1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAssembler.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 24 #include "llvm/MC/MCELFStreamer.h" 25 #include "llvm/MC/MCExpr.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/MC/MCObjectFileInfo.h" 30 #include "llvm/MC/MCParser/MCAsmLexer.h" 31 #include "llvm/MC/MCParser/MCAsmParser.h" 32 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 35 #include "llvm/MC/MCRegisterInfo.h" 36 #include "llvm/MC/MCSection.h" 37 #include "llvm/MC/MCStreamer.h" 38 #include "llvm/MC/MCSubtargetInfo.h" 39 #include "llvm/MC/MCSymbol.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/COFF.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ELF.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SourceMgr.h" 48 #include "llvm/Support/TargetParser.h" 49 #include "llvm/Support/TargetRegistry.h" 50 #include "llvm/Support/raw_ostream.h" 51 52 using namespace llvm; 53 54 namespace { 55 56 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 57 58 static cl::opt<ImplicitItModeTy> ImplicitItMode( 59 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 60 cl::desc("Allow conditional instructions outdside of an IT block"), 61 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 62 "Accept in both ISAs, emit implicit ITs in Thumb"), 63 clEnumValN(ImplicitItModeTy::Never, "never", 64 "Warn in ARM, reject in Thumb"), 65 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 66 "Accept in ARM, reject in Thumb"), 67 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 68 "Warn in ARM, emit implicit ITs in Thumb"))); 69 70 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 71 cl::init(false)); 72 73 class ARMOperand; 74 75 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 76 77 class UnwindContext { 78 MCAsmParser &Parser; 79 80 typedef SmallVector<SMLoc, 4> Locs; 81 82 Locs FnStartLocs; 83 Locs CantUnwindLocs; 84 Locs PersonalityLocs; 85 Locs PersonalityIndexLocs; 86 Locs HandlerDataLocs; 87 int FPReg; 88 89 public: 90 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 91 92 bool hasFnStart() const { return !FnStartLocs.empty(); } 93 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 94 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 95 bool hasPersonality() const { 96 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 97 } 98 99 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 100 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 101 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 102 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 103 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 104 105 void saveFPReg(int Reg) { FPReg = Reg; } 106 int getFPReg() const { return FPReg; } 107 108 void emitFnStartLocNotes() const { 109 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 110 FI != FE; ++FI) 111 Parser.Note(*FI, ".fnstart was specified here"); 112 } 113 void emitCantUnwindLocNotes() const { 114 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 115 UE = CantUnwindLocs.end(); UI != UE; ++UI) 116 Parser.Note(*UI, ".cantunwind was specified here"); 117 } 118 void emitHandlerDataLocNotes() const { 119 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 120 HE = HandlerDataLocs.end(); HI != HE; ++HI) 121 Parser.Note(*HI, ".handlerdata was specified here"); 122 } 123 void emitPersonalityLocNotes() const { 124 for (Locs::const_iterator PI = PersonalityLocs.begin(), 125 PE = PersonalityLocs.end(), 126 PII = PersonalityIndexLocs.begin(), 127 PIE = PersonalityIndexLocs.end(); 128 PI != PE || PII != PIE;) { 129 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 130 Parser.Note(*PI++, ".personality was specified here"); 131 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 132 Parser.Note(*PII++, ".personalityindex was specified here"); 133 else 134 llvm_unreachable(".personality and .personalityindex cannot be " 135 "at the same location"); 136 } 137 } 138 139 void reset() { 140 FnStartLocs = Locs(); 141 CantUnwindLocs = Locs(); 142 PersonalityLocs = Locs(); 143 HandlerDataLocs = Locs(); 144 PersonalityIndexLocs = Locs(); 145 FPReg = ARM::SP; 146 } 147 }; 148 149 class ARMAsmParser : public MCTargetAsmParser { 150 const MCInstrInfo &MII; 151 const MCRegisterInfo *MRI; 152 UnwindContext UC; 153 154 ARMTargetStreamer &getTargetStreamer() { 155 assert(getParser().getStreamer().getTargetStreamer() && 156 "do not have a target streamer"); 157 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 158 return static_cast<ARMTargetStreamer &>(TS); 159 } 160 161 // Map of register aliases registers via the .req directive. 162 StringMap<unsigned> RegisterReqs; 163 164 bool NextSymbolIsThumb; 165 166 bool useImplicitITThumb() const { 167 return ImplicitItMode == ImplicitItModeTy::Always || 168 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 169 } 170 171 bool useImplicitITARM() const { 172 return ImplicitItMode == ImplicitItModeTy::Always || 173 ImplicitItMode == ImplicitItModeTy::ARMOnly; 174 } 175 176 struct { 177 ARMCC::CondCodes Cond; // Condition for IT block. 178 unsigned Mask:4; // Condition mask for instructions. 179 // Starting at first 1 (from lsb). 180 // '1' condition as indicated in IT. 181 // '0' inverse of condition (else). 182 // Count of instructions in IT block is 183 // 4 - trailingzeroes(mask) 184 // Note that this does not have the same encoding 185 // as in the IT instruction, which also depends 186 // on the low bit of the condition code. 187 188 unsigned CurPosition; // Current position in parsing of IT 189 // block. In range [0,4], with 0 being the IT 190 // instruction itself. Initialized according to 191 // count of instructions in block. ~0U if no 192 // active IT block. 193 194 bool IsExplicit; // true - The IT instruction was present in the 195 // input, we should not modify it. 196 // false - The IT instruction was added 197 // implicitly, we can extend it if that 198 // would be legal. 199 } ITState; 200 201 llvm::SmallVector<MCInst, 4> PendingConditionalInsts; 202 203 void flushPendingInstructions(MCStreamer &Out) override { 204 if (!inImplicitITBlock()) { 205 assert(PendingConditionalInsts.size() == 0); 206 return; 207 } 208 209 // Emit the IT instruction 210 unsigned Mask = getITMaskEncoding(); 211 MCInst ITInst; 212 ITInst.setOpcode(ARM::t2IT); 213 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 214 ITInst.addOperand(MCOperand::createImm(Mask)); 215 Out.EmitInstruction(ITInst, getSTI()); 216 217 // Emit the conditonal instructions 218 assert(PendingConditionalInsts.size() <= 4); 219 for (const MCInst &Inst : PendingConditionalInsts) { 220 Out.EmitInstruction(Inst, getSTI()); 221 } 222 PendingConditionalInsts.clear(); 223 224 // Clear the IT state 225 ITState.Mask = 0; 226 ITState.CurPosition = ~0U; 227 } 228 229 bool inITBlock() { return ITState.CurPosition != ~0U; } 230 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 231 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 232 bool lastInITBlock() { 233 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 234 } 235 void forwardITPosition() { 236 if (!inITBlock()) return; 237 // Move to the next instruction in the IT block, if there is one. If not, 238 // mark the block as done, except for implicit IT blocks, which we leave 239 // open until we find an instruction that can't be added to it. 240 unsigned TZ = countTrailingZeros(ITState.Mask); 241 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 242 ITState.CurPosition = ~0U; // Done with the IT block after this. 243 } 244 245 // Rewind the state of the current IT block, removing the last slot from it. 246 void rewindImplicitITPosition() { 247 assert(inImplicitITBlock()); 248 assert(ITState.CurPosition > 1); 249 ITState.CurPosition--; 250 unsigned TZ = countTrailingZeros(ITState.Mask); 251 unsigned NewMask = 0; 252 NewMask |= ITState.Mask & (0xC << TZ); 253 NewMask |= 0x2 << TZ; 254 ITState.Mask = NewMask; 255 } 256 257 // Rewind the state of the current IT block, removing the last slot from it. 258 // If we were at the first slot, this closes the IT block. 259 void discardImplicitITBlock() { 260 assert(inImplicitITBlock()); 261 assert(ITState.CurPosition == 1); 262 ITState.CurPosition = ~0U; 263 return; 264 } 265 266 // Get the encoding of the IT mask, as it will appear in an IT instruction. 267 unsigned getITMaskEncoding() { 268 assert(inITBlock()); 269 unsigned Mask = ITState.Mask; 270 unsigned TZ = countTrailingZeros(Mask); 271 if ((ITState.Cond & 1) == 0) { 272 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 273 Mask ^= (0xE << TZ) & 0xF; 274 } 275 return Mask; 276 } 277 278 // Get the condition code corresponding to the current IT block slot. 279 ARMCC::CondCodes currentITCond() { 280 unsigned MaskBit; 281 if (ITState.CurPosition == 1) 282 MaskBit = 1; 283 else 284 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 285 286 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 287 } 288 289 // Invert the condition of the current IT block slot without changing any 290 // other slots in the same block. 291 void invertCurrentITCondition() { 292 if (ITState.CurPosition == 1) { 293 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 294 } else { 295 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 296 } 297 } 298 299 // Returns true if the current IT block is full (all 4 slots used). 300 bool isITBlockFull() { 301 return inITBlock() && (ITState.Mask & 1); 302 } 303 304 // Extend the current implicit IT block to have one more slot with the given 305 // condition code. 306 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 307 assert(inImplicitITBlock()); 308 assert(!isITBlockFull()); 309 assert(Cond == ITState.Cond || 310 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 311 unsigned TZ = countTrailingZeros(ITState.Mask); 312 unsigned NewMask = 0; 313 // Keep any existing condition bits. 314 NewMask |= ITState.Mask & (0xE << TZ); 315 // Insert the new condition bit. 316 NewMask |= (Cond == ITState.Cond) << TZ; 317 // Move the trailing 1 down one bit. 318 NewMask |= 1 << (TZ - 1); 319 ITState.Mask = NewMask; 320 } 321 322 // Create a new implicit IT block with a dummy condition code. 323 void startImplicitITBlock() { 324 assert(!inITBlock()); 325 ITState.Cond = ARMCC::AL; 326 ITState.Mask = 8; 327 ITState.CurPosition = 1; 328 ITState.IsExplicit = false; 329 return; 330 } 331 332 // Create a new explicit IT block with the given condition and mask. The mask 333 // should be in the parsed format, with a 1 implying 't', regardless of the 334 // low bit of the condition. 335 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 336 assert(!inITBlock()); 337 ITState.Cond = Cond; 338 ITState.Mask = Mask; 339 ITState.CurPosition = 0; 340 ITState.IsExplicit = true; 341 return; 342 } 343 344 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 345 return getParser().Note(L, Msg, Range); 346 } 347 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 348 return getParser().Warning(L, Msg, Range); 349 } 350 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 351 return getParser().Error(L, Msg, Range); 352 } 353 354 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 355 unsigned ListNo, bool IsARPop = false); 356 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 357 unsigned ListNo); 358 359 int tryParseRegister(); 360 bool tryParseRegisterWithWriteBack(OperandVector &); 361 int tryParseShiftRegister(OperandVector &); 362 bool parseRegisterList(OperandVector &); 363 bool parseMemory(OperandVector &); 364 bool parseOperand(OperandVector &, StringRef Mnemonic); 365 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 366 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 367 unsigned &ShiftAmount); 368 bool parseLiteralValues(unsigned Size, SMLoc L); 369 bool parseDirectiveThumb(SMLoc L); 370 bool parseDirectiveARM(SMLoc L); 371 bool parseDirectiveThumbFunc(SMLoc L); 372 bool parseDirectiveCode(SMLoc L); 373 bool parseDirectiveSyntax(SMLoc L); 374 bool parseDirectiveReq(StringRef Name, SMLoc L); 375 bool parseDirectiveUnreq(SMLoc L); 376 bool parseDirectiveArch(SMLoc L); 377 bool parseDirectiveEabiAttr(SMLoc L); 378 bool parseDirectiveCPU(SMLoc L); 379 bool parseDirectiveFPU(SMLoc L); 380 bool parseDirectiveFnStart(SMLoc L); 381 bool parseDirectiveFnEnd(SMLoc L); 382 bool parseDirectiveCantUnwind(SMLoc L); 383 bool parseDirectivePersonality(SMLoc L); 384 bool parseDirectiveHandlerData(SMLoc L); 385 bool parseDirectiveSetFP(SMLoc L); 386 bool parseDirectivePad(SMLoc L); 387 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 388 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 389 bool parseDirectiveLtorg(SMLoc L); 390 bool parseDirectiveEven(SMLoc L); 391 bool parseDirectivePersonalityIndex(SMLoc L); 392 bool parseDirectiveUnwindRaw(SMLoc L); 393 bool parseDirectiveTLSDescSeq(SMLoc L); 394 bool parseDirectiveMovSP(SMLoc L); 395 bool parseDirectiveObjectArch(SMLoc L); 396 bool parseDirectiveArchExtension(SMLoc L); 397 bool parseDirectiveAlign(SMLoc L); 398 bool parseDirectiveThumbSet(SMLoc L); 399 400 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 401 bool &CarrySetting, unsigned &ProcessorIMod, 402 StringRef &ITMask); 403 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 404 bool &CanAcceptCarrySet, 405 bool &CanAcceptPredicationCode); 406 407 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 408 OperandVector &Operands); 409 bool isThumb() const { 410 // FIXME: Can tablegen auto-generate this? 411 return getSTI().getFeatureBits()[ARM::ModeThumb]; 412 } 413 bool isThumbOne() const { 414 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 415 } 416 bool isThumbTwo() const { 417 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 418 } 419 bool hasThumb() const { 420 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 421 } 422 bool hasThumb2() const { 423 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 424 } 425 bool hasV6Ops() const { 426 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 427 } 428 bool hasV6T2Ops() const { 429 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 430 } 431 bool hasV6MOps() const { 432 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 433 } 434 bool hasV7Ops() const { 435 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 436 } 437 bool hasV8Ops() const { 438 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 439 } 440 bool hasV8MBaseline() const { 441 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 442 } 443 bool hasV8MMainline() const { 444 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 445 } 446 bool has8MSecExt() const { 447 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 448 } 449 bool hasARM() const { 450 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 451 } 452 bool hasDSP() const { 453 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 454 } 455 bool hasD16() const { 456 return getSTI().getFeatureBits()[ARM::FeatureD16]; 457 } 458 bool hasV8_1aOps() const { 459 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 460 } 461 bool hasRAS() const { 462 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 463 } 464 465 void SwitchMode() { 466 MCSubtargetInfo &STI = copySTI(); 467 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 468 setAvailableFeatures(FB); 469 } 470 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 471 bool isMClass() const { 472 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 473 } 474 475 /// @name Auto-generated Match Functions 476 /// { 477 478 #define GET_ASSEMBLER_HEADER 479 #include "ARMGenAsmMatcher.inc" 480 481 /// } 482 483 OperandMatchResultTy parseITCondCode(OperandVector &); 484 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 485 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 486 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 487 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 488 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 489 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 490 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 491 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 492 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 493 int High); 494 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 495 return parsePKHImm(O, "lsl", 0, 31); 496 } 497 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 498 return parsePKHImm(O, "asr", 1, 32); 499 } 500 OperandMatchResultTy parseSetEndImm(OperandVector &); 501 OperandMatchResultTy parseShifterImm(OperandVector &); 502 OperandMatchResultTy parseRotImm(OperandVector &); 503 OperandMatchResultTy parseModImm(OperandVector &); 504 OperandMatchResultTy parseBitfield(OperandVector &); 505 OperandMatchResultTy parsePostIdxReg(OperandVector &); 506 OperandMatchResultTy parseAM3Offset(OperandVector &); 507 OperandMatchResultTy parseFPImm(OperandVector &); 508 OperandMatchResultTy parseVectorList(OperandVector &); 509 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 510 SMLoc &EndLoc); 511 512 // Asm Match Converter Methods 513 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 514 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 515 516 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 517 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 518 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 519 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 520 bool isITBlockTerminator(MCInst &Inst) const; 521 522 public: 523 enum ARMMatchResultTy { 524 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 525 Match_RequiresNotITBlock, 526 Match_RequiresV6, 527 Match_RequiresThumb2, 528 Match_RequiresV8, 529 Match_RequiresFlagSetting, 530 #define GET_OPERAND_DIAGNOSTIC_TYPES 531 #include "ARMGenAsmMatcher.inc" 532 533 }; 534 535 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 536 const MCInstrInfo &MII, const MCTargetOptions &Options) 537 : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) { 538 MCAsmParserExtension::Initialize(Parser); 539 540 // Cache the MCRegisterInfo. 541 MRI = getContext().getRegisterInfo(); 542 543 // Initialize the set of available features. 544 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 545 546 // Add build attributes based on the selected target. 547 if (AddBuildAttributes) 548 getTargetStreamer().emitTargetAttributes(STI); 549 550 // Not in an ITBlock to start with. 551 ITState.CurPosition = ~0U; 552 553 NextSymbolIsThumb = false; 554 } 555 556 // Implementation of the MCTargetAsmParser interface: 557 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 558 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 559 SMLoc NameLoc, OperandVector &Operands) override; 560 bool ParseDirective(AsmToken DirectiveID) override; 561 562 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 563 unsigned Kind) override; 564 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 565 566 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 567 OperandVector &Operands, MCStreamer &Out, 568 uint64_t &ErrorInfo, 569 bool MatchingInlineAsm) override; 570 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 571 uint64_t &ErrorInfo, bool MatchingInlineAsm, 572 bool &EmitInITBlock, MCStreamer &Out); 573 void onLabelParsed(MCSymbol *Symbol) override; 574 }; 575 } // end anonymous namespace 576 577 namespace { 578 579 /// ARMOperand - Instances of this class represent a parsed ARM machine 580 /// operand. 581 class ARMOperand : public MCParsedAsmOperand { 582 enum KindTy { 583 k_CondCode, 584 k_CCOut, 585 k_ITCondMask, 586 k_CoprocNum, 587 k_CoprocReg, 588 k_CoprocOption, 589 k_Immediate, 590 k_MemBarrierOpt, 591 k_InstSyncBarrierOpt, 592 k_Memory, 593 k_PostIndexRegister, 594 k_MSRMask, 595 k_BankedReg, 596 k_ProcIFlags, 597 k_VectorIndex, 598 k_Register, 599 k_RegisterList, 600 k_DPRRegisterList, 601 k_SPRRegisterList, 602 k_VectorList, 603 k_VectorListAllLanes, 604 k_VectorListIndexed, 605 k_ShiftedRegister, 606 k_ShiftedImmediate, 607 k_ShifterImmediate, 608 k_RotateImmediate, 609 k_ModifiedImmediate, 610 k_ConstantPoolImmediate, 611 k_BitfieldDescriptor, 612 k_Token, 613 } Kind; 614 615 SMLoc StartLoc, EndLoc, AlignmentLoc; 616 SmallVector<unsigned, 8> Registers; 617 618 struct CCOp { 619 ARMCC::CondCodes Val; 620 }; 621 622 struct CopOp { 623 unsigned Val; 624 }; 625 626 struct CoprocOptionOp { 627 unsigned Val; 628 }; 629 630 struct ITMaskOp { 631 unsigned Mask:4; 632 }; 633 634 struct MBOptOp { 635 ARM_MB::MemBOpt Val; 636 }; 637 638 struct ISBOptOp { 639 ARM_ISB::InstSyncBOpt Val; 640 }; 641 642 struct IFlagsOp { 643 ARM_PROC::IFlags Val; 644 }; 645 646 struct MMaskOp { 647 unsigned Val; 648 }; 649 650 struct BankedRegOp { 651 unsigned Val; 652 }; 653 654 struct TokOp { 655 const char *Data; 656 unsigned Length; 657 }; 658 659 struct RegOp { 660 unsigned RegNum; 661 }; 662 663 // A vector register list is a sequential list of 1 to 4 registers. 664 struct VectorListOp { 665 unsigned RegNum; 666 unsigned Count; 667 unsigned LaneIndex; 668 bool isDoubleSpaced; 669 }; 670 671 struct VectorIndexOp { 672 unsigned Val; 673 }; 674 675 struct ImmOp { 676 const MCExpr *Val; 677 }; 678 679 /// Combined record for all forms of ARM address expressions. 680 struct MemoryOp { 681 unsigned BaseRegNum; 682 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 683 // was specified. 684 const MCConstantExpr *OffsetImm; // Offset immediate value 685 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 686 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 687 unsigned ShiftImm; // shift for OffsetReg. 688 unsigned Alignment; // 0 = no alignment specified 689 // n = alignment in bytes (2, 4, 8, 16, or 32) 690 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 691 }; 692 693 struct PostIdxRegOp { 694 unsigned RegNum; 695 bool isAdd; 696 ARM_AM::ShiftOpc ShiftTy; 697 unsigned ShiftImm; 698 }; 699 700 struct ShifterImmOp { 701 bool isASR; 702 unsigned Imm; 703 }; 704 705 struct RegShiftedRegOp { 706 ARM_AM::ShiftOpc ShiftTy; 707 unsigned SrcReg; 708 unsigned ShiftReg; 709 unsigned ShiftImm; 710 }; 711 712 struct RegShiftedImmOp { 713 ARM_AM::ShiftOpc ShiftTy; 714 unsigned SrcReg; 715 unsigned ShiftImm; 716 }; 717 718 struct RotImmOp { 719 unsigned Imm; 720 }; 721 722 struct ModImmOp { 723 unsigned Bits; 724 unsigned Rot; 725 }; 726 727 struct BitfieldOp { 728 unsigned LSB; 729 unsigned Width; 730 }; 731 732 union { 733 struct CCOp CC; 734 struct CopOp Cop; 735 struct CoprocOptionOp CoprocOption; 736 struct MBOptOp MBOpt; 737 struct ISBOptOp ISBOpt; 738 struct ITMaskOp ITMask; 739 struct IFlagsOp IFlags; 740 struct MMaskOp MMask; 741 struct BankedRegOp BankedReg; 742 struct TokOp Tok; 743 struct RegOp Reg; 744 struct VectorListOp VectorList; 745 struct VectorIndexOp VectorIndex; 746 struct ImmOp Imm; 747 struct MemoryOp Memory; 748 struct PostIdxRegOp PostIdxReg; 749 struct ShifterImmOp ShifterImm; 750 struct RegShiftedRegOp RegShiftedReg; 751 struct RegShiftedImmOp RegShiftedImm; 752 struct RotImmOp RotImm; 753 struct ModImmOp ModImm; 754 struct BitfieldOp Bitfield; 755 }; 756 757 public: 758 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 759 760 /// getStartLoc - Get the location of the first token of this operand. 761 SMLoc getStartLoc() const override { return StartLoc; } 762 /// getEndLoc - Get the location of the last token of this operand. 763 SMLoc getEndLoc() const override { return EndLoc; } 764 /// getLocRange - Get the range between the first and last token of this 765 /// operand. 766 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 767 768 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 769 SMLoc getAlignmentLoc() const { 770 assert(Kind == k_Memory && "Invalid access!"); 771 return AlignmentLoc; 772 } 773 774 ARMCC::CondCodes getCondCode() const { 775 assert(Kind == k_CondCode && "Invalid access!"); 776 return CC.Val; 777 } 778 779 unsigned getCoproc() const { 780 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 781 return Cop.Val; 782 } 783 784 StringRef getToken() const { 785 assert(Kind == k_Token && "Invalid access!"); 786 return StringRef(Tok.Data, Tok.Length); 787 } 788 789 unsigned getReg() const override { 790 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 791 return Reg.RegNum; 792 } 793 794 const SmallVectorImpl<unsigned> &getRegList() const { 795 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 796 Kind == k_SPRRegisterList) && "Invalid access!"); 797 return Registers; 798 } 799 800 const MCExpr *getImm() const { 801 assert(isImm() && "Invalid access!"); 802 return Imm.Val; 803 } 804 805 const MCExpr *getConstantPoolImm() const { 806 assert(isConstantPoolImm() && "Invalid access!"); 807 return Imm.Val; 808 } 809 810 unsigned getVectorIndex() const { 811 assert(Kind == k_VectorIndex && "Invalid access!"); 812 return VectorIndex.Val; 813 } 814 815 ARM_MB::MemBOpt getMemBarrierOpt() const { 816 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 817 return MBOpt.Val; 818 } 819 820 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 821 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 822 return ISBOpt.Val; 823 } 824 825 ARM_PROC::IFlags getProcIFlags() const { 826 assert(Kind == k_ProcIFlags && "Invalid access!"); 827 return IFlags.Val; 828 } 829 830 unsigned getMSRMask() const { 831 assert(Kind == k_MSRMask && "Invalid access!"); 832 return MMask.Val; 833 } 834 835 unsigned getBankedReg() const { 836 assert(Kind == k_BankedReg && "Invalid access!"); 837 return BankedReg.Val; 838 } 839 840 bool isCoprocNum() const { return Kind == k_CoprocNum; } 841 bool isCoprocReg() const { return Kind == k_CoprocReg; } 842 bool isCoprocOption() const { return Kind == k_CoprocOption; } 843 bool isCondCode() const { return Kind == k_CondCode; } 844 bool isCCOut() const { return Kind == k_CCOut; } 845 bool isITMask() const { return Kind == k_ITCondMask; } 846 bool isITCondCode() const { return Kind == k_CondCode; } 847 bool isImm() const override { 848 return Kind == k_Immediate; 849 } 850 851 bool isARMBranchTarget() const { 852 if (!isImm()) return false; 853 854 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 855 return CE->getValue() % 4 == 0; 856 return true; 857 } 858 859 860 bool isThumbBranchTarget() const { 861 if (!isImm()) return false; 862 863 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 864 return CE->getValue() % 2 == 0; 865 return true; 866 } 867 868 // checks whether this operand is an unsigned offset which fits is a field 869 // of specified width and scaled by a specific number of bits 870 template<unsigned width, unsigned scale> 871 bool isUnsignedOffset() const { 872 if (!isImm()) return false; 873 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 874 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 875 int64_t Val = CE->getValue(); 876 int64_t Align = 1LL << scale; 877 int64_t Max = Align * ((1LL << width) - 1); 878 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 879 } 880 return false; 881 } 882 // checks whether this operand is an signed offset which fits is a field 883 // of specified width and scaled by a specific number of bits 884 template<unsigned width, unsigned scale> 885 bool isSignedOffset() const { 886 if (!isImm()) return false; 887 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 888 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 889 int64_t Val = CE->getValue(); 890 int64_t Align = 1LL << scale; 891 int64_t Max = Align * ((1LL << (width-1)) - 1); 892 int64_t Min = -Align * (1LL << (width-1)); 893 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 894 } 895 return false; 896 } 897 898 // checks whether this operand is a memory operand computed as an offset 899 // applied to PC. the offset may have 8 bits of magnitude and is represented 900 // with two bits of shift. textually it may be either [pc, #imm], #imm or 901 // relocable expression... 902 bool isThumbMemPC() const { 903 int64_t Val = 0; 904 if (isImm()) { 905 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 906 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 907 if (!CE) return false; 908 Val = CE->getValue(); 909 } 910 else if (isMem()) { 911 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 912 if(Memory.BaseRegNum != ARM::PC) return false; 913 Val = Memory.OffsetImm->getValue(); 914 } 915 else return false; 916 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 917 } 918 bool isFPImm() const { 919 if (!isImm()) return false; 920 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 921 if (!CE) return false; 922 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 923 return Val != -1; 924 } 925 926 template<int64_t N, int64_t M> 927 bool isImmediate() const { 928 if (!isImm()) return false; 929 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 930 if (!CE) return false; 931 int64_t Value = CE->getValue(); 932 return Value >= N && Value <= M; 933 } 934 template<int64_t N, int64_t M> 935 bool isImmediateS4() const { 936 if (!isImm()) return false; 937 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 938 if (!CE) return false; 939 int64_t Value = CE->getValue(); 940 return ((Value & 3) == 0) && Value >= N && Value <= M; 941 } 942 bool isFBits16() const { 943 return isImmediate<0, 17>(); 944 } 945 bool isFBits32() const { 946 return isImmediate<1, 33>(); 947 } 948 bool isImm8s4() const { 949 return isImmediateS4<-1020, 1020>(); 950 } 951 bool isImm0_1020s4() const { 952 return isImmediateS4<0, 1020>(); 953 } 954 bool isImm0_508s4() const { 955 return isImmediateS4<0, 508>(); 956 } 957 bool isImm0_508s4Neg() const { 958 if (!isImm()) return false; 959 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 960 if (!CE) return false; 961 int64_t Value = -CE->getValue(); 962 // explicitly exclude zero. we want that to use the normal 0_508 version. 963 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 964 } 965 bool isImm0_4095Neg() const { 966 if (!isImm()) return false; 967 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 968 if (!CE) return false; 969 int64_t Value = -CE->getValue(); 970 return Value > 0 && Value < 4096; 971 } 972 bool isImm0_7() const { 973 return isImmediate<0, 7>(); 974 } 975 bool isImm1_16() const { 976 return isImmediate<1, 16>(); 977 } 978 bool isImm1_32() const { 979 return isImmediate<1, 32>(); 980 } 981 bool isImm8_255() const { 982 return isImmediate<8, 255>(); 983 } 984 bool isImm256_65535Expr() const { 985 if (!isImm()) return false; 986 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 987 // If it's not a constant expression, it'll generate a fixup and be 988 // handled later. 989 if (!CE) return true; 990 int64_t Value = CE->getValue(); 991 return Value >= 256 && Value < 65536; 992 } 993 bool isImm0_65535Expr() const { 994 if (!isImm()) return false; 995 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 996 // If it's not a constant expression, it'll generate a fixup and be 997 // handled later. 998 if (!CE) return true; 999 int64_t Value = CE->getValue(); 1000 return Value >= 0 && Value < 65536; 1001 } 1002 bool isImm24bit() const { 1003 return isImmediate<0, 0xffffff + 1>(); 1004 } 1005 bool isImmThumbSR() const { 1006 return isImmediate<1, 33>(); 1007 } 1008 bool isPKHLSLImm() const { 1009 return isImmediate<0, 32>(); 1010 } 1011 bool isPKHASRImm() const { 1012 return isImmediate<0, 33>(); 1013 } 1014 bool isAdrLabel() const { 1015 // If we have an immediate that's not a constant, treat it as a label 1016 // reference needing a fixup. 1017 if (isImm() && !isa<MCConstantExpr>(getImm())) 1018 return true; 1019 1020 // If it is a constant, it must fit into a modified immediate encoding. 1021 if (!isImm()) return false; 1022 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1023 if (!CE) return false; 1024 int64_t Value = CE->getValue(); 1025 return (ARM_AM::getSOImmVal(Value) != -1 || 1026 ARM_AM::getSOImmVal(-Value) != -1); 1027 } 1028 bool isT2SOImm() const { 1029 if (!isImm()) return false; 1030 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1031 if (!CE) return false; 1032 int64_t Value = CE->getValue(); 1033 return ARM_AM::getT2SOImmVal(Value) != -1; 1034 } 1035 bool isT2SOImmNot() const { 1036 if (!isImm()) return false; 1037 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1038 if (!CE) return false; 1039 int64_t Value = CE->getValue(); 1040 return ARM_AM::getT2SOImmVal(Value) == -1 && 1041 ARM_AM::getT2SOImmVal(~Value) != -1; 1042 } 1043 bool isT2SOImmNeg() const { 1044 if (!isImm()) return false; 1045 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1046 if (!CE) return false; 1047 int64_t Value = CE->getValue(); 1048 // Only use this when not representable as a plain so_imm. 1049 return ARM_AM::getT2SOImmVal(Value) == -1 && 1050 ARM_AM::getT2SOImmVal(-Value) != -1; 1051 } 1052 bool isSetEndImm() const { 1053 if (!isImm()) return false; 1054 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1055 if (!CE) return false; 1056 int64_t Value = CE->getValue(); 1057 return Value == 1 || Value == 0; 1058 } 1059 bool isReg() const override { return Kind == k_Register; } 1060 bool isRegList() const { return Kind == k_RegisterList; } 1061 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1062 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1063 bool isToken() const override { return Kind == k_Token; } 1064 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1065 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1066 bool isMem() const override { return Kind == k_Memory; } 1067 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1068 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1069 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1070 bool isRotImm() const { return Kind == k_RotateImmediate; } 1071 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1072 bool isModImmNot() const { 1073 if (!isImm()) return false; 1074 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1075 if (!CE) return false; 1076 int64_t Value = CE->getValue(); 1077 return ARM_AM::getSOImmVal(~Value) != -1; 1078 } 1079 bool isModImmNeg() const { 1080 if (!isImm()) return false; 1081 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1082 if (!CE) return false; 1083 int64_t Value = CE->getValue(); 1084 return ARM_AM::getSOImmVal(Value) == -1 && 1085 ARM_AM::getSOImmVal(-Value) != -1; 1086 } 1087 bool isThumbModImmNeg1_7() const { 1088 if (!isImm()) return false; 1089 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1090 if (!CE) return false; 1091 int32_t Value = -(int32_t)CE->getValue(); 1092 return 0 < Value && Value < 8; 1093 } 1094 bool isThumbModImmNeg8_255() const { 1095 if (!isImm()) return false; 1096 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1097 if (!CE) return false; 1098 int32_t Value = -(int32_t)CE->getValue(); 1099 return 7 < Value && Value < 256; 1100 } 1101 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1102 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1103 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1104 bool isPostIdxReg() const { 1105 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1106 } 1107 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1108 if (!isMem()) 1109 return false; 1110 // No offset of any kind. 1111 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1112 (alignOK || Memory.Alignment == Alignment); 1113 } 1114 bool isMemPCRelImm12() const { 1115 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1116 return false; 1117 // Base register must be PC. 1118 if (Memory.BaseRegNum != ARM::PC) 1119 return false; 1120 // Immediate offset in range [-4095, 4095]. 1121 if (!Memory.OffsetImm) return true; 1122 int64_t Val = Memory.OffsetImm->getValue(); 1123 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1124 } 1125 bool isAlignedMemory() const { 1126 return isMemNoOffset(true); 1127 } 1128 bool isAlignedMemoryNone() const { 1129 return isMemNoOffset(false, 0); 1130 } 1131 bool isDupAlignedMemoryNone() const { 1132 return isMemNoOffset(false, 0); 1133 } 1134 bool isAlignedMemory16() const { 1135 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1136 return true; 1137 return isMemNoOffset(false, 0); 1138 } 1139 bool isDupAlignedMemory16() const { 1140 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1141 return true; 1142 return isMemNoOffset(false, 0); 1143 } 1144 bool isAlignedMemory32() const { 1145 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1146 return true; 1147 return isMemNoOffset(false, 0); 1148 } 1149 bool isDupAlignedMemory32() const { 1150 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1151 return true; 1152 return isMemNoOffset(false, 0); 1153 } 1154 bool isAlignedMemory64() const { 1155 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1156 return true; 1157 return isMemNoOffset(false, 0); 1158 } 1159 bool isDupAlignedMemory64() const { 1160 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1161 return true; 1162 return isMemNoOffset(false, 0); 1163 } 1164 bool isAlignedMemory64or128() const { 1165 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1166 return true; 1167 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1168 return true; 1169 return isMemNoOffset(false, 0); 1170 } 1171 bool isDupAlignedMemory64or128() const { 1172 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1173 return true; 1174 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1175 return true; 1176 return isMemNoOffset(false, 0); 1177 } 1178 bool isAlignedMemory64or128or256() const { 1179 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1180 return true; 1181 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1182 return true; 1183 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1184 return true; 1185 return isMemNoOffset(false, 0); 1186 } 1187 bool isAddrMode2() const { 1188 if (!isMem() || Memory.Alignment != 0) return false; 1189 // Check for register offset. 1190 if (Memory.OffsetRegNum) return true; 1191 // Immediate offset in range [-4095, 4095]. 1192 if (!Memory.OffsetImm) return true; 1193 int64_t Val = Memory.OffsetImm->getValue(); 1194 return Val > -4096 && Val < 4096; 1195 } 1196 bool isAM2OffsetImm() const { 1197 if (!isImm()) return false; 1198 // Immediate offset in range [-4095, 4095]. 1199 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1200 if (!CE) return false; 1201 int64_t Val = CE->getValue(); 1202 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1203 } 1204 bool isAddrMode3() const { 1205 // If we have an immediate that's not a constant, treat it as a label 1206 // reference needing a fixup. If it is a constant, it's something else 1207 // and we reject it. 1208 if (isImm() && !isa<MCConstantExpr>(getImm())) 1209 return true; 1210 if (!isMem() || Memory.Alignment != 0) return false; 1211 // No shifts are legal for AM3. 1212 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1213 // Check for register offset. 1214 if (Memory.OffsetRegNum) return true; 1215 // Immediate offset in range [-255, 255]. 1216 if (!Memory.OffsetImm) return true; 1217 int64_t Val = Memory.OffsetImm->getValue(); 1218 // The #-0 offset is encoded as INT32_MIN, and we have to check 1219 // for this too. 1220 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1221 } 1222 bool isAM3Offset() const { 1223 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1224 return false; 1225 if (Kind == k_PostIndexRegister) 1226 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1227 // Immediate offset in range [-255, 255]. 1228 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1229 if (!CE) return false; 1230 int64_t Val = CE->getValue(); 1231 // Special case, #-0 is INT32_MIN. 1232 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1233 } 1234 bool isAddrMode5() const { 1235 // If we have an immediate that's not a constant, treat it as a label 1236 // reference needing a fixup. If it is a constant, it's something else 1237 // and we reject it. 1238 if (isImm() && !isa<MCConstantExpr>(getImm())) 1239 return true; 1240 if (!isMem() || Memory.Alignment != 0) return false; 1241 // Check for register offset. 1242 if (Memory.OffsetRegNum) return false; 1243 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1244 if (!Memory.OffsetImm) return true; 1245 int64_t Val = Memory.OffsetImm->getValue(); 1246 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1247 Val == INT32_MIN; 1248 } 1249 bool isAddrMode5FP16() const { 1250 // If we have an immediate that's not a constant, treat it as a label 1251 // reference needing a fixup. If it is a constant, it's something else 1252 // and we reject it. 1253 if (isImm() && !isa<MCConstantExpr>(getImm())) 1254 return true; 1255 if (!isMem() || Memory.Alignment != 0) return false; 1256 // Check for register offset. 1257 if (Memory.OffsetRegNum) return false; 1258 // Immediate offset in range [-510, 510] and a multiple of 2. 1259 if (!Memory.OffsetImm) return true; 1260 int64_t Val = Memory.OffsetImm->getValue(); 1261 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || Val == INT32_MIN; 1262 } 1263 bool isMemTBB() const { 1264 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1265 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1266 return false; 1267 return true; 1268 } 1269 bool isMemTBH() const { 1270 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1271 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1272 Memory.Alignment != 0 ) 1273 return false; 1274 return true; 1275 } 1276 bool isMemRegOffset() const { 1277 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1278 return false; 1279 return true; 1280 } 1281 bool isT2MemRegOffset() const { 1282 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1283 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1284 return false; 1285 // Only lsl #{0, 1, 2, 3} allowed. 1286 if (Memory.ShiftType == ARM_AM::no_shift) 1287 return true; 1288 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1289 return false; 1290 return true; 1291 } 1292 bool isMemThumbRR() const { 1293 // Thumb reg+reg addressing is simple. Just two registers, a base and 1294 // an offset. No shifts, negations or any other complicating factors. 1295 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1296 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1297 return false; 1298 return isARMLowRegister(Memory.BaseRegNum) && 1299 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1300 } 1301 bool isMemThumbRIs4() const { 1302 if (!isMem() || Memory.OffsetRegNum != 0 || 1303 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1304 return false; 1305 // Immediate offset, multiple of 4 in range [0, 124]. 1306 if (!Memory.OffsetImm) return true; 1307 int64_t Val = Memory.OffsetImm->getValue(); 1308 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1309 } 1310 bool isMemThumbRIs2() const { 1311 if (!isMem() || Memory.OffsetRegNum != 0 || 1312 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1313 return false; 1314 // Immediate offset, multiple of 4 in range [0, 62]. 1315 if (!Memory.OffsetImm) return true; 1316 int64_t Val = Memory.OffsetImm->getValue(); 1317 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1318 } 1319 bool isMemThumbRIs1() const { 1320 if (!isMem() || Memory.OffsetRegNum != 0 || 1321 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1322 return false; 1323 // Immediate offset in range [0, 31]. 1324 if (!Memory.OffsetImm) return true; 1325 int64_t Val = Memory.OffsetImm->getValue(); 1326 return Val >= 0 && Val <= 31; 1327 } 1328 bool isMemThumbSPI() const { 1329 if (!isMem() || Memory.OffsetRegNum != 0 || 1330 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1331 return false; 1332 // Immediate offset, multiple of 4 in range [0, 1020]. 1333 if (!Memory.OffsetImm) return true; 1334 int64_t Val = Memory.OffsetImm->getValue(); 1335 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1336 } 1337 bool isMemImm8s4Offset() const { 1338 // If we have an immediate that's not a constant, treat it as a label 1339 // reference needing a fixup. If it is a constant, it's something else 1340 // and we reject it. 1341 if (isImm() && !isa<MCConstantExpr>(getImm())) 1342 return true; 1343 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1344 return false; 1345 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1346 if (!Memory.OffsetImm) return true; 1347 int64_t Val = Memory.OffsetImm->getValue(); 1348 // Special case, #-0 is INT32_MIN. 1349 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1350 } 1351 bool isMemImm0_1020s4Offset() const { 1352 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1353 return false; 1354 // Immediate offset a multiple of 4 in range [0, 1020]. 1355 if (!Memory.OffsetImm) return true; 1356 int64_t Val = Memory.OffsetImm->getValue(); 1357 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1358 } 1359 bool isMemImm8Offset() const { 1360 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1361 return false; 1362 // Base reg of PC isn't allowed for these encodings. 1363 if (Memory.BaseRegNum == ARM::PC) return false; 1364 // Immediate offset in range [-255, 255]. 1365 if (!Memory.OffsetImm) return true; 1366 int64_t Val = Memory.OffsetImm->getValue(); 1367 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1368 } 1369 bool isMemPosImm8Offset() const { 1370 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1371 return false; 1372 // Immediate offset in range [0, 255]. 1373 if (!Memory.OffsetImm) return true; 1374 int64_t Val = Memory.OffsetImm->getValue(); 1375 return Val >= 0 && Val < 256; 1376 } 1377 bool isMemNegImm8Offset() const { 1378 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1379 return false; 1380 // Base reg of PC isn't allowed for these encodings. 1381 if (Memory.BaseRegNum == ARM::PC) return false; 1382 // Immediate offset in range [-255, -1]. 1383 if (!Memory.OffsetImm) return false; 1384 int64_t Val = Memory.OffsetImm->getValue(); 1385 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1386 } 1387 bool isMemUImm12Offset() const { 1388 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1389 return false; 1390 // Immediate offset in range [0, 4095]. 1391 if (!Memory.OffsetImm) return true; 1392 int64_t Val = Memory.OffsetImm->getValue(); 1393 return (Val >= 0 && Val < 4096); 1394 } 1395 bool isMemImm12Offset() const { 1396 // If we have an immediate that's not a constant, treat it as a label 1397 // reference needing a fixup. If it is a constant, it's something else 1398 // and we reject it. 1399 1400 if (isImm() && !isa<MCConstantExpr>(getImm())) 1401 return true; 1402 1403 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1404 return false; 1405 // Immediate offset in range [-4095, 4095]. 1406 if (!Memory.OffsetImm) return true; 1407 int64_t Val = Memory.OffsetImm->getValue(); 1408 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1409 } 1410 bool isConstPoolAsmImm() const { 1411 // Delay processing of Constant Pool Immediate, this will turn into 1412 // a constant. Match no other operand 1413 return (isConstantPoolImm()); 1414 } 1415 bool isPostIdxImm8() const { 1416 if (!isImm()) return false; 1417 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1418 if (!CE) return false; 1419 int64_t Val = CE->getValue(); 1420 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1421 } 1422 bool isPostIdxImm8s4() const { 1423 if (!isImm()) return false; 1424 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1425 if (!CE) return false; 1426 int64_t Val = CE->getValue(); 1427 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1428 (Val == INT32_MIN); 1429 } 1430 1431 bool isMSRMask() const { return Kind == k_MSRMask; } 1432 bool isBankedReg() const { return Kind == k_BankedReg; } 1433 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1434 1435 // NEON operands. 1436 bool isSingleSpacedVectorList() const { 1437 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1438 } 1439 bool isDoubleSpacedVectorList() const { 1440 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1441 } 1442 bool isVecListOneD() const { 1443 if (!isSingleSpacedVectorList()) return false; 1444 return VectorList.Count == 1; 1445 } 1446 1447 bool isVecListDPair() const { 1448 if (!isSingleSpacedVectorList()) return false; 1449 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1450 .contains(VectorList.RegNum)); 1451 } 1452 1453 bool isVecListThreeD() const { 1454 if (!isSingleSpacedVectorList()) return false; 1455 return VectorList.Count == 3; 1456 } 1457 1458 bool isVecListFourD() const { 1459 if (!isSingleSpacedVectorList()) return false; 1460 return VectorList.Count == 4; 1461 } 1462 1463 bool isVecListDPairSpaced() const { 1464 if (Kind != k_VectorList) return false; 1465 if (isSingleSpacedVectorList()) return false; 1466 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1467 .contains(VectorList.RegNum)); 1468 } 1469 1470 bool isVecListThreeQ() const { 1471 if (!isDoubleSpacedVectorList()) return false; 1472 return VectorList.Count == 3; 1473 } 1474 1475 bool isVecListFourQ() const { 1476 if (!isDoubleSpacedVectorList()) return false; 1477 return VectorList.Count == 4; 1478 } 1479 1480 bool isSingleSpacedVectorAllLanes() const { 1481 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1482 } 1483 bool isDoubleSpacedVectorAllLanes() const { 1484 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1485 } 1486 bool isVecListOneDAllLanes() const { 1487 if (!isSingleSpacedVectorAllLanes()) return false; 1488 return VectorList.Count == 1; 1489 } 1490 1491 bool isVecListDPairAllLanes() const { 1492 if (!isSingleSpacedVectorAllLanes()) return false; 1493 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1494 .contains(VectorList.RegNum)); 1495 } 1496 1497 bool isVecListDPairSpacedAllLanes() const { 1498 if (!isDoubleSpacedVectorAllLanes()) return false; 1499 return VectorList.Count == 2; 1500 } 1501 1502 bool isVecListThreeDAllLanes() const { 1503 if (!isSingleSpacedVectorAllLanes()) return false; 1504 return VectorList.Count == 3; 1505 } 1506 1507 bool isVecListThreeQAllLanes() const { 1508 if (!isDoubleSpacedVectorAllLanes()) return false; 1509 return VectorList.Count == 3; 1510 } 1511 1512 bool isVecListFourDAllLanes() const { 1513 if (!isSingleSpacedVectorAllLanes()) return false; 1514 return VectorList.Count == 4; 1515 } 1516 1517 bool isVecListFourQAllLanes() const { 1518 if (!isDoubleSpacedVectorAllLanes()) return false; 1519 return VectorList.Count == 4; 1520 } 1521 1522 bool isSingleSpacedVectorIndexed() const { 1523 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1524 } 1525 bool isDoubleSpacedVectorIndexed() const { 1526 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1527 } 1528 bool isVecListOneDByteIndexed() const { 1529 if (!isSingleSpacedVectorIndexed()) return false; 1530 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1531 } 1532 1533 bool isVecListOneDHWordIndexed() const { 1534 if (!isSingleSpacedVectorIndexed()) return false; 1535 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1536 } 1537 1538 bool isVecListOneDWordIndexed() const { 1539 if (!isSingleSpacedVectorIndexed()) return false; 1540 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1541 } 1542 1543 bool isVecListTwoDByteIndexed() const { 1544 if (!isSingleSpacedVectorIndexed()) return false; 1545 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1546 } 1547 1548 bool isVecListTwoDHWordIndexed() const { 1549 if (!isSingleSpacedVectorIndexed()) return false; 1550 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1551 } 1552 1553 bool isVecListTwoQWordIndexed() const { 1554 if (!isDoubleSpacedVectorIndexed()) return false; 1555 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1556 } 1557 1558 bool isVecListTwoQHWordIndexed() const { 1559 if (!isDoubleSpacedVectorIndexed()) return false; 1560 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1561 } 1562 1563 bool isVecListTwoDWordIndexed() const { 1564 if (!isSingleSpacedVectorIndexed()) return false; 1565 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1566 } 1567 1568 bool isVecListThreeDByteIndexed() const { 1569 if (!isSingleSpacedVectorIndexed()) return false; 1570 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1571 } 1572 1573 bool isVecListThreeDHWordIndexed() const { 1574 if (!isSingleSpacedVectorIndexed()) return false; 1575 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1576 } 1577 1578 bool isVecListThreeQWordIndexed() const { 1579 if (!isDoubleSpacedVectorIndexed()) return false; 1580 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1581 } 1582 1583 bool isVecListThreeQHWordIndexed() const { 1584 if (!isDoubleSpacedVectorIndexed()) return false; 1585 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1586 } 1587 1588 bool isVecListThreeDWordIndexed() const { 1589 if (!isSingleSpacedVectorIndexed()) return false; 1590 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1591 } 1592 1593 bool isVecListFourDByteIndexed() const { 1594 if (!isSingleSpacedVectorIndexed()) return false; 1595 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1596 } 1597 1598 bool isVecListFourDHWordIndexed() const { 1599 if (!isSingleSpacedVectorIndexed()) return false; 1600 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1601 } 1602 1603 bool isVecListFourQWordIndexed() const { 1604 if (!isDoubleSpacedVectorIndexed()) return false; 1605 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1606 } 1607 1608 bool isVecListFourQHWordIndexed() const { 1609 if (!isDoubleSpacedVectorIndexed()) return false; 1610 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1611 } 1612 1613 bool isVecListFourDWordIndexed() const { 1614 if (!isSingleSpacedVectorIndexed()) return false; 1615 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1616 } 1617 1618 bool isVectorIndex8() const { 1619 if (Kind != k_VectorIndex) return false; 1620 return VectorIndex.Val < 8; 1621 } 1622 bool isVectorIndex16() const { 1623 if (Kind != k_VectorIndex) return false; 1624 return VectorIndex.Val < 4; 1625 } 1626 bool isVectorIndex32() const { 1627 if (Kind != k_VectorIndex) return false; 1628 return VectorIndex.Val < 2; 1629 } 1630 1631 bool isNEONi8splat() const { 1632 if (!isImm()) return false; 1633 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1634 // Must be a constant. 1635 if (!CE) return false; 1636 int64_t Value = CE->getValue(); 1637 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1638 // value. 1639 return Value >= 0 && Value < 256; 1640 } 1641 1642 bool isNEONi16splat() const { 1643 if (isNEONByteReplicate(2)) 1644 return false; // Leave that for bytes replication and forbid by default. 1645 if (!isImm()) 1646 return false; 1647 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1648 // Must be a constant. 1649 if (!CE) return false; 1650 unsigned Value = CE->getValue(); 1651 return ARM_AM::isNEONi16splat(Value); 1652 } 1653 1654 bool isNEONi16splatNot() const { 1655 if (!isImm()) 1656 return false; 1657 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1658 // Must be a constant. 1659 if (!CE) return false; 1660 unsigned Value = CE->getValue(); 1661 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1662 } 1663 1664 bool isNEONi32splat() const { 1665 if (isNEONByteReplicate(4)) 1666 return false; // Leave that for bytes replication and forbid by default. 1667 if (!isImm()) 1668 return false; 1669 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1670 // Must be a constant. 1671 if (!CE) return false; 1672 unsigned Value = CE->getValue(); 1673 return ARM_AM::isNEONi32splat(Value); 1674 } 1675 1676 bool isNEONi32splatNot() const { 1677 if (!isImm()) 1678 return false; 1679 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1680 // Must be a constant. 1681 if (!CE) return false; 1682 unsigned Value = CE->getValue(); 1683 return ARM_AM::isNEONi32splat(~Value); 1684 } 1685 1686 bool isNEONByteReplicate(unsigned NumBytes) const { 1687 if (!isImm()) 1688 return false; 1689 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1690 // Must be a constant. 1691 if (!CE) 1692 return false; 1693 int64_t Value = CE->getValue(); 1694 if (!Value) 1695 return false; // Don't bother with zero. 1696 1697 unsigned char B = Value & 0xff; 1698 for (unsigned i = 1; i < NumBytes; ++i) { 1699 Value >>= 8; 1700 if ((Value & 0xff) != B) 1701 return false; 1702 } 1703 return true; 1704 } 1705 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1706 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1707 bool isNEONi32vmov() const { 1708 if (isNEONByteReplicate(4)) 1709 return false; // Let it to be classified as byte-replicate case. 1710 if (!isImm()) 1711 return false; 1712 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1713 // Must be a constant. 1714 if (!CE) 1715 return false; 1716 int64_t Value = CE->getValue(); 1717 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1718 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1719 // FIXME: This is probably wrong and a copy and paste from previous example 1720 return (Value >= 0 && Value < 256) || 1721 (Value >= 0x0100 && Value <= 0xff00) || 1722 (Value >= 0x010000 && Value <= 0xff0000) || 1723 (Value >= 0x01000000 && Value <= 0xff000000) || 1724 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1725 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1726 } 1727 bool isNEONi32vmovNeg() const { 1728 if (!isImm()) return false; 1729 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1730 // Must be a constant. 1731 if (!CE) return false; 1732 int64_t Value = ~CE->getValue(); 1733 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1734 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1735 // FIXME: This is probably wrong and a copy and paste from previous example 1736 return (Value >= 0 && Value < 256) || 1737 (Value >= 0x0100 && Value <= 0xff00) || 1738 (Value >= 0x010000 && Value <= 0xff0000) || 1739 (Value >= 0x01000000 && Value <= 0xff000000) || 1740 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1741 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1742 } 1743 1744 bool isNEONi64splat() const { 1745 if (!isImm()) return false; 1746 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1747 // Must be a constant. 1748 if (!CE) return false; 1749 uint64_t Value = CE->getValue(); 1750 // i64 value with each byte being either 0 or 0xff. 1751 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1752 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1753 return true; 1754 } 1755 1756 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1757 // Add as immediates when possible. Null MCExpr = 0. 1758 if (!Expr) 1759 Inst.addOperand(MCOperand::createImm(0)); 1760 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1761 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1762 else 1763 Inst.addOperand(MCOperand::createExpr(Expr)); 1764 } 1765 1766 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 1767 assert(N == 1 && "Invalid number of operands!"); 1768 addExpr(Inst, getImm()); 1769 } 1770 1771 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 1772 assert(N == 1 && "Invalid number of operands!"); 1773 addExpr(Inst, getImm()); 1774 } 1775 1776 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1777 assert(N == 2 && "Invalid number of operands!"); 1778 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1779 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1780 Inst.addOperand(MCOperand::createReg(RegNum)); 1781 } 1782 1783 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1784 assert(N == 1 && "Invalid number of operands!"); 1785 Inst.addOperand(MCOperand::createImm(getCoproc())); 1786 } 1787 1788 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1789 assert(N == 1 && "Invalid number of operands!"); 1790 Inst.addOperand(MCOperand::createImm(getCoproc())); 1791 } 1792 1793 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1794 assert(N == 1 && "Invalid number of operands!"); 1795 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1796 } 1797 1798 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1799 assert(N == 1 && "Invalid number of operands!"); 1800 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1801 } 1802 1803 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1804 assert(N == 1 && "Invalid number of operands!"); 1805 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1806 } 1807 1808 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1809 assert(N == 1 && "Invalid number of operands!"); 1810 Inst.addOperand(MCOperand::createReg(getReg())); 1811 } 1812 1813 void addRegOperands(MCInst &Inst, unsigned N) const { 1814 assert(N == 1 && "Invalid number of operands!"); 1815 Inst.addOperand(MCOperand::createReg(getReg())); 1816 } 1817 1818 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1819 assert(N == 3 && "Invalid number of operands!"); 1820 assert(isRegShiftedReg() && 1821 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1822 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1823 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1824 Inst.addOperand(MCOperand::createImm( 1825 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1826 } 1827 1828 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1829 assert(N == 2 && "Invalid number of operands!"); 1830 assert(isRegShiftedImm() && 1831 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1832 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1833 // Shift of #32 is encoded as 0 where permitted 1834 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1835 Inst.addOperand(MCOperand::createImm( 1836 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1837 } 1838 1839 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1840 assert(N == 1 && "Invalid number of operands!"); 1841 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1842 ShifterImm.Imm)); 1843 } 1844 1845 void addRegListOperands(MCInst &Inst, unsigned N) const { 1846 assert(N == 1 && "Invalid number of operands!"); 1847 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1848 for (SmallVectorImpl<unsigned>::const_iterator 1849 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1850 Inst.addOperand(MCOperand::createReg(*I)); 1851 } 1852 1853 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 1854 addRegListOperands(Inst, N); 1855 } 1856 1857 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 1858 addRegListOperands(Inst, N); 1859 } 1860 1861 void addRotImmOperands(MCInst &Inst, unsigned N) const { 1862 assert(N == 1 && "Invalid number of operands!"); 1863 // Encoded as val>>3. The printer handles display as 8, 16, 24. 1864 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 1865 } 1866 1867 void addModImmOperands(MCInst &Inst, unsigned N) const { 1868 assert(N == 1 && "Invalid number of operands!"); 1869 1870 // Support for fixups (MCFixup) 1871 if (isImm()) 1872 return addImmOperands(Inst, N); 1873 1874 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 1875 } 1876 1877 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 1878 assert(N == 1 && "Invalid number of operands!"); 1879 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1880 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 1881 Inst.addOperand(MCOperand::createImm(Enc)); 1882 } 1883 1884 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 1885 assert(N == 1 && "Invalid number of operands!"); 1886 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1887 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 1888 Inst.addOperand(MCOperand::createImm(Enc)); 1889 } 1890 1891 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 1892 assert(N == 1 && "Invalid number of operands!"); 1893 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1894 uint32_t Val = -CE->getValue(); 1895 Inst.addOperand(MCOperand::createImm(Val)); 1896 } 1897 1898 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 1899 assert(N == 1 && "Invalid number of operands!"); 1900 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1901 uint32_t Val = -CE->getValue(); 1902 Inst.addOperand(MCOperand::createImm(Val)); 1903 } 1904 1905 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 1906 assert(N == 1 && "Invalid number of operands!"); 1907 // Munge the lsb/width into a bitfield mask. 1908 unsigned lsb = Bitfield.LSB; 1909 unsigned width = Bitfield.Width; 1910 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 1911 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 1912 (32 - (lsb + width))); 1913 Inst.addOperand(MCOperand::createImm(Mask)); 1914 } 1915 1916 void addImmOperands(MCInst &Inst, unsigned N) const { 1917 assert(N == 1 && "Invalid number of operands!"); 1918 addExpr(Inst, getImm()); 1919 } 1920 1921 void addFBits16Operands(MCInst &Inst, unsigned N) const { 1922 assert(N == 1 && "Invalid number of operands!"); 1923 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1924 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 1925 } 1926 1927 void addFBits32Operands(MCInst &Inst, unsigned N) const { 1928 assert(N == 1 && "Invalid number of operands!"); 1929 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1930 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 1931 } 1932 1933 void addFPImmOperands(MCInst &Inst, unsigned N) const { 1934 assert(N == 1 && "Invalid number of operands!"); 1935 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1936 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1937 Inst.addOperand(MCOperand::createImm(Val)); 1938 } 1939 1940 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 1941 assert(N == 1 && "Invalid number of operands!"); 1942 // FIXME: We really want to scale the value here, but the LDRD/STRD 1943 // instruction don't encode operands that way yet. 1944 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1945 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1946 } 1947 1948 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 1949 assert(N == 1 && "Invalid number of operands!"); 1950 // The immediate is scaled by four in the encoding and is stored 1951 // in the MCInst as such. Lop off the low two bits here. 1952 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1953 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1954 } 1955 1956 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 1957 assert(N == 1 && "Invalid number of operands!"); 1958 // The immediate is scaled by four in the encoding and is stored 1959 // in the MCInst as such. Lop off the low two bits here. 1960 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1961 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 1962 } 1963 1964 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 1965 assert(N == 1 && "Invalid number of operands!"); 1966 // The immediate is scaled by four in the encoding and is stored 1967 // in the MCInst as such. Lop off the low two bits here. 1968 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1969 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1970 } 1971 1972 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 1973 assert(N == 1 && "Invalid number of operands!"); 1974 // The constant encodes as the immediate-1, and we store in the instruction 1975 // the bits as encoded, so subtract off one here. 1976 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1977 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1978 } 1979 1980 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 1981 assert(N == 1 && "Invalid number of operands!"); 1982 // The constant encodes as the immediate-1, and we store in the instruction 1983 // the bits as encoded, so subtract off one here. 1984 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1985 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1986 } 1987 1988 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 1989 assert(N == 1 && "Invalid number of operands!"); 1990 // The constant encodes as the immediate, except for 32, which encodes as 1991 // zero. 1992 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1993 unsigned Imm = CE->getValue(); 1994 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 1995 } 1996 1997 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 1998 assert(N == 1 && "Invalid number of operands!"); 1999 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2000 // the instruction as well. 2001 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2002 int Val = CE->getValue(); 2003 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2004 } 2005 2006 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2007 assert(N == 1 && "Invalid number of operands!"); 2008 // The operand is actually a t2_so_imm, but we have its bitwise 2009 // negation in the assembly source, so twiddle it here. 2010 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2011 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2012 } 2013 2014 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2015 assert(N == 1 && "Invalid number of operands!"); 2016 // The operand is actually a t2_so_imm, but we have its 2017 // negation in the assembly source, so twiddle it here. 2018 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2019 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2020 } 2021 2022 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2023 assert(N == 1 && "Invalid number of operands!"); 2024 // The operand is actually an imm0_4095, but we have its 2025 // negation in the assembly source, so twiddle it here. 2026 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2027 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2028 } 2029 2030 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2031 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2032 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2033 return; 2034 } 2035 2036 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2037 assert(SR && "Unknown value type!"); 2038 Inst.addOperand(MCOperand::createExpr(SR)); 2039 } 2040 2041 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2042 assert(N == 1 && "Invalid number of operands!"); 2043 if (isImm()) { 2044 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2045 if (CE) { 2046 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2047 return; 2048 } 2049 2050 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2051 2052 assert(SR && "Unknown value type!"); 2053 Inst.addOperand(MCOperand::createExpr(SR)); 2054 return; 2055 } 2056 2057 assert(isMem() && "Unknown value type!"); 2058 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2059 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2060 } 2061 2062 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2063 assert(N == 1 && "Invalid number of operands!"); 2064 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2065 } 2066 2067 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2068 assert(N == 1 && "Invalid number of operands!"); 2069 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2070 } 2071 2072 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2073 assert(N == 1 && "Invalid number of operands!"); 2074 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2075 } 2076 2077 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2078 assert(N == 1 && "Invalid number of operands!"); 2079 int32_t Imm = Memory.OffsetImm->getValue(); 2080 Inst.addOperand(MCOperand::createImm(Imm)); 2081 } 2082 2083 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2084 assert(N == 1 && "Invalid number of operands!"); 2085 assert(isImm() && "Not an immediate!"); 2086 2087 // If we have an immediate that's not a constant, treat it as a label 2088 // reference needing a fixup. 2089 if (!isa<MCConstantExpr>(getImm())) { 2090 Inst.addOperand(MCOperand::createExpr(getImm())); 2091 return; 2092 } 2093 2094 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2095 int Val = CE->getValue(); 2096 Inst.addOperand(MCOperand::createImm(Val)); 2097 } 2098 2099 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2100 assert(N == 2 && "Invalid number of operands!"); 2101 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2102 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2103 } 2104 2105 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2106 addAlignedMemoryOperands(Inst, N); 2107 } 2108 2109 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2110 addAlignedMemoryOperands(Inst, N); 2111 } 2112 2113 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2114 addAlignedMemoryOperands(Inst, N); 2115 } 2116 2117 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2118 addAlignedMemoryOperands(Inst, N); 2119 } 2120 2121 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2122 addAlignedMemoryOperands(Inst, N); 2123 } 2124 2125 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2126 addAlignedMemoryOperands(Inst, N); 2127 } 2128 2129 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2130 addAlignedMemoryOperands(Inst, N); 2131 } 2132 2133 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2134 addAlignedMemoryOperands(Inst, N); 2135 } 2136 2137 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2138 addAlignedMemoryOperands(Inst, N); 2139 } 2140 2141 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2142 addAlignedMemoryOperands(Inst, N); 2143 } 2144 2145 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2146 addAlignedMemoryOperands(Inst, N); 2147 } 2148 2149 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2150 assert(N == 3 && "Invalid number of operands!"); 2151 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2152 if (!Memory.OffsetRegNum) { 2153 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2154 // Special case for #-0 2155 if (Val == INT32_MIN) Val = 0; 2156 if (Val < 0) Val = -Val; 2157 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2158 } else { 2159 // For register offset, we encode the shift type and negation flag 2160 // here. 2161 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2162 Memory.ShiftImm, Memory.ShiftType); 2163 } 2164 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2165 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2166 Inst.addOperand(MCOperand::createImm(Val)); 2167 } 2168 2169 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2170 assert(N == 2 && "Invalid number of operands!"); 2171 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2172 assert(CE && "non-constant AM2OffsetImm operand!"); 2173 int32_t Val = CE->getValue(); 2174 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2175 // Special case for #-0 2176 if (Val == INT32_MIN) Val = 0; 2177 if (Val < 0) Val = -Val; 2178 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2179 Inst.addOperand(MCOperand::createReg(0)); 2180 Inst.addOperand(MCOperand::createImm(Val)); 2181 } 2182 2183 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2184 assert(N == 3 && "Invalid number of operands!"); 2185 // If we have an immediate that's not a constant, treat it as a label 2186 // reference needing a fixup. If it is a constant, it's something else 2187 // and we reject it. 2188 if (isImm()) { 2189 Inst.addOperand(MCOperand::createExpr(getImm())); 2190 Inst.addOperand(MCOperand::createReg(0)); 2191 Inst.addOperand(MCOperand::createImm(0)); 2192 return; 2193 } 2194 2195 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2196 if (!Memory.OffsetRegNum) { 2197 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2198 // Special case for #-0 2199 if (Val == INT32_MIN) Val = 0; 2200 if (Val < 0) Val = -Val; 2201 Val = ARM_AM::getAM3Opc(AddSub, Val); 2202 } else { 2203 // For register offset, we encode the shift type and negation flag 2204 // here. 2205 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2206 } 2207 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2208 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2209 Inst.addOperand(MCOperand::createImm(Val)); 2210 } 2211 2212 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2213 assert(N == 2 && "Invalid number of operands!"); 2214 if (Kind == k_PostIndexRegister) { 2215 int32_t Val = 2216 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2217 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2218 Inst.addOperand(MCOperand::createImm(Val)); 2219 return; 2220 } 2221 2222 // Constant offset. 2223 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2224 int32_t Val = CE->getValue(); 2225 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2226 // Special case for #-0 2227 if (Val == INT32_MIN) Val = 0; 2228 if (Val < 0) Val = -Val; 2229 Val = ARM_AM::getAM3Opc(AddSub, Val); 2230 Inst.addOperand(MCOperand::createReg(0)); 2231 Inst.addOperand(MCOperand::createImm(Val)); 2232 } 2233 2234 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2235 assert(N == 2 && "Invalid number of operands!"); 2236 // If we have an immediate that's not a constant, treat it as a label 2237 // reference needing a fixup. If it is a constant, it's something else 2238 // and we reject it. 2239 if (isImm()) { 2240 Inst.addOperand(MCOperand::createExpr(getImm())); 2241 Inst.addOperand(MCOperand::createImm(0)); 2242 return; 2243 } 2244 2245 // The lower two bits are always zero and as such are not encoded. 2246 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2247 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2248 // Special case for #-0 2249 if (Val == INT32_MIN) Val = 0; 2250 if (Val < 0) Val = -Val; 2251 Val = ARM_AM::getAM5Opc(AddSub, Val); 2252 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2253 Inst.addOperand(MCOperand::createImm(Val)); 2254 } 2255 2256 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2257 assert(N == 2 && "Invalid number of operands!"); 2258 // If we have an immediate that's not a constant, treat it as a label 2259 // reference needing a fixup. If it is a constant, it's something else 2260 // and we reject it. 2261 if (isImm()) { 2262 Inst.addOperand(MCOperand::createExpr(getImm())); 2263 Inst.addOperand(MCOperand::createImm(0)); 2264 return; 2265 } 2266 2267 // The lower bit is always zero and as such is not encoded. 2268 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2269 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2270 // Special case for #-0 2271 if (Val == INT32_MIN) Val = 0; 2272 if (Val < 0) Val = -Val; 2273 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2274 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2275 Inst.addOperand(MCOperand::createImm(Val)); 2276 } 2277 2278 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2279 assert(N == 2 && "Invalid number of operands!"); 2280 // If we have an immediate that's not a constant, treat it as a label 2281 // reference needing a fixup. If it is a constant, it's something else 2282 // and we reject it. 2283 if (isImm()) { 2284 Inst.addOperand(MCOperand::createExpr(getImm())); 2285 Inst.addOperand(MCOperand::createImm(0)); 2286 return; 2287 } 2288 2289 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2290 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2291 Inst.addOperand(MCOperand::createImm(Val)); 2292 } 2293 2294 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2295 assert(N == 2 && "Invalid number of operands!"); 2296 // The lower two bits are always zero and as such are not encoded. 2297 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2298 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2299 Inst.addOperand(MCOperand::createImm(Val)); 2300 } 2301 2302 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2303 assert(N == 2 && "Invalid number of operands!"); 2304 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2305 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2306 Inst.addOperand(MCOperand::createImm(Val)); 2307 } 2308 2309 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2310 addMemImm8OffsetOperands(Inst, N); 2311 } 2312 2313 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2314 addMemImm8OffsetOperands(Inst, N); 2315 } 2316 2317 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2318 assert(N == 2 && "Invalid number of operands!"); 2319 // If this is an immediate, it's a label reference. 2320 if (isImm()) { 2321 addExpr(Inst, getImm()); 2322 Inst.addOperand(MCOperand::createImm(0)); 2323 return; 2324 } 2325 2326 // Otherwise, it's a normal memory reg+offset. 2327 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2328 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2329 Inst.addOperand(MCOperand::createImm(Val)); 2330 } 2331 2332 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2333 assert(N == 2 && "Invalid number of operands!"); 2334 // If this is an immediate, it's a label reference. 2335 if (isImm()) { 2336 addExpr(Inst, getImm()); 2337 Inst.addOperand(MCOperand::createImm(0)); 2338 return; 2339 } 2340 2341 // Otherwise, it's a normal memory reg+offset. 2342 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2343 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2344 Inst.addOperand(MCOperand::createImm(Val)); 2345 } 2346 2347 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2348 assert(N == 1 && "Invalid number of operands!"); 2349 // This is container for the immediate that we will create the constant 2350 // pool from 2351 addExpr(Inst, getConstantPoolImm()); 2352 return; 2353 } 2354 2355 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2356 assert(N == 2 && "Invalid number of operands!"); 2357 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2358 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2359 } 2360 2361 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2362 assert(N == 2 && "Invalid number of operands!"); 2363 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2364 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2365 } 2366 2367 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2368 assert(N == 3 && "Invalid number of operands!"); 2369 unsigned Val = 2370 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2371 Memory.ShiftImm, Memory.ShiftType); 2372 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2373 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2374 Inst.addOperand(MCOperand::createImm(Val)); 2375 } 2376 2377 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2378 assert(N == 3 && "Invalid number of operands!"); 2379 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2380 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2381 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2382 } 2383 2384 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2385 assert(N == 2 && "Invalid number of operands!"); 2386 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2387 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2388 } 2389 2390 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2391 assert(N == 2 && "Invalid number of operands!"); 2392 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2393 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2394 Inst.addOperand(MCOperand::createImm(Val)); 2395 } 2396 2397 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2398 assert(N == 2 && "Invalid number of operands!"); 2399 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2400 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2401 Inst.addOperand(MCOperand::createImm(Val)); 2402 } 2403 2404 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2405 assert(N == 2 && "Invalid number of operands!"); 2406 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2407 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2408 Inst.addOperand(MCOperand::createImm(Val)); 2409 } 2410 2411 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2412 assert(N == 2 && "Invalid number of operands!"); 2413 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2414 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2415 Inst.addOperand(MCOperand::createImm(Val)); 2416 } 2417 2418 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2419 assert(N == 1 && "Invalid number of operands!"); 2420 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2421 assert(CE && "non-constant post-idx-imm8 operand!"); 2422 int Imm = CE->getValue(); 2423 bool isAdd = Imm >= 0; 2424 if (Imm == INT32_MIN) Imm = 0; 2425 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2426 Inst.addOperand(MCOperand::createImm(Imm)); 2427 } 2428 2429 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2430 assert(N == 1 && "Invalid number of operands!"); 2431 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2432 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2433 int Imm = CE->getValue(); 2434 bool isAdd = Imm >= 0; 2435 if (Imm == INT32_MIN) Imm = 0; 2436 // Immediate is scaled by 4. 2437 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2438 Inst.addOperand(MCOperand::createImm(Imm)); 2439 } 2440 2441 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2442 assert(N == 2 && "Invalid number of operands!"); 2443 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2444 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2445 } 2446 2447 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2448 assert(N == 2 && "Invalid number of operands!"); 2449 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2450 // The sign, shift type, and shift amount are encoded in a single operand 2451 // using the AM2 encoding helpers. 2452 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2453 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2454 PostIdxReg.ShiftTy); 2455 Inst.addOperand(MCOperand::createImm(Imm)); 2456 } 2457 2458 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2459 assert(N == 1 && "Invalid number of operands!"); 2460 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2461 } 2462 2463 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2464 assert(N == 1 && "Invalid number of operands!"); 2465 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2466 } 2467 2468 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2469 assert(N == 1 && "Invalid number of operands!"); 2470 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2471 } 2472 2473 void addVecListOperands(MCInst &Inst, unsigned N) const { 2474 assert(N == 1 && "Invalid number of operands!"); 2475 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2476 } 2477 2478 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2479 assert(N == 2 && "Invalid number of operands!"); 2480 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2481 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2482 } 2483 2484 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2485 assert(N == 1 && "Invalid number of operands!"); 2486 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2487 } 2488 2489 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2490 assert(N == 1 && "Invalid number of operands!"); 2491 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2492 } 2493 2494 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2495 assert(N == 1 && "Invalid number of operands!"); 2496 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2497 } 2498 2499 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2500 assert(N == 1 && "Invalid number of operands!"); 2501 // The immediate encodes the type of constant as well as the value. 2502 // Mask in that this is an i8 splat. 2503 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2504 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2505 } 2506 2507 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2508 assert(N == 1 && "Invalid number of operands!"); 2509 // The immediate encodes the type of constant as well as the value. 2510 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2511 unsigned Value = CE->getValue(); 2512 Value = ARM_AM::encodeNEONi16splat(Value); 2513 Inst.addOperand(MCOperand::createImm(Value)); 2514 } 2515 2516 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2517 assert(N == 1 && "Invalid number of operands!"); 2518 // The immediate encodes the type of constant as well as the value. 2519 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2520 unsigned Value = CE->getValue(); 2521 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2522 Inst.addOperand(MCOperand::createImm(Value)); 2523 } 2524 2525 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2526 assert(N == 1 && "Invalid number of operands!"); 2527 // The immediate encodes the type of constant as well as the value. 2528 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2529 unsigned Value = CE->getValue(); 2530 Value = ARM_AM::encodeNEONi32splat(Value); 2531 Inst.addOperand(MCOperand::createImm(Value)); 2532 } 2533 2534 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2535 assert(N == 1 && "Invalid number of operands!"); 2536 // The immediate encodes the type of constant as well as the value. 2537 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2538 unsigned Value = CE->getValue(); 2539 Value = ARM_AM::encodeNEONi32splat(~Value); 2540 Inst.addOperand(MCOperand::createImm(Value)); 2541 } 2542 2543 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2544 assert(N == 1 && "Invalid number of operands!"); 2545 // The immediate encodes the type of constant as well as the value. 2546 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2547 unsigned Value = CE->getValue(); 2548 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2549 Inst.getOpcode() == ARM::VMOVv16i8) && 2550 "All vmvn instructions that wants to replicate non-zero byte " 2551 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2552 unsigned B = ((~Value) & 0xff); 2553 B |= 0xe00; // cmode = 0b1110 2554 Inst.addOperand(MCOperand::createImm(B)); 2555 } 2556 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2557 assert(N == 1 && "Invalid number of operands!"); 2558 // The immediate encodes the type of constant as well as the value. 2559 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2560 unsigned Value = CE->getValue(); 2561 if (Value >= 256 && Value <= 0xffff) 2562 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2563 else if (Value > 0xffff && Value <= 0xffffff) 2564 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2565 else if (Value > 0xffffff) 2566 Value = (Value >> 24) | 0x600; 2567 Inst.addOperand(MCOperand::createImm(Value)); 2568 } 2569 2570 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2571 assert(N == 1 && "Invalid number of operands!"); 2572 // The immediate encodes the type of constant as well as the value. 2573 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2574 unsigned Value = CE->getValue(); 2575 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2576 Inst.getOpcode() == ARM::VMOVv16i8) && 2577 "All instructions that wants to replicate non-zero byte " 2578 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2579 unsigned B = Value & 0xff; 2580 B |= 0xe00; // cmode = 0b1110 2581 Inst.addOperand(MCOperand::createImm(B)); 2582 } 2583 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2584 assert(N == 1 && "Invalid number of operands!"); 2585 // The immediate encodes the type of constant as well as the value. 2586 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2587 unsigned Value = ~CE->getValue(); 2588 if (Value >= 256 && Value <= 0xffff) 2589 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2590 else if (Value > 0xffff && Value <= 0xffffff) 2591 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2592 else if (Value > 0xffffff) 2593 Value = (Value >> 24) | 0x600; 2594 Inst.addOperand(MCOperand::createImm(Value)); 2595 } 2596 2597 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2598 assert(N == 1 && "Invalid number of operands!"); 2599 // The immediate encodes the type of constant as well as the value. 2600 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2601 uint64_t Value = CE->getValue(); 2602 unsigned Imm = 0; 2603 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2604 Imm |= (Value & 1) << i; 2605 } 2606 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2607 } 2608 2609 void print(raw_ostream &OS) const override; 2610 2611 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2612 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2613 Op->ITMask.Mask = Mask; 2614 Op->StartLoc = S; 2615 Op->EndLoc = S; 2616 return Op; 2617 } 2618 2619 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2620 SMLoc S) { 2621 auto Op = make_unique<ARMOperand>(k_CondCode); 2622 Op->CC.Val = CC; 2623 Op->StartLoc = S; 2624 Op->EndLoc = S; 2625 return Op; 2626 } 2627 2628 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2629 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2630 Op->Cop.Val = CopVal; 2631 Op->StartLoc = S; 2632 Op->EndLoc = S; 2633 return Op; 2634 } 2635 2636 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2637 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2638 Op->Cop.Val = CopVal; 2639 Op->StartLoc = S; 2640 Op->EndLoc = S; 2641 return Op; 2642 } 2643 2644 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2645 SMLoc E) { 2646 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2647 Op->Cop.Val = Val; 2648 Op->StartLoc = S; 2649 Op->EndLoc = E; 2650 return Op; 2651 } 2652 2653 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2654 auto Op = make_unique<ARMOperand>(k_CCOut); 2655 Op->Reg.RegNum = RegNum; 2656 Op->StartLoc = S; 2657 Op->EndLoc = S; 2658 return Op; 2659 } 2660 2661 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2662 auto Op = make_unique<ARMOperand>(k_Token); 2663 Op->Tok.Data = Str.data(); 2664 Op->Tok.Length = Str.size(); 2665 Op->StartLoc = S; 2666 Op->EndLoc = S; 2667 return Op; 2668 } 2669 2670 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2671 SMLoc E) { 2672 auto Op = make_unique<ARMOperand>(k_Register); 2673 Op->Reg.RegNum = RegNum; 2674 Op->StartLoc = S; 2675 Op->EndLoc = E; 2676 return Op; 2677 } 2678 2679 static std::unique_ptr<ARMOperand> 2680 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2681 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2682 SMLoc E) { 2683 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2684 Op->RegShiftedReg.ShiftTy = ShTy; 2685 Op->RegShiftedReg.SrcReg = SrcReg; 2686 Op->RegShiftedReg.ShiftReg = ShiftReg; 2687 Op->RegShiftedReg.ShiftImm = ShiftImm; 2688 Op->StartLoc = S; 2689 Op->EndLoc = E; 2690 return Op; 2691 } 2692 2693 static std::unique_ptr<ARMOperand> 2694 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2695 unsigned ShiftImm, SMLoc S, SMLoc E) { 2696 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2697 Op->RegShiftedImm.ShiftTy = ShTy; 2698 Op->RegShiftedImm.SrcReg = SrcReg; 2699 Op->RegShiftedImm.ShiftImm = ShiftImm; 2700 Op->StartLoc = S; 2701 Op->EndLoc = E; 2702 return Op; 2703 } 2704 2705 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2706 SMLoc S, SMLoc E) { 2707 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2708 Op->ShifterImm.isASR = isASR; 2709 Op->ShifterImm.Imm = Imm; 2710 Op->StartLoc = S; 2711 Op->EndLoc = E; 2712 return Op; 2713 } 2714 2715 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2716 SMLoc E) { 2717 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2718 Op->RotImm.Imm = Imm; 2719 Op->StartLoc = S; 2720 Op->EndLoc = E; 2721 return Op; 2722 } 2723 2724 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2725 SMLoc S, SMLoc E) { 2726 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2727 Op->ModImm.Bits = Bits; 2728 Op->ModImm.Rot = Rot; 2729 Op->StartLoc = S; 2730 Op->EndLoc = E; 2731 return Op; 2732 } 2733 2734 static std::unique_ptr<ARMOperand> 2735 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 2736 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 2737 Op->Imm.Val = Val; 2738 Op->StartLoc = S; 2739 Op->EndLoc = E; 2740 return Op; 2741 } 2742 2743 static std::unique_ptr<ARMOperand> 2744 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2745 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2746 Op->Bitfield.LSB = LSB; 2747 Op->Bitfield.Width = Width; 2748 Op->StartLoc = S; 2749 Op->EndLoc = E; 2750 return Op; 2751 } 2752 2753 static std::unique_ptr<ARMOperand> 2754 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2755 SMLoc StartLoc, SMLoc EndLoc) { 2756 assert (Regs.size() > 0 && "RegList contains no registers?"); 2757 KindTy Kind = k_RegisterList; 2758 2759 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2760 Kind = k_DPRRegisterList; 2761 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2762 contains(Regs.front().second)) 2763 Kind = k_SPRRegisterList; 2764 2765 // Sort based on the register encoding values. 2766 array_pod_sort(Regs.begin(), Regs.end()); 2767 2768 auto Op = make_unique<ARMOperand>(Kind); 2769 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2770 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2771 Op->Registers.push_back(I->second); 2772 Op->StartLoc = StartLoc; 2773 Op->EndLoc = EndLoc; 2774 return Op; 2775 } 2776 2777 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2778 unsigned Count, 2779 bool isDoubleSpaced, 2780 SMLoc S, SMLoc E) { 2781 auto Op = make_unique<ARMOperand>(k_VectorList); 2782 Op->VectorList.RegNum = RegNum; 2783 Op->VectorList.Count = Count; 2784 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2785 Op->StartLoc = S; 2786 Op->EndLoc = E; 2787 return Op; 2788 } 2789 2790 static std::unique_ptr<ARMOperand> 2791 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2792 SMLoc S, SMLoc E) { 2793 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2794 Op->VectorList.RegNum = RegNum; 2795 Op->VectorList.Count = Count; 2796 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2797 Op->StartLoc = S; 2798 Op->EndLoc = E; 2799 return Op; 2800 } 2801 2802 static std::unique_ptr<ARMOperand> 2803 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2804 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2805 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2806 Op->VectorList.RegNum = RegNum; 2807 Op->VectorList.Count = Count; 2808 Op->VectorList.LaneIndex = Index; 2809 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2810 Op->StartLoc = S; 2811 Op->EndLoc = E; 2812 return Op; 2813 } 2814 2815 static std::unique_ptr<ARMOperand> 2816 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2817 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2818 Op->VectorIndex.Val = Idx; 2819 Op->StartLoc = S; 2820 Op->EndLoc = E; 2821 return Op; 2822 } 2823 2824 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2825 SMLoc E) { 2826 auto Op = make_unique<ARMOperand>(k_Immediate); 2827 Op->Imm.Val = Val; 2828 Op->StartLoc = S; 2829 Op->EndLoc = E; 2830 return Op; 2831 } 2832 2833 static std::unique_ptr<ARMOperand> 2834 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2835 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2836 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2837 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2838 auto Op = make_unique<ARMOperand>(k_Memory); 2839 Op->Memory.BaseRegNum = BaseRegNum; 2840 Op->Memory.OffsetImm = OffsetImm; 2841 Op->Memory.OffsetRegNum = OffsetRegNum; 2842 Op->Memory.ShiftType = ShiftType; 2843 Op->Memory.ShiftImm = ShiftImm; 2844 Op->Memory.Alignment = Alignment; 2845 Op->Memory.isNegative = isNegative; 2846 Op->StartLoc = S; 2847 Op->EndLoc = E; 2848 Op->AlignmentLoc = AlignmentLoc; 2849 return Op; 2850 } 2851 2852 static std::unique_ptr<ARMOperand> 2853 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2854 unsigned ShiftImm, SMLoc S, SMLoc E) { 2855 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2856 Op->PostIdxReg.RegNum = RegNum; 2857 Op->PostIdxReg.isAdd = isAdd; 2858 Op->PostIdxReg.ShiftTy = ShiftTy; 2859 Op->PostIdxReg.ShiftImm = ShiftImm; 2860 Op->StartLoc = S; 2861 Op->EndLoc = E; 2862 return Op; 2863 } 2864 2865 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2866 SMLoc S) { 2867 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 2868 Op->MBOpt.Val = Opt; 2869 Op->StartLoc = S; 2870 Op->EndLoc = S; 2871 return Op; 2872 } 2873 2874 static std::unique_ptr<ARMOperand> 2875 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 2876 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 2877 Op->ISBOpt.Val = Opt; 2878 Op->StartLoc = S; 2879 Op->EndLoc = S; 2880 return Op; 2881 } 2882 2883 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 2884 SMLoc S) { 2885 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 2886 Op->IFlags.Val = IFlags; 2887 Op->StartLoc = S; 2888 Op->EndLoc = S; 2889 return Op; 2890 } 2891 2892 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 2893 auto Op = make_unique<ARMOperand>(k_MSRMask); 2894 Op->MMask.Val = MMask; 2895 Op->StartLoc = S; 2896 Op->EndLoc = S; 2897 return Op; 2898 } 2899 2900 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 2901 auto Op = make_unique<ARMOperand>(k_BankedReg); 2902 Op->BankedReg.Val = Reg; 2903 Op->StartLoc = S; 2904 Op->EndLoc = S; 2905 return Op; 2906 } 2907 }; 2908 2909 } // end anonymous namespace. 2910 2911 void ARMOperand::print(raw_ostream &OS) const { 2912 switch (Kind) { 2913 case k_CondCode: 2914 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 2915 break; 2916 case k_CCOut: 2917 OS << "<ccout " << getReg() << ">"; 2918 break; 2919 case k_ITCondMask: { 2920 static const char *const MaskStr[] = { 2921 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 2922 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 2923 }; 2924 assert((ITMask.Mask & 0xf) == ITMask.Mask); 2925 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 2926 break; 2927 } 2928 case k_CoprocNum: 2929 OS << "<coprocessor number: " << getCoproc() << ">"; 2930 break; 2931 case k_CoprocReg: 2932 OS << "<coprocessor register: " << getCoproc() << ">"; 2933 break; 2934 case k_CoprocOption: 2935 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 2936 break; 2937 case k_MSRMask: 2938 OS << "<mask: " << getMSRMask() << ">"; 2939 break; 2940 case k_BankedReg: 2941 OS << "<banked reg: " << getBankedReg() << ">"; 2942 break; 2943 case k_Immediate: 2944 OS << *getImm(); 2945 break; 2946 case k_MemBarrierOpt: 2947 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 2948 break; 2949 case k_InstSyncBarrierOpt: 2950 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 2951 break; 2952 case k_Memory: 2953 OS << "<memory " 2954 << " base:" << Memory.BaseRegNum; 2955 OS << ">"; 2956 break; 2957 case k_PostIndexRegister: 2958 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 2959 << PostIdxReg.RegNum; 2960 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 2961 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 2962 << PostIdxReg.ShiftImm; 2963 OS << ">"; 2964 break; 2965 case k_ProcIFlags: { 2966 OS << "<ARM_PROC::"; 2967 unsigned IFlags = getProcIFlags(); 2968 for (int i=2; i >= 0; --i) 2969 if (IFlags & (1 << i)) 2970 OS << ARM_PROC::IFlagsToString(1 << i); 2971 OS << ">"; 2972 break; 2973 } 2974 case k_Register: 2975 OS << "<register " << getReg() << ">"; 2976 break; 2977 case k_ShifterImmediate: 2978 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 2979 << " #" << ShifterImm.Imm << ">"; 2980 break; 2981 case k_ShiftedRegister: 2982 OS << "<so_reg_reg " 2983 << RegShiftedReg.SrcReg << " " 2984 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 2985 << " " << RegShiftedReg.ShiftReg << ">"; 2986 break; 2987 case k_ShiftedImmediate: 2988 OS << "<so_reg_imm " 2989 << RegShiftedImm.SrcReg << " " 2990 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 2991 << " #" << RegShiftedImm.ShiftImm << ">"; 2992 break; 2993 case k_RotateImmediate: 2994 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 2995 break; 2996 case k_ModifiedImmediate: 2997 OS << "<mod_imm #" << ModImm.Bits << ", #" 2998 << ModImm.Rot << ")>"; 2999 break; 3000 case k_ConstantPoolImmediate: 3001 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3002 break; 3003 case k_BitfieldDescriptor: 3004 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3005 << ", width: " << Bitfield.Width << ">"; 3006 break; 3007 case k_RegisterList: 3008 case k_DPRRegisterList: 3009 case k_SPRRegisterList: { 3010 OS << "<register_list "; 3011 3012 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3013 for (SmallVectorImpl<unsigned>::const_iterator 3014 I = RegList.begin(), E = RegList.end(); I != E; ) { 3015 OS << *I; 3016 if (++I < E) OS << ", "; 3017 } 3018 3019 OS << ">"; 3020 break; 3021 } 3022 case k_VectorList: 3023 OS << "<vector_list " << VectorList.Count << " * " 3024 << VectorList.RegNum << ">"; 3025 break; 3026 case k_VectorListAllLanes: 3027 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3028 << VectorList.RegNum << ">"; 3029 break; 3030 case k_VectorListIndexed: 3031 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3032 << VectorList.Count << " * " << VectorList.RegNum << ">"; 3033 break; 3034 case k_Token: 3035 OS << "'" << getToken() << "'"; 3036 break; 3037 case k_VectorIndex: 3038 OS << "<vectorindex " << getVectorIndex() << ">"; 3039 break; 3040 } 3041 } 3042 3043 /// @name Auto-generated Match Functions 3044 /// { 3045 3046 static unsigned MatchRegisterName(StringRef Name); 3047 3048 /// } 3049 3050 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3051 SMLoc &StartLoc, SMLoc &EndLoc) { 3052 const AsmToken &Tok = getParser().getTok(); 3053 StartLoc = Tok.getLoc(); 3054 EndLoc = Tok.getEndLoc(); 3055 RegNo = tryParseRegister(); 3056 3057 return (RegNo == (unsigned)-1); 3058 } 3059 3060 /// Try to parse a register name. The token must be an Identifier when called, 3061 /// and if it is a register name the token is eaten and the register number is 3062 /// returned. Otherwise return -1. 3063 /// 3064 int ARMAsmParser::tryParseRegister() { 3065 MCAsmParser &Parser = getParser(); 3066 const AsmToken &Tok = Parser.getTok(); 3067 if (Tok.isNot(AsmToken::Identifier)) return -1; 3068 3069 std::string lowerCase = Tok.getString().lower(); 3070 unsigned RegNum = MatchRegisterName(lowerCase); 3071 if (!RegNum) { 3072 RegNum = StringSwitch<unsigned>(lowerCase) 3073 .Case("r13", ARM::SP) 3074 .Case("r14", ARM::LR) 3075 .Case("r15", ARM::PC) 3076 .Case("ip", ARM::R12) 3077 // Additional register name aliases for 'gas' compatibility. 3078 .Case("a1", ARM::R0) 3079 .Case("a2", ARM::R1) 3080 .Case("a3", ARM::R2) 3081 .Case("a4", ARM::R3) 3082 .Case("v1", ARM::R4) 3083 .Case("v2", ARM::R5) 3084 .Case("v3", ARM::R6) 3085 .Case("v4", ARM::R7) 3086 .Case("v5", ARM::R8) 3087 .Case("v6", ARM::R9) 3088 .Case("v7", ARM::R10) 3089 .Case("v8", ARM::R11) 3090 .Case("sb", ARM::R9) 3091 .Case("sl", ARM::R10) 3092 .Case("fp", ARM::R11) 3093 .Default(0); 3094 } 3095 if (!RegNum) { 3096 // Check for aliases registered via .req. Canonicalize to lower case. 3097 // That's more consistent since register names are case insensitive, and 3098 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3099 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3100 // If no match, return failure. 3101 if (Entry == RegisterReqs.end()) 3102 return -1; 3103 Parser.Lex(); // Eat identifier token. 3104 return Entry->getValue(); 3105 } 3106 3107 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3108 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3109 return -1; 3110 3111 Parser.Lex(); // Eat identifier token. 3112 3113 return RegNum; 3114 } 3115 3116 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3117 // If a recoverable error occurs, return 1. If an irrecoverable error 3118 // occurs, return -1. An irrecoverable error is one where tokens have been 3119 // consumed in the process of trying to parse the shifter (i.e., when it is 3120 // indeed a shifter operand, but malformed). 3121 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3122 MCAsmParser &Parser = getParser(); 3123 SMLoc S = Parser.getTok().getLoc(); 3124 const AsmToken &Tok = Parser.getTok(); 3125 if (Tok.isNot(AsmToken::Identifier)) 3126 return -1; 3127 3128 std::string lowerCase = Tok.getString().lower(); 3129 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3130 .Case("asl", ARM_AM::lsl) 3131 .Case("lsl", ARM_AM::lsl) 3132 .Case("lsr", ARM_AM::lsr) 3133 .Case("asr", ARM_AM::asr) 3134 .Case("ror", ARM_AM::ror) 3135 .Case("rrx", ARM_AM::rrx) 3136 .Default(ARM_AM::no_shift); 3137 3138 if (ShiftTy == ARM_AM::no_shift) 3139 return 1; 3140 3141 Parser.Lex(); // Eat the operator. 3142 3143 // The source register for the shift has already been added to the 3144 // operand list, so we need to pop it off and combine it into the shifted 3145 // register operand instead. 3146 std::unique_ptr<ARMOperand> PrevOp( 3147 (ARMOperand *)Operands.pop_back_val().release()); 3148 if (!PrevOp->isReg()) 3149 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3150 int SrcReg = PrevOp->getReg(); 3151 3152 SMLoc EndLoc; 3153 int64_t Imm = 0; 3154 int ShiftReg = 0; 3155 if (ShiftTy == ARM_AM::rrx) { 3156 // RRX Doesn't have an explicit shift amount. The encoder expects 3157 // the shift register to be the same as the source register. Seems odd, 3158 // but OK. 3159 ShiftReg = SrcReg; 3160 } else { 3161 // Figure out if this is shifted by a constant or a register (for non-RRX). 3162 if (Parser.getTok().is(AsmToken::Hash) || 3163 Parser.getTok().is(AsmToken::Dollar)) { 3164 Parser.Lex(); // Eat hash. 3165 SMLoc ImmLoc = Parser.getTok().getLoc(); 3166 const MCExpr *ShiftExpr = nullptr; 3167 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3168 Error(ImmLoc, "invalid immediate shift value"); 3169 return -1; 3170 } 3171 // The expression must be evaluatable as an immediate. 3172 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3173 if (!CE) { 3174 Error(ImmLoc, "invalid immediate shift value"); 3175 return -1; 3176 } 3177 // Range check the immediate. 3178 // lsl, ror: 0 <= imm <= 31 3179 // lsr, asr: 0 <= imm <= 32 3180 Imm = CE->getValue(); 3181 if (Imm < 0 || 3182 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3183 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3184 Error(ImmLoc, "immediate shift value out of range"); 3185 return -1; 3186 } 3187 // shift by zero is a nop. Always send it through as lsl. 3188 // ('as' compatibility) 3189 if (Imm == 0) 3190 ShiftTy = ARM_AM::lsl; 3191 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3192 SMLoc L = Parser.getTok().getLoc(); 3193 EndLoc = Parser.getTok().getEndLoc(); 3194 ShiftReg = tryParseRegister(); 3195 if (ShiftReg == -1) { 3196 Error(L, "expected immediate or register in shift operand"); 3197 return -1; 3198 } 3199 } else { 3200 Error(Parser.getTok().getLoc(), 3201 "expected immediate or register in shift operand"); 3202 return -1; 3203 } 3204 } 3205 3206 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3207 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3208 ShiftReg, Imm, 3209 S, EndLoc)); 3210 else 3211 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3212 S, EndLoc)); 3213 3214 return 0; 3215 } 3216 3217 3218 /// Try to parse a register name. The token must be an Identifier when called. 3219 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3220 /// if there is a "writeback". 'true' if it's not a register. 3221 /// 3222 /// TODO this is likely to change to allow different register types and or to 3223 /// parse for a specific register type. 3224 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3225 MCAsmParser &Parser = getParser(); 3226 const AsmToken &RegTok = Parser.getTok(); 3227 int RegNo = tryParseRegister(); 3228 if (RegNo == -1) 3229 return true; 3230 3231 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3232 RegTok.getEndLoc())); 3233 3234 const AsmToken &ExclaimTok = Parser.getTok(); 3235 if (ExclaimTok.is(AsmToken::Exclaim)) { 3236 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3237 ExclaimTok.getLoc())); 3238 Parser.Lex(); // Eat exclaim token 3239 return false; 3240 } 3241 3242 // Also check for an index operand. This is only legal for vector registers, 3243 // but that'll get caught OK in operand matching, so we don't need to 3244 // explicitly filter everything else out here. 3245 if (Parser.getTok().is(AsmToken::LBrac)) { 3246 SMLoc SIdx = Parser.getTok().getLoc(); 3247 Parser.Lex(); // Eat left bracket token. 3248 3249 const MCExpr *ImmVal; 3250 if (getParser().parseExpression(ImmVal)) 3251 return true; 3252 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3253 if (!MCE) 3254 return TokError("immediate value expected for vector index"); 3255 3256 if (Parser.getTok().isNot(AsmToken::RBrac)) 3257 return Error(Parser.getTok().getLoc(), "']' expected"); 3258 3259 SMLoc E = Parser.getTok().getEndLoc(); 3260 Parser.Lex(); // Eat right bracket token. 3261 3262 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3263 SIdx, E, 3264 getContext())); 3265 } 3266 3267 return false; 3268 } 3269 3270 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3271 /// instruction with a symbolic operand name. 3272 /// We accept "crN" syntax for GAS compatibility. 3273 /// <operand-name> ::= <prefix><number> 3274 /// If CoprocOp is 'c', then: 3275 /// <prefix> ::= c | cr 3276 /// If CoprocOp is 'p', then : 3277 /// <prefix> ::= p 3278 /// <number> ::= integer in range [0, 15] 3279 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3280 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3281 // but efficient. 3282 if (Name.size() < 2 || Name[0] != CoprocOp) 3283 return -1; 3284 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3285 3286 switch (Name.size()) { 3287 default: return -1; 3288 case 1: 3289 switch (Name[0]) { 3290 default: return -1; 3291 case '0': return 0; 3292 case '1': return 1; 3293 case '2': return 2; 3294 case '3': return 3; 3295 case '4': return 4; 3296 case '5': return 5; 3297 case '6': return 6; 3298 case '7': return 7; 3299 case '8': return 8; 3300 case '9': return 9; 3301 } 3302 case 2: 3303 if (Name[0] != '1') 3304 return -1; 3305 switch (Name[1]) { 3306 default: return -1; 3307 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3308 // However, old cores (v5/v6) did use them in that way. 3309 case '0': return 10; 3310 case '1': return 11; 3311 case '2': return 12; 3312 case '3': return 13; 3313 case '4': return 14; 3314 case '5': return 15; 3315 } 3316 } 3317 } 3318 3319 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3320 OperandMatchResultTy 3321 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3322 MCAsmParser &Parser = getParser(); 3323 SMLoc S = Parser.getTok().getLoc(); 3324 const AsmToken &Tok = Parser.getTok(); 3325 if (!Tok.is(AsmToken::Identifier)) 3326 return MatchOperand_NoMatch; 3327 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3328 .Case("eq", ARMCC::EQ) 3329 .Case("ne", ARMCC::NE) 3330 .Case("hs", ARMCC::HS) 3331 .Case("cs", ARMCC::HS) 3332 .Case("lo", ARMCC::LO) 3333 .Case("cc", ARMCC::LO) 3334 .Case("mi", ARMCC::MI) 3335 .Case("pl", ARMCC::PL) 3336 .Case("vs", ARMCC::VS) 3337 .Case("vc", ARMCC::VC) 3338 .Case("hi", ARMCC::HI) 3339 .Case("ls", ARMCC::LS) 3340 .Case("ge", ARMCC::GE) 3341 .Case("lt", ARMCC::LT) 3342 .Case("gt", ARMCC::GT) 3343 .Case("le", ARMCC::LE) 3344 .Case("al", ARMCC::AL) 3345 .Default(~0U); 3346 if (CC == ~0U) 3347 return MatchOperand_NoMatch; 3348 Parser.Lex(); // Eat the token. 3349 3350 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3351 3352 return MatchOperand_Success; 3353 } 3354 3355 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3356 /// token must be an Identifier when called, and if it is a coprocessor 3357 /// number, the token is eaten and the operand is added to the operand list. 3358 OperandMatchResultTy 3359 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3360 MCAsmParser &Parser = getParser(); 3361 SMLoc S = Parser.getTok().getLoc(); 3362 const AsmToken &Tok = Parser.getTok(); 3363 if (Tok.isNot(AsmToken::Identifier)) 3364 return MatchOperand_NoMatch; 3365 3366 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3367 if (Num == -1) 3368 return MatchOperand_NoMatch; 3369 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3370 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3371 return MatchOperand_NoMatch; 3372 3373 Parser.Lex(); // Eat identifier token. 3374 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3375 return MatchOperand_Success; 3376 } 3377 3378 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3379 /// token must be an Identifier when called, and if it is a coprocessor 3380 /// number, the token is eaten and the operand is added to the operand list. 3381 OperandMatchResultTy 3382 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3383 MCAsmParser &Parser = getParser(); 3384 SMLoc S = Parser.getTok().getLoc(); 3385 const AsmToken &Tok = Parser.getTok(); 3386 if (Tok.isNot(AsmToken::Identifier)) 3387 return MatchOperand_NoMatch; 3388 3389 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3390 if (Reg == -1) 3391 return MatchOperand_NoMatch; 3392 3393 Parser.Lex(); // Eat identifier token. 3394 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3395 return MatchOperand_Success; 3396 } 3397 3398 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3399 /// coproc_option : '{' imm0_255 '}' 3400 OperandMatchResultTy 3401 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3402 MCAsmParser &Parser = getParser(); 3403 SMLoc S = Parser.getTok().getLoc(); 3404 3405 // If this isn't a '{', this isn't a coprocessor immediate operand. 3406 if (Parser.getTok().isNot(AsmToken::LCurly)) 3407 return MatchOperand_NoMatch; 3408 Parser.Lex(); // Eat the '{' 3409 3410 const MCExpr *Expr; 3411 SMLoc Loc = Parser.getTok().getLoc(); 3412 if (getParser().parseExpression(Expr)) { 3413 Error(Loc, "illegal expression"); 3414 return MatchOperand_ParseFail; 3415 } 3416 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3417 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3418 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3419 return MatchOperand_ParseFail; 3420 } 3421 int Val = CE->getValue(); 3422 3423 // Check for and consume the closing '}' 3424 if (Parser.getTok().isNot(AsmToken::RCurly)) 3425 return MatchOperand_ParseFail; 3426 SMLoc E = Parser.getTok().getEndLoc(); 3427 Parser.Lex(); // Eat the '}' 3428 3429 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3430 return MatchOperand_Success; 3431 } 3432 3433 // For register list parsing, we need to map from raw GPR register numbering 3434 // to the enumeration values. The enumeration values aren't sorted by 3435 // register number due to our using "sp", "lr" and "pc" as canonical names. 3436 static unsigned getNextRegister(unsigned Reg) { 3437 // If this is a GPR, we need to do it manually, otherwise we can rely 3438 // on the sort ordering of the enumeration since the other reg-classes 3439 // are sane. 3440 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3441 return Reg + 1; 3442 switch(Reg) { 3443 default: llvm_unreachable("Invalid GPR number!"); 3444 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3445 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3446 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3447 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3448 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3449 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3450 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3451 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3452 } 3453 } 3454 3455 // Return the low-subreg of a given Q register. 3456 static unsigned getDRegFromQReg(unsigned QReg) { 3457 switch (QReg) { 3458 default: llvm_unreachable("expected a Q register!"); 3459 case ARM::Q0: return ARM::D0; 3460 case ARM::Q1: return ARM::D2; 3461 case ARM::Q2: return ARM::D4; 3462 case ARM::Q3: return ARM::D6; 3463 case ARM::Q4: return ARM::D8; 3464 case ARM::Q5: return ARM::D10; 3465 case ARM::Q6: return ARM::D12; 3466 case ARM::Q7: return ARM::D14; 3467 case ARM::Q8: return ARM::D16; 3468 case ARM::Q9: return ARM::D18; 3469 case ARM::Q10: return ARM::D20; 3470 case ARM::Q11: return ARM::D22; 3471 case ARM::Q12: return ARM::D24; 3472 case ARM::Q13: return ARM::D26; 3473 case ARM::Q14: return ARM::D28; 3474 case ARM::Q15: return ARM::D30; 3475 } 3476 } 3477 3478 /// Parse a register list. 3479 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3480 MCAsmParser &Parser = getParser(); 3481 if (Parser.getTok().isNot(AsmToken::LCurly)) 3482 return TokError("Token is not a Left Curly Brace"); 3483 SMLoc S = Parser.getTok().getLoc(); 3484 Parser.Lex(); // Eat '{' token. 3485 SMLoc RegLoc = Parser.getTok().getLoc(); 3486 3487 // Check the first register in the list to see what register class 3488 // this is a list of. 3489 int Reg = tryParseRegister(); 3490 if (Reg == -1) 3491 return Error(RegLoc, "register expected"); 3492 3493 // The reglist instructions have at most 16 registers, so reserve 3494 // space for that many. 3495 int EReg = 0; 3496 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3497 3498 // Allow Q regs and just interpret them as the two D sub-registers. 3499 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3500 Reg = getDRegFromQReg(Reg); 3501 EReg = MRI->getEncodingValue(Reg); 3502 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3503 ++Reg; 3504 } 3505 const MCRegisterClass *RC; 3506 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3507 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3508 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3509 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3510 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3511 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3512 else 3513 return Error(RegLoc, "invalid register in register list"); 3514 3515 // Store the register. 3516 EReg = MRI->getEncodingValue(Reg); 3517 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3518 3519 // This starts immediately after the first register token in the list, 3520 // so we can see either a comma or a minus (range separator) as a legal 3521 // next token. 3522 while (Parser.getTok().is(AsmToken::Comma) || 3523 Parser.getTok().is(AsmToken::Minus)) { 3524 if (Parser.getTok().is(AsmToken::Minus)) { 3525 Parser.Lex(); // Eat the minus. 3526 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3527 int EndReg = tryParseRegister(); 3528 if (EndReg == -1) 3529 return Error(AfterMinusLoc, "register expected"); 3530 // Allow Q regs and just interpret them as the two D sub-registers. 3531 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3532 EndReg = getDRegFromQReg(EndReg) + 1; 3533 // If the register is the same as the start reg, there's nothing 3534 // more to do. 3535 if (Reg == EndReg) 3536 continue; 3537 // The register must be in the same register class as the first. 3538 if (!RC->contains(EndReg)) 3539 return Error(AfterMinusLoc, "invalid register in register list"); 3540 // Ranges must go from low to high. 3541 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3542 return Error(AfterMinusLoc, "bad range in register list"); 3543 3544 // Add all the registers in the range to the register list. 3545 while (Reg != EndReg) { 3546 Reg = getNextRegister(Reg); 3547 EReg = MRI->getEncodingValue(Reg); 3548 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3549 } 3550 continue; 3551 } 3552 Parser.Lex(); // Eat the comma. 3553 RegLoc = Parser.getTok().getLoc(); 3554 int OldReg = Reg; 3555 const AsmToken RegTok = Parser.getTok(); 3556 Reg = tryParseRegister(); 3557 if (Reg == -1) 3558 return Error(RegLoc, "register expected"); 3559 // Allow Q regs and just interpret them as the two D sub-registers. 3560 bool isQReg = false; 3561 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3562 Reg = getDRegFromQReg(Reg); 3563 isQReg = true; 3564 } 3565 // The register must be in the same register class as the first. 3566 if (!RC->contains(Reg)) 3567 return Error(RegLoc, "invalid register in register list"); 3568 // List must be monotonically increasing. 3569 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3570 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3571 Warning(RegLoc, "register list not in ascending order"); 3572 else 3573 return Error(RegLoc, "register list not in ascending order"); 3574 } 3575 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3576 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3577 ") in register list"); 3578 continue; 3579 } 3580 // VFP register lists must also be contiguous. 3581 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3582 Reg != OldReg + 1) 3583 return Error(RegLoc, "non-contiguous register range"); 3584 EReg = MRI->getEncodingValue(Reg); 3585 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3586 if (isQReg) { 3587 EReg = MRI->getEncodingValue(++Reg); 3588 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3589 } 3590 } 3591 3592 if (Parser.getTok().isNot(AsmToken::RCurly)) 3593 return Error(Parser.getTok().getLoc(), "'}' expected"); 3594 SMLoc E = Parser.getTok().getEndLoc(); 3595 Parser.Lex(); // Eat '}' token. 3596 3597 // Push the register list operand. 3598 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3599 3600 // The ARM system instruction variants for LDM/STM have a '^' token here. 3601 if (Parser.getTok().is(AsmToken::Caret)) { 3602 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3603 Parser.Lex(); // Eat '^' token. 3604 } 3605 3606 return false; 3607 } 3608 3609 // Helper function to parse the lane index for vector lists. 3610 OperandMatchResultTy ARMAsmParser:: 3611 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3612 MCAsmParser &Parser = getParser(); 3613 Index = 0; // Always return a defined index value. 3614 if (Parser.getTok().is(AsmToken::LBrac)) { 3615 Parser.Lex(); // Eat the '['. 3616 if (Parser.getTok().is(AsmToken::RBrac)) { 3617 // "Dn[]" is the 'all lanes' syntax. 3618 LaneKind = AllLanes; 3619 EndLoc = Parser.getTok().getEndLoc(); 3620 Parser.Lex(); // Eat the ']'. 3621 return MatchOperand_Success; 3622 } 3623 3624 // There's an optional '#' token here. Normally there wouldn't be, but 3625 // inline assemble puts one in, and it's friendly to accept that. 3626 if (Parser.getTok().is(AsmToken::Hash)) 3627 Parser.Lex(); // Eat '#' or '$'. 3628 3629 const MCExpr *LaneIndex; 3630 SMLoc Loc = Parser.getTok().getLoc(); 3631 if (getParser().parseExpression(LaneIndex)) { 3632 Error(Loc, "illegal expression"); 3633 return MatchOperand_ParseFail; 3634 } 3635 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3636 if (!CE) { 3637 Error(Loc, "lane index must be empty or an integer"); 3638 return MatchOperand_ParseFail; 3639 } 3640 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3641 Error(Parser.getTok().getLoc(), "']' expected"); 3642 return MatchOperand_ParseFail; 3643 } 3644 EndLoc = Parser.getTok().getEndLoc(); 3645 Parser.Lex(); // Eat the ']'. 3646 int64_t Val = CE->getValue(); 3647 3648 // FIXME: Make this range check context sensitive for .8, .16, .32. 3649 if (Val < 0 || Val > 7) { 3650 Error(Parser.getTok().getLoc(), "lane index out of range"); 3651 return MatchOperand_ParseFail; 3652 } 3653 Index = Val; 3654 LaneKind = IndexedLane; 3655 return MatchOperand_Success; 3656 } 3657 LaneKind = NoLanes; 3658 return MatchOperand_Success; 3659 } 3660 3661 // parse a vector register list 3662 OperandMatchResultTy 3663 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3664 MCAsmParser &Parser = getParser(); 3665 VectorLaneTy LaneKind; 3666 unsigned LaneIndex; 3667 SMLoc S = Parser.getTok().getLoc(); 3668 // As an extension (to match gas), support a plain D register or Q register 3669 // (without encosing curly braces) as a single or double entry list, 3670 // respectively. 3671 if (Parser.getTok().is(AsmToken::Identifier)) { 3672 SMLoc E = Parser.getTok().getEndLoc(); 3673 int Reg = tryParseRegister(); 3674 if (Reg == -1) 3675 return MatchOperand_NoMatch; 3676 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3677 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3678 if (Res != MatchOperand_Success) 3679 return Res; 3680 switch (LaneKind) { 3681 case NoLanes: 3682 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3683 break; 3684 case AllLanes: 3685 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3686 S, E)); 3687 break; 3688 case IndexedLane: 3689 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3690 LaneIndex, 3691 false, S, E)); 3692 break; 3693 } 3694 return MatchOperand_Success; 3695 } 3696 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3697 Reg = getDRegFromQReg(Reg); 3698 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3699 if (Res != MatchOperand_Success) 3700 return Res; 3701 switch (LaneKind) { 3702 case NoLanes: 3703 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3704 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3705 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3706 break; 3707 case AllLanes: 3708 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3709 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3710 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3711 S, E)); 3712 break; 3713 case IndexedLane: 3714 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3715 LaneIndex, 3716 false, S, E)); 3717 break; 3718 } 3719 return MatchOperand_Success; 3720 } 3721 Error(S, "vector register expected"); 3722 return MatchOperand_ParseFail; 3723 } 3724 3725 if (Parser.getTok().isNot(AsmToken::LCurly)) 3726 return MatchOperand_NoMatch; 3727 3728 Parser.Lex(); // Eat '{' token. 3729 SMLoc RegLoc = Parser.getTok().getLoc(); 3730 3731 int Reg = tryParseRegister(); 3732 if (Reg == -1) { 3733 Error(RegLoc, "register expected"); 3734 return MatchOperand_ParseFail; 3735 } 3736 unsigned Count = 1; 3737 int Spacing = 0; 3738 unsigned FirstReg = Reg; 3739 // The list is of D registers, but we also allow Q regs and just interpret 3740 // them as the two D sub-registers. 3741 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3742 FirstReg = Reg = getDRegFromQReg(Reg); 3743 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3744 // it's ambiguous with four-register single spaced. 3745 ++Reg; 3746 ++Count; 3747 } 3748 3749 SMLoc E; 3750 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3751 return MatchOperand_ParseFail; 3752 3753 while (Parser.getTok().is(AsmToken::Comma) || 3754 Parser.getTok().is(AsmToken::Minus)) { 3755 if (Parser.getTok().is(AsmToken::Minus)) { 3756 if (!Spacing) 3757 Spacing = 1; // Register range implies a single spaced list. 3758 else if (Spacing == 2) { 3759 Error(Parser.getTok().getLoc(), 3760 "sequential registers in double spaced list"); 3761 return MatchOperand_ParseFail; 3762 } 3763 Parser.Lex(); // Eat the minus. 3764 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3765 int EndReg = tryParseRegister(); 3766 if (EndReg == -1) { 3767 Error(AfterMinusLoc, "register expected"); 3768 return MatchOperand_ParseFail; 3769 } 3770 // Allow Q regs and just interpret them as the two D sub-registers. 3771 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3772 EndReg = getDRegFromQReg(EndReg) + 1; 3773 // If the register is the same as the start reg, there's nothing 3774 // more to do. 3775 if (Reg == EndReg) 3776 continue; 3777 // The register must be in the same register class as the first. 3778 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3779 Error(AfterMinusLoc, "invalid register in register list"); 3780 return MatchOperand_ParseFail; 3781 } 3782 // Ranges must go from low to high. 3783 if (Reg > EndReg) { 3784 Error(AfterMinusLoc, "bad range in register list"); 3785 return MatchOperand_ParseFail; 3786 } 3787 // Parse the lane specifier if present. 3788 VectorLaneTy NextLaneKind; 3789 unsigned NextLaneIndex; 3790 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3791 MatchOperand_Success) 3792 return MatchOperand_ParseFail; 3793 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3794 Error(AfterMinusLoc, "mismatched lane index in register list"); 3795 return MatchOperand_ParseFail; 3796 } 3797 3798 // Add all the registers in the range to the register list. 3799 Count += EndReg - Reg; 3800 Reg = EndReg; 3801 continue; 3802 } 3803 Parser.Lex(); // Eat the comma. 3804 RegLoc = Parser.getTok().getLoc(); 3805 int OldReg = Reg; 3806 Reg = tryParseRegister(); 3807 if (Reg == -1) { 3808 Error(RegLoc, "register expected"); 3809 return MatchOperand_ParseFail; 3810 } 3811 // vector register lists must be contiguous. 3812 // It's OK to use the enumeration values directly here rather, as the 3813 // VFP register classes have the enum sorted properly. 3814 // 3815 // The list is of D registers, but we also allow Q regs and just interpret 3816 // them as the two D sub-registers. 3817 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3818 if (!Spacing) 3819 Spacing = 1; // Register range implies a single spaced list. 3820 else if (Spacing == 2) { 3821 Error(RegLoc, 3822 "invalid register in double-spaced list (must be 'D' register')"); 3823 return MatchOperand_ParseFail; 3824 } 3825 Reg = getDRegFromQReg(Reg); 3826 if (Reg != OldReg + 1) { 3827 Error(RegLoc, "non-contiguous register range"); 3828 return MatchOperand_ParseFail; 3829 } 3830 ++Reg; 3831 Count += 2; 3832 // Parse the lane specifier if present. 3833 VectorLaneTy NextLaneKind; 3834 unsigned NextLaneIndex; 3835 SMLoc LaneLoc = Parser.getTok().getLoc(); 3836 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3837 MatchOperand_Success) 3838 return MatchOperand_ParseFail; 3839 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3840 Error(LaneLoc, "mismatched lane index in register list"); 3841 return MatchOperand_ParseFail; 3842 } 3843 continue; 3844 } 3845 // Normal D register. 3846 // Figure out the register spacing (single or double) of the list if 3847 // we don't know it already. 3848 if (!Spacing) 3849 Spacing = 1 + (Reg == OldReg + 2); 3850 3851 // Just check that it's contiguous and keep going. 3852 if (Reg != OldReg + Spacing) { 3853 Error(RegLoc, "non-contiguous register range"); 3854 return MatchOperand_ParseFail; 3855 } 3856 ++Count; 3857 // Parse the lane specifier if present. 3858 VectorLaneTy NextLaneKind; 3859 unsigned NextLaneIndex; 3860 SMLoc EndLoc = Parser.getTok().getLoc(); 3861 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3862 return MatchOperand_ParseFail; 3863 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3864 Error(EndLoc, "mismatched lane index in register list"); 3865 return MatchOperand_ParseFail; 3866 } 3867 } 3868 3869 if (Parser.getTok().isNot(AsmToken::RCurly)) { 3870 Error(Parser.getTok().getLoc(), "'}' expected"); 3871 return MatchOperand_ParseFail; 3872 } 3873 E = Parser.getTok().getEndLoc(); 3874 Parser.Lex(); // Eat '}' token. 3875 3876 switch (LaneKind) { 3877 case NoLanes: 3878 // Two-register operands have been converted to the 3879 // composite register classes. 3880 if (Count == 2) { 3881 const MCRegisterClass *RC = (Spacing == 1) ? 3882 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3883 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3884 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3885 } 3886 3887 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 3888 (Spacing == 2), S, E)); 3889 break; 3890 case AllLanes: 3891 // Two-register operands have been converted to the 3892 // composite register classes. 3893 if (Count == 2) { 3894 const MCRegisterClass *RC = (Spacing == 1) ? 3895 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3896 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3897 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3898 } 3899 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 3900 (Spacing == 2), 3901 S, E)); 3902 break; 3903 case IndexedLane: 3904 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 3905 LaneIndex, 3906 (Spacing == 2), 3907 S, E)); 3908 break; 3909 } 3910 return MatchOperand_Success; 3911 } 3912 3913 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 3914 OperandMatchResultTy 3915 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 3916 MCAsmParser &Parser = getParser(); 3917 SMLoc S = Parser.getTok().getLoc(); 3918 const AsmToken &Tok = Parser.getTok(); 3919 unsigned Opt; 3920 3921 if (Tok.is(AsmToken::Identifier)) { 3922 StringRef OptStr = Tok.getString(); 3923 3924 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 3925 .Case("sy", ARM_MB::SY) 3926 .Case("st", ARM_MB::ST) 3927 .Case("ld", ARM_MB::LD) 3928 .Case("sh", ARM_MB::ISH) 3929 .Case("ish", ARM_MB::ISH) 3930 .Case("shst", ARM_MB::ISHST) 3931 .Case("ishst", ARM_MB::ISHST) 3932 .Case("ishld", ARM_MB::ISHLD) 3933 .Case("nsh", ARM_MB::NSH) 3934 .Case("un", ARM_MB::NSH) 3935 .Case("nshst", ARM_MB::NSHST) 3936 .Case("nshld", ARM_MB::NSHLD) 3937 .Case("unst", ARM_MB::NSHST) 3938 .Case("osh", ARM_MB::OSH) 3939 .Case("oshst", ARM_MB::OSHST) 3940 .Case("oshld", ARM_MB::OSHLD) 3941 .Default(~0U); 3942 3943 // ishld, oshld, nshld and ld are only available from ARMv8. 3944 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 3945 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 3946 Opt = ~0U; 3947 3948 if (Opt == ~0U) 3949 return MatchOperand_NoMatch; 3950 3951 Parser.Lex(); // Eat identifier token. 3952 } else if (Tok.is(AsmToken::Hash) || 3953 Tok.is(AsmToken::Dollar) || 3954 Tok.is(AsmToken::Integer)) { 3955 if (Parser.getTok().isNot(AsmToken::Integer)) 3956 Parser.Lex(); // Eat '#' or '$'. 3957 SMLoc Loc = Parser.getTok().getLoc(); 3958 3959 const MCExpr *MemBarrierID; 3960 if (getParser().parseExpression(MemBarrierID)) { 3961 Error(Loc, "illegal expression"); 3962 return MatchOperand_ParseFail; 3963 } 3964 3965 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 3966 if (!CE) { 3967 Error(Loc, "constant expression expected"); 3968 return MatchOperand_ParseFail; 3969 } 3970 3971 int Val = CE->getValue(); 3972 if (Val & ~0xf) { 3973 Error(Loc, "immediate value out of range"); 3974 return MatchOperand_ParseFail; 3975 } 3976 3977 Opt = ARM_MB::RESERVED_0 + Val; 3978 } else 3979 return MatchOperand_ParseFail; 3980 3981 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 3982 return MatchOperand_Success; 3983 } 3984 3985 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 3986 OperandMatchResultTy 3987 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 3988 MCAsmParser &Parser = getParser(); 3989 SMLoc S = Parser.getTok().getLoc(); 3990 const AsmToken &Tok = Parser.getTok(); 3991 unsigned Opt; 3992 3993 if (Tok.is(AsmToken::Identifier)) { 3994 StringRef OptStr = Tok.getString(); 3995 3996 if (OptStr.equals_lower("sy")) 3997 Opt = ARM_ISB::SY; 3998 else 3999 return MatchOperand_NoMatch; 4000 4001 Parser.Lex(); // Eat identifier token. 4002 } else if (Tok.is(AsmToken::Hash) || 4003 Tok.is(AsmToken::Dollar) || 4004 Tok.is(AsmToken::Integer)) { 4005 if (Parser.getTok().isNot(AsmToken::Integer)) 4006 Parser.Lex(); // Eat '#' or '$'. 4007 SMLoc Loc = Parser.getTok().getLoc(); 4008 4009 const MCExpr *ISBarrierID; 4010 if (getParser().parseExpression(ISBarrierID)) { 4011 Error(Loc, "illegal expression"); 4012 return MatchOperand_ParseFail; 4013 } 4014 4015 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4016 if (!CE) { 4017 Error(Loc, "constant expression expected"); 4018 return MatchOperand_ParseFail; 4019 } 4020 4021 int Val = CE->getValue(); 4022 if (Val & ~0xf) { 4023 Error(Loc, "immediate value out of range"); 4024 return MatchOperand_ParseFail; 4025 } 4026 4027 Opt = ARM_ISB::RESERVED_0 + Val; 4028 } else 4029 return MatchOperand_ParseFail; 4030 4031 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4032 (ARM_ISB::InstSyncBOpt)Opt, S)); 4033 return MatchOperand_Success; 4034 } 4035 4036 4037 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4038 OperandMatchResultTy 4039 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4040 MCAsmParser &Parser = getParser(); 4041 SMLoc S = Parser.getTok().getLoc(); 4042 const AsmToken &Tok = Parser.getTok(); 4043 if (!Tok.is(AsmToken::Identifier)) 4044 return MatchOperand_NoMatch; 4045 StringRef IFlagsStr = Tok.getString(); 4046 4047 // An iflags string of "none" is interpreted to mean that none of the AIF 4048 // bits are set. Not a terribly useful instruction, but a valid encoding. 4049 unsigned IFlags = 0; 4050 if (IFlagsStr != "none") { 4051 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4052 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 4053 .Case("a", ARM_PROC::A) 4054 .Case("i", ARM_PROC::I) 4055 .Case("f", ARM_PROC::F) 4056 .Default(~0U); 4057 4058 // If some specific iflag is already set, it means that some letter is 4059 // present more than once, this is not acceptable. 4060 if (Flag == ~0U || (IFlags & Flag)) 4061 return MatchOperand_NoMatch; 4062 4063 IFlags |= Flag; 4064 } 4065 } 4066 4067 Parser.Lex(); // Eat identifier token. 4068 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4069 return MatchOperand_Success; 4070 } 4071 4072 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4073 OperandMatchResultTy 4074 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4075 MCAsmParser &Parser = getParser(); 4076 SMLoc S = Parser.getTok().getLoc(); 4077 const AsmToken &Tok = Parser.getTok(); 4078 if (!Tok.is(AsmToken::Identifier)) 4079 return MatchOperand_NoMatch; 4080 StringRef Mask = Tok.getString(); 4081 4082 if (isMClass()) { 4083 // See ARMv6-M 10.1.1 4084 std::string Name = Mask.lower(); 4085 unsigned FlagsVal = StringSwitch<unsigned>(Name) 4086 // Note: in the documentation: 4087 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 4088 // for MSR APSR_nzcvq. 4089 // but we do make it an alias here. This is so to get the "mask encoding" 4090 // bits correct on MSR APSR writes. 4091 // 4092 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 4093 // should really only be allowed when writing a special register. Note 4094 // they get dropped in the MRS instruction reading a special register as 4095 // the SYSm field is only 8 bits. 4096 .Case("apsr", 0x800) 4097 .Case("apsr_nzcvq", 0x800) 4098 .Case("apsr_g", 0x400) 4099 .Case("apsr_nzcvqg", 0xc00) 4100 .Case("iapsr", 0x801) 4101 .Case("iapsr_nzcvq", 0x801) 4102 .Case("iapsr_g", 0x401) 4103 .Case("iapsr_nzcvqg", 0xc01) 4104 .Case("eapsr", 0x802) 4105 .Case("eapsr_nzcvq", 0x802) 4106 .Case("eapsr_g", 0x402) 4107 .Case("eapsr_nzcvqg", 0xc02) 4108 .Case("xpsr", 0x803) 4109 .Case("xpsr_nzcvq", 0x803) 4110 .Case("xpsr_g", 0x403) 4111 .Case("xpsr_nzcvqg", 0xc03) 4112 .Case("ipsr", 0x805) 4113 .Case("epsr", 0x806) 4114 .Case("iepsr", 0x807) 4115 .Case("msp", 0x808) 4116 .Case("psp", 0x809) 4117 .Case("primask", 0x810) 4118 .Case("basepri", 0x811) 4119 .Case("basepri_max", 0x812) 4120 .Case("faultmask", 0x813) 4121 .Case("control", 0x814) 4122 .Case("msplim", 0x80a) 4123 .Case("psplim", 0x80b) 4124 .Case("msp_ns", 0x888) 4125 .Case("psp_ns", 0x889) 4126 .Case("msplim_ns", 0x88a) 4127 .Case("psplim_ns", 0x88b) 4128 .Case("primask_ns", 0x890) 4129 .Case("basepri_ns", 0x891) 4130 .Case("basepri_max_ns", 0x892) 4131 .Case("faultmask_ns", 0x893) 4132 .Case("control_ns", 0x894) 4133 .Case("sp_ns", 0x898) 4134 .Default(~0U); 4135 4136 if (FlagsVal == ~0U) 4137 return MatchOperand_NoMatch; 4138 4139 if (!hasDSP() && (FlagsVal & 0x400)) 4140 // The _g and _nzcvqg versions are only valid if the DSP extension is 4141 // available. 4142 return MatchOperand_NoMatch; 4143 4144 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 4145 // basepri, basepri_max and faultmask only valid for V7m. 4146 return MatchOperand_NoMatch; 4147 4148 if (!has8MSecExt() && (FlagsVal == 0x80a || FlagsVal == 0x80b || 4149 (FlagsVal > 0x814 && FlagsVal < 0xc00))) 4150 return MatchOperand_NoMatch; 4151 4152 if (!hasV8MMainline() && (FlagsVal == 0x88a || FlagsVal == 0x88b || 4153 (FlagsVal > 0x890 && FlagsVal <= 0x893))) 4154 return MatchOperand_NoMatch; 4155 4156 Parser.Lex(); // Eat identifier token. 4157 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4158 return MatchOperand_Success; 4159 } 4160 4161 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4162 size_t Start = 0, Next = Mask.find('_'); 4163 StringRef Flags = ""; 4164 std::string SpecReg = Mask.slice(Start, Next).lower(); 4165 if (Next != StringRef::npos) 4166 Flags = Mask.slice(Next+1, Mask.size()); 4167 4168 // FlagsVal contains the complete mask: 4169 // 3-0: Mask 4170 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4171 unsigned FlagsVal = 0; 4172 4173 if (SpecReg == "apsr") { 4174 FlagsVal = StringSwitch<unsigned>(Flags) 4175 .Case("nzcvq", 0x8) // same as CPSR_f 4176 .Case("g", 0x4) // same as CPSR_s 4177 .Case("nzcvqg", 0xc) // same as CPSR_fs 4178 .Default(~0U); 4179 4180 if (FlagsVal == ~0U) { 4181 if (!Flags.empty()) 4182 return MatchOperand_NoMatch; 4183 else 4184 FlagsVal = 8; // No flag 4185 } 4186 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4187 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4188 if (Flags == "all" || Flags == "") 4189 Flags = "fc"; 4190 for (int i = 0, e = Flags.size(); i != e; ++i) { 4191 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4192 .Case("c", 1) 4193 .Case("x", 2) 4194 .Case("s", 4) 4195 .Case("f", 8) 4196 .Default(~0U); 4197 4198 // If some specific flag is already set, it means that some letter is 4199 // present more than once, this is not acceptable. 4200 if (Flag == ~0U || (FlagsVal & Flag)) 4201 return MatchOperand_NoMatch; 4202 FlagsVal |= Flag; 4203 } 4204 } else // No match for special register. 4205 return MatchOperand_NoMatch; 4206 4207 // Special register without flags is NOT equivalent to "fc" flags. 4208 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4209 // two lines would enable gas compatibility at the expense of breaking 4210 // round-tripping. 4211 // 4212 // if (!FlagsVal) 4213 // FlagsVal = 0x9; 4214 4215 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4216 if (SpecReg == "spsr") 4217 FlagsVal |= 16; 4218 4219 Parser.Lex(); // Eat identifier token. 4220 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4221 return MatchOperand_Success; 4222 } 4223 4224 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4225 /// use in the MRS/MSR instructions added to support virtualization. 4226 OperandMatchResultTy 4227 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4228 MCAsmParser &Parser = getParser(); 4229 SMLoc S = Parser.getTok().getLoc(); 4230 const AsmToken &Tok = Parser.getTok(); 4231 if (!Tok.is(AsmToken::Identifier)) 4232 return MatchOperand_NoMatch; 4233 StringRef RegName = Tok.getString(); 4234 4235 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4236 // and bit 5 is R. 4237 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4238 .Case("r8_usr", 0x00) 4239 .Case("r9_usr", 0x01) 4240 .Case("r10_usr", 0x02) 4241 .Case("r11_usr", 0x03) 4242 .Case("r12_usr", 0x04) 4243 .Case("sp_usr", 0x05) 4244 .Case("lr_usr", 0x06) 4245 .Case("r8_fiq", 0x08) 4246 .Case("r9_fiq", 0x09) 4247 .Case("r10_fiq", 0x0a) 4248 .Case("r11_fiq", 0x0b) 4249 .Case("r12_fiq", 0x0c) 4250 .Case("sp_fiq", 0x0d) 4251 .Case("lr_fiq", 0x0e) 4252 .Case("lr_irq", 0x10) 4253 .Case("sp_irq", 0x11) 4254 .Case("lr_svc", 0x12) 4255 .Case("sp_svc", 0x13) 4256 .Case("lr_abt", 0x14) 4257 .Case("sp_abt", 0x15) 4258 .Case("lr_und", 0x16) 4259 .Case("sp_und", 0x17) 4260 .Case("lr_mon", 0x1c) 4261 .Case("sp_mon", 0x1d) 4262 .Case("elr_hyp", 0x1e) 4263 .Case("sp_hyp", 0x1f) 4264 .Case("spsr_fiq", 0x2e) 4265 .Case("spsr_irq", 0x30) 4266 .Case("spsr_svc", 0x32) 4267 .Case("spsr_abt", 0x34) 4268 .Case("spsr_und", 0x36) 4269 .Case("spsr_mon", 0x3c) 4270 .Case("spsr_hyp", 0x3e) 4271 .Default(~0U); 4272 4273 if (Encoding == ~0U) 4274 return MatchOperand_NoMatch; 4275 4276 Parser.Lex(); // Eat identifier token. 4277 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4278 return MatchOperand_Success; 4279 } 4280 4281 OperandMatchResultTy 4282 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4283 int High) { 4284 MCAsmParser &Parser = getParser(); 4285 const AsmToken &Tok = Parser.getTok(); 4286 if (Tok.isNot(AsmToken::Identifier)) { 4287 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4288 return MatchOperand_ParseFail; 4289 } 4290 StringRef ShiftName = Tok.getString(); 4291 std::string LowerOp = Op.lower(); 4292 std::string UpperOp = Op.upper(); 4293 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4294 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4295 return MatchOperand_ParseFail; 4296 } 4297 Parser.Lex(); // Eat shift type token. 4298 4299 // There must be a '#' and a shift amount. 4300 if (Parser.getTok().isNot(AsmToken::Hash) && 4301 Parser.getTok().isNot(AsmToken::Dollar)) { 4302 Error(Parser.getTok().getLoc(), "'#' expected"); 4303 return MatchOperand_ParseFail; 4304 } 4305 Parser.Lex(); // Eat hash token. 4306 4307 const MCExpr *ShiftAmount; 4308 SMLoc Loc = Parser.getTok().getLoc(); 4309 SMLoc EndLoc; 4310 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4311 Error(Loc, "illegal expression"); 4312 return MatchOperand_ParseFail; 4313 } 4314 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4315 if (!CE) { 4316 Error(Loc, "constant expression expected"); 4317 return MatchOperand_ParseFail; 4318 } 4319 int Val = CE->getValue(); 4320 if (Val < Low || Val > High) { 4321 Error(Loc, "immediate value out of range"); 4322 return MatchOperand_ParseFail; 4323 } 4324 4325 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4326 4327 return MatchOperand_Success; 4328 } 4329 4330 OperandMatchResultTy 4331 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4332 MCAsmParser &Parser = getParser(); 4333 const AsmToken &Tok = Parser.getTok(); 4334 SMLoc S = Tok.getLoc(); 4335 if (Tok.isNot(AsmToken::Identifier)) { 4336 Error(S, "'be' or 'le' operand expected"); 4337 return MatchOperand_ParseFail; 4338 } 4339 int Val = StringSwitch<int>(Tok.getString().lower()) 4340 .Case("be", 1) 4341 .Case("le", 0) 4342 .Default(-1); 4343 Parser.Lex(); // Eat the token. 4344 4345 if (Val == -1) { 4346 Error(S, "'be' or 'le' operand expected"); 4347 return MatchOperand_ParseFail; 4348 } 4349 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4350 getContext()), 4351 S, Tok.getEndLoc())); 4352 return MatchOperand_Success; 4353 } 4354 4355 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4356 /// instructions. Legal values are: 4357 /// lsl #n 'n' in [0,31] 4358 /// asr #n 'n' in [1,32] 4359 /// n == 32 encoded as n == 0. 4360 OperandMatchResultTy 4361 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4362 MCAsmParser &Parser = getParser(); 4363 const AsmToken &Tok = Parser.getTok(); 4364 SMLoc S = Tok.getLoc(); 4365 if (Tok.isNot(AsmToken::Identifier)) { 4366 Error(S, "shift operator 'asr' or 'lsl' expected"); 4367 return MatchOperand_ParseFail; 4368 } 4369 StringRef ShiftName = Tok.getString(); 4370 bool isASR; 4371 if (ShiftName == "lsl" || ShiftName == "LSL") 4372 isASR = false; 4373 else if (ShiftName == "asr" || ShiftName == "ASR") 4374 isASR = true; 4375 else { 4376 Error(S, "shift operator 'asr' or 'lsl' expected"); 4377 return MatchOperand_ParseFail; 4378 } 4379 Parser.Lex(); // Eat the operator. 4380 4381 // A '#' and a shift amount. 4382 if (Parser.getTok().isNot(AsmToken::Hash) && 4383 Parser.getTok().isNot(AsmToken::Dollar)) { 4384 Error(Parser.getTok().getLoc(), "'#' expected"); 4385 return MatchOperand_ParseFail; 4386 } 4387 Parser.Lex(); // Eat hash token. 4388 SMLoc ExLoc = Parser.getTok().getLoc(); 4389 4390 const MCExpr *ShiftAmount; 4391 SMLoc EndLoc; 4392 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4393 Error(ExLoc, "malformed shift expression"); 4394 return MatchOperand_ParseFail; 4395 } 4396 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4397 if (!CE) { 4398 Error(ExLoc, "shift amount must be an immediate"); 4399 return MatchOperand_ParseFail; 4400 } 4401 4402 int64_t Val = CE->getValue(); 4403 if (isASR) { 4404 // Shift amount must be in [1,32] 4405 if (Val < 1 || Val > 32) { 4406 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4407 return MatchOperand_ParseFail; 4408 } 4409 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4410 if (isThumb() && Val == 32) { 4411 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4412 return MatchOperand_ParseFail; 4413 } 4414 if (Val == 32) Val = 0; 4415 } else { 4416 // Shift amount must be in [1,32] 4417 if (Val < 0 || Val > 31) { 4418 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4419 return MatchOperand_ParseFail; 4420 } 4421 } 4422 4423 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4424 4425 return MatchOperand_Success; 4426 } 4427 4428 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4429 /// of instructions. Legal values are: 4430 /// ror #n 'n' in {0, 8, 16, 24} 4431 OperandMatchResultTy 4432 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4433 MCAsmParser &Parser = getParser(); 4434 const AsmToken &Tok = Parser.getTok(); 4435 SMLoc S = Tok.getLoc(); 4436 if (Tok.isNot(AsmToken::Identifier)) 4437 return MatchOperand_NoMatch; 4438 StringRef ShiftName = Tok.getString(); 4439 if (ShiftName != "ror" && ShiftName != "ROR") 4440 return MatchOperand_NoMatch; 4441 Parser.Lex(); // Eat the operator. 4442 4443 // A '#' and a rotate amount. 4444 if (Parser.getTok().isNot(AsmToken::Hash) && 4445 Parser.getTok().isNot(AsmToken::Dollar)) { 4446 Error(Parser.getTok().getLoc(), "'#' expected"); 4447 return MatchOperand_ParseFail; 4448 } 4449 Parser.Lex(); // Eat hash token. 4450 SMLoc ExLoc = Parser.getTok().getLoc(); 4451 4452 const MCExpr *ShiftAmount; 4453 SMLoc EndLoc; 4454 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4455 Error(ExLoc, "malformed rotate expression"); 4456 return MatchOperand_ParseFail; 4457 } 4458 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4459 if (!CE) { 4460 Error(ExLoc, "rotate amount must be an immediate"); 4461 return MatchOperand_ParseFail; 4462 } 4463 4464 int64_t Val = CE->getValue(); 4465 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4466 // normally, zero is represented in asm by omitting the rotate operand 4467 // entirely. 4468 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4469 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4470 return MatchOperand_ParseFail; 4471 } 4472 4473 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4474 4475 return MatchOperand_Success; 4476 } 4477 4478 OperandMatchResultTy 4479 ARMAsmParser::parseModImm(OperandVector &Operands) { 4480 MCAsmParser &Parser = getParser(); 4481 MCAsmLexer &Lexer = getLexer(); 4482 int64_t Imm1, Imm2; 4483 4484 SMLoc S = Parser.getTok().getLoc(); 4485 4486 // 1) A mod_imm operand can appear in the place of a register name: 4487 // add r0, #mod_imm 4488 // add r0, r0, #mod_imm 4489 // to correctly handle the latter, we bail out as soon as we see an 4490 // identifier. 4491 // 4492 // 2) Similarly, we do not want to parse into complex operands: 4493 // mov r0, #mod_imm 4494 // mov r0, :lower16:(_foo) 4495 if (Parser.getTok().is(AsmToken::Identifier) || 4496 Parser.getTok().is(AsmToken::Colon)) 4497 return MatchOperand_NoMatch; 4498 4499 // Hash (dollar) is optional as per the ARMARM 4500 if (Parser.getTok().is(AsmToken::Hash) || 4501 Parser.getTok().is(AsmToken::Dollar)) { 4502 // Avoid parsing into complex operands (#:) 4503 if (Lexer.peekTok().is(AsmToken::Colon)) 4504 return MatchOperand_NoMatch; 4505 4506 // Eat the hash (dollar) 4507 Parser.Lex(); 4508 } 4509 4510 SMLoc Sx1, Ex1; 4511 Sx1 = Parser.getTok().getLoc(); 4512 const MCExpr *Imm1Exp; 4513 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4514 Error(Sx1, "malformed expression"); 4515 return MatchOperand_ParseFail; 4516 } 4517 4518 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4519 4520 if (CE) { 4521 // Immediate must fit within 32-bits 4522 Imm1 = CE->getValue(); 4523 int Enc = ARM_AM::getSOImmVal(Imm1); 4524 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4525 // We have a match! 4526 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4527 (Enc & 0xF00) >> 7, 4528 Sx1, Ex1)); 4529 return MatchOperand_Success; 4530 } 4531 4532 // We have parsed an immediate which is not for us, fallback to a plain 4533 // immediate. This can happen for instruction aliases. For an example, 4534 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4535 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4536 // instruction with a mod_imm operand. The alias is defined such that the 4537 // parser method is shared, that's why we have to do this here. 4538 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4539 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4540 return MatchOperand_Success; 4541 } 4542 } else { 4543 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4544 // MCFixup). Fallback to a plain immediate. 4545 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4546 return MatchOperand_Success; 4547 } 4548 4549 // From this point onward, we expect the input to be a (#bits, #rot) pair 4550 if (Parser.getTok().isNot(AsmToken::Comma)) { 4551 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4552 return MatchOperand_ParseFail; 4553 } 4554 4555 if (Imm1 & ~0xFF) { 4556 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4557 return MatchOperand_ParseFail; 4558 } 4559 4560 // Eat the comma 4561 Parser.Lex(); 4562 4563 // Repeat for #rot 4564 SMLoc Sx2, Ex2; 4565 Sx2 = Parser.getTok().getLoc(); 4566 4567 // Eat the optional hash (dollar) 4568 if (Parser.getTok().is(AsmToken::Hash) || 4569 Parser.getTok().is(AsmToken::Dollar)) 4570 Parser.Lex(); 4571 4572 const MCExpr *Imm2Exp; 4573 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4574 Error(Sx2, "malformed expression"); 4575 return MatchOperand_ParseFail; 4576 } 4577 4578 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4579 4580 if (CE) { 4581 Imm2 = CE->getValue(); 4582 if (!(Imm2 & ~0x1E)) { 4583 // We have a match! 4584 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4585 return MatchOperand_Success; 4586 } 4587 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4588 return MatchOperand_ParseFail; 4589 } else { 4590 Error(Sx2, "constant expression expected"); 4591 return MatchOperand_ParseFail; 4592 } 4593 } 4594 4595 OperandMatchResultTy 4596 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4597 MCAsmParser &Parser = getParser(); 4598 SMLoc S = Parser.getTok().getLoc(); 4599 // The bitfield descriptor is really two operands, the LSB and the width. 4600 if (Parser.getTok().isNot(AsmToken::Hash) && 4601 Parser.getTok().isNot(AsmToken::Dollar)) { 4602 Error(Parser.getTok().getLoc(), "'#' expected"); 4603 return MatchOperand_ParseFail; 4604 } 4605 Parser.Lex(); // Eat hash token. 4606 4607 const MCExpr *LSBExpr; 4608 SMLoc E = Parser.getTok().getLoc(); 4609 if (getParser().parseExpression(LSBExpr)) { 4610 Error(E, "malformed immediate expression"); 4611 return MatchOperand_ParseFail; 4612 } 4613 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4614 if (!CE) { 4615 Error(E, "'lsb' operand must be an immediate"); 4616 return MatchOperand_ParseFail; 4617 } 4618 4619 int64_t LSB = CE->getValue(); 4620 // The LSB must be in the range [0,31] 4621 if (LSB < 0 || LSB > 31) { 4622 Error(E, "'lsb' operand must be in the range [0,31]"); 4623 return MatchOperand_ParseFail; 4624 } 4625 E = Parser.getTok().getLoc(); 4626 4627 // Expect another immediate operand. 4628 if (Parser.getTok().isNot(AsmToken::Comma)) { 4629 Error(Parser.getTok().getLoc(), "too few operands"); 4630 return MatchOperand_ParseFail; 4631 } 4632 Parser.Lex(); // Eat hash token. 4633 if (Parser.getTok().isNot(AsmToken::Hash) && 4634 Parser.getTok().isNot(AsmToken::Dollar)) { 4635 Error(Parser.getTok().getLoc(), "'#' expected"); 4636 return MatchOperand_ParseFail; 4637 } 4638 Parser.Lex(); // Eat hash token. 4639 4640 const MCExpr *WidthExpr; 4641 SMLoc EndLoc; 4642 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4643 Error(E, "malformed immediate expression"); 4644 return MatchOperand_ParseFail; 4645 } 4646 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4647 if (!CE) { 4648 Error(E, "'width' operand must be an immediate"); 4649 return MatchOperand_ParseFail; 4650 } 4651 4652 int64_t Width = CE->getValue(); 4653 // The LSB must be in the range [1,32-lsb] 4654 if (Width < 1 || Width > 32 - LSB) { 4655 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4656 return MatchOperand_ParseFail; 4657 } 4658 4659 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4660 4661 return MatchOperand_Success; 4662 } 4663 4664 OperandMatchResultTy 4665 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4666 // Check for a post-index addressing register operand. Specifically: 4667 // postidx_reg := '+' register {, shift} 4668 // | '-' register {, shift} 4669 // | register {, shift} 4670 4671 // This method must return MatchOperand_NoMatch without consuming any tokens 4672 // in the case where there is no match, as other alternatives take other 4673 // parse methods. 4674 MCAsmParser &Parser = getParser(); 4675 AsmToken Tok = Parser.getTok(); 4676 SMLoc S = Tok.getLoc(); 4677 bool haveEaten = false; 4678 bool isAdd = true; 4679 if (Tok.is(AsmToken::Plus)) { 4680 Parser.Lex(); // Eat the '+' token. 4681 haveEaten = true; 4682 } else if (Tok.is(AsmToken::Minus)) { 4683 Parser.Lex(); // Eat the '-' token. 4684 isAdd = false; 4685 haveEaten = true; 4686 } 4687 4688 SMLoc E = Parser.getTok().getEndLoc(); 4689 int Reg = tryParseRegister(); 4690 if (Reg == -1) { 4691 if (!haveEaten) 4692 return MatchOperand_NoMatch; 4693 Error(Parser.getTok().getLoc(), "register expected"); 4694 return MatchOperand_ParseFail; 4695 } 4696 4697 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4698 unsigned ShiftImm = 0; 4699 if (Parser.getTok().is(AsmToken::Comma)) { 4700 Parser.Lex(); // Eat the ','. 4701 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4702 return MatchOperand_ParseFail; 4703 4704 // FIXME: Only approximates end...may include intervening whitespace. 4705 E = Parser.getTok().getLoc(); 4706 } 4707 4708 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4709 ShiftImm, S, E)); 4710 4711 return MatchOperand_Success; 4712 } 4713 4714 OperandMatchResultTy 4715 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4716 // Check for a post-index addressing register operand. Specifically: 4717 // am3offset := '+' register 4718 // | '-' register 4719 // | register 4720 // | # imm 4721 // | # + imm 4722 // | # - imm 4723 4724 // This method must return MatchOperand_NoMatch without consuming any tokens 4725 // in the case where there is no match, as other alternatives take other 4726 // parse methods. 4727 MCAsmParser &Parser = getParser(); 4728 AsmToken Tok = Parser.getTok(); 4729 SMLoc S = Tok.getLoc(); 4730 4731 // Do immediates first, as we always parse those if we have a '#'. 4732 if (Parser.getTok().is(AsmToken::Hash) || 4733 Parser.getTok().is(AsmToken::Dollar)) { 4734 Parser.Lex(); // Eat '#' or '$'. 4735 // Explicitly look for a '-', as we need to encode negative zero 4736 // differently. 4737 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4738 const MCExpr *Offset; 4739 SMLoc E; 4740 if (getParser().parseExpression(Offset, E)) 4741 return MatchOperand_ParseFail; 4742 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4743 if (!CE) { 4744 Error(S, "constant expression expected"); 4745 return MatchOperand_ParseFail; 4746 } 4747 // Negative zero is encoded as the flag value INT32_MIN. 4748 int32_t Val = CE->getValue(); 4749 if (isNegative && Val == 0) 4750 Val = INT32_MIN; 4751 4752 Operands.push_back( 4753 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4754 4755 return MatchOperand_Success; 4756 } 4757 4758 4759 bool haveEaten = false; 4760 bool isAdd = true; 4761 if (Tok.is(AsmToken::Plus)) { 4762 Parser.Lex(); // Eat the '+' token. 4763 haveEaten = true; 4764 } else if (Tok.is(AsmToken::Minus)) { 4765 Parser.Lex(); // Eat the '-' token. 4766 isAdd = false; 4767 haveEaten = true; 4768 } 4769 4770 Tok = Parser.getTok(); 4771 int Reg = tryParseRegister(); 4772 if (Reg == -1) { 4773 if (!haveEaten) 4774 return MatchOperand_NoMatch; 4775 Error(Tok.getLoc(), "register expected"); 4776 return MatchOperand_ParseFail; 4777 } 4778 4779 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4780 0, S, Tok.getEndLoc())); 4781 4782 return MatchOperand_Success; 4783 } 4784 4785 /// Convert parsed operands to MCInst. Needed here because this instruction 4786 /// only has two register operands, but multiplication is commutative so 4787 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4788 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4789 const OperandVector &Operands) { 4790 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4791 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4792 // If we have a three-operand form, make sure to set Rn to be the operand 4793 // that isn't the same as Rd. 4794 unsigned RegOp = 4; 4795 if (Operands.size() == 6 && 4796 ((ARMOperand &)*Operands[4]).getReg() == 4797 ((ARMOperand &)*Operands[3]).getReg()) 4798 RegOp = 5; 4799 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4800 Inst.addOperand(Inst.getOperand(0)); 4801 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4802 } 4803 4804 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4805 const OperandVector &Operands) { 4806 int CondOp = -1, ImmOp = -1; 4807 switch(Inst.getOpcode()) { 4808 case ARM::tB: 4809 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4810 4811 case ARM::t2B: 4812 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4813 4814 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4815 } 4816 // first decide whether or not the branch should be conditional 4817 // by looking at it's location relative to an IT block 4818 if(inITBlock()) { 4819 // inside an IT block we cannot have any conditional branches. any 4820 // such instructions needs to be converted to unconditional form 4821 switch(Inst.getOpcode()) { 4822 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4823 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4824 } 4825 } else { 4826 // outside IT blocks we can only have unconditional branches with AL 4827 // condition code or conditional branches with non-AL condition code 4828 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4829 switch(Inst.getOpcode()) { 4830 case ARM::tB: 4831 case ARM::tBcc: 4832 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4833 break; 4834 case ARM::t2B: 4835 case ARM::t2Bcc: 4836 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4837 break; 4838 } 4839 } 4840 4841 // now decide on encoding size based on branch target range 4842 switch(Inst.getOpcode()) { 4843 // classify tB as either t2B or t1B based on range of immediate operand 4844 case ARM::tB: { 4845 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4846 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 4847 Inst.setOpcode(ARM::t2B); 4848 break; 4849 } 4850 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4851 case ARM::tBcc: { 4852 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4853 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 4854 Inst.setOpcode(ARM::t2Bcc); 4855 break; 4856 } 4857 } 4858 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4859 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4860 } 4861 4862 /// Parse an ARM memory expression, return false if successful else return true 4863 /// or an error. The first token must be a '[' when called. 4864 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4865 MCAsmParser &Parser = getParser(); 4866 SMLoc S, E; 4867 if (Parser.getTok().isNot(AsmToken::LBrac)) 4868 return TokError("Token is not a Left Bracket"); 4869 S = Parser.getTok().getLoc(); 4870 Parser.Lex(); // Eat left bracket token. 4871 4872 const AsmToken &BaseRegTok = Parser.getTok(); 4873 int BaseRegNum = tryParseRegister(); 4874 if (BaseRegNum == -1) 4875 return Error(BaseRegTok.getLoc(), "register expected"); 4876 4877 // The next token must either be a comma, a colon or a closing bracket. 4878 const AsmToken &Tok = Parser.getTok(); 4879 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4880 !Tok.is(AsmToken::RBrac)) 4881 return Error(Tok.getLoc(), "malformed memory operand"); 4882 4883 if (Tok.is(AsmToken::RBrac)) { 4884 E = Tok.getEndLoc(); 4885 Parser.Lex(); // Eat right bracket token. 4886 4887 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4888 ARM_AM::no_shift, 0, 0, false, 4889 S, E)); 4890 4891 // If there's a pre-indexing writeback marker, '!', just add it as a token 4892 // operand. It's rather odd, but syntactically valid. 4893 if (Parser.getTok().is(AsmToken::Exclaim)) { 4894 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4895 Parser.Lex(); // Eat the '!'. 4896 } 4897 4898 return false; 4899 } 4900 4901 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4902 "Lost colon or comma in memory operand?!"); 4903 if (Tok.is(AsmToken::Comma)) { 4904 Parser.Lex(); // Eat the comma. 4905 } 4906 4907 // If we have a ':', it's an alignment specifier. 4908 if (Parser.getTok().is(AsmToken::Colon)) { 4909 Parser.Lex(); // Eat the ':'. 4910 E = Parser.getTok().getLoc(); 4911 SMLoc AlignmentLoc = Tok.getLoc(); 4912 4913 const MCExpr *Expr; 4914 if (getParser().parseExpression(Expr)) 4915 return true; 4916 4917 // The expression has to be a constant. Memory references with relocations 4918 // don't come through here, as they use the <label> forms of the relevant 4919 // instructions. 4920 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4921 if (!CE) 4922 return Error (E, "constant expression expected"); 4923 4924 unsigned Align = 0; 4925 switch (CE->getValue()) { 4926 default: 4927 return Error(E, 4928 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4929 case 16: Align = 2; break; 4930 case 32: Align = 4; break; 4931 case 64: Align = 8; break; 4932 case 128: Align = 16; break; 4933 case 256: Align = 32; break; 4934 } 4935 4936 // Now we should have the closing ']' 4937 if (Parser.getTok().isNot(AsmToken::RBrac)) 4938 return Error(Parser.getTok().getLoc(), "']' expected"); 4939 E = Parser.getTok().getEndLoc(); 4940 Parser.Lex(); // Eat right bracket token. 4941 4942 // Don't worry about range checking the value here. That's handled by 4943 // the is*() predicates. 4944 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4945 ARM_AM::no_shift, 0, Align, 4946 false, S, E, AlignmentLoc)); 4947 4948 // If there's a pre-indexing writeback marker, '!', just add it as a token 4949 // operand. 4950 if (Parser.getTok().is(AsmToken::Exclaim)) { 4951 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4952 Parser.Lex(); // Eat the '!'. 4953 } 4954 4955 return false; 4956 } 4957 4958 // If we have a '#', it's an immediate offset, else assume it's a register 4959 // offset. Be friendly and also accept a plain integer (without a leading 4960 // hash) for gas compatibility. 4961 if (Parser.getTok().is(AsmToken::Hash) || 4962 Parser.getTok().is(AsmToken::Dollar) || 4963 Parser.getTok().is(AsmToken::Integer)) { 4964 if (Parser.getTok().isNot(AsmToken::Integer)) 4965 Parser.Lex(); // Eat '#' or '$'. 4966 E = Parser.getTok().getLoc(); 4967 4968 bool isNegative = getParser().getTok().is(AsmToken::Minus); 4969 const MCExpr *Offset; 4970 if (getParser().parseExpression(Offset)) 4971 return true; 4972 4973 // The expression has to be a constant. Memory references with relocations 4974 // don't come through here, as they use the <label> forms of the relevant 4975 // instructions. 4976 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4977 if (!CE) 4978 return Error (E, "constant expression expected"); 4979 4980 // If the constant was #-0, represent it as INT32_MIN. 4981 int32_t Val = CE->getValue(); 4982 if (isNegative && Val == 0) 4983 CE = MCConstantExpr::create(INT32_MIN, getContext()); 4984 4985 // Now we should have the closing ']' 4986 if (Parser.getTok().isNot(AsmToken::RBrac)) 4987 return Error(Parser.getTok().getLoc(), "']' expected"); 4988 E = Parser.getTok().getEndLoc(); 4989 Parser.Lex(); // Eat right bracket token. 4990 4991 // Don't worry about range checking the value here. That's handled by 4992 // the is*() predicates. 4993 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 4994 ARM_AM::no_shift, 0, 0, 4995 false, S, E)); 4996 4997 // If there's a pre-indexing writeback marker, '!', just add it as a token 4998 // operand. 4999 if (Parser.getTok().is(AsmToken::Exclaim)) { 5000 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5001 Parser.Lex(); // Eat the '!'. 5002 } 5003 5004 return false; 5005 } 5006 5007 // The register offset is optionally preceded by a '+' or '-' 5008 bool isNegative = false; 5009 if (Parser.getTok().is(AsmToken::Minus)) { 5010 isNegative = true; 5011 Parser.Lex(); // Eat the '-'. 5012 } else if (Parser.getTok().is(AsmToken::Plus)) { 5013 // Nothing to do. 5014 Parser.Lex(); // Eat the '+'. 5015 } 5016 5017 E = Parser.getTok().getLoc(); 5018 int OffsetRegNum = tryParseRegister(); 5019 if (OffsetRegNum == -1) 5020 return Error(E, "register expected"); 5021 5022 // If there's a shift operator, handle it. 5023 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5024 unsigned ShiftImm = 0; 5025 if (Parser.getTok().is(AsmToken::Comma)) { 5026 Parser.Lex(); // Eat the ','. 5027 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5028 return true; 5029 } 5030 5031 // Now we should have the closing ']' 5032 if (Parser.getTok().isNot(AsmToken::RBrac)) 5033 return Error(Parser.getTok().getLoc(), "']' expected"); 5034 E = Parser.getTok().getEndLoc(); 5035 Parser.Lex(); // Eat right bracket token. 5036 5037 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5038 ShiftType, ShiftImm, 0, isNegative, 5039 S, E)); 5040 5041 // If there's a pre-indexing writeback marker, '!', just add it as a token 5042 // operand. 5043 if (Parser.getTok().is(AsmToken::Exclaim)) { 5044 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5045 Parser.Lex(); // Eat the '!'. 5046 } 5047 5048 return false; 5049 } 5050 5051 /// parseMemRegOffsetShift - one of these two: 5052 /// ( lsl | lsr | asr | ror ) , # shift_amount 5053 /// rrx 5054 /// return true if it parses a shift otherwise it returns false. 5055 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5056 unsigned &Amount) { 5057 MCAsmParser &Parser = getParser(); 5058 SMLoc Loc = Parser.getTok().getLoc(); 5059 const AsmToken &Tok = Parser.getTok(); 5060 if (Tok.isNot(AsmToken::Identifier)) 5061 return true; 5062 StringRef ShiftName = Tok.getString(); 5063 if (ShiftName == "lsl" || ShiftName == "LSL" || 5064 ShiftName == "asl" || ShiftName == "ASL") 5065 St = ARM_AM::lsl; 5066 else if (ShiftName == "lsr" || ShiftName == "LSR") 5067 St = ARM_AM::lsr; 5068 else if (ShiftName == "asr" || ShiftName == "ASR") 5069 St = ARM_AM::asr; 5070 else if (ShiftName == "ror" || ShiftName == "ROR") 5071 St = ARM_AM::ror; 5072 else if (ShiftName == "rrx" || ShiftName == "RRX") 5073 St = ARM_AM::rrx; 5074 else 5075 return Error(Loc, "illegal shift operator"); 5076 Parser.Lex(); // Eat shift type token. 5077 5078 // rrx stands alone. 5079 Amount = 0; 5080 if (St != ARM_AM::rrx) { 5081 Loc = Parser.getTok().getLoc(); 5082 // A '#' and a shift amount. 5083 const AsmToken &HashTok = Parser.getTok(); 5084 if (HashTok.isNot(AsmToken::Hash) && 5085 HashTok.isNot(AsmToken::Dollar)) 5086 return Error(HashTok.getLoc(), "'#' expected"); 5087 Parser.Lex(); // Eat hash token. 5088 5089 const MCExpr *Expr; 5090 if (getParser().parseExpression(Expr)) 5091 return true; 5092 // Range check the immediate. 5093 // lsl, ror: 0 <= imm <= 31 5094 // lsr, asr: 0 <= imm <= 32 5095 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5096 if (!CE) 5097 return Error(Loc, "shift amount must be an immediate"); 5098 int64_t Imm = CE->getValue(); 5099 if (Imm < 0 || 5100 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5101 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5102 return Error(Loc, "immediate shift value out of range"); 5103 // If <ShiftTy> #0, turn it into a no_shift. 5104 if (Imm == 0) 5105 St = ARM_AM::lsl; 5106 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5107 if (Imm == 32) 5108 Imm = 0; 5109 Amount = Imm; 5110 } 5111 5112 return false; 5113 } 5114 5115 /// parseFPImm - A floating point immediate expression operand. 5116 OperandMatchResultTy 5117 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5118 MCAsmParser &Parser = getParser(); 5119 // Anything that can accept a floating point constant as an operand 5120 // needs to go through here, as the regular parseExpression is 5121 // integer only. 5122 // 5123 // This routine still creates a generic Immediate operand, containing 5124 // a bitcast of the 64-bit floating point value. The various operands 5125 // that accept floats can check whether the value is valid for them 5126 // via the standard is*() predicates. 5127 5128 SMLoc S = Parser.getTok().getLoc(); 5129 5130 if (Parser.getTok().isNot(AsmToken::Hash) && 5131 Parser.getTok().isNot(AsmToken::Dollar)) 5132 return MatchOperand_NoMatch; 5133 5134 // Disambiguate the VMOV forms that can accept an FP immediate. 5135 // vmov.f32 <sreg>, #imm 5136 // vmov.f64 <dreg>, #imm 5137 // vmov.f32 <dreg>, #imm @ vector f32x2 5138 // vmov.f32 <qreg>, #imm @ vector f32x4 5139 // 5140 // There are also the NEON VMOV instructions which expect an 5141 // integer constant. Make sure we don't try to parse an FPImm 5142 // for these: 5143 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5144 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5145 bool isVmovf = TyOp.isToken() && 5146 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5147 TyOp.getToken() == ".f16"); 5148 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5149 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5150 Mnemonic.getToken() == "fconsts"); 5151 if (!(isVmovf || isFconst)) 5152 return MatchOperand_NoMatch; 5153 5154 Parser.Lex(); // Eat '#' or '$'. 5155 5156 // Handle negation, as that still comes through as a separate token. 5157 bool isNegative = false; 5158 if (Parser.getTok().is(AsmToken::Minus)) { 5159 isNegative = true; 5160 Parser.Lex(); 5161 } 5162 const AsmToken &Tok = Parser.getTok(); 5163 SMLoc Loc = Tok.getLoc(); 5164 if (Tok.is(AsmToken::Real) && isVmovf) { 5165 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5166 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5167 // If we had a '-' in front, toggle the sign bit. 5168 IntVal ^= (uint64_t)isNegative << 31; 5169 Parser.Lex(); // Eat the token. 5170 Operands.push_back(ARMOperand::CreateImm( 5171 MCConstantExpr::create(IntVal, getContext()), 5172 S, Parser.getTok().getLoc())); 5173 return MatchOperand_Success; 5174 } 5175 // Also handle plain integers. Instructions which allow floating point 5176 // immediates also allow a raw encoded 8-bit value. 5177 if (Tok.is(AsmToken::Integer) && isFconst) { 5178 int64_t Val = Tok.getIntVal(); 5179 Parser.Lex(); // Eat the token. 5180 if (Val > 255 || Val < 0) { 5181 Error(Loc, "encoded floating point value out of range"); 5182 return MatchOperand_ParseFail; 5183 } 5184 float RealVal = ARM_AM::getFPImmFloat(Val); 5185 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5186 5187 Operands.push_back(ARMOperand::CreateImm( 5188 MCConstantExpr::create(Val, getContext()), S, 5189 Parser.getTok().getLoc())); 5190 return MatchOperand_Success; 5191 } 5192 5193 Error(Loc, "invalid floating point immediate"); 5194 return MatchOperand_ParseFail; 5195 } 5196 5197 /// Parse a arm instruction operand. For now this parses the operand regardless 5198 /// of the mnemonic. 5199 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5200 MCAsmParser &Parser = getParser(); 5201 SMLoc S, E; 5202 5203 // Check if the current operand has a custom associated parser, if so, try to 5204 // custom parse the operand, or fallback to the general approach. 5205 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5206 if (ResTy == MatchOperand_Success) 5207 return false; 5208 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5209 // there was a match, but an error occurred, in which case, just return that 5210 // the operand parsing failed. 5211 if (ResTy == MatchOperand_ParseFail) 5212 return true; 5213 5214 switch (getLexer().getKind()) { 5215 default: 5216 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5217 return true; 5218 case AsmToken::Identifier: { 5219 // If we've seen a branch mnemonic, the next operand must be a label. This 5220 // is true even if the label is a register name. So "br r1" means branch to 5221 // label "r1". 5222 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5223 if (!ExpectLabel) { 5224 if (!tryParseRegisterWithWriteBack(Operands)) 5225 return false; 5226 int Res = tryParseShiftRegister(Operands); 5227 if (Res == 0) // success 5228 return false; 5229 else if (Res == -1) // irrecoverable error 5230 return true; 5231 // If this is VMRS, check for the apsr_nzcv operand. 5232 if (Mnemonic == "vmrs" && 5233 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5234 S = Parser.getTok().getLoc(); 5235 Parser.Lex(); 5236 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5237 return false; 5238 } 5239 } 5240 5241 // Fall though for the Identifier case that is not a register or a 5242 // special name. 5243 } 5244 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5245 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5246 case AsmToken::String: // quoted label names. 5247 case AsmToken::Dot: { // . as a branch target 5248 // This was not a register so parse other operands that start with an 5249 // identifier (like labels) as expressions and create them as immediates. 5250 const MCExpr *IdVal; 5251 S = Parser.getTok().getLoc(); 5252 if (getParser().parseExpression(IdVal)) 5253 return true; 5254 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5255 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5256 return false; 5257 } 5258 case AsmToken::LBrac: 5259 return parseMemory(Operands); 5260 case AsmToken::LCurly: 5261 return parseRegisterList(Operands); 5262 case AsmToken::Dollar: 5263 case AsmToken::Hash: { 5264 // #42 -> immediate. 5265 S = Parser.getTok().getLoc(); 5266 Parser.Lex(); 5267 5268 if (Parser.getTok().isNot(AsmToken::Colon)) { 5269 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5270 const MCExpr *ImmVal; 5271 if (getParser().parseExpression(ImmVal)) 5272 return true; 5273 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5274 if (CE) { 5275 int32_t Val = CE->getValue(); 5276 if (isNegative && Val == 0) 5277 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5278 } 5279 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5280 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5281 5282 // There can be a trailing '!' on operands that we want as a separate 5283 // '!' Token operand. Handle that here. For example, the compatibility 5284 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5285 if (Parser.getTok().is(AsmToken::Exclaim)) { 5286 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5287 Parser.getTok().getLoc())); 5288 Parser.Lex(); // Eat exclaim token 5289 } 5290 return false; 5291 } 5292 // w/ a ':' after the '#', it's just like a plain ':'. 5293 LLVM_FALLTHROUGH; 5294 } 5295 case AsmToken::Colon: { 5296 S = Parser.getTok().getLoc(); 5297 // ":lower16:" and ":upper16:" expression prefixes 5298 // FIXME: Check it's an expression prefix, 5299 // e.g. (FOO - :lower16:BAR) isn't legal. 5300 ARMMCExpr::VariantKind RefKind; 5301 if (parsePrefix(RefKind)) 5302 return true; 5303 5304 const MCExpr *SubExprVal; 5305 if (getParser().parseExpression(SubExprVal)) 5306 return true; 5307 5308 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5309 getContext()); 5310 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5311 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5312 return false; 5313 } 5314 case AsmToken::Equal: { 5315 S = Parser.getTok().getLoc(); 5316 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5317 return Error(S, "unexpected token in operand"); 5318 Parser.Lex(); // Eat '=' 5319 const MCExpr *SubExprVal; 5320 if (getParser().parseExpression(SubExprVal)) 5321 return true; 5322 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5323 5324 // execute-only: we assume that assembly programmers know what they are 5325 // doing and allow literal pool creation here 5326 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5327 return false; 5328 } 5329 } 5330 } 5331 5332 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5333 // :lower16: and :upper16:. 5334 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5335 MCAsmParser &Parser = getParser(); 5336 RefKind = ARMMCExpr::VK_ARM_None; 5337 5338 // consume an optional '#' (GNU compatibility) 5339 if (getLexer().is(AsmToken::Hash)) 5340 Parser.Lex(); 5341 5342 // :lower16: and :upper16: modifiers 5343 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5344 Parser.Lex(); // Eat ':' 5345 5346 if (getLexer().isNot(AsmToken::Identifier)) { 5347 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5348 return true; 5349 } 5350 5351 enum { 5352 COFF = (1 << MCObjectFileInfo::IsCOFF), 5353 ELF = (1 << MCObjectFileInfo::IsELF), 5354 MACHO = (1 << MCObjectFileInfo::IsMachO), 5355 WASM = (1 << MCObjectFileInfo::IsWasm), 5356 }; 5357 static const struct PrefixEntry { 5358 const char *Spelling; 5359 ARMMCExpr::VariantKind VariantKind; 5360 uint8_t SupportedFormats; 5361 } PrefixEntries[] = { 5362 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5363 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5364 }; 5365 5366 StringRef IDVal = Parser.getTok().getIdentifier(); 5367 5368 const auto &Prefix = 5369 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5370 [&IDVal](const PrefixEntry &PE) { 5371 return PE.Spelling == IDVal; 5372 }); 5373 if (Prefix == std::end(PrefixEntries)) { 5374 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5375 return true; 5376 } 5377 5378 uint8_t CurrentFormat; 5379 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5380 case MCObjectFileInfo::IsMachO: 5381 CurrentFormat = MACHO; 5382 break; 5383 case MCObjectFileInfo::IsELF: 5384 CurrentFormat = ELF; 5385 break; 5386 case MCObjectFileInfo::IsCOFF: 5387 CurrentFormat = COFF; 5388 break; 5389 case MCObjectFileInfo::IsWasm: 5390 CurrentFormat = WASM; 5391 break; 5392 } 5393 5394 if (~Prefix->SupportedFormats & CurrentFormat) { 5395 Error(Parser.getTok().getLoc(), 5396 "cannot represent relocation in the current file format"); 5397 return true; 5398 } 5399 5400 RefKind = Prefix->VariantKind; 5401 Parser.Lex(); 5402 5403 if (getLexer().isNot(AsmToken::Colon)) { 5404 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5405 return true; 5406 } 5407 Parser.Lex(); // Eat the last ':' 5408 5409 return false; 5410 } 5411 5412 /// \brief Given a mnemonic, split out possible predication code and carry 5413 /// setting letters to form a canonical mnemonic and flags. 5414 // 5415 // FIXME: Would be nice to autogen this. 5416 // FIXME: This is a bit of a maze of special cases. 5417 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5418 unsigned &PredicationCode, 5419 bool &CarrySetting, 5420 unsigned &ProcessorIMod, 5421 StringRef &ITMask) { 5422 PredicationCode = ARMCC::AL; 5423 CarrySetting = false; 5424 ProcessorIMod = 0; 5425 5426 // Ignore some mnemonics we know aren't predicated forms. 5427 // 5428 // FIXME: Would be nice to autogen this. 5429 if ((Mnemonic == "movs" && isThumb()) || 5430 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5431 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5432 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5433 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5434 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5435 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5436 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5437 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5438 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5439 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5440 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5441 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5442 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5443 Mnemonic == "bxns" || Mnemonic == "blxns") 5444 return Mnemonic; 5445 5446 // First, split out any predication code. Ignore mnemonics we know aren't 5447 // predicated but do have a carry-set and so weren't caught above. 5448 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5449 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5450 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5451 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5452 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5453 .Case("eq", ARMCC::EQ) 5454 .Case("ne", ARMCC::NE) 5455 .Case("hs", ARMCC::HS) 5456 .Case("cs", ARMCC::HS) 5457 .Case("lo", ARMCC::LO) 5458 .Case("cc", ARMCC::LO) 5459 .Case("mi", ARMCC::MI) 5460 .Case("pl", ARMCC::PL) 5461 .Case("vs", ARMCC::VS) 5462 .Case("vc", ARMCC::VC) 5463 .Case("hi", ARMCC::HI) 5464 .Case("ls", ARMCC::LS) 5465 .Case("ge", ARMCC::GE) 5466 .Case("lt", ARMCC::LT) 5467 .Case("gt", ARMCC::GT) 5468 .Case("le", ARMCC::LE) 5469 .Case("al", ARMCC::AL) 5470 .Default(~0U); 5471 if (CC != ~0U) { 5472 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5473 PredicationCode = CC; 5474 } 5475 } 5476 5477 // Next, determine if we have a carry setting bit. We explicitly ignore all 5478 // the instructions we know end in 's'. 5479 if (Mnemonic.endswith("s") && 5480 !(Mnemonic == "cps" || Mnemonic == "mls" || 5481 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5482 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5483 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5484 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5485 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5486 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5487 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5488 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5489 Mnemonic == "bxns" || Mnemonic == "blxns" || 5490 (Mnemonic == "movs" && isThumb()))) { 5491 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5492 CarrySetting = true; 5493 } 5494 5495 // The "cps" instruction can have a interrupt mode operand which is glued into 5496 // the mnemonic. Check if this is the case, split it and parse the imod op 5497 if (Mnemonic.startswith("cps")) { 5498 // Split out any imod code. 5499 unsigned IMod = 5500 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5501 .Case("ie", ARM_PROC::IE) 5502 .Case("id", ARM_PROC::ID) 5503 .Default(~0U); 5504 if (IMod != ~0U) { 5505 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5506 ProcessorIMod = IMod; 5507 } 5508 } 5509 5510 // The "it" instruction has the condition mask on the end of the mnemonic. 5511 if (Mnemonic.startswith("it")) { 5512 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5513 Mnemonic = Mnemonic.slice(0, 2); 5514 } 5515 5516 return Mnemonic; 5517 } 5518 5519 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5520 /// inclusion of carry set or predication code operands. 5521 // 5522 // FIXME: It would be nice to autogen this. 5523 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5524 bool &CanAcceptCarrySet, 5525 bool &CanAcceptPredicationCode) { 5526 CanAcceptCarrySet = 5527 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5528 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5529 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5530 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5531 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5532 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5533 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5534 (!isThumb() && 5535 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5536 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5537 5538 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5539 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5540 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5541 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5542 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5543 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5544 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5545 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5546 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5547 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5548 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5549 Mnemonic == "vmovx" || Mnemonic == "vins") { 5550 // These mnemonics are never predicable 5551 CanAcceptPredicationCode = false; 5552 } else if (!isThumb()) { 5553 // Some instructions are only predicable in Thumb mode 5554 CanAcceptPredicationCode = 5555 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5556 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5557 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5558 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5559 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5560 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5561 !Mnemonic.startswith("srs"); 5562 } else if (isThumbOne()) { 5563 if (hasV6MOps()) 5564 CanAcceptPredicationCode = Mnemonic != "movs"; 5565 else 5566 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5567 } else 5568 CanAcceptPredicationCode = true; 5569 } 5570 5571 // \brief Some Thumb instructions have two operand forms that are not 5572 // available as three operand, convert to two operand form if possible. 5573 // 5574 // FIXME: We would really like to be able to tablegen'erate this. 5575 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5576 bool CarrySetting, 5577 OperandVector &Operands) { 5578 if (Operands.size() != 6) 5579 return; 5580 5581 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5582 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5583 if (!Op3.isReg() || !Op4.isReg()) 5584 return; 5585 5586 auto Op3Reg = Op3.getReg(); 5587 auto Op4Reg = Op4.getReg(); 5588 5589 // For most Thumb2 cases we just generate the 3 operand form and reduce 5590 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5591 // won't accept SP or PC so we do the transformation here taking care 5592 // with immediate range in the 'add sp, sp #imm' case. 5593 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5594 if (isThumbTwo()) { 5595 if (Mnemonic != "add") 5596 return; 5597 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5598 (Op5.isReg() && Op5.getReg() == ARM::PC); 5599 if (!TryTransform) { 5600 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5601 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5602 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5603 Op5.isImm() && !Op5.isImm0_508s4()); 5604 } 5605 if (!TryTransform) 5606 return; 5607 } else if (!isThumbOne()) 5608 return; 5609 5610 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5611 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5612 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5613 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5614 return; 5615 5616 // If first 2 operands of a 3 operand instruction are the same 5617 // then transform to 2 operand version of the same instruction 5618 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5619 bool Transform = Op3Reg == Op4Reg; 5620 5621 // For communtative operations, we might be able to transform if we swap 5622 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5623 // as tADDrsp. 5624 const ARMOperand *LastOp = &Op5; 5625 bool Swap = false; 5626 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5627 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5628 Mnemonic == "and" || Mnemonic == "eor" || 5629 Mnemonic == "adc" || Mnemonic == "orr")) { 5630 Swap = true; 5631 LastOp = &Op4; 5632 Transform = true; 5633 } 5634 5635 // If both registers are the same then remove one of them from 5636 // the operand list, with certain exceptions. 5637 if (Transform) { 5638 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5639 // 2 operand forms don't exist. 5640 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5641 LastOp->isReg()) 5642 Transform = false; 5643 5644 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5645 // 3-bits because the ARMARM says not to. 5646 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5647 Transform = false; 5648 } 5649 5650 if (Transform) { 5651 if (Swap) 5652 std::swap(Op4, Op5); 5653 Operands.erase(Operands.begin() + 3); 5654 } 5655 } 5656 5657 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5658 OperandVector &Operands) { 5659 // FIXME: This is all horribly hacky. We really need a better way to deal 5660 // with optional operands like this in the matcher table. 5661 5662 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5663 // another does not. Specifically, the MOVW instruction does not. So we 5664 // special case it here and remove the defaulted (non-setting) cc_out 5665 // operand if that's the instruction we're trying to match. 5666 // 5667 // We do this as post-processing of the explicit operands rather than just 5668 // conditionally adding the cc_out in the first place because we need 5669 // to check the type of the parsed immediate operand. 5670 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5671 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5672 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5673 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5674 return true; 5675 5676 // Register-register 'add' for thumb does not have a cc_out operand 5677 // when there are only two register operands. 5678 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5679 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5680 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5681 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5682 return true; 5683 // Register-register 'add' for thumb does not have a cc_out operand 5684 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5685 // have to check the immediate range here since Thumb2 has a variant 5686 // that can handle a different range and has a cc_out operand. 5687 if (((isThumb() && Mnemonic == "add") || 5688 (isThumbTwo() && Mnemonic == "sub")) && 5689 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5690 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5691 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5692 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5693 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5694 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5695 return true; 5696 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5697 // imm0_4095 variant. That's the least-preferred variant when 5698 // selecting via the generic "add" mnemonic, so to know that we 5699 // should remove the cc_out operand, we have to explicitly check that 5700 // it's not one of the other variants. Ugh. 5701 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5702 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5703 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5704 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5705 // Nest conditions rather than one big 'if' statement for readability. 5706 // 5707 // If both registers are low, we're in an IT block, and the immediate is 5708 // in range, we should use encoding T1 instead, which has a cc_out. 5709 if (inITBlock() && 5710 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5711 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5712 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5713 return false; 5714 // Check against T3. If the second register is the PC, this is an 5715 // alternate form of ADR, which uses encoding T4, so check for that too. 5716 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5717 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5718 return false; 5719 5720 // Otherwise, we use encoding T4, which does not have a cc_out 5721 // operand. 5722 return true; 5723 } 5724 5725 // The thumb2 multiply instruction doesn't have a CCOut register, so 5726 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5727 // use the 16-bit encoding or not. 5728 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5729 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5730 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5731 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5732 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5733 // If the registers aren't low regs, the destination reg isn't the 5734 // same as one of the source regs, or the cc_out operand is zero 5735 // outside of an IT block, we have to use the 32-bit encoding, so 5736 // remove the cc_out operand. 5737 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5738 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5739 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5740 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5741 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5742 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5743 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5744 return true; 5745 5746 // Also check the 'mul' syntax variant that doesn't specify an explicit 5747 // destination register. 5748 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5749 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5750 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5751 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5752 // If the registers aren't low regs or the cc_out operand is zero 5753 // outside of an IT block, we have to use the 32-bit encoding, so 5754 // remove the cc_out operand. 5755 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5756 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5757 !inITBlock())) 5758 return true; 5759 5760 5761 5762 // Register-register 'add/sub' for thumb does not have a cc_out operand 5763 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5764 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5765 // right, this will result in better diagnostics (which operand is off) 5766 // anyway. 5767 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5768 (Operands.size() == 5 || Operands.size() == 6) && 5769 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5770 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5771 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5772 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5773 (Operands.size() == 6 && 5774 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5775 return true; 5776 5777 return false; 5778 } 5779 5780 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5781 OperandVector &Operands) { 5782 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5783 unsigned RegIdx = 3; 5784 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5785 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5786 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5787 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5788 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5789 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5790 RegIdx = 4; 5791 5792 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5793 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5794 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5795 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5796 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5797 return true; 5798 } 5799 return false; 5800 } 5801 5802 static bool isDataTypeToken(StringRef Tok) { 5803 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5804 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5805 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5806 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5807 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5808 Tok == ".f" || Tok == ".d"; 5809 } 5810 5811 // FIXME: This bit should probably be handled via an explicit match class 5812 // in the .td files that matches the suffix instead of having it be 5813 // a literal string token the way it is now. 5814 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5815 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5816 } 5817 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5818 unsigned VariantID); 5819 5820 static bool RequiresVFPRegListValidation(StringRef Inst, 5821 bool &AcceptSinglePrecisionOnly, 5822 bool &AcceptDoublePrecisionOnly) { 5823 if (Inst.size() < 7) 5824 return false; 5825 5826 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5827 StringRef AddressingMode = Inst.substr(4, 2); 5828 if (AddressingMode == "ia" || AddressingMode == "db" || 5829 AddressingMode == "ea" || AddressingMode == "fd") { 5830 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5831 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5832 return true; 5833 } 5834 } 5835 5836 return false; 5837 } 5838 5839 /// Parse an arm instruction mnemonic followed by its operands. 5840 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5841 SMLoc NameLoc, OperandVector &Operands) { 5842 MCAsmParser &Parser = getParser(); 5843 // FIXME: Can this be done via tablegen in some fashion? 5844 bool RequireVFPRegisterListCheck; 5845 bool AcceptSinglePrecisionOnly; 5846 bool AcceptDoublePrecisionOnly; 5847 RequireVFPRegisterListCheck = 5848 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5849 AcceptDoublePrecisionOnly); 5850 5851 // Apply mnemonic aliases before doing anything else, as the destination 5852 // mnemonic may include suffices and we want to handle them normally. 5853 // The generic tblgen'erated code does this later, at the start of 5854 // MatchInstructionImpl(), but that's too late for aliases that include 5855 // any sort of suffix. 5856 uint64_t AvailableFeatures = getAvailableFeatures(); 5857 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5858 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5859 5860 // First check for the ARM-specific .req directive. 5861 if (Parser.getTok().is(AsmToken::Identifier) && 5862 Parser.getTok().getIdentifier() == ".req") { 5863 parseDirectiveReq(Name, NameLoc); 5864 // We always return 'error' for this, as we're done with this 5865 // statement and don't need to match the 'instruction." 5866 return true; 5867 } 5868 5869 // Create the leading tokens for the mnemonic, split by '.' characters. 5870 size_t Start = 0, Next = Name.find('.'); 5871 StringRef Mnemonic = Name.slice(Start, Next); 5872 5873 // Split out the predication code and carry setting flag from the mnemonic. 5874 unsigned PredicationCode; 5875 unsigned ProcessorIMod; 5876 bool CarrySetting; 5877 StringRef ITMask; 5878 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5879 ProcessorIMod, ITMask); 5880 5881 // In Thumb1, only the branch (B) instruction can be predicated. 5882 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5883 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5884 } 5885 5886 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5887 5888 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5889 // is the mask as it will be for the IT encoding if the conditional 5890 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5891 // where the conditional bit0 is zero, the instruction post-processing 5892 // will adjust the mask accordingly. 5893 if (Mnemonic == "it") { 5894 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5895 if (ITMask.size() > 3) { 5896 return Error(Loc, "too many conditions on IT instruction"); 5897 } 5898 unsigned Mask = 8; 5899 for (unsigned i = ITMask.size(); i != 0; --i) { 5900 char pos = ITMask[i - 1]; 5901 if (pos != 't' && pos != 'e') { 5902 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5903 } 5904 Mask >>= 1; 5905 if (ITMask[i - 1] == 't') 5906 Mask |= 8; 5907 } 5908 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5909 } 5910 5911 // FIXME: This is all a pretty gross hack. We should automatically handle 5912 // optional operands like this via tblgen. 5913 5914 // Next, add the CCOut and ConditionCode operands, if needed. 5915 // 5916 // For mnemonics which can ever incorporate a carry setting bit or predication 5917 // code, our matching model involves us always generating CCOut and 5918 // ConditionCode operands to match the mnemonic "as written" and then we let 5919 // the matcher deal with finding the right instruction or generating an 5920 // appropriate error. 5921 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5922 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5923 5924 // If we had a carry-set on an instruction that can't do that, issue an 5925 // error. 5926 if (!CanAcceptCarrySet && CarrySetting) { 5927 return Error(NameLoc, "instruction '" + Mnemonic + 5928 "' can not set flags, but 's' suffix specified"); 5929 } 5930 // If we had a predication code on an instruction that can't do that, issue an 5931 // error. 5932 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 5933 return Error(NameLoc, "instruction '" + Mnemonic + 5934 "' is not predicable, but condition code specified"); 5935 } 5936 5937 // Add the carry setting operand, if necessary. 5938 if (CanAcceptCarrySet) { 5939 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 5940 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 5941 Loc)); 5942 } 5943 5944 // Add the predication code operand, if necessary. 5945 if (CanAcceptPredicationCode) { 5946 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 5947 CarrySetting); 5948 Operands.push_back(ARMOperand::CreateCondCode( 5949 ARMCC::CondCodes(PredicationCode), Loc)); 5950 } 5951 5952 // Add the processor imod operand, if necessary. 5953 if (ProcessorIMod) { 5954 Operands.push_back(ARMOperand::CreateImm( 5955 MCConstantExpr::create(ProcessorIMod, getContext()), 5956 NameLoc, NameLoc)); 5957 } else if (Mnemonic == "cps" && isMClass()) { 5958 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 5959 } 5960 5961 // Add the remaining tokens in the mnemonic. 5962 while (Next != StringRef::npos) { 5963 Start = Next; 5964 Next = Name.find('.', Start + 1); 5965 StringRef ExtraToken = Name.slice(Start, Next); 5966 5967 // Some NEON instructions have an optional datatype suffix that is 5968 // completely ignored. Check for that. 5969 if (isDataTypeToken(ExtraToken) && 5970 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 5971 continue; 5972 5973 // For for ARM mode generate an error if the .n qualifier is used. 5974 if (ExtraToken == ".n" && !isThumb()) { 5975 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5976 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 5977 "arm mode"); 5978 } 5979 5980 // The .n qualifier is always discarded as that is what the tables 5981 // and matcher expect. In ARM mode the .w qualifier has no effect, 5982 // so discard it to avoid errors that can be caused by the matcher. 5983 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 5984 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5985 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 5986 } 5987 } 5988 5989 // Read the remaining operands. 5990 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5991 // Read the first operand. 5992 if (parseOperand(Operands, Mnemonic)) { 5993 return true; 5994 } 5995 5996 while (parseOptionalToken(AsmToken::Comma)) { 5997 // Parse and remember the operand. 5998 if (parseOperand(Operands, Mnemonic)) { 5999 return true; 6000 } 6001 } 6002 } 6003 6004 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6005 return true; 6006 6007 if (RequireVFPRegisterListCheck) { 6008 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 6009 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 6010 return Error(Op.getStartLoc(), 6011 "VFP/Neon single precision register expected"); 6012 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 6013 return Error(Op.getStartLoc(), 6014 "VFP/Neon double precision register expected"); 6015 } 6016 6017 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6018 6019 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6020 // do and don't have a cc_out optional-def operand. With some spot-checks 6021 // of the operand list, we can figure out which variant we're trying to 6022 // parse and adjust accordingly before actually matching. We shouldn't ever 6023 // try to remove a cc_out operand that was explicitly set on the 6024 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6025 // table driven matcher doesn't fit well with the ARM instruction set. 6026 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6027 Operands.erase(Operands.begin() + 1); 6028 6029 // Some instructions have the same mnemonic, but don't always 6030 // have a predicate. Distinguish them here and delete the 6031 // predicate if needed. 6032 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 6033 Operands.erase(Operands.begin() + 1); 6034 6035 // ARM mode 'blx' need special handling, as the register operand version 6036 // is predicable, but the label operand version is not. So, we can't rely 6037 // on the Mnemonic based checking to correctly figure out when to put 6038 // a k_CondCode operand in the list. If we're trying to match the label 6039 // version, remove the k_CondCode operand here. 6040 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6041 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6042 Operands.erase(Operands.begin() + 1); 6043 6044 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6045 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6046 // a single GPRPair reg operand is used in the .td file to replace the two 6047 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6048 // expressed as a GPRPair, so we have to manually merge them. 6049 // FIXME: We would really like to be able to tablegen'erate this. 6050 if (!isThumb() && Operands.size() > 4 && 6051 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6052 Mnemonic == "stlexd")) { 6053 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6054 unsigned Idx = isLoad ? 2 : 3; 6055 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6056 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6057 6058 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6059 // Adjust only if Op1 and Op2 are GPRs. 6060 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6061 MRC.contains(Op2.getReg())) { 6062 unsigned Reg1 = Op1.getReg(); 6063 unsigned Reg2 = Op2.getReg(); 6064 unsigned Rt = MRI->getEncodingValue(Reg1); 6065 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6066 6067 // Rt2 must be Rt + 1 and Rt must be even. 6068 if (Rt + 1 != Rt2 || (Rt & 1)) { 6069 return Error(Op2.getStartLoc(), 6070 isLoad ? "destination operands must be sequential" 6071 : "source operands must be sequential"); 6072 } 6073 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6074 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6075 Operands[Idx] = 6076 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6077 Operands.erase(Operands.begin() + Idx + 1); 6078 } 6079 } 6080 6081 // GNU Assembler extension (compatibility) 6082 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 6083 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6084 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6085 if (Op3.isMem()) { 6086 assert(Op2.isReg() && "expected register argument"); 6087 6088 unsigned SuperReg = MRI->getMatchingSuperReg( 6089 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 6090 6091 assert(SuperReg && "expected register pair"); 6092 6093 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 6094 6095 Operands.insert( 6096 Operands.begin() + 3, 6097 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6098 } 6099 } 6100 6101 // FIXME: As said above, this is all a pretty gross hack. This instruction 6102 // does not fit with other "subs" and tblgen. 6103 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6104 // so the Mnemonic is the original name "subs" and delete the predicate 6105 // operand so it will match the table entry. 6106 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6107 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6108 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6109 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6110 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6111 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6112 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6113 Operands.erase(Operands.begin() + 1); 6114 } 6115 return false; 6116 } 6117 6118 // Validate context-sensitive operand constraints. 6119 6120 // return 'true' if register list contains non-low GPR registers, 6121 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6122 // 'containsReg' to true. 6123 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6124 unsigned Reg, unsigned HiReg, 6125 bool &containsReg) { 6126 containsReg = false; 6127 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6128 unsigned OpReg = Inst.getOperand(i).getReg(); 6129 if (OpReg == Reg) 6130 containsReg = true; 6131 // Anything other than a low register isn't legal here. 6132 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6133 return true; 6134 } 6135 return false; 6136 } 6137 6138 // Check if the specified regisgter is in the register list of the inst, 6139 // starting at the indicated operand number. 6140 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6141 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6142 unsigned OpReg = Inst.getOperand(i).getReg(); 6143 if (OpReg == Reg) 6144 return true; 6145 } 6146 return false; 6147 } 6148 6149 // Return true if instruction has the interesting property of being 6150 // allowed in IT blocks, but not being predicable. 6151 static bool instIsBreakpoint(const MCInst &Inst) { 6152 return Inst.getOpcode() == ARM::tBKPT || 6153 Inst.getOpcode() == ARM::BKPT || 6154 Inst.getOpcode() == ARM::tHLT || 6155 Inst.getOpcode() == ARM::HLT; 6156 6157 } 6158 6159 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6160 const OperandVector &Operands, 6161 unsigned ListNo, bool IsARPop) { 6162 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6163 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6164 6165 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6166 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6167 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6168 6169 if (!IsARPop && ListContainsSP) 6170 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6171 "SP may not be in the register list"); 6172 else if (ListContainsPC && ListContainsLR) 6173 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6174 "PC and LR may not be in the register list simultaneously"); 6175 return false; 6176 } 6177 6178 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6179 const OperandVector &Operands, 6180 unsigned ListNo) { 6181 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6182 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6183 6184 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6185 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6186 6187 if (ListContainsSP && ListContainsPC) 6188 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6189 "SP and PC may not be in the register list"); 6190 else if (ListContainsSP) 6191 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6192 "SP may not be in the register list"); 6193 else if (ListContainsPC) 6194 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6195 "PC may not be in the register list"); 6196 return false; 6197 } 6198 6199 // FIXME: We would really like to be able to tablegen'erate this. 6200 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6201 const OperandVector &Operands) { 6202 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6203 SMLoc Loc = Operands[0]->getStartLoc(); 6204 6205 // Check the IT block state first. 6206 // NOTE: BKPT and HLT instructions have the interesting property of being 6207 // allowed in IT blocks, but not being predicable. They just always execute. 6208 if (inITBlock() && !instIsBreakpoint(Inst)) { 6209 // The instruction must be predicable. 6210 if (!MCID.isPredicable()) 6211 return Error(Loc, "instructions in IT block must be predicable"); 6212 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6213 if (Cond != currentITCond()) { 6214 // Find the condition code Operand to get its SMLoc information. 6215 SMLoc CondLoc; 6216 for (unsigned I = 1; I < Operands.size(); ++I) 6217 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6218 CondLoc = Operands[I]->getStartLoc(); 6219 return Error(CondLoc, "incorrect condition in IT block; got '" + 6220 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6221 "', but expected '" + 6222 ARMCondCodeToString(ARMCC::CondCodes(currentITCond())) + "'"); 6223 } 6224 // Check for non-'al' condition codes outside of the IT block. 6225 } else if (isThumbTwo() && MCID.isPredicable() && 6226 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6227 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6228 Inst.getOpcode() != ARM::t2Bcc) { 6229 return Error(Loc, "predicated instructions must be in IT block"); 6230 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6231 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6232 ARMCC::AL) { 6233 return Warning(Loc, "predicated instructions should be in IT block"); 6234 } 6235 6236 // PC-setting instructions in an IT block, but not the last instruction of 6237 // the block, are UNPREDICTABLE. 6238 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 6239 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 6240 } 6241 6242 const unsigned Opcode = Inst.getOpcode(); 6243 switch (Opcode) { 6244 case ARM::LDRD: 6245 case ARM::LDRD_PRE: 6246 case ARM::LDRD_POST: { 6247 const unsigned RtReg = Inst.getOperand(0).getReg(); 6248 6249 // Rt can't be R14. 6250 if (RtReg == ARM::LR) 6251 return Error(Operands[3]->getStartLoc(), 6252 "Rt can't be R14"); 6253 6254 const unsigned Rt = MRI->getEncodingValue(RtReg); 6255 // Rt must be even-numbered. 6256 if ((Rt & 1) == 1) 6257 return Error(Operands[3]->getStartLoc(), 6258 "Rt must be even-numbered"); 6259 6260 // Rt2 must be Rt + 1. 6261 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6262 if (Rt2 != Rt + 1) 6263 return Error(Operands[3]->getStartLoc(), 6264 "destination operands must be sequential"); 6265 6266 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6267 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6268 // For addressing modes with writeback, the base register needs to be 6269 // different from the destination registers. 6270 if (Rn == Rt || Rn == Rt2) 6271 return Error(Operands[3]->getStartLoc(), 6272 "base register needs to be different from destination " 6273 "registers"); 6274 } 6275 6276 return false; 6277 } 6278 case ARM::t2LDRDi8: 6279 case ARM::t2LDRD_PRE: 6280 case ARM::t2LDRD_POST: { 6281 // Rt2 must be different from Rt. 6282 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6283 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6284 if (Rt2 == Rt) 6285 return Error(Operands[3]->getStartLoc(), 6286 "destination operands can't be identical"); 6287 return false; 6288 } 6289 case ARM::t2BXJ: { 6290 const unsigned RmReg = Inst.getOperand(0).getReg(); 6291 // Rm = SP is no longer unpredictable in v8-A 6292 if (RmReg == ARM::SP && !hasV8Ops()) 6293 return Error(Operands[2]->getStartLoc(), 6294 "r13 (SP) is an unpredictable operand to BXJ"); 6295 return false; 6296 } 6297 case ARM::STRD: { 6298 // Rt2 must be Rt + 1. 6299 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6300 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6301 if (Rt2 != Rt + 1) 6302 return Error(Operands[3]->getStartLoc(), 6303 "source operands must be sequential"); 6304 return false; 6305 } 6306 case ARM::STRD_PRE: 6307 case ARM::STRD_POST: { 6308 // Rt2 must be Rt + 1. 6309 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6310 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6311 if (Rt2 != Rt + 1) 6312 return Error(Operands[3]->getStartLoc(), 6313 "source operands must be sequential"); 6314 return false; 6315 } 6316 case ARM::STR_PRE_IMM: 6317 case ARM::STR_PRE_REG: 6318 case ARM::STR_POST_IMM: 6319 case ARM::STR_POST_REG: 6320 case ARM::STRH_PRE: 6321 case ARM::STRH_POST: 6322 case ARM::STRB_PRE_IMM: 6323 case ARM::STRB_PRE_REG: 6324 case ARM::STRB_POST_IMM: 6325 case ARM::STRB_POST_REG: { 6326 // Rt must be different from Rn. 6327 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6328 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6329 6330 if (Rt == Rn) 6331 return Error(Operands[3]->getStartLoc(), 6332 "source register and base register can't be identical"); 6333 return false; 6334 } 6335 case ARM::LDR_PRE_IMM: 6336 case ARM::LDR_PRE_REG: 6337 case ARM::LDR_POST_IMM: 6338 case ARM::LDR_POST_REG: 6339 case ARM::LDRH_PRE: 6340 case ARM::LDRH_POST: 6341 case ARM::LDRSH_PRE: 6342 case ARM::LDRSH_POST: 6343 case ARM::LDRB_PRE_IMM: 6344 case ARM::LDRB_PRE_REG: 6345 case ARM::LDRB_POST_IMM: 6346 case ARM::LDRB_POST_REG: 6347 case ARM::LDRSB_PRE: 6348 case ARM::LDRSB_POST: { 6349 // Rt must be different from Rn. 6350 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6351 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6352 6353 if (Rt == Rn) 6354 return Error(Operands[3]->getStartLoc(), 6355 "destination register and base register can't be identical"); 6356 return false; 6357 } 6358 case ARM::SBFX: 6359 case ARM::UBFX: { 6360 // Width must be in range [1, 32-lsb]. 6361 unsigned LSB = Inst.getOperand(2).getImm(); 6362 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6363 if (Widthm1 >= 32 - LSB) 6364 return Error(Operands[5]->getStartLoc(), 6365 "bitfield width must be in range [1,32-lsb]"); 6366 return false; 6367 } 6368 // Notionally handles ARM::tLDMIA_UPD too. 6369 case ARM::tLDMIA: { 6370 // If we're parsing Thumb2, the .w variant is available and handles 6371 // most cases that are normally illegal for a Thumb1 LDM instruction. 6372 // We'll make the transformation in processInstruction() if necessary. 6373 // 6374 // Thumb LDM instructions are writeback iff the base register is not 6375 // in the register list. 6376 unsigned Rn = Inst.getOperand(0).getReg(); 6377 bool HasWritebackToken = 6378 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6379 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6380 bool ListContainsBase; 6381 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6382 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6383 "registers must be in range r0-r7"); 6384 // If we should have writeback, then there should be a '!' token. 6385 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6386 return Error(Operands[2]->getStartLoc(), 6387 "writeback operator '!' expected"); 6388 // If we should not have writeback, there must not be a '!'. This is 6389 // true even for the 32-bit wide encodings. 6390 if (ListContainsBase && HasWritebackToken) 6391 return Error(Operands[3]->getStartLoc(), 6392 "writeback operator '!' not allowed when base register " 6393 "in register list"); 6394 6395 if (validatetLDMRegList(Inst, Operands, 3)) 6396 return true; 6397 break; 6398 } 6399 case ARM::LDMIA_UPD: 6400 case ARM::LDMDB_UPD: 6401 case ARM::LDMIB_UPD: 6402 case ARM::LDMDA_UPD: 6403 // ARM variants loading and updating the same register are only officially 6404 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6405 if (!hasV7Ops()) 6406 break; 6407 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6408 return Error(Operands.back()->getStartLoc(), 6409 "writeback register not allowed in register list"); 6410 break; 6411 case ARM::t2LDMIA: 6412 case ARM::t2LDMDB: 6413 if (validatetLDMRegList(Inst, Operands, 3)) 6414 return true; 6415 break; 6416 case ARM::t2STMIA: 6417 case ARM::t2STMDB: 6418 if (validatetSTMRegList(Inst, Operands, 3)) 6419 return true; 6420 break; 6421 case ARM::t2LDMIA_UPD: 6422 case ARM::t2LDMDB_UPD: 6423 case ARM::t2STMIA_UPD: 6424 case ARM::t2STMDB_UPD: { 6425 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6426 return Error(Operands.back()->getStartLoc(), 6427 "writeback register not allowed in register list"); 6428 6429 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6430 if (validatetLDMRegList(Inst, Operands, 3)) 6431 return true; 6432 } else { 6433 if (validatetSTMRegList(Inst, Operands, 3)) 6434 return true; 6435 } 6436 break; 6437 } 6438 case ARM::sysLDMIA_UPD: 6439 case ARM::sysLDMDA_UPD: 6440 case ARM::sysLDMDB_UPD: 6441 case ARM::sysLDMIB_UPD: 6442 if (!listContainsReg(Inst, 3, ARM::PC)) 6443 return Error(Operands[4]->getStartLoc(), 6444 "writeback register only allowed on system LDM " 6445 "if PC in register-list"); 6446 break; 6447 case ARM::sysSTMIA_UPD: 6448 case ARM::sysSTMDA_UPD: 6449 case ARM::sysSTMDB_UPD: 6450 case ARM::sysSTMIB_UPD: 6451 return Error(Operands[2]->getStartLoc(), 6452 "system STM cannot have writeback register"); 6453 case ARM::tMUL: { 6454 // The second source operand must be the same register as the destination 6455 // operand. 6456 // 6457 // In this case, we must directly check the parsed operands because the 6458 // cvtThumbMultiply() function is written in such a way that it guarantees 6459 // this first statement is always true for the new Inst. Essentially, the 6460 // destination is unconditionally copied into the second source operand 6461 // without checking to see if it matches what we actually parsed. 6462 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6463 ((ARMOperand &)*Operands[5]).getReg()) && 6464 (((ARMOperand &)*Operands[3]).getReg() != 6465 ((ARMOperand &)*Operands[4]).getReg())) { 6466 return Error(Operands[3]->getStartLoc(), 6467 "destination register must match source register"); 6468 } 6469 break; 6470 } 6471 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6472 // so only issue a diagnostic for thumb1. The instructions will be 6473 // switched to the t2 encodings in processInstruction() if necessary. 6474 case ARM::tPOP: { 6475 bool ListContainsBase; 6476 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6477 !isThumbTwo()) 6478 return Error(Operands[2]->getStartLoc(), 6479 "registers must be in range r0-r7 or pc"); 6480 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6481 return true; 6482 break; 6483 } 6484 case ARM::tPUSH: { 6485 bool ListContainsBase; 6486 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6487 !isThumbTwo()) 6488 return Error(Operands[2]->getStartLoc(), 6489 "registers must be in range r0-r7 or lr"); 6490 if (validatetSTMRegList(Inst, Operands, 2)) 6491 return true; 6492 break; 6493 } 6494 case ARM::tSTMIA_UPD: { 6495 bool ListContainsBase, InvalidLowList; 6496 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6497 0, ListContainsBase); 6498 if (InvalidLowList && !isThumbTwo()) 6499 return Error(Operands[4]->getStartLoc(), 6500 "registers must be in range r0-r7"); 6501 6502 // This would be converted to a 32-bit stm, but that's not valid if the 6503 // writeback register is in the list. 6504 if (InvalidLowList && ListContainsBase) 6505 return Error(Operands[4]->getStartLoc(), 6506 "writeback operator '!' not allowed when base register " 6507 "in register list"); 6508 6509 if (validatetSTMRegList(Inst, Operands, 4)) 6510 return true; 6511 break; 6512 } 6513 case ARM::tADDrSP: { 6514 // If the non-SP source operand and the destination operand are not the 6515 // same, we need thumb2 (for the wide encoding), or we have an error. 6516 if (!isThumbTwo() && 6517 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6518 return Error(Operands[4]->getStartLoc(), 6519 "source register must be the same as destination"); 6520 } 6521 break; 6522 } 6523 // Final range checking for Thumb unconditional branch instructions. 6524 case ARM::tB: 6525 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6526 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6527 break; 6528 case ARM::t2B: { 6529 int op = (Operands[2]->isImm()) ? 2 : 3; 6530 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6531 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6532 break; 6533 } 6534 // Final range checking for Thumb conditional branch instructions. 6535 case ARM::tBcc: 6536 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6537 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6538 break; 6539 case ARM::t2Bcc: { 6540 int Op = (Operands[2]->isImm()) ? 2 : 3; 6541 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6542 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6543 break; 6544 } 6545 case ARM::tCBZ: 6546 case ARM::tCBNZ: { 6547 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6548 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6549 break; 6550 } 6551 case ARM::MOVi16: 6552 case ARM::MOVTi16: 6553 case ARM::t2MOVi16: 6554 case ARM::t2MOVTi16: 6555 { 6556 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6557 // especially when we turn it into a movw and the expression <symbol> does 6558 // not have a :lower16: or :upper16 as part of the expression. We don't 6559 // want the behavior of silently truncating, which can be unexpected and 6560 // lead to bugs that are difficult to find since this is an easy mistake 6561 // to make. 6562 int i = (Operands[3]->isImm()) ? 3 : 4; 6563 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6564 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6565 if (CE) break; 6566 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6567 if (!E) break; 6568 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6569 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6570 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6571 return Error( 6572 Op.getStartLoc(), 6573 "immediate expression for mov requires :lower16: or :upper16"); 6574 break; 6575 } 6576 case ARM::HINT: 6577 case ARM::t2HINT: { 6578 if (hasRAS()) { 6579 // ESB is not predicable (pred must be AL) 6580 unsigned Imm8 = Inst.getOperand(0).getImm(); 6581 unsigned Pred = Inst.getOperand(1).getImm(); 6582 if (Imm8 == 0x10 && Pred != ARMCC::AL) 6583 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6584 "predicable, but condition " 6585 "code specified"); 6586 } 6587 // Without the RAS extension, this behaves as any other unallocated hint. 6588 break; 6589 } 6590 } 6591 6592 return false; 6593 } 6594 6595 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6596 switch(Opc) { 6597 default: llvm_unreachable("unexpected opcode!"); 6598 // VST1LN 6599 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6600 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6601 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6602 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6603 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6604 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6605 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6606 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6607 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6608 6609 // VST2LN 6610 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6611 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6612 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6613 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6614 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6615 6616 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6617 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6618 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6619 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6620 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6621 6622 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6623 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6624 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6625 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6626 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6627 6628 // VST3LN 6629 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6630 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6631 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6632 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6633 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6634 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6635 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6636 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6637 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6638 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6639 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6640 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6641 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6642 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6643 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6644 6645 // VST3 6646 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6647 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6648 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6649 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6650 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6651 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6652 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6653 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6654 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6655 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6656 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6657 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6658 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6659 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6660 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6661 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6662 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6663 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6664 6665 // VST4LN 6666 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6667 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6668 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6669 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6670 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6671 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6672 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6673 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6674 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6675 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6676 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6677 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6678 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6679 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6680 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6681 6682 // VST4 6683 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6684 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6685 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6686 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6687 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6688 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6689 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6690 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6691 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6692 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6693 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6694 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6695 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6696 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6697 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6698 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6699 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6700 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6701 } 6702 } 6703 6704 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6705 switch(Opc) { 6706 default: llvm_unreachable("unexpected opcode!"); 6707 // VLD1LN 6708 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6709 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6710 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6711 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6712 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6713 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6714 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6715 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6716 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6717 6718 // VLD2LN 6719 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6720 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6721 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6722 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6723 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6724 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6725 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6726 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6727 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6728 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6729 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6730 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6731 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6732 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6733 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6734 6735 // VLD3DUP 6736 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6737 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6738 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6739 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6740 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6741 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6742 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6743 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6744 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6745 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6746 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6747 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6748 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6749 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6750 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6751 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6752 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6753 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6754 6755 // VLD3LN 6756 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6757 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6758 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6759 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6760 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6761 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6762 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6763 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6764 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6765 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6766 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6767 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6768 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6769 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6770 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6771 6772 // VLD3 6773 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6774 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6775 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6776 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6777 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6778 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6779 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6780 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6781 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6782 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6783 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6784 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6785 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6786 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6787 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6788 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6789 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6790 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6791 6792 // VLD4LN 6793 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6794 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6795 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6796 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6797 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6798 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6799 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6800 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6801 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6802 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6803 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6804 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6805 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6806 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6807 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6808 6809 // VLD4DUP 6810 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6811 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6812 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6813 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6814 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6815 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6816 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6817 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6818 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6819 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6820 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6821 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6822 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6823 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6824 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6825 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6826 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6827 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6828 6829 // VLD4 6830 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6831 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6832 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6833 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6834 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6835 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6836 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6837 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6838 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6839 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6840 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6841 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6842 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6843 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6844 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6845 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6846 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6847 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6848 } 6849 } 6850 6851 bool ARMAsmParser::processInstruction(MCInst &Inst, 6852 const OperandVector &Operands, 6853 MCStreamer &Out) { 6854 switch (Inst.getOpcode()) { 6855 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6856 case ARM::LDRT_POST: 6857 case ARM::LDRBT_POST: { 6858 const unsigned Opcode = 6859 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6860 : ARM::LDRBT_POST_IMM; 6861 MCInst TmpInst; 6862 TmpInst.setOpcode(Opcode); 6863 TmpInst.addOperand(Inst.getOperand(0)); 6864 TmpInst.addOperand(Inst.getOperand(1)); 6865 TmpInst.addOperand(Inst.getOperand(1)); 6866 TmpInst.addOperand(MCOperand::createReg(0)); 6867 TmpInst.addOperand(MCOperand::createImm(0)); 6868 TmpInst.addOperand(Inst.getOperand(2)); 6869 TmpInst.addOperand(Inst.getOperand(3)); 6870 Inst = TmpInst; 6871 return true; 6872 } 6873 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6874 case ARM::STRT_POST: 6875 case ARM::STRBT_POST: { 6876 const unsigned Opcode = 6877 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6878 : ARM::STRBT_POST_IMM; 6879 MCInst TmpInst; 6880 TmpInst.setOpcode(Opcode); 6881 TmpInst.addOperand(Inst.getOperand(1)); 6882 TmpInst.addOperand(Inst.getOperand(0)); 6883 TmpInst.addOperand(Inst.getOperand(1)); 6884 TmpInst.addOperand(MCOperand::createReg(0)); 6885 TmpInst.addOperand(MCOperand::createImm(0)); 6886 TmpInst.addOperand(Inst.getOperand(2)); 6887 TmpInst.addOperand(Inst.getOperand(3)); 6888 Inst = TmpInst; 6889 return true; 6890 } 6891 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6892 case ARM::ADDri: { 6893 if (Inst.getOperand(1).getReg() != ARM::PC || 6894 Inst.getOperand(5).getReg() != 0 || 6895 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6896 return false; 6897 MCInst TmpInst; 6898 TmpInst.setOpcode(ARM::ADR); 6899 TmpInst.addOperand(Inst.getOperand(0)); 6900 if (Inst.getOperand(2).isImm()) { 6901 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6902 // before passing it to the ADR instruction. 6903 unsigned Enc = Inst.getOperand(2).getImm(); 6904 TmpInst.addOperand(MCOperand::createImm( 6905 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6906 } else { 6907 // Turn PC-relative expression into absolute expression. 6908 // Reading PC provides the start of the current instruction + 8 and 6909 // the transform to adr is biased by that. 6910 MCSymbol *Dot = getContext().createTempSymbol(); 6911 Out.EmitLabel(Dot); 6912 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6913 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 6914 MCSymbolRefExpr::VK_None, 6915 getContext()); 6916 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 6917 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 6918 getContext()); 6919 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 6920 getContext()); 6921 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 6922 } 6923 TmpInst.addOperand(Inst.getOperand(3)); 6924 TmpInst.addOperand(Inst.getOperand(4)); 6925 Inst = TmpInst; 6926 return true; 6927 } 6928 // Aliases for alternate PC+imm syntax of LDR instructions. 6929 case ARM::t2LDRpcrel: 6930 // Select the narrow version if the immediate will fit. 6931 if (Inst.getOperand(1).getImm() > 0 && 6932 Inst.getOperand(1).getImm() <= 0xff && 6933 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 6934 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 6935 Inst.setOpcode(ARM::tLDRpci); 6936 else 6937 Inst.setOpcode(ARM::t2LDRpci); 6938 return true; 6939 case ARM::t2LDRBpcrel: 6940 Inst.setOpcode(ARM::t2LDRBpci); 6941 return true; 6942 case ARM::t2LDRHpcrel: 6943 Inst.setOpcode(ARM::t2LDRHpci); 6944 return true; 6945 case ARM::t2LDRSBpcrel: 6946 Inst.setOpcode(ARM::t2LDRSBpci); 6947 return true; 6948 case ARM::t2LDRSHpcrel: 6949 Inst.setOpcode(ARM::t2LDRSHpci); 6950 return true; 6951 case ARM::LDRConstPool: 6952 case ARM::tLDRConstPool: 6953 case ARM::t2LDRConstPool: { 6954 // Pseudo instruction ldr rt, =immediate is converted to a 6955 // MOV rt, immediate if immediate is known and representable 6956 // otherwise we create a constant pool entry that we load from. 6957 MCInst TmpInst; 6958 if (Inst.getOpcode() == ARM::LDRConstPool) 6959 TmpInst.setOpcode(ARM::LDRi12); 6960 else if (Inst.getOpcode() == ARM::tLDRConstPool) 6961 TmpInst.setOpcode(ARM::tLDRpci); 6962 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 6963 TmpInst.setOpcode(ARM::t2LDRpci); 6964 const ARMOperand &PoolOperand = 6965 (static_cast<ARMOperand &>(*Operands[2]).isToken() && 6966 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w") ? 6967 static_cast<ARMOperand &>(*Operands[4]) : 6968 static_cast<ARMOperand &>(*Operands[3]); 6969 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 6970 // If SubExprVal is a constant we may be able to use a MOV 6971 if (isa<MCConstantExpr>(SubExprVal) && 6972 Inst.getOperand(0).getReg() != ARM::PC && 6973 Inst.getOperand(0).getReg() != ARM::SP) { 6974 int64_t Value = 6975 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 6976 bool UseMov = true; 6977 bool MovHasS = true; 6978 if (Inst.getOpcode() == ARM::LDRConstPool) { 6979 // ARM Constant 6980 if (ARM_AM::getSOImmVal(Value) != -1) { 6981 Value = ARM_AM::getSOImmVal(Value); 6982 TmpInst.setOpcode(ARM::MOVi); 6983 } 6984 else if (ARM_AM::getSOImmVal(~Value) != -1) { 6985 Value = ARM_AM::getSOImmVal(~Value); 6986 TmpInst.setOpcode(ARM::MVNi); 6987 } 6988 else if (hasV6T2Ops() && 6989 Value >=0 && Value < 65536) { 6990 TmpInst.setOpcode(ARM::MOVi16); 6991 MovHasS = false; 6992 } 6993 else 6994 UseMov = false; 6995 } 6996 else { 6997 // Thumb/Thumb2 Constant 6998 if (hasThumb2() && 6999 ARM_AM::getT2SOImmVal(Value) != -1) 7000 TmpInst.setOpcode(ARM::t2MOVi); 7001 else if (hasThumb2() && 7002 ARM_AM::getT2SOImmVal(~Value) != -1) { 7003 TmpInst.setOpcode(ARM::t2MVNi); 7004 Value = ~Value; 7005 } 7006 else if (hasV8MBaseline() && 7007 Value >=0 && Value < 65536) { 7008 TmpInst.setOpcode(ARM::t2MOVi16); 7009 MovHasS = false; 7010 } 7011 else 7012 UseMov = false; 7013 } 7014 if (UseMov) { 7015 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7016 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7017 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7018 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7019 if (MovHasS) 7020 TmpInst.addOperand(MCOperand::createReg(0)); // S 7021 Inst = TmpInst; 7022 return true; 7023 } 7024 } 7025 // No opportunity to use MOV/MVN create constant pool 7026 const MCExpr *CPLoc = 7027 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7028 PoolOperand.getStartLoc()); 7029 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7030 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7031 if (TmpInst.getOpcode() == ARM::LDRi12) 7032 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7033 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7034 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7035 Inst = TmpInst; 7036 return true; 7037 } 7038 // Handle NEON VST complex aliases. 7039 case ARM::VST1LNdWB_register_Asm_8: 7040 case ARM::VST1LNdWB_register_Asm_16: 7041 case ARM::VST1LNdWB_register_Asm_32: { 7042 MCInst TmpInst; 7043 // Shuffle the operands around so the lane index operand is in the 7044 // right place. 7045 unsigned Spacing; 7046 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7047 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7048 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7049 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7050 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7051 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7052 TmpInst.addOperand(Inst.getOperand(1)); // lane 7053 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7054 TmpInst.addOperand(Inst.getOperand(6)); 7055 Inst = TmpInst; 7056 return true; 7057 } 7058 7059 case ARM::VST2LNdWB_register_Asm_8: 7060 case ARM::VST2LNdWB_register_Asm_16: 7061 case ARM::VST2LNdWB_register_Asm_32: 7062 case ARM::VST2LNqWB_register_Asm_16: 7063 case ARM::VST2LNqWB_register_Asm_32: { 7064 MCInst TmpInst; 7065 // Shuffle the operands around so the lane index operand is in the 7066 // right place. 7067 unsigned Spacing; 7068 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7069 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7070 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7071 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7072 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7073 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7074 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7075 Spacing)); 7076 TmpInst.addOperand(Inst.getOperand(1)); // lane 7077 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7078 TmpInst.addOperand(Inst.getOperand(6)); 7079 Inst = TmpInst; 7080 return true; 7081 } 7082 7083 case ARM::VST3LNdWB_register_Asm_8: 7084 case ARM::VST3LNdWB_register_Asm_16: 7085 case ARM::VST3LNdWB_register_Asm_32: 7086 case ARM::VST3LNqWB_register_Asm_16: 7087 case ARM::VST3LNqWB_register_Asm_32: { 7088 MCInst TmpInst; 7089 // Shuffle the operands around so the lane index operand is in the 7090 // right place. 7091 unsigned Spacing; 7092 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7093 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7094 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7095 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7096 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7097 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7098 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7099 Spacing)); 7100 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7101 Spacing * 2)); 7102 TmpInst.addOperand(Inst.getOperand(1)); // lane 7103 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7104 TmpInst.addOperand(Inst.getOperand(6)); 7105 Inst = TmpInst; 7106 return true; 7107 } 7108 7109 case ARM::VST4LNdWB_register_Asm_8: 7110 case ARM::VST4LNdWB_register_Asm_16: 7111 case ARM::VST4LNdWB_register_Asm_32: 7112 case ARM::VST4LNqWB_register_Asm_16: 7113 case ARM::VST4LNqWB_register_Asm_32: { 7114 MCInst TmpInst; 7115 // Shuffle the operands around so the lane index operand is in the 7116 // right place. 7117 unsigned Spacing; 7118 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7119 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7120 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7121 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7122 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7123 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7124 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7125 Spacing)); 7126 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7127 Spacing * 2)); 7128 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7129 Spacing * 3)); 7130 TmpInst.addOperand(Inst.getOperand(1)); // lane 7131 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7132 TmpInst.addOperand(Inst.getOperand(6)); 7133 Inst = TmpInst; 7134 return true; 7135 } 7136 7137 case ARM::VST1LNdWB_fixed_Asm_8: 7138 case ARM::VST1LNdWB_fixed_Asm_16: 7139 case ARM::VST1LNdWB_fixed_Asm_32: { 7140 MCInst TmpInst; 7141 // Shuffle the operands around so the lane index operand is in the 7142 // right place. 7143 unsigned Spacing; 7144 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7145 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7146 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7147 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7148 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7149 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7150 TmpInst.addOperand(Inst.getOperand(1)); // lane 7151 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7152 TmpInst.addOperand(Inst.getOperand(5)); 7153 Inst = TmpInst; 7154 return true; 7155 } 7156 7157 case ARM::VST2LNdWB_fixed_Asm_8: 7158 case ARM::VST2LNdWB_fixed_Asm_16: 7159 case ARM::VST2LNdWB_fixed_Asm_32: 7160 case ARM::VST2LNqWB_fixed_Asm_16: 7161 case ARM::VST2LNqWB_fixed_Asm_32: { 7162 MCInst TmpInst; 7163 // Shuffle the operands around so the lane index operand is in the 7164 // right place. 7165 unsigned Spacing; 7166 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7167 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7168 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7169 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7170 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7171 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7172 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7173 Spacing)); 7174 TmpInst.addOperand(Inst.getOperand(1)); // lane 7175 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7176 TmpInst.addOperand(Inst.getOperand(5)); 7177 Inst = TmpInst; 7178 return true; 7179 } 7180 7181 case ARM::VST3LNdWB_fixed_Asm_8: 7182 case ARM::VST3LNdWB_fixed_Asm_16: 7183 case ARM::VST3LNdWB_fixed_Asm_32: 7184 case ARM::VST3LNqWB_fixed_Asm_16: 7185 case ARM::VST3LNqWB_fixed_Asm_32: { 7186 MCInst TmpInst; 7187 // Shuffle the operands around so the lane index operand is in the 7188 // right place. 7189 unsigned Spacing; 7190 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7191 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7192 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7193 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7194 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7195 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7196 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7197 Spacing)); 7198 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7199 Spacing * 2)); 7200 TmpInst.addOperand(Inst.getOperand(1)); // lane 7201 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7202 TmpInst.addOperand(Inst.getOperand(5)); 7203 Inst = TmpInst; 7204 return true; 7205 } 7206 7207 case ARM::VST4LNdWB_fixed_Asm_8: 7208 case ARM::VST4LNdWB_fixed_Asm_16: 7209 case ARM::VST4LNdWB_fixed_Asm_32: 7210 case ARM::VST4LNqWB_fixed_Asm_16: 7211 case ARM::VST4LNqWB_fixed_Asm_32: { 7212 MCInst TmpInst; 7213 // Shuffle the operands around so the lane index operand is in the 7214 // right place. 7215 unsigned Spacing; 7216 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7217 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7218 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7219 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7220 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7221 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7222 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7223 Spacing)); 7224 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7225 Spacing * 2)); 7226 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7227 Spacing * 3)); 7228 TmpInst.addOperand(Inst.getOperand(1)); // lane 7229 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7230 TmpInst.addOperand(Inst.getOperand(5)); 7231 Inst = TmpInst; 7232 return true; 7233 } 7234 7235 case ARM::VST1LNdAsm_8: 7236 case ARM::VST1LNdAsm_16: 7237 case ARM::VST1LNdAsm_32: { 7238 MCInst TmpInst; 7239 // Shuffle the operands around so the lane index operand is in the 7240 // right place. 7241 unsigned Spacing; 7242 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7243 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7244 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7245 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7246 TmpInst.addOperand(Inst.getOperand(1)); // lane 7247 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7248 TmpInst.addOperand(Inst.getOperand(5)); 7249 Inst = TmpInst; 7250 return true; 7251 } 7252 7253 case ARM::VST2LNdAsm_8: 7254 case ARM::VST2LNdAsm_16: 7255 case ARM::VST2LNdAsm_32: 7256 case ARM::VST2LNqAsm_16: 7257 case ARM::VST2LNqAsm_32: { 7258 MCInst TmpInst; 7259 // Shuffle the operands around so the lane index operand is in the 7260 // right place. 7261 unsigned Spacing; 7262 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7263 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7264 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7265 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7266 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7267 Spacing)); 7268 TmpInst.addOperand(Inst.getOperand(1)); // lane 7269 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7270 TmpInst.addOperand(Inst.getOperand(5)); 7271 Inst = TmpInst; 7272 return true; 7273 } 7274 7275 case ARM::VST3LNdAsm_8: 7276 case ARM::VST3LNdAsm_16: 7277 case ARM::VST3LNdAsm_32: 7278 case ARM::VST3LNqAsm_16: 7279 case ARM::VST3LNqAsm_32: { 7280 MCInst TmpInst; 7281 // Shuffle the operands around so the lane index operand is in the 7282 // right place. 7283 unsigned Spacing; 7284 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7285 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7286 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7287 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7288 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7289 Spacing)); 7290 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7291 Spacing * 2)); 7292 TmpInst.addOperand(Inst.getOperand(1)); // lane 7293 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7294 TmpInst.addOperand(Inst.getOperand(5)); 7295 Inst = TmpInst; 7296 return true; 7297 } 7298 7299 case ARM::VST4LNdAsm_8: 7300 case ARM::VST4LNdAsm_16: 7301 case ARM::VST4LNdAsm_32: 7302 case ARM::VST4LNqAsm_16: 7303 case ARM::VST4LNqAsm_32: { 7304 MCInst TmpInst; 7305 // Shuffle the operands around so the lane index operand is in the 7306 // right place. 7307 unsigned Spacing; 7308 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7309 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7310 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7311 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7312 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7313 Spacing)); 7314 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7315 Spacing * 2)); 7316 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7317 Spacing * 3)); 7318 TmpInst.addOperand(Inst.getOperand(1)); // lane 7319 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7320 TmpInst.addOperand(Inst.getOperand(5)); 7321 Inst = TmpInst; 7322 return true; 7323 } 7324 7325 // Handle NEON VLD complex aliases. 7326 case ARM::VLD1LNdWB_register_Asm_8: 7327 case ARM::VLD1LNdWB_register_Asm_16: 7328 case ARM::VLD1LNdWB_register_Asm_32: { 7329 MCInst TmpInst; 7330 // Shuffle the operands around so the lane index operand is in the 7331 // right place. 7332 unsigned Spacing; 7333 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7334 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7335 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7336 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7337 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7338 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7339 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7340 TmpInst.addOperand(Inst.getOperand(1)); // lane 7341 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7342 TmpInst.addOperand(Inst.getOperand(6)); 7343 Inst = TmpInst; 7344 return true; 7345 } 7346 7347 case ARM::VLD2LNdWB_register_Asm_8: 7348 case ARM::VLD2LNdWB_register_Asm_16: 7349 case ARM::VLD2LNdWB_register_Asm_32: 7350 case ARM::VLD2LNqWB_register_Asm_16: 7351 case ARM::VLD2LNqWB_register_Asm_32: { 7352 MCInst TmpInst; 7353 // Shuffle the operands around so the lane index operand is in the 7354 // right place. 7355 unsigned Spacing; 7356 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7357 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7358 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7359 Spacing)); 7360 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7361 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7362 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7363 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7364 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7365 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7366 Spacing)); 7367 TmpInst.addOperand(Inst.getOperand(1)); // lane 7368 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7369 TmpInst.addOperand(Inst.getOperand(6)); 7370 Inst = TmpInst; 7371 return true; 7372 } 7373 7374 case ARM::VLD3LNdWB_register_Asm_8: 7375 case ARM::VLD3LNdWB_register_Asm_16: 7376 case ARM::VLD3LNdWB_register_Asm_32: 7377 case ARM::VLD3LNqWB_register_Asm_16: 7378 case ARM::VLD3LNqWB_register_Asm_32: { 7379 MCInst TmpInst; 7380 // Shuffle the operands around so the lane index operand is in the 7381 // right place. 7382 unsigned Spacing; 7383 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7384 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7385 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7386 Spacing)); 7387 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7388 Spacing * 2)); 7389 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7390 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7391 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7392 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7393 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7394 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7395 Spacing)); 7396 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7397 Spacing * 2)); 7398 TmpInst.addOperand(Inst.getOperand(1)); // lane 7399 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7400 TmpInst.addOperand(Inst.getOperand(6)); 7401 Inst = TmpInst; 7402 return true; 7403 } 7404 7405 case ARM::VLD4LNdWB_register_Asm_8: 7406 case ARM::VLD4LNdWB_register_Asm_16: 7407 case ARM::VLD4LNdWB_register_Asm_32: 7408 case ARM::VLD4LNqWB_register_Asm_16: 7409 case ARM::VLD4LNqWB_register_Asm_32: { 7410 MCInst TmpInst; 7411 // Shuffle the operands around so the lane index operand is in the 7412 // right place. 7413 unsigned Spacing; 7414 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7415 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7416 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7417 Spacing)); 7418 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7419 Spacing * 2)); 7420 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7421 Spacing * 3)); 7422 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7423 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7424 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7425 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7426 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7427 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7428 Spacing)); 7429 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7430 Spacing * 2)); 7431 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7432 Spacing * 3)); 7433 TmpInst.addOperand(Inst.getOperand(1)); // lane 7434 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7435 TmpInst.addOperand(Inst.getOperand(6)); 7436 Inst = TmpInst; 7437 return true; 7438 } 7439 7440 case ARM::VLD1LNdWB_fixed_Asm_8: 7441 case ARM::VLD1LNdWB_fixed_Asm_16: 7442 case ARM::VLD1LNdWB_fixed_Asm_32: { 7443 MCInst TmpInst; 7444 // Shuffle the operands around so the lane index operand is in the 7445 // right place. 7446 unsigned Spacing; 7447 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7448 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7449 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7450 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7451 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7452 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7453 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7454 TmpInst.addOperand(Inst.getOperand(1)); // lane 7455 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7456 TmpInst.addOperand(Inst.getOperand(5)); 7457 Inst = TmpInst; 7458 return true; 7459 } 7460 7461 case ARM::VLD2LNdWB_fixed_Asm_8: 7462 case ARM::VLD2LNdWB_fixed_Asm_16: 7463 case ARM::VLD2LNdWB_fixed_Asm_32: 7464 case ARM::VLD2LNqWB_fixed_Asm_16: 7465 case ARM::VLD2LNqWB_fixed_Asm_32: { 7466 MCInst TmpInst; 7467 // Shuffle the operands around so the lane index operand is in the 7468 // right place. 7469 unsigned Spacing; 7470 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7471 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7472 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7473 Spacing)); 7474 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7475 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7476 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7477 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7478 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7479 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7480 Spacing)); 7481 TmpInst.addOperand(Inst.getOperand(1)); // lane 7482 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7483 TmpInst.addOperand(Inst.getOperand(5)); 7484 Inst = TmpInst; 7485 return true; 7486 } 7487 7488 case ARM::VLD3LNdWB_fixed_Asm_8: 7489 case ARM::VLD3LNdWB_fixed_Asm_16: 7490 case ARM::VLD3LNdWB_fixed_Asm_32: 7491 case ARM::VLD3LNqWB_fixed_Asm_16: 7492 case ARM::VLD3LNqWB_fixed_Asm_32: { 7493 MCInst TmpInst; 7494 // Shuffle the operands around so the lane index operand is in the 7495 // right place. 7496 unsigned Spacing; 7497 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7498 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7499 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7500 Spacing)); 7501 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7502 Spacing * 2)); 7503 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7504 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7505 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7506 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7507 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7508 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7509 Spacing)); 7510 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7511 Spacing * 2)); 7512 TmpInst.addOperand(Inst.getOperand(1)); // lane 7513 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7514 TmpInst.addOperand(Inst.getOperand(5)); 7515 Inst = TmpInst; 7516 return true; 7517 } 7518 7519 case ARM::VLD4LNdWB_fixed_Asm_8: 7520 case ARM::VLD4LNdWB_fixed_Asm_16: 7521 case ARM::VLD4LNdWB_fixed_Asm_32: 7522 case ARM::VLD4LNqWB_fixed_Asm_16: 7523 case ARM::VLD4LNqWB_fixed_Asm_32: { 7524 MCInst TmpInst; 7525 // Shuffle the operands around so the lane index operand is in the 7526 // right place. 7527 unsigned Spacing; 7528 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7529 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7530 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7531 Spacing)); 7532 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7533 Spacing * 2)); 7534 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7535 Spacing * 3)); 7536 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7537 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7538 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7539 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7540 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7541 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7542 Spacing)); 7543 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7544 Spacing * 2)); 7545 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7546 Spacing * 3)); 7547 TmpInst.addOperand(Inst.getOperand(1)); // lane 7548 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7549 TmpInst.addOperand(Inst.getOperand(5)); 7550 Inst = TmpInst; 7551 return true; 7552 } 7553 7554 case ARM::VLD1LNdAsm_8: 7555 case ARM::VLD1LNdAsm_16: 7556 case ARM::VLD1LNdAsm_32: { 7557 MCInst TmpInst; 7558 // Shuffle the operands around so the lane index operand is in the 7559 // right place. 7560 unsigned Spacing; 7561 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7562 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7563 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7564 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7565 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7566 TmpInst.addOperand(Inst.getOperand(1)); // lane 7567 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7568 TmpInst.addOperand(Inst.getOperand(5)); 7569 Inst = TmpInst; 7570 return true; 7571 } 7572 7573 case ARM::VLD2LNdAsm_8: 7574 case ARM::VLD2LNdAsm_16: 7575 case ARM::VLD2LNdAsm_32: 7576 case ARM::VLD2LNqAsm_16: 7577 case ARM::VLD2LNqAsm_32: { 7578 MCInst TmpInst; 7579 // Shuffle the operands around so the lane index operand is in the 7580 // right place. 7581 unsigned Spacing; 7582 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7583 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7584 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7585 Spacing)); 7586 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7587 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7588 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7589 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7590 Spacing)); 7591 TmpInst.addOperand(Inst.getOperand(1)); // lane 7592 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7593 TmpInst.addOperand(Inst.getOperand(5)); 7594 Inst = TmpInst; 7595 return true; 7596 } 7597 7598 case ARM::VLD3LNdAsm_8: 7599 case ARM::VLD3LNdAsm_16: 7600 case ARM::VLD3LNdAsm_32: 7601 case ARM::VLD3LNqAsm_16: 7602 case ARM::VLD3LNqAsm_32: { 7603 MCInst TmpInst; 7604 // Shuffle the operands around so the lane index operand is in the 7605 // right place. 7606 unsigned Spacing; 7607 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7608 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7609 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7610 Spacing)); 7611 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7612 Spacing * 2)); 7613 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7614 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7615 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7616 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7617 Spacing)); 7618 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7619 Spacing * 2)); 7620 TmpInst.addOperand(Inst.getOperand(1)); // lane 7621 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7622 TmpInst.addOperand(Inst.getOperand(5)); 7623 Inst = TmpInst; 7624 return true; 7625 } 7626 7627 case ARM::VLD4LNdAsm_8: 7628 case ARM::VLD4LNdAsm_16: 7629 case ARM::VLD4LNdAsm_32: 7630 case ARM::VLD4LNqAsm_16: 7631 case ARM::VLD4LNqAsm_32: { 7632 MCInst TmpInst; 7633 // Shuffle the operands around so the lane index operand is in the 7634 // right place. 7635 unsigned Spacing; 7636 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7637 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7638 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7639 Spacing)); 7640 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7641 Spacing * 2)); 7642 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7643 Spacing * 3)); 7644 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7645 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7646 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7647 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7648 Spacing)); 7649 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7650 Spacing * 2)); 7651 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7652 Spacing * 3)); 7653 TmpInst.addOperand(Inst.getOperand(1)); // lane 7654 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7655 TmpInst.addOperand(Inst.getOperand(5)); 7656 Inst = TmpInst; 7657 return true; 7658 } 7659 7660 // VLD3DUP single 3-element structure to all lanes instructions. 7661 case ARM::VLD3DUPdAsm_8: 7662 case ARM::VLD3DUPdAsm_16: 7663 case ARM::VLD3DUPdAsm_32: 7664 case ARM::VLD3DUPqAsm_8: 7665 case ARM::VLD3DUPqAsm_16: 7666 case ARM::VLD3DUPqAsm_32: { 7667 MCInst TmpInst; 7668 unsigned Spacing; 7669 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7670 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7671 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7672 Spacing)); 7673 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7674 Spacing * 2)); 7675 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7676 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7677 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7678 TmpInst.addOperand(Inst.getOperand(4)); 7679 Inst = TmpInst; 7680 return true; 7681 } 7682 7683 case ARM::VLD3DUPdWB_fixed_Asm_8: 7684 case ARM::VLD3DUPdWB_fixed_Asm_16: 7685 case ARM::VLD3DUPdWB_fixed_Asm_32: 7686 case ARM::VLD3DUPqWB_fixed_Asm_8: 7687 case ARM::VLD3DUPqWB_fixed_Asm_16: 7688 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7689 MCInst TmpInst; 7690 unsigned Spacing; 7691 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7692 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7693 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7694 Spacing)); 7695 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7696 Spacing * 2)); 7697 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7698 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7699 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7700 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7701 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7702 TmpInst.addOperand(Inst.getOperand(4)); 7703 Inst = TmpInst; 7704 return true; 7705 } 7706 7707 case ARM::VLD3DUPdWB_register_Asm_8: 7708 case ARM::VLD3DUPdWB_register_Asm_16: 7709 case ARM::VLD3DUPdWB_register_Asm_32: 7710 case ARM::VLD3DUPqWB_register_Asm_8: 7711 case ARM::VLD3DUPqWB_register_Asm_16: 7712 case ARM::VLD3DUPqWB_register_Asm_32: { 7713 MCInst TmpInst; 7714 unsigned Spacing; 7715 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7716 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7717 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7718 Spacing)); 7719 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7720 Spacing * 2)); 7721 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7722 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7723 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7724 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7725 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7726 TmpInst.addOperand(Inst.getOperand(5)); 7727 Inst = TmpInst; 7728 return true; 7729 } 7730 7731 // VLD3 multiple 3-element structure instructions. 7732 case ARM::VLD3dAsm_8: 7733 case ARM::VLD3dAsm_16: 7734 case ARM::VLD3dAsm_32: 7735 case ARM::VLD3qAsm_8: 7736 case ARM::VLD3qAsm_16: 7737 case ARM::VLD3qAsm_32: { 7738 MCInst TmpInst; 7739 unsigned Spacing; 7740 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7741 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7742 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7743 Spacing)); 7744 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7745 Spacing * 2)); 7746 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7747 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7748 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7749 TmpInst.addOperand(Inst.getOperand(4)); 7750 Inst = TmpInst; 7751 return true; 7752 } 7753 7754 case ARM::VLD3dWB_fixed_Asm_8: 7755 case ARM::VLD3dWB_fixed_Asm_16: 7756 case ARM::VLD3dWB_fixed_Asm_32: 7757 case ARM::VLD3qWB_fixed_Asm_8: 7758 case ARM::VLD3qWB_fixed_Asm_16: 7759 case ARM::VLD3qWB_fixed_Asm_32: { 7760 MCInst TmpInst; 7761 unsigned Spacing; 7762 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7763 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7764 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7765 Spacing)); 7766 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7767 Spacing * 2)); 7768 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7769 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7770 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7771 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7772 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7773 TmpInst.addOperand(Inst.getOperand(4)); 7774 Inst = TmpInst; 7775 return true; 7776 } 7777 7778 case ARM::VLD3dWB_register_Asm_8: 7779 case ARM::VLD3dWB_register_Asm_16: 7780 case ARM::VLD3dWB_register_Asm_32: 7781 case ARM::VLD3qWB_register_Asm_8: 7782 case ARM::VLD3qWB_register_Asm_16: 7783 case ARM::VLD3qWB_register_Asm_32: { 7784 MCInst TmpInst; 7785 unsigned Spacing; 7786 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7787 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7788 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7789 Spacing)); 7790 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7791 Spacing * 2)); 7792 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7793 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7794 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7795 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7796 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7797 TmpInst.addOperand(Inst.getOperand(5)); 7798 Inst = TmpInst; 7799 return true; 7800 } 7801 7802 // VLD4DUP single 3-element structure to all lanes instructions. 7803 case ARM::VLD4DUPdAsm_8: 7804 case ARM::VLD4DUPdAsm_16: 7805 case ARM::VLD4DUPdAsm_32: 7806 case ARM::VLD4DUPqAsm_8: 7807 case ARM::VLD4DUPqAsm_16: 7808 case ARM::VLD4DUPqAsm_32: { 7809 MCInst TmpInst; 7810 unsigned Spacing; 7811 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7812 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7813 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7814 Spacing)); 7815 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7816 Spacing * 2)); 7817 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7818 Spacing * 3)); 7819 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7820 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7821 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7822 TmpInst.addOperand(Inst.getOperand(4)); 7823 Inst = TmpInst; 7824 return true; 7825 } 7826 7827 case ARM::VLD4DUPdWB_fixed_Asm_8: 7828 case ARM::VLD4DUPdWB_fixed_Asm_16: 7829 case ARM::VLD4DUPdWB_fixed_Asm_32: 7830 case ARM::VLD4DUPqWB_fixed_Asm_8: 7831 case ARM::VLD4DUPqWB_fixed_Asm_16: 7832 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7833 MCInst TmpInst; 7834 unsigned Spacing; 7835 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7836 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7837 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7838 Spacing)); 7839 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7840 Spacing * 2)); 7841 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7842 Spacing * 3)); 7843 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7844 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7845 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7846 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7847 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7848 TmpInst.addOperand(Inst.getOperand(4)); 7849 Inst = TmpInst; 7850 return true; 7851 } 7852 7853 case ARM::VLD4DUPdWB_register_Asm_8: 7854 case ARM::VLD4DUPdWB_register_Asm_16: 7855 case ARM::VLD4DUPdWB_register_Asm_32: 7856 case ARM::VLD4DUPqWB_register_Asm_8: 7857 case ARM::VLD4DUPqWB_register_Asm_16: 7858 case ARM::VLD4DUPqWB_register_Asm_32: { 7859 MCInst TmpInst; 7860 unsigned Spacing; 7861 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7862 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7863 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7864 Spacing)); 7865 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7866 Spacing * 2)); 7867 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7868 Spacing * 3)); 7869 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7870 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7871 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7872 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7873 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7874 TmpInst.addOperand(Inst.getOperand(5)); 7875 Inst = TmpInst; 7876 return true; 7877 } 7878 7879 // VLD4 multiple 4-element structure instructions. 7880 case ARM::VLD4dAsm_8: 7881 case ARM::VLD4dAsm_16: 7882 case ARM::VLD4dAsm_32: 7883 case ARM::VLD4qAsm_8: 7884 case ARM::VLD4qAsm_16: 7885 case ARM::VLD4qAsm_32: { 7886 MCInst TmpInst; 7887 unsigned Spacing; 7888 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7889 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7890 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7891 Spacing)); 7892 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7893 Spacing * 2)); 7894 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7895 Spacing * 3)); 7896 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7897 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7898 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7899 TmpInst.addOperand(Inst.getOperand(4)); 7900 Inst = TmpInst; 7901 return true; 7902 } 7903 7904 case ARM::VLD4dWB_fixed_Asm_8: 7905 case ARM::VLD4dWB_fixed_Asm_16: 7906 case ARM::VLD4dWB_fixed_Asm_32: 7907 case ARM::VLD4qWB_fixed_Asm_8: 7908 case ARM::VLD4qWB_fixed_Asm_16: 7909 case ARM::VLD4qWB_fixed_Asm_32: { 7910 MCInst TmpInst; 7911 unsigned Spacing; 7912 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7913 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7914 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7915 Spacing)); 7916 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7917 Spacing * 2)); 7918 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7919 Spacing * 3)); 7920 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7921 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7922 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7923 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7924 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7925 TmpInst.addOperand(Inst.getOperand(4)); 7926 Inst = TmpInst; 7927 return true; 7928 } 7929 7930 case ARM::VLD4dWB_register_Asm_8: 7931 case ARM::VLD4dWB_register_Asm_16: 7932 case ARM::VLD4dWB_register_Asm_32: 7933 case ARM::VLD4qWB_register_Asm_8: 7934 case ARM::VLD4qWB_register_Asm_16: 7935 case ARM::VLD4qWB_register_Asm_32: { 7936 MCInst TmpInst; 7937 unsigned Spacing; 7938 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7939 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7940 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7941 Spacing)); 7942 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7943 Spacing * 2)); 7944 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7945 Spacing * 3)); 7946 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7947 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7948 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7949 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7950 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7951 TmpInst.addOperand(Inst.getOperand(5)); 7952 Inst = TmpInst; 7953 return true; 7954 } 7955 7956 // VST3 multiple 3-element structure instructions. 7957 case ARM::VST3dAsm_8: 7958 case ARM::VST3dAsm_16: 7959 case ARM::VST3dAsm_32: 7960 case ARM::VST3qAsm_8: 7961 case ARM::VST3qAsm_16: 7962 case ARM::VST3qAsm_32: { 7963 MCInst TmpInst; 7964 unsigned Spacing; 7965 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7966 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7967 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7968 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7969 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7970 Spacing)); 7971 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7972 Spacing * 2)); 7973 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7974 TmpInst.addOperand(Inst.getOperand(4)); 7975 Inst = TmpInst; 7976 return true; 7977 } 7978 7979 case ARM::VST3dWB_fixed_Asm_8: 7980 case ARM::VST3dWB_fixed_Asm_16: 7981 case ARM::VST3dWB_fixed_Asm_32: 7982 case ARM::VST3qWB_fixed_Asm_8: 7983 case ARM::VST3qWB_fixed_Asm_16: 7984 case ARM::VST3qWB_fixed_Asm_32: { 7985 MCInst TmpInst; 7986 unsigned Spacing; 7987 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7988 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7989 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7990 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7991 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7992 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7993 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7994 Spacing)); 7995 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7996 Spacing * 2)); 7997 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7998 TmpInst.addOperand(Inst.getOperand(4)); 7999 Inst = TmpInst; 8000 return true; 8001 } 8002 8003 case ARM::VST3dWB_register_Asm_8: 8004 case ARM::VST3dWB_register_Asm_16: 8005 case ARM::VST3dWB_register_Asm_32: 8006 case ARM::VST3qWB_register_Asm_8: 8007 case ARM::VST3qWB_register_Asm_16: 8008 case ARM::VST3qWB_register_Asm_32: { 8009 MCInst TmpInst; 8010 unsigned Spacing; 8011 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8012 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8013 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8014 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8015 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8016 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8017 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8018 Spacing)); 8019 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8020 Spacing * 2)); 8021 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8022 TmpInst.addOperand(Inst.getOperand(5)); 8023 Inst = TmpInst; 8024 return true; 8025 } 8026 8027 // VST4 multiple 3-element structure instructions. 8028 case ARM::VST4dAsm_8: 8029 case ARM::VST4dAsm_16: 8030 case ARM::VST4dAsm_32: 8031 case ARM::VST4qAsm_8: 8032 case ARM::VST4qAsm_16: 8033 case ARM::VST4qAsm_32: { 8034 MCInst TmpInst; 8035 unsigned Spacing; 8036 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8037 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8038 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8039 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8040 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8041 Spacing)); 8042 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8043 Spacing * 2)); 8044 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8045 Spacing * 3)); 8046 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8047 TmpInst.addOperand(Inst.getOperand(4)); 8048 Inst = TmpInst; 8049 return true; 8050 } 8051 8052 case ARM::VST4dWB_fixed_Asm_8: 8053 case ARM::VST4dWB_fixed_Asm_16: 8054 case ARM::VST4dWB_fixed_Asm_32: 8055 case ARM::VST4qWB_fixed_Asm_8: 8056 case ARM::VST4qWB_fixed_Asm_16: 8057 case ARM::VST4qWB_fixed_Asm_32: { 8058 MCInst TmpInst; 8059 unsigned Spacing; 8060 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8061 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8062 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8063 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8064 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8065 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8066 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8067 Spacing)); 8068 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8069 Spacing * 2)); 8070 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8071 Spacing * 3)); 8072 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8073 TmpInst.addOperand(Inst.getOperand(4)); 8074 Inst = TmpInst; 8075 return true; 8076 } 8077 8078 case ARM::VST4dWB_register_Asm_8: 8079 case ARM::VST4dWB_register_Asm_16: 8080 case ARM::VST4dWB_register_Asm_32: 8081 case ARM::VST4qWB_register_Asm_8: 8082 case ARM::VST4qWB_register_Asm_16: 8083 case ARM::VST4qWB_register_Asm_32: { 8084 MCInst TmpInst; 8085 unsigned Spacing; 8086 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8087 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8088 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8089 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8090 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8091 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8092 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8093 Spacing)); 8094 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8095 Spacing * 2)); 8096 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8097 Spacing * 3)); 8098 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8099 TmpInst.addOperand(Inst.getOperand(5)); 8100 Inst = TmpInst; 8101 return true; 8102 } 8103 8104 // Handle encoding choice for the shift-immediate instructions. 8105 case ARM::t2LSLri: 8106 case ARM::t2LSRri: 8107 case ARM::t2ASRri: { 8108 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8109 isARMLowRegister(Inst.getOperand(1).getReg()) && 8110 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8111 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 8112 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 8113 unsigned NewOpc; 8114 switch (Inst.getOpcode()) { 8115 default: llvm_unreachable("unexpected opcode"); 8116 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8117 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8118 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8119 } 8120 // The Thumb1 operands aren't in the same order. Awesome, eh? 8121 MCInst TmpInst; 8122 TmpInst.setOpcode(NewOpc); 8123 TmpInst.addOperand(Inst.getOperand(0)); 8124 TmpInst.addOperand(Inst.getOperand(5)); 8125 TmpInst.addOperand(Inst.getOperand(1)); 8126 TmpInst.addOperand(Inst.getOperand(2)); 8127 TmpInst.addOperand(Inst.getOperand(3)); 8128 TmpInst.addOperand(Inst.getOperand(4)); 8129 Inst = TmpInst; 8130 return true; 8131 } 8132 return false; 8133 } 8134 8135 // Handle the Thumb2 mode MOV complex aliases. 8136 case ARM::t2MOVsr: 8137 case ARM::t2MOVSsr: { 8138 // Which instruction to expand to depends on the CCOut operand and 8139 // whether we're in an IT block if the register operands are low 8140 // registers. 8141 bool isNarrow = false; 8142 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8143 isARMLowRegister(Inst.getOperand(1).getReg()) && 8144 isARMLowRegister(Inst.getOperand(2).getReg()) && 8145 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8146 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 8147 isNarrow = true; 8148 MCInst TmpInst; 8149 unsigned newOpc; 8150 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8151 default: llvm_unreachable("unexpected opcode!"); 8152 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8153 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8154 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8155 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8156 } 8157 TmpInst.setOpcode(newOpc); 8158 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8159 if (isNarrow) 8160 TmpInst.addOperand(MCOperand::createReg( 8161 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8162 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8163 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8164 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8165 TmpInst.addOperand(Inst.getOperand(5)); 8166 if (!isNarrow) 8167 TmpInst.addOperand(MCOperand::createReg( 8168 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8169 Inst = TmpInst; 8170 return true; 8171 } 8172 case ARM::t2MOVsi: 8173 case ARM::t2MOVSsi: { 8174 // Which instruction to expand to depends on the CCOut operand and 8175 // whether we're in an IT block if the register operands are low 8176 // registers. 8177 bool isNarrow = false; 8178 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8179 isARMLowRegister(Inst.getOperand(1).getReg()) && 8180 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 8181 isNarrow = true; 8182 MCInst TmpInst; 8183 unsigned newOpc; 8184 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8185 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8186 bool isMov = false; 8187 // MOV rd, rm, LSL #0 is actually a MOV instruction 8188 if (Shift == ARM_AM::lsl && Amount == 0) { 8189 isMov = true; 8190 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 8191 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 8192 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 8193 // instead. 8194 if (inITBlock()) { 8195 isNarrow = false; 8196 } 8197 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 8198 } else { 8199 switch(Shift) { 8200 default: llvm_unreachable("unexpected opcode!"); 8201 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8202 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8203 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8204 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8205 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8206 } 8207 } 8208 if (Amount == 32) Amount = 0; 8209 TmpInst.setOpcode(newOpc); 8210 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8211 if (isNarrow && !isMov) 8212 TmpInst.addOperand(MCOperand::createReg( 8213 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8214 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8215 if (newOpc != ARM::t2RRX && !isMov) 8216 TmpInst.addOperand(MCOperand::createImm(Amount)); 8217 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8218 TmpInst.addOperand(Inst.getOperand(4)); 8219 if (!isNarrow) 8220 TmpInst.addOperand(MCOperand::createReg( 8221 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8222 Inst = TmpInst; 8223 return true; 8224 } 8225 // Handle the ARM mode MOV complex aliases. 8226 case ARM::ASRr: 8227 case ARM::LSRr: 8228 case ARM::LSLr: 8229 case ARM::RORr: { 8230 ARM_AM::ShiftOpc ShiftTy; 8231 switch(Inst.getOpcode()) { 8232 default: llvm_unreachable("unexpected opcode!"); 8233 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8234 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8235 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8236 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8237 } 8238 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8239 MCInst TmpInst; 8240 TmpInst.setOpcode(ARM::MOVsr); 8241 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8242 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8243 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8244 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8245 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8246 TmpInst.addOperand(Inst.getOperand(4)); 8247 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8248 Inst = TmpInst; 8249 return true; 8250 } 8251 case ARM::ASRi: 8252 case ARM::LSRi: 8253 case ARM::LSLi: 8254 case ARM::RORi: { 8255 ARM_AM::ShiftOpc ShiftTy; 8256 switch(Inst.getOpcode()) { 8257 default: llvm_unreachable("unexpected opcode!"); 8258 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8259 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8260 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8261 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8262 } 8263 // A shift by zero is a plain MOVr, not a MOVsi. 8264 unsigned Amt = Inst.getOperand(2).getImm(); 8265 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8266 // A shift by 32 should be encoded as 0 when permitted 8267 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8268 Amt = 0; 8269 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8270 MCInst TmpInst; 8271 TmpInst.setOpcode(Opc); 8272 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8273 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8274 if (Opc == ARM::MOVsi) 8275 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8276 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8277 TmpInst.addOperand(Inst.getOperand(4)); 8278 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8279 Inst = TmpInst; 8280 return true; 8281 } 8282 case ARM::RRXi: { 8283 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8284 MCInst TmpInst; 8285 TmpInst.setOpcode(ARM::MOVsi); 8286 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8287 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8288 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8289 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8290 TmpInst.addOperand(Inst.getOperand(3)); 8291 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8292 Inst = TmpInst; 8293 return true; 8294 } 8295 case ARM::t2LDMIA_UPD: { 8296 // If this is a load of a single register, then we should use 8297 // a post-indexed LDR instruction instead, per the ARM ARM. 8298 if (Inst.getNumOperands() != 5) 8299 return false; 8300 MCInst TmpInst; 8301 TmpInst.setOpcode(ARM::t2LDR_POST); 8302 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8303 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8304 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8305 TmpInst.addOperand(MCOperand::createImm(4)); 8306 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8307 TmpInst.addOperand(Inst.getOperand(3)); 8308 Inst = TmpInst; 8309 return true; 8310 } 8311 case ARM::t2STMDB_UPD: { 8312 // If this is a store of a single register, then we should use 8313 // a pre-indexed STR instruction instead, per the ARM ARM. 8314 if (Inst.getNumOperands() != 5) 8315 return false; 8316 MCInst TmpInst; 8317 TmpInst.setOpcode(ARM::t2STR_PRE); 8318 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8319 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8320 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8321 TmpInst.addOperand(MCOperand::createImm(-4)); 8322 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8323 TmpInst.addOperand(Inst.getOperand(3)); 8324 Inst = TmpInst; 8325 return true; 8326 } 8327 case ARM::LDMIA_UPD: 8328 // If this is a load of a single register via a 'pop', then we should use 8329 // a post-indexed LDR instruction instead, per the ARM ARM. 8330 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8331 Inst.getNumOperands() == 5) { 8332 MCInst TmpInst; 8333 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8334 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8335 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8336 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8337 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8338 TmpInst.addOperand(MCOperand::createImm(4)); 8339 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8340 TmpInst.addOperand(Inst.getOperand(3)); 8341 Inst = TmpInst; 8342 return true; 8343 } 8344 break; 8345 case ARM::STMDB_UPD: 8346 // If this is a store of a single register via a 'push', then we should use 8347 // a pre-indexed STR instruction instead, per the ARM ARM. 8348 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8349 Inst.getNumOperands() == 5) { 8350 MCInst TmpInst; 8351 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8352 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8353 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8354 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8355 TmpInst.addOperand(MCOperand::createImm(-4)); 8356 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8357 TmpInst.addOperand(Inst.getOperand(3)); 8358 Inst = TmpInst; 8359 } 8360 break; 8361 case ARM::t2ADDri12: 8362 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8363 // mnemonic was used (not "addw"), encoding T3 is preferred. 8364 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8365 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8366 break; 8367 Inst.setOpcode(ARM::t2ADDri); 8368 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8369 break; 8370 case ARM::t2SUBri12: 8371 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8372 // mnemonic was used (not "subw"), encoding T3 is preferred. 8373 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8374 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8375 break; 8376 Inst.setOpcode(ARM::t2SUBri); 8377 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8378 break; 8379 case ARM::tADDi8: 8380 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8381 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8382 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8383 // to encoding T1 if <Rd> is omitted." 8384 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8385 Inst.setOpcode(ARM::tADDi3); 8386 return true; 8387 } 8388 break; 8389 case ARM::tSUBi8: 8390 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8391 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8392 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8393 // to encoding T1 if <Rd> is omitted." 8394 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8395 Inst.setOpcode(ARM::tSUBi3); 8396 return true; 8397 } 8398 break; 8399 case ARM::t2ADDri: 8400 case ARM::t2SUBri: { 8401 // If the destination and first source operand are the same, and 8402 // the flags are compatible with the current IT status, use encoding T2 8403 // instead of T3. For compatibility with the system 'as'. Make sure the 8404 // wide encoding wasn't explicit. 8405 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8406 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8407 (unsigned)Inst.getOperand(2).getImm() > 255 || 8408 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8409 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8410 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8411 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8412 break; 8413 MCInst TmpInst; 8414 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8415 ARM::tADDi8 : ARM::tSUBi8); 8416 TmpInst.addOperand(Inst.getOperand(0)); 8417 TmpInst.addOperand(Inst.getOperand(5)); 8418 TmpInst.addOperand(Inst.getOperand(0)); 8419 TmpInst.addOperand(Inst.getOperand(2)); 8420 TmpInst.addOperand(Inst.getOperand(3)); 8421 TmpInst.addOperand(Inst.getOperand(4)); 8422 Inst = TmpInst; 8423 return true; 8424 } 8425 case ARM::t2ADDrr: { 8426 // If the destination and first source operand are the same, and 8427 // there's no setting of the flags, use encoding T2 instead of T3. 8428 // Note that this is only for ADD, not SUB. This mirrors the system 8429 // 'as' behaviour. Also take advantage of ADD being commutative. 8430 // Make sure the wide encoding wasn't explicit. 8431 bool Swap = false; 8432 auto DestReg = Inst.getOperand(0).getReg(); 8433 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8434 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8435 Transform = true; 8436 Swap = true; 8437 } 8438 if (!Transform || 8439 Inst.getOperand(5).getReg() != 0 || 8440 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8441 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8442 break; 8443 MCInst TmpInst; 8444 TmpInst.setOpcode(ARM::tADDhirr); 8445 TmpInst.addOperand(Inst.getOperand(0)); 8446 TmpInst.addOperand(Inst.getOperand(0)); 8447 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8448 TmpInst.addOperand(Inst.getOperand(3)); 8449 TmpInst.addOperand(Inst.getOperand(4)); 8450 Inst = TmpInst; 8451 return true; 8452 } 8453 case ARM::tADDrSP: { 8454 // If the non-SP source operand and the destination operand are not the 8455 // same, we need to use the 32-bit encoding if it's available. 8456 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8457 Inst.setOpcode(ARM::t2ADDrr); 8458 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8459 return true; 8460 } 8461 break; 8462 } 8463 case ARM::tB: 8464 // A Thumb conditional branch outside of an IT block is a tBcc. 8465 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8466 Inst.setOpcode(ARM::tBcc); 8467 return true; 8468 } 8469 break; 8470 case ARM::t2B: 8471 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8472 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8473 Inst.setOpcode(ARM::t2Bcc); 8474 return true; 8475 } 8476 break; 8477 case ARM::t2Bcc: 8478 // If the conditional is AL or we're in an IT block, we really want t2B. 8479 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8480 Inst.setOpcode(ARM::t2B); 8481 return true; 8482 } 8483 break; 8484 case ARM::tBcc: 8485 // If the conditional is AL, we really want tB. 8486 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8487 Inst.setOpcode(ARM::tB); 8488 return true; 8489 } 8490 break; 8491 case ARM::tLDMIA: { 8492 // If the register list contains any high registers, or if the writeback 8493 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8494 // instead if we're in Thumb2. Otherwise, this should have generated 8495 // an error in validateInstruction(). 8496 unsigned Rn = Inst.getOperand(0).getReg(); 8497 bool hasWritebackToken = 8498 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8499 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8500 bool listContainsBase; 8501 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8502 (!listContainsBase && !hasWritebackToken) || 8503 (listContainsBase && hasWritebackToken)) { 8504 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8505 assert (isThumbTwo()); 8506 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8507 // If we're switching to the updating version, we need to insert 8508 // the writeback tied operand. 8509 if (hasWritebackToken) 8510 Inst.insert(Inst.begin(), 8511 MCOperand::createReg(Inst.getOperand(0).getReg())); 8512 return true; 8513 } 8514 break; 8515 } 8516 case ARM::tSTMIA_UPD: { 8517 // If the register list contains any high registers, we need to use 8518 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8519 // should have generated an error in validateInstruction(). 8520 unsigned Rn = Inst.getOperand(0).getReg(); 8521 bool listContainsBase; 8522 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8523 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8524 assert (isThumbTwo()); 8525 Inst.setOpcode(ARM::t2STMIA_UPD); 8526 return true; 8527 } 8528 break; 8529 } 8530 case ARM::tPOP: { 8531 bool listContainsBase; 8532 // If the register list contains any high registers, we need to use 8533 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8534 // should have generated an error in validateInstruction(). 8535 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8536 return false; 8537 assert (isThumbTwo()); 8538 Inst.setOpcode(ARM::t2LDMIA_UPD); 8539 // Add the base register and writeback operands. 8540 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8541 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8542 return true; 8543 } 8544 case ARM::tPUSH: { 8545 bool listContainsBase; 8546 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8547 return false; 8548 assert (isThumbTwo()); 8549 Inst.setOpcode(ARM::t2STMDB_UPD); 8550 // Add the base register and writeback operands. 8551 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8552 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8553 return true; 8554 } 8555 case ARM::t2MOVi: { 8556 // If we can use the 16-bit encoding and the user didn't explicitly 8557 // request the 32-bit variant, transform it here. 8558 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8559 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8560 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8561 Inst.getOperand(4).getReg() == ARM::CPSR) || 8562 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8563 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8564 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8565 // The operands aren't in the same order for tMOVi8... 8566 MCInst TmpInst; 8567 TmpInst.setOpcode(ARM::tMOVi8); 8568 TmpInst.addOperand(Inst.getOperand(0)); 8569 TmpInst.addOperand(Inst.getOperand(4)); 8570 TmpInst.addOperand(Inst.getOperand(1)); 8571 TmpInst.addOperand(Inst.getOperand(2)); 8572 TmpInst.addOperand(Inst.getOperand(3)); 8573 Inst = TmpInst; 8574 return true; 8575 } 8576 break; 8577 } 8578 case ARM::t2MOVr: { 8579 // If we can use the 16-bit encoding and the user didn't explicitly 8580 // request the 32-bit variant, transform it here. 8581 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8582 isARMLowRegister(Inst.getOperand(1).getReg()) && 8583 Inst.getOperand(2).getImm() == ARMCC::AL && 8584 Inst.getOperand(4).getReg() == ARM::CPSR && 8585 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8586 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8587 // The operands aren't the same for tMOV[S]r... (no cc_out) 8588 MCInst TmpInst; 8589 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8590 TmpInst.addOperand(Inst.getOperand(0)); 8591 TmpInst.addOperand(Inst.getOperand(1)); 8592 TmpInst.addOperand(Inst.getOperand(2)); 8593 TmpInst.addOperand(Inst.getOperand(3)); 8594 Inst = TmpInst; 8595 return true; 8596 } 8597 break; 8598 } 8599 case ARM::t2SXTH: 8600 case ARM::t2SXTB: 8601 case ARM::t2UXTH: 8602 case ARM::t2UXTB: { 8603 // If we can use the 16-bit encoding and the user didn't explicitly 8604 // request the 32-bit variant, transform it here. 8605 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8606 isARMLowRegister(Inst.getOperand(1).getReg()) && 8607 Inst.getOperand(2).getImm() == 0 && 8608 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8609 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8610 unsigned NewOpc; 8611 switch (Inst.getOpcode()) { 8612 default: llvm_unreachable("Illegal opcode!"); 8613 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8614 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8615 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8616 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8617 } 8618 // The operands aren't the same for thumb1 (no rotate operand). 8619 MCInst TmpInst; 8620 TmpInst.setOpcode(NewOpc); 8621 TmpInst.addOperand(Inst.getOperand(0)); 8622 TmpInst.addOperand(Inst.getOperand(1)); 8623 TmpInst.addOperand(Inst.getOperand(3)); 8624 TmpInst.addOperand(Inst.getOperand(4)); 8625 Inst = TmpInst; 8626 return true; 8627 } 8628 break; 8629 } 8630 case ARM::MOVsi: { 8631 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8632 // rrx shifts and asr/lsr of #32 is encoded as 0 8633 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8634 return false; 8635 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8636 // Shifting by zero is accepted as a vanilla 'MOVr' 8637 MCInst TmpInst; 8638 TmpInst.setOpcode(ARM::MOVr); 8639 TmpInst.addOperand(Inst.getOperand(0)); 8640 TmpInst.addOperand(Inst.getOperand(1)); 8641 TmpInst.addOperand(Inst.getOperand(3)); 8642 TmpInst.addOperand(Inst.getOperand(4)); 8643 TmpInst.addOperand(Inst.getOperand(5)); 8644 Inst = TmpInst; 8645 return true; 8646 } 8647 return false; 8648 } 8649 case ARM::ANDrsi: 8650 case ARM::ORRrsi: 8651 case ARM::EORrsi: 8652 case ARM::BICrsi: 8653 case ARM::SUBrsi: 8654 case ARM::ADDrsi: { 8655 unsigned newOpc; 8656 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8657 if (SOpc == ARM_AM::rrx) return false; 8658 switch (Inst.getOpcode()) { 8659 default: llvm_unreachable("unexpected opcode!"); 8660 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8661 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8662 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8663 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8664 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8665 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8666 } 8667 // If the shift is by zero, use the non-shifted instruction definition. 8668 // The exception is for right shifts, where 0 == 32 8669 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8670 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8671 MCInst TmpInst; 8672 TmpInst.setOpcode(newOpc); 8673 TmpInst.addOperand(Inst.getOperand(0)); 8674 TmpInst.addOperand(Inst.getOperand(1)); 8675 TmpInst.addOperand(Inst.getOperand(2)); 8676 TmpInst.addOperand(Inst.getOperand(4)); 8677 TmpInst.addOperand(Inst.getOperand(5)); 8678 TmpInst.addOperand(Inst.getOperand(6)); 8679 Inst = TmpInst; 8680 return true; 8681 } 8682 return false; 8683 } 8684 case ARM::ITasm: 8685 case ARM::t2IT: { 8686 MCOperand &MO = Inst.getOperand(1); 8687 unsigned Mask = MO.getImm(); 8688 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8689 8690 // Set up the IT block state according to the IT instruction we just 8691 // matched. 8692 assert(!inITBlock() && "nested IT blocks?!"); 8693 startExplicitITBlock(Cond, Mask); 8694 MO.setImm(getITMaskEncoding()); 8695 break; 8696 } 8697 case ARM::t2LSLrr: 8698 case ARM::t2LSRrr: 8699 case ARM::t2ASRrr: 8700 case ARM::t2SBCrr: 8701 case ARM::t2RORrr: 8702 case ARM::t2BICrr: 8703 { 8704 // Assemblers should use the narrow encodings of these instructions when permissible. 8705 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8706 isARMLowRegister(Inst.getOperand(2).getReg())) && 8707 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8708 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8709 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8710 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8711 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8712 ".w"))) { 8713 unsigned NewOpc; 8714 switch (Inst.getOpcode()) { 8715 default: llvm_unreachable("unexpected opcode"); 8716 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8717 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8718 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8719 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8720 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8721 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8722 } 8723 MCInst TmpInst; 8724 TmpInst.setOpcode(NewOpc); 8725 TmpInst.addOperand(Inst.getOperand(0)); 8726 TmpInst.addOperand(Inst.getOperand(5)); 8727 TmpInst.addOperand(Inst.getOperand(1)); 8728 TmpInst.addOperand(Inst.getOperand(2)); 8729 TmpInst.addOperand(Inst.getOperand(3)); 8730 TmpInst.addOperand(Inst.getOperand(4)); 8731 Inst = TmpInst; 8732 return true; 8733 } 8734 return false; 8735 } 8736 case ARM::t2ANDrr: 8737 case ARM::t2EORrr: 8738 case ARM::t2ADCrr: 8739 case ARM::t2ORRrr: 8740 { 8741 // Assemblers should use the narrow encodings of these instructions when permissible. 8742 // These instructions are special in that they are commutable, so shorter encodings 8743 // are available more often. 8744 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8745 isARMLowRegister(Inst.getOperand(2).getReg())) && 8746 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8747 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8748 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8749 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8750 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8751 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8752 ".w"))) { 8753 unsigned NewOpc; 8754 switch (Inst.getOpcode()) { 8755 default: llvm_unreachable("unexpected opcode"); 8756 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8757 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8758 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8759 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8760 } 8761 MCInst TmpInst; 8762 TmpInst.setOpcode(NewOpc); 8763 TmpInst.addOperand(Inst.getOperand(0)); 8764 TmpInst.addOperand(Inst.getOperand(5)); 8765 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8766 TmpInst.addOperand(Inst.getOperand(1)); 8767 TmpInst.addOperand(Inst.getOperand(2)); 8768 } else { 8769 TmpInst.addOperand(Inst.getOperand(2)); 8770 TmpInst.addOperand(Inst.getOperand(1)); 8771 } 8772 TmpInst.addOperand(Inst.getOperand(3)); 8773 TmpInst.addOperand(Inst.getOperand(4)); 8774 Inst = TmpInst; 8775 return true; 8776 } 8777 return false; 8778 } 8779 } 8780 return false; 8781 } 8782 8783 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8784 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8785 // suffix depending on whether they're in an IT block or not. 8786 unsigned Opc = Inst.getOpcode(); 8787 const MCInstrDesc &MCID = MII.get(Opc); 8788 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8789 assert(MCID.hasOptionalDef() && 8790 "optionally flag setting instruction missing optional def operand"); 8791 assert(MCID.NumOperands == Inst.getNumOperands() && 8792 "operand count mismatch!"); 8793 // Find the optional-def operand (cc_out). 8794 unsigned OpNo; 8795 for (OpNo = 0; 8796 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8797 ++OpNo) 8798 ; 8799 // If we're parsing Thumb1, reject it completely. 8800 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8801 return Match_RequiresFlagSetting; 8802 // If we're parsing Thumb2, which form is legal depends on whether we're 8803 // in an IT block. 8804 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8805 !inITBlock()) 8806 return Match_RequiresITBlock; 8807 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8808 inITBlock()) 8809 return Match_RequiresNotITBlock; 8810 // LSL with zero immediate is not allowed in an IT block 8811 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 8812 return Match_RequiresNotITBlock; 8813 } else if (isThumbOne()) { 8814 // Some high-register supporting Thumb1 encodings only allow both registers 8815 // to be from r0-r7 when in Thumb2. 8816 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8817 isARMLowRegister(Inst.getOperand(1).getReg()) && 8818 isARMLowRegister(Inst.getOperand(2).getReg())) 8819 return Match_RequiresThumb2; 8820 // Others only require ARMv6 or later. 8821 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8822 isARMLowRegister(Inst.getOperand(0).getReg()) && 8823 isARMLowRegister(Inst.getOperand(1).getReg())) 8824 return Match_RequiresV6; 8825 } 8826 8827 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 8828 // than the loop below can handle, so it uses the GPRnopc register class and 8829 // we do SP handling here. 8830 if (Opc == ARM::t2MOVr && !hasV8Ops()) 8831 { 8832 // SP as both source and destination is not allowed 8833 if (Inst.getOperand(0).getReg() == ARM::SP && 8834 Inst.getOperand(1).getReg() == ARM::SP) 8835 return Match_RequiresV8; 8836 // When flags-setting SP as either source or destination is not allowed 8837 if (Inst.getOperand(4).getReg() == ARM::CPSR && 8838 (Inst.getOperand(0).getReg() == ARM::SP || 8839 Inst.getOperand(1).getReg() == ARM::SP)) 8840 return Match_RequiresV8; 8841 } 8842 8843 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8844 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8845 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8846 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8847 return Match_RequiresV8; 8848 else if (Inst.getOperand(I).getReg() == ARM::PC) 8849 return Match_InvalidOperand; 8850 } 8851 8852 return Match_Success; 8853 } 8854 8855 namespace llvm { 8856 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 8857 return true; // In an assembly source, no need to second-guess 8858 } 8859 } 8860 8861 // Returns true if Inst is unpredictable if it is in and IT block, but is not 8862 // the last instruction in the block. 8863 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 8864 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8865 8866 // All branch & call instructions terminate IT blocks. 8867 if (MCID.isTerminator() || MCID.isCall() || MCID.isReturn() || 8868 MCID.isBranch() || MCID.isIndirectBranch()) 8869 return true; 8870 8871 // Any arithmetic instruction which writes to the PC also terminates the IT 8872 // block. 8873 for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) { 8874 MCOperand &Op = Inst.getOperand(OpIdx); 8875 if (Op.isReg() && Op.getReg() == ARM::PC) 8876 return true; 8877 } 8878 8879 if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI)) 8880 return true; 8881 8882 // Instructions with variable operand lists, which write to the variable 8883 // operands. We only care about Thumb instructions here, as ARM instructions 8884 // obviously can't be in an IT block. 8885 switch (Inst.getOpcode()) { 8886 case ARM::tLDMIA: 8887 case ARM::t2LDMIA: 8888 case ARM::t2LDMIA_UPD: 8889 case ARM::t2LDMDB: 8890 case ARM::t2LDMDB_UPD: 8891 if (listContainsReg(Inst, 3, ARM::PC)) 8892 return true; 8893 break; 8894 case ARM::tPOP: 8895 if (listContainsReg(Inst, 2, ARM::PC)) 8896 return true; 8897 break; 8898 } 8899 8900 return false; 8901 } 8902 8903 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 8904 uint64_t &ErrorInfo, 8905 bool MatchingInlineAsm, 8906 bool &EmitInITBlock, 8907 MCStreamer &Out) { 8908 // If we can't use an implicit IT block here, just match as normal. 8909 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 8910 return MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 8911 8912 // Try to match the instruction in an extension of the current IT block (if 8913 // there is one). 8914 if (inImplicitITBlock()) { 8915 extendImplicitITBlock(ITState.Cond); 8916 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 8917 Match_Success) { 8918 // The match succeded, but we still have to check that the instruction is 8919 // valid in this implicit IT block. 8920 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8921 if (MCID.isPredicable()) { 8922 ARMCC::CondCodes InstCond = 8923 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 8924 .getImm(); 8925 ARMCC::CondCodes ITCond = currentITCond(); 8926 if (InstCond == ITCond) { 8927 EmitInITBlock = true; 8928 return Match_Success; 8929 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 8930 invertCurrentITCondition(); 8931 EmitInITBlock = true; 8932 return Match_Success; 8933 } 8934 } 8935 } 8936 rewindImplicitITPosition(); 8937 } 8938 8939 // Finish the current IT block, and try to match outside any IT block. 8940 flushPendingInstructions(Out); 8941 unsigned PlainMatchResult = 8942 MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); 8943 if (PlainMatchResult == Match_Success) { 8944 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8945 if (MCID.isPredicable()) { 8946 ARMCC::CondCodes InstCond = 8947 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 8948 .getImm(); 8949 // Some forms of the branch instruction have their own condition code 8950 // fields, so can be conditionally executed without an IT block. 8951 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 8952 EmitInITBlock = false; 8953 return Match_Success; 8954 } 8955 if (InstCond == ARMCC::AL) { 8956 EmitInITBlock = false; 8957 return Match_Success; 8958 } 8959 } else { 8960 EmitInITBlock = false; 8961 return Match_Success; 8962 } 8963 } 8964 8965 // Try to match in a new IT block. The matcher doesn't check the actual 8966 // condition, so we create an IT block with a dummy condition, and fix it up 8967 // once we know the actual condition. 8968 startImplicitITBlock(); 8969 if (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm) == 8970 Match_Success) { 8971 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8972 if (MCID.isPredicable()) { 8973 ITState.Cond = 8974 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 8975 .getImm(); 8976 EmitInITBlock = true; 8977 return Match_Success; 8978 } 8979 } 8980 discardImplicitITBlock(); 8981 8982 // If none of these succeed, return the error we got when trying to match 8983 // outside any IT blocks. 8984 EmitInITBlock = false; 8985 return PlainMatchResult; 8986 } 8987 8988 static const char *getSubtargetFeatureName(uint64_t Val); 8989 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 8990 OperandVector &Operands, 8991 MCStreamer &Out, uint64_t &ErrorInfo, 8992 bool MatchingInlineAsm) { 8993 MCInst Inst; 8994 unsigned MatchResult; 8995 bool PendConditionalInstruction = false; 8996 8997 MatchResult = MatchInstruction(Operands, Inst, ErrorInfo, MatchingInlineAsm, 8998 PendConditionalInstruction, Out); 8999 9000 SMLoc ErrorLoc; 9001 if (ErrorInfo < Operands.size()) { 9002 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9003 if (ErrorLoc == SMLoc()) 9004 ErrorLoc = IDLoc; 9005 } 9006 9007 switch (MatchResult) { 9008 case Match_Success: 9009 // Context sensitive operand constraints aren't handled by the matcher, 9010 // so check them here. 9011 if (validateInstruction(Inst, Operands)) { 9012 // Still progress the IT block, otherwise one wrong condition causes 9013 // nasty cascading errors. 9014 forwardITPosition(); 9015 return true; 9016 } 9017 9018 { // processInstruction() updates inITBlock state, we need to save it away 9019 bool wasInITBlock = inITBlock(); 9020 9021 // Some instructions need post-processing to, for example, tweak which 9022 // encoding is selected. Loop on it while changes happen so the 9023 // individual transformations can chain off each other. E.g., 9024 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9025 while (processInstruction(Inst, Operands, Out)) 9026 ; 9027 9028 // Only after the instruction is fully processed, we can validate it 9029 if (wasInITBlock && hasV8Ops() && isThumb() && 9030 !isV8EligibleForIT(&Inst)) { 9031 Warning(IDLoc, "deprecated instruction in IT block"); 9032 } 9033 } 9034 9035 // Only move forward at the very end so that everything in validate 9036 // and process gets a consistent answer about whether we're in an IT 9037 // block. 9038 forwardITPosition(); 9039 9040 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9041 // doesn't actually encode. 9042 if (Inst.getOpcode() == ARM::ITasm) 9043 return false; 9044 9045 Inst.setLoc(IDLoc); 9046 if (PendConditionalInstruction) { 9047 PendingConditionalInsts.push_back(Inst); 9048 if (isITBlockFull() || isITBlockTerminator(Inst)) 9049 flushPendingInstructions(Out); 9050 } else { 9051 Out.EmitInstruction(Inst, getSTI()); 9052 } 9053 return false; 9054 case Match_MissingFeature: { 9055 assert(ErrorInfo && "Unknown missing feature!"); 9056 // Special case the error message for the very common case where only 9057 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 9058 std::string Msg = "instruction requires:"; 9059 uint64_t Mask = 1; 9060 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 9061 if (ErrorInfo & Mask) { 9062 Msg += " "; 9063 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 9064 } 9065 Mask <<= 1; 9066 } 9067 return Error(IDLoc, Msg); 9068 } 9069 case Match_InvalidOperand: { 9070 SMLoc ErrorLoc = IDLoc; 9071 if (ErrorInfo != ~0ULL) { 9072 if (ErrorInfo >= Operands.size()) 9073 return Error(IDLoc, "too few operands for instruction"); 9074 9075 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 9076 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9077 } 9078 9079 return Error(ErrorLoc, "invalid operand for instruction"); 9080 } 9081 case Match_MnemonicFail: 9082 return Error(IDLoc, "invalid instruction", 9083 ((ARMOperand &)*Operands[0]).getLocRange()); 9084 case Match_RequiresNotITBlock: 9085 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 9086 case Match_RequiresITBlock: 9087 return Error(IDLoc, "instruction only valid inside IT block"); 9088 case Match_RequiresV6: 9089 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 9090 case Match_RequiresThumb2: 9091 return Error(IDLoc, "instruction variant requires Thumb2"); 9092 case Match_RequiresV8: 9093 return Error(IDLoc, "instruction variant requires ARMv8 or later"); 9094 case Match_RequiresFlagSetting: 9095 return Error(IDLoc, "no flag-preserving variant of this instruction available"); 9096 case Match_ImmRange0_1: 9097 return Error(ErrorLoc, "immediate operand must be in the range [0,1]"); 9098 case Match_ImmRange0_3: 9099 return Error(ErrorLoc, "immediate operand must be in the range [0,3]"); 9100 case Match_ImmRange0_7: 9101 return Error(ErrorLoc, "immediate operand must be in the range [0,7]"); 9102 case Match_ImmRange0_15: 9103 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 9104 case Match_ImmRange0_31: 9105 return Error(ErrorLoc, "immediate operand must be in the range [0,31]"); 9106 case Match_ImmRange0_32: 9107 return Error(ErrorLoc, "immediate operand must be in the range [0,32]"); 9108 case Match_ImmRange0_63: 9109 return Error(ErrorLoc, "immediate operand must be in the range [0,63]"); 9110 case Match_ImmRange0_239: 9111 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 9112 case Match_ImmRange0_255: 9113 return Error(ErrorLoc, "immediate operand must be in the range [0,255]"); 9114 case Match_ImmRange0_4095: 9115 return Error(ErrorLoc, "immediate operand must be in the range [0,4095]"); 9116 case Match_ImmRange0_65535: 9117 return Error(ErrorLoc, "immediate operand must be in the range [0,65535]"); 9118 case Match_ImmRange1_7: 9119 return Error(ErrorLoc, "immediate operand must be in the range [1,7]"); 9120 case Match_ImmRange1_8: 9121 return Error(ErrorLoc, "immediate operand must be in the range [1,8]"); 9122 case Match_ImmRange1_15: 9123 return Error(ErrorLoc, "immediate operand must be in the range [1,15]"); 9124 case Match_ImmRange1_16: 9125 return Error(ErrorLoc, "immediate operand must be in the range [1,16]"); 9126 case Match_ImmRange1_31: 9127 return Error(ErrorLoc, "immediate operand must be in the range [1,31]"); 9128 case Match_ImmRange1_32: 9129 return Error(ErrorLoc, "immediate operand must be in the range [1,32]"); 9130 case Match_ImmRange1_64: 9131 return Error(ErrorLoc, "immediate operand must be in the range [1,64]"); 9132 case Match_ImmRange8_8: 9133 return Error(ErrorLoc, "immediate operand must be 8."); 9134 case Match_ImmRange16_16: 9135 return Error(ErrorLoc, "immediate operand must be 16."); 9136 case Match_ImmRange32_32: 9137 return Error(ErrorLoc, "immediate operand must be 32."); 9138 case Match_ImmRange256_65535: 9139 return Error(ErrorLoc, "immediate operand must be in the range [255,65535]"); 9140 case Match_ImmRange0_16777215: 9141 return Error(ErrorLoc, "immediate operand must be in the range [0,0xffffff]"); 9142 case Match_AlignedMemoryRequiresNone: 9143 case Match_DupAlignedMemoryRequiresNone: 9144 case Match_AlignedMemoryRequires16: 9145 case Match_DupAlignedMemoryRequires16: 9146 case Match_AlignedMemoryRequires32: 9147 case Match_DupAlignedMemoryRequires32: 9148 case Match_AlignedMemoryRequires64: 9149 case Match_DupAlignedMemoryRequires64: 9150 case Match_AlignedMemoryRequires64or128: 9151 case Match_DupAlignedMemoryRequires64or128: 9152 case Match_AlignedMemoryRequires64or128or256: 9153 { 9154 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 9155 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 9156 switch (MatchResult) { 9157 default: 9158 llvm_unreachable("Missing Match_Aligned type"); 9159 case Match_AlignedMemoryRequiresNone: 9160 case Match_DupAlignedMemoryRequiresNone: 9161 return Error(ErrorLoc, "alignment must be omitted"); 9162 case Match_AlignedMemoryRequires16: 9163 case Match_DupAlignedMemoryRequires16: 9164 return Error(ErrorLoc, "alignment must be 16 or omitted"); 9165 case Match_AlignedMemoryRequires32: 9166 case Match_DupAlignedMemoryRequires32: 9167 return Error(ErrorLoc, "alignment must be 32 or omitted"); 9168 case Match_AlignedMemoryRequires64: 9169 case Match_DupAlignedMemoryRequires64: 9170 return Error(ErrorLoc, "alignment must be 64 or omitted"); 9171 case Match_AlignedMemoryRequires64or128: 9172 case Match_DupAlignedMemoryRequires64or128: 9173 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 9174 case Match_AlignedMemoryRequires64or128or256: 9175 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 9176 } 9177 } 9178 } 9179 9180 llvm_unreachable("Implement any new match types added!"); 9181 } 9182 9183 /// parseDirective parses the arm specific directives 9184 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9185 const MCObjectFileInfo::Environment Format = 9186 getContext().getObjectFileInfo()->getObjectFileType(); 9187 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9188 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9189 9190 StringRef IDVal = DirectiveID.getIdentifier(); 9191 if (IDVal == ".word") 9192 parseLiteralValues(4, DirectiveID.getLoc()); 9193 else if (IDVal == ".short" || IDVal == ".hword") 9194 parseLiteralValues(2, DirectiveID.getLoc()); 9195 else if (IDVal == ".thumb") 9196 parseDirectiveThumb(DirectiveID.getLoc()); 9197 else if (IDVal == ".arm") 9198 parseDirectiveARM(DirectiveID.getLoc()); 9199 else if (IDVal == ".thumb_func") 9200 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9201 else if (IDVal == ".code") 9202 parseDirectiveCode(DirectiveID.getLoc()); 9203 else if (IDVal == ".syntax") 9204 parseDirectiveSyntax(DirectiveID.getLoc()); 9205 else if (IDVal == ".unreq") 9206 parseDirectiveUnreq(DirectiveID.getLoc()); 9207 else if (IDVal == ".fnend") 9208 parseDirectiveFnEnd(DirectiveID.getLoc()); 9209 else if (IDVal == ".cantunwind") 9210 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9211 else if (IDVal == ".personality") 9212 parseDirectivePersonality(DirectiveID.getLoc()); 9213 else if (IDVal == ".handlerdata") 9214 parseDirectiveHandlerData(DirectiveID.getLoc()); 9215 else if (IDVal == ".setfp") 9216 parseDirectiveSetFP(DirectiveID.getLoc()); 9217 else if (IDVal == ".pad") 9218 parseDirectivePad(DirectiveID.getLoc()); 9219 else if (IDVal == ".save") 9220 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9221 else if (IDVal == ".vsave") 9222 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9223 else if (IDVal == ".ltorg" || IDVal == ".pool") 9224 parseDirectiveLtorg(DirectiveID.getLoc()); 9225 else if (IDVal == ".even") 9226 parseDirectiveEven(DirectiveID.getLoc()); 9227 else if (IDVal == ".personalityindex") 9228 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9229 else if (IDVal == ".unwind_raw") 9230 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9231 else if (IDVal == ".movsp") 9232 parseDirectiveMovSP(DirectiveID.getLoc()); 9233 else if (IDVal == ".arch_extension") 9234 parseDirectiveArchExtension(DirectiveID.getLoc()); 9235 else if (IDVal == ".align") 9236 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9237 else if (IDVal == ".thumb_set") 9238 parseDirectiveThumbSet(DirectiveID.getLoc()); 9239 else if (!IsMachO && !IsCOFF) { 9240 if (IDVal == ".arch") 9241 parseDirectiveArch(DirectiveID.getLoc()); 9242 else if (IDVal == ".cpu") 9243 parseDirectiveCPU(DirectiveID.getLoc()); 9244 else if (IDVal == ".eabi_attribute") 9245 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9246 else if (IDVal == ".fpu") 9247 parseDirectiveFPU(DirectiveID.getLoc()); 9248 else if (IDVal == ".fnstart") 9249 parseDirectiveFnStart(DirectiveID.getLoc()); 9250 else if (IDVal == ".inst") 9251 parseDirectiveInst(DirectiveID.getLoc()); 9252 else if (IDVal == ".inst.n") 9253 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9254 else if (IDVal == ".inst.w") 9255 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9256 else if (IDVal == ".object_arch") 9257 parseDirectiveObjectArch(DirectiveID.getLoc()); 9258 else if (IDVal == ".tlsdescseq") 9259 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9260 else 9261 return true; 9262 } else 9263 return true; 9264 return false; 9265 } 9266 9267 /// parseLiteralValues 9268 /// ::= .hword expression [, expression]* 9269 /// ::= .short expression [, expression]* 9270 /// ::= .word expression [, expression]* 9271 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9272 auto parseOne = [&]() -> bool { 9273 const MCExpr *Value; 9274 if (getParser().parseExpression(Value)) 9275 return true; 9276 getParser().getStreamer().EmitValue(Value, Size, L); 9277 return false; 9278 }; 9279 return (parseMany(parseOne)); 9280 } 9281 9282 /// parseDirectiveThumb 9283 /// ::= .thumb 9284 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9285 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9286 check(!hasThumb(), L, "target does not support Thumb mode")) 9287 return true; 9288 9289 if (!isThumb()) 9290 SwitchMode(); 9291 9292 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9293 return false; 9294 } 9295 9296 /// parseDirectiveARM 9297 /// ::= .arm 9298 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9299 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9300 check(!hasARM(), L, "target does not support ARM mode")) 9301 return true; 9302 9303 if (isThumb()) 9304 SwitchMode(); 9305 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9306 return false; 9307 } 9308 9309 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9310 // We need to flush the current implicit IT block on a label, because it is 9311 // not legal to branch into an IT block. 9312 flushPendingInstructions(getStreamer()); 9313 if (NextSymbolIsThumb) { 9314 getParser().getStreamer().EmitThumbFunc(Symbol); 9315 NextSymbolIsThumb = false; 9316 } 9317 } 9318 9319 /// parseDirectiveThumbFunc 9320 /// ::= .thumbfunc symbol_name 9321 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9322 MCAsmParser &Parser = getParser(); 9323 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9324 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9325 9326 // Darwin asm has (optionally) function name after .thumb_func direction 9327 // ELF doesn't 9328 9329 if (IsMachO) { 9330 if (Parser.getTok().is(AsmToken::Identifier) || 9331 Parser.getTok().is(AsmToken::String)) { 9332 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9333 Parser.getTok().getIdentifier()); 9334 getParser().getStreamer().EmitThumbFunc(Func); 9335 Parser.Lex(); 9336 if (parseToken(AsmToken::EndOfStatement, 9337 "unexpected token in '.thumb_func' directive")) 9338 return true; 9339 return false; 9340 } 9341 } 9342 9343 if (parseToken(AsmToken::EndOfStatement, 9344 "unexpected token in '.thumb_func' directive")) 9345 return true; 9346 9347 NextSymbolIsThumb = true; 9348 return false; 9349 } 9350 9351 /// parseDirectiveSyntax 9352 /// ::= .syntax unified | divided 9353 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9354 MCAsmParser &Parser = getParser(); 9355 const AsmToken &Tok = Parser.getTok(); 9356 if (Tok.isNot(AsmToken::Identifier)) { 9357 Error(L, "unexpected token in .syntax directive"); 9358 return false; 9359 } 9360 9361 StringRef Mode = Tok.getString(); 9362 Parser.Lex(); 9363 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9364 "'.syntax divided' arm assembly not supported") || 9365 check(Mode != "unified" && Mode != "UNIFIED", L, 9366 "unrecognized syntax mode in .syntax directive") || 9367 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9368 return true; 9369 9370 // TODO tell the MC streamer the mode 9371 // getParser().getStreamer().Emit???(); 9372 return false; 9373 } 9374 9375 /// parseDirectiveCode 9376 /// ::= .code 16 | 32 9377 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9378 MCAsmParser &Parser = getParser(); 9379 const AsmToken &Tok = Parser.getTok(); 9380 if (Tok.isNot(AsmToken::Integer)) 9381 return Error(L, "unexpected token in .code directive"); 9382 int64_t Val = Parser.getTok().getIntVal(); 9383 if (Val != 16 && Val != 32) { 9384 Error(L, "invalid operand to .code directive"); 9385 return false; 9386 } 9387 Parser.Lex(); 9388 9389 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9390 return true; 9391 9392 if (Val == 16) { 9393 if (!hasThumb()) 9394 return Error(L, "target does not support Thumb mode"); 9395 9396 if (!isThumb()) 9397 SwitchMode(); 9398 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9399 } else { 9400 if (!hasARM()) 9401 return Error(L, "target does not support ARM mode"); 9402 9403 if (isThumb()) 9404 SwitchMode(); 9405 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9406 } 9407 9408 return false; 9409 } 9410 9411 /// parseDirectiveReq 9412 /// ::= name .req registername 9413 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9414 MCAsmParser &Parser = getParser(); 9415 Parser.Lex(); // Eat the '.req' token. 9416 unsigned Reg; 9417 SMLoc SRegLoc, ERegLoc; 9418 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9419 "register name expected") || 9420 parseToken(AsmToken::EndOfStatement, 9421 "unexpected input in .req directive.")) 9422 return true; 9423 9424 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9425 return Error(SRegLoc, 9426 "redefinition of '" + Name + "' does not match original."); 9427 9428 return false; 9429 } 9430 9431 /// parseDirectiveUneq 9432 /// ::= .unreq registername 9433 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9434 MCAsmParser &Parser = getParser(); 9435 if (Parser.getTok().isNot(AsmToken::Identifier)) 9436 return Error(L, "unexpected input in .unreq directive."); 9437 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9438 Parser.Lex(); // Eat the identifier. 9439 if (parseToken(AsmToken::EndOfStatement, 9440 "unexpected input in '.unreq' directive")) 9441 return true; 9442 return false; 9443 } 9444 9445 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9446 // before, if supported by the new target, or emit mapping symbols for the mode 9447 // switch. 9448 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9449 if (WasThumb != isThumb()) { 9450 if (WasThumb && hasThumb()) { 9451 // Stay in Thumb mode 9452 SwitchMode(); 9453 } else if (!WasThumb && hasARM()) { 9454 // Stay in ARM mode 9455 SwitchMode(); 9456 } else { 9457 // Mode switch forced, because the new arch doesn't support the old mode. 9458 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9459 : MCAF_Code32); 9460 // Warn about the implcit mode switch. GAS does not switch modes here, 9461 // but instead stays in the old mode, reporting an error on any following 9462 // instructions as the mode does not exist on the target. 9463 Warning(Loc, Twine("new target does not support ") + 9464 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9465 (!WasThumb ? "thumb" : "arm") + " mode"); 9466 } 9467 } 9468 } 9469 9470 /// parseDirectiveArch 9471 /// ::= .arch token 9472 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9473 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9474 unsigned ID = ARM::parseArch(Arch); 9475 9476 if (ID == ARM::AK_INVALID) 9477 return Error(L, "Unknown arch name"); 9478 9479 bool WasThumb = isThumb(); 9480 Triple T; 9481 MCSubtargetInfo &STI = copySTI(); 9482 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9483 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9484 FixModeAfterArchChange(WasThumb, L); 9485 9486 getTargetStreamer().emitArch(ID); 9487 return false; 9488 } 9489 9490 /// parseDirectiveEabiAttr 9491 /// ::= .eabi_attribute int, int [, "str"] 9492 /// ::= .eabi_attribute Tag_name, int [, "str"] 9493 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9494 MCAsmParser &Parser = getParser(); 9495 int64_t Tag; 9496 SMLoc TagLoc; 9497 TagLoc = Parser.getTok().getLoc(); 9498 if (Parser.getTok().is(AsmToken::Identifier)) { 9499 StringRef Name = Parser.getTok().getIdentifier(); 9500 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9501 if (Tag == -1) { 9502 Error(TagLoc, "attribute name not recognised: " + Name); 9503 return false; 9504 } 9505 Parser.Lex(); 9506 } else { 9507 const MCExpr *AttrExpr; 9508 9509 TagLoc = Parser.getTok().getLoc(); 9510 if (Parser.parseExpression(AttrExpr)) 9511 return true; 9512 9513 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9514 if (check(!CE, TagLoc, "expected numeric constant")) 9515 return true; 9516 9517 Tag = CE->getValue(); 9518 } 9519 9520 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9521 return true; 9522 9523 StringRef StringValue = ""; 9524 bool IsStringValue = false; 9525 9526 int64_t IntegerValue = 0; 9527 bool IsIntegerValue = false; 9528 9529 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9530 IsStringValue = true; 9531 else if (Tag == ARMBuildAttrs::compatibility) { 9532 IsStringValue = true; 9533 IsIntegerValue = true; 9534 } else if (Tag < 32 || Tag % 2 == 0) 9535 IsIntegerValue = true; 9536 else if (Tag % 2 == 1) 9537 IsStringValue = true; 9538 else 9539 llvm_unreachable("invalid tag type"); 9540 9541 if (IsIntegerValue) { 9542 const MCExpr *ValueExpr; 9543 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9544 if (Parser.parseExpression(ValueExpr)) 9545 return true; 9546 9547 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9548 if (!CE) 9549 return Error(ValueExprLoc, "expected numeric constant"); 9550 IntegerValue = CE->getValue(); 9551 } 9552 9553 if (Tag == ARMBuildAttrs::compatibility) { 9554 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9555 return true; 9556 } 9557 9558 if (IsStringValue) { 9559 if (Parser.getTok().isNot(AsmToken::String)) 9560 return Error(Parser.getTok().getLoc(), "bad string constant"); 9561 9562 StringValue = Parser.getTok().getStringContents(); 9563 Parser.Lex(); 9564 } 9565 9566 if (Parser.parseToken(AsmToken::EndOfStatement, 9567 "unexpected token in '.eabi_attribute' directive")) 9568 return true; 9569 9570 if (IsIntegerValue && IsStringValue) { 9571 assert(Tag == ARMBuildAttrs::compatibility); 9572 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9573 } else if (IsIntegerValue) 9574 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9575 else if (IsStringValue) 9576 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9577 return false; 9578 } 9579 9580 /// parseDirectiveCPU 9581 /// ::= .cpu str 9582 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9583 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9584 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9585 9586 // FIXME: This is using table-gen data, but should be moved to 9587 // ARMTargetParser once that is table-gen'd. 9588 if (!getSTI().isCPUStringValid(CPU)) 9589 return Error(L, "Unknown CPU name"); 9590 9591 bool WasThumb = isThumb(); 9592 MCSubtargetInfo &STI = copySTI(); 9593 STI.setDefaultFeatures(CPU, ""); 9594 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9595 FixModeAfterArchChange(WasThumb, L); 9596 9597 return false; 9598 } 9599 /// parseDirectiveFPU 9600 /// ::= .fpu str 9601 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9602 SMLoc FPUNameLoc = getTok().getLoc(); 9603 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9604 9605 unsigned ID = ARM::parseFPU(FPU); 9606 std::vector<StringRef> Features; 9607 if (!ARM::getFPUFeatures(ID, Features)) 9608 return Error(FPUNameLoc, "Unknown FPU name"); 9609 9610 MCSubtargetInfo &STI = copySTI(); 9611 for (auto Feature : Features) 9612 STI.ApplyFeatureFlag(Feature); 9613 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9614 9615 getTargetStreamer().emitFPU(ID); 9616 return false; 9617 } 9618 9619 /// parseDirectiveFnStart 9620 /// ::= .fnstart 9621 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9622 if (parseToken(AsmToken::EndOfStatement, 9623 "unexpected token in '.fnstart' directive")) 9624 return true; 9625 9626 if (UC.hasFnStart()) { 9627 Error(L, ".fnstart starts before the end of previous one"); 9628 UC.emitFnStartLocNotes(); 9629 return true; 9630 } 9631 9632 // Reset the unwind directives parser state 9633 UC.reset(); 9634 9635 getTargetStreamer().emitFnStart(); 9636 9637 UC.recordFnStart(L); 9638 return false; 9639 } 9640 9641 /// parseDirectiveFnEnd 9642 /// ::= .fnend 9643 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9644 if (parseToken(AsmToken::EndOfStatement, 9645 "unexpected token in '.fnend' directive")) 9646 return true; 9647 // Check the ordering of unwind directives 9648 if (!UC.hasFnStart()) 9649 return Error(L, ".fnstart must precede .fnend directive"); 9650 9651 // Reset the unwind directives parser state 9652 getTargetStreamer().emitFnEnd(); 9653 9654 UC.reset(); 9655 return false; 9656 } 9657 9658 /// parseDirectiveCantUnwind 9659 /// ::= .cantunwind 9660 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9661 if (parseToken(AsmToken::EndOfStatement, 9662 "unexpected token in '.cantunwind' directive")) 9663 return true; 9664 9665 UC.recordCantUnwind(L); 9666 // Check the ordering of unwind directives 9667 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9668 return true; 9669 9670 if (UC.hasHandlerData()) { 9671 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9672 UC.emitHandlerDataLocNotes(); 9673 return true; 9674 } 9675 if (UC.hasPersonality()) { 9676 Error(L, ".cantunwind can't be used with .personality directive"); 9677 UC.emitPersonalityLocNotes(); 9678 return true; 9679 } 9680 9681 getTargetStreamer().emitCantUnwind(); 9682 return false; 9683 } 9684 9685 /// parseDirectivePersonality 9686 /// ::= .personality name 9687 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9688 MCAsmParser &Parser = getParser(); 9689 bool HasExistingPersonality = UC.hasPersonality(); 9690 9691 // Parse the name of the personality routine 9692 if (Parser.getTok().isNot(AsmToken::Identifier)) 9693 return Error(L, "unexpected input in .personality directive."); 9694 StringRef Name(Parser.getTok().getIdentifier()); 9695 Parser.Lex(); 9696 9697 if (parseToken(AsmToken::EndOfStatement, 9698 "unexpected token in '.personality' directive")) 9699 return true; 9700 9701 UC.recordPersonality(L); 9702 9703 // Check the ordering of unwind directives 9704 if (!UC.hasFnStart()) 9705 return Error(L, ".fnstart must precede .personality directive"); 9706 if (UC.cantUnwind()) { 9707 Error(L, ".personality can't be used with .cantunwind directive"); 9708 UC.emitCantUnwindLocNotes(); 9709 return true; 9710 } 9711 if (UC.hasHandlerData()) { 9712 Error(L, ".personality must precede .handlerdata directive"); 9713 UC.emitHandlerDataLocNotes(); 9714 return true; 9715 } 9716 if (HasExistingPersonality) { 9717 Error(L, "multiple personality directives"); 9718 UC.emitPersonalityLocNotes(); 9719 return true; 9720 } 9721 9722 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9723 getTargetStreamer().emitPersonality(PR); 9724 return false; 9725 } 9726 9727 /// parseDirectiveHandlerData 9728 /// ::= .handlerdata 9729 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9730 if (parseToken(AsmToken::EndOfStatement, 9731 "unexpected token in '.handlerdata' directive")) 9732 return true; 9733 9734 UC.recordHandlerData(L); 9735 // Check the ordering of unwind directives 9736 if (!UC.hasFnStart()) 9737 return Error(L, ".fnstart must precede .personality directive"); 9738 if (UC.cantUnwind()) { 9739 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9740 UC.emitCantUnwindLocNotes(); 9741 return true; 9742 } 9743 9744 getTargetStreamer().emitHandlerData(); 9745 return false; 9746 } 9747 9748 /// parseDirectiveSetFP 9749 /// ::= .setfp fpreg, spreg [, offset] 9750 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9751 MCAsmParser &Parser = getParser(); 9752 // Check the ordering of unwind directives 9753 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9754 check(UC.hasHandlerData(), L, 9755 ".setfp must precede .handlerdata directive")) 9756 return true; 9757 9758 // Parse fpreg 9759 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9760 int FPReg = tryParseRegister(); 9761 9762 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9763 Parser.parseToken(AsmToken::Comma, "comma expected")) 9764 return true; 9765 9766 // Parse spreg 9767 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9768 int SPReg = tryParseRegister(); 9769 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9770 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9771 "register should be either $sp or the latest fp register")) 9772 return true; 9773 9774 // Update the frame pointer register 9775 UC.saveFPReg(FPReg); 9776 9777 // Parse offset 9778 int64_t Offset = 0; 9779 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9780 if (Parser.getTok().isNot(AsmToken::Hash) && 9781 Parser.getTok().isNot(AsmToken::Dollar)) 9782 return Error(Parser.getTok().getLoc(), "'#' expected"); 9783 Parser.Lex(); // skip hash token. 9784 9785 const MCExpr *OffsetExpr; 9786 SMLoc ExLoc = Parser.getTok().getLoc(); 9787 SMLoc EndLoc; 9788 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9789 return Error(ExLoc, "malformed setfp offset"); 9790 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9791 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9792 return true; 9793 Offset = CE->getValue(); 9794 } 9795 9796 if (Parser.parseToken(AsmToken::EndOfStatement)) 9797 return true; 9798 9799 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9800 static_cast<unsigned>(SPReg), Offset); 9801 return false; 9802 } 9803 9804 /// parseDirective 9805 /// ::= .pad offset 9806 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9807 MCAsmParser &Parser = getParser(); 9808 // Check the ordering of unwind directives 9809 if (!UC.hasFnStart()) 9810 return Error(L, ".fnstart must precede .pad directive"); 9811 if (UC.hasHandlerData()) 9812 return Error(L, ".pad must precede .handlerdata directive"); 9813 9814 // Parse the offset 9815 if (Parser.getTok().isNot(AsmToken::Hash) && 9816 Parser.getTok().isNot(AsmToken::Dollar)) 9817 return Error(Parser.getTok().getLoc(), "'#' expected"); 9818 Parser.Lex(); // skip hash token. 9819 9820 const MCExpr *OffsetExpr; 9821 SMLoc ExLoc = Parser.getTok().getLoc(); 9822 SMLoc EndLoc; 9823 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9824 return Error(ExLoc, "malformed pad offset"); 9825 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9826 if (!CE) 9827 return Error(ExLoc, "pad offset must be an immediate"); 9828 9829 if (parseToken(AsmToken::EndOfStatement, 9830 "unexpected token in '.pad' directive")) 9831 return true; 9832 9833 getTargetStreamer().emitPad(CE->getValue()); 9834 return false; 9835 } 9836 9837 /// parseDirectiveRegSave 9838 /// ::= .save { registers } 9839 /// ::= .vsave { registers } 9840 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9841 // Check the ordering of unwind directives 9842 if (!UC.hasFnStart()) 9843 return Error(L, ".fnstart must precede .save or .vsave directives"); 9844 if (UC.hasHandlerData()) 9845 return Error(L, ".save or .vsave must precede .handlerdata directive"); 9846 9847 // RAII object to make sure parsed operands are deleted. 9848 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9849 9850 // Parse the register list 9851 if (parseRegisterList(Operands) || 9852 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9853 return true; 9854 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9855 if (!IsVector && !Op.isRegList()) 9856 return Error(L, ".save expects GPR registers"); 9857 if (IsVector && !Op.isDPRRegList()) 9858 return Error(L, ".vsave expects DPR registers"); 9859 9860 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9861 return false; 9862 } 9863 9864 /// parseDirectiveInst 9865 /// ::= .inst opcode [, ...] 9866 /// ::= .inst.n opcode [, ...] 9867 /// ::= .inst.w opcode [, ...] 9868 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9869 int Width = 4; 9870 9871 if (isThumb()) { 9872 switch (Suffix) { 9873 case 'n': 9874 Width = 2; 9875 break; 9876 case 'w': 9877 break; 9878 default: 9879 return Error(Loc, "cannot determine Thumb instruction size, " 9880 "use inst.n/inst.w instead"); 9881 } 9882 } else { 9883 if (Suffix) 9884 return Error(Loc, "width suffixes are invalid in ARM mode"); 9885 } 9886 9887 auto parseOne = [&]() -> bool { 9888 const MCExpr *Expr; 9889 if (getParser().parseExpression(Expr)) 9890 return true; 9891 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9892 if (!Value) { 9893 return Error(Loc, "expected constant expression"); 9894 } 9895 9896 switch (Width) { 9897 case 2: 9898 if (Value->getValue() > 0xffff) 9899 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 9900 break; 9901 case 4: 9902 if (Value->getValue() > 0xffffffff) 9903 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 9904 " operand is too big"); 9905 break; 9906 default: 9907 llvm_unreachable("only supported widths are 2 and 4"); 9908 } 9909 9910 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9911 return false; 9912 }; 9913 9914 if (parseOptionalToken(AsmToken::EndOfStatement)) 9915 return Error(Loc, "expected expression following directive"); 9916 if (parseMany(parseOne)) 9917 return true; 9918 return false; 9919 } 9920 9921 /// parseDirectiveLtorg 9922 /// ::= .ltorg | .pool 9923 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9924 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9925 return true; 9926 getTargetStreamer().emitCurrentConstantPool(); 9927 return false; 9928 } 9929 9930 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9931 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 9932 9933 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9934 return true; 9935 9936 if (!Section) { 9937 getStreamer().InitSections(false); 9938 Section = getStreamer().getCurrentSectionOnly(); 9939 } 9940 9941 assert(Section && "must have section to emit alignment"); 9942 if (Section->UseCodeAlign()) 9943 getStreamer().EmitCodeAlignment(2); 9944 else 9945 getStreamer().EmitValueToAlignment(2); 9946 9947 return false; 9948 } 9949 9950 /// parseDirectivePersonalityIndex 9951 /// ::= .personalityindex index 9952 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9953 MCAsmParser &Parser = getParser(); 9954 bool HasExistingPersonality = UC.hasPersonality(); 9955 9956 const MCExpr *IndexExpression; 9957 SMLoc IndexLoc = Parser.getTok().getLoc(); 9958 if (Parser.parseExpression(IndexExpression) || 9959 parseToken(AsmToken::EndOfStatement, 9960 "unexpected token in '.personalityindex' directive")) { 9961 return true; 9962 } 9963 9964 UC.recordPersonalityIndex(L); 9965 9966 if (!UC.hasFnStart()) { 9967 return Error(L, ".fnstart must precede .personalityindex directive"); 9968 } 9969 if (UC.cantUnwind()) { 9970 Error(L, ".personalityindex cannot be used with .cantunwind"); 9971 UC.emitCantUnwindLocNotes(); 9972 return true; 9973 } 9974 if (UC.hasHandlerData()) { 9975 Error(L, ".personalityindex must precede .handlerdata directive"); 9976 UC.emitHandlerDataLocNotes(); 9977 return true; 9978 } 9979 if (HasExistingPersonality) { 9980 Error(L, "multiple personality directives"); 9981 UC.emitPersonalityLocNotes(); 9982 return true; 9983 } 9984 9985 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9986 if (!CE) 9987 return Error(IndexLoc, "index must be a constant number"); 9988 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 9989 return Error(IndexLoc, 9990 "personality routine index should be in range [0-3]"); 9991 9992 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9993 return false; 9994 } 9995 9996 /// parseDirectiveUnwindRaw 9997 /// ::= .unwind_raw offset, opcode [, opcode...] 9998 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9999 MCAsmParser &Parser = getParser(); 10000 int64_t StackOffset; 10001 const MCExpr *OffsetExpr; 10002 SMLoc OffsetLoc = getLexer().getLoc(); 10003 10004 if (!UC.hasFnStart()) 10005 return Error(L, ".fnstart must precede .unwind_raw directives"); 10006 if (getParser().parseExpression(OffsetExpr)) 10007 return Error(OffsetLoc, "expected expression"); 10008 10009 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10010 if (!CE) 10011 return Error(OffsetLoc, "offset must be a constant"); 10012 10013 StackOffset = CE->getValue(); 10014 10015 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 10016 return true; 10017 10018 SmallVector<uint8_t, 16> Opcodes; 10019 10020 auto parseOne = [&]() -> bool { 10021 const MCExpr *OE; 10022 SMLoc OpcodeLoc = getLexer().getLoc(); 10023 if (check(getLexer().is(AsmToken::EndOfStatement) || 10024 Parser.parseExpression(OE), 10025 OpcodeLoc, "expected opcode expression")) 10026 return true; 10027 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 10028 if (!OC) 10029 return Error(OpcodeLoc, "opcode value must be a constant"); 10030 const int64_t Opcode = OC->getValue(); 10031 if (Opcode & ~0xff) 10032 return Error(OpcodeLoc, "invalid opcode"); 10033 Opcodes.push_back(uint8_t(Opcode)); 10034 return false; 10035 }; 10036 10037 // Must have at least 1 element 10038 SMLoc OpcodeLoc = getLexer().getLoc(); 10039 if (parseOptionalToken(AsmToken::EndOfStatement)) 10040 return Error(OpcodeLoc, "expected opcode expression"); 10041 if (parseMany(parseOne)) 10042 return true; 10043 10044 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 10045 return false; 10046 } 10047 10048 /// parseDirectiveTLSDescSeq 10049 /// ::= .tlsdescseq tls-variable 10050 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 10051 MCAsmParser &Parser = getParser(); 10052 10053 if (getLexer().isNot(AsmToken::Identifier)) 10054 return TokError("expected variable after '.tlsdescseq' directive"); 10055 10056 const MCSymbolRefExpr *SRE = 10057 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10058 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10059 Lex(); 10060 10061 if (parseToken(AsmToken::EndOfStatement, 10062 "unexpected token in '.tlsdescseq' directive")) 10063 return true; 10064 10065 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10066 return false; 10067 } 10068 10069 /// parseDirectiveMovSP 10070 /// ::= .movsp reg [, #offset] 10071 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10072 MCAsmParser &Parser = getParser(); 10073 if (!UC.hasFnStart()) 10074 return Error(L, ".fnstart must precede .movsp directives"); 10075 if (UC.getFPReg() != ARM::SP) 10076 return Error(L, "unexpected .movsp directive"); 10077 10078 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10079 int SPReg = tryParseRegister(); 10080 if (SPReg == -1) 10081 return Error(SPRegLoc, "register expected"); 10082 if (SPReg == ARM::SP || SPReg == ARM::PC) 10083 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10084 10085 int64_t Offset = 0; 10086 if (Parser.parseOptionalToken(AsmToken::Comma)) { 10087 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 10088 return true; 10089 10090 const MCExpr *OffsetExpr; 10091 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10092 10093 if (Parser.parseExpression(OffsetExpr)) 10094 return Error(OffsetLoc, "malformed offset expression"); 10095 10096 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10097 if (!CE) 10098 return Error(OffsetLoc, "offset must be an immediate constant"); 10099 10100 Offset = CE->getValue(); 10101 } 10102 10103 if (parseToken(AsmToken::EndOfStatement, 10104 "unexpected token in '.movsp' directive")) 10105 return true; 10106 10107 getTargetStreamer().emitMovSP(SPReg, Offset); 10108 UC.saveFPReg(SPReg); 10109 10110 return false; 10111 } 10112 10113 /// parseDirectiveObjectArch 10114 /// ::= .object_arch name 10115 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10116 MCAsmParser &Parser = getParser(); 10117 if (getLexer().isNot(AsmToken::Identifier)) 10118 return Error(getLexer().getLoc(), "unexpected token"); 10119 10120 StringRef Arch = Parser.getTok().getString(); 10121 SMLoc ArchLoc = Parser.getTok().getLoc(); 10122 Lex(); 10123 10124 unsigned ID = ARM::parseArch(Arch); 10125 10126 if (ID == ARM::AK_INVALID) 10127 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10128 if (parseToken(AsmToken::EndOfStatement)) 10129 return true; 10130 10131 getTargetStreamer().emitObjectArch(ID); 10132 return false; 10133 } 10134 10135 /// parseDirectiveAlign 10136 /// ::= .align 10137 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10138 // NOTE: if this is not the end of the statement, fall back to the target 10139 // agnostic handling for this directive which will correctly handle this. 10140 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10141 // '.align' is target specifically handled to mean 2**2 byte alignment. 10142 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10143 assert(Section && "must have section to emit alignment"); 10144 if (Section->UseCodeAlign()) 10145 getStreamer().EmitCodeAlignment(4, 0); 10146 else 10147 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10148 return false; 10149 } 10150 return true; 10151 } 10152 10153 /// parseDirectiveThumbSet 10154 /// ::= .thumb_set name, value 10155 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10156 MCAsmParser &Parser = getParser(); 10157 10158 StringRef Name; 10159 if (check(Parser.parseIdentifier(Name), 10160 "expected identifier after '.thumb_set'") || 10161 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10162 return true; 10163 10164 MCSymbol *Sym; 10165 const MCExpr *Value; 10166 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10167 Parser, Sym, Value)) 10168 return true; 10169 10170 getTargetStreamer().emitThumbSet(Sym, Value); 10171 return false; 10172 } 10173 10174 /// Force static initialization. 10175 extern "C" void LLVMInitializeARMAsmParser() { 10176 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10177 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10178 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10179 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10180 } 10181 10182 #define GET_REGISTER_MATCHER 10183 #define GET_SUBTARGET_FEATURE_NAME 10184 #define GET_MATCHER_IMPLEMENTATION 10185 #include "ARMGenAsmMatcher.inc" 10186 10187 // FIXME: This structure should be moved inside ARMTargetParser 10188 // when we start to table-generate them, and we can use the ARM 10189 // flags below, that were generated by table-gen. 10190 static const struct { 10191 const unsigned Kind; 10192 const uint64_t ArchCheck; 10193 const FeatureBitset Features; 10194 } Extensions[] = { 10195 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10196 { ARM::AEK_CRYPTO, Feature_HasV8, 10197 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10198 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10199 { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10200 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 10201 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10202 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10203 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10204 // FIXME: Only available in A-class, isel not predicated 10205 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10206 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10207 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10208 // FIXME: Unsupported extensions. 10209 { ARM::AEK_OS, Feature_None, {} }, 10210 { ARM::AEK_IWMMXT, Feature_None, {} }, 10211 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10212 { ARM::AEK_MAVERICK, Feature_None, {} }, 10213 { ARM::AEK_XSCALE, Feature_None, {} }, 10214 }; 10215 10216 /// parseDirectiveArchExtension 10217 /// ::= .arch_extension [no]feature 10218 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10219 MCAsmParser &Parser = getParser(); 10220 10221 if (getLexer().isNot(AsmToken::Identifier)) 10222 return Error(getLexer().getLoc(), "expected architecture extension name"); 10223 10224 StringRef Name = Parser.getTok().getString(); 10225 SMLoc ExtLoc = Parser.getTok().getLoc(); 10226 Lex(); 10227 10228 if (parseToken(AsmToken::EndOfStatement, 10229 "unexpected token in '.arch_extension' directive")) 10230 return true; 10231 10232 bool EnableFeature = true; 10233 if (Name.startswith_lower("no")) { 10234 EnableFeature = false; 10235 Name = Name.substr(2); 10236 } 10237 unsigned FeatureKind = ARM::parseArchExt(Name); 10238 if (FeatureKind == ARM::AEK_INVALID) 10239 return Error(ExtLoc, "unknown architectural extension: " + Name); 10240 10241 for (const auto &Extension : Extensions) { 10242 if (Extension.Kind != FeatureKind) 10243 continue; 10244 10245 if (Extension.Features.none()) 10246 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10247 10248 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10249 return Error(ExtLoc, "architectural extension '" + Name + 10250 "' is not " 10251 "allowed for the current base architecture"); 10252 10253 MCSubtargetInfo &STI = copySTI(); 10254 FeatureBitset ToggleFeatures = EnableFeature 10255 ? (~STI.getFeatureBits() & Extension.Features) 10256 : ( STI.getFeatureBits() & Extension.Features); 10257 10258 uint64_t Features = 10259 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10260 setAvailableFeatures(Features); 10261 return false; 10262 } 10263 10264 return Error(ExtLoc, "unknown architectural extension: " + Name); 10265 } 10266 10267 // Define this matcher function after the auto-generated include so we 10268 // have the match class enum definitions. 10269 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10270 unsigned Kind) { 10271 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10272 // If the kind is a token for a literal immediate, check if our asm 10273 // operand matches. This is for InstAliases which have a fixed-value 10274 // immediate in the syntax. 10275 switch (Kind) { 10276 default: break; 10277 case MCK__35_0: 10278 if (Op.isImm()) 10279 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10280 if (CE->getValue() == 0) 10281 return Match_Success; 10282 break; 10283 case MCK_ModImm: 10284 if (Op.isImm()) { 10285 const MCExpr *SOExpr = Op.getImm(); 10286 int64_t Value; 10287 if (!SOExpr->evaluateAsAbsolute(Value)) 10288 return Match_Success; 10289 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10290 "expression value must be representable in 32 bits"); 10291 } 10292 break; 10293 case MCK_rGPR: 10294 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10295 return Match_Success; 10296 break; 10297 case MCK_GPRPair: 10298 if (Op.isReg() && 10299 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10300 return Match_Success; 10301 break; 10302 } 10303 return Match_InvalidOperand; 10304 } 10305