1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMFeatures.h" 10 #include "InstPrinter/ARMInstPrinter.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMMCExpr.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCInstrInfo.h" 32 #include "llvm/MC/MCObjectFileInfo.h" 33 #include "llvm/MC/MCParser/MCAsmLexer.h" 34 #include "llvm/MC/MCParser/MCAsmParser.h" 35 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 36 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 37 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 38 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSubtargetInfo.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/MC/SubtargetFeature.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/ARMEHABI.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/SMLoc.h" 53 #include "llvm/Support/TargetParser.h" 54 #include "llvm/Support/TargetRegistry.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstddef> 59 #include <cstdint> 60 #include <iterator> 61 #include <limits> 62 #include <memory> 63 #include <string> 64 #include <utility> 65 #include <vector> 66 67 #define DEBUG_TYPE "asm-parser" 68 69 using namespace llvm; 70 71 namespace { 72 73 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 74 75 static cl::opt<ImplicitItModeTy> ImplicitItMode( 76 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 77 cl::desc("Allow conditional instructions outdside of an IT block"), 78 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 79 "Accept in both ISAs, emit implicit ITs in Thumb"), 80 clEnumValN(ImplicitItModeTy::Never, "never", 81 "Warn in ARM, reject in Thumb"), 82 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 83 "Accept in ARM, reject in Thumb"), 84 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 85 "Warn in ARM, emit implicit ITs in Thumb"))); 86 87 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 88 cl::init(false)); 89 90 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 91 92 class UnwindContext { 93 using Locs = SmallVector<SMLoc, 4>; 94 95 MCAsmParser &Parser; 96 Locs FnStartLocs; 97 Locs CantUnwindLocs; 98 Locs PersonalityLocs; 99 Locs PersonalityIndexLocs; 100 Locs HandlerDataLocs; 101 int FPReg; 102 103 public: 104 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 105 106 bool hasFnStart() const { return !FnStartLocs.empty(); } 107 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 108 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 109 110 bool hasPersonality() const { 111 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 112 } 113 114 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 115 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 116 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 117 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 118 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 119 120 void saveFPReg(int Reg) { FPReg = Reg; } 121 int getFPReg() const { return FPReg; } 122 123 void emitFnStartLocNotes() const { 124 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 125 FI != FE; ++FI) 126 Parser.Note(*FI, ".fnstart was specified here"); 127 } 128 129 void emitCantUnwindLocNotes() const { 130 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 131 UE = CantUnwindLocs.end(); UI != UE; ++UI) 132 Parser.Note(*UI, ".cantunwind was specified here"); 133 } 134 135 void emitHandlerDataLocNotes() const { 136 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 137 HE = HandlerDataLocs.end(); HI != HE; ++HI) 138 Parser.Note(*HI, ".handlerdata was specified here"); 139 } 140 141 void emitPersonalityLocNotes() const { 142 for (Locs::const_iterator PI = PersonalityLocs.begin(), 143 PE = PersonalityLocs.end(), 144 PII = PersonalityIndexLocs.begin(), 145 PIE = PersonalityIndexLocs.end(); 146 PI != PE || PII != PIE;) { 147 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 148 Parser.Note(*PI++, ".personality was specified here"); 149 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 150 Parser.Note(*PII++, ".personalityindex was specified here"); 151 else 152 llvm_unreachable(".personality and .personalityindex cannot be " 153 "at the same location"); 154 } 155 } 156 157 void reset() { 158 FnStartLocs = Locs(); 159 CantUnwindLocs = Locs(); 160 PersonalityLocs = Locs(); 161 HandlerDataLocs = Locs(); 162 PersonalityIndexLocs = Locs(); 163 FPReg = ARM::SP; 164 } 165 }; 166 167 168 class ARMAsmParser : public MCTargetAsmParser { 169 const MCRegisterInfo *MRI; 170 UnwindContext UC; 171 172 ARMTargetStreamer &getTargetStreamer() { 173 assert(getParser().getStreamer().getTargetStreamer() && 174 "do not have a target streamer"); 175 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 176 return static_cast<ARMTargetStreamer &>(TS); 177 } 178 179 // Map of register aliases registers via the .req directive. 180 StringMap<unsigned> RegisterReqs; 181 182 bool NextSymbolIsThumb; 183 184 bool useImplicitITThumb() const { 185 return ImplicitItMode == ImplicitItModeTy::Always || 186 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 187 } 188 189 bool useImplicitITARM() const { 190 return ImplicitItMode == ImplicitItModeTy::Always || 191 ImplicitItMode == ImplicitItModeTy::ARMOnly; 192 } 193 194 struct { 195 ARMCC::CondCodes Cond; // Condition for IT block. 196 unsigned Mask:4; // Condition mask for instructions. 197 // Starting at first 1 (from lsb). 198 // '1' condition as indicated in IT. 199 // '0' inverse of condition (else). 200 // Count of instructions in IT block is 201 // 4 - trailingzeroes(mask) 202 // Note that this does not have the same encoding 203 // as in the IT instruction, which also depends 204 // on the low bit of the condition code. 205 206 unsigned CurPosition; // Current position in parsing of IT 207 // block. In range [0,4], with 0 being the IT 208 // instruction itself. Initialized according to 209 // count of instructions in block. ~0U if no 210 // active IT block. 211 212 bool IsExplicit; // true - The IT instruction was present in the 213 // input, we should not modify it. 214 // false - The IT instruction was added 215 // implicitly, we can extend it if that 216 // would be legal. 217 } ITState; 218 219 SmallVector<MCInst, 4> PendingConditionalInsts; 220 221 void flushPendingInstructions(MCStreamer &Out) override { 222 if (!inImplicitITBlock()) { 223 assert(PendingConditionalInsts.size() == 0); 224 return; 225 } 226 227 // Emit the IT instruction 228 unsigned Mask = getITMaskEncoding(); 229 MCInst ITInst; 230 ITInst.setOpcode(ARM::t2IT); 231 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 232 ITInst.addOperand(MCOperand::createImm(Mask)); 233 Out.EmitInstruction(ITInst, getSTI()); 234 235 // Emit the conditonal instructions 236 assert(PendingConditionalInsts.size() <= 4); 237 for (const MCInst &Inst : PendingConditionalInsts) { 238 Out.EmitInstruction(Inst, getSTI()); 239 } 240 PendingConditionalInsts.clear(); 241 242 // Clear the IT state 243 ITState.Mask = 0; 244 ITState.CurPosition = ~0U; 245 } 246 247 bool inITBlock() { return ITState.CurPosition != ~0U; } 248 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 249 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 250 251 bool lastInITBlock() { 252 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 253 } 254 255 void forwardITPosition() { 256 if (!inITBlock()) return; 257 // Move to the next instruction in the IT block, if there is one. If not, 258 // mark the block as done, except for implicit IT blocks, which we leave 259 // open until we find an instruction that can't be added to it. 260 unsigned TZ = countTrailingZeros(ITState.Mask); 261 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 262 ITState.CurPosition = ~0U; // Done with the IT block after this. 263 } 264 265 // Rewind the state of the current IT block, removing the last slot from it. 266 void rewindImplicitITPosition() { 267 assert(inImplicitITBlock()); 268 assert(ITState.CurPosition > 1); 269 ITState.CurPosition--; 270 unsigned TZ = countTrailingZeros(ITState.Mask); 271 unsigned NewMask = 0; 272 NewMask |= ITState.Mask & (0xC << TZ); 273 NewMask |= 0x2 << TZ; 274 ITState.Mask = NewMask; 275 } 276 277 // Rewind the state of the current IT block, removing the last slot from it. 278 // If we were at the first slot, this closes the IT block. 279 void discardImplicitITBlock() { 280 assert(inImplicitITBlock()); 281 assert(ITState.CurPosition == 1); 282 ITState.CurPosition = ~0U; 283 } 284 285 // Return the low-subreg of a given Q register. 286 unsigned getDRegFromQReg(unsigned QReg) const { 287 return MRI->getSubReg(QReg, ARM::dsub_0); 288 } 289 290 // Get the encoding of the IT mask, as it will appear in an IT instruction. 291 unsigned getITMaskEncoding() { 292 assert(inITBlock()); 293 unsigned Mask = ITState.Mask; 294 unsigned TZ = countTrailingZeros(Mask); 295 if ((ITState.Cond & 1) == 0) { 296 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 297 Mask ^= (0xE << TZ) & 0xF; 298 } 299 return Mask; 300 } 301 302 // Get the condition code corresponding to the current IT block slot. 303 ARMCC::CondCodes currentITCond() { 304 unsigned MaskBit; 305 if (ITState.CurPosition == 1) 306 MaskBit = 1; 307 else 308 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 309 310 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 311 } 312 313 // Invert the condition of the current IT block slot without changing any 314 // other slots in the same block. 315 void invertCurrentITCondition() { 316 if (ITState.CurPosition == 1) { 317 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 318 } else { 319 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 320 } 321 } 322 323 // Returns true if the current IT block is full (all 4 slots used). 324 bool isITBlockFull() { 325 return inITBlock() && (ITState.Mask & 1); 326 } 327 328 // Extend the current implicit IT block to have one more slot with the given 329 // condition code. 330 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 331 assert(inImplicitITBlock()); 332 assert(!isITBlockFull()); 333 assert(Cond == ITState.Cond || 334 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 335 unsigned TZ = countTrailingZeros(ITState.Mask); 336 unsigned NewMask = 0; 337 // Keep any existing condition bits. 338 NewMask |= ITState.Mask & (0xE << TZ); 339 // Insert the new condition bit. 340 NewMask |= (Cond == ITState.Cond) << TZ; 341 // Move the trailing 1 down one bit. 342 NewMask |= 1 << (TZ - 1); 343 ITState.Mask = NewMask; 344 } 345 346 // Create a new implicit IT block with a dummy condition code. 347 void startImplicitITBlock() { 348 assert(!inITBlock()); 349 ITState.Cond = ARMCC::AL; 350 ITState.Mask = 8; 351 ITState.CurPosition = 1; 352 ITState.IsExplicit = false; 353 } 354 355 // Create a new explicit IT block with the given condition and mask. The mask 356 // should be in the parsed format, with a 1 implying 't', regardless of the 357 // low bit of the condition. 358 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 359 assert(!inITBlock()); 360 ITState.Cond = Cond; 361 ITState.Mask = Mask; 362 ITState.CurPosition = 0; 363 ITState.IsExplicit = true; 364 } 365 366 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 367 return getParser().Note(L, Msg, Range); 368 } 369 370 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 371 return getParser().Warning(L, Msg, Range); 372 } 373 374 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 375 return getParser().Error(L, Msg, Range); 376 } 377 378 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 379 unsigned ListNo, bool IsARPop = false); 380 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 381 unsigned ListNo); 382 383 int tryParseRegister(); 384 bool tryParseRegisterWithWriteBack(OperandVector &); 385 int tryParseShiftRegister(OperandVector &); 386 bool parseRegisterList(OperandVector &); 387 bool parseMemory(OperandVector &); 388 bool parseOperand(OperandVector &, StringRef Mnemonic); 389 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 390 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 391 unsigned &ShiftAmount); 392 bool parseLiteralValues(unsigned Size, SMLoc L); 393 bool parseDirectiveThumb(SMLoc L); 394 bool parseDirectiveARM(SMLoc L); 395 bool parseDirectiveThumbFunc(SMLoc L); 396 bool parseDirectiveCode(SMLoc L); 397 bool parseDirectiveSyntax(SMLoc L); 398 bool parseDirectiveReq(StringRef Name, SMLoc L); 399 bool parseDirectiveUnreq(SMLoc L); 400 bool parseDirectiveArch(SMLoc L); 401 bool parseDirectiveEabiAttr(SMLoc L); 402 bool parseDirectiveCPU(SMLoc L); 403 bool parseDirectiveFPU(SMLoc L); 404 bool parseDirectiveFnStart(SMLoc L); 405 bool parseDirectiveFnEnd(SMLoc L); 406 bool parseDirectiveCantUnwind(SMLoc L); 407 bool parseDirectivePersonality(SMLoc L); 408 bool parseDirectiveHandlerData(SMLoc L); 409 bool parseDirectiveSetFP(SMLoc L); 410 bool parseDirectivePad(SMLoc L); 411 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 412 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 413 bool parseDirectiveLtorg(SMLoc L); 414 bool parseDirectiveEven(SMLoc L); 415 bool parseDirectivePersonalityIndex(SMLoc L); 416 bool parseDirectiveUnwindRaw(SMLoc L); 417 bool parseDirectiveTLSDescSeq(SMLoc L); 418 bool parseDirectiveMovSP(SMLoc L); 419 bool parseDirectiveObjectArch(SMLoc L); 420 bool parseDirectiveArchExtension(SMLoc L); 421 bool parseDirectiveAlign(SMLoc L); 422 bool parseDirectiveThumbSet(SMLoc L); 423 424 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 425 bool &CarrySetting, unsigned &ProcessorIMod, 426 StringRef &ITMask); 427 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 428 bool &CanAcceptCarrySet, 429 bool &CanAcceptPredicationCode); 430 431 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 432 OperandVector &Operands); 433 bool isThumb() const { 434 // FIXME: Can tablegen auto-generate this? 435 return getSTI().getFeatureBits()[ARM::ModeThumb]; 436 } 437 438 bool isThumbOne() const { 439 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 440 } 441 442 bool isThumbTwo() const { 443 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 444 } 445 446 bool hasThumb() const { 447 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 448 } 449 450 bool hasThumb2() const { 451 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 452 } 453 454 bool hasV6Ops() const { 455 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 456 } 457 458 bool hasV6T2Ops() const { 459 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 460 } 461 462 bool hasV6MOps() const { 463 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 464 } 465 466 bool hasV7Ops() const { 467 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 468 } 469 470 bool hasV8Ops() const { 471 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 472 } 473 474 bool hasV8MBaseline() const { 475 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 476 } 477 478 bool hasV8MMainline() const { 479 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 480 } 481 482 bool has8MSecExt() const { 483 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 484 } 485 486 bool hasARM() const { 487 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 488 } 489 490 bool hasDSP() const { 491 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 492 } 493 494 bool hasD16() const { 495 return getSTI().getFeatureBits()[ARM::FeatureD16]; 496 } 497 498 bool hasV8_1aOps() const { 499 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 500 } 501 502 bool hasRAS() const { 503 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 504 } 505 506 void SwitchMode() { 507 MCSubtargetInfo &STI = copySTI(); 508 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 509 setAvailableFeatures(FB); 510 } 511 512 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 513 514 bool isMClass() const { 515 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 516 } 517 518 /// @name Auto-generated Match Functions 519 /// { 520 521 #define GET_ASSEMBLER_HEADER 522 #include "ARMGenAsmMatcher.inc" 523 524 /// } 525 526 OperandMatchResultTy parseITCondCode(OperandVector &); 527 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 528 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 529 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 530 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 531 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 532 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 533 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 534 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 535 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 536 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 537 int High); 538 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 539 return parsePKHImm(O, "lsl", 0, 31); 540 } 541 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 542 return parsePKHImm(O, "asr", 1, 32); 543 } 544 OperandMatchResultTy parseSetEndImm(OperandVector &); 545 OperandMatchResultTy parseShifterImm(OperandVector &); 546 OperandMatchResultTy parseRotImm(OperandVector &); 547 OperandMatchResultTy parseModImm(OperandVector &); 548 OperandMatchResultTy parseBitfield(OperandVector &); 549 OperandMatchResultTy parsePostIdxReg(OperandVector &); 550 OperandMatchResultTy parseAM3Offset(OperandVector &); 551 OperandMatchResultTy parseFPImm(OperandVector &); 552 OperandMatchResultTy parseVectorList(OperandVector &); 553 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 554 SMLoc &EndLoc); 555 556 // Asm Match Converter Methods 557 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 558 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 559 560 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 561 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 562 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 563 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 564 bool isITBlockTerminator(MCInst &Inst) const; 565 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 566 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 567 bool Load, bool ARMMode, bool Writeback); 568 569 public: 570 enum ARMMatchResultTy { 571 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 572 Match_RequiresNotITBlock, 573 Match_RequiresV6, 574 Match_RequiresThumb2, 575 Match_RequiresV8, 576 Match_RequiresFlagSetting, 577 #define GET_OPERAND_DIAGNOSTIC_TYPES 578 #include "ARMGenAsmMatcher.inc" 579 580 }; 581 582 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 583 const MCInstrInfo &MII, const MCTargetOptions &Options) 584 : MCTargetAsmParser(Options, STI, MII), UC(Parser) { 585 MCAsmParserExtension::Initialize(Parser); 586 587 // Cache the MCRegisterInfo. 588 MRI = getContext().getRegisterInfo(); 589 590 // Initialize the set of available features. 591 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 592 593 // Add build attributes based on the selected target. 594 if (AddBuildAttributes) 595 getTargetStreamer().emitTargetAttributes(STI); 596 597 // Not in an ITBlock to start with. 598 ITState.CurPosition = ~0U; 599 600 NextSymbolIsThumb = false; 601 } 602 603 // Implementation of the MCTargetAsmParser interface: 604 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 605 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 606 SMLoc NameLoc, OperandVector &Operands) override; 607 bool ParseDirective(AsmToken DirectiveID) override; 608 609 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 610 unsigned Kind) override; 611 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 612 613 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 614 OperandVector &Operands, MCStreamer &Out, 615 uint64_t &ErrorInfo, 616 bool MatchingInlineAsm) override; 617 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 618 SmallVectorImpl<NearMissInfo> &NearMisses, 619 bool MatchingInlineAsm, bool &EmitInITBlock, 620 MCStreamer &Out); 621 622 struct NearMissMessage { 623 SMLoc Loc; 624 SmallString<128> Message; 625 }; 626 627 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 628 629 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 630 SmallVectorImpl<NearMissMessage> &NearMissesOut, 631 SMLoc IDLoc, OperandVector &Operands); 632 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 633 OperandVector &Operands); 634 635 void doBeforeLabelEmit(MCSymbol *Symbol) override; 636 637 void onLabelParsed(MCSymbol *Symbol) override; 638 }; 639 640 /// ARMOperand - Instances of this class represent a parsed ARM machine 641 /// operand. 642 class ARMOperand : public MCParsedAsmOperand { 643 enum KindTy { 644 k_CondCode, 645 k_CCOut, 646 k_ITCondMask, 647 k_CoprocNum, 648 k_CoprocReg, 649 k_CoprocOption, 650 k_Immediate, 651 k_MemBarrierOpt, 652 k_InstSyncBarrierOpt, 653 k_TraceSyncBarrierOpt, 654 k_Memory, 655 k_PostIndexRegister, 656 k_MSRMask, 657 k_BankedReg, 658 k_ProcIFlags, 659 k_VectorIndex, 660 k_Register, 661 k_RegisterList, 662 k_DPRRegisterList, 663 k_SPRRegisterList, 664 k_VectorList, 665 k_VectorListAllLanes, 666 k_VectorListIndexed, 667 k_ShiftedRegister, 668 k_ShiftedImmediate, 669 k_ShifterImmediate, 670 k_RotateImmediate, 671 k_ModifiedImmediate, 672 k_ConstantPoolImmediate, 673 k_BitfieldDescriptor, 674 k_Token, 675 } Kind; 676 677 SMLoc StartLoc, EndLoc, AlignmentLoc; 678 SmallVector<unsigned, 8> Registers; 679 680 struct CCOp { 681 ARMCC::CondCodes Val; 682 }; 683 684 struct CopOp { 685 unsigned Val; 686 }; 687 688 struct CoprocOptionOp { 689 unsigned Val; 690 }; 691 692 struct ITMaskOp { 693 unsigned Mask:4; 694 }; 695 696 struct MBOptOp { 697 ARM_MB::MemBOpt Val; 698 }; 699 700 struct ISBOptOp { 701 ARM_ISB::InstSyncBOpt Val; 702 }; 703 704 struct TSBOptOp { 705 ARM_TSB::TraceSyncBOpt Val; 706 }; 707 708 struct IFlagsOp { 709 ARM_PROC::IFlags Val; 710 }; 711 712 struct MMaskOp { 713 unsigned Val; 714 }; 715 716 struct BankedRegOp { 717 unsigned Val; 718 }; 719 720 struct TokOp { 721 const char *Data; 722 unsigned Length; 723 }; 724 725 struct RegOp { 726 unsigned RegNum; 727 }; 728 729 // A vector register list is a sequential list of 1 to 4 registers. 730 struct VectorListOp { 731 unsigned RegNum; 732 unsigned Count; 733 unsigned LaneIndex; 734 bool isDoubleSpaced; 735 }; 736 737 struct VectorIndexOp { 738 unsigned Val; 739 }; 740 741 struct ImmOp { 742 const MCExpr *Val; 743 }; 744 745 /// Combined record for all forms of ARM address expressions. 746 struct MemoryOp { 747 unsigned BaseRegNum; 748 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 749 // was specified. 750 const MCConstantExpr *OffsetImm; // Offset immediate value 751 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 752 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 753 unsigned ShiftImm; // shift for OffsetReg. 754 unsigned Alignment; // 0 = no alignment specified 755 // n = alignment in bytes (2, 4, 8, 16, or 32) 756 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 757 }; 758 759 struct PostIdxRegOp { 760 unsigned RegNum; 761 bool isAdd; 762 ARM_AM::ShiftOpc ShiftTy; 763 unsigned ShiftImm; 764 }; 765 766 struct ShifterImmOp { 767 bool isASR; 768 unsigned Imm; 769 }; 770 771 struct RegShiftedRegOp { 772 ARM_AM::ShiftOpc ShiftTy; 773 unsigned SrcReg; 774 unsigned ShiftReg; 775 unsigned ShiftImm; 776 }; 777 778 struct RegShiftedImmOp { 779 ARM_AM::ShiftOpc ShiftTy; 780 unsigned SrcReg; 781 unsigned ShiftImm; 782 }; 783 784 struct RotImmOp { 785 unsigned Imm; 786 }; 787 788 struct ModImmOp { 789 unsigned Bits; 790 unsigned Rot; 791 }; 792 793 struct BitfieldOp { 794 unsigned LSB; 795 unsigned Width; 796 }; 797 798 union { 799 struct CCOp CC; 800 struct CopOp Cop; 801 struct CoprocOptionOp CoprocOption; 802 struct MBOptOp MBOpt; 803 struct ISBOptOp ISBOpt; 804 struct TSBOptOp TSBOpt; 805 struct ITMaskOp ITMask; 806 struct IFlagsOp IFlags; 807 struct MMaskOp MMask; 808 struct BankedRegOp BankedReg; 809 struct TokOp Tok; 810 struct RegOp Reg; 811 struct VectorListOp VectorList; 812 struct VectorIndexOp VectorIndex; 813 struct ImmOp Imm; 814 struct MemoryOp Memory; 815 struct PostIdxRegOp PostIdxReg; 816 struct ShifterImmOp ShifterImm; 817 struct RegShiftedRegOp RegShiftedReg; 818 struct RegShiftedImmOp RegShiftedImm; 819 struct RotImmOp RotImm; 820 struct ModImmOp ModImm; 821 struct BitfieldOp Bitfield; 822 }; 823 824 public: 825 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 826 827 /// getStartLoc - Get the location of the first token of this operand. 828 SMLoc getStartLoc() const override { return StartLoc; } 829 830 /// getEndLoc - Get the location of the last token of this operand. 831 SMLoc getEndLoc() const override { return EndLoc; } 832 833 /// getLocRange - Get the range between the first and last token of this 834 /// operand. 835 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 836 837 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 838 SMLoc getAlignmentLoc() const { 839 assert(Kind == k_Memory && "Invalid access!"); 840 return AlignmentLoc; 841 } 842 843 ARMCC::CondCodes getCondCode() const { 844 assert(Kind == k_CondCode && "Invalid access!"); 845 return CC.Val; 846 } 847 848 unsigned getCoproc() const { 849 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 850 return Cop.Val; 851 } 852 853 StringRef getToken() const { 854 assert(Kind == k_Token && "Invalid access!"); 855 return StringRef(Tok.Data, Tok.Length); 856 } 857 858 unsigned getReg() const override { 859 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 860 return Reg.RegNum; 861 } 862 863 const SmallVectorImpl<unsigned> &getRegList() const { 864 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 865 Kind == k_SPRRegisterList) && "Invalid access!"); 866 return Registers; 867 } 868 869 const MCExpr *getImm() const { 870 assert(isImm() && "Invalid access!"); 871 return Imm.Val; 872 } 873 874 const MCExpr *getConstantPoolImm() const { 875 assert(isConstantPoolImm() && "Invalid access!"); 876 return Imm.Val; 877 } 878 879 unsigned getVectorIndex() const { 880 assert(Kind == k_VectorIndex && "Invalid access!"); 881 return VectorIndex.Val; 882 } 883 884 ARM_MB::MemBOpt getMemBarrierOpt() const { 885 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 886 return MBOpt.Val; 887 } 888 889 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 890 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 891 return ISBOpt.Val; 892 } 893 894 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 895 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 896 return TSBOpt.Val; 897 } 898 899 ARM_PROC::IFlags getProcIFlags() const { 900 assert(Kind == k_ProcIFlags && "Invalid access!"); 901 return IFlags.Val; 902 } 903 904 unsigned getMSRMask() const { 905 assert(Kind == k_MSRMask && "Invalid access!"); 906 return MMask.Val; 907 } 908 909 unsigned getBankedReg() const { 910 assert(Kind == k_BankedReg && "Invalid access!"); 911 return BankedReg.Val; 912 } 913 914 bool isCoprocNum() const { return Kind == k_CoprocNum; } 915 bool isCoprocReg() const { return Kind == k_CoprocReg; } 916 bool isCoprocOption() const { return Kind == k_CoprocOption; } 917 bool isCondCode() const { return Kind == k_CondCode; } 918 bool isCCOut() const { return Kind == k_CCOut; } 919 bool isITMask() const { return Kind == k_ITCondMask; } 920 bool isITCondCode() const { return Kind == k_CondCode; } 921 bool isImm() const override { 922 return Kind == k_Immediate; 923 } 924 925 bool isARMBranchTarget() const { 926 if (!isImm()) return false; 927 928 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 929 return CE->getValue() % 4 == 0; 930 return true; 931 } 932 933 934 bool isThumbBranchTarget() const { 935 if (!isImm()) return false; 936 937 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 938 return CE->getValue() % 2 == 0; 939 return true; 940 } 941 942 // checks whether this operand is an unsigned offset which fits is a field 943 // of specified width and scaled by a specific number of bits 944 template<unsigned width, unsigned scale> 945 bool isUnsignedOffset() const { 946 if (!isImm()) return false; 947 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 948 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 949 int64_t Val = CE->getValue(); 950 int64_t Align = 1LL << scale; 951 int64_t Max = Align * ((1LL << width) - 1); 952 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 953 } 954 return false; 955 } 956 957 // checks whether this operand is an signed offset which fits is a field 958 // of specified width and scaled by a specific number of bits 959 template<unsigned width, unsigned scale> 960 bool isSignedOffset() const { 961 if (!isImm()) return false; 962 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 963 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 964 int64_t Val = CE->getValue(); 965 int64_t Align = 1LL << scale; 966 int64_t Max = Align * ((1LL << (width-1)) - 1); 967 int64_t Min = -Align * (1LL << (width-1)); 968 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 969 } 970 return false; 971 } 972 973 // checks whether this operand is a memory operand computed as an offset 974 // applied to PC. the offset may have 8 bits of magnitude and is represented 975 // with two bits of shift. textually it may be either [pc, #imm], #imm or 976 // relocable expression... 977 bool isThumbMemPC() const { 978 int64_t Val = 0; 979 if (isImm()) { 980 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 981 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 982 if (!CE) return false; 983 Val = CE->getValue(); 984 } 985 else if (isMem()) { 986 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 987 if(Memory.BaseRegNum != ARM::PC) return false; 988 Val = Memory.OffsetImm->getValue(); 989 } 990 else return false; 991 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 992 } 993 994 bool isFPImm() const { 995 if (!isImm()) return false; 996 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 997 if (!CE) return false; 998 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 999 return Val != -1; 1000 } 1001 1002 template<int64_t N, int64_t M> 1003 bool isImmediate() const { 1004 if (!isImm()) return false; 1005 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1006 if (!CE) return false; 1007 int64_t Value = CE->getValue(); 1008 return Value >= N && Value <= M; 1009 } 1010 1011 template<int64_t N, int64_t M> 1012 bool isImmediateS4() const { 1013 if (!isImm()) return false; 1014 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1015 if (!CE) return false; 1016 int64_t Value = CE->getValue(); 1017 return ((Value & 3) == 0) && Value >= N && Value <= M; 1018 } 1019 1020 bool isFBits16() const { 1021 return isImmediate<0, 17>(); 1022 } 1023 bool isFBits32() const { 1024 return isImmediate<1, 33>(); 1025 } 1026 bool isImm8s4() const { 1027 return isImmediateS4<-1020, 1020>(); 1028 } 1029 bool isImm0_1020s4() const { 1030 return isImmediateS4<0, 1020>(); 1031 } 1032 bool isImm0_508s4() const { 1033 return isImmediateS4<0, 508>(); 1034 } 1035 bool isImm0_508s4Neg() const { 1036 if (!isImm()) return false; 1037 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1038 if (!CE) return false; 1039 int64_t Value = -CE->getValue(); 1040 // explicitly exclude zero. we want that to use the normal 0_508 version. 1041 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1042 } 1043 1044 bool isImm0_4095Neg() const { 1045 if (!isImm()) return false; 1046 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1047 if (!CE) return false; 1048 // isImm0_4095Neg is used with 32-bit immediates only. 1049 // 32-bit immediates are zero extended to 64-bit when parsed, 1050 // thus simple -CE->getValue() results in a big negative number, 1051 // not a small positive number as intended 1052 if ((CE->getValue() >> 32) > 0) return false; 1053 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1054 return Value > 0 && Value < 4096; 1055 } 1056 1057 bool isImm0_7() const { 1058 return isImmediate<0, 7>(); 1059 } 1060 1061 bool isImm1_16() const { 1062 return isImmediate<1, 16>(); 1063 } 1064 1065 bool isImm1_32() const { 1066 return isImmediate<1, 32>(); 1067 } 1068 1069 bool isImm8_255() const { 1070 return isImmediate<8, 255>(); 1071 } 1072 1073 bool isImm256_65535Expr() const { 1074 if (!isImm()) return false; 1075 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1076 // If it's not a constant expression, it'll generate a fixup and be 1077 // handled later. 1078 if (!CE) return true; 1079 int64_t Value = CE->getValue(); 1080 return Value >= 256 && Value < 65536; 1081 } 1082 1083 bool isImm0_65535Expr() const { 1084 if (!isImm()) return false; 1085 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1086 // If it's not a constant expression, it'll generate a fixup and be 1087 // handled later. 1088 if (!CE) return true; 1089 int64_t Value = CE->getValue(); 1090 return Value >= 0 && Value < 65536; 1091 } 1092 1093 bool isImm24bit() const { 1094 return isImmediate<0, 0xffffff + 1>(); 1095 } 1096 1097 bool isImmThumbSR() const { 1098 return isImmediate<1, 33>(); 1099 } 1100 1101 bool isPKHLSLImm() const { 1102 return isImmediate<0, 32>(); 1103 } 1104 1105 bool isPKHASRImm() const { 1106 return isImmediate<0, 33>(); 1107 } 1108 1109 bool isAdrLabel() const { 1110 // If we have an immediate that's not a constant, treat it as a label 1111 // reference needing a fixup. 1112 if (isImm() && !isa<MCConstantExpr>(getImm())) 1113 return true; 1114 1115 // If it is a constant, it must fit into a modified immediate encoding. 1116 if (!isImm()) return false; 1117 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1118 if (!CE) return false; 1119 int64_t Value = CE->getValue(); 1120 return (ARM_AM::getSOImmVal(Value) != -1 || 1121 ARM_AM::getSOImmVal(-Value) != -1); 1122 } 1123 1124 bool isT2SOImm() const { 1125 // If we have an immediate that's not a constant, treat it as an expression 1126 // needing a fixup. 1127 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1128 // We want to avoid matching :upper16: and :lower16: as we want these 1129 // expressions to match in isImm0_65535Expr() 1130 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1131 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1132 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1133 } 1134 if (!isImm()) return false; 1135 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1136 if (!CE) return false; 1137 int64_t Value = CE->getValue(); 1138 return ARM_AM::getT2SOImmVal(Value) != -1; 1139 } 1140 1141 bool isT2SOImmNot() const { 1142 if (!isImm()) return false; 1143 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1144 if (!CE) return false; 1145 int64_t Value = CE->getValue(); 1146 return ARM_AM::getT2SOImmVal(Value) == -1 && 1147 ARM_AM::getT2SOImmVal(~Value) != -1; 1148 } 1149 1150 bool isT2SOImmNeg() const { 1151 if (!isImm()) return false; 1152 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1153 if (!CE) return false; 1154 int64_t Value = CE->getValue(); 1155 // Only use this when not representable as a plain so_imm. 1156 return ARM_AM::getT2SOImmVal(Value) == -1 && 1157 ARM_AM::getT2SOImmVal(-Value) != -1; 1158 } 1159 1160 bool isSetEndImm() const { 1161 if (!isImm()) return false; 1162 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1163 if (!CE) return false; 1164 int64_t Value = CE->getValue(); 1165 return Value == 1 || Value == 0; 1166 } 1167 1168 bool isReg() const override { return Kind == k_Register; } 1169 bool isRegList() const { return Kind == k_RegisterList; } 1170 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1171 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1172 bool isToken() const override { return Kind == k_Token; } 1173 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1174 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1175 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1176 bool isMem() const override { 1177 if (Kind != k_Memory) 1178 return false; 1179 if (Memory.BaseRegNum && 1180 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1181 return false; 1182 if (Memory.OffsetRegNum && 1183 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1184 return false; 1185 return true; 1186 } 1187 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1188 bool isRegShiftedReg() const { 1189 return Kind == k_ShiftedRegister && 1190 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1191 RegShiftedReg.SrcReg) && 1192 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1193 RegShiftedReg.ShiftReg); 1194 } 1195 bool isRegShiftedImm() const { 1196 return Kind == k_ShiftedImmediate && 1197 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1198 RegShiftedImm.SrcReg); 1199 } 1200 bool isRotImm() const { return Kind == k_RotateImmediate; } 1201 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1202 1203 bool isModImmNot() const { 1204 if (!isImm()) return false; 1205 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1206 if (!CE) return false; 1207 int64_t Value = CE->getValue(); 1208 return ARM_AM::getSOImmVal(~Value) != -1; 1209 } 1210 1211 bool isModImmNeg() const { 1212 if (!isImm()) return false; 1213 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1214 if (!CE) return false; 1215 int64_t Value = CE->getValue(); 1216 return ARM_AM::getSOImmVal(Value) == -1 && 1217 ARM_AM::getSOImmVal(-Value) != -1; 1218 } 1219 1220 bool isThumbModImmNeg1_7() const { 1221 if (!isImm()) return false; 1222 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1223 if (!CE) return false; 1224 int32_t Value = -(int32_t)CE->getValue(); 1225 return 0 < Value && Value < 8; 1226 } 1227 1228 bool isThumbModImmNeg8_255() const { 1229 if (!isImm()) return false; 1230 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1231 if (!CE) return false; 1232 int32_t Value = -(int32_t)CE->getValue(); 1233 return 7 < Value && Value < 256; 1234 } 1235 1236 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1237 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1238 bool isPostIdxRegShifted() const { 1239 return Kind == k_PostIndexRegister && 1240 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1241 } 1242 bool isPostIdxReg() const { 1243 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1244 } 1245 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1246 if (!isMem()) 1247 return false; 1248 // No offset of any kind. 1249 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1250 (alignOK || Memory.Alignment == Alignment); 1251 } 1252 bool isMemPCRelImm12() const { 1253 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1254 return false; 1255 // Base register must be PC. 1256 if (Memory.BaseRegNum != ARM::PC) 1257 return false; 1258 // Immediate offset in range [-4095, 4095]. 1259 if (!Memory.OffsetImm) return true; 1260 int64_t Val = Memory.OffsetImm->getValue(); 1261 return (Val > -4096 && Val < 4096) || 1262 (Val == std::numeric_limits<int32_t>::min()); 1263 } 1264 1265 bool isAlignedMemory() const { 1266 return isMemNoOffset(true); 1267 } 1268 1269 bool isAlignedMemoryNone() const { 1270 return isMemNoOffset(false, 0); 1271 } 1272 1273 bool isDupAlignedMemoryNone() const { 1274 return isMemNoOffset(false, 0); 1275 } 1276 1277 bool isAlignedMemory16() const { 1278 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1279 return true; 1280 return isMemNoOffset(false, 0); 1281 } 1282 1283 bool isDupAlignedMemory16() const { 1284 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1285 return true; 1286 return isMemNoOffset(false, 0); 1287 } 1288 1289 bool isAlignedMemory32() const { 1290 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1291 return true; 1292 return isMemNoOffset(false, 0); 1293 } 1294 1295 bool isDupAlignedMemory32() const { 1296 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1297 return true; 1298 return isMemNoOffset(false, 0); 1299 } 1300 1301 bool isAlignedMemory64() const { 1302 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1303 return true; 1304 return isMemNoOffset(false, 0); 1305 } 1306 1307 bool isDupAlignedMemory64() const { 1308 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1309 return true; 1310 return isMemNoOffset(false, 0); 1311 } 1312 1313 bool isAlignedMemory64or128() const { 1314 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1315 return true; 1316 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1317 return true; 1318 return isMemNoOffset(false, 0); 1319 } 1320 1321 bool isDupAlignedMemory64or128() const { 1322 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1323 return true; 1324 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1325 return true; 1326 return isMemNoOffset(false, 0); 1327 } 1328 1329 bool isAlignedMemory64or128or256() const { 1330 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1331 return true; 1332 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1333 return true; 1334 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1335 return true; 1336 return isMemNoOffset(false, 0); 1337 } 1338 1339 bool isAddrMode2() const { 1340 if (!isMem() || Memory.Alignment != 0) return false; 1341 // Check for register offset. 1342 if (Memory.OffsetRegNum) return true; 1343 // Immediate offset in range [-4095, 4095]. 1344 if (!Memory.OffsetImm) return true; 1345 int64_t Val = Memory.OffsetImm->getValue(); 1346 return Val > -4096 && Val < 4096; 1347 } 1348 1349 bool isAM2OffsetImm() const { 1350 if (!isImm()) return false; 1351 // Immediate offset in range [-4095, 4095]. 1352 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1353 if (!CE) return false; 1354 int64_t Val = CE->getValue(); 1355 return (Val == std::numeric_limits<int32_t>::min()) || 1356 (Val > -4096 && Val < 4096); 1357 } 1358 1359 bool isAddrMode3() const { 1360 // If we have an immediate that's not a constant, treat it as a label 1361 // reference needing a fixup. If it is a constant, it's something else 1362 // and we reject it. 1363 if (isImm() && !isa<MCConstantExpr>(getImm())) 1364 return true; 1365 if (!isMem() || Memory.Alignment != 0) return false; 1366 // No shifts are legal for AM3. 1367 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1368 // Check for register offset. 1369 if (Memory.OffsetRegNum) return true; 1370 // Immediate offset in range [-255, 255]. 1371 if (!Memory.OffsetImm) return true; 1372 int64_t Val = Memory.OffsetImm->getValue(); 1373 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1374 // have to check for this too. 1375 return (Val > -256 && Val < 256) || 1376 Val == std::numeric_limits<int32_t>::min(); 1377 } 1378 1379 bool isAM3Offset() const { 1380 if (isPostIdxReg()) 1381 return true; 1382 if (!isImm()) 1383 return false; 1384 // Immediate offset in range [-255, 255]. 1385 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1386 if (!CE) return false; 1387 int64_t Val = CE->getValue(); 1388 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1389 return (Val > -256 && Val < 256) || 1390 Val == std::numeric_limits<int32_t>::min(); 1391 } 1392 1393 bool isAddrMode5() const { 1394 // If we have an immediate that's not a constant, treat it as a label 1395 // reference needing a fixup. If it is a constant, it's something else 1396 // and we reject it. 1397 if (isImm() && !isa<MCConstantExpr>(getImm())) 1398 return true; 1399 if (!isMem() || Memory.Alignment != 0) return false; 1400 // Check for register offset. 1401 if (Memory.OffsetRegNum) return false; 1402 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1403 if (!Memory.OffsetImm) return true; 1404 int64_t Val = Memory.OffsetImm->getValue(); 1405 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1406 Val == std::numeric_limits<int32_t>::min(); 1407 } 1408 1409 bool isAddrMode5FP16() const { 1410 // If we have an immediate that's not a constant, treat it as a label 1411 // reference needing a fixup. If it is a constant, it's something else 1412 // and we reject it. 1413 if (isImm() && !isa<MCConstantExpr>(getImm())) 1414 return true; 1415 if (!isMem() || Memory.Alignment != 0) return false; 1416 // Check for register offset. 1417 if (Memory.OffsetRegNum) return false; 1418 // Immediate offset in range [-510, 510] and a multiple of 2. 1419 if (!Memory.OffsetImm) return true; 1420 int64_t Val = Memory.OffsetImm->getValue(); 1421 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1422 Val == std::numeric_limits<int32_t>::min(); 1423 } 1424 1425 bool isMemTBB() const { 1426 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1427 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1428 return false; 1429 return true; 1430 } 1431 1432 bool isMemTBH() const { 1433 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1434 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1435 Memory.Alignment != 0 ) 1436 return false; 1437 return true; 1438 } 1439 1440 bool isMemRegOffset() const { 1441 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1442 return false; 1443 return true; 1444 } 1445 1446 bool isT2MemRegOffset() const { 1447 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1448 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1449 return false; 1450 // Only lsl #{0, 1, 2, 3} allowed. 1451 if (Memory.ShiftType == ARM_AM::no_shift) 1452 return true; 1453 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1454 return false; 1455 return true; 1456 } 1457 1458 bool isMemThumbRR() const { 1459 // Thumb reg+reg addressing is simple. Just two registers, a base and 1460 // an offset. No shifts, negations or any other complicating factors. 1461 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1462 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1463 return false; 1464 return isARMLowRegister(Memory.BaseRegNum) && 1465 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1466 } 1467 1468 bool isMemThumbRIs4() const { 1469 if (!isMem() || Memory.OffsetRegNum != 0 || 1470 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1471 return false; 1472 // Immediate offset, multiple of 4 in range [0, 124]. 1473 if (!Memory.OffsetImm) return true; 1474 int64_t Val = Memory.OffsetImm->getValue(); 1475 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1476 } 1477 1478 bool isMemThumbRIs2() const { 1479 if (!isMem() || Memory.OffsetRegNum != 0 || 1480 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1481 return false; 1482 // Immediate offset, multiple of 4 in range [0, 62]. 1483 if (!Memory.OffsetImm) return true; 1484 int64_t Val = Memory.OffsetImm->getValue(); 1485 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1486 } 1487 1488 bool isMemThumbRIs1() const { 1489 if (!isMem() || Memory.OffsetRegNum != 0 || 1490 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1491 return false; 1492 // Immediate offset in range [0, 31]. 1493 if (!Memory.OffsetImm) return true; 1494 int64_t Val = Memory.OffsetImm->getValue(); 1495 return Val >= 0 && Val <= 31; 1496 } 1497 1498 bool isMemThumbSPI() const { 1499 if (!isMem() || Memory.OffsetRegNum != 0 || 1500 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1501 return false; 1502 // Immediate offset, multiple of 4 in range [0, 1020]. 1503 if (!Memory.OffsetImm) return true; 1504 int64_t Val = Memory.OffsetImm->getValue(); 1505 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1506 } 1507 1508 bool isMemImm8s4Offset() const { 1509 // If we have an immediate that's not a constant, treat it as a label 1510 // reference needing a fixup. If it is a constant, it's something else 1511 // and we reject it. 1512 if (isImm() && !isa<MCConstantExpr>(getImm())) 1513 return true; 1514 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1515 return false; 1516 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1517 if (!Memory.OffsetImm) return true; 1518 int64_t Val = Memory.OffsetImm->getValue(); 1519 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1520 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1521 Val == std::numeric_limits<int32_t>::min(); 1522 } 1523 1524 bool isMemImm0_1020s4Offset() const { 1525 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1526 return false; 1527 // Immediate offset a multiple of 4 in range [0, 1020]. 1528 if (!Memory.OffsetImm) return true; 1529 int64_t Val = Memory.OffsetImm->getValue(); 1530 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1531 } 1532 1533 bool isMemImm8Offset() const { 1534 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1535 return false; 1536 // Base reg of PC isn't allowed for these encodings. 1537 if (Memory.BaseRegNum == ARM::PC) return false; 1538 // Immediate offset in range [-255, 255]. 1539 if (!Memory.OffsetImm) return true; 1540 int64_t Val = Memory.OffsetImm->getValue(); 1541 return (Val == std::numeric_limits<int32_t>::min()) || 1542 (Val > -256 && Val < 256); 1543 } 1544 1545 bool isMemPosImm8Offset() const { 1546 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1547 return false; 1548 // Immediate offset in range [0, 255]. 1549 if (!Memory.OffsetImm) return true; 1550 int64_t Val = Memory.OffsetImm->getValue(); 1551 return Val >= 0 && Val < 256; 1552 } 1553 1554 bool isMemNegImm8Offset() const { 1555 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1556 return false; 1557 // Base reg of PC isn't allowed for these encodings. 1558 if (Memory.BaseRegNum == ARM::PC) return false; 1559 // Immediate offset in range [-255, -1]. 1560 if (!Memory.OffsetImm) return false; 1561 int64_t Val = Memory.OffsetImm->getValue(); 1562 return (Val == std::numeric_limits<int32_t>::min()) || 1563 (Val > -256 && Val < 0); 1564 } 1565 1566 bool isMemUImm12Offset() const { 1567 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1568 return false; 1569 // Immediate offset in range [0, 4095]. 1570 if (!Memory.OffsetImm) return true; 1571 int64_t Val = Memory.OffsetImm->getValue(); 1572 return (Val >= 0 && Val < 4096); 1573 } 1574 1575 bool isMemImm12Offset() const { 1576 // If we have an immediate that's not a constant, treat it as a label 1577 // reference needing a fixup. If it is a constant, it's something else 1578 // and we reject it. 1579 1580 if (isImm() && !isa<MCConstantExpr>(getImm())) 1581 return true; 1582 1583 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1584 return false; 1585 // Immediate offset in range [-4095, 4095]. 1586 if (!Memory.OffsetImm) return true; 1587 int64_t Val = Memory.OffsetImm->getValue(); 1588 return (Val > -4096 && Val < 4096) || 1589 (Val == std::numeric_limits<int32_t>::min()); 1590 } 1591 1592 bool isConstPoolAsmImm() const { 1593 // Delay processing of Constant Pool Immediate, this will turn into 1594 // a constant. Match no other operand 1595 return (isConstantPoolImm()); 1596 } 1597 1598 bool isPostIdxImm8() const { 1599 if (!isImm()) return false; 1600 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1601 if (!CE) return false; 1602 int64_t Val = CE->getValue(); 1603 return (Val > -256 && Val < 256) || 1604 (Val == std::numeric_limits<int32_t>::min()); 1605 } 1606 1607 bool isPostIdxImm8s4() const { 1608 if (!isImm()) return false; 1609 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1610 if (!CE) return false; 1611 int64_t Val = CE->getValue(); 1612 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1613 (Val == std::numeric_limits<int32_t>::min()); 1614 } 1615 1616 bool isMSRMask() const { return Kind == k_MSRMask; } 1617 bool isBankedReg() const { return Kind == k_BankedReg; } 1618 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1619 1620 // NEON operands. 1621 bool isSingleSpacedVectorList() const { 1622 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1623 } 1624 1625 bool isDoubleSpacedVectorList() const { 1626 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1627 } 1628 1629 bool isVecListOneD() const { 1630 if (!isSingleSpacedVectorList()) return false; 1631 return VectorList.Count == 1; 1632 } 1633 1634 bool isVecListDPair() const { 1635 if (!isSingleSpacedVectorList()) return false; 1636 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1637 .contains(VectorList.RegNum)); 1638 } 1639 1640 bool isVecListThreeD() const { 1641 if (!isSingleSpacedVectorList()) return false; 1642 return VectorList.Count == 3; 1643 } 1644 1645 bool isVecListFourD() const { 1646 if (!isSingleSpacedVectorList()) return false; 1647 return VectorList.Count == 4; 1648 } 1649 1650 bool isVecListDPairSpaced() const { 1651 if (Kind != k_VectorList) return false; 1652 if (isSingleSpacedVectorList()) return false; 1653 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1654 .contains(VectorList.RegNum)); 1655 } 1656 1657 bool isVecListThreeQ() const { 1658 if (!isDoubleSpacedVectorList()) return false; 1659 return VectorList.Count == 3; 1660 } 1661 1662 bool isVecListFourQ() const { 1663 if (!isDoubleSpacedVectorList()) return false; 1664 return VectorList.Count == 4; 1665 } 1666 1667 bool isSingleSpacedVectorAllLanes() const { 1668 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1669 } 1670 1671 bool isDoubleSpacedVectorAllLanes() const { 1672 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1673 } 1674 1675 bool isVecListOneDAllLanes() const { 1676 if (!isSingleSpacedVectorAllLanes()) return false; 1677 return VectorList.Count == 1; 1678 } 1679 1680 bool isVecListDPairAllLanes() const { 1681 if (!isSingleSpacedVectorAllLanes()) return false; 1682 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1683 .contains(VectorList.RegNum)); 1684 } 1685 1686 bool isVecListDPairSpacedAllLanes() const { 1687 if (!isDoubleSpacedVectorAllLanes()) return false; 1688 return VectorList.Count == 2; 1689 } 1690 1691 bool isVecListThreeDAllLanes() const { 1692 if (!isSingleSpacedVectorAllLanes()) return false; 1693 return VectorList.Count == 3; 1694 } 1695 1696 bool isVecListThreeQAllLanes() const { 1697 if (!isDoubleSpacedVectorAllLanes()) return false; 1698 return VectorList.Count == 3; 1699 } 1700 1701 bool isVecListFourDAllLanes() const { 1702 if (!isSingleSpacedVectorAllLanes()) return false; 1703 return VectorList.Count == 4; 1704 } 1705 1706 bool isVecListFourQAllLanes() const { 1707 if (!isDoubleSpacedVectorAllLanes()) return false; 1708 return VectorList.Count == 4; 1709 } 1710 1711 bool isSingleSpacedVectorIndexed() const { 1712 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1713 } 1714 1715 bool isDoubleSpacedVectorIndexed() const { 1716 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1717 } 1718 1719 bool isVecListOneDByteIndexed() const { 1720 if (!isSingleSpacedVectorIndexed()) return false; 1721 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1722 } 1723 1724 bool isVecListOneDHWordIndexed() const { 1725 if (!isSingleSpacedVectorIndexed()) return false; 1726 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1727 } 1728 1729 bool isVecListOneDWordIndexed() const { 1730 if (!isSingleSpacedVectorIndexed()) return false; 1731 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1732 } 1733 1734 bool isVecListTwoDByteIndexed() const { 1735 if (!isSingleSpacedVectorIndexed()) return false; 1736 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1737 } 1738 1739 bool isVecListTwoDHWordIndexed() const { 1740 if (!isSingleSpacedVectorIndexed()) return false; 1741 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1742 } 1743 1744 bool isVecListTwoQWordIndexed() const { 1745 if (!isDoubleSpacedVectorIndexed()) return false; 1746 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1747 } 1748 1749 bool isVecListTwoQHWordIndexed() const { 1750 if (!isDoubleSpacedVectorIndexed()) return false; 1751 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1752 } 1753 1754 bool isVecListTwoDWordIndexed() const { 1755 if (!isSingleSpacedVectorIndexed()) return false; 1756 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1757 } 1758 1759 bool isVecListThreeDByteIndexed() const { 1760 if (!isSingleSpacedVectorIndexed()) return false; 1761 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1762 } 1763 1764 bool isVecListThreeDHWordIndexed() const { 1765 if (!isSingleSpacedVectorIndexed()) return false; 1766 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1767 } 1768 1769 bool isVecListThreeQWordIndexed() const { 1770 if (!isDoubleSpacedVectorIndexed()) return false; 1771 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1772 } 1773 1774 bool isVecListThreeQHWordIndexed() const { 1775 if (!isDoubleSpacedVectorIndexed()) return false; 1776 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1777 } 1778 1779 bool isVecListThreeDWordIndexed() const { 1780 if (!isSingleSpacedVectorIndexed()) return false; 1781 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1782 } 1783 1784 bool isVecListFourDByteIndexed() const { 1785 if (!isSingleSpacedVectorIndexed()) return false; 1786 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1787 } 1788 1789 bool isVecListFourDHWordIndexed() const { 1790 if (!isSingleSpacedVectorIndexed()) return false; 1791 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1792 } 1793 1794 bool isVecListFourQWordIndexed() const { 1795 if (!isDoubleSpacedVectorIndexed()) return false; 1796 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1797 } 1798 1799 bool isVecListFourQHWordIndexed() const { 1800 if (!isDoubleSpacedVectorIndexed()) return false; 1801 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1802 } 1803 1804 bool isVecListFourDWordIndexed() const { 1805 if (!isSingleSpacedVectorIndexed()) return false; 1806 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1807 } 1808 1809 bool isVectorIndex8() const { 1810 if (Kind != k_VectorIndex) return false; 1811 return VectorIndex.Val < 8; 1812 } 1813 1814 bool isVectorIndex16() const { 1815 if (Kind != k_VectorIndex) return false; 1816 return VectorIndex.Val < 4; 1817 } 1818 1819 bool isVectorIndex32() const { 1820 if (Kind != k_VectorIndex) return false; 1821 return VectorIndex.Val < 2; 1822 } 1823 bool isVectorIndex64() const { 1824 if (Kind != k_VectorIndex) return false; 1825 return VectorIndex.Val < 1; 1826 } 1827 1828 bool isNEONi8splat() const { 1829 if (!isImm()) return false; 1830 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1831 // Must be a constant. 1832 if (!CE) return false; 1833 int64_t Value = CE->getValue(); 1834 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1835 // value. 1836 return Value >= 0 && Value < 256; 1837 } 1838 1839 bool isNEONi16splat() const { 1840 if (isNEONByteReplicate(2)) 1841 return false; // Leave that for bytes replication and forbid by default. 1842 if (!isImm()) 1843 return false; 1844 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1845 // Must be a constant. 1846 if (!CE) return false; 1847 unsigned Value = CE->getValue(); 1848 return ARM_AM::isNEONi16splat(Value); 1849 } 1850 1851 bool isNEONi16splatNot() const { 1852 if (!isImm()) 1853 return false; 1854 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1855 // Must be a constant. 1856 if (!CE) return false; 1857 unsigned Value = CE->getValue(); 1858 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1859 } 1860 1861 bool isNEONi32splat() const { 1862 if (isNEONByteReplicate(4)) 1863 return false; // Leave that for bytes replication and forbid by default. 1864 if (!isImm()) 1865 return false; 1866 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1867 // Must be a constant. 1868 if (!CE) return false; 1869 unsigned Value = CE->getValue(); 1870 return ARM_AM::isNEONi32splat(Value); 1871 } 1872 1873 bool isNEONi32splatNot() const { 1874 if (!isImm()) 1875 return false; 1876 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1877 // Must be a constant. 1878 if (!CE) return false; 1879 unsigned Value = CE->getValue(); 1880 return ARM_AM::isNEONi32splat(~Value); 1881 } 1882 1883 static bool isValidNEONi32vmovImm(int64_t Value) { 1884 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1885 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1886 return ((Value & 0xffffffffffffff00) == 0) || 1887 ((Value & 0xffffffffffff00ff) == 0) || 1888 ((Value & 0xffffffffff00ffff) == 0) || 1889 ((Value & 0xffffffff00ffffff) == 0) || 1890 ((Value & 0xffffffffffff00ff) == 0xff) || 1891 ((Value & 0xffffffffff00ffff) == 0xffff); 1892 } 1893 1894 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 1895 assert((Width == 8 || Width == 16 || Width == 32) && 1896 "Invalid element width"); 1897 assert(NumElems * Width <= 64 && "Invalid result width"); 1898 1899 if (!isImm()) 1900 return false; 1901 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1902 // Must be a constant. 1903 if (!CE) 1904 return false; 1905 int64_t Value = CE->getValue(); 1906 if (!Value) 1907 return false; // Don't bother with zero. 1908 if (Inv) 1909 Value = ~Value; 1910 1911 uint64_t Mask = (1ull << Width) - 1; 1912 uint64_t Elem = Value & Mask; 1913 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 1914 return false; 1915 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 1916 return false; 1917 1918 for (unsigned i = 1; i < NumElems; ++i) { 1919 Value >>= Width; 1920 if ((Value & Mask) != Elem) 1921 return false; 1922 } 1923 return true; 1924 } 1925 1926 bool isNEONByteReplicate(unsigned NumBytes) const { 1927 return isNEONReplicate(8, NumBytes, false); 1928 } 1929 1930 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 1931 assert((FromW == 8 || FromW == 16 || FromW == 32) && 1932 "Invalid source width"); 1933 assert((ToW == 16 || ToW == 32 || ToW == 64) && 1934 "Invalid destination width"); 1935 assert(FromW < ToW && "ToW is not less than FromW"); 1936 } 1937 1938 template<unsigned FromW, unsigned ToW> 1939 bool isNEONmovReplicate() const { 1940 checkNeonReplicateArgs(FromW, ToW); 1941 if (ToW == 64 && isNEONi64splat()) 1942 return false; 1943 return isNEONReplicate(FromW, ToW / FromW, false); 1944 } 1945 1946 template<unsigned FromW, unsigned ToW> 1947 bool isNEONinvReplicate() const { 1948 checkNeonReplicateArgs(FromW, ToW); 1949 return isNEONReplicate(FromW, ToW / FromW, true); 1950 } 1951 1952 bool isNEONi32vmov() const { 1953 if (isNEONByteReplicate(4)) 1954 return false; // Let it to be classified as byte-replicate case. 1955 if (!isImm()) 1956 return false; 1957 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1958 // Must be a constant. 1959 if (!CE) 1960 return false; 1961 return isValidNEONi32vmovImm(CE->getValue()); 1962 } 1963 1964 bool isNEONi32vmovNeg() const { 1965 if (!isImm()) return false; 1966 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1967 // Must be a constant. 1968 if (!CE) return false; 1969 return isValidNEONi32vmovImm(~CE->getValue()); 1970 } 1971 1972 bool isNEONi64splat() const { 1973 if (!isImm()) return false; 1974 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1975 // Must be a constant. 1976 if (!CE) return false; 1977 uint64_t Value = CE->getValue(); 1978 // i64 value with each byte being either 0 or 0xff. 1979 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1980 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1981 return true; 1982 } 1983 1984 template<int64_t Angle, int64_t Remainder> 1985 bool isComplexRotation() const { 1986 if (!isImm()) return false; 1987 1988 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1989 if (!CE) return false; 1990 uint64_t Value = CE->getValue(); 1991 1992 return (Value % Angle == Remainder && Value <= 270); 1993 } 1994 1995 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1996 // Add as immediates when possible. Null MCExpr = 0. 1997 if (!Expr) 1998 Inst.addOperand(MCOperand::createImm(0)); 1999 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 2000 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2001 else 2002 Inst.addOperand(MCOperand::createExpr(Expr)); 2003 } 2004 2005 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2006 assert(N == 1 && "Invalid number of operands!"); 2007 addExpr(Inst, getImm()); 2008 } 2009 2010 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2011 assert(N == 1 && "Invalid number of operands!"); 2012 addExpr(Inst, getImm()); 2013 } 2014 2015 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2016 assert(N == 2 && "Invalid number of operands!"); 2017 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2018 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2019 Inst.addOperand(MCOperand::createReg(RegNum)); 2020 } 2021 2022 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2023 assert(N == 1 && "Invalid number of operands!"); 2024 Inst.addOperand(MCOperand::createImm(getCoproc())); 2025 } 2026 2027 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2028 assert(N == 1 && "Invalid number of operands!"); 2029 Inst.addOperand(MCOperand::createImm(getCoproc())); 2030 } 2031 2032 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2033 assert(N == 1 && "Invalid number of operands!"); 2034 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2035 } 2036 2037 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2038 assert(N == 1 && "Invalid number of operands!"); 2039 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2040 } 2041 2042 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2043 assert(N == 1 && "Invalid number of operands!"); 2044 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2045 } 2046 2047 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2048 assert(N == 1 && "Invalid number of operands!"); 2049 Inst.addOperand(MCOperand::createReg(getReg())); 2050 } 2051 2052 void addRegOperands(MCInst &Inst, unsigned N) const { 2053 assert(N == 1 && "Invalid number of operands!"); 2054 Inst.addOperand(MCOperand::createReg(getReg())); 2055 } 2056 2057 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2058 assert(N == 3 && "Invalid number of operands!"); 2059 assert(isRegShiftedReg() && 2060 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2061 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2062 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2063 Inst.addOperand(MCOperand::createImm( 2064 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2065 } 2066 2067 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2068 assert(N == 2 && "Invalid number of operands!"); 2069 assert(isRegShiftedImm() && 2070 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2071 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2072 // Shift of #32 is encoded as 0 where permitted 2073 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2074 Inst.addOperand(MCOperand::createImm( 2075 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2076 } 2077 2078 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2079 assert(N == 1 && "Invalid number of operands!"); 2080 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2081 ShifterImm.Imm)); 2082 } 2083 2084 void addRegListOperands(MCInst &Inst, unsigned N) const { 2085 assert(N == 1 && "Invalid number of operands!"); 2086 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2087 for (SmallVectorImpl<unsigned>::const_iterator 2088 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2089 Inst.addOperand(MCOperand::createReg(*I)); 2090 } 2091 2092 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2093 addRegListOperands(Inst, N); 2094 } 2095 2096 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2097 addRegListOperands(Inst, N); 2098 } 2099 2100 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2101 assert(N == 1 && "Invalid number of operands!"); 2102 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2103 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2104 } 2105 2106 void addModImmOperands(MCInst &Inst, unsigned N) const { 2107 assert(N == 1 && "Invalid number of operands!"); 2108 2109 // Support for fixups (MCFixup) 2110 if (isImm()) 2111 return addImmOperands(Inst, N); 2112 2113 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2114 } 2115 2116 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2117 assert(N == 1 && "Invalid number of operands!"); 2118 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2119 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2120 Inst.addOperand(MCOperand::createImm(Enc)); 2121 } 2122 2123 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2124 assert(N == 1 && "Invalid number of operands!"); 2125 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2126 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2127 Inst.addOperand(MCOperand::createImm(Enc)); 2128 } 2129 2130 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2131 assert(N == 1 && "Invalid number of operands!"); 2132 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2133 uint32_t Val = -CE->getValue(); 2134 Inst.addOperand(MCOperand::createImm(Val)); 2135 } 2136 2137 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2138 assert(N == 1 && "Invalid number of operands!"); 2139 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2140 uint32_t Val = -CE->getValue(); 2141 Inst.addOperand(MCOperand::createImm(Val)); 2142 } 2143 2144 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2145 assert(N == 1 && "Invalid number of operands!"); 2146 // Munge the lsb/width into a bitfield mask. 2147 unsigned lsb = Bitfield.LSB; 2148 unsigned width = Bitfield.Width; 2149 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2150 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2151 (32 - (lsb + width))); 2152 Inst.addOperand(MCOperand::createImm(Mask)); 2153 } 2154 2155 void addImmOperands(MCInst &Inst, unsigned N) const { 2156 assert(N == 1 && "Invalid number of operands!"); 2157 addExpr(Inst, getImm()); 2158 } 2159 2160 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2161 assert(N == 1 && "Invalid number of operands!"); 2162 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2163 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2164 } 2165 2166 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2167 assert(N == 1 && "Invalid number of operands!"); 2168 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2169 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2170 } 2171 2172 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2173 assert(N == 1 && "Invalid number of operands!"); 2174 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2175 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2176 Inst.addOperand(MCOperand::createImm(Val)); 2177 } 2178 2179 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2180 assert(N == 1 && "Invalid number of operands!"); 2181 // FIXME: We really want to scale the value here, but the LDRD/STRD 2182 // instruction don't encode operands that way yet. 2183 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2184 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2185 } 2186 2187 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2188 assert(N == 1 && "Invalid number of operands!"); 2189 // The immediate is scaled by four in the encoding and is stored 2190 // in the MCInst as such. Lop off the low two bits here. 2191 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2192 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2193 } 2194 2195 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2196 assert(N == 1 && "Invalid number of operands!"); 2197 // The immediate is scaled by four in the encoding and is stored 2198 // in the MCInst as such. Lop off the low two bits here. 2199 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2200 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2201 } 2202 2203 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2204 assert(N == 1 && "Invalid number of operands!"); 2205 // The immediate is scaled by four in the encoding and is stored 2206 // in the MCInst as such. Lop off the low two bits here. 2207 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2208 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2209 } 2210 2211 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2212 assert(N == 1 && "Invalid number of operands!"); 2213 // The constant encodes as the immediate-1, and we store in the instruction 2214 // the bits as encoded, so subtract off one here. 2215 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2216 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2217 } 2218 2219 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2220 assert(N == 1 && "Invalid number of operands!"); 2221 // The constant encodes as the immediate-1, and we store in the instruction 2222 // the bits as encoded, so subtract off one here. 2223 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2224 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2225 } 2226 2227 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2228 assert(N == 1 && "Invalid number of operands!"); 2229 // The constant encodes as the immediate, except for 32, which encodes as 2230 // zero. 2231 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2232 unsigned Imm = CE->getValue(); 2233 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2234 } 2235 2236 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2237 assert(N == 1 && "Invalid number of operands!"); 2238 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2239 // the instruction as well. 2240 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2241 int Val = CE->getValue(); 2242 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2243 } 2244 2245 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2246 assert(N == 1 && "Invalid number of operands!"); 2247 // The operand is actually a t2_so_imm, but we have its bitwise 2248 // negation in the assembly source, so twiddle it here. 2249 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2250 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2251 } 2252 2253 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2254 assert(N == 1 && "Invalid number of operands!"); 2255 // The operand is actually a t2_so_imm, but we have its 2256 // negation in the assembly source, so twiddle it here. 2257 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2258 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2259 } 2260 2261 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2262 assert(N == 1 && "Invalid number of operands!"); 2263 // The operand is actually an imm0_4095, but we have its 2264 // negation in the assembly source, so twiddle it here. 2265 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2266 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2267 } 2268 2269 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2270 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2271 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2272 return; 2273 } 2274 2275 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2276 assert(SR && "Unknown value type!"); 2277 Inst.addOperand(MCOperand::createExpr(SR)); 2278 } 2279 2280 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2281 assert(N == 1 && "Invalid number of operands!"); 2282 if (isImm()) { 2283 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2284 if (CE) { 2285 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2286 return; 2287 } 2288 2289 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2290 2291 assert(SR && "Unknown value type!"); 2292 Inst.addOperand(MCOperand::createExpr(SR)); 2293 return; 2294 } 2295 2296 assert(isMem() && "Unknown value type!"); 2297 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2298 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2299 } 2300 2301 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2302 assert(N == 1 && "Invalid number of operands!"); 2303 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2304 } 2305 2306 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2307 assert(N == 1 && "Invalid number of operands!"); 2308 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2309 } 2310 2311 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2312 assert(N == 1 && "Invalid number of operands!"); 2313 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2314 } 2315 2316 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2317 assert(N == 1 && "Invalid number of operands!"); 2318 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2319 } 2320 2321 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2322 assert(N == 1 && "Invalid number of operands!"); 2323 int32_t Imm = Memory.OffsetImm->getValue(); 2324 Inst.addOperand(MCOperand::createImm(Imm)); 2325 } 2326 2327 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2328 assert(N == 1 && "Invalid number of operands!"); 2329 assert(isImm() && "Not an immediate!"); 2330 2331 // If we have an immediate that's not a constant, treat it as a label 2332 // reference needing a fixup. 2333 if (!isa<MCConstantExpr>(getImm())) { 2334 Inst.addOperand(MCOperand::createExpr(getImm())); 2335 return; 2336 } 2337 2338 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2339 int Val = CE->getValue(); 2340 Inst.addOperand(MCOperand::createImm(Val)); 2341 } 2342 2343 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2344 assert(N == 2 && "Invalid number of operands!"); 2345 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2346 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2347 } 2348 2349 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2350 addAlignedMemoryOperands(Inst, N); 2351 } 2352 2353 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2354 addAlignedMemoryOperands(Inst, N); 2355 } 2356 2357 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2358 addAlignedMemoryOperands(Inst, N); 2359 } 2360 2361 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2362 addAlignedMemoryOperands(Inst, N); 2363 } 2364 2365 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2366 addAlignedMemoryOperands(Inst, N); 2367 } 2368 2369 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2370 addAlignedMemoryOperands(Inst, N); 2371 } 2372 2373 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2374 addAlignedMemoryOperands(Inst, N); 2375 } 2376 2377 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2378 addAlignedMemoryOperands(Inst, N); 2379 } 2380 2381 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2382 addAlignedMemoryOperands(Inst, N); 2383 } 2384 2385 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2386 addAlignedMemoryOperands(Inst, N); 2387 } 2388 2389 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2390 addAlignedMemoryOperands(Inst, N); 2391 } 2392 2393 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2394 assert(N == 3 && "Invalid number of operands!"); 2395 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2396 if (!Memory.OffsetRegNum) { 2397 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2398 // Special case for #-0 2399 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2400 if (Val < 0) Val = -Val; 2401 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2402 } else { 2403 // For register offset, we encode the shift type and negation flag 2404 // here. 2405 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2406 Memory.ShiftImm, Memory.ShiftType); 2407 } 2408 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2409 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2410 Inst.addOperand(MCOperand::createImm(Val)); 2411 } 2412 2413 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2414 assert(N == 2 && "Invalid number of operands!"); 2415 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2416 assert(CE && "non-constant AM2OffsetImm operand!"); 2417 int32_t Val = CE->getValue(); 2418 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2419 // Special case for #-0 2420 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2421 if (Val < 0) Val = -Val; 2422 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2423 Inst.addOperand(MCOperand::createReg(0)); 2424 Inst.addOperand(MCOperand::createImm(Val)); 2425 } 2426 2427 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2428 assert(N == 3 && "Invalid number of operands!"); 2429 // If we have an immediate that's not a constant, treat it as a label 2430 // reference needing a fixup. If it is a constant, it's something else 2431 // and we reject it. 2432 if (isImm()) { 2433 Inst.addOperand(MCOperand::createExpr(getImm())); 2434 Inst.addOperand(MCOperand::createReg(0)); 2435 Inst.addOperand(MCOperand::createImm(0)); 2436 return; 2437 } 2438 2439 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2440 if (!Memory.OffsetRegNum) { 2441 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2442 // Special case for #-0 2443 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2444 if (Val < 0) Val = -Val; 2445 Val = ARM_AM::getAM3Opc(AddSub, Val); 2446 } else { 2447 // For register offset, we encode the shift type and negation flag 2448 // here. 2449 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2450 } 2451 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2452 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2453 Inst.addOperand(MCOperand::createImm(Val)); 2454 } 2455 2456 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2457 assert(N == 2 && "Invalid number of operands!"); 2458 if (Kind == k_PostIndexRegister) { 2459 int32_t Val = 2460 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2461 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2462 Inst.addOperand(MCOperand::createImm(Val)); 2463 return; 2464 } 2465 2466 // Constant offset. 2467 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2468 int32_t Val = CE->getValue(); 2469 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2470 // Special case for #-0 2471 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2472 if (Val < 0) Val = -Val; 2473 Val = ARM_AM::getAM3Opc(AddSub, Val); 2474 Inst.addOperand(MCOperand::createReg(0)); 2475 Inst.addOperand(MCOperand::createImm(Val)); 2476 } 2477 2478 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2479 assert(N == 2 && "Invalid number of operands!"); 2480 // If we have an immediate that's not a constant, treat it as a label 2481 // reference needing a fixup. If it is a constant, it's something else 2482 // and we reject it. 2483 if (isImm()) { 2484 Inst.addOperand(MCOperand::createExpr(getImm())); 2485 Inst.addOperand(MCOperand::createImm(0)); 2486 return; 2487 } 2488 2489 // The lower two bits are always zero and as such are not encoded. 2490 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2491 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2492 // Special case for #-0 2493 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2494 if (Val < 0) Val = -Val; 2495 Val = ARM_AM::getAM5Opc(AddSub, Val); 2496 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2497 Inst.addOperand(MCOperand::createImm(Val)); 2498 } 2499 2500 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2501 assert(N == 2 && "Invalid number of operands!"); 2502 // If we have an immediate that's not a constant, treat it as a label 2503 // reference needing a fixup. If it is a constant, it's something else 2504 // and we reject it. 2505 if (isImm()) { 2506 Inst.addOperand(MCOperand::createExpr(getImm())); 2507 Inst.addOperand(MCOperand::createImm(0)); 2508 return; 2509 } 2510 2511 // The lower bit is always zero and as such is not encoded. 2512 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2513 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2514 // Special case for #-0 2515 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2516 if (Val < 0) Val = -Val; 2517 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2518 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2519 Inst.addOperand(MCOperand::createImm(Val)); 2520 } 2521 2522 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2523 assert(N == 2 && "Invalid number of operands!"); 2524 // If we have an immediate that's not a constant, treat it as a label 2525 // reference needing a fixup. If it is a constant, it's something else 2526 // and we reject it. 2527 if (isImm()) { 2528 Inst.addOperand(MCOperand::createExpr(getImm())); 2529 Inst.addOperand(MCOperand::createImm(0)); 2530 return; 2531 } 2532 2533 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2534 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2535 Inst.addOperand(MCOperand::createImm(Val)); 2536 } 2537 2538 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2539 assert(N == 2 && "Invalid number of operands!"); 2540 // The lower two bits are always zero and as such are not encoded. 2541 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2542 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2543 Inst.addOperand(MCOperand::createImm(Val)); 2544 } 2545 2546 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2547 assert(N == 2 && "Invalid number of operands!"); 2548 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2549 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2550 Inst.addOperand(MCOperand::createImm(Val)); 2551 } 2552 2553 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2554 addMemImm8OffsetOperands(Inst, N); 2555 } 2556 2557 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2558 addMemImm8OffsetOperands(Inst, N); 2559 } 2560 2561 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2562 assert(N == 2 && "Invalid number of operands!"); 2563 // If this is an immediate, it's a label reference. 2564 if (isImm()) { 2565 addExpr(Inst, getImm()); 2566 Inst.addOperand(MCOperand::createImm(0)); 2567 return; 2568 } 2569 2570 // Otherwise, it's a normal memory reg+offset. 2571 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2572 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2573 Inst.addOperand(MCOperand::createImm(Val)); 2574 } 2575 2576 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2577 assert(N == 2 && "Invalid number of operands!"); 2578 // If this is an immediate, it's a label reference. 2579 if (isImm()) { 2580 addExpr(Inst, getImm()); 2581 Inst.addOperand(MCOperand::createImm(0)); 2582 return; 2583 } 2584 2585 // Otherwise, it's a normal memory reg+offset. 2586 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2587 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2588 Inst.addOperand(MCOperand::createImm(Val)); 2589 } 2590 2591 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2592 assert(N == 1 && "Invalid number of operands!"); 2593 // This is container for the immediate that we will create the constant 2594 // pool from 2595 addExpr(Inst, getConstantPoolImm()); 2596 return; 2597 } 2598 2599 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2600 assert(N == 2 && "Invalid number of operands!"); 2601 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2602 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2603 } 2604 2605 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2606 assert(N == 2 && "Invalid number of operands!"); 2607 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2608 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2609 } 2610 2611 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2612 assert(N == 3 && "Invalid number of operands!"); 2613 unsigned Val = 2614 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2615 Memory.ShiftImm, Memory.ShiftType); 2616 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2617 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2618 Inst.addOperand(MCOperand::createImm(Val)); 2619 } 2620 2621 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2622 assert(N == 3 && "Invalid number of operands!"); 2623 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2624 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2625 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2626 } 2627 2628 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2629 assert(N == 2 && "Invalid number of operands!"); 2630 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2631 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2632 } 2633 2634 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2635 assert(N == 2 && "Invalid number of operands!"); 2636 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2637 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2638 Inst.addOperand(MCOperand::createImm(Val)); 2639 } 2640 2641 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2642 assert(N == 2 && "Invalid number of operands!"); 2643 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2644 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2645 Inst.addOperand(MCOperand::createImm(Val)); 2646 } 2647 2648 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2649 assert(N == 2 && "Invalid number of operands!"); 2650 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2651 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2652 Inst.addOperand(MCOperand::createImm(Val)); 2653 } 2654 2655 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2656 assert(N == 2 && "Invalid number of operands!"); 2657 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2658 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2659 Inst.addOperand(MCOperand::createImm(Val)); 2660 } 2661 2662 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2663 assert(N == 1 && "Invalid number of operands!"); 2664 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2665 assert(CE && "non-constant post-idx-imm8 operand!"); 2666 int Imm = CE->getValue(); 2667 bool isAdd = Imm >= 0; 2668 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2669 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2670 Inst.addOperand(MCOperand::createImm(Imm)); 2671 } 2672 2673 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2674 assert(N == 1 && "Invalid number of operands!"); 2675 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2676 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2677 int Imm = CE->getValue(); 2678 bool isAdd = Imm >= 0; 2679 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2680 // Immediate is scaled by 4. 2681 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2682 Inst.addOperand(MCOperand::createImm(Imm)); 2683 } 2684 2685 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2686 assert(N == 2 && "Invalid number of operands!"); 2687 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2688 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2689 } 2690 2691 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2692 assert(N == 2 && "Invalid number of operands!"); 2693 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2694 // The sign, shift type, and shift amount are encoded in a single operand 2695 // using the AM2 encoding helpers. 2696 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2697 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2698 PostIdxReg.ShiftTy); 2699 Inst.addOperand(MCOperand::createImm(Imm)); 2700 } 2701 2702 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2703 assert(N == 1 && "Invalid number of operands!"); 2704 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2705 } 2706 2707 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2708 assert(N == 1 && "Invalid number of operands!"); 2709 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2710 } 2711 2712 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2713 assert(N == 1 && "Invalid number of operands!"); 2714 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2715 } 2716 2717 void addVecListOperands(MCInst &Inst, unsigned N) const { 2718 assert(N == 1 && "Invalid number of operands!"); 2719 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2720 } 2721 2722 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2723 assert(N == 2 && "Invalid number of operands!"); 2724 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2725 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2726 } 2727 2728 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2729 assert(N == 1 && "Invalid number of operands!"); 2730 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2731 } 2732 2733 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2734 assert(N == 1 && "Invalid number of operands!"); 2735 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2736 } 2737 2738 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2739 assert(N == 1 && "Invalid number of operands!"); 2740 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2741 } 2742 2743 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 2744 assert(N == 1 && "Invalid number of operands!"); 2745 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2746 } 2747 2748 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2749 assert(N == 1 && "Invalid number of operands!"); 2750 // The immediate encodes the type of constant as well as the value. 2751 // Mask in that this is an i8 splat. 2752 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2753 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2754 } 2755 2756 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2757 assert(N == 1 && "Invalid number of operands!"); 2758 // The immediate encodes the type of constant as well as the value. 2759 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2760 unsigned Value = CE->getValue(); 2761 Value = ARM_AM::encodeNEONi16splat(Value); 2762 Inst.addOperand(MCOperand::createImm(Value)); 2763 } 2764 2765 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2766 assert(N == 1 && "Invalid number of operands!"); 2767 // The immediate encodes the type of constant as well as the value. 2768 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2769 unsigned Value = CE->getValue(); 2770 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2771 Inst.addOperand(MCOperand::createImm(Value)); 2772 } 2773 2774 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2775 assert(N == 1 && "Invalid number of operands!"); 2776 // The immediate encodes the type of constant as well as the value. 2777 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2778 unsigned Value = CE->getValue(); 2779 Value = ARM_AM::encodeNEONi32splat(Value); 2780 Inst.addOperand(MCOperand::createImm(Value)); 2781 } 2782 2783 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2784 assert(N == 1 && "Invalid number of operands!"); 2785 // The immediate encodes the type of constant as well as the value. 2786 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2787 unsigned Value = CE->getValue(); 2788 Value = ARM_AM::encodeNEONi32splat(~Value); 2789 Inst.addOperand(MCOperand::createImm(Value)); 2790 } 2791 2792 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 2793 // The immediate encodes the type of constant as well as the value. 2794 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2795 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2796 Inst.getOpcode() == ARM::VMOVv16i8) && 2797 "All instructions that wants to replicate non-zero byte " 2798 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2799 unsigned Value = CE->getValue(); 2800 if (Inv) 2801 Value = ~Value; 2802 unsigned B = Value & 0xff; 2803 B |= 0xe00; // cmode = 0b1110 2804 Inst.addOperand(MCOperand::createImm(B)); 2805 } 2806 2807 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 2808 assert(N == 1 && "Invalid number of operands!"); 2809 addNEONi8ReplicateOperands(Inst, true); 2810 } 2811 2812 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 2813 if (Value >= 256 && Value <= 0xffff) 2814 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2815 else if (Value > 0xffff && Value <= 0xffffff) 2816 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2817 else if (Value > 0xffffff) 2818 Value = (Value >> 24) | 0x600; 2819 return Value; 2820 } 2821 2822 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2823 assert(N == 1 && "Invalid number of operands!"); 2824 // The immediate encodes the type of constant as well as the value. 2825 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2826 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 2827 Inst.addOperand(MCOperand::createImm(Value)); 2828 } 2829 2830 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 2831 assert(N == 1 && "Invalid number of operands!"); 2832 addNEONi8ReplicateOperands(Inst, false); 2833 } 2834 2835 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 2836 assert(N == 1 && "Invalid number of operands!"); 2837 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2838 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 2839 Inst.getOpcode() == ARM::VMOVv8i16 || 2840 Inst.getOpcode() == ARM::VMVNv4i16 || 2841 Inst.getOpcode() == ARM::VMVNv8i16) && 2842 "All instructions that want to replicate non-zero half-word " 2843 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 2844 uint64_t Value = CE->getValue(); 2845 unsigned Elem = Value & 0xffff; 2846 if (Elem >= 256) 2847 Elem = (Elem >> 8) | 0x200; 2848 Inst.addOperand(MCOperand::createImm(Elem)); 2849 } 2850 2851 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2852 assert(N == 1 && "Invalid number of operands!"); 2853 // The immediate encodes the type of constant as well as the value. 2854 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2855 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 2856 Inst.addOperand(MCOperand::createImm(Value)); 2857 } 2858 2859 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 2860 assert(N == 1 && "Invalid number of operands!"); 2861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2862 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 2863 Inst.getOpcode() == ARM::VMOVv4i32 || 2864 Inst.getOpcode() == ARM::VMVNv2i32 || 2865 Inst.getOpcode() == ARM::VMVNv4i32) && 2866 "All instructions that want to replicate non-zero word " 2867 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 2868 uint64_t Value = CE->getValue(); 2869 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 2870 Inst.addOperand(MCOperand::createImm(Elem)); 2871 } 2872 2873 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2874 assert(N == 1 && "Invalid number of operands!"); 2875 // The immediate encodes the type of constant as well as the value. 2876 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2877 uint64_t Value = CE->getValue(); 2878 unsigned Imm = 0; 2879 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2880 Imm |= (Value & 1) << i; 2881 } 2882 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2883 } 2884 2885 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 2886 assert(N == 1 && "Invalid number of operands!"); 2887 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2888 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 2889 } 2890 2891 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 2892 assert(N == 1 && "Invalid number of operands!"); 2893 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2894 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 2895 } 2896 2897 void print(raw_ostream &OS) const override; 2898 2899 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2900 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2901 Op->ITMask.Mask = Mask; 2902 Op->StartLoc = S; 2903 Op->EndLoc = S; 2904 return Op; 2905 } 2906 2907 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2908 SMLoc S) { 2909 auto Op = make_unique<ARMOperand>(k_CondCode); 2910 Op->CC.Val = CC; 2911 Op->StartLoc = S; 2912 Op->EndLoc = S; 2913 return Op; 2914 } 2915 2916 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2917 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2918 Op->Cop.Val = CopVal; 2919 Op->StartLoc = S; 2920 Op->EndLoc = S; 2921 return Op; 2922 } 2923 2924 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2925 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2926 Op->Cop.Val = CopVal; 2927 Op->StartLoc = S; 2928 Op->EndLoc = S; 2929 return Op; 2930 } 2931 2932 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2933 SMLoc E) { 2934 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2935 Op->Cop.Val = Val; 2936 Op->StartLoc = S; 2937 Op->EndLoc = E; 2938 return Op; 2939 } 2940 2941 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2942 auto Op = make_unique<ARMOperand>(k_CCOut); 2943 Op->Reg.RegNum = RegNum; 2944 Op->StartLoc = S; 2945 Op->EndLoc = S; 2946 return Op; 2947 } 2948 2949 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2950 auto Op = make_unique<ARMOperand>(k_Token); 2951 Op->Tok.Data = Str.data(); 2952 Op->Tok.Length = Str.size(); 2953 Op->StartLoc = S; 2954 Op->EndLoc = S; 2955 return Op; 2956 } 2957 2958 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2959 SMLoc E) { 2960 auto Op = make_unique<ARMOperand>(k_Register); 2961 Op->Reg.RegNum = RegNum; 2962 Op->StartLoc = S; 2963 Op->EndLoc = E; 2964 return Op; 2965 } 2966 2967 static std::unique_ptr<ARMOperand> 2968 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2969 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2970 SMLoc E) { 2971 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2972 Op->RegShiftedReg.ShiftTy = ShTy; 2973 Op->RegShiftedReg.SrcReg = SrcReg; 2974 Op->RegShiftedReg.ShiftReg = ShiftReg; 2975 Op->RegShiftedReg.ShiftImm = ShiftImm; 2976 Op->StartLoc = S; 2977 Op->EndLoc = E; 2978 return Op; 2979 } 2980 2981 static std::unique_ptr<ARMOperand> 2982 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2983 unsigned ShiftImm, SMLoc S, SMLoc E) { 2984 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2985 Op->RegShiftedImm.ShiftTy = ShTy; 2986 Op->RegShiftedImm.SrcReg = SrcReg; 2987 Op->RegShiftedImm.ShiftImm = ShiftImm; 2988 Op->StartLoc = S; 2989 Op->EndLoc = E; 2990 return Op; 2991 } 2992 2993 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2994 SMLoc S, SMLoc E) { 2995 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2996 Op->ShifterImm.isASR = isASR; 2997 Op->ShifterImm.Imm = Imm; 2998 Op->StartLoc = S; 2999 Op->EndLoc = E; 3000 return Op; 3001 } 3002 3003 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3004 SMLoc E) { 3005 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 3006 Op->RotImm.Imm = Imm; 3007 Op->StartLoc = S; 3008 Op->EndLoc = E; 3009 return Op; 3010 } 3011 3012 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3013 SMLoc S, SMLoc E) { 3014 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 3015 Op->ModImm.Bits = Bits; 3016 Op->ModImm.Rot = Rot; 3017 Op->StartLoc = S; 3018 Op->EndLoc = E; 3019 return Op; 3020 } 3021 3022 static std::unique_ptr<ARMOperand> 3023 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3024 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 3025 Op->Imm.Val = Val; 3026 Op->StartLoc = S; 3027 Op->EndLoc = E; 3028 return Op; 3029 } 3030 3031 static std::unique_ptr<ARMOperand> 3032 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3033 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 3034 Op->Bitfield.LSB = LSB; 3035 Op->Bitfield.Width = Width; 3036 Op->StartLoc = S; 3037 Op->EndLoc = E; 3038 return Op; 3039 } 3040 3041 static std::unique_ptr<ARMOperand> 3042 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3043 SMLoc StartLoc, SMLoc EndLoc) { 3044 assert(Regs.size() > 0 && "RegList contains no registers?"); 3045 KindTy Kind = k_RegisterList; 3046 3047 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 3048 Kind = k_DPRRegisterList; 3049 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 3050 contains(Regs.front().second)) 3051 Kind = k_SPRRegisterList; 3052 3053 // Sort based on the register encoding values. 3054 array_pod_sort(Regs.begin(), Regs.end()); 3055 3056 auto Op = make_unique<ARMOperand>(Kind); 3057 for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator 3058 I = Regs.begin(), E = Regs.end(); I != E; ++I) 3059 Op->Registers.push_back(I->second); 3060 Op->StartLoc = StartLoc; 3061 Op->EndLoc = EndLoc; 3062 return Op; 3063 } 3064 3065 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3066 unsigned Count, 3067 bool isDoubleSpaced, 3068 SMLoc S, SMLoc E) { 3069 auto Op = make_unique<ARMOperand>(k_VectorList); 3070 Op->VectorList.RegNum = RegNum; 3071 Op->VectorList.Count = Count; 3072 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3073 Op->StartLoc = S; 3074 Op->EndLoc = E; 3075 return Op; 3076 } 3077 3078 static std::unique_ptr<ARMOperand> 3079 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3080 SMLoc S, SMLoc E) { 3081 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 3082 Op->VectorList.RegNum = RegNum; 3083 Op->VectorList.Count = Count; 3084 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3085 Op->StartLoc = S; 3086 Op->EndLoc = E; 3087 return Op; 3088 } 3089 3090 static std::unique_ptr<ARMOperand> 3091 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3092 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3093 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 3094 Op->VectorList.RegNum = RegNum; 3095 Op->VectorList.Count = Count; 3096 Op->VectorList.LaneIndex = Index; 3097 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3098 Op->StartLoc = S; 3099 Op->EndLoc = E; 3100 return Op; 3101 } 3102 3103 static std::unique_ptr<ARMOperand> 3104 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3105 auto Op = make_unique<ARMOperand>(k_VectorIndex); 3106 Op->VectorIndex.Val = Idx; 3107 Op->StartLoc = S; 3108 Op->EndLoc = E; 3109 return Op; 3110 } 3111 3112 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3113 SMLoc E) { 3114 auto Op = make_unique<ARMOperand>(k_Immediate); 3115 Op->Imm.Val = Val; 3116 Op->StartLoc = S; 3117 Op->EndLoc = E; 3118 return Op; 3119 } 3120 3121 static std::unique_ptr<ARMOperand> 3122 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3123 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3124 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3125 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3126 auto Op = make_unique<ARMOperand>(k_Memory); 3127 Op->Memory.BaseRegNum = BaseRegNum; 3128 Op->Memory.OffsetImm = OffsetImm; 3129 Op->Memory.OffsetRegNum = OffsetRegNum; 3130 Op->Memory.ShiftType = ShiftType; 3131 Op->Memory.ShiftImm = ShiftImm; 3132 Op->Memory.Alignment = Alignment; 3133 Op->Memory.isNegative = isNegative; 3134 Op->StartLoc = S; 3135 Op->EndLoc = E; 3136 Op->AlignmentLoc = AlignmentLoc; 3137 return Op; 3138 } 3139 3140 static std::unique_ptr<ARMOperand> 3141 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3142 unsigned ShiftImm, SMLoc S, SMLoc E) { 3143 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 3144 Op->PostIdxReg.RegNum = RegNum; 3145 Op->PostIdxReg.isAdd = isAdd; 3146 Op->PostIdxReg.ShiftTy = ShiftTy; 3147 Op->PostIdxReg.ShiftImm = ShiftImm; 3148 Op->StartLoc = S; 3149 Op->EndLoc = E; 3150 return Op; 3151 } 3152 3153 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3154 SMLoc S) { 3155 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3156 Op->MBOpt.Val = Opt; 3157 Op->StartLoc = S; 3158 Op->EndLoc = S; 3159 return Op; 3160 } 3161 3162 static std::unique_ptr<ARMOperand> 3163 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3164 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3165 Op->ISBOpt.Val = Opt; 3166 Op->StartLoc = S; 3167 Op->EndLoc = S; 3168 return Op; 3169 } 3170 3171 static std::unique_ptr<ARMOperand> 3172 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3173 auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3174 Op->TSBOpt.Val = Opt; 3175 Op->StartLoc = S; 3176 Op->EndLoc = S; 3177 return Op; 3178 } 3179 3180 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3181 SMLoc S) { 3182 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3183 Op->IFlags.Val = IFlags; 3184 Op->StartLoc = S; 3185 Op->EndLoc = S; 3186 return Op; 3187 } 3188 3189 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3190 auto Op = make_unique<ARMOperand>(k_MSRMask); 3191 Op->MMask.Val = MMask; 3192 Op->StartLoc = S; 3193 Op->EndLoc = S; 3194 return Op; 3195 } 3196 3197 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3198 auto Op = make_unique<ARMOperand>(k_BankedReg); 3199 Op->BankedReg.Val = Reg; 3200 Op->StartLoc = S; 3201 Op->EndLoc = S; 3202 return Op; 3203 } 3204 }; 3205 3206 } // end anonymous namespace. 3207 3208 void ARMOperand::print(raw_ostream &OS) const { 3209 auto RegName = [](unsigned Reg) { 3210 if (Reg) 3211 return ARMInstPrinter::getRegisterName(Reg); 3212 else 3213 return "noreg"; 3214 }; 3215 3216 switch (Kind) { 3217 case k_CondCode: 3218 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3219 break; 3220 case k_CCOut: 3221 OS << "<ccout " << RegName(getReg()) << ">"; 3222 break; 3223 case k_ITCondMask: { 3224 static const char *const MaskStr[] = { 3225 "(invalid)", "(teee)", "(tee)", "(teet)", 3226 "(te)", "(tete)", "(tet)", "(tett)", 3227 "(t)", "(ttee)", "(tte)", "(ttet)", 3228 "(tt)", "(ttte)", "(ttt)", "(tttt)" 3229 }; 3230 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3231 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3232 break; 3233 } 3234 case k_CoprocNum: 3235 OS << "<coprocessor number: " << getCoproc() << ">"; 3236 break; 3237 case k_CoprocReg: 3238 OS << "<coprocessor register: " << getCoproc() << ">"; 3239 break; 3240 case k_CoprocOption: 3241 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3242 break; 3243 case k_MSRMask: 3244 OS << "<mask: " << getMSRMask() << ">"; 3245 break; 3246 case k_BankedReg: 3247 OS << "<banked reg: " << getBankedReg() << ">"; 3248 break; 3249 case k_Immediate: 3250 OS << *getImm(); 3251 break; 3252 case k_MemBarrierOpt: 3253 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3254 break; 3255 case k_InstSyncBarrierOpt: 3256 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3257 break; 3258 case k_TraceSyncBarrierOpt: 3259 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3260 break; 3261 case k_Memory: 3262 OS << "<memory"; 3263 if (Memory.BaseRegNum) 3264 OS << " base:" << RegName(Memory.BaseRegNum); 3265 if (Memory.OffsetImm) 3266 OS << " offset-imm:" << *Memory.OffsetImm; 3267 if (Memory.OffsetRegNum) 3268 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3269 << RegName(Memory.OffsetRegNum); 3270 if (Memory.ShiftType != ARM_AM::no_shift) { 3271 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3272 OS << " shift-imm:" << Memory.ShiftImm; 3273 } 3274 if (Memory.Alignment) 3275 OS << " alignment:" << Memory.Alignment; 3276 OS << ">"; 3277 break; 3278 case k_PostIndexRegister: 3279 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3280 << RegName(PostIdxReg.RegNum); 3281 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3282 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3283 << PostIdxReg.ShiftImm; 3284 OS << ">"; 3285 break; 3286 case k_ProcIFlags: { 3287 OS << "<ARM_PROC::"; 3288 unsigned IFlags = getProcIFlags(); 3289 for (int i=2; i >= 0; --i) 3290 if (IFlags & (1 << i)) 3291 OS << ARM_PROC::IFlagsToString(1 << i); 3292 OS << ">"; 3293 break; 3294 } 3295 case k_Register: 3296 OS << "<register " << RegName(getReg()) << ">"; 3297 break; 3298 case k_ShifterImmediate: 3299 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3300 << " #" << ShifterImm.Imm << ">"; 3301 break; 3302 case k_ShiftedRegister: 3303 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3304 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3305 << RegName(RegShiftedReg.ShiftReg) << ">"; 3306 break; 3307 case k_ShiftedImmediate: 3308 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3309 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3310 << RegShiftedImm.ShiftImm << ">"; 3311 break; 3312 case k_RotateImmediate: 3313 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3314 break; 3315 case k_ModifiedImmediate: 3316 OS << "<mod_imm #" << ModImm.Bits << ", #" 3317 << ModImm.Rot << ")>"; 3318 break; 3319 case k_ConstantPoolImmediate: 3320 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3321 break; 3322 case k_BitfieldDescriptor: 3323 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3324 << ", width: " << Bitfield.Width << ">"; 3325 break; 3326 case k_RegisterList: 3327 case k_DPRRegisterList: 3328 case k_SPRRegisterList: { 3329 OS << "<register_list "; 3330 3331 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3332 for (SmallVectorImpl<unsigned>::const_iterator 3333 I = RegList.begin(), E = RegList.end(); I != E; ) { 3334 OS << RegName(*I); 3335 if (++I < E) OS << ", "; 3336 } 3337 3338 OS << ">"; 3339 break; 3340 } 3341 case k_VectorList: 3342 OS << "<vector_list " << VectorList.Count << " * " 3343 << RegName(VectorList.RegNum) << ">"; 3344 break; 3345 case k_VectorListAllLanes: 3346 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3347 << RegName(VectorList.RegNum) << ">"; 3348 break; 3349 case k_VectorListIndexed: 3350 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3351 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 3352 break; 3353 case k_Token: 3354 OS << "'" << getToken() << "'"; 3355 break; 3356 case k_VectorIndex: 3357 OS << "<vectorindex " << getVectorIndex() << ">"; 3358 break; 3359 } 3360 } 3361 3362 /// @name Auto-generated Match Functions 3363 /// { 3364 3365 static unsigned MatchRegisterName(StringRef Name); 3366 3367 /// } 3368 3369 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3370 SMLoc &StartLoc, SMLoc &EndLoc) { 3371 const AsmToken &Tok = getParser().getTok(); 3372 StartLoc = Tok.getLoc(); 3373 EndLoc = Tok.getEndLoc(); 3374 RegNo = tryParseRegister(); 3375 3376 return (RegNo == (unsigned)-1); 3377 } 3378 3379 /// Try to parse a register name. The token must be an Identifier when called, 3380 /// and if it is a register name the token is eaten and the register number is 3381 /// returned. Otherwise return -1. 3382 int ARMAsmParser::tryParseRegister() { 3383 MCAsmParser &Parser = getParser(); 3384 const AsmToken &Tok = Parser.getTok(); 3385 if (Tok.isNot(AsmToken::Identifier)) return -1; 3386 3387 std::string lowerCase = Tok.getString().lower(); 3388 unsigned RegNum = MatchRegisterName(lowerCase); 3389 if (!RegNum) { 3390 RegNum = StringSwitch<unsigned>(lowerCase) 3391 .Case("r13", ARM::SP) 3392 .Case("r14", ARM::LR) 3393 .Case("r15", ARM::PC) 3394 .Case("ip", ARM::R12) 3395 // Additional register name aliases for 'gas' compatibility. 3396 .Case("a1", ARM::R0) 3397 .Case("a2", ARM::R1) 3398 .Case("a3", ARM::R2) 3399 .Case("a4", ARM::R3) 3400 .Case("v1", ARM::R4) 3401 .Case("v2", ARM::R5) 3402 .Case("v3", ARM::R6) 3403 .Case("v4", ARM::R7) 3404 .Case("v5", ARM::R8) 3405 .Case("v6", ARM::R9) 3406 .Case("v7", ARM::R10) 3407 .Case("v8", ARM::R11) 3408 .Case("sb", ARM::R9) 3409 .Case("sl", ARM::R10) 3410 .Case("fp", ARM::R11) 3411 .Default(0); 3412 } 3413 if (!RegNum) { 3414 // Check for aliases registered via .req. Canonicalize to lower case. 3415 // That's more consistent since register names are case insensitive, and 3416 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3417 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3418 // If no match, return failure. 3419 if (Entry == RegisterReqs.end()) 3420 return -1; 3421 Parser.Lex(); // Eat identifier token. 3422 return Entry->getValue(); 3423 } 3424 3425 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3426 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3427 return -1; 3428 3429 Parser.Lex(); // Eat identifier token. 3430 3431 return RegNum; 3432 } 3433 3434 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3435 // If a recoverable error occurs, return 1. If an irrecoverable error 3436 // occurs, return -1. An irrecoverable error is one where tokens have been 3437 // consumed in the process of trying to parse the shifter (i.e., when it is 3438 // indeed a shifter operand, but malformed). 3439 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3440 MCAsmParser &Parser = getParser(); 3441 SMLoc S = Parser.getTok().getLoc(); 3442 const AsmToken &Tok = Parser.getTok(); 3443 if (Tok.isNot(AsmToken::Identifier)) 3444 return -1; 3445 3446 std::string lowerCase = Tok.getString().lower(); 3447 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3448 .Case("asl", ARM_AM::lsl) 3449 .Case("lsl", ARM_AM::lsl) 3450 .Case("lsr", ARM_AM::lsr) 3451 .Case("asr", ARM_AM::asr) 3452 .Case("ror", ARM_AM::ror) 3453 .Case("rrx", ARM_AM::rrx) 3454 .Default(ARM_AM::no_shift); 3455 3456 if (ShiftTy == ARM_AM::no_shift) 3457 return 1; 3458 3459 Parser.Lex(); // Eat the operator. 3460 3461 // The source register for the shift has already been added to the 3462 // operand list, so we need to pop it off and combine it into the shifted 3463 // register operand instead. 3464 std::unique_ptr<ARMOperand> PrevOp( 3465 (ARMOperand *)Operands.pop_back_val().release()); 3466 if (!PrevOp->isReg()) 3467 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3468 int SrcReg = PrevOp->getReg(); 3469 3470 SMLoc EndLoc; 3471 int64_t Imm = 0; 3472 int ShiftReg = 0; 3473 if (ShiftTy == ARM_AM::rrx) { 3474 // RRX Doesn't have an explicit shift amount. The encoder expects 3475 // the shift register to be the same as the source register. Seems odd, 3476 // but OK. 3477 ShiftReg = SrcReg; 3478 } else { 3479 // Figure out if this is shifted by a constant or a register (for non-RRX). 3480 if (Parser.getTok().is(AsmToken::Hash) || 3481 Parser.getTok().is(AsmToken::Dollar)) { 3482 Parser.Lex(); // Eat hash. 3483 SMLoc ImmLoc = Parser.getTok().getLoc(); 3484 const MCExpr *ShiftExpr = nullptr; 3485 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3486 Error(ImmLoc, "invalid immediate shift value"); 3487 return -1; 3488 } 3489 // The expression must be evaluatable as an immediate. 3490 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3491 if (!CE) { 3492 Error(ImmLoc, "invalid immediate shift value"); 3493 return -1; 3494 } 3495 // Range check the immediate. 3496 // lsl, ror: 0 <= imm <= 31 3497 // lsr, asr: 0 <= imm <= 32 3498 Imm = CE->getValue(); 3499 if (Imm < 0 || 3500 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3501 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3502 Error(ImmLoc, "immediate shift value out of range"); 3503 return -1; 3504 } 3505 // shift by zero is a nop. Always send it through as lsl. 3506 // ('as' compatibility) 3507 if (Imm == 0) 3508 ShiftTy = ARM_AM::lsl; 3509 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3510 SMLoc L = Parser.getTok().getLoc(); 3511 EndLoc = Parser.getTok().getEndLoc(); 3512 ShiftReg = tryParseRegister(); 3513 if (ShiftReg == -1) { 3514 Error(L, "expected immediate or register in shift operand"); 3515 return -1; 3516 } 3517 } else { 3518 Error(Parser.getTok().getLoc(), 3519 "expected immediate or register in shift operand"); 3520 return -1; 3521 } 3522 } 3523 3524 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3525 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3526 ShiftReg, Imm, 3527 S, EndLoc)); 3528 else 3529 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3530 S, EndLoc)); 3531 3532 return 0; 3533 } 3534 3535 /// Try to parse a register name. The token must be an Identifier when called. 3536 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3537 /// if there is a "writeback". 'true' if it's not a register. 3538 /// 3539 /// TODO this is likely to change to allow different register types and or to 3540 /// parse for a specific register type. 3541 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3542 MCAsmParser &Parser = getParser(); 3543 SMLoc RegStartLoc = Parser.getTok().getLoc(); 3544 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 3545 int RegNo = tryParseRegister(); 3546 if (RegNo == -1) 3547 return true; 3548 3549 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 3550 3551 const AsmToken &ExclaimTok = Parser.getTok(); 3552 if (ExclaimTok.is(AsmToken::Exclaim)) { 3553 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3554 ExclaimTok.getLoc())); 3555 Parser.Lex(); // Eat exclaim token 3556 return false; 3557 } 3558 3559 // Also check for an index operand. This is only legal for vector registers, 3560 // but that'll get caught OK in operand matching, so we don't need to 3561 // explicitly filter everything else out here. 3562 if (Parser.getTok().is(AsmToken::LBrac)) { 3563 SMLoc SIdx = Parser.getTok().getLoc(); 3564 Parser.Lex(); // Eat left bracket token. 3565 3566 const MCExpr *ImmVal; 3567 if (getParser().parseExpression(ImmVal)) 3568 return true; 3569 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3570 if (!MCE) 3571 return TokError("immediate value expected for vector index"); 3572 3573 if (Parser.getTok().isNot(AsmToken::RBrac)) 3574 return Error(Parser.getTok().getLoc(), "']' expected"); 3575 3576 SMLoc E = Parser.getTok().getEndLoc(); 3577 Parser.Lex(); // Eat right bracket token. 3578 3579 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3580 SIdx, E, 3581 getContext())); 3582 } 3583 3584 return false; 3585 } 3586 3587 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3588 /// instruction with a symbolic operand name. 3589 /// We accept "crN" syntax for GAS compatibility. 3590 /// <operand-name> ::= <prefix><number> 3591 /// If CoprocOp is 'c', then: 3592 /// <prefix> ::= c | cr 3593 /// If CoprocOp is 'p', then : 3594 /// <prefix> ::= p 3595 /// <number> ::= integer in range [0, 15] 3596 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3597 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3598 // but efficient. 3599 if (Name.size() < 2 || Name[0] != CoprocOp) 3600 return -1; 3601 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3602 3603 switch (Name.size()) { 3604 default: return -1; 3605 case 1: 3606 switch (Name[0]) { 3607 default: return -1; 3608 case '0': return 0; 3609 case '1': return 1; 3610 case '2': return 2; 3611 case '3': return 3; 3612 case '4': return 4; 3613 case '5': return 5; 3614 case '6': return 6; 3615 case '7': return 7; 3616 case '8': return 8; 3617 case '9': return 9; 3618 } 3619 case 2: 3620 if (Name[0] != '1') 3621 return -1; 3622 switch (Name[1]) { 3623 default: return -1; 3624 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3625 // However, old cores (v5/v6) did use them in that way. 3626 case '0': return 10; 3627 case '1': return 11; 3628 case '2': return 12; 3629 case '3': return 13; 3630 case '4': return 14; 3631 case '5': return 15; 3632 } 3633 } 3634 } 3635 3636 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3637 OperandMatchResultTy 3638 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3639 MCAsmParser &Parser = getParser(); 3640 SMLoc S = Parser.getTok().getLoc(); 3641 const AsmToken &Tok = Parser.getTok(); 3642 if (!Tok.is(AsmToken::Identifier)) 3643 return MatchOperand_NoMatch; 3644 unsigned CC = ARMCondCodeFromString(Tok.getString()); 3645 if (CC == ~0U) 3646 return MatchOperand_NoMatch; 3647 Parser.Lex(); // Eat the token. 3648 3649 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3650 3651 return MatchOperand_Success; 3652 } 3653 3654 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3655 /// token must be an Identifier when called, and if it is a coprocessor 3656 /// number, the token is eaten and the operand is added to the operand list. 3657 OperandMatchResultTy 3658 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3659 MCAsmParser &Parser = getParser(); 3660 SMLoc S = Parser.getTok().getLoc(); 3661 const AsmToken &Tok = Parser.getTok(); 3662 if (Tok.isNot(AsmToken::Identifier)) 3663 return MatchOperand_NoMatch; 3664 3665 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); 3666 if (Num == -1) 3667 return MatchOperand_NoMatch; 3668 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3669 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3670 return MatchOperand_NoMatch; 3671 3672 Parser.Lex(); // Eat identifier token. 3673 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3674 return MatchOperand_Success; 3675 } 3676 3677 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3678 /// token must be an Identifier when called, and if it is a coprocessor 3679 /// number, the token is eaten and the operand is added to the operand list. 3680 OperandMatchResultTy 3681 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3682 MCAsmParser &Parser = getParser(); 3683 SMLoc S = Parser.getTok().getLoc(); 3684 const AsmToken &Tok = Parser.getTok(); 3685 if (Tok.isNot(AsmToken::Identifier)) 3686 return MatchOperand_NoMatch; 3687 3688 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); 3689 if (Reg == -1) 3690 return MatchOperand_NoMatch; 3691 3692 Parser.Lex(); // Eat identifier token. 3693 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3694 return MatchOperand_Success; 3695 } 3696 3697 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3698 /// coproc_option : '{' imm0_255 '}' 3699 OperandMatchResultTy 3700 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3701 MCAsmParser &Parser = getParser(); 3702 SMLoc S = Parser.getTok().getLoc(); 3703 3704 // If this isn't a '{', this isn't a coprocessor immediate operand. 3705 if (Parser.getTok().isNot(AsmToken::LCurly)) 3706 return MatchOperand_NoMatch; 3707 Parser.Lex(); // Eat the '{' 3708 3709 const MCExpr *Expr; 3710 SMLoc Loc = Parser.getTok().getLoc(); 3711 if (getParser().parseExpression(Expr)) { 3712 Error(Loc, "illegal expression"); 3713 return MatchOperand_ParseFail; 3714 } 3715 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3716 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3717 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3718 return MatchOperand_ParseFail; 3719 } 3720 int Val = CE->getValue(); 3721 3722 // Check for and consume the closing '}' 3723 if (Parser.getTok().isNot(AsmToken::RCurly)) 3724 return MatchOperand_ParseFail; 3725 SMLoc E = Parser.getTok().getEndLoc(); 3726 Parser.Lex(); // Eat the '}' 3727 3728 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3729 return MatchOperand_Success; 3730 } 3731 3732 // For register list parsing, we need to map from raw GPR register numbering 3733 // to the enumeration values. The enumeration values aren't sorted by 3734 // register number due to our using "sp", "lr" and "pc" as canonical names. 3735 static unsigned getNextRegister(unsigned Reg) { 3736 // If this is a GPR, we need to do it manually, otherwise we can rely 3737 // on the sort ordering of the enumeration since the other reg-classes 3738 // are sane. 3739 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3740 return Reg + 1; 3741 switch(Reg) { 3742 default: llvm_unreachable("Invalid GPR number!"); 3743 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3744 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3745 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3746 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3747 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3748 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3749 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3750 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3751 } 3752 } 3753 3754 /// Parse a register list. 3755 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3756 MCAsmParser &Parser = getParser(); 3757 if (Parser.getTok().isNot(AsmToken::LCurly)) 3758 return TokError("Token is not a Left Curly Brace"); 3759 SMLoc S = Parser.getTok().getLoc(); 3760 Parser.Lex(); // Eat '{' token. 3761 SMLoc RegLoc = Parser.getTok().getLoc(); 3762 3763 // Check the first register in the list to see what register class 3764 // this is a list of. 3765 int Reg = tryParseRegister(); 3766 if (Reg == -1) 3767 return Error(RegLoc, "register expected"); 3768 3769 // The reglist instructions have at most 16 registers, so reserve 3770 // space for that many. 3771 int EReg = 0; 3772 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3773 3774 // Allow Q regs and just interpret them as the two D sub-registers. 3775 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3776 Reg = getDRegFromQReg(Reg); 3777 EReg = MRI->getEncodingValue(Reg); 3778 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3779 ++Reg; 3780 } 3781 const MCRegisterClass *RC; 3782 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3783 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3784 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3785 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3786 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3787 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3788 else 3789 return Error(RegLoc, "invalid register in register list"); 3790 3791 // Store the register. 3792 EReg = MRI->getEncodingValue(Reg); 3793 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3794 3795 // This starts immediately after the first register token in the list, 3796 // so we can see either a comma or a minus (range separator) as a legal 3797 // next token. 3798 while (Parser.getTok().is(AsmToken::Comma) || 3799 Parser.getTok().is(AsmToken::Minus)) { 3800 if (Parser.getTok().is(AsmToken::Minus)) { 3801 Parser.Lex(); // Eat the minus. 3802 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3803 int EndReg = tryParseRegister(); 3804 if (EndReg == -1) 3805 return Error(AfterMinusLoc, "register expected"); 3806 // Allow Q regs and just interpret them as the two D sub-registers. 3807 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3808 EndReg = getDRegFromQReg(EndReg) + 1; 3809 // If the register is the same as the start reg, there's nothing 3810 // more to do. 3811 if (Reg == EndReg) 3812 continue; 3813 // The register must be in the same register class as the first. 3814 if (!RC->contains(EndReg)) 3815 return Error(AfterMinusLoc, "invalid register in register list"); 3816 // Ranges must go from low to high. 3817 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3818 return Error(AfterMinusLoc, "bad range in register list"); 3819 3820 // Add all the registers in the range to the register list. 3821 while (Reg != EndReg) { 3822 Reg = getNextRegister(Reg); 3823 EReg = MRI->getEncodingValue(Reg); 3824 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3825 } 3826 continue; 3827 } 3828 Parser.Lex(); // Eat the comma. 3829 RegLoc = Parser.getTok().getLoc(); 3830 int OldReg = Reg; 3831 const AsmToken RegTok = Parser.getTok(); 3832 Reg = tryParseRegister(); 3833 if (Reg == -1) 3834 return Error(RegLoc, "register expected"); 3835 // Allow Q regs and just interpret them as the two D sub-registers. 3836 bool isQReg = false; 3837 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3838 Reg = getDRegFromQReg(Reg); 3839 isQReg = true; 3840 } 3841 // The register must be in the same register class as the first. 3842 if (!RC->contains(Reg)) 3843 return Error(RegLoc, "invalid register in register list"); 3844 // List must be monotonically increasing. 3845 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3846 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3847 Warning(RegLoc, "register list not in ascending order"); 3848 else 3849 return Error(RegLoc, "register list not in ascending order"); 3850 } 3851 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3852 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3853 ") in register list"); 3854 continue; 3855 } 3856 // VFP register lists must also be contiguous. 3857 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3858 Reg != OldReg + 1) 3859 return Error(RegLoc, "non-contiguous register range"); 3860 EReg = MRI->getEncodingValue(Reg); 3861 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3862 if (isQReg) { 3863 EReg = MRI->getEncodingValue(++Reg); 3864 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3865 } 3866 } 3867 3868 if (Parser.getTok().isNot(AsmToken::RCurly)) 3869 return Error(Parser.getTok().getLoc(), "'}' expected"); 3870 SMLoc E = Parser.getTok().getEndLoc(); 3871 Parser.Lex(); // Eat '}' token. 3872 3873 // Push the register list operand. 3874 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3875 3876 // The ARM system instruction variants for LDM/STM have a '^' token here. 3877 if (Parser.getTok().is(AsmToken::Caret)) { 3878 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3879 Parser.Lex(); // Eat '^' token. 3880 } 3881 3882 return false; 3883 } 3884 3885 // Helper function to parse the lane index for vector lists. 3886 OperandMatchResultTy ARMAsmParser:: 3887 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3888 MCAsmParser &Parser = getParser(); 3889 Index = 0; // Always return a defined index value. 3890 if (Parser.getTok().is(AsmToken::LBrac)) { 3891 Parser.Lex(); // Eat the '['. 3892 if (Parser.getTok().is(AsmToken::RBrac)) { 3893 // "Dn[]" is the 'all lanes' syntax. 3894 LaneKind = AllLanes; 3895 EndLoc = Parser.getTok().getEndLoc(); 3896 Parser.Lex(); // Eat the ']'. 3897 return MatchOperand_Success; 3898 } 3899 3900 // There's an optional '#' token here. Normally there wouldn't be, but 3901 // inline assemble puts one in, and it's friendly to accept that. 3902 if (Parser.getTok().is(AsmToken::Hash)) 3903 Parser.Lex(); // Eat '#' or '$'. 3904 3905 const MCExpr *LaneIndex; 3906 SMLoc Loc = Parser.getTok().getLoc(); 3907 if (getParser().parseExpression(LaneIndex)) { 3908 Error(Loc, "illegal expression"); 3909 return MatchOperand_ParseFail; 3910 } 3911 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3912 if (!CE) { 3913 Error(Loc, "lane index must be empty or an integer"); 3914 return MatchOperand_ParseFail; 3915 } 3916 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3917 Error(Parser.getTok().getLoc(), "']' expected"); 3918 return MatchOperand_ParseFail; 3919 } 3920 EndLoc = Parser.getTok().getEndLoc(); 3921 Parser.Lex(); // Eat the ']'. 3922 int64_t Val = CE->getValue(); 3923 3924 // FIXME: Make this range check context sensitive for .8, .16, .32. 3925 if (Val < 0 || Val > 7) { 3926 Error(Parser.getTok().getLoc(), "lane index out of range"); 3927 return MatchOperand_ParseFail; 3928 } 3929 Index = Val; 3930 LaneKind = IndexedLane; 3931 return MatchOperand_Success; 3932 } 3933 LaneKind = NoLanes; 3934 return MatchOperand_Success; 3935 } 3936 3937 // parse a vector register list 3938 OperandMatchResultTy 3939 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3940 MCAsmParser &Parser = getParser(); 3941 VectorLaneTy LaneKind; 3942 unsigned LaneIndex; 3943 SMLoc S = Parser.getTok().getLoc(); 3944 // As an extension (to match gas), support a plain D register or Q register 3945 // (without encosing curly braces) as a single or double entry list, 3946 // respectively. 3947 if (Parser.getTok().is(AsmToken::Identifier)) { 3948 SMLoc E = Parser.getTok().getEndLoc(); 3949 int Reg = tryParseRegister(); 3950 if (Reg == -1) 3951 return MatchOperand_NoMatch; 3952 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3953 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3954 if (Res != MatchOperand_Success) 3955 return Res; 3956 switch (LaneKind) { 3957 case NoLanes: 3958 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3959 break; 3960 case AllLanes: 3961 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3962 S, E)); 3963 break; 3964 case IndexedLane: 3965 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3966 LaneIndex, 3967 false, S, E)); 3968 break; 3969 } 3970 return MatchOperand_Success; 3971 } 3972 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3973 Reg = getDRegFromQReg(Reg); 3974 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3975 if (Res != MatchOperand_Success) 3976 return Res; 3977 switch (LaneKind) { 3978 case NoLanes: 3979 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3980 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3981 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3982 break; 3983 case AllLanes: 3984 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3985 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3986 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3987 S, E)); 3988 break; 3989 case IndexedLane: 3990 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3991 LaneIndex, 3992 false, S, E)); 3993 break; 3994 } 3995 return MatchOperand_Success; 3996 } 3997 Error(S, "vector register expected"); 3998 return MatchOperand_ParseFail; 3999 } 4000 4001 if (Parser.getTok().isNot(AsmToken::LCurly)) 4002 return MatchOperand_NoMatch; 4003 4004 Parser.Lex(); // Eat '{' token. 4005 SMLoc RegLoc = Parser.getTok().getLoc(); 4006 4007 int Reg = tryParseRegister(); 4008 if (Reg == -1) { 4009 Error(RegLoc, "register expected"); 4010 return MatchOperand_ParseFail; 4011 } 4012 unsigned Count = 1; 4013 int Spacing = 0; 4014 unsigned FirstReg = Reg; 4015 // The list is of D registers, but we also allow Q regs and just interpret 4016 // them as the two D sub-registers. 4017 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4018 FirstReg = Reg = getDRegFromQReg(Reg); 4019 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4020 // it's ambiguous with four-register single spaced. 4021 ++Reg; 4022 ++Count; 4023 } 4024 4025 SMLoc E; 4026 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4027 return MatchOperand_ParseFail; 4028 4029 while (Parser.getTok().is(AsmToken::Comma) || 4030 Parser.getTok().is(AsmToken::Minus)) { 4031 if (Parser.getTok().is(AsmToken::Minus)) { 4032 if (!Spacing) 4033 Spacing = 1; // Register range implies a single spaced list. 4034 else if (Spacing == 2) { 4035 Error(Parser.getTok().getLoc(), 4036 "sequential registers in double spaced list"); 4037 return MatchOperand_ParseFail; 4038 } 4039 Parser.Lex(); // Eat the minus. 4040 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4041 int EndReg = tryParseRegister(); 4042 if (EndReg == -1) { 4043 Error(AfterMinusLoc, "register expected"); 4044 return MatchOperand_ParseFail; 4045 } 4046 // Allow Q regs and just interpret them as the two D sub-registers. 4047 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4048 EndReg = getDRegFromQReg(EndReg) + 1; 4049 // If the register is the same as the start reg, there's nothing 4050 // more to do. 4051 if (Reg == EndReg) 4052 continue; 4053 // The register must be in the same register class as the first. 4054 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 4055 Error(AfterMinusLoc, "invalid register in register list"); 4056 return MatchOperand_ParseFail; 4057 } 4058 // Ranges must go from low to high. 4059 if (Reg > EndReg) { 4060 Error(AfterMinusLoc, "bad range in register list"); 4061 return MatchOperand_ParseFail; 4062 } 4063 // Parse the lane specifier if present. 4064 VectorLaneTy NextLaneKind; 4065 unsigned NextLaneIndex; 4066 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4067 MatchOperand_Success) 4068 return MatchOperand_ParseFail; 4069 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4070 Error(AfterMinusLoc, "mismatched lane index in register list"); 4071 return MatchOperand_ParseFail; 4072 } 4073 4074 // Add all the registers in the range to the register list. 4075 Count += EndReg - Reg; 4076 Reg = EndReg; 4077 continue; 4078 } 4079 Parser.Lex(); // Eat the comma. 4080 RegLoc = Parser.getTok().getLoc(); 4081 int OldReg = Reg; 4082 Reg = tryParseRegister(); 4083 if (Reg == -1) { 4084 Error(RegLoc, "register expected"); 4085 return MatchOperand_ParseFail; 4086 } 4087 // vector register lists must be contiguous. 4088 // It's OK to use the enumeration values directly here rather, as the 4089 // VFP register classes have the enum sorted properly. 4090 // 4091 // The list is of D registers, but we also allow Q regs and just interpret 4092 // them as the two D sub-registers. 4093 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4094 if (!Spacing) 4095 Spacing = 1; // Register range implies a single spaced list. 4096 else if (Spacing == 2) { 4097 Error(RegLoc, 4098 "invalid register in double-spaced list (must be 'D' register')"); 4099 return MatchOperand_ParseFail; 4100 } 4101 Reg = getDRegFromQReg(Reg); 4102 if (Reg != OldReg + 1) { 4103 Error(RegLoc, "non-contiguous register range"); 4104 return MatchOperand_ParseFail; 4105 } 4106 ++Reg; 4107 Count += 2; 4108 // Parse the lane specifier if present. 4109 VectorLaneTy NextLaneKind; 4110 unsigned NextLaneIndex; 4111 SMLoc LaneLoc = Parser.getTok().getLoc(); 4112 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4113 MatchOperand_Success) 4114 return MatchOperand_ParseFail; 4115 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4116 Error(LaneLoc, "mismatched lane index in register list"); 4117 return MatchOperand_ParseFail; 4118 } 4119 continue; 4120 } 4121 // Normal D register. 4122 // Figure out the register spacing (single or double) of the list if 4123 // we don't know it already. 4124 if (!Spacing) 4125 Spacing = 1 + (Reg == OldReg + 2); 4126 4127 // Just check that it's contiguous and keep going. 4128 if (Reg != OldReg + Spacing) { 4129 Error(RegLoc, "non-contiguous register range"); 4130 return MatchOperand_ParseFail; 4131 } 4132 ++Count; 4133 // Parse the lane specifier if present. 4134 VectorLaneTy NextLaneKind; 4135 unsigned NextLaneIndex; 4136 SMLoc EndLoc = Parser.getTok().getLoc(); 4137 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4138 return MatchOperand_ParseFail; 4139 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4140 Error(EndLoc, "mismatched lane index in register list"); 4141 return MatchOperand_ParseFail; 4142 } 4143 } 4144 4145 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4146 Error(Parser.getTok().getLoc(), "'}' expected"); 4147 return MatchOperand_ParseFail; 4148 } 4149 E = Parser.getTok().getEndLoc(); 4150 Parser.Lex(); // Eat '}' token. 4151 4152 switch (LaneKind) { 4153 case NoLanes: 4154 // Two-register operands have been converted to the 4155 // composite register classes. 4156 if (Count == 2) { 4157 const MCRegisterClass *RC = (Spacing == 1) ? 4158 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4159 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4160 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4161 } 4162 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 4163 (Spacing == 2), S, E)); 4164 break; 4165 case AllLanes: 4166 // Two-register operands have been converted to the 4167 // composite register classes. 4168 if (Count == 2) { 4169 const MCRegisterClass *RC = (Spacing == 1) ? 4170 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4171 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4172 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4173 } 4174 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 4175 (Spacing == 2), 4176 S, E)); 4177 break; 4178 case IndexedLane: 4179 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4180 LaneIndex, 4181 (Spacing == 2), 4182 S, E)); 4183 break; 4184 } 4185 return MatchOperand_Success; 4186 } 4187 4188 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4189 OperandMatchResultTy 4190 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4191 MCAsmParser &Parser = getParser(); 4192 SMLoc S = Parser.getTok().getLoc(); 4193 const AsmToken &Tok = Parser.getTok(); 4194 unsigned Opt; 4195 4196 if (Tok.is(AsmToken::Identifier)) { 4197 StringRef OptStr = Tok.getString(); 4198 4199 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4200 .Case("sy", ARM_MB::SY) 4201 .Case("st", ARM_MB::ST) 4202 .Case("ld", ARM_MB::LD) 4203 .Case("sh", ARM_MB::ISH) 4204 .Case("ish", ARM_MB::ISH) 4205 .Case("shst", ARM_MB::ISHST) 4206 .Case("ishst", ARM_MB::ISHST) 4207 .Case("ishld", ARM_MB::ISHLD) 4208 .Case("nsh", ARM_MB::NSH) 4209 .Case("un", ARM_MB::NSH) 4210 .Case("nshst", ARM_MB::NSHST) 4211 .Case("nshld", ARM_MB::NSHLD) 4212 .Case("unst", ARM_MB::NSHST) 4213 .Case("osh", ARM_MB::OSH) 4214 .Case("oshst", ARM_MB::OSHST) 4215 .Case("oshld", ARM_MB::OSHLD) 4216 .Default(~0U); 4217 4218 // ishld, oshld, nshld and ld are only available from ARMv8. 4219 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4220 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4221 Opt = ~0U; 4222 4223 if (Opt == ~0U) 4224 return MatchOperand_NoMatch; 4225 4226 Parser.Lex(); // Eat identifier token. 4227 } else if (Tok.is(AsmToken::Hash) || 4228 Tok.is(AsmToken::Dollar) || 4229 Tok.is(AsmToken::Integer)) { 4230 if (Parser.getTok().isNot(AsmToken::Integer)) 4231 Parser.Lex(); // Eat '#' or '$'. 4232 SMLoc Loc = Parser.getTok().getLoc(); 4233 4234 const MCExpr *MemBarrierID; 4235 if (getParser().parseExpression(MemBarrierID)) { 4236 Error(Loc, "illegal expression"); 4237 return MatchOperand_ParseFail; 4238 } 4239 4240 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4241 if (!CE) { 4242 Error(Loc, "constant expression expected"); 4243 return MatchOperand_ParseFail; 4244 } 4245 4246 int Val = CE->getValue(); 4247 if (Val & ~0xf) { 4248 Error(Loc, "immediate value out of range"); 4249 return MatchOperand_ParseFail; 4250 } 4251 4252 Opt = ARM_MB::RESERVED_0 + Val; 4253 } else 4254 return MatchOperand_ParseFail; 4255 4256 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4257 return MatchOperand_Success; 4258 } 4259 4260 OperandMatchResultTy 4261 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 4262 MCAsmParser &Parser = getParser(); 4263 SMLoc S = Parser.getTok().getLoc(); 4264 const AsmToken &Tok = Parser.getTok(); 4265 4266 if (Tok.isNot(AsmToken::Identifier)) 4267 return MatchOperand_NoMatch; 4268 4269 if (!Tok.getString().equals_lower("csync")) 4270 return MatchOperand_NoMatch; 4271 4272 Parser.Lex(); // Eat identifier token. 4273 4274 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 4275 return MatchOperand_Success; 4276 } 4277 4278 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4279 OperandMatchResultTy 4280 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4281 MCAsmParser &Parser = getParser(); 4282 SMLoc S = Parser.getTok().getLoc(); 4283 const AsmToken &Tok = Parser.getTok(); 4284 unsigned Opt; 4285 4286 if (Tok.is(AsmToken::Identifier)) { 4287 StringRef OptStr = Tok.getString(); 4288 4289 if (OptStr.equals_lower("sy")) 4290 Opt = ARM_ISB::SY; 4291 else 4292 return MatchOperand_NoMatch; 4293 4294 Parser.Lex(); // Eat identifier token. 4295 } else if (Tok.is(AsmToken::Hash) || 4296 Tok.is(AsmToken::Dollar) || 4297 Tok.is(AsmToken::Integer)) { 4298 if (Parser.getTok().isNot(AsmToken::Integer)) 4299 Parser.Lex(); // Eat '#' or '$'. 4300 SMLoc Loc = Parser.getTok().getLoc(); 4301 4302 const MCExpr *ISBarrierID; 4303 if (getParser().parseExpression(ISBarrierID)) { 4304 Error(Loc, "illegal expression"); 4305 return MatchOperand_ParseFail; 4306 } 4307 4308 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4309 if (!CE) { 4310 Error(Loc, "constant expression expected"); 4311 return MatchOperand_ParseFail; 4312 } 4313 4314 int Val = CE->getValue(); 4315 if (Val & ~0xf) { 4316 Error(Loc, "immediate value out of range"); 4317 return MatchOperand_ParseFail; 4318 } 4319 4320 Opt = ARM_ISB::RESERVED_0 + Val; 4321 } else 4322 return MatchOperand_ParseFail; 4323 4324 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4325 (ARM_ISB::InstSyncBOpt)Opt, S)); 4326 return MatchOperand_Success; 4327 } 4328 4329 4330 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4331 OperandMatchResultTy 4332 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4333 MCAsmParser &Parser = getParser(); 4334 SMLoc S = Parser.getTok().getLoc(); 4335 const AsmToken &Tok = Parser.getTok(); 4336 if (!Tok.is(AsmToken::Identifier)) 4337 return MatchOperand_NoMatch; 4338 StringRef IFlagsStr = Tok.getString(); 4339 4340 // An iflags string of "none" is interpreted to mean that none of the AIF 4341 // bits are set. Not a terribly useful instruction, but a valid encoding. 4342 unsigned IFlags = 0; 4343 if (IFlagsStr != "none") { 4344 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4345 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4346 .Case("a", ARM_PROC::A) 4347 .Case("i", ARM_PROC::I) 4348 .Case("f", ARM_PROC::F) 4349 .Default(~0U); 4350 4351 // If some specific iflag is already set, it means that some letter is 4352 // present more than once, this is not acceptable. 4353 if (Flag == ~0U || (IFlags & Flag)) 4354 return MatchOperand_NoMatch; 4355 4356 IFlags |= Flag; 4357 } 4358 } 4359 4360 Parser.Lex(); // Eat identifier token. 4361 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4362 return MatchOperand_Success; 4363 } 4364 4365 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4366 OperandMatchResultTy 4367 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4368 MCAsmParser &Parser = getParser(); 4369 SMLoc S = Parser.getTok().getLoc(); 4370 const AsmToken &Tok = Parser.getTok(); 4371 4372 if (Tok.is(AsmToken::Integer)) { 4373 int64_t Val = Tok.getIntVal(); 4374 if (Val > 255 || Val < 0) { 4375 return MatchOperand_NoMatch; 4376 } 4377 unsigned SYSmvalue = Val & 0xFF; 4378 Parser.Lex(); 4379 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4380 return MatchOperand_Success; 4381 } 4382 4383 if (!Tok.is(AsmToken::Identifier)) 4384 return MatchOperand_NoMatch; 4385 StringRef Mask = Tok.getString(); 4386 4387 if (isMClass()) { 4388 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4389 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4390 return MatchOperand_NoMatch; 4391 4392 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4393 4394 Parser.Lex(); // Eat identifier token. 4395 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4396 return MatchOperand_Success; 4397 } 4398 4399 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4400 size_t Start = 0, Next = Mask.find('_'); 4401 StringRef Flags = ""; 4402 std::string SpecReg = Mask.slice(Start, Next).lower(); 4403 if (Next != StringRef::npos) 4404 Flags = Mask.slice(Next+1, Mask.size()); 4405 4406 // FlagsVal contains the complete mask: 4407 // 3-0: Mask 4408 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4409 unsigned FlagsVal = 0; 4410 4411 if (SpecReg == "apsr") { 4412 FlagsVal = StringSwitch<unsigned>(Flags) 4413 .Case("nzcvq", 0x8) // same as CPSR_f 4414 .Case("g", 0x4) // same as CPSR_s 4415 .Case("nzcvqg", 0xc) // same as CPSR_fs 4416 .Default(~0U); 4417 4418 if (FlagsVal == ~0U) { 4419 if (!Flags.empty()) 4420 return MatchOperand_NoMatch; 4421 else 4422 FlagsVal = 8; // No flag 4423 } 4424 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4425 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4426 if (Flags == "all" || Flags == "") 4427 Flags = "fc"; 4428 for (int i = 0, e = Flags.size(); i != e; ++i) { 4429 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4430 .Case("c", 1) 4431 .Case("x", 2) 4432 .Case("s", 4) 4433 .Case("f", 8) 4434 .Default(~0U); 4435 4436 // If some specific flag is already set, it means that some letter is 4437 // present more than once, this is not acceptable. 4438 if (Flag == ~0U || (FlagsVal & Flag)) 4439 return MatchOperand_NoMatch; 4440 FlagsVal |= Flag; 4441 } 4442 } else // No match for special register. 4443 return MatchOperand_NoMatch; 4444 4445 // Special register without flags is NOT equivalent to "fc" flags. 4446 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4447 // two lines would enable gas compatibility at the expense of breaking 4448 // round-tripping. 4449 // 4450 // if (!FlagsVal) 4451 // FlagsVal = 0x9; 4452 4453 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4454 if (SpecReg == "spsr") 4455 FlagsVal |= 16; 4456 4457 Parser.Lex(); // Eat identifier token. 4458 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4459 return MatchOperand_Success; 4460 } 4461 4462 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4463 /// use in the MRS/MSR instructions added to support virtualization. 4464 OperandMatchResultTy 4465 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4466 MCAsmParser &Parser = getParser(); 4467 SMLoc S = Parser.getTok().getLoc(); 4468 const AsmToken &Tok = Parser.getTok(); 4469 if (!Tok.is(AsmToken::Identifier)) 4470 return MatchOperand_NoMatch; 4471 StringRef RegName = Tok.getString(); 4472 4473 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 4474 if (!TheReg) 4475 return MatchOperand_NoMatch; 4476 unsigned Encoding = TheReg->Encoding; 4477 4478 Parser.Lex(); // Eat identifier token. 4479 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4480 return MatchOperand_Success; 4481 } 4482 4483 OperandMatchResultTy 4484 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4485 int High) { 4486 MCAsmParser &Parser = getParser(); 4487 const AsmToken &Tok = Parser.getTok(); 4488 if (Tok.isNot(AsmToken::Identifier)) { 4489 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4490 return MatchOperand_ParseFail; 4491 } 4492 StringRef ShiftName = Tok.getString(); 4493 std::string LowerOp = Op.lower(); 4494 std::string UpperOp = Op.upper(); 4495 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4496 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4497 return MatchOperand_ParseFail; 4498 } 4499 Parser.Lex(); // Eat shift type token. 4500 4501 // There must be a '#' and a shift amount. 4502 if (Parser.getTok().isNot(AsmToken::Hash) && 4503 Parser.getTok().isNot(AsmToken::Dollar)) { 4504 Error(Parser.getTok().getLoc(), "'#' expected"); 4505 return MatchOperand_ParseFail; 4506 } 4507 Parser.Lex(); // Eat hash token. 4508 4509 const MCExpr *ShiftAmount; 4510 SMLoc Loc = Parser.getTok().getLoc(); 4511 SMLoc EndLoc; 4512 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4513 Error(Loc, "illegal expression"); 4514 return MatchOperand_ParseFail; 4515 } 4516 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4517 if (!CE) { 4518 Error(Loc, "constant expression expected"); 4519 return MatchOperand_ParseFail; 4520 } 4521 int Val = CE->getValue(); 4522 if (Val < Low || Val > High) { 4523 Error(Loc, "immediate value out of range"); 4524 return MatchOperand_ParseFail; 4525 } 4526 4527 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4528 4529 return MatchOperand_Success; 4530 } 4531 4532 OperandMatchResultTy 4533 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4534 MCAsmParser &Parser = getParser(); 4535 const AsmToken &Tok = Parser.getTok(); 4536 SMLoc S = Tok.getLoc(); 4537 if (Tok.isNot(AsmToken::Identifier)) { 4538 Error(S, "'be' or 'le' operand expected"); 4539 return MatchOperand_ParseFail; 4540 } 4541 int Val = StringSwitch<int>(Tok.getString().lower()) 4542 .Case("be", 1) 4543 .Case("le", 0) 4544 .Default(-1); 4545 Parser.Lex(); // Eat the token. 4546 4547 if (Val == -1) { 4548 Error(S, "'be' or 'le' operand expected"); 4549 return MatchOperand_ParseFail; 4550 } 4551 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4552 getContext()), 4553 S, Tok.getEndLoc())); 4554 return MatchOperand_Success; 4555 } 4556 4557 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4558 /// instructions. Legal values are: 4559 /// lsl #n 'n' in [0,31] 4560 /// asr #n 'n' in [1,32] 4561 /// n == 32 encoded as n == 0. 4562 OperandMatchResultTy 4563 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4564 MCAsmParser &Parser = getParser(); 4565 const AsmToken &Tok = Parser.getTok(); 4566 SMLoc S = Tok.getLoc(); 4567 if (Tok.isNot(AsmToken::Identifier)) { 4568 Error(S, "shift operator 'asr' or 'lsl' expected"); 4569 return MatchOperand_ParseFail; 4570 } 4571 StringRef ShiftName = Tok.getString(); 4572 bool isASR; 4573 if (ShiftName == "lsl" || ShiftName == "LSL") 4574 isASR = false; 4575 else if (ShiftName == "asr" || ShiftName == "ASR") 4576 isASR = true; 4577 else { 4578 Error(S, "shift operator 'asr' or 'lsl' expected"); 4579 return MatchOperand_ParseFail; 4580 } 4581 Parser.Lex(); // Eat the operator. 4582 4583 // A '#' and a shift amount. 4584 if (Parser.getTok().isNot(AsmToken::Hash) && 4585 Parser.getTok().isNot(AsmToken::Dollar)) { 4586 Error(Parser.getTok().getLoc(), "'#' expected"); 4587 return MatchOperand_ParseFail; 4588 } 4589 Parser.Lex(); // Eat hash token. 4590 SMLoc ExLoc = Parser.getTok().getLoc(); 4591 4592 const MCExpr *ShiftAmount; 4593 SMLoc EndLoc; 4594 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4595 Error(ExLoc, "malformed shift expression"); 4596 return MatchOperand_ParseFail; 4597 } 4598 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4599 if (!CE) { 4600 Error(ExLoc, "shift amount must be an immediate"); 4601 return MatchOperand_ParseFail; 4602 } 4603 4604 int64_t Val = CE->getValue(); 4605 if (isASR) { 4606 // Shift amount must be in [1,32] 4607 if (Val < 1 || Val > 32) { 4608 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4609 return MatchOperand_ParseFail; 4610 } 4611 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4612 if (isThumb() && Val == 32) { 4613 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4614 return MatchOperand_ParseFail; 4615 } 4616 if (Val == 32) Val = 0; 4617 } else { 4618 // Shift amount must be in [1,32] 4619 if (Val < 0 || Val > 31) { 4620 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4621 return MatchOperand_ParseFail; 4622 } 4623 } 4624 4625 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4626 4627 return MatchOperand_Success; 4628 } 4629 4630 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4631 /// of instructions. Legal values are: 4632 /// ror #n 'n' in {0, 8, 16, 24} 4633 OperandMatchResultTy 4634 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4635 MCAsmParser &Parser = getParser(); 4636 const AsmToken &Tok = Parser.getTok(); 4637 SMLoc S = Tok.getLoc(); 4638 if (Tok.isNot(AsmToken::Identifier)) 4639 return MatchOperand_NoMatch; 4640 StringRef ShiftName = Tok.getString(); 4641 if (ShiftName != "ror" && ShiftName != "ROR") 4642 return MatchOperand_NoMatch; 4643 Parser.Lex(); // Eat the operator. 4644 4645 // A '#' and a rotate amount. 4646 if (Parser.getTok().isNot(AsmToken::Hash) && 4647 Parser.getTok().isNot(AsmToken::Dollar)) { 4648 Error(Parser.getTok().getLoc(), "'#' expected"); 4649 return MatchOperand_ParseFail; 4650 } 4651 Parser.Lex(); // Eat hash token. 4652 SMLoc ExLoc = Parser.getTok().getLoc(); 4653 4654 const MCExpr *ShiftAmount; 4655 SMLoc EndLoc; 4656 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4657 Error(ExLoc, "malformed rotate expression"); 4658 return MatchOperand_ParseFail; 4659 } 4660 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4661 if (!CE) { 4662 Error(ExLoc, "rotate amount must be an immediate"); 4663 return MatchOperand_ParseFail; 4664 } 4665 4666 int64_t Val = CE->getValue(); 4667 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4668 // normally, zero is represented in asm by omitting the rotate operand 4669 // entirely. 4670 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4671 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4672 return MatchOperand_ParseFail; 4673 } 4674 4675 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4676 4677 return MatchOperand_Success; 4678 } 4679 4680 OperandMatchResultTy 4681 ARMAsmParser::parseModImm(OperandVector &Operands) { 4682 MCAsmParser &Parser = getParser(); 4683 MCAsmLexer &Lexer = getLexer(); 4684 int64_t Imm1, Imm2; 4685 4686 SMLoc S = Parser.getTok().getLoc(); 4687 4688 // 1) A mod_imm operand can appear in the place of a register name: 4689 // add r0, #mod_imm 4690 // add r0, r0, #mod_imm 4691 // to correctly handle the latter, we bail out as soon as we see an 4692 // identifier. 4693 // 4694 // 2) Similarly, we do not want to parse into complex operands: 4695 // mov r0, #mod_imm 4696 // mov r0, :lower16:(_foo) 4697 if (Parser.getTok().is(AsmToken::Identifier) || 4698 Parser.getTok().is(AsmToken::Colon)) 4699 return MatchOperand_NoMatch; 4700 4701 // Hash (dollar) is optional as per the ARMARM 4702 if (Parser.getTok().is(AsmToken::Hash) || 4703 Parser.getTok().is(AsmToken::Dollar)) { 4704 // Avoid parsing into complex operands (#:) 4705 if (Lexer.peekTok().is(AsmToken::Colon)) 4706 return MatchOperand_NoMatch; 4707 4708 // Eat the hash (dollar) 4709 Parser.Lex(); 4710 } 4711 4712 SMLoc Sx1, Ex1; 4713 Sx1 = Parser.getTok().getLoc(); 4714 const MCExpr *Imm1Exp; 4715 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4716 Error(Sx1, "malformed expression"); 4717 return MatchOperand_ParseFail; 4718 } 4719 4720 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4721 4722 if (CE) { 4723 // Immediate must fit within 32-bits 4724 Imm1 = CE->getValue(); 4725 int Enc = ARM_AM::getSOImmVal(Imm1); 4726 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4727 // We have a match! 4728 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4729 (Enc & 0xF00) >> 7, 4730 Sx1, Ex1)); 4731 return MatchOperand_Success; 4732 } 4733 4734 // We have parsed an immediate which is not for us, fallback to a plain 4735 // immediate. This can happen for instruction aliases. For an example, 4736 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4737 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4738 // instruction with a mod_imm operand. The alias is defined such that the 4739 // parser method is shared, that's why we have to do this here. 4740 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4741 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4742 return MatchOperand_Success; 4743 } 4744 } else { 4745 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4746 // MCFixup). Fallback to a plain immediate. 4747 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4748 return MatchOperand_Success; 4749 } 4750 4751 // From this point onward, we expect the input to be a (#bits, #rot) pair 4752 if (Parser.getTok().isNot(AsmToken::Comma)) { 4753 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4754 return MatchOperand_ParseFail; 4755 } 4756 4757 if (Imm1 & ~0xFF) { 4758 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4759 return MatchOperand_ParseFail; 4760 } 4761 4762 // Eat the comma 4763 Parser.Lex(); 4764 4765 // Repeat for #rot 4766 SMLoc Sx2, Ex2; 4767 Sx2 = Parser.getTok().getLoc(); 4768 4769 // Eat the optional hash (dollar) 4770 if (Parser.getTok().is(AsmToken::Hash) || 4771 Parser.getTok().is(AsmToken::Dollar)) 4772 Parser.Lex(); 4773 4774 const MCExpr *Imm2Exp; 4775 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4776 Error(Sx2, "malformed expression"); 4777 return MatchOperand_ParseFail; 4778 } 4779 4780 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4781 4782 if (CE) { 4783 Imm2 = CE->getValue(); 4784 if (!(Imm2 & ~0x1E)) { 4785 // We have a match! 4786 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4787 return MatchOperand_Success; 4788 } 4789 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4790 return MatchOperand_ParseFail; 4791 } else { 4792 Error(Sx2, "constant expression expected"); 4793 return MatchOperand_ParseFail; 4794 } 4795 } 4796 4797 OperandMatchResultTy 4798 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4799 MCAsmParser &Parser = getParser(); 4800 SMLoc S = Parser.getTok().getLoc(); 4801 // The bitfield descriptor is really two operands, the LSB and the width. 4802 if (Parser.getTok().isNot(AsmToken::Hash) && 4803 Parser.getTok().isNot(AsmToken::Dollar)) { 4804 Error(Parser.getTok().getLoc(), "'#' expected"); 4805 return MatchOperand_ParseFail; 4806 } 4807 Parser.Lex(); // Eat hash token. 4808 4809 const MCExpr *LSBExpr; 4810 SMLoc E = Parser.getTok().getLoc(); 4811 if (getParser().parseExpression(LSBExpr)) { 4812 Error(E, "malformed immediate expression"); 4813 return MatchOperand_ParseFail; 4814 } 4815 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4816 if (!CE) { 4817 Error(E, "'lsb' operand must be an immediate"); 4818 return MatchOperand_ParseFail; 4819 } 4820 4821 int64_t LSB = CE->getValue(); 4822 // The LSB must be in the range [0,31] 4823 if (LSB < 0 || LSB > 31) { 4824 Error(E, "'lsb' operand must be in the range [0,31]"); 4825 return MatchOperand_ParseFail; 4826 } 4827 E = Parser.getTok().getLoc(); 4828 4829 // Expect another immediate operand. 4830 if (Parser.getTok().isNot(AsmToken::Comma)) { 4831 Error(Parser.getTok().getLoc(), "too few operands"); 4832 return MatchOperand_ParseFail; 4833 } 4834 Parser.Lex(); // Eat hash token. 4835 if (Parser.getTok().isNot(AsmToken::Hash) && 4836 Parser.getTok().isNot(AsmToken::Dollar)) { 4837 Error(Parser.getTok().getLoc(), "'#' expected"); 4838 return MatchOperand_ParseFail; 4839 } 4840 Parser.Lex(); // Eat hash token. 4841 4842 const MCExpr *WidthExpr; 4843 SMLoc EndLoc; 4844 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4845 Error(E, "malformed immediate expression"); 4846 return MatchOperand_ParseFail; 4847 } 4848 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4849 if (!CE) { 4850 Error(E, "'width' operand must be an immediate"); 4851 return MatchOperand_ParseFail; 4852 } 4853 4854 int64_t Width = CE->getValue(); 4855 // The LSB must be in the range [1,32-lsb] 4856 if (Width < 1 || Width > 32 - LSB) { 4857 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4858 return MatchOperand_ParseFail; 4859 } 4860 4861 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4862 4863 return MatchOperand_Success; 4864 } 4865 4866 OperandMatchResultTy 4867 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4868 // Check for a post-index addressing register operand. Specifically: 4869 // postidx_reg := '+' register {, shift} 4870 // | '-' register {, shift} 4871 // | register {, shift} 4872 4873 // This method must return MatchOperand_NoMatch without consuming any tokens 4874 // in the case where there is no match, as other alternatives take other 4875 // parse methods. 4876 MCAsmParser &Parser = getParser(); 4877 AsmToken Tok = Parser.getTok(); 4878 SMLoc S = Tok.getLoc(); 4879 bool haveEaten = false; 4880 bool isAdd = true; 4881 if (Tok.is(AsmToken::Plus)) { 4882 Parser.Lex(); // Eat the '+' token. 4883 haveEaten = true; 4884 } else if (Tok.is(AsmToken::Minus)) { 4885 Parser.Lex(); // Eat the '-' token. 4886 isAdd = false; 4887 haveEaten = true; 4888 } 4889 4890 SMLoc E = Parser.getTok().getEndLoc(); 4891 int Reg = tryParseRegister(); 4892 if (Reg == -1) { 4893 if (!haveEaten) 4894 return MatchOperand_NoMatch; 4895 Error(Parser.getTok().getLoc(), "register expected"); 4896 return MatchOperand_ParseFail; 4897 } 4898 4899 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4900 unsigned ShiftImm = 0; 4901 if (Parser.getTok().is(AsmToken::Comma)) { 4902 Parser.Lex(); // Eat the ','. 4903 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4904 return MatchOperand_ParseFail; 4905 4906 // FIXME: Only approximates end...may include intervening whitespace. 4907 E = Parser.getTok().getLoc(); 4908 } 4909 4910 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4911 ShiftImm, S, E)); 4912 4913 return MatchOperand_Success; 4914 } 4915 4916 OperandMatchResultTy 4917 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4918 // Check for a post-index addressing register operand. Specifically: 4919 // am3offset := '+' register 4920 // | '-' register 4921 // | register 4922 // | # imm 4923 // | # + imm 4924 // | # - imm 4925 4926 // This method must return MatchOperand_NoMatch without consuming any tokens 4927 // in the case where there is no match, as other alternatives take other 4928 // parse methods. 4929 MCAsmParser &Parser = getParser(); 4930 AsmToken Tok = Parser.getTok(); 4931 SMLoc S = Tok.getLoc(); 4932 4933 // Do immediates first, as we always parse those if we have a '#'. 4934 if (Parser.getTok().is(AsmToken::Hash) || 4935 Parser.getTok().is(AsmToken::Dollar)) { 4936 Parser.Lex(); // Eat '#' or '$'. 4937 // Explicitly look for a '-', as we need to encode negative zero 4938 // differently. 4939 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4940 const MCExpr *Offset; 4941 SMLoc E; 4942 if (getParser().parseExpression(Offset, E)) 4943 return MatchOperand_ParseFail; 4944 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4945 if (!CE) { 4946 Error(S, "constant expression expected"); 4947 return MatchOperand_ParseFail; 4948 } 4949 // Negative zero is encoded as the flag value 4950 // std::numeric_limits<int32_t>::min(). 4951 int32_t Val = CE->getValue(); 4952 if (isNegative && Val == 0) 4953 Val = std::numeric_limits<int32_t>::min(); 4954 4955 Operands.push_back( 4956 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4957 4958 return MatchOperand_Success; 4959 } 4960 4961 bool haveEaten = false; 4962 bool isAdd = true; 4963 if (Tok.is(AsmToken::Plus)) { 4964 Parser.Lex(); // Eat the '+' token. 4965 haveEaten = true; 4966 } else if (Tok.is(AsmToken::Minus)) { 4967 Parser.Lex(); // Eat the '-' token. 4968 isAdd = false; 4969 haveEaten = true; 4970 } 4971 4972 Tok = Parser.getTok(); 4973 int Reg = tryParseRegister(); 4974 if (Reg == -1) { 4975 if (!haveEaten) 4976 return MatchOperand_NoMatch; 4977 Error(Tok.getLoc(), "register expected"); 4978 return MatchOperand_ParseFail; 4979 } 4980 4981 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4982 0, S, Tok.getEndLoc())); 4983 4984 return MatchOperand_Success; 4985 } 4986 4987 /// Convert parsed operands to MCInst. Needed here because this instruction 4988 /// only has two register operands, but multiplication is commutative so 4989 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4990 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4991 const OperandVector &Operands) { 4992 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4993 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4994 // If we have a three-operand form, make sure to set Rn to be the operand 4995 // that isn't the same as Rd. 4996 unsigned RegOp = 4; 4997 if (Operands.size() == 6 && 4998 ((ARMOperand &)*Operands[4]).getReg() == 4999 ((ARMOperand &)*Operands[3]).getReg()) 5000 RegOp = 5; 5001 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5002 Inst.addOperand(Inst.getOperand(0)); 5003 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5004 } 5005 5006 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5007 const OperandVector &Operands) { 5008 int CondOp = -1, ImmOp = -1; 5009 switch(Inst.getOpcode()) { 5010 case ARM::tB: 5011 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5012 5013 case ARM::t2B: 5014 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5015 5016 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5017 } 5018 // first decide whether or not the branch should be conditional 5019 // by looking at it's location relative to an IT block 5020 if(inITBlock()) { 5021 // inside an IT block we cannot have any conditional branches. any 5022 // such instructions needs to be converted to unconditional form 5023 switch(Inst.getOpcode()) { 5024 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5025 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5026 } 5027 } else { 5028 // outside IT blocks we can only have unconditional branches with AL 5029 // condition code or conditional branches with non-AL condition code 5030 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5031 switch(Inst.getOpcode()) { 5032 case ARM::tB: 5033 case ARM::tBcc: 5034 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5035 break; 5036 case ARM::t2B: 5037 case ARM::t2Bcc: 5038 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5039 break; 5040 } 5041 } 5042 5043 // now decide on encoding size based on branch target range 5044 switch(Inst.getOpcode()) { 5045 // classify tB as either t2B or t1B based on range of immediate operand 5046 case ARM::tB: { 5047 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5048 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5049 Inst.setOpcode(ARM::t2B); 5050 break; 5051 } 5052 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5053 case ARM::tBcc: { 5054 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5055 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5056 Inst.setOpcode(ARM::t2Bcc); 5057 break; 5058 } 5059 } 5060 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5061 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5062 } 5063 5064 /// Parse an ARM memory expression, return false if successful else return true 5065 /// or an error. The first token must be a '[' when called. 5066 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5067 MCAsmParser &Parser = getParser(); 5068 SMLoc S, E; 5069 if (Parser.getTok().isNot(AsmToken::LBrac)) 5070 return TokError("Token is not a Left Bracket"); 5071 S = Parser.getTok().getLoc(); 5072 Parser.Lex(); // Eat left bracket token. 5073 5074 const AsmToken &BaseRegTok = Parser.getTok(); 5075 int BaseRegNum = tryParseRegister(); 5076 if (BaseRegNum == -1) 5077 return Error(BaseRegTok.getLoc(), "register expected"); 5078 5079 // The next token must either be a comma, a colon or a closing bracket. 5080 const AsmToken &Tok = Parser.getTok(); 5081 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5082 !Tok.is(AsmToken::RBrac)) 5083 return Error(Tok.getLoc(), "malformed memory operand"); 5084 5085 if (Tok.is(AsmToken::RBrac)) { 5086 E = Tok.getEndLoc(); 5087 Parser.Lex(); // Eat right bracket token. 5088 5089 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5090 ARM_AM::no_shift, 0, 0, false, 5091 S, E)); 5092 5093 // If there's a pre-indexing writeback marker, '!', just add it as a token 5094 // operand. It's rather odd, but syntactically valid. 5095 if (Parser.getTok().is(AsmToken::Exclaim)) { 5096 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5097 Parser.Lex(); // Eat the '!'. 5098 } 5099 5100 return false; 5101 } 5102 5103 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5104 "Lost colon or comma in memory operand?!"); 5105 if (Tok.is(AsmToken::Comma)) { 5106 Parser.Lex(); // Eat the comma. 5107 } 5108 5109 // If we have a ':', it's an alignment specifier. 5110 if (Parser.getTok().is(AsmToken::Colon)) { 5111 Parser.Lex(); // Eat the ':'. 5112 E = Parser.getTok().getLoc(); 5113 SMLoc AlignmentLoc = Tok.getLoc(); 5114 5115 const MCExpr *Expr; 5116 if (getParser().parseExpression(Expr)) 5117 return true; 5118 5119 // The expression has to be a constant. Memory references with relocations 5120 // don't come through here, as they use the <label> forms of the relevant 5121 // instructions. 5122 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5123 if (!CE) 5124 return Error (E, "constant expression expected"); 5125 5126 unsigned Align = 0; 5127 switch (CE->getValue()) { 5128 default: 5129 return Error(E, 5130 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5131 case 16: Align = 2; break; 5132 case 32: Align = 4; break; 5133 case 64: Align = 8; break; 5134 case 128: Align = 16; break; 5135 case 256: Align = 32; break; 5136 } 5137 5138 // Now we should have the closing ']' 5139 if (Parser.getTok().isNot(AsmToken::RBrac)) 5140 return Error(Parser.getTok().getLoc(), "']' expected"); 5141 E = Parser.getTok().getEndLoc(); 5142 Parser.Lex(); // Eat right bracket token. 5143 5144 // Don't worry about range checking the value here. That's handled by 5145 // the is*() predicates. 5146 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5147 ARM_AM::no_shift, 0, Align, 5148 false, S, E, AlignmentLoc)); 5149 5150 // If there's a pre-indexing writeback marker, '!', just add it as a token 5151 // operand. 5152 if (Parser.getTok().is(AsmToken::Exclaim)) { 5153 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5154 Parser.Lex(); // Eat the '!'. 5155 } 5156 5157 return false; 5158 } 5159 5160 // If we have a '#', it's an immediate offset, else assume it's a register 5161 // offset. Be friendly and also accept a plain integer (without a leading 5162 // hash) for gas compatibility. 5163 if (Parser.getTok().is(AsmToken::Hash) || 5164 Parser.getTok().is(AsmToken::Dollar) || 5165 Parser.getTok().is(AsmToken::Integer)) { 5166 if (Parser.getTok().isNot(AsmToken::Integer)) 5167 Parser.Lex(); // Eat '#' or '$'. 5168 E = Parser.getTok().getLoc(); 5169 5170 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5171 const MCExpr *Offset; 5172 if (getParser().parseExpression(Offset)) 5173 return true; 5174 5175 // The expression has to be a constant. Memory references with relocations 5176 // don't come through here, as they use the <label> forms of the relevant 5177 // instructions. 5178 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5179 if (!CE) 5180 return Error (E, "constant expression expected"); 5181 5182 // If the constant was #-0, represent it as 5183 // std::numeric_limits<int32_t>::min(). 5184 int32_t Val = CE->getValue(); 5185 if (isNegative && Val == 0) 5186 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5187 getContext()); 5188 5189 // Now we should have the closing ']' 5190 if (Parser.getTok().isNot(AsmToken::RBrac)) 5191 return Error(Parser.getTok().getLoc(), "']' expected"); 5192 E = Parser.getTok().getEndLoc(); 5193 Parser.Lex(); // Eat right bracket token. 5194 5195 // Don't worry about range checking the value here. That's handled by 5196 // the is*() predicates. 5197 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5198 ARM_AM::no_shift, 0, 0, 5199 false, S, E)); 5200 5201 // If there's a pre-indexing writeback marker, '!', just add it as a token 5202 // operand. 5203 if (Parser.getTok().is(AsmToken::Exclaim)) { 5204 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5205 Parser.Lex(); // Eat the '!'. 5206 } 5207 5208 return false; 5209 } 5210 5211 // The register offset is optionally preceded by a '+' or '-' 5212 bool isNegative = false; 5213 if (Parser.getTok().is(AsmToken::Minus)) { 5214 isNegative = true; 5215 Parser.Lex(); // Eat the '-'. 5216 } else if (Parser.getTok().is(AsmToken::Plus)) { 5217 // Nothing to do. 5218 Parser.Lex(); // Eat the '+'. 5219 } 5220 5221 E = Parser.getTok().getLoc(); 5222 int OffsetRegNum = tryParseRegister(); 5223 if (OffsetRegNum == -1) 5224 return Error(E, "register expected"); 5225 5226 // If there's a shift operator, handle it. 5227 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5228 unsigned ShiftImm = 0; 5229 if (Parser.getTok().is(AsmToken::Comma)) { 5230 Parser.Lex(); // Eat the ','. 5231 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5232 return true; 5233 } 5234 5235 // Now we should have the closing ']' 5236 if (Parser.getTok().isNot(AsmToken::RBrac)) 5237 return Error(Parser.getTok().getLoc(), "']' expected"); 5238 E = Parser.getTok().getEndLoc(); 5239 Parser.Lex(); // Eat right bracket token. 5240 5241 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5242 ShiftType, ShiftImm, 0, isNegative, 5243 S, E)); 5244 5245 // If there's a pre-indexing writeback marker, '!', just add it as a token 5246 // operand. 5247 if (Parser.getTok().is(AsmToken::Exclaim)) { 5248 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5249 Parser.Lex(); // Eat the '!'. 5250 } 5251 5252 return false; 5253 } 5254 5255 /// parseMemRegOffsetShift - one of these two: 5256 /// ( lsl | lsr | asr | ror ) , # shift_amount 5257 /// rrx 5258 /// return true if it parses a shift otherwise it returns false. 5259 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5260 unsigned &Amount) { 5261 MCAsmParser &Parser = getParser(); 5262 SMLoc Loc = Parser.getTok().getLoc(); 5263 const AsmToken &Tok = Parser.getTok(); 5264 if (Tok.isNot(AsmToken::Identifier)) 5265 return Error(Loc, "illegal shift operator"); 5266 StringRef ShiftName = Tok.getString(); 5267 if (ShiftName == "lsl" || ShiftName == "LSL" || 5268 ShiftName == "asl" || ShiftName == "ASL") 5269 St = ARM_AM::lsl; 5270 else if (ShiftName == "lsr" || ShiftName == "LSR") 5271 St = ARM_AM::lsr; 5272 else if (ShiftName == "asr" || ShiftName == "ASR") 5273 St = ARM_AM::asr; 5274 else if (ShiftName == "ror" || ShiftName == "ROR") 5275 St = ARM_AM::ror; 5276 else if (ShiftName == "rrx" || ShiftName == "RRX") 5277 St = ARM_AM::rrx; 5278 else 5279 return Error(Loc, "illegal shift operator"); 5280 Parser.Lex(); // Eat shift type token. 5281 5282 // rrx stands alone. 5283 Amount = 0; 5284 if (St != ARM_AM::rrx) { 5285 Loc = Parser.getTok().getLoc(); 5286 // A '#' and a shift amount. 5287 const AsmToken &HashTok = Parser.getTok(); 5288 if (HashTok.isNot(AsmToken::Hash) && 5289 HashTok.isNot(AsmToken::Dollar)) 5290 return Error(HashTok.getLoc(), "'#' expected"); 5291 Parser.Lex(); // Eat hash token. 5292 5293 const MCExpr *Expr; 5294 if (getParser().parseExpression(Expr)) 5295 return true; 5296 // Range check the immediate. 5297 // lsl, ror: 0 <= imm <= 31 5298 // lsr, asr: 0 <= imm <= 32 5299 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5300 if (!CE) 5301 return Error(Loc, "shift amount must be an immediate"); 5302 int64_t Imm = CE->getValue(); 5303 if (Imm < 0 || 5304 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5305 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5306 return Error(Loc, "immediate shift value out of range"); 5307 // If <ShiftTy> #0, turn it into a no_shift. 5308 if (Imm == 0) 5309 St = ARM_AM::lsl; 5310 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5311 if (Imm == 32) 5312 Imm = 0; 5313 Amount = Imm; 5314 } 5315 5316 return false; 5317 } 5318 5319 /// parseFPImm - A floating point immediate expression operand. 5320 OperandMatchResultTy 5321 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5322 MCAsmParser &Parser = getParser(); 5323 // Anything that can accept a floating point constant as an operand 5324 // needs to go through here, as the regular parseExpression is 5325 // integer only. 5326 // 5327 // This routine still creates a generic Immediate operand, containing 5328 // a bitcast of the 64-bit floating point value. The various operands 5329 // that accept floats can check whether the value is valid for them 5330 // via the standard is*() predicates. 5331 5332 SMLoc S = Parser.getTok().getLoc(); 5333 5334 if (Parser.getTok().isNot(AsmToken::Hash) && 5335 Parser.getTok().isNot(AsmToken::Dollar)) 5336 return MatchOperand_NoMatch; 5337 5338 // Disambiguate the VMOV forms that can accept an FP immediate. 5339 // vmov.f32 <sreg>, #imm 5340 // vmov.f64 <dreg>, #imm 5341 // vmov.f32 <dreg>, #imm @ vector f32x2 5342 // vmov.f32 <qreg>, #imm @ vector f32x4 5343 // 5344 // There are also the NEON VMOV instructions which expect an 5345 // integer constant. Make sure we don't try to parse an FPImm 5346 // for these: 5347 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5348 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5349 bool isVmovf = TyOp.isToken() && 5350 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5351 TyOp.getToken() == ".f16"); 5352 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5353 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5354 Mnemonic.getToken() == "fconsts"); 5355 if (!(isVmovf || isFconst)) 5356 return MatchOperand_NoMatch; 5357 5358 Parser.Lex(); // Eat '#' or '$'. 5359 5360 // Handle negation, as that still comes through as a separate token. 5361 bool isNegative = false; 5362 if (Parser.getTok().is(AsmToken::Minus)) { 5363 isNegative = true; 5364 Parser.Lex(); 5365 } 5366 const AsmToken &Tok = Parser.getTok(); 5367 SMLoc Loc = Tok.getLoc(); 5368 if (Tok.is(AsmToken::Real) && isVmovf) { 5369 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5370 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5371 // If we had a '-' in front, toggle the sign bit. 5372 IntVal ^= (uint64_t)isNegative << 31; 5373 Parser.Lex(); // Eat the token. 5374 Operands.push_back(ARMOperand::CreateImm( 5375 MCConstantExpr::create(IntVal, getContext()), 5376 S, Parser.getTok().getLoc())); 5377 return MatchOperand_Success; 5378 } 5379 // Also handle plain integers. Instructions which allow floating point 5380 // immediates also allow a raw encoded 8-bit value. 5381 if (Tok.is(AsmToken::Integer) && isFconst) { 5382 int64_t Val = Tok.getIntVal(); 5383 Parser.Lex(); // Eat the token. 5384 if (Val > 255 || Val < 0) { 5385 Error(Loc, "encoded floating point value out of range"); 5386 return MatchOperand_ParseFail; 5387 } 5388 float RealVal = ARM_AM::getFPImmFloat(Val); 5389 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5390 5391 Operands.push_back(ARMOperand::CreateImm( 5392 MCConstantExpr::create(Val, getContext()), S, 5393 Parser.getTok().getLoc())); 5394 return MatchOperand_Success; 5395 } 5396 5397 Error(Loc, "invalid floating point immediate"); 5398 return MatchOperand_ParseFail; 5399 } 5400 5401 /// Parse a arm instruction operand. For now this parses the operand regardless 5402 /// of the mnemonic. 5403 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5404 MCAsmParser &Parser = getParser(); 5405 SMLoc S, E; 5406 5407 // Check if the current operand has a custom associated parser, if so, try to 5408 // custom parse the operand, or fallback to the general approach. 5409 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5410 if (ResTy == MatchOperand_Success) 5411 return false; 5412 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5413 // there was a match, but an error occurred, in which case, just return that 5414 // the operand parsing failed. 5415 if (ResTy == MatchOperand_ParseFail) 5416 return true; 5417 5418 switch (getLexer().getKind()) { 5419 default: 5420 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5421 return true; 5422 case AsmToken::Identifier: { 5423 // If we've seen a branch mnemonic, the next operand must be a label. This 5424 // is true even if the label is a register name. So "br r1" means branch to 5425 // label "r1". 5426 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5427 if (!ExpectLabel) { 5428 if (!tryParseRegisterWithWriteBack(Operands)) 5429 return false; 5430 int Res = tryParseShiftRegister(Operands); 5431 if (Res == 0) // success 5432 return false; 5433 else if (Res == -1) // irrecoverable error 5434 return true; 5435 // If this is VMRS, check for the apsr_nzcv operand. 5436 if (Mnemonic == "vmrs" && 5437 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5438 S = Parser.getTok().getLoc(); 5439 Parser.Lex(); 5440 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5441 return false; 5442 } 5443 } 5444 5445 // Fall though for the Identifier case that is not a register or a 5446 // special name. 5447 LLVM_FALLTHROUGH; 5448 } 5449 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5450 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5451 case AsmToken::String: // quoted label names. 5452 case AsmToken::Dot: { // . as a branch target 5453 // This was not a register so parse other operands that start with an 5454 // identifier (like labels) as expressions and create them as immediates. 5455 const MCExpr *IdVal; 5456 S = Parser.getTok().getLoc(); 5457 if (getParser().parseExpression(IdVal)) 5458 return true; 5459 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5460 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5461 return false; 5462 } 5463 case AsmToken::LBrac: 5464 return parseMemory(Operands); 5465 case AsmToken::LCurly: 5466 return parseRegisterList(Operands); 5467 case AsmToken::Dollar: 5468 case AsmToken::Hash: 5469 // #42 -> immediate. 5470 S = Parser.getTok().getLoc(); 5471 Parser.Lex(); 5472 5473 if (Parser.getTok().isNot(AsmToken::Colon)) { 5474 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5475 const MCExpr *ImmVal; 5476 if (getParser().parseExpression(ImmVal)) 5477 return true; 5478 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5479 if (CE) { 5480 int32_t Val = CE->getValue(); 5481 if (isNegative && Val == 0) 5482 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5483 getContext()); 5484 } 5485 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5486 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5487 5488 // There can be a trailing '!' on operands that we want as a separate 5489 // '!' Token operand. Handle that here. For example, the compatibility 5490 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5491 if (Parser.getTok().is(AsmToken::Exclaim)) { 5492 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5493 Parser.getTok().getLoc())); 5494 Parser.Lex(); // Eat exclaim token 5495 } 5496 return false; 5497 } 5498 // w/ a ':' after the '#', it's just like a plain ':'. 5499 LLVM_FALLTHROUGH; 5500 5501 case AsmToken::Colon: { 5502 S = Parser.getTok().getLoc(); 5503 // ":lower16:" and ":upper16:" expression prefixes 5504 // FIXME: Check it's an expression prefix, 5505 // e.g. (FOO - :lower16:BAR) isn't legal. 5506 ARMMCExpr::VariantKind RefKind; 5507 if (parsePrefix(RefKind)) 5508 return true; 5509 5510 const MCExpr *SubExprVal; 5511 if (getParser().parseExpression(SubExprVal)) 5512 return true; 5513 5514 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5515 getContext()); 5516 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5517 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5518 return false; 5519 } 5520 case AsmToken::Equal: { 5521 S = Parser.getTok().getLoc(); 5522 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5523 return Error(S, "unexpected token in operand"); 5524 Parser.Lex(); // Eat '=' 5525 const MCExpr *SubExprVal; 5526 if (getParser().parseExpression(SubExprVal)) 5527 return true; 5528 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5529 5530 // execute-only: we assume that assembly programmers know what they are 5531 // doing and allow literal pool creation here 5532 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5533 return false; 5534 } 5535 } 5536 } 5537 5538 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5539 // :lower16: and :upper16:. 5540 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5541 MCAsmParser &Parser = getParser(); 5542 RefKind = ARMMCExpr::VK_ARM_None; 5543 5544 // consume an optional '#' (GNU compatibility) 5545 if (getLexer().is(AsmToken::Hash)) 5546 Parser.Lex(); 5547 5548 // :lower16: and :upper16: modifiers 5549 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5550 Parser.Lex(); // Eat ':' 5551 5552 if (getLexer().isNot(AsmToken::Identifier)) { 5553 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5554 return true; 5555 } 5556 5557 enum { 5558 COFF = (1 << MCObjectFileInfo::IsCOFF), 5559 ELF = (1 << MCObjectFileInfo::IsELF), 5560 MACHO = (1 << MCObjectFileInfo::IsMachO), 5561 WASM = (1 << MCObjectFileInfo::IsWasm), 5562 }; 5563 static const struct PrefixEntry { 5564 const char *Spelling; 5565 ARMMCExpr::VariantKind VariantKind; 5566 uint8_t SupportedFormats; 5567 } PrefixEntries[] = { 5568 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5569 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5570 }; 5571 5572 StringRef IDVal = Parser.getTok().getIdentifier(); 5573 5574 const auto &Prefix = 5575 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5576 [&IDVal](const PrefixEntry &PE) { 5577 return PE.Spelling == IDVal; 5578 }); 5579 if (Prefix == std::end(PrefixEntries)) { 5580 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5581 return true; 5582 } 5583 5584 uint8_t CurrentFormat; 5585 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5586 case MCObjectFileInfo::IsMachO: 5587 CurrentFormat = MACHO; 5588 break; 5589 case MCObjectFileInfo::IsELF: 5590 CurrentFormat = ELF; 5591 break; 5592 case MCObjectFileInfo::IsCOFF: 5593 CurrentFormat = COFF; 5594 break; 5595 case MCObjectFileInfo::IsWasm: 5596 CurrentFormat = WASM; 5597 break; 5598 case MCObjectFileInfo::IsXCOFF: 5599 llvm_unreachable("unexpected object format"); 5600 break; 5601 } 5602 5603 if (~Prefix->SupportedFormats & CurrentFormat) { 5604 Error(Parser.getTok().getLoc(), 5605 "cannot represent relocation in the current file format"); 5606 return true; 5607 } 5608 5609 RefKind = Prefix->VariantKind; 5610 Parser.Lex(); 5611 5612 if (getLexer().isNot(AsmToken::Colon)) { 5613 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5614 return true; 5615 } 5616 Parser.Lex(); // Eat the last ':' 5617 5618 return false; 5619 } 5620 5621 /// Given a mnemonic, split out possible predication code and carry 5622 /// setting letters to form a canonical mnemonic and flags. 5623 // 5624 // FIXME: Would be nice to autogen this. 5625 // FIXME: This is a bit of a maze of special cases. 5626 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5627 unsigned &PredicationCode, 5628 bool &CarrySetting, 5629 unsigned &ProcessorIMod, 5630 StringRef &ITMask) { 5631 PredicationCode = ARMCC::AL; 5632 CarrySetting = false; 5633 ProcessorIMod = 0; 5634 5635 // Ignore some mnemonics we know aren't predicated forms. 5636 // 5637 // FIXME: Would be nice to autogen this. 5638 if ((Mnemonic == "movs" && isThumb()) || 5639 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5640 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5641 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5642 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5643 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5644 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5645 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5646 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5647 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5648 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5649 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5650 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5651 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5652 Mnemonic == "bxns" || Mnemonic == "blxns" || 5653 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5654 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 5655 Mnemonic == "vfmal" || Mnemonic == "vfmsl") 5656 return Mnemonic; 5657 5658 // First, split out any predication code. Ignore mnemonics we know aren't 5659 // predicated but do have a carry-set and so weren't caught above. 5660 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5661 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5662 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5663 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5664 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 5665 if (CC != ~0U) { 5666 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5667 PredicationCode = CC; 5668 } 5669 } 5670 5671 // Next, determine if we have a carry setting bit. We explicitly ignore all 5672 // the instructions we know end in 's'. 5673 if (Mnemonic.endswith("s") && 5674 !(Mnemonic == "cps" || Mnemonic == "mls" || 5675 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5676 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5677 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5678 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5679 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5680 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5681 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5682 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5683 Mnemonic == "bxns" || Mnemonic == "blxns" || 5684 (Mnemonic == "movs" && isThumb()))) { 5685 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5686 CarrySetting = true; 5687 } 5688 5689 // The "cps" instruction can have a interrupt mode operand which is glued into 5690 // the mnemonic. Check if this is the case, split it and parse the imod op 5691 if (Mnemonic.startswith("cps")) { 5692 // Split out any imod code. 5693 unsigned IMod = 5694 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5695 .Case("ie", ARM_PROC::IE) 5696 .Case("id", ARM_PROC::ID) 5697 .Default(~0U); 5698 if (IMod != ~0U) { 5699 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5700 ProcessorIMod = IMod; 5701 } 5702 } 5703 5704 // The "it" instruction has the condition mask on the end of the mnemonic. 5705 if (Mnemonic.startswith("it")) { 5706 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5707 Mnemonic = Mnemonic.slice(0, 2); 5708 } 5709 5710 return Mnemonic; 5711 } 5712 5713 /// Given a canonical mnemonic, determine if the instruction ever allows 5714 /// inclusion of carry set or predication code operands. 5715 // 5716 // FIXME: It would be nice to autogen this. 5717 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5718 bool &CanAcceptCarrySet, 5719 bool &CanAcceptPredicationCode) { 5720 CanAcceptCarrySet = 5721 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5722 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5723 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5724 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5725 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5726 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5727 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5728 (!isThumb() && 5729 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5730 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5731 5732 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5733 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5734 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5735 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5736 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5737 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5738 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5739 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5740 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5741 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5742 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5743 Mnemonic == "vmovx" || Mnemonic == "vins" || 5744 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5745 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 5746 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 5747 Mnemonic == "sb" || Mnemonic == "ssbb" || 5748 Mnemonic == "pssbb") { 5749 // These mnemonics are never predicable 5750 CanAcceptPredicationCode = false; 5751 } else if (!isThumb()) { 5752 // Some instructions are only predicable in Thumb mode 5753 CanAcceptPredicationCode = 5754 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5755 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5756 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 5757 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 5758 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 5759 Mnemonic != "stc2" && Mnemonic != "stc2l" && 5760 Mnemonic != "tsb" && 5761 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 5762 } else if (isThumbOne()) { 5763 if (hasV6MOps()) 5764 CanAcceptPredicationCode = Mnemonic != "movs"; 5765 else 5766 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5767 } else 5768 CanAcceptPredicationCode = true; 5769 } 5770 5771 // Some Thumb instructions have two operand forms that are not 5772 // available as three operand, convert to two operand form if possible. 5773 // 5774 // FIXME: We would really like to be able to tablegen'erate this. 5775 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5776 bool CarrySetting, 5777 OperandVector &Operands) { 5778 if (Operands.size() != 6) 5779 return; 5780 5781 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5782 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5783 if (!Op3.isReg() || !Op4.isReg()) 5784 return; 5785 5786 auto Op3Reg = Op3.getReg(); 5787 auto Op4Reg = Op4.getReg(); 5788 5789 // For most Thumb2 cases we just generate the 3 operand form and reduce 5790 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5791 // won't accept SP or PC so we do the transformation here taking care 5792 // with immediate range in the 'add sp, sp #imm' case. 5793 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5794 if (isThumbTwo()) { 5795 if (Mnemonic != "add") 5796 return; 5797 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5798 (Op5.isReg() && Op5.getReg() == ARM::PC); 5799 if (!TryTransform) { 5800 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5801 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5802 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5803 Op5.isImm() && !Op5.isImm0_508s4()); 5804 } 5805 if (!TryTransform) 5806 return; 5807 } else if (!isThumbOne()) 5808 return; 5809 5810 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5811 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5812 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5813 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5814 return; 5815 5816 // If first 2 operands of a 3 operand instruction are the same 5817 // then transform to 2 operand version of the same instruction 5818 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5819 bool Transform = Op3Reg == Op4Reg; 5820 5821 // For communtative operations, we might be able to transform if we swap 5822 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5823 // as tADDrsp. 5824 const ARMOperand *LastOp = &Op5; 5825 bool Swap = false; 5826 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5827 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5828 Mnemonic == "and" || Mnemonic == "eor" || 5829 Mnemonic == "adc" || Mnemonic == "orr")) { 5830 Swap = true; 5831 LastOp = &Op4; 5832 Transform = true; 5833 } 5834 5835 // If both registers are the same then remove one of them from 5836 // the operand list, with certain exceptions. 5837 if (Transform) { 5838 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5839 // 2 operand forms don't exist. 5840 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5841 LastOp->isReg()) 5842 Transform = false; 5843 5844 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5845 // 3-bits because the ARMARM says not to. 5846 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5847 Transform = false; 5848 } 5849 5850 if (Transform) { 5851 if (Swap) 5852 std::swap(Op4, Op5); 5853 Operands.erase(Operands.begin() + 3); 5854 } 5855 } 5856 5857 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5858 OperandVector &Operands) { 5859 // FIXME: This is all horribly hacky. We really need a better way to deal 5860 // with optional operands like this in the matcher table. 5861 5862 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5863 // another does not. Specifically, the MOVW instruction does not. So we 5864 // special case it here and remove the defaulted (non-setting) cc_out 5865 // operand if that's the instruction we're trying to match. 5866 // 5867 // We do this as post-processing of the explicit operands rather than just 5868 // conditionally adding the cc_out in the first place because we need 5869 // to check the type of the parsed immediate operand. 5870 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5871 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5872 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5873 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5874 return true; 5875 5876 // Register-register 'add' for thumb does not have a cc_out operand 5877 // when there are only two register operands. 5878 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5879 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5880 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5881 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5882 return true; 5883 // Register-register 'add' for thumb does not have a cc_out operand 5884 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5885 // have to check the immediate range here since Thumb2 has a variant 5886 // that can handle a different range and has a cc_out operand. 5887 if (((isThumb() && Mnemonic == "add") || 5888 (isThumbTwo() && Mnemonic == "sub")) && 5889 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5890 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5891 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5892 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5893 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5894 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5895 return true; 5896 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5897 // imm0_4095 variant. That's the least-preferred variant when 5898 // selecting via the generic "add" mnemonic, so to know that we 5899 // should remove the cc_out operand, we have to explicitly check that 5900 // it's not one of the other variants. Ugh. 5901 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5902 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5903 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5904 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5905 // Nest conditions rather than one big 'if' statement for readability. 5906 // 5907 // If both registers are low, we're in an IT block, and the immediate is 5908 // in range, we should use encoding T1 instead, which has a cc_out. 5909 if (inITBlock() && 5910 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5911 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5912 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5913 return false; 5914 // Check against T3. If the second register is the PC, this is an 5915 // alternate form of ADR, which uses encoding T4, so check for that too. 5916 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5917 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5918 return false; 5919 5920 // Otherwise, we use encoding T4, which does not have a cc_out 5921 // operand. 5922 return true; 5923 } 5924 5925 // The thumb2 multiply instruction doesn't have a CCOut register, so 5926 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5927 // use the 16-bit encoding or not. 5928 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5929 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5930 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5931 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5932 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5933 // If the registers aren't low regs, the destination reg isn't the 5934 // same as one of the source regs, or the cc_out operand is zero 5935 // outside of an IT block, we have to use the 32-bit encoding, so 5936 // remove the cc_out operand. 5937 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5938 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5939 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5940 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5941 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5942 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5943 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5944 return true; 5945 5946 // Also check the 'mul' syntax variant that doesn't specify an explicit 5947 // destination register. 5948 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5949 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5950 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5951 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5952 // If the registers aren't low regs or the cc_out operand is zero 5953 // outside of an IT block, we have to use the 32-bit encoding, so 5954 // remove the cc_out operand. 5955 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5956 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5957 !inITBlock())) 5958 return true; 5959 5960 // Register-register 'add/sub' for thumb does not have a cc_out operand 5961 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5962 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5963 // right, this will result in better diagnostics (which operand is off) 5964 // anyway. 5965 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5966 (Operands.size() == 5 || Operands.size() == 6) && 5967 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5968 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5969 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5970 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5971 (Operands.size() == 6 && 5972 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5973 return true; 5974 5975 return false; 5976 } 5977 5978 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5979 OperandVector &Operands) { 5980 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 5981 unsigned RegIdx = 3; 5982 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") && 5983 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5984 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5985 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5986 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5987 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5988 RegIdx = 4; 5989 5990 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5991 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5992 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5993 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5994 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5995 return true; 5996 } 5997 return false; 5998 } 5999 6000 static bool isDataTypeToken(StringRef Tok) { 6001 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 6002 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 6003 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6004 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6005 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6006 Tok == ".f" || Tok == ".d"; 6007 } 6008 6009 // FIXME: This bit should probably be handled via an explicit match class 6010 // in the .td files that matches the suffix instead of having it be 6011 // a literal string token the way it is now. 6012 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6013 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6014 } 6015 6016 static void applyMnemonicAliases(StringRef &Mnemonic, 6017 const FeatureBitset &Features, 6018 unsigned VariantID); 6019 6020 // The GNU assembler has aliases of ldrd and strd with the second register 6021 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6022 // 6023 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6024 // the assmebly parser could then generate confusing diagnostics refering to 6025 // it. If we do find anything that prevents us from doing the transformation we 6026 // bail out, and let the assembly parser report an error on the instruction as 6027 // it is written. 6028 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6029 OperandVector &Operands) { 6030 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6031 return; 6032 if (Operands.size() < 4) 6033 return; 6034 6035 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6036 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6037 6038 if (!Op2.isReg()) 6039 return; 6040 if (!Op3.isMem()) 6041 return; 6042 6043 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6044 if (!GPR.contains(Op2.getReg())) 6045 return; 6046 6047 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6048 if (!isThumb() && (RtEncoding & 1)) { 6049 // In ARM mode, the registers must be from an aligned pair, this 6050 // restriction does not apply in Thumb mode. 6051 return; 6052 } 6053 if (Op2.getReg() == ARM::PC) 6054 return; 6055 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6056 if (!PairedReg || PairedReg == ARM::PC || 6057 (PairedReg == ARM::SP && !hasV8Ops())) 6058 return; 6059 6060 Operands.insert( 6061 Operands.begin() + 3, 6062 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6063 } 6064 6065 /// Parse an arm instruction mnemonic followed by its operands. 6066 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6067 SMLoc NameLoc, OperandVector &Operands) { 6068 MCAsmParser &Parser = getParser(); 6069 6070 // Apply mnemonic aliases before doing anything else, as the destination 6071 // mnemonic may include suffices and we want to handle them normally. 6072 // The generic tblgen'erated code does this later, at the start of 6073 // MatchInstructionImpl(), but that's too late for aliases that include 6074 // any sort of suffix. 6075 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 6076 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6077 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6078 6079 // First check for the ARM-specific .req directive. 6080 if (Parser.getTok().is(AsmToken::Identifier) && 6081 Parser.getTok().getIdentifier() == ".req") { 6082 parseDirectiveReq(Name, NameLoc); 6083 // We always return 'error' for this, as we're done with this 6084 // statement and don't need to match the 'instruction." 6085 return true; 6086 } 6087 6088 // Create the leading tokens for the mnemonic, split by '.' characters. 6089 size_t Start = 0, Next = Name.find('.'); 6090 StringRef Mnemonic = Name.slice(Start, Next); 6091 6092 // Split out the predication code and carry setting flag from the mnemonic. 6093 unsigned PredicationCode; 6094 unsigned ProcessorIMod; 6095 bool CarrySetting; 6096 StringRef ITMask; 6097 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 6098 ProcessorIMod, ITMask); 6099 6100 // In Thumb1, only the branch (B) instruction can be predicated. 6101 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6102 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6103 } 6104 6105 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6106 6107 // Handle the IT instruction ITMask. Convert it to a bitmask. This 6108 // is the mask as it will be for the IT encoding if the conditional 6109 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 6110 // where the conditional bit0 is zero, the instruction post-processing 6111 // will adjust the mask accordingly. 6112 if (Mnemonic == "it") { 6113 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 6114 if (ITMask.size() > 3) { 6115 return Error(Loc, "too many conditions on IT instruction"); 6116 } 6117 unsigned Mask = 8; 6118 for (unsigned i = ITMask.size(); i != 0; --i) { 6119 char pos = ITMask[i - 1]; 6120 if (pos != 't' && pos != 'e') { 6121 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6122 } 6123 Mask >>= 1; 6124 if (ITMask[i - 1] == 't') 6125 Mask |= 8; 6126 } 6127 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6128 } 6129 6130 // FIXME: This is all a pretty gross hack. We should automatically handle 6131 // optional operands like this via tblgen. 6132 6133 // Next, add the CCOut and ConditionCode operands, if needed. 6134 // 6135 // For mnemonics which can ever incorporate a carry setting bit or predication 6136 // code, our matching model involves us always generating CCOut and 6137 // ConditionCode operands to match the mnemonic "as written" and then we let 6138 // the matcher deal with finding the right instruction or generating an 6139 // appropriate error. 6140 bool CanAcceptCarrySet, CanAcceptPredicationCode; 6141 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 6142 6143 // If we had a carry-set on an instruction that can't do that, issue an 6144 // error. 6145 if (!CanAcceptCarrySet && CarrySetting) { 6146 return Error(NameLoc, "instruction '" + Mnemonic + 6147 "' can not set flags, but 's' suffix specified"); 6148 } 6149 // If we had a predication code on an instruction that can't do that, issue an 6150 // error. 6151 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6152 return Error(NameLoc, "instruction '" + Mnemonic + 6153 "' is not predicable, but condition code specified"); 6154 } 6155 6156 // Add the carry setting operand, if necessary. 6157 if (CanAcceptCarrySet) { 6158 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6159 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6160 Loc)); 6161 } 6162 6163 // Add the predication code operand, if necessary. 6164 if (CanAcceptPredicationCode) { 6165 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6166 CarrySetting); 6167 Operands.push_back(ARMOperand::CreateCondCode( 6168 ARMCC::CondCodes(PredicationCode), Loc)); 6169 } 6170 6171 // Add the processor imod operand, if necessary. 6172 if (ProcessorIMod) { 6173 Operands.push_back(ARMOperand::CreateImm( 6174 MCConstantExpr::create(ProcessorIMod, getContext()), 6175 NameLoc, NameLoc)); 6176 } else if (Mnemonic == "cps" && isMClass()) { 6177 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6178 } 6179 6180 // Add the remaining tokens in the mnemonic. 6181 while (Next != StringRef::npos) { 6182 Start = Next; 6183 Next = Name.find('.', Start + 1); 6184 StringRef ExtraToken = Name.slice(Start, Next); 6185 6186 // Some NEON instructions have an optional datatype suffix that is 6187 // completely ignored. Check for that. 6188 if (isDataTypeToken(ExtraToken) && 6189 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6190 continue; 6191 6192 // For for ARM mode generate an error if the .n qualifier is used. 6193 if (ExtraToken == ".n" && !isThumb()) { 6194 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6195 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6196 "arm mode"); 6197 } 6198 6199 // The .n qualifier is always discarded as that is what the tables 6200 // and matcher expect. In ARM mode the .w qualifier has no effect, 6201 // so discard it to avoid errors that can be caused by the matcher. 6202 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6203 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6204 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6205 } 6206 } 6207 6208 // Read the remaining operands. 6209 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6210 // Read the first operand. 6211 if (parseOperand(Operands, Mnemonic)) { 6212 return true; 6213 } 6214 6215 while (parseOptionalToken(AsmToken::Comma)) { 6216 // Parse and remember the operand. 6217 if (parseOperand(Operands, Mnemonic)) { 6218 return true; 6219 } 6220 } 6221 } 6222 6223 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6224 return true; 6225 6226 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6227 6228 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6229 // do and don't have a cc_out optional-def operand. With some spot-checks 6230 // of the operand list, we can figure out which variant we're trying to 6231 // parse and adjust accordingly before actually matching. We shouldn't ever 6232 // try to remove a cc_out operand that was explicitly set on the 6233 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6234 // table driven matcher doesn't fit well with the ARM instruction set. 6235 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6236 Operands.erase(Operands.begin() + 1); 6237 6238 // Some instructions have the same mnemonic, but don't always 6239 // have a predicate. Distinguish them here and delete the 6240 // predicate if needed. 6241 if (PredicationCode == ARMCC::AL && 6242 shouldOmitPredicateOperand(Mnemonic, Operands)) 6243 Operands.erase(Operands.begin() + 1); 6244 6245 // ARM mode 'blx' need special handling, as the register operand version 6246 // is predicable, but the label operand version is not. So, we can't rely 6247 // on the Mnemonic based checking to correctly figure out when to put 6248 // a k_CondCode operand in the list. If we're trying to match the label 6249 // version, remove the k_CondCode operand here. 6250 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6251 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6252 Operands.erase(Operands.begin() + 1); 6253 6254 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6255 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6256 // a single GPRPair reg operand is used in the .td file to replace the two 6257 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6258 // expressed as a GPRPair, so we have to manually merge them. 6259 // FIXME: We would really like to be able to tablegen'erate this. 6260 if (!isThumb() && Operands.size() > 4 && 6261 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6262 Mnemonic == "stlexd")) { 6263 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6264 unsigned Idx = isLoad ? 2 : 3; 6265 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6266 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6267 6268 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6269 // Adjust only if Op1 and Op2 are GPRs. 6270 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6271 MRC.contains(Op2.getReg())) { 6272 unsigned Reg1 = Op1.getReg(); 6273 unsigned Reg2 = Op2.getReg(); 6274 unsigned Rt = MRI->getEncodingValue(Reg1); 6275 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6276 6277 // Rt2 must be Rt + 1 and Rt must be even. 6278 if (Rt + 1 != Rt2 || (Rt & 1)) { 6279 return Error(Op2.getStartLoc(), 6280 isLoad ? "destination operands must be sequential" 6281 : "source operands must be sequential"); 6282 } 6283 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6284 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6285 Operands[Idx] = 6286 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6287 Operands.erase(Operands.begin() + Idx + 1); 6288 } 6289 } 6290 6291 // GNU Assembler extension (compatibility). 6292 fixupGNULDRDAlias(Mnemonic, Operands); 6293 6294 // FIXME: As said above, this is all a pretty gross hack. This instruction 6295 // does not fit with other "subs" and tblgen. 6296 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6297 // so the Mnemonic is the original name "subs" and delete the predicate 6298 // operand so it will match the table entry. 6299 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6300 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6301 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6302 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6303 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6304 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6305 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6306 Operands.erase(Operands.begin() + 1); 6307 } 6308 return false; 6309 } 6310 6311 // Validate context-sensitive operand constraints. 6312 6313 // return 'true' if register list contains non-low GPR registers, 6314 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6315 // 'containsReg' to true. 6316 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6317 unsigned Reg, unsigned HiReg, 6318 bool &containsReg) { 6319 containsReg = false; 6320 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6321 unsigned OpReg = Inst.getOperand(i).getReg(); 6322 if (OpReg == Reg) 6323 containsReg = true; 6324 // Anything other than a low register isn't legal here. 6325 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6326 return true; 6327 } 6328 return false; 6329 } 6330 6331 // Check if the specified regisgter is in the register list of the inst, 6332 // starting at the indicated operand number. 6333 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6334 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6335 unsigned OpReg = Inst.getOperand(i).getReg(); 6336 if (OpReg == Reg) 6337 return true; 6338 } 6339 return false; 6340 } 6341 6342 // Return true if instruction has the interesting property of being 6343 // allowed in IT blocks, but not being predicable. 6344 static bool instIsBreakpoint(const MCInst &Inst) { 6345 return Inst.getOpcode() == ARM::tBKPT || 6346 Inst.getOpcode() == ARM::BKPT || 6347 Inst.getOpcode() == ARM::tHLT || 6348 Inst.getOpcode() == ARM::HLT; 6349 } 6350 6351 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6352 const OperandVector &Operands, 6353 unsigned ListNo, bool IsARPop) { 6354 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6355 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6356 6357 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6358 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6359 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6360 6361 if (!IsARPop && ListContainsSP) 6362 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6363 "SP may not be in the register list"); 6364 else if (ListContainsPC && ListContainsLR) 6365 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6366 "PC and LR may not be in the register list simultaneously"); 6367 return false; 6368 } 6369 6370 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6371 const OperandVector &Operands, 6372 unsigned ListNo) { 6373 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6374 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6375 6376 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6377 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6378 6379 if (ListContainsSP && ListContainsPC) 6380 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6381 "SP and PC may not be in the register list"); 6382 else if (ListContainsSP) 6383 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6384 "SP may not be in the register list"); 6385 else if (ListContainsPC) 6386 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6387 "PC may not be in the register list"); 6388 return false; 6389 } 6390 6391 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 6392 const OperandVector &Operands, 6393 bool Load, bool ARMMode, bool Writeback) { 6394 unsigned RtIndex = Load || !Writeback ? 0 : 1; 6395 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 6396 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 6397 6398 if (ARMMode) { 6399 // Rt can't be R14. 6400 if (Rt == 14) 6401 return Error(Operands[3]->getStartLoc(), 6402 "Rt can't be R14"); 6403 6404 // Rt must be even-numbered. 6405 if ((Rt & 1) == 1) 6406 return Error(Operands[3]->getStartLoc(), 6407 "Rt must be even-numbered"); 6408 6409 // Rt2 must be Rt + 1. 6410 if (Rt2 != Rt + 1) { 6411 if (Load) 6412 return Error(Operands[3]->getStartLoc(), 6413 "destination operands must be sequential"); 6414 else 6415 return Error(Operands[3]->getStartLoc(), 6416 "source operands must be sequential"); 6417 } 6418 6419 // FIXME: Diagnose m == 15 6420 // FIXME: Diagnose ldrd with m == t || m == t2. 6421 } 6422 6423 if (!ARMMode && Load) { 6424 if (Rt2 == Rt) 6425 return Error(Operands[3]->getStartLoc(), 6426 "destination operands can't be identical"); 6427 } 6428 6429 if (Writeback) { 6430 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6431 6432 if (Rn == Rt || Rn == Rt2) { 6433 if (Load) 6434 return Error(Operands[3]->getStartLoc(), 6435 "base register needs to be different from destination " 6436 "registers"); 6437 else 6438 return Error(Operands[3]->getStartLoc(), 6439 "source register and base register can't be identical"); 6440 } 6441 6442 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 6443 // (Except the immediate form of ldrd?) 6444 } 6445 6446 return false; 6447 } 6448 6449 6450 // FIXME: We would really like to be able to tablegen'erate this. 6451 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6452 const OperandVector &Operands) { 6453 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6454 SMLoc Loc = Operands[0]->getStartLoc(); 6455 6456 // Check the IT block state first. 6457 // NOTE: BKPT and HLT instructions have the interesting property of being 6458 // allowed in IT blocks, but not being predicable. They just always execute. 6459 if (inITBlock() && !instIsBreakpoint(Inst)) { 6460 // The instruction must be predicable. 6461 if (!MCID.isPredicable()) 6462 return Error(Loc, "instructions in IT block must be predicable"); 6463 ARMCC::CondCodes Cond = ARMCC::CondCodes( 6464 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 6465 if (Cond != currentITCond()) { 6466 // Find the condition code Operand to get its SMLoc information. 6467 SMLoc CondLoc; 6468 for (unsigned I = 1; I < Operands.size(); ++I) 6469 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6470 CondLoc = Operands[I]->getStartLoc(); 6471 return Error(CondLoc, "incorrect condition in IT block; got '" + 6472 StringRef(ARMCondCodeToString(Cond)) + 6473 "', but expected '" + 6474 ARMCondCodeToString(currentITCond()) + "'"); 6475 } 6476 // Check for non-'al' condition codes outside of the IT block. 6477 } else if (isThumbTwo() && MCID.isPredicable() && 6478 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6479 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6480 Inst.getOpcode() != ARM::t2Bcc) { 6481 return Error(Loc, "predicated instructions must be in IT block"); 6482 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6483 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6484 ARMCC::AL) { 6485 return Warning(Loc, "predicated instructions should be in IT block"); 6486 } else if (!MCID.isPredicable()) { 6487 // Check the instruction doesn't have a predicate operand anyway 6488 // that it's not allowed to use. Sometimes this happens in order 6489 // to keep instructions the same shape even though one cannot 6490 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 6491 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 6492 if (MCID.OpInfo[i].isPredicate()) { 6493 if (Inst.getOperand(i).getImm() != ARMCC::AL) 6494 return Error(Loc, "instruction is not predicable"); 6495 break; 6496 } 6497 } 6498 } 6499 6500 // PC-setting instructions in an IT block, but not the last instruction of 6501 // the block, are UNPREDICTABLE. 6502 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 6503 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 6504 } 6505 6506 const unsigned Opcode = Inst.getOpcode(); 6507 switch (Opcode) { 6508 case ARM::t2IT: { 6509 // Encoding is unpredictable if it ever results in a notional 'NV' 6510 // predicate. Since we don't parse 'NV' directly this means an 'AL' 6511 // predicate with an "else" mask bit. 6512 unsigned Cond = Inst.getOperand(0).getImm(); 6513 unsigned Mask = Inst.getOperand(1).getImm(); 6514 6515 // Mask hasn't been modified to the IT instruction encoding yet so 6516 // conditions only allowing a 't' are a block of 1s starting at bit 3 6517 // followed by all 0s. Easiest way is to just list the 4 possibilities. 6518 if (Cond == ARMCC::AL && Mask != 8 && Mask != 12 && Mask != 14 && 6519 Mask != 15) 6520 return Error(Loc, "unpredictable IT predicate sequence"); 6521 break; 6522 } 6523 case ARM::LDRD: 6524 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 6525 /*Writeback*/false)) 6526 return true; 6527 break; 6528 case ARM::LDRD_PRE: 6529 case ARM::LDRD_POST: 6530 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 6531 /*Writeback*/true)) 6532 return true; 6533 break; 6534 case ARM::t2LDRDi8: 6535 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 6536 /*Writeback*/false)) 6537 return true; 6538 break; 6539 case ARM::t2LDRD_PRE: 6540 case ARM::t2LDRD_POST: 6541 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 6542 /*Writeback*/true)) 6543 return true; 6544 break; 6545 case ARM::t2BXJ: { 6546 const unsigned RmReg = Inst.getOperand(0).getReg(); 6547 // Rm = SP is no longer unpredictable in v8-A 6548 if (RmReg == ARM::SP && !hasV8Ops()) 6549 return Error(Operands[2]->getStartLoc(), 6550 "r13 (SP) is an unpredictable operand to BXJ"); 6551 return false; 6552 } 6553 case ARM::STRD: 6554 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 6555 /*Writeback*/false)) 6556 return true; 6557 break; 6558 case ARM::STRD_PRE: 6559 case ARM::STRD_POST: 6560 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 6561 /*Writeback*/true)) 6562 return true; 6563 break; 6564 case ARM::t2STRD_PRE: 6565 case ARM::t2STRD_POST: 6566 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 6567 /*Writeback*/true)) 6568 return true; 6569 break; 6570 case ARM::STR_PRE_IMM: 6571 case ARM::STR_PRE_REG: 6572 case ARM::t2STR_PRE: 6573 case ARM::STR_POST_IMM: 6574 case ARM::STR_POST_REG: 6575 case ARM::t2STR_POST: 6576 case ARM::STRH_PRE: 6577 case ARM::t2STRH_PRE: 6578 case ARM::STRH_POST: 6579 case ARM::t2STRH_POST: 6580 case ARM::STRB_PRE_IMM: 6581 case ARM::STRB_PRE_REG: 6582 case ARM::t2STRB_PRE: 6583 case ARM::STRB_POST_IMM: 6584 case ARM::STRB_POST_REG: 6585 case ARM::t2STRB_POST: { 6586 // Rt must be different from Rn. 6587 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6588 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6589 6590 if (Rt == Rn) 6591 return Error(Operands[3]->getStartLoc(), 6592 "source register and base register can't be identical"); 6593 return false; 6594 } 6595 case ARM::LDR_PRE_IMM: 6596 case ARM::LDR_PRE_REG: 6597 case ARM::t2LDR_PRE: 6598 case ARM::LDR_POST_IMM: 6599 case ARM::LDR_POST_REG: 6600 case ARM::t2LDR_POST: 6601 case ARM::LDRH_PRE: 6602 case ARM::t2LDRH_PRE: 6603 case ARM::LDRH_POST: 6604 case ARM::t2LDRH_POST: 6605 case ARM::LDRSH_PRE: 6606 case ARM::t2LDRSH_PRE: 6607 case ARM::LDRSH_POST: 6608 case ARM::t2LDRSH_POST: 6609 case ARM::LDRB_PRE_IMM: 6610 case ARM::LDRB_PRE_REG: 6611 case ARM::t2LDRB_PRE: 6612 case ARM::LDRB_POST_IMM: 6613 case ARM::LDRB_POST_REG: 6614 case ARM::t2LDRB_POST: 6615 case ARM::LDRSB_PRE: 6616 case ARM::t2LDRSB_PRE: 6617 case ARM::LDRSB_POST: 6618 case ARM::t2LDRSB_POST: { 6619 // Rt must be different from Rn. 6620 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6621 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6622 6623 if (Rt == Rn) 6624 return Error(Operands[3]->getStartLoc(), 6625 "destination register and base register can't be identical"); 6626 return false; 6627 } 6628 case ARM::SBFX: 6629 case ARM::t2SBFX: 6630 case ARM::UBFX: 6631 case ARM::t2UBFX: { 6632 // Width must be in range [1, 32-lsb]. 6633 unsigned LSB = Inst.getOperand(2).getImm(); 6634 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6635 if (Widthm1 >= 32 - LSB) 6636 return Error(Operands[5]->getStartLoc(), 6637 "bitfield width must be in range [1,32-lsb]"); 6638 return false; 6639 } 6640 // Notionally handles ARM::tLDMIA_UPD too. 6641 case ARM::tLDMIA: { 6642 // If we're parsing Thumb2, the .w variant is available and handles 6643 // most cases that are normally illegal for a Thumb1 LDM instruction. 6644 // We'll make the transformation in processInstruction() if necessary. 6645 // 6646 // Thumb LDM instructions are writeback iff the base register is not 6647 // in the register list. 6648 unsigned Rn = Inst.getOperand(0).getReg(); 6649 bool HasWritebackToken = 6650 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6651 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6652 bool ListContainsBase; 6653 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6654 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6655 "registers must be in range r0-r7"); 6656 // If we should have writeback, then there should be a '!' token. 6657 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6658 return Error(Operands[2]->getStartLoc(), 6659 "writeback operator '!' expected"); 6660 // If we should not have writeback, there must not be a '!'. This is 6661 // true even for the 32-bit wide encodings. 6662 if (ListContainsBase && HasWritebackToken) 6663 return Error(Operands[3]->getStartLoc(), 6664 "writeback operator '!' not allowed when base register " 6665 "in register list"); 6666 6667 if (validatetLDMRegList(Inst, Operands, 3)) 6668 return true; 6669 break; 6670 } 6671 case ARM::LDMIA_UPD: 6672 case ARM::LDMDB_UPD: 6673 case ARM::LDMIB_UPD: 6674 case ARM::LDMDA_UPD: 6675 // ARM variants loading and updating the same register are only officially 6676 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6677 if (!hasV7Ops()) 6678 break; 6679 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6680 return Error(Operands.back()->getStartLoc(), 6681 "writeback register not allowed in register list"); 6682 break; 6683 case ARM::t2LDMIA: 6684 case ARM::t2LDMDB: 6685 if (validatetLDMRegList(Inst, Operands, 3)) 6686 return true; 6687 break; 6688 case ARM::t2STMIA: 6689 case ARM::t2STMDB: 6690 if (validatetSTMRegList(Inst, Operands, 3)) 6691 return true; 6692 break; 6693 case ARM::t2LDMIA_UPD: 6694 case ARM::t2LDMDB_UPD: 6695 case ARM::t2STMIA_UPD: 6696 case ARM::t2STMDB_UPD: 6697 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6698 return Error(Operands.back()->getStartLoc(), 6699 "writeback register not allowed in register list"); 6700 6701 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6702 if (validatetLDMRegList(Inst, Operands, 3)) 6703 return true; 6704 } else { 6705 if (validatetSTMRegList(Inst, Operands, 3)) 6706 return true; 6707 } 6708 break; 6709 6710 case ARM::sysLDMIA_UPD: 6711 case ARM::sysLDMDA_UPD: 6712 case ARM::sysLDMDB_UPD: 6713 case ARM::sysLDMIB_UPD: 6714 if (!listContainsReg(Inst, 3, ARM::PC)) 6715 return Error(Operands[4]->getStartLoc(), 6716 "writeback register only allowed on system LDM " 6717 "if PC in register-list"); 6718 break; 6719 case ARM::sysSTMIA_UPD: 6720 case ARM::sysSTMDA_UPD: 6721 case ARM::sysSTMDB_UPD: 6722 case ARM::sysSTMIB_UPD: 6723 return Error(Operands[2]->getStartLoc(), 6724 "system STM cannot have writeback register"); 6725 case ARM::tMUL: 6726 // The second source operand must be the same register as the destination 6727 // operand. 6728 // 6729 // In this case, we must directly check the parsed operands because the 6730 // cvtThumbMultiply() function is written in such a way that it guarantees 6731 // this first statement is always true for the new Inst. Essentially, the 6732 // destination is unconditionally copied into the second source operand 6733 // without checking to see if it matches what we actually parsed. 6734 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6735 ((ARMOperand &)*Operands[5]).getReg()) && 6736 (((ARMOperand &)*Operands[3]).getReg() != 6737 ((ARMOperand &)*Operands[4]).getReg())) { 6738 return Error(Operands[3]->getStartLoc(), 6739 "destination register must match source register"); 6740 } 6741 break; 6742 6743 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6744 // so only issue a diagnostic for thumb1. The instructions will be 6745 // switched to the t2 encodings in processInstruction() if necessary. 6746 case ARM::tPOP: { 6747 bool ListContainsBase; 6748 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6749 !isThumbTwo()) 6750 return Error(Operands[2]->getStartLoc(), 6751 "registers must be in range r0-r7 or pc"); 6752 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6753 return true; 6754 break; 6755 } 6756 case ARM::tPUSH: { 6757 bool ListContainsBase; 6758 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6759 !isThumbTwo()) 6760 return Error(Operands[2]->getStartLoc(), 6761 "registers must be in range r0-r7 or lr"); 6762 if (validatetSTMRegList(Inst, Operands, 2)) 6763 return true; 6764 break; 6765 } 6766 case ARM::tSTMIA_UPD: { 6767 bool ListContainsBase, InvalidLowList; 6768 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6769 0, ListContainsBase); 6770 if (InvalidLowList && !isThumbTwo()) 6771 return Error(Operands[4]->getStartLoc(), 6772 "registers must be in range r0-r7"); 6773 6774 // This would be converted to a 32-bit stm, but that's not valid if the 6775 // writeback register is in the list. 6776 if (InvalidLowList && ListContainsBase) 6777 return Error(Operands[4]->getStartLoc(), 6778 "writeback operator '!' not allowed when base register " 6779 "in register list"); 6780 6781 if (validatetSTMRegList(Inst, Operands, 4)) 6782 return true; 6783 break; 6784 } 6785 case ARM::tADDrSP: 6786 // If the non-SP source operand and the destination operand are not the 6787 // same, we need thumb2 (for the wide encoding), or we have an error. 6788 if (!isThumbTwo() && 6789 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6790 return Error(Operands[4]->getStartLoc(), 6791 "source register must be the same as destination"); 6792 } 6793 break; 6794 6795 case ARM::t2ADDri: 6796 case ARM::t2ADDri12: 6797 case ARM::t2ADDrr: 6798 case ARM::t2ADDrs: 6799 case ARM::t2SUBri: 6800 case ARM::t2SUBri12: 6801 case ARM::t2SUBrr: 6802 case ARM::t2SUBrs: 6803 if (Inst.getOperand(0).getReg() == ARM::SP && 6804 Inst.getOperand(1).getReg() != ARM::SP) 6805 return Error(Operands[4]->getStartLoc(), 6806 "source register must be sp if destination is sp"); 6807 break; 6808 6809 // Final range checking for Thumb unconditional branch instructions. 6810 case ARM::tB: 6811 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6812 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6813 break; 6814 case ARM::t2B: { 6815 int op = (Operands[2]->isImm()) ? 2 : 3; 6816 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6817 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6818 break; 6819 } 6820 // Final range checking for Thumb conditional branch instructions. 6821 case ARM::tBcc: 6822 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6823 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6824 break; 6825 case ARM::t2Bcc: { 6826 int Op = (Operands[2]->isImm()) ? 2 : 3; 6827 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6828 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6829 break; 6830 } 6831 case ARM::tCBZ: 6832 case ARM::tCBNZ: { 6833 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6834 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6835 break; 6836 } 6837 case ARM::MOVi16: 6838 case ARM::MOVTi16: 6839 case ARM::t2MOVi16: 6840 case ARM::t2MOVTi16: 6841 { 6842 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6843 // especially when we turn it into a movw and the expression <symbol> does 6844 // not have a :lower16: or :upper16 as part of the expression. We don't 6845 // want the behavior of silently truncating, which can be unexpected and 6846 // lead to bugs that are difficult to find since this is an easy mistake 6847 // to make. 6848 int i = (Operands[3]->isImm()) ? 3 : 4; 6849 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6850 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6851 if (CE) break; 6852 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6853 if (!E) break; 6854 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6855 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6856 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6857 return Error( 6858 Op.getStartLoc(), 6859 "immediate expression for mov requires :lower16: or :upper16"); 6860 break; 6861 } 6862 case ARM::HINT: 6863 case ARM::t2HINT: { 6864 unsigned Imm8 = Inst.getOperand(0).getImm(); 6865 unsigned Pred = Inst.getOperand(1).getImm(); 6866 // ESB is not predicable (pred must be AL). Without the RAS extension, this 6867 // behaves as any other unallocated hint. 6868 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 6869 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6870 "predicable, but condition " 6871 "code specified"); 6872 if (Imm8 == 0x14 && Pred != ARMCC::AL) 6873 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 6874 "predicable, but condition " 6875 "code specified"); 6876 break; 6877 } 6878 case ARM::DSB: 6879 case ARM::t2DSB: { 6880 6881 if (Inst.getNumOperands() < 2) 6882 break; 6883 6884 unsigned Option = Inst.getOperand(0).getImm(); 6885 unsigned Pred = Inst.getOperand(1).getImm(); 6886 6887 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 6888 if (Option == 0 && Pred != ARMCC::AL) 6889 return Error(Operands[1]->getStartLoc(), 6890 "instruction 'ssbb' is not predicable, but condition code " 6891 "specified"); 6892 if (Option == 4 && Pred != ARMCC::AL) 6893 return Error(Operands[1]->getStartLoc(), 6894 "instruction 'pssbb' is not predicable, but condition code " 6895 "specified"); 6896 break; 6897 } 6898 case ARM::VMOVRRS: { 6899 // Source registers must be sequential. 6900 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6901 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6902 if (Sm1 != Sm + 1) 6903 return Error(Operands[5]->getStartLoc(), 6904 "source operands must be sequential"); 6905 break; 6906 } 6907 case ARM::VMOVSRR: { 6908 // Destination registers must be sequential. 6909 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6910 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6911 if (Sm1 != Sm + 1) 6912 return Error(Operands[3]->getStartLoc(), 6913 "destination operands must be sequential"); 6914 break; 6915 } 6916 case ARM::VLDMDIA: 6917 case ARM::VSTMDIA: { 6918 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 6919 auto &RegList = Op.getRegList(); 6920 if (RegList.size() < 1 || RegList.size() > 16) 6921 return Error(Operands[3]->getStartLoc(), 6922 "list of registers must be at least 1 and at most 16"); 6923 break; 6924 } 6925 } 6926 6927 return false; 6928 } 6929 6930 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6931 switch(Opc) { 6932 default: llvm_unreachable("unexpected opcode!"); 6933 // VST1LN 6934 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6935 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6936 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6937 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6938 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6939 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6940 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6941 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6942 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6943 6944 // VST2LN 6945 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6946 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6947 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6948 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6949 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6950 6951 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6952 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6953 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6954 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6955 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6956 6957 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6958 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6959 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6960 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6961 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6962 6963 // VST3LN 6964 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6965 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6966 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6967 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6968 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6969 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6970 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6971 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6972 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6973 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6974 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6975 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6976 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6977 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6978 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6979 6980 // VST3 6981 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6982 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6983 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6984 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6985 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6986 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6987 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6988 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6989 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6990 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6991 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6992 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6993 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6994 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6995 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6996 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6997 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6998 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6999 7000 // VST4LN 7001 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 7002 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 7003 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 7004 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 7005 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 7006 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 7007 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 7008 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 7009 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 7010 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 7011 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 7012 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 7013 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 7014 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 7015 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 7016 7017 // VST4 7018 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 7019 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 7020 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 7021 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 7022 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 7023 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 7024 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 7025 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 7026 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 7027 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 7028 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 7029 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 7030 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 7031 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 7032 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 7033 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 7034 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 7035 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 7036 } 7037 } 7038 7039 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 7040 switch(Opc) { 7041 default: llvm_unreachable("unexpected opcode!"); 7042 // VLD1LN 7043 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 7044 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 7045 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 7046 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 7047 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 7048 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 7049 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 7050 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 7051 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 7052 7053 // VLD2LN 7054 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 7055 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 7056 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 7057 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 7058 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 7059 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 7060 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 7061 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 7062 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 7063 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 7064 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 7065 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 7066 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 7067 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 7068 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 7069 7070 // VLD3DUP 7071 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 7072 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 7073 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 7074 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 7075 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 7076 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 7077 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 7078 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 7079 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 7080 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 7081 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 7082 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 7083 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 7084 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 7085 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 7086 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 7087 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 7088 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 7089 7090 // VLD3LN 7091 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 7092 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 7093 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 7094 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 7095 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 7096 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 7097 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 7098 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 7099 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 7100 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 7101 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 7102 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 7103 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 7104 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 7105 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 7106 7107 // VLD3 7108 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 7109 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 7110 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 7111 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 7112 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 7113 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 7114 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 7115 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 7116 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 7117 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 7118 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 7119 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 7120 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 7121 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 7122 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 7123 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 7124 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 7125 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 7126 7127 // VLD4LN 7128 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 7129 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 7130 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 7131 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 7132 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 7133 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 7134 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 7135 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 7136 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 7137 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 7138 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 7139 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 7140 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 7141 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 7142 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 7143 7144 // VLD4DUP 7145 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 7146 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 7147 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 7148 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 7149 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 7150 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 7151 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 7152 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 7153 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 7154 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 7155 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 7156 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 7157 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 7158 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 7159 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 7160 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 7161 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 7162 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 7163 7164 // VLD4 7165 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 7166 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 7167 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 7168 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 7169 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 7170 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 7171 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 7172 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 7173 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 7174 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 7175 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 7176 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 7177 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 7178 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 7179 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 7180 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 7181 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 7182 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 7183 } 7184 } 7185 7186 bool ARMAsmParser::processInstruction(MCInst &Inst, 7187 const OperandVector &Operands, 7188 MCStreamer &Out) { 7189 // Check if we have the wide qualifier, because if it's present we 7190 // must avoid selecting a 16-bit thumb instruction. 7191 bool HasWideQualifier = false; 7192 for (auto &Op : Operands) { 7193 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 7194 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 7195 HasWideQualifier = true; 7196 break; 7197 } 7198 } 7199 7200 switch (Inst.getOpcode()) { 7201 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 7202 case ARM::LDRT_POST: 7203 case ARM::LDRBT_POST: { 7204 const unsigned Opcode = 7205 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 7206 : ARM::LDRBT_POST_IMM; 7207 MCInst TmpInst; 7208 TmpInst.setOpcode(Opcode); 7209 TmpInst.addOperand(Inst.getOperand(0)); 7210 TmpInst.addOperand(Inst.getOperand(1)); 7211 TmpInst.addOperand(Inst.getOperand(1)); 7212 TmpInst.addOperand(MCOperand::createReg(0)); 7213 TmpInst.addOperand(MCOperand::createImm(0)); 7214 TmpInst.addOperand(Inst.getOperand(2)); 7215 TmpInst.addOperand(Inst.getOperand(3)); 7216 Inst = TmpInst; 7217 return true; 7218 } 7219 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 7220 case ARM::STRT_POST: 7221 case ARM::STRBT_POST: { 7222 const unsigned Opcode = 7223 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 7224 : ARM::STRBT_POST_IMM; 7225 MCInst TmpInst; 7226 TmpInst.setOpcode(Opcode); 7227 TmpInst.addOperand(Inst.getOperand(1)); 7228 TmpInst.addOperand(Inst.getOperand(0)); 7229 TmpInst.addOperand(Inst.getOperand(1)); 7230 TmpInst.addOperand(MCOperand::createReg(0)); 7231 TmpInst.addOperand(MCOperand::createImm(0)); 7232 TmpInst.addOperand(Inst.getOperand(2)); 7233 TmpInst.addOperand(Inst.getOperand(3)); 7234 Inst = TmpInst; 7235 return true; 7236 } 7237 // Alias for alternate form of 'ADR Rd, #imm' instruction. 7238 case ARM::ADDri: { 7239 if (Inst.getOperand(1).getReg() != ARM::PC || 7240 Inst.getOperand(5).getReg() != 0 || 7241 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 7242 return false; 7243 MCInst TmpInst; 7244 TmpInst.setOpcode(ARM::ADR); 7245 TmpInst.addOperand(Inst.getOperand(0)); 7246 if (Inst.getOperand(2).isImm()) { 7247 // Immediate (mod_imm) will be in its encoded form, we must unencode it 7248 // before passing it to the ADR instruction. 7249 unsigned Enc = Inst.getOperand(2).getImm(); 7250 TmpInst.addOperand(MCOperand::createImm( 7251 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 7252 } else { 7253 // Turn PC-relative expression into absolute expression. 7254 // Reading PC provides the start of the current instruction + 8 and 7255 // the transform to adr is biased by that. 7256 MCSymbol *Dot = getContext().createTempSymbol(); 7257 Out.EmitLabel(Dot); 7258 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 7259 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 7260 MCSymbolRefExpr::VK_None, 7261 getContext()); 7262 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 7263 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 7264 getContext()); 7265 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 7266 getContext()); 7267 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 7268 } 7269 TmpInst.addOperand(Inst.getOperand(3)); 7270 TmpInst.addOperand(Inst.getOperand(4)); 7271 Inst = TmpInst; 7272 return true; 7273 } 7274 // Aliases for alternate PC+imm syntax of LDR instructions. 7275 case ARM::t2LDRpcrel: 7276 // Select the narrow version if the immediate will fit. 7277 if (Inst.getOperand(1).getImm() > 0 && 7278 Inst.getOperand(1).getImm() <= 0xff && 7279 !HasWideQualifier) 7280 Inst.setOpcode(ARM::tLDRpci); 7281 else 7282 Inst.setOpcode(ARM::t2LDRpci); 7283 return true; 7284 case ARM::t2LDRBpcrel: 7285 Inst.setOpcode(ARM::t2LDRBpci); 7286 return true; 7287 case ARM::t2LDRHpcrel: 7288 Inst.setOpcode(ARM::t2LDRHpci); 7289 return true; 7290 case ARM::t2LDRSBpcrel: 7291 Inst.setOpcode(ARM::t2LDRSBpci); 7292 return true; 7293 case ARM::t2LDRSHpcrel: 7294 Inst.setOpcode(ARM::t2LDRSHpci); 7295 return true; 7296 case ARM::LDRConstPool: 7297 case ARM::tLDRConstPool: 7298 case ARM::t2LDRConstPool: { 7299 // Pseudo instruction ldr rt, =immediate is converted to a 7300 // MOV rt, immediate if immediate is known and representable 7301 // otherwise we create a constant pool entry that we load from. 7302 MCInst TmpInst; 7303 if (Inst.getOpcode() == ARM::LDRConstPool) 7304 TmpInst.setOpcode(ARM::LDRi12); 7305 else if (Inst.getOpcode() == ARM::tLDRConstPool) 7306 TmpInst.setOpcode(ARM::tLDRpci); 7307 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 7308 TmpInst.setOpcode(ARM::t2LDRpci); 7309 const ARMOperand &PoolOperand = 7310 (HasWideQualifier ? 7311 static_cast<ARMOperand &>(*Operands[4]) : 7312 static_cast<ARMOperand &>(*Operands[3])); 7313 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 7314 // If SubExprVal is a constant we may be able to use a MOV 7315 if (isa<MCConstantExpr>(SubExprVal) && 7316 Inst.getOperand(0).getReg() != ARM::PC && 7317 Inst.getOperand(0).getReg() != ARM::SP) { 7318 int64_t Value = 7319 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 7320 bool UseMov = true; 7321 bool MovHasS = true; 7322 if (Inst.getOpcode() == ARM::LDRConstPool) { 7323 // ARM Constant 7324 if (ARM_AM::getSOImmVal(Value) != -1) { 7325 Value = ARM_AM::getSOImmVal(Value); 7326 TmpInst.setOpcode(ARM::MOVi); 7327 } 7328 else if (ARM_AM::getSOImmVal(~Value) != -1) { 7329 Value = ARM_AM::getSOImmVal(~Value); 7330 TmpInst.setOpcode(ARM::MVNi); 7331 } 7332 else if (hasV6T2Ops() && 7333 Value >=0 && Value < 65536) { 7334 TmpInst.setOpcode(ARM::MOVi16); 7335 MovHasS = false; 7336 } 7337 else 7338 UseMov = false; 7339 } 7340 else { 7341 // Thumb/Thumb2 Constant 7342 if (hasThumb2() && 7343 ARM_AM::getT2SOImmVal(Value) != -1) 7344 TmpInst.setOpcode(ARM::t2MOVi); 7345 else if (hasThumb2() && 7346 ARM_AM::getT2SOImmVal(~Value) != -1) { 7347 TmpInst.setOpcode(ARM::t2MVNi); 7348 Value = ~Value; 7349 } 7350 else if (hasV8MBaseline() && 7351 Value >=0 && Value < 65536) { 7352 TmpInst.setOpcode(ARM::t2MOVi16); 7353 MovHasS = false; 7354 } 7355 else 7356 UseMov = false; 7357 } 7358 if (UseMov) { 7359 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7360 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7361 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7362 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7363 if (MovHasS) 7364 TmpInst.addOperand(MCOperand::createReg(0)); // S 7365 Inst = TmpInst; 7366 return true; 7367 } 7368 } 7369 // No opportunity to use MOV/MVN create constant pool 7370 const MCExpr *CPLoc = 7371 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7372 PoolOperand.getStartLoc()); 7373 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7374 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7375 if (TmpInst.getOpcode() == ARM::LDRi12) 7376 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7377 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7378 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7379 Inst = TmpInst; 7380 return true; 7381 } 7382 // Handle NEON VST complex aliases. 7383 case ARM::VST1LNdWB_register_Asm_8: 7384 case ARM::VST1LNdWB_register_Asm_16: 7385 case ARM::VST1LNdWB_register_Asm_32: { 7386 MCInst TmpInst; 7387 // Shuffle the operands around so the lane index operand is in the 7388 // right place. 7389 unsigned Spacing; 7390 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7391 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7392 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7393 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7394 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7395 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7396 TmpInst.addOperand(Inst.getOperand(1)); // lane 7397 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7398 TmpInst.addOperand(Inst.getOperand(6)); 7399 Inst = TmpInst; 7400 return true; 7401 } 7402 7403 case ARM::VST2LNdWB_register_Asm_8: 7404 case ARM::VST2LNdWB_register_Asm_16: 7405 case ARM::VST2LNdWB_register_Asm_32: 7406 case ARM::VST2LNqWB_register_Asm_16: 7407 case ARM::VST2LNqWB_register_Asm_32: { 7408 MCInst TmpInst; 7409 // Shuffle the operands around so the lane index operand is in the 7410 // right place. 7411 unsigned Spacing; 7412 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7413 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7414 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7415 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7416 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7417 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7418 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7419 Spacing)); 7420 TmpInst.addOperand(Inst.getOperand(1)); // lane 7421 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7422 TmpInst.addOperand(Inst.getOperand(6)); 7423 Inst = TmpInst; 7424 return true; 7425 } 7426 7427 case ARM::VST3LNdWB_register_Asm_8: 7428 case ARM::VST3LNdWB_register_Asm_16: 7429 case ARM::VST3LNdWB_register_Asm_32: 7430 case ARM::VST3LNqWB_register_Asm_16: 7431 case ARM::VST3LNqWB_register_Asm_32: { 7432 MCInst TmpInst; 7433 // Shuffle the operands around so the lane index operand is in the 7434 // right place. 7435 unsigned Spacing; 7436 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7437 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7438 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7439 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7440 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7441 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7442 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7443 Spacing)); 7444 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7445 Spacing * 2)); 7446 TmpInst.addOperand(Inst.getOperand(1)); // lane 7447 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7448 TmpInst.addOperand(Inst.getOperand(6)); 7449 Inst = TmpInst; 7450 return true; 7451 } 7452 7453 case ARM::VST4LNdWB_register_Asm_8: 7454 case ARM::VST4LNdWB_register_Asm_16: 7455 case ARM::VST4LNdWB_register_Asm_32: 7456 case ARM::VST4LNqWB_register_Asm_16: 7457 case ARM::VST4LNqWB_register_Asm_32: { 7458 MCInst TmpInst; 7459 // Shuffle the operands around so the lane index operand is in the 7460 // right place. 7461 unsigned Spacing; 7462 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7463 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7464 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7465 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7466 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7467 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7468 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7469 Spacing)); 7470 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7471 Spacing * 2)); 7472 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7473 Spacing * 3)); 7474 TmpInst.addOperand(Inst.getOperand(1)); // lane 7475 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7476 TmpInst.addOperand(Inst.getOperand(6)); 7477 Inst = TmpInst; 7478 return true; 7479 } 7480 7481 case ARM::VST1LNdWB_fixed_Asm_8: 7482 case ARM::VST1LNdWB_fixed_Asm_16: 7483 case ARM::VST1LNdWB_fixed_Asm_32: { 7484 MCInst TmpInst; 7485 // Shuffle the operands around so the lane index operand is in the 7486 // right place. 7487 unsigned Spacing; 7488 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7489 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7490 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7491 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7492 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7493 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7494 TmpInst.addOperand(Inst.getOperand(1)); // lane 7495 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7496 TmpInst.addOperand(Inst.getOperand(5)); 7497 Inst = TmpInst; 7498 return true; 7499 } 7500 7501 case ARM::VST2LNdWB_fixed_Asm_8: 7502 case ARM::VST2LNdWB_fixed_Asm_16: 7503 case ARM::VST2LNdWB_fixed_Asm_32: 7504 case ARM::VST2LNqWB_fixed_Asm_16: 7505 case ARM::VST2LNqWB_fixed_Asm_32: { 7506 MCInst TmpInst; 7507 // Shuffle the operands around so the lane index operand is in the 7508 // right place. 7509 unsigned Spacing; 7510 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7511 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7512 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7513 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7514 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7515 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7516 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7517 Spacing)); 7518 TmpInst.addOperand(Inst.getOperand(1)); // lane 7519 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7520 TmpInst.addOperand(Inst.getOperand(5)); 7521 Inst = TmpInst; 7522 return true; 7523 } 7524 7525 case ARM::VST3LNdWB_fixed_Asm_8: 7526 case ARM::VST3LNdWB_fixed_Asm_16: 7527 case ARM::VST3LNdWB_fixed_Asm_32: 7528 case ARM::VST3LNqWB_fixed_Asm_16: 7529 case ARM::VST3LNqWB_fixed_Asm_32: { 7530 MCInst TmpInst; 7531 // Shuffle the operands around so the lane index operand is in the 7532 // right place. 7533 unsigned Spacing; 7534 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7535 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7536 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7537 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7538 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7539 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7540 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7541 Spacing)); 7542 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7543 Spacing * 2)); 7544 TmpInst.addOperand(Inst.getOperand(1)); // lane 7545 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7546 TmpInst.addOperand(Inst.getOperand(5)); 7547 Inst = TmpInst; 7548 return true; 7549 } 7550 7551 case ARM::VST4LNdWB_fixed_Asm_8: 7552 case ARM::VST4LNdWB_fixed_Asm_16: 7553 case ARM::VST4LNdWB_fixed_Asm_32: 7554 case ARM::VST4LNqWB_fixed_Asm_16: 7555 case ARM::VST4LNqWB_fixed_Asm_32: { 7556 MCInst TmpInst; 7557 // Shuffle the operands around so the lane index operand is in the 7558 // right place. 7559 unsigned Spacing; 7560 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7561 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7562 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7563 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7564 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7565 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7566 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7567 Spacing)); 7568 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7569 Spacing * 2)); 7570 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7571 Spacing * 3)); 7572 TmpInst.addOperand(Inst.getOperand(1)); // lane 7573 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7574 TmpInst.addOperand(Inst.getOperand(5)); 7575 Inst = TmpInst; 7576 return true; 7577 } 7578 7579 case ARM::VST1LNdAsm_8: 7580 case ARM::VST1LNdAsm_16: 7581 case ARM::VST1LNdAsm_32: { 7582 MCInst TmpInst; 7583 // Shuffle the operands around so the lane index operand is in the 7584 // right place. 7585 unsigned Spacing; 7586 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7587 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7588 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7589 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7590 TmpInst.addOperand(Inst.getOperand(1)); // lane 7591 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7592 TmpInst.addOperand(Inst.getOperand(5)); 7593 Inst = TmpInst; 7594 return true; 7595 } 7596 7597 case ARM::VST2LNdAsm_8: 7598 case ARM::VST2LNdAsm_16: 7599 case ARM::VST2LNdAsm_32: 7600 case ARM::VST2LNqAsm_16: 7601 case ARM::VST2LNqAsm_32: { 7602 MCInst TmpInst; 7603 // Shuffle the operands around so the lane index operand is in the 7604 // right place. 7605 unsigned Spacing; 7606 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7607 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7608 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7609 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7610 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7611 Spacing)); 7612 TmpInst.addOperand(Inst.getOperand(1)); // lane 7613 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7614 TmpInst.addOperand(Inst.getOperand(5)); 7615 Inst = TmpInst; 7616 return true; 7617 } 7618 7619 case ARM::VST3LNdAsm_8: 7620 case ARM::VST3LNdAsm_16: 7621 case ARM::VST3LNdAsm_32: 7622 case ARM::VST3LNqAsm_16: 7623 case ARM::VST3LNqAsm_32: { 7624 MCInst TmpInst; 7625 // Shuffle the operands around so the lane index operand is in the 7626 // right place. 7627 unsigned Spacing; 7628 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7629 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7630 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7631 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7632 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7633 Spacing)); 7634 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7635 Spacing * 2)); 7636 TmpInst.addOperand(Inst.getOperand(1)); // lane 7637 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7638 TmpInst.addOperand(Inst.getOperand(5)); 7639 Inst = TmpInst; 7640 return true; 7641 } 7642 7643 case ARM::VST4LNdAsm_8: 7644 case ARM::VST4LNdAsm_16: 7645 case ARM::VST4LNdAsm_32: 7646 case ARM::VST4LNqAsm_16: 7647 case ARM::VST4LNqAsm_32: { 7648 MCInst TmpInst; 7649 // Shuffle the operands around so the lane index operand is in the 7650 // right place. 7651 unsigned Spacing; 7652 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7653 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7654 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7655 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7656 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7657 Spacing)); 7658 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7659 Spacing * 2)); 7660 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7661 Spacing * 3)); 7662 TmpInst.addOperand(Inst.getOperand(1)); // lane 7663 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7664 TmpInst.addOperand(Inst.getOperand(5)); 7665 Inst = TmpInst; 7666 return true; 7667 } 7668 7669 // Handle NEON VLD complex aliases. 7670 case ARM::VLD1LNdWB_register_Asm_8: 7671 case ARM::VLD1LNdWB_register_Asm_16: 7672 case ARM::VLD1LNdWB_register_Asm_32: { 7673 MCInst TmpInst; 7674 // Shuffle the operands around so the lane index operand is in the 7675 // right place. 7676 unsigned Spacing; 7677 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7678 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7679 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7680 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7681 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7682 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7683 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7684 TmpInst.addOperand(Inst.getOperand(1)); // lane 7685 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7686 TmpInst.addOperand(Inst.getOperand(6)); 7687 Inst = TmpInst; 7688 return true; 7689 } 7690 7691 case ARM::VLD2LNdWB_register_Asm_8: 7692 case ARM::VLD2LNdWB_register_Asm_16: 7693 case ARM::VLD2LNdWB_register_Asm_32: 7694 case ARM::VLD2LNqWB_register_Asm_16: 7695 case ARM::VLD2LNqWB_register_Asm_32: { 7696 MCInst TmpInst; 7697 // Shuffle the operands around so the lane index operand is in the 7698 // right place. 7699 unsigned Spacing; 7700 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7701 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7702 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7703 Spacing)); 7704 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7705 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7706 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7707 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7708 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7709 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7710 Spacing)); 7711 TmpInst.addOperand(Inst.getOperand(1)); // lane 7712 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7713 TmpInst.addOperand(Inst.getOperand(6)); 7714 Inst = TmpInst; 7715 return true; 7716 } 7717 7718 case ARM::VLD3LNdWB_register_Asm_8: 7719 case ARM::VLD3LNdWB_register_Asm_16: 7720 case ARM::VLD3LNdWB_register_Asm_32: 7721 case ARM::VLD3LNqWB_register_Asm_16: 7722 case ARM::VLD3LNqWB_register_Asm_32: { 7723 MCInst TmpInst; 7724 // Shuffle the operands around so the lane index operand is in the 7725 // right place. 7726 unsigned Spacing; 7727 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7728 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7729 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7730 Spacing)); 7731 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7732 Spacing * 2)); 7733 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7734 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7735 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7736 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7737 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7738 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7739 Spacing)); 7740 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7741 Spacing * 2)); 7742 TmpInst.addOperand(Inst.getOperand(1)); // lane 7743 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7744 TmpInst.addOperand(Inst.getOperand(6)); 7745 Inst = TmpInst; 7746 return true; 7747 } 7748 7749 case ARM::VLD4LNdWB_register_Asm_8: 7750 case ARM::VLD4LNdWB_register_Asm_16: 7751 case ARM::VLD4LNdWB_register_Asm_32: 7752 case ARM::VLD4LNqWB_register_Asm_16: 7753 case ARM::VLD4LNqWB_register_Asm_32: { 7754 MCInst TmpInst; 7755 // Shuffle the operands around so the lane index operand is in the 7756 // right place. 7757 unsigned Spacing; 7758 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7759 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7760 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7761 Spacing)); 7762 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7763 Spacing * 2)); 7764 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7765 Spacing * 3)); 7766 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7767 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7768 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7769 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7770 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7771 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7772 Spacing)); 7773 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7774 Spacing * 2)); 7775 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7776 Spacing * 3)); 7777 TmpInst.addOperand(Inst.getOperand(1)); // lane 7778 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7779 TmpInst.addOperand(Inst.getOperand(6)); 7780 Inst = TmpInst; 7781 return true; 7782 } 7783 7784 case ARM::VLD1LNdWB_fixed_Asm_8: 7785 case ARM::VLD1LNdWB_fixed_Asm_16: 7786 case ARM::VLD1LNdWB_fixed_Asm_32: { 7787 MCInst TmpInst; 7788 // Shuffle the operands around so the lane index operand is in the 7789 // right place. 7790 unsigned Spacing; 7791 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7792 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7793 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7794 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7795 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7796 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7797 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7798 TmpInst.addOperand(Inst.getOperand(1)); // lane 7799 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7800 TmpInst.addOperand(Inst.getOperand(5)); 7801 Inst = TmpInst; 7802 return true; 7803 } 7804 7805 case ARM::VLD2LNdWB_fixed_Asm_8: 7806 case ARM::VLD2LNdWB_fixed_Asm_16: 7807 case ARM::VLD2LNdWB_fixed_Asm_32: 7808 case ARM::VLD2LNqWB_fixed_Asm_16: 7809 case ARM::VLD2LNqWB_fixed_Asm_32: { 7810 MCInst TmpInst; 7811 // Shuffle the operands around so the lane index operand is in the 7812 // right place. 7813 unsigned Spacing; 7814 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7815 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7816 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7817 Spacing)); 7818 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7819 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7820 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7821 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7822 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7823 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7824 Spacing)); 7825 TmpInst.addOperand(Inst.getOperand(1)); // lane 7826 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7827 TmpInst.addOperand(Inst.getOperand(5)); 7828 Inst = TmpInst; 7829 return true; 7830 } 7831 7832 case ARM::VLD3LNdWB_fixed_Asm_8: 7833 case ARM::VLD3LNdWB_fixed_Asm_16: 7834 case ARM::VLD3LNdWB_fixed_Asm_32: 7835 case ARM::VLD3LNqWB_fixed_Asm_16: 7836 case ARM::VLD3LNqWB_fixed_Asm_32: { 7837 MCInst TmpInst; 7838 // Shuffle the operands around so the lane index operand is in the 7839 // right place. 7840 unsigned Spacing; 7841 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7842 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7843 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7844 Spacing)); 7845 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7846 Spacing * 2)); 7847 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7848 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7849 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7850 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7851 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7852 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7853 Spacing)); 7854 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7855 Spacing * 2)); 7856 TmpInst.addOperand(Inst.getOperand(1)); // lane 7857 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7858 TmpInst.addOperand(Inst.getOperand(5)); 7859 Inst = TmpInst; 7860 return true; 7861 } 7862 7863 case ARM::VLD4LNdWB_fixed_Asm_8: 7864 case ARM::VLD4LNdWB_fixed_Asm_16: 7865 case ARM::VLD4LNdWB_fixed_Asm_32: 7866 case ARM::VLD4LNqWB_fixed_Asm_16: 7867 case ARM::VLD4LNqWB_fixed_Asm_32: { 7868 MCInst TmpInst; 7869 // Shuffle the operands around so the lane index operand is in the 7870 // right place. 7871 unsigned Spacing; 7872 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7873 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7874 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7875 Spacing)); 7876 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7877 Spacing * 2)); 7878 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7879 Spacing * 3)); 7880 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7881 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7882 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7883 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7884 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7885 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7886 Spacing)); 7887 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7888 Spacing * 2)); 7889 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7890 Spacing * 3)); 7891 TmpInst.addOperand(Inst.getOperand(1)); // lane 7892 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7893 TmpInst.addOperand(Inst.getOperand(5)); 7894 Inst = TmpInst; 7895 return true; 7896 } 7897 7898 case ARM::VLD1LNdAsm_8: 7899 case ARM::VLD1LNdAsm_16: 7900 case ARM::VLD1LNdAsm_32: { 7901 MCInst TmpInst; 7902 // Shuffle the operands around so the lane index operand is in the 7903 // right place. 7904 unsigned Spacing; 7905 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7906 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7907 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7908 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7909 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7910 TmpInst.addOperand(Inst.getOperand(1)); // lane 7911 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7912 TmpInst.addOperand(Inst.getOperand(5)); 7913 Inst = TmpInst; 7914 return true; 7915 } 7916 7917 case ARM::VLD2LNdAsm_8: 7918 case ARM::VLD2LNdAsm_16: 7919 case ARM::VLD2LNdAsm_32: 7920 case ARM::VLD2LNqAsm_16: 7921 case ARM::VLD2LNqAsm_32: { 7922 MCInst TmpInst; 7923 // Shuffle the operands around so the lane index operand is in the 7924 // right place. 7925 unsigned Spacing; 7926 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7927 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7928 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7929 Spacing)); 7930 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7931 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7932 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7933 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7934 Spacing)); 7935 TmpInst.addOperand(Inst.getOperand(1)); // lane 7936 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7937 TmpInst.addOperand(Inst.getOperand(5)); 7938 Inst = TmpInst; 7939 return true; 7940 } 7941 7942 case ARM::VLD3LNdAsm_8: 7943 case ARM::VLD3LNdAsm_16: 7944 case ARM::VLD3LNdAsm_32: 7945 case ARM::VLD3LNqAsm_16: 7946 case ARM::VLD3LNqAsm_32: { 7947 MCInst TmpInst; 7948 // Shuffle the operands around so the lane index operand is in the 7949 // right place. 7950 unsigned Spacing; 7951 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7952 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7953 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7954 Spacing)); 7955 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7956 Spacing * 2)); 7957 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7958 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7959 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7960 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7961 Spacing)); 7962 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7963 Spacing * 2)); 7964 TmpInst.addOperand(Inst.getOperand(1)); // lane 7965 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7966 TmpInst.addOperand(Inst.getOperand(5)); 7967 Inst = TmpInst; 7968 return true; 7969 } 7970 7971 case ARM::VLD4LNdAsm_8: 7972 case ARM::VLD4LNdAsm_16: 7973 case ARM::VLD4LNdAsm_32: 7974 case ARM::VLD4LNqAsm_16: 7975 case ARM::VLD4LNqAsm_32: { 7976 MCInst TmpInst; 7977 // Shuffle the operands around so the lane index operand is in the 7978 // right place. 7979 unsigned Spacing; 7980 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7981 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7982 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7983 Spacing)); 7984 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7985 Spacing * 2)); 7986 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7987 Spacing * 3)); 7988 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7989 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7990 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7991 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7992 Spacing)); 7993 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7994 Spacing * 2)); 7995 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7996 Spacing * 3)); 7997 TmpInst.addOperand(Inst.getOperand(1)); // lane 7998 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7999 TmpInst.addOperand(Inst.getOperand(5)); 8000 Inst = TmpInst; 8001 return true; 8002 } 8003 8004 // VLD3DUP single 3-element structure to all lanes instructions. 8005 case ARM::VLD3DUPdAsm_8: 8006 case ARM::VLD3DUPdAsm_16: 8007 case ARM::VLD3DUPdAsm_32: 8008 case ARM::VLD3DUPqAsm_8: 8009 case ARM::VLD3DUPqAsm_16: 8010 case ARM::VLD3DUPqAsm_32: { 8011 MCInst TmpInst; 8012 unsigned Spacing; 8013 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8014 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8015 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8016 Spacing)); 8017 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8018 Spacing * 2)); 8019 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8020 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8021 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8022 TmpInst.addOperand(Inst.getOperand(4)); 8023 Inst = TmpInst; 8024 return true; 8025 } 8026 8027 case ARM::VLD3DUPdWB_fixed_Asm_8: 8028 case ARM::VLD3DUPdWB_fixed_Asm_16: 8029 case ARM::VLD3DUPdWB_fixed_Asm_32: 8030 case ARM::VLD3DUPqWB_fixed_Asm_8: 8031 case ARM::VLD3DUPqWB_fixed_Asm_16: 8032 case ARM::VLD3DUPqWB_fixed_Asm_32: { 8033 MCInst TmpInst; 8034 unsigned Spacing; 8035 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8036 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8037 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8038 Spacing)); 8039 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8040 Spacing * 2)); 8041 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8042 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8043 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8044 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8045 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8046 TmpInst.addOperand(Inst.getOperand(4)); 8047 Inst = TmpInst; 8048 return true; 8049 } 8050 8051 case ARM::VLD3DUPdWB_register_Asm_8: 8052 case ARM::VLD3DUPdWB_register_Asm_16: 8053 case ARM::VLD3DUPdWB_register_Asm_32: 8054 case ARM::VLD3DUPqWB_register_Asm_8: 8055 case ARM::VLD3DUPqWB_register_Asm_16: 8056 case ARM::VLD3DUPqWB_register_Asm_32: { 8057 MCInst TmpInst; 8058 unsigned Spacing; 8059 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8060 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8061 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8062 Spacing)); 8063 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8064 Spacing * 2)); 8065 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8066 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8067 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8068 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8069 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8070 TmpInst.addOperand(Inst.getOperand(5)); 8071 Inst = TmpInst; 8072 return true; 8073 } 8074 8075 // VLD3 multiple 3-element structure instructions. 8076 case ARM::VLD3dAsm_8: 8077 case ARM::VLD3dAsm_16: 8078 case ARM::VLD3dAsm_32: 8079 case ARM::VLD3qAsm_8: 8080 case ARM::VLD3qAsm_16: 8081 case ARM::VLD3qAsm_32: { 8082 MCInst TmpInst; 8083 unsigned Spacing; 8084 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8085 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8086 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8087 Spacing)); 8088 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8089 Spacing * 2)); 8090 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8091 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8092 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8093 TmpInst.addOperand(Inst.getOperand(4)); 8094 Inst = TmpInst; 8095 return true; 8096 } 8097 8098 case ARM::VLD3dWB_fixed_Asm_8: 8099 case ARM::VLD3dWB_fixed_Asm_16: 8100 case ARM::VLD3dWB_fixed_Asm_32: 8101 case ARM::VLD3qWB_fixed_Asm_8: 8102 case ARM::VLD3qWB_fixed_Asm_16: 8103 case ARM::VLD3qWB_fixed_Asm_32: { 8104 MCInst TmpInst; 8105 unsigned Spacing; 8106 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8107 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8108 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8109 Spacing)); 8110 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8111 Spacing * 2)); 8112 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8113 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8114 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8115 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8116 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8117 TmpInst.addOperand(Inst.getOperand(4)); 8118 Inst = TmpInst; 8119 return true; 8120 } 8121 8122 case ARM::VLD3dWB_register_Asm_8: 8123 case ARM::VLD3dWB_register_Asm_16: 8124 case ARM::VLD3dWB_register_Asm_32: 8125 case ARM::VLD3qWB_register_Asm_8: 8126 case ARM::VLD3qWB_register_Asm_16: 8127 case ARM::VLD3qWB_register_Asm_32: { 8128 MCInst TmpInst; 8129 unsigned Spacing; 8130 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8131 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8132 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8133 Spacing)); 8134 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8135 Spacing * 2)); 8136 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8137 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8138 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8139 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8140 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8141 TmpInst.addOperand(Inst.getOperand(5)); 8142 Inst = TmpInst; 8143 return true; 8144 } 8145 8146 // VLD4DUP single 3-element structure to all lanes instructions. 8147 case ARM::VLD4DUPdAsm_8: 8148 case ARM::VLD4DUPdAsm_16: 8149 case ARM::VLD4DUPdAsm_32: 8150 case ARM::VLD4DUPqAsm_8: 8151 case ARM::VLD4DUPqAsm_16: 8152 case ARM::VLD4DUPqAsm_32: { 8153 MCInst TmpInst; 8154 unsigned Spacing; 8155 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8156 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8157 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8158 Spacing)); 8159 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8160 Spacing * 2)); 8161 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8162 Spacing * 3)); 8163 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8164 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8165 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8166 TmpInst.addOperand(Inst.getOperand(4)); 8167 Inst = TmpInst; 8168 return true; 8169 } 8170 8171 case ARM::VLD4DUPdWB_fixed_Asm_8: 8172 case ARM::VLD4DUPdWB_fixed_Asm_16: 8173 case ARM::VLD4DUPdWB_fixed_Asm_32: 8174 case ARM::VLD4DUPqWB_fixed_Asm_8: 8175 case ARM::VLD4DUPqWB_fixed_Asm_16: 8176 case ARM::VLD4DUPqWB_fixed_Asm_32: { 8177 MCInst TmpInst; 8178 unsigned Spacing; 8179 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8180 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8181 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8182 Spacing)); 8183 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8184 Spacing * 2)); 8185 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8186 Spacing * 3)); 8187 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8188 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8189 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8190 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8191 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8192 TmpInst.addOperand(Inst.getOperand(4)); 8193 Inst = TmpInst; 8194 return true; 8195 } 8196 8197 case ARM::VLD4DUPdWB_register_Asm_8: 8198 case ARM::VLD4DUPdWB_register_Asm_16: 8199 case ARM::VLD4DUPdWB_register_Asm_32: 8200 case ARM::VLD4DUPqWB_register_Asm_8: 8201 case ARM::VLD4DUPqWB_register_Asm_16: 8202 case ARM::VLD4DUPqWB_register_Asm_32: { 8203 MCInst TmpInst; 8204 unsigned Spacing; 8205 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8206 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8207 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8208 Spacing)); 8209 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8210 Spacing * 2)); 8211 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8212 Spacing * 3)); 8213 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8214 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8215 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8216 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8217 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8218 TmpInst.addOperand(Inst.getOperand(5)); 8219 Inst = TmpInst; 8220 return true; 8221 } 8222 8223 // VLD4 multiple 4-element structure instructions. 8224 case ARM::VLD4dAsm_8: 8225 case ARM::VLD4dAsm_16: 8226 case ARM::VLD4dAsm_32: 8227 case ARM::VLD4qAsm_8: 8228 case ARM::VLD4qAsm_16: 8229 case ARM::VLD4qAsm_32: { 8230 MCInst TmpInst; 8231 unsigned Spacing; 8232 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8233 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8234 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8235 Spacing)); 8236 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8237 Spacing * 2)); 8238 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8239 Spacing * 3)); 8240 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8241 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8242 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8243 TmpInst.addOperand(Inst.getOperand(4)); 8244 Inst = TmpInst; 8245 return true; 8246 } 8247 8248 case ARM::VLD4dWB_fixed_Asm_8: 8249 case ARM::VLD4dWB_fixed_Asm_16: 8250 case ARM::VLD4dWB_fixed_Asm_32: 8251 case ARM::VLD4qWB_fixed_Asm_8: 8252 case ARM::VLD4qWB_fixed_Asm_16: 8253 case ARM::VLD4qWB_fixed_Asm_32: { 8254 MCInst TmpInst; 8255 unsigned Spacing; 8256 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8257 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8258 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8259 Spacing)); 8260 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8261 Spacing * 2)); 8262 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8263 Spacing * 3)); 8264 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8265 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8266 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8267 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8268 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8269 TmpInst.addOperand(Inst.getOperand(4)); 8270 Inst = TmpInst; 8271 return true; 8272 } 8273 8274 case ARM::VLD4dWB_register_Asm_8: 8275 case ARM::VLD4dWB_register_Asm_16: 8276 case ARM::VLD4dWB_register_Asm_32: 8277 case ARM::VLD4qWB_register_Asm_8: 8278 case ARM::VLD4qWB_register_Asm_16: 8279 case ARM::VLD4qWB_register_Asm_32: { 8280 MCInst TmpInst; 8281 unsigned Spacing; 8282 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8283 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8284 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8285 Spacing)); 8286 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8287 Spacing * 2)); 8288 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8289 Spacing * 3)); 8290 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8291 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8292 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8293 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8294 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8295 TmpInst.addOperand(Inst.getOperand(5)); 8296 Inst = TmpInst; 8297 return true; 8298 } 8299 8300 // VST3 multiple 3-element structure instructions. 8301 case ARM::VST3dAsm_8: 8302 case ARM::VST3dAsm_16: 8303 case ARM::VST3dAsm_32: 8304 case ARM::VST3qAsm_8: 8305 case ARM::VST3qAsm_16: 8306 case ARM::VST3qAsm_32: { 8307 MCInst TmpInst; 8308 unsigned Spacing; 8309 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8310 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8311 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8312 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8313 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8314 Spacing)); 8315 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8316 Spacing * 2)); 8317 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8318 TmpInst.addOperand(Inst.getOperand(4)); 8319 Inst = TmpInst; 8320 return true; 8321 } 8322 8323 case ARM::VST3dWB_fixed_Asm_8: 8324 case ARM::VST3dWB_fixed_Asm_16: 8325 case ARM::VST3dWB_fixed_Asm_32: 8326 case ARM::VST3qWB_fixed_Asm_8: 8327 case ARM::VST3qWB_fixed_Asm_16: 8328 case ARM::VST3qWB_fixed_Asm_32: { 8329 MCInst TmpInst; 8330 unsigned Spacing; 8331 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8332 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8333 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8334 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8335 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8336 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8337 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8338 Spacing)); 8339 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8340 Spacing * 2)); 8341 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8342 TmpInst.addOperand(Inst.getOperand(4)); 8343 Inst = TmpInst; 8344 return true; 8345 } 8346 8347 case ARM::VST3dWB_register_Asm_8: 8348 case ARM::VST3dWB_register_Asm_16: 8349 case ARM::VST3dWB_register_Asm_32: 8350 case ARM::VST3qWB_register_Asm_8: 8351 case ARM::VST3qWB_register_Asm_16: 8352 case ARM::VST3qWB_register_Asm_32: { 8353 MCInst TmpInst; 8354 unsigned Spacing; 8355 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8356 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8357 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8358 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8359 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8360 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8361 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8362 Spacing)); 8363 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8364 Spacing * 2)); 8365 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8366 TmpInst.addOperand(Inst.getOperand(5)); 8367 Inst = TmpInst; 8368 return true; 8369 } 8370 8371 // VST4 multiple 3-element structure instructions. 8372 case ARM::VST4dAsm_8: 8373 case ARM::VST4dAsm_16: 8374 case ARM::VST4dAsm_32: 8375 case ARM::VST4qAsm_8: 8376 case ARM::VST4qAsm_16: 8377 case ARM::VST4qAsm_32: { 8378 MCInst TmpInst; 8379 unsigned Spacing; 8380 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8381 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8382 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8383 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8384 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8385 Spacing)); 8386 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8387 Spacing * 2)); 8388 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8389 Spacing * 3)); 8390 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8391 TmpInst.addOperand(Inst.getOperand(4)); 8392 Inst = TmpInst; 8393 return true; 8394 } 8395 8396 case ARM::VST4dWB_fixed_Asm_8: 8397 case ARM::VST4dWB_fixed_Asm_16: 8398 case ARM::VST4dWB_fixed_Asm_32: 8399 case ARM::VST4qWB_fixed_Asm_8: 8400 case ARM::VST4qWB_fixed_Asm_16: 8401 case ARM::VST4qWB_fixed_Asm_32: { 8402 MCInst TmpInst; 8403 unsigned Spacing; 8404 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8405 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8406 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8407 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8408 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8409 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8410 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8411 Spacing)); 8412 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8413 Spacing * 2)); 8414 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8415 Spacing * 3)); 8416 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8417 TmpInst.addOperand(Inst.getOperand(4)); 8418 Inst = TmpInst; 8419 return true; 8420 } 8421 8422 case ARM::VST4dWB_register_Asm_8: 8423 case ARM::VST4dWB_register_Asm_16: 8424 case ARM::VST4dWB_register_Asm_32: 8425 case ARM::VST4qWB_register_Asm_8: 8426 case ARM::VST4qWB_register_Asm_16: 8427 case ARM::VST4qWB_register_Asm_32: { 8428 MCInst TmpInst; 8429 unsigned Spacing; 8430 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8431 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8432 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8433 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8434 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8435 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8436 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8437 Spacing)); 8438 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8439 Spacing * 2)); 8440 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8441 Spacing * 3)); 8442 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8443 TmpInst.addOperand(Inst.getOperand(5)); 8444 Inst = TmpInst; 8445 return true; 8446 } 8447 8448 // Handle encoding choice for the shift-immediate instructions. 8449 case ARM::t2LSLri: 8450 case ARM::t2LSRri: 8451 case ARM::t2ASRri: 8452 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8453 isARMLowRegister(Inst.getOperand(1).getReg()) && 8454 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8455 !HasWideQualifier) { 8456 unsigned NewOpc; 8457 switch (Inst.getOpcode()) { 8458 default: llvm_unreachable("unexpected opcode"); 8459 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8460 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8461 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8462 } 8463 // The Thumb1 operands aren't in the same order. Awesome, eh? 8464 MCInst TmpInst; 8465 TmpInst.setOpcode(NewOpc); 8466 TmpInst.addOperand(Inst.getOperand(0)); 8467 TmpInst.addOperand(Inst.getOperand(5)); 8468 TmpInst.addOperand(Inst.getOperand(1)); 8469 TmpInst.addOperand(Inst.getOperand(2)); 8470 TmpInst.addOperand(Inst.getOperand(3)); 8471 TmpInst.addOperand(Inst.getOperand(4)); 8472 Inst = TmpInst; 8473 return true; 8474 } 8475 return false; 8476 8477 // Handle the Thumb2 mode MOV complex aliases. 8478 case ARM::t2MOVsr: 8479 case ARM::t2MOVSsr: { 8480 // Which instruction to expand to depends on the CCOut operand and 8481 // whether we're in an IT block if the register operands are low 8482 // registers. 8483 bool isNarrow = false; 8484 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8485 isARMLowRegister(Inst.getOperand(1).getReg()) && 8486 isARMLowRegister(Inst.getOperand(2).getReg()) && 8487 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8488 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 8489 !HasWideQualifier) 8490 isNarrow = true; 8491 MCInst TmpInst; 8492 unsigned newOpc; 8493 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8494 default: llvm_unreachable("unexpected opcode!"); 8495 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8496 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8497 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8498 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8499 } 8500 TmpInst.setOpcode(newOpc); 8501 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8502 if (isNarrow) 8503 TmpInst.addOperand(MCOperand::createReg( 8504 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8505 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8506 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8507 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8508 TmpInst.addOperand(Inst.getOperand(5)); 8509 if (!isNarrow) 8510 TmpInst.addOperand(MCOperand::createReg( 8511 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8512 Inst = TmpInst; 8513 return true; 8514 } 8515 case ARM::t2MOVsi: 8516 case ARM::t2MOVSsi: { 8517 // Which instruction to expand to depends on the CCOut operand and 8518 // whether we're in an IT block if the register operands are low 8519 // registers. 8520 bool isNarrow = false; 8521 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8522 isARMLowRegister(Inst.getOperand(1).getReg()) && 8523 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 8524 !HasWideQualifier) 8525 isNarrow = true; 8526 MCInst TmpInst; 8527 unsigned newOpc; 8528 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8529 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8530 bool isMov = false; 8531 // MOV rd, rm, LSL #0 is actually a MOV instruction 8532 if (Shift == ARM_AM::lsl && Amount == 0) { 8533 isMov = true; 8534 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 8535 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 8536 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 8537 // instead. 8538 if (inITBlock()) { 8539 isNarrow = false; 8540 } 8541 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 8542 } else { 8543 switch(Shift) { 8544 default: llvm_unreachable("unexpected opcode!"); 8545 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8546 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8547 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8548 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8549 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8550 } 8551 } 8552 if (Amount == 32) Amount = 0; 8553 TmpInst.setOpcode(newOpc); 8554 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8555 if (isNarrow && !isMov) 8556 TmpInst.addOperand(MCOperand::createReg( 8557 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8558 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8559 if (newOpc != ARM::t2RRX && !isMov) 8560 TmpInst.addOperand(MCOperand::createImm(Amount)); 8561 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8562 TmpInst.addOperand(Inst.getOperand(4)); 8563 if (!isNarrow) 8564 TmpInst.addOperand(MCOperand::createReg( 8565 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8566 Inst = TmpInst; 8567 return true; 8568 } 8569 // Handle the ARM mode MOV complex aliases. 8570 case ARM::ASRr: 8571 case ARM::LSRr: 8572 case ARM::LSLr: 8573 case ARM::RORr: { 8574 ARM_AM::ShiftOpc ShiftTy; 8575 switch(Inst.getOpcode()) { 8576 default: llvm_unreachable("unexpected opcode!"); 8577 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8578 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8579 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8580 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8581 } 8582 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8583 MCInst TmpInst; 8584 TmpInst.setOpcode(ARM::MOVsr); 8585 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8586 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8587 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8588 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8589 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8590 TmpInst.addOperand(Inst.getOperand(4)); 8591 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8592 Inst = TmpInst; 8593 return true; 8594 } 8595 case ARM::ASRi: 8596 case ARM::LSRi: 8597 case ARM::LSLi: 8598 case ARM::RORi: { 8599 ARM_AM::ShiftOpc ShiftTy; 8600 switch(Inst.getOpcode()) { 8601 default: llvm_unreachable("unexpected opcode!"); 8602 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8603 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8604 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8605 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8606 } 8607 // A shift by zero is a plain MOVr, not a MOVsi. 8608 unsigned Amt = Inst.getOperand(2).getImm(); 8609 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8610 // A shift by 32 should be encoded as 0 when permitted 8611 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8612 Amt = 0; 8613 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8614 MCInst TmpInst; 8615 TmpInst.setOpcode(Opc); 8616 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8617 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8618 if (Opc == ARM::MOVsi) 8619 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8620 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8621 TmpInst.addOperand(Inst.getOperand(4)); 8622 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8623 Inst = TmpInst; 8624 return true; 8625 } 8626 case ARM::RRXi: { 8627 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8628 MCInst TmpInst; 8629 TmpInst.setOpcode(ARM::MOVsi); 8630 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8631 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8632 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8633 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8634 TmpInst.addOperand(Inst.getOperand(3)); 8635 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8636 Inst = TmpInst; 8637 return true; 8638 } 8639 case ARM::t2LDMIA_UPD: { 8640 // If this is a load of a single register, then we should use 8641 // a post-indexed LDR instruction instead, per the ARM ARM. 8642 if (Inst.getNumOperands() != 5) 8643 return false; 8644 MCInst TmpInst; 8645 TmpInst.setOpcode(ARM::t2LDR_POST); 8646 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8647 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8648 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8649 TmpInst.addOperand(MCOperand::createImm(4)); 8650 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8651 TmpInst.addOperand(Inst.getOperand(3)); 8652 Inst = TmpInst; 8653 return true; 8654 } 8655 case ARM::t2STMDB_UPD: { 8656 // If this is a store of a single register, then we should use 8657 // a pre-indexed STR instruction instead, per the ARM ARM. 8658 if (Inst.getNumOperands() != 5) 8659 return false; 8660 MCInst TmpInst; 8661 TmpInst.setOpcode(ARM::t2STR_PRE); 8662 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8663 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8664 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8665 TmpInst.addOperand(MCOperand::createImm(-4)); 8666 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8667 TmpInst.addOperand(Inst.getOperand(3)); 8668 Inst = TmpInst; 8669 return true; 8670 } 8671 case ARM::LDMIA_UPD: 8672 // If this is a load of a single register via a 'pop', then we should use 8673 // a post-indexed LDR instruction instead, per the ARM ARM. 8674 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8675 Inst.getNumOperands() == 5) { 8676 MCInst TmpInst; 8677 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8678 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8679 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8680 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8681 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8682 TmpInst.addOperand(MCOperand::createImm(4)); 8683 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8684 TmpInst.addOperand(Inst.getOperand(3)); 8685 Inst = TmpInst; 8686 return true; 8687 } 8688 break; 8689 case ARM::STMDB_UPD: 8690 // If this is a store of a single register via a 'push', then we should use 8691 // a pre-indexed STR instruction instead, per the ARM ARM. 8692 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8693 Inst.getNumOperands() == 5) { 8694 MCInst TmpInst; 8695 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8696 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8697 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8698 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8699 TmpInst.addOperand(MCOperand::createImm(-4)); 8700 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8701 TmpInst.addOperand(Inst.getOperand(3)); 8702 Inst = TmpInst; 8703 } 8704 break; 8705 case ARM::t2ADDri12: 8706 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8707 // mnemonic was used (not "addw"), encoding T3 is preferred. 8708 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8709 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8710 break; 8711 Inst.setOpcode(ARM::t2ADDri); 8712 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8713 break; 8714 case ARM::t2SUBri12: 8715 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8716 // mnemonic was used (not "subw"), encoding T3 is preferred. 8717 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8718 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8719 break; 8720 Inst.setOpcode(ARM::t2SUBri); 8721 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8722 break; 8723 case ARM::tADDi8: 8724 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8725 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8726 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8727 // to encoding T1 if <Rd> is omitted." 8728 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8729 Inst.setOpcode(ARM::tADDi3); 8730 return true; 8731 } 8732 break; 8733 case ARM::tSUBi8: 8734 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8735 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8736 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8737 // to encoding T1 if <Rd> is omitted." 8738 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8739 Inst.setOpcode(ARM::tSUBi3); 8740 return true; 8741 } 8742 break; 8743 case ARM::t2ADDri: 8744 case ARM::t2SUBri: { 8745 // If the destination and first source operand are the same, and 8746 // the flags are compatible with the current IT status, use encoding T2 8747 // instead of T3. For compatibility with the system 'as'. Make sure the 8748 // wide encoding wasn't explicit. 8749 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8750 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8751 (Inst.getOperand(2).isImm() && 8752 (unsigned)Inst.getOperand(2).getImm() > 255) || 8753 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 8754 HasWideQualifier) 8755 break; 8756 MCInst TmpInst; 8757 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8758 ARM::tADDi8 : ARM::tSUBi8); 8759 TmpInst.addOperand(Inst.getOperand(0)); 8760 TmpInst.addOperand(Inst.getOperand(5)); 8761 TmpInst.addOperand(Inst.getOperand(0)); 8762 TmpInst.addOperand(Inst.getOperand(2)); 8763 TmpInst.addOperand(Inst.getOperand(3)); 8764 TmpInst.addOperand(Inst.getOperand(4)); 8765 Inst = TmpInst; 8766 return true; 8767 } 8768 case ARM::t2ADDrr: { 8769 // If the destination and first source operand are the same, and 8770 // there's no setting of the flags, use encoding T2 instead of T3. 8771 // Note that this is only for ADD, not SUB. This mirrors the system 8772 // 'as' behaviour. Also take advantage of ADD being commutative. 8773 // Make sure the wide encoding wasn't explicit. 8774 bool Swap = false; 8775 auto DestReg = Inst.getOperand(0).getReg(); 8776 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8777 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8778 Transform = true; 8779 Swap = true; 8780 } 8781 if (!Transform || 8782 Inst.getOperand(5).getReg() != 0 || 8783 HasWideQualifier) 8784 break; 8785 MCInst TmpInst; 8786 TmpInst.setOpcode(ARM::tADDhirr); 8787 TmpInst.addOperand(Inst.getOperand(0)); 8788 TmpInst.addOperand(Inst.getOperand(0)); 8789 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8790 TmpInst.addOperand(Inst.getOperand(3)); 8791 TmpInst.addOperand(Inst.getOperand(4)); 8792 Inst = TmpInst; 8793 return true; 8794 } 8795 case ARM::tADDrSP: 8796 // If the non-SP source operand and the destination operand are not the 8797 // same, we need to use the 32-bit encoding if it's available. 8798 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8799 Inst.setOpcode(ARM::t2ADDrr); 8800 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8801 return true; 8802 } 8803 break; 8804 case ARM::tB: 8805 // A Thumb conditional branch outside of an IT block is a tBcc. 8806 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8807 Inst.setOpcode(ARM::tBcc); 8808 return true; 8809 } 8810 break; 8811 case ARM::t2B: 8812 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8813 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8814 Inst.setOpcode(ARM::t2Bcc); 8815 return true; 8816 } 8817 break; 8818 case ARM::t2Bcc: 8819 // If the conditional is AL or we're in an IT block, we really want t2B. 8820 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8821 Inst.setOpcode(ARM::t2B); 8822 return true; 8823 } 8824 break; 8825 case ARM::tBcc: 8826 // If the conditional is AL, we really want tB. 8827 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8828 Inst.setOpcode(ARM::tB); 8829 return true; 8830 } 8831 break; 8832 case ARM::tLDMIA: { 8833 // If the register list contains any high registers, or if the writeback 8834 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8835 // instead if we're in Thumb2. Otherwise, this should have generated 8836 // an error in validateInstruction(). 8837 unsigned Rn = Inst.getOperand(0).getReg(); 8838 bool hasWritebackToken = 8839 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8840 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8841 bool listContainsBase; 8842 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8843 (!listContainsBase && !hasWritebackToken) || 8844 (listContainsBase && hasWritebackToken)) { 8845 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8846 assert(isThumbTwo()); 8847 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8848 // If we're switching to the updating version, we need to insert 8849 // the writeback tied operand. 8850 if (hasWritebackToken) 8851 Inst.insert(Inst.begin(), 8852 MCOperand::createReg(Inst.getOperand(0).getReg())); 8853 return true; 8854 } 8855 break; 8856 } 8857 case ARM::tSTMIA_UPD: { 8858 // If the register list contains any high registers, we need to use 8859 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8860 // should have generated an error in validateInstruction(). 8861 unsigned Rn = Inst.getOperand(0).getReg(); 8862 bool listContainsBase; 8863 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8864 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8865 assert(isThumbTwo()); 8866 Inst.setOpcode(ARM::t2STMIA_UPD); 8867 return true; 8868 } 8869 break; 8870 } 8871 case ARM::tPOP: { 8872 bool listContainsBase; 8873 // If the register list contains any high registers, we need to use 8874 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8875 // should have generated an error in validateInstruction(). 8876 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8877 return false; 8878 assert(isThumbTwo()); 8879 Inst.setOpcode(ARM::t2LDMIA_UPD); 8880 // Add the base register and writeback operands. 8881 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8882 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8883 return true; 8884 } 8885 case ARM::tPUSH: { 8886 bool listContainsBase; 8887 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8888 return false; 8889 assert(isThumbTwo()); 8890 Inst.setOpcode(ARM::t2STMDB_UPD); 8891 // Add the base register and writeback operands. 8892 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8893 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8894 return true; 8895 } 8896 case ARM::t2MOVi: 8897 // If we can use the 16-bit encoding and the user didn't explicitly 8898 // request the 32-bit variant, transform it here. 8899 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8900 (Inst.getOperand(1).isImm() && 8901 (unsigned)Inst.getOperand(1).getImm() <= 255) && 8902 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8903 !HasWideQualifier) { 8904 // The operands aren't in the same order for tMOVi8... 8905 MCInst TmpInst; 8906 TmpInst.setOpcode(ARM::tMOVi8); 8907 TmpInst.addOperand(Inst.getOperand(0)); 8908 TmpInst.addOperand(Inst.getOperand(4)); 8909 TmpInst.addOperand(Inst.getOperand(1)); 8910 TmpInst.addOperand(Inst.getOperand(2)); 8911 TmpInst.addOperand(Inst.getOperand(3)); 8912 Inst = TmpInst; 8913 return true; 8914 } 8915 break; 8916 8917 case ARM::t2MOVr: 8918 // If we can use the 16-bit encoding and the user didn't explicitly 8919 // request the 32-bit variant, transform it here. 8920 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8921 isARMLowRegister(Inst.getOperand(1).getReg()) && 8922 Inst.getOperand(2).getImm() == ARMCC::AL && 8923 Inst.getOperand(4).getReg() == ARM::CPSR && 8924 !HasWideQualifier) { 8925 // The operands aren't the same for tMOV[S]r... (no cc_out) 8926 MCInst TmpInst; 8927 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8928 TmpInst.addOperand(Inst.getOperand(0)); 8929 TmpInst.addOperand(Inst.getOperand(1)); 8930 TmpInst.addOperand(Inst.getOperand(2)); 8931 TmpInst.addOperand(Inst.getOperand(3)); 8932 Inst = TmpInst; 8933 return true; 8934 } 8935 break; 8936 8937 case ARM::t2SXTH: 8938 case ARM::t2SXTB: 8939 case ARM::t2UXTH: 8940 case ARM::t2UXTB: 8941 // If we can use the 16-bit encoding and the user didn't explicitly 8942 // request the 32-bit variant, transform it here. 8943 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8944 isARMLowRegister(Inst.getOperand(1).getReg()) && 8945 Inst.getOperand(2).getImm() == 0 && 8946 !HasWideQualifier) { 8947 unsigned NewOpc; 8948 switch (Inst.getOpcode()) { 8949 default: llvm_unreachable("Illegal opcode!"); 8950 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8951 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8952 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8953 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8954 } 8955 // The operands aren't the same for thumb1 (no rotate operand). 8956 MCInst TmpInst; 8957 TmpInst.setOpcode(NewOpc); 8958 TmpInst.addOperand(Inst.getOperand(0)); 8959 TmpInst.addOperand(Inst.getOperand(1)); 8960 TmpInst.addOperand(Inst.getOperand(3)); 8961 TmpInst.addOperand(Inst.getOperand(4)); 8962 Inst = TmpInst; 8963 return true; 8964 } 8965 break; 8966 8967 case ARM::MOVsi: { 8968 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8969 // rrx shifts and asr/lsr of #32 is encoded as 0 8970 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8971 return false; 8972 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8973 // Shifting by zero is accepted as a vanilla 'MOVr' 8974 MCInst TmpInst; 8975 TmpInst.setOpcode(ARM::MOVr); 8976 TmpInst.addOperand(Inst.getOperand(0)); 8977 TmpInst.addOperand(Inst.getOperand(1)); 8978 TmpInst.addOperand(Inst.getOperand(3)); 8979 TmpInst.addOperand(Inst.getOperand(4)); 8980 TmpInst.addOperand(Inst.getOperand(5)); 8981 Inst = TmpInst; 8982 return true; 8983 } 8984 return false; 8985 } 8986 case ARM::ANDrsi: 8987 case ARM::ORRrsi: 8988 case ARM::EORrsi: 8989 case ARM::BICrsi: 8990 case ARM::SUBrsi: 8991 case ARM::ADDrsi: { 8992 unsigned newOpc; 8993 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8994 if (SOpc == ARM_AM::rrx) return false; 8995 switch (Inst.getOpcode()) { 8996 default: llvm_unreachable("unexpected opcode!"); 8997 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8998 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8999 case ARM::EORrsi: newOpc = ARM::EORrr; break; 9000 case ARM::BICrsi: newOpc = ARM::BICrr; break; 9001 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 9002 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 9003 } 9004 // If the shift is by zero, use the non-shifted instruction definition. 9005 // The exception is for right shifts, where 0 == 32 9006 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 9007 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 9008 MCInst TmpInst; 9009 TmpInst.setOpcode(newOpc); 9010 TmpInst.addOperand(Inst.getOperand(0)); 9011 TmpInst.addOperand(Inst.getOperand(1)); 9012 TmpInst.addOperand(Inst.getOperand(2)); 9013 TmpInst.addOperand(Inst.getOperand(4)); 9014 TmpInst.addOperand(Inst.getOperand(5)); 9015 TmpInst.addOperand(Inst.getOperand(6)); 9016 Inst = TmpInst; 9017 return true; 9018 } 9019 return false; 9020 } 9021 case ARM::ITasm: 9022 case ARM::t2IT: { 9023 MCOperand &MO = Inst.getOperand(1); 9024 unsigned Mask = MO.getImm(); 9025 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 9026 9027 // Set up the IT block state according to the IT instruction we just 9028 // matched. 9029 assert(!inITBlock() && "nested IT blocks?!"); 9030 startExplicitITBlock(Cond, Mask); 9031 MO.setImm(getITMaskEncoding()); 9032 break; 9033 } 9034 case ARM::t2LSLrr: 9035 case ARM::t2LSRrr: 9036 case ARM::t2ASRrr: 9037 case ARM::t2SBCrr: 9038 case ARM::t2RORrr: 9039 case ARM::t2BICrr: 9040 // Assemblers should use the narrow encodings of these instructions when permissible. 9041 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 9042 isARMLowRegister(Inst.getOperand(2).getReg())) && 9043 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 9044 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9045 !HasWideQualifier) { 9046 unsigned NewOpc; 9047 switch (Inst.getOpcode()) { 9048 default: llvm_unreachable("unexpected opcode"); 9049 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 9050 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 9051 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 9052 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 9053 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 9054 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 9055 } 9056 MCInst TmpInst; 9057 TmpInst.setOpcode(NewOpc); 9058 TmpInst.addOperand(Inst.getOperand(0)); 9059 TmpInst.addOperand(Inst.getOperand(5)); 9060 TmpInst.addOperand(Inst.getOperand(1)); 9061 TmpInst.addOperand(Inst.getOperand(2)); 9062 TmpInst.addOperand(Inst.getOperand(3)); 9063 TmpInst.addOperand(Inst.getOperand(4)); 9064 Inst = TmpInst; 9065 return true; 9066 } 9067 return false; 9068 9069 case ARM::t2ANDrr: 9070 case ARM::t2EORrr: 9071 case ARM::t2ADCrr: 9072 case ARM::t2ORRrr: 9073 // Assemblers should use the narrow encodings of these instructions when permissible. 9074 // These instructions are special in that they are commutable, so shorter encodings 9075 // are available more often. 9076 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 9077 isARMLowRegister(Inst.getOperand(2).getReg())) && 9078 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 9079 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 9080 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9081 !HasWideQualifier) { 9082 unsigned NewOpc; 9083 switch (Inst.getOpcode()) { 9084 default: llvm_unreachable("unexpected opcode"); 9085 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 9086 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 9087 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 9088 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 9089 } 9090 MCInst TmpInst; 9091 TmpInst.setOpcode(NewOpc); 9092 TmpInst.addOperand(Inst.getOperand(0)); 9093 TmpInst.addOperand(Inst.getOperand(5)); 9094 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 9095 TmpInst.addOperand(Inst.getOperand(1)); 9096 TmpInst.addOperand(Inst.getOperand(2)); 9097 } else { 9098 TmpInst.addOperand(Inst.getOperand(2)); 9099 TmpInst.addOperand(Inst.getOperand(1)); 9100 } 9101 TmpInst.addOperand(Inst.getOperand(3)); 9102 TmpInst.addOperand(Inst.getOperand(4)); 9103 Inst = TmpInst; 9104 return true; 9105 } 9106 return false; 9107 } 9108 return false; 9109 } 9110 9111 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 9112 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 9113 // suffix depending on whether they're in an IT block or not. 9114 unsigned Opc = Inst.getOpcode(); 9115 const MCInstrDesc &MCID = MII.get(Opc); 9116 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 9117 assert(MCID.hasOptionalDef() && 9118 "optionally flag setting instruction missing optional def operand"); 9119 assert(MCID.NumOperands == Inst.getNumOperands() && 9120 "operand count mismatch!"); 9121 // Find the optional-def operand (cc_out). 9122 unsigned OpNo; 9123 for (OpNo = 0; 9124 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 9125 ++OpNo) 9126 ; 9127 // If we're parsing Thumb1, reject it completely. 9128 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 9129 return Match_RequiresFlagSetting; 9130 // If we're parsing Thumb2, which form is legal depends on whether we're 9131 // in an IT block. 9132 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 9133 !inITBlock()) 9134 return Match_RequiresITBlock; 9135 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 9136 inITBlock()) 9137 return Match_RequiresNotITBlock; 9138 // LSL with zero immediate is not allowed in an IT block 9139 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 9140 return Match_RequiresNotITBlock; 9141 } else if (isThumbOne()) { 9142 // Some high-register supporting Thumb1 encodings only allow both registers 9143 // to be from r0-r7 when in Thumb2. 9144 if (Opc == ARM::tADDhirr && !hasV6MOps() && 9145 isARMLowRegister(Inst.getOperand(1).getReg()) && 9146 isARMLowRegister(Inst.getOperand(2).getReg())) 9147 return Match_RequiresThumb2; 9148 // Others only require ARMv6 or later. 9149 else if (Opc == ARM::tMOVr && !hasV6Ops() && 9150 isARMLowRegister(Inst.getOperand(0).getReg()) && 9151 isARMLowRegister(Inst.getOperand(1).getReg())) 9152 return Match_RequiresV6; 9153 } 9154 9155 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 9156 // than the loop below can handle, so it uses the GPRnopc register class and 9157 // we do SP handling here. 9158 if (Opc == ARM::t2MOVr && !hasV8Ops()) 9159 { 9160 // SP as both source and destination is not allowed 9161 if (Inst.getOperand(0).getReg() == ARM::SP && 9162 Inst.getOperand(1).getReg() == ARM::SP) 9163 return Match_RequiresV8; 9164 // When flags-setting SP as either source or destination is not allowed 9165 if (Inst.getOperand(4).getReg() == ARM::CPSR && 9166 (Inst.getOperand(0).getReg() == ARM::SP || 9167 Inst.getOperand(1).getReg() == ARM::SP)) 9168 return Match_RequiresV8; 9169 } 9170 9171 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 9172 // ARMv8-A. 9173 if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) && 9174 Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops())) 9175 return Match_InvalidOperand; 9176 9177 for (unsigned I = 0; I < MCID.NumOperands; ++I) 9178 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 9179 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 9180 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 9181 return Match_RequiresV8; 9182 else if (Inst.getOperand(I).getReg() == ARM::PC) 9183 return Match_InvalidOperand; 9184 } 9185 9186 return Match_Success; 9187 } 9188 9189 namespace llvm { 9190 9191 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 9192 return true; // In an assembly source, no need to second-guess 9193 } 9194 9195 } // end namespace llvm 9196 9197 // Returns true if Inst is unpredictable if it is in and IT block, but is not 9198 // the last instruction in the block. 9199 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 9200 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9201 9202 // All branch & call instructions terminate IT blocks with the exception of 9203 // SVC. 9204 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 9205 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 9206 return true; 9207 9208 // Any arithmetic instruction which writes to the PC also terminates the IT 9209 // block. 9210 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 9211 return true; 9212 9213 return false; 9214 } 9215 9216 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 9217 SmallVectorImpl<NearMissInfo> &NearMisses, 9218 bool MatchingInlineAsm, 9219 bool &EmitInITBlock, 9220 MCStreamer &Out) { 9221 // If we can't use an implicit IT block here, just match as normal. 9222 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 9223 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 9224 9225 // Try to match the instruction in an extension of the current IT block (if 9226 // there is one). 9227 if (inImplicitITBlock()) { 9228 extendImplicitITBlock(ITState.Cond); 9229 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9230 Match_Success) { 9231 // The match succeded, but we still have to check that the instruction is 9232 // valid in this implicit IT block. 9233 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9234 if (MCID.isPredicable()) { 9235 ARMCC::CondCodes InstCond = 9236 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9237 .getImm(); 9238 ARMCC::CondCodes ITCond = currentITCond(); 9239 if (InstCond == ITCond) { 9240 EmitInITBlock = true; 9241 return Match_Success; 9242 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 9243 invertCurrentITCondition(); 9244 EmitInITBlock = true; 9245 return Match_Success; 9246 } 9247 } 9248 } 9249 rewindImplicitITPosition(); 9250 } 9251 9252 // Finish the current IT block, and try to match outside any IT block. 9253 flushPendingInstructions(Out); 9254 unsigned PlainMatchResult = 9255 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 9256 if (PlainMatchResult == Match_Success) { 9257 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9258 if (MCID.isPredicable()) { 9259 ARMCC::CondCodes InstCond = 9260 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9261 .getImm(); 9262 // Some forms of the branch instruction have their own condition code 9263 // fields, so can be conditionally executed without an IT block. 9264 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 9265 EmitInITBlock = false; 9266 return Match_Success; 9267 } 9268 if (InstCond == ARMCC::AL) { 9269 EmitInITBlock = false; 9270 return Match_Success; 9271 } 9272 } else { 9273 EmitInITBlock = false; 9274 return Match_Success; 9275 } 9276 } 9277 9278 // Try to match in a new IT block. The matcher doesn't check the actual 9279 // condition, so we create an IT block with a dummy condition, and fix it up 9280 // once we know the actual condition. 9281 startImplicitITBlock(); 9282 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9283 Match_Success) { 9284 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9285 if (MCID.isPredicable()) { 9286 ITState.Cond = 9287 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9288 .getImm(); 9289 EmitInITBlock = true; 9290 return Match_Success; 9291 } 9292 } 9293 discardImplicitITBlock(); 9294 9295 // If none of these succeed, return the error we got when trying to match 9296 // outside any IT blocks. 9297 EmitInITBlock = false; 9298 return PlainMatchResult; 9299 } 9300 9301 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 9302 unsigned VariantID = 0); 9303 9304 static const char *getSubtargetFeatureName(uint64_t Val); 9305 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 9306 OperandVector &Operands, 9307 MCStreamer &Out, uint64_t &ErrorInfo, 9308 bool MatchingInlineAsm) { 9309 MCInst Inst; 9310 unsigned MatchResult; 9311 bool PendConditionalInstruction = false; 9312 9313 SmallVector<NearMissInfo, 4> NearMisses; 9314 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 9315 PendConditionalInstruction, Out); 9316 9317 switch (MatchResult) { 9318 case Match_Success: 9319 LLVM_DEBUG(dbgs() << "Parsed as: "; 9320 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 9321 dbgs() << "\n"); 9322 9323 // Context sensitive operand constraints aren't handled by the matcher, 9324 // so check them here. 9325 if (validateInstruction(Inst, Operands)) { 9326 // Still progress the IT block, otherwise one wrong condition causes 9327 // nasty cascading errors. 9328 forwardITPosition(); 9329 return true; 9330 } 9331 9332 { // processInstruction() updates inITBlock state, we need to save it away 9333 bool wasInITBlock = inITBlock(); 9334 9335 // Some instructions need post-processing to, for example, tweak which 9336 // encoding is selected. Loop on it while changes happen so the 9337 // individual transformations can chain off each other. E.g., 9338 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9339 while (processInstruction(Inst, Operands, Out)) 9340 LLVM_DEBUG(dbgs() << "Changed to: "; 9341 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 9342 dbgs() << "\n"); 9343 9344 // Only after the instruction is fully processed, we can validate it 9345 if (wasInITBlock && hasV8Ops() && isThumb() && 9346 !isV8EligibleForIT(&Inst)) { 9347 Warning(IDLoc, "deprecated instruction in IT block"); 9348 } 9349 } 9350 9351 // Only move forward at the very end so that everything in validate 9352 // and process gets a consistent answer about whether we're in an IT 9353 // block. 9354 forwardITPosition(); 9355 9356 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9357 // doesn't actually encode. 9358 if (Inst.getOpcode() == ARM::ITasm) 9359 return false; 9360 9361 Inst.setLoc(IDLoc); 9362 if (PendConditionalInstruction) { 9363 PendingConditionalInsts.push_back(Inst); 9364 if (isITBlockFull() || isITBlockTerminator(Inst)) 9365 flushPendingInstructions(Out); 9366 } else { 9367 Out.EmitInstruction(Inst, getSTI()); 9368 } 9369 return false; 9370 case Match_NearMisses: 9371 ReportNearMisses(NearMisses, IDLoc, Operands); 9372 return true; 9373 case Match_MnemonicFail: { 9374 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 9375 std::string Suggestion = ARMMnemonicSpellCheck( 9376 ((ARMOperand &)*Operands[0]).getToken(), FBS); 9377 return Error(IDLoc, "invalid instruction" + Suggestion, 9378 ((ARMOperand &)*Operands[0]).getLocRange()); 9379 } 9380 } 9381 9382 llvm_unreachable("Implement any new match types added!"); 9383 } 9384 9385 /// parseDirective parses the arm specific directives 9386 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9387 const MCObjectFileInfo::Environment Format = 9388 getContext().getObjectFileInfo()->getObjectFileType(); 9389 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9390 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9391 9392 StringRef IDVal = DirectiveID.getIdentifier(); 9393 if (IDVal == ".word") 9394 parseLiteralValues(4, DirectiveID.getLoc()); 9395 else if (IDVal == ".short" || IDVal == ".hword") 9396 parseLiteralValues(2, DirectiveID.getLoc()); 9397 else if (IDVal == ".thumb") 9398 parseDirectiveThumb(DirectiveID.getLoc()); 9399 else if (IDVal == ".arm") 9400 parseDirectiveARM(DirectiveID.getLoc()); 9401 else if (IDVal == ".thumb_func") 9402 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9403 else if (IDVal == ".code") 9404 parseDirectiveCode(DirectiveID.getLoc()); 9405 else if (IDVal == ".syntax") 9406 parseDirectiveSyntax(DirectiveID.getLoc()); 9407 else if (IDVal == ".unreq") 9408 parseDirectiveUnreq(DirectiveID.getLoc()); 9409 else if (IDVal == ".fnend") 9410 parseDirectiveFnEnd(DirectiveID.getLoc()); 9411 else if (IDVal == ".cantunwind") 9412 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9413 else if (IDVal == ".personality") 9414 parseDirectivePersonality(DirectiveID.getLoc()); 9415 else if (IDVal == ".handlerdata") 9416 parseDirectiveHandlerData(DirectiveID.getLoc()); 9417 else if (IDVal == ".setfp") 9418 parseDirectiveSetFP(DirectiveID.getLoc()); 9419 else if (IDVal == ".pad") 9420 parseDirectivePad(DirectiveID.getLoc()); 9421 else if (IDVal == ".save") 9422 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9423 else if (IDVal == ".vsave") 9424 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9425 else if (IDVal == ".ltorg" || IDVal == ".pool") 9426 parseDirectiveLtorg(DirectiveID.getLoc()); 9427 else if (IDVal == ".even") 9428 parseDirectiveEven(DirectiveID.getLoc()); 9429 else if (IDVal == ".personalityindex") 9430 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9431 else if (IDVal == ".unwind_raw") 9432 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9433 else if (IDVal == ".movsp") 9434 parseDirectiveMovSP(DirectiveID.getLoc()); 9435 else if (IDVal == ".arch_extension") 9436 parseDirectiveArchExtension(DirectiveID.getLoc()); 9437 else if (IDVal == ".align") 9438 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9439 else if (IDVal == ".thumb_set") 9440 parseDirectiveThumbSet(DirectiveID.getLoc()); 9441 else if (IDVal == ".inst") 9442 parseDirectiveInst(DirectiveID.getLoc()); 9443 else if (IDVal == ".inst.n") 9444 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9445 else if (IDVal == ".inst.w") 9446 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9447 else if (!IsMachO && !IsCOFF) { 9448 if (IDVal == ".arch") 9449 parseDirectiveArch(DirectiveID.getLoc()); 9450 else if (IDVal == ".cpu") 9451 parseDirectiveCPU(DirectiveID.getLoc()); 9452 else if (IDVal == ".eabi_attribute") 9453 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9454 else if (IDVal == ".fpu") 9455 parseDirectiveFPU(DirectiveID.getLoc()); 9456 else if (IDVal == ".fnstart") 9457 parseDirectiveFnStart(DirectiveID.getLoc()); 9458 else if (IDVal == ".object_arch") 9459 parseDirectiveObjectArch(DirectiveID.getLoc()); 9460 else if (IDVal == ".tlsdescseq") 9461 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9462 else 9463 return true; 9464 } else 9465 return true; 9466 return false; 9467 } 9468 9469 /// parseLiteralValues 9470 /// ::= .hword expression [, expression]* 9471 /// ::= .short expression [, expression]* 9472 /// ::= .word expression [, expression]* 9473 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9474 auto parseOne = [&]() -> bool { 9475 const MCExpr *Value; 9476 if (getParser().parseExpression(Value)) 9477 return true; 9478 getParser().getStreamer().EmitValue(Value, Size, L); 9479 return false; 9480 }; 9481 return (parseMany(parseOne)); 9482 } 9483 9484 /// parseDirectiveThumb 9485 /// ::= .thumb 9486 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9487 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9488 check(!hasThumb(), L, "target does not support Thumb mode")) 9489 return true; 9490 9491 if (!isThumb()) 9492 SwitchMode(); 9493 9494 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9495 return false; 9496 } 9497 9498 /// parseDirectiveARM 9499 /// ::= .arm 9500 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9501 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9502 check(!hasARM(), L, "target does not support ARM mode")) 9503 return true; 9504 9505 if (isThumb()) 9506 SwitchMode(); 9507 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9508 return false; 9509 } 9510 9511 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 9512 // We need to flush the current implicit IT block on a label, because it is 9513 // not legal to branch into an IT block. 9514 flushPendingInstructions(getStreamer()); 9515 } 9516 9517 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9518 if (NextSymbolIsThumb) { 9519 getParser().getStreamer().EmitThumbFunc(Symbol); 9520 NextSymbolIsThumb = false; 9521 } 9522 } 9523 9524 /// parseDirectiveThumbFunc 9525 /// ::= .thumbfunc symbol_name 9526 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9527 MCAsmParser &Parser = getParser(); 9528 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9529 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9530 9531 // Darwin asm has (optionally) function name after .thumb_func direction 9532 // ELF doesn't 9533 9534 if (IsMachO) { 9535 if (Parser.getTok().is(AsmToken::Identifier) || 9536 Parser.getTok().is(AsmToken::String)) { 9537 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9538 Parser.getTok().getIdentifier()); 9539 getParser().getStreamer().EmitThumbFunc(Func); 9540 Parser.Lex(); 9541 if (parseToken(AsmToken::EndOfStatement, 9542 "unexpected token in '.thumb_func' directive")) 9543 return true; 9544 return false; 9545 } 9546 } 9547 9548 if (parseToken(AsmToken::EndOfStatement, 9549 "unexpected token in '.thumb_func' directive")) 9550 return true; 9551 9552 NextSymbolIsThumb = true; 9553 return false; 9554 } 9555 9556 /// parseDirectiveSyntax 9557 /// ::= .syntax unified | divided 9558 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9559 MCAsmParser &Parser = getParser(); 9560 const AsmToken &Tok = Parser.getTok(); 9561 if (Tok.isNot(AsmToken::Identifier)) { 9562 Error(L, "unexpected token in .syntax directive"); 9563 return false; 9564 } 9565 9566 StringRef Mode = Tok.getString(); 9567 Parser.Lex(); 9568 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9569 "'.syntax divided' arm assembly not supported") || 9570 check(Mode != "unified" && Mode != "UNIFIED", L, 9571 "unrecognized syntax mode in .syntax directive") || 9572 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9573 return true; 9574 9575 // TODO tell the MC streamer the mode 9576 // getParser().getStreamer().Emit???(); 9577 return false; 9578 } 9579 9580 /// parseDirectiveCode 9581 /// ::= .code 16 | 32 9582 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9583 MCAsmParser &Parser = getParser(); 9584 const AsmToken &Tok = Parser.getTok(); 9585 if (Tok.isNot(AsmToken::Integer)) 9586 return Error(L, "unexpected token in .code directive"); 9587 int64_t Val = Parser.getTok().getIntVal(); 9588 if (Val != 16 && Val != 32) { 9589 Error(L, "invalid operand to .code directive"); 9590 return false; 9591 } 9592 Parser.Lex(); 9593 9594 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9595 return true; 9596 9597 if (Val == 16) { 9598 if (!hasThumb()) 9599 return Error(L, "target does not support Thumb mode"); 9600 9601 if (!isThumb()) 9602 SwitchMode(); 9603 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9604 } else { 9605 if (!hasARM()) 9606 return Error(L, "target does not support ARM mode"); 9607 9608 if (isThumb()) 9609 SwitchMode(); 9610 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9611 } 9612 9613 return false; 9614 } 9615 9616 /// parseDirectiveReq 9617 /// ::= name .req registername 9618 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9619 MCAsmParser &Parser = getParser(); 9620 Parser.Lex(); // Eat the '.req' token. 9621 unsigned Reg; 9622 SMLoc SRegLoc, ERegLoc; 9623 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9624 "register name expected") || 9625 parseToken(AsmToken::EndOfStatement, 9626 "unexpected input in .req directive.")) 9627 return true; 9628 9629 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9630 return Error(SRegLoc, 9631 "redefinition of '" + Name + "' does not match original."); 9632 9633 return false; 9634 } 9635 9636 /// parseDirectiveUneq 9637 /// ::= .unreq registername 9638 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9639 MCAsmParser &Parser = getParser(); 9640 if (Parser.getTok().isNot(AsmToken::Identifier)) 9641 return Error(L, "unexpected input in .unreq directive."); 9642 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9643 Parser.Lex(); // Eat the identifier. 9644 if (parseToken(AsmToken::EndOfStatement, 9645 "unexpected input in '.unreq' directive")) 9646 return true; 9647 return false; 9648 } 9649 9650 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9651 // before, if supported by the new target, or emit mapping symbols for the mode 9652 // switch. 9653 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9654 if (WasThumb != isThumb()) { 9655 if (WasThumb && hasThumb()) { 9656 // Stay in Thumb mode 9657 SwitchMode(); 9658 } else if (!WasThumb && hasARM()) { 9659 // Stay in ARM mode 9660 SwitchMode(); 9661 } else { 9662 // Mode switch forced, because the new arch doesn't support the old mode. 9663 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9664 : MCAF_Code32); 9665 // Warn about the implcit mode switch. GAS does not switch modes here, 9666 // but instead stays in the old mode, reporting an error on any following 9667 // instructions as the mode does not exist on the target. 9668 Warning(Loc, Twine("new target does not support ") + 9669 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9670 (!WasThumb ? "thumb" : "arm") + " mode"); 9671 } 9672 } 9673 } 9674 9675 /// parseDirectiveArch 9676 /// ::= .arch token 9677 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9678 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9679 ARM::ArchKind ID = ARM::parseArch(Arch); 9680 9681 if (ID == ARM::ArchKind::INVALID) 9682 return Error(L, "Unknown arch name"); 9683 9684 bool WasThumb = isThumb(); 9685 Triple T; 9686 MCSubtargetInfo &STI = copySTI(); 9687 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9688 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9689 FixModeAfterArchChange(WasThumb, L); 9690 9691 getTargetStreamer().emitArch(ID); 9692 return false; 9693 } 9694 9695 /// parseDirectiveEabiAttr 9696 /// ::= .eabi_attribute int, int [, "str"] 9697 /// ::= .eabi_attribute Tag_name, int [, "str"] 9698 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9699 MCAsmParser &Parser = getParser(); 9700 int64_t Tag; 9701 SMLoc TagLoc; 9702 TagLoc = Parser.getTok().getLoc(); 9703 if (Parser.getTok().is(AsmToken::Identifier)) { 9704 StringRef Name = Parser.getTok().getIdentifier(); 9705 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9706 if (Tag == -1) { 9707 Error(TagLoc, "attribute name not recognised: " + Name); 9708 return false; 9709 } 9710 Parser.Lex(); 9711 } else { 9712 const MCExpr *AttrExpr; 9713 9714 TagLoc = Parser.getTok().getLoc(); 9715 if (Parser.parseExpression(AttrExpr)) 9716 return true; 9717 9718 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9719 if (check(!CE, TagLoc, "expected numeric constant")) 9720 return true; 9721 9722 Tag = CE->getValue(); 9723 } 9724 9725 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9726 return true; 9727 9728 StringRef StringValue = ""; 9729 bool IsStringValue = false; 9730 9731 int64_t IntegerValue = 0; 9732 bool IsIntegerValue = false; 9733 9734 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9735 IsStringValue = true; 9736 else if (Tag == ARMBuildAttrs::compatibility) { 9737 IsStringValue = true; 9738 IsIntegerValue = true; 9739 } else if (Tag < 32 || Tag % 2 == 0) 9740 IsIntegerValue = true; 9741 else if (Tag % 2 == 1) 9742 IsStringValue = true; 9743 else 9744 llvm_unreachable("invalid tag type"); 9745 9746 if (IsIntegerValue) { 9747 const MCExpr *ValueExpr; 9748 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9749 if (Parser.parseExpression(ValueExpr)) 9750 return true; 9751 9752 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9753 if (!CE) 9754 return Error(ValueExprLoc, "expected numeric constant"); 9755 IntegerValue = CE->getValue(); 9756 } 9757 9758 if (Tag == ARMBuildAttrs::compatibility) { 9759 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9760 return true; 9761 } 9762 9763 if (IsStringValue) { 9764 if (Parser.getTok().isNot(AsmToken::String)) 9765 return Error(Parser.getTok().getLoc(), "bad string constant"); 9766 9767 StringValue = Parser.getTok().getStringContents(); 9768 Parser.Lex(); 9769 } 9770 9771 if (Parser.parseToken(AsmToken::EndOfStatement, 9772 "unexpected token in '.eabi_attribute' directive")) 9773 return true; 9774 9775 if (IsIntegerValue && IsStringValue) { 9776 assert(Tag == ARMBuildAttrs::compatibility); 9777 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9778 } else if (IsIntegerValue) 9779 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9780 else if (IsStringValue) 9781 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9782 return false; 9783 } 9784 9785 /// parseDirectiveCPU 9786 /// ::= .cpu str 9787 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9788 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9789 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9790 9791 // FIXME: This is using table-gen data, but should be moved to 9792 // ARMTargetParser once that is table-gen'd. 9793 if (!getSTI().isCPUStringValid(CPU)) 9794 return Error(L, "Unknown CPU name"); 9795 9796 bool WasThumb = isThumb(); 9797 MCSubtargetInfo &STI = copySTI(); 9798 STI.setDefaultFeatures(CPU, ""); 9799 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9800 FixModeAfterArchChange(WasThumb, L); 9801 9802 return false; 9803 } 9804 9805 /// parseDirectiveFPU 9806 /// ::= .fpu str 9807 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9808 SMLoc FPUNameLoc = getTok().getLoc(); 9809 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9810 9811 unsigned ID = ARM::parseFPU(FPU); 9812 std::vector<StringRef> Features; 9813 if (!ARM::getFPUFeatures(ID, Features)) 9814 return Error(FPUNameLoc, "Unknown FPU name"); 9815 9816 MCSubtargetInfo &STI = copySTI(); 9817 for (auto Feature : Features) 9818 STI.ApplyFeatureFlag(Feature); 9819 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9820 9821 getTargetStreamer().emitFPU(ID); 9822 return false; 9823 } 9824 9825 /// parseDirectiveFnStart 9826 /// ::= .fnstart 9827 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9828 if (parseToken(AsmToken::EndOfStatement, 9829 "unexpected token in '.fnstart' directive")) 9830 return true; 9831 9832 if (UC.hasFnStart()) { 9833 Error(L, ".fnstart starts before the end of previous one"); 9834 UC.emitFnStartLocNotes(); 9835 return true; 9836 } 9837 9838 // Reset the unwind directives parser state 9839 UC.reset(); 9840 9841 getTargetStreamer().emitFnStart(); 9842 9843 UC.recordFnStart(L); 9844 return false; 9845 } 9846 9847 /// parseDirectiveFnEnd 9848 /// ::= .fnend 9849 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9850 if (parseToken(AsmToken::EndOfStatement, 9851 "unexpected token in '.fnend' directive")) 9852 return true; 9853 // Check the ordering of unwind directives 9854 if (!UC.hasFnStart()) 9855 return Error(L, ".fnstart must precede .fnend directive"); 9856 9857 // Reset the unwind directives parser state 9858 getTargetStreamer().emitFnEnd(); 9859 9860 UC.reset(); 9861 return false; 9862 } 9863 9864 /// parseDirectiveCantUnwind 9865 /// ::= .cantunwind 9866 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9867 if (parseToken(AsmToken::EndOfStatement, 9868 "unexpected token in '.cantunwind' directive")) 9869 return true; 9870 9871 UC.recordCantUnwind(L); 9872 // Check the ordering of unwind directives 9873 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9874 return true; 9875 9876 if (UC.hasHandlerData()) { 9877 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9878 UC.emitHandlerDataLocNotes(); 9879 return true; 9880 } 9881 if (UC.hasPersonality()) { 9882 Error(L, ".cantunwind can't be used with .personality directive"); 9883 UC.emitPersonalityLocNotes(); 9884 return true; 9885 } 9886 9887 getTargetStreamer().emitCantUnwind(); 9888 return false; 9889 } 9890 9891 /// parseDirectivePersonality 9892 /// ::= .personality name 9893 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9894 MCAsmParser &Parser = getParser(); 9895 bool HasExistingPersonality = UC.hasPersonality(); 9896 9897 // Parse the name of the personality routine 9898 if (Parser.getTok().isNot(AsmToken::Identifier)) 9899 return Error(L, "unexpected input in .personality directive."); 9900 StringRef Name(Parser.getTok().getIdentifier()); 9901 Parser.Lex(); 9902 9903 if (parseToken(AsmToken::EndOfStatement, 9904 "unexpected token in '.personality' directive")) 9905 return true; 9906 9907 UC.recordPersonality(L); 9908 9909 // Check the ordering of unwind directives 9910 if (!UC.hasFnStart()) 9911 return Error(L, ".fnstart must precede .personality directive"); 9912 if (UC.cantUnwind()) { 9913 Error(L, ".personality can't be used with .cantunwind directive"); 9914 UC.emitCantUnwindLocNotes(); 9915 return true; 9916 } 9917 if (UC.hasHandlerData()) { 9918 Error(L, ".personality must precede .handlerdata directive"); 9919 UC.emitHandlerDataLocNotes(); 9920 return true; 9921 } 9922 if (HasExistingPersonality) { 9923 Error(L, "multiple personality directives"); 9924 UC.emitPersonalityLocNotes(); 9925 return true; 9926 } 9927 9928 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9929 getTargetStreamer().emitPersonality(PR); 9930 return false; 9931 } 9932 9933 /// parseDirectiveHandlerData 9934 /// ::= .handlerdata 9935 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9936 if (parseToken(AsmToken::EndOfStatement, 9937 "unexpected token in '.handlerdata' directive")) 9938 return true; 9939 9940 UC.recordHandlerData(L); 9941 // Check the ordering of unwind directives 9942 if (!UC.hasFnStart()) 9943 return Error(L, ".fnstart must precede .personality directive"); 9944 if (UC.cantUnwind()) { 9945 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9946 UC.emitCantUnwindLocNotes(); 9947 return true; 9948 } 9949 9950 getTargetStreamer().emitHandlerData(); 9951 return false; 9952 } 9953 9954 /// parseDirectiveSetFP 9955 /// ::= .setfp fpreg, spreg [, offset] 9956 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9957 MCAsmParser &Parser = getParser(); 9958 // Check the ordering of unwind directives 9959 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9960 check(UC.hasHandlerData(), L, 9961 ".setfp must precede .handlerdata directive")) 9962 return true; 9963 9964 // Parse fpreg 9965 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9966 int FPReg = tryParseRegister(); 9967 9968 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9969 Parser.parseToken(AsmToken::Comma, "comma expected")) 9970 return true; 9971 9972 // Parse spreg 9973 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9974 int SPReg = tryParseRegister(); 9975 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9976 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9977 "register should be either $sp or the latest fp register")) 9978 return true; 9979 9980 // Update the frame pointer register 9981 UC.saveFPReg(FPReg); 9982 9983 // Parse offset 9984 int64_t Offset = 0; 9985 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9986 if (Parser.getTok().isNot(AsmToken::Hash) && 9987 Parser.getTok().isNot(AsmToken::Dollar)) 9988 return Error(Parser.getTok().getLoc(), "'#' expected"); 9989 Parser.Lex(); // skip hash token. 9990 9991 const MCExpr *OffsetExpr; 9992 SMLoc ExLoc = Parser.getTok().getLoc(); 9993 SMLoc EndLoc; 9994 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9995 return Error(ExLoc, "malformed setfp offset"); 9996 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9997 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9998 return true; 9999 Offset = CE->getValue(); 10000 } 10001 10002 if (Parser.parseToken(AsmToken::EndOfStatement)) 10003 return true; 10004 10005 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 10006 static_cast<unsigned>(SPReg), Offset); 10007 return false; 10008 } 10009 10010 /// parseDirective 10011 /// ::= .pad offset 10012 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 10013 MCAsmParser &Parser = getParser(); 10014 // Check the ordering of unwind directives 10015 if (!UC.hasFnStart()) 10016 return Error(L, ".fnstart must precede .pad directive"); 10017 if (UC.hasHandlerData()) 10018 return Error(L, ".pad must precede .handlerdata directive"); 10019 10020 // Parse the offset 10021 if (Parser.getTok().isNot(AsmToken::Hash) && 10022 Parser.getTok().isNot(AsmToken::Dollar)) 10023 return Error(Parser.getTok().getLoc(), "'#' expected"); 10024 Parser.Lex(); // skip hash token. 10025 10026 const MCExpr *OffsetExpr; 10027 SMLoc ExLoc = Parser.getTok().getLoc(); 10028 SMLoc EndLoc; 10029 if (getParser().parseExpression(OffsetExpr, EndLoc)) 10030 return Error(ExLoc, "malformed pad offset"); 10031 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10032 if (!CE) 10033 return Error(ExLoc, "pad offset must be an immediate"); 10034 10035 if (parseToken(AsmToken::EndOfStatement, 10036 "unexpected token in '.pad' directive")) 10037 return true; 10038 10039 getTargetStreamer().emitPad(CE->getValue()); 10040 return false; 10041 } 10042 10043 /// parseDirectiveRegSave 10044 /// ::= .save { registers } 10045 /// ::= .vsave { registers } 10046 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 10047 // Check the ordering of unwind directives 10048 if (!UC.hasFnStart()) 10049 return Error(L, ".fnstart must precede .save or .vsave directives"); 10050 if (UC.hasHandlerData()) 10051 return Error(L, ".save or .vsave must precede .handlerdata directive"); 10052 10053 // RAII object to make sure parsed operands are deleted. 10054 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 10055 10056 // Parse the register list 10057 if (parseRegisterList(Operands) || 10058 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10059 return true; 10060 ARMOperand &Op = (ARMOperand &)*Operands[0]; 10061 if (!IsVector && !Op.isRegList()) 10062 return Error(L, ".save expects GPR registers"); 10063 if (IsVector && !Op.isDPRRegList()) 10064 return Error(L, ".vsave expects DPR registers"); 10065 10066 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 10067 return false; 10068 } 10069 10070 /// parseDirectiveInst 10071 /// ::= .inst opcode [, ...] 10072 /// ::= .inst.n opcode [, ...] 10073 /// ::= .inst.w opcode [, ...] 10074 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 10075 int Width = 4; 10076 10077 if (isThumb()) { 10078 switch (Suffix) { 10079 case 'n': 10080 Width = 2; 10081 break; 10082 case 'w': 10083 break; 10084 default: 10085 Width = 0; 10086 break; 10087 } 10088 } else { 10089 if (Suffix) 10090 return Error(Loc, "width suffixes are invalid in ARM mode"); 10091 } 10092 10093 auto parseOne = [&]() -> bool { 10094 const MCExpr *Expr; 10095 if (getParser().parseExpression(Expr)) 10096 return true; 10097 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 10098 if (!Value) { 10099 return Error(Loc, "expected constant expression"); 10100 } 10101 10102 char CurSuffix = Suffix; 10103 switch (Width) { 10104 case 2: 10105 if (Value->getValue() > 0xffff) 10106 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 10107 break; 10108 case 4: 10109 if (Value->getValue() > 0xffffffff) 10110 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 10111 " operand is too big"); 10112 break; 10113 case 0: 10114 // Thumb mode, no width indicated. Guess from the opcode, if possible. 10115 if (Value->getValue() < 0xe800) 10116 CurSuffix = 'n'; 10117 else if (Value->getValue() >= 0xe8000000) 10118 CurSuffix = 'w'; 10119 else 10120 return Error(Loc, "cannot determine Thumb instruction size, " 10121 "use inst.n/inst.w instead"); 10122 break; 10123 default: 10124 llvm_unreachable("only supported widths are 2 and 4"); 10125 } 10126 10127 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 10128 return false; 10129 }; 10130 10131 if (parseOptionalToken(AsmToken::EndOfStatement)) 10132 return Error(Loc, "expected expression following directive"); 10133 if (parseMany(parseOne)) 10134 return true; 10135 return false; 10136 } 10137 10138 /// parseDirectiveLtorg 10139 /// ::= .ltorg | .pool 10140 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 10141 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10142 return true; 10143 getTargetStreamer().emitCurrentConstantPool(); 10144 return false; 10145 } 10146 10147 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 10148 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10149 10150 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10151 return true; 10152 10153 if (!Section) { 10154 getStreamer().InitSections(false); 10155 Section = getStreamer().getCurrentSectionOnly(); 10156 } 10157 10158 assert(Section && "must have section to emit alignment"); 10159 if (Section->UseCodeAlign()) 10160 getStreamer().EmitCodeAlignment(2); 10161 else 10162 getStreamer().EmitValueToAlignment(2); 10163 10164 return false; 10165 } 10166 10167 /// parseDirectivePersonalityIndex 10168 /// ::= .personalityindex index 10169 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 10170 MCAsmParser &Parser = getParser(); 10171 bool HasExistingPersonality = UC.hasPersonality(); 10172 10173 const MCExpr *IndexExpression; 10174 SMLoc IndexLoc = Parser.getTok().getLoc(); 10175 if (Parser.parseExpression(IndexExpression) || 10176 parseToken(AsmToken::EndOfStatement, 10177 "unexpected token in '.personalityindex' directive")) { 10178 return true; 10179 } 10180 10181 UC.recordPersonalityIndex(L); 10182 10183 if (!UC.hasFnStart()) { 10184 return Error(L, ".fnstart must precede .personalityindex directive"); 10185 } 10186 if (UC.cantUnwind()) { 10187 Error(L, ".personalityindex cannot be used with .cantunwind"); 10188 UC.emitCantUnwindLocNotes(); 10189 return true; 10190 } 10191 if (UC.hasHandlerData()) { 10192 Error(L, ".personalityindex must precede .handlerdata directive"); 10193 UC.emitHandlerDataLocNotes(); 10194 return true; 10195 } 10196 if (HasExistingPersonality) { 10197 Error(L, "multiple personality directives"); 10198 UC.emitPersonalityLocNotes(); 10199 return true; 10200 } 10201 10202 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 10203 if (!CE) 10204 return Error(IndexLoc, "index must be a constant number"); 10205 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 10206 return Error(IndexLoc, 10207 "personality routine index should be in range [0-3]"); 10208 10209 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 10210 return false; 10211 } 10212 10213 /// parseDirectiveUnwindRaw 10214 /// ::= .unwind_raw offset, opcode [, opcode...] 10215 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 10216 MCAsmParser &Parser = getParser(); 10217 int64_t StackOffset; 10218 const MCExpr *OffsetExpr; 10219 SMLoc OffsetLoc = getLexer().getLoc(); 10220 10221 if (!UC.hasFnStart()) 10222 return Error(L, ".fnstart must precede .unwind_raw directives"); 10223 if (getParser().parseExpression(OffsetExpr)) 10224 return Error(OffsetLoc, "expected expression"); 10225 10226 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10227 if (!CE) 10228 return Error(OffsetLoc, "offset must be a constant"); 10229 10230 StackOffset = CE->getValue(); 10231 10232 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 10233 return true; 10234 10235 SmallVector<uint8_t, 16> Opcodes; 10236 10237 auto parseOne = [&]() -> bool { 10238 const MCExpr *OE; 10239 SMLoc OpcodeLoc = getLexer().getLoc(); 10240 if (check(getLexer().is(AsmToken::EndOfStatement) || 10241 Parser.parseExpression(OE), 10242 OpcodeLoc, "expected opcode expression")) 10243 return true; 10244 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 10245 if (!OC) 10246 return Error(OpcodeLoc, "opcode value must be a constant"); 10247 const int64_t Opcode = OC->getValue(); 10248 if (Opcode & ~0xff) 10249 return Error(OpcodeLoc, "invalid opcode"); 10250 Opcodes.push_back(uint8_t(Opcode)); 10251 return false; 10252 }; 10253 10254 // Must have at least 1 element 10255 SMLoc OpcodeLoc = getLexer().getLoc(); 10256 if (parseOptionalToken(AsmToken::EndOfStatement)) 10257 return Error(OpcodeLoc, "expected opcode expression"); 10258 if (parseMany(parseOne)) 10259 return true; 10260 10261 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 10262 return false; 10263 } 10264 10265 /// parseDirectiveTLSDescSeq 10266 /// ::= .tlsdescseq tls-variable 10267 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 10268 MCAsmParser &Parser = getParser(); 10269 10270 if (getLexer().isNot(AsmToken::Identifier)) 10271 return TokError("expected variable after '.tlsdescseq' directive"); 10272 10273 const MCSymbolRefExpr *SRE = 10274 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10275 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10276 Lex(); 10277 10278 if (parseToken(AsmToken::EndOfStatement, 10279 "unexpected token in '.tlsdescseq' directive")) 10280 return true; 10281 10282 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10283 return false; 10284 } 10285 10286 /// parseDirectiveMovSP 10287 /// ::= .movsp reg [, #offset] 10288 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10289 MCAsmParser &Parser = getParser(); 10290 if (!UC.hasFnStart()) 10291 return Error(L, ".fnstart must precede .movsp directives"); 10292 if (UC.getFPReg() != ARM::SP) 10293 return Error(L, "unexpected .movsp directive"); 10294 10295 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10296 int SPReg = tryParseRegister(); 10297 if (SPReg == -1) 10298 return Error(SPRegLoc, "register expected"); 10299 if (SPReg == ARM::SP || SPReg == ARM::PC) 10300 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10301 10302 int64_t Offset = 0; 10303 if (Parser.parseOptionalToken(AsmToken::Comma)) { 10304 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 10305 return true; 10306 10307 const MCExpr *OffsetExpr; 10308 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10309 10310 if (Parser.parseExpression(OffsetExpr)) 10311 return Error(OffsetLoc, "malformed offset expression"); 10312 10313 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10314 if (!CE) 10315 return Error(OffsetLoc, "offset must be an immediate constant"); 10316 10317 Offset = CE->getValue(); 10318 } 10319 10320 if (parseToken(AsmToken::EndOfStatement, 10321 "unexpected token in '.movsp' directive")) 10322 return true; 10323 10324 getTargetStreamer().emitMovSP(SPReg, Offset); 10325 UC.saveFPReg(SPReg); 10326 10327 return false; 10328 } 10329 10330 /// parseDirectiveObjectArch 10331 /// ::= .object_arch name 10332 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10333 MCAsmParser &Parser = getParser(); 10334 if (getLexer().isNot(AsmToken::Identifier)) 10335 return Error(getLexer().getLoc(), "unexpected token"); 10336 10337 StringRef Arch = Parser.getTok().getString(); 10338 SMLoc ArchLoc = Parser.getTok().getLoc(); 10339 Lex(); 10340 10341 ARM::ArchKind ID = ARM::parseArch(Arch); 10342 10343 if (ID == ARM::ArchKind::INVALID) 10344 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10345 if (parseToken(AsmToken::EndOfStatement)) 10346 return true; 10347 10348 getTargetStreamer().emitObjectArch(ID); 10349 return false; 10350 } 10351 10352 /// parseDirectiveAlign 10353 /// ::= .align 10354 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10355 // NOTE: if this is not the end of the statement, fall back to the target 10356 // agnostic handling for this directive which will correctly handle this. 10357 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10358 // '.align' is target specifically handled to mean 2**2 byte alignment. 10359 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10360 assert(Section && "must have section to emit alignment"); 10361 if (Section->UseCodeAlign()) 10362 getStreamer().EmitCodeAlignment(4, 0); 10363 else 10364 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10365 return false; 10366 } 10367 return true; 10368 } 10369 10370 /// parseDirectiveThumbSet 10371 /// ::= .thumb_set name, value 10372 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10373 MCAsmParser &Parser = getParser(); 10374 10375 StringRef Name; 10376 if (check(Parser.parseIdentifier(Name), 10377 "expected identifier after '.thumb_set'") || 10378 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10379 return true; 10380 10381 MCSymbol *Sym; 10382 const MCExpr *Value; 10383 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10384 Parser, Sym, Value)) 10385 return true; 10386 10387 getTargetStreamer().emitThumbSet(Sym, Value); 10388 return false; 10389 } 10390 10391 /// Force static initialization. 10392 extern "C" void LLVMInitializeARMAsmParser() { 10393 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10394 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10395 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10396 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10397 } 10398 10399 #define GET_REGISTER_MATCHER 10400 #define GET_SUBTARGET_FEATURE_NAME 10401 #define GET_MATCHER_IMPLEMENTATION 10402 #define GET_MNEMONIC_SPELL_CHECKER 10403 #include "ARMGenAsmMatcher.inc" 10404 10405 // Some diagnostics need to vary with subtarget features, so they are handled 10406 // here. For example, the DPR class has either 16 or 32 registers, depending 10407 // on the FPU available. 10408 const char * 10409 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 10410 switch (MatchError) { 10411 // rGPR contains sp starting with ARMv8. 10412 case Match_rGPR: 10413 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 10414 : "operand must be a register in range [r0, r12] or r14"; 10415 // DPR contains 16 registers for some FPUs, and 32 for others. 10416 case Match_DPR: 10417 return hasD16() ? "operand must be a register in range [d0, d15]" 10418 : "operand must be a register in range [d0, d31]"; 10419 case Match_DPR_RegList: 10420 return hasD16() ? "operand must be a list of registers in range [d0, d15]" 10421 : "operand must be a list of registers in range [d0, d31]"; 10422 10423 // For all other diags, use the static string from tablegen. 10424 default: 10425 return getMatchKindDiag(MatchError); 10426 } 10427 } 10428 10429 // Process the list of near-misses, throwing away ones we don't want to report 10430 // to the user, and converting the rest to a source location and string that 10431 // should be reported. 10432 void 10433 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 10434 SmallVectorImpl<NearMissMessage> &NearMissesOut, 10435 SMLoc IDLoc, OperandVector &Operands) { 10436 // TODO: If operand didn't match, sub in a dummy one and run target 10437 // predicate, so that we can avoid reporting near-misses that are invalid? 10438 // TODO: Many operand types dont have SuperClasses set, so we report 10439 // redundant ones. 10440 // TODO: Some operands are superclasses of registers (e.g. 10441 // MCK_RegShiftedImm), we don't have any way to represent that currently. 10442 // TODO: This is not all ARM-specific, can some of it be factored out? 10443 10444 // Record some information about near-misses that we have already seen, so 10445 // that we can avoid reporting redundant ones. For example, if there are 10446 // variants of an instruction that take 8- and 16-bit immediates, we want 10447 // to only report the widest one. 10448 std::multimap<unsigned, unsigned> OperandMissesSeen; 10449 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 10450 bool ReportedTooFewOperands = false; 10451 10452 // Process the near-misses in reverse order, so that we see more general ones 10453 // first, and so can avoid emitting more specific ones. 10454 for (NearMissInfo &I : reverse(NearMissesIn)) { 10455 switch (I.getKind()) { 10456 case NearMissInfo::NearMissOperand: { 10457 SMLoc OperandLoc = 10458 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 10459 const char *OperandDiag = 10460 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 10461 10462 // If we have already emitted a message for a superclass, don't also report 10463 // the sub-class. We consider all operand classes that we don't have a 10464 // specialised diagnostic for to be equal for the propose of this check, 10465 // so that we don't report the generic error multiple times on the same 10466 // operand. 10467 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 10468 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 10469 if (std::any_of(PrevReports.first, PrevReports.second, 10470 [DupCheckMatchClass]( 10471 const std::pair<unsigned, unsigned> Pair) { 10472 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 10473 return Pair.second == DupCheckMatchClass; 10474 else 10475 return isSubclass((MatchClassKind)DupCheckMatchClass, 10476 (MatchClassKind)Pair.second); 10477 })) 10478 break; 10479 OperandMissesSeen.insert( 10480 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 10481 10482 NearMissMessage Message; 10483 Message.Loc = OperandLoc; 10484 if (OperandDiag) { 10485 Message.Message = OperandDiag; 10486 } else if (I.getOperandClass() == InvalidMatchClass) { 10487 Message.Message = "too many operands for instruction"; 10488 } else { 10489 Message.Message = "invalid operand for instruction"; 10490 LLVM_DEBUG( 10491 dbgs() << "Missing diagnostic string for operand class " 10492 << getMatchClassName((MatchClassKind)I.getOperandClass()) 10493 << I.getOperandClass() << ", error " << I.getOperandError() 10494 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 10495 } 10496 NearMissesOut.emplace_back(Message); 10497 break; 10498 } 10499 case NearMissInfo::NearMissFeature: { 10500 const FeatureBitset &MissingFeatures = I.getFeatures(); 10501 // Don't report the same set of features twice. 10502 if (FeatureMissesSeen.count(MissingFeatures)) 10503 break; 10504 FeatureMissesSeen.insert(MissingFeatures); 10505 10506 // Special case: don't report a feature set which includes arm-mode for 10507 // targets that don't have ARM mode. 10508 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 10509 break; 10510 // Don't report any near-misses that both require switching instruction 10511 // set, and adding other subtarget features. 10512 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 10513 MissingFeatures.count() > 1) 10514 break; 10515 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 10516 MissingFeatures.count() > 1) 10517 break; 10518 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 10519 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 10520 Feature_IsThumbBit})).any()) 10521 break; 10522 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 10523 break; 10524 10525 NearMissMessage Message; 10526 Message.Loc = IDLoc; 10527 raw_svector_ostream OS(Message.Message); 10528 10529 OS << "instruction requires:"; 10530 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 10531 if (MissingFeatures.test(i)) 10532 OS << ' ' << getSubtargetFeatureName(i); 10533 10534 NearMissesOut.emplace_back(Message); 10535 10536 break; 10537 } 10538 case NearMissInfo::NearMissPredicate: { 10539 NearMissMessage Message; 10540 Message.Loc = IDLoc; 10541 switch (I.getPredicateError()) { 10542 case Match_RequiresNotITBlock: 10543 Message.Message = "flag setting instruction only valid outside IT block"; 10544 break; 10545 case Match_RequiresITBlock: 10546 Message.Message = "instruction only valid inside IT block"; 10547 break; 10548 case Match_RequiresV6: 10549 Message.Message = "instruction variant requires ARMv6 or later"; 10550 break; 10551 case Match_RequiresThumb2: 10552 Message.Message = "instruction variant requires Thumb2"; 10553 break; 10554 case Match_RequiresV8: 10555 Message.Message = "instruction variant requires ARMv8 or later"; 10556 break; 10557 case Match_RequiresFlagSetting: 10558 Message.Message = "no flag-preserving variant of this instruction available"; 10559 break; 10560 case Match_InvalidOperand: 10561 Message.Message = "invalid operand for instruction"; 10562 break; 10563 default: 10564 llvm_unreachable("Unhandled target predicate error"); 10565 break; 10566 } 10567 NearMissesOut.emplace_back(Message); 10568 break; 10569 } 10570 case NearMissInfo::NearMissTooFewOperands: { 10571 if (!ReportedTooFewOperands) { 10572 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 10573 NearMissesOut.emplace_back(NearMissMessage{ 10574 EndLoc, StringRef("too few operands for instruction")}); 10575 ReportedTooFewOperands = true; 10576 } 10577 break; 10578 } 10579 case NearMissInfo::NoNearMiss: 10580 // This should never leave the matcher. 10581 llvm_unreachable("not a near-miss"); 10582 break; 10583 } 10584 } 10585 } 10586 10587 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 10588 SMLoc IDLoc, OperandVector &Operands) { 10589 SmallVector<NearMissMessage, 4> Messages; 10590 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 10591 10592 if (Messages.size() == 0) { 10593 // No near-misses were found, so the best we can do is "invalid 10594 // instruction". 10595 Error(IDLoc, "invalid instruction"); 10596 } else if (Messages.size() == 1) { 10597 // One near miss was found, report it as the sole error. 10598 Error(Messages[0].Loc, Messages[0].Message); 10599 } else { 10600 // More than one near miss, so report a generic "invalid instruction" 10601 // error, followed by notes for each of the near-misses. 10602 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 10603 for (auto &M : Messages) { 10604 Note(M.Loc, M.Message); 10605 } 10606 } 10607 } 10608 10609 /// parseDirectiveArchExtension 10610 /// ::= .arch_extension [no]feature 10611 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10612 // FIXME: This structure should be moved inside ARMTargetParser 10613 // when we start to table-generate them, and we can use the ARM 10614 // flags below, that were generated by table-gen. 10615 static const struct { 10616 const unsigned Kind; 10617 const FeatureBitset ArchCheck; 10618 const FeatureBitset Features; 10619 } Extensions[] = { 10620 { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} }, 10621 { ARM::AEK_CRYPTO, {Feature_HasV8Bit}, 10622 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10623 { ARM::AEK_FP, {Feature_HasV8Bit}, {ARM::FeatureFPARMv8} }, 10624 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 10625 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 10626 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 10627 { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit}, 10628 {ARM::FeatureMP} }, 10629 { ARM::AEK_SIMD, {Feature_HasV8Bit}, 10630 {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10631 { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} }, 10632 // FIXME: Only available in A-class, isel not predicated 10633 { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} }, 10634 { ARM::AEK_FP16, {Feature_HasV8_2aBit}, 10635 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10636 { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} }, 10637 // FIXME: Unsupported extensions. 10638 { ARM::AEK_OS, {}, {} }, 10639 { ARM::AEK_IWMMXT, {}, {} }, 10640 { ARM::AEK_IWMMXT2, {}, {} }, 10641 { ARM::AEK_MAVERICK, {}, {} }, 10642 { ARM::AEK_XSCALE, {}, {} }, 10643 }; 10644 10645 MCAsmParser &Parser = getParser(); 10646 10647 if (getLexer().isNot(AsmToken::Identifier)) 10648 return Error(getLexer().getLoc(), "expected architecture extension name"); 10649 10650 StringRef Name = Parser.getTok().getString(); 10651 SMLoc ExtLoc = Parser.getTok().getLoc(); 10652 Lex(); 10653 10654 if (parseToken(AsmToken::EndOfStatement, 10655 "unexpected token in '.arch_extension' directive")) 10656 return true; 10657 10658 bool EnableFeature = true; 10659 if (Name.startswith_lower("no")) { 10660 EnableFeature = false; 10661 Name = Name.substr(2); 10662 } 10663 unsigned FeatureKind = ARM::parseArchExt(Name); 10664 if (FeatureKind == ARM::AEK_INVALID) 10665 return Error(ExtLoc, "unknown architectural extension: " + Name); 10666 10667 for (const auto &Extension : Extensions) { 10668 if (Extension.Kind != FeatureKind) 10669 continue; 10670 10671 if (Extension.Features.none()) 10672 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10673 10674 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10675 return Error(ExtLoc, "architectural extension '" + Name + 10676 "' is not " 10677 "allowed for the current base architecture"); 10678 10679 MCSubtargetInfo &STI = copySTI(); 10680 FeatureBitset ToggleFeatures = EnableFeature 10681 ? (~STI.getFeatureBits() & Extension.Features) 10682 : ( STI.getFeatureBits() & Extension.Features); 10683 10684 FeatureBitset Features = 10685 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10686 setAvailableFeatures(Features); 10687 return false; 10688 } 10689 10690 return Error(ExtLoc, "unknown architectural extension: " + Name); 10691 } 10692 10693 // Define this matcher function after the auto-generated include so we 10694 // have the match class enum definitions. 10695 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10696 unsigned Kind) { 10697 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10698 // If the kind is a token for a literal immediate, check if our asm 10699 // operand matches. This is for InstAliases which have a fixed-value 10700 // immediate in the syntax. 10701 switch (Kind) { 10702 default: break; 10703 case MCK__35_0: 10704 if (Op.isImm()) 10705 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10706 if (CE->getValue() == 0) 10707 return Match_Success; 10708 break; 10709 case MCK_ModImm: 10710 if (Op.isImm()) { 10711 const MCExpr *SOExpr = Op.getImm(); 10712 int64_t Value; 10713 if (!SOExpr->evaluateAsAbsolute(Value)) 10714 return Match_Success; 10715 assert((Value >= std::numeric_limits<int32_t>::min() && 10716 Value <= std::numeric_limits<uint32_t>::max()) && 10717 "expression value must be representable in 32 bits"); 10718 } 10719 break; 10720 case MCK_rGPR: 10721 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10722 return Match_Success; 10723 return Match_rGPR; 10724 case MCK_GPRPair: 10725 if (Op.isReg() && 10726 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10727 return Match_Success; 10728 break; 10729 } 10730 return Match_InvalidOperand; 10731 } 10732