand::createImm(Value)); 3247 } 3248 3249 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 3250 assert(N == 1 && "Invalid number of operands!"); 3251 // The immediate encodes the type of constant as well as the value. 3252 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3253 unsigned Value = CE->getValue(); 3254 Value = ARM_AM::encodeNEONi32splat(Value); 3255 Inst.addOperand(MCOperand::createImm(Value)); 3256 } 3257 3258 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 3259 assert(N == 1 && "Invalid number of operands!"); 3260 // The immediate encodes the type of constant as well as the value. 3261 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3262 unsigned Value = CE->getValue(); 3263 Value = ARM_AM::encodeNEONi32splat(~Value); 3264 Inst.addOperand(MCOperand::createImm(Value)); 3265 } 3266 3267 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 3268 // The immediate encodes the type of constant as well as the value. 3269 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3270 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 3271 Inst.getOpcode() == ARM::VMOVv16i8) && 3272 "All instructions that wants to replicate non-zero byte " 3273 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 3274 unsigned Value = CE->getValue(); 3275 if (Inv) 3276 Value = ~Value; 3277 unsigned B = Value & 0xff; 3278 B |= 0xe00; // cmode = 0b1110 3279 Inst.addOperand(MCOperand::createImm(B)); 3280 } 3281 3282 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3283 assert(N == 1 && "Invalid number of operands!"); 3284 addNEONi8ReplicateOperands(Inst, true); 3285 } 3286 3287 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 3288 if (Value >= 256 && Value <= 0xffff) 3289 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 3290 else if (Value > 0xffff && Value <= 0xffffff) 3291 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 3292 else if (Value > 0xffffff) 3293 Value = (Value >> 24) | 0x600; 3294 return Value; 3295 } 3296 3297 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 3298 assert(N == 1 && "Invalid number of operands!"); 3299 // The immediate encodes the type of constant as well as the value. 3300 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3301 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 3302 Inst.addOperand(MCOperand::createImm(Value)); 3303 } 3304 3305 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3306 assert(N == 1 && "Invalid number of operands!"); 3307 addNEONi8ReplicateOperands(Inst, false); 3308 } 3309 3310 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 3311 assert(N == 1 && "Invalid number of operands!"); 3312 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3313 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 3314 Inst.getOpcode() == ARM::VMOVv8i16 || 3315 Inst.getOpcode() == ARM::VMVNv4i16 || 3316 Inst.getOpcode() == ARM::VMVNv8i16) && 3317 "All instructions that want to replicate non-zero half-word " 3318 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 3319 uint64_t Value = CE->getValue(); 3320 unsigned Elem = Value & 0xffff; 3321 if (Elem >= 256) 3322 Elem = (Elem >> 8) | 0x200; 3323 Inst.addOperand(MCOperand::createImm(Elem)); 3324 } 3325 3326 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 3327 assert(N == 1 && "Invalid number of operands!"); 3328 // The immediate encodes the type of constant as well as the value. 3329 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3330 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 3331 Inst.addOperand(MCOperand::createImm(Value)); 3332 } 3333 3334 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 3335 assert(N == 1 && "Invalid number of operands!"); 3336 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3337 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 3338 Inst.getOpcode() == ARM::VMOVv4i32 || 3339 Inst.getOpcode() == ARM::VMVNv2i32 || 3340 Inst.getOpcode() == ARM::VMVNv4i32) && 3341 "All instructions that want to replicate non-zero word " 3342 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 3343 uint64_t Value = CE->getValue(); 3344 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 3345 Inst.addOperand(MCOperand::createImm(Elem)); 3346 } 3347 3348 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 3349 assert(N == 1 && "Invalid number of operands!"); 3350 // The immediate encodes the type of constant as well as the value. 3351 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3352 uint64_t Value = CE->getValue(); 3353 unsigned Imm = 0; 3354 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 3355 Imm |= (Value & 1) << i; 3356 } 3357 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 3358 } 3359 3360 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 3361 assert(N == 1 && "Invalid number of operands!"); 3362 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3363 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 3364 } 3365 3366 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 3367 assert(N == 1 && "Invalid number of operands!"); 3368 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3369 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 3370 } 3371 3372 void addMveSaturateOperands(MCInst &Inst, unsigned N) const { 3373 assert(N == 1 && "Invalid number of operands!"); 3374 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3375 unsigned Imm = CE->getValue(); 3376 assert((Imm == 48 || Imm == 64) && "Invalid saturate operand"); 3377 Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0)); 3378 } 3379 3380 void print(raw_ostream &OS) const override; 3381 3382 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 3383 auto Op = std::make_unique<ARMOperand>(k_ITCondMask); 3384 Op->ITMask.Mask = Mask; 3385 Op->StartLoc = S; 3386 Op->EndLoc = S; 3387 return Op; 3388 } 3389 3390 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 3391 SMLoc S) { 3392 auto Op = std::make_unique<ARMOperand>(k_CondCode); 3393 Op->CC.Val = CC; 3394 Op->StartLoc = S; 3395 Op->EndLoc = S; 3396 return Op; 3397 } 3398 3399 static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, 3400 SMLoc S) { 3401 auto Op = std::make_unique<ARMOperand>(k_VPTPred); 3402 Op->VCC.Val = CC; 3403 Op->StartLoc = S; 3404 Op->EndLoc = S; 3405 return Op; 3406 } 3407 3408 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 3409 auto Op = std::make_unique<ARMOperand>(k_CoprocNum); 3410 Op->Cop.Val = CopVal; 3411 Op->StartLoc = S; 3412 Op->EndLoc = S; 3413 return Op; 3414 } 3415 3416 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 3417 auto Op = std::make_unique<ARMOperand>(k_CoprocReg); 3418 Op->Cop.Val = CopVal; 3419 Op->StartLoc = S; 3420 Op->EndLoc = S; 3421 return Op; 3422 } 3423 3424 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 3425 SMLoc E) { 3426 auto Op = std::make_unique<ARMOperand>(k_CoprocOption); 3427 Op->Cop.Val = Val; 3428 Op->StartLoc = S; 3429 Op->EndLoc = E; 3430 return Op; 3431 } 3432 3433 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 3434 auto Op = std::make_unique<ARMOperand>(k_CCOut); 3435 Op->Reg.RegNum = RegNum; 3436 Op->StartLoc = S; 3437 Op->EndLoc = S; 3438 return Op; 3439 } 3440 3441 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 3442 auto Op = std::make_unique<ARMOperand>(k_Token); 3443 Op->Tok.Data = Str.data(); 3444 Op->Tok.Length = Str.size(); 3445 Op->StartLoc = S; 3446 Op->EndLoc = S; 3447 return Op; 3448 } 3449 3450 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 3451 SMLoc E) { 3452 auto Op = std::make_unique<ARMOperand>(k_Register); 3453 Op->Reg.RegNum = RegNum; 3454 Op->StartLoc = S; 3455 Op->EndLoc = E; 3456 return Op; 3457 } 3458 3459 static std::unique_ptr<ARMOperand> 3460 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3461 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 3462 SMLoc E) { 3463 auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister); 3464 Op->RegShiftedReg.ShiftTy = ShTy; 3465 Op->RegShiftedReg.SrcReg = SrcReg; 3466 Op->RegShiftedReg.ShiftReg = ShiftReg; 3467 Op->RegShiftedReg.ShiftImm = ShiftImm; 3468 Op->StartLoc = S; 3469 Op->EndLoc = E; 3470 return Op; 3471 } 3472 3473 static std::unique_ptr<ARMOperand> 3474 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3475 unsigned ShiftImm, SMLoc S, SMLoc E) { 3476 auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate); 3477 Op->RegShiftedImm.ShiftTy = ShTy; 3478 Op->RegShiftedImm.SrcReg = SrcReg; 3479 Op->RegShiftedImm.ShiftImm = ShiftImm; 3480 Op->StartLoc = S; 3481 Op->EndLoc = E; 3482 return Op; 3483 } 3484 3485 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 3486 SMLoc S, SMLoc E) { 3487 auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate); 3488 Op->ShifterImm.isASR = isASR; 3489 Op->ShifterImm.Imm = Imm; 3490 Op->StartLoc = S; 3491 Op->EndLoc = E; 3492 return Op; 3493 } 3494 3495 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3496 SMLoc E) { 3497 auto Op = std::make_unique<ARMOperand>(k_RotateImmediate); 3498 Op->RotImm.Imm = Imm; 3499 Op->StartLoc = S; 3500 Op->EndLoc = E; 3501 return Op; 3502 } 3503 3504 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3505 SMLoc S, SMLoc E) { 3506 auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate); 3507 Op->ModImm.Bits = Bits; 3508 Op->ModImm.Rot = Rot; 3509 Op->StartLoc = S; 3510 Op->EndLoc = E; 3511 return Op; 3512 } 3513 3514 static std::unique_ptr<ARMOperand> 3515 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3516 auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate); 3517 Op->Imm.Val = Val; 3518 Op->StartLoc = S; 3519 Op->EndLoc = E; 3520 return Op; 3521 } 3522 3523 static std::unique_ptr<ARMOperand> 3524 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3525 auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor); 3526 Op->Bitfield.LSB = LSB; 3527 Op->Bitfield.Width = Width; 3528 Op->StartLoc = S; 3529 Op->EndLoc = E; 3530 return Op; 3531 } 3532 3533 static std::unique_ptr<ARMOperand> 3534 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3535 SMLoc StartLoc, SMLoc EndLoc) { 3536 assert(Regs.size() > 0 && "RegList contains no registers?"); 3537 KindTy Kind = k_RegisterList; 3538 3539 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 3540 Regs.front().second)) { 3541 if (Regs.back().second == ARM::VPR) 3542 Kind = k_FPDRegisterListWithVPR; 3543 else 3544 Kind = k_DPRRegisterList; 3545 } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 3546 Regs.front().second)) { 3547 if (Regs.back().second == ARM::VPR) 3548 Kind = k_FPSRegisterListWithVPR; 3549 else 3550 Kind = k_SPRRegisterList; 3551 } 3552 3553 if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) 3554 Kind = k_RegisterListWithAPSR; 3555 3556 assert(std::is_sorted(Regs.begin(), Regs.end()) && 3557 "Register list must be sorted by encoding"); 3558 3559 auto Op = std::make_unique<ARMOperand>(Kind); 3560 for (const auto &P : Regs) 3561 Op->Registers.push_back(P.second); 3562 3563 Op->StartLoc = StartLoc; 3564 Op->EndLoc = EndLoc; 3565 return Op; 3566 } 3567 3568 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3569 unsigned Count, 3570 bool isDoubleSpaced, 3571 SMLoc S, SMLoc E) { 3572 auto Op = std::make_unique<ARMOperand>(k_VectorList); 3573 Op->VectorList.RegNum = RegNum; 3574 Op->VectorList.Count = Count; 3575 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3576 Op->StartLoc = S; 3577 Op->EndLoc = E; 3578 return Op; 3579 } 3580 3581 static std::unique_ptr<ARMOperand> 3582 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3583 SMLoc S, SMLoc E) { 3584 auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes); 3585 Op->VectorList.RegNum = RegNum; 3586 Op->VectorList.Count = Count; 3587 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3588 Op->StartLoc = S; 3589 Op->EndLoc = E; 3590 return Op; 3591 } 3592 3593 static std::unique_ptr<ARMOperand> 3594 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3595 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3596 auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed); 3597 Op->VectorList.RegNum = RegNum; 3598 Op->VectorList.Count = Count; 3599 Op->VectorList.LaneIndex = Index; 3600 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3601 Op->StartLoc = S; 3602 Op->EndLoc = E; 3603 return Op; 3604 } 3605 3606 static std::unique_ptr<ARMOperand> 3607 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3608 auto Op = std::make_unique<ARMOperand>(k_VectorIndex); 3609 Op->VectorIndex.Val = Idx; 3610 Op->StartLoc = S; 3611 Op->EndLoc = E; 3612 return Op; 3613 } 3614 3615 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3616 SMLoc E) { 3617 auto Op = std::make_unique<ARMOperand>(k_Immediate); 3618 Op->Imm.Val = Val; 3619 Op->StartLoc = S; 3620 Op->EndLoc = E; 3621 return Op; 3622 } 3623 3624 static std::unique_ptr<ARMOperand> 3625 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3626 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3627 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3628 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3629 auto Op = std::make_unique<ARMOperand>(k_Memory); 3630 Op->Memory.BaseRegNum = BaseRegNum; 3631 Op->Memory.OffsetImm = OffsetImm; 3632 Op->Memory.OffsetRegNum = OffsetRegNum; 3633 Op->Memory.ShiftType = ShiftType; 3634 Op->Memory.ShiftImm = ShiftImm; 3635 Op->Memory.Alignment = Alignment; 3636 Op->Memory.isNegative = isNegative; 3637 Op->StartLoc = S; 3638 Op->EndLoc = E; 3639 Op->AlignmentLoc = AlignmentLoc; 3640 return Op; 3641 } 3642 3643 static std::unique_ptr<ARMOperand> 3644 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3645 unsigned ShiftImm, SMLoc S, SMLoc E) { 3646 auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister); 3647 Op->PostIdxReg.RegNum = RegNum; 3648 Op->PostIdxReg.isAdd = isAdd; 3649 Op->PostIdxReg.ShiftTy = ShiftTy; 3650 Op->PostIdxReg.ShiftImm = ShiftImm; 3651 Op->StartLoc = S; 3652 Op->EndLoc = E; 3653 return Op; 3654 } 3655 3656 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3657 SMLoc S) { 3658 auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt); 3659 Op->MBOpt.Val = Opt; 3660 Op->StartLoc = S; 3661 Op->EndLoc = S; 3662 return Op; 3663 } 3664 3665 static std::unique_ptr<ARMOperand> 3666 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3667 auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3668 Op->ISBOpt.Val = Opt; 3669 Op->StartLoc = S; 3670 Op->EndLoc = S; 3671 return Op; 3672 } 3673 3674 static std::unique_ptr<ARMOperand> 3675 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3676 auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3677 Op->TSBOpt.Val = Opt; 3678 Op->StartLoc = S; 3679 Op->EndLoc = S; 3680 return Op; 3681 } 3682 3683 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3684 SMLoc S) { 3685 auto Op = std::make_unique<ARMOperand>(k_ProcIFlags); 3686 Op->IFlags.Val = IFlags; 3687 Op->StartLoc = S; 3688 Op->EndLoc = S; 3689 return Op; 3690 } 3691 3692 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3693 auto Op = std::make_unique<ARMOperand>(k_MSRMask); 3694 Op->MMask.Val = MMask; 3695 Op->StartLoc = S; 3696 Op->EndLoc = S; 3697 return Op; 3698 } 3699 3700 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3701 auto Op = std::make_unique<ARMOperand>(k_BankedReg); 3702 Op->BankedReg.Val = Reg; 3703 Op->StartLoc = S; 3704 Op->EndLoc = S; 3705 return Op; 3706 } 3707 }; 3708 3709 } // end anonymous namespace. 3710 3711 void ARMOperand::print(raw_ostream &OS) const { 3712 auto RegName = [](unsigned Reg) { 3713 if (Reg) 3714 return ARMInstPrinter::getRegisterName(Reg); 3715 else 3716 return "noreg"; 3717 }; 3718 3719 switch (Kind) { 3720 case k_CondCode: 3721 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3722 break; 3723 case k_VPTPred: 3724 OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">"; 3725 break; 3726 case k_CCOut: 3727 OS << "<ccout " << RegName(getReg()) << ">"; 3728 break; 3729 case k_ITCondMask: { 3730 static const char *const MaskStr[] = { 3731 "(invalid)", "(tttt)", "(ttt)", "(ttte)", 3732 "(tt)", "(ttet)", "(tte)", "(ttee)", 3733 "(t)", "(tett)", "(tet)", "(tete)", 3734 "(te)", "(teet)", "(tee)", "(teee)", 3735 }; 3736 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3737 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3738 break; 3739 } 3740 case k_CoprocNum: 3741 OS << "<coprocessor number: " << getCoproc() << ">"; 3742 break; 3743 case k_CoprocReg: 3744 OS << "<coprocessor register: " << getCoproc() << ">"; 3745 break; 3746 case k_CoprocOption: 3747 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3748 break; 3749 case k_MSRMask: 3750 OS << "<mask: " << getMSRMask() << ">"; 3751 break; 3752 case k_BankedReg: 3753 OS << "<banked reg: " << getBankedReg() << ">"; 3754 break; 3755 case k_Immediate: 3756 OS << *getImm(); 3757 break; 3758 case k_MemBarrierOpt: 3759 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3760 break; 3761 case k_InstSyncBarrierOpt: 3762 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3763 break; 3764 case k_TraceSyncBarrierOpt: 3765 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3766 break; 3767 case k_Memory: 3768 OS << "<memory"; 3769 if (Memory.BaseRegNum) 3770 OS << " base:" << RegName(Memory.BaseRegNum); 3771 if (Memory.OffsetImm) 3772 OS << " offset-imm:" << *Memory.OffsetImm; 3773 if (Memory.OffsetRegNum) 3774 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3775 << RegName(Memory.OffsetRegNum); 3776 if (Memory.ShiftType != ARM_AM::no_shift) { 3777 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3778 OS << " shift-imm:" << Memory.ShiftImm; 3779 } 3780 if (Memory.Alignment) 3781 OS << " alignment:" << Memory.Alignment; 3782 OS << ">"; 3783 break; 3784 case k_PostIndexRegister: 3785 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3786 << RegName(PostIdxReg.RegNum); 3787 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3788 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3789 << PostIdxReg.ShiftImm; 3790 OS << ">"; 3791 break; 3792 case k_ProcIFlags: { 3793 OS << "<ARM_PROC::"; 3794 unsigned IFlags = getProcIFlags(); 3795 for (int i=2; i >= 0; --i) 3796 if (IFlags & (1 << i)) 3797 OS << ARM_PROC::IFlagsToString(1 << i); 3798 OS << ">"; 3799 break; 3800 } 3801 case k_Register: 3802 OS << "<register " << RegName(getReg()) << ">"; 3803 break; 3804 case k_ShifterImmediate: 3805 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3806 << " #" << ShifterImm.Imm << ">"; 3807 break; 3808 case k_ShiftedRegister: 3809 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3810 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3811 << RegName(RegShiftedReg.ShiftReg) << ">"; 3812 break; 3813 case k_ShiftedImmediate: 3814 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3815 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3816 << RegShiftedImm.ShiftImm << ">"; 3817 break; 3818 case k_RotateImmediate: 3819 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3820 break; 3821 case k_ModifiedImmediate: 3822 OS << "<mod_imm #" << ModImm.Bits << ", #" 3823 << ModImm.Rot << ")>"; 3824 break; 3825 case k_ConstantPoolImmediate: 3826 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3827 break; 3828 case k_BitfieldDescriptor: 3829 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3830 << ", width: " << Bitfield.Width << ">"; 3831 break; 3832 case k_RegisterList: 3833 case k_RegisterListWithAPSR: 3834 case k_DPRRegisterList: 3835 case k_SPRRegisterList: 3836 case k_FPSRegisterListWithVPR: 3837 case k_FPDRegisterListWithVPR: { 3838 OS << "<register_list "; 3839 3840 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3841 for (SmallVectorImpl<unsigned>::const_iterator 3842 I = RegList.begin(), E = RegList.end(); I != E; ) { 3843 OS << RegName(*I); 3844 if (++I < E) OS << ", "; 3845 } 3846 3847 OS << ">"; 3848 break; 3849 } 3850 case k_VectorList: 3851 OS << "<vector_list " << VectorList.Count << " * " 3852 << RegName(VectorList.RegNum) << ">"; 3853 break; 3854 case k_VectorListAllLanes: 3855 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3856 << RegName(VectorList.RegNum) << ">"; 3857 break; 3858 case k_VectorListIndexed: 3859 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3860 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 3861 break; 3862 case k_Token: 3863 OS << "'" << getToken() << "'"; 3864 break; 3865 case k_VectorIndex: 3866 OS << "<vectorindex " << getVectorIndex() << ">"; 3867 break; 3868 } 3869 } 3870 3871 /// @name Auto-generated Match Functions 3872 /// { 3873 3874 static unsigned MatchRegisterName(StringRef Name); 3875 3876 /// } 3877 3878 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3879 SMLoc &StartLoc, SMLoc &EndLoc) { 3880 const AsmToken &Tok = getParser().getTok(); 3881 StartLoc = Tok.getLoc(); 3882 EndLoc = Tok.getEndLoc(); 3883 RegNo = tryParseRegister(); 3884 3885 return (RegNo == (unsigned)-1); 3886 } 3887 3888 /// Try to parse a register name. The token must be an Identifier when called, 3889 /// and if it is a register name the token is eaten and the register number is 3890 /// returned. Otherwise return -1. 3891 int ARMAsmParser::tryParseRegister() { 3892 MCAsmParser &Parser = getParser(); 3893 const AsmToken &Tok = Parser.getTok(); 3894 if (Tok.isNot(AsmToken::Identifier)) return -1; 3895 3896 std::string lowerCase = Tok.getString().lower(); 3897 unsigned RegNum = MatchRegisterName(lowerCase); 3898 if (!RegNum) { 3899 RegNum = StringSwitch<unsigned>(lowerCase) 3900 .Case("r13", ARM::SP) 3901 .Case("r14", ARM::LR) 3902 .Case("r15", ARM::PC) 3903 .Case("ip", ARM::R12) 3904 // Additional register name aliases for 'gas' compatibility. 3905 .Case("a1", ARM::R0) 3906 .Case("a2", ARM::R1) 3907 .Case("a3", ARM::R2) 3908 .Case("a4", ARM::R3) 3909 .Case("v1", ARM::R4) 3910 .Case("v2", ARM::R5) 3911 .Case("v3", ARM::R6) 3912 .Case("v4", ARM::R7) 3913 .Case("v5", ARM::R8) 3914 .Case("v6", ARM::R9) 3915 .Case("v7", ARM::R10) 3916 .Case("v8", ARM::R11) 3917 .Case("sb", ARM::R9) 3918 .Case("sl", ARM::R10) 3919 .Case("fp", ARM::R11) 3920 .Default(0); 3921 } 3922 if (!RegNum) { 3923 // Check for aliases registered via .req. Canonicalize to lower case. 3924 // That's more consistent since register names are case insensitive, and 3925 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3926 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3927 // If no match, return failure. 3928 if (Entry == RegisterReqs.end()) 3929 return -1; 3930 Parser.Lex(); // Eat identifier token. 3931 return Entry->getValue(); 3932 } 3933 3934 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3935 if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3936 return -1; 3937 3938 Parser.Lex(); // Eat identifier token. 3939 3940 return RegNum; 3941 } 3942 3943 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3944 // If a recoverable error occurs, return 1. If an irrecoverable error 3945 // occurs, return -1. An irrecoverable error is one where tokens have been 3946 // consumed in the process of trying to parse the shifter (i.e., when it is 3947 // indeed a shifter operand, but malformed). 3948 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3949 MCAsmParser &Parser = getParser(); 3950 SMLoc S = Parser.getTok().getLoc(); 3951 const AsmToken &Tok = Parser.getTok(); 3952 if (Tok.isNot(AsmToken::Identifier)) 3953 return -1; 3954 3955 std::string lowerCase = Tok.getString().lower(); 3956 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3957 .Case("asl", ARM_AM::lsl) 3958 .Case("lsl", ARM_AM::lsl) 3959 .Case("lsr", ARM_AM::lsr) 3960 .Case("asr", ARM_AM::asr) 3961 .Case("ror", ARM_AM::ror) 3962 .Case("rrx", ARM_AM::rrx) 3963 .Default(ARM_AM::no_shift); 3964 3965 if (ShiftTy == ARM_AM::no_shift) 3966 return 1; 3967 3968 Parser.Lex(); // Eat the operator. 3969 3970 // The source register for the shift has already been added to the 3971 // operand list, so we need to pop it off and combine it into the shifted 3972 // register operand instead. 3973 std::unique_ptr<ARMOperand> PrevOp( 3974 (ARMOperand *)Operands.pop_back_val().release()); 3975 if (!PrevOp->isReg()) 3976 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3977 int SrcReg = PrevOp->getReg(); 3978 3979 SMLoc EndLoc; 3980 int64_t Imm = 0; 3981 int ShiftReg = 0; 3982 if (ShiftTy == ARM_AM::rrx) { 3983 // RRX Doesn't have an explicit shift amount. The encoder expects 3984 // the shift register to be the same as the source register. Seems odd, 3985 // but OK. 3986 ShiftReg = SrcReg; 3987 } else { 3988 // Figure out if this is shifted by a constant or a register (for non-RRX). 3989 if (Parser.getTok().is(AsmToken::Hash) || 3990 Parser.getTok().is(AsmToken::Dollar)) { 3991 Parser.Lex(); // Eat hash. 3992 SMLoc ImmLoc = Parser.getTok().getLoc(); 3993 const MCExpr *ShiftExpr = nullptr; 3994 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3995 Error(ImmLoc, "invalid immediate shift value"); 3996 return -1; 3997 } 3998 // The expression must be evaluatable as an immediate. 3999 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 4000 if (!CE) { 4001 Error(ImmLoc, "invalid immediate shift value"); 4002 return -1; 4003 } 4004 // Range check the immediate. 4005 // lsl, ror: 0 <= imm <= 31 4006 // lsr, asr: 0 <= imm <= 32 4007 Imm = CE->getValue(); 4008 if (Imm < 0 || 4009 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 4010 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 4011 Error(ImmLoc, "immediate shift value out of range"); 4012 return -1; 4013 } 4014 // shift by zero is a nop. Always send it through as lsl. 4015 // ('as' compatibility) 4016 if (Imm == 0) 4017 ShiftTy = ARM_AM::lsl; 4018 } else if (Parser.getTok().is(AsmToken::Identifier)) { 4019 SMLoc L = Parser.getTok().getLoc(); 4020 EndLoc = Parser.getTok().getEndLoc(); 4021 ShiftReg = tryParseRegister(); 4022 if (ShiftReg == -1) { 4023 Error(L, "expected immediate or register in shift operand"); 4024 return -1; 4025 } 4026 } else { 4027 Error(Parser.getTok().getLoc(), 4028 "expected immediate or register in shift operand"); 4029 return -1; 4030 } 4031 } 4032 4033 if (ShiftReg && ShiftTy != ARM_AM::rrx) 4034 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 4035 ShiftReg, Imm, 4036 S, EndLoc)); 4037 else 4038 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 4039 S, EndLoc)); 4040 4041 return 0; 4042 } 4043 4044 /// Try to parse a register name. The token must be an Identifier when called. 4045 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 4046 /// if there is a "writeback". 'true' if it's not a register. 4047 /// 4048 /// TODO this is likely to change to allow different register types and or to 4049 /// parse for a specific register type. 4050 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 4051 MCAsmParser &Parser = getParser(); 4052 SMLoc RegStartLoc = Parser.getTok().getLoc(); 4053 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 4054 int RegNo = tryParseRegister(); 4055 if (RegNo == -1) 4056 return true; 4057 4058 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 4059 4060 const AsmToken &ExclaimTok = Parser.getTok(); 4061 if (ExclaimTok.is(AsmToken::Exclaim)) { 4062 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 4063 ExclaimTok.getLoc())); 4064 Parser.Lex(); // Eat exclaim token 4065 return false; 4066 } 4067 4068 // Also check for an index operand. This is only legal for vector registers, 4069 // but that'll get caught OK in operand matching, so we don't need to 4070 // explicitly filter everything else out here. 4071 if (Parser.getTok().is(AsmToken::LBrac)) { 4072 SMLoc SIdx = Parser.getTok().getLoc(); 4073 Parser.Lex(); // Eat left bracket token. 4074 4075 const MCExpr *ImmVal; 4076 if (getParser().parseExpression(ImmVal)) 4077 return true; 4078 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 4079 if (!MCE) 4080 return TokError("immediate value expected for vector index"); 4081 4082 if (Parser.getTok().isNot(AsmToken::RBrac)) 4083 return Error(Parser.getTok().getLoc(), "']' expected"); 4084 4085 SMLoc E = Parser.getTok().getEndLoc(); 4086 Parser.Lex(); // Eat right bracket token. 4087 4088 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 4089 SIdx, E, 4090 getContext())); 4091 } 4092 4093 return false; 4094 } 4095 4096 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 4097 /// instruction with a symbolic operand name. 4098 /// We accept "crN" syntax for GAS compatibility. 4099 /// <operand-name> ::= <prefix><number> 4100 /// If CoprocOp is 'c', then: 4101 /// <prefix> ::= c | cr 4102 /// If CoprocOp is 'p', then : 4103 /// <prefix> ::= p 4104 /// <number> ::= integer in range [0, 15] 4105 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 4106 // Use the same layout as the tablegen'erated register name matcher. Ugly, 4107 // but efficient. 4108 if (Name.size() < 2 || Name[0] != CoprocOp) 4109 return -1; 4110 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 4111 4112 switch (Name.size()) { 4113 default: return -1; 4114 case 1: 4115 switch (Name[0]) { 4116 default: return -1; 4117 case '0': return 0; 4118 case '1': return 1; 4119 case '2': return 2; 4120 case '3': return 3; 4121 case '4': return 4; 4122 case '5': return 5; 4123 case '6': return 6; 4124 case '7': return 7; 4125 case '8': return 8; 4126 case '9': return 9; 4127 } 4128 case 2: 4129 if (Name[0] != '1') 4130 return -1; 4131 switch (Name[1]) { 4132 default: return -1; 4133 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 4134 // However, old cores (v5/v6) did use them in that way. 4135 case '0': return 10; 4136 case '1': return 11; 4137 case '2': return 12; 4138 case '3': return 13; 4139 case '4': return 14; 4140 case '5': return 15; 4141 } 4142 } 4143 } 4144 4145 /// parseITCondCode - Try to parse a condition code for an IT instruction. 4146 OperandMatchResultTy 4147 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 4148 MCAsmParser &Parser = getParser(); 4149 SMLoc S = Parser.getTok().getLoc(); 4150 const AsmToken &Tok = Parser.getTok(); 4151 if (!Tok.is(AsmToken::Identifier)) 4152 return MatchOperand_NoMatch; 4153 unsigned CC = ARMCondCodeFromString(Tok.getString()); 4154 if (CC == ~0U) 4155 return MatchOperand_NoMatch; 4156 Parser.Lex(); // Eat the token. 4157 4158 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 4159 4160 return MatchOperand_Success; 4161 } 4162 4163 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 4164 /// token must be an Identifier when called, and if it is a coprocessor 4165 /// number, the token is eaten and the operand is added to the operand list. 4166 OperandMatchResultTy 4167 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 4168 MCAsmParser &Parser = getParser(); 4169 SMLoc S = Parser.getTok().getLoc(); 4170 const AsmToken &Tok = Parser.getTok(); 4171 if (Tok.isNot(AsmToken::Identifier)) 4172 return MatchOperand_NoMatch; 4173 4174 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); 4175 if (Num == -1) 4176 return MatchOperand_NoMatch; 4177 if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits())) 4178 return MatchOperand_NoMatch; 4179 4180 Parser.Lex(); // Eat identifier token. 4181 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 4182 return MatchOperand_Success; 4183 } 4184 4185 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 4186 /// token must be an Identifier when called, and if it is a coprocessor 4187 /// number, the token is eaten and the operand is added to the operand list. 4188 OperandMatchResultTy 4189 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 4190 MCAsmParser &Parser = getParser(); 4191 SMLoc S = Parser.getTok().getLoc(); 4192 const AsmToken &Tok = Parser.getTok(); 4193 if (Tok.isNot(AsmToken::Identifier)) 4194 return MatchOperand_NoMatch; 4195 4196 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); 4197 if (Reg == -1) 4198 return MatchOperand_NoMatch; 4199 4200 Parser.Lex(); // Eat identifier token. 4201 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 4202 return MatchOperand_Success; 4203 } 4204 4205 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 4206 /// coproc_option : '{' imm0_255 '}' 4207 OperandMatchResultTy 4208 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 4209 MCAsmParser &Parser = getParser(); 4210 SMLoc S = Parser.getTok().getLoc(); 4211 4212 // If this isn't a '{', this isn't a coprocessor immediate operand. 4213 if (Parser.getTok().isNot(AsmToken::LCurly)) 4214 return MatchOperand_NoMatch; 4215 Parser.Lex(); // Eat the '{' 4216 4217 const MCExpr *Expr; 4218 SMLoc Loc = Parser.getTok().getLoc(); 4219 if (getParser().parseExpression(Expr)) { 4220 Error(Loc, "illegal expression"); 4221 return MatchOperand_ParseFail; 4222 } 4223 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4224 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 4225 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 4226 return MatchOperand_ParseFail; 4227 } 4228 int Val = CE->getValue(); 4229 4230 // Check for and consume the closing '}' 4231 if (Parser.getTok().isNot(AsmToken::RCurly)) 4232 return MatchOperand_ParseFail; 4233 SMLoc E = Parser.getTok().getEndLoc(); 4234 Parser.Lex(); // Eat the '}' 4235 4236 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 4237 return MatchOperand_Success; 4238 } 4239 4240 // For register list parsing, we need to map from raw GPR register numbering 4241 // to the enumeration values. The enumeration values aren't sorted by 4242 // register number due to our using "sp", "lr" and "pc" as canonical names. 4243 static unsigned getNextRegister(unsigned Reg) { 4244 // If this is a GPR, we need to do it manually, otherwise we can rely 4245 // on the sort ordering of the enumeration since the other reg-classes 4246 // are sane. 4247 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4248 return Reg + 1; 4249 switch(Reg) { 4250 default: llvm_unreachable("Invalid GPR number!"); 4251 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 4252 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 4253 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 4254 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 4255 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 4256 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 4257 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 4258 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 4259 } 4260 } 4261 4262 // Insert an <Encoding, Register> pair in an ordered vector. Return true on 4263 // success, or false, if duplicate encoding found. 4264 static bool 4265 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 4266 unsigned Enc, unsigned Reg) { 4267 Regs.emplace_back(Enc, Reg); 4268 for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) { 4269 if (J->first == Enc) { 4270 Regs.erase(J.base()); 4271 return false; 4272 } 4273 if (J->first < Enc) 4274 break; 4275 std::swap(*I, *J); 4276 } 4277 return true; 4278 } 4279 4280 /// Parse a register list. 4281 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, 4282 bool EnforceOrder) { 4283 MCAsmParser &Parser = getParser(); 4284 if (Parser.getTok().isNot(AsmToken::LCurly)) 4285 return TokError("Token is not a Left Curly Brace"); 4286 SMLoc S = Parser.getTok().getLoc(); 4287 Parser.Lex(); // Eat '{' token. 4288 SMLoc RegLoc = Parser.getTok().getLoc(); 4289 4290 // Check the first register in the list to see what register class 4291 // this is a list of. 4292 int Reg = tryParseRegister(); 4293 if (Reg == -1) 4294 return Error(RegLoc, "register expected"); 4295 4296 // The reglist instructions have at most 16 registers, so reserve 4297 // space for that many. 4298 int EReg = 0; 4299 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 4300 4301 // Allow Q regs and just interpret them as the two D sub-registers. 4302 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4303 Reg = getDRegFromQReg(Reg); 4304 EReg = MRI->getEncodingValue(Reg); 4305 Registers.emplace_back(EReg, Reg); 4306 ++Reg; 4307 } 4308 const MCRegisterClass *RC; 4309 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4310 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 4311 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 4312 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 4313 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 4314 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 4315 else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4316 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4317 else 4318 return Error(RegLoc, "invalid register in register list"); 4319 4320 // Store the register. 4321 EReg = MRI->getEncodingValue(Reg); 4322 Registers.emplace_back(EReg, Reg); 4323 4324 // This starts immediately after the first register token in the list, 4325 // so we can see either a comma or a minus (range separator) as a legal 4326 // next token. 4327 while (Parser.getTok().is(AsmToken::Comma) || 4328 Parser.getTok().is(AsmToken::Minus)) { 4329 if (Parser.getTok().is(AsmToken::Minus)) { 4330 Parser.Lex(); // Eat the minus. 4331 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4332 int EndReg = tryParseRegister(); 4333 if (EndReg == -1) 4334 return Error(AfterMinusLoc, "register expected"); 4335 // Allow Q regs and just interpret them as the two D sub-registers. 4336 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4337 EndReg = getDRegFromQReg(EndReg) + 1; 4338 // If the register is the same as the start reg, there's nothing 4339 // more to do. 4340 if (Reg == EndReg) 4341 continue; 4342 // The register must be in the same register class as the first. 4343 if (!RC->contains(EndReg)) 4344 return Error(AfterMinusLoc, "invalid register in register list"); 4345 // Ranges must go from low to high. 4346 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 4347 return Error(AfterMinusLoc, "bad range in register list"); 4348 4349 // Add all the registers in the range to the register list. 4350 while (Reg != EndReg) { 4351 Reg = getNextRegister(Reg); 4352 EReg = MRI->getEncodingValue(Reg); 4353 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4354 Warning(AfterMinusLoc, StringRef("duplicated register (") + 4355 ARMInstPrinter::getRegisterName(Reg) + 4356 ") in register list"); 4357 } 4358 } 4359 continue; 4360 } 4361 Parser.Lex(); // Eat the comma. 4362 RegLoc = Parser.getTok().getLoc(); 4363 int OldReg = Reg; 4364 const AsmToken RegTok = Parser.getTok(); 4365 Reg = tryParseRegister(); 4366 if (Reg == -1) 4367 return Error(RegLoc, "register expected"); 4368 // Allow Q regs and just interpret them as the two D sub-registers. 4369 bool isQReg = false; 4370 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4371 Reg = getDRegFromQReg(Reg); 4372 isQReg = true; 4373 } 4374 if (!RC->contains(Reg) && 4375 RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && 4376 ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { 4377 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial 4378 // subset of GPRRegClassId except it contains APSR as well. 4379 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4380 } 4381 if (Reg == ARM::VPR && 4382 (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || 4383 RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] || 4384 RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) { 4385 RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; 4386 EReg = MRI->getEncodingValue(Reg); 4387 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4388 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4389 ") in register list"); 4390 } 4391 continue; 4392 } 4393 // The register must be in the same register class as the first. 4394 if (!RC->contains(Reg)) 4395 return Error(RegLoc, "invalid register in register list"); 4396 // In most cases, the list must be monotonically increasing. An 4397 // exception is CLRM, which is order-independent anyway, so 4398 // there's no potential for confusion if you write clrm {r2,r1} 4399 // instead of clrm {r1,r2}. 4400 if (EnforceOrder && 4401 MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 4402 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4403 Warning(RegLoc, "register list not in ascending order"); 4404 else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4405 return Error(RegLoc, "register list not in ascending order"); 4406 } 4407 // VFP register lists must also be contiguous. 4408 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 4409 RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && 4410 Reg != OldReg + 1) 4411 return Error(RegLoc, "non-contiguous register range"); 4412 EReg = MRI->getEncodingValue(Reg); 4413 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4414 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4415 ") in register list"); 4416 } 4417 if (isQReg) { 4418 EReg = MRI->getEncodingValue(++Reg); 4419 Registers.emplace_back(EReg, Reg); 4420 } 4421 } 4422 4423 if (Parser.getTok().isNot(AsmToken::RCurly)) 4424 return Error(Parser.getTok().getLoc(), "'}' expected"); 4425 SMLoc E = Parser.getTok().getEndLoc(); 4426 Parser.Lex(); // Eat '}' token. 4427 4428 // Push the register list operand. 4429 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 4430 4431 // The ARM system instruction variants for LDM/STM have a '^' token here. 4432 if (Parser.getTok().is(AsmToken::Caret)) { 4433 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 4434 Parser.Lex(); // Eat '^' token. 4435 } 4436 4437 return false; 4438 } 4439 4440 // Helper function to parse the lane index for vector lists. 4441 OperandMatchResultTy ARMAsmParser:: 4442 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 4443 MCAsmParser &Parser = getParser(); 4444 Index = 0; // Always return a defined index value. 4445 if (Parser.getTok().is(AsmToken::LBrac)) { 4446 Parser.Lex(); // Eat the '['. 4447 if (Parser.getTok().is(AsmToken::RBrac)) { 4448 // "Dn[]" is the 'all lanes' syntax. 4449 LaneKind = AllLanes; 4450 EndLoc = Parser.getTok().getEndLoc(); 4451 Parser.Lex(); // Eat the ']'. 4452 return MatchOperand_Success; 4453 } 4454 4455 // There's an optional '#' token here. Normally there wouldn't be, but 4456 // inline assemble puts one in, and it's friendly to accept that. 4457 if (Parser.getTok().is(AsmToken::Hash)) 4458 Parser.Lex(); // Eat '#' or '$'. 4459 4460 const MCExpr *LaneIndex; 4461 SMLoc Loc = Parser.getTok().getLoc(); 4462 if (getParser().parseExpression(LaneIndex)) { 4463 Error(Loc, "illegal expression"); 4464 return MatchOperand_ParseFail; 4465 } 4466 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 4467 if (!CE) { 4468 Error(Loc, "lane index must be empty or an integer"); 4469 return MatchOperand_ParseFail; 4470 } 4471 if (Parser.getTok().isNot(AsmToken::RBrac)) { 4472 Error(Parser.getTok().getLoc(), "']' expected"); 4473 return MatchOperand_ParseFail; 4474 } 4475 EndLoc = Parser.getTok().getEndLoc(); 4476 Parser.Lex(); // Eat the ']'. 4477 int64_t Val = CE->getValue(); 4478 4479 // FIXME: Make this range check context sensitive for .8, .16, .32. 4480 if (Val < 0 || Val > 7) { 4481 Error(Parser.getTok().getLoc(), "lane index out of range"); 4482 return MatchOperand_ParseFail; 4483 } 4484 Index = Val; 4485 LaneKind = IndexedLane; 4486 return MatchOperand_Success; 4487 } 4488 LaneKind = NoLanes; 4489 return MatchOperand_Success; 4490 } 4491 4492 // parse a vector register list 4493 OperandMatchResultTy 4494 ARMAsmParser::parseVectorList(OperandVector &Operands) { 4495 MCAsmParser &Parser = getParser(); 4496 VectorLaneTy LaneKind; 4497 unsigned LaneIndex; 4498 SMLoc S = Parser.getTok().getLoc(); 4499 // As an extension (to match gas), support a plain D register or Q register 4500 // (without encosing curly braces) as a single or double entry list, 4501 // respectively. 4502 if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) { 4503 SMLoc E = Parser.getTok().getEndLoc(); 4504 int Reg = tryParseRegister(); 4505 if (Reg == -1) 4506 return MatchOperand_NoMatch; 4507 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 4508 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4509 if (Res != MatchOperand_Success) 4510 return Res; 4511 switch (LaneKind) { 4512 case NoLanes: 4513 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 4514 break; 4515 case AllLanes: 4516 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 4517 S, E)); 4518 break; 4519 case IndexedLane: 4520 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 4521 LaneIndex, 4522 false, S, E)); 4523 break; 4524 } 4525 return MatchOperand_Success; 4526 } 4527 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4528 Reg = getDRegFromQReg(Reg); 4529 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4530 if (Res != MatchOperand_Success) 4531 return Res; 4532 switch (LaneKind) { 4533 case NoLanes: 4534 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4535 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4536 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 4537 break; 4538 case AllLanes: 4539 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4540 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4541 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 4542 S, E)); 4543 break; 4544 case IndexedLane: 4545 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 4546 LaneIndex, 4547 false, S, E)); 4548 break; 4549 } 4550 return MatchOperand_Success; 4551 } 4552 Error(S, "vector register expected"); 4553 return MatchOperand_ParseFail; 4554 } 4555 4556 if (Parser.getTok().isNot(AsmToken::LCurly)) 4557 return MatchOperand_NoMatch; 4558 4559 Parser.Lex(); // Eat '{' token. 4560 SMLoc RegLoc = Parser.getTok().getLoc(); 4561 4562 int Reg = tryParseRegister(); 4563 if (Reg == -1) { 4564 Error(RegLoc, "register expected"); 4565 return MatchOperand_ParseFail; 4566 } 4567 unsigned Count = 1; 4568 int Spacing = 0; 4569 unsigned FirstReg = Reg; 4570 4571 if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4572 Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected"); 4573 return MatchOperand_ParseFail; 4574 } 4575 // The list is of D registers, but we also allow Q regs and just interpret 4576 // them as the two D sub-registers. 4577 else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4578 FirstReg = Reg = getDRegFromQReg(Reg); 4579 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4580 // it's ambiguous with four-register single spaced. 4581 ++Reg; 4582 ++Count; 4583 } 4584 4585 SMLoc E; 4586 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4587 return MatchOperand_ParseFail; 4588 4589 while (Parser.getTok().is(AsmToken::Comma) || 4590 Parser.getTok().is(AsmToken::Minus)) { 4591 if (Parser.getTok().is(AsmToken::Minus)) { 4592 if (!Spacing) 4593 Spacing = 1; // Register range implies a single spaced list. 4594 else if (Spacing == 2) { 4595 Error(Parser.getTok().getLoc(), 4596 "sequential registers in double spaced list"); 4597 return MatchOperand_ParseFail; 4598 } 4599 Parser.Lex(); // Eat the minus. 4600 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4601 int EndReg = tryParseRegister(); 4602 if (EndReg == -1) { 4603 Error(AfterMinusLoc, "register expected"); 4604 return MatchOperand_ParseFail; 4605 } 4606 // Allow Q regs and just interpret them as the two D sub-registers. 4607 if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4608 EndReg = getDRegFromQReg(EndReg) + 1; 4609 // If the register is the same as the start reg, there's nothing 4610 // more to do. 4611 if (Reg == EndReg) 4612 continue; 4613 // The register must be in the same register class as the first. 4614 if ((hasMVE() && 4615 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) || 4616 (!hasMVE() && 4617 !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) { 4618 Error(AfterMinusLoc, "invalid register in register list"); 4619 return MatchOperand_ParseFail; 4620 } 4621 // Ranges must go from low to high. 4622 if (Reg > EndReg) { 4623 Error(AfterMinusLoc, "bad range in register list"); 4624 return MatchOperand_ParseFail; 4625 } 4626 // Parse the lane specifier if present. 4627 VectorLaneTy NextLaneKind; 4628 unsigned NextLaneIndex; 4629 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4630 MatchOperand_Success) 4631 return MatchOperand_ParseFail; 4632 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4633 Error(AfterMinusLoc, "mismatched lane index in register list"); 4634 return MatchOperand_ParseFail; 4635 } 4636 4637 // Add all the registers in the range to the register list. 4638 Count += EndReg - Reg; 4639 Reg = EndReg; 4640 continue; 4641 } 4642 Parser.Lex(); // Eat the comma. 4643 RegLoc = Parser.getTok().getLoc(); 4644 int OldReg = Reg; 4645 Reg = tryParseRegister(); 4646 if (Reg == -1) { 4647 Error(RegLoc, "register expected"); 4648 return MatchOperand_ParseFail; 4649 } 4650 4651 if (hasMVE()) { 4652 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4653 Error(RegLoc, "vector register in range Q0-Q7 expected"); 4654 return MatchOperand_ParseFail; 4655 } 4656 Spacing = 1; 4657 } 4658 // vector register lists must be contiguous. 4659 // It's OK to use the enumeration values directly here rather, as the 4660 // VFP register classes have the enum sorted properly. 4661 // 4662 // The list is of D registers, but we also allow Q regs and just interpret 4663 // them as the two D sub-registers. 4664 else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4665 if (!Spacing) 4666 Spacing = 1; // Register range implies a single spaced list. 4667 else if (Spacing == 2) { 4668 Error(RegLoc, 4669 "invalid register in double-spaced list (must be 'D' register')"); 4670 return MatchOperand_ParseFail; 4671 } 4672 Reg = getDRegFromQReg(Reg); 4673 if (Reg != OldReg + 1) { 4674 Error(RegLoc, "non-contiguous register range"); 4675 return MatchOperand_ParseFail; 4676 } 4677 ++Reg; 4678 Count += 2; 4679 // Parse the lane specifier if present. 4680 VectorLaneTy NextLaneKind; 4681 unsigned NextLaneIndex; 4682 SMLoc LaneLoc = Parser.getTok().getLoc(); 4683 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4684 MatchOperand_Success) 4685 return MatchOperand_ParseFail; 4686 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4687 Error(LaneLoc, "mismatched lane index in register list"); 4688 return MatchOperand_ParseFail; 4689 } 4690 continue; 4691 } 4692 // Normal D register. 4693 // Figure out the register spacing (single or double) of the list if 4694 // we don't know it already. 4695 if (!Spacing) 4696 Spacing = 1 + (Reg == OldReg + 2); 4697 4698 // Just check that it's contiguous and keep going. 4699 if (Reg != OldReg + Spacing) { 4700 Error(RegLoc, "non-contiguous register range"); 4701 return MatchOperand_ParseFail; 4702 } 4703 ++Count; 4704 // Parse the lane specifier if present. 4705 VectorLaneTy NextLaneKind; 4706 unsigned NextLaneIndex; 4707 SMLoc EndLoc = Parser.getTok().getLoc(); 4708 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4709 return MatchOperand_ParseFail; 4710 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4711 Error(EndLoc, "mismatched lane index in register list"); 4712 return MatchOperand_ParseFail; 4713 } 4714 } 4715 4716 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4717 Error(Parser.getTok().getLoc(), "'}' expected"); 4718 return MatchOperand_ParseFail; 4719 } 4720 E = Parser.getTok().getEndLoc(); 4721 Parser.Lex(); // Eat '}' token. 4722 4723 switch (LaneKind) { 4724 case NoLanes: 4725 case AllLanes: { 4726 // Two-register operands have been converted to the 4727 // composite register classes. 4728 if (Count == 2 && !hasMVE()) { 4729 const MCRegisterClass *RC = (Spacing == 1) ? 4730 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4731 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4732 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4733 } 4734 auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : 4735 ARMOperand::CreateVectorListAllLanes); 4736 Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E)); 4737 break; 4738 } 4739 case IndexedLane: 4740 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4741 LaneIndex, 4742 (Spacing == 2), 4743 S, E)); 4744 break; 4745 } 4746 return MatchOperand_Success; 4747 } 4748 4749 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4750 OperandMatchResultTy 4751 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4752 MCAsmParser &Parser = getParser(); 4753 SMLoc S = Parser.getTok().getLoc(); 4754 const AsmToken &Tok = Parser.getTok(); 4755 unsigned Opt; 4756 4757 if (Tok.is(AsmToken::Identifier)) { 4758 StringRef OptStr = Tok.getString(); 4759 4760 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4761 .Case("sy", ARM_MB::SY) 4762 .Case("st", ARM_MB::ST) 4763 .Case("ld", ARM_MB::LD) 4764 .Case("sh", ARM_MB::ISH) 4765 .Case("ish", ARM_MB::ISH) 4766 .Case("shst", ARM_MB::ISHST) 4767 .Case("ishst", ARM_MB::ISHST) 4768 .Case("ishld", ARM_MB::ISHLD) 4769 .Case("nsh", ARM_MB::NSH) 4770 .Case("un", ARM_MB::NSH) 4771 .Case("nshst", ARM_MB::NSHST) 4772 .Case("nshld", ARM_MB::NSHLD) 4773 .Case("unst", ARM_MB::NSHST) 4774 .Case("osh", ARM_MB::OSH) 4775 .Case("oshst", ARM_MB::OSHST) 4776 .Case("oshld", ARM_MB::OSHLD) 4777 .Default(~0U); 4778 4779 // ishld, oshld, nshld and ld are only available from ARMv8. 4780 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4781 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4782 Opt = ~0U; 4783 4784 if (Opt == ~0U) 4785 return MatchOperand_NoMatch; 4786 4787 Parser.Lex(); // Eat identifier token. 4788 } else if (Tok.is(AsmToken::Hash) || 4789 Tok.is(AsmToken::Dollar) || 4790 Tok.is(AsmToken::Integer)) { 4791 if (Parser.getTok().isNot(AsmToken::Integer)) 4792 Parser.Lex(); // Eat '#' or '$'. 4793 SMLoc Loc = Parser.getTok().getLoc(); 4794 4795 const MCExpr *MemBarrierID; 4796 if (getParser().parseExpression(MemBarrierID)) { 4797 Error(Loc, "illegal expression"); 4798 return MatchOperand_ParseFail; 4799 } 4800 4801 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4802 if (!CE) { 4803 Error(Loc, "constant expression expected"); 4804 return MatchOperand_ParseFail; 4805 } 4806 4807 int Val = CE->getValue(); 4808 if (Val & ~0xf) { 4809 Error(Loc, "immediate value out of range"); 4810 return MatchOperand_ParseFail; 4811 } 4812 4813 Opt = ARM_MB::RESERVED_0 + Val; 4814 } else 4815 return MatchOperand_ParseFail; 4816 4817 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4818 return MatchOperand_Success; 4819 } 4820 4821 OperandMatchResultTy 4822 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 4823 MCAsmParser &Parser = getParser(); 4824 SMLoc S = Parser.getTok().getLoc(); 4825 const AsmToken &Tok = Parser.getTok(); 4826 4827 if (Tok.isNot(AsmToken::Identifier)) 4828 return MatchOperand_NoMatch; 4829 4830 if (!Tok.getString().equals_lower("csync")) 4831 return MatchOperand_NoMatch; 4832 4833 Parser.Lex(); // Eat identifier token. 4834 4835 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 4836 return MatchOperand_Success; 4837 } 4838 4839 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4840 OperandMatchResultTy 4841 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4842 MCAsmParser &Parser = getParser(); 4843 SMLoc S = Parser.getTok().getLoc(); 4844 const AsmToken &Tok = Parser.getTok(); 4845 unsigned Opt; 4846 4847 if (Tok.is(AsmToken::Identifier)) { 4848 StringRef OptStr = Tok.getString(); 4849 4850 if (OptStr.equals_lower("sy")) 4851 Opt = ARM_ISB::SY; 4852 else 4853 return MatchOperand_NoMatch; 4854 4855 Parser.Lex(); // Eat identifier token. 4856 } else if (Tok.is(AsmToken::Hash) || 4857 Tok.is(AsmToken::Dollar) || 4858 Tok.is(AsmToken::Integer)) { 4859 if (Parser.getTok().isNot(AsmToken::Integer)) 4860 Parser.Lex(); // Eat '#' or '$'. 4861 SMLoc Loc = Parser.getTok().getLoc(); 4862 4863 const MCExpr *ISBarrierID; 4864 if (getParser().parseExpression(ISBarrierID)) { 4865 Error(Loc, "illegal expression"); 4866 return MatchOperand_ParseFail; 4867 } 4868 4869 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4870 if (!CE) { 4871 Error(Loc, "constant expression expected"); 4872 return MatchOperand_ParseFail; 4873 } 4874 4875 int Val = CE->getValue(); 4876 if (Val & ~0xf) { 4877 Error(Loc, "immediate value out of range"); 4878 return MatchOperand_ParseFail; 4879 } 4880 4881 Opt = ARM_ISB::RESERVED_0 + Val; 4882 } else 4883 return MatchOperand_ParseFail; 4884 4885 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4886 (ARM_ISB::InstSyncBOpt)Opt, S)); 4887 return MatchOperand_Success; 4888 } 4889 4890 4891 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4892 OperandMatchResultTy 4893 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4894 MCAsmParser &Parser = getParser(); 4895 SMLoc S = Parser.getTok().getLoc(); 4896 const AsmToken &Tok = Parser.getTok(); 4897 if (!Tok.is(AsmToken::Identifier)) 4898 return MatchOperand_NoMatch; 4899 StringRef IFlagsStr = Tok.getString(); 4900 4901 // An iflags string of "none" is interpreted to mean that none of the AIF 4902 // bits are set. Not a terribly useful instruction, but a valid encoding. 4903 unsigned IFlags = 0; 4904 if (IFlagsStr != "none") { 4905 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4906 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4907 .Case("a", ARM_PROC::A) 4908 .Case("i", ARM_PROC::I) 4909 .Case("f", ARM_PROC::F) 4910 .Default(~0U); 4911 4912 // If some specific iflag is already set, it means that some letter is 4913 // present more than once, this is not acceptable. 4914 if (Flag == ~0U || (IFlags & Flag)) 4915 return MatchOperand_NoMatch; 4916 4917 IFlags |= Flag; 4918 } 4919 } 4920 4921 Parser.Lex(); // Eat identifier token. 4922 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4923 return MatchOperand_Success; 4924 } 4925 4926 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4927 OperandMatchResultTy 4928 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4929 MCAsmParser &Parser = getParser(); 4930 SMLoc S = Parser.getTok().getLoc(); 4931 const AsmToken &Tok = Parser.getTok(); 4932 4933 if (Tok.is(AsmToken::Integer)) { 4934 int64_t Val = Tok.getIntVal(); 4935 if (Val > 255 || Val < 0) { 4936 return MatchOperand_NoMatch; 4937 } 4938 unsigned SYSmvalue = Val & 0xFF; 4939 Parser.Lex(); 4940 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4941 return MatchOperand_Success; 4942 } 4943 4944 if (!Tok.is(AsmToken::Identifier)) 4945 return MatchOperand_NoMatch; 4946 StringRef Mask = Tok.getString(); 4947 4948 if (isMClass()) { 4949 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4950 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4951 return MatchOperand_NoMatch; 4952 4953 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4954 4955 Parser.Lex(); // Eat identifier token. 4956 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4957 return MatchOperand_Success; 4958 } 4959 4960 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4961 size_t Start = 0, Next = Mask.find('_'); 4962 StringRef Flags = ""; 4963 std::string SpecReg = Mask.slice(Start, Next).lower(); 4964 if (Next != StringRef::npos) 4965 Flags = Mask.slice(Next+1, Mask.size()); 4966 4967 // FlagsVal contains the complete mask: 4968 // 3-0: Mask 4969 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4970 unsigned FlagsVal = 0; 4971 4972 if (SpecReg == "apsr") { 4973 FlagsVal = StringSwitch<unsigned>(Flags) 4974 .Case("nzcvq", 0x8) // same as CPSR_f 4975 .Case("g", 0x4) // same as CPSR_s 4976 .Case("nzcvqg", 0xc) // same as CPSR_fs 4977 .Default(~0U); 4978 4979 if (FlagsVal == ~0U) { 4980 if (!Flags.empty()) 4981 return MatchOperand_NoMatch; 4982 else 4983 FlagsVal = 8; // No flag 4984 } 4985 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4986 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4987 if (Flags == "all" || Flags == "") 4988 Flags = "fc"; 4989 for (int i = 0, e = Flags.size(); i != e; ++i) { 4990 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4991 .Case("c", 1) 4992 .Case("x", 2) 4993 .Case("s", 4) 4994 .Case("f", 8) 4995 .Default(~0U); 4996 4997 // If some specific flag is already set, it means that some letter is 4998 // present more than once, this is not acceptable. 4999 if (Flag == ~0U || (FlagsVal & Flag)) 5000 return MatchOperand_NoMatch; 5001 FlagsVal |= Flag; 5002 } 5003 } else // No match for special register. 5004 return MatchOperand_NoMatch; 5005 5006 // Special register without flags is NOT equivalent to "fc" flags. 5007 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 5008 // two lines would enable gas compatibility at the expense of breaking 5009 // round-tripping. 5010 // 5011 // if (!FlagsVal) 5012 // FlagsVal = 0x9; 5013 5014 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5015 if (SpecReg == "spsr") 5016 FlagsVal |= 16; 5017 5018 Parser.Lex(); // Eat identifier token. 5019 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 5020 return MatchOperand_Success; 5021 } 5022 5023 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 5024 /// use in the MRS/MSR instructions added to support virtualization. 5025 OperandMatchResultTy 5026 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 5027 MCAsmParser &Parser = getParser(); 5028 SMLoc S = Parser.getTok().getLoc(); 5029 const AsmToken &Tok = Parser.getTok(); 5030 if (!Tok.is(AsmToken::Identifier)) 5031 return MatchOperand_NoMatch; 5032 StringRef RegName = Tok.getString(); 5033 5034 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 5035 if (!TheReg) 5036 return MatchOperand_NoMatch; 5037 unsigned Encoding = TheReg->Encoding; 5038 5039 Parser.Lex(); // Eat identifier token. 5040 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 5041 return MatchOperand_Success; 5042 } 5043 5044 OperandMatchResultTy 5045 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 5046 int High) { 5047 MCAsmParser &Parser = getParser(); 5048 const AsmToken &Tok = Parser.getTok(); 5049 if (Tok.isNot(AsmToken::Identifier)) { 5050 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5051 return MatchOperand_ParseFail; 5052 } 5053 StringRef ShiftName = Tok.getString(); 5054 std::string LowerOp = Op.lower(); 5055 std::string UpperOp = Op.upper(); 5056 if (ShiftName != LowerOp && ShiftName != UpperOp) { 5057 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5058 return MatchOperand_ParseFail; 5059 } 5060 Parser.Lex(); // Eat shift type token. 5061 5062 // There must be a '#' and a shift amount. 5063 if (Parser.getTok().isNot(AsmToken::Hash) && 5064 Parser.getTok().isNot(AsmToken::Dollar)) { 5065 Error(Parser.getTok().getLoc(), "'#' expected"); 5066 return MatchOperand_ParseFail; 5067 } 5068 Parser.Lex(); // Eat hash token. 5069 5070 const MCExpr *ShiftAmount; 5071 SMLoc Loc = Parser.getTok().getLoc(); 5072 SMLoc EndLoc; 5073 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5074 Error(Loc, "illegal expression"); 5075 return MatchOperand_ParseFail; 5076 } 5077 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5078 if (!CE) { 5079 Error(Loc, "constant expression expected"); 5080 return MatchOperand_ParseFail; 5081 } 5082 int Val = CE->getValue(); 5083 if (Val < Low || Val > High) { 5084 Error(Loc, "immediate value out of range"); 5085 return MatchOperand_ParseFail; 5086 } 5087 5088 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 5089 5090 return MatchOperand_Success; 5091 } 5092 5093 OperandMatchResultTy 5094 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 5095 MCAsmParser &Parser = getParser(); 5096 const AsmToken &Tok = Parser.getTok(); 5097 SMLoc S = Tok.getLoc(); 5098 if (Tok.isNot(AsmToken::Identifier)) { 5099 Error(S, "'be' or 'le' operand expected"); 5100 return MatchOperand_ParseFail; 5101 } 5102 int Val = StringSwitch<int>(Tok.getString().lower()) 5103 .Case("be", 1) 5104 .Case("le", 0) 5105 .Default(-1); 5106 Parser.Lex(); // Eat the token. 5107 5108 if (Val == -1) { 5109 Error(S, "'be' or 'le' operand expected"); 5110 return MatchOperand_ParseFail; 5111 } 5112 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 5113 getContext()), 5114 S, Tok.getEndLoc())); 5115 return MatchOperand_Success; 5116 } 5117 5118 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 5119 /// instructions. Legal values are: 5120 /// lsl #n 'n' in [0,31] 5121 /// asr #n 'n' in [1,32] 5122 /// n == 32 encoded as n == 0. 5123 OperandMatchResultTy 5124 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 5125 MCAsmParser &Parser = getParser(); 5126 const AsmToken &Tok = Parser.getTok(); 5127 SMLoc S = Tok.getLoc(); 5128 if (Tok.isNot(AsmToken::Identifier)) { 5129 Error(S, "shift operator 'asr' or 'lsl' expected"); 5130 return MatchOperand_ParseFail; 5131 } 5132 StringRef ShiftName = Tok.getString(); 5133 bool isASR; 5134 if (ShiftName == "lsl" || ShiftName == "LSL") 5135 isASR = false; 5136 else if (ShiftName == "asr" || ShiftName == "ASR") 5137 isASR = true; 5138 else { 5139 Error(S, "shift operator 'asr' or 'lsl' expected"); 5140 return MatchOperand_ParseFail; 5141 } 5142 Parser.Lex(); // Eat the operator. 5143 5144 // A '#' and a shift amount. 5145 if (Parser.getTok().isNot(AsmToken::Hash) && 5146 Parser.getTok().isNot(AsmToken::Dollar)) { 5147 Error(Parser.getTok().getLoc(), "'#' expected"); 5148 return MatchOperand_ParseFail; 5149 } 5150 Parser.Lex(); // Eat hash token. 5151 SMLoc ExLoc = Parser.getTok().getLoc(); 5152 5153 const MCExpr *ShiftAmount; 5154 SMLoc EndLoc; 5155 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5156 Error(ExLoc, "malformed shift expression"); 5157 return MatchOperand_ParseFail; 5158 } 5159 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5160 if (!CE) { 5161 Error(ExLoc, "shift amount must be an immediate"); 5162 return MatchOperand_ParseFail; 5163 } 5164 5165 int64_t Val = CE->getValue(); 5166 if (isASR) { 5167 // Shift amount must be in [1,32] 5168 if (Val < 1 || Val > 32) { 5169 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 5170 return MatchOperand_ParseFail; 5171 } 5172 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 5173 if (isThumb() && Val == 32) { 5174 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 5175 return MatchOperand_ParseFail; 5176 } 5177 if (Val == 32) Val = 0; 5178 } else { 5179 // Shift amount must be in [1,32] 5180 if (Val < 0 || Val > 31) { 5181 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 5182 return MatchOperand_ParseFail; 5183 } 5184 } 5185 5186 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 5187 5188 return MatchOperand_Success; 5189 } 5190 5191 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 5192 /// of instructions. Legal values are: 5193 /// ror #n 'n' in {0, 8, 16, 24} 5194 OperandMatchResultTy 5195 ARMAsmParser::parseRotImm(OperandVector &Operands) { 5196 MCAsmParser &Parser = getParser(); 5197 const AsmToken &Tok = Parser.getTok(); 5198 SMLoc S = Tok.getLoc(); 5199 if (Tok.isNot(AsmToken::Identifier)) 5200 return MatchOperand_NoMatch; 5201 StringRef ShiftName = Tok.getString(); 5202 if (ShiftName != "ror" && ShiftName != "ROR") 5203 return MatchOperand_NoMatch; 5204 Parser.Lex(); // Eat the operator. 5205 5206 // A '#' and a rotate amount. 5207 if (Parser.getTok().isNot(AsmToken::Hash) && 5208 Parser.getTok().isNot(AsmToken::Dollar)) { 5209 Error(Parser.getTok().getLoc(), "'#' expected"); 5210 return MatchOperand_ParseFail; 5211 } 5212 Parser.Lex(); // Eat hash token. 5213 SMLoc ExLoc = Parser.getTok().getLoc(); 5214 5215 const MCExpr *ShiftAmount; 5216 SMLoc EndLoc; 5217 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5218 Error(ExLoc, "malformed rotate expression"); 5219 return MatchOperand_ParseFail; 5220 } 5221 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5222 if (!CE) { 5223 Error(ExLoc, "rotate amount must be an immediate"); 5224 return MatchOperand_ParseFail; 5225 } 5226 5227 int64_t Val = CE->getValue(); 5228 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 5229 // normally, zero is represented in asm by omitting the rotate operand 5230 // entirely. 5231 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 5232 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 5233 return MatchOperand_ParseFail; 5234 } 5235 5236 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 5237 5238 return MatchOperand_Success; 5239 } 5240 5241 OperandMatchResultTy 5242 ARMAsmParser::parseModImm(OperandVector &Operands) { 5243 MCAsmParser &Parser = getParser(); 5244 MCAsmLexer &Lexer = getLexer(); 5245 int64_t Imm1, Imm2; 5246 5247 SMLoc S = Parser.getTok().getLoc(); 5248 5249 // 1) A mod_imm operand can appear in the place of a register name: 5250 // add r0, #mod_imm 5251 // add r0, r0, #mod_imm 5252 // to correctly handle the latter, we bail out as soon as we see an 5253 // identifier. 5254 // 5255 // 2) Similarly, we do not want to parse into complex operands: 5256 // mov r0, #mod_imm 5257 // mov r0, :lower16:(_foo) 5258 if (Parser.getTok().is(AsmToken::Identifier) || 5259 Parser.getTok().is(AsmToken::Colon)) 5260 return MatchOperand_NoMatch; 5261 5262 // Hash (dollar) is optional as per the ARMARM 5263 if (Parser.getTok().is(AsmToken::Hash) || 5264 Parser.getTok().is(AsmToken::Dollar)) { 5265 // Avoid parsing into complex operands (#:) 5266 if (Lexer.peekTok().is(AsmToken::Colon)) 5267 return MatchOperand_NoMatch; 5268 5269 // Eat the hash (dollar) 5270 Parser.Lex(); 5271 } 5272 5273 SMLoc Sx1, Ex1; 5274 Sx1 = Parser.getTok().getLoc(); 5275 const MCExpr *Imm1Exp; 5276 if (getParser().parseExpression(Imm1Exp, Ex1)) { 5277 Error(Sx1, "malformed expression"); 5278 return MatchOperand_ParseFail; 5279 } 5280 5281 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 5282 5283 if (CE) { 5284 // Immediate must fit within 32-bits 5285 Imm1 = CE->getValue(); 5286 int Enc = ARM_AM::getSOImmVal(Imm1); 5287 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 5288 // We have a match! 5289 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 5290 (Enc & 0xF00) >> 7, 5291 Sx1, Ex1)); 5292 return MatchOperand_Success; 5293 } 5294 5295 // We have parsed an immediate which is not for us, fallback to a plain 5296 // immediate. This can happen for instruction aliases. For an example, 5297 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 5298 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 5299 // instruction with a mod_imm operand. The alias is defined such that the 5300 // parser method is shared, that's why we have to do this here. 5301 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 5302 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5303 return MatchOperand_Success; 5304 } 5305 } else { 5306 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 5307 // MCFixup). Fallback to a plain immediate. 5308 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5309 return MatchOperand_Success; 5310 } 5311 5312 // From this point onward, we expect the input to be a (#bits, #rot) pair 5313 if (Parser.getTok().isNot(AsmToken::Comma)) { 5314 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 5315 return MatchOperand_ParseFail; 5316 } 5317 5318 if (Imm1 & ~0xFF) { 5319 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 5320 return MatchOperand_ParseFail; 5321 } 5322 5323 // Eat the comma 5324 Parser.Lex(); 5325 5326 // Repeat for #rot 5327 SMLoc Sx2, Ex2; 5328 Sx2 = Parser.getTok().getLoc(); 5329 5330 // Eat the optional hash (dollar) 5331 if (Parser.getTok().is(AsmToken::Hash) || 5332 Parser.getTok().is(AsmToken::Dollar)) 5333 Parser.Lex(); 5334 5335 const MCExpr *Imm2Exp; 5336 if (getParser().parseExpression(Imm2Exp, Ex2)) { 5337 Error(Sx2, "malformed expression"); 5338 return MatchOperand_ParseFail; 5339 } 5340 5341 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 5342 5343 if (CE) { 5344 Imm2 = CE->getValue(); 5345 if (!(Imm2 & ~0x1E)) { 5346 // We have a match! 5347 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 5348 return MatchOperand_Success; 5349 } 5350 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 5351 return MatchOperand_ParseFail; 5352 } else { 5353 Error(Sx2, "constant expression expected"); 5354 return MatchOperand_ParseFail; 5355 } 5356 } 5357 5358 OperandMatchResultTy 5359 ARMAsmParser::parseBitfield(OperandVector &Operands) { 5360 MCAsmParser &Parser = getParser(); 5361 SMLoc S = Parser.getTok().getLoc(); 5362 // The bitfield descriptor is really two operands, the LSB and the width. 5363 if (Parser.getTok().isNot(AsmToken::Hash) && 5364 Parser.getTok().isNot(AsmToken::Dollar)) { 5365 Error(Parser.getTok().getLoc(), "'#' expected"); 5366 return MatchOperand_ParseFail; 5367 } 5368 Parser.Lex(); // Eat hash token. 5369 5370 const MCExpr *LSBExpr; 5371 SMLoc E = Parser.getTok().getLoc(); 5372 if (getParser().parseExpression(LSBExpr)) { 5373 Error(E, "malformed immediate expression"); 5374 return MatchOperand_ParseFail; 5375 } 5376 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 5377 if (!CE) { 5378 Error(E, "'lsb' operand must be an immediate"); 5379 return MatchOperand_ParseFail; 5380 } 5381 5382 int64_t LSB = CE->getValue(); 5383 // The LSB must be in the range [0,31] 5384 if (LSB < 0 || LSB > 31) { 5385 Error(E, "'lsb' operand must be in the range [0,31]"); 5386 return MatchOperand_ParseFail; 5387 } 5388 E = Parser.getTok().getLoc(); 5389 5390 // Expect another immediate operand. 5391 if (Parser.getTok().isNot(AsmToken::Comma)) { 5392 Error(Parser.getTok().getLoc(), "too few operands"); 5393 return MatchOperand_ParseFail; 5394 } 5395 Parser.Lex(); // Eat hash token. 5396 if (Parser.getTok().isNot(AsmToken::Hash) && 5397 Parser.getTok().isNot(AsmToken::Dollar)) { 5398 Error(Parser.getTok().getLoc(), "'#' expected"); 5399 return MatchOperand_ParseFail; 5400 } 5401 Parser.Lex(); // Eat hash token. 5402 5403 const MCExpr *WidthExpr; 5404 SMLoc EndLoc; 5405 if (getParser().parseExpression(WidthExpr, EndLoc)) { 5406 Error(E, "malformed immediate expression"); 5407 return MatchOperand_ParseFail; 5408 } 5409 CE = dyn_cast<MCConstantExpr>(WidthExpr); 5410 if (!CE) { 5411 Error(E, "'width' operand must be an immediate"); 5412 return MatchOperand_ParseFail; 5413 } 5414 5415 int64_t Width = CE->getValue(); 5416 // The LSB must be in the range [1,32-lsb] 5417 if (Width < 1 || Width > 32 - LSB) { 5418 Error(E, "'width' operand must be in the range [1,32-lsb]"); 5419 return MatchOperand_ParseFail; 5420 } 5421 5422 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 5423 5424 return MatchOperand_Success; 5425 } 5426 5427 OperandMatchResultTy 5428 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 5429 // Check for a post-index addressing register operand. Specifically: 5430 // postidx_reg := '+' register {, shift} 5431 // | '-' register {, shift} 5432 // | register {, shift} 5433 5434 // This method must return MatchOperand_NoMatch without consuming any tokens 5435 // in the case where there is no match, as other alternatives take other 5436 // parse methods. 5437 MCAsmParser &Parser = getParser(); 5438 AsmToken Tok = Parser.getTok(); 5439 SMLoc S = Tok.getLoc(); 5440 bool haveEaten = false; 5441 bool isAdd = true; 5442 if (Tok.is(AsmToken::Plus)) { 5443 Parser.Lex(); // Eat the '+' token. 5444 haveEaten = true; 5445 } else if (Tok.is(AsmToken::Minus)) { 5446 Parser.Lex(); // Eat the '-' token. 5447 isAdd = false; 5448 haveEaten = true; 5449 } 5450 5451 SMLoc E = Parser.getTok().getEndLoc(); 5452 int Reg = tryParseRegister(); 5453 if (Reg == -1) { 5454 if (!haveEaten) 5455 return MatchOperand_NoMatch; 5456 Error(Parser.getTok().getLoc(), "register expected"); 5457 return MatchOperand_ParseFail; 5458 } 5459 5460 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 5461 unsigned ShiftImm = 0; 5462 if (Parser.getTok().is(AsmToken::Comma)) { 5463 Parser.Lex(); // Eat the ','. 5464 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 5465 return MatchOperand_ParseFail; 5466 5467 // FIXME: Only approximates end...may include intervening whitespace. 5468 E = Parser.getTok().getLoc(); 5469 } 5470 5471 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 5472 ShiftImm, S, E)); 5473 5474 return MatchOperand_Success; 5475 } 5476 5477 OperandMatchResultTy 5478 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 5479 // Check for a post-index addressing register operand. Specifically: 5480 // am3offset := '+' register 5481 // | '-' register 5482 // | register 5483 // | # imm 5484 // | # + imm 5485 // | # - imm 5486 5487 // This method must return MatchOperand_NoMatch without consuming any tokens 5488 // in the case where there is no match, as other alternatives take other 5489 // parse methods. 5490 MCAsmParser &Parser = getParser(); 5491 AsmToken Tok = Parser.getTok(); 5492 SMLoc S = Tok.getLoc(); 5493 5494 // Do immediates first, as we always parse those if we have a '#'. 5495 if (Parser.getTok().is(AsmToken::Hash) || 5496 Parser.getTok().is(AsmToken::Dollar)) { 5497 Parser.Lex(); // Eat '#' or '$'. 5498 // Explicitly look for a '-', as we need to encode negative zero 5499 // differently. 5500 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5501 const MCExpr *Offset; 5502 SMLoc E; 5503 if (getParser().parseExpression(Offset, E)) 5504 return MatchOperand_ParseFail; 5505 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5506 if (!CE) { 5507 Error(S, "constant expression expected"); 5508 return MatchOperand_ParseFail; 5509 } 5510 // Negative zero is encoded as the flag value 5511 // std::numeric_limits<int32_t>::min(). 5512 int32_t Val = CE->getValue(); 5513 if (isNegative && Val == 0) 5514 Val = std::numeric_limits<int32_t>::min(); 5515 5516 Operands.push_back( 5517 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 5518 5519 return MatchOperand_Success; 5520 } 5521 5522 bool haveEaten = false; 5523 bool isAdd = true; 5524 if (Tok.is(AsmToken::Plus)) { 5525 Parser.Lex(); // Eat the '+' token. 5526 haveEaten = true; 5527 } else if (Tok.is(AsmToken::Minus)) { 5528 Parser.Lex(); // Eat the '-' token. 5529 isAdd = false; 5530 haveEaten = true; 5531 } 5532 5533 Tok = Parser.getTok(); 5534 int Reg = tryParseRegister(); 5535 if (Reg == -1) { 5536 if (!haveEaten) 5537 return MatchOperand_NoMatch; 5538 Error(Tok.getLoc(), "register expected"); 5539 return MatchOperand_ParseFail; 5540 } 5541 5542 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 5543 0, S, Tok.getEndLoc())); 5544 5545 return MatchOperand_Success; 5546 } 5547 5548 /// Convert parsed operands to MCInst. Needed here because this instruction 5549 /// only has two register operands, but multiplication is commutative so 5550 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 5551 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 5552 const OperandVector &Operands) { 5553 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 5554 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 5555 // If we have a three-operand form, make sure to set Rn to be the operand 5556 // that isn't the same as Rd. 5557 unsigned RegOp = 4; 5558 if (Operands.size() == 6 && 5559 ((ARMOperand &)*Operands[4]).getReg() == 5560 ((ARMOperand &)*Operands[3]).getReg()) 5561 RegOp = 5; 5562 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5563 Inst.addOperand(Inst.getOperand(0)); 5564 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5565 } 5566 5567 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5568 const OperandVector &Operands) { 5569 int CondOp = -1, ImmOp = -1; 5570 switch(Inst.getOpcode()) { 5571 case ARM::tB: 5572 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5573 5574 case ARM::t2B: 5575 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5576 5577 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5578 } 5579 // first decide whether or not the branch should be conditional 5580 // by looking at it's location relative to an IT block 5581 if(inITBlock()) { 5582 // inside an IT block we cannot have any conditional branches. any 5583 // such instructions needs to be converted to unconditional form 5584 switch(Inst.getOpcode()) { 5585 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5586 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5587 } 5588 } else { 5589 // outside IT blocks we can only have unconditional branches with AL 5590 // condition code or conditional branches with non-AL condition code 5591 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5592 switch(Inst.getOpcode()) { 5593 case ARM::tB: 5594 case ARM::tBcc: 5595 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5596 break; 5597 case ARM::t2B: 5598 case ARM::t2Bcc: 5599 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5600 break; 5601 } 5602 } 5603 5604 // now decide on encoding size based on branch target range 5605 switch(Inst.getOpcode()) { 5606 // classify tB as either t2B or t1B based on range of immediate operand 5607 case ARM::tB: { 5608 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5609 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5610 Inst.setOpcode(ARM::t2B); 5611 break; 5612 } 5613 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5614 case ARM::tBcc: { 5615 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5616 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5617 Inst.setOpcode(ARM::t2Bcc); 5618 break; 5619 } 5620 } 5621 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5622 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5623 } 5624 5625 void ARMAsmParser::cvtMVEVMOVQtoDReg( 5626 MCInst &Inst, const OperandVector &Operands) { 5627 5628 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 5629 assert(Operands.size() == 8); 5630 5631 ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt 5632 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2 5633 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd 5634 ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx 5635 // skip second copy of Qd in Operands[6] 5636 ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2 5637 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code 5638 } 5639 5640 /// Parse an ARM memory expression, return false if successful else return true 5641 /// or an error. The first token must be a '[' when called. 5642 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5643 MCAsmParser &Parser = getParser(); 5644 SMLoc S, E; 5645 if (Parser.getTok().isNot(AsmToken::LBrac)) 5646 return TokError("Token is not a Left Bracket"); 5647 S = Parser.getTok().getLoc(); 5648 Parser.Lex(); // Eat left bracket token. 5649 5650 const AsmToken &BaseRegTok = Parser.getTok(); 5651 int BaseRegNum = tryParseRegister(); 5652 if (BaseRegNum == -1) 5653 return Error(BaseRegTok.getLoc(), "register expected"); 5654 5655 // The next token must either be a comma, a colon or a closing bracket. 5656 const AsmToken &Tok = Parser.getTok(); 5657 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5658 !Tok.is(AsmToken::RBrac)) 5659 return Error(Tok.getLoc(), "malformed memory operand"); 5660 5661 if (Tok.is(AsmToken::RBrac)) { 5662 E = Tok.getEndLoc(); 5663 Parser.Lex(); // Eat right bracket token. 5664 5665 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5666 ARM_AM::no_shift, 0, 0, false, 5667 S, E)); 5668 5669 // If there's a pre-indexing writeback marker, '!', just add it as a token 5670 // operand. It's rather odd, but syntactically valid. 5671 if (Parser.getTok().is(AsmToken::Exclaim)) { 5672 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5673 Parser.Lex(); // Eat the '!'. 5674 } 5675 5676 return false; 5677 } 5678 5679 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5680 "Lost colon or comma in memory operand?!"); 5681 if (Tok.is(AsmToken::Comma)) { 5682 Parser.Lex(); // Eat the comma. 5683 } 5684 5685 // If we have a ':', it's an alignment specifier. 5686 if (Parser.getTok().is(AsmToken::Colon)) { 5687 Parser.Lex(); // Eat the ':'. 5688 E = Parser.getTok().getLoc(); 5689 SMLoc AlignmentLoc = Tok.getLoc(); 5690 5691 const MCExpr *Expr; 5692 if (getParser().parseExpression(Expr)) 5693 return true; 5694 5695 // The expression has to be a constant. Memory references with relocations 5696 // don't come through here, as they use the <label> forms of the relevant 5697 // instructions. 5698 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5699 if (!CE) 5700 return Error (E, "constant expression expected"); 5701 5702 unsigned Align = 0; 5703 switch (CE->getValue()) { 5704 default: 5705 return Error(E, 5706 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5707 case 16: Align = 2; break; 5708 case 32: Align = 4; break; 5709 case 64: Align = 8; break; 5710 case 128: Align = 16; break; 5711 case 256: Align = 32; break; 5712 } 5713 5714 // Now we should have the closing ']' 5715 if (Parser.getTok().isNot(AsmToken::RBrac)) 5716 return Error(Parser.getTok().getLoc(), "']' expected"); 5717 E = Parser.getTok().getEndLoc(); 5718 Parser.Lex(); // Eat right bracket token. 5719 5720 // Don't worry about range checking the value here. That's handled by 5721 // the is*() predicates. 5722 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5723 ARM_AM::no_shift, 0, Align, 5724 false, S, E, AlignmentLoc)); 5725 5726 // If there's a pre-indexing writeback marker, '!', just add it as a token 5727 // operand. 5728 if (Parser.getTok().is(AsmToken::Exclaim)) { 5729 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5730 Parser.Lex(); // Eat the '!'. 5731 } 5732 5733 return false; 5734 } 5735 5736 // If we have a '#', it's an immediate offset, else assume it's a register 5737 // offset. Be friendly and also accept a plain integer (without a leading 5738 // hash) for gas compatibility. 5739 if (Parser.getTok().is(AsmToken::Hash) || 5740 Parser.getTok().is(AsmToken::Dollar) || 5741 Parser.getTok().is(AsmToken::Integer)) { 5742 if (Parser.getTok().isNot(AsmToken::Integer)) 5743 Parser.Lex(); // Eat '#' or '$'. 5744 E = Parser.getTok().getLoc(); 5745 5746 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5747 const MCExpr *Offset; 5748 if (getParser().parseExpression(Offset)) 5749 return true; 5750 5751 // The expression has to be a constant. Memory references with relocations 5752 // don't come through here, as they use the <label> forms of the relevant 5753 // instructions. 5754 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5755 if (!CE) 5756 return Error (E, "constant expression expected"); 5757 5758 // If the constant was #-0, represent it as 5759 // std::numeric_limits<int32_t>::min(). 5760 int32_t Val = CE->getValue(); 5761 if (isNegative && Val == 0) 5762 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5763 getContext()); 5764 5765 // Now we should have the closing ']' 5766 if (Parser.getTok().isNot(AsmToken::RBrac)) 5767 return Error(Parser.getTok().getLoc(), "']' expected"); 5768 E = Parser.getTok().getEndLoc(); 5769 Parser.Lex(); // Eat right bracket token. 5770 5771 // Don't worry about range checking the value here. That's handled by 5772 // the is*() predicates. 5773 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5774 ARM_AM::no_shift, 0, 0, 5775 false, S, E)); 5776 5777 // If there's a pre-indexing writeback marker, '!', just add it as a token 5778 // operand. 5779 if (Parser.getTok().is(AsmToken::Exclaim)) { 5780 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5781 Parser.Lex(); // Eat the '!'. 5782 } 5783 5784 return false; 5785 } 5786 5787 // The register offset is optionally preceded by a '+' or '-' 5788 bool isNegative = false; 5789 if (Parser.getTok().is(AsmToken::Minus)) { 5790 isNegative = true; 5791 Parser.Lex(); // Eat the '-'. 5792 } else if (Parser.getTok().is(AsmToken::Plus)) { 5793 // Nothing to do. 5794 Parser.Lex(); // Eat the '+'. 5795 } 5796 5797 E = Parser.getTok().getLoc(); 5798 int OffsetRegNum = tryParseRegister(); 5799 if (OffsetRegNum == -1) 5800 return Error(E, "register expected"); 5801 5802 // If there's a shift operator, handle it. 5803 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5804 unsigned ShiftImm = 0; 5805 if (Parser.getTok().is(AsmToken::Comma)) { 5806 Parser.Lex(); // Eat the ','. 5807 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5808 return true; 5809 } 5810 5811 // Now we should have the closing ']' 5812 if (Parser.getTok().isNot(AsmToken::RBrac)) 5813 return Error(Parser.getTok().getLoc(), "']' expected"); 5814 E = Parser.getTok().getEndLoc(); 5815 Parser.Lex(); // Eat right bracket token. 5816 5817 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5818 ShiftType, ShiftImm, 0, isNegative, 5819 S, E)); 5820 5821 // If there's a pre-indexing writeback marker, '!', just add it as a token 5822 // operand. 5823 if (Parser.getTok().is(AsmToken::Exclaim)) { 5824 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5825 Parser.Lex(); // Eat the '!'. 5826 } 5827 5828 return false; 5829 } 5830 5831 /// parseMemRegOffsetShift - one of these two: 5832 /// ( lsl | lsr | asr | ror ) , # shift_amount 5833 /// rrx 5834 /// return true if it parses a shift otherwise it returns false. 5835 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5836 unsigned &Amount) { 5837 MCAsmParser &Parser = getParser(); 5838 SMLoc Loc = Parser.getTok().getLoc(); 5839 const AsmToken &Tok = Parser.getTok(); 5840 if (Tok.isNot(AsmToken::Identifier)) 5841 return Error(Loc, "illegal shift operator"); 5842 StringRef ShiftName = Tok.getString(); 5843 if (ShiftName == "lsl" || ShiftName == "LSL" || 5844 ShiftName == "asl" || ShiftName == "ASL") 5845 St = ARM_AM::lsl; 5846 else if (ShiftName == "lsr" || ShiftName == "LSR") 5847 St = ARM_AM::lsr; 5848 else if (ShiftName == "asr" || ShiftName == "ASR") 5849 St = ARM_AM::asr; 5850 else if (ShiftName == "ror" || ShiftName == "ROR") 5851 St = ARM_AM::ror; 5852 else if (ShiftName == "rrx" || ShiftName == "RRX") 5853 St = ARM_AM::rrx; 5854 else if (ShiftName == "uxtw" || ShiftName == "UXTW") 5855 St = ARM_AM::uxtw; 5856 else 5857 return Error(Loc, "illegal shift operator"); 5858 Parser.Lex(); // Eat shift type token. 5859 5860 // rrx stands alone. 5861 Amount = 0; 5862 if (St != ARM_AM::rrx) { 5863 Loc = Parser.getTok().getLoc(); 5864 // A '#' and a shift amount. 5865 const AsmToken &HashTok = Parser.getTok(); 5866 if (HashTok.isNot(AsmToken::Hash) && 5867 HashTok.isNot(AsmToken::Dollar)) 5868 return Error(HashTok.getLoc(), "'#' expected"); 5869 Parser.Lex(); // Eat hash token. 5870 5871 const MCExpr *Expr; 5872 if (getParser().parseExpression(Expr)) 5873 return true; 5874 // Range check the immediate. 5875 // lsl, ror: 0 <= imm <= 31 5876 // lsr, asr: 0 <= imm <= 32 5877 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5878 if (!CE) 5879 return Error(Loc, "shift amount must be an immediate"); 5880 int64_t Imm = CE->getValue(); 5881 if (Imm < 0 || 5882 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5883 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5884 return Error(Loc, "immediate shift value out of range"); 5885 // If <ShiftTy> #0, turn it into a no_shift. 5886 if (Imm == 0) 5887 St = ARM_AM::lsl; 5888 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5889 if (Imm == 32) 5890 Imm = 0; 5891 Amount = Imm; 5892 } 5893 5894 return false; 5895 } 5896 5897 /// parseFPImm - A floating point immediate expression operand. 5898 OperandMatchResultTy 5899 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5900 MCAsmParser &Parser = getParser(); 5901 // Anything that can accept a floating point constant as an operand 5902 // needs to go through here, as the regular parseExpression is 5903 // integer only. 5904 // 5905 // This routine still creates a generic Immediate operand, containing 5906 // a bitcast of the 64-bit floating point value. The various operands 5907 // that accept floats can check whether the value is valid for them 5908 // via the standard is*() predicates. 5909 5910 SMLoc S = Parser.getTok().getLoc(); 5911 5912 if (Parser.getTok().isNot(AsmToken::Hash) && 5913 Parser.getTok().isNot(AsmToken::Dollar)) 5914 return MatchOperand_NoMatch; 5915 5916 // Disambiguate the VMOV forms that can accept an FP immediate. 5917 // vmov.f32 <sreg>, #imm 5918 // vmov.f64 <dreg>, #imm 5919 // vmov.f32 <dreg>, #imm @ vector f32x2 5920 // vmov.f32 <qreg>, #imm @ vector f32x4 5921 // 5922 // There are also the NEON VMOV instructions which expect an 5923 // integer constant. Make sure we don't try to parse an FPImm 5924 // for these: 5925 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5926 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5927 bool isVmovf = TyOp.isToken() && 5928 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5929 TyOp.getToken() == ".f16"); 5930 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5931 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5932 Mnemonic.getToken() == "fconsts"); 5933 if (!(isVmovf || isFconst)) 5934 return MatchOperand_NoMatch; 5935 5936 Parser.Lex(); // Eat '#' or '$'. 5937 5938 // Handle negation, as that still comes through as a separate token. 5939 bool isNegative = false; 5940 if (Parser.getTok().is(AsmToken::Minus)) { 5941 isNegative = true; 5942 Parser.Lex(); 5943 } 5944 const AsmToken &Tok = Parser.getTok(); 5945 SMLoc Loc = Tok.getLoc(); 5946 if (Tok.is(AsmToken::Real) && isVmovf) { 5947 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5948 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5949 // If we had a '-' in front, toggle the sign bit. 5950 IntVal ^= (uint64_t)isNegative << 31; 5951 Parser.Lex(); // Eat the token. 5952 Operands.push_back(ARMOperand::CreateImm( 5953 MCConstantExpr::create(IntVal, getContext()), 5954 S, Parser.getTok().getLoc())); 5955 return MatchOperand_Success; 5956 } 5957 // Also handle plain integers. Instructions which allow floating point 5958 // immediates also allow a raw encoded 8-bit value. 5959 if (Tok.is(AsmToken::Integer) && isFconst) { 5960 int64_t Val = Tok.getIntVal(); 5961 Parser.Lex(); // Eat the token. 5962 if (Val > 255 || Val < 0) { 5963 Error(Loc, "encoded floating point value out of range"); 5964 return MatchOperand_ParseFail; 5965 } 5966 float RealVal = ARM_AM::getFPImmFloat(Val); 5967 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5968 5969 Operands.push_back(ARMOperand::CreateImm( 5970 MCConstantExpr::create(Val, getContext()), S, 5971 Parser.getTok().getLoc())); 5972 return MatchOperand_Success; 5973 } 5974 5975 Error(Loc, "invalid floating point immediate"); 5976 return MatchOperand_ParseFail; 5977 } 5978 5979 /// Parse a arm instruction operand. For now this parses the operand regardless 5980 /// of the mnemonic. 5981 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5982 MCAsmParser &Parser = getParser(); 5983 SMLoc S, E; 5984 5985 // Check if the current operand has a custom associated parser, if so, try to 5986 // custom parse the operand, or fallback to the general approach. 5987 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5988 if (ResTy == MatchOperand_Success) 5989 return false; 5990 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5991 // there was a match, but an error occurred, in which case, just return that 5992 // the operand parsing failed. 5993 if (ResTy == MatchOperand_ParseFail) 5994 return true; 5995 5996 switch (getLexer().getKind()) { 5997 default: 5998 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5999 return true; 6000 case AsmToken::Identifier: { 6001 // If we've seen a branch mnemonic, the next operand must be a label. This 6002 // is true even if the label is a register name. So "br r1" means branch to 6003 // label "r1". 6004 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 6005 if (!ExpectLabel) { 6006 if (!tryParseRegisterWithWriteBack(Operands)) 6007 return false; 6008 int Res = tryParseShiftRegister(Operands); 6009 if (Res == 0) // success 6010 return false; 6011 else if (Res == -1) // irrecoverable error 6012 return true; 6013 // If this is VMRS, check for the apsr_nzcv operand. 6014 if (Mnemonic == "vmrs" && 6015 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 6016 S = Parser.getTok().getLoc(); 6017 Parser.Lex(); 6018 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 6019 return false; 6020 } 6021 } 6022 6023 // Fall though for the Identifier case that is not a register or a 6024 // special name. 6025 LLVM_FALLTHROUGH; 6026 } 6027 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 6028 case AsmToken::Integer: // things like 1f and 2b as a branch targets 6029 case AsmToken::String: // quoted label names. 6030 case AsmToken::Dot: { // . as a branch target 6031 // This was not a register so parse other operands that start with an 6032 // identifier (like labels) as expressions and create them as immediates. 6033 const MCExpr *IdVal; 6034 S = Parser.getTok().getLoc(); 6035 if (getParser().parseExpression(IdVal)) 6036 return true; 6037 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6038 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 6039 return false; 6040 } 6041 case AsmToken::LBrac: 6042 return parseMemory(Operands); 6043 case AsmToken::LCurly: 6044 return parseRegisterList(Operands, !Mnemonic.startswith("clr")); 6045 case AsmToken::Dollar: 6046 case AsmToken::Hash: 6047 // #42 -> immediate. 6048 S = Parser.getTok().getLoc(); 6049 Parser.Lex(); 6050 6051 if (Parser.getTok().isNot(AsmToken::Colon)) { 6052 bool isNegative = Parser.getTok().is(AsmToken::Minus); 6053 const MCExpr *ImmVal; 6054 if (getParser().parseExpression(ImmVal)) 6055 return true; 6056 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 6057 if (CE) { 6058 int32_t Val = CE->getValue(); 6059 if (isNegative && Val == 0) 6060 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 6061 getContext()); 6062 } 6063 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6064 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 6065 6066 // There can be a trailing '!' on operands that we want as a separate 6067 // '!' Token operand. Handle that here. For example, the compatibility 6068 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 6069 if (Parser.getTok().is(AsmToken::Exclaim)) { 6070 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 6071 Parser.getTok().getLoc())); 6072 Parser.Lex(); // Eat exclaim token 6073 } 6074 return false; 6075 } 6076 // w/ a ':' after the '#', it's just like a plain ':'. 6077 LLVM_FALLTHROUGH; 6078 6079 case AsmToken::Colon: { 6080 S = Parser.getTok().getLoc(); 6081 // ":lower16:" and ":upper16:" expression prefixes 6082 // FIXME: Check it's an expression prefix, 6083 // e.g. (FOO - :lower16:BAR) isn't legal. 6084 ARMMCExpr::VariantKind RefKind; 6085 if (parsePrefix(RefKind)) 6086 return true; 6087 6088 const MCExpr *SubExprVal; 6089 if (getParser().parseExpression(SubExprVal)) 6090 return true; 6091 6092 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 6093 getContext()); 6094 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6095 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 6096 return false; 6097 } 6098 case AsmToken::Equal: { 6099 S = Parser.getTok().getLoc(); 6100 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 6101 return Error(S, "unexpected token in operand"); 6102 Parser.Lex(); // Eat '=' 6103 const MCExpr *SubExprVal; 6104 if (getParser().parseExpression(SubExprVal)) 6105 return true; 6106 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6107 6108 // execute-only: we assume that assembly programmers know what they are 6109 // doing and allow literal pool creation here 6110 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 6111 return false; 6112 } 6113 } 6114 } 6115 6116 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 6117 // :lower16: and :upper16:. 6118 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 6119 MCAsmParser &Parser = getParser(); 6120 RefKind = ARMMCExpr::VK_ARM_None; 6121 6122 // consume an optional '#' (GNU compatibility) 6123 if (getLexer().is(AsmToken::Hash)) 6124 Parser.Lex(); 6125 6126 // :lower16: and :upper16: modifiers 6127 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 6128 Parser.Lex(); // Eat ':' 6129 6130 if (getLexer().isNot(AsmToken::Identifier)) { 6131 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 6132 return true; 6133 } 6134 6135 enum { 6136 COFF = (1 << MCObjectFileInfo::IsCOFF), 6137 ELF = (1 << MCObjectFileInfo::IsELF), 6138 MACHO = (1 << MCObjectFileInfo::IsMachO), 6139 WASM = (1 << MCObjectFileInfo::IsWasm), 6140 }; 6141 static const struct PrefixEntry { 6142 const char *Spelling; 6143 ARMMCExpr::VariantKind VariantKind; 6144 uint8_t SupportedFormats; 6145 } PrefixEntries[] = { 6146 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 6147 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 6148 }; 6149 6150 StringRef IDVal = Parser.getTok().getIdentifier(); 6151 6152 const auto &Prefix = 6153 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 6154 [&IDVal](const PrefixEntry &PE) { 6155 return PE.Spelling == IDVal; 6156 }); 6157 if (Prefix == std::end(PrefixEntries)) { 6158 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 6159 return true; 6160 } 6161 6162 uint8_t CurrentFormat; 6163 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 6164 case MCObjectFileInfo::IsMachO: 6165 CurrentFormat = MACHO; 6166 break; 6167 case MCObjectFileInfo::IsELF: 6168 CurrentFormat = ELF; 6169 break; 6170 case MCObjectFileInfo::IsCOFF: 6171 CurrentFormat = COFF; 6172 break; 6173 case MCObjectFileInfo::IsWasm: 6174 CurrentFormat = WASM; 6175 break; 6176 case MCObjectFileInfo::IsXCOFF: 6177 llvm_unreachable("unexpected object format"); 6178 break; 6179 } 6180 6181 if (~Prefix->SupportedFormats & CurrentFormat) { 6182 Error(Parser.getTok().getLoc(), 6183 "cannot represent relocation in the current file format"); 6184 return true; 6185 } 6186 6187 RefKind = Prefix->VariantKind; 6188 Parser.Lex(); 6189 6190 if (getLexer().isNot(AsmToken::Colon)) { 6191 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 6192 return true; 6193 } 6194 Parser.Lex(); // Eat the last ':' 6195 6196 return false; 6197 } 6198 6199 /// Given a mnemonic, split out possible predication code and carry 6200 /// setting letters to form a canonical mnemonic and flags. 6201 // 6202 // FIXME: Would be nice to autogen this. 6203 // FIXME: This is a bit of a maze of special cases. 6204 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 6205 StringRef ExtraToken, 6206 unsigned &PredicationCode, 6207 unsigned &VPTPredicationCode, 6208 bool &CarrySetting, 6209 unsigned &ProcessorIMod, 6210 StringRef &ITMask) { 6211 PredicationCode = ARMCC::AL; 6212 VPTPredicationCode = ARMVCC::None; 6213 CarrySetting = false; 6214 ProcessorIMod = 0; 6215 6216 // Ignore some mnemonics we know aren't predicated forms. 6217 // 6218 // FIXME: Would be nice to autogen this. 6219 if ((Mnemonic == "movs" && isThumb()) || 6220 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 6221 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 6222 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 6223 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 6224 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 6225 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 6226 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 6227 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 6228 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 6229 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 6230 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 6231 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 6232 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 6233 Mnemonic == "bxns" || Mnemonic == "blxns" || 6234 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6235 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6236 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6237 Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" || 6238 Mnemonic == "csel" || Mnemonic == "csinc" || 6239 Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" || 6240 Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" || 6241 Mnemonic == "csetm") 6242 return Mnemonic; 6243 6244 // First, split out any predication code. Ignore mnemonics we know aren't 6245 // predicated but do have a carry-set and so weren't caught above. 6246 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 6247 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 6248 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 6249 Mnemonic != "sbcs" && Mnemonic != "rscs" && 6250 !(hasMVE() && 6251 (Mnemonic == "vmine" || 6252 Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" || 6253 Mnemonic == "vrshle" || Mnemonic == "vrshlt" || 6254 Mnemonic == "vmvne" || Mnemonic == "vorne" || 6255 Mnemonic == "vnege" || Mnemonic == "vnegt" || 6256 Mnemonic == "vmule" || Mnemonic == "vmult" || 6257 Mnemonic == "vrintne" || 6258 Mnemonic == "vcmult" || Mnemonic == "vcmule" || 6259 Mnemonic == "vpsele" || Mnemonic == "vpselt" || 6260 Mnemonic.startswith("vq")))) { 6261 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 6262 if (CC != ~0U) { 6263 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 6264 PredicationCode = CC; 6265 } 6266 } 6267 6268 // Next, determine if we have a carry setting bit. We explicitly ignore all 6269 // the instructions we know end in 's'. 6270 if (Mnemonic.endswith("s") && 6271 !(Mnemonic == "cps" || Mnemonic == "mls" || 6272 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 6273 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 6274 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 6275 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 6276 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 6277 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 6278 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 6279 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 6280 Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" || 6281 Mnemonic == "vmlas" || 6282 (Mnemonic == "movs" && isThumb()))) { 6283 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 6284 CarrySetting = true; 6285 } 6286 6287 // The "cps" instruction can have a interrupt mode operand which is glued into 6288 // the mnemonic. Check if this is the case, split it and parse the imod op 6289 if (Mnemonic.startswith("cps")) { 6290 // Split out any imod code. 6291 unsigned IMod = 6292 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 6293 .Case("ie", ARM_PROC::IE) 6294 .Case("id", ARM_PROC::ID) 6295 .Default(~0U); 6296 if (IMod != ~0U) { 6297 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 6298 ProcessorIMod = IMod; 6299 } 6300 } 6301 6302 if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && 6303 Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && 6304 Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && 6305 Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && 6306 Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && 6307 Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" && 6308 Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") { 6309 unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1)); 6310 if (CC != ~0U) { 6311 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1); 6312 VPTPredicationCode = CC; 6313 } 6314 return Mnemonic; 6315 } 6316 6317 // The "it" instruction has the condition mask on the end of the mnemonic. 6318 if (Mnemonic.startswith("it")) { 6319 ITMask = Mnemonic.slice(2, Mnemonic.size()); 6320 Mnemonic = Mnemonic.slice(0, 2); 6321 } 6322 6323 if (Mnemonic.startswith("vpst")) { 6324 ITMask = Mnemonic.slice(4, Mnemonic.size()); 6325 Mnemonic = Mnemonic.slice(0, 4); 6326 } 6327 else if (Mnemonic.startswith("vpt")) { 6328 ITMask = Mnemonic.slice(3, Mnemonic.size()); 6329 Mnemonic = Mnemonic.slice(0, 3); 6330 } 6331 6332 return Mnemonic; 6333 } 6334 6335 /// Given a canonical mnemonic, determine if the instruction ever allows 6336 /// inclusion of carry set or predication code operands. 6337 // 6338 // FIXME: It would be nice to autogen this. 6339 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, 6340 StringRef ExtraToken, 6341 StringRef FullInst, 6342 bool &CanAcceptCarrySet, 6343 bool &CanAcceptPredicationCode, 6344 bool &CanAcceptVPTPredicationCode) { 6345 CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); 6346 6347 CanAcceptCarrySet = 6348 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6349 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 6350 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 6351 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 6352 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 6353 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 6354 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 6355 (!isThumb() && 6356 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 6357 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 6358 6359 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 6360 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 6361 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 6362 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 6363 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 6364 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 6365 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 6366 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 6367 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 6368 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 6369 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 6370 Mnemonic == "vmovx" || Mnemonic == "vins" || 6371 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6372 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6373 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6374 Mnemonic == "sb" || Mnemonic == "ssbb" || 6375 Mnemonic == "pssbb" || 6376 Mnemonic == "bfcsel" || Mnemonic == "wls" || 6377 Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" || 6378 Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || 6379 Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || 6380 Mnemonic == "cset" || Mnemonic == "csetm" || 6381 Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") || 6382 (hasMVE() && 6383 (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") || 6384 Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") || 6385 Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") || 6386 Mnemonic.startswith("letp")))) { 6387 // These mnemonics are never predicable 6388 CanAcceptPredicationCode = false; 6389 } else if (!isThumb()) { 6390 // Some instructions are only predicable in Thumb mode 6391 CanAcceptPredicationCode = 6392 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 6393 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 6394 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 6395 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 6396 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 6397 Mnemonic != "stc2" && Mnemonic != "stc2l" && 6398 Mnemonic != "tsb" && 6399 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 6400 } else if (isThumbOne()) { 6401 if (hasV6MOps()) 6402 CanAcceptPredicationCode = Mnemonic != "movs"; 6403 else 6404 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 6405 } else 6406 CanAcceptPredicationCode = true; 6407 } 6408 6409 // Some Thumb instructions have two operand forms that are not 6410 // available as three operand, convert to two operand form if possible. 6411 // 6412 // FIXME: We would really like to be able to tablegen'erate this. 6413 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 6414 bool CarrySetting, 6415 OperandVector &Operands) { 6416 if (Operands.size() != 6) 6417 return; 6418 6419 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6420 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 6421 if (!Op3.isReg() || !Op4.isReg()) 6422 return; 6423 6424 auto Op3Reg = Op3.getReg(); 6425 auto Op4Reg = Op4.getReg(); 6426 6427 // For most Thumb2 cases we just generate the 3 operand form and reduce 6428 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 6429 // won't accept SP or PC so we do the transformation here taking care 6430 // with immediate range in the 'add sp, sp #imm' case. 6431 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 6432 if (isThumbTwo()) { 6433 if (Mnemonic != "add") 6434 return; 6435 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 6436 (Op5.isReg() && Op5.getReg() == ARM::PC); 6437 if (!TryTransform) { 6438 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 6439 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 6440 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 6441 Op5.isImm() && !Op5.isImm0_508s4()); 6442 } 6443 if (!TryTransform) 6444 return; 6445 } else if (!isThumbOne()) 6446 return; 6447 6448 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 6449 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6450 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 6451 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 6452 return; 6453 6454 // If first 2 operands of a 3 operand instruction are the same 6455 // then transform to 2 operand version of the same instruction 6456 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 6457 bool Transform = Op3Reg == Op4Reg; 6458 6459 // For communtative operations, we might be able to transform if we swap 6460 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 6461 // as tADDrsp. 6462 const ARMOperand *LastOp = &Op5; 6463 bool Swap = false; 6464 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 6465 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 6466 Mnemonic == "and" || Mnemonic == "eor" || 6467 Mnemonic == "adc" || Mnemonic == "orr")) { 6468 Swap = true; 6469 LastOp = &Op4; 6470 Transform = true; 6471 } 6472 6473 // If both registers are the same then remove one of them from 6474 // the operand list, with certain exceptions. 6475 if (Transform) { 6476 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 6477 // 2 operand forms don't exist. 6478 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 6479 LastOp->isReg()) 6480 Transform = false; 6481 6482 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 6483 // 3-bits because the ARMARM says not to. 6484 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 6485 Transform = false; 6486 } 6487 6488 if (Transform) { 6489 if (Swap) 6490 std::swap(Op4, Op5); 6491 Operands.erase(Operands.begin() + 3); 6492 } 6493 } 6494 6495 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 6496 OperandVector &Operands) { 6497 // FIXME: This is all horribly hacky. We really need a better way to deal 6498 // with optional operands like this in the matcher table. 6499 6500 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 6501 // another does not. Specifically, the MOVW instruction does not. So we 6502 // special case it here and remove the defaulted (non-setting) cc_out 6503 // operand if that's the instruction we're trying to match. 6504 // 6505 // We do this as post-processing of the explicit operands rather than just 6506 // conditionally adding the cc_out in the first place because we need 6507 // to check the type of the parsed immediate operand. 6508 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 6509 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 6510 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 6511 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6512 return true; 6513 6514 // Register-register 'add' for thumb does not have a cc_out operand 6515 // when there are only two register operands. 6516 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 6517 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6518 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6519 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6520 return true; 6521 // Register-register 'add' for thumb does not have a cc_out operand 6522 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 6523 // have to check the immediate range here since Thumb2 has a variant 6524 // that can handle a different range and has a cc_out operand. 6525 if (((isThumb() && Mnemonic == "add") || 6526 (isThumbTwo() && Mnemonic == "sub")) && 6527 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6528 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6529 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 6530 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6531 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 6532 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 6533 return true; 6534 // For Thumb2, add/sub immediate does not have a cc_out operand for the 6535 // imm0_4095 variant. That's the least-preferred variant when 6536 // selecting via the generic "add" mnemonic, so to know that we 6537 // should remove the cc_out operand, we have to explicitly check that 6538 // it's not one of the other variants. Ugh. 6539 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6540 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6541 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6542 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6543 // Nest conditions rather than one big 'if' statement for readability. 6544 // 6545 // If both registers are low, we're in an IT block, and the immediate is 6546 // in range, we should use encoding T1 instead, which has a cc_out. 6547 if (inITBlock() && 6548 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 6549 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 6550 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 6551 return false; 6552 // Check against T3. If the second register is the PC, this is an 6553 // alternate form of ADR, which uses encoding T4, so check for that too. 6554 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 6555 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 6556 return false; 6557 6558 // Otherwise, we use encoding T4, which does not have a cc_out 6559 // operand. 6560 return true; 6561 } 6562 6563 // The thumb2 multiply instruction doesn't have a CCOut register, so 6564 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 6565 // use the 16-bit encoding or not. 6566 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 6567 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6568 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6569 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6570 static_cast<ARMOperand &>(*Operands[5]).isReg() && 6571 // If the registers aren't low regs, the destination reg isn't the 6572 // same as one of the source regs, or the cc_out operand is zero 6573 // outside of an IT block, we have to use the 32-bit encoding, so 6574 // remove the cc_out operand. 6575 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6576 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6577 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 6578 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 6579 static_cast<ARMOperand &>(*Operands[5]).getReg() && 6580 static_cast<ARMOperand &>(*Operands[3]).getReg() != 6581 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 6582 return true; 6583 6584 // Also check the 'mul' syntax variant that doesn't specify an explicit 6585 // destination register. 6586 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 6587 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6588 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6589 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6590 // If the registers aren't low regs or the cc_out operand is zero 6591 // outside of an IT block, we have to use the 32-bit encoding, so 6592 // remove the cc_out operand. 6593 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6594 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6595 !inITBlock())) 6596 return true; 6597 6598 // Register-register 'add/sub' for thumb does not have a cc_out operand 6599 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 6600 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 6601 // right, this will result in better diagnostics (which operand is off) 6602 // anyway. 6603 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 6604 (Operands.size() == 5 || Operands.size() == 6) && 6605 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6606 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 6607 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6608 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 6609 (Operands.size() == 6 && 6610 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 6611 return true; 6612 6613 return false; 6614 } 6615 6616 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 6617 OperandVector &Operands) { 6618 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 6619 unsigned RegIdx = 3; 6620 if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) || 6621 Mnemonic == "vrintr") && 6622 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 6623 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 6624 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6625 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 6626 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 6627 RegIdx = 4; 6628 6629 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 6630 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6631 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 6632 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6633 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 6634 return true; 6635 } 6636 return false; 6637 } 6638 6639 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic, 6640 OperandVector &Operands) { 6641 if (!hasMVE() || Operands.size() < 3) 6642 return true; 6643 6644 if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") || 6645 Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4")) 6646 return true; 6647 6648 if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot")) 6649 return false; 6650 6651 if (Mnemonic.startswith("vmov") && 6652 !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") || 6653 Mnemonic.startswith("vmovx"))) { 6654 for (auto &Operand : Operands) { 6655 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6656 ((*Operand).isReg() && 6657 (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 6658 (*Operand).getReg()) || 6659 ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6660 (*Operand).getReg())))) { 6661 return true; 6662 } 6663 } 6664 return false; 6665 } else { 6666 for (auto &Operand : Operands) { 6667 // We check the larger class QPR instead of just the legal class 6668 // MQPR, to more accurately report errors when using Q registers 6669 // outside of the allowed range. 6670 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6671 (Operand->isReg() && 6672 (ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6673 Operand->getReg())))) 6674 return false; 6675 } 6676 return true; 6677 } 6678 } 6679 6680 static bool isDataTypeToken(StringRef Tok) { 6681 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 6682 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 6683 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6684 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6685 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6686 Tok == ".f" || Tok == ".d"; 6687 } 6688 6689 // FIXME: This bit should probably be handled via an explicit match class 6690 // in the .td files that matches the suffix instead of having it be 6691 // a literal string token the way it is now. 6692 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6693 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6694 } 6695 6696 static void applyMnemonicAliases(StringRef &Mnemonic, 6697 const FeatureBitset &Features, 6698 unsigned VariantID); 6699 6700 // The GNU assembler has aliases of ldrd and strd with the second register 6701 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6702 // 6703 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6704 // the assmebly parser could then generate confusing diagnostics refering to 6705 // it. If we do find anything that prevents us from doing the transformation we 6706 // bail out, and let the assembly parser report an error on the instruction as 6707 // it is written. 6708 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6709 OperandVector &Operands) { 6710 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6711 return; 6712 if (Operands.size() < 4) 6713 return; 6714 6715 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6716 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6717 6718 if (!Op2.isReg()) 6719 return; 6720 if (!Op3.isGPRMem()) 6721 return; 6722 6723 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6724 if (!GPR.contains(Op2.getReg())) 6725 return; 6726 6727 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6728 if (!isThumb() && (RtEncoding & 1)) { 6729 // In ARM mode, the registers must be from an aligned pair, this 6730 // restriction does not apply in Thumb mode. 6731 return; 6732 } 6733 if (Op2.getReg() == ARM::PC) 6734 return; 6735 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6736 if (!PairedReg || PairedReg == ARM::PC || 6737 (PairedReg == ARM::SP && !hasV8Ops())) 6738 return; 6739 6740 Operands.insert( 6741 Operands.begin() + 3, 6742 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6743 } 6744 6745 /// Parse an arm instruction mnemonic followed by its operands. 6746 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6747 SMLoc NameLoc, OperandVector &Operands) { 6748 MCAsmParser &Parser = getParser(); 6749 6750 // Apply mnemonic aliases before doing anything else, as the destination 6751 // mnemonic may include suffices and we want to handle them normally. 6752 // The generic tblgen'erated code does this later, at the start of 6753 // MatchInstructionImpl(), but that's too late for aliases that include 6754 // any sort of suffix. 6755 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 6756 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6757 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6758 6759 // First check for the ARM-specific .req directive. 6760 if (Parser.getTok().is(AsmToken::Identifier) && 6761 Parser.getTok().getIdentifier() == ".req") { 6762 parseDirectiveReq(Name, NameLoc); 6763 // We always return 'error' for this, as we're done with this 6764 // statement and don't need to match the 'instruction." 6765 return true; 6766 } 6767 6768 // Create the leading tokens for the mnemonic, split by '.' characters. 6769 size_t Start = 0, Next = Name.find('.'); 6770 StringRef Mnemonic = Name.slice(Start, Next); 6771 StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1)); 6772 6773 // Split out the predication code and carry setting flag from the mnemonic. 6774 unsigned PredicationCode; 6775 unsigned VPTPredicationCode; 6776 unsigned ProcessorIMod; 6777 bool CarrySetting; 6778 StringRef ITMask; 6779 Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, 6780 CarrySetting, ProcessorIMod, ITMask); 6781 6782 // In Thumb1, only the branch (B) instruction can be predicated. 6783 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6784 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6785 } 6786 6787 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6788 6789 // Handle the mask for IT and VPT instructions. In ARMOperand and 6790 // MCOperand, this is stored in a format independent of the 6791 // condition code: the lowest set bit indicates the end of the 6792 // encoding, and above that, a 1 bit indicates 'else', and an 0 6793 // indicates 'then'. E.g. 6794 // IT -> 1000 6795 // ITx -> x100 (ITT -> 0100, ITE -> 1100) 6796 // ITxy -> xy10 (e.g. ITET -> 1010) 6797 // ITxyz -> xyz1 (e.g. ITEET -> 1101) 6798 if (Mnemonic == "it" || Mnemonic.startswith("vpt") || 6799 Mnemonic.startswith("vpst")) { 6800 SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) : 6801 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) : 6802 SMLoc::getFromPointer(NameLoc.getPointer() + 4); 6803 if (ITMask.size() > 3) { 6804 if (Mnemonic == "it") 6805 return Error(Loc, "too many conditions on IT instruction"); 6806 return Error(Loc, "too many conditions on VPT instruction"); 6807 } 6808 unsigned Mask = 8; 6809 for (unsigned i = ITMask.size(); i != 0; --i) { 6810 char pos = ITMask[i - 1]; 6811 if (pos != 't' && pos != 'e') { 6812 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6813 } 6814 Mask >>= 1; 6815 if (ITMask[i - 1] == 'e') 6816 Mask |= 8; 6817 } 6818 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6819 } 6820 6821 // FIXME: This is all a pretty gross hack. We should automatically handle 6822 // optional operands like this via tblgen. 6823 6824 // Next, add the CCOut and ConditionCode operands, if needed. 6825 // 6826 // For mnemonics which can ever incorporate a carry setting bit or predication 6827 // code, our matching model involves us always generating CCOut and 6828 // ConditionCode operands to match the mnemonic "as written" and then we let 6829 // the matcher deal with finding the right instruction or generating an 6830 // appropriate error. 6831 bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; 6832 getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet, 6833 CanAcceptPredicationCode, CanAcceptVPTPredicationCode); 6834 6835 // If we had a carry-set on an instruction that can't do that, issue an 6836 // error. 6837 if (!CanAcceptCarrySet && CarrySetting) { 6838 return Error(NameLoc, "instruction '" + Mnemonic + 6839 "' can not set flags, but 's' suffix specified"); 6840 } 6841 // If we had a predication code on an instruction that can't do that, issue an 6842 // error. 6843 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6844 return Error(NameLoc, "instruction '" + Mnemonic + 6845 "' is not predicable, but condition code specified"); 6846 } 6847 6848 // If we had a VPT predication code on an instruction that can't do that, issue an 6849 // error. 6850 if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { 6851 return Error(NameLoc, "instruction '" + Mnemonic + 6852 "' is not VPT predicable, but VPT code T/E is specified"); 6853 } 6854 6855 // Add the carry setting operand, if necessary. 6856 if (CanAcceptCarrySet) { 6857 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6858 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6859 Loc)); 6860 } 6861 6862 // Add the predication code operand, if necessary. 6863 if (CanAcceptPredicationCode) { 6864 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6865 CarrySetting); 6866 Operands.push_back(ARMOperand::CreateCondCode( 6867 ARMCC::CondCodes(PredicationCode), Loc)); 6868 } 6869 6870 // Add the VPT predication code operand, if necessary. 6871 // FIXME: We don't add them for the instructions filtered below as these can 6872 // have custom operands which need special parsing. This parsing requires 6873 // the operand to be in the same place in the OperandVector as their 6874 // definition in tblgen. Since these instructions may also have the 6875 // scalar predication operand we do not add the vector one and leave until 6876 // now to fix it up. 6877 if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" && 6878 !Mnemonic.startswith("vcmp") && 6879 !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" && 6880 Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) { 6881 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6882 CarrySetting); 6883 Operands.push_back(ARMOperand::CreateVPTPred( 6884 ARMVCC::VPTCodes(VPTPredicationCode), Loc)); 6885 } 6886 6887 // Add the processor imod operand, if necessary. 6888 if (ProcessorIMod) { 6889 Operands.push_back(ARMOperand::CreateImm( 6890 MCConstantExpr::create(ProcessorIMod, getContext()), 6891 NameLoc, NameLoc)); 6892 } else if (Mnemonic == "cps" && isMClass()) { 6893 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6894 } 6895 6896 // Add the remaining tokens in the mnemonic. 6897 while (Next != StringRef::npos) { 6898 Start = Next; 6899 Next = Name.find('.', Start + 1); 6900 ExtraToken = Name.slice(Start, Next); 6901 6902 // Some NEON instructions have an optional datatype suffix that is 6903 // completely ignored. Check for that. 6904 if (isDataTypeToken(ExtraToken) && 6905 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6906 continue; 6907 6908 // For for ARM mode generate an error if the .n qualifier is used. 6909 if (ExtraToken == ".n" && !isThumb()) { 6910 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6911 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6912 "arm mode"); 6913 } 6914 6915 // The .n qualifier is always discarded as that is what the tables 6916 // and matcher expect. In ARM mode the .w qualifier has no effect, 6917 // so discard it to avoid errors that can be caused by the matcher. 6918 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6919 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6920 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6921 } 6922 } 6923 6924 // Read the remaining operands. 6925 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6926 // Read the first operand. 6927 if (parseOperand(Operands, Mnemonic)) { 6928 return true; 6929 } 6930 6931 while (parseOptionalToken(AsmToken::Comma)) { 6932 // Parse and remember the operand. 6933 if (parseOperand(Operands, Mnemonic)) { 6934 return true; 6935 } 6936 } 6937 } 6938 6939 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6940 return true; 6941 6942 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6943 6944 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6945 // do and don't have a cc_out optional-def operand. With some spot-checks 6946 // of the operand list, we can figure out which variant we're trying to 6947 // parse and adjust accordingly before actually matching. We shouldn't ever 6948 // try to remove a cc_out operand that was explicitly set on the 6949 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6950 // table driven matcher doesn't fit well with the ARM instruction set. 6951 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6952 Operands.erase(Operands.begin() + 1); 6953 6954 // Some instructions have the same mnemonic, but don't always 6955 // have a predicate. Distinguish them here and delete the 6956 // appropriate predicate if needed. This could be either the scalar 6957 // predication code or the vector predication code. 6958 if (PredicationCode == ARMCC::AL && 6959 shouldOmitPredicateOperand(Mnemonic, Operands)) 6960 Operands.erase(Operands.begin() + 1); 6961 6962 6963 if (hasMVE()) { 6964 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) && 6965 Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { 6966 // Very nasty hack to deal with the vector predicated variant of vmovlt 6967 // the scalar predicated vmov with condition 'lt'. We can not tell them 6968 // apart until we have parsed their operands. 6969 Operands.erase(Operands.begin() + 1); 6970 Operands.erase(Operands.begin()); 6971 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 6972 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 6973 Mnemonic.size() - 1 + CarrySetting); 6974 Operands.insert(Operands.begin(), 6975 ARMOperand::CreateVPTPred(ARMVCC::None, PLoc)); 6976 Operands.insert(Operands.begin(), 6977 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc)); 6978 } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && 6979 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 6980 // Another nasty hack to deal with the ambiguity between vcvt with scalar 6981 // predication 'ne' and vcvtn with vector predication 'e'. As above we 6982 // can only distinguish between the two after we have parsed their 6983 // operands. 6984 Operands.erase(Operands.begin() + 1); 6985 Operands.erase(Operands.begin()); 6986 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 6987 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 6988 Mnemonic.size() - 1 + CarrySetting); 6989 Operands.insert(Operands.begin(), 6990 ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc)); 6991 Operands.insert(Operands.begin(), 6992 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc)); 6993 } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && 6994 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 6995 // Another hack, this time to distinguish between scalar predicated vmul 6996 // with 'lt' predication code and the vector instruction vmullt with 6997 // vector predication code "none" 6998 Operands.erase(Operands.begin() + 1); 6999 Operands.erase(Operands.begin()); 7000 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7001 Operands.insert(Operands.begin(), 7002 ARMOperand::CreateToken(StringRef("vmullt"), MLoc)); 7003 } 7004 // For vmov and vcmp, as mentioned earlier, we did not add the vector 7005 // predication code, since these may contain operands that require 7006 // special parsing. So now we have to see if they require vector 7007 // predication and replace the scalar one with the vector predication 7008 // operand if that is the case. 7009 else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") || 7010 (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") && 7011 !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") && 7012 !Mnemonic.startswith("vcvtm"))) { 7013 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7014 // We could not split the vector predicate off vcvt because it might 7015 // have been the scalar vcvtt instruction. Now we know its a vector 7016 // instruction, we still need to check whether its the vector 7017 // predicated vcvt with 'Then' predication or the vector vcvtt. We can 7018 // distinguish the two based on the suffixes, if it is any of 7019 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. 7020 if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) { 7021 auto Sz1 = static_cast<ARMOperand &>(*Operands[2]); 7022 auto Sz2 = static_cast<ARMOperand &>(*Operands[3]); 7023 if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") && 7024 Sz2.isToken() && Sz2.getToken().startswith(".f"))) { 7025 Operands.erase(Operands.begin()); 7026 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7027 VPTPredicationCode = ARMVCC::Then; 7028 7029 Mnemonic = Mnemonic.substr(0, 4); 7030 Operands.insert(Operands.begin(), 7031 ARMOperand::CreateToken(Mnemonic, MLoc)); 7032 } 7033 } 7034 Operands.erase(Operands.begin() + 1); 7035 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7036 Mnemonic.size() + CarrySetting); 7037 Operands.insert(Operands.begin() + 1, 7038 ARMOperand::CreateVPTPred( 7039 ARMVCC::VPTCodes(VPTPredicationCode), PLoc)); 7040 } 7041 } else if (CanAcceptVPTPredicationCode) { 7042 // For all other instructions, make sure only one of the two 7043 // predication operands is left behind, depending on whether we should 7044 // use the vector predication. 7045 if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7046 if (CanAcceptPredicationCode) 7047 Operands.erase(Operands.begin() + 2); 7048 else 7049 Operands.erase(Operands.begin() + 1); 7050 } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) { 7051 Operands.erase(Operands.begin() + 1); 7052 } 7053 } 7054 } 7055 7056 if (VPTPredicationCode != ARMVCC::None) { 7057 bool usedVPTPredicationCode = false; 7058 for (unsigned I = 1; I < Operands.size(); ++I) 7059 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7060 usedVPTPredicationCode = true; 7061 if (!usedVPTPredicationCode) { 7062 // If we have a VPT predication code and we haven't just turned it 7063 // into an operand, then it was a mistake for splitMnemonic to 7064 // separate it from the rest of the mnemonic in the first place, 7065 // and this may lead to wrong disassembly (e.g. scalar floating 7066 // point VCMPE is actually a different instruction from VCMP, so 7067 // we mustn't treat them the same). In that situation, glue it 7068 // back on. 7069 Mnemonic = Name.slice(0, Mnemonic.size() + 1); 7070 Operands.erase(Operands.begin()); 7071 Operands.insert(Operands.begin(), 7072 ARMOperand::CreateToken(Mnemonic, NameLoc)); 7073 } 7074 } 7075 7076 // ARM mode 'blx' need special handling, as the register operand version 7077 // is predicable, but the label operand version is not. So, we can't rely 7078 // on the Mnemonic based checking to correctly figure out when to put 7079 // a k_CondCode operand in the list. If we're trying to match the label 7080 // version, remove the k_CondCode operand here. 7081 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 7082 static_cast<ARMOperand &>(*Operands[2]).isImm()) 7083 Operands.erase(Operands.begin() + 1); 7084 7085 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 7086 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 7087 // a single GPRPair reg operand is used in the .td file to replace the two 7088 // GPRs. However, when parsing from asm, the two GRPs cannot be 7089 // automatically 7090 // expressed as a GPRPair, so we have to manually merge them. 7091 // FIXME: We would really like to be able to tablegen'erate this. 7092 if (!isThumb() && Operands.size() > 4 && 7093 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 7094 Mnemonic == "stlexd")) { 7095 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 7096 unsigned Idx = isLoad ? 2 : 3; 7097 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 7098 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 7099 7100 const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID); 7101 // Adjust only if Op1 and Op2 are GPRs. 7102 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 7103 MRC.contains(Op2.getReg())) { 7104 unsigned Reg1 = Op1.getReg(); 7105 unsigned Reg2 = Op2.getReg(); 7106 unsigned Rt = MRI->getEncodingValue(Reg1); 7107 unsigned Rt2 = MRI->getEncodingValue(Reg2); 7108 7109 // Rt2 must be Rt + 1 and Rt must be even. 7110 if (Rt + 1 != Rt2 || (Rt & 1)) { 7111 return Error(Op2.getStartLoc(), 7112 isLoad ? "destination operands must be sequential" 7113 : "source operands must be sequential"); 7114 } 7115 unsigned NewReg = MRI->getMatchingSuperReg( 7116 Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID))); 7117 Operands[Idx] = 7118 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 7119 Operands.erase(Operands.begin() + Idx + 1); 7120 } 7121 } 7122 7123 // GNU Assembler extension (compatibility). 7124 fixupGNULDRDAlias(Mnemonic, Operands); 7125 7126 // FIXME: As said above, this is all a pretty gross hack. This instruction 7127 // does not fit with other "subs" and tblgen. 7128 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 7129 // so the Mnemonic is the original name "subs" and delete the predicate 7130 // operand so it will match the table entry. 7131 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 7132 static_cast<ARMOperand &>(*Operands[3]).isReg() && 7133 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 7134 static_cast<ARMOperand &>(*Operands[4]).isReg() && 7135 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 7136 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 7137 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 7138 Operands.erase(Operands.begin() + 1); 7139 } 7140 return false; 7141 } 7142 7143 // Validate context-sensitive operand constraints. 7144 7145 // return 'true' if register list contains non-low GPR registers, 7146 // 'false' otherwise. If Reg is in the register list or is HiReg, set 7147 // 'containsReg' to true. 7148 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 7149 unsigned Reg, unsigned HiReg, 7150 bool &containsReg) { 7151 containsReg = false; 7152 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 7153 unsigned OpReg = Inst.getOperand(i).getReg(); 7154 if (OpReg == Reg) 7155 containsReg = true; 7156 // Anything other than a low register isn't legal here. 7157 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 7158 return true; 7159 } 7160 return false; 7161 } 7162 7163 // Check if the specified regisgter is in the register list of the inst, 7164 // starting at the indicated operand number. 7165 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 7166 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 7167 unsigned OpReg = Inst.getOperand(i).getReg(); 7168 if (OpReg == Reg) 7169 return true; 7170 } 7171 return false; 7172 } 7173 7174 // Return true if instruction has the interesting property of being 7175 // allowed in IT blocks, but not being predicable. 7176 static bool instIsBreakpoint(const MCInst &Inst) { 7177 return Inst.getOpcode() == ARM::tBKPT || 7178 Inst.getOpcode() == ARM::BKPT || 7179 Inst.getOpcode() == ARM::tHLT || 7180 Inst.getOpcode() == ARM::HLT; 7181 } 7182 7183 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 7184 const OperandVector &Operands, 7185 unsigned ListNo, bool IsARPop) { 7186 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7187 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7188 7189 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7190 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 7191 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7192 7193 if (!IsARPop && ListContainsSP) 7194 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7195 "SP may not be in the register list"); 7196 else if (ListContainsPC && ListContainsLR) 7197 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7198 "PC and LR may not be in the register list simultaneously"); 7199 return false; 7200 } 7201 7202 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 7203 const OperandVector &Operands, 7204 unsigned ListNo) { 7205 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7206 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7207 7208 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7209 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7210 7211 if (ListContainsSP && ListContainsPC) 7212 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7213 "SP and PC may not be in the register list"); 7214 else if (ListContainsSP) 7215 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7216 "SP may not be in the register list"); 7217 else if (ListContainsPC) 7218 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7219 "PC may not be in the register list"); 7220 return false; 7221 } 7222 7223 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 7224 const OperandVector &Operands, 7225 bool Load, bool ARMMode, bool Writeback) { 7226 unsigned RtIndex = Load || !Writeback ? 0 : 1; 7227 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 7228 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 7229 7230 if (ARMMode) { 7231 // Rt can't be R14. 7232 if (Rt == 14) 7233 return Error(Operands[3]->getStartLoc(), 7234 "Rt can't be R14"); 7235 7236 // Rt must be even-numbered. 7237 if ((Rt & 1) == 1) 7238 return Error(Operands[3]->getStartLoc(), 7239 "Rt must be even-numbered"); 7240 7241 // Rt2 must be Rt + 1. 7242 if (Rt2 != Rt + 1) { 7243 if (Load) 7244 return Error(Operands[3]->getStartLoc(), 7245 "destination operands must be sequential"); 7246 else 7247 return Error(Operands[3]->getStartLoc(), 7248 "source operands must be sequential"); 7249 } 7250 7251 // FIXME: Diagnose m == 15 7252 // FIXME: Diagnose ldrd with m == t || m == t2. 7253 } 7254 7255 if (!ARMMode && Load) { 7256 if (Rt2 == Rt) 7257 return Error(Operands[3]->getStartLoc(), 7258 "destination operands can't be identical"); 7259 } 7260 7261 if (Writeback) { 7262 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7263 7264 if (Rn == Rt || Rn == Rt2) { 7265 if (Load) 7266 return Error(Operands[3]->getStartLoc(), 7267 "base register needs to be different from destination " 7268 "registers"); 7269 else 7270 return Error(Operands[3]->getStartLoc(), 7271 "source register and base register can't be identical"); 7272 } 7273 7274 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 7275 // (Except the immediate form of ldrd?) 7276 } 7277 7278 return false; 7279 } 7280 7281 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { 7282 for (unsigned i = 0; i < MCID.NumOperands; ++i) { 7283 if (ARM::isVpred(MCID.OpInfo[i].OperandType)) 7284 return i; 7285 } 7286 return -1; 7287 } 7288 7289 static bool isVectorPredicable(const MCInstrDesc &MCID) { 7290 return findFirstVectorPredOperandIdx(MCID) != -1; 7291 } 7292 7293 // FIXME: We would really like to be able to tablegen'erate this. 7294 bool ARMAsmParser::validateInstruction(MCInst &Inst, 7295 const OperandVector &Operands) { 7296 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 7297 SMLoc Loc = Operands[0]->getStartLoc(); 7298 7299 // Check the IT block state first. 7300 // NOTE: BKPT and HLT instructions have the interesting property of being 7301 // allowed in IT blocks, but not being predicable. They just always execute. 7302 if (inITBlock() && !instIsBreakpoint(Inst)) { 7303 // The instruction must be predicable. 7304 if (!MCID.isPredicable()) 7305 return Error(Loc, "instructions in IT block must be predicable"); 7306 ARMCC::CondCodes Cond = ARMCC::CondCodes( 7307 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 7308 if (Cond != currentITCond()) { 7309 // Find the condition code Operand to get its SMLoc information. 7310 SMLoc CondLoc; 7311 for (unsigned I = 1; I < Operands.size(); ++I) 7312 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 7313 CondLoc = Operands[I]->getStartLoc(); 7314 return Error(CondLoc, "incorrect condition in IT block; got '" + 7315 StringRef(ARMCondCodeToString(Cond)) + 7316 "', but expected '" + 7317 ARMCondCodeToString(currentITCond()) + "'"); 7318 } 7319 // Check for non-'al' condition codes outside of the IT block. 7320 } else if (isThumbTwo() && MCID.isPredicable() && 7321 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7322 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 7323 Inst.getOpcode() != ARM::t2Bcc && 7324 Inst.getOpcode() != ARM::t2BFic) { 7325 return Error(Loc, "predicated instructions must be in IT block"); 7326 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 7327 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7328 ARMCC::AL) { 7329 return Warning(Loc, "predicated instructions should be in IT block"); 7330 } else if (!MCID.isPredicable()) { 7331 // Check the instruction doesn't have a predicate operand anyway 7332 // that it's not allowed to use. Sometimes this happens in order 7333 // to keep instructions the same shape even though one cannot 7334 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 7335 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 7336 if (MCID.OpInfo[i].isPredicate()) { 7337 if (Inst.getOperand(i).getImm() != ARMCC::AL) 7338 return Error(Loc, "instruction is not predicable"); 7339 break; 7340 } 7341 } 7342 } 7343 7344 // PC-setting instructions in an IT block, but not the last instruction of 7345 // the block, are UNPREDICTABLE. 7346 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 7347 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 7348 } 7349 7350 if (inVPTBlock() && !instIsBreakpoint(Inst)) { 7351 unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition); 7352 if (!isVectorPredicable(MCID)) 7353 return Error(Loc, "instruction in VPT block must be predicable"); 7354 unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm(); 7355 unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; 7356 if (Pred != VPTPred) { 7357 SMLoc PredLoc; 7358 for (unsigned I = 1; I < Operands.size(); ++I) 7359 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7360 PredLoc = Operands[I]->getStartLoc(); 7361 return Error(PredLoc, "incorrect predication in VPT block; got '" + 7362 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) + 7363 "', but expected '" + 7364 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'"); 7365 } 7366 } 7367 else if (isVectorPredicable(MCID) && 7368 Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() != 7369 ARMVCC::None) 7370 return Error(Loc, "VPT predicated instructions must be in VPT block"); 7371 7372 const unsigned Opcode = Inst.getOpcode(); 7373 switch (Opcode) { 7374 case ARM::t2IT: { 7375 // Encoding is unpredictable if it ever results in a notional 'NV' 7376 // predicate. Since we don't parse 'NV' directly this means an 'AL' 7377 // predicate with an "else" mask bit. 7378 unsigned Cond = Inst.getOperand(0).getImm(); 7379 unsigned Mask = Inst.getOperand(1).getImm(); 7380 7381 // Conditions only allowing a 't' are those with no set bit except 7382 // the lowest-order one that indicates the end of the sequence. In 7383 // other words, powers of 2. 7384 if (Cond == ARMCC::AL && countPopulation(Mask) != 1) 7385 return Error(Loc, "unpredictable IT predicate sequence"); 7386 break; 7387 } 7388 case ARM::LDRD: 7389 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7390 /*Writeback*/false)) 7391 return true; 7392 break; 7393 case ARM::LDRD_PRE: 7394 case ARM::LDRD_POST: 7395 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7396 /*Writeback*/true)) 7397 return true; 7398 break; 7399 case ARM::t2LDRDi8: 7400 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7401 /*Writeback*/false)) 7402 return true; 7403 break; 7404 case ARM::t2LDRD_PRE: 7405 case ARM::t2LDRD_POST: 7406 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7407 /*Writeback*/true)) 7408 return true; 7409 break; 7410 case ARM::t2BXJ: { 7411 const unsigned RmReg = Inst.getOperand(0).getReg(); 7412 // Rm = SP is no longer unpredictable in v8-A 7413 if (RmReg == ARM::SP && !hasV8Ops()) 7414 return Error(Operands[2]->getStartLoc(), 7415 "r13 (SP) is an unpredictable operand to BXJ"); 7416 return false; 7417 } 7418 case ARM::STRD: 7419 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7420 /*Writeback*/false)) 7421 return true; 7422 break; 7423 case ARM::STRD_PRE: 7424 case ARM::STRD_POST: 7425 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7426 /*Writeback*/true)) 7427 return true; 7428 break; 7429 case ARM::t2STRD_PRE: 7430 case ARM::t2STRD_POST: 7431 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 7432 /*Writeback*/true)) 7433 return true; 7434 break; 7435 case ARM::STR_PRE_IMM: 7436 case ARM::STR_PRE_REG: 7437 case ARM::t2STR_PRE: 7438 case ARM::STR_POST_IMM: 7439 case ARM::STR_POST_REG: 7440 case ARM::t2STR_POST: 7441 case ARM::STRH_PRE: 7442 case ARM::t2STRH_PRE: 7443 case ARM::STRH_POST: 7444 case ARM::t2STRH_POST: 7445 case ARM::STRB_PRE_IMM: 7446 case ARM::STRB_PRE_REG: 7447 case ARM::t2STRB_PRE: 7448 case ARM::STRB_POST_IMM: 7449 case ARM::STRB_POST_REG: 7450 case ARM::t2STRB_POST: { 7451 // Rt must be different from Rn. 7452 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7453 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7454 7455 if (Rt == Rn) 7456 return Error(Operands[3]->getStartLoc(), 7457 "source register and base register can't be identical"); 7458 return false; 7459 } 7460 case ARM::LDR_PRE_IMM: 7461 case ARM::LDR_PRE_REG: 7462 case ARM::t2LDR_PRE: 7463 case ARM::LDR_POST_IMM: 7464 case ARM::LDR_POST_REG: 7465 case ARM::t2LDR_POST: 7466 case ARM::LDRH_PRE: 7467 case ARM::t2LDRH_PRE: 7468 case ARM::LDRH_POST: 7469 case ARM::t2LDRH_POST: 7470 case ARM::LDRSH_PRE: 7471 case ARM::t2LDRSH_PRE: 7472 case ARM::LDRSH_POST: 7473 case ARM::t2LDRSH_POST: 7474 case ARM::LDRB_PRE_IMM: 7475 case ARM::LDRB_PRE_REG: 7476 case ARM::t2LDRB_PRE: 7477 case ARM::LDRB_POST_IMM: 7478 case ARM::LDRB_POST_REG: 7479 case ARM::t2LDRB_POST: 7480 case ARM::LDRSB_PRE: 7481 case ARM::t2LDRSB_PRE: 7482 case ARM::LDRSB_POST: 7483 case ARM::t2LDRSB_POST: { 7484 // Rt must be different from Rn. 7485 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7486 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7487 7488 if (Rt == Rn) 7489 return Error(Operands[3]->getStartLoc(), 7490 "destination register and base register can't be identical"); 7491 return false; 7492 } 7493 7494 case ARM::MVE_VLDRBU8_rq: 7495 case ARM::MVE_VLDRBU16_rq: 7496 case ARM::MVE_VLDRBS16_rq: 7497 case ARM::MVE_VLDRBU32_rq: 7498 case ARM::MVE_VLDRBS32_rq: 7499 case ARM::MVE_VLDRHU16_rq: 7500 case ARM::MVE_VLDRHU16_rq_u: 7501 case ARM::MVE_VLDRHU32_rq: 7502 case ARM::MVE_VLDRHU32_rq_u: 7503 case ARM::MVE_VLDRHS32_rq: 7504 case ARM::MVE_VLDRHS32_rq_u: 7505 case ARM::MVE_VLDRWU32_rq: 7506 case ARM::MVE_VLDRWU32_rq_u: 7507 case ARM::MVE_VLDRDU64_rq: 7508 case ARM::MVE_VLDRDU64_rq_u: 7509 case ARM::MVE_VLDRWU32_qi: 7510 case ARM::MVE_VLDRWU32_qi_pre: 7511 case ARM::MVE_VLDRDU64_qi: 7512 case ARM::MVE_VLDRDU64_qi_pre: { 7513 // Qd must be different from Qm. 7514 unsigned QdIdx = 0, QmIdx = 2; 7515 bool QmIsPointer = false; 7516 switch (Opcode) { 7517 case ARM::MVE_VLDRWU32_qi: 7518 case ARM::MVE_VLDRDU64_qi: 7519 QmIdx = 1; 7520 QmIsPointer = true; 7521 break; 7522 case ARM::MVE_VLDRWU32_qi_pre: 7523 case ARM::MVE_VLDRDU64_qi_pre: 7524 QdIdx = 1; 7525 QmIsPointer = true; 7526 break; 7527 } 7528 7529 const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg()); 7530 const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg()); 7531 7532 if (Qd == Qm) { 7533 return Error(Operands[3]->getStartLoc(), 7534 Twine("destination vector register and vector ") + 7535 (QmIsPointer ? "pointer" : "offset") + 7536 " register can't be identical"); 7537 } 7538 return false; 7539 } 7540 7541 case ARM::SBFX: 7542 case ARM::t2SBFX: 7543 case ARM::UBFX: 7544 case ARM::t2UBFX: { 7545 // Width must be in range [1, 32-lsb]. 7546 unsigned LSB = Inst.getOperand(2).getImm(); 7547 unsigned Widthm1 = Inst.getOperand(3).getImm(); 7548 if (Widthm1 >= 32 - LSB) 7549 return Error(Operands[5]->getStartLoc(), 7550 "bitfield width must be in range [1,32-lsb]"); 7551 return false; 7552 } 7553 // Notionally handles ARM::tLDMIA_UPD too. 7554 case ARM::tLDMIA: { 7555 // If we're parsing Thumb2, the .w variant is available and handles 7556 // most cases that are normally illegal for a Thumb1 LDM instruction. 7557 // We'll make the transformation in processInstruction() if necessary. 7558 // 7559 // Thumb LDM instructions are writeback iff the base register is not 7560 // in the register list. 7561 unsigned Rn = Inst.getOperand(0).getReg(); 7562 bool HasWritebackToken = 7563 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7564 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 7565 bool ListContainsBase; 7566 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 7567 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 7568 "registers must be in range r0-r7"); 7569 // If we should have writeback, then there should be a '!' token. 7570 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 7571 return Error(Operands[2]->getStartLoc(), 7572 "writeback operator '!' expected"); 7573 // If we should not have writeback, there must not be a '!'. This is 7574 // true even for the 32-bit wide encodings. 7575 if (ListContainsBase && HasWritebackToken) 7576 return Error(Operands[3]->getStartLoc(), 7577 "writeback operator '!' not allowed when base register " 7578 "in register list"); 7579 7580 if (validatetLDMRegList(Inst, Operands, 3)) 7581 return true; 7582 break; 7583 } 7584 case ARM::LDMIA_UPD: 7585 case ARM::LDMDB_UPD: 7586 case ARM::LDMIB_UPD: 7587 case ARM::LDMDA_UPD: 7588 // ARM variants loading and updating the same register are only officially 7589 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 7590 if (!hasV7Ops()) 7591 break; 7592 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7593 return Error(Operands.back()->getStartLoc(), 7594 "writeback register not allowed in register list"); 7595 break; 7596 case ARM::t2LDMIA: 7597 case ARM::t2LDMDB: 7598 if (validatetLDMRegList(Inst, Operands, 3)) 7599 return true; 7600 break; 7601 case ARM::t2STMIA: 7602 case ARM::t2STMDB: 7603 if (validatetSTMRegList(Inst, Operands, 3)) 7604 return true; 7605 break; 7606 case ARM::t2LDMIA_UPD: 7607 case ARM::t2LDMDB_UPD: 7608 case ARM::t2STMIA_UPD: 7609 case ARM::t2STMDB_UPD: 7610 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7611 return Error(Operands.back()->getStartLoc(), 7612 "writeback register not allowed in register list"); 7613 7614 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 7615 if (validatetLDMRegList(Inst, Operands, 3)) 7616 return true; 7617 } else { 7618 if (validatetSTMRegList(Inst, Operands, 3)) 7619 return true; 7620 } 7621 break; 7622 7623 case ARM::sysLDMIA_UPD: 7624 case ARM::sysLDMDA_UPD: 7625 case ARM::sysLDMDB_UPD: 7626 case ARM::sysLDMIB_UPD: 7627 if (!listContainsReg(Inst, 3, ARM::PC)) 7628 return Error(Operands[4]->getStartLoc(), 7629 "writeback register only allowed on system LDM " 7630 "if PC in register-list"); 7631 break; 7632 case ARM::sysSTMIA_UPD: 7633 case ARM::sysSTMDA_UPD: 7634 case ARM::sysSTMDB_UPD: 7635 case ARM::sysSTMIB_UPD: 7636 return Error(Operands[2]->getStartLoc(), 7637 "system STM cannot have writeback register"); 7638 case ARM::tMUL: 7639 // The second source operand must be the same register as the destination 7640 // operand. 7641 // 7642 // In this case, we must directly check the parsed operands because the 7643 // cvtThumbMultiply() function is written in such a way that it guarantees 7644 // this first statement is always true for the new Inst. Essentially, the 7645 // destination is unconditionally copied into the second source operand 7646 // without checking to see if it matches what we actually parsed. 7647 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 7648 ((ARMOperand &)*Operands[5]).getReg()) && 7649 (((ARMOperand &)*Operands[3]).getReg() != 7650 ((ARMOperand &)*Operands[4]).getReg())) { 7651 return Error(Operands[3]->getStartLoc(), 7652 "destination register must match source register"); 7653 } 7654 break; 7655 7656 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 7657 // so only issue a diagnostic for thumb1. The instructions will be 7658 // switched to the t2 encodings in processInstruction() if necessary. 7659 case ARM::tPOP: { 7660 bool ListContainsBase; 7661 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 7662 !isThumbTwo()) 7663 return Error(Operands[2]->getStartLoc(), 7664 "registers must be in range r0-r7 or pc"); 7665 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 7666 return true; 7667 break; 7668 } 7669 case ARM::tPUSH: { 7670 bool ListContainsBase; 7671 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 7672 !isThumbTwo()) 7673 return Error(Operands[2]->getStartLoc(), 7674 "registers must be in range r0-r7 or lr"); 7675 if (validatetSTMRegList(Inst, Operands, 2)) 7676 return true; 7677 break; 7678 } 7679 case ARM::tSTMIA_UPD: { 7680 bool ListContainsBase, InvalidLowList; 7681 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 7682 0, ListContainsBase); 7683 if (InvalidLowList && !isThumbTwo()) 7684 return Error(Operands[4]->getStartLoc(), 7685 "registers must be in range r0-r7"); 7686 7687 // This would be converted to a 32-bit stm, but that's not valid if the 7688 // writeback register is in the list. 7689 if (InvalidLowList && ListContainsBase) 7690 return Error(Operands[4]->getStartLoc(), 7691 "writeback operator '!' not allowed when base register " 7692 "in register list"); 7693 7694 if (validatetSTMRegList(Inst, Operands, 4)) 7695 return true; 7696 break; 7697 } 7698 case ARM::tADDrSP: 7699 // If the non-SP source operand and the destination operand are not the 7700 // same, we need thumb2 (for the wide encoding), or we have an error. 7701 if (!isThumbTwo() && 7702 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 7703 return Error(Operands[4]->getStartLoc(), 7704 "source register must be the same as destination"); 7705 } 7706 break; 7707 7708 case ARM::t2ADDri: 7709 case ARM::t2ADDri12: 7710 case ARM::t2ADDrr: 7711 case ARM::t2ADDrs: 7712 case ARM::t2SUBri: 7713 case ARM::t2SUBri12: 7714 case ARM::t2SUBrr: 7715 case ARM::t2SUBrs: 7716 if (Inst.getOperand(0).getReg() == ARM::SP && 7717 Inst.getOperand(1).getReg() != ARM::SP) 7718 return Error(Operands[4]->getStartLoc(), 7719 "source register must be sp if destination is sp"); 7720 break; 7721 7722 // Final range checking for Thumb unconditional branch instructions. 7723 case ARM::tB: 7724 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 7725 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7726 break; 7727 case ARM::t2B: { 7728 int op = (Operands[2]->isImm()) ? 2 : 3; 7729 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 7730 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 7731 break; 7732 } 7733 // Final range checking for Thumb conditional branch instructions. 7734 case ARM::tBcc: 7735 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 7736 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7737 break; 7738 case ARM::t2Bcc: { 7739 int Op = (Operands[2]->isImm()) ? 2 : 3; 7740 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 7741 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 7742 break; 7743 } 7744 case ARM::tCBZ: 7745 case ARM::tCBNZ: { 7746 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 7747 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7748 break; 7749 } 7750 case ARM::MOVi16: 7751 case ARM::MOVTi16: 7752 case ARM::t2MOVi16: 7753 case ARM::t2MOVTi16: 7754 { 7755 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 7756 // especially when we turn it into a movw and the expression <symbol> does 7757 // not have a :lower16: or :upper16 as part of the expression. We don't 7758 // want the behavior of silently truncating, which can be unexpected and 7759 // lead to bugs that are difficult to find since this is an easy mistake 7760 // to make. 7761 int i = (Operands[3]->isImm()) ? 3 : 4; 7762 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 7763 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 7764 if (CE) break; 7765 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 7766 if (!E) break; 7767 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 7768 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 7769 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 7770 return Error( 7771 Op.getStartLoc(), 7772 "immediate expression for mov requires :lower16: or :upper16"); 7773 break; 7774 } 7775 case ARM::HINT: 7776 case ARM::t2HINT: { 7777 unsigned Imm8 = Inst.getOperand(0).getImm(); 7778 unsigned Pred = Inst.getOperand(1).getImm(); 7779 // ESB is not predicable (pred must be AL). Without the RAS extension, this 7780 // behaves as any other unallocated hint. 7781 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 7782 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 7783 "predicable, but condition " 7784 "code specified"); 7785 if (Imm8 == 0x14 && Pred != ARMCC::AL) 7786 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 7787 "predicable, but condition " 7788 "code specified"); 7789 break; 7790 } 7791 case ARM::t2BFi: 7792 case ARM::t2BFr: 7793 case ARM::t2BFLi: 7794 case ARM::t2BFLr: { 7795 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() || 7796 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 7797 return Error(Operands[2]->getStartLoc(), 7798 "branch location out of range or not a multiple of 2"); 7799 7800 if (Opcode == ARM::t2BFi) { 7801 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>()) 7802 return Error(Operands[3]->getStartLoc(), 7803 "branch target out of range or not a multiple of 2"); 7804 } else if (Opcode == ARM::t2BFLi) { 7805 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>()) 7806 return Error(Operands[3]->getStartLoc(), 7807 "branch target out of range or not a multiple of 2"); 7808 } 7809 break; 7810 } 7811 case ARM::t2BFic: { 7812 if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() || 7813 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 7814 return Error(Operands[1]->getStartLoc(), 7815 "branch location out of range or not a multiple of 2"); 7816 7817 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>()) 7818 return Error(Operands[2]->getStartLoc(), 7819 "branch target out of range or not a multiple of 2"); 7820 7821 assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && 7822 "branch location and else branch target should either both be " 7823 "immediates or both labels"); 7824 7825 if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) { 7826 int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm(); 7827 if (Diff != 4 && Diff != 2) 7828 return Error( 7829 Operands[3]->getStartLoc(), 7830 "else branch target must be 2 or 4 greater than the branch location"); 7831 } 7832 break; 7833 } 7834 case ARM::t2CLRM: { 7835 for (unsigned i = 2; i < Inst.getNumOperands(); i++) { 7836 if (Inst.getOperand(i).isReg() && 7837 !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( 7838 Inst.getOperand(i).getReg())) { 7839 return Error(Operands[2]->getStartLoc(), 7840 "invalid register in register list. Valid registers are " 7841 "r0-r12, lr/r14 and APSR."); 7842 } 7843 } 7844 break; 7845 } 7846 case ARM::DSB: 7847 case ARM::t2DSB: { 7848 7849 if (Inst.getNumOperands() < 2) 7850 break; 7851 7852 unsigned Option = Inst.getOperand(0).getImm(); 7853 unsigned Pred = Inst.getOperand(1).getImm(); 7854 7855 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 7856 if (Option == 0 && Pred != ARMCC::AL) 7857 return Error(Operands[1]->getStartLoc(), 7858 "instruction 'ssbb' is not predicable, but condition code " 7859 "specified"); 7860 if (Option == 4 && Pred != ARMCC::AL) 7861 return Error(Operands[1]->getStartLoc(), 7862 "instruction 'pssbb' is not predicable, but condition code " 7863 "specified"); 7864 break; 7865 } 7866 case ARM::VMOVRRS: { 7867 // Source registers must be sequential. 7868 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7869 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7870 if (Sm1 != Sm + 1) 7871 return Error(Operands[5]->getStartLoc(), 7872 "source operands must be sequential"); 7873 break; 7874 } 7875 case ARM::VMOVSRR: { 7876 // Destination registers must be sequential. 7877 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7878 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7879 if (Sm1 != Sm + 1) 7880 return Error(Operands[3]->getStartLoc(), 7881 "destination operands must be sequential"); 7882 break; 7883 } 7884 case ARM::VLDMDIA: 7885 case ARM::VSTMDIA: { 7886 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 7887 auto &RegList = Op.getRegList(); 7888 if (RegList.size() < 1 || RegList.size() > 16) 7889 return Error(Operands[3]->getStartLoc(), 7890 "list of registers must be at least 1 and at most 16"); 7891 break; 7892 } 7893 case ARM::MVE_VQDMULLs32bh: 7894 case ARM::MVE_VQDMULLs32th: 7895 case ARM::MVE_VCMULf32: 7896 case ARM::MVE_VMULLs32bh: 7897 case ARM::MVE_VMULLs32th: 7898 case ARM::MVE_VMULLu32bh: 7899 case ARM::MVE_VMULLu32th: { 7900 if (Operands[3]->getReg() == Operands[4]->getReg()) { 7901 return Error (Operands[3]->getStartLoc(), 7902 "Qd register and Qn register can't be identical"); 7903 } 7904 if (Operands[3]->getReg() == Operands[5]->getReg()) { 7905 return Error (Operands[3]->getStartLoc(), 7906 "Qd register and Qm register can't be identical"); 7907 } 7908 break; 7909 } 7910 case ARM::MVE_VMOV_rr_q: { 7911 if (Operands[4]->getReg() != Operands[6]->getReg()) 7912 return Error (Operands[4]->getStartLoc(), "Q-registers must be the same"); 7913 if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() != 7914 static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2) 7915 return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 7916 break; 7917 } 7918 case ARM::MVE_VMOV_q_rr: { 7919 if (Operands[2]->getReg() != Operands[4]->getReg()) 7920 return Error (Operands[2]->getStartLoc(), "Q-registers must be the same"); 7921 if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() != 7922 static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2) 7923 return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 7924 break; 7925 } 7926 } 7927 7928 return false; 7929 } 7930 7931 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 7932 switch(Opc) { 7933 default: llvm_unreachable("unexpected opcode!"); 7934 // VST1LN 7935 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 7936 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 7937 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 7938 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 7939 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 7940 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 7941 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 7942 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 7943 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 7944 7945 // VST2LN 7946 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 7947 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 7948 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 7949 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 7950 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 7951 7952 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 7953 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 7954 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 7955 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 7956 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 7957 7958 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 7959 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 7960 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 7961 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 7962 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 7963 7964 // VST3LN 7965 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 7966 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 7967 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 7968 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 7969 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 7970 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 7971 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 7972 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 7973 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 7974 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 7975 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 7976 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 7977 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 7978 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 7979 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 7980 7981 // VST3 7982 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 7983 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 7984 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 7985 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 7986 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 7987 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 7988 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 7989 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 7990 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 7991 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 7992 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 7993 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 7994 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 7995 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 7996 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 7997 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 7998 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 7999 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 8000 8001 // VST4LN 8002 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8003 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8004 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8005 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 8006 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8007 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8008 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8009 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8010 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 8011 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8012 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 8013 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 8014 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 8015 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 8016 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 8017 8018 // VST4 8019 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8020 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8021 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8022 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8023 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8024 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8025 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8026 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8027 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8028 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8029 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8030 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8031 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 8032 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 8033 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 8034 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 8035 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 8036 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 8037 } 8038 } 8039 8040 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 8041 switch(Opc) { 8042 default: llvm_unreachable("unexpected opcode!"); 8043 // VLD1LN 8044 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8045 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8046 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8047 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8048 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8049 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8050 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 8051 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 8052 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 8053 8054 // VLD2LN 8055 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8056 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8057 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8058 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 8059 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8060 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8061 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8062 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8063 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 8064 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8065 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 8066 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 8067 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 8068 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 8069 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 8070 8071 // VLD3DUP 8072 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8073 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8074 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8075 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 8076 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8077 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8078 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8079 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8080 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8081 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 8082 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8083 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8084 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 8085 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 8086 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 8087 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 8088 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 8089 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 8090 8091 // VLD3LN 8092 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8093 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8094 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8095 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 8096 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8097 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8098 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8099 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8100 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 8101 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8102 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 8103 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 8104 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 8105 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 8106 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 8107 8108 // VLD3 8109 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8110 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8111 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8112 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8113 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8114 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8115 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8116 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8117 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8118 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8119 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8120 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8121 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 8122 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 8123 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 8124 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 8125 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 8126 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 8127 8128 // VLD4LN 8129 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8130 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8131 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8132 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8133 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8134 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8135 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8136 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8137 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8138 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8139 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 8140 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 8141 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 8142 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 8143 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 8144 8145 // VLD4DUP 8146 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8147 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8148 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8149 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 8150 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 8151 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8152 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8153 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8154 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8155 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 8156 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 8157 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8158 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 8159 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 8160 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 8161 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 8162 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 8163 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 8164 8165 // VLD4 8166 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8167 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8168 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8169 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8170 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8171 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8172 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8173 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8174 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8175 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8176 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8177 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8178 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 8179 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 8180 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 8181 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 8182 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 8183 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 8184 } 8185 } 8186 8187 bool ARMAsmParser::processInstruction(MCInst &Inst, 8188 const OperandVector &Operands, 8189 MCStreamer &Out) { 8190 // Check if we have the wide qualifier, because if it's present we 8191 // must avoid selecting a 16-bit thumb instruction. 8192 bool HasWideQualifier = false; 8193 for (auto &Op : Operands) { 8194 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 8195 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 8196 HasWideQualifier = true; 8197 break; 8198 } 8199 } 8200 8201 switch (Inst.getOpcode()) { 8202 case ARM::MVE_VORNIZ0v4i32: 8203 case ARM::MVE_VORNIZ0v8i16: 8204 case ARM::MVE_VORNIZ8v4i32: 8205 case ARM::MVE_VORNIZ8v8i16: 8206 case ARM::MVE_VORNIZ16v4i32: 8207 case ARM::MVE_VORNIZ24v4i32: 8208 case ARM::MVE_VANDIZ0v4i32: 8209 case ARM::MVE_VANDIZ0v8i16: 8210 case ARM::MVE_VANDIZ8v4i32: 8211 case ARM::MVE_VANDIZ8v8i16: 8212 case ARM::MVE_VANDIZ16v4i32: 8213 case ARM::MVE_VANDIZ24v4i32: { 8214 unsigned Opcode; 8215 bool imm16 = false; 8216 switch(Inst.getOpcode()) { 8217 case ARM::MVE_VORNIZ0v4i32: Opcode = ARM::MVE_VORRIZ0v4i32; break; 8218 case ARM::MVE_VORNIZ0v8i16: Opcode = ARM::MVE_VORRIZ0v8i16; imm16 = true; break; 8219 case ARM::MVE_VORNIZ8v4i32: Opcode = ARM::MVE_VORRIZ8v4i32; break; 8220 case ARM::MVE_VORNIZ8v8i16: Opcode = ARM::MVE_VORRIZ8v8i16; imm16 = true; break; 8221 case ARM::MVE_VORNIZ16v4i32: Opcode = ARM::MVE_VORRIZ16v4i32; break; 8222 case ARM::MVE_VORNIZ24v4i32: Opcode = ARM::MVE_VORRIZ24v4i32; break; 8223 case ARM::MVE_VANDIZ0v4i32: Opcode = ARM::MVE_VBICIZ0v4i32; break; 8224 case ARM::MVE_VANDIZ0v8i16: Opcode = ARM::MVE_VBICIZ0v8i16; imm16 = true; break; 8225 case ARM::MVE_VANDIZ8v4i32: Opcode = ARM::MVE_VBICIZ8v4i32; break; 8226 case ARM::MVE_VANDIZ8v8i16: Opcode = ARM::MVE_VBICIZ8v8i16; imm16 = true; break; 8227 case ARM::MVE_VANDIZ16v4i32: Opcode = ARM::MVE_VBICIZ16v4i32; break; 8228 case ARM::MVE_VANDIZ24v4i32: Opcode = ARM::MVE_VBICIZ24v4i32; break; 8229 default: llvm_unreachable("unexpected opcode"); 8230 } 8231 8232 MCInst TmpInst; 8233 TmpInst.setOpcode(Opcode); 8234 TmpInst.addOperand(Inst.getOperand(0)); 8235 TmpInst.addOperand(Inst.getOperand(1)); 8236 8237 // invert immediate 8238 unsigned imm = ~Inst.getOperand(2).getImm() & (imm16 ? 0xffff : 0xffffffff); 8239 TmpInst.addOperand(MCOperand::createImm(imm)); 8240 8241 TmpInst.addOperand(Inst.getOperand(3)); 8242 TmpInst.addOperand(Inst.getOperand(4)); 8243 Inst = TmpInst; 8244 return true; 8245 } 8246 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 8247 case ARM::LDRT_POST: 8248 case ARM::LDRBT_POST: { 8249 const unsigned Opcode = 8250 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 8251 : ARM::LDRBT_POST_IMM; 8252 MCInst TmpInst; 8253 TmpInst.setOpcode(Opcode); 8254 TmpInst.addOperand(Inst.getOperand(0)); 8255 TmpInst.addOperand(Inst.getOperand(1)); 8256 TmpInst.addOperand(Inst.getOperand(1)); 8257 TmpInst.addOperand(MCOperand::createReg(0)); 8258 TmpInst.addOperand(MCOperand::createImm(0)); 8259 TmpInst.addOperand(Inst.getOperand(2)); 8260 TmpInst.addOperand(Inst.getOperand(3)); 8261 Inst = TmpInst; 8262 return true; 8263 } 8264 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 8265 case ARM::STRT_POST: 8266 case ARM::STRBT_POST: { 8267 const unsigned Opcode = 8268 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 8269 : ARM::STRBT_POST_IMM; 8270 MCInst TmpInst; 8271 TmpInst.setOpcode(Opcode); 8272 TmpInst.addOperand(Inst.getOperand(1)); 8273 TmpInst.addOperand(Inst.getOperand(0)); 8274 TmpInst.addOperand(Inst.getOperand(1)); 8275 TmpInst.addOperand(MCOperand::createReg(0)); 8276 TmpInst.addOperand(MCOperand::createImm(0)); 8277 TmpInst.addOperand(Inst.getOperand(2)); 8278 TmpInst.addOperand(Inst.getOperand(3)); 8279 Inst = TmpInst; 8280 return true; 8281 } 8282 // Alias for alternate form of 'ADR Rd, #imm' instruction. 8283 case ARM::ADDri: { 8284 if (Inst.getOperand(1).getReg() != ARM::PC || 8285 Inst.getOperand(5).getReg() != 0 || 8286 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 8287 return false; 8288 MCInst TmpInst; 8289 TmpInst.setOpcode(ARM::ADR); 8290 TmpInst.addOperand(Inst.getOperand(0)); 8291 if (Inst.getOperand(2).isImm()) { 8292 // Immediate (mod_imm) will be in its encoded form, we must unencode it 8293 // before passing it to the ADR instruction. 8294 unsigned Enc = Inst.getOperand(2).getImm(); 8295 TmpInst.addOperand(MCOperand::createImm( 8296 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 8297 } else { 8298 // Turn PC-relative expression into absolute expression. 8299 // Reading PC provides the start of the current instruction + 8 and 8300 // the transform to adr is biased by that. 8301 MCSymbol *Dot = getContext().createTempSymbol(); 8302 Out.EmitLabel(Dot); 8303 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 8304 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 8305 MCSymbolRefExpr::VK_None, 8306 getContext()); 8307 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 8308 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 8309 getContext()); 8310 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 8311 getContext()); 8312 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 8313 } 8314 TmpInst.addOperand(Inst.getOperand(3)); 8315 TmpInst.addOperand(Inst.getOperand(4)); 8316 Inst = TmpInst; 8317 return true; 8318 } 8319 // Aliases for alternate PC+imm syntax of LDR instructions. 8320 case ARM::t2LDRpcrel: 8321 // Select the narrow version if the immediate will fit. 8322 if (Inst.getOperand(1).getImm() > 0 && 8323 Inst.getOperand(1).getImm() <= 0xff && 8324 !HasWideQualifier) 8325 Inst.setOpcode(ARM::tLDRpci); 8326 else 8327 Inst.setOpcode(ARM::t2LDRpci); 8328 return true; 8329 case ARM::t2LDRBpcrel: 8330 Inst.setOpcode(ARM::t2LDRBpci); 8331 return true; 8332 case ARM::t2LDRHpcrel: 8333 Inst.setOpcode(ARM::t2LDRHpci); 8334 return true; 8335 case ARM::t2LDRSBpcrel: 8336 Inst.setOpcode(ARM::t2LDRSBpci); 8337 return true; 8338 case ARM::t2LDRSHpcrel: 8339 Inst.setOpcode(ARM::t2LDRSHpci); 8340 return true; 8341 case ARM::LDRConstPool: 8342 case ARM::tLDRConstPool: 8343 case ARM::t2LDRConstPool: { 8344 // Pseudo instruction ldr rt, =immediate is converted to a 8345 // MOV rt, immediate if immediate is known and representable 8346 // otherwise we create a constant pool entry that we load from. 8347 MCInst TmpInst; 8348 if (Inst.getOpcode() == ARM::LDRConstPool) 8349 TmpInst.setOpcode(ARM::LDRi12); 8350 else if (Inst.getOpcode() == ARM::tLDRConstPool) 8351 TmpInst.setOpcode(ARM::tLDRpci); 8352 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 8353 TmpInst.setOpcode(ARM::t2LDRpci); 8354 const ARMOperand &PoolOperand = 8355 (HasWideQualifier ? 8356 static_cast<ARMOperand &>(*Operands[4]) : 8357 static_cast<ARMOperand &>(*Operands[3])); 8358 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 8359 // If SubExprVal is a constant we may be able to use a MOV 8360 if (isa<MCConstantExpr>(SubExprVal) && 8361 Inst.getOperand(0).getReg() != ARM::PC && 8362 Inst.getOperand(0).getReg() != ARM::SP) { 8363 int64_t Value = 8364 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 8365 bool UseMov = true; 8366 bool MovHasS = true; 8367 if (Inst.getOpcode() == ARM::LDRConstPool) { 8368 // ARM Constant 8369 if (ARM_AM::getSOImmVal(Value) != -1) { 8370 Value = ARM_AM::getSOImmVal(Value); 8371 TmpInst.setOpcode(ARM::MOVi); 8372 } 8373 else if (ARM_AM::getSOImmVal(~Value) != -1) { 8374 Value = ARM_AM::getSOImmVal(~Value); 8375 TmpInst.setOpcode(ARM::MVNi); 8376 } 8377 else if (hasV6T2Ops() && 8378 Value >=0 && Value < 65536) { 8379 TmpInst.setOpcode(ARM::MOVi16); 8380 MovHasS = false; 8381 } 8382 else 8383 UseMov = false; 8384 } 8385 else { 8386 // Thumb/Thumb2 Constant 8387 if (hasThumb2() && 8388 ARM_AM::getT2SOImmVal(Value) != -1) 8389 TmpInst.setOpcode(ARM::t2MOVi); 8390 else if (hasThumb2() && 8391 ARM_AM::getT2SOImmVal(~Value) != -1) { 8392 TmpInst.setOpcode(ARM::t2MVNi); 8393 Value = ~Value; 8394 } 8395 else if (hasV8MBaseline() && 8396 Value >=0 && Value < 65536) { 8397 TmpInst.setOpcode(ARM::t2MOVi16); 8398 MovHasS = false; 8399 } 8400 else 8401 UseMov = false; 8402 } 8403 if (UseMov) { 8404 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8405 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 8406 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8407 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8408 if (MovHasS) 8409 TmpInst.addOperand(MCOperand::createReg(0)); // S 8410 Inst = TmpInst; 8411 return true; 8412 } 8413 } 8414 // No opportunity to use MOV/MVN create constant pool 8415 const MCExpr *CPLoc = 8416 getTargetStreamer().addConstantPoolEntry(SubExprVal, 8417 PoolOperand.getStartLoc()); 8418 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8419 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 8420 if (TmpInst.getOpcode() == ARM::LDRi12) 8421 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 8422 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8423 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8424 Inst = TmpInst; 8425 return true; 8426 } 8427 // Handle NEON VST complex aliases. 8428 case ARM::VST1LNdWB_register_Asm_8: 8429 case ARM::VST1LNdWB_register_Asm_16: 8430 case ARM::VST1LNdWB_register_Asm_32: { 8431 MCInst TmpInst; 8432 // Shuffle the operands around so the lane index operand is in the 8433 // right place. 8434 unsigned Spacing; 8435 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8436 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8437 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8438 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8439 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8440 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8441 TmpInst.addOperand(Inst.getOperand(1)); // lane 8442 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8443 TmpInst.addOperand(Inst.getOperand(6)); 8444 Inst = TmpInst; 8445 return true; 8446 } 8447 8448 case ARM::VST2LNdWB_register_Asm_8: 8449 case ARM::VST2LNdWB_register_Asm_16: 8450 case ARM::VST2LNdWB_register_Asm_32: 8451 case ARM::VST2LNqWB_register_Asm_16: 8452 case ARM::VST2LNqWB_register_Asm_32: { 8453 MCInst TmpInst; 8454 // Shuffle the operands around so the lane index operand is in the 8455 // right place. 8456 unsigned Spacing; 8457 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8458 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8459 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8460 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8461 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8462 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8463 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8464 Spacing)); 8465 TmpInst.addOperand(Inst.getOperand(1)); // lane 8466 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8467 TmpInst.addOperand(Inst.getOperand(6)); 8468 Inst = TmpInst; 8469 return true; 8470 } 8471 8472 case ARM::VST3LNdWB_register_Asm_8: 8473 case ARM::VST3LNdWB_register_Asm_16: 8474 case ARM::VST3LNdWB_register_Asm_32: 8475 case ARM::VST3LNqWB_register_Asm_16: 8476 case ARM::VST3LNqWB_register_Asm_32: { 8477 MCInst TmpInst; 8478 // Shuffle the operands around so the lane index operand is in the 8479 // right place. 8480 unsigned Spacing; 8481 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8482 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8483 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8484 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8485 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8486 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8487 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8488 Spacing)); 8489 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8490 Spacing * 2)); 8491 TmpInst.addOperand(Inst.getOperand(1)); // lane 8492 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8493 TmpInst.addOperand(Inst.getOperand(6)); 8494 Inst = TmpInst; 8495 return true; 8496 } 8497 8498 case ARM::VST4LNdWB_register_Asm_8: 8499 case ARM::VST4LNdWB_register_Asm_16: 8500 case ARM::VST4LNdWB_register_Asm_32: 8501 case ARM::VST4LNqWB_register_Asm_16: 8502 case ARM::VST4LNqWB_register_Asm_32: { 8503 MCInst TmpInst; 8504 // Shuffle the operands around so the lane index operand is in the 8505 // right place. 8506 unsigned Spacing; 8507 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8508 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8509 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8510 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8511 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8512 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8513 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8514 Spacing)); 8515 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8516 Spacing * 2)); 8517 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8518 Spacing * 3)); 8519 TmpInst.addOperand(Inst.getOperand(1)); // lane 8520 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8521 TmpInst.addOperand(Inst.getOperand(6)); 8522 Inst = TmpInst; 8523 return true; 8524 } 8525 8526 case ARM::VST1LNdWB_fixed_Asm_8: 8527 case ARM::VST1LNdWB_fixed_Asm_16: 8528 case ARM::VST1LNdWB_fixed_Asm_32: { 8529 MCInst TmpInst; 8530 // Shuffle the operands around so the lane index operand is in the 8531 // right place. 8532 unsigned Spacing; 8533 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8534 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8535 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8536 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8537 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8538 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8539 TmpInst.addOperand(Inst.getOperand(1)); // lane 8540 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8541 TmpInst.addOperand(Inst.getOperand(5)); 8542 Inst = TmpInst; 8543 return true; 8544 } 8545 8546 case ARM::VST2LNdWB_fixed_Asm_8: 8547 case ARM::VST2LNdWB_fixed_Asm_16: 8548 case ARM::VST2LNdWB_fixed_Asm_32: 8549 case ARM::VST2LNqWB_fixed_Asm_16: 8550 case ARM::VST2LNqWB_fixed_Asm_32: { 8551 MCInst TmpInst; 8552 // Shuffle the operands around so the lane index operand is in the 8553 // right place. 8554 unsigned Spacing; 8555 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8556 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8557 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8558 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8559 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8560 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8561 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8562 Spacing)); 8563 TmpInst.addOperand(Inst.getOperand(1)); // lane 8564 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8565 TmpInst.addOperand(Inst.getOperand(5)); 8566 Inst = TmpInst; 8567 return true; 8568 } 8569 8570 case ARM::VST3LNdWB_fixed_Asm_8: 8571 case ARM::VST3LNdWB_fixed_Asm_16: 8572 case ARM::VST3LNdWB_fixed_Asm_32: 8573 case ARM::VST3LNqWB_fixed_Asm_16: 8574 case ARM::VST3LNqWB_fixed_Asm_32: { 8575 MCInst TmpInst; 8576 // Shuffle the operands around so the lane index operand is in the 8577 // right place. 8578 unsigned Spacing; 8579 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8580 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8581 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8582 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8583 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8584 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8585 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8586 Spacing)); 8587 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8588 Spacing * 2)); 8589 TmpInst.addOperand(Inst.getOperand(1)); // lane 8590 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8591 TmpInst.addOperand(Inst.getOperand(5)); 8592 Inst = TmpInst; 8593 return true; 8594 } 8595 8596 case ARM::VST4LNdWB_fixed_Asm_8: 8597 case ARM::VST4LNdWB_fixed_Asm_16: 8598 case ARM::VST4LNdWB_fixed_Asm_32: 8599 case ARM::VST4LNqWB_fixed_Asm_16: 8600 case ARM::VST4LNqWB_fixed_Asm_32: { 8601 MCInst TmpInst; 8602 // Shuffle the operands around so the lane index operand is in the 8603 // right place. 8604 unsigned Spacing; 8605 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8606 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8607 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8608 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8609 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8610 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8611 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8612 Spacing)); 8613 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8614 Spacing * 2)); 8615 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8616 Spacing * 3)); 8617 TmpInst.addOperand(Inst.getOperand(1)); // lane 8618 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8619 TmpInst.addOperand(Inst.getOperand(5)); 8620 Inst = TmpInst; 8621 return true; 8622 } 8623 8624 case ARM::VST1LNdAsm_8: 8625 case ARM::VST1LNdAsm_16: 8626 case ARM::VST1LNdAsm_32: { 8627 MCInst TmpInst; 8628 // Shuffle the operands around so the lane index operand is in the 8629 // right place. 8630 unsigned Spacing; 8631 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8632 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8633 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8634 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8635 TmpInst.addOperand(Inst.getOperand(1)); // lane 8636 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8637 TmpInst.addOperand(Inst.getOperand(5)); 8638 Inst = TmpInst; 8639 return true; 8640 } 8641 8642 case ARM::VST2LNdAsm_8: 8643 case ARM::VST2LNdAsm_16: 8644 case ARM::VST2LNdAsm_32: 8645 case ARM::VST2LNqAsm_16: 8646 case ARM::VST2LNqAsm_32: { 8647 MCInst TmpInst; 8648 // Shuffle the operands around so the lane index operand is in the 8649 // right place. 8650 unsigned Spacing; 8651 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8652 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8653 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8654 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8655 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8656 Spacing)); 8657 TmpInst.addOperand(Inst.getOperand(1)); // lane 8658 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8659 TmpInst.addOperand(Inst.getOperand(5)); 8660 Inst = TmpInst; 8661 return true; 8662 } 8663 8664 case ARM::VST3LNdAsm_8: 8665 case ARM::VST3LNdAsm_16: 8666 case ARM::VST3LNdAsm_32: 8667 case ARM::VST3LNqAsm_16: 8668 case ARM::VST3LNqAsm_32: { 8669 MCInst TmpInst; 8670 // Shuffle the operands around so the lane index operand is in the 8671 // right place. 8672 unsigned Spacing; 8673 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8674 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8675 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8676 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8677 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8678 Spacing)); 8679 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8680 Spacing * 2)); 8681 TmpInst.addOperand(Inst.getOperand(1)); // lane 8682 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8683 TmpInst.addOperand(Inst.getOperand(5)); 8684 Inst = TmpInst; 8685 return true; 8686 } 8687 8688 case ARM::VST4LNdAsm_8: 8689 case ARM::VST4LNdAsm_16: 8690 case ARM::VST4LNdAsm_32: 8691 case ARM::VST4LNqAsm_16: 8692 case ARM::VST4LNqAsm_32: { 8693 MCInst TmpInst; 8694 // Shuffle the operands around so the lane index operand is in the 8695 // right place. 8696 unsigned Spacing; 8697 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8698 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8699 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8700 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8701 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8702 Spacing)); 8703 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8704 Spacing * 2)); 8705 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8706 Spacing * 3)); 8707 TmpInst.addOperand(Inst.getOperand(1)); // lane 8708 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8709 TmpInst.addOperand(Inst.getOperand(5)); 8710 Inst = TmpInst; 8711 return true; 8712 } 8713 8714 // Handle NEON VLD complex aliases. 8715 case ARM::VLD1LNdWB_register_Asm_8: 8716 case ARM::VLD1LNdWB_register_Asm_16: 8717 case ARM::VLD1LNdWB_register_Asm_32: { 8718 MCInst TmpInst; 8719 // Shuffle the operands around so the lane index operand is in the 8720 // right place. 8721 unsigned Spacing; 8722 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8723 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8724 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8725 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8726 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8727 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8728 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8729 TmpInst.addOperand(Inst.getOperand(1)); // lane 8730 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8731 TmpInst.addOperand(Inst.getOperand(6)); 8732 Inst = TmpInst; 8733 return true; 8734 } 8735 8736 case ARM::VLD2LNdWB_register_Asm_8: 8737 case ARM::VLD2LNdWB_register_Asm_16: 8738 case ARM::VLD2LNdWB_register_Asm_32: 8739 case ARM::VLD2LNqWB_register_Asm_16: 8740 case ARM::VLD2LNqWB_register_Asm_32: { 8741 MCInst TmpInst; 8742 // Shuffle the operands around so the lane index operand is in the 8743 // right place. 8744 unsigned Spacing; 8745 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8746 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8747 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8748 Spacing)); 8749 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8750 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8751 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8752 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8753 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8754 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8755 Spacing)); 8756 TmpInst.addOperand(Inst.getOperand(1)); // lane 8757 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8758 TmpInst.addOperand(Inst.getOperand(6)); 8759 Inst = TmpInst; 8760 return true; 8761 } 8762 8763 case ARM::VLD3LNdWB_register_Asm_8: 8764 case ARM::VLD3LNdWB_register_Asm_16: 8765 case ARM::VLD3LNdWB_register_Asm_32: 8766 case ARM::VLD3LNqWB_register_Asm_16: 8767 case ARM::VLD3LNqWB_register_Asm_32: { 8768 MCInst TmpInst; 8769 // Shuffle the operands around so the lane index operand is in the 8770 // right place. 8771 unsigned Spacing; 8772 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8773 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8774 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8775 Spacing)); 8776 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8777 Spacing * 2)); 8778 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8779 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8780 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8781 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8782 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8783 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8784 Spacing)); 8785 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8786 Spacing * 2)); 8787 TmpInst.addOperand(Inst.getOperand(1)); // lane 8788 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8789 TmpInst.addOperand(Inst.getOperand(6)); 8790 Inst = TmpInst; 8791 return true; 8792 } 8793 8794 case ARM::VLD4LNdWB_register_Asm_8: 8795 case ARM::VLD4LNdWB_register_Asm_16: 8796 case ARM::VLD4LNdWB_register_Asm_32: 8797 case ARM::VLD4LNqWB_register_Asm_16: 8798 case ARM::VLD4LNqWB_register_Asm_32: { 8799 MCInst TmpInst; 8800 // Shuffle the operands around so the lane index operand is in the 8801 // right place. 8802 unsigned Spacing; 8803 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8804 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8805 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8806 Spacing)); 8807 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8808 Spacing * 2)); 8809 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8810 Spacing * 3)); 8811 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8812 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8813 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8814 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8815 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8816 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8817 Spacing)); 8818 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8819 Spacing * 2)); 8820 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8821 Spacing * 3)); 8822 TmpInst.addOperand(Inst.getOperand(1)); // lane 8823 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8824 TmpInst.addOperand(Inst.getOperand(6)); 8825 Inst = TmpInst; 8826 return true; 8827 } 8828 8829 case ARM::VLD1LNdWB_fixed_Asm_8: 8830 case ARM::VLD1LNdWB_fixed_Asm_16: 8831 case ARM::VLD1LNdWB_fixed_Asm_32: { 8832 MCInst TmpInst; 8833 // Shuffle the operands around so the lane index operand is in the 8834 // right place. 8835 unsigned Spacing; 8836 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8837 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8838 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8839 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8840 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8841 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8842 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8843 TmpInst.addOperand(Inst.getOperand(1)); // lane 8844 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8845 TmpInst.addOperand(Inst.getOperand(5)); 8846 Inst = TmpInst; 8847 return true; 8848 } 8849 8850 case ARM::VLD2LNdWB_fixed_Asm_8: 8851 case ARM::VLD2LNdWB_fixed_Asm_16: 8852 case ARM::VLD2LNdWB_fixed_Asm_32: 8853 case ARM::VLD2LNqWB_fixed_Asm_16: 8854 case ARM::VLD2LNqWB_fixed_Asm_32: { 8855 MCInst TmpInst; 8856 // Shuffle the operands around so the lane index operand is in the 8857 // right place. 8858 unsigned Spacing; 8859 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8860 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8861 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8862 Spacing)); 8863 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8864 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8865 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8866 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8867 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8868 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8869 Spacing)); 8870 TmpInst.addOperand(Inst.getOperand(1)); // lane 8871 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8872 TmpInst.addOperand(Inst.getOperand(5)); 8873 Inst = TmpInst; 8874 return true; 8875 } 8876 8877 case ARM::VLD3LNdWB_fixed_Asm_8: 8878 case ARM::VLD3LNdWB_fixed_Asm_16: 8879 case ARM::VLD3LNdWB_fixed_Asm_32: 8880 case ARM::VLD3LNqWB_fixed_Asm_16: 8881 case ARM::VLD3LNqWB_fixed_Asm_32: { 8882 MCInst TmpInst; 8883 // Shuffle the operands around so the lane index operand is in the 8884 // right place. 8885 unsigned Spacing; 8886 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8887 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8888 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8889 Spacing)); 8890 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8891 Spacing * 2)); 8892 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8893 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8894 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8895 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8896 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8897 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8898 Spacing)); 8899 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8900 Spacing * 2)); 8901 TmpInst.addOperand(Inst.getOperand(1)); // lane 8902 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8903 TmpInst.addOperand(Inst.getOperand(5)); 8904 Inst = TmpInst; 8905 return true; 8906 } 8907 8908 case ARM::VLD4LNdWB_fixed_Asm_8: 8909 case ARM::VLD4LNdWB_fixed_Asm_16: 8910 case ARM::VLD4LNdWB_fixed_Asm_32: 8911 case ARM::VLD4LNqWB_fixed_Asm_16: 8912 case ARM::VLD4LNqWB_fixed_Asm_32: { 8913 MCInst TmpInst; 8914 // Shuffle the operands around so the lane index operand is in the 8915 // right place. 8916 unsigned Spacing; 8917 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8918 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8919 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8920 Spacing)); 8921 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8922 Spacing * 2)); 8923 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8924 Spacing * 3)); 8925 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8926 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8927 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8928 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8929 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8930 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8931 Spacing)); 8932 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8933 Spacing * 2)); 8934 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8935 Spacing * 3)); 8936 TmpInst.addOperand(Inst.getOperand(1)); // lane 8937 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8938 TmpInst.addOperand(Inst.getOperand(5)); 8939 Inst = TmpInst; 8940 return true; 8941 } 8942 8943 case ARM::VLD1LNdAsm_8: 8944 case ARM::VLD1LNdAsm_16: 8945 case ARM::VLD1LNdAsm_32: { 8946 MCInst TmpInst; 8947 // Shuffle the operands around so the lane index operand is in the 8948 // right place. 8949 unsigned Spacing; 8950 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8951 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8952 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8953 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8954 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8955 TmpInst.addOperand(Inst.getOperand(1)); // lane 8956 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8957 TmpInst.addOperand(Inst.getOperand(5)); 8958 Inst = TmpInst; 8959 return true; 8960 } 8961 8962 case ARM::VLD2LNdAsm_8: 8963 case ARM::VLD2LNdAsm_16: 8964 case ARM::VLD2LNdAsm_32: 8965 case ARM::VLD2LNqAsm_16: 8966 case ARM::VLD2LNqAsm_32: { 8967 MCInst TmpInst; 8968 // Shuffle the operands around so the lane index operand is in the 8969 // right place. 8970 unsigned Spacing; 8971 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8972 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8973 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8974 Spacing)); 8975 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8976 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8977 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8978 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8979 Spacing)); 8980 TmpInst.addOperand(Inst.getOperand(1)); // lane 8981 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8982 TmpInst.addOperand(Inst.getOperand(5)); 8983 Inst = TmpInst; 8984 return true; 8985 } 8986 8987 case ARM::VLD3LNdAsm_8: 8988 case ARM::VLD3LNdAsm_16: 8989 case ARM::VLD3LNdAsm_32: 8990 case ARM::VLD3LNqAsm_16: 8991 case ARM::VLD3LNqAsm_32: { 8992 MCInst TmpInst; 8993 // Shuffle the operands around so the lane index operand is in the 8994 // right place. 8995 unsigned Spacing; 8996 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8997 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8998 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8999 Spacing)); 9000 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9001 Spacing * 2)); 9002 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9003 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9004 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9005 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9006 Spacing)); 9007 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9008 Spacing * 2)); 9009 TmpInst.addOperand(Inst.getOperand(1)); // lane 9010 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9011 TmpInst.addOperand(Inst.getOperand(5)); 9012 Inst = TmpInst; 9013 return true; 9014 } 9015 9016 case ARM::VLD4LNdAsm_8: 9017 case ARM::VLD4LNdAsm_16: 9018 case ARM::VLD4LNdAsm_32: 9019 case ARM::VLD4LNqAsm_16: 9020 case ARM::VLD4LNqAsm_32: { 9021 MCInst TmpInst; 9022 // Shuffle the operands around so the lane index operand is in the 9023 // right place. 9024 unsigned Spacing; 9025 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9026 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9027 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9028 Spacing)); 9029 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9030 Spacing * 2)); 9031 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9032 Spacing * 3)); 9033 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9034 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9035 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9036 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9037 Spacing)); 9038 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9039 Spacing * 2)); 9040 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9041 Spacing * 3)); 9042 TmpInst.addOperand(Inst.getOperand(1)); // lane 9043 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9044 TmpInst.addOperand(Inst.getOperand(5)); 9045 Inst = TmpInst; 9046 return true; 9047 } 9048 9049 // VLD3DUP single 3-element structure to all lanes instructions. 9050 case ARM::VLD3DUPdAsm_8: 9051 case ARM::VLD3DUPdAsm_16: 9052 case ARM::VLD3DUPdAsm_32: 9053 case ARM::VLD3DUPqAsm_8: 9054 case ARM::VLD3DUPqAsm_16: 9055 case ARM::VLD3DUPqAsm_32: { 9056 MCInst TmpInst; 9057 unsigned Spacing; 9058 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9059 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9060 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9061 Spacing)); 9062 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9063 Spacing * 2)); 9064 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9065 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9066 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9067 TmpInst.addOperand(Inst.getOperand(4)); 9068 Inst = TmpInst; 9069 return true; 9070 } 9071 9072 case ARM::VLD3DUPdWB_fixed_Asm_8: 9073 case ARM::VLD3DUPdWB_fixed_Asm_16: 9074 case ARM::VLD3DUPdWB_fixed_Asm_32: 9075 case ARM::VLD3DUPqWB_fixed_Asm_8: 9076 case ARM::VLD3DUPqWB_fixed_Asm_16: 9077 case ARM::VLD3DUPqWB_fixed_Asm_32: { 9078 MCInst TmpInst; 9079 unsigned Spacing; 9080 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9081 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9082 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9083 Spacing)); 9084 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9085 Spacing * 2)); 9086 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9087 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9088 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9089 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9090 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9091 TmpInst.addOperand(Inst.getOperand(4)); 9092 Inst = TmpInst; 9093 return true; 9094 } 9095 9096 case ARM::VLD3DUPdWB_register_Asm_8: 9097 case ARM::VLD3DUPdWB_register_Asm_16: 9098 case ARM::VLD3DUPdWB_register_Asm_32: 9099 case ARM::VLD3DUPqWB_register_Asm_8: 9100 case ARM::VLD3DUPqWB_register_Asm_16: 9101 case ARM::VLD3DUPqWB_register_Asm_32: { 9102 MCInst TmpInst; 9103 unsigned Spacing; 9104 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9105 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9106 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9107 Spacing)); 9108 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9109 Spacing * 2)); 9110 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9111 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9112 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9113 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9114 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9115 TmpInst.addOperand(Inst.getOperand(5)); 9116 Inst = TmpInst; 9117 return true; 9118 } 9119 9120 // VLD3 multiple 3-element structure instructions. 9121 case ARM::VLD3dAsm_8: 9122 case ARM::VLD3dAsm_16: 9123 case ARM::VLD3dAsm_32: 9124 case ARM::VLD3qAsm_8: 9125 case ARM::VLD3qAsm_16: 9126 case ARM::VLD3qAsm_32: { 9127 MCInst TmpInst; 9128 unsigned Spacing; 9129 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9130 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9131 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9132 Spacing)); 9133 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9134 Spacing * 2)); 9135 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9136 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9137 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9138 TmpInst.addOperand(Inst.getOperand(4)); 9139 Inst = TmpInst; 9140 return true; 9141 } 9142 9143 case ARM::VLD3dWB_fixed_Asm_8: 9144 case ARM::VLD3dWB_fixed_Asm_16: 9145 case ARM::VLD3dWB_fixed_Asm_32: 9146 case ARM::VLD3qWB_fixed_Asm_8: 9147 case ARM::VLD3qWB_fixed_Asm_16: 9148 case ARM::VLD3qWB_fixed_Asm_32: { 9149 MCInst TmpInst; 9150 unsigned Spacing; 9151 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9152 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9153 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9154 Spacing)); 9155 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9156 Spacing * 2)); 9157 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9158 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9159 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9160 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9161 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9162 TmpInst.addOperand(Inst.getOperand(4)); 9163 Inst = TmpInst; 9164 return true; 9165 } 9166 9167 case ARM::VLD3dWB_register_Asm_8: 9168 case ARM::VLD3dWB_register_Asm_16: 9169 case ARM::VLD3dWB_register_Asm_32: 9170 case ARM::VLD3qWB_register_Asm_8: 9171 case ARM::VLD3qWB_register_Asm_16: 9172 case ARM::VLD3qWB_register_Asm_32: { 9173 MCInst TmpInst; 9174 unsigned Spacing; 9175 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9176 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9177 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9178 Spacing)); 9179 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9180 Spacing * 2)); 9181 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9182 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9183 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9184 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9185 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9186 TmpInst.addOperand(Inst.getOperand(5)); 9187 Inst = TmpInst; 9188 return true; 9189 } 9190 9191 // VLD4DUP single 3-element structure to all lanes instructions. 9192 case ARM::VLD4DUPdAsm_8: 9193 case ARM::VLD4DUPdAsm_16: 9194 case ARM::VLD4DUPdAsm_32: 9195 case ARM::VLD4DUPqAsm_8: 9196 case ARM::VLD4DUPqAsm_16: 9197 case ARM::VLD4DUPqAsm_32: { 9198 MCInst TmpInst; 9199 unsigned Spacing; 9200 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9201 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9202 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9203 Spacing)); 9204 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9205 Spacing * 2)); 9206 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9207 Spacing * 3)); 9208 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9209 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9210 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9211 TmpInst.addOperand(Inst.getOperand(4)); 9212 Inst = TmpInst; 9213 return true; 9214 } 9215 9216 case ARM::VLD4DUPdWB_fixed_Asm_8: 9217 case ARM::VLD4DUPdWB_fixed_Asm_16: 9218 case ARM::VLD4DUPdWB_fixed_Asm_32: 9219 case ARM::VLD4DUPqWB_fixed_Asm_8: 9220 case ARM::VLD4DUPqWB_fixed_Asm_16: 9221 case ARM::VLD4DUPqWB_fixed_Asm_32: { 9222 MCInst TmpInst; 9223 unsigned Spacing; 9224 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9225 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9226 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9227 Spacing)); 9228 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9229 Spacing * 2)); 9230 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9231 Spacing * 3)); 9232 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9233 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9234 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9235 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9236 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9237 TmpInst.addOperand(Inst.getOperand(4)); 9238 Inst = TmpInst; 9239 return true; 9240 } 9241 9242 case ARM::VLD4DUPdWB_register_Asm_8: 9243 case ARM::VLD4DUPdWB_register_Asm_16: 9244 case ARM::VLD4DUPdWB_register_Asm_32: 9245 case ARM::VLD4DUPqWB_register_Asm_8: 9246 case ARM::VLD4DUPqWB_register_Asm_16: 9247 case ARM::VLD4DUPqWB_register_Asm_32: { 9248 MCInst TmpInst; 9249 unsigned Spacing; 9250 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9251 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9252 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9253 Spacing)); 9254 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9255 Spacing * 2)); 9256 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9257 Spacing * 3)); 9258 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9259 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9260 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9261 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9262 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9263 TmpInst.addOperand(Inst.getOperand(5)); 9264 Inst = TmpInst; 9265 return true; 9266 } 9267 9268 // VLD4 multiple 4-element structure instructions. 9269 case ARM::VLD4dAsm_8: 9270 case ARM::VLD4dAsm_16: 9271 case ARM::VLD4dAsm_32: 9272 case ARM::VLD4qAsm_8: 9273 case ARM::VLD4qAsm_16: 9274 case ARM::VLD4qAsm_32: { 9275 MCInst TmpInst; 9276 unsigned Spacing; 9277 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9278 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9279 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9280 Spacing)); 9281 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9282 Spacing * 2)); 9283 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9284 Spacing * 3)); 9285 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9286 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9287 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9288 TmpInst.addOperand(Inst.getOperand(4)); 9289 Inst = TmpInst; 9290 return true; 9291 } 9292 9293 case ARM::VLD4dWB_fixed_Asm_8: 9294 case ARM::VLD4dWB_fixed_Asm_16: 9295 case ARM::VLD4dWB_fixed_Asm_32: 9296 case ARM::VLD4qWB_fixed_Asm_8: 9297 case ARM::VLD4qWB_fixed_Asm_16: 9298 case ARM::VLD4qWB_fixed_Asm_32: { 9299 MCInst TmpInst; 9300 unsigned Spacing; 9301 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9302 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9303 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9304 Spacing)); 9305 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9306 Spacing * 2)); 9307 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9308 Spacing * 3)); 9309 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9310 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9311 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9312 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9313 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9314 TmpInst.addOperand(Inst.getOperand(4)); 9315 Inst = TmpInst; 9316 return true; 9317 } 9318 9319 case ARM::VLD4dWB_register_Asm_8: 9320 case ARM::VLD4dWB_register_Asm_16: 9321 case ARM::VLD4dWB_register_Asm_32: 9322 case ARM::VLD4qWB_register_Asm_8: 9323 case ARM::VLD4qWB_register_Asm_16: 9324 case ARM::VLD4qWB_register_Asm_32: { 9325 MCInst TmpInst; 9326 unsigned Spacing; 9327 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9328 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9329 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9330 Spacing)); 9331 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9332 Spacing * 2)); 9333 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9334 Spacing * 3)); 9335 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9336 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9337 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9338 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9339 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9340 TmpInst.addOperand(Inst.getOperand(5)); 9341 Inst = TmpInst; 9342 return true; 9343 } 9344 9345 // VST3 multiple 3-element structure instructions. 9346 case ARM::VST3dAsm_8: 9347 case ARM::VST3dAsm_16: 9348 case ARM::VST3dAsm_32: 9349 case ARM::VST3qAsm_8: 9350 case ARM::VST3qAsm_16: 9351 case ARM::VST3qAsm_32: { 9352 MCInst TmpInst; 9353 unsigned Spacing; 9354 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9355 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9356 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9357 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9358 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9359 Spacing)); 9360 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9361 Spacing * 2)); 9362 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9363 TmpInst.addOperand(Inst.getOperand(4)); 9364 Inst = TmpInst; 9365 return true; 9366 } 9367 9368 case ARM::VST3dWB_fixed_Asm_8: 9369 case ARM::VST3dWB_fixed_Asm_16: 9370 case ARM::VST3dWB_fixed_Asm_32: 9371 case ARM::VST3qWB_fixed_Asm_8: 9372 case ARM::VST3qWB_fixed_Asm_16: 9373 case ARM::VST3qWB_fixed_Asm_32: { 9374 MCInst TmpInst; 9375 unsigned Spacing; 9376 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9377 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9378 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9379 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9380 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9381 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9382 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9383 Spacing)); 9384 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9385 Spacing * 2)); 9386 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9387 TmpInst.addOperand(Inst.getOperand(4)); 9388 Inst = TmpInst; 9389 return true; 9390 } 9391 9392 case ARM::VST3dWB_register_Asm_8: 9393 case ARM::VST3dWB_register_Asm_16: 9394 case ARM::VST3dWB_register_Asm_32: 9395 case ARM::VST3qWB_register_Asm_8: 9396 case ARM::VST3qWB_register_Asm_16: 9397 case ARM::VST3qWB_register_Asm_32: { 9398 MCInst TmpInst; 9399 unsigned Spacing; 9400 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9401 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9402 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9403 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9404 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9405 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9406 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9407 Spacing)); 9408 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9409 Spacing * 2)); 9410 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9411 TmpInst.addOperand(Inst.getOperand(5)); 9412 Inst = TmpInst; 9413 return true; 9414 } 9415 9416 // VST4 multiple 3-element structure instructions. 9417 case ARM::VST4dAsm_8: 9418 case ARM::VST4dAsm_16: 9419 case ARM::VST4dAsm_32: 9420 case ARM::VST4qAsm_8: 9421 case ARM::VST4qAsm_16: 9422 case ARM::VST4qAsm_32: { 9423 MCInst TmpInst; 9424 unsigned Spacing; 9425 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9426 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9427 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9428 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9429 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9430 Spacing)); 9431 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9432 Spacing * 2)); 9433 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9434 Spacing * 3)); 9435 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9436 TmpInst.addOperand(Inst.getOperand(4)); 9437 Inst = TmpInst; 9438 return true; 9439 } 9440 9441 case ARM::VST4dWB_fixed_Asm_8: 9442 case ARM::VST4dWB_fixed_Asm_16: 9443 case ARM::VST4dWB_fixed_Asm_32: 9444 case ARM::VST4qWB_fixed_Asm_8: 9445 case ARM::VST4qWB_fixed_Asm_16: 9446 case ARM::VST4qWB_fixed_Asm_32: { 9447 MCInst TmpInst; 9448 unsigned Spacing; 9449 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9450 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9451 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9452 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9453 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9454 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9455 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9456 Spacing)); 9457 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9458 Spacing * 2)); 9459 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9460 Spacing * 3)); 9461 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9462 TmpInst.addOperand(Inst.getOperand(4)); 9463 Inst = TmpInst; 9464 return true; 9465 } 9466 9467 case ARM::VST4dWB_register_Asm_8: 9468 case ARM::VST4dWB_register_Asm_16: 9469 case ARM::VST4dWB_register_Asm_32: 9470 case ARM::VST4qWB_register_Asm_8: 9471 case ARM::VST4qWB_register_Asm_16: 9472 case ARM::VST4qWB_register_Asm_32: { 9473 MCInst TmpInst; 9474 unsigned Spacing; 9475 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9476 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9477 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9478 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9479 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9480 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9481 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9482 Spacing)); 9483 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9484 Spacing * 2)); 9485 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9486 Spacing * 3)); 9487 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9488 TmpInst.addOperand(Inst.getOperand(5)); 9489 Inst = TmpInst; 9490 return true; 9491 } 9492 9493 // Handle encoding choice for the shift-immediate instructions. 9494 case ARM::t2LSLri: 9495 case ARM::t2LSRri: 9496 case ARM::t2ASRri: 9497 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9498 isARMLowRegister(Inst.getOperand(1).getReg()) && 9499 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9500 !HasWideQualifier) { 9501 unsigned NewOpc; 9502 switch (Inst.getOpcode()) { 9503 default: llvm_unreachable("unexpected opcode"); 9504 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 9505 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 9506 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 9507 } 9508 // The Thumb1 operands aren't in the same order. Awesome, eh? 9509 MCInst TmpInst; 9510 TmpInst.setOpcode(NewOpc); 9511 TmpInst.addOperand(Inst.getOperand(0)); 9512 TmpInst.addOperand(Inst.getOperand(5)); 9513 TmpInst.addOperand(Inst.getOperand(1)); 9514 TmpInst.addOperand(Inst.getOperand(2)); 9515 TmpInst.addOperand(Inst.getOperand(3)); 9516 TmpInst.addOperand(Inst.getOperand(4)); 9517 Inst = TmpInst; 9518 return true; 9519 } 9520 return false; 9521 9522 // Handle the Thumb2 mode MOV complex aliases. 9523 case ARM::t2MOVsr: 9524 case ARM::t2MOVSsr: { 9525 // Which instruction to expand to depends on the CCOut operand and 9526 // whether we're in an IT block if the register operands are low 9527 // registers. 9528 bool isNarrow = false; 9529 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9530 isARMLowRegister(Inst.getOperand(1).getReg()) && 9531 isARMLowRegister(Inst.getOperand(2).getReg()) && 9532 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 9533 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 9534 !HasWideQualifier) 9535 isNarrow = true; 9536 MCInst TmpInst; 9537 unsigned newOpc; 9538 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 9539 default: llvm_unreachable("unexpected opcode!"); 9540 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 9541 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 9542 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 9543 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 9544 } 9545 TmpInst.setOpcode(newOpc); 9546 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9547 if (isNarrow) 9548 TmpInst.addOperand(MCOperand::createReg( 9549 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9550 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9551 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9552 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9553 TmpInst.addOperand(Inst.getOperand(5)); 9554 if (!isNarrow) 9555 TmpInst.addOperand(MCOperand::createReg( 9556 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9557 Inst = TmpInst; 9558 return true; 9559 } 9560 case ARM::t2MOVsi: 9561 case ARM::t2MOVSsi: { 9562 // Which instruction to expand to depends on the CCOut operand and 9563 // whether we're in an IT block if the register operands are low 9564 // registers. 9565 bool isNarrow = false; 9566 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9567 isARMLowRegister(Inst.getOperand(1).getReg()) && 9568 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 9569 !HasWideQualifier) 9570 isNarrow = true; 9571 MCInst TmpInst; 9572 unsigned newOpc; 9573 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 9574 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 9575 bool isMov = false; 9576 // MOV rd, rm, LSL #0 is actually a MOV instruction 9577 if (Shift == ARM_AM::lsl && Amount == 0) { 9578 isMov = true; 9579 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 9580 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 9581 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 9582 // instead. 9583 if (inITBlock()) { 9584 isNarrow = false; 9585 } 9586 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 9587 } else { 9588 switch(Shift) { 9589 default: llvm_unreachable("unexpected opcode!"); 9590 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 9591 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 9592 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 9593 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 9594 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 9595 } 9596 } 9597 if (Amount == 32) Amount = 0; 9598 TmpInst.setOpcode(newOpc); 9599 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9600 if (isNarrow && !isMov) 9601 TmpInst.addOperand(MCOperand::createReg( 9602 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9603 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9604 if (newOpc != ARM::t2RRX && !isMov) 9605 TmpInst.addOperand(MCOperand::createImm(Amount)); 9606 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9607 TmpInst.addOperand(Inst.getOperand(4)); 9608 if (!isNarrow) 9609 TmpInst.addOperand(MCOperand::createReg( 9610 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9611 Inst = TmpInst; 9612 return true; 9613 } 9614 // Handle the ARM mode MOV complex aliases. 9615 case ARM::ASRr: 9616 case ARM::LSRr: 9617 case ARM::LSLr: 9618 case ARM::RORr: { 9619 ARM_AM::ShiftOpc ShiftTy; 9620 switch(Inst.getOpcode()) { 9621 default: llvm_unreachable("unexpected opcode!"); 9622 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 9623 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 9624 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 9625 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 9626 } 9627 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 9628 MCInst TmpInst; 9629 TmpInst.setOpcode(ARM::MOVsr); 9630 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9631 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9632 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9633 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9634 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9635 TmpInst.addOperand(Inst.getOperand(4)); 9636 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9637 Inst = TmpInst; 9638 return true; 9639 } 9640 case ARM::ASRi: 9641 case ARM::LSRi: 9642 case ARM::LSLi: 9643 case ARM::RORi: { 9644 ARM_AM::ShiftOpc ShiftTy; 9645 switch(Inst.getOpcode()) { 9646 default: llvm_unreachable("unexpected opcode!"); 9647 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 9648 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 9649 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 9650 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 9651 } 9652 // A shift by zero is a plain MOVr, not a MOVsi. 9653 unsigned Amt = Inst.getOperand(2).getImm(); 9654 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 9655 // A shift by 32 should be encoded as 0 when permitted 9656 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 9657 Amt = 0; 9658 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 9659 MCInst TmpInst; 9660 TmpInst.setOpcode(Opc); 9661 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9662 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9663 if (Opc == ARM::MOVsi) 9664 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9665 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9666 TmpInst.addOperand(Inst.getOperand(4)); 9667 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9668 Inst = TmpInst; 9669 return true; 9670 } 9671 case ARM::RRXi: { 9672 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 9673 MCInst TmpInst; 9674 TmpInst.setOpcode(ARM::MOVsi); 9675 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9676 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9677 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9678 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9679 TmpInst.addOperand(Inst.getOperand(3)); 9680 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 9681 Inst = TmpInst; 9682 return true; 9683 } 9684 case ARM::t2LDMIA_UPD: { 9685 // If this is a load of a single register, then we should use 9686 // a post-indexed LDR instruction instead, per the ARM ARM. 9687 if (Inst.getNumOperands() != 5) 9688 return false; 9689 MCInst TmpInst; 9690 TmpInst.setOpcode(ARM::t2LDR_POST); 9691 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9692 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9693 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9694 TmpInst.addOperand(MCOperand::createImm(4)); 9695 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9696 TmpInst.addOperand(Inst.getOperand(3)); 9697 Inst = TmpInst; 9698 return true; 9699 } 9700 case ARM::t2STMDB_UPD: { 9701 // If this is a store of a single register, then we should use 9702 // a pre-indexed STR instruction instead, per the ARM ARM. 9703 if (Inst.getNumOperands() != 5) 9704 return false; 9705 MCInst TmpInst; 9706 TmpInst.setOpcode(ARM::t2STR_PRE); 9707 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9708 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9709 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9710 TmpInst.addOperand(MCOperand::createImm(-4)); 9711 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9712 TmpInst.addOperand(Inst.getOperand(3)); 9713 Inst = TmpInst; 9714 return true; 9715 } 9716 case ARM::LDMIA_UPD: 9717 // If this is a load of a single register via a 'pop', then we should use 9718 // a post-indexed LDR instruction instead, per the ARM ARM. 9719 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 9720 Inst.getNumOperands() == 5) { 9721 MCInst TmpInst; 9722 TmpInst.setOpcode(ARM::LDR_POST_IMM); 9723 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9724 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9725 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9726 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 9727 TmpInst.addOperand(MCOperand::createImm(4)); 9728 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9729 TmpInst.addOperand(Inst.getOperand(3)); 9730 Inst = TmpInst; 9731 return true; 9732 } 9733 break; 9734 case ARM::STMDB_UPD: 9735 // If this is a store of a single register via a 'push', then we should use 9736 // a pre-indexed STR instruction instead, per the ARM ARM. 9737 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 9738 Inst.getNumOperands() == 5) { 9739 MCInst TmpInst; 9740 TmpInst.setOpcode(ARM::STR_PRE_IMM); 9741 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9742 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9743 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 9744 TmpInst.addOperand(MCOperand::createImm(-4)); 9745 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9746 TmpInst.addOperand(Inst.getOperand(3)); 9747 Inst = TmpInst; 9748 } 9749 break; 9750 case ARM::t2ADDri12: 9751 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 9752 // mnemonic was used (not "addw"), encoding T3 is preferred. 9753 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 9754 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 9755 break; 9756 Inst.setOpcode(ARM::t2ADDri); 9757 Inst.addOperand(MCOperand::createReg(0)); // cc_out 9758 break; 9759 case ARM::t2SUBri12: 9760 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 9761 // mnemonic was used (not "subw"), encoding T3 is preferred. 9762 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 9763 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 9764 break; 9765 Inst.setOpcode(ARM::t2SUBri); 9766 Inst.addOperand(MCOperand::createReg(0)); // cc_out 9767 break; 9768 case ARM::tADDi8: 9769 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 9770 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 9771 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 9772 // to encoding T1 if <Rd> is omitted." 9773 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 9774 Inst.setOpcode(ARM::tADDi3); 9775 return true; 9776 } 9777 break; 9778 case ARM::tSUBi8: 9779 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 9780 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 9781 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 9782 // to encoding T1 if <Rd> is omitted." 9783 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 9784 Inst.setOpcode(ARM::tSUBi3); 9785 return true; 9786 } 9787 break; 9788 case ARM::t2ADDri: 9789 case ARM::t2SUBri: { 9790 // If the destination and first source operand are the same, and 9791 // the flags are compatible with the current IT status, use encoding T2 9792 // instead of T3. For compatibility with the system 'as'. Make sure the 9793 // wide encoding wasn't explicit. 9794 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 9795 !isARMLowRegister(Inst.getOperand(0).getReg()) || 9796 (Inst.getOperand(2).isImm() && 9797 (unsigned)Inst.getOperand(2).getImm() > 255) || 9798 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 9799 HasWideQualifier) 9800 break; 9801 MCInst TmpInst; 9802 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 9803 ARM::tADDi8 : ARM::tSUBi8); 9804 TmpInst.addOperand(Inst.getOperand(0)); 9805 TmpInst.addOperand(Inst.getOperand(5)); 9806 TmpInst.addOperand(Inst.getOperand(0)); 9807 TmpInst.addOperand(Inst.getOperand(2)); 9808 TmpInst.addOperand(Inst.getOperand(3)); 9809 TmpInst.addOperand(Inst.getOperand(4)); 9810 Inst = TmpInst; 9811 return true; 9812 } 9813 case ARM::t2ADDrr: { 9814 // If the destination and first source operand are the same, and 9815 // there's no setting of the flags, use encoding T2 instead of T3. 9816 // Note that this is only for ADD, not SUB. This mirrors the system 9817 // 'as' behaviour. Also take advantage of ADD being commutative. 9818 // Make sure the wide encoding wasn't explicit. 9819 bool Swap = false; 9820 auto DestReg = Inst.getOperand(0).getReg(); 9821 bool Transform = DestReg == Inst.getOperand(1).getReg(); 9822 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 9823 Transform = true; 9824 Swap = true; 9825 } 9826 if (!Transform || 9827 Inst.getOperand(5).getReg() != 0 || 9828 HasWideQualifier) 9829 break; 9830 MCInst TmpInst; 9831 TmpInst.setOpcode(ARM::tADDhirr); 9832 TmpInst.addOperand(Inst.getOperand(0)); 9833 TmpInst.addOperand(Inst.getOperand(0)); 9834 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 9835 TmpInst.addOperand(Inst.getOperand(3)); 9836 TmpInst.addOperand(Inst.getOperand(4)); 9837 Inst = TmpInst; 9838 return true; 9839 } 9840 case ARM::tADDrSP: 9841 // If the non-SP source operand and the destination operand are not the 9842 // same, we need to use the 32-bit encoding if it's available. 9843 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 9844 Inst.setOpcode(ARM::t2ADDrr); 9845 Inst.addOperand(MCOperand::createReg(0)); // cc_out 9846 return true; 9847 } 9848 break; 9849 case ARM::tB: 9850 // A Thumb conditional branch outside of an IT block is a tBcc. 9851 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 9852 Inst.setOpcode(ARM::tBcc); 9853 return true; 9854 } 9855 break; 9856 case ARM::t2B: 9857 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 9858 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 9859 Inst.setOpcode(ARM::t2Bcc); 9860 return true; 9861 } 9862 break; 9863 case ARM::t2Bcc: 9864 // If the conditional is AL or we're in an IT block, we really want t2B. 9865 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 9866 Inst.setOpcode(ARM::t2B); 9867 return true; 9868 } 9869 break; 9870 case ARM::tBcc: 9871 // If the conditional is AL, we really want tB. 9872 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 9873 Inst.setOpcode(ARM::tB); 9874 return true; 9875 } 9876 break; 9877 case ARM::tLDMIA: { 9878 // If the register list contains any high registers, or if the writeback 9879 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 9880 // instead if we're in Thumb2. Otherwise, this should have generated 9881 // an error in validateInstruction(). 9882 unsigned Rn = Inst.getOperand(0).getReg(); 9883 bool hasWritebackToken = 9884 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 9885 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 9886 bool listContainsBase; 9887 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 9888 (!listContainsBase && !hasWritebackToken) || 9889 (listContainsBase && hasWritebackToken)) { 9890 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 9891 assert(isThumbTwo()); 9892 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 9893 // If we're switching to the updating version, we need to insert 9894 // the writeback tied operand. 9895 if (hasWritebackToken) 9896 Inst.insert(Inst.begin(), 9897 MCOperand::createReg(Inst.getOperand(0).getReg())); 9898 return true; 9899 } 9900 break; 9901 } 9902 case ARM::tSTMIA_UPD: { 9903 // If the register list contains any high registers, we need to use 9904 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 9905 // should have generated an error in validateInstruction(). 9906 unsigned Rn = Inst.getOperand(0).getReg(); 9907 bool listContainsBase; 9908 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 9909 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 9910 assert(isThumbTwo()); 9911 Inst.setOpcode(ARM::t2STMIA_UPD); 9912 return true; 9913 } 9914 break; 9915 } 9916 case ARM::tPOP: { 9917 bool listContainsBase; 9918 // If the register list contains any high registers, we need to use 9919 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 9920 // should have generated an error in validateInstruction(). 9921 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 9922 return false; 9923 assert(isThumbTwo()); 9924 Inst.setOpcode(ARM::t2LDMIA_UPD); 9925 // Add the base register and writeback operands. 9926 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9927 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9928 return true; 9929 } 9930 case ARM::tPUSH: { 9931 bool listContainsBase; 9932 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 9933 return false; 9934 assert(isThumbTwo()); 9935 Inst.setOpcode(ARM::t2STMDB_UPD); 9936 // Add the base register and writeback operands. 9937 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9938 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9939 return true; 9940 } 9941 case ARM::t2MOVi: 9942 // If we can use the 16-bit encoding and the user didn't explicitly 9943 // request the 32-bit variant, transform it here. 9944 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9945 (Inst.getOperand(1).isImm() && 9946 (unsigned)Inst.getOperand(1).getImm() <= 255) && 9947 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9948 !HasWideQualifier) { 9949 // The operands aren't in the same order for tMOVi8... 9950 MCInst TmpInst; 9951 TmpInst.setOpcode(ARM::tMOVi8); 9952 TmpInst.addOperand(Inst.getOperand(0)); 9953 TmpInst.addOperand(Inst.getOperand(4)); 9954 TmpInst.addOperand(Inst.getOperand(1)); 9955 TmpInst.addOperand(Inst.getOperand(2)); 9956 TmpInst.addOperand(Inst.getOperand(3)); 9957 Inst = TmpInst; 9958 return true; 9959 } 9960 break; 9961 9962 case ARM::t2MOVr: 9963 // If we can use the 16-bit encoding and the user didn't explicitly 9964 // request the 32-bit variant, transform it here. 9965 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9966 isARMLowRegister(Inst.getOperand(1).getReg()) && 9967 Inst.getOperand(2).getImm() == ARMCC::AL && 9968 Inst.getOperand(4).getReg() == ARM::CPSR && 9969 !HasWideQualifier) { 9970 // The operands aren't the same for tMOV[S]r... (no cc_out) 9971 MCInst TmpInst; 9972 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 9973 TmpInst.addOperand(Inst.getOperand(0)); 9974 TmpInst.addOperand(Inst.getOperand(1)); 9975 TmpInst.addOperand(Inst.getOperand(2)); 9976 TmpInst.addOperand(Inst.getOperand(3)); 9977 Inst = TmpInst; 9978 return true; 9979 } 9980 break; 9981 9982 case ARM::t2SXTH: 9983 case ARM::t2SXTB: 9984 case ARM::t2UXTH: 9985 case ARM::t2UXTB: 9986 // If we can use the 16-bit encoding and the user didn't explicitly 9987 // request the 32-bit variant, transform it here. 9988 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9989 isARMLowRegister(Inst.getOperand(1).getReg()) && 9990 Inst.getOperand(2).getImm() == 0 && 9991 !HasWideQualifier) { 9992 unsigned NewOpc; 9993 switch (Inst.getOpcode()) { 9994 default: llvm_unreachable("Illegal opcode!"); 9995 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 9996 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 9997 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 9998 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 9999 } 10000 // The operands aren't the same for thumb1 (no rotate operand). 10001 MCInst TmpInst; 10002 TmpInst.setOpcode(NewOpc); 10003 TmpInst.addOperand(Inst.getOperand(0)); 10004 TmpInst.addOperand(Inst.getOperand(1)); 10005 TmpInst.addOperand(Inst.getOperand(3)); 10006 TmpInst.addOperand(Inst.getOperand(4)); 10007 Inst = TmpInst; 10008 return true; 10009 } 10010 break; 10011 10012 case ARM::MOVsi: { 10013 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10014 // rrx shifts and asr/lsr of #32 is encoded as 0 10015 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 10016 return false; 10017 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 10018 // Shifting by zero is accepted as a vanilla 'MOVr' 10019 MCInst TmpInst; 10020 TmpInst.setOpcode(ARM::MOVr); 10021 TmpInst.addOperand(Inst.getOperand(0)); 10022 TmpInst.addOperand(Inst.getOperand(1)); 10023 TmpInst.addOperand(Inst.getOperand(3)); 10024 TmpInst.addOperand(Inst.getOperand(4)); 10025 TmpInst.addOperand(Inst.getOperand(5)); 10026 Inst = TmpInst; 10027 return true; 10028 } 10029 return false; 10030 } 10031 case ARM::ANDrsi: 10032 case ARM::ORRrsi: 10033 case ARM::EORrsi: 10034 case ARM::BICrsi: 10035 case ARM::SUBrsi: 10036 case ARM::ADDrsi: { 10037 unsigned newOpc; 10038 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 10039 if (SOpc == ARM_AM::rrx) return false; 10040 switch (Inst.getOpcode()) { 10041 default: llvm_unreachable("unexpected opcode!"); 10042 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 10043 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 10044 case ARM::EORrsi: newOpc = ARM::EORrr; break; 10045 case ARM::BICrsi: newOpc = ARM::BICrr; break; 10046 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 10047 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 10048 } 10049 // If the shift is by zero, use the non-shifted instruction definition. 10050 // The exception is for right shifts, where 0 == 32 10051 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 10052 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 10053 MCInst TmpInst; 10054 TmpInst.setOpcode(newOpc); 10055 TmpInst.addOperand(Inst.getOperand(0)); 10056 TmpInst.addOperand(Inst.getOperand(1)); 10057 TmpInst.addOperand(Inst.getOperand(2)); 10058 TmpInst.addOperand(Inst.getOperand(4)); 10059 TmpInst.addOperand(Inst.getOperand(5)); 10060 TmpInst.addOperand(Inst.getOperand(6)); 10061 Inst = TmpInst; 10062 return true; 10063 } 10064 return false; 10065 } 10066 case ARM::ITasm: 10067 case ARM::t2IT: { 10068 // Set up the IT block state according to the IT instruction we just 10069 // matched. 10070 assert(!inITBlock() && "nested IT blocks?!"); 10071 startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()), 10072 Inst.getOperand(1).getImm()); 10073 break; 10074 } 10075 case ARM::t2LSLrr: 10076 case ARM::t2LSRrr: 10077 case ARM::t2ASRrr: 10078 case ARM::t2SBCrr: 10079 case ARM::t2RORrr: 10080 case ARM::t2BICrr: 10081 // Assemblers should use the narrow encodings of these instructions when permissible. 10082 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10083 isARMLowRegister(Inst.getOperand(2).getReg())) && 10084 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10085 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10086 !HasWideQualifier) { 10087 unsigned NewOpc; 10088 switch (Inst.getOpcode()) { 10089 default: llvm_unreachable("unexpected opcode"); 10090 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 10091 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 10092 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 10093 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 10094 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 10095 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 10096 } 10097 MCInst TmpInst; 10098 TmpInst.setOpcode(NewOpc); 10099 TmpInst.addOperand(Inst.getOperand(0)); 10100 TmpInst.addOperand(Inst.getOperand(5)); 10101 TmpInst.addOperand(Inst.getOperand(1)); 10102 TmpInst.addOperand(Inst.getOperand(2)); 10103 TmpInst.addOperand(Inst.getOperand(3)); 10104 TmpInst.addOperand(Inst.getOperand(4)); 10105 Inst = TmpInst; 10106 return true; 10107 } 10108 return false; 10109 10110 case ARM::t2ANDrr: 10111 case ARM::t2EORrr: 10112 case ARM::t2ADCrr: 10113 case ARM::t2ORRrr: 10114 // Assemblers should use the narrow encodings of these instructions when permissible. 10115 // These instructions are special in that they are commutable, so shorter encodings 10116 // are available more often. 10117 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10118 isARMLowRegister(Inst.getOperand(2).getReg())) && 10119 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 10120 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 10121 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10122 !HasWideQualifier) { 10123 unsigned NewOpc; 10124 switch (Inst.getOpcode()) { 10125 default: llvm_unreachable("unexpected opcode"); 10126 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 10127 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 10128 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 10129 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 10130 } 10131 MCInst TmpInst; 10132 TmpInst.setOpcode(NewOpc); 10133 TmpInst.addOperand(Inst.getOperand(0)); 10134 TmpInst.addOperand(Inst.getOperand(5)); 10135 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 10136 TmpInst.addOperand(Inst.getOperand(1)); 10137 TmpInst.addOperand(Inst.getOperand(2)); 10138 } else { 10139 TmpInst.addOperand(Inst.getOperand(2)); 10140 TmpInst.addOperand(Inst.getOperand(1)); 10141 } 10142 TmpInst.addOperand(Inst.getOperand(3)); 10143 TmpInst.addOperand(Inst.getOperand(4)); 10144 Inst = TmpInst; 10145 return true; 10146 } 10147 return false; 10148 case ARM::MVE_VPST: 10149 case ARM::MVE_VPTv16i8: 10150 case ARM::MVE_VPTv8i16: 10151 case ARM::MVE_VPTv4i32: 10152 case ARM::MVE_VPTv16u8: 10153 case ARM::MVE_VPTv8u16: 10154 case ARM::MVE_VPTv4u32: 10155 case ARM::MVE_VPTv16s8: 10156 case ARM::MVE_VPTv8s16: 10157 case ARM::MVE_VPTv4s32: 10158 case ARM::MVE_VPTv4f32: 10159 case ARM::MVE_VPTv8f16: 10160 case ARM::MVE_VPTv16i8r: 10161 case ARM::MVE_VPTv8i16r: 10162 case ARM::MVE_VPTv4i32r: 10163 case ARM::MVE_VPTv16u8r: 10164 case ARM::MVE_VPTv8u16r: 10165 case ARM::MVE_VPTv4u32r: 10166 case ARM::MVE_VPTv16s8r: 10167 case ARM::MVE_VPTv8s16r: 10168 case ARM::MVE_VPTv4s32r: 10169 case ARM::MVE_VPTv4f32r: 10170 case ARM::MVE_VPTv8f16r: { 10171 assert(!inVPTBlock() && "Nested VPT blocks are not allowed"); 10172 MCOperand &MO = Inst.getOperand(0); 10173 VPTState.Mask = MO.getImm(); 10174 VPTState.CurPosition = 0; 10175 break; 10176 } 10177 } 10178 return false; 10179 } 10180 10181 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 10182 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 10183 // suffix depending on whether they're in an IT block or not. 10184 unsigned Opc = Inst.getOpcode(); 10185 const MCInstrDesc &MCID = MII.get(Opc); 10186 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 10187 assert(MCID.hasOptionalDef() && 10188 "optionally flag setting instruction missing optional def operand"); 10189 assert(MCID.NumOperands == Inst.getNumOperands() && 10190 "operand count mismatch!"); 10191 // Find the optional-def operand (cc_out). 10192 unsigned OpNo; 10193 for (OpNo = 0; 10194 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 10195 ++OpNo) 10196 ; 10197 // If we're parsing Thumb1, reject it completely. 10198 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 10199 return Match_RequiresFlagSetting; 10200 // If we're parsing Thumb2, which form is legal depends on whether we're 10201 // in an IT block. 10202 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 10203 !inITBlock()) 10204 return Match_RequiresITBlock; 10205 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 10206 inITBlock()) 10207 return Match_RequiresNotITBlock; 10208 // LSL with zero immediate is not allowed in an IT block 10209 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 10210 return Match_RequiresNotITBlock; 10211 } else if (isThumbOne()) { 10212 // Some high-register supporting Thumb1 encodings only allow both registers 10213 // to be from r0-r7 when in Thumb2. 10214 if (Opc == ARM::tADDhirr && !hasV6MOps() && 10215 isARMLowRegister(Inst.getOperand(1).getReg()) && 10216 isARMLowRegister(Inst.getOperand(2).getReg())) 10217 return Match_RequiresThumb2; 10218 // Others only require ARMv6 or later. 10219 else if (Opc == ARM::tMOVr && !hasV6Ops() && 10220 isARMLowRegister(Inst.getOperand(0).getReg()) && 10221 isARMLowRegister(Inst.getOperand(1).getReg())) 10222 return Match_RequiresV6; 10223 } 10224 10225 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 10226 // than the loop below can handle, so it uses the GPRnopc register class and 10227 // we do SP handling here. 10228 if (Opc == ARM::t2MOVr && !hasV8Ops()) 10229 { 10230 // SP as both source and destination is not allowed 10231 if (Inst.getOperand(0).getReg() == ARM::SP && 10232 Inst.getOperand(1).getReg() == ARM::SP) 10233 return Match_RequiresV8; 10234 // When flags-setting SP as either source or destination is not allowed 10235 if (Inst.getOperand(4).getReg() == ARM::CPSR && 10236 (Inst.getOperand(0).getReg() == ARM::SP || 10237 Inst.getOperand(1).getReg() == ARM::SP)) 10238 return Match_RequiresV8; 10239 } 10240 10241 switch (Inst.getOpcode()) { 10242 case ARM::VMRS: 10243 case ARM::VMSR: 10244 case ARM::VMRS_FPCXTS: 10245 case ARM::VMRS_FPCXTNS: 10246 case ARM::VMSR_FPCXTS: 10247 case ARM::VMSR_FPCXTNS: 10248 case ARM::VMRS_FPSCR_NZCVQC: 10249 case ARM::VMSR_FPSCR_NZCVQC: 10250 case ARM::FMSTAT: 10251 case ARM::VMRS_VPR: 10252 case ARM::VMRS_P0: 10253 case ARM::VMSR_VPR: 10254 case ARM::VMSR_P0: 10255 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 10256 // ARMv8-A. 10257 if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP && 10258 (isThumb() && !hasV8Ops())) 10259 return Match_InvalidOperand; 10260 break; 10261 default: 10262 break; 10263 } 10264 10265 for (unsigned I = 0; I < MCID.NumOperands; ++I) 10266 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 10267 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 10268 const auto &Op = Inst.getOperand(I); 10269 if (!Op.isReg()) { 10270 // This can happen in awkward cases with tied operands, e.g. a 10271 // writeback load/store with a complex addressing mode in 10272 // which there's an output operand corresponding to the 10273 // updated written-back base register: the Tablegen-generated 10274 // AsmMatcher will have written a placeholder operand to that 10275 // slot in the form of an immediate 0, because it can't 10276 // generate the register part of the complex addressing-mode 10277 // operand ahead of time. 10278 continue; 10279 } 10280 10281 unsigned Reg = Op.getReg(); 10282 if ((Reg == ARM::SP) && !hasV8Ops()) 10283 return Match_RequiresV8; 10284 else if (Reg == ARM::PC) 10285 return Match_InvalidOperand; 10286 } 10287 10288 return Match_Success; 10289 } 10290 10291 namespace llvm { 10292 10293 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 10294 return true; // In an assembly source, no need to second-guess 10295 } 10296 10297 } // end namespace llvm 10298 10299 // Returns true if Inst is unpredictable if it is in and IT block, but is not 10300 // the last instruction in the block. 10301 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 10302 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10303 10304 // All branch & call instructions terminate IT blocks with the exception of 10305 // SVC. 10306 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 10307 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 10308 return true; 10309 10310 // Any arithmetic instruction which writes to the PC also terminates the IT 10311 // block. 10312 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 10313 return true; 10314 10315 return false; 10316 } 10317 10318 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 10319 SmallVectorImpl<NearMissInfo> &NearMisses, 10320 bool MatchingInlineAsm, 10321 bool &EmitInITBlock, 10322 MCStreamer &Out) { 10323 // If we can't use an implicit IT block here, just match as normal. 10324 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 10325 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10326 10327 // Try to match the instruction in an extension of the current IT block (if 10328 // there is one). 10329 if (inImplicitITBlock()) { 10330 extendImplicitITBlock(ITState.Cond); 10331 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10332 Match_Success) { 10333 // The match succeded, but we still have to check that the instruction is 10334 // valid in this implicit IT block. 10335 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10336 if (MCID.isPredicable()) { 10337 ARMCC::CondCodes InstCond = 10338 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10339 .getImm(); 10340 ARMCC::CondCodes ITCond = currentITCond(); 10341 if (InstCond == ITCond) { 10342 EmitInITBlock = true; 10343 return Match_Success; 10344 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 10345 invertCurrentITCondition(); 10346 EmitInITBlock = true; 10347 return Match_Success; 10348 } 10349 } 10350 } 10351 rewindImplicitITPosition(); 10352 } 10353 10354 // Finish the current IT block, and try to match outside any IT block. 10355 flushPendingInstructions(Out); 10356 unsigned PlainMatchResult = 10357 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10358 if (PlainMatchResult == Match_Success) { 10359 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10360 if (MCID.isPredicable()) { 10361 ARMCC::CondCodes InstCond = 10362 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10363 .getImm(); 10364 // Some forms of the branch instruction have their own condition code 10365 // fields, so can be conditionally executed without an IT block. 10366 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 10367 EmitInITBlock = false; 10368 return Match_Success; 10369 } 10370 if (InstCond == ARMCC::AL) { 10371 EmitInITBlock = false; 10372 return Match_Success; 10373 } 10374 } else { 10375 EmitInITBlock = false; 10376 return Match_Success; 10377 } 10378 } 10379 10380 // Try to match in a new IT block. The matcher doesn't check the actual 10381 // condition, so we create an IT block with a dummy condition, and fix it up 10382 // once we know the actual condition. 10383 startImplicitITBlock(); 10384 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10385 Match_Success) { 10386 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10387 if (MCID.isPredicable()) { 10388 ITState.Cond = 10389 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10390 .getImm(); 10391 EmitInITBlock = true; 10392 return Match_Success; 10393 } 10394 } 10395 discardImplicitITBlock(); 10396 10397 // If none of these succeed, return the error we got when trying to match 10398 // outside any IT blocks. 10399 EmitInITBlock = false; 10400 return PlainMatchResult; 10401 } 10402 10403 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 10404 unsigned VariantID = 0); 10405 10406 static const char *getSubtargetFeatureName(uint64_t Val); 10407 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 10408 OperandVector &Operands, 10409 MCStreamer &Out, uint64_t &ErrorInfo, 10410 bool MatchingInlineAsm) { 10411 MCInst Inst; 10412 unsigned MatchResult; 10413 bool PendConditionalInstruction = false; 10414 10415 SmallVector<NearMissInfo, 4> NearMisses; 10416 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 10417 PendConditionalInstruction, Out); 10418 10419 switch (MatchResult) { 10420 case Match_Success: 10421 LLVM_DEBUG(dbgs() << "Parsed as: "; 10422 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10423 dbgs() << "\n"); 10424 10425 // Context sensitive operand constraints aren't handled by the matcher, 10426 // so check them here. 10427 if (validateInstruction(Inst, Operands)) { 10428 // Still progress the IT block, otherwise one wrong condition causes 10429 // nasty cascading errors. 10430 forwardITPosition(); 10431 forwardVPTPosition(); 10432 return true; 10433 } 10434 10435 { // processInstruction() updates inITBlock state, we need to save it away 10436 bool wasInITBlock = inITBlock(); 10437 10438 // Some instructions need post-processing to, for example, tweak which 10439 // encoding is selected. Loop on it while changes happen so the 10440 // individual transformations can chain off each other. E.g., 10441 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 10442 while (processInstruction(Inst, Operands, Out)) 10443 LLVM_DEBUG(dbgs() << "Changed to: "; 10444 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10445 dbgs() << "\n"); 10446 10447 // Only after the instruction is fully processed, we can validate it 10448 if (wasInITBlock && hasV8Ops() && isThumb() && 10449 !isV8EligibleForIT(&Inst)) { 10450 Warning(IDLoc, "deprecated instruction in IT block"); 10451 } 10452 } 10453 10454 // Only move forward at the very end so that everything in validate 10455 // and process gets a consistent answer about whether we're in an IT 10456 // block. 10457 forwardITPosition(); 10458 forwardVPTPosition(); 10459 10460 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 10461 // doesn't actually encode. 10462 if (Inst.getOpcode() == ARM::ITasm) 10463 return false; 10464 10465 Inst.setLoc(IDLoc); 10466 if (PendConditionalInstruction) { 10467 PendingConditionalInsts.push_back(Inst); 10468 if (isITBlockFull() || isITBlockTerminator(Inst)) 10469 flushPendingInstructions(Out); 10470 } else { 10471 Out.EmitInstruction(Inst, getSTI()); 10472 } 10473 return false; 10474 case Match_NearMisses: 10475 ReportNearMisses(NearMisses, IDLoc, Operands); 10476 return true; 10477 case Match_MnemonicFail: { 10478 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 10479 std::string Suggestion = ARMMnemonicSpellCheck( 10480 ((ARMOperand &)*Operands[0]).getToken(), FBS); 10481 return Error(IDLoc, "invalid instruction" + Suggestion, 10482 ((ARMOperand &)*Operands[0]).getLocRange()); 10483 } 10484 } 10485 10486 llvm_unreachable("Implement any new match types added!"); 10487 } 10488 10489 /// parseDirective parses the arm specific directives 10490 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 10491 const MCObjectFileInfo::Environment Format = 10492 getContext().getObjectFileInfo()->getObjectFileType(); 10493 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10494 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 10495 10496 StringRef IDVal = DirectiveID.getIdentifier(); 10497 if (IDVal == ".word") 10498 parseLiteralValues(4, DirectiveID.getLoc()); 10499 else if (IDVal == ".short" || IDVal == ".hword") 10500 parseLiteralValues(2, DirectiveID.getLoc()); 10501 else if (IDVal == ".thumb") 10502 parseDirectiveThumb(DirectiveID.getLoc()); 10503 else if (IDVal == ".arm") 10504 parseDirectiveARM(DirectiveID.getLoc()); 10505 else if (IDVal == ".thumb_func") 10506 parseDirectiveThumbFunc(DirectiveID.getLoc()); 10507 else if (IDVal == ".code") 10508 parseDirectiveCode(DirectiveID.getLoc()); 10509 else if (IDVal == ".syntax") 10510 parseDirectiveSyntax(DirectiveID.getLoc()); 10511 else if (IDVal == ".unreq") 10512 parseDirectiveUnreq(DirectiveID.getLoc()); 10513 else if (IDVal == ".fnend") 10514 parseDirectiveFnEnd(DirectiveID.getLoc()); 10515 else if (IDVal == ".cantunwind") 10516 parseDirectiveCantUnwind(DirectiveID.getLoc()); 10517 else if (IDVal == ".personality") 10518 parseDirectivePersonality(DirectiveID.getLoc()); 10519 else if (IDVal == ".handlerdata") 10520 parseDirectiveHandlerData(DirectiveID.getLoc()); 10521 else if (IDVal == ".setfp") 10522 parseDirectiveSetFP(DirectiveID.getLoc()); 10523 else if (IDVal == ".pad") 10524 parseDirectivePad(DirectiveID.getLoc()); 10525 else if (IDVal == ".save") 10526 parseDirectiveRegSave(DirectiveID.getLoc(), false); 10527 else if (IDVal == ".vsave") 10528 parseDirectiveRegSave(DirectiveID.getLoc(), true); 10529 else if (IDVal == ".ltorg" || IDVal == ".pool") 10530 parseDirectiveLtorg(DirectiveID.getLoc()); 10531 else if (IDVal == ".even") 10532 parseDirectiveEven(DirectiveID.getLoc()); 10533 else if (IDVal == ".personalityindex") 10534 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 10535 else if (IDVal == ".unwind_raw") 10536 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 10537 else if (IDVal == ".movsp") 10538 parseDirectiveMovSP(DirectiveID.getLoc()); 10539 else if (IDVal == ".arch_extension") 10540 parseDirectiveArchExtension(DirectiveID.getLoc()); 10541 else if (IDVal == ".align") 10542 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 10543 else if (IDVal == ".thumb_set") 10544 parseDirectiveThumbSet(DirectiveID.getLoc()); 10545 else if (IDVal == ".inst") 10546 parseDirectiveInst(DirectiveID.getLoc()); 10547 else if (IDVal == ".inst.n") 10548 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 10549 else if (IDVal == ".inst.w") 10550 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 10551 else if (!IsMachO && !IsCOFF) { 10552 if (IDVal == ".arch") 10553 parseDirectiveArch(DirectiveID.getLoc()); 10554 else if (IDVal == ".cpu") 10555 parseDirectiveCPU(DirectiveID.getLoc()); 10556 else if (IDVal == ".eabi_attribute") 10557 parseDirectiveEabiAttr(DirectiveID.getLoc()); 10558 else if (IDVal == ".fpu") 10559 parseDirectiveFPU(DirectiveID.getLoc()); 10560 else if (IDVal == ".fnstart") 10561 parseDirectiveFnStart(DirectiveID.getLoc()); 10562 else if (IDVal == ".object_arch") 10563 parseDirectiveObjectArch(DirectiveID.getLoc()); 10564 else if (IDVal == ".tlsdescseq") 10565 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 10566 else 10567 return true; 10568 } else 10569 return true; 10570 return false; 10571 } 10572 10573 /// parseLiteralValues 10574 /// ::= .hword expression [, expression]* 10575 /// ::= .short expression [, expression]* 10576 /// ::= .word expression [, expression]* 10577 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 10578 auto parseOne = [&]() -> bool { 10579 const MCExpr *Value; 10580 if (getParser().parseExpression(Value)) 10581 return true; 10582 getParser().getStreamer().EmitValue(Value, Size, L); 10583 return false; 10584 }; 10585 return (parseMany(parseOne)); 10586 } 10587 10588 /// parseDirectiveThumb 10589 /// ::= .thumb 10590 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 10591 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10592 check(!hasThumb(), L, "target does not support Thumb mode")) 10593 return true; 10594 10595 if (!isThumb()) 10596 SwitchMode(); 10597 10598 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 10599 return false; 10600 } 10601 10602 /// parseDirectiveARM 10603 /// ::= .arm 10604 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 10605 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10606 check(!hasARM(), L, "target does not support ARM mode")) 10607 return true; 10608 10609 if (isThumb()) 10610 SwitchMode(); 10611 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 10612 return false; 10613 } 10614 10615 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 10616 // We need to flush the current implicit IT block on a label, because it is 10617 // not legal to branch into an IT block. 10618 flushPendingInstructions(getStreamer()); 10619 } 10620 10621 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 10622 if (NextSymbolIsThumb) { 10623 getParser().getStreamer().EmitThumbFunc(Symbol); 10624 NextSymbolIsThumb = false; 10625 } 10626 } 10627 10628 /// parseDirectiveThumbFunc 10629 /// ::= .thumbfunc symbol_name 10630 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 10631 MCAsmParser &Parser = getParser(); 10632 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 10633 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10634 10635 // Darwin asm has (optionally) function name after .thumb_func direction 10636 // ELF doesn't 10637 10638 if (IsMachO) { 10639 if (Parser.getTok().is(AsmToken::Identifier) || 10640 Parser.getTok().is(AsmToken::String)) { 10641 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 10642 Parser.getTok().getIdentifier()); 10643 getParser().getStreamer().EmitThumbFunc(Func); 10644 Parser.Lex(); 10645 if (parseToken(AsmToken::EndOfStatement, 10646 "unexpected token in '.thumb_func' directive")) 10647 return true; 10648 return false; 10649 } 10650 } 10651 10652 if (parseToken(AsmToken::EndOfStatement, 10653 "unexpected token in '.thumb_func' directive")) 10654 return true; 10655 10656 NextSymbolIsThumb = true; 10657 return false; 10658 } 10659 10660 /// parseDirectiveSyntax 10661 /// ::= .syntax unified | divided 10662 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 10663 MCAsmParser &Parser = getParser(); 10664 const AsmToken &Tok = Parser.getTok(); 10665 if (Tok.isNot(AsmToken::Identifier)) { 10666 Error(L, "unexpected token in .syntax directive"); 10667 return false; 10668 } 10669 10670 StringRef Mode = Tok.getString(); 10671 Parser.Lex(); 10672 if (check(Mode == "divided" || Mode == "DIVIDED", L, 10673 "'.syntax divided' arm assembly not supported") || 10674 check(Mode != "unified" && Mode != "UNIFIED", L, 10675 "unrecognized syntax mode in .syntax directive") || 10676 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10677 return true; 10678 10679 // TODO tell the MC streamer the mode 10680 // getParser().getStreamer().Emit???(); 10681 return false; 10682 } 10683 10684 /// parseDirectiveCode 10685 /// ::= .code 16 | 32 10686 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 10687 MCAsmParser &Parser = getParser(); 10688 const AsmToken &Tok = Parser.getTok(); 10689 if (Tok.isNot(AsmToken::Integer)) 10690 return Error(L, "unexpected token in .code directive"); 10691 int64_t Val = Parser.getTok().getIntVal(); 10692 if (Val != 16 && Val != 32) { 10693 Error(L, "invalid operand to .code directive"); 10694 return false; 10695 } 10696 Parser.Lex(); 10697 10698 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10699 return true; 10700 10701 if (Val == 16) { 10702 if (!hasThumb()) 10703 return Error(L, "target does not support Thumb mode"); 10704 10705 if (!isThumb()) 10706 SwitchMode(); 10707 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 10708 } else { 10709 if (!hasARM()) 10710 return Error(L, "target does not support ARM mode"); 10711 10712 if (isThumb()) 10713 SwitchMode(); 10714 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 10715 } 10716 10717 return false; 10718 } 10719 10720 /// parseDirectiveReq 10721 /// ::= name .req registername 10722 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 10723 MCAsmParser &Parser = getParser(); 10724 Parser.Lex(); // Eat the '.req' token. 10725 unsigned Reg; 10726 SMLoc SRegLoc, ERegLoc; 10727 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 10728 "register name expected") || 10729 parseToken(AsmToken::EndOfStatement, 10730 "unexpected input in .req directive.")) 10731 return true; 10732 10733 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 10734 return Error(SRegLoc, 10735 "redefinition of '" + Name + "' does not match original."); 10736 10737 return false; 10738 } 10739 10740 /// parseDirectiveUneq 10741 /// ::= .unreq registername 10742 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 10743 MCAsmParser &Parser = getParser(); 10744 if (Parser.getTok().isNot(AsmToken::Identifier)) 10745 return Error(L, "unexpected input in .unreq directive."); 10746 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 10747 Parser.Lex(); // Eat the identifier. 10748 if (parseToken(AsmToken::EndOfStatement, 10749 "unexpected input in '.unreq' directive")) 10750 return true; 10751 return false; 10752 } 10753 10754 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 10755 // before, if supported by the new target, or emit mapping symbols for the mode 10756 // switch. 10757 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 10758 if (WasThumb != isThumb()) { 10759 if (WasThumb && hasThumb()) { 10760 // Stay in Thumb mode 10761 SwitchMode(); 10762 } else if (!WasThumb && hasARM()) { 10763 // Stay in ARM mode 10764 SwitchMode(); 10765 } else { 10766 // Mode switch forced, because the new arch doesn't support the old mode. 10767 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 10768 : MCAF_Code32); 10769 // Warn about the implcit mode switch. GAS does not switch modes here, 10770 // but instead stays in the old mode, reporting an error on any following 10771 // instructions as the mode does not exist on the target. 10772 Warning(Loc, Twine("new target does not support ") + 10773 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 10774 (!WasThumb ? "thumb" : "arm") + " mode"); 10775 } 10776 } 10777 } 10778 10779 /// parseDirectiveArch 10780 /// ::= .arch token 10781 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 10782 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 10783 ARM::ArchKind ID = ARM::parseArch(Arch); 10784 10785 if (ID == ARM::ArchKind::INVALID) 10786 return Error(L, "Unknown arch name"); 10787 10788 bool WasThumb = isThumb(); 10789 Triple T; 10790 MCSubtargetInfo &STI = copySTI(); 10791 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 10792 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10793 FixModeAfterArchChange(WasThumb, L); 10794 10795 getTargetStreamer().emitArch(ID); 10796 return false; 10797 } 10798 10799 /// parseDirectiveEabiAttr 10800 /// ::= .eabi_attribute int, int [, "str"] 10801 /// ::= .eabi_attribute Tag_name, int [, "str"] 10802 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 10803 MCAsmParser &Parser = getParser(); 10804 int64_t Tag; 10805 SMLoc TagLoc; 10806 TagLoc = Parser.getTok().getLoc(); 10807 if (Parser.getTok().is(AsmToken::Identifier)) { 10808 StringRef Name = Parser.getTok().getIdentifier(); 10809 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 10810 if (Tag == -1) { 10811 Error(TagLoc, "attribute name not recognised: " + Name); 10812 return false; 10813 } 10814 Parser.Lex(); 10815 } else { 10816 const MCExpr *AttrExpr; 10817 10818 TagLoc = Parser.getTok().getLoc(); 10819 if (Parser.parseExpression(AttrExpr)) 10820 return true; 10821 10822 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 10823 if (check(!CE, TagLoc, "expected numeric constant")) 10824 return true; 10825 10826 Tag = CE->getValue(); 10827 } 10828 10829 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 10830 return true; 10831 10832 StringRef StringValue = ""; 10833 bool IsStringValue = false; 10834 10835 int64_t IntegerValue = 0; 10836 bool IsIntegerValue = false; 10837 10838 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 10839 IsStringValue = true; 10840 else if (Tag == ARMBuildAttrs::compatibility) { 10841 IsStringValue = true; 10842 IsIntegerValue = true; 10843 } else if (Tag < 32 || Tag % 2 == 0) 10844 IsIntegerValue = true; 10845 else if (Tag % 2 == 1) 10846 IsStringValue = true; 10847 else 10848 llvm_unreachable("invalid tag type"); 10849 10850 if (IsIntegerValue) { 10851 const MCExpr *ValueExpr; 10852 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 10853 if (Parser.parseExpression(ValueExpr)) 10854 return true; 10855 10856 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 10857 if (!CE) 10858 return Error(ValueExprLoc, "expected numeric constant"); 10859 IntegerValue = CE->getValue(); 10860 } 10861 10862 if (Tag == ARMBuildAttrs::compatibility) { 10863 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 10864 return true; 10865 } 10866 10867 if (IsStringValue) { 10868 if (Parser.getTok().isNot(AsmToken::String)) 10869 return Error(Parser.getTok().getLoc(), "bad string constant"); 10870 10871 StringValue = Parser.getTok().getStringContents(); 10872 Parser.Lex(); 10873 } 10874 10875 if (Parser.parseToken(AsmToken::EndOfStatement, 10876 "unexpected token in '.eabi_attribute' directive")) 10877 return true; 10878 10879 if (IsIntegerValue && IsStringValue) { 10880 assert(Tag == ARMBuildAttrs::compatibility); 10881 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 10882 } else if (IsIntegerValue) 10883 getTargetStreamer().emitAttribute(Tag, IntegerValue); 10884 else if (IsStringValue) 10885 getTargetStreamer().emitTextAttribute(Tag, StringValue); 10886 return false; 10887 } 10888 10889 /// parseDirectiveCPU 10890 /// ::= .cpu str 10891 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 10892 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 10893 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 10894 10895 // FIXME: This is using table-gen data, but should be moved to 10896 // ARMTargetParser once that is table-gen'd. 10897 if (!getSTI().isCPUStringValid(CPU)) 10898 return Error(L, "Unknown CPU name"); 10899 10900 bool WasThumb = isThumb(); 10901 MCSubtargetInfo &STI = copySTI(); 10902 STI.setDefaultFeatures(CPU, ""); 10903 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10904 FixModeAfterArchChange(WasThumb, L); 10905 10906 return false; 10907 } 10908 10909 /// parseDirectiveFPU 10910 /// ::= .fpu str 10911 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 10912 SMLoc FPUNameLoc = getTok().getLoc(); 10913 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 10914 10915 unsigned ID = ARM::parseFPU(FPU); 10916 std::vector<StringRef> Features; 10917 if (!ARM::getFPUFeatures(ID, Features)) 10918 return Error(FPUNameLoc, "Unknown FPU name"); 10919 10920 MCSubtargetInfo &STI = copySTI(); 10921 for (auto Feature : Features) 10922 STI.ApplyFeatureFlag(Feature); 10923 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10924 10925 getTargetStreamer().emitFPU(ID); 10926 return false; 10927 } 10928 10929 /// parseDirectiveFnStart 10930 /// ::= .fnstart 10931 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 10932 if (parseToken(AsmToken::EndOfStatement, 10933 "unexpected token in '.fnstart' directive")) 10934 return true; 10935 10936 if (UC.hasFnStart()) { 10937 Error(L, ".fnstart starts before the end of previous one"); 10938 UC.emitFnStartLocNotes(); 10939 return true; 10940 } 10941 10942 // Reset the unwind directives parser state 10943 UC.reset(); 10944 10945 getTargetStreamer().emitFnStart(); 10946 10947 UC.recordFnStart(L); 10948 return false; 10949 } 10950 10951 /// parseDirectiveFnEnd 10952 /// ::= .fnend 10953 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 10954 if (parseToken(AsmToken::EndOfStatement, 10955 "unexpected token in '.fnend' directive")) 10956 return true; 10957 // Check the ordering of unwind directives 10958 if (!UC.hasFnStart()) 10959 return Error(L, ".fnstart must precede .fnend directive"); 10960 10961 // Reset the unwind directives parser state 10962 getTargetStreamer().emitFnEnd(); 10963 10964 UC.reset(); 10965 return false; 10966 } 10967 10968 /// parseDirectiveCantUnwind 10969 /// ::= .cantunwind 10970 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 10971 if (parseToken(AsmToken::EndOfStatement, 10972 "unexpected token in '.cantunwind' directive")) 10973 return true; 10974 10975 UC.recordCantUnwind(L); 10976 // Check the ordering of unwind directives 10977 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 10978 return true; 10979 10980 if (UC.hasHandlerData()) { 10981 Error(L, ".cantunwind can't be used with .handlerdata directive"); 10982 UC.emitHandlerDataLocNotes(); 10983 return true; 10984 } 10985 if (UC.hasPersonality()) { 10986 Error(L, ".cantunwind can't be used with .personality directive"); 10987 UC.emitPersonalityLocNotes(); 10988 return true; 10989 } 10990 10991 getTargetStreamer().emitCantUnwind(); 10992 return false; 10993 } 10994 10995 /// parseDirectivePersonality 10996 /// ::= .personality name 10997 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 10998 MCAsmParser &Parser = getParser(); 10999 bool HasExistingPersonality = UC.hasPersonality(); 11000 11001 // Parse the name of the personality routine 11002 if (Parser.getTok().isNot(AsmToken::Identifier)) 11003 return Error(L, "unexpected input in .personality directive."); 11004 StringRef Name(Parser.getTok().getIdentifier()); 11005 Parser.Lex(); 11006 11007 if (parseToken(AsmToken::EndOfStatement, 11008 "unexpected token in '.personality' directive")) 11009 return true; 11010 11011 UC.recordPersonality(L); 11012 11013 // Check the ordering of unwind directives 11014 if (!UC.hasFnStart()) 11015 return Error(L, ".fnstart must precede .personality directive"); 11016 if (UC.cantUnwind()) { 11017 Error(L, ".personality can't be used with .cantunwind directive"); 11018 UC.emitCantUnwindLocNotes(); 11019 return true; 11020 } 11021 if (UC.hasHandlerData()) { 11022 Error(L, ".personality must precede .handlerdata directive"); 11023 UC.emitHandlerDataLocNotes(); 11024 return true; 11025 } 11026 if (HasExistingPersonality) { 11027 Error(L, "multiple personality directives"); 11028 UC.emitPersonalityLocNotes(); 11029 return true; 11030 } 11031 11032 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 11033 getTargetStreamer().emitPersonality(PR); 11034 return false; 11035 } 11036 11037 /// parseDirectiveHandlerData 11038 /// ::= .handlerdata 11039 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 11040 if (parseToken(AsmToken::EndOfStatement, 11041 "unexpected token in '.handlerdata' directive")) 11042 return true; 11043 11044 UC.recordHandlerData(L); 11045 // Check the ordering of unwind directives 11046 if (!UC.hasFnStart()) 11047 return Error(L, ".fnstart must precede .personality directive"); 11048 if (UC.cantUnwind()) { 11049 Error(L, ".handlerdata can't be used with .cantunwind directive"); 11050 UC.emitCantUnwindLocNotes(); 11051 return true; 11052 } 11053 11054 getTargetStreamer().emitHandlerData(); 11055 return false; 11056 } 11057 11058 /// parseDirectiveSetFP 11059 /// ::= .setfp fpreg, spreg [, offset] 11060 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 11061 MCAsmParser &Parser = getParser(); 11062 // Check the ordering of unwind directives 11063 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 11064 check(UC.hasHandlerData(), L, 11065 ".setfp must precede .handlerdata directive")) 11066 return true; 11067 11068 // Parse fpreg 11069 SMLoc FPRegLoc = Parser.getTok().getLoc(); 11070 int FPReg = tryParseRegister(); 11071 11072 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 11073 Parser.parseToken(AsmToken::Comma, "comma expected")) 11074 return true; 11075 11076 // Parse spreg 11077 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11078 int SPReg = tryParseRegister(); 11079 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 11080 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 11081 "register should be either $sp or the latest fp register")) 11082 return true; 11083 11084 // Update the frame pointer register 11085 UC.saveFPReg(FPReg); 11086 11087 // Parse offset 11088 int64_t Offset = 0; 11089 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11090 if (Parser.getTok().isNot(AsmToken::Hash) && 11091 Parser.getTok().isNot(AsmToken::Dollar)) 11092 return Error(Parser.getTok().getLoc(), "'#' expected"); 11093 Parser.Lex(); // skip hash token. 11094 11095 const MCExpr *OffsetExpr; 11096 SMLoc ExLoc = Parser.getTok().getLoc(); 11097 SMLoc EndLoc; 11098 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11099 return Error(ExLoc, "malformed setfp offset"); 11100 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11101 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 11102 return true; 11103 Offset = CE->getValue(); 11104 } 11105 11106 if (Parser.parseToken(AsmToken::EndOfStatement)) 11107 return true; 11108 11109 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 11110 static_cast<unsigned>(SPReg), Offset); 11111 return false; 11112 } 11113 11114 /// parseDirective 11115 /// ::= .pad offset 11116 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 11117 MCAsmParser &Parser = getParser(); 11118 // Check the ordering of unwind directives 11119 if (!UC.hasFnStart()) 11120 return Error(L, ".fnstart must precede .pad directive"); 11121 if (UC.hasHandlerData()) 11122 return Error(L, ".pad must precede .handlerdata directive"); 11123 11124 // Parse the offset 11125 if (Parser.getTok().isNot(AsmToken::Hash) && 11126 Parser.getTok().isNot(AsmToken::Dollar)) 11127 return Error(Parser.getTok().getLoc(), "'#' expected"); 11128 Parser.Lex(); // skip hash token. 11129 11130 const MCExpr *OffsetExpr; 11131 SMLoc ExLoc = Parser.getTok().getLoc(); 11132 SMLoc EndLoc; 11133 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11134 return Error(ExLoc, "malformed pad offset"); 11135 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11136 if (!CE) 11137 return Error(ExLoc, "pad offset must be an immediate"); 11138 11139 if (parseToken(AsmToken::EndOfStatement, 11140 "unexpected token in '.pad' directive")) 11141 return true; 11142 11143 getTargetStreamer().emitPad(CE->getValue()); 11144 return false; 11145 } 11146 11147 /// parseDirectiveRegSave 11148 /// ::= .save { registers } 11149 /// ::= .vsave { registers } 11150 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 11151 // Check the ordering of unwind directives 11152 if (!UC.hasFnStart()) 11153 return Error(L, ".fnstart must precede .save or .vsave directives"); 11154 if (UC.hasHandlerData()) 11155 return Error(L, ".save or .vsave must precede .handlerdata directive"); 11156 11157 // RAII object to make sure parsed operands are deleted. 11158 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 11159 11160 // Parse the register list 11161 if (parseRegisterList(Operands) || 11162 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11163 return true; 11164 ARMOperand &Op = (ARMOperand &)*Operands[0]; 11165 if (!IsVector && !Op.isRegList()) 11166 return Error(L, ".save expects GPR registers"); 11167 if (IsVector && !Op.isDPRRegList()) 11168 return Error(L, ".vsave expects DPR registers"); 11169 11170 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 11171 return false; 11172 } 11173 11174 /// parseDirectiveInst 11175 /// ::= .inst opcode [, ...] 11176 /// ::= .inst.n opcode [, ...] 11177 /// ::= .inst.w opcode [, ...] 11178 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 11179 int Width = 4; 11180 11181 if (isThumb()) { 11182 switch (Suffix) { 11183 case 'n': 11184 Width = 2; 11185 break; 11186 case 'w': 11187 break; 11188 default: 11189 Width = 0; 11190 break; 11191 } 11192 } else { 11193 if (Suffix) 11194 return Error(Loc, "width suffixes are invalid in ARM mode"); 11195 } 11196 11197 auto parseOne = [&]() -> bool { 11198 const MCExpr *Expr; 11199 if (getParser().parseExpression(Expr)) 11200 return true; 11201 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 11202 if (!Value) { 11203 return Error(Loc, "expected constant expression"); 11204 } 11205 11206 char CurSuffix = Suffix; 11207 switch (Width) { 11208 case 2: 11209 if (Value->getValue() > 0xffff) 11210 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 11211 break; 11212 case 4: 11213 if (Value->getValue() > 0xffffffff) 11214 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 11215 " operand is too big"); 11216 break; 11217 case 0: 11218 // Thumb mode, no width indicated. Guess from the opcode, if possible. 11219 if (Value->getValue() < 0xe800) 11220 CurSuffix = 'n'; 11221 else if (Value->getValue() >= 0xe8000000) 11222 CurSuffix = 'w'; 11223 else 11224 return Error(Loc, "cannot determine Thumb instruction size, " 11225 "use inst.n/inst.w instead"); 11226 break; 11227 default: 11228 llvm_unreachable("only supported widths are 2 and 4"); 11229 } 11230 11231 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 11232 return false; 11233 }; 11234 11235 if (parseOptionalToken(AsmToken::EndOfStatement)) 11236 return Error(Loc, "expected expression following directive"); 11237 if (parseMany(parseOne)) 11238 return true; 11239 return false; 11240 } 11241 11242 /// parseDirectiveLtorg 11243 /// ::= .ltorg | .pool 11244 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 11245 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11246 return true; 11247 getTargetStreamer().emitCurrentConstantPool(); 11248 return false; 11249 } 11250 11251 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 11252 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11253 11254 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11255 return true; 11256 11257 if (!Section) { 11258 getStreamer().InitSections(false); 11259 Section = getStreamer().getCurrentSectionOnly(); 11260 } 11261 11262 assert(Section && "must have section to emit alignment"); 11263 if (Section->UseCodeAlign()) 11264 getStreamer().EmitCodeAlignment(2); 11265 else 11266 getStreamer().EmitValueToAlignment(2); 11267 11268 return false; 11269 } 11270 11271 /// parseDirectivePersonalityIndex 11272 /// ::= .personalityindex index 11273 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 11274 MCAsmParser &Parser = getParser(); 11275 bool HasExistingPersonality = UC.hasPersonality(); 11276 11277 const MCExpr *IndexExpression; 11278 SMLoc IndexLoc = Parser.getTok().getLoc(); 11279 if (Parser.parseExpression(IndexExpression) || 11280 parseToken(AsmToken::EndOfStatement, 11281 "unexpected token in '.personalityindex' directive")) { 11282 return true; 11283 } 11284 11285 UC.recordPersonalityIndex(L); 11286 11287 if (!UC.hasFnStart()) { 11288 return Error(L, ".fnstart must precede .personalityindex directive"); 11289 } 11290 if (UC.cantUnwind()) { 11291 Error(L, ".personalityindex cannot be used with .cantunwind"); 11292 UC.emitCantUnwindLocNotes(); 11293 return true; 11294 } 11295 if (UC.hasHandlerData()) { 11296 Error(L, ".personalityindex must precede .handlerdata directive"); 11297 UC.emitHandlerDataLocNotes(); 11298 return true; 11299 } 11300 if (HasExistingPersonality) { 11301 Error(L, "multiple personality directives"); 11302 UC.emitPersonalityLocNotes(); 11303 return true; 11304 } 11305 11306 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 11307 if (!CE) 11308 return Error(IndexLoc, "index must be a constant number"); 11309 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 11310 return Error(IndexLoc, 11311 "personality routine index should be in range [0-3]"); 11312 11313 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 11314 return false; 11315 } 11316 11317 /// parseDirectiveUnwindRaw 11318 /// ::= .unwind_raw offset, opcode [, opcode...] 11319 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 11320 MCAsmParser &Parser = getParser(); 11321 int64_t StackOffset; 11322 const MCExpr *OffsetExpr; 11323 SMLoc OffsetLoc = getLexer().getLoc(); 11324 11325 if (!UC.hasFnStart()) 11326 return Error(L, ".fnstart must precede .unwind_raw directives"); 11327 if (getParser().parseExpression(OffsetExpr)) 11328 return Error(OffsetLoc, "expected expression"); 11329 11330 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11331 if (!CE) 11332 return Error(OffsetLoc, "offset must be a constant"); 11333 11334 StackOffset = CE->getValue(); 11335 11336 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 11337 return true; 11338 11339 SmallVector<uint8_t, 16> Opcodes; 11340 11341 auto parseOne = [&]() -> bool { 11342 const MCExpr *OE; 11343 SMLoc OpcodeLoc = getLexer().getLoc(); 11344 if (check(getLexer().is(AsmToken::EndOfStatement) || 11345 Parser.parseExpression(OE), 11346 OpcodeLoc, "expected opcode expression")) 11347 return true; 11348 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 11349 if (!OC) 11350 return Error(OpcodeLoc, "opcode value must be a constant"); 11351 const int64_t Opcode = OC->getValue(); 11352 if (Opcode & ~0xff) 11353 return Error(OpcodeLoc, "invalid opcode"); 11354 Opcodes.push_back(uint8_t(Opcode)); 11355 return false; 11356 }; 11357 11358 // Must have at least 1 element 11359 SMLoc OpcodeLoc = getLexer().getLoc(); 11360 if (parseOptionalToken(AsmToken::EndOfStatement)) 11361 return Error(OpcodeLoc, "expected opcode expression"); 11362 if (parseMany(parseOne)) 11363 return true; 11364 11365 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 11366 return false; 11367 } 11368 11369 /// parseDirectiveTLSDescSeq 11370 /// ::= .tlsdescseq tls-variable 11371 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 11372 MCAsmParser &Parser = getParser(); 11373 11374 if (getLexer().isNot(AsmToken::Identifier)) 11375 return TokError("expected variable after '.tlsdescseq' directive"); 11376 11377 const MCSymbolRefExpr *SRE = 11378 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 11379 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 11380 Lex(); 11381 11382 if (parseToken(AsmToken::EndOfStatement, 11383 "unexpected token in '.tlsdescseq' directive")) 11384 return true; 11385 11386 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 11387 return false; 11388 } 11389 11390 /// parseDirectiveMovSP 11391 /// ::= .movsp reg [, #offset] 11392 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 11393 MCAsmParser &Parser = getParser(); 11394 if (!UC.hasFnStart()) 11395 return Error(L, ".fnstart must precede .movsp directives"); 11396 if (UC.getFPReg() != ARM::SP) 11397 return Error(L, "unexpected .movsp directive"); 11398 11399 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11400 int SPReg = tryParseRegister(); 11401 if (SPReg == -1) 11402 return Error(SPRegLoc, "register expected"); 11403 if (SPReg == ARM::SP || SPReg == ARM::PC) 11404 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 11405 11406 int64_t Offset = 0; 11407 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11408 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 11409 return true; 11410 11411 const MCExpr *OffsetExpr; 11412 SMLoc OffsetLoc = Parser.getTok().getLoc(); 11413 11414 if (Parser.parseExpression(OffsetExpr)) 11415 return Error(OffsetLoc, "malformed offset expression"); 11416 11417 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11418 if (!CE) 11419 return Error(OffsetLoc, "offset must be an immediate constant"); 11420 11421 Offset = CE->getValue(); 11422 } 11423 11424 if (parseToken(AsmToken::EndOfStatement, 11425 "unexpected token in '.movsp' directive")) 11426 return true; 11427 11428 getTargetStreamer().emitMovSP(SPReg, Offset); 11429 UC.saveFPReg(SPReg); 11430 11431 return false; 11432 } 11433 11434 /// parseDirectiveObjectArch 11435 /// ::= .object_arch name 11436 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 11437 MCAsmParser &Parser = getParser(); 11438 if (getLexer().isNot(AsmToken::Identifier)) 11439 return Error(getLexer().getLoc(), "unexpected token"); 11440 11441 StringRef Arch = Parser.getTok().getString(); 11442 SMLoc ArchLoc = Parser.getTok().getLoc(); 11443 Lex(); 11444 11445 ARM::ArchKind ID = ARM::parseArch(Arch); 11446 11447 if (ID == ARM::ArchKind::INVALID) 11448 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 11449 if (parseToken(AsmToken::EndOfStatement)) 11450 return true; 11451 11452 getTargetStreamer().emitObjectArch(ID); 11453 return false; 11454 } 11455 11456 /// parseDirectiveAlign 11457 /// ::= .align 11458 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 11459 // NOTE: if this is not the end of the statement, fall back to the target 11460 // agnostic handling for this directive which will correctly handle this. 11461 if (parseOptionalToken(AsmToken::EndOfStatement)) { 11462 // '.align' is target specifically handled to mean 2**2 byte alignment. 11463 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11464 assert(Section && "must have section to emit alignment"); 11465 if (Section->UseCodeAlign()) 11466 getStreamer().EmitCodeAlignment(4, 0); 11467 else 11468 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 11469 return false; 11470 } 11471 return true; 11472 } 11473 11474 /// parseDirectiveThumbSet 11475 /// ::= .thumb_set name, value 11476 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 11477 MCAsmParser &Parser = getParser(); 11478 11479 StringRef Name; 11480 if (check(Parser.parseIdentifier(Name), 11481 "expected identifier after '.thumb_set'") || 11482 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 11483 return true; 11484 11485 MCSymbol *Sym; 11486 const MCExpr *Value; 11487 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 11488 Parser, Sym, Value)) 11489 return true; 11490 11491 getTargetStreamer().emitThumbSet(Sym, Value); 11492 return false; 11493 } 11494 11495 /// Force static initialization. 11496 extern "C" void LLVMInitializeARMAsmParser() { 11497 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 11498 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 11499 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 11500 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 11501 } 11502 11503 #define GET_REGISTER_MATCHER 11504 #define GET_SUBTARGET_FEATURE_NAME 11505 #define GET_MATCHER_IMPLEMENTATION 11506 #define GET_MNEMONIC_SPELL_CHECKER 11507 #include "ARMGenAsmMatcher.inc" 11508 11509 // Some diagnostics need to vary with subtarget features, so they are handled 11510 // here. For example, the DPR class has either 16 or 32 registers, depending 11511 // on the FPU available. 11512 const char * 11513 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 11514 switch (MatchError) { 11515 // rGPR contains sp starting with ARMv8. 11516 case Match_rGPR: 11517 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 11518 : "operand must be a register in range [r0, r12] or r14"; 11519 // DPR contains 16 registers for some FPUs, and 32 for others. 11520 case Match_DPR: 11521 return hasD32() ? "operand must be a register in range [d0, d31]" 11522 : "operand must be a register in range [d0, d15]"; 11523 case Match_DPR_RegList: 11524 return hasD32() ? "operand must be a list of registers in range [d0, d31]" 11525 : "operand must be a list of registers in range [d0, d15]"; 11526 11527 // For all other diags, use the static string from tablegen. 11528 default: 11529 return getMatchKindDiag(MatchError); 11530 } 11531 } 11532 11533 // Process the list of near-misses, throwing away ones we don't want to report 11534 // to the user, and converting the rest to a source location and string that 11535 // should be reported. 11536 void 11537 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 11538 SmallVectorImpl<NearMissMessage> &NearMissesOut, 11539 SMLoc IDLoc, OperandVector &Operands) { 11540 // TODO: If operand didn't match, sub in a dummy one and run target 11541 // predicate, so that we can avoid reporting near-misses that are invalid? 11542 // TODO: Many operand types dont have SuperClasses set, so we report 11543 // redundant ones. 11544 // TODO: Some operands are superclasses of registers (e.g. 11545 // MCK_RegShiftedImm), we don't have any way to represent that currently. 11546 // TODO: This is not all ARM-specific, can some of it be factored out? 11547 11548 // Record some information about near-misses that we have already seen, so 11549 // that we can avoid reporting redundant ones. For example, if there are 11550 // variants of an instruction that take 8- and 16-bit immediates, we want 11551 // to only report the widest one. 11552 std::multimap<unsigned, unsigned> OperandMissesSeen; 11553 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 11554 bool ReportedTooFewOperands = false; 11555 11556 // Process the near-misses in reverse order, so that we see more general ones 11557 // first, and so can avoid emitting more specific ones. 11558 for (NearMissInfo &I : reverse(NearMissesIn)) { 11559 switch (I.getKind()) { 11560 case NearMissInfo::NearMissOperand: { 11561 SMLoc OperandLoc = 11562 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 11563 const char *OperandDiag = 11564 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 11565 11566 // If we have already emitted a message for a superclass, don't also report 11567 // the sub-class. We consider all operand classes that we don't have a 11568 // specialised diagnostic for to be equal for the propose of this check, 11569 // so that we don't report the generic error multiple times on the same 11570 // operand. 11571 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 11572 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 11573 if (std::any_of(PrevReports.first, PrevReports.second, 11574 [DupCheckMatchClass]( 11575 const std::pair<unsigned, unsigned> Pair) { 11576 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 11577 return Pair.second == DupCheckMatchClass; 11578 else 11579 return isSubclass((MatchClassKind)DupCheckMatchClass, 11580 (MatchClassKind)Pair.second); 11581 })) 11582 break; 11583 OperandMissesSeen.insert( 11584 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 11585 11586 NearMissMessage Message; 11587 Message.Loc = OperandLoc; 11588 if (OperandDiag) { 11589 Message.Message = OperandDiag; 11590 } else if (I.getOperandClass() == InvalidMatchClass) { 11591 Message.Message = "too many operands for instruction"; 11592 } else { 11593 Message.Message = "invalid operand for instruction"; 11594 LLVM_DEBUG( 11595 dbgs() << "Missing diagnostic string for operand class " 11596 << getMatchClassName((MatchClassKind)I.getOperandClass()) 11597 << I.getOperandClass() << ", error " << I.getOperandError() 11598 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 11599 } 11600 NearMissesOut.emplace_back(Message); 11601 break; 11602 } 11603 case NearMissInfo::NearMissFeature: { 11604 const FeatureBitset &MissingFeatures = I.getFeatures(); 11605 // Don't report the same set of features twice. 11606 if (FeatureMissesSeen.count(MissingFeatures)) 11607 break; 11608 FeatureMissesSeen.insert(MissingFeatures); 11609 11610 // Special case: don't report a feature set which includes arm-mode for 11611 // targets that don't have ARM mode. 11612 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 11613 break; 11614 // Don't report any near-misses that both require switching instruction 11615 // set, and adding other subtarget features. 11616 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 11617 MissingFeatures.count() > 1) 11618 break; 11619 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 11620 MissingFeatures.count() > 1) 11621 break; 11622 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 11623 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 11624 Feature_IsThumbBit})).any()) 11625 break; 11626 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 11627 break; 11628 11629 NearMissMessage Message; 11630 Message.Loc = IDLoc; 11631 raw_svector_ostream OS(Message.Message); 11632 11633 OS << "instruction requires:"; 11634 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 11635 if (MissingFeatures.test(i)) 11636 OS << ' ' << getSubtargetFeatureName(i); 11637 11638 NearMissesOut.emplace_back(Message); 11639 11640 break; 11641 } 11642 case NearMissInfo::NearMissPredicate: { 11643 NearMissMessage Message; 11644 Message.Loc = IDLoc; 11645 switch (I.getPredicateError()) { 11646 case Match_RequiresNotITBlock: 11647 Message.Message = "flag setting instruction only valid outside IT block"; 11648 break; 11649 case Match_RequiresITBlock: 11650 Message.Message = "instruction only valid inside IT block"; 11651 break; 11652 case Match_RequiresV6: 11653 Message.Message = "instruction variant requires ARMv6 or later"; 11654 break; 11655 case Match_RequiresThumb2: 11656 Message.Message = "instruction variant requires Thumb2"; 11657 break; 11658 case Match_RequiresV8: 11659 Message.Message = "instruction variant requires ARMv8 or later"; 11660 break; 11661 case Match_RequiresFlagSetting: 11662 Message.Message = "no flag-preserving variant of this instruction available"; 11663 break; 11664 case Match_InvalidOperand: 11665 Message.Message = "invalid operand for instruction"; 11666 break; 11667 default: 11668 llvm_unreachable("Unhandled target predicate error"); 11669 break; 11670 } 11671 NearMissesOut.emplace_back(Message); 11672 break; 11673 } 11674 case NearMissInfo::NearMissTooFewOperands: { 11675 if (!ReportedTooFewOperands) { 11676 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 11677 NearMissesOut.emplace_back(NearMissMessage{ 11678 EndLoc, StringRef("too few operands for instruction")}); 11679 ReportedTooFewOperands = true; 11680 } 11681 break; 11682 } 11683 case NearMissInfo::NoNearMiss: 11684 // This should never leave the matcher. 11685 llvm_unreachable("not a near-miss"); 11686 break; 11687 } 11688 } 11689 } 11690 11691 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 11692 SMLoc IDLoc, OperandVector &Operands) { 11693 SmallVector<NearMissMessage, 4> Messages; 11694 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 11695 11696 if (Messages.size() == 0) { 11697 // No near-misses were found, so the best we can do is "invalid 11698 // instruction". 11699 Error(IDLoc, "invalid instruction"); 11700 } else if (Messages.size() == 1) { 11701 // One near miss was found, report it as the sole error. 11702 Error(Messages[0].Loc, Messages[0].Message); 11703 } else { 11704 // More than one near miss, so report a generic "invalid instruction" 11705 // error, followed by notes for each of the near-misses. 11706 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 11707 for (auto &M : Messages) { 11708 Note(M.Loc, M.Message); 11709 } 11710 } 11711 } 11712 11713 /// parseDirectiveArchExtension 11714 /// ::= .arch_extension [no]feature 11715 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 11716 // FIXME: This structure should be moved inside ARMTargetParser 11717 // when we start to table-generate them, and we can use the ARM 11718 // flags below, that were generated by table-gen. 11719 static const struct { 11720 const unsigned Kind; 11721 const FeatureBitset ArchCheck; 11722 const FeatureBitset Features; 11723 } Extensions[] = { 11724 { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} }, 11725 { ARM::AEK_CRYPTO, {Feature_HasV8Bit}, 11726 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 11727 { ARM::AEK_FP, {Feature_HasV8Bit}, 11728 {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} }, 11729 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 11730 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 11731 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 11732 { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit}, 11733 {ARM::FeatureMP} }, 11734 { ARM::AEK_SIMD, {Feature_HasV8Bit}, 11735 {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} }, 11736 { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} }, 11737 // FIXME: Only available in A-class, isel not predicated 11738 { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} }, 11739 { ARM::AEK_FP16, {Feature_HasV8_2aBit}, 11740 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 11741 { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} }, 11742 { ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} }, 11743 // FIXME: Unsupported extensions. 11744 { ARM::AEK_OS, {}, {} }, 11745 { ARM::AEK_IWMMXT, {}, {} }, 11746 { ARM::AEK_IWMMXT2, {}, {} }, 11747 { ARM::AEK_MAVERICK, {}, {} }, 11748 { ARM::AEK_XSCALE, {}, {} }, 11749 }; 11750 11751 MCAsmParser &Parser = getParser(); 11752 11753 if (getLexer().isNot(AsmToken::Identifier)) 11754 return Error(getLexer().getLoc(), "expected architecture extension name"); 11755 11756 StringRef Name = Parser.getTok().getString(); 11757 SMLoc ExtLoc = Parser.getTok().getLoc(); 11758 Lex(); 11759 11760 if (parseToken(AsmToken::EndOfStatement, 11761 "unexpected token in '.arch_extension' directive")) 11762 return true; 11763 11764 bool EnableFeature = true; 11765 if (Name.startswith_lower("no")) { 11766 EnableFeature = false; 11767 Name = Name.substr(2); 11768 } 11769 unsigned FeatureKind = ARM::parseArchExt(Name); 11770 if (FeatureKind == ARM::AEK_INVALID) 11771 return Error(ExtLoc, "unknown architectural extension: " + Name); 11772 11773 for (const auto &Extension : Extensions) { 11774 if (Extension.Kind != FeatureKind) 11775 continue; 11776 11777 if (Extension.Features.none()) 11778 return Error(ExtLoc, "unsupported architectural extension: " + Name); 11779 11780 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 11781 return Error(ExtLoc, "architectural extension '" + Name + 11782 "' is not " 11783 "allowed for the current base architecture"); 11784 11785 MCSubtargetInfo &STI = copySTI(); 11786 if (EnableFeature) { 11787 STI.SetFeatureBitsTransitively(Extension.Features); 11788 } else { 11789 STI.ClearFeatureBitsTransitively(Extension.Features); 11790 } 11791 FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits()); 11792 setAvailableFeatures(Features); 11793 return false; 11794 } 11795 11796 return Error(ExtLoc, "unknown architectural extension: " + Name); 11797 } 11798 11799 // Define this matcher function after the auto-generated include so we 11800 // have the match class enum definitions. 11801 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 11802 unsigned Kind) { 11803 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 11804 // If the kind is a token for a literal immediate, check if our asm 11805 // operand matches. This is for InstAliases which have a fixed-value 11806 // immediate in the syntax. 11807 switch (Kind) { 11808 default: break; 11809 case MCK__35_0: 11810 if (Op.isImm()) 11811 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11812 if (CE->getValue() == 0) 11813 return Match_Success; 11814 break; 11815 case MCK__35_8: 11816 if (Op.isImm()) 11817 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11818 if (CE->getValue() == 8) 11819 return Match_Success; 11820 break; 11821 case MCK__35_16: 11822 if (Op.isImm()) 11823 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11824 if (CE->getValue() == 16) 11825 return Match_Success; 11826 break; 11827 case MCK_ModImm: 11828 if (Op.isImm()) { 11829 const MCExpr *SOExpr = Op.getImm(); 11830 int64_t Value; 11831 if (!SOExpr->evaluateAsAbsolute(Value)) 11832 return Match_Success; 11833 assert((Value >= std::numeric_limits<int32_t>::min() && 11834 Value <= std::numeric_limits<uint32_t>::max()) && 11835 "expression value must be representable in 32 bits"); 11836 } 11837 break; 11838 case MCK_rGPR: 11839 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 11840 return Match_Success; 11841 return Match_rGPR; 11842 case MCK_GPRPair: 11843 if (Op.isReg() && 11844 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 11845 return Match_Success; 11846 break; 11847 } 11848 return Match_InvalidOperand; 11849 } 11850 11851 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, 11852 StringRef ExtraToken) { 11853 if (!hasMVE()) 11854 return false; 11855 11856 return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") || 11857 Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") || 11858 Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") || 11859 Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") || 11860 Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") || 11861 Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") || 11862 Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") || 11863 Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") || 11864 Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") || 11865 Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") || 11866 Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") || 11867 Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") || 11868 Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") || 11869 Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") || 11870 Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") || 11871 Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") || 11872 Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") || 11873 Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") || 11874 Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") || 11875 Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") || 11876 Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") || 11877 Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") || 11878 Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") || 11879 Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") || 11880 Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") || 11881 Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") || 11882 Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") || 11883 Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") || 11884 Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") || 11885 Mnemonic.startswith("vqabs") || 11886 (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") || 11887 Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") || 11888 Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") || 11889 Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") || 11890 Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") || 11891 Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") || 11892 Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") || 11893 Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") || 11894 Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") || 11895 Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") || 11896 Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") || 11897 Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") || 11898 Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") || 11899 Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") || 11900 Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") || 11901 Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") || 11902 Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") || 11903 Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") || 11904 Mnemonic.startswith("vldrb") || 11905 (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") || 11906 (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") || 11907 Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") || 11908 Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") || 11909 Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") || 11910 Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") || 11911 Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") || 11912 Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") || 11913 Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") || 11914 Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") || 11915 Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") || 11916 Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") || 11917 Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") || 11918 Mnemonic.startswith("vcvt") || 11919 (Mnemonic.startswith("vmov") && 11920 !(ExtraToken == ".f16" || ExtraToken == ".32" || 11921 ExtraToken == ".16" || ExtraToken == ".8")); 11922 } 11923