1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMBaseInstrInfo.h"
10 #include "ARMFeatures.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "MCTargetDesc/ARMBaseInfo.h"
13 #include "MCTargetDesc/ARMInstPrinter.h"
14 #include "MCTargetDesc/ARMMCExpr.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "TargetInfo/ARMTargetInfo.h"
17 #include "Utils/ARMBaseInfo.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/StringSet.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCParser/MCAsmLexer.h"
36 #include "llvm/MC/MCParser/MCAsmParser.h"
37 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
38 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
40 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSubtargetInfo.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/MC/SubtargetFeature.h"
47 #include "llvm/MC/TargetRegistry.h"
48 #include "llvm/Support/ARMBuildAttributes.h"
49 #include "llvm/Support/ARMEHABI.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/SMLoc.h"
56 #include "llvm/Support/TargetParser.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <iterator>
63 #include <limits>
64 #include <memory>
65 #include <string>
66 #include <utility>
67 #include <vector>
68 
69 #define DEBUG_TYPE "asm-parser"
70 
71 using namespace llvm;
72 
73 namespace llvm {
74 extern const MCInstrDesc ARMInsts[];
75 } // end namespace llvm
76 
77 namespace {
78 
79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
80 
81 static cl::opt<ImplicitItModeTy> ImplicitItMode(
82     "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
83     cl::desc("Allow conditional instructions outdside of an IT block"),
84     cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
85                           "Accept in both ISAs, emit implicit ITs in Thumb"),
86                clEnumValN(ImplicitItModeTy::Never, "never",
87                           "Warn in ARM, reject in Thumb"),
88                clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
89                           "Accept in ARM, reject in Thumb"),
90                clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
91                           "Warn in ARM, emit implicit ITs in Thumb")));
92 
93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
94                                         cl::init(false));
95 
96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
97 
98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) {
99   // Position==0 means we're not in an IT block at all. Position==1
100   // means we want the first state bit, which is always 0 (Then).
101   // Position==2 means we want the second state bit, stored at bit 3
102   // of Mask, and so on downwards. So (5 - Position) will shift the
103   // right bit down to bit 0, including the always-0 bit at bit 4 for
104   // the mandatory initial Then.
105   return (Mask >> (5 - Position) & 1);
106 }
107 
108 class UnwindContext {
109   using Locs = SmallVector<SMLoc, 4>;
110 
111   MCAsmParser &Parser;
112   Locs FnStartLocs;
113   Locs CantUnwindLocs;
114   Locs PersonalityLocs;
115   Locs PersonalityIndexLocs;
116   Locs HandlerDataLocs;
117   int FPReg;
118 
119 public:
120   UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
121 
122   bool hasFnStart() const { return !FnStartLocs.empty(); }
123   bool cantUnwind() const { return !CantUnwindLocs.empty(); }
124   bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
125 
126   bool hasPersonality() const {
127     return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
128   }
129 
130   void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
131   void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
132   void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
133   void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
134   void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
135 
136   void saveFPReg(int Reg) { FPReg = Reg; }
137   int getFPReg() const { return FPReg; }
138 
139   void emitFnStartLocNotes() const {
140     for (const SMLoc &Loc : FnStartLocs)
141       Parser.Note(Loc, ".fnstart was specified here");
142   }
143 
144   void emitCantUnwindLocNotes() const {
145     for (const SMLoc &Loc : CantUnwindLocs)
146       Parser.Note(Loc, ".cantunwind was specified here");
147   }
148 
149   void emitHandlerDataLocNotes() const {
150     for (const SMLoc &Loc : HandlerDataLocs)
151       Parser.Note(Loc, ".handlerdata was specified here");
152   }
153 
154   void emitPersonalityLocNotes() const {
155     for (Locs::const_iterator PI = PersonalityLocs.begin(),
156                               PE = PersonalityLocs.end(),
157                               PII = PersonalityIndexLocs.begin(),
158                               PIE = PersonalityIndexLocs.end();
159          PI != PE || PII != PIE;) {
160       if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
161         Parser.Note(*PI++, ".personality was specified here");
162       else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
163         Parser.Note(*PII++, ".personalityindex was specified here");
164       else
165         llvm_unreachable(".personality and .personalityindex cannot be "
166                          "at the same location");
167     }
168   }
169 
170   void reset() {
171     FnStartLocs = Locs();
172     CantUnwindLocs = Locs();
173     PersonalityLocs = Locs();
174     HandlerDataLocs = Locs();
175     PersonalityIndexLocs = Locs();
176     FPReg = ARM::SP;
177   }
178 };
179 
180 // Various sets of ARM instruction mnemonics which are used by the asm parser
181 class ARMMnemonicSets {
182   StringSet<> CDE;
183   StringSet<> CDEWithVPTSuffix;
184 public:
185   ARMMnemonicSets(const MCSubtargetInfo &STI);
186 
187   /// Returns true iff a given mnemonic is a CDE instruction
188   bool isCDEInstr(StringRef Mnemonic) {
189     // Quick check before searching the set
190     if (!Mnemonic.startswith("cx") && !Mnemonic.startswith("vcx"))
191       return false;
192     return CDE.count(Mnemonic);
193   }
194 
195   /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction
196   /// (possibly with a predication suffix "e" or "t")
197   bool isVPTPredicableCDEInstr(StringRef Mnemonic) {
198     if (!Mnemonic.startswith("vcx"))
199       return false;
200     return CDEWithVPTSuffix.count(Mnemonic);
201   }
202 
203   /// Returns true iff a given mnemonic is an IT-predicable CDE instruction
204   /// (possibly with a condition suffix)
205   bool isITPredicableCDEInstr(StringRef Mnemonic) {
206     if (!Mnemonic.startswith("cx"))
207       return false;
208     return Mnemonic.startswith("cx1a") || Mnemonic.startswith("cx1da") ||
209            Mnemonic.startswith("cx2a") || Mnemonic.startswith("cx2da") ||
210            Mnemonic.startswith("cx3a") || Mnemonic.startswith("cx3da");
211   }
212 
213   /// Return true iff a given mnemonic is an integer CDE instruction with
214   /// dual-register destination
215   bool isCDEDualRegInstr(StringRef Mnemonic) {
216     if (!Mnemonic.startswith("cx"))
217       return false;
218     return Mnemonic == "cx1d" || Mnemonic == "cx1da" ||
219            Mnemonic == "cx2d" || Mnemonic == "cx2da" ||
220            Mnemonic == "cx3d" || Mnemonic == "cx3da";
221   }
222 };
223 
224 ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) {
225   for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da",
226                              "cx2", "cx2a", "cx2d", "cx2da",
227                              "cx3", "cx3a", "cx3d", "cx3da", })
228     CDE.insert(Mnemonic);
229   for (StringRef Mnemonic :
230        {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) {
231     CDE.insert(Mnemonic);
232     CDEWithVPTSuffix.insert(Mnemonic);
233     CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t");
234     CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e");
235   }
236 }
237 
238 class ARMAsmParser : public MCTargetAsmParser {
239   const MCRegisterInfo *MRI;
240   UnwindContext UC;
241   ARMMnemonicSets MS;
242 
243   ARMTargetStreamer &getTargetStreamer() {
244     assert(getParser().getStreamer().getTargetStreamer() &&
245            "do not have a target streamer");
246     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
247     return static_cast<ARMTargetStreamer &>(TS);
248   }
249 
250   // Map of register aliases registers via the .req directive.
251   StringMap<unsigned> RegisterReqs;
252 
253   bool NextSymbolIsThumb;
254 
255   bool useImplicitITThumb() const {
256     return ImplicitItMode == ImplicitItModeTy::Always ||
257            ImplicitItMode == ImplicitItModeTy::ThumbOnly;
258   }
259 
260   bool useImplicitITARM() const {
261     return ImplicitItMode == ImplicitItModeTy::Always ||
262            ImplicitItMode == ImplicitItModeTy::ARMOnly;
263   }
264 
265   struct {
266     ARMCC::CondCodes Cond;    // Condition for IT block.
267     unsigned Mask:4;          // Condition mask for instructions.
268                               // Starting at first 1 (from lsb).
269                               //   '1'  condition as indicated in IT.
270                               //   '0'  inverse of condition (else).
271                               // Count of instructions in IT block is
272                               // 4 - trailingzeroes(mask)
273                               // Note that this does not have the same encoding
274                               // as in the IT instruction, which also depends
275                               // on the low bit of the condition code.
276 
277     unsigned CurPosition;     // Current position in parsing of IT
278                               // block. In range [0,4], with 0 being the IT
279                               // instruction itself. Initialized according to
280                               // count of instructions in block.  ~0U if no
281                               // active IT block.
282 
283     bool IsExplicit;          // true  - The IT instruction was present in the
284                               //         input, we should not modify it.
285                               // false - The IT instruction was added
286                               //         implicitly, we can extend it if that
287                               //         would be legal.
288   } ITState;
289 
290   SmallVector<MCInst, 4> PendingConditionalInsts;
291 
292   void flushPendingInstructions(MCStreamer &Out) override {
293     if (!inImplicitITBlock()) {
294       assert(PendingConditionalInsts.size() == 0);
295       return;
296     }
297 
298     // Emit the IT instruction
299     MCInst ITInst;
300     ITInst.setOpcode(ARM::t2IT);
301     ITInst.addOperand(MCOperand::createImm(ITState.Cond));
302     ITInst.addOperand(MCOperand::createImm(ITState.Mask));
303     Out.emitInstruction(ITInst, getSTI());
304 
305     // Emit the conditonal instructions
306     assert(PendingConditionalInsts.size() <= 4);
307     for (const MCInst &Inst : PendingConditionalInsts) {
308       Out.emitInstruction(Inst, getSTI());
309     }
310     PendingConditionalInsts.clear();
311 
312     // Clear the IT state
313     ITState.Mask = 0;
314     ITState.CurPosition = ~0U;
315   }
316 
317   bool inITBlock() { return ITState.CurPosition != ~0U; }
318   bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
319   bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
320 
321   bool lastInITBlock() {
322     return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
323   }
324 
325   void forwardITPosition() {
326     if (!inITBlock()) return;
327     // Move to the next instruction in the IT block, if there is one. If not,
328     // mark the block as done, except for implicit IT blocks, which we leave
329     // open until we find an instruction that can't be added to it.
330     unsigned TZ = countTrailingZeros(ITState.Mask);
331     if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
332       ITState.CurPosition = ~0U; // Done with the IT block after this.
333   }
334 
335   // Rewind the state of the current IT block, removing the last slot from it.
336   void rewindImplicitITPosition() {
337     assert(inImplicitITBlock());
338     assert(ITState.CurPosition > 1);
339     ITState.CurPosition--;
340     unsigned TZ = countTrailingZeros(ITState.Mask);
341     unsigned NewMask = 0;
342     NewMask |= ITState.Mask & (0xC << TZ);
343     NewMask |= 0x2 << TZ;
344     ITState.Mask = NewMask;
345   }
346 
347   // Rewind the state of the current IT block, removing the last slot from it.
348   // If we were at the first slot, this closes the IT block.
349   void discardImplicitITBlock() {
350     assert(inImplicitITBlock());
351     assert(ITState.CurPosition == 1);
352     ITState.CurPosition = ~0U;
353   }
354 
355   // Return the low-subreg of a given Q register.
356   unsigned getDRegFromQReg(unsigned QReg) const {
357     return MRI->getSubReg(QReg, ARM::dsub_0);
358   }
359 
360   // Get the condition code corresponding to the current IT block slot.
361   ARMCC::CondCodes currentITCond() {
362     unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition);
363     return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond;
364   }
365 
366   // Invert the condition of the current IT block slot without changing any
367   // other slots in the same block.
368   void invertCurrentITCondition() {
369     if (ITState.CurPosition == 1) {
370       ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
371     } else {
372       ITState.Mask ^= 1 << (5 - ITState.CurPosition);
373     }
374   }
375 
376   // Returns true if the current IT block is full (all 4 slots used).
377   bool isITBlockFull() {
378     return inITBlock() && (ITState.Mask & 1);
379   }
380 
381   // Extend the current implicit IT block to have one more slot with the given
382   // condition code.
383   void extendImplicitITBlock(ARMCC::CondCodes Cond) {
384     assert(inImplicitITBlock());
385     assert(!isITBlockFull());
386     assert(Cond == ITState.Cond ||
387            Cond == ARMCC::getOppositeCondition(ITState.Cond));
388     unsigned TZ = countTrailingZeros(ITState.Mask);
389     unsigned NewMask = 0;
390     // Keep any existing condition bits.
391     NewMask |= ITState.Mask & (0xE << TZ);
392     // Insert the new condition bit.
393     NewMask |= (Cond != ITState.Cond) << TZ;
394     // Move the trailing 1 down one bit.
395     NewMask |= 1 << (TZ - 1);
396     ITState.Mask = NewMask;
397   }
398 
399   // Create a new implicit IT block with a dummy condition code.
400   void startImplicitITBlock() {
401     assert(!inITBlock());
402     ITState.Cond = ARMCC::AL;
403     ITState.Mask = 8;
404     ITState.CurPosition = 1;
405     ITState.IsExplicit = false;
406   }
407 
408   // Create a new explicit IT block with the given condition and mask.
409   // The mask should be in the format used in ARMOperand and
410   // MCOperand, with a 1 implying 'e', regardless of the low bit of
411   // the condition.
412   void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
413     assert(!inITBlock());
414     ITState.Cond = Cond;
415     ITState.Mask = Mask;
416     ITState.CurPosition = 0;
417     ITState.IsExplicit = true;
418   }
419 
420   struct {
421     unsigned Mask : 4;
422     unsigned CurPosition;
423   } VPTState;
424   bool inVPTBlock() { return VPTState.CurPosition != ~0U; }
425   void forwardVPTPosition() {
426     if (!inVPTBlock()) return;
427     unsigned TZ = countTrailingZeros(VPTState.Mask);
428     if (++VPTState.CurPosition == 5 - TZ)
429       VPTState.CurPosition = ~0U;
430   }
431 
432   void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
433     return getParser().Note(L, Msg, Range);
434   }
435 
436   bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
437     return getParser().Warning(L, Msg, Range);
438   }
439 
440   bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
441     return getParser().Error(L, Msg, Range);
442   }
443 
444   bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
445                            unsigned ListNo, bool IsARPop = false);
446   bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
447                            unsigned ListNo);
448 
449   int tryParseRegister();
450   bool tryParseRegisterWithWriteBack(OperandVector &);
451   int tryParseShiftRegister(OperandVector &);
452   bool parseRegisterList(OperandVector &, bool EnforceOrder = true,
453                          bool AllowRAAC = false);
454   bool parseMemory(OperandVector &);
455   bool parseOperand(OperandVector &, StringRef Mnemonic);
456   bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
457   bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
458                               unsigned &ShiftAmount);
459   bool parseLiteralValues(unsigned Size, SMLoc L);
460   bool parseDirectiveThumb(SMLoc L);
461   bool parseDirectiveARM(SMLoc L);
462   bool parseDirectiveThumbFunc(SMLoc L);
463   bool parseDirectiveCode(SMLoc L);
464   bool parseDirectiveSyntax(SMLoc L);
465   bool parseDirectiveReq(StringRef Name, SMLoc L);
466   bool parseDirectiveUnreq(SMLoc L);
467   bool parseDirectiveArch(SMLoc L);
468   bool parseDirectiveEabiAttr(SMLoc L);
469   bool parseDirectiveCPU(SMLoc L);
470   bool parseDirectiveFPU(SMLoc L);
471   bool parseDirectiveFnStart(SMLoc L);
472   bool parseDirectiveFnEnd(SMLoc L);
473   bool parseDirectiveCantUnwind(SMLoc L);
474   bool parseDirectivePersonality(SMLoc L);
475   bool parseDirectiveHandlerData(SMLoc L);
476   bool parseDirectiveSetFP(SMLoc L);
477   bool parseDirectivePad(SMLoc L);
478   bool parseDirectiveRegSave(SMLoc L, bool IsVector);
479   bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
480   bool parseDirectiveLtorg(SMLoc L);
481   bool parseDirectiveEven(SMLoc L);
482   bool parseDirectivePersonalityIndex(SMLoc L);
483   bool parseDirectiveUnwindRaw(SMLoc L);
484   bool parseDirectiveTLSDescSeq(SMLoc L);
485   bool parseDirectiveMovSP(SMLoc L);
486   bool parseDirectiveObjectArch(SMLoc L);
487   bool parseDirectiveArchExtension(SMLoc L);
488   bool parseDirectiveAlign(SMLoc L);
489   bool parseDirectiveThumbSet(SMLoc L);
490 
491   bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken);
492   StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken,
493                           unsigned &PredicationCode,
494                           unsigned &VPTPredicationCode, bool &CarrySetting,
495                           unsigned &ProcessorIMod, StringRef &ITMask);
496   void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken,
497                              StringRef FullInst, bool &CanAcceptCarrySet,
498                              bool &CanAcceptPredicationCode,
499                              bool &CanAcceptVPTPredicationCode);
500   bool enableArchExtFeature(StringRef Name, SMLoc &ExtLoc);
501 
502   void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
503                                      OperandVector &Operands);
504   bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands);
505 
506   bool isThumb() const {
507     // FIXME: Can tablegen auto-generate this?
508     return getSTI().getFeatureBits()[ARM::ModeThumb];
509   }
510 
511   bool isThumbOne() const {
512     return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
513   }
514 
515   bool isThumbTwo() const {
516     return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
517   }
518 
519   bool hasThumb() const {
520     return getSTI().getFeatureBits()[ARM::HasV4TOps];
521   }
522 
523   bool hasThumb2() const {
524     return getSTI().getFeatureBits()[ARM::FeatureThumb2];
525   }
526 
527   bool hasV6Ops() const {
528     return getSTI().getFeatureBits()[ARM::HasV6Ops];
529   }
530 
531   bool hasV6T2Ops() const {
532     return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
533   }
534 
535   bool hasV6MOps() const {
536     return getSTI().getFeatureBits()[ARM::HasV6MOps];
537   }
538 
539   bool hasV7Ops() const {
540     return getSTI().getFeatureBits()[ARM::HasV7Ops];
541   }
542 
543   bool hasV8Ops() const {
544     return getSTI().getFeatureBits()[ARM::HasV8Ops];
545   }
546 
547   bool hasV8MBaseline() const {
548     return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
549   }
550 
551   bool hasV8MMainline() const {
552     return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
553   }
554   bool hasV8_1MMainline() const {
555     return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps];
556   }
557   bool hasMVE() const {
558     return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps];
559   }
560   bool hasMVEFloat() const {
561     return getSTI().getFeatureBits()[ARM::HasMVEFloatOps];
562   }
563   bool hasCDE() const {
564     return getSTI().getFeatureBits()[ARM::HasCDEOps];
565   }
566   bool has8MSecExt() const {
567     return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
568   }
569 
570   bool hasARM() const {
571     return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
572   }
573 
574   bool hasDSP() const {
575     return getSTI().getFeatureBits()[ARM::FeatureDSP];
576   }
577 
578   bool hasD32() const {
579     return getSTI().getFeatureBits()[ARM::FeatureD32];
580   }
581 
582   bool hasV8_1aOps() const {
583     return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
584   }
585 
586   bool hasRAS() const {
587     return getSTI().getFeatureBits()[ARM::FeatureRAS];
588   }
589 
590   void SwitchMode() {
591     MCSubtargetInfo &STI = copySTI();
592     auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
593     setAvailableFeatures(FB);
594   }
595 
596   void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
597 
598   bool isMClass() const {
599     return getSTI().getFeatureBits()[ARM::FeatureMClass];
600   }
601 
602   /// @name Auto-generated Match Functions
603   /// {
604 
605 #define GET_ASSEMBLER_HEADER
606 #include "ARMGenAsmMatcher.inc"
607 
608   /// }
609 
610   OperandMatchResultTy parseITCondCode(OperandVector &);
611   OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
612   OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
613   OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
614   OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
615   OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
616   OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
617   OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
618   OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
619   OperandMatchResultTy parseBankedRegOperand(OperandVector &);
620   OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
621                                    int High);
622   OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
623     return parsePKHImm(O, "lsl", 0, 31);
624   }
625   OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
626     return parsePKHImm(O, "asr", 1, 32);
627   }
628   OperandMatchResultTy parseSetEndImm(OperandVector &);
629   OperandMatchResultTy parseShifterImm(OperandVector &);
630   OperandMatchResultTy parseRotImm(OperandVector &);
631   OperandMatchResultTy parseModImm(OperandVector &);
632   OperandMatchResultTy parseBitfield(OperandVector &);
633   OperandMatchResultTy parsePostIdxReg(OperandVector &);
634   OperandMatchResultTy parseAM3Offset(OperandVector &);
635   OperandMatchResultTy parseFPImm(OperandVector &);
636   OperandMatchResultTy parseVectorList(OperandVector &);
637   OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
638                                        SMLoc &EndLoc);
639 
640   // Asm Match Converter Methods
641   void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
642   void cvtThumbBranches(MCInst &Inst, const OperandVector &);
643   void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &);
644 
645   bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
646   bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
647   bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
648   bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
649   bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
650   bool isITBlockTerminator(MCInst &Inst) const;
651   void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
652   bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
653                         bool Load, bool ARMMode, bool Writeback);
654 
655 public:
656   enum ARMMatchResultTy {
657     Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
658     Match_RequiresNotITBlock,
659     Match_RequiresV6,
660     Match_RequiresThumb2,
661     Match_RequiresV8,
662     Match_RequiresFlagSetting,
663 #define GET_OPERAND_DIAGNOSTIC_TYPES
664 #include "ARMGenAsmMatcher.inc"
665 
666   };
667 
668   ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
669                const MCInstrInfo &MII, const MCTargetOptions &Options)
670     : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) {
671     MCAsmParserExtension::Initialize(Parser);
672 
673     // Cache the MCRegisterInfo.
674     MRI = getContext().getRegisterInfo();
675 
676     // Initialize the set of available features.
677     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
678 
679     // Add build attributes based on the selected target.
680     if (AddBuildAttributes)
681       getTargetStreamer().emitTargetAttributes(STI);
682 
683     // Not in an ITBlock to start with.
684     ITState.CurPosition = ~0U;
685 
686     VPTState.CurPosition = ~0U;
687 
688     NextSymbolIsThumb = false;
689   }
690 
691   // Implementation of the MCTargetAsmParser interface:
692   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
693   OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
694                                         SMLoc &EndLoc) override;
695   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
696                         SMLoc NameLoc, OperandVector &Operands) override;
697   bool ParseDirective(AsmToken DirectiveID) override;
698 
699   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
700                                       unsigned Kind) override;
701   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
702 
703   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
704                                OperandVector &Operands, MCStreamer &Out,
705                                uint64_t &ErrorInfo,
706                                bool MatchingInlineAsm) override;
707   unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
708                             SmallVectorImpl<NearMissInfo> &NearMisses,
709                             bool MatchingInlineAsm, bool &EmitInITBlock,
710                             MCStreamer &Out);
711 
712   struct NearMissMessage {
713     SMLoc Loc;
714     SmallString<128> Message;
715   };
716 
717   const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
718 
719   void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
720                         SmallVectorImpl<NearMissMessage> &NearMissesOut,
721                         SMLoc IDLoc, OperandVector &Operands);
722   void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
723                         OperandVector &Operands);
724 
725   void doBeforeLabelEmit(MCSymbol *Symbol) override;
726 
727   void onLabelParsed(MCSymbol *Symbol) override;
728 };
729 
730 /// ARMOperand - Instances of this class represent a parsed ARM machine
731 /// operand.
732 class ARMOperand : public MCParsedAsmOperand {
733   enum KindTy {
734     k_CondCode,
735     k_VPTPred,
736     k_CCOut,
737     k_ITCondMask,
738     k_CoprocNum,
739     k_CoprocReg,
740     k_CoprocOption,
741     k_Immediate,
742     k_MemBarrierOpt,
743     k_InstSyncBarrierOpt,
744     k_TraceSyncBarrierOpt,
745     k_Memory,
746     k_PostIndexRegister,
747     k_MSRMask,
748     k_BankedReg,
749     k_ProcIFlags,
750     k_VectorIndex,
751     k_Register,
752     k_RegisterList,
753     k_RegisterListWithAPSR,
754     k_DPRRegisterList,
755     k_SPRRegisterList,
756     k_FPSRegisterListWithVPR,
757     k_FPDRegisterListWithVPR,
758     k_VectorList,
759     k_VectorListAllLanes,
760     k_VectorListIndexed,
761     k_ShiftedRegister,
762     k_ShiftedImmediate,
763     k_ShifterImmediate,
764     k_RotateImmediate,
765     k_ModifiedImmediate,
766     k_ConstantPoolImmediate,
767     k_BitfieldDescriptor,
768     k_Token,
769   } Kind;
770 
771   SMLoc StartLoc, EndLoc, AlignmentLoc;
772   SmallVector<unsigned, 8> Registers;
773 
774   struct CCOp {
775     ARMCC::CondCodes Val;
776   };
777 
778   struct VCCOp {
779     ARMVCC::VPTCodes Val;
780   };
781 
782   struct CopOp {
783     unsigned Val;
784   };
785 
786   struct CoprocOptionOp {
787     unsigned Val;
788   };
789 
790   struct ITMaskOp {
791     unsigned Mask:4;
792   };
793 
794   struct MBOptOp {
795     ARM_MB::MemBOpt Val;
796   };
797 
798   struct ISBOptOp {
799     ARM_ISB::InstSyncBOpt Val;
800   };
801 
802   struct TSBOptOp {
803     ARM_TSB::TraceSyncBOpt Val;
804   };
805 
806   struct IFlagsOp {
807     ARM_PROC::IFlags Val;
808   };
809 
810   struct MMaskOp {
811     unsigned Val;
812   };
813 
814   struct BankedRegOp {
815     unsigned Val;
816   };
817 
818   struct TokOp {
819     const char *Data;
820     unsigned Length;
821   };
822 
823   struct RegOp {
824     unsigned RegNum;
825   };
826 
827   // A vector register list is a sequential list of 1 to 4 registers.
828   struct VectorListOp {
829     unsigned RegNum;
830     unsigned Count;
831     unsigned LaneIndex;
832     bool isDoubleSpaced;
833   };
834 
835   struct VectorIndexOp {
836     unsigned Val;
837   };
838 
839   struct ImmOp {
840     const MCExpr *Val;
841   };
842 
843   /// Combined record for all forms of ARM address expressions.
844   struct MemoryOp {
845     unsigned BaseRegNum;
846     // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
847     // was specified.
848     const MCExpr *OffsetImm;  // Offset immediate value
849     unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
850     ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
851     unsigned ShiftImm;        // shift for OffsetReg.
852     unsigned Alignment;       // 0 = no alignment specified
853     // n = alignment in bytes (2, 4, 8, 16, or 32)
854     unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
855   };
856 
857   struct PostIdxRegOp {
858     unsigned RegNum;
859     bool isAdd;
860     ARM_AM::ShiftOpc ShiftTy;
861     unsigned ShiftImm;
862   };
863 
864   struct ShifterImmOp {
865     bool isASR;
866     unsigned Imm;
867   };
868 
869   struct RegShiftedRegOp {
870     ARM_AM::ShiftOpc ShiftTy;
871     unsigned SrcReg;
872     unsigned ShiftReg;
873     unsigned ShiftImm;
874   };
875 
876   struct RegShiftedImmOp {
877     ARM_AM::ShiftOpc ShiftTy;
878     unsigned SrcReg;
879     unsigned ShiftImm;
880   };
881 
882   struct RotImmOp {
883     unsigned Imm;
884   };
885 
886   struct ModImmOp {
887     unsigned Bits;
888     unsigned Rot;
889   };
890 
891   struct BitfieldOp {
892     unsigned LSB;
893     unsigned Width;
894   };
895 
896   union {
897     struct CCOp CC;
898     struct VCCOp VCC;
899     struct CopOp Cop;
900     struct CoprocOptionOp CoprocOption;
901     struct MBOptOp MBOpt;
902     struct ISBOptOp ISBOpt;
903     struct TSBOptOp TSBOpt;
904     struct ITMaskOp ITMask;
905     struct IFlagsOp IFlags;
906     struct MMaskOp MMask;
907     struct BankedRegOp BankedReg;
908     struct TokOp Tok;
909     struct RegOp Reg;
910     struct VectorListOp VectorList;
911     struct VectorIndexOp VectorIndex;
912     struct ImmOp Imm;
913     struct MemoryOp Memory;
914     struct PostIdxRegOp PostIdxReg;
915     struct ShifterImmOp ShifterImm;
916     struct RegShiftedRegOp RegShiftedReg;
917     struct RegShiftedImmOp RegShiftedImm;
918     struct RotImmOp RotImm;
919     struct ModImmOp ModImm;
920     struct BitfieldOp Bitfield;
921   };
922 
923 public:
924   ARMOperand(KindTy K) : Kind(K) {}
925 
926   /// getStartLoc - Get the location of the first token of this operand.
927   SMLoc getStartLoc() const override { return StartLoc; }
928 
929   /// getEndLoc - Get the location of the last token of this operand.
930   SMLoc getEndLoc() const override { return EndLoc; }
931 
932   /// getLocRange - Get the range between the first and last token of this
933   /// operand.
934   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
935 
936   /// getAlignmentLoc - Get the location of the Alignment token of this operand.
937   SMLoc getAlignmentLoc() const {
938     assert(Kind == k_Memory && "Invalid access!");
939     return AlignmentLoc;
940   }
941 
942   ARMCC::CondCodes getCondCode() const {
943     assert(Kind == k_CondCode && "Invalid access!");
944     return CC.Val;
945   }
946 
947   ARMVCC::VPTCodes getVPTPred() const {
948     assert(isVPTPred() && "Invalid access!");
949     return VCC.Val;
950   }
951 
952   unsigned getCoproc() const {
953     assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
954     return Cop.Val;
955   }
956 
957   StringRef getToken() const {
958     assert(Kind == k_Token && "Invalid access!");
959     return StringRef(Tok.Data, Tok.Length);
960   }
961 
962   unsigned getReg() const override {
963     assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
964     return Reg.RegNum;
965   }
966 
967   const SmallVectorImpl<unsigned> &getRegList() const {
968     assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR ||
969             Kind == k_DPRRegisterList || Kind == k_SPRRegisterList ||
970             Kind == k_FPSRegisterListWithVPR ||
971             Kind == k_FPDRegisterListWithVPR) &&
972            "Invalid access!");
973     return Registers;
974   }
975 
976   const MCExpr *getImm() const {
977     assert(isImm() && "Invalid access!");
978     return Imm.Val;
979   }
980 
981   const MCExpr *getConstantPoolImm() const {
982     assert(isConstantPoolImm() && "Invalid access!");
983     return Imm.Val;
984   }
985 
986   unsigned getVectorIndex() const {
987     assert(Kind == k_VectorIndex && "Invalid access!");
988     return VectorIndex.Val;
989   }
990 
991   ARM_MB::MemBOpt getMemBarrierOpt() const {
992     assert(Kind == k_MemBarrierOpt && "Invalid access!");
993     return MBOpt.Val;
994   }
995 
996   ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
997     assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
998     return ISBOpt.Val;
999   }
1000 
1001   ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
1002     assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
1003     return TSBOpt.Val;
1004   }
1005 
1006   ARM_PROC::IFlags getProcIFlags() const {
1007     assert(Kind == k_ProcIFlags && "Invalid access!");
1008     return IFlags.Val;
1009   }
1010 
1011   unsigned getMSRMask() const {
1012     assert(Kind == k_MSRMask && "Invalid access!");
1013     return MMask.Val;
1014   }
1015 
1016   unsigned getBankedReg() const {
1017     assert(Kind == k_BankedReg && "Invalid access!");
1018     return BankedReg.Val;
1019   }
1020 
1021   bool isCoprocNum() const { return Kind == k_CoprocNum; }
1022   bool isCoprocReg() const { return Kind == k_CoprocReg; }
1023   bool isCoprocOption() const { return Kind == k_CoprocOption; }
1024   bool isCondCode() const { return Kind == k_CondCode; }
1025   bool isVPTPred() const { return Kind == k_VPTPred; }
1026   bool isCCOut() const { return Kind == k_CCOut; }
1027   bool isITMask() const { return Kind == k_ITCondMask; }
1028   bool isITCondCode() const { return Kind == k_CondCode; }
1029   bool isImm() const override {
1030     return Kind == k_Immediate;
1031   }
1032 
1033   bool isARMBranchTarget() const {
1034     if (!isImm()) return false;
1035 
1036     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
1037       return CE->getValue() % 4 == 0;
1038     return true;
1039   }
1040 
1041 
1042   bool isThumbBranchTarget() const {
1043     if (!isImm()) return false;
1044 
1045     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
1046       return CE->getValue() % 2 == 0;
1047     return true;
1048   }
1049 
1050   // checks whether this operand is an unsigned offset which fits is a field
1051   // of specified width and scaled by a specific number of bits
1052   template<unsigned width, unsigned scale>
1053   bool isUnsignedOffset() const {
1054     if (!isImm()) return false;
1055     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1056     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1057       int64_t Val = CE->getValue();
1058       int64_t Align = 1LL << scale;
1059       int64_t Max = Align * ((1LL << width) - 1);
1060       return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
1061     }
1062     return false;
1063   }
1064 
1065   // checks whether this operand is an signed offset which fits is a field
1066   // of specified width and scaled by a specific number of bits
1067   template<unsigned width, unsigned scale>
1068   bool isSignedOffset() const {
1069     if (!isImm()) return false;
1070     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1071     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1072       int64_t Val = CE->getValue();
1073       int64_t Align = 1LL << scale;
1074       int64_t Max = Align * ((1LL << (width-1)) - 1);
1075       int64_t Min = -Align * (1LL << (width-1));
1076       return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
1077     }
1078     return false;
1079   }
1080 
1081   // checks whether this operand is an offset suitable for the LE /
1082   // LETP instructions in Arm v8.1M
1083   bool isLEOffset() const {
1084     if (!isImm()) return false;
1085     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1086     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1087       int64_t Val = CE->getValue();
1088       return Val < 0 && Val >= -4094 && (Val & 1) == 0;
1089     }
1090     return false;
1091   }
1092 
1093   // checks whether this operand is a memory operand computed as an offset
1094   // applied to PC. the offset may have 8 bits of magnitude and is represented
1095   // with two bits of shift. textually it may be either [pc, #imm], #imm or
1096   // relocable expression...
1097   bool isThumbMemPC() const {
1098     int64_t Val = 0;
1099     if (isImm()) {
1100       if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1101       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
1102       if (!CE) return false;
1103       Val = CE->getValue();
1104     }
1105     else if (isGPRMem()) {
1106       if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
1107       if(Memory.BaseRegNum != ARM::PC) return false;
1108       if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
1109         Val = CE->getValue();
1110       else
1111         return false;
1112     }
1113     else return false;
1114     return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
1115   }
1116 
1117   bool isFPImm() const {
1118     if (!isImm()) return false;
1119     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1120     if (!CE) return false;
1121     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1122     return Val != -1;
1123   }
1124 
1125   template<int64_t N, int64_t M>
1126   bool isImmediate() const {
1127     if (!isImm()) return false;
1128     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1129     if (!CE) return false;
1130     int64_t Value = CE->getValue();
1131     return Value >= N && Value <= M;
1132   }
1133 
1134   template<int64_t N, int64_t M>
1135   bool isImmediateS4() const {
1136     if (!isImm()) return false;
1137     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1138     if (!CE) return false;
1139     int64_t Value = CE->getValue();
1140     return ((Value & 3) == 0) && Value >= N && Value <= M;
1141   }
1142   template<int64_t N, int64_t M>
1143   bool isImmediateS2() const {
1144     if (!isImm()) return false;
1145     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1146     if (!CE) return false;
1147     int64_t Value = CE->getValue();
1148     return ((Value & 1) == 0) && Value >= N && Value <= M;
1149   }
1150   bool isFBits16() const {
1151     return isImmediate<0, 17>();
1152   }
1153   bool isFBits32() const {
1154     return isImmediate<1, 33>();
1155   }
1156   bool isImm8s4() const {
1157     return isImmediateS4<-1020, 1020>();
1158   }
1159   bool isImm7s4() const {
1160     return isImmediateS4<-508, 508>();
1161   }
1162   bool isImm7Shift0() const {
1163     return isImmediate<-127, 127>();
1164   }
1165   bool isImm7Shift1() const {
1166     return isImmediateS2<-255, 255>();
1167   }
1168   bool isImm7Shift2() const {
1169     return isImmediateS4<-511, 511>();
1170   }
1171   bool isImm7() const {
1172     return isImmediate<-127, 127>();
1173   }
1174   bool isImm0_1020s4() const {
1175     return isImmediateS4<0, 1020>();
1176   }
1177   bool isImm0_508s4() const {
1178     return isImmediateS4<0, 508>();
1179   }
1180   bool isImm0_508s4Neg() const {
1181     if (!isImm()) return false;
1182     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1183     if (!CE) return false;
1184     int64_t Value = -CE->getValue();
1185     // explicitly exclude zero. we want that to use the normal 0_508 version.
1186     return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1187   }
1188 
1189   bool isImm0_4095Neg() const {
1190     if (!isImm()) return false;
1191     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1192     if (!CE) return false;
1193     // isImm0_4095Neg is used with 32-bit immediates only.
1194     // 32-bit immediates are zero extended to 64-bit when parsed,
1195     // thus simple -CE->getValue() results in a big negative number,
1196     // not a small positive number as intended
1197     if ((CE->getValue() >> 32) > 0) return false;
1198     uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1199     return Value > 0 && Value < 4096;
1200   }
1201 
1202   bool isImm0_7() const {
1203     return isImmediate<0, 7>();
1204   }
1205 
1206   bool isImm1_16() const {
1207     return isImmediate<1, 16>();
1208   }
1209 
1210   bool isImm1_32() const {
1211     return isImmediate<1, 32>();
1212   }
1213 
1214   bool isImm8_255() const {
1215     return isImmediate<8, 255>();
1216   }
1217 
1218   bool isImm256_65535Expr() const {
1219     if (!isImm()) return false;
1220     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1221     // If it's not a constant expression, it'll generate a fixup and be
1222     // handled later.
1223     if (!CE) return true;
1224     int64_t Value = CE->getValue();
1225     return Value >= 256 && Value < 65536;
1226   }
1227 
1228   bool isImm0_65535Expr() const {
1229     if (!isImm()) return false;
1230     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1231     // If it's not a constant expression, it'll generate a fixup and be
1232     // handled later.
1233     if (!CE) return true;
1234     int64_t Value = CE->getValue();
1235     return Value >= 0 && Value < 65536;
1236   }
1237 
1238   bool isImm24bit() const {
1239     return isImmediate<0, 0xffffff + 1>();
1240   }
1241 
1242   bool isImmThumbSR() const {
1243     return isImmediate<1, 33>();
1244   }
1245 
1246   template<int shift>
1247   bool isExpImmValue(uint64_t Value) const {
1248     uint64_t mask = (1 << shift) - 1;
1249     if ((Value & mask) != 0 || (Value >> shift) > 0xff)
1250       return false;
1251     return true;
1252   }
1253 
1254   template<int shift>
1255   bool isExpImm() const {
1256     if (!isImm()) return false;
1257     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1258     if (!CE) return false;
1259 
1260     return isExpImmValue<shift>(CE->getValue());
1261   }
1262 
1263   template<int shift, int size>
1264   bool isInvertedExpImm() const {
1265     if (!isImm()) return false;
1266     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1267     if (!CE) return false;
1268 
1269     uint64_t OriginalValue = CE->getValue();
1270     uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1);
1271     return isExpImmValue<shift>(InvertedValue);
1272   }
1273 
1274   bool isPKHLSLImm() const {
1275     return isImmediate<0, 32>();
1276   }
1277 
1278   bool isPKHASRImm() const {
1279     return isImmediate<0, 33>();
1280   }
1281 
1282   bool isAdrLabel() const {
1283     // If we have an immediate that's not a constant, treat it as a label
1284     // reference needing a fixup.
1285     if (isImm() && !isa<MCConstantExpr>(getImm()))
1286       return true;
1287 
1288     // If it is a constant, it must fit into a modified immediate encoding.
1289     if (!isImm()) return false;
1290     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1291     if (!CE) return false;
1292     int64_t Value = CE->getValue();
1293     return (ARM_AM::getSOImmVal(Value) != -1 ||
1294             ARM_AM::getSOImmVal(-Value) != -1);
1295   }
1296 
1297   bool isT2SOImm() const {
1298     // If we have an immediate that's not a constant, treat it as an expression
1299     // needing a fixup.
1300     if (isImm() && !isa<MCConstantExpr>(getImm())) {
1301       // We want to avoid matching :upper16: and :lower16: as we want these
1302       // expressions to match in isImm0_65535Expr()
1303       const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1304       return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1305                              ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1306     }
1307     if (!isImm()) return false;
1308     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1309     if (!CE) return false;
1310     int64_t Value = CE->getValue();
1311     return ARM_AM::getT2SOImmVal(Value) != -1;
1312   }
1313 
1314   bool isT2SOImmNot() const {
1315     if (!isImm()) return false;
1316     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1317     if (!CE) return false;
1318     int64_t Value = CE->getValue();
1319     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1320       ARM_AM::getT2SOImmVal(~Value) != -1;
1321   }
1322 
1323   bool isT2SOImmNeg() const {
1324     if (!isImm()) return false;
1325     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1326     if (!CE) return false;
1327     int64_t Value = CE->getValue();
1328     // Only use this when not representable as a plain so_imm.
1329     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1330       ARM_AM::getT2SOImmVal(-Value) != -1;
1331   }
1332 
1333   bool isSetEndImm() const {
1334     if (!isImm()) return false;
1335     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1336     if (!CE) return false;
1337     int64_t Value = CE->getValue();
1338     return Value == 1 || Value == 0;
1339   }
1340 
1341   bool isReg() const override { return Kind == k_Register; }
1342   bool isRegList() const { return Kind == k_RegisterList; }
1343   bool isRegListWithAPSR() const {
1344     return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList;
1345   }
1346   bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1347   bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1348   bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; }
1349   bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; }
1350   bool isToken() const override { return Kind == k_Token; }
1351   bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1352   bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1353   bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
1354   bool isMem() const override {
1355       return isGPRMem() || isMVEMem();
1356   }
1357   bool isMVEMem() const {
1358     if (Kind != k_Memory)
1359       return false;
1360     if (Memory.BaseRegNum &&
1361         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) &&
1362         !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum))
1363       return false;
1364     if (Memory.OffsetRegNum &&
1365         !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1366             Memory.OffsetRegNum))
1367       return false;
1368     return true;
1369   }
1370   bool isGPRMem() const {
1371     if (Kind != k_Memory)
1372       return false;
1373     if (Memory.BaseRegNum &&
1374         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1375       return false;
1376     if (Memory.OffsetRegNum &&
1377         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1378       return false;
1379     return true;
1380   }
1381   bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1382   bool isRegShiftedReg() const {
1383     return Kind == k_ShiftedRegister &&
1384            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1385                RegShiftedReg.SrcReg) &&
1386            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1387                RegShiftedReg.ShiftReg);
1388   }
1389   bool isRegShiftedImm() const {
1390     return Kind == k_ShiftedImmediate &&
1391            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1392                RegShiftedImm.SrcReg);
1393   }
1394   bool isRotImm() const { return Kind == k_RotateImmediate; }
1395 
1396   template<unsigned Min, unsigned Max>
1397   bool isPowerTwoInRange() const {
1398     if (!isImm()) return false;
1399     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1400     if (!CE) return false;
1401     int64_t Value = CE->getValue();
1402     return Value > 0 && countPopulation((uint64_t)Value) == 1 &&
1403            Value >= Min && Value <= Max;
1404   }
1405   bool isModImm() const { return Kind == k_ModifiedImmediate; }
1406 
1407   bool isModImmNot() const {
1408     if (!isImm()) return false;
1409     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1410     if (!CE) return false;
1411     int64_t Value = CE->getValue();
1412     return ARM_AM::getSOImmVal(~Value) != -1;
1413   }
1414 
1415   bool isModImmNeg() const {
1416     if (!isImm()) return false;
1417     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1418     if (!CE) return false;
1419     int64_t Value = CE->getValue();
1420     return ARM_AM::getSOImmVal(Value) == -1 &&
1421       ARM_AM::getSOImmVal(-Value) != -1;
1422   }
1423 
1424   bool isThumbModImmNeg1_7() const {
1425     if (!isImm()) return false;
1426     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1427     if (!CE) return false;
1428     int32_t Value = -(int32_t)CE->getValue();
1429     return 0 < Value && Value < 8;
1430   }
1431 
1432   bool isThumbModImmNeg8_255() const {
1433     if (!isImm()) return false;
1434     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1435     if (!CE) return false;
1436     int32_t Value = -(int32_t)CE->getValue();
1437     return 7 < Value && Value < 256;
1438   }
1439 
1440   bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
1441   bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1442   bool isPostIdxRegShifted() const {
1443     return Kind == k_PostIndexRegister &&
1444            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1445   }
1446   bool isPostIdxReg() const {
1447     return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1448   }
1449   bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1450     if (!isGPRMem())
1451       return false;
1452     // No offset of any kind.
1453     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1454      (alignOK || Memory.Alignment == Alignment);
1455   }
1456   bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const {
1457     if (!isGPRMem())
1458       return false;
1459 
1460     if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1461             Memory.BaseRegNum))
1462       return false;
1463 
1464     // No offset of any kind.
1465     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1466      (alignOK || Memory.Alignment == Alignment);
1467   }
1468   bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const {
1469     if (!isGPRMem())
1470       return false;
1471 
1472     if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains(
1473             Memory.BaseRegNum))
1474       return false;
1475 
1476     // No offset of any kind.
1477     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1478      (alignOK || Memory.Alignment == Alignment);
1479   }
1480   bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const {
1481     if (!isGPRMem())
1482       return false;
1483 
1484     if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains(
1485             Memory.BaseRegNum))
1486       return false;
1487 
1488     // No offset of any kind.
1489     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1490      (alignOK || Memory.Alignment == Alignment);
1491   }
1492   bool isMemPCRelImm12() const {
1493     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1494       return false;
1495     // Base register must be PC.
1496     if (Memory.BaseRegNum != ARM::PC)
1497       return false;
1498     // Immediate offset in range [-4095, 4095].
1499     if (!Memory.OffsetImm) return true;
1500     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1501       int64_t Val = CE->getValue();
1502       return (Val > -4096 && Val < 4096) ||
1503              (Val == std::numeric_limits<int32_t>::min());
1504     }
1505     return false;
1506   }
1507 
1508   bool isAlignedMemory() const {
1509     return isMemNoOffset(true);
1510   }
1511 
1512   bool isAlignedMemoryNone() const {
1513     return isMemNoOffset(false, 0);
1514   }
1515 
1516   bool isDupAlignedMemoryNone() const {
1517     return isMemNoOffset(false, 0);
1518   }
1519 
1520   bool isAlignedMemory16() const {
1521     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1522       return true;
1523     return isMemNoOffset(false, 0);
1524   }
1525 
1526   bool isDupAlignedMemory16() const {
1527     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1528       return true;
1529     return isMemNoOffset(false, 0);
1530   }
1531 
1532   bool isAlignedMemory32() const {
1533     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1534       return true;
1535     return isMemNoOffset(false, 0);
1536   }
1537 
1538   bool isDupAlignedMemory32() const {
1539     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1540       return true;
1541     return isMemNoOffset(false, 0);
1542   }
1543 
1544   bool isAlignedMemory64() const {
1545     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1546       return true;
1547     return isMemNoOffset(false, 0);
1548   }
1549 
1550   bool isDupAlignedMemory64() const {
1551     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1552       return true;
1553     return isMemNoOffset(false, 0);
1554   }
1555 
1556   bool isAlignedMemory64or128() const {
1557     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1558       return true;
1559     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1560       return true;
1561     return isMemNoOffset(false, 0);
1562   }
1563 
1564   bool isDupAlignedMemory64or128() const {
1565     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1566       return true;
1567     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1568       return true;
1569     return isMemNoOffset(false, 0);
1570   }
1571 
1572   bool isAlignedMemory64or128or256() const {
1573     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1574       return true;
1575     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1576       return true;
1577     if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1578       return true;
1579     return isMemNoOffset(false, 0);
1580   }
1581 
1582   bool isAddrMode2() const {
1583     if (!isGPRMem() || Memory.Alignment != 0) return false;
1584     // Check for register offset.
1585     if (Memory.OffsetRegNum) return true;
1586     // Immediate offset in range [-4095, 4095].
1587     if (!Memory.OffsetImm) return true;
1588     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1589       int64_t Val = CE->getValue();
1590       return Val > -4096 && Val < 4096;
1591     }
1592     return false;
1593   }
1594 
1595   bool isAM2OffsetImm() const {
1596     if (!isImm()) return false;
1597     // Immediate offset in range [-4095, 4095].
1598     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1599     if (!CE) return false;
1600     int64_t Val = CE->getValue();
1601     return (Val == std::numeric_limits<int32_t>::min()) ||
1602            (Val > -4096 && Val < 4096);
1603   }
1604 
1605   bool isAddrMode3() const {
1606     // If we have an immediate that's not a constant, treat it as a label
1607     // reference needing a fixup. If it is a constant, it's something else
1608     // and we reject it.
1609     if (isImm() && !isa<MCConstantExpr>(getImm()))
1610       return true;
1611     if (!isGPRMem() || Memory.Alignment != 0) return false;
1612     // No shifts are legal for AM3.
1613     if (Memory.ShiftType != ARM_AM::no_shift) return false;
1614     // Check for register offset.
1615     if (Memory.OffsetRegNum) return true;
1616     // Immediate offset in range [-255, 255].
1617     if (!Memory.OffsetImm) return true;
1618     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1619       int64_t Val = CE->getValue();
1620       // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and
1621       // we have to check for this too.
1622       return (Val > -256 && Val < 256) ||
1623              Val == std::numeric_limits<int32_t>::min();
1624     }
1625     return false;
1626   }
1627 
1628   bool isAM3Offset() const {
1629     if (isPostIdxReg())
1630       return true;
1631     if (!isImm())
1632       return false;
1633     // Immediate offset in range [-255, 255].
1634     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1635     if (!CE) return false;
1636     int64_t Val = CE->getValue();
1637     // Special case, #-0 is std::numeric_limits<int32_t>::min().
1638     return (Val > -256 && Val < 256) ||
1639            Val == std::numeric_limits<int32_t>::min();
1640   }
1641 
1642   bool isAddrMode5() const {
1643     // If we have an immediate that's not a constant, treat it as a label
1644     // reference needing a fixup. If it is a constant, it's something else
1645     // and we reject it.
1646     if (isImm() && !isa<MCConstantExpr>(getImm()))
1647       return true;
1648     if (!isGPRMem() || Memory.Alignment != 0) return false;
1649     // Check for register offset.
1650     if (Memory.OffsetRegNum) return false;
1651     // Immediate offset in range [-1020, 1020] and a multiple of 4.
1652     if (!Memory.OffsetImm) return true;
1653     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1654       int64_t Val = CE->getValue();
1655       return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1656              Val == std::numeric_limits<int32_t>::min();
1657     }
1658     return false;
1659   }
1660 
1661   bool isAddrMode5FP16() const {
1662     // If we have an immediate that's not a constant, treat it as a label
1663     // reference needing a fixup. If it is a constant, it's something else
1664     // and we reject it.
1665     if (isImm() && !isa<MCConstantExpr>(getImm()))
1666       return true;
1667     if (!isGPRMem() || Memory.Alignment != 0) return false;
1668     // Check for register offset.
1669     if (Memory.OffsetRegNum) return false;
1670     // Immediate offset in range [-510, 510] and a multiple of 2.
1671     if (!Memory.OffsetImm) return true;
1672     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1673       int64_t Val = CE->getValue();
1674       return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1675              Val == std::numeric_limits<int32_t>::min();
1676     }
1677     return false;
1678   }
1679 
1680   bool isMemTBB() const {
1681     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1682         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1683       return false;
1684     return true;
1685   }
1686 
1687   bool isMemTBH() const {
1688     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1689         Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1690         Memory.Alignment != 0 )
1691       return false;
1692     return true;
1693   }
1694 
1695   bool isMemRegOffset() const {
1696     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1697       return false;
1698     return true;
1699   }
1700 
1701   bool isT2MemRegOffset() const {
1702     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1703         Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1704       return false;
1705     // Only lsl #{0, 1, 2, 3} allowed.
1706     if (Memory.ShiftType == ARM_AM::no_shift)
1707       return true;
1708     if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1709       return false;
1710     return true;
1711   }
1712 
1713   bool isMemThumbRR() const {
1714     // Thumb reg+reg addressing is simple. Just two registers, a base and
1715     // an offset. No shifts, negations or any other complicating factors.
1716     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1717         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1718       return false;
1719     return isARMLowRegister(Memory.BaseRegNum) &&
1720       (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1721   }
1722 
1723   bool isMemThumbRIs4() const {
1724     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1725         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1726       return false;
1727     // Immediate offset, multiple of 4 in range [0, 124].
1728     if (!Memory.OffsetImm) return true;
1729     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1730       int64_t Val = CE->getValue();
1731       return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1732     }
1733     return false;
1734   }
1735 
1736   bool isMemThumbRIs2() const {
1737     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1738         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1739       return false;
1740     // Immediate offset, multiple of 4 in range [0, 62].
1741     if (!Memory.OffsetImm) return true;
1742     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1743       int64_t Val = CE->getValue();
1744       return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1745     }
1746     return false;
1747   }
1748 
1749   bool isMemThumbRIs1() const {
1750     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1751         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1752       return false;
1753     // Immediate offset in range [0, 31].
1754     if (!Memory.OffsetImm) return true;
1755     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1756       int64_t Val = CE->getValue();
1757       return Val >= 0 && Val <= 31;
1758     }
1759     return false;
1760   }
1761 
1762   bool isMemThumbSPI() const {
1763     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1764         Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1765       return false;
1766     // Immediate offset, multiple of 4 in range [0, 1020].
1767     if (!Memory.OffsetImm) return true;
1768     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1769       int64_t Val = CE->getValue();
1770       return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1771     }
1772     return false;
1773   }
1774 
1775   bool isMemImm8s4Offset() const {
1776     // If we have an immediate that's not a constant, treat it as a label
1777     // reference needing a fixup. If it is a constant, it's something else
1778     // and we reject it.
1779     if (isImm() && !isa<MCConstantExpr>(getImm()))
1780       return true;
1781     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1782       return false;
1783     // Immediate offset a multiple of 4 in range [-1020, 1020].
1784     if (!Memory.OffsetImm) return true;
1785     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1786       int64_t Val = CE->getValue();
1787       // Special case, #-0 is std::numeric_limits<int32_t>::min().
1788       return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1789              Val == std::numeric_limits<int32_t>::min();
1790     }
1791     return false;
1792   }
1793 
1794   bool isMemImm7s4Offset() const {
1795     // If we have an immediate that's not a constant, treat it as a label
1796     // reference needing a fixup. If it is a constant, it's something else
1797     // and we reject it.
1798     if (isImm() && !isa<MCConstantExpr>(getImm()))
1799       return true;
1800     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1801         !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1802             Memory.BaseRegNum))
1803       return false;
1804     // Immediate offset a multiple of 4 in range [-508, 508].
1805     if (!Memory.OffsetImm) return true;
1806     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1807       int64_t Val = CE->getValue();
1808       // Special case, #-0 is INT32_MIN.
1809       return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN;
1810     }
1811     return false;
1812   }
1813 
1814   bool isMemImm0_1020s4Offset() const {
1815     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1816       return false;
1817     // Immediate offset a multiple of 4 in range [0, 1020].
1818     if (!Memory.OffsetImm) return true;
1819     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1820       int64_t Val = CE->getValue();
1821       return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1822     }
1823     return false;
1824   }
1825 
1826   bool isMemImm8Offset() const {
1827     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1828       return false;
1829     // Base reg of PC isn't allowed for these encodings.
1830     if (Memory.BaseRegNum == ARM::PC) return false;
1831     // Immediate offset in range [-255, 255].
1832     if (!Memory.OffsetImm) return true;
1833     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1834       int64_t Val = CE->getValue();
1835       return (Val == std::numeric_limits<int32_t>::min()) ||
1836              (Val > -256 && Val < 256);
1837     }
1838     return false;
1839   }
1840 
1841   template<unsigned Bits, unsigned RegClassID>
1842   bool isMemImm7ShiftedOffset() const {
1843     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1844         !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum))
1845       return false;
1846 
1847     // Expect an immediate offset equal to an element of the range
1848     // [-127, 127], shifted left by Bits.
1849 
1850     if (!Memory.OffsetImm) return true;
1851     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1852       int64_t Val = CE->getValue();
1853 
1854       // INT32_MIN is a special-case value (indicating the encoding with
1855       // zero offset and the subtract bit set)
1856       if (Val == INT32_MIN)
1857         return true;
1858 
1859       unsigned Divisor = 1U << Bits;
1860 
1861       // Check that the low bits are zero
1862       if (Val % Divisor != 0)
1863         return false;
1864 
1865       // Check that the remaining offset is within range.
1866       Val /= Divisor;
1867       return (Val >= -127 && Val <= 127);
1868     }
1869     return false;
1870   }
1871 
1872   template <int shift> bool isMemRegRQOffset() const {
1873     if (!isMVEMem() || Memory.OffsetImm != nullptr || Memory.Alignment != 0)
1874       return false;
1875 
1876     if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1877             Memory.BaseRegNum))
1878       return false;
1879     if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1880             Memory.OffsetRegNum))
1881       return false;
1882 
1883     if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift)
1884       return false;
1885 
1886     if (shift > 0 &&
1887         (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift))
1888       return false;
1889 
1890     return true;
1891   }
1892 
1893   template <int shift> bool isMemRegQOffset() const {
1894     if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1895       return false;
1896 
1897     if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1898             Memory.BaseRegNum))
1899       return false;
1900 
1901     if (!Memory.OffsetImm)
1902       return true;
1903     static_assert(shift < 56,
1904                   "Such that we dont shift by a value higher than 62");
1905     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1906       int64_t Val = CE->getValue();
1907 
1908       // The value must be a multiple of (1 << shift)
1909       if ((Val & ((1U << shift) - 1)) != 0)
1910         return false;
1911 
1912       // And be in the right range, depending on the amount that it is shifted
1913       // by.  Shift 0, is equal to 7 unsigned bits, the sign bit is set
1914       // separately.
1915       int64_t Range = (1U << (7 + shift)) - 1;
1916       return (Val == INT32_MIN) || (Val > -Range && Val < Range);
1917     }
1918     return false;
1919   }
1920 
1921   bool isMemPosImm8Offset() const {
1922     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1923       return false;
1924     // Immediate offset in range [0, 255].
1925     if (!Memory.OffsetImm) return true;
1926     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1927       int64_t Val = CE->getValue();
1928       return Val >= 0 && Val < 256;
1929     }
1930     return false;
1931   }
1932 
1933   bool isMemNegImm8Offset() const {
1934     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1935       return false;
1936     // Base reg of PC isn't allowed for these encodings.
1937     if (Memory.BaseRegNum == ARM::PC) return false;
1938     // Immediate offset in range [-255, -1].
1939     if (!Memory.OffsetImm) return false;
1940     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1941       int64_t Val = CE->getValue();
1942       return (Val == std::numeric_limits<int32_t>::min()) ||
1943              (Val > -256 && Val < 0);
1944     }
1945     return false;
1946   }
1947 
1948   bool isMemUImm12Offset() const {
1949     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1950       return false;
1951     // Immediate offset in range [0, 4095].
1952     if (!Memory.OffsetImm) return true;
1953     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1954       int64_t Val = CE->getValue();
1955       return (Val >= 0 && Val < 4096);
1956     }
1957     return false;
1958   }
1959 
1960   bool isMemImm12Offset() const {
1961     // If we have an immediate that's not a constant, treat it as a label
1962     // reference needing a fixup. If it is a constant, it's something else
1963     // and we reject it.
1964 
1965     if (isImm() && !isa<MCConstantExpr>(getImm()))
1966       return true;
1967 
1968     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1969       return false;
1970     // Immediate offset in range [-4095, 4095].
1971     if (!Memory.OffsetImm) return true;
1972     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
1973       int64_t Val = CE->getValue();
1974       return (Val > -4096 && Val < 4096) ||
1975              (Val == std::numeric_limits<int32_t>::min());
1976     }
1977     // If we have an immediate that's not a constant, treat it as a
1978     // symbolic expression needing a fixup.
1979     return true;
1980   }
1981 
1982   bool isConstPoolAsmImm() const {
1983     // Delay processing of Constant Pool Immediate, this will turn into
1984     // a constant. Match no other operand
1985     return (isConstantPoolImm());
1986   }
1987 
1988   bool isPostIdxImm8() const {
1989     if (!isImm()) return false;
1990     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1991     if (!CE) return false;
1992     int64_t Val = CE->getValue();
1993     return (Val > -256 && Val < 256) ||
1994            (Val == std::numeric_limits<int32_t>::min());
1995   }
1996 
1997   bool isPostIdxImm8s4() const {
1998     if (!isImm()) return false;
1999     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2000     if (!CE) return false;
2001     int64_t Val = CE->getValue();
2002     return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
2003            (Val == std::numeric_limits<int32_t>::min());
2004   }
2005 
2006   bool isMSRMask() const { return Kind == k_MSRMask; }
2007   bool isBankedReg() const { return Kind == k_BankedReg; }
2008   bool isProcIFlags() const { return Kind == k_ProcIFlags; }
2009 
2010   // NEON operands.
2011   bool isSingleSpacedVectorList() const {
2012     return Kind == k_VectorList && !VectorList.isDoubleSpaced;
2013   }
2014 
2015   bool isDoubleSpacedVectorList() const {
2016     return Kind == k_VectorList && VectorList.isDoubleSpaced;
2017   }
2018 
2019   bool isVecListOneD() const {
2020     if (!isSingleSpacedVectorList()) return false;
2021     return VectorList.Count == 1;
2022   }
2023 
2024   bool isVecListTwoMQ() const {
2025     return isSingleSpacedVectorList() && VectorList.Count == 2 &&
2026            ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
2027                VectorList.RegNum);
2028   }
2029 
2030   bool isVecListDPair() const {
2031     if (!isSingleSpacedVectorList()) return false;
2032     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
2033               .contains(VectorList.RegNum));
2034   }
2035 
2036   bool isVecListThreeD() const {
2037     if (!isSingleSpacedVectorList()) return false;
2038     return VectorList.Count == 3;
2039   }
2040 
2041   bool isVecListFourD() const {
2042     if (!isSingleSpacedVectorList()) return false;
2043     return VectorList.Count == 4;
2044   }
2045 
2046   bool isVecListDPairSpaced() const {
2047     if (Kind != k_VectorList) return false;
2048     if (isSingleSpacedVectorList()) return false;
2049     return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
2050               .contains(VectorList.RegNum));
2051   }
2052 
2053   bool isVecListThreeQ() const {
2054     if (!isDoubleSpacedVectorList()) return false;
2055     return VectorList.Count == 3;
2056   }
2057 
2058   bool isVecListFourQ() const {
2059     if (!isDoubleSpacedVectorList()) return false;
2060     return VectorList.Count == 4;
2061   }
2062 
2063   bool isVecListFourMQ() const {
2064     return isSingleSpacedVectorList() && VectorList.Count == 4 &&
2065            ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
2066                VectorList.RegNum);
2067   }
2068 
2069   bool isSingleSpacedVectorAllLanes() const {
2070     return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
2071   }
2072 
2073   bool isDoubleSpacedVectorAllLanes() const {
2074     return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
2075   }
2076 
2077   bool isVecListOneDAllLanes() const {
2078     if (!isSingleSpacedVectorAllLanes()) return false;
2079     return VectorList.Count == 1;
2080   }
2081 
2082   bool isVecListDPairAllLanes() const {
2083     if (!isSingleSpacedVectorAllLanes()) return false;
2084     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
2085               .contains(VectorList.RegNum));
2086   }
2087 
2088   bool isVecListDPairSpacedAllLanes() const {
2089     if (!isDoubleSpacedVectorAllLanes()) return false;
2090     return VectorList.Count == 2;
2091   }
2092 
2093   bool isVecListThreeDAllLanes() const {
2094     if (!isSingleSpacedVectorAllLanes()) return false;
2095     return VectorList.Count == 3;
2096   }
2097 
2098   bool isVecListThreeQAllLanes() const {
2099     if (!isDoubleSpacedVectorAllLanes()) return false;
2100     return VectorList.Count == 3;
2101   }
2102 
2103   bool isVecListFourDAllLanes() const {
2104     if (!isSingleSpacedVectorAllLanes()) return false;
2105     return VectorList.Count == 4;
2106   }
2107 
2108   bool isVecListFourQAllLanes() const {
2109     if (!isDoubleSpacedVectorAllLanes()) return false;
2110     return VectorList.Count == 4;
2111   }
2112 
2113   bool isSingleSpacedVectorIndexed() const {
2114     return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
2115   }
2116 
2117   bool isDoubleSpacedVectorIndexed() const {
2118     return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
2119   }
2120 
2121   bool isVecListOneDByteIndexed() const {
2122     if (!isSingleSpacedVectorIndexed()) return false;
2123     return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
2124   }
2125 
2126   bool isVecListOneDHWordIndexed() const {
2127     if (!isSingleSpacedVectorIndexed()) return false;
2128     return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
2129   }
2130 
2131   bool isVecListOneDWordIndexed() const {
2132     if (!isSingleSpacedVectorIndexed()) return false;
2133     return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
2134   }
2135 
2136   bool isVecListTwoDByteIndexed() const {
2137     if (!isSingleSpacedVectorIndexed()) return false;
2138     return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
2139   }
2140 
2141   bool isVecListTwoDHWordIndexed() const {
2142     if (!isSingleSpacedVectorIndexed()) return false;
2143     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2144   }
2145 
2146   bool isVecListTwoQWordIndexed() const {
2147     if (!isDoubleSpacedVectorIndexed()) return false;
2148     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2149   }
2150 
2151   bool isVecListTwoQHWordIndexed() const {
2152     if (!isDoubleSpacedVectorIndexed()) return false;
2153     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2154   }
2155 
2156   bool isVecListTwoDWordIndexed() const {
2157     if (!isSingleSpacedVectorIndexed()) return false;
2158     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2159   }
2160 
2161   bool isVecListThreeDByteIndexed() const {
2162     if (!isSingleSpacedVectorIndexed()) return false;
2163     return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
2164   }
2165 
2166   bool isVecListThreeDHWordIndexed() const {
2167     if (!isSingleSpacedVectorIndexed()) return false;
2168     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2169   }
2170 
2171   bool isVecListThreeQWordIndexed() const {
2172     if (!isDoubleSpacedVectorIndexed()) return false;
2173     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2174   }
2175 
2176   bool isVecListThreeQHWordIndexed() const {
2177     if (!isDoubleSpacedVectorIndexed()) return false;
2178     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2179   }
2180 
2181   bool isVecListThreeDWordIndexed() const {
2182     if (!isSingleSpacedVectorIndexed()) return false;
2183     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2184   }
2185 
2186   bool isVecListFourDByteIndexed() const {
2187     if (!isSingleSpacedVectorIndexed()) return false;
2188     return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
2189   }
2190 
2191   bool isVecListFourDHWordIndexed() const {
2192     if (!isSingleSpacedVectorIndexed()) return false;
2193     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2194   }
2195 
2196   bool isVecListFourQWordIndexed() const {
2197     if (!isDoubleSpacedVectorIndexed()) return false;
2198     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2199   }
2200 
2201   bool isVecListFourQHWordIndexed() const {
2202     if (!isDoubleSpacedVectorIndexed()) return false;
2203     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2204   }
2205 
2206   bool isVecListFourDWordIndexed() const {
2207     if (!isSingleSpacedVectorIndexed()) return false;
2208     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2209   }
2210 
2211   bool isVectorIndex() const { return Kind == k_VectorIndex; }
2212 
2213   template <unsigned NumLanes>
2214   bool isVectorIndexInRange() const {
2215     if (Kind != k_VectorIndex) return false;
2216     return VectorIndex.Val < NumLanes;
2217   }
2218 
2219   bool isVectorIndex8()  const { return isVectorIndexInRange<8>(); }
2220   bool isVectorIndex16() const { return isVectorIndexInRange<4>(); }
2221   bool isVectorIndex32() const { return isVectorIndexInRange<2>(); }
2222   bool isVectorIndex64() const { return isVectorIndexInRange<1>(); }
2223 
2224   template<int PermittedValue, int OtherPermittedValue>
2225   bool isMVEPairVectorIndex() const {
2226     if (Kind != k_VectorIndex) return false;
2227     return VectorIndex.Val == PermittedValue ||
2228            VectorIndex.Val == OtherPermittedValue;
2229   }
2230 
2231   bool isNEONi8splat() const {
2232     if (!isImm()) return false;
2233     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2234     // Must be a constant.
2235     if (!CE) return false;
2236     int64_t Value = CE->getValue();
2237     // i8 value splatted across 8 bytes. The immediate is just the 8 byte
2238     // value.
2239     return Value >= 0 && Value < 256;
2240   }
2241 
2242   bool isNEONi16splat() const {
2243     if (isNEONByteReplicate(2))
2244       return false; // Leave that for bytes replication and forbid by default.
2245     if (!isImm())
2246       return false;
2247     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2248     // Must be a constant.
2249     if (!CE) return false;
2250     unsigned Value = CE->getValue();
2251     return ARM_AM::isNEONi16splat(Value);
2252   }
2253 
2254   bool isNEONi16splatNot() const {
2255     if (!isImm())
2256       return false;
2257     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2258     // Must be a constant.
2259     if (!CE) return false;
2260     unsigned Value = CE->getValue();
2261     return ARM_AM::isNEONi16splat(~Value & 0xffff);
2262   }
2263 
2264   bool isNEONi32splat() const {
2265     if (isNEONByteReplicate(4))
2266       return false; // Leave that for bytes replication and forbid by default.
2267     if (!isImm())
2268       return false;
2269     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2270     // Must be a constant.
2271     if (!CE) return false;
2272     unsigned Value = CE->getValue();
2273     return ARM_AM::isNEONi32splat(Value);
2274   }
2275 
2276   bool isNEONi32splatNot() const {
2277     if (!isImm())
2278       return false;
2279     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2280     // Must be a constant.
2281     if (!CE) return false;
2282     unsigned Value = CE->getValue();
2283     return ARM_AM::isNEONi32splat(~Value);
2284   }
2285 
2286   static bool isValidNEONi32vmovImm(int64_t Value) {
2287     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
2288     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
2289     return ((Value & 0xffffffffffffff00) == 0) ||
2290            ((Value & 0xffffffffffff00ff) == 0) ||
2291            ((Value & 0xffffffffff00ffff) == 0) ||
2292            ((Value & 0xffffffff00ffffff) == 0) ||
2293            ((Value & 0xffffffffffff00ff) == 0xff) ||
2294            ((Value & 0xffffffffff00ffff) == 0xffff);
2295   }
2296 
2297   bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
2298     assert((Width == 8 || Width == 16 || Width == 32) &&
2299            "Invalid element width");
2300     assert(NumElems * Width <= 64 && "Invalid result width");
2301 
2302     if (!isImm())
2303       return false;
2304     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2305     // Must be a constant.
2306     if (!CE)
2307       return false;
2308     int64_t Value = CE->getValue();
2309     if (!Value)
2310       return false; // Don't bother with zero.
2311     if (Inv)
2312       Value = ~Value;
2313 
2314     uint64_t Mask = (1ull << Width) - 1;
2315     uint64_t Elem = Value & Mask;
2316     if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
2317       return false;
2318     if (Width == 32 && !isValidNEONi32vmovImm(Elem))
2319       return false;
2320 
2321     for (unsigned i = 1; i < NumElems; ++i) {
2322       Value >>= Width;
2323       if ((Value & Mask) != Elem)
2324         return false;
2325     }
2326     return true;
2327   }
2328 
2329   bool isNEONByteReplicate(unsigned NumBytes) const {
2330     return isNEONReplicate(8, NumBytes, false);
2331   }
2332 
2333   static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
2334     assert((FromW == 8 || FromW == 16 || FromW == 32) &&
2335            "Invalid source width");
2336     assert((ToW == 16 || ToW == 32 || ToW == 64) &&
2337            "Invalid destination width");
2338     assert(FromW < ToW && "ToW is not less than FromW");
2339   }
2340 
2341   template<unsigned FromW, unsigned ToW>
2342   bool isNEONmovReplicate() const {
2343     checkNeonReplicateArgs(FromW, ToW);
2344     if (ToW == 64 && isNEONi64splat())
2345       return false;
2346     return isNEONReplicate(FromW, ToW / FromW, false);
2347   }
2348 
2349   template<unsigned FromW, unsigned ToW>
2350   bool isNEONinvReplicate() const {
2351     checkNeonReplicateArgs(FromW, ToW);
2352     return isNEONReplicate(FromW, ToW / FromW, true);
2353   }
2354 
2355   bool isNEONi32vmov() const {
2356     if (isNEONByteReplicate(4))
2357       return false; // Let it to be classified as byte-replicate case.
2358     if (!isImm())
2359       return false;
2360     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2361     // Must be a constant.
2362     if (!CE)
2363       return false;
2364     return isValidNEONi32vmovImm(CE->getValue());
2365   }
2366 
2367   bool isNEONi32vmovNeg() const {
2368     if (!isImm()) return false;
2369     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2370     // Must be a constant.
2371     if (!CE) return false;
2372     return isValidNEONi32vmovImm(~CE->getValue());
2373   }
2374 
2375   bool isNEONi64splat() const {
2376     if (!isImm()) return false;
2377     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2378     // Must be a constant.
2379     if (!CE) return false;
2380     uint64_t Value = CE->getValue();
2381     // i64 value with each byte being either 0 or 0xff.
2382     for (unsigned i = 0; i < 8; ++i, Value >>= 8)
2383       if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
2384     return true;
2385   }
2386 
2387   template<int64_t Angle, int64_t Remainder>
2388   bool isComplexRotation() const {
2389     if (!isImm()) return false;
2390 
2391     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2392     if (!CE) return false;
2393     uint64_t Value = CE->getValue();
2394 
2395     return (Value % Angle == Remainder && Value <= 270);
2396   }
2397 
2398   bool isMVELongShift() const {
2399     if (!isImm()) return false;
2400     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2401     // Must be a constant.
2402     if (!CE) return false;
2403     uint64_t Value = CE->getValue();
2404     return Value >= 1 && Value <= 32;
2405   }
2406 
2407   bool isMveSaturateOp() const {
2408     if (!isImm()) return false;
2409     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2410     if (!CE) return false;
2411     uint64_t Value = CE->getValue();
2412     return Value == 48 || Value == 64;
2413   }
2414 
2415   bool isITCondCodeNoAL() const {
2416     if (!isITCondCode()) return false;
2417     ARMCC::CondCodes CC = getCondCode();
2418     return CC != ARMCC::AL;
2419   }
2420 
2421   bool isITCondCodeRestrictedI() const {
2422     if (!isITCondCode())
2423       return false;
2424     ARMCC::CondCodes CC = getCondCode();
2425     return CC == ARMCC::EQ || CC == ARMCC::NE;
2426   }
2427 
2428   bool isITCondCodeRestrictedS() const {
2429     if (!isITCondCode())
2430       return false;
2431     ARMCC::CondCodes CC = getCondCode();
2432     return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE ||
2433            CC == ARMCC::GE;
2434   }
2435 
2436   bool isITCondCodeRestrictedU() const {
2437     if (!isITCondCode())
2438       return false;
2439     ARMCC::CondCodes CC = getCondCode();
2440     return CC == ARMCC::HS || CC == ARMCC::HI;
2441   }
2442 
2443   bool isITCondCodeRestrictedFP() const {
2444     if (!isITCondCode())
2445       return false;
2446     ARMCC::CondCodes CC = getCondCode();
2447     return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT ||
2448            CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE;
2449   }
2450 
2451   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
2452     // Add as immediates when possible.  Null MCExpr = 0.
2453     if (!Expr)
2454       Inst.addOperand(MCOperand::createImm(0));
2455     else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
2456       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2457     else
2458       Inst.addOperand(MCOperand::createExpr(Expr));
2459   }
2460 
2461   void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2462     assert(N == 1 && "Invalid number of operands!");
2463     addExpr(Inst, getImm());
2464   }
2465 
2466   void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2467     assert(N == 1 && "Invalid number of operands!");
2468     addExpr(Inst, getImm());
2469   }
2470 
2471   void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2472     assert(N == 2 && "Invalid number of operands!");
2473     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2474     unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2475     Inst.addOperand(MCOperand::createReg(RegNum));
2476   }
2477 
2478   void addVPTPredNOperands(MCInst &Inst, unsigned N) const {
2479     assert(N == 3 && "Invalid number of operands!");
2480     Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred())));
2481     unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0;
2482     Inst.addOperand(MCOperand::createReg(RegNum));
2483     Inst.addOperand(MCOperand::createReg(0));
2484   }
2485 
2486   void addVPTPredROperands(MCInst &Inst, unsigned N) const {
2487     assert(N == 4 && "Invalid number of operands!");
2488     addVPTPredNOperands(Inst, N-1);
2489     unsigned RegNum;
2490     if (getVPTPred() == ARMVCC::None) {
2491       RegNum = 0;
2492     } else {
2493       unsigned NextOpIndex = Inst.getNumOperands();
2494       const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()];
2495       int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO);
2496       assert(TiedOp >= 0 &&
2497              "Inactive register in vpred_r is not tied to an output!");
2498       RegNum = Inst.getOperand(TiedOp).getReg();
2499     }
2500     Inst.addOperand(MCOperand::createReg(RegNum));
2501   }
2502 
2503   void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2504     assert(N == 1 && "Invalid number of operands!");
2505     Inst.addOperand(MCOperand::createImm(getCoproc()));
2506   }
2507 
2508   void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2509     assert(N == 1 && "Invalid number of operands!");
2510     Inst.addOperand(MCOperand::createImm(getCoproc()));
2511   }
2512 
2513   void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2514     assert(N == 1 && "Invalid number of operands!");
2515     Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2516   }
2517 
2518   void addITMaskOperands(MCInst &Inst, unsigned N) const {
2519     assert(N == 1 && "Invalid number of operands!");
2520     Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2521   }
2522 
2523   void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2524     assert(N == 1 && "Invalid number of operands!");
2525     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2526   }
2527 
2528   void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const {
2529     assert(N == 1 && "Invalid number of operands!");
2530     Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode()))));
2531   }
2532 
2533   void addCCOutOperands(MCInst &Inst, unsigned N) const {
2534     assert(N == 1 && "Invalid number of operands!");
2535     Inst.addOperand(MCOperand::createReg(getReg()));
2536   }
2537 
2538   void addRegOperands(MCInst &Inst, unsigned N) const {
2539     assert(N == 1 && "Invalid number of operands!");
2540     Inst.addOperand(MCOperand::createReg(getReg()));
2541   }
2542 
2543   void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2544     assert(N == 3 && "Invalid number of operands!");
2545     assert(isRegShiftedReg() &&
2546            "addRegShiftedRegOperands() on non-RegShiftedReg!");
2547     Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2548     Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2549     Inst.addOperand(MCOperand::createImm(
2550       ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2551   }
2552 
2553   void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2554     assert(N == 2 && "Invalid number of operands!");
2555     assert(isRegShiftedImm() &&
2556            "addRegShiftedImmOperands() on non-RegShiftedImm!");
2557     Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2558     // Shift of #32 is encoded as 0 where permitted
2559     unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2560     Inst.addOperand(MCOperand::createImm(
2561       ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2562   }
2563 
2564   void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2565     assert(N == 1 && "Invalid number of operands!");
2566     Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2567                                          ShifterImm.Imm));
2568   }
2569 
2570   void addRegListOperands(MCInst &Inst, unsigned N) const {
2571     assert(N == 1 && "Invalid number of operands!");
2572     const SmallVectorImpl<unsigned> &RegList = getRegList();
2573     for (unsigned Reg : RegList)
2574       Inst.addOperand(MCOperand::createReg(Reg));
2575   }
2576 
2577   void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const {
2578     assert(N == 1 && "Invalid number of operands!");
2579     const SmallVectorImpl<unsigned> &RegList = getRegList();
2580     for (unsigned Reg : RegList)
2581       Inst.addOperand(MCOperand::createReg(Reg));
2582   }
2583 
2584   void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2585     addRegListOperands(Inst, N);
2586   }
2587 
2588   void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2589     addRegListOperands(Inst, N);
2590   }
2591 
2592   void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2593     addRegListOperands(Inst, N);
2594   }
2595 
2596   void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2597     addRegListOperands(Inst, N);
2598   }
2599 
2600   void addRotImmOperands(MCInst &Inst, unsigned N) const {
2601     assert(N == 1 && "Invalid number of operands!");
2602     // Encoded as val>>3. The printer handles display as 8, 16, 24.
2603     Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2604   }
2605 
2606   void addModImmOperands(MCInst &Inst, unsigned N) const {
2607     assert(N == 1 && "Invalid number of operands!");
2608 
2609     // Support for fixups (MCFixup)
2610     if (isImm())
2611       return addImmOperands(Inst, N);
2612 
2613     Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2614   }
2615 
2616   void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2617     assert(N == 1 && "Invalid number of operands!");
2618     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2619     uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2620     Inst.addOperand(MCOperand::createImm(Enc));
2621   }
2622 
2623   void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2624     assert(N == 1 && "Invalid number of operands!");
2625     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2626     uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2627     Inst.addOperand(MCOperand::createImm(Enc));
2628   }
2629 
2630   void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2631     assert(N == 1 && "Invalid number of operands!");
2632     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2633     uint32_t Val = -CE->getValue();
2634     Inst.addOperand(MCOperand::createImm(Val));
2635   }
2636 
2637   void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2638     assert(N == 1 && "Invalid number of operands!");
2639     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2640     uint32_t Val = -CE->getValue();
2641     Inst.addOperand(MCOperand::createImm(Val));
2642   }
2643 
2644   void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2645     assert(N == 1 && "Invalid number of operands!");
2646     // Munge the lsb/width into a bitfield mask.
2647     unsigned lsb = Bitfield.LSB;
2648     unsigned width = Bitfield.Width;
2649     // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2650     uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2651                       (32 - (lsb + width)));
2652     Inst.addOperand(MCOperand::createImm(Mask));
2653   }
2654 
2655   void addImmOperands(MCInst &Inst, unsigned N) const {
2656     assert(N == 1 && "Invalid number of operands!");
2657     addExpr(Inst, getImm());
2658   }
2659 
2660   void addFBits16Operands(MCInst &Inst, unsigned N) const {
2661     assert(N == 1 && "Invalid number of operands!");
2662     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2663     Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2664   }
2665 
2666   void addFBits32Operands(MCInst &Inst, unsigned N) const {
2667     assert(N == 1 && "Invalid number of operands!");
2668     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2669     Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2670   }
2671 
2672   void addFPImmOperands(MCInst &Inst, unsigned N) const {
2673     assert(N == 1 && "Invalid number of operands!");
2674     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2675     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2676     Inst.addOperand(MCOperand::createImm(Val));
2677   }
2678 
2679   void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2680     assert(N == 1 && "Invalid number of operands!");
2681     // FIXME: We really want to scale the value here, but the LDRD/STRD
2682     // instruction don't encode operands that way yet.
2683     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2684     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2685   }
2686 
2687   void addImm7s4Operands(MCInst &Inst, unsigned N) const {
2688     assert(N == 1 && "Invalid number of operands!");
2689     // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR
2690     // instruction don't encode operands that way yet.
2691     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2692     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2693   }
2694 
2695   void addImm7Shift0Operands(MCInst &Inst, unsigned N) const {
2696     assert(N == 1 && "Invalid number of operands!");
2697     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2698     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2699   }
2700 
2701   void addImm7Shift1Operands(MCInst &Inst, unsigned N) const {
2702     assert(N == 1 && "Invalid number of operands!");
2703     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2704     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2705   }
2706 
2707   void addImm7Shift2Operands(MCInst &Inst, unsigned N) const {
2708     assert(N == 1 && "Invalid number of operands!");
2709     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2710     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2711   }
2712 
2713   void addImm7Operands(MCInst &Inst, unsigned N) const {
2714     assert(N == 1 && "Invalid number of operands!");
2715     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2716     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2717   }
2718 
2719   void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2720     assert(N == 1 && "Invalid number of operands!");
2721     // The immediate is scaled by four in the encoding and is stored
2722     // in the MCInst as such. Lop off the low two bits here.
2723     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2724     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2725   }
2726 
2727   void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2728     assert(N == 1 && "Invalid number of operands!");
2729     // The immediate is scaled by four in the encoding and is stored
2730     // in the MCInst as such. Lop off the low two bits here.
2731     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2732     Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2733   }
2734 
2735   void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2736     assert(N == 1 && "Invalid number of operands!");
2737     // The immediate is scaled by four in the encoding and is stored
2738     // in the MCInst as such. Lop off the low two bits here.
2739     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2740     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2741   }
2742 
2743   void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2744     assert(N == 1 && "Invalid number of operands!");
2745     // The constant encodes as the immediate-1, and we store in the instruction
2746     // the bits as encoded, so subtract off one here.
2747     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2748     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2749   }
2750 
2751   void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2752     assert(N == 1 && "Invalid number of operands!");
2753     // The constant encodes as the immediate-1, and we store in the instruction
2754     // the bits as encoded, so subtract off one here.
2755     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2756     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2757   }
2758 
2759   void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2760     assert(N == 1 && "Invalid number of operands!");
2761     // The constant encodes as the immediate, except for 32, which encodes as
2762     // zero.
2763     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2764     unsigned Imm = CE->getValue();
2765     Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2766   }
2767 
2768   void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2769     assert(N == 1 && "Invalid number of operands!");
2770     // An ASR value of 32 encodes as 0, so that's how we want to add it to
2771     // the instruction as well.
2772     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2773     int Val = CE->getValue();
2774     Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2775   }
2776 
2777   void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2778     assert(N == 1 && "Invalid number of operands!");
2779     // The operand is actually a t2_so_imm, but we have its bitwise
2780     // negation in the assembly source, so twiddle it here.
2781     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2782     Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
2783   }
2784 
2785   void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2786     assert(N == 1 && "Invalid number of operands!");
2787     // The operand is actually a t2_so_imm, but we have its
2788     // negation in the assembly source, so twiddle it here.
2789     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2790     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2791   }
2792 
2793   void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2794     assert(N == 1 && "Invalid number of operands!");
2795     // The operand is actually an imm0_4095, but we have its
2796     // negation in the assembly source, so twiddle it here.
2797     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2798     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2799   }
2800 
2801   void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2802     if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2803       Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2804       return;
2805     }
2806     const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
2807     Inst.addOperand(MCOperand::createExpr(SR));
2808   }
2809 
2810   void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2811     assert(N == 1 && "Invalid number of operands!");
2812     if (isImm()) {
2813       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2814       if (CE) {
2815         Inst.addOperand(MCOperand::createImm(CE->getValue()));
2816         return;
2817       }
2818       const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
2819       Inst.addOperand(MCOperand::createExpr(SR));
2820       return;
2821     }
2822 
2823     assert(isGPRMem()  && "Unknown value type!");
2824     assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2825     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
2826       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2827     else
2828       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2829   }
2830 
2831   void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2832     assert(N == 1 && "Invalid number of operands!");
2833     Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2834   }
2835 
2836   void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2837     assert(N == 1 && "Invalid number of operands!");
2838     Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2839   }
2840 
2841   void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2842     assert(N == 1 && "Invalid number of operands!");
2843     Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2844   }
2845 
2846   void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2847     assert(N == 1 && "Invalid number of operands!");
2848     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2849   }
2850 
2851   void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const {
2852     assert(N == 1 && "Invalid number of operands!");
2853     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2854   }
2855 
2856   void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const {
2857     assert(N == 1 && "Invalid number of operands!");
2858     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2859   }
2860 
2861   void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const {
2862     assert(N == 1 && "Invalid number of operands!");
2863     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2864   }
2865 
2866   void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2867     assert(N == 1 && "Invalid number of operands!");
2868     if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
2869       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2870     else
2871       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2872   }
2873 
2874   void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2875     assert(N == 1 && "Invalid number of operands!");
2876     assert(isImm() && "Not an immediate!");
2877 
2878     // If we have an immediate that's not a constant, treat it as a label
2879     // reference needing a fixup.
2880     if (!isa<MCConstantExpr>(getImm())) {
2881       Inst.addOperand(MCOperand::createExpr(getImm()));
2882       return;
2883     }
2884 
2885     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2886     int Val = CE->getValue();
2887     Inst.addOperand(MCOperand::createImm(Val));
2888   }
2889 
2890   void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2891     assert(N == 2 && "Invalid number of operands!");
2892     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2893     Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2894   }
2895 
2896   void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2897     addAlignedMemoryOperands(Inst, N);
2898   }
2899 
2900   void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2901     addAlignedMemoryOperands(Inst, N);
2902   }
2903 
2904   void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2905     addAlignedMemoryOperands(Inst, N);
2906   }
2907 
2908   void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2909     addAlignedMemoryOperands(Inst, N);
2910   }
2911 
2912   void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2913     addAlignedMemoryOperands(Inst, N);
2914   }
2915 
2916   void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2917     addAlignedMemoryOperands(Inst, N);
2918   }
2919 
2920   void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2921     addAlignedMemoryOperands(Inst, N);
2922   }
2923 
2924   void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2925     addAlignedMemoryOperands(Inst, N);
2926   }
2927 
2928   void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2929     addAlignedMemoryOperands(Inst, N);
2930   }
2931 
2932   void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2933     addAlignedMemoryOperands(Inst, N);
2934   }
2935 
2936   void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2937     addAlignedMemoryOperands(Inst, N);
2938   }
2939 
2940   void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2941     assert(N == 3 && "Invalid number of operands!");
2942     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2943     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2944     if (!Memory.OffsetRegNum) {
2945       if (!Memory.OffsetImm)
2946         Inst.addOperand(MCOperand::createImm(0));
2947       else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
2948         int32_t Val = CE->getValue();
2949         ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2950         // Special case for #-0
2951         if (Val == std::numeric_limits<int32_t>::min())
2952           Val = 0;
2953         if (Val < 0)
2954           Val = -Val;
2955         Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2956         Inst.addOperand(MCOperand::createImm(Val));
2957       } else
2958         Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
2959     } else {
2960       // For register offset, we encode the shift type and negation flag
2961       // here.
2962       int32_t Val =
2963           ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2964                             Memory.ShiftImm, Memory.ShiftType);
2965       Inst.addOperand(MCOperand::createImm(Val));
2966     }
2967   }
2968 
2969   void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2970     assert(N == 2 && "Invalid number of operands!");
2971     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2972     assert(CE && "non-constant AM2OffsetImm operand!");
2973     int32_t Val = CE->getValue();
2974     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2975     // Special case for #-0
2976     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2977     if (Val < 0) Val = -Val;
2978     Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2979     Inst.addOperand(MCOperand::createReg(0));
2980     Inst.addOperand(MCOperand::createImm(Val));
2981   }
2982 
2983   void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2984     assert(N == 3 && "Invalid number of operands!");
2985     // If we have an immediate that's not a constant, treat it as a label
2986     // reference needing a fixup. If it is a constant, it's something else
2987     // and we reject it.
2988     if (isImm()) {
2989       Inst.addOperand(MCOperand::createExpr(getImm()));
2990       Inst.addOperand(MCOperand::createReg(0));
2991       Inst.addOperand(MCOperand::createImm(0));
2992       return;
2993     }
2994 
2995     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2996     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2997     if (!Memory.OffsetRegNum) {
2998       if (!Memory.OffsetImm)
2999         Inst.addOperand(MCOperand::createImm(0));
3000       else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3001         int32_t Val = CE->getValue();
3002         ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3003         // Special case for #-0
3004         if (Val == std::numeric_limits<int32_t>::min())
3005           Val = 0;
3006         if (Val < 0)
3007           Val = -Val;
3008         Val = ARM_AM::getAM3Opc(AddSub, Val);
3009         Inst.addOperand(MCOperand::createImm(Val));
3010       } else
3011         Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3012     } else {
3013       // For register offset, we encode the shift type and negation flag
3014       // here.
3015       int32_t Val =
3016           ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
3017       Inst.addOperand(MCOperand::createImm(Val));
3018     }
3019   }
3020 
3021   void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
3022     assert(N == 2 && "Invalid number of operands!");
3023     if (Kind == k_PostIndexRegister) {
3024       int32_t Val =
3025         ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
3026       Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3027       Inst.addOperand(MCOperand::createImm(Val));
3028       return;
3029     }
3030 
3031     // Constant offset.
3032     const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
3033     int32_t Val = CE->getValue();
3034     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3035     // Special case for #-0
3036     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
3037     if (Val < 0) Val = -Val;
3038     Val = ARM_AM::getAM3Opc(AddSub, Val);
3039     Inst.addOperand(MCOperand::createReg(0));
3040     Inst.addOperand(MCOperand::createImm(Val));
3041   }
3042 
3043   void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
3044     assert(N == 2 && "Invalid number of operands!");
3045     // If we have an immediate that's not a constant, treat it as a label
3046     // reference needing a fixup. If it is a constant, it's something else
3047     // and we reject it.
3048     if (isImm()) {
3049       Inst.addOperand(MCOperand::createExpr(getImm()));
3050       Inst.addOperand(MCOperand::createImm(0));
3051       return;
3052     }
3053 
3054     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3055     if (!Memory.OffsetImm)
3056       Inst.addOperand(MCOperand::createImm(0));
3057     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3058       // The lower two bits are always zero and as such are not encoded.
3059       int32_t Val = CE->getValue() / 4;
3060       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3061       // Special case for #-0
3062       if (Val == std::numeric_limits<int32_t>::min())
3063         Val = 0;
3064       if (Val < 0)
3065         Val = -Val;
3066       Val = ARM_AM::getAM5Opc(AddSub, Val);
3067       Inst.addOperand(MCOperand::createImm(Val));
3068     } else
3069       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3070   }
3071 
3072   void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
3073     assert(N == 2 && "Invalid number of operands!");
3074     // If we have an immediate that's not a constant, treat it as a label
3075     // reference needing a fixup. If it is a constant, it's something else
3076     // and we reject it.
3077     if (isImm()) {
3078       Inst.addOperand(MCOperand::createExpr(getImm()));
3079       Inst.addOperand(MCOperand::createImm(0));
3080       return;
3081     }
3082 
3083     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3084     // The lower bit is always zero and as such is not encoded.
3085     if (!Memory.OffsetImm)
3086       Inst.addOperand(MCOperand::createImm(0));
3087     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm)) {
3088       int32_t Val = CE->getValue() / 2;
3089       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
3090       // Special case for #-0
3091       if (Val == std::numeric_limits<int32_t>::min())
3092         Val = 0;
3093       if (Val < 0)
3094         Val = -Val;
3095       Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
3096       Inst.addOperand(MCOperand::createImm(Val));
3097     } else
3098       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3099   }
3100 
3101   void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
3102     assert(N == 2 && "Invalid number of operands!");
3103     // If we have an immediate that's not a constant, treat it as a label
3104     // reference needing a fixup. If it is a constant, it's something else
3105     // and we reject it.
3106     if (isImm()) {
3107       Inst.addOperand(MCOperand::createExpr(getImm()));
3108       Inst.addOperand(MCOperand::createImm(0));
3109       return;
3110     }
3111 
3112     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3113     addExpr(Inst, Memory.OffsetImm);
3114   }
3115 
3116   void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const {
3117     assert(N == 2 && "Invalid number of operands!");
3118     // If we have an immediate that's not a constant, treat it as a label
3119     // reference needing a fixup. If it is a constant, it's something else
3120     // and we reject it.
3121     if (isImm()) {
3122       Inst.addOperand(MCOperand::createExpr(getImm()));
3123       Inst.addOperand(MCOperand::createImm(0));
3124       return;
3125     }
3126 
3127     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3128     addExpr(Inst, Memory.OffsetImm);
3129   }
3130 
3131   void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
3132     assert(N == 2 && "Invalid number of operands!");
3133     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3134     if (!Memory.OffsetImm)
3135       Inst.addOperand(MCOperand::createImm(0));
3136     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3137       // The lower two bits are always zero and as such are not encoded.
3138       Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3139     else
3140       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3141   }
3142 
3143   void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const {
3144     assert(N == 2 && "Invalid number of operands!");
3145     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3146     addExpr(Inst, Memory.OffsetImm);
3147   }
3148 
3149   void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const {
3150     assert(N == 2 && "Invalid number of operands!");
3151     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3152     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3153   }
3154 
3155   void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3156     assert(N == 2 && "Invalid number of operands!");
3157     // If this is an immediate, it's a label reference.
3158     if (isImm()) {
3159       addExpr(Inst, getImm());
3160       Inst.addOperand(MCOperand::createImm(0));
3161       return;
3162     }
3163 
3164     // Otherwise, it's a normal memory reg+offset.
3165     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3166     addExpr(Inst, Memory.OffsetImm);
3167   }
3168 
3169   void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3170     assert(N == 2 && "Invalid number of operands!");
3171     // If this is an immediate, it's a label reference.
3172     if (isImm()) {
3173       addExpr(Inst, getImm());
3174       Inst.addOperand(MCOperand::createImm(0));
3175       return;
3176     }
3177 
3178     // Otherwise, it's a normal memory reg+offset.
3179     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3180     addExpr(Inst, Memory.OffsetImm);
3181   }
3182 
3183   void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
3184     assert(N == 1 && "Invalid number of operands!");
3185     // This is container for the immediate that we will create the constant
3186     // pool from
3187     addExpr(Inst, getConstantPoolImm());
3188   }
3189 
3190   void addMemTBBOperands(MCInst &Inst, unsigned N) const {
3191     assert(N == 2 && "Invalid number of operands!");
3192     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3193     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3194   }
3195 
3196   void addMemTBHOperands(MCInst &Inst, unsigned N) const {
3197     assert(N == 2 && "Invalid number of operands!");
3198     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3199     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3200   }
3201 
3202   void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3203     assert(N == 3 && "Invalid number of operands!");
3204     unsigned Val =
3205       ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
3206                         Memory.ShiftImm, Memory.ShiftType);
3207     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3208     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3209     Inst.addOperand(MCOperand::createImm(Val));
3210   }
3211 
3212   void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3213     assert(N == 3 && "Invalid number of operands!");
3214     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3215     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3216     Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
3217   }
3218 
3219   void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
3220     assert(N == 2 && "Invalid number of operands!");
3221     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3222     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3223   }
3224 
3225   void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
3226     assert(N == 2 && "Invalid number of operands!");
3227     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3228     if (!Memory.OffsetImm)
3229       Inst.addOperand(MCOperand::createImm(0));
3230     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3231       // The lower two bits are always zero and as such are not encoded.
3232       Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3233     else
3234       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3235   }
3236 
3237   void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
3238     assert(N == 2 && "Invalid number of operands!");
3239     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3240     if (!Memory.OffsetImm)
3241       Inst.addOperand(MCOperand::createImm(0));
3242     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3243       Inst.addOperand(MCOperand::createImm(CE->getValue() / 2));
3244     else
3245       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3246   }
3247 
3248   void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
3249     assert(N == 2 && "Invalid number of operands!");
3250     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3251     addExpr(Inst, Memory.OffsetImm);
3252   }
3253 
3254   void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
3255     assert(N == 2 && "Invalid number of operands!");
3256     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3257     if (!Memory.OffsetImm)
3258       Inst.addOperand(MCOperand::createImm(0));
3259     else if (const auto *CE = dyn_cast<MCConstantExpr>(Memory.OffsetImm))
3260       // The lower two bits are always zero and as such are not encoded.
3261       Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
3262     else
3263       Inst.addOperand(MCOperand::createExpr(Memory.OffsetImm));
3264   }
3265 
3266   void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
3267     assert(N == 1 && "Invalid number of operands!");
3268     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3269     assert(CE && "non-constant post-idx-imm8 operand!");
3270     int Imm = CE->getValue();
3271     bool isAdd = Imm >= 0;
3272     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3273     Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
3274     Inst.addOperand(MCOperand::createImm(Imm));
3275   }
3276 
3277   void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
3278     assert(N == 1 && "Invalid number of operands!");
3279     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3280     assert(CE && "non-constant post-idx-imm8s4 operand!");
3281     int Imm = CE->getValue();
3282     bool isAdd = Imm >= 0;
3283     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3284     // Immediate is scaled by 4.
3285     Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
3286     Inst.addOperand(MCOperand::createImm(Imm));
3287   }
3288 
3289   void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
3290     assert(N == 2 && "Invalid number of operands!");
3291     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3292     Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
3293   }
3294 
3295   void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
3296     assert(N == 2 && "Invalid number of operands!");
3297     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3298     // The sign, shift type, and shift amount are encoded in a single operand
3299     // using the AM2 encoding helpers.
3300     ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
3301     unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
3302                                      PostIdxReg.ShiftTy);
3303     Inst.addOperand(MCOperand::createImm(Imm));
3304   }
3305 
3306   void addPowerTwoOperands(MCInst &Inst, unsigned N) const {
3307     assert(N == 1 && "Invalid number of operands!");
3308     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3309     Inst.addOperand(MCOperand::createImm(CE->getValue()));
3310   }
3311 
3312   void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
3313     assert(N == 1 && "Invalid number of operands!");
3314     Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
3315   }
3316 
3317   void addBankedRegOperands(MCInst &Inst, unsigned N) const {
3318     assert(N == 1 && "Invalid number of operands!");
3319     Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
3320   }
3321 
3322   void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
3323     assert(N == 1 && "Invalid number of operands!");
3324     Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
3325   }
3326 
3327   void addVecListOperands(MCInst &Inst, unsigned N) const {
3328     assert(N == 1 && "Invalid number of operands!");
3329     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3330   }
3331 
3332   void addMVEVecListOperands(MCInst &Inst, unsigned N) const {
3333     assert(N == 1 && "Invalid number of operands!");
3334 
3335     // When we come here, the VectorList field will identify a range
3336     // of q-registers by its base register and length, and it will
3337     // have already been error-checked to be the expected length of
3338     // range and contain only q-regs in the range q0-q7. So we can
3339     // count on the base register being in the range q0-q6 (for 2
3340     // regs) or q0-q4 (for 4)
3341     //
3342     // The MVE instructions taking a register range of this kind will
3343     // need an operand in the MQQPR or MQQQQPR class, representing the
3344     // entire range as a unit. So we must translate into that class,
3345     // by finding the index of the base register in the MQPR reg
3346     // class, and returning the super-register at the corresponding
3347     // index in the target class.
3348 
3349     const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID];
3350     const MCRegisterClass *RC_out =
3351         (VectorList.Count == 2) ? &ARMMCRegisterClasses[ARM::MQQPRRegClassID]
3352                                 : &ARMMCRegisterClasses[ARM::MQQQQPRRegClassID];
3353 
3354     unsigned I, E = RC_out->getNumRegs();
3355     for (I = 0; I < E; I++)
3356       if (RC_in->getRegister(I) == VectorList.RegNum)
3357         break;
3358     assert(I < E && "Invalid vector list start register!");
3359 
3360     Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I)));
3361   }
3362 
3363   void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
3364     assert(N == 2 && "Invalid number of operands!");
3365     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3366     Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
3367   }
3368 
3369   void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
3370     assert(N == 1 && "Invalid number of operands!");
3371     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3372   }
3373 
3374   void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
3375     assert(N == 1 && "Invalid number of operands!");
3376     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3377   }
3378 
3379   void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
3380     assert(N == 1 && "Invalid number of operands!");
3381     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3382   }
3383 
3384   void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
3385     assert(N == 1 && "Invalid number of operands!");
3386     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3387   }
3388 
3389   void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const {
3390     assert(N == 1 && "Invalid number of operands!");
3391     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3392   }
3393 
3394   void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const {
3395     assert(N == 1 && "Invalid number of operands!");
3396     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3397   }
3398 
3399   void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
3400     assert(N == 1 && "Invalid number of operands!");
3401     // The immediate encodes the type of constant as well as the value.
3402     // Mask in that this is an i8 splat.
3403     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3404     Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
3405   }
3406 
3407   void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
3408     assert(N == 1 && "Invalid number of operands!");
3409     // The immediate encodes the type of constant as well as the value.
3410     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3411     unsigned Value = CE->getValue();
3412     Value = ARM_AM::encodeNEONi16splat(Value);
3413     Inst.addOperand(MCOperand::createImm(Value));
3414   }
3415 
3416   void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
3417     assert(N == 1 && "Invalid number of operands!");
3418     // The immediate encodes the type of constant as well as the value.
3419     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3420     unsigned Value = CE->getValue();
3421     Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
3422     Inst.addOperand(MCOperand::createImm(Value));
3423   }
3424 
3425   void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
3426     assert(N == 1 && "Invalid number of operands!");
3427     // The immediate encodes the type of constant as well as the value.
3428     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3429     unsigned Value = CE->getValue();
3430     Value = ARM_AM::encodeNEONi32splat(Value);
3431     Inst.addOperand(MCOperand::createImm(Value));
3432   }
3433 
3434   void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
3435     assert(N == 1 && "Invalid number of operands!");
3436     // The immediate encodes the type of constant as well as the value.
3437     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3438     unsigned Value = CE->getValue();
3439     Value = ARM_AM::encodeNEONi32splat(~Value);
3440     Inst.addOperand(MCOperand::createImm(Value));
3441   }
3442 
3443   void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
3444     // The immediate encodes the type of constant as well as the value.
3445     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3446     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
3447             Inst.getOpcode() == ARM::VMOVv16i8) &&
3448           "All instructions that wants to replicate non-zero byte "
3449           "always must be replaced with VMOVv8i8 or VMOVv16i8.");
3450     unsigned Value = CE->getValue();
3451     if (Inv)
3452       Value = ~Value;
3453     unsigned B = Value & 0xff;
3454     B |= 0xe00; // cmode = 0b1110
3455     Inst.addOperand(MCOperand::createImm(B));
3456   }
3457 
3458   void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3459     assert(N == 1 && "Invalid number of operands!");
3460     addNEONi8ReplicateOperands(Inst, true);
3461   }
3462 
3463   static unsigned encodeNeonVMOVImmediate(unsigned Value) {
3464     if (Value >= 256 && Value <= 0xffff)
3465       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
3466     else if (Value > 0xffff && Value <= 0xffffff)
3467       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
3468     else if (Value > 0xffffff)
3469       Value = (Value >> 24) | 0x600;
3470     return Value;
3471   }
3472 
3473   void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
3474     assert(N == 1 && "Invalid number of operands!");
3475     // The immediate encodes the type of constant as well as the value.
3476     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3477     unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
3478     Inst.addOperand(MCOperand::createImm(Value));
3479   }
3480 
3481   void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3482     assert(N == 1 && "Invalid number of operands!");
3483     addNEONi8ReplicateOperands(Inst, false);
3484   }
3485 
3486   void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
3487     assert(N == 1 && "Invalid number of operands!");
3488     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3489     assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
3490             Inst.getOpcode() == ARM::VMOVv8i16 ||
3491             Inst.getOpcode() == ARM::VMVNv4i16 ||
3492             Inst.getOpcode() == ARM::VMVNv8i16) &&
3493           "All instructions that want to replicate non-zero half-word "
3494           "always must be replaced with V{MOV,MVN}v{4,8}i16.");
3495     uint64_t Value = CE->getValue();
3496     unsigned Elem = Value & 0xffff;
3497     if (Elem >= 256)
3498       Elem = (Elem >> 8) | 0x200;
3499     Inst.addOperand(MCOperand::createImm(Elem));
3500   }
3501 
3502   void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
3503     assert(N == 1 && "Invalid number of operands!");
3504     // The immediate encodes the type of constant as well as the value.
3505     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3506     unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
3507     Inst.addOperand(MCOperand::createImm(Value));
3508   }
3509 
3510   void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
3511     assert(N == 1 && "Invalid number of operands!");
3512     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3513     assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
3514             Inst.getOpcode() == ARM::VMOVv4i32 ||
3515             Inst.getOpcode() == ARM::VMVNv2i32 ||
3516             Inst.getOpcode() == ARM::VMVNv4i32) &&
3517           "All instructions that want to replicate non-zero word "
3518           "always must be replaced with V{MOV,MVN}v{2,4}i32.");
3519     uint64_t Value = CE->getValue();
3520     unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
3521     Inst.addOperand(MCOperand::createImm(Elem));
3522   }
3523 
3524   void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
3525     assert(N == 1 && "Invalid number of operands!");
3526     // The immediate encodes the type of constant as well as the value.
3527     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3528     uint64_t Value = CE->getValue();
3529     unsigned Imm = 0;
3530     for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
3531       Imm |= (Value & 1) << i;
3532     }
3533     Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
3534   }
3535 
3536   void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
3537     assert(N == 1 && "Invalid number of operands!");
3538     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3539     Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
3540   }
3541 
3542   void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
3543     assert(N == 1 && "Invalid number of operands!");
3544     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3545     Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
3546   }
3547 
3548   void addMveSaturateOperands(MCInst &Inst, unsigned N) const {
3549     assert(N == 1 && "Invalid number of operands!");
3550     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3551     unsigned Imm = CE->getValue();
3552     assert((Imm == 48 || Imm == 64) && "Invalid saturate operand");
3553     Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0));
3554   }
3555 
3556   void print(raw_ostream &OS) const override;
3557 
3558   static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
3559     auto Op = std::make_unique<ARMOperand>(k_ITCondMask);
3560     Op->ITMask.Mask = Mask;
3561     Op->StartLoc = S;
3562     Op->EndLoc = S;
3563     return Op;
3564   }
3565 
3566   static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
3567                                                     SMLoc S) {
3568     auto Op = std::make_unique<ARMOperand>(k_CondCode);
3569     Op->CC.Val = CC;
3570     Op->StartLoc = S;
3571     Op->EndLoc = S;
3572     return Op;
3573   }
3574 
3575   static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC,
3576                                                    SMLoc S) {
3577     auto Op = std::make_unique<ARMOperand>(k_VPTPred);
3578     Op->VCC.Val = CC;
3579     Op->StartLoc = S;
3580     Op->EndLoc = S;
3581     return Op;
3582   }
3583 
3584   static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
3585     auto Op = std::make_unique<ARMOperand>(k_CoprocNum);
3586     Op->Cop.Val = CopVal;
3587     Op->StartLoc = S;
3588     Op->EndLoc = S;
3589     return Op;
3590   }
3591 
3592   static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
3593     auto Op = std::make_unique<ARMOperand>(k_CoprocReg);
3594     Op->Cop.Val = CopVal;
3595     Op->StartLoc = S;
3596     Op->EndLoc = S;
3597     return Op;
3598   }
3599 
3600   static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
3601                                                         SMLoc E) {
3602     auto Op = std::make_unique<ARMOperand>(k_CoprocOption);
3603     Op->Cop.Val = Val;
3604     Op->StartLoc = S;
3605     Op->EndLoc = E;
3606     return Op;
3607   }
3608 
3609   static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
3610     auto Op = std::make_unique<ARMOperand>(k_CCOut);
3611     Op->Reg.RegNum = RegNum;
3612     Op->StartLoc = S;
3613     Op->EndLoc = S;
3614     return Op;
3615   }
3616 
3617   static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
3618     auto Op = std::make_unique<ARMOperand>(k_Token);
3619     Op->Tok.Data = Str.data();
3620     Op->Tok.Length = Str.size();
3621     Op->StartLoc = S;
3622     Op->EndLoc = S;
3623     return Op;
3624   }
3625 
3626   static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
3627                                                SMLoc E) {
3628     auto Op = std::make_unique<ARMOperand>(k_Register);
3629     Op->Reg.RegNum = RegNum;
3630     Op->StartLoc = S;
3631     Op->EndLoc = E;
3632     return Op;
3633   }
3634 
3635   static std::unique_ptr<ARMOperand>
3636   CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3637                         unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
3638                         SMLoc E) {
3639     auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister);
3640     Op->RegShiftedReg.ShiftTy = ShTy;
3641     Op->RegShiftedReg.SrcReg = SrcReg;
3642     Op->RegShiftedReg.ShiftReg = ShiftReg;
3643     Op->RegShiftedReg.ShiftImm = ShiftImm;
3644     Op->StartLoc = S;
3645     Op->EndLoc = E;
3646     return Op;
3647   }
3648 
3649   static std::unique_ptr<ARMOperand>
3650   CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3651                          unsigned ShiftImm, SMLoc S, SMLoc E) {
3652     auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate);
3653     Op->RegShiftedImm.ShiftTy = ShTy;
3654     Op->RegShiftedImm.SrcReg = SrcReg;
3655     Op->RegShiftedImm.ShiftImm = ShiftImm;
3656     Op->StartLoc = S;
3657     Op->EndLoc = E;
3658     return Op;
3659   }
3660 
3661   static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
3662                                                       SMLoc S, SMLoc E) {
3663     auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate);
3664     Op->ShifterImm.isASR = isASR;
3665     Op->ShifterImm.Imm = Imm;
3666     Op->StartLoc = S;
3667     Op->EndLoc = E;
3668     return Op;
3669   }
3670 
3671   static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3672                                                   SMLoc E) {
3673     auto Op = std::make_unique<ARMOperand>(k_RotateImmediate);
3674     Op->RotImm.Imm = Imm;
3675     Op->StartLoc = S;
3676     Op->EndLoc = E;
3677     return Op;
3678   }
3679 
3680   static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3681                                                   SMLoc S, SMLoc E) {
3682     auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate);
3683     Op->ModImm.Bits = Bits;
3684     Op->ModImm.Rot = Rot;
3685     Op->StartLoc = S;
3686     Op->EndLoc = E;
3687     return Op;
3688   }
3689 
3690   static std::unique_ptr<ARMOperand>
3691   CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3692     auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate);
3693     Op->Imm.Val = Val;
3694     Op->StartLoc = S;
3695     Op->EndLoc = E;
3696     return Op;
3697   }
3698 
3699   static std::unique_ptr<ARMOperand>
3700   CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3701     auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor);
3702     Op->Bitfield.LSB = LSB;
3703     Op->Bitfield.Width = Width;
3704     Op->StartLoc = S;
3705     Op->EndLoc = E;
3706     return Op;
3707   }
3708 
3709   static std::unique_ptr<ARMOperand>
3710   CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3711                 SMLoc StartLoc, SMLoc EndLoc) {
3712     assert(Regs.size() > 0 && "RegList contains no registers?");
3713     KindTy Kind = k_RegisterList;
3714 
3715     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
3716             Regs.front().second)) {
3717       if (Regs.back().second == ARM::VPR)
3718         Kind = k_FPDRegisterListWithVPR;
3719       else
3720         Kind = k_DPRRegisterList;
3721     } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
3722                    Regs.front().second)) {
3723       if (Regs.back().second == ARM::VPR)
3724         Kind = k_FPSRegisterListWithVPR;
3725       else
3726         Kind = k_SPRRegisterList;
3727     }
3728 
3729     if (Kind == k_RegisterList && Regs.back().second == ARM::APSR)
3730       Kind = k_RegisterListWithAPSR;
3731 
3732     assert(llvm::is_sorted(Regs) && "Register list must be sorted by encoding");
3733 
3734     auto Op = std::make_unique<ARMOperand>(Kind);
3735     for (const auto &P : Regs)
3736       Op->Registers.push_back(P.second);
3737 
3738     Op->StartLoc = StartLoc;
3739     Op->EndLoc = EndLoc;
3740     return Op;
3741   }
3742 
3743   static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3744                                                       unsigned Count,
3745                                                       bool isDoubleSpaced,
3746                                                       SMLoc S, SMLoc E) {
3747     auto Op = std::make_unique<ARMOperand>(k_VectorList);
3748     Op->VectorList.RegNum = RegNum;
3749     Op->VectorList.Count = Count;
3750     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3751     Op->StartLoc = S;
3752     Op->EndLoc = E;
3753     return Op;
3754   }
3755 
3756   static std::unique_ptr<ARMOperand>
3757   CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3758                            SMLoc S, SMLoc E) {
3759     auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes);
3760     Op->VectorList.RegNum = RegNum;
3761     Op->VectorList.Count = Count;
3762     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3763     Op->StartLoc = S;
3764     Op->EndLoc = E;
3765     return Op;
3766   }
3767 
3768   static std::unique_ptr<ARMOperand>
3769   CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3770                           bool isDoubleSpaced, SMLoc S, SMLoc E) {
3771     auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed);
3772     Op->VectorList.RegNum = RegNum;
3773     Op->VectorList.Count = Count;
3774     Op->VectorList.LaneIndex = Index;
3775     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3776     Op->StartLoc = S;
3777     Op->EndLoc = E;
3778     return Op;
3779   }
3780 
3781   static std::unique_ptr<ARMOperand>
3782   CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3783     auto Op = std::make_unique<ARMOperand>(k_VectorIndex);
3784     Op->VectorIndex.Val = Idx;
3785     Op->StartLoc = S;
3786     Op->EndLoc = E;
3787     return Op;
3788   }
3789 
3790   static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3791                                                SMLoc E) {
3792     auto Op = std::make_unique<ARMOperand>(k_Immediate);
3793     Op->Imm.Val = Val;
3794     Op->StartLoc = S;
3795     Op->EndLoc = E;
3796     return Op;
3797   }
3798 
3799   static std::unique_ptr<ARMOperand>
3800   CreateMem(unsigned BaseRegNum, const MCExpr *OffsetImm, unsigned OffsetRegNum,
3801             ARM_AM::ShiftOpc ShiftType, unsigned ShiftImm, unsigned Alignment,
3802             bool isNegative, SMLoc S, SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3803     auto Op = std::make_unique<ARMOperand>(k_Memory);
3804     Op->Memory.BaseRegNum = BaseRegNum;
3805     Op->Memory.OffsetImm = OffsetImm;
3806     Op->Memory.OffsetRegNum = OffsetRegNum;
3807     Op->Memory.ShiftType = ShiftType;
3808     Op->Memory.ShiftImm = ShiftImm;
3809     Op->Memory.Alignment = Alignment;
3810     Op->Memory.isNegative = isNegative;
3811     Op->StartLoc = S;
3812     Op->EndLoc = E;
3813     Op->AlignmentLoc = AlignmentLoc;
3814     return Op;
3815   }
3816 
3817   static std::unique_ptr<ARMOperand>
3818   CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3819                    unsigned ShiftImm, SMLoc S, SMLoc E) {
3820     auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister);
3821     Op->PostIdxReg.RegNum = RegNum;
3822     Op->PostIdxReg.isAdd = isAdd;
3823     Op->PostIdxReg.ShiftTy = ShiftTy;
3824     Op->PostIdxReg.ShiftImm = ShiftImm;
3825     Op->StartLoc = S;
3826     Op->EndLoc = E;
3827     return Op;
3828   }
3829 
3830   static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3831                                                          SMLoc S) {
3832     auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt);
3833     Op->MBOpt.Val = Opt;
3834     Op->StartLoc = S;
3835     Op->EndLoc = S;
3836     return Op;
3837   }
3838 
3839   static std::unique_ptr<ARMOperand>
3840   CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3841     auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3842     Op->ISBOpt.Val = Opt;
3843     Op->StartLoc = S;
3844     Op->EndLoc = S;
3845     return Op;
3846   }
3847 
3848   static std::unique_ptr<ARMOperand>
3849   CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3850     auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3851     Op->TSBOpt.Val = Opt;
3852     Op->StartLoc = S;
3853     Op->EndLoc = S;
3854     return Op;
3855   }
3856 
3857   static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3858                                                       SMLoc S) {
3859     auto Op = std::make_unique<ARMOperand>(k_ProcIFlags);
3860     Op->IFlags.Val = IFlags;
3861     Op->StartLoc = S;
3862     Op->EndLoc = S;
3863     return Op;
3864   }
3865 
3866   static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3867     auto Op = std::make_unique<ARMOperand>(k_MSRMask);
3868     Op->MMask.Val = MMask;
3869     Op->StartLoc = S;
3870     Op->EndLoc = S;
3871     return Op;
3872   }
3873 
3874   static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3875     auto Op = std::make_unique<ARMOperand>(k_BankedReg);
3876     Op->BankedReg.Val = Reg;
3877     Op->StartLoc = S;
3878     Op->EndLoc = S;
3879     return Op;
3880   }
3881 };
3882 
3883 } // end anonymous namespace.
3884 
3885 void ARMOperand::print(raw_ostream &OS) const {
3886   auto RegName = [](unsigned Reg) {
3887     if (Reg)
3888       return ARMInstPrinter::getRegisterName(Reg);
3889     else
3890       return "noreg";
3891   };
3892 
3893   switch (Kind) {
3894   case k_CondCode:
3895     OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3896     break;
3897   case k_VPTPred:
3898     OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">";
3899     break;
3900   case k_CCOut:
3901     OS << "<ccout " << RegName(getReg()) << ">";
3902     break;
3903   case k_ITCondMask: {
3904     static const char *const MaskStr[] = {
3905       "(invalid)", "(tttt)", "(ttt)", "(ttte)",
3906       "(tt)",      "(ttet)", "(tte)", "(ttee)",
3907       "(t)",       "(tett)", "(tet)", "(tete)",
3908       "(te)",      "(teet)", "(tee)", "(teee)",
3909     };
3910     assert((ITMask.Mask & 0xf) == ITMask.Mask);
3911     OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3912     break;
3913   }
3914   case k_CoprocNum:
3915     OS << "<coprocessor number: " << getCoproc() << ">";
3916     break;
3917   case k_CoprocReg:
3918     OS << "<coprocessor register: " << getCoproc() << ">";
3919     break;
3920   case k_CoprocOption:
3921     OS << "<coprocessor option: " << CoprocOption.Val << ">";
3922     break;
3923   case k_MSRMask:
3924     OS << "<mask: " << getMSRMask() << ">";
3925     break;
3926   case k_BankedReg:
3927     OS << "<banked reg: " << getBankedReg() << ">";
3928     break;
3929   case k_Immediate:
3930     OS << *getImm();
3931     break;
3932   case k_MemBarrierOpt:
3933     OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3934     break;
3935   case k_InstSyncBarrierOpt:
3936     OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3937     break;
3938   case k_TraceSyncBarrierOpt:
3939     OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3940     break;
3941   case k_Memory:
3942     OS << "<memory";
3943     if (Memory.BaseRegNum)
3944       OS << " base:" << RegName(Memory.BaseRegNum);
3945     if (Memory.OffsetImm)
3946       OS << " offset-imm:" << *Memory.OffsetImm;
3947     if (Memory.OffsetRegNum)
3948       OS << " offset-reg:" << (Memory.isNegative ? "-" : "")
3949          << RegName(Memory.OffsetRegNum);
3950     if (Memory.ShiftType != ARM_AM::no_shift) {
3951       OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType);
3952       OS << " shift-imm:" << Memory.ShiftImm;
3953     }
3954     if (Memory.Alignment)
3955       OS << " alignment:" << Memory.Alignment;
3956     OS << ">";
3957     break;
3958   case k_PostIndexRegister:
3959     OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3960        << RegName(PostIdxReg.RegNum);
3961     if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3962       OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3963          << PostIdxReg.ShiftImm;
3964     OS << ">";
3965     break;
3966   case k_ProcIFlags: {
3967     OS << "<ARM_PROC::";
3968     unsigned IFlags = getProcIFlags();
3969     for (int i=2; i >= 0; --i)
3970       if (IFlags & (1 << i))
3971         OS << ARM_PROC::IFlagsToString(1 << i);
3972     OS << ">";
3973     break;
3974   }
3975   case k_Register:
3976     OS << "<register " << RegName(getReg()) << ">";
3977     break;
3978   case k_ShifterImmediate:
3979     OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3980        << " #" << ShifterImm.Imm << ">";
3981     break;
3982   case k_ShiftedRegister:
3983     OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " "
3984        << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " "
3985        << RegName(RegShiftedReg.ShiftReg) << ">";
3986     break;
3987   case k_ShiftedImmediate:
3988     OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " "
3989        << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #"
3990        << RegShiftedImm.ShiftImm << ">";
3991     break;
3992   case k_RotateImmediate:
3993     OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
3994     break;
3995   case k_ModifiedImmediate:
3996     OS << "<mod_imm #" << ModImm.Bits << ", #"
3997        <<  ModImm.Rot << ")>";
3998     break;
3999   case k_ConstantPoolImmediate:
4000     OS << "<constant_pool_imm #" << *getConstantPoolImm();
4001     break;
4002   case k_BitfieldDescriptor:
4003     OS << "<bitfield " << "lsb: " << Bitfield.LSB
4004        << ", width: " << Bitfield.Width << ">";
4005     break;
4006   case k_RegisterList:
4007   case k_RegisterListWithAPSR:
4008   case k_DPRRegisterList:
4009   case k_SPRRegisterList:
4010   case k_FPSRegisterListWithVPR:
4011   case k_FPDRegisterListWithVPR: {
4012     OS << "<register_list ";
4013 
4014     const SmallVectorImpl<unsigned> &RegList = getRegList();
4015     for (SmallVectorImpl<unsigned>::const_iterator
4016            I = RegList.begin(), E = RegList.end(); I != E; ) {
4017       OS << RegName(*I);
4018       if (++I < E) OS << ", ";
4019     }
4020 
4021     OS << ">";
4022     break;
4023   }
4024   case k_VectorList:
4025     OS << "<vector_list " << VectorList.Count << " * "
4026        << RegName(VectorList.RegNum) << ">";
4027     break;
4028   case k_VectorListAllLanes:
4029     OS << "<vector_list(all lanes) " << VectorList.Count << " * "
4030        << RegName(VectorList.RegNum) << ">";
4031     break;
4032   case k_VectorListIndexed:
4033     OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
4034        << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">";
4035     break;
4036   case k_Token:
4037     OS << "'" << getToken() << "'";
4038     break;
4039   case k_VectorIndex:
4040     OS << "<vectorindex " << getVectorIndex() << ">";
4041     break;
4042   }
4043 }
4044 
4045 /// @name Auto-generated Match Functions
4046 /// {
4047 
4048 static unsigned MatchRegisterName(StringRef Name);
4049 
4050 /// }
4051 
4052 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
4053                                  SMLoc &StartLoc, SMLoc &EndLoc) {
4054   const AsmToken &Tok = getParser().getTok();
4055   StartLoc = Tok.getLoc();
4056   EndLoc = Tok.getEndLoc();
4057   RegNo = tryParseRegister();
4058 
4059   return (RegNo == (unsigned)-1);
4060 }
4061 
4062 OperandMatchResultTy ARMAsmParser::tryParseRegister(unsigned &RegNo,
4063                                                     SMLoc &StartLoc,
4064                                                     SMLoc &EndLoc) {
4065   if (ParseRegister(RegNo, StartLoc, EndLoc))
4066     return MatchOperand_NoMatch;
4067   return MatchOperand_Success;
4068 }
4069 
4070 /// Try to parse a register name.  The token must be an Identifier when called,
4071 /// and if it is a register name the token is eaten and the register number is
4072 /// returned.  Otherwise return -1.
4073 int ARMAsmParser::tryParseRegister() {
4074   MCAsmParser &Parser = getParser();
4075   const AsmToken &Tok = Parser.getTok();
4076   if (Tok.isNot(AsmToken::Identifier)) return -1;
4077 
4078   std::string lowerCase = Tok.getString().lower();
4079   unsigned RegNum = MatchRegisterName(lowerCase);
4080   if (!RegNum) {
4081     RegNum = StringSwitch<unsigned>(lowerCase)
4082       .Case("r13", ARM::SP)
4083       .Case("r14", ARM::LR)
4084       .Case("r15", ARM::PC)
4085       .Case("ip", ARM::R12)
4086       // Additional register name aliases for 'gas' compatibility.
4087       .Case("a1", ARM::R0)
4088       .Case("a2", ARM::R1)
4089       .Case("a3", ARM::R2)
4090       .Case("a4", ARM::R3)
4091       .Case("v1", ARM::R4)
4092       .Case("v2", ARM::R5)
4093       .Case("v3", ARM::R6)
4094       .Case("v4", ARM::R7)
4095       .Case("v5", ARM::R8)
4096       .Case("v6", ARM::R9)
4097       .Case("v7", ARM::R10)
4098       .Case("v8", ARM::R11)
4099       .Case("sb", ARM::R9)
4100       .Case("sl", ARM::R10)
4101       .Case("fp", ARM::R11)
4102       .Default(0);
4103   }
4104   if (!RegNum) {
4105     // Check for aliases registered via .req. Canonicalize to lower case.
4106     // That's more consistent since register names are case insensitive, and
4107     // it's how the original entry was passed in from MC/MCParser/AsmParser.
4108     StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
4109     // If no match, return failure.
4110     if (Entry == RegisterReqs.end())
4111       return -1;
4112     Parser.Lex(); // Eat identifier token.
4113     return Entry->getValue();
4114   }
4115 
4116   // Some FPUs only have 16 D registers, so D16-D31 are invalid
4117   if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
4118     return -1;
4119 
4120   Parser.Lex(); // Eat identifier token.
4121 
4122   return RegNum;
4123 }
4124 
4125 // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
4126 // If a recoverable error occurs, return 1. If an irrecoverable error
4127 // occurs, return -1. An irrecoverable error is one where tokens have been
4128 // consumed in the process of trying to parse the shifter (i.e., when it is
4129 // indeed a shifter operand, but malformed).
4130 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
4131   MCAsmParser &Parser = getParser();
4132   SMLoc S = Parser.getTok().getLoc();
4133   const AsmToken &Tok = Parser.getTok();
4134   if (Tok.isNot(AsmToken::Identifier))
4135     return -1;
4136 
4137   std::string lowerCase = Tok.getString().lower();
4138   ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
4139       .Case("asl", ARM_AM::lsl)
4140       .Case("lsl", ARM_AM::lsl)
4141       .Case("lsr", ARM_AM::lsr)
4142       .Case("asr", ARM_AM::asr)
4143       .Case("ror", ARM_AM::ror)
4144       .Case("rrx", ARM_AM::rrx)
4145       .Default(ARM_AM::no_shift);
4146 
4147   if (ShiftTy == ARM_AM::no_shift)
4148     return 1;
4149 
4150   Parser.Lex(); // Eat the operator.
4151 
4152   // The source register for the shift has already been added to the
4153   // operand list, so we need to pop it off and combine it into the shifted
4154   // register operand instead.
4155   std::unique_ptr<ARMOperand> PrevOp(
4156       (ARMOperand *)Operands.pop_back_val().release());
4157   if (!PrevOp->isReg())
4158     return Error(PrevOp->getStartLoc(), "shift must be of a register");
4159   int SrcReg = PrevOp->getReg();
4160 
4161   SMLoc EndLoc;
4162   int64_t Imm = 0;
4163   int ShiftReg = 0;
4164   if (ShiftTy == ARM_AM::rrx) {
4165     // RRX Doesn't have an explicit shift amount. The encoder expects
4166     // the shift register to be the same as the source register. Seems odd,
4167     // but OK.
4168     ShiftReg = SrcReg;
4169   } else {
4170     // Figure out if this is shifted by a constant or a register (for non-RRX).
4171     if (Parser.getTok().is(AsmToken::Hash) ||
4172         Parser.getTok().is(AsmToken::Dollar)) {
4173       Parser.Lex(); // Eat hash.
4174       SMLoc ImmLoc = Parser.getTok().getLoc();
4175       const MCExpr *ShiftExpr = nullptr;
4176       if (getParser().parseExpression(ShiftExpr, EndLoc)) {
4177         Error(ImmLoc, "invalid immediate shift value");
4178         return -1;
4179       }
4180       // The expression must be evaluatable as an immediate.
4181       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
4182       if (!CE) {
4183         Error(ImmLoc, "invalid immediate shift value");
4184         return -1;
4185       }
4186       // Range check the immediate.
4187       // lsl, ror: 0 <= imm <= 31
4188       // lsr, asr: 0 <= imm <= 32
4189       Imm = CE->getValue();
4190       if (Imm < 0 ||
4191           ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
4192           ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
4193         Error(ImmLoc, "immediate shift value out of range");
4194         return -1;
4195       }
4196       // shift by zero is a nop. Always send it through as lsl.
4197       // ('as' compatibility)
4198       if (Imm == 0)
4199         ShiftTy = ARM_AM::lsl;
4200     } else if (Parser.getTok().is(AsmToken::Identifier)) {
4201       SMLoc L = Parser.getTok().getLoc();
4202       EndLoc = Parser.getTok().getEndLoc();
4203       ShiftReg = tryParseRegister();
4204       if (ShiftReg == -1) {
4205         Error(L, "expected immediate or register in shift operand");
4206         return -1;
4207       }
4208     } else {
4209       Error(Parser.getTok().getLoc(),
4210             "expected immediate or register in shift operand");
4211       return -1;
4212     }
4213   }
4214 
4215   if (ShiftReg && ShiftTy != ARM_AM::rrx)
4216     Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
4217                                                          ShiftReg, Imm,
4218                                                          S, EndLoc));
4219   else
4220     Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
4221                                                           S, EndLoc));
4222 
4223   return 0;
4224 }
4225 
4226 /// Try to parse a register name.  The token must be an Identifier when called.
4227 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
4228 /// if there is a "writeback". 'true' if it's not a register.
4229 ///
4230 /// TODO this is likely to change to allow different register types and or to
4231 /// parse for a specific register type.
4232 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
4233   MCAsmParser &Parser = getParser();
4234   SMLoc RegStartLoc = Parser.getTok().getLoc();
4235   SMLoc RegEndLoc = Parser.getTok().getEndLoc();
4236   int RegNo = tryParseRegister();
4237   if (RegNo == -1)
4238     return true;
4239 
4240   Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
4241 
4242   const AsmToken &ExclaimTok = Parser.getTok();
4243   if (ExclaimTok.is(AsmToken::Exclaim)) {
4244     Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
4245                                                ExclaimTok.getLoc()));
4246     Parser.Lex(); // Eat exclaim token
4247     return false;
4248   }
4249 
4250   // Also check for an index operand. This is only legal for vector registers,
4251   // but that'll get caught OK in operand matching, so we don't need to
4252   // explicitly filter everything else out here.
4253   if (Parser.getTok().is(AsmToken::LBrac)) {
4254     SMLoc SIdx = Parser.getTok().getLoc();
4255     Parser.Lex(); // Eat left bracket token.
4256 
4257     const MCExpr *ImmVal;
4258     if (getParser().parseExpression(ImmVal))
4259       return true;
4260     const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
4261     if (!MCE)
4262       return TokError("immediate value expected for vector index");
4263 
4264     if (Parser.getTok().isNot(AsmToken::RBrac))
4265       return Error(Parser.getTok().getLoc(), "']' expected");
4266 
4267     SMLoc E = Parser.getTok().getEndLoc();
4268     Parser.Lex(); // Eat right bracket token.
4269 
4270     Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
4271                                                      SIdx, E,
4272                                                      getContext()));
4273   }
4274 
4275   return false;
4276 }
4277 
4278 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
4279 /// instruction with a symbolic operand name.
4280 /// We accept "crN" syntax for GAS compatibility.
4281 /// <operand-name> ::= <prefix><number>
4282 /// If CoprocOp is 'c', then:
4283 ///   <prefix> ::= c | cr
4284 /// If CoprocOp is 'p', then :
4285 ///   <prefix> ::= p
4286 /// <number> ::= integer in range [0, 15]
4287 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
4288   // Use the same layout as the tablegen'erated register name matcher. Ugly,
4289   // but efficient.
4290   if (Name.size() < 2 || Name[0] != CoprocOp)
4291     return -1;
4292   Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
4293 
4294   switch (Name.size()) {
4295   default: return -1;
4296   case 1:
4297     switch (Name[0]) {
4298     default:  return -1;
4299     case '0': return 0;
4300     case '1': return 1;
4301     case '2': return 2;
4302     case '3': return 3;
4303     case '4': return 4;
4304     case '5': return 5;
4305     case '6': return 6;
4306     case '7': return 7;
4307     case '8': return 8;
4308     case '9': return 9;
4309     }
4310   case 2:
4311     if (Name[0] != '1')
4312       return -1;
4313     switch (Name[1]) {
4314     default:  return -1;
4315     // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
4316     // However, old cores (v5/v6) did use them in that way.
4317     case '0': return 10;
4318     case '1': return 11;
4319     case '2': return 12;
4320     case '3': return 13;
4321     case '4': return 14;
4322     case '5': return 15;
4323     }
4324   }
4325 }
4326 
4327 /// parseITCondCode - Try to parse a condition code for an IT instruction.
4328 OperandMatchResultTy
4329 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
4330   MCAsmParser &Parser = getParser();
4331   SMLoc S = Parser.getTok().getLoc();
4332   const AsmToken &Tok = Parser.getTok();
4333   if (!Tok.is(AsmToken::Identifier))
4334     return MatchOperand_NoMatch;
4335   unsigned CC = ARMCondCodeFromString(Tok.getString());
4336   if (CC == ~0U)
4337     return MatchOperand_NoMatch;
4338   Parser.Lex(); // Eat the token.
4339 
4340   Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
4341 
4342   return MatchOperand_Success;
4343 }
4344 
4345 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
4346 /// token must be an Identifier when called, and if it is a coprocessor
4347 /// number, the token is eaten and the operand is added to the operand list.
4348 OperandMatchResultTy
4349 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
4350   MCAsmParser &Parser = getParser();
4351   SMLoc S = Parser.getTok().getLoc();
4352   const AsmToken &Tok = Parser.getTok();
4353   if (Tok.isNot(AsmToken::Identifier))
4354     return MatchOperand_NoMatch;
4355 
4356   int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p');
4357   if (Num == -1)
4358     return MatchOperand_NoMatch;
4359   if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits()))
4360     return MatchOperand_NoMatch;
4361 
4362   Parser.Lex(); // Eat identifier token.
4363   Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
4364   return MatchOperand_Success;
4365 }
4366 
4367 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
4368 /// token must be an Identifier when called, and if it is a coprocessor
4369 /// number, the token is eaten and the operand is added to the operand list.
4370 OperandMatchResultTy
4371 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
4372   MCAsmParser &Parser = getParser();
4373   SMLoc S = Parser.getTok().getLoc();
4374   const AsmToken &Tok = Parser.getTok();
4375   if (Tok.isNot(AsmToken::Identifier))
4376     return MatchOperand_NoMatch;
4377 
4378   int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c');
4379   if (Reg == -1)
4380     return MatchOperand_NoMatch;
4381 
4382   Parser.Lex(); // Eat identifier token.
4383   Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
4384   return MatchOperand_Success;
4385 }
4386 
4387 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
4388 /// coproc_option : '{' imm0_255 '}'
4389 OperandMatchResultTy
4390 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
4391   MCAsmParser &Parser = getParser();
4392   SMLoc S = Parser.getTok().getLoc();
4393 
4394   // If this isn't a '{', this isn't a coprocessor immediate operand.
4395   if (Parser.getTok().isNot(AsmToken::LCurly))
4396     return MatchOperand_NoMatch;
4397   Parser.Lex(); // Eat the '{'
4398 
4399   const MCExpr *Expr;
4400   SMLoc Loc = Parser.getTok().getLoc();
4401   if (getParser().parseExpression(Expr)) {
4402     Error(Loc, "illegal expression");
4403     return MatchOperand_ParseFail;
4404   }
4405   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4406   if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
4407     Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
4408     return MatchOperand_ParseFail;
4409   }
4410   int Val = CE->getValue();
4411 
4412   // Check for and consume the closing '}'
4413   if (Parser.getTok().isNot(AsmToken::RCurly))
4414     return MatchOperand_ParseFail;
4415   SMLoc E = Parser.getTok().getEndLoc();
4416   Parser.Lex(); // Eat the '}'
4417 
4418   Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
4419   return MatchOperand_Success;
4420 }
4421 
4422 // For register list parsing, we need to map from raw GPR register numbering
4423 // to the enumeration values. The enumeration values aren't sorted by
4424 // register number due to our using "sp", "lr" and "pc" as canonical names.
4425 static unsigned getNextRegister(unsigned Reg) {
4426   // If this is a GPR, we need to do it manually, otherwise we can rely
4427   // on the sort ordering of the enumeration since the other reg-classes
4428   // are sane.
4429   if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4430     return Reg + 1;
4431   switch(Reg) {
4432   default: llvm_unreachable("Invalid GPR number!");
4433   case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
4434   case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
4435   case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
4436   case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
4437   case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
4438   case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
4439   case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
4440   case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
4441   }
4442 }
4443 
4444 // Insert an <Encoding, Register> pair in an ordered vector. Return true on
4445 // success, or false, if duplicate encoding found.
4446 static bool
4447 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
4448                    unsigned Enc, unsigned Reg) {
4449   Regs.emplace_back(Enc, Reg);
4450   for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) {
4451     if (J->first == Enc) {
4452       Regs.erase(J.base());
4453       return false;
4454     }
4455     if (J->first < Enc)
4456       break;
4457     std::swap(*I, *J);
4458   }
4459   return true;
4460 }
4461 
4462 /// Parse a register list.
4463 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, bool EnforceOrder,
4464                                      bool AllowRAAC) {
4465   MCAsmParser &Parser = getParser();
4466   if (Parser.getTok().isNot(AsmToken::LCurly))
4467     return TokError("Token is not a Left Curly Brace");
4468   SMLoc S = Parser.getTok().getLoc();
4469   Parser.Lex(); // Eat '{' token.
4470   SMLoc RegLoc = Parser.getTok().getLoc();
4471 
4472   // Check the first register in the list to see what register class
4473   // this is a list of.
4474   int Reg = tryParseRegister();
4475   if (Reg == -1)
4476     return Error(RegLoc, "register expected");
4477   if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE)
4478     return Error(RegLoc, "pseudo-register not allowed");
4479   // The reglist instructions have at most 16 registers, so reserve
4480   // space for that many.
4481   int EReg = 0;
4482   SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
4483 
4484   // Allow Q regs and just interpret them as the two D sub-registers.
4485   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4486     Reg = getDRegFromQReg(Reg);
4487     EReg = MRI->getEncodingValue(Reg);
4488     Registers.emplace_back(EReg, Reg);
4489     ++Reg;
4490   }
4491   const MCRegisterClass *RC;
4492   if (Reg == ARM::RA_AUTH_CODE ||
4493       ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4494     RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
4495   else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
4496     RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
4497   else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
4498     RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
4499   else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4500     RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4501   else
4502     return Error(RegLoc, "invalid register in register list");
4503 
4504   // Store the register.
4505   EReg = MRI->getEncodingValue(Reg);
4506   Registers.emplace_back(EReg, Reg);
4507 
4508   // This starts immediately after the first register token in the list,
4509   // so we can see either a comma or a minus (range separator) as a legal
4510   // next token.
4511   while (Parser.getTok().is(AsmToken::Comma) ||
4512          Parser.getTok().is(AsmToken::Minus)) {
4513     if (Parser.getTok().is(AsmToken::Minus)) {
4514       if (Reg == ARM::RA_AUTH_CODE)
4515         return Error(RegLoc, "pseudo-register not allowed");
4516       Parser.Lex(); // Eat the minus.
4517       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4518       int EndReg = tryParseRegister();
4519       if (EndReg == -1)
4520         return Error(AfterMinusLoc, "register expected");
4521       if (EndReg == ARM::RA_AUTH_CODE)
4522         return Error(AfterMinusLoc, "pseudo-register not allowed");
4523       // Allow Q regs and just interpret them as the two D sub-registers.
4524       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4525         EndReg = getDRegFromQReg(EndReg) + 1;
4526       // If the register is the same as the start reg, there's nothing
4527       // more to do.
4528       if (Reg == EndReg)
4529         continue;
4530       // The register must be in the same register class as the first.
4531       if (!RC->contains(Reg))
4532         return Error(AfterMinusLoc, "invalid register in register list");
4533       // Ranges must go from low to high.
4534       if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
4535         return Error(AfterMinusLoc, "bad range in register list");
4536 
4537       // Add all the registers in the range to the register list.
4538       while (Reg != EndReg) {
4539         Reg = getNextRegister(Reg);
4540         EReg = MRI->getEncodingValue(Reg);
4541         if (!insertNoDuplicates(Registers, EReg, Reg)) {
4542           Warning(AfterMinusLoc, StringRef("duplicated register (") +
4543                                      ARMInstPrinter::getRegisterName(Reg) +
4544                                      ") in register list");
4545         }
4546       }
4547       continue;
4548     }
4549     Parser.Lex(); // Eat the comma.
4550     RegLoc = Parser.getTok().getLoc();
4551     int OldReg = Reg;
4552     const AsmToken RegTok = Parser.getTok();
4553     Reg = tryParseRegister();
4554     if (Reg == -1)
4555       return Error(RegLoc, "register expected");
4556     if (!AllowRAAC && Reg == ARM::RA_AUTH_CODE)
4557       return Error(RegLoc, "pseudo-register not allowed");
4558     // Allow Q regs and just interpret them as the two D sub-registers.
4559     bool isQReg = false;
4560     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4561       Reg = getDRegFromQReg(Reg);
4562       isQReg = true;
4563     }
4564     if (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg) &&
4565         RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() &&
4566         ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) {
4567       // switch the register classes, as GPRwithAPSRnospRegClassID is a partial
4568       // subset of GPRRegClassId except it contains APSR as well.
4569       RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4570     }
4571     if (Reg == ARM::VPR &&
4572         (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] ||
4573          RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] ||
4574          RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) {
4575       RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID];
4576       EReg = MRI->getEncodingValue(Reg);
4577       if (!insertNoDuplicates(Registers, EReg, Reg)) {
4578         Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4579                             ") in register list");
4580       }
4581       continue;
4582     }
4583     // The register must be in the same register class as the first.
4584     if ((Reg == ARM::RA_AUTH_CODE &&
4585          RC != &ARMMCRegisterClasses[ARM::GPRRegClassID]) ||
4586         (Reg != ARM::RA_AUTH_CODE && !RC->contains(Reg)))
4587       return Error(RegLoc, "invalid register in register list");
4588     // In most cases, the list must be monotonically increasing. An
4589     // exception is CLRM, which is order-independent anyway, so
4590     // there's no potential for confusion if you write clrm {r2,r1}
4591     // instead of clrm {r1,r2}.
4592     if (EnforceOrder &&
4593         MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
4594       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4595         Warning(RegLoc, "register list not in ascending order");
4596       else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4597         return Error(RegLoc, "register list not in ascending order");
4598     }
4599     // VFP register lists must also be contiguous.
4600     if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
4601         RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] &&
4602         Reg != OldReg + 1)
4603       return Error(RegLoc, "non-contiguous register range");
4604     EReg = MRI->getEncodingValue(Reg);
4605     if (!insertNoDuplicates(Registers, EReg, Reg)) {
4606       Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4607                           ") in register list");
4608     }
4609     if (isQReg) {
4610       EReg = MRI->getEncodingValue(++Reg);
4611       Registers.emplace_back(EReg, Reg);
4612     }
4613   }
4614 
4615   if (Parser.getTok().isNot(AsmToken::RCurly))
4616     return Error(Parser.getTok().getLoc(), "'}' expected");
4617   SMLoc E = Parser.getTok().getEndLoc();
4618   Parser.Lex(); // Eat '}' token.
4619 
4620   // Push the register list operand.
4621   Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
4622 
4623   // The ARM system instruction variants for LDM/STM have a '^' token here.
4624   if (Parser.getTok().is(AsmToken::Caret)) {
4625     Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
4626     Parser.Lex(); // Eat '^' token.
4627   }
4628 
4629   return false;
4630 }
4631 
4632 // Helper function to parse the lane index for vector lists.
4633 OperandMatchResultTy ARMAsmParser::
4634 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
4635   MCAsmParser &Parser = getParser();
4636   Index = 0; // Always return a defined index value.
4637   if (Parser.getTok().is(AsmToken::LBrac)) {
4638     Parser.Lex(); // Eat the '['.
4639     if (Parser.getTok().is(AsmToken::RBrac)) {
4640       // "Dn[]" is the 'all lanes' syntax.
4641       LaneKind = AllLanes;
4642       EndLoc = Parser.getTok().getEndLoc();
4643       Parser.Lex(); // Eat the ']'.
4644       return MatchOperand_Success;
4645     }
4646 
4647     // There's an optional '#' token here. Normally there wouldn't be, but
4648     // inline assemble puts one in, and it's friendly to accept that.
4649     if (Parser.getTok().is(AsmToken::Hash))
4650       Parser.Lex(); // Eat '#' or '$'.
4651 
4652     const MCExpr *LaneIndex;
4653     SMLoc Loc = Parser.getTok().getLoc();
4654     if (getParser().parseExpression(LaneIndex)) {
4655       Error(Loc, "illegal expression");
4656       return MatchOperand_ParseFail;
4657     }
4658     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
4659     if (!CE) {
4660       Error(Loc, "lane index must be empty or an integer");
4661       return MatchOperand_ParseFail;
4662     }
4663     if (Parser.getTok().isNot(AsmToken::RBrac)) {
4664       Error(Parser.getTok().getLoc(), "']' expected");
4665       return MatchOperand_ParseFail;
4666     }
4667     EndLoc = Parser.getTok().getEndLoc();
4668     Parser.Lex(); // Eat the ']'.
4669     int64_t Val = CE->getValue();
4670 
4671     // FIXME: Make this range check context sensitive for .8, .16, .32.
4672     if (Val < 0 || Val > 7) {
4673       Error(Parser.getTok().getLoc(), "lane index out of range");
4674       return MatchOperand_ParseFail;
4675     }
4676     Index = Val;
4677     LaneKind = IndexedLane;
4678     return MatchOperand_Success;
4679   }
4680   LaneKind = NoLanes;
4681   return MatchOperand_Success;
4682 }
4683 
4684 // parse a vector register list
4685 OperandMatchResultTy
4686 ARMAsmParser::parseVectorList(OperandVector &Operands) {
4687   MCAsmParser &Parser = getParser();
4688   VectorLaneTy LaneKind;
4689   unsigned LaneIndex;
4690   SMLoc S = Parser.getTok().getLoc();
4691   // As an extension (to match gas), support a plain D register or Q register
4692   // (without encosing curly braces) as a single or double entry list,
4693   // respectively.
4694   if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) {
4695     SMLoc E = Parser.getTok().getEndLoc();
4696     int Reg = tryParseRegister();
4697     if (Reg == -1)
4698       return MatchOperand_NoMatch;
4699     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
4700       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4701       if (Res != MatchOperand_Success)
4702         return Res;
4703       switch (LaneKind) {
4704       case NoLanes:
4705         Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
4706         break;
4707       case AllLanes:
4708         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
4709                                                                 S, E));
4710         break;
4711       case IndexedLane:
4712         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
4713                                                                LaneIndex,
4714                                                                false, S, E));
4715         break;
4716       }
4717       return MatchOperand_Success;
4718     }
4719     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4720       Reg = getDRegFromQReg(Reg);
4721       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4722       if (Res != MatchOperand_Success)
4723         return Res;
4724       switch (LaneKind) {
4725       case NoLanes:
4726         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4727                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4728         Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
4729         break;
4730       case AllLanes:
4731         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4732                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4733         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
4734                                                                 S, E));
4735         break;
4736       case IndexedLane:
4737         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
4738                                                                LaneIndex,
4739                                                                false, S, E));
4740         break;
4741       }
4742       return MatchOperand_Success;
4743     }
4744     Error(S, "vector register expected");
4745     return MatchOperand_ParseFail;
4746   }
4747 
4748   if (Parser.getTok().isNot(AsmToken::LCurly))
4749     return MatchOperand_NoMatch;
4750 
4751   Parser.Lex(); // Eat '{' token.
4752   SMLoc RegLoc = Parser.getTok().getLoc();
4753 
4754   int Reg = tryParseRegister();
4755   if (Reg == -1) {
4756     Error(RegLoc, "register expected");
4757     return MatchOperand_ParseFail;
4758   }
4759   unsigned Count = 1;
4760   int Spacing = 0;
4761   unsigned FirstReg = Reg;
4762 
4763   if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4764       Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected");
4765       return MatchOperand_ParseFail;
4766   }
4767   // The list is of D registers, but we also allow Q regs and just interpret
4768   // them as the two D sub-registers.
4769   else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4770     FirstReg = Reg = getDRegFromQReg(Reg);
4771     Spacing = 1; // double-spacing requires explicit D registers, otherwise
4772                  // it's ambiguous with four-register single spaced.
4773     ++Reg;
4774     ++Count;
4775   }
4776 
4777   SMLoc E;
4778   if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4779     return MatchOperand_ParseFail;
4780 
4781   while (Parser.getTok().is(AsmToken::Comma) ||
4782          Parser.getTok().is(AsmToken::Minus)) {
4783     if (Parser.getTok().is(AsmToken::Minus)) {
4784       if (!Spacing)
4785         Spacing = 1; // Register range implies a single spaced list.
4786       else if (Spacing == 2) {
4787         Error(Parser.getTok().getLoc(),
4788               "sequential registers in double spaced list");
4789         return MatchOperand_ParseFail;
4790       }
4791       Parser.Lex(); // Eat the minus.
4792       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4793       int EndReg = tryParseRegister();
4794       if (EndReg == -1) {
4795         Error(AfterMinusLoc, "register expected");
4796         return MatchOperand_ParseFail;
4797       }
4798       // Allow Q regs and just interpret them as the two D sub-registers.
4799       if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4800         EndReg = getDRegFromQReg(EndReg) + 1;
4801       // If the register is the same as the start reg, there's nothing
4802       // more to do.
4803       if (Reg == EndReg)
4804         continue;
4805       // The register must be in the same register class as the first.
4806       if ((hasMVE() &&
4807            !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) ||
4808           (!hasMVE() &&
4809            !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) {
4810         Error(AfterMinusLoc, "invalid register in register list");
4811         return MatchOperand_ParseFail;
4812       }
4813       // Ranges must go from low to high.
4814       if (Reg > EndReg) {
4815         Error(AfterMinusLoc, "bad range in register list");
4816         return MatchOperand_ParseFail;
4817       }
4818       // Parse the lane specifier if present.
4819       VectorLaneTy NextLaneKind;
4820       unsigned NextLaneIndex;
4821       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4822           MatchOperand_Success)
4823         return MatchOperand_ParseFail;
4824       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4825         Error(AfterMinusLoc, "mismatched lane index in register list");
4826         return MatchOperand_ParseFail;
4827       }
4828 
4829       // Add all the registers in the range to the register list.
4830       Count += EndReg - Reg;
4831       Reg = EndReg;
4832       continue;
4833     }
4834     Parser.Lex(); // Eat the comma.
4835     RegLoc = Parser.getTok().getLoc();
4836     int OldReg = Reg;
4837     Reg = tryParseRegister();
4838     if (Reg == -1) {
4839       Error(RegLoc, "register expected");
4840       return MatchOperand_ParseFail;
4841     }
4842 
4843     if (hasMVE()) {
4844       if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4845         Error(RegLoc, "vector register in range Q0-Q7 expected");
4846         return MatchOperand_ParseFail;
4847       }
4848       Spacing = 1;
4849     }
4850     // vector register lists must be contiguous.
4851     // It's OK to use the enumeration values directly here rather, as the
4852     // VFP register classes have the enum sorted properly.
4853     //
4854     // The list is of D registers, but we also allow Q regs and just interpret
4855     // them as the two D sub-registers.
4856     else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4857       if (!Spacing)
4858         Spacing = 1; // Register range implies a single spaced list.
4859       else if (Spacing == 2) {
4860         Error(RegLoc,
4861               "invalid register in double-spaced list (must be 'D' register')");
4862         return MatchOperand_ParseFail;
4863       }
4864       Reg = getDRegFromQReg(Reg);
4865       if (Reg != OldReg + 1) {
4866         Error(RegLoc, "non-contiguous register range");
4867         return MatchOperand_ParseFail;
4868       }
4869       ++Reg;
4870       Count += 2;
4871       // Parse the lane specifier if present.
4872       VectorLaneTy NextLaneKind;
4873       unsigned NextLaneIndex;
4874       SMLoc LaneLoc = Parser.getTok().getLoc();
4875       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4876           MatchOperand_Success)
4877         return MatchOperand_ParseFail;
4878       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4879         Error(LaneLoc, "mismatched lane index in register list");
4880         return MatchOperand_ParseFail;
4881       }
4882       continue;
4883     }
4884     // Normal D register.
4885     // Figure out the register spacing (single or double) of the list if
4886     // we don't know it already.
4887     if (!Spacing)
4888       Spacing = 1 + (Reg == OldReg + 2);
4889 
4890     // Just check that it's contiguous and keep going.
4891     if (Reg != OldReg + Spacing) {
4892       Error(RegLoc, "non-contiguous register range");
4893       return MatchOperand_ParseFail;
4894     }
4895     ++Count;
4896     // Parse the lane specifier if present.
4897     VectorLaneTy NextLaneKind;
4898     unsigned NextLaneIndex;
4899     SMLoc EndLoc = Parser.getTok().getLoc();
4900     if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4901       return MatchOperand_ParseFail;
4902     if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4903       Error(EndLoc, "mismatched lane index in register list");
4904       return MatchOperand_ParseFail;
4905     }
4906   }
4907 
4908   if (Parser.getTok().isNot(AsmToken::RCurly)) {
4909     Error(Parser.getTok().getLoc(), "'}' expected");
4910     return MatchOperand_ParseFail;
4911   }
4912   E = Parser.getTok().getEndLoc();
4913   Parser.Lex(); // Eat '}' token.
4914 
4915   switch (LaneKind) {
4916   case NoLanes:
4917   case AllLanes: {
4918     // Two-register operands have been converted to the
4919     // composite register classes.
4920     if (Count == 2 && !hasMVE()) {
4921       const MCRegisterClass *RC = (Spacing == 1) ?
4922         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4923         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4924       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4925     }
4926     auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList :
4927                    ARMOperand::CreateVectorListAllLanes);
4928     Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E));
4929     break;
4930   }
4931   case IndexedLane:
4932     Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4933                                                            LaneIndex,
4934                                                            (Spacing == 2),
4935                                                            S, E));
4936     break;
4937   }
4938   return MatchOperand_Success;
4939 }
4940 
4941 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4942 OperandMatchResultTy
4943 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4944   MCAsmParser &Parser = getParser();
4945   SMLoc S = Parser.getTok().getLoc();
4946   const AsmToken &Tok = Parser.getTok();
4947   unsigned Opt;
4948 
4949   if (Tok.is(AsmToken::Identifier)) {
4950     StringRef OptStr = Tok.getString();
4951 
4952     Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4953       .Case("sy",    ARM_MB::SY)
4954       .Case("st",    ARM_MB::ST)
4955       .Case("ld",    ARM_MB::LD)
4956       .Case("sh",    ARM_MB::ISH)
4957       .Case("ish",   ARM_MB::ISH)
4958       .Case("shst",  ARM_MB::ISHST)
4959       .Case("ishst", ARM_MB::ISHST)
4960       .Case("ishld", ARM_MB::ISHLD)
4961       .Case("nsh",   ARM_MB::NSH)
4962       .Case("un",    ARM_MB::NSH)
4963       .Case("nshst", ARM_MB::NSHST)
4964       .Case("nshld", ARM_MB::NSHLD)
4965       .Case("unst",  ARM_MB::NSHST)
4966       .Case("osh",   ARM_MB::OSH)
4967       .Case("oshst", ARM_MB::OSHST)
4968       .Case("oshld", ARM_MB::OSHLD)
4969       .Default(~0U);
4970 
4971     // ishld, oshld, nshld and ld are only available from ARMv8.
4972     if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4973                         Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4974       Opt = ~0U;
4975 
4976     if (Opt == ~0U)
4977       return MatchOperand_NoMatch;
4978 
4979     Parser.Lex(); // Eat identifier token.
4980   } else if (Tok.is(AsmToken::Hash) ||
4981              Tok.is(AsmToken::Dollar) ||
4982              Tok.is(AsmToken::Integer)) {
4983     if (Parser.getTok().isNot(AsmToken::Integer))
4984       Parser.Lex(); // Eat '#' or '$'.
4985     SMLoc Loc = Parser.getTok().getLoc();
4986 
4987     const MCExpr *MemBarrierID;
4988     if (getParser().parseExpression(MemBarrierID)) {
4989       Error(Loc, "illegal expression");
4990       return MatchOperand_ParseFail;
4991     }
4992 
4993     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
4994     if (!CE) {
4995       Error(Loc, "constant expression expected");
4996       return MatchOperand_ParseFail;
4997     }
4998 
4999     int Val = CE->getValue();
5000     if (Val & ~0xf) {
5001       Error(Loc, "immediate value out of range");
5002       return MatchOperand_ParseFail;
5003     }
5004 
5005     Opt = ARM_MB::RESERVED_0 + Val;
5006   } else
5007     return MatchOperand_ParseFail;
5008 
5009   Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
5010   return MatchOperand_Success;
5011 }
5012 
5013 OperandMatchResultTy
5014 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
5015   MCAsmParser &Parser = getParser();
5016   SMLoc S = Parser.getTok().getLoc();
5017   const AsmToken &Tok = Parser.getTok();
5018 
5019   if (Tok.isNot(AsmToken::Identifier))
5020      return MatchOperand_NoMatch;
5021 
5022   if (!Tok.getString().equals_insensitive("csync"))
5023     return MatchOperand_NoMatch;
5024 
5025   Parser.Lex(); // Eat identifier token.
5026 
5027   Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
5028   return MatchOperand_Success;
5029 }
5030 
5031 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
5032 OperandMatchResultTy
5033 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
5034   MCAsmParser &Parser = getParser();
5035   SMLoc S = Parser.getTok().getLoc();
5036   const AsmToken &Tok = Parser.getTok();
5037   unsigned Opt;
5038 
5039   if (Tok.is(AsmToken::Identifier)) {
5040     StringRef OptStr = Tok.getString();
5041 
5042     if (OptStr.equals_insensitive("sy"))
5043       Opt = ARM_ISB::SY;
5044     else
5045       return MatchOperand_NoMatch;
5046 
5047     Parser.Lex(); // Eat identifier token.
5048   } else if (Tok.is(AsmToken::Hash) ||
5049              Tok.is(AsmToken::Dollar) ||
5050              Tok.is(AsmToken::Integer)) {
5051     if (Parser.getTok().isNot(AsmToken::Integer))
5052       Parser.Lex(); // Eat '#' or '$'.
5053     SMLoc Loc = Parser.getTok().getLoc();
5054 
5055     const MCExpr *ISBarrierID;
5056     if (getParser().parseExpression(ISBarrierID)) {
5057       Error(Loc, "illegal expression");
5058       return MatchOperand_ParseFail;
5059     }
5060 
5061     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
5062     if (!CE) {
5063       Error(Loc, "constant expression expected");
5064       return MatchOperand_ParseFail;
5065     }
5066 
5067     int Val = CE->getValue();
5068     if (Val & ~0xf) {
5069       Error(Loc, "immediate value out of range");
5070       return MatchOperand_ParseFail;
5071     }
5072 
5073     Opt = ARM_ISB::RESERVED_0 + Val;
5074   } else
5075     return MatchOperand_ParseFail;
5076 
5077   Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
5078           (ARM_ISB::InstSyncBOpt)Opt, S));
5079   return MatchOperand_Success;
5080 }
5081 
5082 
5083 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
5084 OperandMatchResultTy
5085 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
5086   MCAsmParser &Parser = getParser();
5087   SMLoc S = Parser.getTok().getLoc();
5088   const AsmToken &Tok = Parser.getTok();
5089   if (!Tok.is(AsmToken::Identifier))
5090     return MatchOperand_NoMatch;
5091   StringRef IFlagsStr = Tok.getString();
5092 
5093   // An iflags string of "none" is interpreted to mean that none of the AIF
5094   // bits are set.  Not a terribly useful instruction, but a valid encoding.
5095   unsigned IFlags = 0;
5096   if (IFlagsStr != "none") {
5097         for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
5098       unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
5099         .Case("a", ARM_PROC::A)
5100         .Case("i", ARM_PROC::I)
5101         .Case("f", ARM_PROC::F)
5102         .Default(~0U);
5103 
5104       // If some specific iflag is already set, it means that some letter is
5105       // present more than once, this is not acceptable.
5106       if (Flag == ~0U || (IFlags & Flag))
5107         return MatchOperand_NoMatch;
5108 
5109       IFlags |= Flag;
5110     }
5111   }
5112 
5113   Parser.Lex(); // Eat identifier token.
5114   Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
5115   return MatchOperand_Success;
5116 }
5117 
5118 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
5119 OperandMatchResultTy
5120 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
5121   MCAsmParser &Parser = getParser();
5122   SMLoc S = Parser.getTok().getLoc();
5123   const AsmToken &Tok = Parser.getTok();
5124 
5125   if (Tok.is(AsmToken::Integer)) {
5126     int64_t Val = Tok.getIntVal();
5127     if (Val > 255 || Val < 0) {
5128       return MatchOperand_NoMatch;
5129     }
5130     unsigned SYSmvalue = Val & 0xFF;
5131     Parser.Lex();
5132     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
5133     return MatchOperand_Success;
5134   }
5135 
5136   if (!Tok.is(AsmToken::Identifier))
5137     return MatchOperand_NoMatch;
5138   StringRef Mask = Tok.getString();
5139 
5140   if (isMClass()) {
5141     auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
5142     if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
5143       return MatchOperand_NoMatch;
5144 
5145     unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
5146 
5147     Parser.Lex(); // Eat identifier token.
5148     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
5149     return MatchOperand_Success;
5150   }
5151 
5152   // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
5153   size_t Start = 0, Next = Mask.find('_');
5154   StringRef Flags = "";
5155   std::string SpecReg = Mask.slice(Start, Next).lower();
5156   if (Next != StringRef::npos)
5157     Flags = Mask.slice(Next+1, Mask.size());
5158 
5159   // FlagsVal contains the complete mask:
5160   // 3-0: Mask
5161   // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5162   unsigned FlagsVal = 0;
5163 
5164   if (SpecReg == "apsr") {
5165     FlagsVal = StringSwitch<unsigned>(Flags)
5166     .Case("nzcvq",  0x8) // same as CPSR_f
5167     .Case("g",      0x4) // same as CPSR_s
5168     .Case("nzcvqg", 0xc) // same as CPSR_fs
5169     .Default(~0U);
5170 
5171     if (FlagsVal == ~0U) {
5172       if (!Flags.empty())
5173         return MatchOperand_NoMatch;
5174       else
5175         FlagsVal = 8; // No flag
5176     }
5177   } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
5178     // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
5179     if (Flags == "all" || Flags == "")
5180       Flags = "fc";
5181     for (int i = 0, e = Flags.size(); i != e; ++i) {
5182       unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
5183       .Case("c", 1)
5184       .Case("x", 2)
5185       .Case("s", 4)
5186       .Case("f", 8)
5187       .Default(~0U);
5188 
5189       // If some specific flag is already set, it means that some letter is
5190       // present more than once, this is not acceptable.
5191       if (Flag == ~0U || (FlagsVal & Flag))
5192         return MatchOperand_NoMatch;
5193       FlagsVal |= Flag;
5194     }
5195   } else // No match for special register.
5196     return MatchOperand_NoMatch;
5197 
5198   // Special register without flags is NOT equivalent to "fc" flags.
5199   // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
5200   // two lines would enable gas compatibility at the expense of breaking
5201   // round-tripping.
5202   //
5203   // if (!FlagsVal)
5204   //  FlagsVal = 0x9;
5205 
5206   // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5207   if (SpecReg == "spsr")
5208     FlagsVal |= 16;
5209 
5210   Parser.Lex(); // Eat identifier token.
5211   Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
5212   return MatchOperand_Success;
5213 }
5214 
5215 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
5216 /// use in the MRS/MSR instructions added to support virtualization.
5217 OperandMatchResultTy
5218 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
5219   MCAsmParser &Parser = getParser();
5220   SMLoc S = Parser.getTok().getLoc();
5221   const AsmToken &Tok = Parser.getTok();
5222   if (!Tok.is(AsmToken::Identifier))
5223     return MatchOperand_NoMatch;
5224   StringRef RegName = Tok.getString();
5225 
5226   auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
5227   if (!TheReg)
5228     return MatchOperand_NoMatch;
5229   unsigned Encoding = TheReg->Encoding;
5230 
5231   Parser.Lex(); // Eat identifier token.
5232   Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
5233   return MatchOperand_Success;
5234 }
5235 
5236 OperandMatchResultTy
5237 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
5238                           int High) {
5239   MCAsmParser &Parser = getParser();
5240   const AsmToken &Tok = Parser.getTok();
5241   if (Tok.isNot(AsmToken::Identifier)) {
5242     Error(Parser.getTok().getLoc(), Op + " operand expected.");
5243     return MatchOperand_ParseFail;
5244   }
5245   StringRef ShiftName = Tok.getString();
5246   std::string LowerOp = Op.lower();
5247   std::string UpperOp = Op.upper();
5248   if (ShiftName != LowerOp && ShiftName != UpperOp) {
5249     Error(Parser.getTok().getLoc(), Op + " operand expected.");
5250     return MatchOperand_ParseFail;
5251   }
5252   Parser.Lex(); // Eat shift type token.
5253 
5254   // There must be a '#' and a shift amount.
5255   if (Parser.getTok().isNot(AsmToken::Hash) &&
5256       Parser.getTok().isNot(AsmToken::Dollar)) {
5257     Error(Parser.getTok().getLoc(), "'#' expected");
5258     return MatchOperand_ParseFail;
5259   }
5260   Parser.Lex(); // Eat hash token.
5261 
5262   const MCExpr *ShiftAmount;
5263   SMLoc Loc = Parser.getTok().getLoc();
5264   SMLoc EndLoc;
5265   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5266     Error(Loc, "illegal expression");
5267     return MatchOperand_ParseFail;
5268   }
5269   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5270   if (!CE) {
5271     Error(Loc, "constant expression expected");
5272     return MatchOperand_ParseFail;
5273   }
5274   int Val = CE->getValue();
5275   if (Val < Low || Val > High) {
5276     Error(Loc, "immediate value out of range");
5277     return MatchOperand_ParseFail;
5278   }
5279 
5280   Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
5281 
5282   return MatchOperand_Success;
5283 }
5284 
5285 OperandMatchResultTy
5286 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
5287   MCAsmParser &Parser = getParser();
5288   const AsmToken &Tok = Parser.getTok();
5289   SMLoc S = Tok.getLoc();
5290   if (Tok.isNot(AsmToken::Identifier)) {
5291     Error(S, "'be' or 'le' operand expected");
5292     return MatchOperand_ParseFail;
5293   }
5294   int Val = StringSwitch<int>(Tok.getString().lower())
5295     .Case("be", 1)
5296     .Case("le", 0)
5297     .Default(-1);
5298   Parser.Lex(); // Eat the token.
5299 
5300   if (Val == -1) {
5301     Error(S, "'be' or 'le' operand expected");
5302     return MatchOperand_ParseFail;
5303   }
5304   Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
5305                                                                   getContext()),
5306                                            S, Tok.getEndLoc()));
5307   return MatchOperand_Success;
5308 }
5309 
5310 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
5311 /// instructions. Legal values are:
5312 ///     lsl #n  'n' in [0,31]
5313 ///     asr #n  'n' in [1,32]
5314 ///             n == 32 encoded as n == 0.
5315 OperandMatchResultTy
5316 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
5317   MCAsmParser &Parser = getParser();
5318   const AsmToken &Tok = Parser.getTok();
5319   SMLoc S = Tok.getLoc();
5320   if (Tok.isNot(AsmToken::Identifier)) {
5321     Error(S, "shift operator 'asr' or 'lsl' expected");
5322     return MatchOperand_ParseFail;
5323   }
5324   StringRef ShiftName = Tok.getString();
5325   bool isASR;
5326   if (ShiftName == "lsl" || ShiftName == "LSL")
5327     isASR = false;
5328   else if (ShiftName == "asr" || ShiftName == "ASR")
5329     isASR = true;
5330   else {
5331     Error(S, "shift operator 'asr' or 'lsl' expected");
5332     return MatchOperand_ParseFail;
5333   }
5334   Parser.Lex(); // Eat the operator.
5335 
5336   // A '#' and a shift amount.
5337   if (Parser.getTok().isNot(AsmToken::Hash) &&
5338       Parser.getTok().isNot(AsmToken::Dollar)) {
5339     Error(Parser.getTok().getLoc(), "'#' expected");
5340     return MatchOperand_ParseFail;
5341   }
5342   Parser.Lex(); // Eat hash token.
5343   SMLoc ExLoc = Parser.getTok().getLoc();
5344 
5345   const MCExpr *ShiftAmount;
5346   SMLoc EndLoc;
5347   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5348     Error(ExLoc, "malformed shift expression");
5349     return MatchOperand_ParseFail;
5350   }
5351   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5352   if (!CE) {
5353     Error(ExLoc, "shift amount must be an immediate");
5354     return MatchOperand_ParseFail;
5355   }
5356 
5357   int64_t Val = CE->getValue();
5358   if (isASR) {
5359     // Shift amount must be in [1,32]
5360     if (Val < 1 || Val > 32) {
5361       Error(ExLoc, "'asr' shift amount must be in range [1,32]");
5362       return MatchOperand_ParseFail;
5363     }
5364     // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
5365     if (isThumb() && Val == 32) {
5366       Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
5367       return MatchOperand_ParseFail;
5368     }
5369     if (Val == 32) Val = 0;
5370   } else {
5371     // Shift amount must be in [1,32]
5372     if (Val < 0 || Val > 31) {
5373       Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
5374       return MatchOperand_ParseFail;
5375     }
5376   }
5377 
5378   Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
5379 
5380   return MatchOperand_Success;
5381 }
5382 
5383 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
5384 /// of instructions. Legal values are:
5385 ///     ror #n  'n' in {0, 8, 16, 24}
5386 OperandMatchResultTy
5387 ARMAsmParser::parseRotImm(OperandVector &Operands) {
5388   MCAsmParser &Parser = getParser();
5389   const AsmToken &Tok = Parser.getTok();
5390   SMLoc S = Tok.getLoc();
5391   if (Tok.isNot(AsmToken::Identifier))
5392     return MatchOperand_NoMatch;
5393   StringRef ShiftName = Tok.getString();
5394   if (ShiftName != "ror" && ShiftName != "ROR")
5395     return MatchOperand_NoMatch;
5396   Parser.Lex(); // Eat the operator.
5397 
5398   // A '#' and a rotate amount.
5399   if (Parser.getTok().isNot(AsmToken::Hash) &&
5400       Parser.getTok().isNot(AsmToken::Dollar)) {
5401     Error(Parser.getTok().getLoc(), "'#' expected");
5402     return MatchOperand_ParseFail;
5403   }
5404   Parser.Lex(); // Eat hash token.
5405   SMLoc ExLoc = Parser.getTok().getLoc();
5406 
5407   const MCExpr *ShiftAmount;
5408   SMLoc EndLoc;
5409   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5410     Error(ExLoc, "malformed rotate expression");
5411     return MatchOperand_ParseFail;
5412   }
5413   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5414   if (!CE) {
5415     Error(ExLoc, "rotate amount must be an immediate");
5416     return MatchOperand_ParseFail;
5417   }
5418 
5419   int64_t Val = CE->getValue();
5420   // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
5421   // normally, zero is represented in asm by omitting the rotate operand
5422   // entirely.
5423   if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
5424     Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
5425     return MatchOperand_ParseFail;
5426   }
5427 
5428   Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
5429 
5430   return MatchOperand_Success;
5431 }
5432 
5433 OperandMatchResultTy
5434 ARMAsmParser::parseModImm(OperandVector &Operands) {
5435   MCAsmParser &Parser = getParser();
5436   MCAsmLexer &Lexer = getLexer();
5437   int64_t Imm1, Imm2;
5438 
5439   SMLoc S = Parser.getTok().getLoc();
5440 
5441   // 1) A mod_imm operand can appear in the place of a register name:
5442   //   add r0, #mod_imm
5443   //   add r0, r0, #mod_imm
5444   // to correctly handle the latter, we bail out as soon as we see an
5445   // identifier.
5446   //
5447   // 2) Similarly, we do not want to parse into complex operands:
5448   //   mov r0, #mod_imm
5449   //   mov r0, :lower16:(_foo)
5450   if (Parser.getTok().is(AsmToken::Identifier) ||
5451       Parser.getTok().is(AsmToken::Colon))
5452     return MatchOperand_NoMatch;
5453 
5454   // Hash (dollar) is optional as per the ARMARM
5455   if (Parser.getTok().is(AsmToken::Hash) ||
5456       Parser.getTok().is(AsmToken::Dollar)) {
5457     // Avoid parsing into complex operands (#:)
5458     if (Lexer.peekTok().is(AsmToken::Colon))
5459       return MatchOperand_NoMatch;
5460 
5461     // Eat the hash (dollar)
5462     Parser.Lex();
5463   }
5464 
5465   SMLoc Sx1, Ex1;
5466   Sx1 = Parser.getTok().getLoc();
5467   const MCExpr *Imm1Exp;
5468   if (getParser().parseExpression(Imm1Exp, Ex1)) {
5469     Error(Sx1, "malformed expression");
5470     return MatchOperand_ParseFail;
5471   }
5472 
5473   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
5474 
5475   if (CE) {
5476     // Immediate must fit within 32-bits
5477     Imm1 = CE->getValue();
5478     int Enc = ARM_AM::getSOImmVal(Imm1);
5479     if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
5480       // We have a match!
5481       Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
5482                                                   (Enc & 0xF00) >> 7,
5483                                                   Sx1, Ex1));
5484       return MatchOperand_Success;
5485     }
5486 
5487     // We have parsed an immediate which is not for us, fallback to a plain
5488     // immediate. This can happen for instruction aliases. For an example,
5489     // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
5490     // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
5491     // instruction with a mod_imm operand. The alias is defined such that the
5492     // parser method is shared, that's why we have to do this here.
5493     if (Parser.getTok().is(AsmToken::EndOfStatement)) {
5494       Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5495       return MatchOperand_Success;
5496     }
5497   } else {
5498     // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
5499     // MCFixup). Fallback to a plain immediate.
5500     Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5501     return MatchOperand_Success;
5502   }
5503 
5504   // From this point onward, we expect the input to be a (#bits, #rot) pair
5505   if (Parser.getTok().isNot(AsmToken::Comma)) {
5506     Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
5507     return MatchOperand_ParseFail;
5508   }
5509 
5510   if (Imm1 & ~0xFF) {
5511     Error(Sx1, "immediate operand must a number in the range [0, 255]");
5512     return MatchOperand_ParseFail;
5513   }
5514 
5515   // Eat the comma
5516   Parser.Lex();
5517 
5518   // Repeat for #rot
5519   SMLoc Sx2, Ex2;
5520   Sx2 = Parser.getTok().getLoc();
5521 
5522   // Eat the optional hash (dollar)
5523   if (Parser.getTok().is(AsmToken::Hash) ||
5524       Parser.getTok().is(AsmToken::Dollar))
5525     Parser.Lex();
5526 
5527   const MCExpr *Imm2Exp;
5528   if (getParser().parseExpression(Imm2Exp, Ex2)) {
5529     Error(Sx2, "malformed expression");
5530     return MatchOperand_ParseFail;
5531   }
5532 
5533   CE = dyn_cast<MCConstantExpr>(Imm2Exp);
5534 
5535   if (CE) {
5536     Imm2 = CE->getValue();
5537     if (!(Imm2 & ~0x1E)) {
5538       // We have a match!
5539       Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
5540       return MatchOperand_Success;
5541     }
5542     Error(Sx2, "immediate operand must an even number in the range [0, 30]");
5543     return MatchOperand_ParseFail;
5544   } else {
5545     Error(Sx2, "constant expression expected");
5546     return MatchOperand_ParseFail;
5547   }
5548 }
5549 
5550 OperandMatchResultTy
5551 ARMAsmParser::parseBitfield(OperandVector &Operands) {
5552   MCAsmParser &Parser = getParser();
5553   SMLoc S = Parser.getTok().getLoc();
5554   // The bitfield descriptor is really two operands, the LSB and the width.
5555   if (Parser.getTok().isNot(AsmToken::Hash) &&
5556       Parser.getTok().isNot(AsmToken::Dollar)) {
5557     Error(Parser.getTok().getLoc(), "'#' expected");
5558     return MatchOperand_ParseFail;
5559   }
5560   Parser.Lex(); // Eat hash token.
5561 
5562   const MCExpr *LSBExpr;
5563   SMLoc E = Parser.getTok().getLoc();
5564   if (getParser().parseExpression(LSBExpr)) {
5565     Error(E, "malformed immediate expression");
5566     return MatchOperand_ParseFail;
5567   }
5568   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
5569   if (!CE) {
5570     Error(E, "'lsb' operand must be an immediate");
5571     return MatchOperand_ParseFail;
5572   }
5573 
5574   int64_t LSB = CE->getValue();
5575   // The LSB must be in the range [0,31]
5576   if (LSB < 0 || LSB > 31) {
5577     Error(E, "'lsb' operand must be in the range [0,31]");
5578     return MatchOperand_ParseFail;
5579   }
5580   E = Parser.getTok().getLoc();
5581 
5582   // Expect another immediate operand.
5583   if (Parser.getTok().isNot(AsmToken::Comma)) {
5584     Error(Parser.getTok().getLoc(), "too few operands");
5585     return MatchOperand_ParseFail;
5586   }
5587   Parser.Lex(); // Eat hash token.
5588   if (Parser.getTok().isNot(AsmToken::Hash) &&
5589       Parser.getTok().isNot(AsmToken::Dollar)) {
5590     Error(Parser.getTok().getLoc(), "'#' expected");
5591     return MatchOperand_ParseFail;
5592   }
5593   Parser.Lex(); // Eat hash token.
5594 
5595   const MCExpr *WidthExpr;
5596   SMLoc EndLoc;
5597   if (getParser().parseExpression(WidthExpr, EndLoc)) {
5598     Error(E, "malformed immediate expression");
5599     return MatchOperand_ParseFail;
5600   }
5601   CE = dyn_cast<MCConstantExpr>(WidthExpr);
5602   if (!CE) {
5603     Error(E, "'width' operand must be an immediate");
5604     return MatchOperand_ParseFail;
5605   }
5606 
5607   int64_t Width = CE->getValue();
5608   // The LSB must be in the range [1,32-lsb]
5609   if (Width < 1 || Width > 32 - LSB) {
5610     Error(E, "'width' operand must be in the range [1,32-lsb]");
5611     return MatchOperand_ParseFail;
5612   }
5613 
5614   Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
5615 
5616   return MatchOperand_Success;
5617 }
5618 
5619 OperandMatchResultTy
5620 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
5621   // Check for a post-index addressing register operand. Specifically:
5622   // postidx_reg := '+' register {, shift}
5623   //              | '-' register {, shift}
5624   //              | register {, shift}
5625 
5626   // This method must return MatchOperand_NoMatch without consuming any tokens
5627   // in the case where there is no match, as other alternatives take other
5628   // parse methods.
5629   MCAsmParser &Parser = getParser();
5630   AsmToken Tok = Parser.getTok();
5631   SMLoc S = Tok.getLoc();
5632   bool haveEaten = false;
5633   bool isAdd = true;
5634   if (Tok.is(AsmToken::Plus)) {
5635     Parser.Lex(); // Eat the '+' token.
5636     haveEaten = true;
5637   } else if (Tok.is(AsmToken::Minus)) {
5638     Parser.Lex(); // Eat the '-' token.
5639     isAdd = false;
5640     haveEaten = true;
5641   }
5642 
5643   SMLoc E = Parser.getTok().getEndLoc();
5644   int Reg = tryParseRegister();
5645   if (Reg == -1) {
5646     if (!haveEaten)
5647       return MatchOperand_NoMatch;
5648     Error(Parser.getTok().getLoc(), "register expected");
5649     return MatchOperand_ParseFail;
5650   }
5651 
5652   ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
5653   unsigned ShiftImm = 0;
5654   if (Parser.getTok().is(AsmToken::Comma)) {
5655     Parser.Lex(); // Eat the ','.
5656     if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
5657       return MatchOperand_ParseFail;
5658 
5659     // FIXME: Only approximates end...may include intervening whitespace.
5660     E = Parser.getTok().getLoc();
5661   }
5662 
5663   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
5664                                                   ShiftImm, S, E));
5665 
5666   return MatchOperand_Success;
5667 }
5668 
5669 OperandMatchResultTy
5670 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
5671   // Check for a post-index addressing register operand. Specifically:
5672   // am3offset := '+' register
5673   //              | '-' register
5674   //              | register
5675   //              | # imm
5676   //              | # + imm
5677   //              | # - imm
5678 
5679   // This method must return MatchOperand_NoMatch without consuming any tokens
5680   // in the case where there is no match, as other alternatives take other
5681   // parse methods.
5682   MCAsmParser &Parser = getParser();
5683   AsmToken Tok = Parser.getTok();
5684   SMLoc S = Tok.getLoc();
5685 
5686   // Do immediates first, as we always parse those if we have a '#'.
5687   if (Parser.getTok().is(AsmToken::Hash) ||
5688       Parser.getTok().is(AsmToken::Dollar)) {
5689     Parser.Lex(); // Eat '#' or '$'.
5690     // Explicitly look for a '-', as we need to encode negative zero
5691     // differently.
5692     bool isNegative = Parser.getTok().is(AsmToken::Minus);
5693     const MCExpr *Offset;
5694     SMLoc E;
5695     if (getParser().parseExpression(Offset, E))
5696       return MatchOperand_ParseFail;
5697     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5698     if (!CE) {
5699       Error(S, "constant expression expected");
5700       return MatchOperand_ParseFail;
5701     }
5702     // Negative zero is encoded as the flag value
5703     // std::numeric_limits<int32_t>::min().
5704     int32_t Val = CE->getValue();
5705     if (isNegative && Val == 0)
5706       Val = std::numeric_limits<int32_t>::min();
5707 
5708     Operands.push_back(
5709       ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
5710 
5711     return MatchOperand_Success;
5712   }
5713 
5714   bool haveEaten = false;
5715   bool isAdd = true;
5716   if (Tok.is(AsmToken::Plus)) {
5717     Parser.Lex(); // Eat the '+' token.
5718     haveEaten = true;
5719   } else if (Tok.is(AsmToken::Minus)) {
5720     Parser.Lex(); // Eat the '-' token.
5721     isAdd = false;
5722     haveEaten = true;
5723   }
5724 
5725   Tok = Parser.getTok();
5726   int Reg = tryParseRegister();
5727   if (Reg == -1) {
5728     if (!haveEaten)
5729       return MatchOperand_NoMatch;
5730     Error(Tok.getLoc(), "register expected");
5731     return MatchOperand_ParseFail;
5732   }
5733 
5734   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
5735                                                   0, S, Tok.getEndLoc()));
5736 
5737   return MatchOperand_Success;
5738 }
5739 
5740 /// Convert parsed operands to MCInst.  Needed here because this instruction
5741 /// only has two register operands, but multiplication is commutative so
5742 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
5743 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
5744                                     const OperandVector &Operands) {
5745   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
5746   ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
5747   // If we have a three-operand form, make sure to set Rn to be the operand
5748   // that isn't the same as Rd.
5749   unsigned RegOp = 4;
5750   if (Operands.size() == 6 &&
5751       ((ARMOperand &)*Operands[4]).getReg() ==
5752           ((ARMOperand &)*Operands[3]).getReg())
5753     RegOp = 5;
5754   ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
5755   Inst.addOperand(Inst.getOperand(0));
5756   ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
5757 }
5758 
5759 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
5760                                     const OperandVector &Operands) {
5761   int CondOp = -1, ImmOp = -1;
5762   switch(Inst.getOpcode()) {
5763     case ARM::tB:
5764     case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
5765 
5766     case ARM::t2B:
5767     case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
5768 
5769     default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5770   }
5771   // first decide whether or not the branch should be conditional
5772   // by looking at it's location relative to an IT block
5773   if(inITBlock()) {
5774     // inside an IT block we cannot have any conditional branches. any
5775     // such instructions needs to be converted to unconditional form
5776     switch(Inst.getOpcode()) {
5777       case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5778       case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5779     }
5780   } else {
5781     // outside IT blocks we can only have unconditional branches with AL
5782     // condition code or conditional branches with non-AL condition code
5783     unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5784     switch(Inst.getOpcode()) {
5785       case ARM::tB:
5786       case ARM::tBcc:
5787         Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5788         break;
5789       case ARM::t2B:
5790       case ARM::t2Bcc:
5791         Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5792         break;
5793     }
5794   }
5795 
5796   // now decide on encoding size based on branch target range
5797   switch(Inst.getOpcode()) {
5798     // classify tB as either t2B or t1B based on range of immediate operand
5799     case ARM::tB: {
5800       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5801       if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5802         Inst.setOpcode(ARM::t2B);
5803       break;
5804     }
5805     // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5806     case ARM::tBcc: {
5807       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5808       if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5809         Inst.setOpcode(ARM::t2Bcc);
5810       break;
5811     }
5812   }
5813   ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5814   ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5815 }
5816 
5817 void ARMAsmParser::cvtMVEVMOVQtoDReg(
5818   MCInst &Inst, const OperandVector &Operands) {
5819 
5820   // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2
5821   assert(Operands.size() == 8);
5822 
5823   ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt
5824   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2
5825   ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd
5826   ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx
5827   // skip second copy of Qd in Operands[6]
5828   ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2
5829   ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code
5830 }
5831 
5832 /// Parse an ARM memory expression, return false if successful else return true
5833 /// or an error.  The first token must be a '[' when called.
5834 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5835   MCAsmParser &Parser = getParser();
5836   SMLoc S, E;
5837   if (Parser.getTok().isNot(AsmToken::LBrac))
5838     return TokError("Token is not a Left Bracket");
5839   S = Parser.getTok().getLoc();
5840   Parser.Lex(); // Eat left bracket token.
5841 
5842   const AsmToken &BaseRegTok = Parser.getTok();
5843   int BaseRegNum = tryParseRegister();
5844   if (BaseRegNum == -1)
5845     return Error(BaseRegTok.getLoc(), "register expected");
5846 
5847   // The next token must either be a comma, a colon or a closing bracket.
5848   const AsmToken &Tok = Parser.getTok();
5849   if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5850       !Tok.is(AsmToken::RBrac))
5851     return Error(Tok.getLoc(), "malformed memory operand");
5852 
5853   if (Tok.is(AsmToken::RBrac)) {
5854     E = Tok.getEndLoc();
5855     Parser.Lex(); // Eat right bracket token.
5856 
5857     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5858                                              ARM_AM::no_shift, 0, 0, false,
5859                                              S, E));
5860 
5861     // If there's a pre-indexing writeback marker, '!', just add it as a token
5862     // operand. It's rather odd, but syntactically valid.
5863     if (Parser.getTok().is(AsmToken::Exclaim)) {
5864       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5865       Parser.Lex(); // Eat the '!'.
5866     }
5867 
5868     return false;
5869   }
5870 
5871   assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5872          "Lost colon or comma in memory operand?!");
5873   if (Tok.is(AsmToken::Comma)) {
5874     Parser.Lex(); // Eat the comma.
5875   }
5876 
5877   // If we have a ':', it's an alignment specifier.
5878   if (Parser.getTok().is(AsmToken::Colon)) {
5879     Parser.Lex(); // Eat the ':'.
5880     E = Parser.getTok().getLoc();
5881     SMLoc AlignmentLoc = Tok.getLoc();
5882 
5883     const MCExpr *Expr;
5884     if (getParser().parseExpression(Expr))
5885      return true;
5886 
5887     // The expression has to be a constant. Memory references with relocations
5888     // don't come through here, as they use the <label> forms of the relevant
5889     // instructions.
5890     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5891     if (!CE)
5892       return Error (E, "constant expression expected");
5893 
5894     unsigned Align = 0;
5895     switch (CE->getValue()) {
5896     default:
5897       return Error(E,
5898                    "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5899     case 16:  Align = 2; break;
5900     case 32:  Align = 4; break;
5901     case 64:  Align = 8; break;
5902     case 128: Align = 16; break;
5903     case 256: Align = 32; break;
5904     }
5905 
5906     // Now we should have the closing ']'
5907     if (Parser.getTok().isNot(AsmToken::RBrac))
5908       return Error(Parser.getTok().getLoc(), "']' expected");
5909     E = Parser.getTok().getEndLoc();
5910     Parser.Lex(); // Eat right bracket token.
5911 
5912     // Don't worry about range checking the value here. That's handled by
5913     // the is*() predicates.
5914     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5915                                              ARM_AM::no_shift, 0, Align,
5916                                              false, S, E, AlignmentLoc));
5917 
5918     // If there's a pre-indexing writeback marker, '!', just add it as a token
5919     // operand.
5920     if (Parser.getTok().is(AsmToken::Exclaim)) {
5921       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5922       Parser.Lex(); // Eat the '!'.
5923     }
5924 
5925     return false;
5926   }
5927 
5928   // If we have a '#' or '$', it's an immediate offset, else assume it's a
5929   // register offset. Be friendly and also accept a plain integer or expression
5930   // (without a leading hash) for gas compatibility.
5931   if (Parser.getTok().is(AsmToken::Hash) ||
5932       Parser.getTok().is(AsmToken::Dollar) ||
5933       Parser.getTok().is(AsmToken::LParen) ||
5934       Parser.getTok().is(AsmToken::Integer)) {
5935     if (Parser.getTok().is(AsmToken::Hash) ||
5936         Parser.getTok().is(AsmToken::Dollar))
5937       Parser.Lex(); // Eat '#' or '$'
5938     E = Parser.getTok().getLoc();
5939 
5940     bool isNegative = getParser().getTok().is(AsmToken::Minus);
5941     const MCExpr *Offset, *AdjustedOffset;
5942     if (getParser().parseExpression(Offset))
5943      return true;
5944 
5945     if (const auto *CE = dyn_cast<MCConstantExpr>(Offset)) {
5946       // If the constant was #-0, represent it as
5947       // std::numeric_limits<int32_t>::min().
5948       int32_t Val = CE->getValue();
5949       if (isNegative && Val == 0)
5950         CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5951                                     getContext());
5952       // Don't worry about range checking the value here. That's handled by
5953       // the is*() predicates.
5954       AdjustedOffset = CE;
5955     } else
5956       AdjustedOffset = Offset;
5957     Operands.push_back(ARMOperand::CreateMem(
5958         BaseRegNum, AdjustedOffset, 0, ARM_AM::no_shift, 0, 0, false, S, E));
5959 
5960     // Now we should have the closing ']'
5961     if (Parser.getTok().isNot(AsmToken::RBrac))
5962       return Error(Parser.getTok().getLoc(), "']' expected");
5963     E = Parser.getTok().getEndLoc();
5964     Parser.Lex(); // Eat right bracket token.
5965 
5966     // If there's a pre-indexing writeback marker, '!', just add it as a token
5967     // operand.
5968     if (Parser.getTok().is(AsmToken::Exclaim)) {
5969       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5970       Parser.Lex(); // Eat the '!'.
5971     }
5972 
5973     return false;
5974   }
5975 
5976   // The register offset is optionally preceded by a '+' or '-'
5977   bool isNegative = false;
5978   if (Parser.getTok().is(AsmToken::Minus)) {
5979     isNegative = true;
5980     Parser.Lex(); // Eat the '-'.
5981   } else if (Parser.getTok().is(AsmToken::Plus)) {
5982     // Nothing to do.
5983     Parser.Lex(); // Eat the '+'.
5984   }
5985 
5986   E = Parser.getTok().getLoc();
5987   int OffsetRegNum = tryParseRegister();
5988   if (OffsetRegNum == -1)
5989     return Error(E, "register expected");
5990 
5991   // If there's a shift operator, handle it.
5992   ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
5993   unsigned ShiftImm = 0;
5994   if (Parser.getTok().is(AsmToken::Comma)) {
5995     Parser.Lex(); // Eat the ','.
5996     if (parseMemRegOffsetShift(ShiftType, ShiftImm))
5997       return true;
5998   }
5999 
6000   // Now we should have the closing ']'
6001   if (Parser.getTok().isNot(AsmToken::RBrac))
6002     return Error(Parser.getTok().getLoc(), "']' expected");
6003   E = Parser.getTok().getEndLoc();
6004   Parser.Lex(); // Eat right bracket token.
6005 
6006   Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
6007                                            ShiftType, ShiftImm, 0, isNegative,
6008                                            S, E));
6009 
6010   // If there's a pre-indexing writeback marker, '!', just add it as a token
6011   // operand.
6012   if (Parser.getTok().is(AsmToken::Exclaim)) {
6013     Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
6014     Parser.Lex(); // Eat the '!'.
6015   }
6016 
6017   return false;
6018 }
6019 
6020 /// parseMemRegOffsetShift - one of these two:
6021 ///   ( lsl | lsr | asr | ror ) , # shift_amount
6022 ///   rrx
6023 /// return true if it parses a shift otherwise it returns false.
6024 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
6025                                           unsigned &Amount) {
6026   MCAsmParser &Parser = getParser();
6027   SMLoc Loc = Parser.getTok().getLoc();
6028   const AsmToken &Tok = Parser.getTok();
6029   if (Tok.isNot(AsmToken::Identifier))
6030     return Error(Loc, "illegal shift operator");
6031   StringRef ShiftName = Tok.getString();
6032   if (ShiftName == "lsl" || ShiftName == "LSL" ||
6033       ShiftName == "asl" || ShiftName == "ASL")
6034     St = ARM_AM::lsl;
6035   else if (ShiftName == "lsr" || ShiftName == "LSR")
6036     St = ARM_AM::lsr;
6037   else if (ShiftName == "asr" || ShiftName == "ASR")
6038     St = ARM_AM::asr;
6039   else if (ShiftName == "ror" || ShiftName == "ROR")
6040     St = ARM_AM::ror;
6041   else if (ShiftName == "rrx" || ShiftName == "RRX")
6042     St = ARM_AM::rrx;
6043   else if (ShiftName == "uxtw" || ShiftName == "UXTW")
6044     St = ARM_AM::uxtw;
6045   else
6046     return Error(Loc, "illegal shift operator");
6047   Parser.Lex(); // Eat shift type token.
6048 
6049   // rrx stands alone.
6050   Amount = 0;
6051   if (St != ARM_AM::rrx) {
6052     Loc = Parser.getTok().getLoc();
6053     // A '#' and a shift amount.
6054     const AsmToken &HashTok = Parser.getTok();
6055     if (HashTok.isNot(AsmToken::Hash) &&
6056         HashTok.isNot(AsmToken::Dollar))
6057       return Error(HashTok.getLoc(), "'#' expected");
6058     Parser.Lex(); // Eat hash token.
6059 
6060     const MCExpr *Expr;
6061     if (getParser().parseExpression(Expr))
6062       return true;
6063     // Range check the immediate.
6064     // lsl, ror: 0 <= imm <= 31
6065     // lsr, asr: 0 <= imm <= 32
6066     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
6067     if (!CE)
6068       return Error(Loc, "shift amount must be an immediate");
6069     int64_t Imm = CE->getValue();
6070     if (Imm < 0 ||
6071         ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
6072         ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
6073       return Error(Loc, "immediate shift value out of range");
6074     // If <ShiftTy> #0, turn it into a no_shift.
6075     if (Imm == 0)
6076       St = ARM_AM::lsl;
6077     // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
6078     if (Imm == 32)
6079       Imm = 0;
6080     Amount = Imm;
6081   }
6082 
6083   return false;
6084 }
6085 
6086 /// parseFPImm - A floating point immediate expression operand.
6087 OperandMatchResultTy
6088 ARMAsmParser::parseFPImm(OperandVector &Operands) {
6089   MCAsmParser &Parser = getParser();
6090   // Anything that can accept a floating point constant as an operand
6091   // needs to go through here, as the regular parseExpression is
6092   // integer only.
6093   //
6094   // This routine still creates a generic Immediate operand, containing
6095   // a bitcast of the 64-bit floating point value. The various operands
6096   // that accept floats can check whether the value is valid for them
6097   // via the standard is*() predicates.
6098 
6099   SMLoc S = Parser.getTok().getLoc();
6100 
6101   if (Parser.getTok().isNot(AsmToken::Hash) &&
6102       Parser.getTok().isNot(AsmToken::Dollar))
6103     return MatchOperand_NoMatch;
6104 
6105   // Disambiguate the VMOV forms that can accept an FP immediate.
6106   // vmov.f32 <sreg>, #imm
6107   // vmov.f64 <dreg>, #imm
6108   // vmov.f32 <dreg>, #imm  @ vector f32x2
6109   // vmov.f32 <qreg>, #imm  @ vector f32x4
6110   //
6111   // There are also the NEON VMOV instructions which expect an
6112   // integer constant. Make sure we don't try to parse an FPImm
6113   // for these:
6114   // vmov.i{8|16|32|64} <dreg|qreg>, #imm
6115   ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
6116   bool isVmovf = TyOp.isToken() &&
6117                  (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
6118                   TyOp.getToken() == ".f16");
6119   ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
6120   bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
6121                                          Mnemonic.getToken() == "fconsts");
6122   if (!(isVmovf || isFconst))
6123     return MatchOperand_NoMatch;
6124 
6125   Parser.Lex(); // Eat '#' or '$'.
6126 
6127   // Handle negation, as that still comes through as a separate token.
6128   bool isNegative = false;
6129   if (Parser.getTok().is(AsmToken::Minus)) {
6130     isNegative = true;
6131     Parser.Lex();
6132   }
6133   const AsmToken &Tok = Parser.getTok();
6134   SMLoc Loc = Tok.getLoc();
6135   if (Tok.is(AsmToken::Real) && isVmovf) {
6136     APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
6137     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
6138     // If we had a '-' in front, toggle the sign bit.
6139     IntVal ^= (uint64_t)isNegative << 31;
6140     Parser.Lex(); // Eat the token.
6141     Operands.push_back(ARMOperand::CreateImm(
6142           MCConstantExpr::create(IntVal, getContext()),
6143           S, Parser.getTok().getLoc()));
6144     return MatchOperand_Success;
6145   }
6146   // Also handle plain integers. Instructions which allow floating point
6147   // immediates also allow a raw encoded 8-bit value.
6148   if (Tok.is(AsmToken::Integer) && isFconst) {
6149     int64_t Val = Tok.getIntVal();
6150     Parser.Lex(); // Eat the token.
6151     if (Val > 255 || Val < 0) {
6152       Error(Loc, "encoded floating point value out of range");
6153       return MatchOperand_ParseFail;
6154     }
6155     float RealVal = ARM_AM::getFPImmFloat(Val);
6156     Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
6157 
6158     Operands.push_back(ARMOperand::CreateImm(
6159         MCConstantExpr::create(Val, getContext()), S,
6160         Parser.getTok().getLoc()));
6161     return MatchOperand_Success;
6162   }
6163 
6164   Error(Loc, "invalid floating point immediate");
6165   return MatchOperand_ParseFail;
6166 }
6167 
6168 /// Parse a arm instruction operand.  For now this parses the operand regardless
6169 /// of the mnemonic.
6170 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
6171   MCAsmParser &Parser = getParser();
6172   SMLoc S, E;
6173 
6174   // Check if the current operand has a custom associated parser, if so, try to
6175   // custom parse the operand, or fallback to the general approach.
6176   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
6177   if (ResTy == MatchOperand_Success)
6178     return false;
6179   // If there wasn't a custom match, try the generic matcher below. Otherwise,
6180   // there was a match, but an error occurred, in which case, just return that
6181   // the operand parsing failed.
6182   if (ResTy == MatchOperand_ParseFail)
6183     return true;
6184 
6185   switch (getLexer().getKind()) {
6186   default:
6187     Error(Parser.getTok().getLoc(), "unexpected token in operand");
6188     return true;
6189   case AsmToken::Identifier: {
6190     // If we've seen a branch mnemonic, the next operand must be a label.  This
6191     // is true even if the label is a register name.  So "br r1" means branch to
6192     // label "r1".
6193     bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
6194     if (!ExpectLabel) {
6195       if (!tryParseRegisterWithWriteBack(Operands))
6196         return false;
6197       int Res = tryParseShiftRegister(Operands);
6198       if (Res == 0) // success
6199         return false;
6200       else if (Res == -1) // irrecoverable error
6201         return true;
6202       // If this is VMRS, check for the apsr_nzcv operand.
6203       if (Mnemonic == "vmrs" &&
6204           Parser.getTok().getString().equals_insensitive("apsr_nzcv")) {
6205         S = Parser.getTok().getLoc();
6206         Parser.Lex();
6207         Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
6208         return false;
6209       }
6210     }
6211 
6212     // Fall though for the Identifier case that is not a register or a
6213     // special name.
6214     LLVM_FALLTHROUGH;
6215   }
6216   case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
6217   case AsmToken::Integer: // things like 1f and 2b as a branch targets
6218   case AsmToken::String:  // quoted label names.
6219   case AsmToken::Dot: {   // . as a branch target
6220     // This was not a register so parse other operands that start with an
6221     // identifier (like labels) as expressions and create them as immediates.
6222     const MCExpr *IdVal;
6223     S = Parser.getTok().getLoc();
6224     if (getParser().parseExpression(IdVal))
6225       return true;
6226     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6227     Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
6228     return false;
6229   }
6230   case AsmToken::LBrac:
6231     return parseMemory(Operands);
6232   case AsmToken::LCurly:
6233     return parseRegisterList(Operands, !Mnemonic.startswith("clr"));
6234   case AsmToken::Dollar:
6235   case AsmToken::Hash: {
6236     // #42 -> immediate
6237     // $ 42 -> immediate
6238     // $foo -> symbol name
6239     // $42 -> symbol name
6240     S = Parser.getTok().getLoc();
6241 
6242     // Favor the interpretation of $-prefixed operands as symbol names.
6243     // Cases where immediates are explicitly expected are handled by their
6244     // specific ParseMethod implementations.
6245     auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false);
6246     bool ExpectIdentifier = Parser.getTok().is(AsmToken::Dollar) &&
6247                             (AdjacentToken.is(AsmToken::Identifier) ||
6248                              AdjacentToken.is(AsmToken::Integer));
6249     if (!ExpectIdentifier) {
6250       // Token is not part of identifier. Drop leading $ or # before parsing
6251       // expression.
6252       Parser.Lex();
6253     }
6254 
6255     if (Parser.getTok().isNot(AsmToken::Colon)) {
6256       bool IsNegative = Parser.getTok().is(AsmToken::Minus);
6257       const MCExpr *ImmVal;
6258       if (getParser().parseExpression(ImmVal))
6259         return true;
6260       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
6261       if (CE) {
6262         int32_t Val = CE->getValue();
6263         if (IsNegative && Val == 0)
6264           ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
6265                                           getContext());
6266       }
6267       E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6268       Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
6269 
6270       // There can be a trailing '!' on operands that we want as a separate
6271       // '!' Token operand. Handle that here. For example, the compatibility
6272       // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
6273       if (Parser.getTok().is(AsmToken::Exclaim)) {
6274         Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
6275                                                    Parser.getTok().getLoc()));
6276         Parser.Lex(); // Eat exclaim token
6277       }
6278       return false;
6279     }
6280     // w/ a ':' after the '#', it's just like a plain ':'.
6281     LLVM_FALLTHROUGH;
6282   }
6283   case AsmToken::Colon: {
6284     S = Parser.getTok().getLoc();
6285     // ":lower16:" and ":upper16:" expression prefixes
6286     // FIXME: Check it's an expression prefix,
6287     // e.g. (FOO - :lower16:BAR) isn't legal.
6288     ARMMCExpr::VariantKind RefKind;
6289     if (parsePrefix(RefKind))
6290       return true;
6291 
6292     const MCExpr *SubExprVal;
6293     if (getParser().parseExpression(SubExprVal))
6294       return true;
6295 
6296     const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
6297                                               getContext());
6298     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6299     Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
6300     return false;
6301   }
6302   case AsmToken::Equal: {
6303     S = Parser.getTok().getLoc();
6304     if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
6305       return Error(S, "unexpected token in operand");
6306     Parser.Lex(); // Eat '='
6307     const MCExpr *SubExprVal;
6308     if (getParser().parseExpression(SubExprVal))
6309       return true;
6310     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6311 
6312     // execute-only: we assume that assembly programmers know what they are
6313     // doing and allow literal pool creation here
6314     Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
6315     return false;
6316   }
6317   }
6318 }
6319 
6320 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
6321 //  :lower16: and :upper16:.
6322 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
6323   MCAsmParser &Parser = getParser();
6324   RefKind = ARMMCExpr::VK_ARM_None;
6325 
6326   // consume an optional '#' (GNU compatibility)
6327   if (getLexer().is(AsmToken::Hash))
6328     Parser.Lex();
6329 
6330   // :lower16: and :upper16: modifiers
6331   assert(getLexer().is(AsmToken::Colon) && "expected a :");
6332   Parser.Lex(); // Eat ':'
6333 
6334   if (getLexer().isNot(AsmToken::Identifier)) {
6335     Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
6336     return true;
6337   }
6338 
6339   enum {
6340     COFF = (1 << MCContext::IsCOFF),
6341     ELF = (1 << MCContext::IsELF),
6342     MACHO = (1 << MCContext::IsMachO),
6343     WASM = (1 << MCContext::IsWasm),
6344   };
6345   static const struct PrefixEntry {
6346     const char *Spelling;
6347     ARMMCExpr::VariantKind VariantKind;
6348     uint8_t SupportedFormats;
6349   } PrefixEntries[] = {
6350     { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
6351     { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
6352   };
6353 
6354   StringRef IDVal = Parser.getTok().getIdentifier();
6355 
6356   const auto &Prefix =
6357       llvm::find_if(PrefixEntries, [&IDVal](const PrefixEntry &PE) {
6358         return PE.Spelling == IDVal;
6359       });
6360   if (Prefix == std::end(PrefixEntries)) {
6361     Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
6362     return true;
6363   }
6364 
6365   uint8_t CurrentFormat;
6366   switch (getContext().getObjectFileType()) {
6367   case MCContext::IsMachO:
6368     CurrentFormat = MACHO;
6369     break;
6370   case MCContext::IsELF:
6371     CurrentFormat = ELF;
6372     break;
6373   case MCContext::IsCOFF:
6374     CurrentFormat = COFF;
6375     break;
6376   case MCContext::IsWasm:
6377     CurrentFormat = WASM;
6378     break;
6379   case MCContext::IsGOFF:
6380   case MCContext::IsXCOFF:
6381   case MCContext::IsDXContainer:
6382     llvm_unreachable("unexpected object format");
6383     break;
6384   }
6385 
6386   if (~Prefix->SupportedFormats & CurrentFormat) {
6387     Error(Parser.getTok().getLoc(),
6388           "cannot represent relocation in the current file format");
6389     return true;
6390   }
6391 
6392   RefKind = Prefix->VariantKind;
6393   Parser.Lex();
6394 
6395   if (getLexer().isNot(AsmToken::Colon)) {
6396     Error(Parser.getTok().getLoc(), "unexpected token after prefix");
6397     return true;
6398   }
6399   Parser.Lex(); // Eat the last ':'
6400 
6401   return false;
6402 }
6403 
6404 /// Given a mnemonic, split out possible predication code and carry
6405 /// setting letters to form a canonical mnemonic and flags.
6406 //
6407 // FIXME: Would be nice to autogen this.
6408 // FIXME: This is a bit of a maze of special cases.
6409 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
6410                                       StringRef ExtraToken,
6411                                       unsigned &PredicationCode,
6412                                       unsigned &VPTPredicationCode,
6413                                       bool &CarrySetting,
6414                                       unsigned &ProcessorIMod,
6415                                       StringRef &ITMask) {
6416   PredicationCode = ARMCC::AL;
6417   VPTPredicationCode = ARMVCC::None;
6418   CarrySetting = false;
6419   ProcessorIMod = 0;
6420 
6421   // Ignore some mnemonics we know aren't predicated forms.
6422   //
6423   // FIXME: Would be nice to autogen this.
6424   if ((Mnemonic == "movs" && isThumb()) ||
6425       Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
6426       Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
6427       Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
6428       Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
6429       Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
6430       Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
6431       Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
6432       Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
6433       Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
6434       Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
6435       Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
6436       Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
6437       Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
6438       Mnemonic == "bxns"  || Mnemonic == "blxns" ||
6439       Mnemonic == "vdot"  || Mnemonic == "vmmla" ||
6440       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6441       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6442       Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6443       Mnemonic == "wls"   || Mnemonic == "le"    || Mnemonic == "dls" ||
6444       Mnemonic == "csel"  || Mnemonic == "csinc" ||
6445       Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" ||
6446       Mnemonic == "cinv"  || Mnemonic == "cneg"  || Mnemonic == "cset" ||
6447       Mnemonic == "csetm" ||
6448       Mnemonic == "aut"   || Mnemonic == "pac" || Mnemonic == "pacbti" ||
6449       Mnemonic == "bti")
6450     return Mnemonic;
6451 
6452   // First, split out any predication code. Ignore mnemonics we know aren't
6453   // predicated but do have a carry-set and so weren't caught above.
6454   if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
6455       Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
6456       Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
6457       Mnemonic != "sbcs" && Mnemonic != "rscs" &&
6458       !(hasMVE() &&
6459         (Mnemonic == "vmine" ||
6460          Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" ||
6461          Mnemonic == "vrshle" || Mnemonic == "vrshlt" ||
6462          Mnemonic == "vmvne" || Mnemonic == "vorne" ||
6463          Mnemonic == "vnege" || Mnemonic == "vnegt" ||
6464          Mnemonic == "vmule" || Mnemonic == "vmult" ||
6465          Mnemonic == "vrintne" ||
6466          Mnemonic == "vcmult" || Mnemonic == "vcmule" ||
6467          Mnemonic == "vpsele" || Mnemonic == "vpselt" ||
6468          Mnemonic.startswith("vq")))) {
6469     unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
6470     if (CC != ~0U) {
6471       Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
6472       PredicationCode = CC;
6473     }
6474   }
6475 
6476   // Next, determine if we have a carry setting bit. We explicitly ignore all
6477   // the instructions we know end in 's'.
6478   if (Mnemonic.endswith("s") &&
6479       !(Mnemonic == "cps" || Mnemonic == "mls" ||
6480         Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
6481         Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
6482         Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
6483         Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
6484         Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
6485         Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
6486         Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
6487         Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
6488         Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" ||
6489         Mnemonic == "vmlas" ||
6490         (Mnemonic == "movs" && isThumb()))) {
6491     Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
6492     CarrySetting = true;
6493   }
6494 
6495   // The "cps" instruction can have a interrupt mode operand which is glued into
6496   // the mnemonic. Check if this is the case, split it and parse the imod op
6497   if (Mnemonic.startswith("cps")) {
6498     // Split out any imod code.
6499     unsigned IMod =
6500       StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
6501       .Case("ie", ARM_PROC::IE)
6502       .Case("id", ARM_PROC::ID)
6503       .Default(~0U);
6504     if (IMod != ~0U) {
6505       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
6506       ProcessorIMod = IMod;
6507     }
6508   }
6509 
6510   if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" &&
6511       Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" &&
6512       Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" &&
6513       Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" &&
6514       Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" &&
6515       Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" &&
6516       Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") {
6517     unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1));
6518     if (CC != ~0U) {
6519       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1);
6520       VPTPredicationCode = CC;
6521     }
6522     return Mnemonic;
6523   }
6524 
6525   // The "it" instruction has the condition mask on the end of the mnemonic.
6526   if (Mnemonic.startswith("it")) {
6527     ITMask = Mnemonic.slice(2, Mnemonic.size());
6528     Mnemonic = Mnemonic.slice(0, 2);
6529   }
6530 
6531   if (Mnemonic.startswith("vpst")) {
6532     ITMask = Mnemonic.slice(4, Mnemonic.size());
6533     Mnemonic = Mnemonic.slice(0, 4);
6534   }
6535   else if (Mnemonic.startswith("vpt")) {
6536     ITMask = Mnemonic.slice(3, Mnemonic.size());
6537     Mnemonic = Mnemonic.slice(0, 3);
6538   }
6539 
6540   return Mnemonic;
6541 }
6542 
6543 /// Given a canonical mnemonic, determine if the instruction ever allows
6544 /// inclusion of carry set or predication code operands.
6545 //
6546 // FIXME: It would be nice to autogen this.
6547 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic,
6548                                          StringRef ExtraToken,
6549                                          StringRef FullInst,
6550                                          bool &CanAcceptCarrySet,
6551                                          bool &CanAcceptPredicationCode,
6552                                          bool &CanAcceptVPTPredicationCode) {
6553   CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken);
6554 
6555   CanAcceptCarrySet =
6556       Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6557       Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
6558       Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
6559       Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
6560       Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
6561       Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
6562       Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
6563       (!isThumb() &&
6564        (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
6565         Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
6566 
6567   if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
6568       Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
6569       Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
6570       Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
6571       Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
6572       Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
6573       Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
6574       Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
6575       Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
6576       Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
6577       (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
6578       Mnemonic == "vmovx" || Mnemonic == "vins" ||
6579       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6580       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6581       Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6582       Mnemonic == "vfmat" || Mnemonic == "vfmab" ||
6583       Mnemonic == "vdot"  || Mnemonic == "vmmla" ||
6584       Mnemonic == "sb"    || Mnemonic == "ssbb"  ||
6585       Mnemonic == "pssbb" || Mnemonic == "vsmmla" ||
6586       Mnemonic == "vummla" || Mnemonic == "vusmmla" ||
6587       Mnemonic == "vusdot" || Mnemonic == "vsudot" ||
6588       Mnemonic == "bfcsel" || Mnemonic == "wls" ||
6589       Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" ||
6590       Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" ||
6591       Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" ||
6592       Mnemonic == "cset" || Mnemonic == "csetm" ||
6593       (hasCDE() && MS.isCDEInstr(Mnemonic) &&
6594        !MS.isITPredicableCDEInstr(Mnemonic)) ||
6595       Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") ||
6596       Mnemonic == "pac" || Mnemonic == "pacbti" || Mnemonic == "aut" ||
6597       Mnemonic == "bti" ||
6598       (hasMVE() &&
6599        (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") ||
6600         Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") ||
6601         Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") ||
6602         Mnemonic.startswith("letp")))) {
6603     // These mnemonics are never predicable
6604     CanAcceptPredicationCode = false;
6605   } else if (!isThumb()) {
6606     // Some instructions are only predicable in Thumb mode
6607     CanAcceptPredicationCode =
6608         Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
6609         Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
6610         Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
6611         Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
6612         Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
6613         Mnemonic != "stc2" && Mnemonic != "stc2l" &&
6614         Mnemonic != "tsb" &&
6615         !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
6616   } else if (isThumbOne()) {
6617     if (hasV6MOps())
6618       CanAcceptPredicationCode = Mnemonic != "movs";
6619     else
6620       CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
6621   } else
6622     CanAcceptPredicationCode = true;
6623 }
6624 
6625 // Some Thumb instructions have two operand forms that are not
6626 // available as three operand, convert to two operand form if possible.
6627 //
6628 // FIXME: We would really like to be able to tablegen'erate this.
6629 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
6630                                                  bool CarrySetting,
6631                                                  OperandVector &Operands) {
6632   if (Operands.size() != 6)
6633     return;
6634 
6635   const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6636         auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
6637   if (!Op3.isReg() || !Op4.isReg())
6638     return;
6639 
6640   auto Op3Reg = Op3.getReg();
6641   auto Op4Reg = Op4.getReg();
6642 
6643   // For most Thumb2 cases we just generate the 3 operand form and reduce
6644   // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
6645   // won't accept SP or PC so we do the transformation here taking care
6646   // with immediate range in the 'add sp, sp #imm' case.
6647   auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
6648   if (isThumbTwo()) {
6649     if (Mnemonic != "add")
6650       return;
6651     bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
6652                         (Op5.isReg() && Op5.getReg() == ARM::PC);
6653     if (!TryTransform) {
6654       TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
6655                       (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
6656                      !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
6657                        Op5.isImm() && !Op5.isImm0_508s4());
6658     }
6659     if (!TryTransform)
6660       return;
6661   } else if (!isThumbOne())
6662     return;
6663 
6664   if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
6665         Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6666         Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
6667         Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
6668     return;
6669 
6670   // If first 2 operands of a 3 operand instruction are the same
6671   // then transform to 2 operand version of the same instruction
6672   // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
6673   bool Transform = Op3Reg == Op4Reg;
6674 
6675   // For communtative operations, we might be able to transform if we swap
6676   // Op4 and Op5.  The 'ADD Rdm, SP, Rdm' form is already handled specially
6677   // as tADDrsp.
6678   const ARMOperand *LastOp = &Op5;
6679   bool Swap = false;
6680   if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
6681       ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
6682        Mnemonic == "and" || Mnemonic == "eor" ||
6683        Mnemonic == "adc" || Mnemonic == "orr")) {
6684     Swap = true;
6685     LastOp = &Op4;
6686     Transform = true;
6687   }
6688 
6689   // If both registers are the same then remove one of them from
6690   // the operand list, with certain exceptions.
6691   if (Transform) {
6692     // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
6693     // 2 operand forms don't exist.
6694     if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
6695         LastOp->isReg())
6696       Transform = false;
6697 
6698     // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
6699     // 3-bits because the ARMARM says not to.
6700     if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
6701       Transform = false;
6702   }
6703 
6704   if (Transform) {
6705     if (Swap)
6706       std::swap(Op4, Op5);
6707     Operands.erase(Operands.begin() + 3);
6708   }
6709 }
6710 
6711 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
6712                                           OperandVector &Operands) {
6713   // FIXME: This is all horribly hacky. We really need a better way to deal
6714   // with optional operands like this in the matcher table.
6715 
6716   // The 'mov' mnemonic is special. One variant has a cc_out operand, while
6717   // another does not. Specifically, the MOVW instruction does not. So we
6718   // special case it here and remove the defaulted (non-setting) cc_out
6719   // operand if that's the instruction we're trying to match.
6720   //
6721   // We do this as post-processing of the explicit operands rather than just
6722   // conditionally adding the cc_out in the first place because we need
6723   // to check the type of the parsed immediate operand.
6724   if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
6725       !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
6726       static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
6727       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6728     return true;
6729 
6730   // Register-register 'add' for thumb does not have a cc_out operand
6731   // when there are only two register operands.
6732   if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
6733       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6734       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6735       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6736     return true;
6737   // Register-register 'add' for thumb does not have a cc_out operand
6738   // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
6739   // have to check the immediate range here since Thumb2 has a variant
6740   // that can handle a different range and has a cc_out operand.
6741   if (((isThumb() && Mnemonic == "add") ||
6742        (isThumbTwo() && Mnemonic == "sub")) &&
6743       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6744       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6745       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
6746       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6747       ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
6748        static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
6749     return true;
6750   // For Thumb2, add/sub immediate does not have a cc_out operand for the
6751   // imm0_4095 variant. That's the least-preferred variant when
6752   // selecting via the generic "add" mnemonic, so to know that we
6753   // should remove the cc_out operand, we have to explicitly check that
6754   // it's not one of the other variants. Ugh.
6755   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6756       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6757       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6758       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6759     // Nest conditions rather than one big 'if' statement for readability.
6760     //
6761     // If both registers are low, we're in an IT block, and the immediate is
6762     // in range, we should use encoding T1 instead, which has a cc_out.
6763     if (inITBlock() &&
6764         isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
6765         isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
6766         static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
6767       return false;
6768     // Check against T3. If the second register is the PC, this is an
6769     // alternate form of ADR, which uses encoding T4, so check for that too.
6770     if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
6771         (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() ||
6772          static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg()))
6773       return false;
6774 
6775     // Otherwise, we use encoding T4, which does not have a cc_out
6776     // operand.
6777     return true;
6778   }
6779 
6780   // The thumb2 multiply instruction doesn't have a CCOut register, so
6781   // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
6782   // use the 16-bit encoding or not.
6783   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
6784       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6785       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6786       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6787       static_cast<ARMOperand &>(*Operands[5]).isReg() &&
6788       // If the registers aren't low regs, the destination reg isn't the
6789       // same as one of the source regs, or the cc_out operand is zero
6790       // outside of an IT block, we have to use the 32-bit encoding, so
6791       // remove the cc_out operand.
6792       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6793        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6794        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
6795        !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6796                             static_cast<ARMOperand &>(*Operands[5]).getReg() &&
6797                         static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6798                             static_cast<ARMOperand &>(*Operands[4]).getReg())))
6799     return true;
6800 
6801   // Also check the 'mul' syntax variant that doesn't specify an explicit
6802   // destination register.
6803   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
6804       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6805       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6806       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6807       // If the registers aren't low regs  or the cc_out operand is zero
6808       // outside of an IT block, we have to use the 32-bit encoding, so
6809       // remove the cc_out operand.
6810       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6811        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6812        !inITBlock()))
6813     return true;
6814 
6815   // Register-register 'add/sub' for thumb does not have a cc_out operand
6816   // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
6817   // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
6818   // right, this will result in better diagnostics (which operand is off)
6819   // anyway.
6820   if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
6821       (Operands.size() == 5 || Operands.size() == 6) &&
6822       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6823       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
6824       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6825       (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
6826        (Operands.size() == 6 &&
6827         static_cast<ARMOperand &>(*Operands[5]).isImm()))) {
6828     // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out
6829     return (!(isThumbTwo() &&
6830               (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() ||
6831                static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg())));
6832   }
6833   // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case
6834   // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4)
6835   // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095
6836   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6837       (Operands.size() == 5) &&
6838       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6839       static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP &&
6840       static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC &&
6841       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6842       static_cast<ARMOperand &>(*Operands[4]).isImm()) {
6843     const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]);
6844     if (IMM.isT2SOImm() || IMM.isT2SOImmNeg())
6845       return false; // add.w / sub.w
6846     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) {
6847       const int64_t Value = CE->getValue();
6848       // Thumb1 imm8 sub / add
6849       if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) &&
6850           isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()))
6851         return false;
6852       return true; // Thumb2 T4 addw / subw
6853     }
6854   }
6855   return false;
6856 }
6857 
6858 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
6859                                               OperandVector &Operands) {
6860   // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
6861   unsigned RegIdx = 3;
6862   if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) ||
6863       Mnemonic == "vrintr") &&
6864       (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
6865        static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
6866     if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6867         (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
6868          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
6869       RegIdx = 4;
6870 
6871     if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
6872         (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6873              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
6874          ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6875              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
6876       return true;
6877   }
6878   return false;
6879 }
6880 
6881 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic,
6882                                                     OperandVector &Operands) {
6883   if (!hasMVE() || Operands.size() < 3)
6884     return true;
6885 
6886   if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") ||
6887       Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4"))
6888     return true;
6889 
6890   if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot"))
6891     return false;
6892 
6893   if (Mnemonic.startswith("vmov") &&
6894       !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") ||
6895         Mnemonic.startswith("vmovx"))) {
6896     for (auto &Operand : Operands) {
6897       if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6898           ((*Operand).isReg() &&
6899            (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
6900              (*Operand).getReg()) ||
6901             ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6902               (*Operand).getReg())))) {
6903         return true;
6904       }
6905     }
6906     return false;
6907   } else {
6908     for (auto &Operand : Operands) {
6909       // We check the larger class QPR instead of just the legal class
6910       // MQPR, to more accurately report errors when using Q registers
6911       // outside of the allowed range.
6912       if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6913           (Operand->isReg() &&
6914            (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6915              Operand->getReg()))))
6916         return false;
6917     }
6918     return true;
6919   }
6920 }
6921 
6922 static bool isDataTypeToken(StringRef Tok) {
6923   return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
6924     Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
6925     Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
6926     Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
6927     Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
6928     Tok == ".f" || Tok == ".d";
6929 }
6930 
6931 // FIXME: This bit should probably be handled via an explicit match class
6932 // in the .td files that matches the suffix instead of having it be
6933 // a literal string token the way it is now.
6934 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
6935   return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
6936 }
6937 
6938 static void applyMnemonicAliases(StringRef &Mnemonic,
6939                                  const FeatureBitset &Features,
6940                                  unsigned VariantID);
6941 
6942 // The GNU assembler has aliases of ldrd and strd with the second register
6943 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6944 //
6945 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6946 // the assembly parser could then generate confusing diagnostics refering to
6947 // it. If we do find anything that prevents us from doing the transformation we
6948 // bail out, and let the assembly parser report an error on the instruction as
6949 // it is written.
6950 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
6951                                      OperandVector &Operands) {
6952   if (Mnemonic != "ldrd" && Mnemonic != "strd")
6953     return;
6954   if (Operands.size() < 4)
6955     return;
6956 
6957   ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6958   ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6959 
6960   if (!Op2.isReg())
6961     return;
6962   if (!Op3.isGPRMem())
6963     return;
6964 
6965   const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6966   if (!GPR.contains(Op2.getReg()))
6967     return;
6968 
6969   unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6970   if (!isThumb() && (RtEncoding & 1)) {
6971     // In ARM mode, the registers must be from an aligned pair, this
6972     // restriction does not apply in Thumb mode.
6973     return;
6974   }
6975   if (Op2.getReg() == ARM::PC)
6976     return;
6977   unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
6978   if (!PairedReg || PairedReg == ARM::PC ||
6979       (PairedReg == ARM::SP && !hasV8Ops()))
6980     return;
6981 
6982   Operands.insert(
6983       Operands.begin() + 3,
6984       ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
6985 }
6986 
6987 // Dual-register instruction have the following syntax:
6988 // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm
6989 // This function tries to remove <Rdest+1> and replace <Rdest> with a pair
6990 // operand. If the conversion fails an error is diagnosed, and the function
6991 // returns true.
6992 bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic,
6993                                             OperandVector &Operands) {
6994   assert(MS.isCDEDualRegInstr(Mnemonic));
6995   bool isPredicable =
6996       Mnemonic == "cx1da" || Mnemonic == "cx2da" || Mnemonic == "cx3da";
6997   size_t NumPredOps = isPredicable ? 1 : 0;
6998 
6999   if (Operands.size() <= 3 + NumPredOps)
7000     return false;
7001 
7002   StringRef Op2Diag(
7003       "operand must be an even-numbered register in the range [r0, r10]");
7004 
7005   const MCParsedAsmOperand &Op2 = *Operands[2 + NumPredOps];
7006   if (!Op2.isReg())
7007     return Error(Op2.getStartLoc(), Op2Diag);
7008 
7009   unsigned RNext;
7010   unsigned RPair;
7011   switch (Op2.getReg()) {
7012   default:
7013     return Error(Op2.getStartLoc(), Op2Diag);
7014   case ARM::R0:
7015     RNext = ARM::R1;
7016     RPair = ARM::R0_R1;
7017     break;
7018   case ARM::R2:
7019     RNext = ARM::R3;
7020     RPair = ARM::R2_R3;
7021     break;
7022   case ARM::R4:
7023     RNext = ARM::R5;
7024     RPair = ARM::R4_R5;
7025     break;
7026   case ARM::R6:
7027     RNext = ARM::R7;
7028     RPair = ARM::R6_R7;
7029     break;
7030   case ARM::R8:
7031     RNext = ARM::R9;
7032     RPair = ARM::R8_R9;
7033     break;
7034   case ARM::R10:
7035     RNext = ARM::R11;
7036     RPair = ARM::R10_R11;
7037     break;
7038   }
7039 
7040   const MCParsedAsmOperand &Op3 = *Operands[3 + NumPredOps];
7041   if (!Op3.isReg() || Op3.getReg() != RNext)
7042     return Error(Op3.getStartLoc(), "operand must be a consecutive register");
7043 
7044   Operands.erase(Operands.begin() + 3 + NumPredOps);
7045   Operands[2 + NumPredOps] =
7046       ARMOperand::CreateReg(RPair, Op2.getStartLoc(), Op2.getEndLoc());
7047   return false;
7048 }
7049 
7050 /// Parse an arm instruction mnemonic followed by its operands.
7051 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
7052                                     SMLoc NameLoc, OperandVector &Operands) {
7053   MCAsmParser &Parser = getParser();
7054 
7055   // Apply mnemonic aliases before doing anything else, as the destination
7056   // mnemonic may include suffices and we want to handle them normally.
7057   // The generic tblgen'erated code does this later, at the start of
7058   // MatchInstructionImpl(), but that's too late for aliases that include
7059   // any sort of suffix.
7060   const FeatureBitset &AvailableFeatures = getAvailableFeatures();
7061   unsigned AssemblerDialect = getParser().getAssemblerDialect();
7062   applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
7063 
7064   // First check for the ARM-specific .req directive.
7065   if (Parser.getTok().is(AsmToken::Identifier) &&
7066       Parser.getTok().getIdentifier().lower() == ".req") {
7067     parseDirectiveReq(Name, NameLoc);
7068     // We always return 'error' for this, as we're done with this
7069     // statement and don't need to match the 'instruction."
7070     return true;
7071   }
7072 
7073   // Create the leading tokens for the mnemonic, split by '.' characters.
7074   size_t Start = 0, Next = Name.find('.');
7075   StringRef Mnemonic = Name.slice(Start, Next);
7076   StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1));
7077 
7078   // Split out the predication code and carry setting flag from the mnemonic.
7079   unsigned PredicationCode;
7080   unsigned VPTPredicationCode;
7081   unsigned ProcessorIMod;
7082   bool CarrySetting;
7083   StringRef ITMask;
7084   Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode,
7085                            CarrySetting, ProcessorIMod, ITMask);
7086 
7087   // In Thumb1, only the branch (B) instruction can be predicated.
7088   if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
7089     return Error(NameLoc, "conditional execution not supported in Thumb1");
7090   }
7091 
7092   Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
7093 
7094   // Handle the mask for IT and VPT instructions. In ARMOperand and
7095   // MCOperand, this is stored in a format independent of the
7096   // condition code: the lowest set bit indicates the end of the
7097   // encoding, and above that, a 1 bit indicates 'else', and an 0
7098   // indicates 'then'. E.g.
7099   //    IT    -> 1000
7100   //    ITx   -> x100    (ITT -> 0100, ITE -> 1100)
7101   //    ITxy  -> xy10    (e.g. ITET -> 1010)
7102   //    ITxyz -> xyz1    (e.g. ITEET -> 1101)
7103   // Note: See the ARM::PredBlockMask enum in
7104   //   /lib/Target/ARM/Utils/ARMBaseInfo.h
7105   if (Mnemonic == "it" || Mnemonic.startswith("vpt") ||
7106       Mnemonic.startswith("vpst")) {
7107     SMLoc Loc = Mnemonic == "it"  ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) :
7108                 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) :
7109                                     SMLoc::getFromPointer(NameLoc.getPointer() + 4);
7110     if (ITMask.size() > 3) {
7111       if (Mnemonic == "it")
7112         return Error(Loc, "too many conditions on IT instruction");
7113       return Error(Loc, "too many conditions on VPT instruction");
7114     }
7115     unsigned Mask = 8;
7116     for (char Pos : llvm::reverse(ITMask)) {
7117       if (Pos != 't' && Pos != 'e') {
7118         return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
7119       }
7120       Mask >>= 1;
7121       if (Pos == 'e')
7122         Mask |= 8;
7123     }
7124     Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
7125   }
7126 
7127   // FIXME: This is all a pretty gross hack. We should automatically handle
7128   // optional operands like this via tblgen.
7129 
7130   // Next, add the CCOut and ConditionCode operands, if needed.
7131   //
7132   // For mnemonics which can ever incorporate a carry setting bit or predication
7133   // code, our matching model involves us always generating CCOut and
7134   // ConditionCode operands to match the mnemonic "as written" and then we let
7135   // the matcher deal with finding the right instruction or generating an
7136   // appropriate error.
7137   bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode;
7138   getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet,
7139                         CanAcceptPredicationCode, CanAcceptVPTPredicationCode);
7140 
7141   // If we had a carry-set on an instruction that can't do that, issue an
7142   // error.
7143   if (!CanAcceptCarrySet && CarrySetting) {
7144     return Error(NameLoc, "instruction '" + Mnemonic +
7145                  "' can not set flags, but 's' suffix specified");
7146   }
7147   // If we had a predication code on an instruction that can't do that, issue an
7148   // error.
7149   if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
7150     return Error(NameLoc, "instruction '" + Mnemonic +
7151                  "' is not predicable, but condition code specified");
7152   }
7153 
7154   // If we had a VPT predication code on an instruction that can't do that, issue an
7155   // error.
7156   if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) {
7157     return Error(NameLoc, "instruction '" + Mnemonic +
7158                  "' is not VPT predicable, but VPT code T/E is specified");
7159   }
7160 
7161   // Add the carry setting operand, if necessary.
7162   if (CanAcceptCarrySet) {
7163     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
7164     Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
7165                                                Loc));
7166   }
7167 
7168   // Add the predication code operand, if necessary.
7169   if (CanAcceptPredicationCode) {
7170     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
7171                                       CarrySetting);
7172     Operands.push_back(ARMOperand::CreateCondCode(
7173                        ARMCC::CondCodes(PredicationCode), Loc));
7174   }
7175 
7176   // Add the VPT predication code operand, if necessary.
7177   // FIXME: We don't add them for the instructions filtered below as these can
7178   // have custom operands which need special parsing.  This parsing requires
7179   // the operand to be in the same place in the OperandVector as their
7180   // definition in tblgen.  Since these instructions may also have the
7181   // scalar predication operand we do not add the vector one and leave until
7182   // now to fix it up.
7183   if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" &&
7184       !Mnemonic.startswith("vcmp") &&
7185       !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" &&
7186         Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) {
7187     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
7188                                       CarrySetting);
7189     Operands.push_back(ARMOperand::CreateVPTPred(
7190                          ARMVCC::VPTCodes(VPTPredicationCode), Loc));
7191   }
7192 
7193   // Add the processor imod operand, if necessary.
7194   if (ProcessorIMod) {
7195     Operands.push_back(ARMOperand::CreateImm(
7196           MCConstantExpr::create(ProcessorIMod, getContext()),
7197                                  NameLoc, NameLoc));
7198   } else if (Mnemonic == "cps" && isMClass()) {
7199     return Error(NameLoc, "instruction 'cps' requires effect for M-class");
7200   }
7201 
7202   // Add the remaining tokens in the mnemonic.
7203   while (Next != StringRef::npos) {
7204     Start = Next;
7205     Next = Name.find('.', Start + 1);
7206     ExtraToken = Name.slice(Start, Next);
7207 
7208     // Some NEON instructions have an optional datatype suffix that is
7209     // completely ignored. Check for that.
7210     if (isDataTypeToken(ExtraToken) &&
7211         doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
7212       continue;
7213 
7214     // For for ARM mode generate an error if the .n qualifier is used.
7215     if (ExtraToken == ".n" && !isThumb()) {
7216       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
7217       return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
7218                    "arm mode");
7219     }
7220 
7221     // The .n qualifier is always discarded as that is what the tables
7222     // and matcher expect.  In ARM mode the .w qualifier has no effect,
7223     // so discard it to avoid errors that can be caused by the matcher.
7224     if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
7225       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
7226       Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
7227     }
7228   }
7229 
7230   // Read the remaining operands.
7231   if (getLexer().isNot(AsmToken::EndOfStatement)) {
7232     // Read the first operand.
7233     if (parseOperand(Operands, Mnemonic)) {
7234       return true;
7235     }
7236 
7237     while (parseOptionalToken(AsmToken::Comma)) {
7238       // Parse and remember the operand.
7239       if (parseOperand(Operands, Mnemonic)) {
7240         return true;
7241       }
7242     }
7243   }
7244 
7245   if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
7246     return true;
7247 
7248   tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
7249 
7250   if (hasCDE() && MS.isCDEInstr(Mnemonic)) {
7251     // Dual-register instructions use even-odd register pairs as their
7252     // destination operand, in assembly such pair is spelled as two
7253     // consecutive registers, without any special syntax. ConvertDualRegOperand
7254     // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3.
7255     // It returns true, if an error message has been emitted. If the function
7256     // returns false, the function either succeeded or an error (e.g. missing
7257     // operand) will be diagnosed elsewhere.
7258     if (MS.isCDEDualRegInstr(Mnemonic)) {
7259       bool GotError = CDEConvertDualRegOperand(Mnemonic, Operands);
7260       if (GotError)
7261         return GotError;
7262     }
7263   }
7264 
7265   // Some instructions, mostly Thumb, have forms for the same mnemonic that
7266   // do and don't have a cc_out optional-def operand. With some spot-checks
7267   // of the operand list, we can figure out which variant we're trying to
7268   // parse and adjust accordingly before actually matching. We shouldn't ever
7269   // try to remove a cc_out operand that was explicitly set on the
7270   // mnemonic, of course (CarrySetting == true). Reason number #317 the
7271   // table driven matcher doesn't fit well with the ARM instruction set.
7272   if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
7273     Operands.erase(Operands.begin() + 1);
7274 
7275   // Some instructions have the same mnemonic, but don't always
7276   // have a predicate. Distinguish them here and delete the
7277   // appropriate predicate if needed.  This could be either the scalar
7278   // predication code or the vector predication code.
7279   if (PredicationCode == ARMCC::AL &&
7280       shouldOmitPredicateOperand(Mnemonic, Operands))
7281     Operands.erase(Operands.begin() + 1);
7282 
7283 
7284   if (hasMVE()) {
7285     if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) &&
7286         Mnemonic == "vmov" && PredicationCode == ARMCC::LT) {
7287       // Very nasty hack to deal with the vector predicated variant of vmovlt
7288       // the scalar predicated vmov with condition 'lt'.  We can not tell them
7289       // apart until we have parsed their operands.
7290       Operands.erase(Operands.begin() + 1);
7291       Operands.erase(Operands.begin());
7292       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7293       SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7294                                          Mnemonic.size() - 1 + CarrySetting);
7295       Operands.insert(Operands.begin(),
7296                       ARMOperand::CreateVPTPred(ARMVCC::None, PLoc));
7297       Operands.insert(Operands.begin(),
7298                       ARMOperand::CreateToken(StringRef("vmovlt"), MLoc));
7299     } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE &&
7300                !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7301       // Another nasty hack to deal with the ambiguity between vcvt with scalar
7302       // predication 'ne' and vcvtn with vector predication 'e'.  As above we
7303       // can only distinguish between the two after we have parsed their
7304       // operands.
7305       Operands.erase(Operands.begin() + 1);
7306       Operands.erase(Operands.begin());
7307       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7308       SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7309                                          Mnemonic.size() - 1 + CarrySetting);
7310       Operands.insert(Operands.begin(),
7311                       ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc));
7312       Operands.insert(Operands.begin(),
7313                       ARMOperand::CreateToken(StringRef("vcvtn"), MLoc));
7314     } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT &&
7315                !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7316       // Another hack, this time to distinguish between scalar predicated vmul
7317       // with 'lt' predication code and the vector instruction vmullt with
7318       // vector predication code "none"
7319       Operands.erase(Operands.begin() + 1);
7320       Operands.erase(Operands.begin());
7321       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7322       Operands.insert(Operands.begin(),
7323                       ARMOperand::CreateToken(StringRef("vmullt"), MLoc));
7324     }
7325     // For vmov and vcmp, as mentioned earlier, we did not add the vector
7326     // predication code, since these may contain operands that require
7327     // special parsing.  So now we have to see if they require vector
7328     // predication and replace the scalar one with the vector predication
7329     // operand if that is the case.
7330     else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") ||
7331              (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") &&
7332               !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") &&
7333               !Mnemonic.startswith("vcvtm"))) {
7334       if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7335         // We could not split the vector predicate off vcvt because it might
7336         // have been the scalar vcvtt instruction.  Now we know its a vector
7337         // instruction, we still need to check whether its the vector
7338         // predicated vcvt with 'Then' predication or the vector vcvtt.  We can
7339         // distinguish the two based on the suffixes, if it is any of
7340         // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt.
7341         if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) {
7342           auto Sz1 = static_cast<ARMOperand &>(*Operands[2]);
7343           auto Sz2 = static_cast<ARMOperand &>(*Operands[3]);
7344           if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") &&
7345               Sz2.isToken() && Sz2.getToken().startswith(".f"))) {
7346             Operands.erase(Operands.begin());
7347             SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7348             VPTPredicationCode = ARMVCC::Then;
7349 
7350             Mnemonic = Mnemonic.substr(0, 4);
7351             Operands.insert(Operands.begin(),
7352                             ARMOperand::CreateToken(Mnemonic, MLoc));
7353           }
7354         }
7355         Operands.erase(Operands.begin() + 1);
7356         SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7357                                           Mnemonic.size() + CarrySetting);
7358         Operands.insert(Operands.begin() + 1,
7359                         ARMOperand::CreateVPTPred(
7360                             ARMVCC::VPTCodes(VPTPredicationCode), PLoc));
7361       }
7362     } else if (CanAcceptVPTPredicationCode) {
7363       // For all other instructions, make sure only one of the two
7364       // predication operands is left behind, depending on whether we should
7365       // use the vector predication.
7366       if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7367         if (CanAcceptPredicationCode)
7368           Operands.erase(Operands.begin() + 2);
7369         else
7370           Operands.erase(Operands.begin() + 1);
7371       } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) {
7372         Operands.erase(Operands.begin() + 1);
7373       }
7374     }
7375   }
7376 
7377   if (VPTPredicationCode != ARMVCC::None) {
7378     bool usedVPTPredicationCode = false;
7379     for (unsigned I = 1; I < Operands.size(); ++I)
7380       if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7381         usedVPTPredicationCode = true;
7382     if (!usedVPTPredicationCode) {
7383       // If we have a VPT predication code and we haven't just turned it
7384       // into an operand, then it was a mistake for splitMnemonic to
7385       // separate it from the rest of the mnemonic in the first place,
7386       // and this may lead to wrong disassembly (e.g. scalar floating
7387       // point VCMPE is actually a different instruction from VCMP, so
7388       // we mustn't treat them the same). In that situation, glue it
7389       // back on.
7390       Mnemonic = Name.slice(0, Mnemonic.size() + 1);
7391       Operands.erase(Operands.begin());
7392       Operands.insert(Operands.begin(),
7393                       ARMOperand::CreateToken(Mnemonic, NameLoc));
7394     }
7395   }
7396 
7397     // ARM mode 'blx' need special handling, as the register operand version
7398     // is predicable, but the label operand version is not. So, we can't rely
7399     // on the Mnemonic based checking to correctly figure out when to put
7400     // a k_CondCode operand in the list. If we're trying to match the label
7401     // version, remove the k_CondCode operand here.
7402     if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
7403         static_cast<ARMOperand &>(*Operands[2]).isImm())
7404       Operands.erase(Operands.begin() + 1);
7405 
7406     // Adjust operands of ldrexd/strexd to MCK_GPRPair.
7407     // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
7408     // a single GPRPair reg operand is used in the .td file to replace the two
7409     // GPRs. However, when parsing from asm, the two GRPs cannot be
7410     // automatically
7411     // expressed as a GPRPair, so we have to manually merge them.
7412     // FIXME: We would really like to be able to tablegen'erate this.
7413     if (!isThumb() && Operands.size() > 4 &&
7414         (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
7415          Mnemonic == "stlexd")) {
7416       bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
7417       unsigned Idx = isLoad ? 2 : 3;
7418       ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
7419       ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
7420 
7421       const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID);
7422       // Adjust only if Op1 and Op2 are GPRs.
7423       if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
7424           MRC.contains(Op2.getReg())) {
7425         unsigned Reg1 = Op1.getReg();
7426         unsigned Reg2 = Op2.getReg();
7427         unsigned Rt = MRI->getEncodingValue(Reg1);
7428         unsigned Rt2 = MRI->getEncodingValue(Reg2);
7429 
7430         // Rt2 must be Rt + 1 and Rt must be even.
7431         if (Rt + 1 != Rt2 || (Rt & 1)) {
7432           return Error(Op2.getStartLoc(),
7433                        isLoad ? "destination operands must be sequential"
7434                               : "source operands must be sequential");
7435         }
7436         unsigned NewReg = MRI->getMatchingSuperReg(
7437             Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID)));
7438         Operands[Idx] =
7439             ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
7440         Operands.erase(Operands.begin() + Idx + 1);
7441       }
7442   }
7443 
7444   // GNU Assembler extension (compatibility).
7445   fixupGNULDRDAlias(Mnemonic, Operands);
7446 
7447   // FIXME: As said above, this is all a pretty gross hack.  This instruction
7448   // does not fit with other "subs" and tblgen.
7449   // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
7450   // so the Mnemonic is the original name "subs" and delete the predicate
7451   // operand so it will match the table entry.
7452   if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
7453       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
7454       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
7455       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
7456       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
7457       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
7458     Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
7459     Operands.erase(Operands.begin() + 1);
7460   }
7461   return false;
7462 }
7463 
7464 // Validate context-sensitive operand constraints.
7465 
7466 // return 'true' if register list contains non-low GPR registers,
7467 // 'false' otherwise. If Reg is in the register list or is HiReg, set
7468 // 'containsReg' to true.
7469 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
7470                                  unsigned Reg, unsigned HiReg,
7471                                  bool &containsReg) {
7472   containsReg = false;
7473   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
7474     unsigned OpReg = Inst.getOperand(i).getReg();
7475     if (OpReg == Reg)
7476       containsReg = true;
7477     // Anything other than a low register isn't legal here.
7478     if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
7479       return true;
7480   }
7481   return false;
7482 }
7483 
7484 // Check if the specified regisgter is in the register list of the inst,
7485 // starting at the indicated operand number.
7486 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
7487   for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
7488     unsigned OpReg = Inst.getOperand(i).getReg();
7489     if (OpReg == Reg)
7490       return true;
7491   }
7492   return false;
7493 }
7494 
7495 // Return true if instruction has the interesting property of being
7496 // allowed in IT blocks, but not being predicable.
7497 static bool instIsBreakpoint(const MCInst &Inst) {
7498     return Inst.getOpcode() == ARM::tBKPT ||
7499            Inst.getOpcode() == ARM::BKPT ||
7500            Inst.getOpcode() == ARM::tHLT ||
7501            Inst.getOpcode() == ARM::HLT;
7502 }
7503 
7504 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
7505                                        const OperandVector &Operands,
7506                                        unsigned ListNo, bool IsARPop) {
7507   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7508   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7509 
7510   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7511   bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
7512   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7513 
7514   if (!IsARPop && ListContainsSP)
7515     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7516                  "SP may not be in the register list");
7517   else if (ListContainsPC && ListContainsLR)
7518     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7519                  "PC and LR may not be in the register list simultaneously");
7520   return false;
7521 }
7522 
7523 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
7524                                        const OperandVector &Operands,
7525                                        unsigned ListNo) {
7526   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7527   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7528 
7529   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7530   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7531 
7532   if (ListContainsSP && ListContainsPC)
7533     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7534                  "SP and PC may not be in the register list");
7535   else if (ListContainsSP)
7536     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7537                  "SP may not be in the register list");
7538   else if (ListContainsPC)
7539     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7540                  "PC may not be in the register list");
7541   return false;
7542 }
7543 
7544 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
7545                                     const OperandVector &Operands,
7546                                     bool Load, bool ARMMode, bool Writeback) {
7547   unsigned RtIndex = Load || !Writeback ? 0 : 1;
7548   unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
7549   unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
7550 
7551   if (ARMMode) {
7552     // Rt can't be R14.
7553     if (Rt == 14)
7554       return Error(Operands[3]->getStartLoc(),
7555                   "Rt can't be R14");
7556 
7557     // Rt must be even-numbered.
7558     if ((Rt & 1) == 1)
7559       return Error(Operands[3]->getStartLoc(),
7560                    "Rt must be even-numbered");
7561 
7562     // Rt2 must be Rt + 1.
7563     if (Rt2 != Rt + 1) {
7564       if (Load)
7565         return Error(Operands[3]->getStartLoc(),
7566                      "destination operands must be sequential");
7567       else
7568         return Error(Operands[3]->getStartLoc(),
7569                      "source operands must be sequential");
7570     }
7571 
7572     // FIXME: Diagnose m == 15
7573     // FIXME: Diagnose ldrd with m == t || m == t2.
7574   }
7575 
7576   if (!ARMMode && Load) {
7577     if (Rt2 == Rt)
7578       return Error(Operands[3]->getStartLoc(),
7579                    "destination operands can't be identical");
7580   }
7581 
7582   if (Writeback) {
7583     unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
7584 
7585     if (Rn == Rt || Rn == Rt2) {
7586       if (Load)
7587         return Error(Operands[3]->getStartLoc(),
7588                      "base register needs to be different from destination "
7589                      "registers");
7590       else
7591         return Error(Operands[3]->getStartLoc(),
7592                      "source register and base register can't be identical");
7593     }
7594 
7595     // FIXME: Diagnose ldrd/strd with writeback and n == 15.
7596     // (Except the immediate form of ldrd?)
7597   }
7598 
7599   return false;
7600 }
7601 
7602 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) {
7603   for (unsigned i = 0; i < MCID.NumOperands; ++i) {
7604     if (ARM::isVpred(MCID.OpInfo[i].OperandType))
7605       return i;
7606   }
7607   return -1;
7608 }
7609 
7610 static bool isVectorPredicable(const MCInstrDesc &MCID) {
7611   return findFirstVectorPredOperandIdx(MCID) != -1;
7612 }
7613 
7614 // FIXME: We would really like to be able to tablegen'erate this.
7615 bool ARMAsmParser::validateInstruction(MCInst &Inst,
7616                                        const OperandVector &Operands) {
7617   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
7618   SMLoc Loc = Operands[0]->getStartLoc();
7619 
7620   // Check the IT block state first.
7621   // NOTE: BKPT and HLT instructions have the interesting property of being
7622   // allowed in IT blocks, but not being predicable. They just always execute.
7623   if (inITBlock() && !instIsBreakpoint(Inst)) {
7624     // The instruction must be predicable.
7625     if (!MCID.isPredicable())
7626       return Error(Loc, "instructions in IT block must be predicable");
7627     ARMCC::CondCodes Cond = ARMCC::CondCodes(
7628         Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
7629     if (Cond != currentITCond()) {
7630       // Find the condition code Operand to get its SMLoc information.
7631       SMLoc CondLoc;
7632       for (unsigned I = 1; I < Operands.size(); ++I)
7633         if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
7634           CondLoc = Operands[I]->getStartLoc();
7635       return Error(CondLoc, "incorrect condition in IT block; got '" +
7636                                 StringRef(ARMCondCodeToString(Cond)) +
7637                                 "', but expected '" +
7638                                 ARMCondCodeToString(currentITCond()) + "'");
7639     }
7640   // Check for non-'al' condition codes outside of the IT block.
7641   } else if (isThumbTwo() && MCID.isPredicable() &&
7642              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7643              ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
7644              Inst.getOpcode() != ARM::t2Bcc &&
7645              Inst.getOpcode() != ARM::t2BFic) {
7646     return Error(Loc, "predicated instructions must be in IT block");
7647   } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
7648              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7649                  ARMCC::AL) {
7650     return Warning(Loc, "predicated instructions should be in IT block");
7651   } else if (!MCID.isPredicable()) {
7652     // Check the instruction doesn't have a predicate operand anyway
7653     // that it's not allowed to use. Sometimes this happens in order
7654     // to keep instructions the same shape even though one cannot
7655     // legally be predicated, e.g. vmul.f16 vs vmul.f32.
7656     for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
7657       if (MCID.OpInfo[i].isPredicate()) {
7658         if (Inst.getOperand(i).getImm() != ARMCC::AL)
7659           return Error(Loc, "instruction is not predicable");
7660         break;
7661       }
7662     }
7663   }
7664 
7665   // PC-setting instructions in an IT block, but not the last instruction of
7666   // the block, are UNPREDICTABLE.
7667   if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
7668     return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
7669   }
7670 
7671   if (inVPTBlock() && !instIsBreakpoint(Inst)) {
7672     unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition);
7673     if (!isVectorPredicable(MCID))
7674       return Error(Loc, "instruction in VPT block must be predicable");
7675     unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm();
7676     unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then;
7677     if (Pred != VPTPred) {
7678       SMLoc PredLoc;
7679       for (unsigned I = 1; I < Operands.size(); ++I)
7680         if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7681           PredLoc = Operands[I]->getStartLoc();
7682       return Error(PredLoc, "incorrect predication in VPT block; got '" +
7683                    StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) +
7684                    "', but expected '" +
7685                    ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'");
7686     }
7687   }
7688   else if (isVectorPredicable(MCID) &&
7689            Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() !=
7690            ARMVCC::None)
7691     return Error(Loc, "VPT predicated instructions must be in VPT block");
7692 
7693   const unsigned Opcode = Inst.getOpcode();
7694   switch (Opcode) {
7695   case ARM::t2IT: {
7696     // Encoding is unpredictable if it ever results in a notional 'NV'
7697     // predicate. Since we don't parse 'NV' directly this means an 'AL'
7698     // predicate with an "else" mask bit.
7699     unsigned Cond = Inst.getOperand(0).getImm();
7700     unsigned Mask = Inst.getOperand(1).getImm();
7701 
7702     // Conditions only allowing a 't' are those with no set bit except
7703     // the lowest-order one that indicates the end of the sequence. In
7704     // other words, powers of 2.
7705     if (Cond == ARMCC::AL && countPopulation(Mask) != 1)
7706       return Error(Loc, "unpredictable IT predicate sequence");
7707     break;
7708   }
7709   case ARM::LDRD:
7710     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7711                          /*Writeback*/false))
7712       return true;
7713     break;
7714   case ARM::LDRD_PRE:
7715   case ARM::LDRD_POST:
7716     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7717                          /*Writeback*/true))
7718       return true;
7719     break;
7720   case ARM::t2LDRDi8:
7721     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7722                          /*Writeback*/false))
7723       return true;
7724     break;
7725   case ARM::t2LDRD_PRE:
7726   case ARM::t2LDRD_POST:
7727     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7728                          /*Writeback*/true))
7729       return true;
7730     break;
7731   case ARM::t2BXJ: {
7732     const unsigned RmReg = Inst.getOperand(0).getReg();
7733     // Rm = SP is no longer unpredictable in v8-A
7734     if (RmReg == ARM::SP && !hasV8Ops())
7735       return Error(Operands[2]->getStartLoc(),
7736                    "r13 (SP) is an unpredictable operand to BXJ");
7737     return false;
7738   }
7739   case ARM::STRD:
7740     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7741                          /*Writeback*/false))
7742       return true;
7743     break;
7744   case ARM::STRD_PRE:
7745   case ARM::STRD_POST:
7746     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7747                          /*Writeback*/true))
7748       return true;
7749     break;
7750   case ARM::t2STRD_PRE:
7751   case ARM::t2STRD_POST:
7752     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
7753                          /*Writeback*/true))
7754       return true;
7755     break;
7756   case ARM::STR_PRE_IMM:
7757   case ARM::STR_PRE_REG:
7758   case ARM::t2STR_PRE:
7759   case ARM::STR_POST_IMM:
7760   case ARM::STR_POST_REG:
7761   case ARM::t2STR_POST:
7762   case ARM::STRH_PRE:
7763   case ARM::t2STRH_PRE:
7764   case ARM::STRH_POST:
7765   case ARM::t2STRH_POST:
7766   case ARM::STRB_PRE_IMM:
7767   case ARM::STRB_PRE_REG:
7768   case ARM::t2STRB_PRE:
7769   case ARM::STRB_POST_IMM:
7770   case ARM::STRB_POST_REG:
7771   case ARM::t2STRB_POST: {
7772     // Rt must be different from Rn.
7773     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7774     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7775 
7776     if (Rt == Rn)
7777       return Error(Operands[3]->getStartLoc(),
7778                    "source register and base register can't be identical");
7779     return false;
7780   }
7781   case ARM::t2LDR_PRE_imm:
7782   case ARM::t2LDR_POST_imm:
7783   case ARM::t2STR_PRE_imm:
7784   case ARM::t2STR_POST_imm: {
7785     // Rt must be different from Rn.
7786     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7787     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7788 
7789     if (Rt == Rn)
7790       return Error(Operands[3]->getStartLoc(),
7791                    "destination register and base register can't be identical");
7792     if (Inst.getOpcode() == ARM::t2LDR_POST_imm ||
7793         Inst.getOpcode() == ARM::t2STR_POST_imm) {
7794       int Imm = Inst.getOperand(2).getImm();
7795       if (Imm > 255 || Imm < -255)
7796         return Error(Operands[5]->getStartLoc(),
7797                      "operand must be in range [-255, 255]");
7798     }
7799     if (Inst.getOpcode() == ARM::t2STR_PRE_imm ||
7800         Inst.getOpcode() == ARM::t2STR_POST_imm) {
7801       if (Inst.getOperand(0).getReg() == ARM::PC) {
7802         return Error(Operands[3]->getStartLoc(),
7803                      "operand must be a register in range [r0, r14]");
7804       }
7805     }
7806     return false;
7807   }
7808   case ARM::LDR_PRE_IMM:
7809   case ARM::LDR_PRE_REG:
7810   case ARM::t2LDR_PRE:
7811   case ARM::LDR_POST_IMM:
7812   case ARM::LDR_POST_REG:
7813   case ARM::t2LDR_POST:
7814   case ARM::LDRH_PRE:
7815   case ARM::t2LDRH_PRE:
7816   case ARM::LDRH_POST:
7817   case ARM::t2LDRH_POST:
7818   case ARM::LDRSH_PRE:
7819   case ARM::t2LDRSH_PRE:
7820   case ARM::LDRSH_POST:
7821   case ARM::t2LDRSH_POST:
7822   case ARM::LDRB_PRE_IMM:
7823   case ARM::LDRB_PRE_REG:
7824   case ARM::t2LDRB_PRE:
7825   case ARM::LDRB_POST_IMM:
7826   case ARM::LDRB_POST_REG:
7827   case ARM::t2LDRB_POST:
7828   case ARM::LDRSB_PRE:
7829   case ARM::t2LDRSB_PRE:
7830   case ARM::LDRSB_POST:
7831   case ARM::t2LDRSB_POST: {
7832     // Rt must be different from Rn.
7833     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7834     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7835 
7836     if (Rt == Rn)
7837       return Error(Operands[3]->getStartLoc(),
7838                    "destination register and base register can't be identical");
7839     return false;
7840   }
7841 
7842   case ARM::MVE_VLDRBU8_rq:
7843   case ARM::MVE_VLDRBU16_rq:
7844   case ARM::MVE_VLDRBS16_rq:
7845   case ARM::MVE_VLDRBU32_rq:
7846   case ARM::MVE_VLDRBS32_rq:
7847   case ARM::MVE_VLDRHU16_rq:
7848   case ARM::MVE_VLDRHU16_rq_u:
7849   case ARM::MVE_VLDRHU32_rq:
7850   case ARM::MVE_VLDRHU32_rq_u:
7851   case ARM::MVE_VLDRHS32_rq:
7852   case ARM::MVE_VLDRHS32_rq_u:
7853   case ARM::MVE_VLDRWU32_rq:
7854   case ARM::MVE_VLDRWU32_rq_u:
7855   case ARM::MVE_VLDRDU64_rq:
7856   case ARM::MVE_VLDRDU64_rq_u:
7857   case ARM::MVE_VLDRWU32_qi:
7858   case ARM::MVE_VLDRWU32_qi_pre:
7859   case ARM::MVE_VLDRDU64_qi:
7860   case ARM::MVE_VLDRDU64_qi_pre: {
7861     // Qd must be different from Qm.
7862     unsigned QdIdx = 0, QmIdx = 2;
7863     bool QmIsPointer = false;
7864     switch (Opcode) {
7865     case ARM::MVE_VLDRWU32_qi:
7866     case ARM::MVE_VLDRDU64_qi:
7867       QmIdx = 1;
7868       QmIsPointer = true;
7869       break;
7870     case ARM::MVE_VLDRWU32_qi_pre:
7871     case ARM::MVE_VLDRDU64_qi_pre:
7872       QdIdx = 1;
7873       QmIsPointer = true;
7874       break;
7875     }
7876 
7877     const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg());
7878     const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg());
7879 
7880     if (Qd == Qm) {
7881       return Error(Operands[3]->getStartLoc(),
7882                    Twine("destination vector register and vector ") +
7883                    (QmIsPointer ? "pointer" : "offset") +
7884                    " register can't be identical");
7885     }
7886     return false;
7887   }
7888 
7889   case ARM::SBFX:
7890   case ARM::t2SBFX:
7891   case ARM::UBFX:
7892   case ARM::t2UBFX: {
7893     // Width must be in range [1, 32-lsb].
7894     unsigned LSB = Inst.getOperand(2).getImm();
7895     unsigned Widthm1 = Inst.getOperand(3).getImm();
7896     if (Widthm1 >= 32 - LSB)
7897       return Error(Operands[5]->getStartLoc(),
7898                    "bitfield width must be in range [1,32-lsb]");
7899     return false;
7900   }
7901   // Notionally handles ARM::tLDMIA_UPD too.
7902   case ARM::tLDMIA: {
7903     // If we're parsing Thumb2, the .w variant is available and handles
7904     // most cases that are normally illegal for a Thumb1 LDM instruction.
7905     // We'll make the transformation in processInstruction() if necessary.
7906     //
7907     // Thumb LDM instructions are writeback iff the base register is not
7908     // in the register list.
7909     unsigned Rn = Inst.getOperand(0).getReg();
7910     bool HasWritebackToken =
7911         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
7912          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
7913     bool ListContainsBase;
7914     if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
7915       return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
7916                    "registers must be in range r0-r7");
7917     // If we should have writeback, then there should be a '!' token.
7918     if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
7919       return Error(Operands[2]->getStartLoc(),
7920                    "writeback operator '!' expected");
7921     // If we should not have writeback, there must not be a '!'. This is
7922     // true even for the 32-bit wide encodings.
7923     if (ListContainsBase && HasWritebackToken)
7924       return Error(Operands[3]->getStartLoc(),
7925                    "writeback operator '!' not allowed when base register "
7926                    "in register list");
7927 
7928     if (validatetLDMRegList(Inst, Operands, 3))
7929       return true;
7930     break;
7931   }
7932   case ARM::LDMIA_UPD:
7933   case ARM::LDMDB_UPD:
7934   case ARM::LDMIB_UPD:
7935   case ARM::LDMDA_UPD:
7936     // ARM variants loading and updating the same register are only officially
7937     // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
7938     if (!hasV7Ops())
7939       break;
7940     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7941       return Error(Operands.back()->getStartLoc(),
7942                    "writeback register not allowed in register list");
7943     break;
7944   case ARM::t2LDMIA:
7945   case ARM::t2LDMDB:
7946     if (validatetLDMRegList(Inst, Operands, 3))
7947       return true;
7948     break;
7949   case ARM::t2STMIA:
7950   case ARM::t2STMDB:
7951     if (validatetSTMRegList(Inst, Operands, 3))
7952       return true;
7953     break;
7954   case ARM::t2LDMIA_UPD:
7955   case ARM::t2LDMDB_UPD:
7956   case ARM::t2STMIA_UPD:
7957   case ARM::t2STMDB_UPD:
7958     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7959       return Error(Operands.back()->getStartLoc(),
7960                    "writeback register not allowed in register list");
7961 
7962     if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
7963       if (validatetLDMRegList(Inst, Operands, 3))
7964         return true;
7965     } else {
7966       if (validatetSTMRegList(Inst, Operands, 3))
7967         return true;
7968     }
7969     break;
7970 
7971   case ARM::sysLDMIA_UPD:
7972   case ARM::sysLDMDA_UPD:
7973   case ARM::sysLDMDB_UPD:
7974   case ARM::sysLDMIB_UPD:
7975     if (!listContainsReg(Inst, 3, ARM::PC))
7976       return Error(Operands[4]->getStartLoc(),
7977                    "writeback register only allowed on system LDM "
7978                    "if PC in register-list");
7979     break;
7980   case ARM::sysSTMIA_UPD:
7981   case ARM::sysSTMDA_UPD:
7982   case ARM::sysSTMDB_UPD:
7983   case ARM::sysSTMIB_UPD:
7984     return Error(Operands[2]->getStartLoc(),
7985                  "system STM cannot have writeback register");
7986   case ARM::tMUL:
7987     // The second source operand must be the same register as the destination
7988     // operand.
7989     //
7990     // In this case, we must directly check the parsed operands because the
7991     // cvtThumbMultiply() function is written in such a way that it guarantees
7992     // this first statement is always true for the new Inst.  Essentially, the
7993     // destination is unconditionally copied into the second source operand
7994     // without checking to see if it matches what we actually parsed.
7995     if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
7996                                  ((ARMOperand &)*Operands[5]).getReg()) &&
7997         (((ARMOperand &)*Operands[3]).getReg() !=
7998          ((ARMOperand &)*Operands[4]).getReg())) {
7999       return Error(Operands[3]->getStartLoc(),
8000                    "destination register must match source register");
8001     }
8002     break;
8003 
8004   // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
8005   // so only issue a diagnostic for thumb1. The instructions will be
8006   // switched to the t2 encodings in processInstruction() if necessary.
8007   case ARM::tPOP: {
8008     bool ListContainsBase;
8009     if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
8010         !isThumbTwo())
8011       return Error(Operands[2]->getStartLoc(),
8012                    "registers must be in range r0-r7 or pc");
8013     if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
8014       return true;
8015     break;
8016   }
8017   case ARM::tPUSH: {
8018     bool ListContainsBase;
8019     if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
8020         !isThumbTwo())
8021       return Error(Operands[2]->getStartLoc(),
8022                    "registers must be in range r0-r7 or lr");
8023     if (validatetSTMRegList(Inst, Operands, 2))
8024       return true;
8025     break;
8026   }
8027   case ARM::tSTMIA_UPD: {
8028     bool ListContainsBase, InvalidLowList;
8029     InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
8030                                           0, ListContainsBase);
8031     if (InvalidLowList && !isThumbTwo())
8032       return Error(Operands[4]->getStartLoc(),
8033                    "registers must be in range r0-r7");
8034 
8035     // This would be converted to a 32-bit stm, but that's not valid if the
8036     // writeback register is in the list.
8037     if (InvalidLowList && ListContainsBase)
8038       return Error(Operands[4]->getStartLoc(),
8039                    "writeback operator '!' not allowed when base register "
8040                    "in register list");
8041 
8042     if (validatetSTMRegList(Inst, Operands, 4))
8043       return true;
8044     break;
8045   }
8046   case ARM::tADDrSP:
8047     // If the non-SP source operand and the destination operand are not the
8048     // same, we need thumb2 (for the wide encoding), or we have an error.
8049     if (!isThumbTwo() &&
8050         Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
8051       return Error(Operands[4]->getStartLoc(),
8052                    "source register must be the same as destination");
8053     }
8054     break;
8055 
8056   case ARM::t2ADDrr:
8057   case ARM::t2ADDrs:
8058   case ARM::t2SUBrr:
8059   case ARM::t2SUBrs:
8060     if (Inst.getOperand(0).getReg() == ARM::SP &&
8061         Inst.getOperand(1).getReg() != ARM::SP)
8062       return Error(Operands[4]->getStartLoc(),
8063                    "source register must be sp if destination is sp");
8064     break;
8065 
8066   // Final range checking for Thumb unconditional branch instructions.
8067   case ARM::tB:
8068     if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
8069       return Error(Operands[2]->getStartLoc(), "branch target out of range");
8070     break;
8071   case ARM::t2B: {
8072     int op = (Operands[2]->isImm()) ? 2 : 3;
8073     ARMOperand &Operand = static_cast<ARMOperand &>(*Operands[op]);
8074     // Delay the checks of symbolic expressions until they are resolved.
8075     if (!isa<MCBinaryExpr>(Operand.getImm()) &&
8076         !Operand.isSignedOffset<24, 1>())
8077       return Error(Operands[op]->getStartLoc(), "branch target out of range");
8078     break;
8079   }
8080   // Final range checking for Thumb conditional branch instructions.
8081   case ARM::tBcc:
8082     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
8083       return Error(Operands[2]->getStartLoc(), "branch target out of range");
8084     break;
8085   case ARM::t2Bcc: {
8086     int Op = (Operands[2]->isImm()) ? 2 : 3;
8087     if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
8088       return Error(Operands[Op]->getStartLoc(), "branch target out of range");
8089     break;
8090   }
8091   case ARM::tCBZ:
8092   case ARM::tCBNZ: {
8093     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
8094       return Error(Operands[2]->getStartLoc(), "branch target out of range");
8095     break;
8096   }
8097   case ARM::MOVi16:
8098   case ARM::MOVTi16:
8099   case ARM::t2MOVi16:
8100   case ARM::t2MOVTi16:
8101     {
8102     // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
8103     // especially when we turn it into a movw and the expression <symbol> does
8104     // not have a :lower16: or :upper16 as part of the expression.  We don't
8105     // want the behavior of silently truncating, which can be unexpected and
8106     // lead to bugs that are difficult to find since this is an easy mistake
8107     // to make.
8108     int i = (Operands[3]->isImm()) ? 3 : 4;
8109     ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
8110     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
8111     if (CE) break;
8112     const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
8113     if (!E) break;
8114     const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
8115     if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
8116                        ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
8117       return Error(
8118           Op.getStartLoc(),
8119           "immediate expression for mov requires :lower16: or :upper16");
8120     break;
8121   }
8122   case ARM::HINT:
8123   case ARM::t2HINT: {
8124     unsigned Imm8 = Inst.getOperand(0).getImm();
8125     unsigned Pred = Inst.getOperand(1).getImm();
8126     // ESB is not predicable (pred must be AL). Without the RAS extension, this
8127     // behaves as any other unallocated hint.
8128     if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
8129       return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
8130                                                "predicable, but condition "
8131                                                "code specified");
8132     if (Imm8 == 0x14 && Pred != ARMCC::AL)
8133       return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
8134                                                "predicable, but condition "
8135                                                "code specified");
8136     break;
8137   }
8138   case ARM::t2BFi:
8139   case ARM::t2BFr:
8140   case ARM::t2BFLi:
8141   case ARM::t2BFLr: {
8142     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() ||
8143         (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
8144       return Error(Operands[2]->getStartLoc(),
8145                    "branch location out of range or not a multiple of 2");
8146 
8147     if (Opcode == ARM::t2BFi) {
8148       if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>())
8149         return Error(Operands[3]->getStartLoc(),
8150                      "branch target out of range or not a multiple of 2");
8151     } else if (Opcode == ARM::t2BFLi) {
8152       if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>())
8153         return Error(Operands[3]->getStartLoc(),
8154                      "branch target out of range or not a multiple of 2");
8155     }
8156     break;
8157   }
8158   case ARM::t2BFic: {
8159     if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() ||
8160         (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
8161       return Error(Operands[1]->getStartLoc(),
8162                    "branch location out of range or not a multiple of 2");
8163 
8164     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>())
8165       return Error(Operands[2]->getStartLoc(),
8166                    "branch target out of range or not a multiple of 2");
8167 
8168     assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() &&
8169            "branch location and else branch target should either both be "
8170            "immediates or both labels");
8171 
8172     if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) {
8173       int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm();
8174       if (Diff != 4 && Diff != 2)
8175         return Error(
8176             Operands[3]->getStartLoc(),
8177             "else branch target must be 2 or 4 greater than the branch location");
8178     }
8179     break;
8180   }
8181   case ARM::t2CLRM: {
8182     for (unsigned i = 2; i < Inst.getNumOperands(); i++) {
8183       if (Inst.getOperand(i).isReg() &&
8184           !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(
8185               Inst.getOperand(i).getReg())) {
8186         return Error(Operands[2]->getStartLoc(),
8187                      "invalid register in register list. Valid registers are "
8188                      "r0-r12, lr/r14 and APSR.");
8189       }
8190     }
8191     break;
8192   }
8193   case ARM::DSB:
8194   case ARM::t2DSB: {
8195 
8196     if (Inst.getNumOperands() < 2)
8197       break;
8198 
8199     unsigned Option = Inst.getOperand(0).getImm();
8200     unsigned Pred = Inst.getOperand(1).getImm();
8201 
8202     // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
8203     if (Option == 0 && Pred != ARMCC::AL)
8204       return Error(Operands[1]->getStartLoc(),
8205                    "instruction 'ssbb' is not predicable, but condition code "
8206                    "specified");
8207     if (Option == 4 && Pred != ARMCC::AL)
8208       return Error(Operands[1]->getStartLoc(),
8209                    "instruction 'pssbb' is not predicable, but condition code "
8210                    "specified");
8211     break;
8212   }
8213   case ARM::VMOVRRS: {
8214     // Source registers must be sequential.
8215     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
8216     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
8217     if (Sm1 != Sm + 1)
8218       return Error(Operands[5]->getStartLoc(),
8219                    "source operands must be sequential");
8220     break;
8221   }
8222   case ARM::VMOVSRR: {
8223     // Destination registers must be sequential.
8224     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
8225     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
8226     if (Sm1 != Sm + 1)
8227       return Error(Operands[3]->getStartLoc(),
8228                    "destination operands must be sequential");
8229     break;
8230   }
8231   case ARM::VLDMDIA:
8232   case ARM::VSTMDIA: {
8233     ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
8234     auto &RegList = Op.getRegList();
8235     if (RegList.size() < 1 || RegList.size() > 16)
8236       return Error(Operands[3]->getStartLoc(),
8237                    "list of registers must be at least 1 and at most 16");
8238     break;
8239   }
8240   case ARM::MVE_VQDMULLs32bh:
8241   case ARM::MVE_VQDMULLs32th:
8242   case ARM::MVE_VCMULf32:
8243   case ARM::MVE_VMULLBs32:
8244   case ARM::MVE_VMULLTs32:
8245   case ARM::MVE_VMULLBu32:
8246   case ARM::MVE_VMULLTu32: {
8247     if (Operands[3]->getReg() == Operands[4]->getReg()) {
8248       return Error (Operands[3]->getStartLoc(),
8249                     "Qd register and Qn register can't be identical");
8250     }
8251     if (Operands[3]->getReg() == Operands[5]->getReg()) {
8252       return Error (Operands[3]->getStartLoc(),
8253                     "Qd register and Qm register can't be identical");
8254     }
8255     break;
8256   }
8257   case ARM::MVE_VMOV_rr_q: {
8258     if (Operands[4]->getReg() != Operands[6]->getReg())
8259       return Error (Operands[4]->getStartLoc(), "Q-registers must be the same");
8260     if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() !=
8261         static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2)
8262       return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
8263     break;
8264   }
8265   case ARM::MVE_VMOV_q_rr: {
8266     if (Operands[2]->getReg() != Operands[4]->getReg())
8267       return Error (Operands[2]->getStartLoc(), "Q-registers must be the same");
8268     if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() !=
8269         static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2)
8270       return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
8271     break;
8272   }
8273   case ARM::UMAAL:
8274   case ARM::UMLAL:
8275   case ARM::UMULL:
8276   case ARM::t2UMAAL:
8277   case ARM::t2UMLAL:
8278   case ARM::t2UMULL:
8279   case ARM::SMLAL:
8280   case ARM::SMLALBB:
8281   case ARM::SMLALBT:
8282   case ARM::SMLALD:
8283   case ARM::SMLALDX:
8284   case ARM::SMLALTB:
8285   case ARM::SMLALTT:
8286   case ARM::SMLSLD:
8287   case ARM::SMLSLDX:
8288   case ARM::SMULL:
8289   case ARM::t2SMLAL:
8290   case ARM::t2SMLALBB:
8291   case ARM::t2SMLALBT:
8292   case ARM::t2SMLALD:
8293   case ARM::t2SMLALDX:
8294   case ARM::t2SMLALTB:
8295   case ARM::t2SMLALTT:
8296   case ARM::t2SMLSLD:
8297   case ARM::t2SMLSLDX:
8298   case ARM::t2SMULL: {
8299     unsigned RdHi = Inst.getOperand(0).getReg();
8300     unsigned RdLo = Inst.getOperand(1).getReg();
8301     if(RdHi == RdLo) {
8302       return Error(Loc,
8303                    "unpredictable instruction, RdHi and RdLo must be different");
8304     }
8305     break;
8306   }
8307 
8308   case ARM::CDE_CX1:
8309   case ARM::CDE_CX1A:
8310   case ARM::CDE_CX1D:
8311   case ARM::CDE_CX1DA:
8312   case ARM::CDE_CX2:
8313   case ARM::CDE_CX2A:
8314   case ARM::CDE_CX2D:
8315   case ARM::CDE_CX2DA:
8316   case ARM::CDE_CX3:
8317   case ARM::CDE_CX3A:
8318   case ARM::CDE_CX3D:
8319   case ARM::CDE_CX3DA:
8320   case ARM::CDE_VCX1_vec:
8321   case ARM::CDE_VCX1_fpsp:
8322   case ARM::CDE_VCX1_fpdp:
8323   case ARM::CDE_VCX1A_vec:
8324   case ARM::CDE_VCX1A_fpsp:
8325   case ARM::CDE_VCX1A_fpdp:
8326   case ARM::CDE_VCX2_vec:
8327   case ARM::CDE_VCX2_fpsp:
8328   case ARM::CDE_VCX2_fpdp:
8329   case ARM::CDE_VCX2A_vec:
8330   case ARM::CDE_VCX2A_fpsp:
8331   case ARM::CDE_VCX2A_fpdp:
8332   case ARM::CDE_VCX3_vec:
8333   case ARM::CDE_VCX3_fpsp:
8334   case ARM::CDE_VCX3_fpdp:
8335   case ARM::CDE_VCX3A_vec:
8336   case ARM::CDE_VCX3A_fpsp:
8337   case ARM::CDE_VCX3A_fpdp: {
8338     assert(Inst.getOperand(1).isImm() &&
8339            "CDE operand 1 must be a coprocessor ID");
8340     int64_t Coproc = Inst.getOperand(1).getImm();
8341     if (Coproc < 8 && !ARM::isCDECoproc(Coproc, *STI))
8342       return Error(Operands[1]->getStartLoc(),
8343                    "coprocessor must be configured as CDE");
8344     else if (Coproc >= 8)
8345       return Error(Operands[1]->getStartLoc(),
8346                    "coprocessor must be in the range [p0, p7]");
8347     break;
8348   }
8349 
8350   case ARM::t2CDP:
8351   case ARM::t2CDP2:
8352   case ARM::t2LDC2L_OFFSET:
8353   case ARM::t2LDC2L_OPTION:
8354   case ARM::t2LDC2L_POST:
8355   case ARM::t2LDC2L_PRE:
8356   case ARM::t2LDC2_OFFSET:
8357   case ARM::t2LDC2_OPTION:
8358   case ARM::t2LDC2_POST:
8359   case ARM::t2LDC2_PRE:
8360   case ARM::t2LDCL_OFFSET:
8361   case ARM::t2LDCL_OPTION:
8362   case ARM::t2LDCL_POST:
8363   case ARM::t2LDCL_PRE:
8364   case ARM::t2LDC_OFFSET:
8365   case ARM::t2LDC_OPTION:
8366   case ARM::t2LDC_POST:
8367   case ARM::t2LDC_PRE:
8368   case ARM::t2MCR:
8369   case ARM::t2MCR2:
8370   case ARM::t2MCRR:
8371   case ARM::t2MCRR2:
8372   case ARM::t2MRC:
8373   case ARM::t2MRC2:
8374   case ARM::t2MRRC:
8375   case ARM::t2MRRC2:
8376   case ARM::t2STC2L_OFFSET:
8377   case ARM::t2STC2L_OPTION:
8378   case ARM::t2STC2L_POST:
8379   case ARM::t2STC2L_PRE:
8380   case ARM::t2STC2_OFFSET:
8381   case ARM::t2STC2_OPTION:
8382   case ARM::t2STC2_POST:
8383   case ARM::t2STC2_PRE:
8384   case ARM::t2STCL_OFFSET:
8385   case ARM::t2STCL_OPTION:
8386   case ARM::t2STCL_POST:
8387   case ARM::t2STCL_PRE:
8388   case ARM::t2STC_OFFSET:
8389   case ARM::t2STC_OPTION:
8390   case ARM::t2STC_POST:
8391   case ARM::t2STC_PRE: {
8392     unsigned Opcode = Inst.getOpcode();
8393     // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags,
8394     // CopInd is the index of the coprocessor operand.
8395     size_t CopInd = 0;
8396     if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2)
8397       CopInd = 2;
8398     else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2)
8399       CopInd = 1;
8400     assert(Inst.getOperand(CopInd).isImm() &&
8401            "Operand must be a coprocessor ID");
8402     int64_t Coproc = Inst.getOperand(CopInd).getImm();
8403     // Operands[2] is the coprocessor operand at syntactic level
8404     if (ARM::isCDECoproc(Coproc, *STI))
8405       return Error(Operands[2]->getStartLoc(),
8406                    "coprocessor must be configured as GCP");
8407     break;
8408   }
8409   }
8410 
8411   return false;
8412 }
8413 
8414 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
8415   switch(Opc) {
8416   default: llvm_unreachable("unexpected opcode!");
8417   // VST1LN
8418   case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
8419   case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
8420   case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
8421   case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
8422   case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
8423   case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
8424   case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
8425   case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
8426   case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
8427 
8428   // VST2LN
8429   case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
8430   case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
8431   case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
8432   case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
8433   case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
8434 
8435   case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
8436   case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
8437   case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
8438   case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
8439   case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
8440 
8441   case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
8442   case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
8443   case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
8444   case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
8445   case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
8446 
8447   // VST3LN
8448   case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
8449   case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
8450   case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
8451   case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
8452   case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
8453   case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
8454   case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
8455   case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
8456   case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
8457   case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
8458   case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
8459   case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
8460   case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
8461   case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
8462   case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
8463 
8464   // VST3
8465   case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
8466   case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
8467   case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
8468   case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
8469   case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
8470   case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
8471   case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
8472   case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
8473   case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
8474   case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
8475   case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
8476   case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
8477   case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
8478   case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
8479   case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
8480   case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
8481   case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
8482   case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
8483 
8484   // VST4LN
8485   case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
8486   case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8487   case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8488   case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
8489   case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8490   case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
8491   case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8492   case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8493   case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
8494   case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8495   case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
8496   case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
8497   case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
8498   case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
8499   case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
8500 
8501   // VST4
8502   case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
8503   case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8504   case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8505   case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
8506   case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8507   case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8508   case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
8509   case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8510   case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8511   case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
8512   case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8513   case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8514   case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
8515   case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
8516   case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
8517   case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
8518   case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
8519   case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
8520   }
8521 }
8522 
8523 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
8524   switch(Opc) {
8525   default: llvm_unreachable("unexpected opcode!");
8526   // VLD1LN
8527   case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
8528   case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8529   case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8530   case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
8531   case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8532   case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8533   case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
8534   case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
8535   case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
8536 
8537   // VLD2LN
8538   case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
8539   case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8540   case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8541   case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
8542   case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8543   case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
8544   case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8545   case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8546   case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
8547   case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8548   case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
8549   case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
8550   case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
8551   case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
8552   case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
8553 
8554   // VLD3DUP
8555   case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
8556   case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8557   case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8558   case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
8559   case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8560   case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8561   case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
8562   case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8563   case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8564   case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
8565   case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8566   case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8567   case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
8568   case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
8569   case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
8570   case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
8571   case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
8572   case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
8573 
8574   // VLD3LN
8575   case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
8576   case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8577   case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8578   case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
8579   case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8580   case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
8581   case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8582   case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8583   case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
8584   case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8585   case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
8586   case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
8587   case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
8588   case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
8589   case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
8590 
8591   // VLD3
8592   case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
8593   case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8594   case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8595   case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
8596   case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8597   case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8598   case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
8599   case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8600   case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8601   case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
8602   case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8603   case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8604   case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
8605   case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
8606   case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
8607   case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
8608   case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
8609   case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
8610 
8611   // VLD4LN
8612   case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
8613   case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8614   case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8615   case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8616   case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8617   case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
8618   case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8619   case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8620   case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8621   case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8622   case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
8623   case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
8624   case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
8625   case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
8626   case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
8627 
8628   // VLD4DUP
8629   case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
8630   case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8631   case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8632   case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
8633   case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
8634   case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8635   case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
8636   case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8637   case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8638   case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
8639   case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
8640   case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8641   case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
8642   case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
8643   case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
8644   case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
8645   case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
8646   case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
8647 
8648   // VLD4
8649   case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
8650   case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8651   case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8652   case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
8653   case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8654   case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8655   case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
8656   case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8657   case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8658   case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
8659   case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8660   case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8661   case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
8662   case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
8663   case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
8664   case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
8665   case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
8666   case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
8667   }
8668 }
8669 
8670 bool ARMAsmParser::processInstruction(MCInst &Inst,
8671                                       const OperandVector &Operands,
8672                                       MCStreamer &Out) {
8673   // Check if we have the wide qualifier, because if it's present we
8674   // must avoid selecting a 16-bit thumb instruction.
8675   bool HasWideQualifier = false;
8676   for (auto &Op : Operands) {
8677     ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
8678     if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
8679       HasWideQualifier = true;
8680       break;
8681     }
8682   }
8683 
8684   switch (Inst.getOpcode()) {
8685   // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
8686   case ARM::LDRT_POST:
8687   case ARM::LDRBT_POST: {
8688     const unsigned Opcode =
8689       (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
8690                                            : ARM::LDRBT_POST_IMM;
8691     MCInst TmpInst;
8692     TmpInst.setOpcode(Opcode);
8693     TmpInst.addOperand(Inst.getOperand(0));
8694     TmpInst.addOperand(Inst.getOperand(1));
8695     TmpInst.addOperand(Inst.getOperand(1));
8696     TmpInst.addOperand(MCOperand::createReg(0));
8697     TmpInst.addOperand(MCOperand::createImm(0));
8698     TmpInst.addOperand(Inst.getOperand(2));
8699     TmpInst.addOperand(Inst.getOperand(3));
8700     Inst = TmpInst;
8701     return true;
8702   }
8703   // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate.
8704   case ARM::LDRSBTii:
8705   case ARM::LDRHTii:
8706   case ARM::LDRSHTii: {
8707     MCInst TmpInst;
8708 
8709     if (Inst.getOpcode() == ARM::LDRSBTii)
8710       TmpInst.setOpcode(ARM::LDRSBTi);
8711     else if (Inst.getOpcode() == ARM::LDRHTii)
8712       TmpInst.setOpcode(ARM::LDRHTi);
8713     else if (Inst.getOpcode() == ARM::LDRSHTii)
8714       TmpInst.setOpcode(ARM::LDRSHTi);
8715     TmpInst.addOperand(Inst.getOperand(0));
8716     TmpInst.addOperand(Inst.getOperand(1));
8717     TmpInst.addOperand(Inst.getOperand(1));
8718     TmpInst.addOperand(MCOperand::createImm(256));
8719     TmpInst.addOperand(Inst.getOperand(2));
8720     Inst = TmpInst;
8721     return true;
8722   }
8723   // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
8724   case ARM::STRT_POST:
8725   case ARM::STRBT_POST: {
8726     const unsigned Opcode =
8727       (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
8728                                            : ARM::STRBT_POST_IMM;
8729     MCInst TmpInst;
8730     TmpInst.setOpcode(Opcode);
8731     TmpInst.addOperand(Inst.getOperand(1));
8732     TmpInst.addOperand(Inst.getOperand(0));
8733     TmpInst.addOperand(Inst.getOperand(1));
8734     TmpInst.addOperand(MCOperand::createReg(0));
8735     TmpInst.addOperand(MCOperand::createImm(0));
8736     TmpInst.addOperand(Inst.getOperand(2));
8737     TmpInst.addOperand(Inst.getOperand(3));
8738     Inst = TmpInst;
8739     return true;
8740   }
8741   // Alias for alternate form of 'ADR Rd, #imm' instruction.
8742   case ARM::ADDri: {
8743     if (Inst.getOperand(1).getReg() != ARM::PC ||
8744         Inst.getOperand(5).getReg() != 0 ||
8745         !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
8746       return false;
8747     MCInst TmpInst;
8748     TmpInst.setOpcode(ARM::ADR);
8749     TmpInst.addOperand(Inst.getOperand(0));
8750     if (Inst.getOperand(2).isImm()) {
8751       // Immediate (mod_imm) will be in its encoded form, we must unencode it
8752       // before passing it to the ADR instruction.
8753       unsigned Enc = Inst.getOperand(2).getImm();
8754       TmpInst.addOperand(MCOperand::createImm(
8755         ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
8756     } else {
8757       // Turn PC-relative expression into absolute expression.
8758       // Reading PC provides the start of the current instruction + 8 and
8759       // the transform to adr is biased by that.
8760       MCSymbol *Dot = getContext().createTempSymbol();
8761       Out.emitLabel(Dot);
8762       const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
8763       const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
8764                                                      MCSymbolRefExpr::VK_None,
8765                                                      getContext());
8766       const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
8767       const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
8768                                                      getContext());
8769       const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
8770                                                         getContext());
8771       TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
8772     }
8773     TmpInst.addOperand(Inst.getOperand(3));
8774     TmpInst.addOperand(Inst.getOperand(4));
8775     Inst = TmpInst;
8776     return true;
8777   }
8778   // Aliases for imm syntax of LDR instructions.
8779   case ARM::t2LDR_PRE_imm:
8780   case ARM::t2LDR_POST_imm: {
8781     MCInst TmpInst;
8782     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2LDR_PRE_imm ? ARM::t2LDR_PRE
8783                                                              : ARM::t2LDR_POST);
8784     TmpInst.addOperand(Inst.getOperand(0)); // Rt
8785     TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb
8786     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8787     TmpInst.addOperand(Inst.getOperand(2)); // imm
8788     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8789     Inst = TmpInst;
8790     return true;
8791   }
8792   // Aliases for imm syntax of STR instructions.
8793   case ARM::t2STR_PRE_imm:
8794   case ARM::t2STR_POST_imm: {
8795     MCInst TmpInst;
8796     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2STR_PRE_imm ? ARM::t2STR_PRE
8797                                                              : ARM::t2STR_POST);
8798     TmpInst.addOperand(Inst.getOperand(4)); // Rt_wb
8799     TmpInst.addOperand(Inst.getOperand(0)); // Rt
8800     TmpInst.addOperand(Inst.getOperand(1)); // Rn
8801     TmpInst.addOperand(Inst.getOperand(2)); // imm
8802     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8803     Inst = TmpInst;
8804     return true;
8805   }
8806   // Aliases for alternate PC+imm syntax of LDR instructions.
8807   case ARM::t2LDRpcrel:
8808     // Select the narrow version if the immediate will fit.
8809     if (Inst.getOperand(1).getImm() > 0 &&
8810         Inst.getOperand(1).getImm() <= 0xff &&
8811         !HasWideQualifier)
8812       Inst.setOpcode(ARM::tLDRpci);
8813     else
8814       Inst.setOpcode(ARM::t2LDRpci);
8815     return true;
8816   case ARM::t2LDRBpcrel:
8817     Inst.setOpcode(ARM::t2LDRBpci);
8818     return true;
8819   case ARM::t2LDRHpcrel:
8820     Inst.setOpcode(ARM::t2LDRHpci);
8821     return true;
8822   case ARM::t2LDRSBpcrel:
8823     Inst.setOpcode(ARM::t2LDRSBpci);
8824     return true;
8825   case ARM::t2LDRSHpcrel:
8826     Inst.setOpcode(ARM::t2LDRSHpci);
8827     return true;
8828   case ARM::LDRConstPool:
8829   case ARM::tLDRConstPool:
8830   case ARM::t2LDRConstPool: {
8831     // Pseudo instruction ldr rt, =immediate is converted to a
8832     // MOV rt, immediate if immediate is known and representable
8833     // otherwise we create a constant pool entry that we load from.
8834     MCInst TmpInst;
8835     if (Inst.getOpcode() == ARM::LDRConstPool)
8836       TmpInst.setOpcode(ARM::LDRi12);
8837     else if (Inst.getOpcode() == ARM::tLDRConstPool)
8838       TmpInst.setOpcode(ARM::tLDRpci);
8839     else if (Inst.getOpcode() == ARM::t2LDRConstPool)
8840       TmpInst.setOpcode(ARM::t2LDRpci);
8841     const ARMOperand &PoolOperand =
8842       (HasWideQualifier ?
8843        static_cast<ARMOperand &>(*Operands[4]) :
8844        static_cast<ARMOperand &>(*Operands[3]));
8845     const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
8846     // If SubExprVal is a constant we may be able to use a MOV
8847     if (isa<MCConstantExpr>(SubExprVal) &&
8848         Inst.getOperand(0).getReg() != ARM::PC &&
8849         Inst.getOperand(0).getReg() != ARM::SP) {
8850       int64_t Value =
8851         (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
8852       bool UseMov  = true;
8853       bool MovHasS = true;
8854       if (Inst.getOpcode() == ARM::LDRConstPool) {
8855         // ARM Constant
8856         if (ARM_AM::getSOImmVal(Value) != -1) {
8857           Value = ARM_AM::getSOImmVal(Value);
8858           TmpInst.setOpcode(ARM::MOVi);
8859         }
8860         else if (ARM_AM::getSOImmVal(~Value) != -1) {
8861           Value = ARM_AM::getSOImmVal(~Value);
8862           TmpInst.setOpcode(ARM::MVNi);
8863         }
8864         else if (hasV6T2Ops() &&
8865                  Value >=0 && Value < 65536) {
8866           TmpInst.setOpcode(ARM::MOVi16);
8867           MovHasS = false;
8868         }
8869         else
8870           UseMov = false;
8871       }
8872       else {
8873         // Thumb/Thumb2 Constant
8874         if (hasThumb2() &&
8875             ARM_AM::getT2SOImmVal(Value) != -1)
8876           TmpInst.setOpcode(ARM::t2MOVi);
8877         else if (hasThumb2() &&
8878                  ARM_AM::getT2SOImmVal(~Value) != -1) {
8879           TmpInst.setOpcode(ARM::t2MVNi);
8880           Value = ~Value;
8881         }
8882         else if (hasV8MBaseline() &&
8883                  Value >=0 && Value < 65536) {
8884           TmpInst.setOpcode(ARM::t2MOVi16);
8885           MovHasS = false;
8886         }
8887         else
8888           UseMov = false;
8889       }
8890       if (UseMov) {
8891         TmpInst.addOperand(Inst.getOperand(0));           // Rt
8892         TmpInst.addOperand(MCOperand::createImm(Value));  // Immediate
8893         TmpInst.addOperand(Inst.getOperand(2));           // CondCode
8894         TmpInst.addOperand(Inst.getOperand(3));           // CondCode
8895         if (MovHasS)
8896           TmpInst.addOperand(MCOperand::createReg(0));    // S
8897         Inst = TmpInst;
8898         return true;
8899       }
8900     }
8901     // No opportunity to use MOV/MVN create constant pool
8902     const MCExpr *CPLoc =
8903       getTargetStreamer().addConstantPoolEntry(SubExprVal,
8904                                                PoolOperand.getStartLoc());
8905     TmpInst.addOperand(Inst.getOperand(0));           // Rt
8906     TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
8907     if (TmpInst.getOpcode() == ARM::LDRi12)
8908       TmpInst.addOperand(MCOperand::createImm(0));    // unused offset
8909     TmpInst.addOperand(Inst.getOperand(2));           // CondCode
8910     TmpInst.addOperand(Inst.getOperand(3));           // CondCode
8911     Inst = TmpInst;
8912     return true;
8913   }
8914   // Handle NEON VST complex aliases.
8915   case ARM::VST1LNdWB_register_Asm_8:
8916   case ARM::VST1LNdWB_register_Asm_16:
8917   case ARM::VST1LNdWB_register_Asm_32: {
8918     MCInst TmpInst;
8919     // Shuffle the operands around so the lane index operand is in the
8920     // right place.
8921     unsigned Spacing;
8922     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8923     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8924     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8925     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8926     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8927     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8928     TmpInst.addOperand(Inst.getOperand(1)); // lane
8929     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8930     TmpInst.addOperand(Inst.getOperand(6));
8931     Inst = TmpInst;
8932     return true;
8933   }
8934 
8935   case ARM::VST2LNdWB_register_Asm_8:
8936   case ARM::VST2LNdWB_register_Asm_16:
8937   case ARM::VST2LNdWB_register_Asm_32:
8938   case ARM::VST2LNqWB_register_Asm_16:
8939   case ARM::VST2LNqWB_register_Asm_32: {
8940     MCInst TmpInst;
8941     // Shuffle the operands around so the lane index operand is in the
8942     // right place.
8943     unsigned Spacing;
8944     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8945     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8946     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8947     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8948     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8949     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8950     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8951                                             Spacing));
8952     TmpInst.addOperand(Inst.getOperand(1)); // lane
8953     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8954     TmpInst.addOperand(Inst.getOperand(6));
8955     Inst = TmpInst;
8956     return true;
8957   }
8958 
8959   case ARM::VST3LNdWB_register_Asm_8:
8960   case ARM::VST3LNdWB_register_Asm_16:
8961   case ARM::VST3LNdWB_register_Asm_32:
8962   case ARM::VST3LNqWB_register_Asm_16:
8963   case ARM::VST3LNqWB_register_Asm_32: {
8964     MCInst TmpInst;
8965     // Shuffle the operands around so the lane index operand is in the
8966     // right place.
8967     unsigned Spacing;
8968     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8969     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8970     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8971     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8972     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8973     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8974     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8975                                             Spacing));
8976     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8977                                             Spacing * 2));
8978     TmpInst.addOperand(Inst.getOperand(1)); // lane
8979     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8980     TmpInst.addOperand(Inst.getOperand(6));
8981     Inst = TmpInst;
8982     return true;
8983   }
8984 
8985   case ARM::VST4LNdWB_register_Asm_8:
8986   case ARM::VST4LNdWB_register_Asm_16:
8987   case ARM::VST4LNdWB_register_Asm_32:
8988   case ARM::VST4LNqWB_register_Asm_16:
8989   case ARM::VST4LNqWB_register_Asm_32: {
8990     MCInst TmpInst;
8991     // Shuffle the operands around so the lane index operand is in the
8992     // right place.
8993     unsigned Spacing;
8994     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8995     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8996     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8997     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8998     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8999     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9000     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9001                                             Spacing));
9002     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9003                                             Spacing * 2));
9004     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9005                                             Spacing * 3));
9006     TmpInst.addOperand(Inst.getOperand(1)); // lane
9007     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9008     TmpInst.addOperand(Inst.getOperand(6));
9009     Inst = TmpInst;
9010     return true;
9011   }
9012 
9013   case ARM::VST1LNdWB_fixed_Asm_8:
9014   case ARM::VST1LNdWB_fixed_Asm_16:
9015   case ARM::VST1LNdWB_fixed_Asm_32: {
9016     MCInst TmpInst;
9017     // Shuffle the operands around so the lane index operand is in the
9018     // right place.
9019     unsigned Spacing;
9020     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9021     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9022     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9023     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9024     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9025     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9026     TmpInst.addOperand(Inst.getOperand(1)); // lane
9027     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9028     TmpInst.addOperand(Inst.getOperand(5));
9029     Inst = TmpInst;
9030     return true;
9031   }
9032 
9033   case ARM::VST2LNdWB_fixed_Asm_8:
9034   case ARM::VST2LNdWB_fixed_Asm_16:
9035   case ARM::VST2LNdWB_fixed_Asm_32:
9036   case ARM::VST2LNqWB_fixed_Asm_16:
9037   case ARM::VST2LNqWB_fixed_Asm_32: {
9038     MCInst TmpInst;
9039     // Shuffle the operands around so the lane index operand is in the
9040     // right place.
9041     unsigned Spacing;
9042     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9043     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9044     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9045     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9046     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9047     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9048     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9049                                             Spacing));
9050     TmpInst.addOperand(Inst.getOperand(1)); // lane
9051     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9052     TmpInst.addOperand(Inst.getOperand(5));
9053     Inst = TmpInst;
9054     return true;
9055   }
9056 
9057   case ARM::VST3LNdWB_fixed_Asm_8:
9058   case ARM::VST3LNdWB_fixed_Asm_16:
9059   case ARM::VST3LNdWB_fixed_Asm_32:
9060   case ARM::VST3LNqWB_fixed_Asm_16:
9061   case ARM::VST3LNqWB_fixed_Asm_32: {
9062     MCInst TmpInst;
9063     // Shuffle the operands around so the lane index operand is in the
9064     // right place.
9065     unsigned Spacing;
9066     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9067     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9068     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9069     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9070     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9071     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9072     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9073                                             Spacing));
9074     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9075                                             Spacing * 2));
9076     TmpInst.addOperand(Inst.getOperand(1)); // lane
9077     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9078     TmpInst.addOperand(Inst.getOperand(5));
9079     Inst = TmpInst;
9080     return true;
9081   }
9082 
9083   case ARM::VST4LNdWB_fixed_Asm_8:
9084   case ARM::VST4LNdWB_fixed_Asm_16:
9085   case ARM::VST4LNdWB_fixed_Asm_32:
9086   case ARM::VST4LNqWB_fixed_Asm_16:
9087   case ARM::VST4LNqWB_fixed_Asm_32: {
9088     MCInst TmpInst;
9089     // Shuffle the operands around so the lane index operand is in the
9090     // right place.
9091     unsigned Spacing;
9092     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9093     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9094     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9095     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9096     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9097     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9098     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9099                                             Spacing));
9100     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9101                                             Spacing * 2));
9102     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9103                                             Spacing * 3));
9104     TmpInst.addOperand(Inst.getOperand(1)); // lane
9105     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9106     TmpInst.addOperand(Inst.getOperand(5));
9107     Inst = TmpInst;
9108     return true;
9109   }
9110 
9111   case ARM::VST1LNdAsm_8:
9112   case ARM::VST1LNdAsm_16:
9113   case ARM::VST1LNdAsm_32: {
9114     MCInst TmpInst;
9115     // Shuffle the operands around so the lane index operand is in the
9116     // right place.
9117     unsigned Spacing;
9118     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9119     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9120     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9121     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9122     TmpInst.addOperand(Inst.getOperand(1)); // lane
9123     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9124     TmpInst.addOperand(Inst.getOperand(5));
9125     Inst = TmpInst;
9126     return true;
9127   }
9128 
9129   case ARM::VST2LNdAsm_8:
9130   case ARM::VST2LNdAsm_16:
9131   case ARM::VST2LNdAsm_32:
9132   case ARM::VST2LNqAsm_16:
9133   case ARM::VST2LNqAsm_32: {
9134     MCInst TmpInst;
9135     // Shuffle the operands around so the lane index operand is in the
9136     // right place.
9137     unsigned Spacing;
9138     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9139     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9140     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9141     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9142     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9143                                             Spacing));
9144     TmpInst.addOperand(Inst.getOperand(1)); // lane
9145     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9146     TmpInst.addOperand(Inst.getOperand(5));
9147     Inst = TmpInst;
9148     return true;
9149   }
9150 
9151   case ARM::VST3LNdAsm_8:
9152   case ARM::VST3LNdAsm_16:
9153   case ARM::VST3LNdAsm_32:
9154   case ARM::VST3LNqAsm_16:
9155   case ARM::VST3LNqAsm_32: {
9156     MCInst TmpInst;
9157     // Shuffle the operands around so the lane index operand is in the
9158     // right place.
9159     unsigned Spacing;
9160     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9161     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9162     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9163     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9164     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9165                                             Spacing));
9166     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9167                                             Spacing * 2));
9168     TmpInst.addOperand(Inst.getOperand(1)); // lane
9169     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9170     TmpInst.addOperand(Inst.getOperand(5));
9171     Inst = TmpInst;
9172     return true;
9173   }
9174 
9175   case ARM::VST4LNdAsm_8:
9176   case ARM::VST4LNdAsm_16:
9177   case ARM::VST4LNdAsm_32:
9178   case ARM::VST4LNqAsm_16:
9179   case ARM::VST4LNqAsm_32: {
9180     MCInst TmpInst;
9181     // Shuffle the operands around so the lane index operand is in the
9182     // right place.
9183     unsigned Spacing;
9184     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9185     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9186     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9187     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9188     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9189                                             Spacing));
9190     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9191                                             Spacing * 2));
9192     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9193                                             Spacing * 3));
9194     TmpInst.addOperand(Inst.getOperand(1)); // lane
9195     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9196     TmpInst.addOperand(Inst.getOperand(5));
9197     Inst = TmpInst;
9198     return true;
9199   }
9200 
9201   // Handle NEON VLD complex aliases.
9202   case ARM::VLD1LNdWB_register_Asm_8:
9203   case ARM::VLD1LNdWB_register_Asm_16:
9204   case ARM::VLD1LNdWB_register_Asm_32: {
9205     MCInst TmpInst;
9206     // Shuffle the operands around so the lane index operand is in the
9207     // right place.
9208     unsigned Spacing;
9209     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9210     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9211     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9212     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9213     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9214     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9215     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9216     TmpInst.addOperand(Inst.getOperand(1)); // lane
9217     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9218     TmpInst.addOperand(Inst.getOperand(6));
9219     Inst = TmpInst;
9220     return true;
9221   }
9222 
9223   case ARM::VLD2LNdWB_register_Asm_8:
9224   case ARM::VLD2LNdWB_register_Asm_16:
9225   case ARM::VLD2LNdWB_register_Asm_32:
9226   case ARM::VLD2LNqWB_register_Asm_16:
9227   case ARM::VLD2LNqWB_register_Asm_32: {
9228     MCInst TmpInst;
9229     // Shuffle the operands around so the lane index operand is in the
9230     // right place.
9231     unsigned Spacing;
9232     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9233     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9234     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9235                                             Spacing));
9236     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9237     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9238     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9239     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9240     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9241     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9242                                             Spacing));
9243     TmpInst.addOperand(Inst.getOperand(1)); // lane
9244     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9245     TmpInst.addOperand(Inst.getOperand(6));
9246     Inst = TmpInst;
9247     return true;
9248   }
9249 
9250   case ARM::VLD3LNdWB_register_Asm_8:
9251   case ARM::VLD3LNdWB_register_Asm_16:
9252   case ARM::VLD3LNdWB_register_Asm_32:
9253   case ARM::VLD3LNqWB_register_Asm_16:
9254   case ARM::VLD3LNqWB_register_Asm_32: {
9255     MCInst TmpInst;
9256     // Shuffle the operands around so the lane index operand is in the
9257     // right place.
9258     unsigned Spacing;
9259     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9260     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9261     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9262                                             Spacing));
9263     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9264                                             Spacing * 2));
9265     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9266     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9267     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9268     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9269     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9270     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9271                                             Spacing));
9272     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9273                                             Spacing * 2));
9274     TmpInst.addOperand(Inst.getOperand(1)); // lane
9275     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9276     TmpInst.addOperand(Inst.getOperand(6));
9277     Inst = TmpInst;
9278     return true;
9279   }
9280 
9281   case ARM::VLD4LNdWB_register_Asm_8:
9282   case ARM::VLD4LNdWB_register_Asm_16:
9283   case ARM::VLD4LNdWB_register_Asm_32:
9284   case ARM::VLD4LNqWB_register_Asm_16:
9285   case ARM::VLD4LNqWB_register_Asm_32: {
9286     MCInst TmpInst;
9287     // Shuffle the operands around so the lane index operand is in the
9288     // right place.
9289     unsigned Spacing;
9290     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9291     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9292     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9293                                             Spacing));
9294     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9295                                             Spacing * 2));
9296     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9297                                             Spacing * 3));
9298     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9299     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9300     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9301     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9302     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9303     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9304                                             Spacing));
9305     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9306                                             Spacing * 2));
9307     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9308                                             Spacing * 3));
9309     TmpInst.addOperand(Inst.getOperand(1)); // lane
9310     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9311     TmpInst.addOperand(Inst.getOperand(6));
9312     Inst = TmpInst;
9313     return true;
9314   }
9315 
9316   case ARM::VLD1LNdWB_fixed_Asm_8:
9317   case ARM::VLD1LNdWB_fixed_Asm_16:
9318   case ARM::VLD1LNdWB_fixed_Asm_32: {
9319     MCInst TmpInst;
9320     // Shuffle the operands around so the lane index operand is in the
9321     // right place.
9322     unsigned Spacing;
9323     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9324     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9325     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9326     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9327     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9328     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9329     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9330     TmpInst.addOperand(Inst.getOperand(1)); // lane
9331     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9332     TmpInst.addOperand(Inst.getOperand(5));
9333     Inst = TmpInst;
9334     return true;
9335   }
9336 
9337   case ARM::VLD2LNdWB_fixed_Asm_8:
9338   case ARM::VLD2LNdWB_fixed_Asm_16:
9339   case ARM::VLD2LNdWB_fixed_Asm_32:
9340   case ARM::VLD2LNqWB_fixed_Asm_16:
9341   case ARM::VLD2LNqWB_fixed_Asm_32: {
9342     MCInst TmpInst;
9343     // Shuffle the operands around so the lane index operand is in the
9344     // right place.
9345     unsigned Spacing;
9346     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9347     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9348     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9349                                             Spacing));
9350     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9351     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9352     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9353     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9354     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9355     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9356                                             Spacing));
9357     TmpInst.addOperand(Inst.getOperand(1)); // lane
9358     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9359     TmpInst.addOperand(Inst.getOperand(5));
9360     Inst = TmpInst;
9361     return true;
9362   }
9363 
9364   case ARM::VLD3LNdWB_fixed_Asm_8:
9365   case ARM::VLD3LNdWB_fixed_Asm_16:
9366   case ARM::VLD3LNdWB_fixed_Asm_32:
9367   case ARM::VLD3LNqWB_fixed_Asm_16:
9368   case ARM::VLD3LNqWB_fixed_Asm_32: {
9369     MCInst TmpInst;
9370     // Shuffle the operands around so the lane index operand is in the
9371     // right place.
9372     unsigned Spacing;
9373     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9374     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9375     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9376                                             Spacing));
9377     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9378                                             Spacing * 2));
9379     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9380     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9381     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9382     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9383     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9384     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9385                                             Spacing));
9386     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9387                                             Spacing * 2));
9388     TmpInst.addOperand(Inst.getOperand(1)); // lane
9389     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9390     TmpInst.addOperand(Inst.getOperand(5));
9391     Inst = TmpInst;
9392     return true;
9393   }
9394 
9395   case ARM::VLD4LNdWB_fixed_Asm_8:
9396   case ARM::VLD4LNdWB_fixed_Asm_16:
9397   case ARM::VLD4LNdWB_fixed_Asm_32:
9398   case ARM::VLD4LNqWB_fixed_Asm_16:
9399   case ARM::VLD4LNqWB_fixed_Asm_32: {
9400     MCInst TmpInst;
9401     // Shuffle the operands around so the lane index operand is in the
9402     // right place.
9403     unsigned Spacing;
9404     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9405     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9406     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9407                                             Spacing));
9408     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9409                                             Spacing * 2));
9410     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9411                                             Spacing * 3));
9412     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9413     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9414     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9415     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9416     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9417     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9418                                             Spacing));
9419     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9420                                             Spacing * 2));
9421     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9422                                             Spacing * 3));
9423     TmpInst.addOperand(Inst.getOperand(1)); // lane
9424     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9425     TmpInst.addOperand(Inst.getOperand(5));
9426     Inst = TmpInst;
9427     return true;
9428   }
9429 
9430   case ARM::VLD1LNdAsm_8:
9431   case ARM::VLD1LNdAsm_16:
9432   case ARM::VLD1LNdAsm_32: {
9433     MCInst TmpInst;
9434     // Shuffle the operands around so the lane index operand is in the
9435     // right place.
9436     unsigned Spacing;
9437     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9438     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9439     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9440     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9441     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9442     TmpInst.addOperand(Inst.getOperand(1)); // lane
9443     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9444     TmpInst.addOperand(Inst.getOperand(5));
9445     Inst = TmpInst;
9446     return true;
9447   }
9448 
9449   case ARM::VLD2LNdAsm_8:
9450   case ARM::VLD2LNdAsm_16:
9451   case ARM::VLD2LNdAsm_32:
9452   case ARM::VLD2LNqAsm_16:
9453   case ARM::VLD2LNqAsm_32: {
9454     MCInst TmpInst;
9455     // Shuffle the operands around so the lane index operand is in the
9456     // right place.
9457     unsigned Spacing;
9458     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9459     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9460     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9461                                             Spacing));
9462     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9463     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9464     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9465     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9466                                             Spacing));
9467     TmpInst.addOperand(Inst.getOperand(1)); // lane
9468     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9469     TmpInst.addOperand(Inst.getOperand(5));
9470     Inst = TmpInst;
9471     return true;
9472   }
9473 
9474   case ARM::VLD3LNdAsm_8:
9475   case ARM::VLD3LNdAsm_16:
9476   case ARM::VLD3LNdAsm_32:
9477   case ARM::VLD3LNqAsm_16:
9478   case ARM::VLD3LNqAsm_32: {
9479     MCInst TmpInst;
9480     // Shuffle the operands around so the lane index operand is in the
9481     // right place.
9482     unsigned Spacing;
9483     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9484     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9485     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9486                                             Spacing));
9487     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9488                                             Spacing * 2));
9489     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9490     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9491     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9492     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9493                                             Spacing));
9494     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9495                                             Spacing * 2));
9496     TmpInst.addOperand(Inst.getOperand(1)); // lane
9497     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9498     TmpInst.addOperand(Inst.getOperand(5));
9499     Inst = TmpInst;
9500     return true;
9501   }
9502 
9503   case ARM::VLD4LNdAsm_8:
9504   case ARM::VLD4LNdAsm_16:
9505   case ARM::VLD4LNdAsm_32:
9506   case ARM::VLD4LNqAsm_16:
9507   case ARM::VLD4LNqAsm_32: {
9508     MCInst TmpInst;
9509     // Shuffle the operands around so the lane index operand is in the
9510     // right place.
9511     unsigned Spacing;
9512     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9513     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9514     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9515                                             Spacing));
9516     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9517                                             Spacing * 2));
9518     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9519                                             Spacing * 3));
9520     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9521     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9522     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9523     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9524                                             Spacing));
9525     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9526                                             Spacing * 2));
9527     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9528                                             Spacing * 3));
9529     TmpInst.addOperand(Inst.getOperand(1)); // lane
9530     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9531     TmpInst.addOperand(Inst.getOperand(5));
9532     Inst = TmpInst;
9533     return true;
9534   }
9535 
9536   // VLD3DUP single 3-element structure to all lanes instructions.
9537   case ARM::VLD3DUPdAsm_8:
9538   case ARM::VLD3DUPdAsm_16:
9539   case ARM::VLD3DUPdAsm_32:
9540   case ARM::VLD3DUPqAsm_8:
9541   case ARM::VLD3DUPqAsm_16:
9542   case ARM::VLD3DUPqAsm_32: {
9543     MCInst TmpInst;
9544     unsigned Spacing;
9545     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9546     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9547     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9548                                             Spacing));
9549     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9550                                             Spacing * 2));
9551     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9552     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9553     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9554     TmpInst.addOperand(Inst.getOperand(4));
9555     Inst = TmpInst;
9556     return true;
9557   }
9558 
9559   case ARM::VLD3DUPdWB_fixed_Asm_8:
9560   case ARM::VLD3DUPdWB_fixed_Asm_16:
9561   case ARM::VLD3DUPdWB_fixed_Asm_32:
9562   case ARM::VLD3DUPqWB_fixed_Asm_8:
9563   case ARM::VLD3DUPqWB_fixed_Asm_16:
9564   case ARM::VLD3DUPqWB_fixed_Asm_32: {
9565     MCInst TmpInst;
9566     unsigned Spacing;
9567     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9568     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9569     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9570                                             Spacing));
9571     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9572                                             Spacing * 2));
9573     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9574     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9575     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9576     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9577     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9578     TmpInst.addOperand(Inst.getOperand(4));
9579     Inst = TmpInst;
9580     return true;
9581   }
9582 
9583   case ARM::VLD3DUPdWB_register_Asm_8:
9584   case ARM::VLD3DUPdWB_register_Asm_16:
9585   case ARM::VLD3DUPdWB_register_Asm_32:
9586   case ARM::VLD3DUPqWB_register_Asm_8:
9587   case ARM::VLD3DUPqWB_register_Asm_16:
9588   case ARM::VLD3DUPqWB_register_Asm_32: {
9589     MCInst TmpInst;
9590     unsigned Spacing;
9591     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9592     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9593     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9594                                             Spacing));
9595     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9596                                             Spacing * 2));
9597     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9598     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9599     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9600     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9601     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9602     TmpInst.addOperand(Inst.getOperand(5));
9603     Inst = TmpInst;
9604     return true;
9605   }
9606 
9607   // VLD3 multiple 3-element structure instructions.
9608   case ARM::VLD3dAsm_8:
9609   case ARM::VLD3dAsm_16:
9610   case ARM::VLD3dAsm_32:
9611   case ARM::VLD3qAsm_8:
9612   case ARM::VLD3qAsm_16:
9613   case ARM::VLD3qAsm_32: {
9614     MCInst TmpInst;
9615     unsigned Spacing;
9616     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9617     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9618     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9619                                             Spacing));
9620     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9621                                             Spacing * 2));
9622     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9623     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9624     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9625     TmpInst.addOperand(Inst.getOperand(4));
9626     Inst = TmpInst;
9627     return true;
9628   }
9629 
9630   case ARM::VLD3dWB_fixed_Asm_8:
9631   case ARM::VLD3dWB_fixed_Asm_16:
9632   case ARM::VLD3dWB_fixed_Asm_32:
9633   case ARM::VLD3qWB_fixed_Asm_8:
9634   case ARM::VLD3qWB_fixed_Asm_16:
9635   case ARM::VLD3qWB_fixed_Asm_32: {
9636     MCInst TmpInst;
9637     unsigned Spacing;
9638     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9639     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9640     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9641                                             Spacing));
9642     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9643                                             Spacing * 2));
9644     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9645     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9646     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9647     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9648     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9649     TmpInst.addOperand(Inst.getOperand(4));
9650     Inst = TmpInst;
9651     return true;
9652   }
9653 
9654   case ARM::VLD3dWB_register_Asm_8:
9655   case ARM::VLD3dWB_register_Asm_16:
9656   case ARM::VLD3dWB_register_Asm_32:
9657   case ARM::VLD3qWB_register_Asm_8:
9658   case ARM::VLD3qWB_register_Asm_16:
9659   case ARM::VLD3qWB_register_Asm_32: {
9660     MCInst TmpInst;
9661     unsigned Spacing;
9662     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9663     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9664     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9665                                             Spacing));
9666     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9667                                             Spacing * 2));
9668     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9669     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9670     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9671     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9672     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9673     TmpInst.addOperand(Inst.getOperand(5));
9674     Inst = TmpInst;
9675     return true;
9676   }
9677 
9678   // VLD4DUP single 3-element structure to all lanes instructions.
9679   case ARM::VLD4DUPdAsm_8:
9680   case ARM::VLD4DUPdAsm_16:
9681   case ARM::VLD4DUPdAsm_32:
9682   case ARM::VLD4DUPqAsm_8:
9683   case ARM::VLD4DUPqAsm_16:
9684   case ARM::VLD4DUPqAsm_32: {
9685     MCInst TmpInst;
9686     unsigned Spacing;
9687     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9688     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9689     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9690                                             Spacing));
9691     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9692                                             Spacing * 2));
9693     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9694                                             Spacing * 3));
9695     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9696     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9697     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9698     TmpInst.addOperand(Inst.getOperand(4));
9699     Inst = TmpInst;
9700     return true;
9701   }
9702 
9703   case ARM::VLD4DUPdWB_fixed_Asm_8:
9704   case ARM::VLD4DUPdWB_fixed_Asm_16:
9705   case ARM::VLD4DUPdWB_fixed_Asm_32:
9706   case ARM::VLD4DUPqWB_fixed_Asm_8:
9707   case ARM::VLD4DUPqWB_fixed_Asm_16:
9708   case ARM::VLD4DUPqWB_fixed_Asm_32: {
9709     MCInst TmpInst;
9710     unsigned Spacing;
9711     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9712     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9713     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9714                                             Spacing));
9715     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9716                                             Spacing * 2));
9717     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9718                                             Spacing * 3));
9719     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9720     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9721     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9722     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9723     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9724     TmpInst.addOperand(Inst.getOperand(4));
9725     Inst = TmpInst;
9726     return true;
9727   }
9728 
9729   case ARM::VLD4DUPdWB_register_Asm_8:
9730   case ARM::VLD4DUPdWB_register_Asm_16:
9731   case ARM::VLD4DUPdWB_register_Asm_32:
9732   case ARM::VLD4DUPqWB_register_Asm_8:
9733   case ARM::VLD4DUPqWB_register_Asm_16:
9734   case ARM::VLD4DUPqWB_register_Asm_32: {
9735     MCInst TmpInst;
9736     unsigned Spacing;
9737     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9738     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9739     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9740                                             Spacing));
9741     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9742                                             Spacing * 2));
9743     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9744                                             Spacing * 3));
9745     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9746     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9747     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9748     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9749     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9750     TmpInst.addOperand(Inst.getOperand(5));
9751     Inst = TmpInst;
9752     return true;
9753   }
9754 
9755   // VLD4 multiple 4-element structure instructions.
9756   case ARM::VLD4dAsm_8:
9757   case ARM::VLD4dAsm_16:
9758   case ARM::VLD4dAsm_32:
9759   case ARM::VLD4qAsm_8:
9760   case ARM::VLD4qAsm_16:
9761   case ARM::VLD4qAsm_32: {
9762     MCInst TmpInst;
9763     unsigned Spacing;
9764     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9765     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9766     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9767                                             Spacing));
9768     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9769                                             Spacing * 2));
9770     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9771                                             Spacing * 3));
9772     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9773     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9774     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9775     TmpInst.addOperand(Inst.getOperand(4));
9776     Inst = TmpInst;
9777     return true;
9778   }
9779 
9780   case ARM::VLD4dWB_fixed_Asm_8:
9781   case ARM::VLD4dWB_fixed_Asm_16:
9782   case ARM::VLD4dWB_fixed_Asm_32:
9783   case ARM::VLD4qWB_fixed_Asm_8:
9784   case ARM::VLD4qWB_fixed_Asm_16:
9785   case ARM::VLD4qWB_fixed_Asm_32: {
9786     MCInst TmpInst;
9787     unsigned Spacing;
9788     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9789     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9790     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9791                                             Spacing));
9792     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9793                                             Spacing * 2));
9794     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9795                                             Spacing * 3));
9796     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9797     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9798     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9799     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9800     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9801     TmpInst.addOperand(Inst.getOperand(4));
9802     Inst = TmpInst;
9803     return true;
9804   }
9805 
9806   case ARM::VLD4dWB_register_Asm_8:
9807   case ARM::VLD4dWB_register_Asm_16:
9808   case ARM::VLD4dWB_register_Asm_32:
9809   case ARM::VLD4qWB_register_Asm_8:
9810   case ARM::VLD4qWB_register_Asm_16:
9811   case ARM::VLD4qWB_register_Asm_32: {
9812     MCInst TmpInst;
9813     unsigned Spacing;
9814     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9815     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9816     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9817                                             Spacing));
9818     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9819                                             Spacing * 2));
9820     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9821                                             Spacing * 3));
9822     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9823     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9824     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9825     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9826     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9827     TmpInst.addOperand(Inst.getOperand(5));
9828     Inst = TmpInst;
9829     return true;
9830   }
9831 
9832   // VST3 multiple 3-element structure instructions.
9833   case ARM::VST3dAsm_8:
9834   case ARM::VST3dAsm_16:
9835   case ARM::VST3dAsm_32:
9836   case ARM::VST3qAsm_8:
9837   case ARM::VST3qAsm_16:
9838   case ARM::VST3qAsm_32: {
9839     MCInst TmpInst;
9840     unsigned Spacing;
9841     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9842     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9843     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9844     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9845     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9846                                             Spacing));
9847     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9848                                             Spacing * 2));
9849     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9850     TmpInst.addOperand(Inst.getOperand(4));
9851     Inst = TmpInst;
9852     return true;
9853   }
9854 
9855   case ARM::VST3dWB_fixed_Asm_8:
9856   case ARM::VST3dWB_fixed_Asm_16:
9857   case ARM::VST3dWB_fixed_Asm_32:
9858   case ARM::VST3qWB_fixed_Asm_8:
9859   case ARM::VST3qWB_fixed_Asm_16:
9860   case ARM::VST3qWB_fixed_Asm_32: {
9861     MCInst TmpInst;
9862     unsigned Spacing;
9863     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9864     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9865     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9866     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9867     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9868     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9869     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9870                                             Spacing));
9871     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9872                                             Spacing * 2));
9873     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9874     TmpInst.addOperand(Inst.getOperand(4));
9875     Inst = TmpInst;
9876     return true;
9877   }
9878 
9879   case ARM::VST3dWB_register_Asm_8:
9880   case ARM::VST3dWB_register_Asm_16:
9881   case ARM::VST3dWB_register_Asm_32:
9882   case ARM::VST3qWB_register_Asm_8:
9883   case ARM::VST3qWB_register_Asm_16:
9884   case ARM::VST3qWB_register_Asm_32: {
9885     MCInst TmpInst;
9886     unsigned Spacing;
9887     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9888     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9889     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9890     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9891     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9892     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9893     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9894                                             Spacing));
9895     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9896                                             Spacing * 2));
9897     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9898     TmpInst.addOperand(Inst.getOperand(5));
9899     Inst = TmpInst;
9900     return true;
9901   }
9902 
9903   // VST4 multiple 3-element structure instructions.
9904   case ARM::VST4dAsm_8:
9905   case ARM::VST4dAsm_16:
9906   case ARM::VST4dAsm_32:
9907   case ARM::VST4qAsm_8:
9908   case ARM::VST4qAsm_16:
9909   case ARM::VST4qAsm_32: {
9910     MCInst TmpInst;
9911     unsigned Spacing;
9912     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9913     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9914     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9915     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9916     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9917                                             Spacing));
9918     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9919                                             Spacing * 2));
9920     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9921                                             Spacing * 3));
9922     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9923     TmpInst.addOperand(Inst.getOperand(4));
9924     Inst = TmpInst;
9925     return true;
9926   }
9927 
9928   case ARM::VST4dWB_fixed_Asm_8:
9929   case ARM::VST4dWB_fixed_Asm_16:
9930   case ARM::VST4dWB_fixed_Asm_32:
9931   case ARM::VST4qWB_fixed_Asm_8:
9932   case ARM::VST4qWB_fixed_Asm_16:
9933   case ARM::VST4qWB_fixed_Asm_32: {
9934     MCInst TmpInst;
9935     unsigned Spacing;
9936     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9937     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9938     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9939     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9940     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9941     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9942     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9943                                             Spacing));
9944     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9945                                             Spacing * 2));
9946     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9947                                             Spacing * 3));
9948     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9949     TmpInst.addOperand(Inst.getOperand(4));
9950     Inst = TmpInst;
9951     return true;
9952   }
9953 
9954   case ARM::VST4dWB_register_Asm_8:
9955   case ARM::VST4dWB_register_Asm_16:
9956   case ARM::VST4dWB_register_Asm_32:
9957   case ARM::VST4qWB_register_Asm_8:
9958   case ARM::VST4qWB_register_Asm_16:
9959   case ARM::VST4qWB_register_Asm_32: {
9960     MCInst TmpInst;
9961     unsigned Spacing;
9962     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9963     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9964     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9965     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9966     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9967     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9968     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9969                                             Spacing));
9970     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9971                                             Spacing * 2));
9972     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9973                                             Spacing * 3));
9974     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9975     TmpInst.addOperand(Inst.getOperand(5));
9976     Inst = TmpInst;
9977     return true;
9978   }
9979 
9980   // Handle encoding choice for the shift-immediate instructions.
9981   case ARM::t2LSLri:
9982   case ARM::t2LSRri:
9983   case ARM::t2ASRri:
9984     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9985         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9986         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9987         !HasWideQualifier) {
9988       unsigned NewOpc;
9989       switch (Inst.getOpcode()) {
9990       default: llvm_unreachable("unexpected opcode");
9991       case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
9992       case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
9993       case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
9994       }
9995       // The Thumb1 operands aren't in the same order. Awesome, eh?
9996       MCInst TmpInst;
9997       TmpInst.setOpcode(NewOpc);
9998       TmpInst.addOperand(Inst.getOperand(0));
9999       TmpInst.addOperand(Inst.getOperand(5));
10000       TmpInst.addOperand(Inst.getOperand(1));
10001       TmpInst.addOperand(Inst.getOperand(2));
10002       TmpInst.addOperand(Inst.getOperand(3));
10003       TmpInst.addOperand(Inst.getOperand(4));
10004       Inst = TmpInst;
10005       return true;
10006     }
10007     return false;
10008 
10009   // Handle the Thumb2 mode MOV complex aliases.
10010   case ARM::t2MOVsr:
10011   case ARM::t2MOVSsr: {
10012     // Which instruction to expand to depends on the CCOut operand and
10013     // whether we're in an IT block if the register operands are low
10014     // registers.
10015     bool isNarrow = false;
10016     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10017         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10018         isARMLowRegister(Inst.getOperand(2).getReg()) &&
10019         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
10020         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
10021         !HasWideQualifier)
10022       isNarrow = true;
10023     MCInst TmpInst;
10024     unsigned newOpc;
10025     switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
10026     default: llvm_unreachable("unexpected opcode!");
10027     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
10028     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
10029     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
10030     case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
10031     }
10032     TmpInst.setOpcode(newOpc);
10033     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10034     if (isNarrow)
10035       TmpInst.addOperand(MCOperand::createReg(
10036           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
10037     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10038     TmpInst.addOperand(Inst.getOperand(2)); // Rm
10039     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
10040     TmpInst.addOperand(Inst.getOperand(5));
10041     if (!isNarrow)
10042       TmpInst.addOperand(MCOperand::createReg(
10043           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
10044     Inst = TmpInst;
10045     return true;
10046   }
10047   case ARM::t2MOVsi:
10048   case ARM::t2MOVSsi: {
10049     // Which instruction to expand to depends on the CCOut operand and
10050     // whether we're in an IT block if the register operands are low
10051     // registers.
10052     bool isNarrow = false;
10053     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10054         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10055         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
10056         !HasWideQualifier)
10057       isNarrow = true;
10058     MCInst TmpInst;
10059     unsigned newOpc;
10060     unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
10061     unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
10062     bool isMov = false;
10063     // MOV rd, rm, LSL #0 is actually a MOV instruction
10064     if (Shift == ARM_AM::lsl && Amount == 0) {
10065       isMov = true;
10066       // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
10067       // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
10068       // unpredictable in an IT block so the 32-bit encoding T3 has to be used
10069       // instead.
10070       if (inITBlock()) {
10071         isNarrow = false;
10072       }
10073       newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
10074     } else {
10075       switch(Shift) {
10076       default: llvm_unreachable("unexpected opcode!");
10077       case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
10078       case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
10079       case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
10080       case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
10081       case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
10082       }
10083     }
10084     if (Amount == 32) Amount = 0;
10085     TmpInst.setOpcode(newOpc);
10086     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10087     if (isNarrow && !isMov)
10088       TmpInst.addOperand(MCOperand::createReg(
10089           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
10090     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10091     if (newOpc != ARM::t2RRX && !isMov)
10092       TmpInst.addOperand(MCOperand::createImm(Amount));
10093     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10094     TmpInst.addOperand(Inst.getOperand(4));
10095     if (!isNarrow)
10096       TmpInst.addOperand(MCOperand::createReg(
10097           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
10098     Inst = TmpInst;
10099     return true;
10100   }
10101   // Handle the ARM mode MOV complex aliases.
10102   case ARM::ASRr:
10103   case ARM::LSRr:
10104   case ARM::LSLr:
10105   case ARM::RORr: {
10106     ARM_AM::ShiftOpc ShiftTy;
10107     switch(Inst.getOpcode()) {
10108     default: llvm_unreachable("unexpected opcode!");
10109     case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
10110     case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
10111     case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
10112     case ARM::RORr: ShiftTy = ARM_AM::ror; break;
10113     }
10114     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
10115     MCInst TmpInst;
10116     TmpInst.setOpcode(ARM::MOVsr);
10117     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10118     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10119     TmpInst.addOperand(Inst.getOperand(2)); // Rm
10120     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10121     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10122     TmpInst.addOperand(Inst.getOperand(4));
10123     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
10124     Inst = TmpInst;
10125     return true;
10126   }
10127   case ARM::ASRi:
10128   case ARM::LSRi:
10129   case ARM::LSLi:
10130   case ARM::RORi: {
10131     ARM_AM::ShiftOpc ShiftTy;
10132     switch(Inst.getOpcode()) {
10133     default: llvm_unreachable("unexpected opcode!");
10134     case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
10135     case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
10136     case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
10137     case ARM::RORi: ShiftTy = ARM_AM::ror; break;
10138     }
10139     // A shift by zero is a plain MOVr, not a MOVsi.
10140     unsigned Amt = Inst.getOperand(2).getImm();
10141     unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
10142     // A shift by 32 should be encoded as 0 when permitted
10143     if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
10144       Amt = 0;
10145     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
10146     MCInst TmpInst;
10147     TmpInst.setOpcode(Opc);
10148     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10149     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10150     if (Opc == ARM::MOVsi)
10151       TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10152     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
10153     TmpInst.addOperand(Inst.getOperand(4));
10154     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
10155     Inst = TmpInst;
10156     return true;
10157   }
10158   case ARM::RRXi: {
10159     unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
10160     MCInst TmpInst;
10161     TmpInst.setOpcode(ARM::MOVsi);
10162     TmpInst.addOperand(Inst.getOperand(0)); // Rd
10163     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10164     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
10165     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10166     TmpInst.addOperand(Inst.getOperand(3));
10167     TmpInst.addOperand(Inst.getOperand(4)); // cc_out
10168     Inst = TmpInst;
10169     return true;
10170   }
10171   case ARM::t2LDMIA_UPD: {
10172     // If this is a load of a single register, then we should use
10173     // a post-indexed LDR instruction instead, per the ARM ARM.
10174     if (Inst.getNumOperands() != 5)
10175       return false;
10176     MCInst TmpInst;
10177     TmpInst.setOpcode(ARM::t2LDR_POST);
10178     TmpInst.addOperand(Inst.getOperand(4)); // Rt
10179     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10180     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10181     TmpInst.addOperand(MCOperand::createImm(4));
10182     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10183     TmpInst.addOperand(Inst.getOperand(3));
10184     Inst = TmpInst;
10185     return true;
10186   }
10187   case ARM::t2STMDB_UPD: {
10188     // If this is a store of a single register, then we should use
10189     // a pre-indexed STR instruction instead, per the ARM ARM.
10190     if (Inst.getNumOperands() != 5)
10191       return false;
10192     MCInst TmpInst;
10193     TmpInst.setOpcode(ARM::t2STR_PRE);
10194     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10195     TmpInst.addOperand(Inst.getOperand(4)); // Rt
10196     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10197     TmpInst.addOperand(MCOperand::createImm(-4));
10198     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10199     TmpInst.addOperand(Inst.getOperand(3));
10200     Inst = TmpInst;
10201     return true;
10202   }
10203   case ARM::LDMIA_UPD:
10204     // If this is a load of a single register via a 'pop', then we should use
10205     // a post-indexed LDR instruction instead, per the ARM ARM.
10206     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
10207         Inst.getNumOperands() == 5) {
10208       MCInst TmpInst;
10209       TmpInst.setOpcode(ARM::LDR_POST_IMM);
10210       TmpInst.addOperand(Inst.getOperand(4)); // Rt
10211       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10212       TmpInst.addOperand(Inst.getOperand(1)); // Rn
10213       TmpInst.addOperand(MCOperand::createReg(0));  // am2offset
10214       TmpInst.addOperand(MCOperand::createImm(4));
10215       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10216       TmpInst.addOperand(Inst.getOperand(3));
10217       Inst = TmpInst;
10218       return true;
10219     }
10220     break;
10221   case ARM::STMDB_UPD:
10222     // If this is a store of a single register via a 'push', then we should use
10223     // a pre-indexed STR instruction instead, per the ARM ARM.
10224     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
10225         Inst.getNumOperands() == 5) {
10226       MCInst TmpInst;
10227       TmpInst.setOpcode(ARM::STR_PRE_IMM);
10228       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10229       TmpInst.addOperand(Inst.getOperand(4)); // Rt
10230       TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
10231       TmpInst.addOperand(MCOperand::createImm(-4));
10232       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10233       TmpInst.addOperand(Inst.getOperand(3));
10234       Inst = TmpInst;
10235     }
10236     break;
10237   case ARM::t2ADDri12:
10238   case ARM::t2SUBri12:
10239   case ARM::t2ADDspImm12:
10240   case ARM::t2SUBspImm12: {
10241     // If the immediate fits for encoding T3 and the generic
10242     // mnemonic was used, encoding T3 is preferred.
10243     const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken();
10244     if ((Token != "add" && Token != "sub") ||
10245         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
10246       break;
10247     switch (Inst.getOpcode()) {
10248     case ARM::t2ADDri12:
10249       Inst.setOpcode(ARM::t2ADDri);
10250       break;
10251     case ARM::t2SUBri12:
10252       Inst.setOpcode(ARM::t2SUBri);
10253       break;
10254     case ARM::t2ADDspImm12:
10255       Inst.setOpcode(ARM::t2ADDspImm);
10256       break;
10257     case ARM::t2SUBspImm12:
10258       Inst.setOpcode(ARM::t2SUBspImm);
10259       break;
10260     }
10261 
10262     Inst.addOperand(MCOperand::createReg(0)); // cc_out
10263     return true;
10264   }
10265   case ARM::tADDi8:
10266     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
10267     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
10268     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
10269     // to encoding T1 if <Rd> is omitted."
10270     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
10271       Inst.setOpcode(ARM::tADDi3);
10272       return true;
10273     }
10274     break;
10275   case ARM::tSUBi8:
10276     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
10277     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
10278     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
10279     // to encoding T1 if <Rd> is omitted."
10280     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
10281       Inst.setOpcode(ARM::tSUBi3);
10282       return true;
10283     }
10284     break;
10285   case ARM::t2ADDri:
10286   case ARM::t2SUBri: {
10287     // If the destination and first source operand are the same, and
10288     // the flags are compatible with the current IT status, use encoding T2
10289     // instead of T3. For compatibility with the system 'as'. Make sure the
10290     // wide encoding wasn't explicit.
10291     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
10292         !isARMLowRegister(Inst.getOperand(0).getReg()) ||
10293         (Inst.getOperand(2).isImm() &&
10294          (unsigned)Inst.getOperand(2).getImm() > 255) ||
10295         Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
10296         HasWideQualifier)
10297       break;
10298     MCInst TmpInst;
10299     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
10300                       ARM::tADDi8 : ARM::tSUBi8);
10301     TmpInst.addOperand(Inst.getOperand(0));
10302     TmpInst.addOperand(Inst.getOperand(5));
10303     TmpInst.addOperand(Inst.getOperand(0));
10304     TmpInst.addOperand(Inst.getOperand(2));
10305     TmpInst.addOperand(Inst.getOperand(3));
10306     TmpInst.addOperand(Inst.getOperand(4));
10307     Inst = TmpInst;
10308     return true;
10309   }
10310   case ARM::t2ADDspImm:
10311   case ARM::t2SUBspImm: {
10312     // Prefer T1 encoding if possible
10313     if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier)
10314       break;
10315     unsigned V = Inst.getOperand(2).getImm();
10316     if (V & 3 || V > ((1 << 7) - 1) << 2)
10317       break;
10318     MCInst TmpInst;
10319     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi
10320                                                           : ARM::tSUBspi);
10321     TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg
10322     TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg
10323     TmpInst.addOperand(MCOperand::createImm(V / 4));   // immediate
10324     TmpInst.addOperand(Inst.getOperand(3));            // pred
10325     TmpInst.addOperand(Inst.getOperand(4));
10326     Inst = TmpInst;
10327     return true;
10328   }
10329   case ARM::t2ADDrr: {
10330     // If the destination and first source operand are the same, and
10331     // there's no setting of the flags, use encoding T2 instead of T3.
10332     // Note that this is only for ADD, not SUB. This mirrors the system
10333     // 'as' behaviour.  Also take advantage of ADD being commutative.
10334     // Make sure the wide encoding wasn't explicit.
10335     bool Swap = false;
10336     auto DestReg = Inst.getOperand(0).getReg();
10337     bool Transform = DestReg == Inst.getOperand(1).getReg();
10338     if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
10339       Transform = true;
10340       Swap = true;
10341     }
10342     if (!Transform ||
10343         Inst.getOperand(5).getReg() != 0 ||
10344         HasWideQualifier)
10345       break;
10346     MCInst TmpInst;
10347     TmpInst.setOpcode(ARM::tADDhirr);
10348     TmpInst.addOperand(Inst.getOperand(0));
10349     TmpInst.addOperand(Inst.getOperand(0));
10350     TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
10351     TmpInst.addOperand(Inst.getOperand(3));
10352     TmpInst.addOperand(Inst.getOperand(4));
10353     Inst = TmpInst;
10354     return true;
10355   }
10356   case ARM::tADDrSP:
10357     // If the non-SP source operand and the destination operand are not the
10358     // same, we need to use the 32-bit encoding if it's available.
10359     if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
10360       Inst.setOpcode(ARM::t2ADDrr);
10361       Inst.addOperand(MCOperand::createReg(0)); // cc_out
10362       return true;
10363     }
10364     break;
10365   case ARM::tB:
10366     // A Thumb conditional branch outside of an IT block is a tBcc.
10367     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
10368       Inst.setOpcode(ARM::tBcc);
10369       return true;
10370     }
10371     break;
10372   case ARM::t2B:
10373     // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
10374     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
10375       Inst.setOpcode(ARM::t2Bcc);
10376       return true;
10377     }
10378     break;
10379   case ARM::t2Bcc:
10380     // If the conditional is AL or we're in an IT block, we really want t2B.
10381     if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
10382       Inst.setOpcode(ARM::t2B);
10383       return true;
10384     }
10385     break;
10386   case ARM::tBcc:
10387     // If the conditional is AL, we really want tB.
10388     if (Inst.getOperand(1).getImm() == ARMCC::AL) {
10389       Inst.setOpcode(ARM::tB);
10390       return true;
10391     }
10392     break;
10393   case ARM::tLDMIA: {
10394     // If the register list contains any high registers, or if the writeback
10395     // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
10396     // instead if we're in Thumb2. Otherwise, this should have generated
10397     // an error in validateInstruction().
10398     unsigned Rn = Inst.getOperand(0).getReg();
10399     bool hasWritebackToken =
10400         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
10401          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
10402     bool listContainsBase;
10403     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
10404         (!listContainsBase && !hasWritebackToken) ||
10405         (listContainsBase && hasWritebackToken)) {
10406       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
10407       assert(isThumbTwo());
10408       Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
10409       // If we're switching to the updating version, we need to insert
10410       // the writeback tied operand.
10411       if (hasWritebackToken)
10412         Inst.insert(Inst.begin(),
10413                     MCOperand::createReg(Inst.getOperand(0).getReg()));
10414       return true;
10415     }
10416     break;
10417   }
10418   case ARM::tSTMIA_UPD: {
10419     // If the register list contains any high registers, we need to use
10420     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
10421     // should have generated an error in validateInstruction().
10422     unsigned Rn = Inst.getOperand(0).getReg();
10423     bool listContainsBase;
10424     if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
10425       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
10426       assert(isThumbTwo());
10427       Inst.setOpcode(ARM::t2STMIA_UPD);
10428       return true;
10429     }
10430     break;
10431   }
10432   case ARM::tPOP: {
10433     bool listContainsBase;
10434     // If the register list contains any high registers, we need to use
10435     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
10436     // should have generated an error in validateInstruction().
10437     if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
10438       return false;
10439     assert(isThumbTwo());
10440     Inst.setOpcode(ARM::t2LDMIA_UPD);
10441     // Add the base register and writeback operands.
10442     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10443     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10444     return true;
10445   }
10446   case ARM::tPUSH: {
10447     bool listContainsBase;
10448     if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
10449       return false;
10450     assert(isThumbTwo());
10451     Inst.setOpcode(ARM::t2STMDB_UPD);
10452     // Add the base register and writeback operands.
10453     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10454     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10455     return true;
10456   }
10457   case ARM::t2MOVi:
10458     // If we can use the 16-bit encoding and the user didn't explicitly
10459     // request the 32-bit variant, transform it here.
10460     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10461         (Inst.getOperand(1).isImm() &&
10462          (unsigned)Inst.getOperand(1).getImm() <= 255) &&
10463         Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10464         !HasWideQualifier) {
10465       // The operands aren't in the same order for tMOVi8...
10466       MCInst TmpInst;
10467       TmpInst.setOpcode(ARM::tMOVi8);
10468       TmpInst.addOperand(Inst.getOperand(0));
10469       TmpInst.addOperand(Inst.getOperand(4));
10470       TmpInst.addOperand(Inst.getOperand(1));
10471       TmpInst.addOperand(Inst.getOperand(2));
10472       TmpInst.addOperand(Inst.getOperand(3));
10473       Inst = TmpInst;
10474       return true;
10475     }
10476     break;
10477 
10478   case ARM::t2MOVr:
10479     // If we can use the 16-bit encoding and the user didn't explicitly
10480     // request the 32-bit variant, transform it here.
10481     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10482         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10483         Inst.getOperand(2).getImm() == ARMCC::AL &&
10484         Inst.getOperand(4).getReg() == ARM::CPSR &&
10485         !HasWideQualifier) {
10486       // The operands aren't the same for tMOV[S]r... (no cc_out)
10487       MCInst TmpInst;
10488       unsigned Op = Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr;
10489       TmpInst.setOpcode(Op);
10490       TmpInst.addOperand(Inst.getOperand(0));
10491       TmpInst.addOperand(Inst.getOperand(1));
10492       if (Op == ARM::tMOVr) {
10493         TmpInst.addOperand(Inst.getOperand(2));
10494         TmpInst.addOperand(Inst.getOperand(3));
10495       }
10496       Inst = TmpInst;
10497       return true;
10498     }
10499     break;
10500 
10501   case ARM::t2SXTH:
10502   case ARM::t2SXTB:
10503   case ARM::t2UXTH:
10504   case ARM::t2UXTB:
10505     // If we can use the 16-bit encoding and the user didn't explicitly
10506     // request the 32-bit variant, transform it here.
10507     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10508         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10509         Inst.getOperand(2).getImm() == 0 &&
10510         !HasWideQualifier) {
10511       unsigned NewOpc;
10512       switch (Inst.getOpcode()) {
10513       default: llvm_unreachable("Illegal opcode!");
10514       case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
10515       case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
10516       case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
10517       case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
10518       }
10519       // The operands aren't the same for thumb1 (no rotate operand).
10520       MCInst TmpInst;
10521       TmpInst.setOpcode(NewOpc);
10522       TmpInst.addOperand(Inst.getOperand(0));
10523       TmpInst.addOperand(Inst.getOperand(1));
10524       TmpInst.addOperand(Inst.getOperand(3));
10525       TmpInst.addOperand(Inst.getOperand(4));
10526       Inst = TmpInst;
10527       return true;
10528     }
10529     break;
10530 
10531   case ARM::MOVsi: {
10532     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
10533     // rrx shifts and asr/lsr of #32 is encoded as 0
10534     if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
10535       return false;
10536     if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
10537       // Shifting by zero is accepted as a vanilla 'MOVr'
10538       MCInst TmpInst;
10539       TmpInst.setOpcode(ARM::MOVr);
10540       TmpInst.addOperand(Inst.getOperand(0));
10541       TmpInst.addOperand(Inst.getOperand(1));
10542       TmpInst.addOperand(Inst.getOperand(3));
10543       TmpInst.addOperand(Inst.getOperand(4));
10544       TmpInst.addOperand(Inst.getOperand(5));
10545       Inst = TmpInst;
10546       return true;
10547     }
10548     return false;
10549   }
10550   case ARM::ANDrsi:
10551   case ARM::ORRrsi:
10552   case ARM::EORrsi:
10553   case ARM::BICrsi:
10554   case ARM::SUBrsi:
10555   case ARM::ADDrsi: {
10556     unsigned newOpc;
10557     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
10558     if (SOpc == ARM_AM::rrx) return false;
10559     switch (Inst.getOpcode()) {
10560     default: llvm_unreachable("unexpected opcode!");
10561     case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
10562     case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
10563     case ARM::EORrsi: newOpc = ARM::EORrr; break;
10564     case ARM::BICrsi: newOpc = ARM::BICrr; break;
10565     case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
10566     case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
10567     }
10568     // If the shift is by zero, use the non-shifted instruction definition.
10569     // The exception is for right shifts, where 0 == 32
10570     if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
10571         !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
10572       MCInst TmpInst;
10573       TmpInst.setOpcode(newOpc);
10574       TmpInst.addOperand(Inst.getOperand(0));
10575       TmpInst.addOperand(Inst.getOperand(1));
10576       TmpInst.addOperand(Inst.getOperand(2));
10577       TmpInst.addOperand(Inst.getOperand(4));
10578       TmpInst.addOperand(Inst.getOperand(5));
10579       TmpInst.addOperand(Inst.getOperand(6));
10580       Inst = TmpInst;
10581       return true;
10582     }
10583     return false;
10584   }
10585   case ARM::ITasm:
10586   case ARM::t2IT: {
10587     // Set up the IT block state according to the IT instruction we just
10588     // matched.
10589     assert(!inITBlock() && "nested IT blocks?!");
10590     startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()),
10591                          Inst.getOperand(1).getImm());
10592     break;
10593   }
10594   case ARM::t2LSLrr:
10595   case ARM::t2LSRrr:
10596   case ARM::t2ASRrr:
10597   case ARM::t2SBCrr:
10598   case ARM::t2RORrr:
10599   case ARM::t2BICrr:
10600     // Assemblers should use the narrow encodings of these instructions when permissible.
10601     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10602          isARMLowRegister(Inst.getOperand(2).getReg())) &&
10603         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
10604         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10605         !HasWideQualifier) {
10606       unsigned NewOpc;
10607       switch (Inst.getOpcode()) {
10608         default: llvm_unreachable("unexpected opcode");
10609         case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
10610         case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
10611         case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
10612         case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
10613         case ARM::t2RORrr: NewOpc = ARM::tROR; break;
10614         case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
10615       }
10616       MCInst TmpInst;
10617       TmpInst.setOpcode(NewOpc);
10618       TmpInst.addOperand(Inst.getOperand(0));
10619       TmpInst.addOperand(Inst.getOperand(5));
10620       TmpInst.addOperand(Inst.getOperand(1));
10621       TmpInst.addOperand(Inst.getOperand(2));
10622       TmpInst.addOperand(Inst.getOperand(3));
10623       TmpInst.addOperand(Inst.getOperand(4));
10624       Inst = TmpInst;
10625       return true;
10626     }
10627     return false;
10628 
10629   case ARM::t2ANDrr:
10630   case ARM::t2EORrr:
10631   case ARM::t2ADCrr:
10632   case ARM::t2ORRrr:
10633     // Assemblers should use the narrow encodings of these instructions when permissible.
10634     // These instructions are special in that they are commutable, so shorter encodings
10635     // are available more often.
10636     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10637          isARMLowRegister(Inst.getOperand(2).getReg())) &&
10638         (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
10639          Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
10640         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10641         !HasWideQualifier) {
10642       unsigned NewOpc;
10643       switch (Inst.getOpcode()) {
10644         default: llvm_unreachable("unexpected opcode");
10645         case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
10646         case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
10647         case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
10648         case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
10649       }
10650       MCInst TmpInst;
10651       TmpInst.setOpcode(NewOpc);
10652       TmpInst.addOperand(Inst.getOperand(0));
10653       TmpInst.addOperand(Inst.getOperand(5));
10654       if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
10655         TmpInst.addOperand(Inst.getOperand(1));
10656         TmpInst.addOperand(Inst.getOperand(2));
10657       } else {
10658         TmpInst.addOperand(Inst.getOperand(2));
10659         TmpInst.addOperand(Inst.getOperand(1));
10660       }
10661       TmpInst.addOperand(Inst.getOperand(3));
10662       TmpInst.addOperand(Inst.getOperand(4));
10663       Inst = TmpInst;
10664       return true;
10665     }
10666     return false;
10667   case ARM::MVE_VPST:
10668   case ARM::MVE_VPTv16i8:
10669   case ARM::MVE_VPTv8i16:
10670   case ARM::MVE_VPTv4i32:
10671   case ARM::MVE_VPTv16u8:
10672   case ARM::MVE_VPTv8u16:
10673   case ARM::MVE_VPTv4u32:
10674   case ARM::MVE_VPTv16s8:
10675   case ARM::MVE_VPTv8s16:
10676   case ARM::MVE_VPTv4s32:
10677   case ARM::MVE_VPTv4f32:
10678   case ARM::MVE_VPTv8f16:
10679   case ARM::MVE_VPTv16i8r:
10680   case ARM::MVE_VPTv8i16r:
10681   case ARM::MVE_VPTv4i32r:
10682   case ARM::MVE_VPTv16u8r:
10683   case ARM::MVE_VPTv8u16r:
10684   case ARM::MVE_VPTv4u32r:
10685   case ARM::MVE_VPTv16s8r:
10686   case ARM::MVE_VPTv8s16r:
10687   case ARM::MVE_VPTv4s32r:
10688   case ARM::MVE_VPTv4f32r:
10689   case ARM::MVE_VPTv8f16r: {
10690     assert(!inVPTBlock() && "Nested VPT blocks are not allowed");
10691     MCOperand &MO = Inst.getOperand(0);
10692     VPTState.Mask = MO.getImm();
10693     VPTState.CurPosition = 0;
10694     break;
10695   }
10696   }
10697   return false;
10698 }
10699 
10700 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
10701   // 16-bit thumb arithmetic instructions either require or preclude the 'S'
10702   // suffix depending on whether they're in an IT block or not.
10703   unsigned Opc = Inst.getOpcode();
10704   const MCInstrDesc &MCID = MII.get(Opc);
10705   if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
10706     assert(MCID.hasOptionalDef() &&
10707            "optionally flag setting instruction missing optional def operand");
10708     assert(MCID.NumOperands == Inst.getNumOperands() &&
10709            "operand count mismatch!");
10710     // Find the optional-def operand (cc_out).
10711     unsigned OpNo;
10712     for (OpNo = 0;
10713          !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
10714          ++OpNo)
10715       ;
10716     // If we're parsing Thumb1, reject it completely.
10717     if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
10718       return Match_RequiresFlagSetting;
10719     // If we're parsing Thumb2, which form is legal depends on whether we're
10720     // in an IT block.
10721     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
10722         !inITBlock())
10723       return Match_RequiresITBlock;
10724     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
10725         inITBlock())
10726       return Match_RequiresNotITBlock;
10727     // LSL with zero immediate is not allowed in an IT block
10728     if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
10729       return Match_RequiresNotITBlock;
10730   } else if (isThumbOne()) {
10731     // Some high-register supporting Thumb1 encodings only allow both registers
10732     // to be from r0-r7 when in Thumb2.
10733     if (Opc == ARM::tADDhirr && !hasV6MOps() &&
10734         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10735         isARMLowRegister(Inst.getOperand(2).getReg()))
10736       return Match_RequiresThumb2;
10737     // Others only require ARMv6 or later.
10738     else if (Opc == ARM::tMOVr && !hasV6Ops() &&
10739              isARMLowRegister(Inst.getOperand(0).getReg()) &&
10740              isARMLowRegister(Inst.getOperand(1).getReg()))
10741       return Match_RequiresV6;
10742   }
10743 
10744   // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
10745   // than the loop below can handle, so it uses the GPRnopc register class and
10746   // we do SP handling here.
10747   if (Opc == ARM::t2MOVr && !hasV8Ops())
10748   {
10749     // SP as both source and destination is not allowed
10750     if (Inst.getOperand(0).getReg() == ARM::SP &&
10751         Inst.getOperand(1).getReg() == ARM::SP)
10752       return Match_RequiresV8;
10753     // When flags-setting SP as either source or destination is not allowed
10754     if (Inst.getOperand(4).getReg() == ARM::CPSR &&
10755         (Inst.getOperand(0).getReg() == ARM::SP ||
10756          Inst.getOperand(1).getReg() == ARM::SP))
10757       return Match_RequiresV8;
10758   }
10759 
10760   switch (Inst.getOpcode()) {
10761   case ARM::VMRS:
10762   case ARM::VMSR:
10763   case ARM::VMRS_FPCXTS:
10764   case ARM::VMRS_FPCXTNS:
10765   case ARM::VMSR_FPCXTS:
10766   case ARM::VMSR_FPCXTNS:
10767   case ARM::VMRS_FPSCR_NZCVQC:
10768   case ARM::VMSR_FPSCR_NZCVQC:
10769   case ARM::FMSTAT:
10770   case ARM::VMRS_VPR:
10771   case ARM::VMRS_P0:
10772   case ARM::VMSR_VPR:
10773   case ARM::VMSR_P0:
10774     // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
10775     // ARMv8-A.
10776     if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP &&
10777         (isThumb() && !hasV8Ops()))
10778       return Match_InvalidOperand;
10779     break;
10780   case ARM::t2TBB:
10781   case ARM::t2TBH:
10782     // Rn = sp is only allowed with ARMv8-A
10783     if (!hasV8Ops() && (Inst.getOperand(0).getReg() == ARM::SP))
10784       return Match_RequiresV8;
10785     break;
10786   default:
10787     break;
10788   }
10789 
10790   for (unsigned I = 0; I < MCID.NumOperands; ++I)
10791     if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
10792       // rGPRRegClass excludes PC, and also excluded SP before ARMv8
10793       const auto &Op = Inst.getOperand(I);
10794       if (!Op.isReg()) {
10795         // This can happen in awkward cases with tied operands, e.g. a
10796         // writeback load/store with a complex addressing mode in
10797         // which there's an output operand corresponding to the
10798         // updated written-back base register: the Tablegen-generated
10799         // AsmMatcher will have written a placeholder operand to that
10800         // slot in the form of an immediate 0, because it can't
10801         // generate the register part of the complex addressing-mode
10802         // operand ahead of time.
10803         continue;
10804       }
10805 
10806       unsigned Reg = Op.getReg();
10807       if ((Reg == ARM::SP) && !hasV8Ops())
10808         return Match_RequiresV8;
10809       else if (Reg == ARM::PC)
10810         return Match_InvalidOperand;
10811     }
10812 
10813   return Match_Success;
10814 }
10815 
10816 namespace llvm {
10817 
10818 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
10819   return true; // In an assembly source, no need to second-guess
10820 }
10821 
10822 } // end namespace llvm
10823 
10824 // Returns true if Inst is unpredictable if it is in and IT block, but is not
10825 // the last instruction in the block.
10826 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
10827   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10828 
10829   // All branch & call instructions terminate IT blocks with the exception of
10830   // SVC.
10831   if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
10832       MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
10833     return true;
10834 
10835   // Any arithmetic instruction which writes to the PC also terminates the IT
10836   // block.
10837   if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI))
10838     return true;
10839 
10840   return false;
10841 }
10842 
10843 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
10844                                           SmallVectorImpl<NearMissInfo> &NearMisses,
10845                                           bool MatchingInlineAsm,
10846                                           bool &EmitInITBlock,
10847                                           MCStreamer &Out) {
10848   // If we can't use an implicit IT block here, just match as normal.
10849   if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
10850     return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10851 
10852   // Try to match the instruction in an extension of the current IT block (if
10853   // there is one).
10854   if (inImplicitITBlock()) {
10855     extendImplicitITBlock(ITState.Cond);
10856     if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10857             Match_Success) {
10858       // The match succeded, but we still have to check that the instruction is
10859       // valid in this implicit IT block.
10860       const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10861       if (MCID.isPredicable()) {
10862         ARMCC::CondCodes InstCond =
10863             (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10864                 .getImm();
10865         ARMCC::CondCodes ITCond = currentITCond();
10866         if (InstCond == ITCond) {
10867           EmitInITBlock = true;
10868           return Match_Success;
10869         } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
10870           invertCurrentITCondition();
10871           EmitInITBlock = true;
10872           return Match_Success;
10873         }
10874       }
10875     }
10876     rewindImplicitITPosition();
10877   }
10878 
10879   // Finish the current IT block, and try to match outside any IT block.
10880   flushPendingInstructions(Out);
10881   unsigned PlainMatchResult =
10882       MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10883   if (PlainMatchResult == Match_Success) {
10884     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10885     if (MCID.isPredicable()) {
10886       ARMCC::CondCodes InstCond =
10887           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10888               .getImm();
10889       // Some forms of the branch instruction have their own condition code
10890       // fields, so can be conditionally executed without an IT block.
10891       if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
10892         EmitInITBlock = false;
10893         return Match_Success;
10894       }
10895       if (InstCond == ARMCC::AL) {
10896         EmitInITBlock = false;
10897         return Match_Success;
10898       }
10899     } else {
10900       EmitInITBlock = false;
10901       return Match_Success;
10902     }
10903   }
10904 
10905   // Try to match in a new IT block. The matcher doesn't check the actual
10906   // condition, so we create an IT block with a dummy condition, and fix it up
10907   // once we know the actual condition.
10908   startImplicitITBlock();
10909   if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10910       Match_Success) {
10911     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10912     if (MCID.isPredicable()) {
10913       ITState.Cond =
10914           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10915               .getImm();
10916       EmitInITBlock = true;
10917       return Match_Success;
10918     }
10919   }
10920   discardImplicitITBlock();
10921 
10922   // If none of these succeed, return the error we got when trying to match
10923   // outside any IT blocks.
10924   EmitInITBlock = false;
10925   return PlainMatchResult;
10926 }
10927 
10928 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
10929                                          unsigned VariantID = 0);
10930 
10931 static const char *getSubtargetFeatureName(uint64_t Val);
10932 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
10933                                            OperandVector &Operands,
10934                                            MCStreamer &Out, uint64_t &ErrorInfo,
10935                                            bool MatchingInlineAsm) {
10936   MCInst Inst;
10937   unsigned MatchResult;
10938   bool PendConditionalInstruction = false;
10939 
10940   SmallVector<NearMissInfo, 4> NearMisses;
10941   MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
10942                                  PendConditionalInstruction, Out);
10943 
10944   switch (MatchResult) {
10945   case Match_Success:
10946     LLVM_DEBUG(dbgs() << "Parsed as: ";
10947                Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10948                dbgs() << "\n");
10949 
10950     // Context sensitive operand constraints aren't handled by the matcher,
10951     // so check them here.
10952     if (validateInstruction(Inst, Operands)) {
10953       // Still progress the IT block, otherwise one wrong condition causes
10954       // nasty cascading errors.
10955       forwardITPosition();
10956       forwardVPTPosition();
10957       return true;
10958     }
10959 
10960     {
10961       // Some instructions need post-processing to, for example, tweak which
10962       // encoding is selected. Loop on it while changes happen so the
10963       // individual transformations can chain off each other. E.g.,
10964       // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
10965       while (processInstruction(Inst, Operands, Out))
10966         LLVM_DEBUG(dbgs() << "Changed to: ";
10967                    Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10968                    dbgs() << "\n");
10969     }
10970 
10971     // Only move forward at the very end so that everything in validate
10972     // and process gets a consistent answer about whether we're in an IT
10973     // block.
10974     forwardITPosition();
10975     forwardVPTPosition();
10976 
10977     // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
10978     // doesn't actually encode.
10979     if (Inst.getOpcode() == ARM::ITasm)
10980       return false;
10981 
10982     Inst.setLoc(IDLoc);
10983     if (PendConditionalInstruction) {
10984       PendingConditionalInsts.push_back(Inst);
10985       if (isITBlockFull() || isITBlockTerminator(Inst))
10986         flushPendingInstructions(Out);
10987     } else {
10988       Out.emitInstruction(Inst, getSTI());
10989     }
10990     return false;
10991   case Match_NearMisses:
10992     ReportNearMisses(NearMisses, IDLoc, Operands);
10993     return true;
10994   case Match_MnemonicFail: {
10995     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
10996     std::string Suggestion = ARMMnemonicSpellCheck(
10997       ((ARMOperand &)*Operands[0]).getToken(), FBS);
10998     return Error(IDLoc, "invalid instruction" + Suggestion,
10999                  ((ARMOperand &)*Operands[0]).getLocRange());
11000   }
11001   }
11002 
11003   llvm_unreachable("Implement any new match types added!");
11004 }
11005 
11006 /// parseDirective parses the arm specific directives
11007 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
11008   const MCContext::Environment Format = getContext().getObjectFileType();
11009   bool IsMachO = Format == MCContext::IsMachO;
11010   bool IsCOFF = Format == MCContext::IsCOFF;
11011 
11012   std::string IDVal = DirectiveID.getIdentifier().lower();
11013   if (IDVal == ".word")
11014     parseLiteralValues(4, DirectiveID.getLoc());
11015   else if (IDVal == ".short" || IDVal == ".hword")
11016     parseLiteralValues(2, DirectiveID.getLoc());
11017   else if (IDVal == ".thumb")
11018     parseDirectiveThumb(DirectiveID.getLoc());
11019   else if (IDVal == ".arm")
11020     parseDirectiveARM(DirectiveID.getLoc());
11021   else if (IDVal == ".thumb_func")
11022     parseDirectiveThumbFunc(DirectiveID.getLoc());
11023   else if (IDVal == ".code")
11024     parseDirectiveCode(DirectiveID.getLoc());
11025   else if (IDVal == ".syntax")
11026     parseDirectiveSyntax(DirectiveID.getLoc());
11027   else if (IDVal == ".unreq")
11028     parseDirectiveUnreq(DirectiveID.getLoc());
11029   else if (IDVal == ".fnend")
11030     parseDirectiveFnEnd(DirectiveID.getLoc());
11031   else if (IDVal == ".cantunwind")
11032     parseDirectiveCantUnwind(DirectiveID.getLoc());
11033   else if (IDVal == ".personality")
11034     parseDirectivePersonality(DirectiveID.getLoc());
11035   else if (IDVal == ".handlerdata")
11036     parseDirectiveHandlerData(DirectiveID.getLoc());
11037   else if (IDVal == ".setfp")
11038     parseDirectiveSetFP(DirectiveID.getLoc());
11039   else if (IDVal == ".pad")
11040     parseDirectivePad(DirectiveID.getLoc());
11041   else if (IDVal == ".save")
11042     parseDirectiveRegSave(DirectiveID.getLoc(), false);
11043   else if (IDVal == ".vsave")
11044     parseDirectiveRegSave(DirectiveID.getLoc(), true);
11045   else if (IDVal == ".ltorg" || IDVal == ".pool")
11046     parseDirectiveLtorg(DirectiveID.getLoc());
11047   else if (IDVal == ".even")
11048     parseDirectiveEven(DirectiveID.getLoc());
11049   else if (IDVal == ".personalityindex")
11050     parseDirectivePersonalityIndex(DirectiveID.getLoc());
11051   else if (IDVal == ".unwind_raw")
11052     parseDirectiveUnwindRaw(DirectiveID.getLoc());
11053   else if (IDVal == ".movsp")
11054     parseDirectiveMovSP(DirectiveID.getLoc());
11055   else if (IDVal == ".arch_extension")
11056     parseDirectiveArchExtension(DirectiveID.getLoc());
11057   else if (IDVal == ".align")
11058     return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
11059   else if (IDVal == ".thumb_set")
11060     parseDirectiveThumbSet(DirectiveID.getLoc());
11061   else if (IDVal == ".inst")
11062     parseDirectiveInst(DirectiveID.getLoc());
11063   else if (IDVal == ".inst.n")
11064     parseDirectiveInst(DirectiveID.getLoc(), 'n');
11065   else if (IDVal == ".inst.w")
11066     parseDirectiveInst(DirectiveID.getLoc(), 'w');
11067   else if (!IsMachO && !IsCOFF) {
11068     if (IDVal == ".arch")
11069       parseDirectiveArch(DirectiveID.getLoc());
11070     else if (IDVal == ".cpu")
11071       parseDirectiveCPU(DirectiveID.getLoc());
11072     else if (IDVal == ".eabi_attribute")
11073       parseDirectiveEabiAttr(DirectiveID.getLoc());
11074     else if (IDVal == ".fpu")
11075       parseDirectiveFPU(DirectiveID.getLoc());
11076     else if (IDVal == ".fnstart")
11077       parseDirectiveFnStart(DirectiveID.getLoc());
11078     else if (IDVal == ".object_arch")
11079       parseDirectiveObjectArch(DirectiveID.getLoc());
11080     else if (IDVal == ".tlsdescseq")
11081       parseDirectiveTLSDescSeq(DirectiveID.getLoc());
11082     else
11083       return true;
11084   } else
11085     return true;
11086   return false;
11087 }
11088 
11089 /// parseLiteralValues
11090 ///  ::= .hword expression [, expression]*
11091 ///  ::= .short expression [, expression]*
11092 ///  ::= .word expression [, expression]*
11093 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
11094   auto parseOne = [&]() -> bool {
11095     const MCExpr *Value;
11096     if (getParser().parseExpression(Value))
11097       return true;
11098     getParser().getStreamer().emitValue(Value, Size, L);
11099     return false;
11100   };
11101   return (parseMany(parseOne));
11102 }
11103 
11104 /// parseDirectiveThumb
11105 ///  ::= .thumb
11106 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
11107   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
11108       check(!hasThumb(), L, "target does not support Thumb mode"))
11109     return true;
11110 
11111   if (!isThumb())
11112     SwitchMode();
11113 
11114   getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11115   return false;
11116 }
11117 
11118 /// parseDirectiveARM
11119 ///  ::= .arm
11120 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
11121   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
11122       check(!hasARM(), L, "target does not support ARM mode"))
11123     return true;
11124 
11125   if (isThumb())
11126     SwitchMode();
11127   getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
11128   return false;
11129 }
11130 
11131 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
11132   // We need to flush the current implicit IT block on a label, because it is
11133   // not legal to branch into an IT block.
11134   flushPendingInstructions(getStreamer());
11135 }
11136 
11137 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
11138   if (NextSymbolIsThumb) {
11139     getParser().getStreamer().emitThumbFunc(Symbol);
11140     NextSymbolIsThumb = false;
11141   }
11142 }
11143 
11144 /// parseDirectiveThumbFunc
11145 ///  ::= .thumbfunc symbol_name
11146 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
11147   MCAsmParser &Parser = getParser();
11148   const auto Format = getContext().getObjectFileType();
11149   bool IsMachO = Format == MCContext::IsMachO;
11150 
11151   // Darwin asm has (optionally) function name after .thumb_func direction
11152   // ELF doesn't
11153 
11154   if (IsMachO) {
11155     if (Parser.getTok().is(AsmToken::Identifier) ||
11156         Parser.getTok().is(AsmToken::String)) {
11157       MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
11158           Parser.getTok().getIdentifier());
11159       getParser().getStreamer().emitThumbFunc(Func);
11160       Parser.Lex();
11161       if (parseToken(AsmToken::EndOfStatement,
11162                      "unexpected token in '.thumb_func' directive"))
11163         return true;
11164       return false;
11165     }
11166   }
11167 
11168   if (parseToken(AsmToken::EndOfStatement,
11169                  "unexpected token in '.thumb_func' directive"))
11170     return true;
11171 
11172   // .thumb_func implies .thumb
11173   if (!isThumb())
11174     SwitchMode();
11175 
11176   getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11177 
11178   NextSymbolIsThumb = true;
11179   return false;
11180 }
11181 
11182 /// parseDirectiveSyntax
11183 ///  ::= .syntax unified | divided
11184 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
11185   MCAsmParser &Parser = getParser();
11186   const AsmToken &Tok = Parser.getTok();
11187   if (Tok.isNot(AsmToken::Identifier)) {
11188     Error(L, "unexpected token in .syntax directive");
11189     return false;
11190   }
11191 
11192   StringRef Mode = Tok.getString();
11193   Parser.Lex();
11194   if (check(Mode == "divided" || Mode == "DIVIDED", L,
11195             "'.syntax divided' arm assembly not supported") ||
11196       check(Mode != "unified" && Mode != "UNIFIED", L,
11197             "unrecognized syntax mode in .syntax directive") ||
11198       parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11199     return true;
11200 
11201   // TODO tell the MC streamer the mode
11202   // getParser().getStreamer().Emit???();
11203   return false;
11204 }
11205 
11206 /// parseDirectiveCode
11207 ///  ::= .code 16 | 32
11208 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
11209   MCAsmParser &Parser = getParser();
11210   const AsmToken &Tok = Parser.getTok();
11211   if (Tok.isNot(AsmToken::Integer))
11212     return Error(L, "unexpected token in .code directive");
11213   int64_t Val = Parser.getTok().getIntVal();
11214   if (Val != 16 && Val != 32) {
11215     Error(L, "invalid operand to .code directive");
11216     return false;
11217   }
11218   Parser.Lex();
11219 
11220   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11221     return true;
11222 
11223   if (Val == 16) {
11224     if (!hasThumb())
11225       return Error(L, "target does not support Thumb mode");
11226 
11227     if (!isThumb())
11228       SwitchMode();
11229     getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11230   } else {
11231     if (!hasARM())
11232       return Error(L, "target does not support ARM mode");
11233 
11234     if (isThumb())
11235       SwitchMode();
11236     getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
11237   }
11238 
11239   return false;
11240 }
11241 
11242 /// parseDirectiveReq
11243 ///  ::= name .req registername
11244 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
11245   MCAsmParser &Parser = getParser();
11246   Parser.Lex(); // Eat the '.req' token.
11247   unsigned Reg;
11248   SMLoc SRegLoc, ERegLoc;
11249   if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
11250             "register name expected") ||
11251       parseToken(AsmToken::EndOfStatement,
11252                  "unexpected input in .req directive."))
11253     return true;
11254 
11255   if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
11256     return Error(SRegLoc,
11257                  "redefinition of '" + Name + "' does not match original.");
11258 
11259   return false;
11260 }
11261 
11262 /// parseDirectiveUneq
11263 ///  ::= .unreq registername
11264 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
11265   MCAsmParser &Parser = getParser();
11266   if (Parser.getTok().isNot(AsmToken::Identifier))
11267     return Error(L, "unexpected input in .unreq directive.");
11268   RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
11269   Parser.Lex(); // Eat the identifier.
11270   if (parseToken(AsmToken::EndOfStatement,
11271                  "unexpected input in '.unreq' directive"))
11272     return true;
11273   return false;
11274 }
11275 
11276 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
11277 // before, if supported by the new target, or emit mapping symbols for the mode
11278 // switch.
11279 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
11280   if (WasThumb != isThumb()) {
11281     if (WasThumb && hasThumb()) {
11282       // Stay in Thumb mode
11283       SwitchMode();
11284     } else if (!WasThumb && hasARM()) {
11285       // Stay in ARM mode
11286       SwitchMode();
11287     } else {
11288       // Mode switch forced, because the new arch doesn't support the old mode.
11289       getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16
11290                                                             : MCAF_Code32);
11291       // Warn about the implcit mode switch. GAS does not switch modes here,
11292       // but instead stays in the old mode, reporting an error on any following
11293       // instructions as the mode does not exist on the target.
11294       Warning(Loc, Twine("new target does not support ") +
11295                        (WasThumb ? "thumb" : "arm") + " mode, switching to " +
11296                        (!WasThumb ? "thumb" : "arm") + " mode");
11297     }
11298   }
11299 }
11300 
11301 /// parseDirectiveArch
11302 ///  ::= .arch token
11303 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
11304   StringRef Arch = getParser().parseStringToEndOfStatement().trim();
11305   ARM::ArchKind ID = ARM::parseArch(Arch);
11306 
11307   if (ID == ARM::ArchKind::INVALID)
11308     return Error(L, "Unknown arch name");
11309 
11310   bool WasThumb = isThumb();
11311   Triple T;
11312   MCSubtargetInfo &STI = copySTI();
11313   STI.setDefaultFeatures("", /*TuneCPU*/ "",
11314                          ("+" + ARM::getArchName(ID)).str());
11315   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11316   FixModeAfterArchChange(WasThumb, L);
11317 
11318   getTargetStreamer().emitArch(ID);
11319   return false;
11320 }
11321 
11322 /// parseDirectiveEabiAttr
11323 ///  ::= .eabi_attribute int, int [, "str"]
11324 ///  ::= .eabi_attribute Tag_name, int [, "str"]
11325 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
11326   MCAsmParser &Parser = getParser();
11327   int64_t Tag;
11328   SMLoc TagLoc;
11329   TagLoc = Parser.getTok().getLoc();
11330   if (Parser.getTok().is(AsmToken::Identifier)) {
11331     StringRef Name = Parser.getTok().getIdentifier();
11332     Optional<unsigned> Ret = ELFAttrs::attrTypeFromString(
11333         Name, ARMBuildAttrs::getARMAttributeTags());
11334     if (!Ret.hasValue()) {
11335       Error(TagLoc, "attribute name not recognised: " + Name);
11336       return false;
11337     }
11338     Tag = Ret.getValue();
11339     Parser.Lex();
11340   } else {
11341     const MCExpr *AttrExpr;
11342 
11343     TagLoc = Parser.getTok().getLoc();
11344     if (Parser.parseExpression(AttrExpr))
11345       return true;
11346 
11347     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
11348     if (check(!CE, TagLoc, "expected numeric constant"))
11349       return true;
11350 
11351     Tag = CE->getValue();
11352   }
11353 
11354   if (Parser.parseToken(AsmToken::Comma, "comma expected"))
11355     return true;
11356 
11357   StringRef StringValue = "";
11358   bool IsStringValue = false;
11359 
11360   int64_t IntegerValue = 0;
11361   bool IsIntegerValue = false;
11362 
11363   if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
11364     IsStringValue = true;
11365   else if (Tag == ARMBuildAttrs::compatibility) {
11366     IsStringValue = true;
11367     IsIntegerValue = true;
11368   } else if (Tag < 32 || Tag % 2 == 0)
11369     IsIntegerValue = true;
11370   else if (Tag % 2 == 1)
11371     IsStringValue = true;
11372   else
11373     llvm_unreachable("invalid tag type");
11374 
11375   if (IsIntegerValue) {
11376     const MCExpr *ValueExpr;
11377     SMLoc ValueExprLoc = Parser.getTok().getLoc();
11378     if (Parser.parseExpression(ValueExpr))
11379       return true;
11380 
11381     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
11382     if (!CE)
11383       return Error(ValueExprLoc, "expected numeric constant");
11384     IntegerValue = CE->getValue();
11385   }
11386 
11387   if (Tag == ARMBuildAttrs::compatibility) {
11388     if (Parser.parseToken(AsmToken::Comma, "comma expected"))
11389       return true;
11390   }
11391 
11392   if (IsStringValue) {
11393     if (Parser.getTok().isNot(AsmToken::String))
11394       return Error(Parser.getTok().getLoc(), "bad string constant");
11395 
11396     StringValue = Parser.getTok().getStringContents();
11397     Parser.Lex();
11398   }
11399 
11400   if (Parser.parseToken(AsmToken::EndOfStatement,
11401                         "unexpected token in '.eabi_attribute' directive"))
11402     return true;
11403 
11404   if (IsIntegerValue && IsStringValue) {
11405     assert(Tag == ARMBuildAttrs::compatibility);
11406     getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
11407   } else if (IsIntegerValue)
11408     getTargetStreamer().emitAttribute(Tag, IntegerValue);
11409   else if (IsStringValue)
11410     getTargetStreamer().emitTextAttribute(Tag, StringValue);
11411   return false;
11412 }
11413 
11414 /// parseDirectiveCPU
11415 ///  ::= .cpu str
11416 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
11417   StringRef CPU = getParser().parseStringToEndOfStatement().trim();
11418   getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
11419 
11420   // FIXME: This is using table-gen data, but should be moved to
11421   // ARMTargetParser once that is table-gen'd.
11422   if (!getSTI().isCPUStringValid(CPU))
11423     return Error(L, "Unknown CPU name");
11424 
11425   bool WasThumb = isThumb();
11426   MCSubtargetInfo &STI = copySTI();
11427   STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, "");
11428   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11429   FixModeAfterArchChange(WasThumb, L);
11430 
11431   return false;
11432 }
11433 
11434 /// parseDirectiveFPU
11435 ///  ::= .fpu str
11436 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
11437   SMLoc FPUNameLoc = getTok().getLoc();
11438   StringRef FPU = getParser().parseStringToEndOfStatement().trim();
11439 
11440   unsigned ID = ARM::parseFPU(FPU);
11441   std::vector<StringRef> Features;
11442   if (!ARM::getFPUFeatures(ID, Features))
11443     return Error(FPUNameLoc, "Unknown FPU name");
11444 
11445   MCSubtargetInfo &STI = copySTI();
11446   for (auto Feature : Features)
11447     STI.ApplyFeatureFlag(Feature);
11448   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11449 
11450   getTargetStreamer().emitFPU(ID);
11451   return false;
11452 }
11453 
11454 /// parseDirectiveFnStart
11455 ///  ::= .fnstart
11456 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
11457   if (parseToken(AsmToken::EndOfStatement,
11458                  "unexpected token in '.fnstart' directive"))
11459     return true;
11460 
11461   if (UC.hasFnStart()) {
11462     Error(L, ".fnstart starts before the end of previous one");
11463     UC.emitFnStartLocNotes();
11464     return true;
11465   }
11466 
11467   // Reset the unwind directives parser state
11468   UC.reset();
11469 
11470   getTargetStreamer().emitFnStart();
11471 
11472   UC.recordFnStart(L);
11473   return false;
11474 }
11475 
11476 /// parseDirectiveFnEnd
11477 ///  ::= .fnend
11478 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
11479   if (parseToken(AsmToken::EndOfStatement,
11480                  "unexpected token in '.fnend' directive"))
11481     return true;
11482   // Check the ordering of unwind directives
11483   if (!UC.hasFnStart())
11484     return Error(L, ".fnstart must precede .fnend directive");
11485 
11486   // Reset the unwind directives parser state
11487   getTargetStreamer().emitFnEnd();
11488 
11489   UC.reset();
11490   return false;
11491 }
11492 
11493 /// parseDirectiveCantUnwind
11494 ///  ::= .cantunwind
11495 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
11496   if (parseToken(AsmToken::EndOfStatement,
11497                  "unexpected token in '.cantunwind' directive"))
11498     return true;
11499 
11500   UC.recordCantUnwind(L);
11501   // Check the ordering of unwind directives
11502   if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
11503     return true;
11504 
11505   if (UC.hasHandlerData()) {
11506     Error(L, ".cantunwind can't be used with .handlerdata directive");
11507     UC.emitHandlerDataLocNotes();
11508     return true;
11509   }
11510   if (UC.hasPersonality()) {
11511     Error(L, ".cantunwind can't be used with .personality directive");
11512     UC.emitPersonalityLocNotes();
11513     return true;
11514   }
11515 
11516   getTargetStreamer().emitCantUnwind();
11517   return false;
11518 }
11519 
11520 /// parseDirectivePersonality
11521 ///  ::= .personality name
11522 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
11523   MCAsmParser &Parser = getParser();
11524   bool HasExistingPersonality = UC.hasPersonality();
11525 
11526   // Parse the name of the personality routine
11527   if (Parser.getTok().isNot(AsmToken::Identifier))
11528     return Error(L, "unexpected input in .personality directive.");
11529   StringRef Name(Parser.getTok().getIdentifier());
11530   Parser.Lex();
11531 
11532   if (parseToken(AsmToken::EndOfStatement,
11533                  "unexpected token in '.personality' directive"))
11534     return true;
11535 
11536   UC.recordPersonality(L);
11537 
11538   // Check the ordering of unwind directives
11539   if (!UC.hasFnStart())
11540     return Error(L, ".fnstart must precede .personality directive");
11541   if (UC.cantUnwind()) {
11542     Error(L, ".personality can't be used with .cantunwind directive");
11543     UC.emitCantUnwindLocNotes();
11544     return true;
11545   }
11546   if (UC.hasHandlerData()) {
11547     Error(L, ".personality must precede .handlerdata directive");
11548     UC.emitHandlerDataLocNotes();
11549     return true;
11550   }
11551   if (HasExistingPersonality) {
11552     Error(L, "multiple personality directives");
11553     UC.emitPersonalityLocNotes();
11554     return true;
11555   }
11556 
11557   MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
11558   getTargetStreamer().emitPersonality(PR);
11559   return false;
11560 }
11561 
11562 /// parseDirectiveHandlerData
11563 ///  ::= .handlerdata
11564 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
11565   if (parseToken(AsmToken::EndOfStatement,
11566                  "unexpected token in '.handlerdata' directive"))
11567     return true;
11568 
11569   UC.recordHandlerData(L);
11570   // Check the ordering of unwind directives
11571   if (!UC.hasFnStart())
11572     return Error(L, ".fnstart must precede .personality directive");
11573   if (UC.cantUnwind()) {
11574     Error(L, ".handlerdata can't be used with .cantunwind directive");
11575     UC.emitCantUnwindLocNotes();
11576     return true;
11577   }
11578 
11579   getTargetStreamer().emitHandlerData();
11580   return false;
11581 }
11582 
11583 /// parseDirectiveSetFP
11584 ///  ::= .setfp fpreg, spreg [, offset]
11585 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
11586   MCAsmParser &Parser = getParser();
11587   // Check the ordering of unwind directives
11588   if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
11589       check(UC.hasHandlerData(), L,
11590             ".setfp must precede .handlerdata directive"))
11591     return true;
11592 
11593   // Parse fpreg
11594   SMLoc FPRegLoc = Parser.getTok().getLoc();
11595   int FPReg = tryParseRegister();
11596 
11597   if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
11598       Parser.parseToken(AsmToken::Comma, "comma expected"))
11599     return true;
11600 
11601   // Parse spreg
11602   SMLoc SPRegLoc = Parser.getTok().getLoc();
11603   int SPReg = tryParseRegister();
11604   if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
11605       check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
11606             "register should be either $sp or the latest fp register"))
11607     return true;
11608 
11609   // Update the frame pointer register
11610   UC.saveFPReg(FPReg);
11611 
11612   // Parse offset
11613   int64_t Offset = 0;
11614   if (Parser.parseOptionalToken(AsmToken::Comma)) {
11615     if (Parser.getTok().isNot(AsmToken::Hash) &&
11616         Parser.getTok().isNot(AsmToken::Dollar))
11617       return Error(Parser.getTok().getLoc(), "'#' expected");
11618     Parser.Lex(); // skip hash token.
11619 
11620     const MCExpr *OffsetExpr;
11621     SMLoc ExLoc = Parser.getTok().getLoc();
11622     SMLoc EndLoc;
11623     if (getParser().parseExpression(OffsetExpr, EndLoc))
11624       return Error(ExLoc, "malformed setfp offset");
11625     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11626     if (check(!CE, ExLoc, "setfp offset must be an immediate"))
11627       return true;
11628     Offset = CE->getValue();
11629   }
11630 
11631   if (Parser.parseToken(AsmToken::EndOfStatement))
11632     return true;
11633 
11634   getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
11635                                 static_cast<unsigned>(SPReg), Offset);
11636   return false;
11637 }
11638 
11639 /// parseDirective
11640 ///  ::= .pad offset
11641 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
11642   MCAsmParser &Parser = getParser();
11643   // Check the ordering of unwind directives
11644   if (!UC.hasFnStart())
11645     return Error(L, ".fnstart must precede .pad directive");
11646   if (UC.hasHandlerData())
11647     return Error(L, ".pad must precede .handlerdata directive");
11648 
11649   // Parse the offset
11650   if (Parser.getTok().isNot(AsmToken::Hash) &&
11651       Parser.getTok().isNot(AsmToken::Dollar))
11652     return Error(Parser.getTok().getLoc(), "'#' expected");
11653   Parser.Lex(); // skip hash token.
11654 
11655   const MCExpr *OffsetExpr;
11656   SMLoc ExLoc = Parser.getTok().getLoc();
11657   SMLoc EndLoc;
11658   if (getParser().parseExpression(OffsetExpr, EndLoc))
11659     return Error(ExLoc, "malformed pad offset");
11660   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11661   if (!CE)
11662     return Error(ExLoc, "pad offset must be an immediate");
11663 
11664   if (parseToken(AsmToken::EndOfStatement,
11665                  "unexpected token in '.pad' directive"))
11666     return true;
11667 
11668   getTargetStreamer().emitPad(CE->getValue());
11669   return false;
11670 }
11671 
11672 /// parseDirectiveRegSave
11673 ///  ::= .save  { registers }
11674 ///  ::= .vsave { registers }
11675 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
11676   // Check the ordering of unwind directives
11677   if (!UC.hasFnStart())
11678     return Error(L, ".fnstart must precede .save or .vsave directives");
11679   if (UC.hasHandlerData())
11680     return Error(L, ".save or .vsave must precede .handlerdata directive");
11681 
11682   // RAII object to make sure parsed operands are deleted.
11683   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
11684 
11685   // Parse the register list
11686   if (parseRegisterList(Operands, true, true) ||
11687       parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11688     return true;
11689   ARMOperand &Op = (ARMOperand &)*Operands[0];
11690   if (!IsVector && !Op.isRegList())
11691     return Error(L, ".save expects GPR registers");
11692   if (IsVector && !Op.isDPRRegList())
11693     return Error(L, ".vsave expects DPR registers");
11694 
11695   getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
11696   return false;
11697 }
11698 
11699 /// parseDirectiveInst
11700 ///  ::= .inst opcode [, ...]
11701 ///  ::= .inst.n opcode [, ...]
11702 ///  ::= .inst.w opcode [, ...]
11703 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
11704   int Width = 4;
11705 
11706   if (isThumb()) {
11707     switch (Suffix) {
11708     case 'n':
11709       Width = 2;
11710       break;
11711     case 'w':
11712       break;
11713     default:
11714       Width = 0;
11715       break;
11716     }
11717   } else {
11718     if (Suffix)
11719       return Error(Loc, "width suffixes are invalid in ARM mode");
11720   }
11721 
11722   auto parseOne = [&]() -> bool {
11723     const MCExpr *Expr;
11724     if (getParser().parseExpression(Expr))
11725       return true;
11726     const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
11727     if (!Value) {
11728       return Error(Loc, "expected constant expression");
11729     }
11730 
11731     char CurSuffix = Suffix;
11732     switch (Width) {
11733     case 2:
11734       if (Value->getValue() > 0xffff)
11735         return Error(Loc, "inst.n operand is too big, use inst.w instead");
11736       break;
11737     case 4:
11738       if (Value->getValue() > 0xffffffff)
11739         return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
11740                               " operand is too big");
11741       break;
11742     case 0:
11743       // Thumb mode, no width indicated. Guess from the opcode, if possible.
11744       if (Value->getValue() < 0xe800)
11745         CurSuffix = 'n';
11746       else if (Value->getValue() >= 0xe8000000)
11747         CurSuffix = 'w';
11748       else
11749         return Error(Loc, "cannot determine Thumb instruction size, "
11750                           "use inst.n/inst.w instead");
11751       break;
11752     default:
11753       llvm_unreachable("only supported widths are 2 and 4");
11754     }
11755 
11756     getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
11757     return false;
11758   };
11759 
11760   if (parseOptionalToken(AsmToken::EndOfStatement))
11761     return Error(Loc, "expected expression following directive");
11762   if (parseMany(parseOne))
11763     return true;
11764   return false;
11765 }
11766 
11767 /// parseDirectiveLtorg
11768 ///  ::= .ltorg | .pool
11769 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
11770   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11771     return true;
11772   getTargetStreamer().emitCurrentConstantPool();
11773   return false;
11774 }
11775 
11776 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
11777   const MCSection *Section = getStreamer().getCurrentSectionOnly();
11778 
11779   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11780     return true;
11781 
11782   if (!Section) {
11783     getStreamer().initSections(false, getSTI());
11784     Section = getStreamer().getCurrentSectionOnly();
11785   }
11786 
11787   assert(Section && "must have section to emit alignment");
11788   if (Section->useCodeAlign())
11789     getStreamer().emitCodeAlignment(2, &getSTI());
11790   else
11791     getStreamer().emitValueToAlignment(2);
11792 
11793   return false;
11794 }
11795 
11796 /// parseDirectivePersonalityIndex
11797 ///   ::= .personalityindex index
11798 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
11799   MCAsmParser &Parser = getParser();
11800   bool HasExistingPersonality = UC.hasPersonality();
11801 
11802   const MCExpr *IndexExpression;
11803   SMLoc IndexLoc = Parser.getTok().getLoc();
11804   if (Parser.parseExpression(IndexExpression) ||
11805       parseToken(AsmToken::EndOfStatement,
11806                  "unexpected token in '.personalityindex' directive")) {
11807     return true;
11808   }
11809 
11810   UC.recordPersonalityIndex(L);
11811 
11812   if (!UC.hasFnStart()) {
11813     return Error(L, ".fnstart must precede .personalityindex directive");
11814   }
11815   if (UC.cantUnwind()) {
11816     Error(L, ".personalityindex cannot be used with .cantunwind");
11817     UC.emitCantUnwindLocNotes();
11818     return true;
11819   }
11820   if (UC.hasHandlerData()) {
11821     Error(L, ".personalityindex must precede .handlerdata directive");
11822     UC.emitHandlerDataLocNotes();
11823     return true;
11824   }
11825   if (HasExistingPersonality) {
11826     Error(L, "multiple personality directives");
11827     UC.emitPersonalityLocNotes();
11828     return true;
11829   }
11830 
11831   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
11832   if (!CE)
11833     return Error(IndexLoc, "index must be a constant number");
11834   if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
11835     return Error(IndexLoc,
11836                  "personality routine index should be in range [0-3]");
11837 
11838   getTargetStreamer().emitPersonalityIndex(CE->getValue());
11839   return false;
11840 }
11841 
11842 /// parseDirectiveUnwindRaw
11843 ///   ::= .unwind_raw offset, opcode [, opcode...]
11844 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
11845   MCAsmParser &Parser = getParser();
11846   int64_t StackOffset;
11847   const MCExpr *OffsetExpr;
11848   SMLoc OffsetLoc = getLexer().getLoc();
11849 
11850   if (!UC.hasFnStart())
11851     return Error(L, ".fnstart must precede .unwind_raw directives");
11852   if (getParser().parseExpression(OffsetExpr))
11853     return Error(OffsetLoc, "expected expression");
11854 
11855   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11856   if (!CE)
11857     return Error(OffsetLoc, "offset must be a constant");
11858 
11859   StackOffset = CE->getValue();
11860 
11861   if (Parser.parseToken(AsmToken::Comma, "expected comma"))
11862     return true;
11863 
11864   SmallVector<uint8_t, 16> Opcodes;
11865 
11866   auto parseOne = [&]() -> bool {
11867     const MCExpr *OE = nullptr;
11868     SMLoc OpcodeLoc = getLexer().getLoc();
11869     if (check(getLexer().is(AsmToken::EndOfStatement) ||
11870                   Parser.parseExpression(OE),
11871               OpcodeLoc, "expected opcode expression"))
11872       return true;
11873     const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
11874     if (!OC)
11875       return Error(OpcodeLoc, "opcode value must be a constant");
11876     const int64_t Opcode = OC->getValue();
11877     if (Opcode & ~0xff)
11878       return Error(OpcodeLoc, "invalid opcode");
11879     Opcodes.push_back(uint8_t(Opcode));
11880     return false;
11881   };
11882 
11883   // Must have at least 1 element
11884   SMLoc OpcodeLoc = getLexer().getLoc();
11885   if (parseOptionalToken(AsmToken::EndOfStatement))
11886     return Error(OpcodeLoc, "expected opcode expression");
11887   if (parseMany(parseOne))
11888     return true;
11889 
11890   getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
11891   return false;
11892 }
11893 
11894 /// parseDirectiveTLSDescSeq
11895 ///   ::= .tlsdescseq tls-variable
11896 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
11897   MCAsmParser &Parser = getParser();
11898 
11899   if (getLexer().isNot(AsmToken::Identifier))
11900     return TokError("expected variable after '.tlsdescseq' directive");
11901 
11902   const MCSymbolRefExpr *SRE =
11903     MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
11904                             MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
11905   Lex();
11906 
11907   if (parseToken(AsmToken::EndOfStatement,
11908                  "unexpected token in '.tlsdescseq' directive"))
11909     return true;
11910 
11911   getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
11912   return false;
11913 }
11914 
11915 /// parseDirectiveMovSP
11916 ///  ::= .movsp reg [, #offset]
11917 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
11918   MCAsmParser &Parser = getParser();
11919   if (!UC.hasFnStart())
11920     return Error(L, ".fnstart must precede .movsp directives");
11921   if (UC.getFPReg() != ARM::SP)
11922     return Error(L, "unexpected .movsp directive");
11923 
11924   SMLoc SPRegLoc = Parser.getTok().getLoc();
11925   int SPReg = tryParseRegister();
11926   if (SPReg == -1)
11927     return Error(SPRegLoc, "register expected");
11928   if (SPReg == ARM::SP || SPReg == ARM::PC)
11929     return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
11930 
11931   int64_t Offset = 0;
11932   if (Parser.parseOptionalToken(AsmToken::Comma)) {
11933     if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
11934       return true;
11935 
11936     const MCExpr *OffsetExpr;
11937     SMLoc OffsetLoc = Parser.getTok().getLoc();
11938 
11939     if (Parser.parseExpression(OffsetExpr))
11940       return Error(OffsetLoc, "malformed offset expression");
11941 
11942     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11943     if (!CE)
11944       return Error(OffsetLoc, "offset must be an immediate constant");
11945 
11946     Offset = CE->getValue();
11947   }
11948 
11949   if (parseToken(AsmToken::EndOfStatement,
11950                  "unexpected token in '.movsp' directive"))
11951     return true;
11952 
11953   getTargetStreamer().emitMovSP(SPReg, Offset);
11954   UC.saveFPReg(SPReg);
11955 
11956   return false;
11957 }
11958 
11959 /// parseDirectiveObjectArch
11960 ///   ::= .object_arch name
11961 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
11962   MCAsmParser &Parser = getParser();
11963   if (getLexer().isNot(AsmToken::Identifier))
11964     return Error(getLexer().getLoc(), "unexpected token");
11965 
11966   StringRef Arch = Parser.getTok().getString();
11967   SMLoc ArchLoc = Parser.getTok().getLoc();
11968   Lex();
11969 
11970   ARM::ArchKind ID = ARM::parseArch(Arch);
11971 
11972   if (ID == ARM::ArchKind::INVALID)
11973     return Error(ArchLoc, "unknown architecture '" + Arch + "'");
11974   if (parseToken(AsmToken::EndOfStatement))
11975     return true;
11976 
11977   getTargetStreamer().emitObjectArch(ID);
11978   return false;
11979 }
11980 
11981 /// parseDirectiveAlign
11982 ///   ::= .align
11983 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
11984   // NOTE: if this is not the end of the statement, fall back to the target
11985   // agnostic handling for this directive which will correctly handle this.
11986   if (parseOptionalToken(AsmToken::EndOfStatement)) {
11987     // '.align' is target specifically handled to mean 2**2 byte alignment.
11988     const MCSection *Section = getStreamer().getCurrentSectionOnly();
11989     assert(Section && "must have section to emit alignment");
11990     if (Section->useCodeAlign())
11991       getStreamer().emitCodeAlignment(4, &getSTI(), 0);
11992     else
11993       getStreamer().emitValueToAlignment(4, 0, 1, 0);
11994     return false;
11995   }
11996   return true;
11997 }
11998 
11999 /// parseDirectiveThumbSet
12000 ///  ::= .thumb_set name, value
12001 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
12002   MCAsmParser &Parser = getParser();
12003 
12004   StringRef Name;
12005   if (check(Parser.parseIdentifier(Name),
12006             "expected identifier after '.thumb_set'") ||
12007       parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
12008     return true;
12009 
12010   MCSymbol *Sym;
12011   const MCExpr *Value;
12012   if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
12013                                                Parser, Sym, Value))
12014     return true;
12015 
12016   getTargetStreamer().emitThumbSet(Sym, Value);
12017   return false;
12018 }
12019 
12020 /// Force static initialization.
12021 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() {
12022   RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
12023   RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
12024   RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
12025   RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
12026 }
12027 
12028 #define GET_REGISTER_MATCHER
12029 #define GET_SUBTARGET_FEATURE_NAME
12030 #define GET_MATCHER_IMPLEMENTATION
12031 #define GET_MNEMONIC_SPELL_CHECKER
12032 #include "ARMGenAsmMatcher.inc"
12033 
12034 // Some diagnostics need to vary with subtarget features, so they are handled
12035 // here. For example, the DPR class has either 16 or 32 registers, depending
12036 // on the FPU available.
12037 const char *
12038 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
12039   switch (MatchError) {
12040   // rGPR contains sp starting with ARMv8.
12041   case Match_rGPR:
12042     return hasV8Ops() ? "operand must be a register in range [r0, r14]"
12043                       : "operand must be a register in range [r0, r12] or r14";
12044   // DPR contains 16 registers for some FPUs, and 32 for others.
12045   case Match_DPR:
12046     return hasD32() ? "operand must be a register in range [d0, d31]"
12047                     : "operand must be a register in range [d0, d15]";
12048   case Match_DPR_RegList:
12049     return hasD32() ? "operand must be a list of registers in range [d0, d31]"
12050                     : "operand must be a list of registers in range [d0, d15]";
12051 
12052   // For all other diags, use the static string from tablegen.
12053   default:
12054     return getMatchKindDiag(MatchError);
12055   }
12056 }
12057 
12058 // Process the list of near-misses, throwing away ones we don't want to report
12059 // to the user, and converting the rest to a source location and string that
12060 // should be reported.
12061 void
12062 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
12063                                SmallVectorImpl<NearMissMessage> &NearMissesOut,
12064                                SMLoc IDLoc, OperandVector &Operands) {
12065   // TODO: If operand didn't match, sub in a dummy one and run target
12066   // predicate, so that we can avoid reporting near-misses that are invalid?
12067   // TODO: Many operand types dont have SuperClasses set, so we report
12068   // redundant ones.
12069   // TODO: Some operands are superclasses of registers (e.g.
12070   // MCK_RegShiftedImm), we don't have any way to represent that currently.
12071   // TODO: This is not all ARM-specific, can some of it be factored out?
12072 
12073   // Record some information about near-misses that we have already seen, so
12074   // that we can avoid reporting redundant ones. For example, if there are
12075   // variants of an instruction that take 8- and 16-bit immediates, we want
12076   // to only report the widest one.
12077   std::multimap<unsigned, unsigned> OperandMissesSeen;
12078   SmallSet<FeatureBitset, 4> FeatureMissesSeen;
12079   bool ReportedTooFewOperands = false;
12080 
12081   // Process the near-misses in reverse order, so that we see more general ones
12082   // first, and so can avoid emitting more specific ones.
12083   for (NearMissInfo &I : reverse(NearMissesIn)) {
12084     switch (I.getKind()) {
12085     case NearMissInfo::NearMissOperand: {
12086       SMLoc OperandLoc =
12087           ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
12088       const char *OperandDiag =
12089           getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
12090 
12091       // If we have already emitted a message for a superclass, don't also report
12092       // the sub-class. We consider all operand classes that we don't have a
12093       // specialised diagnostic for to be equal for the propose of this check,
12094       // so that we don't report the generic error multiple times on the same
12095       // operand.
12096       unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
12097       auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
12098       if (std::any_of(PrevReports.first, PrevReports.second,
12099                       [DupCheckMatchClass](
12100                           const std::pair<unsigned, unsigned> Pair) {
12101             if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
12102               return Pair.second == DupCheckMatchClass;
12103             else
12104               return isSubclass((MatchClassKind)DupCheckMatchClass,
12105                                 (MatchClassKind)Pair.second);
12106           }))
12107         break;
12108       OperandMissesSeen.insert(
12109           std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
12110 
12111       NearMissMessage Message;
12112       Message.Loc = OperandLoc;
12113       if (OperandDiag) {
12114         Message.Message = OperandDiag;
12115       } else if (I.getOperandClass() == InvalidMatchClass) {
12116         Message.Message = "too many operands for instruction";
12117       } else {
12118         Message.Message = "invalid operand for instruction";
12119         LLVM_DEBUG(
12120             dbgs() << "Missing diagnostic string for operand class "
12121                    << getMatchClassName((MatchClassKind)I.getOperandClass())
12122                    << I.getOperandClass() << ", error " << I.getOperandError()
12123                    << ", opcode " << MII.getName(I.getOpcode()) << "\n");
12124       }
12125       NearMissesOut.emplace_back(Message);
12126       break;
12127     }
12128     case NearMissInfo::NearMissFeature: {
12129       const FeatureBitset &MissingFeatures = I.getFeatures();
12130       // Don't report the same set of features twice.
12131       if (FeatureMissesSeen.count(MissingFeatures))
12132         break;
12133       FeatureMissesSeen.insert(MissingFeatures);
12134 
12135       // Special case: don't report a feature set which includes arm-mode for
12136       // targets that don't have ARM mode.
12137       if (MissingFeatures.test(Feature_IsARMBit) && !hasARM())
12138         break;
12139       // Don't report any near-misses that both require switching instruction
12140       // set, and adding other subtarget features.
12141       if (isThumb() && MissingFeatures.test(Feature_IsARMBit) &&
12142           MissingFeatures.count() > 1)
12143         break;
12144       if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) &&
12145           MissingFeatures.count() > 1)
12146         break;
12147       if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) &&
12148           (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit,
12149                                              Feature_IsThumbBit})).any())
12150         break;
12151       if (isMClass() && MissingFeatures.test(Feature_HasNEONBit))
12152         break;
12153 
12154       NearMissMessage Message;
12155       Message.Loc = IDLoc;
12156       raw_svector_ostream OS(Message.Message);
12157 
12158       OS << "instruction requires:";
12159       for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)
12160         if (MissingFeatures.test(i))
12161           OS << ' ' << getSubtargetFeatureName(i);
12162 
12163       NearMissesOut.emplace_back(Message);
12164 
12165       break;
12166     }
12167     case NearMissInfo::NearMissPredicate: {
12168       NearMissMessage Message;
12169       Message.Loc = IDLoc;
12170       switch (I.getPredicateError()) {
12171       case Match_RequiresNotITBlock:
12172         Message.Message = "flag setting instruction only valid outside IT block";
12173         break;
12174       case Match_RequiresITBlock:
12175         Message.Message = "instruction only valid inside IT block";
12176         break;
12177       case Match_RequiresV6:
12178         Message.Message = "instruction variant requires ARMv6 or later";
12179         break;
12180       case Match_RequiresThumb2:
12181         Message.Message = "instruction variant requires Thumb2";
12182         break;
12183       case Match_RequiresV8:
12184         Message.Message = "instruction variant requires ARMv8 or later";
12185         break;
12186       case Match_RequiresFlagSetting:
12187         Message.Message = "no flag-preserving variant of this instruction available";
12188         break;
12189       case Match_InvalidOperand:
12190         Message.Message = "invalid operand for instruction";
12191         break;
12192       default:
12193         llvm_unreachable("Unhandled target predicate error");
12194         break;
12195       }
12196       NearMissesOut.emplace_back(Message);
12197       break;
12198     }
12199     case NearMissInfo::NearMissTooFewOperands: {
12200       if (!ReportedTooFewOperands) {
12201         SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
12202         NearMissesOut.emplace_back(NearMissMessage{
12203             EndLoc, StringRef("too few operands for instruction")});
12204         ReportedTooFewOperands = true;
12205       }
12206       break;
12207     }
12208     case NearMissInfo::NoNearMiss:
12209       // This should never leave the matcher.
12210       llvm_unreachable("not a near-miss");
12211       break;
12212     }
12213   }
12214 }
12215 
12216 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
12217                                     SMLoc IDLoc, OperandVector &Operands) {
12218   SmallVector<NearMissMessage, 4> Messages;
12219   FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
12220 
12221   if (Messages.size() == 0) {
12222     // No near-misses were found, so the best we can do is "invalid
12223     // instruction".
12224     Error(IDLoc, "invalid instruction");
12225   } else if (Messages.size() == 1) {
12226     // One near miss was found, report it as the sole error.
12227     Error(Messages[0].Loc, Messages[0].Message);
12228   } else {
12229     // More than one near miss, so report a generic "invalid instruction"
12230     // error, followed by notes for each of the near-misses.
12231     Error(IDLoc, "invalid instruction, any one of the following would fix this:");
12232     for (auto &M : Messages) {
12233       Note(M.Loc, M.Message);
12234     }
12235   }
12236 }
12237 
12238 bool ARMAsmParser::enableArchExtFeature(StringRef Name, SMLoc &ExtLoc) {
12239   // FIXME: This structure should be moved inside ARMTargetParser
12240   // when we start to table-generate them, and we can use the ARM
12241   // flags below, that were generated by table-gen.
12242   static const struct {
12243     const uint64_t Kind;
12244     const FeatureBitset ArchCheck;
12245     const FeatureBitset Features;
12246   } Extensions[] = {
12247       {ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC}},
12248       {ARM::AEK_AES,
12249        {Feature_HasV8Bit},
12250        {ARM::FeatureAES, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12251       {ARM::AEK_SHA2,
12252        {Feature_HasV8Bit},
12253        {ARM::FeatureSHA2, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12254       {ARM::AEK_CRYPTO,
12255        {Feature_HasV8Bit},
12256        {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8}},
12257       {ARM::AEK_FP,
12258        {Feature_HasV8Bit},
12259        {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}},
12260       {(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM),
12261        {Feature_HasV7Bit, Feature_IsNotMClassBit},
12262        {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM}},
12263       {ARM::AEK_MP,
12264        {Feature_HasV7Bit, Feature_IsNotMClassBit},
12265        {ARM::FeatureMP}},
12266       {ARM::AEK_SIMD,
12267        {Feature_HasV8Bit},
12268        {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8}},
12269       {ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone}},
12270       // FIXME: Only available in A-class, isel not predicated
12271       {ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization}},
12272       {ARM::AEK_FP16,
12273        {Feature_HasV8_2aBit},
12274        {ARM::FeatureFPARMv8, ARM::FeatureFullFP16}},
12275       {ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS}},
12276       {ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB}},
12277       {ARM::AEK_PACBTI, {Feature_HasV8_1MMainlineBit}, {ARM::FeaturePACBTI}},
12278       // FIXME: Unsupported extensions.
12279       {ARM::AEK_OS, {}, {}},
12280       {ARM::AEK_IWMMXT, {}, {}},
12281       {ARM::AEK_IWMMXT2, {}, {}},
12282       {ARM::AEK_MAVERICK, {}, {}},
12283       {ARM::AEK_XSCALE, {}, {}},
12284   };
12285   bool EnableFeature = true;
12286   if (Name.startswith_insensitive("no")) {
12287     EnableFeature = false;
12288     Name = Name.substr(2);
12289   }
12290   uint64_t FeatureKind = ARM::parseArchExt(Name);
12291   if (FeatureKind == ARM::AEK_INVALID)
12292     return Error(ExtLoc, "unknown architectural extension: " + Name);
12293 
12294   for (const auto &Extension : Extensions) {
12295     if (Extension.Kind != FeatureKind)
12296       continue;
12297 
12298     if (Extension.Features.none())
12299       return Error(ExtLoc, "unsupported architectural extension: " + Name);
12300 
12301     if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
12302       return Error(ExtLoc, "architectural extension '" + Name +
12303                                "' is not "
12304                                "allowed for the current base architecture");
12305 
12306     MCSubtargetInfo &STI = copySTI();
12307     if (EnableFeature) {
12308       STI.SetFeatureBitsTransitively(Extension.Features);
12309     } else {
12310       STI.ClearFeatureBitsTransitively(Extension.Features);
12311     }
12312     FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits());
12313     setAvailableFeatures(Features);
12314     return true;
12315   }
12316   return false;
12317 }
12318 
12319 /// parseDirectiveArchExtension
12320 ///   ::= .arch_extension [no]feature
12321 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
12322 
12323   MCAsmParser &Parser = getParser();
12324 
12325   if (getLexer().isNot(AsmToken::Identifier))
12326     return Error(getLexer().getLoc(), "expected architecture extension name");
12327 
12328   StringRef Name = Parser.getTok().getString();
12329   SMLoc ExtLoc = Parser.getTok().getLoc();
12330   Lex();
12331 
12332   if (parseToken(AsmToken::EndOfStatement,
12333                  "unexpected token in '.arch_extension' directive"))
12334     return true;
12335 
12336   if (Name == "nocrypto") {
12337     enableArchExtFeature("nosha2", ExtLoc);
12338     enableArchExtFeature("noaes", ExtLoc);
12339   }
12340 
12341   if (enableArchExtFeature(Name, ExtLoc))
12342     return false;
12343 
12344   return Error(ExtLoc, "unknown architectural extension: " + Name);
12345 }
12346 
12347 // Define this matcher function after the auto-generated include so we
12348 // have the match class enum definitions.
12349 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
12350                                                   unsigned Kind) {
12351   ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
12352   // If the kind is a token for a literal immediate, check if our asm
12353   // operand matches. This is for InstAliases which have a fixed-value
12354   // immediate in the syntax.
12355   switch (Kind) {
12356   default: break;
12357   case MCK__HASH_0:
12358     if (Op.isImm())
12359       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12360         if (CE->getValue() == 0)
12361           return Match_Success;
12362     break;
12363   case MCK__HASH_8:
12364     if (Op.isImm())
12365       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12366         if (CE->getValue() == 8)
12367           return Match_Success;
12368     break;
12369   case MCK__HASH_16:
12370     if (Op.isImm())
12371       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12372         if (CE->getValue() == 16)
12373           return Match_Success;
12374     break;
12375   case MCK_ModImm:
12376     if (Op.isImm()) {
12377       const MCExpr *SOExpr = Op.getImm();
12378       int64_t Value;
12379       if (!SOExpr->evaluateAsAbsolute(Value))
12380         return Match_Success;
12381       assert((Value >= std::numeric_limits<int32_t>::min() &&
12382               Value <= std::numeric_limits<uint32_t>::max()) &&
12383              "expression value must be representable in 32 bits");
12384     }
12385     break;
12386   case MCK_rGPR:
12387     if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
12388       return Match_Success;
12389     return Match_rGPR;
12390   case MCK_GPRPair:
12391     if (Op.isReg() &&
12392         MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
12393       return Match_Success;
12394     break;
12395   }
12396   return Match_InvalidOperand;
12397 }
12398 
12399 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic,
12400                                            StringRef ExtraToken) {
12401   if (!hasMVE())
12402     return false;
12403 
12404   return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") ||
12405          Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") ||
12406          Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") ||
12407          Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") ||
12408          Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") ||
12409          Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") ||
12410          Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") ||
12411          Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") ||
12412          Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") ||
12413          Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") ||
12414          Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") ||
12415          Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") ||
12416          Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") ||
12417          Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") ||
12418          Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") ||
12419          Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") ||
12420          Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") ||
12421          Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") ||
12422          Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") ||
12423          Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") ||
12424          Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") ||
12425          Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") ||
12426          Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") ||
12427          Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") ||
12428          Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") ||
12429          Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") ||
12430          Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") ||
12431          Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") ||
12432          Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") ||
12433          Mnemonic.startswith("vqabs") ||
12434          (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") ||
12435          Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") ||
12436          Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") ||
12437          Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") ||
12438          Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") ||
12439          Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") ||
12440          Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") ||
12441          Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") ||
12442          Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") ||
12443          Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") ||
12444          Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") ||
12445          Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") ||
12446          Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") ||
12447          Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") ||
12448          Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") ||
12449          Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") ||
12450          Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") ||
12451          Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") ||
12452          Mnemonic.startswith("vldrb") ||
12453          (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") ||
12454          (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") ||
12455          Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") ||
12456          Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") ||
12457          Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") ||
12458          Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") ||
12459          Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") ||
12460          Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") ||
12461          Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") ||
12462          Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") ||
12463          Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") ||
12464          Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") ||
12465          Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") ||
12466          Mnemonic.startswith("vcvt") ||
12467          MS.isVPTPredicableCDEInstr(Mnemonic) ||
12468          (Mnemonic.startswith("vmov") &&
12469           !(ExtraToken == ".f16" || ExtraToken == ".32" ||
12470             ExtraToken == ".16" || ExtraToken == ".8"));
12471 }
12472