1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAssembler.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 24 #include "llvm/MC/MCELFStreamer.h" 25 #include "llvm/MC/MCExpr.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/MC/MCObjectFileInfo.h" 30 #include "llvm/MC/MCParser/MCAsmLexer.h" 31 #include "llvm/MC/MCParser/MCAsmParser.h" 32 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 35 #include "llvm/MC/MCRegisterInfo.h" 36 #include "llvm/MC/MCSection.h" 37 #include "llvm/MC/MCStreamer.h" 38 #include "llvm/MC/MCSubtargetInfo.h" 39 #include "llvm/MC/MCSymbol.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/COFF.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ELF.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SourceMgr.h" 47 #include "llvm/Support/TargetParser.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 51 using namespace llvm; 52 53 namespace { 54 55 class ARMOperand; 56 57 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 58 59 class UnwindContext { 60 MCAsmParser &Parser; 61 62 typedef SmallVector<SMLoc, 4> Locs; 63 64 Locs FnStartLocs; 65 Locs CantUnwindLocs; 66 Locs PersonalityLocs; 67 Locs PersonalityIndexLocs; 68 Locs HandlerDataLocs; 69 int FPReg; 70 71 public: 72 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 73 74 bool hasFnStart() const { return !FnStartLocs.empty(); } 75 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 76 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 77 bool hasPersonality() const { 78 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 79 } 80 81 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 82 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 83 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 84 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 85 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 86 87 void saveFPReg(int Reg) { FPReg = Reg; } 88 int getFPReg() const { return FPReg; } 89 90 void emitFnStartLocNotes() const { 91 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 92 FI != FE; ++FI) 93 Parser.Note(*FI, ".fnstart was specified here"); 94 } 95 void emitCantUnwindLocNotes() const { 96 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 97 UE = CantUnwindLocs.end(); UI != UE; ++UI) 98 Parser.Note(*UI, ".cantunwind was specified here"); 99 } 100 void emitHandlerDataLocNotes() const { 101 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 102 HE = HandlerDataLocs.end(); HI != HE; ++HI) 103 Parser.Note(*HI, ".handlerdata was specified here"); 104 } 105 void emitPersonalityLocNotes() const { 106 for (Locs::const_iterator PI = PersonalityLocs.begin(), 107 PE = PersonalityLocs.end(), 108 PII = PersonalityIndexLocs.begin(), 109 PIE = PersonalityIndexLocs.end(); 110 PI != PE || PII != PIE;) { 111 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 112 Parser.Note(*PI++, ".personality was specified here"); 113 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 114 Parser.Note(*PII++, ".personalityindex was specified here"); 115 else 116 llvm_unreachable(".personality and .personalityindex cannot be " 117 "at the same location"); 118 } 119 } 120 121 void reset() { 122 FnStartLocs = Locs(); 123 CantUnwindLocs = Locs(); 124 PersonalityLocs = Locs(); 125 HandlerDataLocs = Locs(); 126 PersonalityIndexLocs = Locs(); 127 FPReg = ARM::SP; 128 } 129 }; 130 131 class ARMAsmParser : public MCTargetAsmParser { 132 const MCInstrInfo &MII; 133 const MCRegisterInfo *MRI; 134 UnwindContext UC; 135 136 ARMTargetStreamer &getTargetStreamer() { 137 assert(getParser().getStreamer().getTargetStreamer() && 138 "do not have a target streamer"); 139 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 140 return static_cast<ARMTargetStreamer &>(TS); 141 } 142 143 // Map of register aliases registers via the .req directive. 144 StringMap<unsigned> RegisterReqs; 145 146 bool NextSymbolIsThumb; 147 148 struct { 149 ARMCC::CondCodes Cond; // Condition for IT block. 150 unsigned Mask:4; // Condition mask for instructions. 151 // Starting at first 1 (from lsb). 152 // '1' condition as indicated in IT. 153 // '0' inverse of condition (else). 154 // Count of instructions in IT block is 155 // 4 - trailingzeroes(mask) 156 157 bool FirstCond; // Explicit flag for when we're parsing the 158 // First instruction in the IT block. It's 159 // implied in the mask, so needs special 160 // handling. 161 162 unsigned CurPosition; // Current position in parsing of IT 163 // block. In range [0,3]. Initialized 164 // according to count of instructions in block. 165 // ~0U if no active IT block. 166 } ITState; 167 bool inITBlock() { return ITState.CurPosition != ~0U; } 168 bool lastInITBlock() { 169 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 170 } 171 void forwardITPosition() { 172 if (!inITBlock()) return; 173 // Move to the next instruction in the IT block, if there is one. If not, 174 // mark the block as done. 175 unsigned TZ = countTrailingZeros(ITState.Mask); 176 if (++ITState.CurPosition == 5 - TZ) 177 ITState.CurPosition = ~0U; // Done with the IT block after this. 178 } 179 180 void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { 181 return getParser().Note(L, Msg, Ranges); 182 } 183 bool Warning(SMLoc L, const Twine &Msg, 184 ArrayRef<SMRange> Ranges = None) { 185 return getParser().Warning(L, Msg, Ranges); 186 } 187 bool Error(SMLoc L, const Twine &Msg, 188 ArrayRef<SMRange> Ranges = None) { 189 return getParser().Error(L, Msg, Ranges); 190 } 191 192 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 193 unsigned ListNo, bool IsARPop = false); 194 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 195 unsigned ListNo); 196 197 int tryParseRegister(); 198 bool tryParseRegisterWithWriteBack(OperandVector &); 199 int tryParseShiftRegister(OperandVector &); 200 bool parseRegisterList(OperandVector &); 201 bool parseMemory(OperandVector &); 202 bool parseOperand(OperandVector &, StringRef Mnemonic); 203 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 204 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 205 unsigned &ShiftAmount); 206 bool parseLiteralValues(unsigned Size, SMLoc L); 207 bool parseDirectiveThumb(SMLoc L); 208 bool parseDirectiveARM(SMLoc L); 209 bool parseDirectiveThumbFunc(SMLoc L); 210 bool parseDirectiveCode(SMLoc L); 211 bool parseDirectiveSyntax(SMLoc L); 212 bool parseDirectiveReq(StringRef Name, SMLoc L); 213 bool parseDirectiveUnreq(SMLoc L); 214 bool parseDirectiveArch(SMLoc L); 215 bool parseDirectiveEabiAttr(SMLoc L); 216 bool parseDirectiveCPU(SMLoc L); 217 bool parseDirectiveFPU(SMLoc L); 218 bool parseDirectiveFnStart(SMLoc L); 219 bool parseDirectiveFnEnd(SMLoc L); 220 bool parseDirectiveCantUnwind(SMLoc L); 221 bool parseDirectivePersonality(SMLoc L); 222 bool parseDirectiveHandlerData(SMLoc L); 223 bool parseDirectiveSetFP(SMLoc L); 224 bool parseDirectivePad(SMLoc L); 225 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 226 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 227 bool parseDirectiveLtorg(SMLoc L); 228 bool parseDirectiveEven(SMLoc L); 229 bool parseDirectivePersonalityIndex(SMLoc L); 230 bool parseDirectiveUnwindRaw(SMLoc L); 231 bool parseDirectiveTLSDescSeq(SMLoc L); 232 bool parseDirectiveMovSP(SMLoc L); 233 bool parseDirectiveObjectArch(SMLoc L); 234 bool parseDirectiveArchExtension(SMLoc L); 235 bool parseDirectiveAlign(SMLoc L); 236 bool parseDirectiveThumbSet(SMLoc L); 237 238 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 239 bool &CarrySetting, unsigned &ProcessorIMod, 240 StringRef &ITMask); 241 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 242 bool &CanAcceptCarrySet, 243 bool &CanAcceptPredicationCode); 244 245 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 246 OperandVector &Operands); 247 bool isThumb() const { 248 // FIXME: Can tablegen auto-generate this? 249 return getSTI().getFeatureBits()[ARM::ModeThumb]; 250 } 251 bool isThumbOne() const { 252 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 253 } 254 bool isThumbTwo() const { 255 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 256 } 257 bool hasThumb() const { 258 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 259 } 260 bool hasV6Ops() const { 261 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 262 } 263 bool hasV6MOps() const { 264 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 265 } 266 bool hasV7Ops() const { 267 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 268 } 269 bool hasV8Ops() const { 270 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 271 } 272 bool hasV8MBaseline() const { 273 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 274 } 275 bool hasV8MMainline() const { 276 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 277 } 278 bool has8MSecExt() const { 279 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 280 } 281 bool hasARM() const { 282 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 283 } 284 bool hasDSP() const { 285 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 286 } 287 bool hasD16() const { 288 return getSTI().getFeatureBits()[ARM::FeatureD16]; 289 } 290 bool hasV8_1aOps() const { 291 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 292 } 293 294 void SwitchMode() { 295 MCSubtargetInfo &STI = copySTI(); 296 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 297 setAvailableFeatures(FB); 298 } 299 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 300 bool isMClass() const { 301 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 302 } 303 304 /// @name Auto-generated Match Functions 305 /// { 306 307 #define GET_ASSEMBLER_HEADER 308 #include "ARMGenAsmMatcher.inc" 309 310 /// } 311 312 OperandMatchResultTy parseITCondCode(OperandVector &); 313 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 314 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 315 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 316 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 317 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 318 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 319 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 320 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 321 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 322 int High); 323 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 324 return parsePKHImm(O, "lsl", 0, 31); 325 } 326 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 327 return parsePKHImm(O, "asr", 1, 32); 328 } 329 OperandMatchResultTy parseSetEndImm(OperandVector &); 330 OperandMatchResultTy parseShifterImm(OperandVector &); 331 OperandMatchResultTy parseRotImm(OperandVector &); 332 OperandMatchResultTy parseModImm(OperandVector &); 333 OperandMatchResultTy parseBitfield(OperandVector &); 334 OperandMatchResultTy parsePostIdxReg(OperandVector &); 335 OperandMatchResultTy parseAM3Offset(OperandVector &); 336 OperandMatchResultTy parseFPImm(OperandVector &); 337 OperandMatchResultTy parseVectorList(OperandVector &); 338 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 339 SMLoc &EndLoc); 340 341 // Asm Match Converter Methods 342 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 343 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 344 345 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 346 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 347 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 348 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 349 350 public: 351 enum ARMMatchResultTy { 352 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 353 Match_RequiresNotITBlock, 354 Match_RequiresV6, 355 Match_RequiresThumb2, 356 Match_RequiresV8, 357 #define GET_OPERAND_DIAGNOSTIC_TYPES 358 #include "ARMGenAsmMatcher.inc" 359 360 }; 361 362 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 363 const MCInstrInfo &MII, const MCTargetOptions &Options) 364 : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) { 365 MCAsmParserExtension::Initialize(Parser); 366 367 // Cache the MCRegisterInfo. 368 MRI = getContext().getRegisterInfo(); 369 370 // Initialize the set of available features. 371 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 372 373 // Not in an ITBlock to start with. 374 ITState.CurPosition = ~0U; 375 376 NextSymbolIsThumb = false; 377 } 378 379 // Implementation of the MCTargetAsmParser interface: 380 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 381 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 382 SMLoc NameLoc, OperandVector &Operands) override; 383 bool ParseDirective(AsmToken DirectiveID) override; 384 385 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 386 unsigned Kind) override; 387 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 388 389 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 390 OperandVector &Operands, MCStreamer &Out, 391 uint64_t &ErrorInfo, 392 bool MatchingInlineAsm) override; 393 void onLabelParsed(MCSymbol *Symbol) override; 394 }; 395 } // end anonymous namespace 396 397 namespace { 398 399 /// ARMOperand - Instances of this class represent a parsed ARM machine 400 /// operand. 401 class ARMOperand : public MCParsedAsmOperand { 402 enum KindTy { 403 k_CondCode, 404 k_CCOut, 405 k_ITCondMask, 406 k_CoprocNum, 407 k_CoprocReg, 408 k_CoprocOption, 409 k_Immediate, 410 k_MemBarrierOpt, 411 k_InstSyncBarrierOpt, 412 k_Memory, 413 k_PostIndexRegister, 414 k_MSRMask, 415 k_BankedReg, 416 k_ProcIFlags, 417 k_VectorIndex, 418 k_Register, 419 k_RegisterList, 420 k_DPRRegisterList, 421 k_SPRRegisterList, 422 k_VectorList, 423 k_VectorListAllLanes, 424 k_VectorListIndexed, 425 k_ShiftedRegister, 426 k_ShiftedImmediate, 427 k_ShifterImmediate, 428 k_RotateImmediate, 429 k_ModifiedImmediate, 430 k_BitfieldDescriptor, 431 k_Token 432 } Kind; 433 434 SMLoc StartLoc, EndLoc, AlignmentLoc; 435 SmallVector<unsigned, 8> Registers; 436 437 struct CCOp { 438 ARMCC::CondCodes Val; 439 }; 440 441 struct CopOp { 442 unsigned Val; 443 }; 444 445 struct CoprocOptionOp { 446 unsigned Val; 447 }; 448 449 struct ITMaskOp { 450 unsigned Mask:4; 451 }; 452 453 struct MBOptOp { 454 ARM_MB::MemBOpt Val; 455 }; 456 457 struct ISBOptOp { 458 ARM_ISB::InstSyncBOpt Val; 459 }; 460 461 struct IFlagsOp { 462 ARM_PROC::IFlags Val; 463 }; 464 465 struct MMaskOp { 466 unsigned Val; 467 }; 468 469 struct BankedRegOp { 470 unsigned Val; 471 }; 472 473 struct TokOp { 474 const char *Data; 475 unsigned Length; 476 }; 477 478 struct RegOp { 479 unsigned RegNum; 480 }; 481 482 // A vector register list is a sequential list of 1 to 4 registers. 483 struct VectorListOp { 484 unsigned RegNum; 485 unsigned Count; 486 unsigned LaneIndex; 487 bool isDoubleSpaced; 488 }; 489 490 struct VectorIndexOp { 491 unsigned Val; 492 }; 493 494 struct ImmOp { 495 const MCExpr *Val; 496 }; 497 498 /// Combined record for all forms of ARM address expressions. 499 struct MemoryOp { 500 unsigned BaseRegNum; 501 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 502 // was specified. 503 const MCConstantExpr *OffsetImm; // Offset immediate value 504 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 505 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 506 unsigned ShiftImm; // shift for OffsetReg. 507 unsigned Alignment; // 0 = no alignment specified 508 // n = alignment in bytes (2, 4, 8, 16, or 32) 509 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 510 }; 511 512 struct PostIdxRegOp { 513 unsigned RegNum; 514 bool isAdd; 515 ARM_AM::ShiftOpc ShiftTy; 516 unsigned ShiftImm; 517 }; 518 519 struct ShifterImmOp { 520 bool isASR; 521 unsigned Imm; 522 }; 523 524 struct RegShiftedRegOp { 525 ARM_AM::ShiftOpc ShiftTy; 526 unsigned SrcReg; 527 unsigned ShiftReg; 528 unsigned ShiftImm; 529 }; 530 531 struct RegShiftedImmOp { 532 ARM_AM::ShiftOpc ShiftTy; 533 unsigned SrcReg; 534 unsigned ShiftImm; 535 }; 536 537 struct RotImmOp { 538 unsigned Imm; 539 }; 540 541 struct ModImmOp { 542 unsigned Bits; 543 unsigned Rot; 544 }; 545 546 struct BitfieldOp { 547 unsigned LSB; 548 unsigned Width; 549 }; 550 551 union { 552 struct CCOp CC; 553 struct CopOp Cop; 554 struct CoprocOptionOp CoprocOption; 555 struct MBOptOp MBOpt; 556 struct ISBOptOp ISBOpt; 557 struct ITMaskOp ITMask; 558 struct IFlagsOp IFlags; 559 struct MMaskOp MMask; 560 struct BankedRegOp BankedReg; 561 struct TokOp Tok; 562 struct RegOp Reg; 563 struct VectorListOp VectorList; 564 struct VectorIndexOp VectorIndex; 565 struct ImmOp Imm; 566 struct MemoryOp Memory; 567 struct PostIdxRegOp PostIdxReg; 568 struct ShifterImmOp ShifterImm; 569 struct RegShiftedRegOp RegShiftedReg; 570 struct RegShiftedImmOp RegShiftedImm; 571 struct RotImmOp RotImm; 572 struct ModImmOp ModImm; 573 struct BitfieldOp Bitfield; 574 }; 575 576 public: 577 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 578 579 /// getStartLoc - Get the location of the first token of this operand. 580 SMLoc getStartLoc() const override { return StartLoc; } 581 /// getEndLoc - Get the location of the last token of this operand. 582 SMLoc getEndLoc() const override { return EndLoc; } 583 /// getLocRange - Get the range between the first and last token of this 584 /// operand. 585 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 586 587 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 588 SMLoc getAlignmentLoc() const { 589 assert(Kind == k_Memory && "Invalid access!"); 590 return AlignmentLoc; 591 } 592 593 ARMCC::CondCodes getCondCode() const { 594 assert(Kind == k_CondCode && "Invalid access!"); 595 return CC.Val; 596 } 597 598 unsigned getCoproc() const { 599 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 600 return Cop.Val; 601 } 602 603 StringRef getToken() const { 604 assert(Kind == k_Token && "Invalid access!"); 605 return StringRef(Tok.Data, Tok.Length); 606 } 607 608 unsigned getReg() const override { 609 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 610 return Reg.RegNum; 611 } 612 613 const SmallVectorImpl<unsigned> &getRegList() const { 614 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 615 Kind == k_SPRRegisterList) && "Invalid access!"); 616 return Registers; 617 } 618 619 const MCExpr *getImm() const { 620 assert(isImm() && "Invalid access!"); 621 return Imm.Val; 622 } 623 624 unsigned getVectorIndex() const { 625 assert(Kind == k_VectorIndex && "Invalid access!"); 626 return VectorIndex.Val; 627 } 628 629 ARM_MB::MemBOpt getMemBarrierOpt() const { 630 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 631 return MBOpt.Val; 632 } 633 634 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 635 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 636 return ISBOpt.Val; 637 } 638 639 ARM_PROC::IFlags getProcIFlags() const { 640 assert(Kind == k_ProcIFlags && "Invalid access!"); 641 return IFlags.Val; 642 } 643 644 unsigned getMSRMask() const { 645 assert(Kind == k_MSRMask && "Invalid access!"); 646 return MMask.Val; 647 } 648 649 unsigned getBankedReg() const { 650 assert(Kind == k_BankedReg && "Invalid access!"); 651 return BankedReg.Val; 652 } 653 654 bool isCoprocNum() const { return Kind == k_CoprocNum; } 655 bool isCoprocReg() const { return Kind == k_CoprocReg; } 656 bool isCoprocOption() const { return Kind == k_CoprocOption; } 657 bool isCondCode() const { return Kind == k_CondCode; } 658 bool isCCOut() const { return Kind == k_CCOut; } 659 bool isITMask() const { return Kind == k_ITCondMask; } 660 bool isITCondCode() const { return Kind == k_CondCode; } 661 bool isImm() const override { return Kind == k_Immediate; } 662 // checks whether this operand is an unsigned offset which fits is a field 663 // of specified width and scaled by a specific number of bits 664 template<unsigned width, unsigned scale> 665 bool isUnsignedOffset() const { 666 if (!isImm()) return false; 667 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 668 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 669 int64_t Val = CE->getValue(); 670 int64_t Align = 1LL << scale; 671 int64_t Max = Align * ((1LL << width) - 1); 672 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 673 } 674 return false; 675 } 676 // checks whether this operand is an signed offset which fits is a field 677 // of specified width and scaled by a specific number of bits 678 template<unsigned width, unsigned scale> 679 bool isSignedOffset() const { 680 if (!isImm()) return false; 681 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 682 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 683 int64_t Val = CE->getValue(); 684 int64_t Align = 1LL << scale; 685 int64_t Max = Align * ((1LL << (width-1)) - 1); 686 int64_t Min = -Align * (1LL << (width-1)); 687 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 688 } 689 return false; 690 } 691 692 // checks whether this operand is a memory operand computed as an offset 693 // applied to PC. the offset may have 8 bits of magnitude and is represented 694 // with two bits of shift. textually it may be either [pc, #imm], #imm or 695 // relocable expression... 696 bool isThumbMemPC() const { 697 int64_t Val = 0; 698 if (isImm()) { 699 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 700 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 701 if (!CE) return false; 702 Val = CE->getValue(); 703 } 704 else if (isMem()) { 705 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 706 if(Memory.BaseRegNum != ARM::PC) return false; 707 Val = Memory.OffsetImm->getValue(); 708 } 709 else return false; 710 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 711 } 712 bool isFPImm() const { 713 if (!isImm()) return false; 714 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 715 if (!CE) return false; 716 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 717 return Val != -1; 718 } 719 bool isFBits16() const { 720 if (!isImm()) return false; 721 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 722 if (!CE) return false; 723 int64_t Value = CE->getValue(); 724 return Value >= 0 && Value <= 16; 725 } 726 bool isFBits32() const { 727 if (!isImm()) return false; 728 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 729 if (!CE) return false; 730 int64_t Value = CE->getValue(); 731 return Value >= 1 && Value <= 32; 732 } 733 bool isImm8s4() const { 734 if (!isImm()) return false; 735 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 736 if (!CE) return false; 737 int64_t Value = CE->getValue(); 738 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 739 } 740 bool isImm0_1020s4() const { 741 if (!isImm()) return false; 742 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 743 if (!CE) return false; 744 int64_t Value = CE->getValue(); 745 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 746 } 747 bool isImm0_508s4() const { 748 if (!isImm()) return false; 749 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 750 if (!CE) return false; 751 int64_t Value = CE->getValue(); 752 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 753 } 754 bool isImm0_508s4Neg() const { 755 if (!isImm()) return false; 756 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 757 if (!CE) return false; 758 int64_t Value = -CE->getValue(); 759 // explicitly exclude zero. we want that to use the normal 0_508 version. 760 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 761 } 762 bool isImm0_239() const { 763 if (!isImm()) return false; 764 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 765 if (!CE) return false; 766 int64_t Value = CE->getValue(); 767 return Value >= 0 && Value < 240; 768 } 769 bool isImm0_255() const { 770 if (!isImm()) return false; 771 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 772 if (!CE) return false; 773 int64_t Value = CE->getValue(); 774 return Value >= 0 && Value < 256; 775 } 776 bool isImm0_4095() const { 777 if (!isImm()) return false; 778 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 779 if (!CE) return false; 780 int64_t Value = CE->getValue(); 781 return Value >= 0 && Value < 4096; 782 } 783 bool isImm0_4095Neg() const { 784 if (!isImm()) return false; 785 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 786 if (!CE) return false; 787 int64_t Value = -CE->getValue(); 788 return Value > 0 && Value < 4096; 789 } 790 bool isImm0_1() const { 791 if (!isImm()) return false; 792 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 793 if (!CE) return false; 794 int64_t Value = CE->getValue(); 795 return Value >= 0 && Value < 2; 796 } 797 bool isImm0_3() const { 798 if (!isImm()) return false; 799 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 800 if (!CE) return false; 801 int64_t Value = CE->getValue(); 802 return Value >= 0 && Value < 4; 803 } 804 bool isImm0_7() const { 805 if (!isImm()) return false; 806 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 807 if (!CE) return false; 808 int64_t Value = CE->getValue(); 809 return Value >= 0 && Value < 8; 810 } 811 bool isImm0_15() const { 812 if (!isImm()) return false; 813 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 814 if (!CE) return false; 815 int64_t Value = CE->getValue(); 816 return Value >= 0 && Value < 16; 817 } 818 bool isImm0_31() const { 819 if (!isImm()) return false; 820 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 821 if (!CE) return false; 822 int64_t Value = CE->getValue(); 823 return Value >= 0 && Value < 32; 824 } 825 bool isImm0_63() const { 826 if (!isImm()) return false; 827 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 828 if (!CE) return false; 829 int64_t Value = CE->getValue(); 830 return Value >= 0 && Value < 64; 831 } 832 bool isImm8() const { 833 if (!isImm()) return false; 834 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 835 if (!CE) return false; 836 int64_t Value = CE->getValue(); 837 return Value == 8; 838 } 839 bool isImm16() const { 840 if (!isImm()) return false; 841 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 842 if (!CE) return false; 843 int64_t Value = CE->getValue(); 844 return Value == 16; 845 } 846 bool isImm32() const { 847 if (!isImm()) return false; 848 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 849 if (!CE) return false; 850 int64_t Value = CE->getValue(); 851 return Value == 32; 852 } 853 bool isShrImm8() const { 854 if (!isImm()) return false; 855 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 856 if (!CE) return false; 857 int64_t Value = CE->getValue(); 858 return Value > 0 && Value <= 8; 859 } 860 bool isShrImm16() const { 861 if (!isImm()) return false; 862 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 863 if (!CE) return false; 864 int64_t Value = CE->getValue(); 865 return Value > 0 && Value <= 16; 866 } 867 bool isShrImm32() const { 868 if (!isImm()) return false; 869 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 870 if (!CE) return false; 871 int64_t Value = CE->getValue(); 872 return Value > 0 && Value <= 32; 873 } 874 bool isShrImm64() const { 875 if (!isImm()) return false; 876 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 877 if (!CE) return false; 878 int64_t Value = CE->getValue(); 879 return Value > 0 && Value <= 64; 880 } 881 bool isImm1_7() const { 882 if (!isImm()) return false; 883 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 884 if (!CE) return false; 885 int64_t Value = CE->getValue(); 886 return Value > 0 && Value < 8; 887 } 888 bool isImm1_15() const { 889 if (!isImm()) return false; 890 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 891 if (!CE) return false; 892 int64_t Value = CE->getValue(); 893 return Value > 0 && Value < 16; 894 } 895 bool isImm1_31() const { 896 if (!isImm()) return false; 897 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 898 if (!CE) return false; 899 int64_t Value = CE->getValue(); 900 return Value > 0 && Value < 32; 901 } 902 bool isImm1_16() const { 903 if (!isImm()) return false; 904 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 905 if (!CE) return false; 906 int64_t Value = CE->getValue(); 907 return Value > 0 && Value < 17; 908 } 909 bool isImm1_32() const { 910 if (!isImm()) return false; 911 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 912 if (!CE) return false; 913 int64_t Value = CE->getValue(); 914 return Value > 0 && Value < 33; 915 } 916 bool isImm0_32() const { 917 if (!isImm()) return false; 918 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 919 if (!CE) return false; 920 int64_t Value = CE->getValue(); 921 return Value >= 0 && Value < 33; 922 } 923 bool isImm0_65535() const { 924 if (!isImm()) return false; 925 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 926 if (!CE) return false; 927 int64_t Value = CE->getValue(); 928 return Value >= 0 && Value < 65536; 929 } 930 bool isImm256_65535Expr() const { 931 if (!isImm()) return false; 932 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 933 // If it's not a constant expression, it'll generate a fixup and be 934 // handled later. 935 if (!CE) return true; 936 int64_t Value = CE->getValue(); 937 return Value >= 256 && Value < 65536; 938 } 939 bool isImm0_65535Expr() const { 940 if (!isImm()) return false; 941 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 942 // If it's not a constant expression, it'll generate a fixup and be 943 // handled later. 944 if (!CE) return true; 945 int64_t Value = CE->getValue(); 946 return Value >= 0 && Value < 65536; 947 } 948 bool isImm24bit() const { 949 if (!isImm()) return false; 950 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 951 if (!CE) return false; 952 int64_t Value = CE->getValue(); 953 return Value >= 0 && Value <= 0xffffff; 954 } 955 bool isImmThumbSR() const { 956 if (!isImm()) return false; 957 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 958 if (!CE) return false; 959 int64_t Value = CE->getValue(); 960 return Value > 0 && Value < 33; 961 } 962 bool isPKHLSLImm() const { 963 if (!isImm()) return false; 964 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 965 if (!CE) return false; 966 int64_t Value = CE->getValue(); 967 return Value >= 0 && Value < 32; 968 } 969 bool isPKHASRImm() const { 970 if (!isImm()) return false; 971 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 972 if (!CE) return false; 973 int64_t Value = CE->getValue(); 974 return Value > 0 && Value <= 32; 975 } 976 bool isAdrLabel() const { 977 // If we have an immediate that's not a constant, treat it as a label 978 // reference needing a fixup. 979 if (isImm() && !isa<MCConstantExpr>(getImm())) 980 return true; 981 982 // If it is a constant, it must fit into a modified immediate encoding. 983 if (!isImm()) return false; 984 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 985 if (!CE) return false; 986 int64_t Value = CE->getValue(); 987 return (ARM_AM::getSOImmVal(Value) != -1 || 988 ARM_AM::getSOImmVal(-Value) != -1); 989 } 990 bool isT2SOImm() const { 991 if (!isImm()) return false; 992 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 993 if (!CE) return false; 994 int64_t Value = CE->getValue(); 995 return ARM_AM::getT2SOImmVal(Value) != -1; 996 } 997 bool isT2SOImmNot() const { 998 if (!isImm()) return false; 999 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1000 if (!CE) return false; 1001 int64_t Value = CE->getValue(); 1002 return ARM_AM::getT2SOImmVal(Value) == -1 && 1003 ARM_AM::getT2SOImmVal(~Value) != -1; 1004 } 1005 bool isT2SOImmNeg() const { 1006 if (!isImm()) return false; 1007 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1008 if (!CE) return false; 1009 int64_t Value = CE->getValue(); 1010 // Only use this when not representable as a plain so_imm. 1011 return ARM_AM::getT2SOImmVal(Value) == -1 && 1012 ARM_AM::getT2SOImmVal(-Value) != -1; 1013 } 1014 bool isSetEndImm() const { 1015 if (!isImm()) return false; 1016 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1017 if (!CE) return false; 1018 int64_t Value = CE->getValue(); 1019 return Value == 1 || Value == 0; 1020 } 1021 bool isReg() const override { return Kind == k_Register; } 1022 bool isRegList() const { return Kind == k_RegisterList; } 1023 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1024 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1025 bool isToken() const override { return Kind == k_Token; } 1026 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1027 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1028 bool isMem() const override { return Kind == k_Memory; } 1029 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1030 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1031 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1032 bool isRotImm() const { return Kind == k_RotateImmediate; } 1033 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1034 bool isModImmNot() const { 1035 if (!isImm()) return false; 1036 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1037 if (!CE) return false; 1038 int64_t Value = CE->getValue(); 1039 return ARM_AM::getSOImmVal(~Value) != -1; 1040 } 1041 bool isModImmNeg() const { 1042 if (!isImm()) return false; 1043 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1044 if (!CE) return false; 1045 int64_t Value = CE->getValue(); 1046 return ARM_AM::getSOImmVal(Value) == -1 && 1047 ARM_AM::getSOImmVal(-Value) != -1; 1048 } 1049 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1050 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1051 bool isPostIdxReg() const { 1052 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1053 } 1054 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1055 if (!isMem()) 1056 return false; 1057 // No offset of any kind. 1058 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1059 (alignOK || Memory.Alignment == Alignment); 1060 } 1061 bool isMemPCRelImm12() const { 1062 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1063 return false; 1064 // Base register must be PC. 1065 if (Memory.BaseRegNum != ARM::PC) 1066 return false; 1067 // Immediate offset in range [-4095, 4095]. 1068 if (!Memory.OffsetImm) return true; 1069 int64_t Val = Memory.OffsetImm->getValue(); 1070 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1071 } 1072 bool isAlignedMemory() const { 1073 return isMemNoOffset(true); 1074 } 1075 bool isAlignedMemoryNone() const { 1076 return isMemNoOffset(false, 0); 1077 } 1078 bool isDupAlignedMemoryNone() const { 1079 return isMemNoOffset(false, 0); 1080 } 1081 bool isAlignedMemory16() const { 1082 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1083 return true; 1084 return isMemNoOffset(false, 0); 1085 } 1086 bool isDupAlignedMemory16() const { 1087 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1088 return true; 1089 return isMemNoOffset(false, 0); 1090 } 1091 bool isAlignedMemory32() const { 1092 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1093 return true; 1094 return isMemNoOffset(false, 0); 1095 } 1096 bool isDupAlignedMemory32() const { 1097 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1098 return true; 1099 return isMemNoOffset(false, 0); 1100 } 1101 bool isAlignedMemory64() const { 1102 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1103 return true; 1104 return isMemNoOffset(false, 0); 1105 } 1106 bool isDupAlignedMemory64() const { 1107 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1108 return true; 1109 return isMemNoOffset(false, 0); 1110 } 1111 bool isAlignedMemory64or128() const { 1112 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1113 return true; 1114 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1115 return true; 1116 return isMemNoOffset(false, 0); 1117 } 1118 bool isDupAlignedMemory64or128() const { 1119 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1120 return true; 1121 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1122 return true; 1123 return isMemNoOffset(false, 0); 1124 } 1125 bool isAlignedMemory64or128or256() const { 1126 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1127 return true; 1128 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1129 return true; 1130 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1131 return true; 1132 return isMemNoOffset(false, 0); 1133 } 1134 bool isAddrMode2() const { 1135 if (!isMem() || Memory.Alignment != 0) return false; 1136 // Check for register offset. 1137 if (Memory.OffsetRegNum) return true; 1138 // Immediate offset in range [-4095, 4095]. 1139 if (!Memory.OffsetImm) return true; 1140 int64_t Val = Memory.OffsetImm->getValue(); 1141 return Val > -4096 && Val < 4096; 1142 } 1143 bool isAM2OffsetImm() const { 1144 if (!isImm()) return false; 1145 // Immediate offset in range [-4095, 4095]. 1146 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1147 if (!CE) return false; 1148 int64_t Val = CE->getValue(); 1149 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1150 } 1151 bool isAddrMode3() const { 1152 // If we have an immediate that's not a constant, treat it as a label 1153 // reference needing a fixup. If it is a constant, it's something else 1154 // and we reject it. 1155 if (isImm() && !isa<MCConstantExpr>(getImm())) 1156 return true; 1157 if (!isMem() || Memory.Alignment != 0) return false; 1158 // No shifts are legal for AM3. 1159 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1160 // Check for register offset. 1161 if (Memory.OffsetRegNum) return true; 1162 // Immediate offset in range [-255, 255]. 1163 if (!Memory.OffsetImm) return true; 1164 int64_t Val = Memory.OffsetImm->getValue(); 1165 // The #-0 offset is encoded as INT32_MIN, and we have to check 1166 // for this too. 1167 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1168 } 1169 bool isAM3Offset() const { 1170 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1171 return false; 1172 if (Kind == k_PostIndexRegister) 1173 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1174 // Immediate offset in range [-255, 255]. 1175 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1176 if (!CE) return false; 1177 int64_t Val = CE->getValue(); 1178 // Special case, #-0 is INT32_MIN. 1179 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1180 } 1181 bool isAddrMode5() const { 1182 // If we have an immediate that's not a constant, treat it as a label 1183 // reference needing a fixup. If it is a constant, it's something else 1184 // and we reject it. 1185 if (isImm() && !isa<MCConstantExpr>(getImm())) 1186 return true; 1187 if (!isMem() || Memory.Alignment != 0) return false; 1188 // Check for register offset. 1189 if (Memory.OffsetRegNum) return false; 1190 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1191 if (!Memory.OffsetImm) return true; 1192 int64_t Val = Memory.OffsetImm->getValue(); 1193 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1194 Val == INT32_MIN; 1195 } 1196 bool isAddrMode5FP16() const { 1197 // If we have an immediate that's not a constant, treat it as a label 1198 // reference needing a fixup. If it is a constant, it's something else 1199 // and we reject it. 1200 if (isImm() && !isa<MCConstantExpr>(getImm())) 1201 return true; 1202 if (!isMem() || Memory.Alignment != 0) return false; 1203 // Check for register offset. 1204 if (Memory.OffsetRegNum) return false; 1205 // Immediate offset in range [-510, 510] and a multiple of 2. 1206 if (!Memory.OffsetImm) return true; 1207 int64_t Val = Memory.OffsetImm->getValue(); 1208 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || Val == INT32_MIN; 1209 } 1210 bool isMemTBB() const { 1211 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1212 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1213 return false; 1214 return true; 1215 } 1216 bool isMemTBH() const { 1217 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1218 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1219 Memory.Alignment != 0 ) 1220 return false; 1221 return true; 1222 } 1223 bool isMemRegOffset() const { 1224 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1225 return false; 1226 return true; 1227 } 1228 bool isT2MemRegOffset() const { 1229 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1230 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1231 return false; 1232 // Only lsl #{0, 1, 2, 3} allowed. 1233 if (Memory.ShiftType == ARM_AM::no_shift) 1234 return true; 1235 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1236 return false; 1237 return true; 1238 } 1239 bool isMemThumbRR() const { 1240 // Thumb reg+reg addressing is simple. Just two registers, a base and 1241 // an offset. No shifts, negations or any other complicating factors. 1242 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1243 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1244 return false; 1245 return isARMLowRegister(Memory.BaseRegNum) && 1246 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1247 } 1248 bool isMemThumbRIs4() const { 1249 if (!isMem() || Memory.OffsetRegNum != 0 || 1250 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1251 return false; 1252 // Immediate offset, multiple of 4 in range [0, 124]. 1253 if (!Memory.OffsetImm) return true; 1254 int64_t Val = Memory.OffsetImm->getValue(); 1255 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1256 } 1257 bool isMemThumbRIs2() const { 1258 if (!isMem() || Memory.OffsetRegNum != 0 || 1259 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1260 return false; 1261 // Immediate offset, multiple of 4 in range [0, 62]. 1262 if (!Memory.OffsetImm) return true; 1263 int64_t Val = Memory.OffsetImm->getValue(); 1264 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1265 } 1266 bool isMemThumbRIs1() const { 1267 if (!isMem() || Memory.OffsetRegNum != 0 || 1268 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1269 return false; 1270 // Immediate offset in range [0, 31]. 1271 if (!Memory.OffsetImm) return true; 1272 int64_t Val = Memory.OffsetImm->getValue(); 1273 return Val >= 0 && Val <= 31; 1274 } 1275 bool isMemThumbSPI() const { 1276 if (!isMem() || Memory.OffsetRegNum != 0 || 1277 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1278 return false; 1279 // Immediate offset, multiple of 4 in range [0, 1020]. 1280 if (!Memory.OffsetImm) return true; 1281 int64_t Val = Memory.OffsetImm->getValue(); 1282 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1283 } 1284 bool isMemImm8s4Offset() const { 1285 // If we have an immediate that's not a constant, treat it as a label 1286 // reference needing a fixup. If it is a constant, it's something else 1287 // and we reject it. 1288 if (isImm() && !isa<MCConstantExpr>(getImm())) 1289 return true; 1290 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1291 return false; 1292 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1293 if (!Memory.OffsetImm) return true; 1294 int64_t Val = Memory.OffsetImm->getValue(); 1295 // Special case, #-0 is INT32_MIN. 1296 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1297 } 1298 bool isMemImm0_1020s4Offset() const { 1299 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1300 return false; 1301 // Immediate offset a multiple of 4 in range [0, 1020]. 1302 if (!Memory.OffsetImm) return true; 1303 int64_t Val = Memory.OffsetImm->getValue(); 1304 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1305 } 1306 bool isMemImm8Offset() const { 1307 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1308 return false; 1309 // Base reg of PC isn't allowed for these encodings. 1310 if (Memory.BaseRegNum == ARM::PC) return false; 1311 // Immediate offset in range [-255, 255]. 1312 if (!Memory.OffsetImm) return true; 1313 int64_t Val = Memory.OffsetImm->getValue(); 1314 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1315 } 1316 bool isMemPosImm8Offset() const { 1317 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1318 return false; 1319 // Immediate offset in range [0, 255]. 1320 if (!Memory.OffsetImm) return true; 1321 int64_t Val = Memory.OffsetImm->getValue(); 1322 return Val >= 0 && Val < 256; 1323 } 1324 bool isMemNegImm8Offset() const { 1325 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1326 return false; 1327 // Base reg of PC isn't allowed for these encodings. 1328 if (Memory.BaseRegNum == ARM::PC) return false; 1329 // Immediate offset in range [-255, -1]. 1330 if (!Memory.OffsetImm) return false; 1331 int64_t Val = Memory.OffsetImm->getValue(); 1332 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1333 } 1334 bool isMemUImm12Offset() const { 1335 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1336 return false; 1337 // Immediate offset in range [0, 4095]. 1338 if (!Memory.OffsetImm) return true; 1339 int64_t Val = Memory.OffsetImm->getValue(); 1340 return (Val >= 0 && Val < 4096); 1341 } 1342 bool isMemImm12Offset() const { 1343 // If we have an immediate that's not a constant, treat it as a label 1344 // reference needing a fixup. If it is a constant, it's something else 1345 // and we reject it. 1346 if (isImm() && !isa<MCConstantExpr>(getImm())) 1347 return true; 1348 1349 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1350 return false; 1351 // Immediate offset in range [-4095, 4095]. 1352 if (!Memory.OffsetImm) return true; 1353 int64_t Val = Memory.OffsetImm->getValue(); 1354 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1355 } 1356 bool isPostIdxImm8() const { 1357 if (!isImm()) return false; 1358 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1359 if (!CE) return false; 1360 int64_t Val = CE->getValue(); 1361 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1362 } 1363 bool isPostIdxImm8s4() const { 1364 if (!isImm()) return false; 1365 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1366 if (!CE) return false; 1367 int64_t Val = CE->getValue(); 1368 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1369 (Val == INT32_MIN); 1370 } 1371 1372 bool isMSRMask() const { return Kind == k_MSRMask; } 1373 bool isBankedReg() const { return Kind == k_BankedReg; } 1374 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1375 1376 // NEON operands. 1377 bool isSingleSpacedVectorList() const { 1378 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1379 } 1380 bool isDoubleSpacedVectorList() const { 1381 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1382 } 1383 bool isVecListOneD() const { 1384 if (!isSingleSpacedVectorList()) return false; 1385 return VectorList.Count == 1; 1386 } 1387 1388 bool isVecListDPair() const { 1389 if (!isSingleSpacedVectorList()) return false; 1390 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1391 .contains(VectorList.RegNum)); 1392 } 1393 1394 bool isVecListThreeD() const { 1395 if (!isSingleSpacedVectorList()) return false; 1396 return VectorList.Count == 3; 1397 } 1398 1399 bool isVecListFourD() const { 1400 if (!isSingleSpacedVectorList()) return false; 1401 return VectorList.Count == 4; 1402 } 1403 1404 bool isVecListDPairSpaced() const { 1405 if (Kind != k_VectorList) return false; 1406 if (isSingleSpacedVectorList()) return false; 1407 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1408 .contains(VectorList.RegNum)); 1409 } 1410 1411 bool isVecListThreeQ() const { 1412 if (!isDoubleSpacedVectorList()) return false; 1413 return VectorList.Count == 3; 1414 } 1415 1416 bool isVecListFourQ() const { 1417 if (!isDoubleSpacedVectorList()) return false; 1418 return VectorList.Count == 4; 1419 } 1420 1421 bool isSingleSpacedVectorAllLanes() const { 1422 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1423 } 1424 bool isDoubleSpacedVectorAllLanes() const { 1425 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1426 } 1427 bool isVecListOneDAllLanes() const { 1428 if (!isSingleSpacedVectorAllLanes()) return false; 1429 return VectorList.Count == 1; 1430 } 1431 1432 bool isVecListDPairAllLanes() const { 1433 if (!isSingleSpacedVectorAllLanes()) return false; 1434 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1435 .contains(VectorList.RegNum)); 1436 } 1437 1438 bool isVecListDPairSpacedAllLanes() const { 1439 if (!isDoubleSpacedVectorAllLanes()) return false; 1440 return VectorList.Count == 2; 1441 } 1442 1443 bool isVecListThreeDAllLanes() const { 1444 if (!isSingleSpacedVectorAllLanes()) return false; 1445 return VectorList.Count == 3; 1446 } 1447 1448 bool isVecListThreeQAllLanes() const { 1449 if (!isDoubleSpacedVectorAllLanes()) return false; 1450 return VectorList.Count == 3; 1451 } 1452 1453 bool isVecListFourDAllLanes() const { 1454 if (!isSingleSpacedVectorAllLanes()) return false; 1455 return VectorList.Count == 4; 1456 } 1457 1458 bool isVecListFourQAllLanes() const { 1459 if (!isDoubleSpacedVectorAllLanes()) return false; 1460 return VectorList.Count == 4; 1461 } 1462 1463 bool isSingleSpacedVectorIndexed() const { 1464 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1465 } 1466 bool isDoubleSpacedVectorIndexed() const { 1467 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1468 } 1469 bool isVecListOneDByteIndexed() const { 1470 if (!isSingleSpacedVectorIndexed()) return false; 1471 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1472 } 1473 1474 bool isVecListOneDHWordIndexed() const { 1475 if (!isSingleSpacedVectorIndexed()) return false; 1476 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1477 } 1478 1479 bool isVecListOneDWordIndexed() const { 1480 if (!isSingleSpacedVectorIndexed()) return false; 1481 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1482 } 1483 1484 bool isVecListTwoDByteIndexed() const { 1485 if (!isSingleSpacedVectorIndexed()) return false; 1486 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1487 } 1488 1489 bool isVecListTwoDHWordIndexed() const { 1490 if (!isSingleSpacedVectorIndexed()) return false; 1491 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1492 } 1493 1494 bool isVecListTwoQWordIndexed() const { 1495 if (!isDoubleSpacedVectorIndexed()) return false; 1496 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1497 } 1498 1499 bool isVecListTwoQHWordIndexed() const { 1500 if (!isDoubleSpacedVectorIndexed()) return false; 1501 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1502 } 1503 1504 bool isVecListTwoDWordIndexed() const { 1505 if (!isSingleSpacedVectorIndexed()) return false; 1506 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1507 } 1508 1509 bool isVecListThreeDByteIndexed() const { 1510 if (!isSingleSpacedVectorIndexed()) return false; 1511 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1512 } 1513 1514 bool isVecListThreeDHWordIndexed() const { 1515 if (!isSingleSpacedVectorIndexed()) return false; 1516 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1517 } 1518 1519 bool isVecListThreeQWordIndexed() const { 1520 if (!isDoubleSpacedVectorIndexed()) return false; 1521 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1522 } 1523 1524 bool isVecListThreeQHWordIndexed() const { 1525 if (!isDoubleSpacedVectorIndexed()) return false; 1526 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1527 } 1528 1529 bool isVecListThreeDWordIndexed() const { 1530 if (!isSingleSpacedVectorIndexed()) return false; 1531 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1532 } 1533 1534 bool isVecListFourDByteIndexed() const { 1535 if (!isSingleSpacedVectorIndexed()) return false; 1536 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1537 } 1538 1539 bool isVecListFourDHWordIndexed() const { 1540 if (!isSingleSpacedVectorIndexed()) return false; 1541 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1542 } 1543 1544 bool isVecListFourQWordIndexed() const { 1545 if (!isDoubleSpacedVectorIndexed()) return false; 1546 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1547 } 1548 1549 bool isVecListFourQHWordIndexed() const { 1550 if (!isDoubleSpacedVectorIndexed()) return false; 1551 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1552 } 1553 1554 bool isVecListFourDWordIndexed() const { 1555 if (!isSingleSpacedVectorIndexed()) return false; 1556 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1557 } 1558 1559 bool isVectorIndex8() const { 1560 if (Kind != k_VectorIndex) return false; 1561 return VectorIndex.Val < 8; 1562 } 1563 bool isVectorIndex16() const { 1564 if (Kind != k_VectorIndex) return false; 1565 return VectorIndex.Val < 4; 1566 } 1567 bool isVectorIndex32() const { 1568 if (Kind != k_VectorIndex) return false; 1569 return VectorIndex.Val < 2; 1570 } 1571 1572 bool isNEONi8splat() const { 1573 if (!isImm()) return false; 1574 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1575 // Must be a constant. 1576 if (!CE) return false; 1577 int64_t Value = CE->getValue(); 1578 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1579 // value. 1580 return Value >= 0 && Value < 256; 1581 } 1582 1583 bool isNEONi16splat() const { 1584 if (isNEONByteReplicate(2)) 1585 return false; // Leave that for bytes replication and forbid by default. 1586 if (!isImm()) 1587 return false; 1588 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1589 // Must be a constant. 1590 if (!CE) return false; 1591 unsigned Value = CE->getValue(); 1592 return ARM_AM::isNEONi16splat(Value); 1593 } 1594 1595 bool isNEONi16splatNot() const { 1596 if (!isImm()) 1597 return false; 1598 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1599 // Must be a constant. 1600 if (!CE) return false; 1601 unsigned Value = CE->getValue(); 1602 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1603 } 1604 1605 bool isNEONi32splat() const { 1606 if (isNEONByteReplicate(4)) 1607 return false; // Leave that for bytes replication and forbid by default. 1608 if (!isImm()) 1609 return false; 1610 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1611 // Must be a constant. 1612 if (!CE) return false; 1613 unsigned Value = CE->getValue(); 1614 return ARM_AM::isNEONi32splat(Value); 1615 } 1616 1617 bool isNEONi32splatNot() const { 1618 if (!isImm()) 1619 return false; 1620 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1621 // Must be a constant. 1622 if (!CE) return false; 1623 unsigned Value = CE->getValue(); 1624 return ARM_AM::isNEONi32splat(~Value); 1625 } 1626 1627 bool isNEONByteReplicate(unsigned NumBytes) const { 1628 if (!isImm()) 1629 return false; 1630 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1631 // Must be a constant. 1632 if (!CE) 1633 return false; 1634 int64_t Value = CE->getValue(); 1635 if (!Value) 1636 return false; // Don't bother with zero. 1637 1638 unsigned char B = Value & 0xff; 1639 for (unsigned i = 1; i < NumBytes; ++i) { 1640 Value >>= 8; 1641 if ((Value & 0xff) != B) 1642 return false; 1643 } 1644 return true; 1645 } 1646 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1647 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1648 bool isNEONi32vmov() const { 1649 if (isNEONByteReplicate(4)) 1650 return false; // Let it to be classified as byte-replicate case. 1651 if (!isImm()) 1652 return false; 1653 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1654 // Must be a constant. 1655 if (!CE) 1656 return false; 1657 int64_t Value = CE->getValue(); 1658 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1659 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1660 // FIXME: This is probably wrong and a copy and paste from previous example 1661 return (Value >= 0 && Value < 256) || 1662 (Value >= 0x0100 && Value <= 0xff00) || 1663 (Value >= 0x010000 && Value <= 0xff0000) || 1664 (Value >= 0x01000000 && Value <= 0xff000000) || 1665 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1666 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1667 } 1668 bool isNEONi32vmovNeg() const { 1669 if (!isImm()) return false; 1670 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1671 // Must be a constant. 1672 if (!CE) return false; 1673 int64_t Value = ~CE->getValue(); 1674 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1675 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1676 // FIXME: This is probably wrong and a copy and paste from previous example 1677 return (Value >= 0 && Value < 256) || 1678 (Value >= 0x0100 && Value <= 0xff00) || 1679 (Value >= 0x010000 && Value <= 0xff0000) || 1680 (Value >= 0x01000000 && Value <= 0xff000000) || 1681 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1682 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1683 } 1684 1685 bool isNEONi64splat() const { 1686 if (!isImm()) return false; 1687 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1688 // Must be a constant. 1689 if (!CE) return false; 1690 uint64_t Value = CE->getValue(); 1691 // i64 value with each byte being either 0 or 0xff. 1692 for (unsigned i = 0; i < 8; ++i) 1693 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1694 return true; 1695 } 1696 1697 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1698 // Add as immediates when possible. Null MCExpr = 0. 1699 if (!Expr) 1700 Inst.addOperand(MCOperand::createImm(0)); 1701 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1702 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1703 else 1704 Inst.addOperand(MCOperand::createExpr(Expr)); 1705 } 1706 1707 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1708 assert(N == 2 && "Invalid number of operands!"); 1709 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1710 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1711 Inst.addOperand(MCOperand::createReg(RegNum)); 1712 } 1713 1714 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1715 assert(N == 1 && "Invalid number of operands!"); 1716 Inst.addOperand(MCOperand::createImm(getCoproc())); 1717 } 1718 1719 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1720 assert(N == 1 && "Invalid number of operands!"); 1721 Inst.addOperand(MCOperand::createImm(getCoproc())); 1722 } 1723 1724 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1725 assert(N == 1 && "Invalid number of operands!"); 1726 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1727 } 1728 1729 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1730 assert(N == 1 && "Invalid number of operands!"); 1731 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1732 } 1733 1734 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1735 assert(N == 1 && "Invalid number of operands!"); 1736 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1737 } 1738 1739 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1740 assert(N == 1 && "Invalid number of operands!"); 1741 Inst.addOperand(MCOperand::createReg(getReg())); 1742 } 1743 1744 void addRegOperands(MCInst &Inst, unsigned N) const { 1745 assert(N == 1 && "Invalid number of operands!"); 1746 Inst.addOperand(MCOperand::createReg(getReg())); 1747 } 1748 1749 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1750 assert(N == 3 && "Invalid number of operands!"); 1751 assert(isRegShiftedReg() && 1752 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1753 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1754 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1755 Inst.addOperand(MCOperand::createImm( 1756 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1757 } 1758 1759 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1760 assert(N == 2 && "Invalid number of operands!"); 1761 assert(isRegShiftedImm() && 1762 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1763 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1764 // Shift of #32 is encoded as 0 where permitted 1765 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1766 Inst.addOperand(MCOperand::createImm( 1767 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1768 } 1769 1770 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1771 assert(N == 1 && "Invalid number of operands!"); 1772 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1773 ShifterImm.Imm)); 1774 } 1775 1776 void addRegListOperands(MCInst &Inst, unsigned N) const { 1777 assert(N == 1 && "Invalid number of operands!"); 1778 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1779 for (SmallVectorImpl<unsigned>::const_iterator 1780 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1781 Inst.addOperand(MCOperand::createReg(*I)); 1782 } 1783 1784 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 1785 addRegListOperands(Inst, N); 1786 } 1787 1788 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 1789 addRegListOperands(Inst, N); 1790 } 1791 1792 void addRotImmOperands(MCInst &Inst, unsigned N) const { 1793 assert(N == 1 && "Invalid number of operands!"); 1794 // Encoded as val>>3. The printer handles display as 8, 16, 24. 1795 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 1796 } 1797 1798 void addModImmOperands(MCInst &Inst, unsigned N) const { 1799 assert(N == 1 && "Invalid number of operands!"); 1800 1801 // Support for fixups (MCFixup) 1802 if (isImm()) 1803 return addImmOperands(Inst, N); 1804 1805 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 1806 } 1807 1808 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 1809 assert(N == 1 && "Invalid number of operands!"); 1810 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1811 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 1812 Inst.addOperand(MCOperand::createImm(Enc)); 1813 } 1814 1815 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 1816 assert(N == 1 && "Invalid number of operands!"); 1817 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1818 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 1819 Inst.addOperand(MCOperand::createImm(Enc)); 1820 } 1821 1822 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 1823 assert(N == 1 && "Invalid number of operands!"); 1824 // Munge the lsb/width into a bitfield mask. 1825 unsigned lsb = Bitfield.LSB; 1826 unsigned width = Bitfield.Width; 1827 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 1828 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 1829 (32 - (lsb + width))); 1830 Inst.addOperand(MCOperand::createImm(Mask)); 1831 } 1832 1833 void addImmOperands(MCInst &Inst, unsigned N) const { 1834 assert(N == 1 && "Invalid number of operands!"); 1835 addExpr(Inst, getImm()); 1836 } 1837 1838 void addFBits16Operands(MCInst &Inst, unsigned N) const { 1839 assert(N == 1 && "Invalid number of operands!"); 1840 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1841 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 1842 } 1843 1844 void addFBits32Operands(MCInst &Inst, unsigned N) const { 1845 assert(N == 1 && "Invalid number of operands!"); 1846 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1847 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 1848 } 1849 1850 void addFPImmOperands(MCInst &Inst, unsigned N) const { 1851 assert(N == 1 && "Invalid number of operands!"); 1852 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1853 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1854 Inst.addOperand(MCOperand::createImm(Val)); 1855 } 1856 1857 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 1858 assert(N == 1 && "Invalid number of operands!"); 1859 // FIXME: We really want to scale the value here, but the LDRD/STRD 1860 // instruction don't encode operands that way yet. 1861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1862 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1863 } 1864 1865 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 1866 assert(N == 1 && "Invalid number of operands!"); 1867 // The immediate is scaled by four in the encoding and is stored 1868 // in the MCInst as such. Lop off the low two bits here. 1869 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1870 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1871 } 1872 1873 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 1874 assert(N == 1 && "Invalid number of operands!"); 1875 // The immediate is scaled by four in the encoding and is stored 1876 // in the MCInst as such. Lop off the low two bits here. 1877 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1878 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 1879 } 1880 1881 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 1882 assert(N == 1 && "Invalid number of operands!"); 1883 // The immediate is scaled by four in the encoding and is stored 1884 // in the MCInst as such. Lop off the low two bits here. 1885 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1886 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1887 } 1888 1889 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 1890 assert(N == 1 && "Invalid number of operands!"); 1891 // The constant encodes as the immediate-1, and we store in the instruction 1892 // the bits as encoded, so subtract off one here. 1893 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1894 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1895 } 1896 1897 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 1898 assert(N == 1 && "Invalid number of operands!"); 1899 // The constant encodes as the immediate-1, and we store in the instruction 1900 // the bits as encoded, so subtract off one here. 1901 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1902 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1903 } 1904 1905 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 1906 assert(N == 1 && "Invalid number of operands!"); 1907 // The constant encodes as the immediate, except for 32, which encodes as 1908 // zero. 1909 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1910 unsigned Imm = CE->getValue(); 1911 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 1912 } 1913 1914 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 1915 assert(N == 1 && "Invalid number of operands!"); 1916 // An ASR value of 32 encodes as 0, so that's how we want to add it to 1917 // the instruction as well. 1918 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1919 int Val = CE->getValue(); 1920 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 1921 } 1922 1923 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 1924 assert(N == 1 && "Invalid number of operands!"); 1925 // The operand is actually a t2_so_imm, but we have its bitwise 1926 // negation in the assembly source, so twiddle it here. 1927 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1928 Inst.addOperand(MCOperand::createImm(~CE->getValue())); 1929 } 1930 1931 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 1932 assert(N == 1 && "Invalid number of operands!"); 1933 // The operand is actually a t2_so_imm, but we have its 1934 // negation in the assembly source, so twiddle it here. 1935 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1936 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1937 } 1938 1939 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 1940 assert(N == 1 && "Invalid number of operands!"); 1941 // The operand is actually an imm0_4095, but we have its 1942 // negation in the assembly source, so twiddle it here. 1943 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1944 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1945 } 1946 1947 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 1948 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 1949 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 1950 return; 1951 } 1952 1953 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1954 assert(SR && "Unknown value type!"); 1955 Inst.addOperand(MCOperand::createExpr(SR)); 1956 } 1957 1958 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 1959 assert(N == 1 && "Invalid number of operands!"); 1960 if (isImm()) { 1961 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1962 if (CE) { 1963 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1964 return; 1965 } 1966 1967 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1968 assert(SR && "Unknown value type!"); 1969 Inst.addOperand(MCOperand::createExpr(SR)); 1970 return; 1971 } 1972 1973 assert(isMem() && "Unknown value type!"); 1974 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 1975 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 1976 } 1977 1978 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 1979 assert(N == 1 && "Invalid number of operands!"); 1980 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 1981 } 1982 1983 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 1984 assert(N == 1 && "Invalid number of operands!"); 1985 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 1986 } 1987 1988 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 1989 assert(N == 1 && "Invalid number of operands!"); 1990 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 1991 } 1992 1993 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 1994 assert(N == 1 && "Invalid number of operands!"); 1995 int32_t Imm = Memory.OffsetImm->getValue(); 1996 Inst.addOperand(MCOperand::createImm(Imm)); 1997 } 1998 1999 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2000 assert(N == 1 && "Invalid number of operands!"); 2001 assert(isImm() && "Not an immediate!"); 2002 2003 // If we have an immediate that's not a constant, treat it as a label 2004 // reference needing a fixup. 2005 if (!isa<MCConstantExpr>(getImm())) { 2006 Inst.addOperand(MCOperand::createExpr(getImm())); 2007 return; 2008 } 2009 2010 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2011 int Val = CE->getValue(); 2012 Inst.addOperand(MCOperand::createImm(Val)); 2013 } 2014 2015 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2016 assert(N == 2 && "Invalid number of operands!"); 2017 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2018 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2019 } 2020 2021 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2022 addAlignedMemoryOperands(Inst, N); 2023 } 2024 2025 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2026 addAlignedMemoryOperands(Inst, N); 2027 } 2028 2029 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2030 addAlignedMemoryOperands(Inst, N); 2031 } 2032 2033 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2034 addAlignedMemoryOperands(Inst, N); 2035 } 2036 2037 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2038 addAlignedMemoryOperands(Inst, N); 2039 } 2040 2041 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2042 addAlignedMemoryOperands(Inst, N); 2043 } 2044 2045 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2046 addAlignedMemoryOperands(Inst, N); 2047 } 2048 2049 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2050 addAlignedMemoryOperands(Inst, N); 2051 } 2052 2053 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2054 addAlignedMemoryOperands(Inst, N); 2055 } 2056 2057 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2058 addAlignedMemoryOperands(Inst, N); 2059 } 2060 2061 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2062 addAlignedMemoryOperands(Inst, N); 2063 } 2064 2065 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2066 assert(N == 3 && "Invalid number of operands!"); 2067 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2068 if (!Memory.OffsetRegNum) { 2069 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2070 // Special case for #-0 2071 if (Val == INT32_MIN) Val = 0; 2072 if (Val < 0) Val = -Val; 2073 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2074 } else { 2075 // For register offset, we encode the shift type and negation flag 2076 // here. 2077 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2078 Memory.ShiftImm, Memory.ShiftType); 2079 } 2080 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2081 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2082 Inst.addOperand(MCOperand::createImm(Val)); 2083 } 2084 2085 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2086 assert(N == 2 && "Invalid number of operands!"); 2087 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2088 assert(CE && "non-constant AM2OffsetImm operand!"); 2089 int32_t Val = CE->getValue(); 2090 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2091 // Special case for #-0 2092 if (Val == INT32_MIN) Val = 0; 2093 if (Val < 0) Val = -Val; 2094 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2095 Inst.addOperand(MCOperand::createReg(0)); 2096 Inst.addOperand(MCOperand::createImm(Val)); 2097 } 2098 2099 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2100 assert(N == 3 && "Invalid number of operands!"); 2101 // If we have an immediate that's not a constant, treat it as a label 2102 // reference needing a fixup. If it is a constant, it's something else 2103 // and we reject it. 2104 if (isImm()) { 2105 Inst.addOperand(MCOperand::createExpr(getImm())); 2106 Inst.addOperand(MCOperand::createReg(0)); 2107 Inst.addOperand(MCOperand::createImm(0)); 2108 return; 2109 } 2110 2111 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2112 if (!Memory.OffsetRegNum) { 2113 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2114 // Special case for #-0 2115 if (Val == INT32_MIN) Val = 0; 2116 if (Val < 0) Val = -Val; 2117 Val = ARM_AM::getAM3Opc(AddSub, Val); 2118 } else { 2119 // For register offset, we encode the shift type and negation flag 2120 // here. 2121 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2122 } 2123 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2124 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2125 Inst.addOperand(MCOperand::createImm(Val)); 2126 } 2127 2128 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2129 assert(N == 2 && "Invalid number of operands!"); 2130 if (Kind == k_PostIndexRegister) { 2131 int32_t Val = 2132 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2133 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2134 Inst.addOperand(MCOperand::createImm(Val)); 2135 return; 2136 } 2137 2138 // Constant offset. 2139 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2140 int32_t Val = CE->getValue(); 2141 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2142 // Special case for #-0 2143 if (Val == INT32_MIN) Val = 0; 2144 if (Val < 0) Val = -Val; 2145 Val = ARM_AM::getAM3Opc(AddSub, Val); 2146 Inst.addOperand(MCOperand::createReg(0)); 2147 Inst.addOperand(MCOperand::createImm(Val)); 2148 } 2149 2150 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2151 assert(N == 2 && "Invalid number of operands!"); 2152 // If we have an immediate that's not a constant, treat it as a label 2153 // reference needing a fixup. If it is a constant, it's something else 2154 // and we reject it. 2155 if (isImm()) { 2156 Inst.addOperand(MCOperand::createExpr(getImm())); 2157 Inst.addOperand(MCOperand::createImm(0)); 2158 return; 2159 } 2160 2161 // The lower two bits are always zero and as such are not encoded. 2162 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2163 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2164 // Special case for #-0 2165 if (Val == INT32_MIN) Val = 0; 2166 if (Val < 0) Val = -Val; 2167 Val = ARM_AM::getAM5Opc(AddSub, Val); 2168 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2169 Inst.addOperand(MCOperand::createImm(Val)); 2170 } 2171 2172 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2173 assert(N == 2 && "Invalid number of operands!"); 2174 // If we have an immediate that's not a constant, treat it as a label 2175 // reference needing a fixup. If it is a constant, it's something else 2176 // and we reject it. 2177 if (isImm()) { 2178 Inst.addOperand(MCOperand::createExpr(getImm())); 2179 Inst.addOperand(MCOperand::createImm(0)); 2180 return; 2181 } 2182 2183 // The lower bit is always zero and as such is not encoded. 2184 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2185 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2186 // Special case for #-0 2187 if (Val == INT32_MIN) Val = 0; 2188 if (Val < 0) Val = -Val; 2189 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2190 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2191 Inst.addOperand(MCOperand::createImm(Val)); 2192 } 2193 2194 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2195 assert(N == 2 && "Invalid number of operands!"); 2196 // If we have an immediate that's not a constant, treat it as a label 2197 // reference needing a fixup. If it is a constant, it's something else 2198 // and we reject it. 2199 if (isImm()) { 2200 Inst.addOperand(MCOperand::createExpr(getImm())); 2201 Inst.addOperand(MCOperand::createImm(0)); 2202 return; 2203 } 2204 2205 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2206 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2207 Inst.addOperand(MCOperand::createImm(Val)); 2208 } 2209 2210 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2211 assert(N == 2 && "Invalid number of operands!"); 2212 // The lower two bits are always zero and as such are not encoded. 2213 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2214 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2215 Inst.addOperand(MCOperand::createImm(Val)); 2216 } 2217 2218 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2219 assert(N == 2 && "Invalid number of operands!"); 2220 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2221 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2222 Inst.addOperand(MCOperand::createImm(Val)); 2223 } 2224 2225 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2226 addMemImm8OffsetOperands(Inst, N); 2227 } 2228 2229 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2230 addMemImm8OffsetOperands(Inst, N); 2231 } 2232 2233 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2234 assert(N == 2 && "Invalid number of operands!"); 2235 // If this is an immediate, it's a label reference. 2236 if (isImm()) { 2237 addExpr(Inst, getImm()); 2238 Inst.addOperand(MCOperand::createImm(0)); 2239 return; 2240 } 2241 2242 // Otherwise, it's a normal memory reg+offset. 2243 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2244 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2245 Inst.addOperand(MCOperand::createImm(Val)); 2246 } 2247 2248 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2249 assert(N == 2 && "Invalid number of operands!"); 2250 // If this is an immediate, it's a label reference. 2251 if (isImm()) { 2252 addExpr(Inst, getImm()); 2253 Inst.addOperand(MCOperand::createImm(0)); 2254 return; 2255 } 2256 2257 // Otherwise, it's a normal memory reg+offset. 2258 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2259 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2260 Inst.addOperand(MCOperand::createImm(Val)); 2261 } 2262 2263 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2264 assert(N == 2 && "Invalid number of operands!"); 2265 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2266 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2267 } 2268 2269 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2270 assert(N == 2 && "Invalid number of operands!"); 2271 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2272 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2273 } 2274 2275 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2276 assert(N == 3 && "Invalid number of operands!"); 2277 unsigned Val = 2278 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2279 Memory.ShiftImm, Memory.ShiftType); 2280 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2281 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2282 Inst.addOperand(MCOperand::createImm(Val)); 2283 } 2284 2285 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2286 assert(N == 3 && "Invalid number of operands!"); 2287 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2288 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2289 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2290 } 2291 2292 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2293 assert(N == 2 && "Invalid number of operands!"); 2294 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2295 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2296 } 2297 2298 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2299 assert(N == 2 && "Invalid number of operands!"); 2300 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2301 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2302 Inst.addOperand(MCOperand::createImm(Val)); 2303 } 2304 2305 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2306 assert(N == 2 && "Invalid number of operands!"); 2307 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2308 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2309 Inst.addOperand(MCOperand::createImm(Val)); 2310 } 2311 2312 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2313 assert(N == 2 && "Invalid number of operands!"); 2314 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2315 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2316 Inst.addOperand(MCOperand::createImm(Val)); 2317 } 2318 2319 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2320 assert(N == 2 && "Invalid number of operands!"); 2321 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2322 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2323 Inst.addOperand(MCOperand::createImm(Val)); 2324 } 2325 2326 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2327 assert(N == 1 && "Invalid number of operands!"); 2328 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2329 assert(CE && "non-constant post-idx-imm8 operand!"); 2330 int Imm = CE->getValue(); 2331 bool isAdd = Imm >= 0; 2332 if (Imm == INT32_MIN) Imm = 0; 2333 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2334 Inst.addOperand(MCOperand::createImm(Imm)); 2335 } 2336 2337 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2338 assert(N == 1 && "Invalid number of operands!"); 2339 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2340 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2341 int Imm = CE->getValue(); 2342 bool isAdd = Imm >= 0; 2343 if (Imm == INT32_MIN) Imm = 0; 2344 // Immediate is scaled by 4. 2345 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2346 Inst.addOperand(MCOperand::createImm(Imm)); 2347 } 2348 2349 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2350 assert(N == 2 && "Invalid number of operands!"); 2351 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2352 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2353 } 2354 2355 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2356 assert(N == 2 && "Invalid number of operands!"); 2357 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2358 // The sign, shift type, and shift amount are encoded in a single operand 2359 // using the AM2 encoding helpers. 2360 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2361 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2362 PostIdxReg.ShiftTy); 2363 Inst.addOperand(MCOperand::createImm(Imm)); 2364 } 2365 2366 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2367 assert(N == 1 && "Invalid number of operands!"); 2368 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2369 } 2370 2371 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2372 assert(N == 1 && "Invalid number of operands!"); 2373 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2374 } 2375 2376 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2377 assert(N == 1 && "Invalid number of operands!"); 2378 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2379 } 2380 2381 void addVecListOperands(MCInst &Inst, unsigned N) const { 2382 assert(N == 1 && "Invalid number of operands!"); 2383 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2384 } 2385 2386 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2387 assert(N == 2 && "Invalid number of operands!"); 2388 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2389 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2390 } 2391 2392 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2393 assert(N == 1 && "Invalid number of operands!"); 2394 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2395 } 2396 2397 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2398 assert(N == 1 && "Invalid number of operands!"); 2399 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2400 } 2401 2402 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2403 assert(N == 1 && "Invalid number of operands!"); 2404 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2405 } 2406 2407 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2408 assert(N == 1 && "Invalid number of operands!"); 2409 // The immediate encodes the type of constant as well as the value. 2410 // Mask in that this is an i8 splat. 2411 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2412 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2413 } 2414 2415 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2416 assert(N == 1 && "Invalid number of operands!"); 2417 // The immediate encodes the type of constant as well as the value. 2418 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2419 unsigned Value = CE->getValue(); 2420 Value = ARM_AM::encodeNEONi16splat(Value); 2421 Inst.addOperand(MCOperand::createImm(Value)); 2422 } 2423 2424 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2425 assert(N == 1 && "Invalid number of operands!"); 2426 // The immediate encodes the type of constant as well as the value. 2427 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2428 unsigned Value = CE->getValue(); 2429 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2430 Inst.addOperand(MCOperand::createImm(Value)); 2431 } 2432 2433 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2434 assert(N == 1 && "Invalid number of operands!"); 2435 // The immediate encodes the type of constant as well as the value. 2436 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2437 unsigned Value = CE->getValue(); 2438 Value = ARM_AM::encodeNEONi32splat(Value); 2439 Inst.addOperand(MCOperand::createImm(Value)); 2440 } 2441 2442 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2443 assert(N == 1 && "Invalid number of operands!"); 2444 // The immediate encodes the type of constant as well as the value. 2445 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2446 unsigned Value = CE->getValue(); 2447 Value = ARM_AM::encodeNEONi32splat(~Value); 2448 Inst.addOperand(MCOperand::createImm(Value)); 2449 } 2450 2451 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2452 assert(N == 1 && "Invalid number of operands!"); 2453 // The immediate encodes the type of constant as well as the value. 2454 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2455 unsigned Value = CE->getValue(); 2456 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2457 Inst.getOpcode() == ARM::VMOVv16i8) && 2458 "All vmvn instructions that wants to replicate non-zero byte " 2459 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2460 unsigned B = ((~Value) & 0xff); 2461 B |= 0xe00; // cmode = 0b1110 2462 Inst.addOperand(MCOperand::createImm(B)); 2463 } 2464 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2465 assert(N == 1 && "Invalid number of operands!"); 2466 // The immediate encodes the type of constant as well as the value. 2467 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2468 unsigned Value = CE->getValue(); 2469 if (Value >= 256 && Value <= 0xffff) 2470 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2471 else if (Value > 0xffff && Value <= 0xffffff) 2472 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2473 else if (Value > 0xffffff) 2474 Value = (Value >> 24) | 0x600; 2475 Inst.addOperand(MCOperand::createImm(Value)); 2476 } 2477 2478 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2479 assert(N == 1 && "Invalid number of operands!"); 2480 // The immediate encodes the type of constant as well as the value. 2481 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2482 unsigned Value = CE->getValue(); 2483 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2484 Inst.getOpcode() == ARM::VMOVv16i8) && 2485 "All instructions that wants to replicate non-zero byte " 2486 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2487 unsigned B = Value & 0xff; 2488 B |= 0xe00; // cmode = 0b1110 2489 Inst.addOperand(MCOperand::createImm(B)); 2490 } 2491 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2492 assert(N == 1 && "Invalid number of operands!"); 2493 // The immediate encodes the type of constant as well as the value. 2494 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2495 unsigned Value = ~CE->getValue(); 2496 if (Value >= 256 && Value <= 0xffff) 2497 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2498 else if (Value > 0xffff && Value <= 0xffffff) 2499 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2500 else if (Value > 0xffffff) 2501 Value = (Value >> 24) | 0x600; 2502 Inst.addOperand(MCOperand::createImm(Value)); 2503 } 2504 2505 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2506 assert(N == 1 && "Invalid number of operands!"); 2507 // The immediate encodes the type of constant as well as the value. 2508 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2509 uint64_t Value = CE->getValue(); 2510 unsigned Imm = 0; 2511 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2512 Imm |= (Value & 1) << i; 2513 } 2514 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2515 } 2516 2517 void print(raw_ostream &OS) const override; 2518 2519 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2520 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2521 Op->ITMask.Mask = Mask; 2522 Op->StartLoc = S; 2523 Op->EndLoc = S; 2524 return Op; 2525 } 2526 2527 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2528 SMLoc S) { 2529 auto Op = make_unique<ARMOperand>(k_CondCode); 2530 Op->CC.Val = CC; 2531 Op->StartLoc = S; 2532 Op->EndLoc = S; 2533 return Op; 2534 } 2535 2536 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2537 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2538 Op->Cop.Val = CopVal; 2539 Op->StartLoc = S; 2540 Op->EndLoc = S; 2541 return Op; 2542 } 2543 2544 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2545 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2546 Op->Cop.Val = CopVal; 2547 Op->StartLoc = S; 2548 Op->EndLoc = S; 2549 return Op; 2550 } 2551 2552 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2553 SMLoc E) { 2554 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2555 Op->Cop.Val = Val; 2556 Op->StartLoc = S; 2557 Op->EndLoc = E; 2558 return Op; 2559 } 2560 2561 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2562 auto Op = make_unique<ARMOperand>(k_CCOut); 2563 Op->Reg.RegNum = RegNum; 2564 Op->StartLoc = S; 2565 Op->EndLoc = S; 2566 return Op; 2567 } 2568 2569 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2570 auto Op = make_unique<ARMOperand>(k_Token); 2571 Op->Tok.Data = Str.data(); 2572 Op->Tok.Length = Str.size(); 2573 Op->StartLoc = S; 2574 Op->EndLoc = S; 2575 return Op; 2576 } 2577 2578 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2579 SMLoc E) { 2580 auto Op = make_unique<ARMOperand>(k_Register); 2581 Op->Reg.RegNum = RegNum; 2582 Op->StartLoc = S; 2583 Op->EndLoc = E; 2584 return Op; 2585 } 2586 2587 static std::unique_ptr<ARMOperand> 2588 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2589 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2590 SMLoc E) { 2591 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2592 Op->RegShiftedReg.ShiftTy = ShTy; 2593 Op->RegShiftedReg.SrcReg = SrcReg; 2594 Op->RegShiftedReg.ShiftReg = ShiftReg; 2595 Op->RegShiftedReg.ShiftImm = ShiftImm; 2596 Op->StartLoc = S; 2597 Op->EndLoc = E; 2598 return Op; 2599 } 2600 2601 static std::unique_ptr<ARMOperand> 2602 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2603 unsigned ShiftImm, SMLoc S, SMLoc E) { 2604 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2605 Op->RegShiftedImm.ShiftTy = ShTy; 2606 Op->RegShiftedImm.SrcReg = SrcReg; 2607 Op->RegShiftedImm.ShiftImm = ShiftImm; 2608 Op->StartLoc = S; 2609 Op->EndLoc = E; 2610 return Op; 2611 } 2612 2613 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2614 SMLoc S, SMLoc E) { 2615 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2616 Op->ShifterImm.isASR = isASR; 2617 Op->ShifterImm.Imm = Imm; 2618 Op->StartLoc = S; 2619 Op->EndLoc = E; 2620 return Op; 2621 } 2622 2623 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2624 SMLoc E) { 2625 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2626 Op->RotImm.Imm = Imm; 2627 Op->StartLoc = S; 2628 Op->EndLoc = E; 2629 return Op; 2630 } 2631 2632 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2633 SMLoc S, SMLoc E) { 2634 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2635 Op->ModImm.Bits = Bits; 2636 Op->ModImm.Rot = Rot; 2637 Op->StartLoc = S; 2638 Op->EndLoc = E; 2639 return Op; 2640 } 2641 2642 static std::unique_ptr<ARMOperand> 2643 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2644 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2645 Op->Bitfield.LSB = LSB; 2646 Op->Bitfield.Width = Width; 2647 Op->StartLoc = S; 2648 Op->EndLoc = E; 2649 return Op; 2650 } 2651 2652 static std::unique_ptr<ARMOperand> 2653 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2654 SMLoc StartLoc, SMLoc EndLoc) { 2655 assert (Regs.size() > 0 && "RegList contains no registers?"); 2656 KindTy Kind = k_RegisterList; 2657 2658 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2659 Kind = k_DPRRegisterList; 2660 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2661 contains(Regs.front().second)) 2662 Kind = k_SPRRegisterList; 2663 2664 // Sort based on the register encoding values. 2665 array_pod_sort(Regs.begin(), Regs.end()); 2666 2667 auto Op = make_unique<ARMOperand>(Kind); 2668 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2669 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2670 Op->Registers.push_back(I->second); 2671 Op->StartLoc = StartLoc; 2672 Op->EndLoc = EndLoc; 2673 return Op; 2674 } 2675 2676 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2677 unsigned Count, 2678 bool isDoubleSpaced, 2679 SMLoc S, SMLoc E) { 2680 auto Op = make_unique<ARMOperand>(k_VectorList); 2681 Op->VectorList.RegNum = RegNum; 2682 Op->VectorList.Count = Count; 2683 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2684 Op->StartLoc = S; 2685 Op->EndLoc = E; 2686 return Op; 2687 } 2688 2689 static std::unique_ptr<ARMOperand> 2690 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2691 SMLoc S, SMLoc E) { 2692 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2693 Op->VectorList.RegNum = RegNum; 2694 Op->VectorList.Count = Count; 2695 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2696 Op->StartLoc = S; 2697 Op->EndLoc = E; 2698 return Op; 2699 } 2700 2701 static std::unique_ptr<ARMOperand> 2702 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2703 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2704 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2705 Op->VectorList.RegNum = RegNum; 2706 Op->VectorList.Count = Count; 2707 Op->VectorList.LaneIndex = Index; 2708 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2709 Op->StartLoc = S; 2710 Op->EndLoc = E; 2711 return Op; 2712 } 2713 2714 static std::unique_ptr<ARMOperand> 2715 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2716 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2717 Op->VectorIndex.Val = Idx; 2718 Op->StartLoc = S; 2719 Op->EndLoc = E; 2720 return Op; 2721 } 2722 2723 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2724 SMLoc E) { 2725 auto Op = make_unique<ARMOperand>(k_Immediate); 2726 Op->Imm.Val = Val; 2727 Op->StartLoc = S; 2728 Op->EndLoc = E; 2729 return Op; 2730 } 2731 2732 static std::unique_ptr<ARMOperand> 2733 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2734 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2735 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2736 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2737 auto Op = make_unique<ARMOperand>(k_Memory); 2738 Op->Memory.BaseRegNum = BaseRegNum; 2739 Op->Memory.OffsetImm = OffsetImm; 2740 Op->Memory.OffsetRegNum = OffsetRegNum; 2741 Op->Memory.ShiftType = ShiftType; 2742 Op->Memory.ShiftImm = ShiftImm; 2743 Op->Memory.Alignment = Alignment; 2744 Op->Memory.isNegative = isNegative; 2745 Op->StartLoc = S; 2746 Op->EndLoc = E; 2747 Op->AlignmentLoc = AlignmentLoc; 2748 return Op; 2749 } 2750 2751 static std::unique_ptr<ARMOperand> 2752 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2753 unsigned ShiftImm, SMLoc S, SMLoc E) { 2754 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2755 Op->PostIdxReg.RegNum = RegNum; 2756 Op->PostIdxReg.isAdd = isAdd; 2757 Op->PostIdxReg.ShiftTy = ShiftTy; 2758 Op->PostIdxReg.ShiftImm = ShiftImm; 2759 Op->StartLoc = S; 2760 Op->EndLoc = E; 2761 return Op; 2762 } 2763 2764 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2765 SMLoc S) { 2766 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 2767 Op->MBOpt.Val = Opt; 2768 Op->StartLoc = S; 2769 Op->EndLoc = S; 2770 return Op; 2771 } 2772 2773 static std::unique_ptr<ARMOperand> 2774 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 2775 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 2776 Op->ISBOpt.Val = Opt; 2777 Op->StartLoc = S; 2778 Op->EndLoc = S; 2779 return Op; 2780 } 2781 2782 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 2783 SMLoc S) { 2784 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 2785 Op->IFlags.Val = IFlags; 2786 Op->StartLoc = S; 2787 Op->EndLoc = S; 2788 return Op; 2789 } 2790 2791 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 2792 auto Op = make_unique<ARMOperand>(k_MSRMask); 2793 Op->MMask.Val = MMask; 2794 Op->StartLoc = S; 2795 Op->EndLoc = S; 2796 return Op; 2797 } 2798 2799 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 2800 auto Op = make_unique<ARMOperand>(k_BankedReg); 2801 Op->BankedReg.Val = Reg; 2802 Op->StartLoc = S; 2803 Op->EndLoc = S; 2804 return Op; 2805 } 2806 }; 2807 2808 } // end anonymous namespace. 2809 2810 void ARMOperand::print(raw_ostream &OS) const { 2811 switch (Kind) { 2812 case k_CondCode: 2813 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 2814 break; 2815 case k_CCOut: 2816 OS << "<ccout " << getReg() << ">"; 2817 break; 2818 case k_ITCondMask: { 2819 static const char *const MaskStr[] = { 2820 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 2821 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 2822 }; 2823 assert((ITMask.Mask & 0xf) == ITMask.Mask); 2824 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 2825 break; 2826 } 2827 case k_CoprocNum: 2828 OS << "<coprocessor number: " << getCoproc() << ">"; 2829 break; 2830 case k_CoprocReg: 2831 OS << "<coprocessor register: " << getCoproc() << ">"; 2832 break; 2833 case k_CoprocOption: 2834 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 2835 break; 2836 case k_MSRMask: 2837 OS << "<mask: " << getMSRMask() << ">"; 2838 break; 2839 case k_BankedReg: 2840 OS << "<banked reg: " << getBankedReg() << ">"; 2841 break; 2842 case k_Immediate: 2843 OS << *getImm(); 2844 break; 2845 case k_MemBarrierOpt: 2846 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 2847 break; 2848 case k_InstSyncBarrierOpt: 2849 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 2850 break; 2851 case k_Memory: 2852 OS << "<memory " 2853 << " base:" << Memory.BaseRegNum; 2854 OS << ">"; 2855 break; 2856 case k_PostIndexRegister: 2857 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 2858 << PostIdxReg.RegNum; 2859 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 2860 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 2861 << PostIdxReg.ShiftImm; 2862 OS << ">"; 2863 break; 2864 case k_ProcIFlags: { 2865 OS << "<ARM_PROC::"; 2866 unsigned IFlags = getProcIFlags(); 2867 for (int i=2; i >= 0; --i) 2868 if (IFlags & (1 << i)) 2869 OS << ARM_PROC::IFlagsToString(1 << i); 2870 OS << ">"; 2871 break; 2872 } 2873 case k_Register: 2874 OS << "<register " << getReg() << ">"; 2875 break; 2876 case k_ShifterImmediate: 2877 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 2878 << " #" << ShifterImm.Imm << ">"; 2879 break; 2880 case k_ShiftedRegister: 2881 OS << "<so_reg_reg " 2882 << RegShiftedReg.SrcReg << " " 2883 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 2884 << " " << RegShiftedReg.ShiftReg << ">"; 2885 break; 2886 case k_ShiftedImmediate: 2887 OS << "<so_reg_imm " 2888 << RegShiftedImm.SrcReg << " " 2889 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 2890 << " #" << RegShiftedImm.ShiftImm << ">"; 2891 break; 2892 case k_RotateImmediate: 2893 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 2894 break; 2895 case k_ModifiedImmediate: 2896 OS << "<mod_imm #" << ModImm.Bits << ", #" 2897 << ModImm.Rot << ")>"; 2898 break; 2899 case k_BitfieldDescriptor: 2900 OS << "<bitfield " << "lsb: " << Bitfield.LSB 2901 << ", width: " << Bitfield.Width << ">"; 2902 break; 2903 case k_RegisterList: 2904 case k_DPRRegisterList: 2905 case k_SPRRegisterList: { 2906 OS << "<register_list "; 2907 2908 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2909 for (SmallVectorImpl<unsigned>::const_iterator 2910 I = RegList.begin(), E = RegList.end(); I != E; ) { 2911 OS << *I; 2912 if (++I < E) OS << ", "; 2913 } 2914 2915 OS << ">"; 2916 break; 2917 } 2918 case k_VectorList: 2919 OS << "<vector_list " << VectorList.Count << " * " 2920 << VectorList.RegNum << ">"; 2921 break; 2922 case k_VectorListAllLanes: 2923 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 2924 << VectorList.RegNum << ">"; 2925 break; 2926 case k_VectorListIndexed: 2927 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 2928 << VectorList.Count << " * " << VectorList.RegNum << ">"; 2929 break; 2930 case k_Token: 2931 OS << "'" << getToken() << "'"; 2932 break; 2933 case k_VectorIndex: 2934 OS << "<vectorindex " << getVectorIndex() << ">"; 2935 break; 2936 } 2937 } 2938 2939 /// @name Auto-generated Match Functions 2940 /// { 2941 2942 static unsigned MatchRegisterName(StringRef Name); 2943 2944 /// } 2945 2946 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 2947 SMLoc &StartLoc, SMLoc &EndLoc) { 2948 const AsmToken &Tok = getParser().getTok(); 2949 StartLoc = Tok.getLoc(); 2950 EndLoc = Tok.getEndLoc(); 2951 RegNo = tryParseRegister(); 2952 2953 return (RegNo == (unsigned)-1); 2954 } 2955 2956 /// Try to parse a register name. The token must be an Identifier when called, 2957 /// and if it is a register name the token is eaten and the register number is 2958 /// returned. Otherwise return -1. 2959 /// 2960 int ARMAsmParser::tryParseRegister() { 2961 MCAsmParser &Parser = getParser(); 2962 const AsmToken &Tok = Parser.getTok(); 2963 if (Tok.isNot(AsmToken::Identifier)) return -1; 2964 2965 std::string lowerCase = Tok.getString().lower(); 2966 unsigned RegNum = MatchRegisterName(lowerCase); 2967 if (!RegNum) { 2968 RegNum = StringSwitch<unsigned>(lowerCase) 2969 .Case("r13", ARM::SP) 2970 .Case("r14", ARM::LR) 2971 .Case("r15", ARM::PC) 2972 .Case("ip", ARM::R12) 2973 // Additional register name aliases for 'gas' compatibility. 2974 .Case("a1", ARM::R0) 2975 .Case("a2", ARM::R1) 2976 .Case("a3", ARM::R2) 2977 .Case("a4", ARM::R3) 2978 .Case("v1", ARM::R4) 2979 .Case("v2", ARM::R5) 2980 .Case("v3", ARM::R6) 2981 .Case("v4", ARM::R7) 2982 .Case("v5", ARM::R8) 2983 .Case("v6", ARM::R9) 2984 .Case("v7", ARM::R10) 2985 .Case("v8", ARM::R11) 2986 .Case("sb", ARM::R9) 2987 .Case("sl", ARM::R10) 2988 .Case("fp", ARM::R11) 2989 .Default(0); 2990 } 2991 if (!RegNum) { 2992 // Check for aliases registered via .req. Canonicalize to lower case. 2993 // That's more consistent since register names are case insensitive, and 2994 // it's how the original entry was passed in from MC/MCParser/AsmParser. 2995 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 2996 // If no match, return failure. 2997 if (Entry == RegisterReqs.end()) 2998 return -1; 2999 Parser.Lex(); // Eat identifier token. 3000 return Entry->getValue(); 3001 } 3002 3003 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3004 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3005 return -1; 3006 3007 Parser.Lex(); // Eat identifier token. 3008 3009 return RegNum; 3010 } 3011 3012 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3013 // If a recoverable error occurs, return 1. If an irrecoverable error 3014 // occurs, return -1. An irrecoverable error is one where tokens have been 3015 // consumed in the process of trying to parse the shifter (i.e., when it is 3016 // indeed a shifter operand, but malformed). 3017 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3018 MCAsmParser &Parser = getParser(); 3019 SMLoc S = Parser.getTok().getLoc(); 3020 const AsmToken &Tok = Parser.getTok(); 3021 if (Tok.isNot(AsmToken::Identifier)) 3022 return -1; 3023 3024 std::string lowerCase = Tok.getString().lower(); 3025 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3026 .Case("asl", ARM_AM::lsl) 3027 .Case("lsl", ARM_AM::lsl) 3028 .Case("lsr", ARM_AM::lsr) 3029 .Case("asr", ARM_AM::asr) 3030 .Case("ror", ARM_AM::ror) 3031 .Case("rrx", ARM_AM::rrx) 3032 .Default(ARM_AM::no_shift); 3033 3034 if (ShiftTy == ARM_AM::no_shift) 3035 return 1; 3036 3037 Parser.Lex(); // Eat the operator. 3038 3039 // The source register for the shift has already been added to the 3040 // operand list, so we need to pop it off and combine it into the shifted 3041 // register operand instead. 3042 std::unique_ptr<ARMOperand> PrevOp( 3043 (ARMOperand *)Operands.pop_back_val().release()); 3044 if (!PrevOp->isReg()) 3045 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3046 int SrcReg = PrevOp->getReg(); 3047 3048 SMLoc EndLoc; 3049 int64_t Imm = 0; 3050 int ShiftReg = 0; 3051 if (ShiftTy == ARM_AM::rrx) { 3052 // RRX Doesn't have an explicit shift amount. The encoder expects 3053 // the shift register to be the same as the source register. Seems odd, 3054 // but OK. 3055 ShiftReg = SrcReg; 3056 } else { 3057 // Figure out if this is shifted by a constant or a register (for non-RRX). 3058 if (Parser.getTok().is(AsmToken::Hash) || 3059 Parser.getTok().is(AsmToken::Dollar)) { 3060 Parser.Lex(); // Eat hash. 3061 SMLoc ImmLoc = Parser.getTok().getLoc(); 3062 const MCExpr *ShiftExpr = nullptr; 3063 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3064 Error(ImmLoc, "invalid immediate shift value"); 3065 return -1; 3066 } 3067 // The expression must be evaluatable as an immediate. 3068 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3069 if (!CE) { 3070 Error(ImmLoc, "invalid immediate shift value"); 3071 return -1; 3072 } 3073 // Range check the immediate. 3074 // lsl, ror: 0 <= imm <= 31 3075 // lsr, asr: 0 <= imm <= 32 3076 Imm = CE->getValue(); 3077 if (Imm < 0 || 3078 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3079 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3080 Error(ImmLoc, "immediate shift value out of range"); 3081 return -1; 3082 } 3083 // shift by zero is a nop. Always send it through as lsl. 3084 // ('as' compatibility) 3085 if (Imm == 0) 3086 ShiftTy = ARM_AM::lsl; 3087 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3088 SMLoc L = Parser.getTok().getLoc(); 3089 EndLoc = Parser.getTok().getEndLoc(); 3090 ShiftReg = tryParseRegister(); 3091 if (ShiftReg == -1) { 3092 Error(L, "expected immediate or register in shift operand"); 3093 return -1; 3094 } 3095 } else { 3096 Error(Parser.getTok().getLoc(), 3097 "expected immediate or register in shift operand"); 3098 return -1; 3099 } 3100 } 3101 3102 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3103 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3104 ShiftReg, Imm, 3105 S, EndLoc)); 3106 else 3107 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3108 S, EndLoc)); 3109 3110 return 0; 3111 } 3112 3113 3114 /// Try to parse a register name. The token must be an Identifier when called. 3115 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3116 /// if there is a "writeback". 'true' if it's not a register. 3117 /// 3118 /// TODO this is likely to change to allow different register types and or to 3119 /// parse for a specific register type. 3120 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3121 MCAsmParser &Parser = getParser(); 3122 const AsmToken &RegTok = Parser.getTok(); 3123 int RegNo = tryParseRegister(); 3124 if (RegNo == -1) 3125 return true; 3126 3127 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3128 RegTok.getEndLoc())); 3129 3130 const AsmToken &ExclaimTok = Parser.getTok(); 3131 if (ExclaimTok.is(AsmToken::Exclaim)) { 3132 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3133 ExclaimTok.getLoc())); 3134 Parser.Lex(); // Eat exclaim token 3135 return false; 3136 } 3137 3138 // Also check for an index operand. This is only legal for vector registers, 3139 // but that'll get caught OK in operand matching, so we don't need to 3140 // explicitly filter everything else out here. 3141 if (Parser.getTok().is(AsmToken::LBrac)) { 3142 SMLoc SIdx = Parser.getTok().getLoc(); 3143 Parser.Lex(); // Eat left bracket token. 3144 3145 const MCExpr *ImmVal; 3146 if (getParser().parseExpression(ImmVal)) 3147 return true; 3148 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3149 if (!MCE) 3150 return TokError("immediate value expected for vector index"); 3151 3152 if (Parser.getTok().isNot(AsmToken::RBrac)) 3153 return Error(Parser.getTok().getLoc(), "']' expected"); 3154 3155 SMLoc E = Parser.getTok().getEndLoc(); 3156 Parser.Lex(); // Eat right bracket token. 3157 3158 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3159 SIdx, E, 3160 getContext())); 3161 } 3162 3163 return false; 3164 } 3165 3166 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3167 /// instruction with a symbolic operand name. 3168 /// We accept "crN" syntax for GAS compatibility. 3169 /// <operand-name> ::= <prefix><number> 3170 /// If CoprocOp is 'c', then: 3171 /// <prefix> ::= c | cr 3172 /// If CoprocOp is 'p', then : 3173 /// <prefix> ::= p 3174 /// <number> ::= integer in range [0, 15] 3175 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3176 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3177 // but efficient. 3178 if (Name.size() < 2 || Name[0] != CoprocOp) 3179 return -1; 3180 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3181 3182 switch (Name.size()) { 3183 default: return -1; 3184 case 1: 3185 switch (Name[0]) { 3186 default: return -1; 3187 case '0': return 0; 3188 case '1': return 1; 3189 case '2': return 2; 3190 case '3': return 3; 3191 case '4': return 4; 3192 case '5': return 5; 3193 case '6': return 6; 3194 case '7': return 7; 3195 case '8': return 8; 3196 case '9': return 9; 3197 } 3198 case 2: 3199 if (Name[0] != '1') 3200 return -1; 3201 switch (Name[1]) { 3202 default: return -1; 3203 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3204 // However, old cores (v5/v6) did use them in that way. 3205 case '0': return 10; 3206 case '1': return 11; 3207 case '2': return 12; 3208 case '3': return 13; 3209 case '4': return 14; 3210 case '5': return 15; 3211 } 3212 } 3213 } 3214 3215 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3216 ARMAsmParser::OperandMatchResultTy 3217 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3218 MCAsmParser &Parser = getParser(); 3219 SMLoc S = Parser.getTok().getLoc(); 3220 const AsmToken &Tok = Parser.getTok(); 3221 if (!Tok.is(AsmToken::Identifier)) 3222 return MatchOperand_NoMatch; 3223 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3224 .Case("eq", ARMCC::EQ) 3225 .Case("ne", ARMCC::NE) 3226 .Case("hs", ARMCC::HS) 3227 .Case("cs", ARMCC::HS) 3228 .Case("lo", ARMCC::LO) 3229 .Case("cc", ARMCC::LO) 3230 .Case("mi", ARMCC::MI) 3231 .Case("pl", ARMCC::PL) 3232 .Case("vs", ARMCC::VS) 3233 .Case("vc", ARMCC::VC) 3234 .Case("hi", ARMCC::HI) 3235 .Case("ls", ARMCC::LS) 3236 .Case("ge", ARMCC::GE) 3237 .Case("lt", ARMCC::LT) 3238 .Case("gt", ARMCC::GT) 3239 .Case("le", ARMCC::LE) 3240 .Case("al", ARMCC::AL) 3241 .Default(~0U); 3242 if (CC == ~0U) 3243 return MatchOperand_NoMatch; 3244 Parser.Lex(); // Eat the token. 3245 3246 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3247 3248 return MatchOperand_Success; 3249 } 3250 3251 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3252 /// token must be an Identifier when called, and if it is a coprocessor 3253 /// number, the token is eaten and the operand is added to the operand list. 3254 ARMAsmParser::OperandMatchResultTy 3255 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3256 MCAsmParser &Parser = getParser(); 3257 SMLoc S = Parser.getTok().getLoc(); 3258 const AsmToken &Tok = Parser.getTok(); 3259 if (Tok.isNot(AsmToken::Identifier)) 3260 return MatchOperand_NoMatch; 3261 3262 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3263 if (Num == -1) 3264 return MatchOperand_NoMatch; 3265 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3266 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3267 return MatchOperand_NoMatch; 3268 3269 Parser.Lex(); // Eat identifier token. 3270 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3271 return MatchOperand_Success; 3272 } 3273 3274 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3275 /// token must be an Identifier when called, and if it is a coprocessor 3276 /// number, the token is eaten and the operand is added to the operand list. 3277 ARMAsmParser::OperandMatchResultTy 3278 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3279 MCAsmParser &Parser = getParser(); 3280 SMLoc S = Parser.getTok().getLoc(); 3281 const AsmToken &Tok = Parser.getTok(); 3282 if (Tok.isNot(AsmToken::Identifier)) 3283 return MatchOperand_NoMatch; 3284 3285 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3286 if (Reg == -1) 3287 return MatchOperand_NoMatch; 3288 3289 Parser.Lex(); // Eat identifier token. 3290 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3291 return MatchOperand_Success; 3292 } 3293 3294 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3295 /// coproc_option : '{' imm0_255 '}' 3296 ARMAsmParser::OperandMatchResultTy 3297 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3298 MCAsmParser &Parser = getParser(); 3299 SMLoc S = Parser.getTok().getLoc(); 3300 3301 // If this isn't a '{', this isn't a coprocessor immediate operand. 3302 if (Parser.getTok().isNot(AsmToken::LCurly)) 3303 return MatchOperand_NoMatch; 3304 Parser.Lex(); // Eat the '{' 3305 3306 const MCExpr *Expr; 3307 SMLoc Loc = Parser.getTok().getLoc(); 3308 if (getParser().parseExpression(Expr)) { 3309 Error(Loc, "illegal expression"); 3310 return MatchOperand_ParseFail; 3311 } 3312 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3313 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3314 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3315 return MatchOperand_ParseFail; 3316 } 3317 int Val = CE->getValue(); 3318 3319 // Check for and consume the closing '}' 3320 if (Parser.getTok().isNot(AsmToken::RCurly)) 3321 return MatchOperand_ParseFail; 3322 SMLoc E = Parser.getTok().getEndLoc(); 3323 Parser.Lex(); // Eat the '}' 3324 3325 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3326 return MatchOperand_Success; 3327 } 3328 3329 // For register list parsing, we need to map from raw GPR register numbering 3330 // to the enumeration values. The enumeration values aren't sorted by 3331 // register number due to our using "sp", "lr" and "pc" as canonical names. 3332 static unsigned getNextRegister(unsigned Reg) { 3333 // If this is a GPR, we need to do it manually, otherwise we can rely 3334 // on the sort ordering of the enumeration since the other reg-classes 3335 // are sane. 3336 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3337 return Reg + 1; 3338 switch(Reg) { 3339 default: llvm_unreachable("Invalid GPR number!"); 3340 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3341 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3342 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3343 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3344 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3345 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3346 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3347 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3348 } 3349 } 3350 3351 // Return the low-subreg of a given Q register. 3352 static unsigned getDRegFromQReg(unsigned QReg) { 3353 switch (QReg) { 3354 default: llvm_unreachable("expected a Q register!"); 3355 case ARM::Q0: return ARM::D0; 3356 case ARM::Q1: return ARM::D2; 3357 case ARM::Q2: return ARM::D4; 3358 case ARM::Q3: return ARM::D6; 3359 case ARM::Q4: return ARM::D8; 3360 case ARM::Q5: return ARM::D10; 3361 case ARM::Q6: return ARM::D12; 3362 case ARM::Q7: return ARM::D14; 3363 case ARM::Q8: return ARM::D16; 3364 case ARM::Q9: return ARM::D18; 3365 case ARM::Q10: return ARM::D20; 3366 case ARM::Q11: return ARM::D22; 3367 case ARM::Q12: return ARM::D24; 3368 case ARM::Q13: return ARM::D26; 3369 case ARM::Q14: return ARM::D28; 3370 case ARM::Q15: return ARM::D30; 3371 } 3372 } 3373 3374 /// Parse a register list. 3375 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3376 MCAsmParser &Parser = getParser(); 3377 assert(Parser.getTok().is(AsmToken::LCurly) && 3378 "Token is not a Left Curly Brace"); 3379 SMLoc S = Parser.getTok().getLoc(); 3380 Parser.Lex(); // Eat '{' token. 3381 SMLoc RegLoc = Parser.getTok().getLoc(); 3382 3383 // Check the first register in the list to see what register class 3384 // this is a list of. 3385 int Reg = tryParseRegister(); 3386 if (Reg == -1) 3387 return Error(RegLoc, "register expected"); 3388 3389 // The reglist instructions have at most 16 registers, so reserve 3390 // space for that many. 3391 int EReg = 0; 3392 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3393 3394 // Allow Q regs and just interpret them as the two D sub-registers. 3395 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3396 Reg = getDRegFromQReg(Reg); 3397 EReg = MRI->getEncodingValue(Reg); 3398 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3399 ++Reg; 3400 } 3401 const MCRegisterClass *RC; 3402 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3403 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3404 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3405 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3406 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3407 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3408 else 3409 return Error(RegLoc, "invalid register in register list"); 3410 3411 // Store the register. 3412 EReg = MRI->getEncodingValue(Reg); 3413 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3414 3415 // This starts immediately after the first register token in the list, 3416 // so we can see either a comma or a minus (range separator) as a legal 3417 // next token. 3418 while (Parser.getTok().is(AsmToken::Comma) || 3419 Parser.getTok().is(AsmToken::Minus)) { 3420 if (Parser.getTok().is(AsmToken::Minus)) { 3421 Parser.Lex(); // Eat the minus. 3422 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3423 int EndReg = tryParseRegister(); 3424 if (EndReg == -1) 3425 return Error(AfterMinusLoc, "register expected"); 3426 // Allow Q regs and just interpret them as the two D sub-registers. 3427 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3428 EndReg = getDRegFromQReg(EndReg) + 1; 3429 // If the register is the same as the start reg, there's nothing 3430 // more to do. 3431 if (Reg == EndReg) 3432 continue; 3433 // The register must be in the same register class as the first. 3434 if (!RC->contains(EndReg)) 3435 return Error(AfterMinusLoc, "invalid register in register list"); 3436 // Ranges must go from low to high. 3437 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3438 return Error(AfterMinusLoc, "bad range in register list"); 3439 3440 // Add all the registers in the range to the register list. 3441 while (Reg != EndReg) { 3442 Reg = getNextRegister(Reg); 3443 EReg = MRI->getEncodingValue(Reg); 3444 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3445 } 3446 continue; 3447 } 3448 Parser.Lex(); // Eat the comma. 3449 RegLoc = Parser.getTok().getLoc(); 3450 int OldReg = Reg; 3451 const AsmToken RegTok = Parser.getTok(); 3452 Reg = tryParseRegister(); 3453 if (Reg == -1) 3454 return Error(RegLoc, "register expected"); 3455 // Allow Q regs and just interpret them as the two D sub-registers. 3456 bool isQReg = false; 3457 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3458 Reg = getDRegFromQReg(Reg); 3459 isQReg = true; 3460 } 3461 // The register must be in the same register class as the first. 3462 if (!RC->contains(Reg)) 3463 return Error(RegLoc, "invalid register in register list"); 3464 // List must be monotonically increasing. 3465 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3466 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3467 Warning(RegLoc, "register list not in ascending order"); 3468 else 3469 return Error(RegLoc, "register list not in ascending order"); 3470 } 3471 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3472 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3473 ") in register list"); 3474 continue; 3475 } 3476 // VFP register lists must also be contiguous. 3477 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3478 Reg != OldReg + 1) 3479 return Error(RegLoc, "non-contiguous register range"); 3480 EReg = MRI->getEncodingValue(Reg); 3481 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3482 if (isQReg) { 3483 EReg = MRI->getEncodingValue(++Reg); 3484 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3485 } 3486 } 3487 3488 if (Parser.getTok().isNot(AsmToken::RCurly)) 3489 return Error(Parser.getTok().getLoc(), "'}' expected"); 3490 SMLoc E = Parser.getTok().getEndLoc(); 3491 Parser.Lex(); // Eat '}' token. 3492 3493 // Push the register list operand. 3494 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3495 3496 // The ARM system instruction variants for LDM/STM have a '^' token here. 3497 if (Parser.getTok().is(AsmToken::Caret)) { 3498 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3499 Parser.Lex(); // Eat '^' token. 3500 } 3501 3502 return false; 3503 } 3504 3505 // Helper function to parse the lane index for vector lists. 3506 ARMAsmParser::OperandMatchResultTy ARMAsmParser:: 3507 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3508 MCAsmParser &Parser = getParser(); 3509 Index = 0; // Always return a defined index value. 3510 if (Parser.getTok().is(AsmToken::LBrac)) { 3511 Parser.Lex(); // Eat the '['. 3512 if (Parser.getTok().is(AsmToken::RBrac)) { 3513 // "Dn[]" is the 'all lanes' syntax. 3514 LaneKind = AllLanes; 3515 EndLoc = Parser.getTok().getEndLoc(); 3516 Parser.Lex(); // Eat the ']'. 3517 return MatchOperand_Success; 3518 } 3519 3520 // There's an optional '#' token here. Normally there wouldn't be, but 3521 // inline assemble puts one in, and it's friendly to accept that. 3522 if (Parser.getTok().is(AsmToken::Hash)) 3523 Parser.Lex(); // Eat '#' or '$'. 3524 3525 const MCExpr *LaneIndex; 3526 SMLoc Loc = Parser.getTok().getLoc(); 3527 if (getParser().parseExpression(LaneIndex)) { 3528 Error(Loc, "illegal expression"); 3529 return MatchOperand_ParseFail; 3530 } 3531 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3532 if (!CE) { 3533 Error(Loc, "lane index must be empty or an integer"); 3534 return MatchOperand_ParseFail; 3535 } 3536 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3537 Error(Parser.getTok().getLoc(), "']' expected"); 3538 return MatchOperand_ParseFail; 3539 } 3540 EndLoc = Parser.getTok().getEndLoc(); 3541 Parser.Lex(); // Eat the ']'. 3542 int64_t Val = CE->getValue(); 3543 3544 // FIXME: Make this range check context sensitive for .8, .16, .32. 3545 if (Val < 0 || Val > 7) { 3546 Error(Parser.getTok().getLoc(), "lane index out of range"); 3547 return MatchOperand_ParseFail; 3548 } 3549 Index = Val; 3550 LaneKind = IndexedLane; 3551 return MatchOperand_Success; 3552 } 3553 LaneKind = NoLanes; 3554 return MatchOperand_Success; 3555 } 3556 3557 // parse a vector register list 3558 ARMAsmParser::OperandMatchResultTy 3559 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3560 MCAsmParser &Parser = getParser(); 3561 VectorLaneTy LaneKind; 3562 unsigned LaneIndex; 3563 SMLoc S = Parser.getTok().getLoc(); 3564 // As an extension (to match gas), support a plain D register or Q register 3565 // (without encosing curly braces) as a single or double entry list, 3566 // respectively. 3567 if (Parser.getTok().is(AsmToken::Identifier)) { 3568 SMLoc E = Parser.getTok().getEndLoc(); 3569 int Reg = tryParseRegister(); 3570 if (Reg == -1) 3571 return MatchOperand_NoMatch; 3572 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3573 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3574 if (Res != MatchOperand_Success) 3575 return Res; 3576 switch (LaneKind) { 3577 case NoLanes: 3578 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3579 break; 3580 case AllLanes: 3581 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3582 S, E)); 3583 break; 3584 case IndexedLane: 3585 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3586 LaneIndex, 3587 false, S, E)); 3588 break; 3589 } 3590 return MatchOperand_Success; 3591 } 3592 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3593 Reg = getDRegFromQReg(Reg); 3594 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3595 if (Res != MatchOperand_Success) 3596 return Res; 3597 switch (LaneKind) { 3598 case NoLanes: 3599 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3600 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3601 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3602 break; 3603 case AllLanes: 3604 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3605 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3606 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3607 S, E)); 3608 break; 3609 case IndexedLane: 3610 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3611 LaneIndex, 3612 false, S, E)); 3613 break; 3614 } 3615 return MatchOperand_Success; 3616 } 3617 Error(S, "vector register expected"); 3618 return MatchOperand_ParseFail; 3619 } 3620 3621 if (Parser.getTok().isNot(AsmToken::LCurly)) 3622 return MatchOperand_NoMatch; 3623 3624 Parser.Lex(); // Eat '{' token. 3625 SMLoc RegLoc = Parser.getTok().getLoc(); 3626 3627 int Reg = tryParseRegister(); 3628 if (Reg == -1) { 3629 Error(RegLoc, "register expected"); 3630 return MatchOperand_ParseFail; 3631 } 3632 unsigned Count = 1; 3633 int Spacing = 0; 3634 unsigned FirstReg = Reg; 3635 // The list is of D registers, but we also allow Q regs and just interpret 3636 // them as the two D sub-registers. 3637 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3638 FirstReg = Reg = getDRegFromQReg(Reg); 3639 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3640 // it's ambiguous with four-register single spaced. 3641 ++Reg; 3642 ++Count; 3643 } 3644 3645 SMLoc E; 3646 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3647 return MatchOperand_ParseFail; 3648 3649 while (Parser.getTok().is(AsmToken::Comma) || 3650 Parser.getTok().is(AsmToken::Minus)) { 3651 if (Parser.getTok().is(AsmToken::Minus)) { 3652 if (!Spacing) 3653 Spacing = 1; // Register range implies a single spaced list. 3654 else if (Spacing == 2) { 3655 Error(Parser.getTok().getLoc(), 3656 "sequential registers in double spaced list"); 3657 return MatchOperand_ParseFail; 3658 } 3659 Parser.Lex(); // Eat the minus. 3660 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3661 int EndReg = tryParseRegister(); 3662 if (EndReg == -1) { 3663 Error(AfterMinusLoc, "register expected"); 3664 return MatchOperand_ParseFail; 3665 } 3666 // Allow Q regs and just interpret them as the two D sub-registers. 3667 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3668 EndReg = getDRegFromQReg(EndReg) + 1; 3669 // If the register is the same as the start reg, there's nothing 3670 // more to do. 3671 if (Reg == EndReg) 3672 continue; 3673 // The register must be in the same register class as the first. 3674 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3675 Error(AfterMinusLoc, "invalid register in register list"); 3676 return MatchOperand_ParseFail; 3677 } 3678 // Ranges must go from low to high. 3679 if (Reg > EndReg) { 3680 Error(AfterMinusLoc, "bad range in register list"); 3681 return MatchOperand_ParseFail; 3682 } 3683 // Parse the lane specifier if present. 3684 VectorLaneTy NextLaneKind; 3685 unsigned NextLaneIndex; 3686 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3687 MatchOperand_Success) 3688 return MatchOperand_ParseFail; 3689 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3690 Error(AfterMinusLoc, "mismatched lane index in register list"); 3691 return MatchOperand_ParseFail; 3692 } 3693 3694 // Add all the registers in the range to the register list. 3695 Count += EndReg - Reg; 3696 Reg = EndReg; 3697 continue; 3698 } 3699 Parser.Lex(); // Eat the comma. 3700 RegLoc = Parser.getTok().getLoc(); 3701 int OldReg = Reg; 3702 Reg = tryParseRegister(); 3703 if (Reg == -1) { 3704 Error(RegLoc, "register expected"); 3705 return MatchOperand_ParseFail; 3706 } 3707 // vector register lists must be contiguous. 3708 // It's OK to use the enumeration values directly here rather, as the 3709 // VFP register classes have the enum sorted properly. 3710 // 3711 // The list is of D registers, but we also allow Q regs and just interpret 3712 // them as the two D sub-registers. 3713 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3714 if (!Spacing) 3715 Spacing = 1; // Register range implies a single spaced list. 3716 else if (Spacing == 2) { 3717 Error(RegLoc, 3718 "invalid register in double-spaced list (must be 'D' register')"); 3719 return MatchOperand_ParseFail; 3720 } 3721 Reg = getDRegFromQReg(Reg); 3722 if (Reg != OldReg + 1) { 3723 Error(RegLoc, "non-contiguous register range"); 3724 return MatchOperand_ParseFail; 3725 } 3726 ++Reg; 3727 Count += 2; 3728 // Parse the lane specifier if present. 3729 VectorLaneTy NextLaneKind; 3730 unsigned NextLaneIndex; 3731 SMLoc LaneLoc = Parser.getTok().getLoc(); 3732 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3733 MatchOperand_Success) 3734 return MatchOperand_ParseFail; 3735 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3736 Error(LaneLoc, "mismatched lane index in register list"); 3737 return MatchOperand_ParseFail; 3738 } 3739 continue; 3740 } 3741 // Normal D register. 3742 // Figure out the register spacing (single or double) of the list if 3743 // we don't know it already. 3744 if (!Spacing) 3745 Spacing = 1 + (Reg == OldReg + 2); 3746 3747 // Just check that it's contiguous and keep going. 3748 if (Reg != OldReg + Spacing) { 3749 Error(RegLoc, "non-contiguous register range"); 3750 return MatchOperand_ParseFail; 3751 } 3752 ++Count; 3753 // Parse the lane specifier if present. 3754 VectorLaneTy NextLaneKind; 3755 unsigned NextLaneIndex; 3756 SMLoc EndLoc = Parser.getTok().getLoc(); 3757 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3758 return MatchOperand_ParseFail; 3759 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3760 Error(EndLoc, "mismatched lane index in register list"); 3761 return MatchOperand_ParseFail; 3762 } 3763 } 3764 3765 if (Parser.getTok().isNot(AsmToken::RCurly)) { 3766 Error(Parser.getTok().getLoc(), "'}' expected"); 3767 return MatchOperand_ParseFail; 3768 } 3769 E = Parser.getTok().getEndLoc(); 3770 Parser.Lex(); // Eat '}' token. 3771 3772 switch (LaneKind) { 3773 case NoLanes: 3774 // Two-register operands have been converted to the 3775 // composite register classes. 3776 if (Count == 2) { 3777 const MCRegisterClass *RC = (Spacing == 1) ? 3778 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3779 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3780 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3781 } 3782 3783 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 3784 (Spacing == 2), S, E)); 3785 break; 3786 case AllLanes: 3787 // Two-register operands have been converted to the 3788 // composite register classes. 3789 if (Count == 2) { 3790 const MCRegisterClass *RC = (Spacing == 1) ? 3791 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3792 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3793 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3794 } 3795 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 3796 (Spacing == 2), 3797 S, E)); 3798 break; 3799 case IndexedLane: 3800 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 3801 LaneIndex, 3802 (Spacing == 2), 3803 S, E)); 3804 break; 3805 } 3806 return MatchOperand_Success; 3807 } 3808 3809 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 3810 ARMAsmParser::OperandMatchResultTy 3811 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 3812 MCAsmParser &Parser = getParser(); 3813 SMLoc S = Parser.getTok().getLoc(); 3814 const AsmToken &Tok = Parser.getTok(); 3815 unsigned Opt; 3816 3817 if (Tok.is(AsmToken::Identifier)) { 3818 StringRef OptStr = Tok.getString(); 3819 3820 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 3821 .Case("sy", ARM_MB::SY) 3822 .Case("st", ARM_MB::ST) 3823 .Case("ld", ARM_MB::LD) 3824 .Case("sh", ARM_MB::ISH) 3825 .Case("ish", ARM_MB::ISH) 3826 .Case("shst", ARM_MB::ISHST) 3827 .Case("ishst", ARM_MB::ISHST) 3828 .Case("ishld", ARM_MB::ISHLD) 3829 .Case("nsh", ARM_MB::NSH) 3830 .Case("un", ARM_MB::NSH) 3831 .Case("nshst", ARM_MB::NSHST) 3832 .Case("nshld", ARM_MB::NSHLD) 3833 .Case("unst", ARM_MB::NSHST) 3834 .Case("osh", ARM_MB::OSH) 3835 .Case("oshst", ARM_MB::OSHST) 3836 .Case("oshld", ARM_MB::OSHLD) 3837 .Default(~0U); 3838 3839 // ishld, oshld, nshld and ld are only available from ARMv8. 3840 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 3841 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 3842 Opt = ~0U; 3843 3844 if (Opt == ~0U) 3845 return MatchOperand_NoMatch; 3846 3847 Parser.Lex(); // Eat identifier token. 3848 } else if (Tok.is(AsmToken::Hash) || 3849 Tok.is(AsmToken::Dollar) || 3850 Tok.is(AsmToken::Integer)) { 3851 if (Parser.getTok().isNot(AsmToken::Integer)) 3852 Parser.Lex(); // Eat '#' or '$'. 3853 SMLoc Loc = Parser.getTok().getLoc(); 3854 3855 const MCExpr *MemBarrierID; 3856 if (getParser().parseExpression(MemBarrierID)) { 3857 Error(Loc, "illegal expression"); 3858 return MatchOperand_ParseFail; 3859 } 3860 3861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 3862 if (!CE) { 3863 Error(Loc, "constant expression expected"); 3864 return MatchOperand_ParseFail; 3865 } 3866 3867 int Val = CE->getValue(); 3868 if (Val & ~0xf) { 3869 Error(Loc, "immediate value out of range"); 3870 return MatchOperand_ParseFail; 3871 } 3872 3873 Opt = ARM_MB::RESERVED_0 + Val; 3874 } else 3875 return MatchOperand_ParseFail; 3876 3877 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 3878 return MatchOperand_Success; 3879 } 3880 3881 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 3882 ARMAsmParser::OperandMatchResultTy 3883 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 3884 MCAsmParser &Parser = getParser(); 3885 SMLoc S = Parser.getTok().getLoc(); 3886 const AsmToken &Tok = Parser.getTok(); 3887 unsigned Opt; 3888 3889 if (Tok.is(AsmToken::Identifier)) { 3890 StringRef OptStr = Tok.getString(); 3891 3892 if (OptStr.equals_lower("sy")) 3893 Opt = ARM_ISB::SY; 3894 else 3895 return MatchOperand_NoMatch; 3896 3897 Parser.Lex(); // Eat identifier token. 3898 } else if (Tok.is(AsmToken::Hash) || 3899 Tok.is(AsmToken::Dollar) || 3900 Tok.is(AsmToken::Integer)) { 3901 if (Parser.getTok().isNot(AsmToken::Integer)) 3902 Parser.Lex(); // Eat '#' or '$'. 3903 SMLoc Loc = Parser.getTok().getLoc(); 3904 3905 const MCExpr *ISBarrierID; 3906 if (getParser().parseExpression(ISBarrierID)) { 3907 Error(Loc, "illegal expression"); 3908 return MatchOperand_ParseFail; 3909 } 3910 3911 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 3912 if (!CE) { 3913 Error(Loc, "constant expression expected"); 3914 return MatchOperand_ParseFail; 3915 } 3916 3917 int Val = CE->getValue(); 3918 if (Val & ~0xf) { 3919 Error(Loc, "immediate value out of range"); 3920 return MatchOperand_ParseFail; 3921 } 3922 3923 Opt = ARM_ISB::RESERVED_0 + Val; 3924 } else 3925 return MatchOperand_ParseFail; 3926 3927 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 3928 (ARM_ISB::InstSyncBOpt)Opt, S)); 3929 return MatchOperand_Success; 3930 } 3931 3932 3933 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 3934 ARMAsmParser::OperandMatchResultTy 3935 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 3936 MCAsmParser &Parser = getParser(); 3937 SMLoc S = Parser.getTok().getLoc(); 3938 const AsmToken &Tok = Parser.getTok(); 3939 if (!Tok.is(AsmToken::Identifier)) 3940 return MatchOperand_NoMatch; 3941 StringRef IFlagsStr = Tok.getString(); 3942 3943 // An iflags string of "none" is interpreted to mean that none of the AIF 3944 // bits are set. Not a terribly useful instruction, but a valid encoding. 3945 unsigned IFlags = 0; 3946 if (IFlagsStr != "none") { 3947 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 3948 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 3949 .Case("a", ARM_PROC::A) 3950 .Case("i", ARM_PROC::I) 3951 .Case("f", ARM_PROC::F) 3952 .Default(~0U); 3953 3954 // If some specific iflag is already set, it means that some letter is 3955 // present more than once, this is not acceptable. 3956 if (Flag == ~0U || (IFlags & Flag)) 3957 return MatchOperand_NoMatch; 3958 3959 IFlags |= Flag; 3960 } 3961 } 3962 3963 Parser.Lex(); // Eat identifier token. 3964 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 3965 return MatchOperand_Success; 3966 } 3967 3968 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 3969 ARMAsmParser::OperandMatchResultTy 3970 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 3971 MCAsmParser &Parser = getParser(); 3972 SMLoc S = Parser.getTok().getLoc(); 3973 const AsmToken &Tok = Parser.getTok(); 3974 if (!Tok.is(AsmToken::Identifier)) 3975 return MatchOperand_NoMatch; 3976 StringRef Mask = Tok.getString(); 3977 3978 if (isMClass()) { 3979 // See ARMv6-M 10.1.1 3980 std::string Name = Mask.lower(); 3981 unsigned FlagsVal = StringSwitch<unsigned>(Name) 3982 // Note: in the documentation: 3983 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 3984 // for MSR APSR_nzcvq. 3985 // but we do make it an alias here. This is so to get the "mask encoding" 3986 // bits correct on MSR APSR writes. 3987 // 3988 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 3989 // should really only be allowed when writing a special register. Note 3990 // they get dropped in the MRS instruction reading a special register as 3991 // the SYSm field is only 8 bits. 3992 .Case("apsr", 0x800) 3993 .Case("apsr_nzcvq", 0x800) 3994 .Case("apsr_g", 0x400) 3995 .Case("apsr_nzcvqg", 0xc00) 3996 .Case("iapsr", 0x801) 3997 .Case("iapsr_nzcvq", 0x801) 3998 .Case("iapsr_g", 0x401) 3999 .Case("iapsr_nzcvqg", 0xc01) 4000 .Case("eapsr", 0x802) 4001 .Case("eapsr_nzcvq", 0x802) 4002 .Case("eapsr_g", 0x402) 4003 .Case("eapsr_nzcvqg", 0xc02) 4004 .Case("xpsr", 0x803) 4005 .Case("xpsr_nzcvq", 0x803) 4006 .Case("xpsr_g", 0x403) 4007 .Case("xpsr_nzcvqg", 0xc03) 4008 .Case("ipsr", 0x805) 4009 .Case("epsr", 0x806) 4010 .Case("iepsr", 0x807) 4011 .Case("msp", 0x808) 4012 .Case("psp", 0x809) 4013 .Case("primask", 0x810) 4014 .Case("basepri", 0x811) 4015 .Case("basepri_max", 0x812) 4016 .Case("faultmask", 0x813) 4017 .Case("control", 0x814) 4018 .Case("msplim", 0x80a) 4019 .Case("psplim", 0x80b) 4020 .Case("msp_ns", 0x888) 4021 .Case("psp_ns", 0x889) 4022 .Case("msplim_ns", 0x88a) 4023 .Case("psplim_ns", 0x88b) 4024 .Case("primask_ns", 0x890) 4025 .Case("basepri_ns", 0x891) 4026 .Case("basepri_max_ns", 0x892) 4027 .Case("faultmask_ns", 0x893) 4028 .Case("control_ns", 0x894) 4029 .Case("sp_ns", 0x898) 4030 .Default(~0U); 4031 4032 if (FlagsVal == ~0U) 4033 return MatchOperand_NoMatch; 4034 4035 if (!hasDSP() && (FlagsVal & 0x400)) 4036 // The _g and _nzcvqg versions are only valid if the DSP extension is 4037 // available. 4038 return MatchOperand_NoMatch; 4039 4040 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 4041 // basepri, basepri_max and faultmask only valid for V7m. 4042 return MatchOperand_NoMatch; 4043 4044 if (!has8MSecExt() && (FlagsVal == 0x80a || FlagsVal == 0x80b || 4045 (FlagsVal > 0x814 && FlagsVal < 0xc00))) 4046 return MatchOperand_NoMatch; 4047 4048 if (!hasV8MMainline() && (FlagsVal == 0x88a || FlagsVal == 0x88b || 4049 (FlagsVal > 0x890 && FlagsVal <= 0x893))) 4050 return MatchOperand_NoMatch; 4051 4052 Parser.Lex(); // Eat identifier token. 4053 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4054 return MatchOperand_Success; 4055 } 4056 4057 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4058 size_t Start = 0, Next = Mask.find('_'); 4059 StringRef Flags = ""; 4060 std::string SpecReg = Mask.slice(Start, Next).lower(); 4061 if (Next != StringRef::npos) 4062 Flags = Mask.slice(Next+1, Mask.size()); 4063 4064 // FlagsVal contains the complete mask: 4065 // 3-0: Mask 4066 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4067 unsigned FlagsVal = 0; 4068 4069 if (SpecReg == "apsr") { 4070 FlagsVal = StringSwitch<unsigned>(Flags) 4071 .Case("nzcvq", 0x8) // same as CPSR_f 4072 .Case("g", 0x4) // same as CPSR_s 4073 .Case("nzcvqg", 0xc) // same as CPSR_fs 4074 .Default(~0U); 4075 4076 if (FlagsVal == ~0U) { 4077 if (!Flags.empty()) 4078 return MatchOperand_NoMatch; 4079 else 4080 FlagsVal = 8; // No flag 4081 } 4082 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4083 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4084 if (Flags == "all" || Flags == "") 4085 Flags = "fc"; 4086 for (int i = 0, e = Flags.size(); i != e; ++i) { 4087 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4088 .Case("c", 1) 4089 .Case("x", 2) 4090 .Case("s", 4) 4091 .Case("f", 8) 4092 .Default(~0U); 4093 4094 // If some specific flag is already set, it means that some letter is 4095 // present more than once, this is not acceptable. 4096 if (FlagsVal == ~0U || (FlagsVal & Flag)) 4097 return MatchOperand_NoMatch; 4098 FlagsVal |= Flag; 4099 } 4100 } else // No match for special register. 4101 return MatchOperand_NoMatch; 4102 4103 // Special register without flags is NOT equivalent to "fc" flags. 4104 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4105 // two lines would enable gas compatibility at the expense of breaking 4106 // round-tripping. 4107 // 4108 // if (!FlagsVal) 4109 // FlagsVal = 0x9; 4110 4111 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4112 if (SpecReg == "spsr") 4113 FlagsVal |= 16; 4114 4115 Parser.Lex(); // Eat identifier token. 4116 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4117 return MatchOperand_Success; 4118 } 4119 4120 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4121 /// use in the MRS/MSR instructions added to support virtualization. 4122 ARMAsmParser::OperandMatchResultTy 4123 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4124 MCAsmParser &Parser = getParser(); 4125 SMLoc S = Parser.getTok().getLoc(); 4126 const AsmToken &Tok = Parser.getTok(); 4127 if (!Tok.is(AsmToken::Identifier)) 4128 return MatchOperand_NoMatch; 4129 StringRef RegName = Tok.getString(); 4130 4131 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4132 // and bit 5 is R. 4133 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4134 .Case("r8_usr", 0x00) 4135 .Case("r9_usr", 0x01) 4136 .Case("r10_usr", 0x02) 4137 .Case("r11_usr", 0x03) 4138 .Case("r12_usr", 0x04) 4139 .Case("sp_usr", 0x05) 4140 .Case("lr_usr", 0x06) 4141 .Case("r8_fiq", 0x08) 4142 .Case("r9_fiq", 0x09) 4143 .Case("r10_fiq", 0x0a) 4144 .Case("r11_fiq", 0x0b) 4145 .Case("r12_fiq", 0x0c) 4146 .Case("sp_fiq", 0x0d) 4147 .Case("lr_fiq", 0x0e) 4148 .Case("lr_irq", 0x10) 4149 .Case("sp_irq", 0x11) 4150 .Case("lr_svc", 0x12) 4151 .Case("sp_svc", 0x13) 4152 .Case("lr_abt", 0x14) 4153 .Case("sp_abt", 0x15) 4154 .Case("lr_und", 0x16) 4155 .Case("sp_und", 0x17) 4156 .Case("lr_mon", 0x1c) 4157 .Case("sp_mon", 0x1d) 4158 .Case("elr_hyp", 0x1e) 4159 .Case("sp_hyp", 0x1f) 4160 .Case("spsr_fiq", 0x2e) 4161 .Case("spsr_irq", 0x30) 4162 .Case("spsr_svc", 0x32) 4163 .Case("spsr_abt", 0x34) 4164 .Case("spsr_und", 0x36) 4165 .Case("spsr_mon", 0x3c) 4166 .Case("spsr_hyp", 0x3e) 4167 .Default(~0U); 4168 4169 if (Encoding == ~0U) 4170 return MatchOperand_NoMatch; 4171 4172 Parser.Lex(); // Eat identifier token. 4173 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4174 return MatchOperand_Success; 4175 } 4176 4177 ARMAsmParser::OperandMatchResultTy 4178 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4179 int High) { 4180 MCAsmParser &Parser = getParser(); 4181 const AsmToken &Tok = Parser.getTok(); 4182 if (Tok.isNot(AsmToken::Identifier)) { 4183 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4184 return MatchOperand_ParseFail; 4185 } 4186 StringRef ShiftName = Tok.getString(); 4187 std::string LowerOp = Op.lower(); 4188 std::string UpperOp = Op.upper(); 4189 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4190 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4191 return MatchOperand_ParseFail; 4192 } 4193 Parser.Lex(); // Eat shift type token. 4194 4195 // There must be a '#' and a shift amount. 4196 if (Parser.getTok().isNot(AsmToken::Hash) && 4197 Parser.getTok().isNot(AsmToken::Dollar)) { 4198 Error(Parser.getTok().getLoc(), "'#' expected"); 4199 return MatchOperand_ParseFail; 4200 } 4201 Parser.Lex(); // Eat hash token. 4202 4203 const MCExpr *ShiftAmount; 4204 SMLoc Loc = Parser.getTok().getLoc(); 4205 SMLoc EndLoc; 4206 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4207 Error(Loc, "illegal expression"); 4208 return MatchOperand_ParseFail; 4209 } 4210 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4211 if (!CE) { 4212 Error(Loc, "constant expression expected"); 4213 return MatchOperand_ParseFail; 4214 } 4215 int Val = CE->getValue(); 4216 if (Val < Low || Val > High) { 4217 Error(Loc, "immediate value out of range"); 4218 return MatchOperand_ParseFail; 4219 } 4220 4221 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4222 4223 return MatchOperand_Success; 4224 } 4225 4226 ARMAsmParser::OperandMatchResultTy 4227 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4228 MCAsmParser &Parser = getParser(); 4229 const AsmToken &Tok = Parser.getTok(); 4230 SMLoc S = Tok.getLoc(); 4231 if (Tok.isNot(AsmToken::Identifier)) { 4232 Error(S, "'be' or 'le' operand expected"); 4233 return MatchOperand_ParseFail; 4234 } 4235 int Val = StringSwitch<int>(Tok.getString().lower()) 4236 .Case("be", 1) 4237 .Case("le", 0) 4238 .Default(-1); 4239 Parser.Lex(); // Eat the token. 4240 4241 if (Val == -1) { 4242 Error(S, "'be' or 'le' operand expected"); 4243 return MatchOperand_ParseFail; 4244 } 4245 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4246 getContext()), 4247 S, Tok.getEndLoc())); 4248 return MatchOperand_Success; 4249 } 4250 4251 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4252 /// instructions. Legal values are: 4253 /// lsl #n 'n' in [0,31] 4254 /// asr #n 'n' in [1,32] 4255 /// n == 32 encoded as n == 0. 4256 ARMAsmParser::OperandMatchResultTy 4257 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4258 MCAsmParser &Parser = getParser(); 4259 const AsmToken &Tok = Parser.getTok(); 4260 SMLoc S = Tok.getLoc(); 4261 if (Tok.isNot(AsmToken::Identifier)) { 4262 Error(S, "shift operator 'asr' or 'lsl' expected"); 4263 return MatchOperand_ParseFail; 4264 } 4265 StringRef ShiftName = Tok.getString(); 4266 bool isASR; 4267 if (ShiftName == "lsl" || ShiftName == "LSL") 4268 isASR = false; 4269 else if (ShiftName == "asr" || ShiftName == "ASR") 4270 isASR = true; 4271 else { 4272 Error(S, "shift operator 'asr' or 'lsl' expected"); 4273 return MatchOperand_ParseFail; 4274 } 4275 Parser.Lex(); // Eat the operator. 4276 4277 // A '#' and a shift amount. 4278 if (Parser.getTok().isNot(AsmToken::Hash) && 4279 Parser.getTok().isNot(AsmToken::Dollar)) { 4280 Error(Parser.getTok().getLoc(), "'#' expected"); 4281 return MatchOperand_ParseFail; 4282 } 4283 Parser.Lex(); // Eat hash token. 4284 SMLoc ExLoc = Parser.getTok().getLoc(); 4285 4286 const MCExpr *ShiftAmount; 4287 SMLoc EndLoc; 4288 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4289 Error(ExLoc, "malformed shift expression"); 4290 return MatchOperand_ParseFail; 4291 } 4292 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4293 if (!CE) { 4294 Error(ExLoc, "shift amount must be an immediate"); 4295 return MatchOperand_ParseFail; 4296 } 4297 4298 int64_t Val = CE->getValue(); 4299 if (isASR) { 4300 // Shift amount must be in [1,32] 4301 if (Val < 1 || Val > 32) { 4302 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4303 return MatchOperand_ParseFail; 4304 } 4305 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4306 if (isThumb() && Val == 32) { 4307 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4308 return MatchOperand_ParseFail; 4309 } 4310 if (Val == 32) Val = 0; 4311 } else { 4312 // Shift amount must be in [1,32] 4313 if (Val < 0 || Val > 31) { 4314 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4315 return MatchOperand_ParseFail; 4316 } 4317 } 4318 4319 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4320 4321 return MatchOperand_Success; 4322 } 4323 4324 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4325 /// of instructions. Legal values are: 4326 /// ror #n 'n' in {0, 8, 16, 24} 4327 ARMAsmParser::OperandMatchResultTy 4328 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4329 MCAsmParser &Parser = getParser(); 4330 const AsmToken &Tok = Parser.getTok(); 4331 SMLoc S = Tok.getLoc(); 4332 if (Tok.isNot(AsmToken::Identifier)) 4333 return MatchOperand_NoMatch; 4334 StringRef ShiftName = Tok.getString(); 4335 if (ShiftName != "ror" && ShiftName != "ROR") 4336 return MatchOperand_NoMatch; 4337 Parser.Lex(); // Eat the operator. 4338 4339 // A '#' and a rotate amount. 4340 if (Parser.getTok().isNot(AsmToken::Hash) && 4341 Parser.getTok().isNot(AsmToken::Dollar)) { 4342 Error(Parser.getTok().getLoc(), "'#' expected"); 4343 return MatchOperand_ParseFail; 4344 } 4345 Parser.Lex(); // Eat hash token. 4346 SMLoc ExLoc = Parser.getTok().getLoc(); 4347 4348 const MCExpr *ShiftAmount; 4349 SMLoc EndLoc; 4350 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4351 Error(ExLoc, "malformed rotate expression"); 4352 return MatchOperand_ParseFail; 4353 } 4354 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4355 if (!CE) { 4356 Error(ExLoc, "rotate amount must be an immediate"); 4357 return MatchOperand_ParseFail; 4358 } 4359 4360 int64_t Val = CE->getValue(); 4361 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4362 // normally, zero is represented in asm by omitting the rotate operand 4363 // entirely. 4364 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4365 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4366 return MatchOperand_ParseFail; 4367 } 4368 4369 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4370 4371 return MatchOperand_Success; 4372 } 4373 4374 ARMAsmParser::OperandMatchResultTy 4375 ARMAsmParser::parseModImm(OperandVector &Operands) { 4376 MCAsmParser &Parser = getParser(); 4377 MCAsmLexer &Lexer = getLexer(); 4378 int64_t Imm1, Imm2; 4379 4380 SMLoc S = Parser.getTok().getLoc(); 4381 4382 // 1) A mod_imm operand can appear in the place of a register name: 4383 // add r0, #mod_imm 4384 // add r0, r0, #mod_imm 4385 // to correctly handle the latter, we bail out as soon as we see an 4386 // identifier. 4387 // 4388 // 2) Similarly, we do not want to parse into complex operands: 4389 // mov r0, #mod_imm 4390 // mov r0, :lower16:(_foo) 4391 if (Parser.getTok().is(AsmToken::Identifier) || 4392 Parser.getTok().is(AsmToken::Colon)) 4393 return MatchOperand_NoMatch; 4394 4395 // Hash (dollar) is optional as per the ARMARM 4396 if (Parser.getTok().is(AsmToken::Hash) || 4397 Parser.getTok().is(AsmToken::Dollar)) { 4398 // Avoid parsing into complex operands (#:) 4399 if (Lexer.peekTok().is(AsmToken::Colon)) 4400 return MatchOperand_NoMatch; 4401 4402 // Eat the hash (dollar) 4403 Parser.Lex(); 4404 } 4405 4406 SMLoc Sx1, Ex1; 4407 Sx1 = Parser.getTok().getLoc(); 4408 const MCExpr *Imm1Exp; 4409 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4410 Error(Sx1, "malformed expression"); 4411 return MatchOperand_ParseFail; 4412 } 4413 4414 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4415 4416 if (CE) { 4417 // Immediate must fit within 32-bits 4418 Imm1 = CE->getValue(); 4419 int Enc = ARM_AM::getSOImmVal(Imm1); 4420 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4421 // We have a match! 4422 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4423 (Enc & 0xF00) >> 7, 4424 Sx1, Ex1)); 4425 return MatchOperand_Success; 4426 } 4427 4428 // We have parsed an immediate which is not for us, fallback to a plain 4429 // immediate. This can happen for instruction aliases. For an example, 4430 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4431 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4432 // instruction with a mod_imm operand. The alias is defined such that the 4433 // parser method is shared, that's why we have to do this here. 4434 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4435 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4436 return MatchOperand_Success; 4437 } 4438 } else { 4439 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4440 // MCFixup). Fallback to a plain immediate. 4441 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4442 return MatchOperand_Success; 4443 } 4444 4445 // From this point onward, we expect the input to be a (#bits, #rot) pair 4446 if (Parser.getTok().isNot(AsmToken::Comma)) { 4447 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4448 return MatchOperand_ParseFail; 4449 } 4450 4451 if (Imm1 & ~0xFF) { 4452 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4453 return MatchOperand_ParseFail; 4454 } 4455 4456 // Eat the comma 4457 Parser.Lex(); 4458 4459 // Repeat for #rot 4460 SMLoc Sx2, Ex2; 4461 Sx2 = Parser.getTok().getLoc(); 4462 4463 // Eat the optional hash (dollar) 4464 if (Parser.getTok().is(AsmToken::Hash) || 4465 Parser.getTok().is(AsmToken::Dollar)) 4466 Parser.Lex(); 4467 4468 const MCExpr *Imm2Exp; 4469 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4470 Error(Sx2, "malformed expression"); 4471 return MatchOperand_ParseFail; 4472 } 4473 4474 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4475 4476 if (CE) { 4477 Imm2 = CE->getValue(); 4478 if (!(Imm2 & ~0x1E)) { 4479 // We have a match! 4480 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4481 return MatchOperand_Success; 4482 } 4483 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4484 return MatchOperand_ParseFail; 4485 } else { 4486 Error(Sx2, "constant expression expected"); 4487 return MatchOperand_ParseFail; 4488 } 4489 } 4490 4491 ARMAsmParser::OperandMatchResultTy 4492 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4493 MCAsmParser &Parser = getParser(); 4494 SMLoc S = Parser.getTok().getLoc(); 4495 // The bitfield descriptor is really two operands, the LSB and the width. 4496 if (Parser.getTok().isNot(AsmToken::Hash) && 4497 Parser.getTok().isNot(AsmToken::Dollar)) { 4498 Error(Parser.getTok().getLoc(), "'#' expected"); 4499 return MatchOperand_ParseFail; 4500 } 4501 Parser.Lex(); // Eat hash token. 4502 4503 const MCExpr *LSBExpr; 4504 SMLoc E = Parser.getTok().getLoc(); 4505 if (getParser().parseExpression(LSBExpr)) { 4506 Error(E, "malformed immediate expression"); 4507 return MatchOperand_ParseFail; 4508 } 4509 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4510 if (!CE) { 4511 Error(E, "'lsb' operand must be an immediate"); 4512 return MatchOperand_ParseFail; 4513 } 4514 4515 int64_t LSB = CE->getValue(); 4516 // The LSB must be in the range [0,31] 4517 if (LSB < 0 || LSB > 31) { 4518 Error(E, "'lsb' operand must be in the range [0,31]"); 4519 return MatchOperand_ParseFail; 4520 } 4521 E = Parser.getTok().getLoc(); 4522 4523 // Expect another immediate operand. 4524 if (Parser.getTok().isNot(AsmToken::Comma)) { 4525 Error(Parser.getTok().getLoc(), "too few operands"); 4526 return MatchOperand_ParseFail; 4527 } 4528 Parser.Lex(); // Eat hash token. 4529 if (Parser.getTok().isNot(AsmToken::Hash) && 4530 Parser.getTok().isNot(AsmToken::Dollar)) { 4531 Error(Parser.getTok().getLoc(), "'#' expected"); 4532 return MatchOperand_ParseFail; 4533 } 4534 Parser.Lex(); // Eat hash token. 4535 4536 const MCExpr *WidthExpr; 4537 SMLoc EndLoc; 4538 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4539 Error(E, "malformed immediate expression"); 4540 return MatchOperand_ParseFail; 4541 } 4542 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4543 if (!CE) { 4544 Error(E, "'width' operand must be an immediate"); 4545 return MatchOperand_ParseFail; 4546 } 4547 4548 int64_t Width = CE->getValue(); 4549 // The LSB must be in the range [1,32-lsb] 4550 if (Width < 1 || Width > 32 - LSB) { 4551 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4552 return MatchOperand_ParseFail; 4553 } 4554 4555 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4556 4557 return MatchOperand_Success; 4558 } 4559 4560 ARMAsmParser::OperandMatchResultTy 4561 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4562 // Check for a post-index addressing register operand. Specifically: 4563 // postidx_reg := '+' register {, shift} 4564 // | '-' register {, shift} 4565 // | register {, shift} 4566 4567 // This method must return MatchOperand_NoMatch without consuming any tokens 4568 // in the case where there is no match, as other alternatives take other 4569 // parse methods. 4570 MCAsmParser &Parser = getParser(); 4571 AsmToken Tok = Parser.getTok(); 4572 SMLoc S = Tok.getLoc(); 4573 bool haveEaten = false; 4574 bool isAdd = true; 4575 if (Tok.is(AsmToken::Plus)) { 4576 Parser.Lex(); // Eat the '+' token. 4577 haveEaten = true; 4578 } else if (Tok.is(AsmToken::Minus)) { 4579 Parser.Lex(); // Eat the '-' token. 4580 isAdd = false; 4581 haveEaten = true; 4582 } 4583 4584 SMLoc E = Parser.getTok().getEndLoc(); 4585 int Reg = tryParseRegister(); 4586 if (Reg == -1) { 4587 if (!haveEaten) 4588 return MatchOperand_NoMatch; 4589 Error(Parser.getTok().getLoc(), "register expected"); 4590 return MatchOperand_ParseFail; 4591 } 4592 4593 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4594 unsigned ShiftImm = 0; 4595 if (Parser.getTok().is(AsmToken::Comma)) { 4596 Parser.Lex(); // Eat the ','. 4597 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4598 return MatchOperand_ParseFail; 4599 4600 // FIXME: Only approximates end...may include intervening whitespace. 4601 E = Parser.getTok().getLoc(); 4602 } 4603 4604 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4605 ShiftImm, S, E)); 4606 4607 return MatchOperand_Success; 4608 } 4609 4610 ARMAsmParser::OperandMatchResultTy 4611 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4612 // Check for a post-index addressing register operand. Specifically: 4613 // am3offset := '+' register 4614 // | '-' register 4615 // | register 4616 // | # imm 4617 // | # + imm 4618 // | # - imm 4619 4620 // This method must return MatchOperand_NoMatch without consuming any tokens 4621 // in the case where there is no match, as other alternatives take other 4622 // parse methods. 4623 MCAsmParser &Parser = getParser(); 4624 AsmToken Tok = Parser.getTok(); 4625 SMLoc S = Tok.getLoc(); 4626 4627 // Do immediates first, as we always parse those if we have a '#'. 4628 if (Parser.getTok().is(AsmToken::Hash) || 4629 Parser.getTok().is(AsmToken::Dollar)) { 4630 Parser.Lex(); // Eat '#' or '$'. 4631 // Explicitly look for a '-', as we need to encode negative zero 4632 // differently. 4633 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4634 const MCExpr *Offset; 4635 SMLoc E; 4636 if (getParser().parseExpression(Offset, E)) 4637 return MatchOperand_ParseFail; 4638 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4639 if (!CE) { 4640 Error(S, "constant expression expected"); 4641 return MatchOperand_ParseFail; 4642 } 4643 // Negative zero is encoded as the flag value INT32_MIN. 4644 int32_t Val = CE->getValue(); 4645 if (isNegative && Val == 0) 4646 Val = INT32_MIN; 4647 4648 Operands.push_back( 4649 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4650 4651 return MatchOperand_Success; 4652 } 4653 4654 4655 bool haveEaten = false; 4656 bool isAdd = true; 4657 if (Tok.is(AsmToken::Plus)) { 4658 Parser.Lex(); // Eat the '+' token. 4659 haveEaten = true; 4660 } else if (Tok.is(AsmToken::Minus)) { 4661 Parser.Lex(); // Eat the '-' token. 4662 isAdd = false; 4663 haveEaten = true; 4664 } 4665 4666 Tok = Parser.getTok(); 4667 int Reg = tryParseRegister(); 4668 if (Reg == -1) { 4669 if (!haveEaten) 4670 return MatchOperand_NoMatch; 4671 Error(Tok.getLoc(), "register expected"); 4672 return MatchOperand_ParseFail; 4673 } 4674 4675 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4676 0, S, Tok.getEndLoc())); 4677 4678 return MatchOperand_Success; 4679 } 4680 4681 /// Convert parsed operands to MCInst. Needed here because this instruction 4682 /// only has two register operands, but multiplication is commutative so 4683 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4684 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4685 const OperandVector &Operands) { 4686 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4687 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4688 // If we have a three-operand form, make sure to set Rn to be the operand 4689 // that isn't the same as Rd. 4690 unsigned RegOp = 4; 4691 if (Operands.size() == 6 && 4692 ((ARMOperand &)*Operands[4]).getReg() == 4693 ((ARMOperand &)*Operands[3]).getReg()) 4694 RegOp = 5; 4695 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4696 Inst.addOperand(Inst.getOperand(0)); 4697 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4698 } 4699 4700 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4701 const OperandVector &Operands) { 4702 int CondOp = -1, ImmOp = -1; 4703 switch(Inst.getOpcode()) { 4704 case ARM::tB: 4705 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4706 4707 case ARM::t2B: 4708 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4709 4710 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4711 } 4712 // first decide whether or not the branch should be conditional 4713 // by looking at it's location relative to an IT block 4714 if(inITBlock()) { 4715 // inside an IT block we cannot have any conditional branches. any 4716 // such instructions needs to be converted to unconditional form 4717 switch(Inst.getOpcode()) { 4718 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4719 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4720 } 4721 } else { 4722 // outside IT blocks we can only have unconditional branches with AL 4723 // condition code or conditional branches with non-AL condition code 4724 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4725 switch(Inst.getOpcode()) { 4726 case ARM::tB: 4727 case ARM::tBcc: 4728 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4729 break; 4730 case ARM::t2B: 4731 case ARM::t2Bcc: 4732 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4733 break; 4734 } 4735 } 4736 4737 // now decide on encoding size based on branch target range 4738 switch(Inst.getOpcode()) { 4739 // classify tB as either t2B or t1B based on range of immediate operand 4740 case ARM::tB: { 4741 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4742 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 4743 Inst.setOpcode(ARM::t2B); 4744 break; 4745 } 4746 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4747 case ARM::tBcc: { 4748 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4749 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 4750 Inst.setOpcode(ARM::t2Bcc); 4751 break; 4752 } 4753 } 4754 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4755 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4756 } 4757 4758 /// Parse an ARM memory expression, return false if successful else return true 4759 /// or an error. The first token must be a '[' when called. 4760 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4761 MCAsmParser &Parser = getParser(); 4762 SMLoc S, E; 4763 assert(Parser.getTok().is(AsmToken::LBrac) && 4764 "Token is not a Left Bracket"); 4765 S = Parser.getTok().getLoc(); 4766 Parser.Lex(); // Eat left bracket token. 4767 4768 const AsmToken &BaseRegTok = Parser.getTok(); 4769 int BaseRegNum = tryParseRegister(); 4770 if (BaseRegNum == -1) 4771 return Error(BaseRegTok.getLoc(), "register expected"); 4772 4773 // The next token must either be a comma, a colon or a closing bracket. 4774 const AsmToken &Tok = Parser.getTok(); 4775 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4776 !Tok.is(AsmToken::RBrac)) 4777 return Error(Tok.getLoc(), "malformed memory operand"); 4778 4779 if (Tok.is(AsmToken::RBrac)) { 4780 E = Tok.getEndLoc(); 4781 Parser.Lex(); // Eat right bracket token. 4782 4783 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4784 ARM_AM::no_shift, 0, 0, false, 4785 S, E)); 4786 4787 // If there's a pre-indexing writeback marker, '!', just add it as a token 4788 // operand. It's rather odd, but syntactically valid. 4789 if (Parser.getTok().is(AsmToken::Exclaim)) { 4790 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4791 Parser.Lex(); // Eat the '!'. 4792 } 4793 4794 return false; 4795 } 4796 4797 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4798 "Lost colon or comma in memory operand?!"); 4799 if (Tok.is(AsmToken::Comma)) { 4800 Parser.Lex(); // Eat the comma. 4801 } 4802 4803 // If we have a ':', it's an alignment specifier. 4804 if (Parser.getTok().is(AsmToken::Colon)) { 4805 Parser.Lex(); // Eat the ':'. 4806 E = Parser.getTok().getLoc(); 4807 SMLoc AlignmentLoc = Tok.getLoc(); 4808 4809 const MCExpr *Expr; 4810 if (getParser().parseExpression(Expr)) 4811 return true; 4812 4813 // The expression has to be a constant. Memory references with relocations 4814 // don't come through here, as they use the <label> forms of the relevant 4815 // instructions. 4816 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4817 if (!CE) 4818 return Error (E, "constant expression expected"); 4819 4820 unsigned Align = 0; 4821 switch (CE->getValue()) { 4822 default: 4823 return Error(E, 4824 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4825 case 16: Align = 2; break; 4826 case 32: Align = 4; break; 4827 case 64: Align = 8; break; 4828 case 128: Align = 16; break; 4829 case 256: Align = 32; break; 4830 } 4831 4832 // Now we should have the closing ']' 4833 if (Parser.getTok().isNot(AsmToken::RBrac)) 4834 return Error(Parser.getTok().getLoc(), "']' expected"); 4835 E = Parser.getTok().getEndLoc(); 4836 Parser.Lex(); // Eat right bracket token. 4837 4838 // Don't worry about range checking the value here. That's handled by 4839 // the is*() predicates. 4840 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4841 ARM_AM::no_shift, 0, Align, 4842 false, S, E, AlignmentLoc)); 4843 4844 // If there's a pre-indexing writeback marker, '!', just add it as a token 4845 // operand. 4846 if (Parser.getTok().is(AsmToken::Exclaim)) { 4847 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4848 Parser.Lex(); // Eat the '!'. 4849 } 4850 4851 return false; 4852 } 4853 4854 // If we have a '#', it's an immediate offset, else assume it's a register 4855 // offset. Be friendly and also accept a plain integer (without a leading 4856 // hash) for gas compatibility. 4857 if (Parser.getTok().is(AsmToken::Hash) || 4858 Parser.getTok().is(AsmToken::Dollar) || 4859 Parser.getTok().is(AsmToken::Integer)) { 4860 if (Parser.getTok().isNot(AsmToken::Integer)) 4861 Parser.Lex(); // Eat '#' or '$'. 4862 E = Parser.getTok().getLoc(); 4863 4864 bool isNegative = getParser().getTok().is(AsmToken::Minus); 4865 const MCExpr *Offset; 4866 if (getParser().parseExpression(Offset)) 4867 return true; 4868 4869 // The expression has to be a constant. Memory references with relocations 4870 // don't come through here, as they use the <label> forms of the relevant 4871 // instructions. 4872 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4873 if (!CE) 4874 return Error (E, "constant expression expected"); 4875 4876 // If the constant was #-0, represent it as INT32_MIN. 4877 int32_t Val = CE->getValue(); 4878 if (isNegative && Val == 0) 4879 CE = MCConstantExpr::create(INT32_MIN, getContext()); 4880 4881 // Now we should have the closing ']' 4882 if (Parser.getTok().isNot(AsmToken::RBrac)) 4883 return Error(Parser.getTok().getLoc(), "']' expected"); 4884 E = Parser.getTok().getEndLoc(); 4885 Parser.Lex(); // Eat right bracket token. 4886 4887 // Don't worry about range checking the value here. That's handled by 4888 // the is*() predicates. 4889 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 4890 ARM_AM::no_shift, 0, 0, 4891 false, S, E)); 4892 4893 // If there's a pre-indexing writeback marker, '!', just add it as a token 4894 // operand. 4895 if (Parser.getTok().is(AsmToken::Exclaim)) { 4896 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4897 Parser.Lex(); // Eat the '!'. 4898 } 4899 4900 return false; 4901 } 4902 4903 // The register offset is optionally preceded by a '+' or '-' 4904 bool isNegative = false; 4905 if (Parser.getTok().is(AsmToken::Minus)) { 4906 isNegative = true; 4907 Parser.Lex(); // Eat the '-'. 4908 } else if (Parser.getTok().is(AsmToken::Plus)) { 4909 // Nothing to do. 4910 Parser.Lex(); // Eat the '+'. 4911 } 4912 4913 E = Parser.getTok().getLoc(); 4914 int OffsetRegNum = tryParseRegister(); 4915 if (OffsetRegNum == -1) 4916 return Error(E, "register expected"); 4917 4918 // If there's a shift operator, handle it. 4919 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 4920 unsigned ShiftImm = 0; 4921 if (Parser.getTok().is(AsmToken::Comma)) { 4922 Parser.Lex(); // Eat the ','. 4923 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 4924 return true; 4925 } 4926 4927 // Now we should have the closing ']' 4928 if (Parser.getTok().isNot(AsmToken::RBrac)) 4929 return Error(Parser.getTok().getLoc(), "']' expected"); 4930 E = Parser.getTok().getEndLoc(); 4931 Parser.Lex(); // Eat right bracket token. 4932 4933 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 4934 ShiftType, ShiftImm, 0, isNegative, 4935 S, E)); 4936 4937 // If there's a pre-indexing writeback marker, '!', just add it as a token 4938 // operand. 4939 if (Parser.getTok().is(AsmToken::Exclaim)) { 4940 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4941 Parser.Lex(); // Eat the '!'. 4942 } 4943 4944 return false; 4945 } 4946 4947 /// parseMemRegOffsetShift - one of these two: 4948 /// ( lsl | lsr | asr | ror ) , # shift_amount 4949 /// rrx 4950 /// return true if it parses a shift otherwise it returns false. 4951 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 4952 unsigned &Amount) { 4953 MCAsmParser &Parser = getParser(); 4954 SMLoc Loc = Parser.getTok().getLoc(); 4955 const AsmToken &Tok = Parser.getTok(); 4956 if (Tok.isNot(AsmToken::Identifier)) 4957 return true; 4958 StringRef ShiftName = Tok.getString(); 4959 if (ShiftName == "lsl" || ShiftName == "LSL" || 4960 ShiftName == "asl" || ShiftName == "ASL") 4961 St = ARM_AM::lsl; 4962 else if (ShiftName == "lsr" || ShiftName == "LSR") 4963 St = ARM_AM::lsr; 4964 else if (ShiftName == "asr" || ShiftName == "ASR") 4965 St = ARM_AM::asr; 4966 else if (ShiftName == "ror" || ShiftName == "ROR") 4967 St = ARM_AM::ror; 4968 else if (ShiftName == "rrx" || ShiftName == "RRX") 4969 St = ARM_AM::rrx; 4970 else 4971 return Error(Loc, "illegal shift operator"); 4972 Parser.Lex(); // Eat shift type token. 4973 4974 // rrx stands alone. 4975 Amount = 0; 4976 if (St != ARM_AM::rrx) { 4977 Loc = Parser.getTok().getLoc(); 4978 // A '#' and a shift amount. 4979 const AsmToken &HashTok = Parser.getTok(); 4980 if (HashTok.isNot(AsmToken::Hash) && 4981 HashTok.isNot(AsmToken::Dollar)) 4982 return Error(HashTok.getLoc(), "'#' expected"); 4983 Parser.Lex(); // Eat hash token. 4984 4985 const MCExpr *Expr; 4986 if (getParser().parseExpression(Expr)) 4987 return true; 4988 // Range check the immediate. 4989 // lsl, ror: 0 <= imm <= 31 4990 // lsr, asr: 0 <= imm <= 32 4991 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4992 if (!CE) 4993 return Error(Loc, "shift amount must be an immediate"); 4994 int64_t Imm = CE->getValue(); 4995 if (Imm < 0 || 4996 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 4997 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 4998 return Error(Loc, "immediate shift value out of range"); 4999 // If <ShiftTy> #0, turn it into a no_shift. 5000 if (Imm == 0) 5001 St = ARM_AM::lsl; 5002 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5003 if (Imm == 32) 5004 Imm = 0; 5005 Amount = Imm; 5006 } 5007 5008 return false; 5009 } 5010 5011 /// parseFPImm - A floating point immediate expression operand. 5012 ARMAsmParser::OperandMatchResultTy 5013 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5014 MCAsmParser &Parser = getParser(); 5015 // Anything that can accept a floating point constant as an operand 5016 // needs to go through here, as the regular parseExpression is 5017 // integer only. 5018 // 5019 // This routine still creates a generic Immediate operand, containing 5020 // a bitcast of the 64-bit floating point value. The various operands 5021 // that accept floats can check whether the value is valid for them 5022 // via the standard is*() predicates. 5023 5024 SMLoc S = Parser.getTok().getLoc(); 5025 5026 if (Parser.getTok().isNot(AsmToken::Hash) && 5027 Parser.getTok().isNot(AsmToken::Dollar)) 5028 return MatchOperand_NoMatch; 5029 5030 // Disambiguate the VMOV forms that can accept an FP immediate. 5031 // vmov.f32 <sreg>, #imm 5032 // vmov.f64 <dreg>, #imm 5033 // vmov.f32 <dreg>, #imm @ vector f32x2 5034 // vmov.f32 <qreg>, #imm @ vector f32x4 5035 // 5036 // There are also the NEON VMOV instructions which expect an 5037 // integer constant. Make sure we don't try to parse an FPImm 5038 // for these: 5039 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5040 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5041 bool isVmovf = TyOp.isToken() && 5042 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5043 TyOp.getToken() == ".f16"); 5044 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5045 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5046 Mnemonic.getToken() == "fconsts"); 5047 if (!(isVmovf || isFconst)) 5048 return MatchOperand_NoMatch; 5049 5050 Parser.Lex(); // Eat '#' or '$'. 5051 5052 // Handle negation, as that still comes through as a separate token. 5053 bool isNegative = false; 5054 if (Parser.getTok().is(AsmToken::Minus)) { 5055 isNegative = true; 5056 Parser.Lex(); 5057 } 5058 const AsmToken &Tok = Parser.getTok(); 5059 SMLoc Loc = Tok.getLoc(); 5060 if (Tok.is(AsmToken::Real) && isVmovf) { 5061 APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); 5062 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5063 // If we had a '-' in front, toggle the sign bit. 5064 IntVal ^= (uint64_t)isNegative << 31; 5065 Parser.Lex(); // Eat the token. 5066 Operands.push_back(ARMOperand::CreateImm( 5067 MCConstantExpr::create(IntVal, getContext()), 5068 S, Parser.getTok().getLoc())); 5069 return MatchOperand_Success; 5070 } 5071 // Also handle plain integers. Instructions which allow floating point 5072 // immediates also allow a raw encoded 8-bit value. 5073 if (Tok.is(AsmToken::Integer) && isFconst) { 5074 int64_t Val = Tok.getIntVal(); 5075 Parser.Lex(); // Eat the token. 5076 if (Val > 255 || Val < 0) { 5077 Error(Loc, "encoded floating point value out of range"); 5078 return MatchOperand_ParseFail; 5079 } 5080 float RealVal = ARM_AM::getFPImmFloat(Val); 5081 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5082 5083 Operands.push_back(ARMOperand::CreateImm( 5084 MCConstantExpr::create(Val, getContext()), S, 5085 Parser.getTok().getLoc())); 5086 return MatchOperand_Success; 5087 } 5088 5089 Error(Loc, "invalid floating point immediate"); 5090 return MatchOperand_ParseFail; 5091 } 5092 5093 /// Parse a arm instruction operand. For now this parses the operand regardless 5094 /// of the mnemonic. 5095 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5096 MCAsmParser &Parser = getParser(); 5097 SMLoc S, E; 5098 5099 // Check if the current operand has a custom associated parser, if so, try to 5100 // custom parse the operand, or fallback to the general approach. 5101 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5102 if (ResTy == MatchOperand_Success) 5103 return false; 5104 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5105 // there was a match, but an error occurred, in which case, just return that 5106 // the operand parsing failed. 5107 if (ResTy == MatchOperand_ParseFail) 5108 return true; 5109 5110 switch (getLexer().getKind()) { 5111 default: 5112 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5113 return true; 5114 case AsmToken::Identifier: { 5115 // If we've seen a branch mnemonic, the next operand must be a label. This 5116 // is true even if the label is a register name. So "br r1" means branch to 5117 // label "r1". 5118 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5119 if (!ExpectLabel) { 5120 if (!tryParseRegisterWithWriteBack(Operands)) 5121 return false; 5122 int Res = tryParseShiftRegister(Operands); 5123 if (Res == 0) // success 5124 return false; 5125 else if (Res == -1) // irrecoverable error 5126 return true; 5127 // If this is VMRS, check for the apsr_nzcv operand. 5128 if (Mnemonic == "vmrs" && 5129 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5130 S = Parser.getTok().getLoc(); 5131 Parser.Lex(); 5132 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5133 return false; 5134 } 5135 } 5136 5137 // Fall though for the Identifier case that is not a register or a 5138 // special name. 5139 } 5140 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5141 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5142 case AsmToken::String: // quoted label names. 5143 case AsmToken::Dot: { // . as a branch target 5144 // This was not a register so parse other operands that start with an 5145 // identifier (like labels) as expressions and create them as immediates. 5146 const MCExpr *IdVal; 5147 S = Parser.getTok().getLoc(); 5148 if (getParser().parseExpression(IdVal)) 5149 return true; 5150 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5151 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5152 return false; 5153 } 5154 case AsmToken::LBrac: 5155 return parseMemory(Operands); 5156 case AsmToken::LCurly: 5157 return parseRegisterList(Operands); 5158 case AsmToken::Dollar: 5159 case AsmToken::Hash: { 5160 // #42 -> immediate. 5161 S = Parser.getTok().getLoc(); 5162 Parser.Lex(); 5163 5164 if (Parser.getTok().isNot(AsmToken::Colon)) { 5165 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5166 const MCExpr *ImmVal; 5167 if (getParser().parseExpression(ImmVal)) 5168 return true; 5169 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5170 if (CE) { 5171 int32_t Val = CE->getValue(); 5172 if (isNegative && Val == 0) 5173 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5174 } 5175 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5176 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5177 5178 // There can be a trailing '!' on operands that we want as a separate 5179 // '!' Token operand. Handle that here. For example, the compatibility 5180 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5181 if (Parser.getTok().is(AsmToken::Exclaim)) { 5182 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5183 Parser.getTok().getLoc())); 5184 Parser.Lex(); // Eat exclaim token 5185 } 5186 return false; 5187 } 5188 // w/ a ':' after the '#', it's just like a plain ':'. 5189 // FALLTHROUGH 5190 } 5191 case AsmToken::Colon: { 5192 S = Parser.getTok().getLoc(); 5193 // ":lower16:" and ":upper16:" expression prefixes 5194 // FIXME: Check it's an expression prefix, 5195 // e.g. (FOO - :lower16:BAR) isn't legal. 5196 ARMMCExpr::VariantKind RefKind; 5197 if (parsePrefix(RefKind)) 5198 return true; 5199 5200 const MCExpr *SubExprVal; 5201 if (getParser().parseExpression(SubExprVal)) 5202 return true; 5203 5204 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5205 getContext()); 5206 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5207 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5208 return false; 5209 } 5210 case AsmToken::Equal: { 5211 S = Parser.getTok().getLoc(); 5212 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5213 return Error(S, "unexpected token in operand"); 5214 5215 Parser.Lex(); // Eat '=' 5216 const MCExpr *SubExprVal; 5217 if (getParser().parseExpression(SubExprVal)) 5218 return true; 5219 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5220 5221 const MCExpr *CPLoc = 5222 getTargetStreamer().addConstantPoolEntry(SubExprVal, S); 5223 Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E)); 5224 return false; 5225 } 5226 } 5227 } 5228 5229 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5230 // :lower16: and :upper16:. 5231 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5232 MCAsmParser &Parser = getParser(); 5233 RefKind = ARMMCExpr::VK_ARM_None; 5234 5235 // consume an optional '#' (GNU compatibility) 5236 if (getLexer().is(AsmToken::Hash)) 5237 Parser.Lex(); 5238 5239 // :lower16: and :upper16: modifiers 5240 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5241 Parser.Lex(); // Eat ':' 5242 5243 if (getLexer().isNot(AsmToken::Identifier)) { 5244 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5245 return true; 5246 } 5247 5248 enum { 5249 COFF = (1 << MCObjectFileInfo::IsCOFF), 5250 ELF = (1 << MCObjectFileInfo::IsELF), 5251 MACHO = (1 << MCObjectFileInfo::IsMachO) 5252 }; 5253 static const struct PrefixEntry { 5254 const char *Spelling; 5255 ARMMCExpr::VariantKind VariantKind; 5256 uint8_t SupportedFormats; 5257 } PrefixEntries[] = { 5258 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5259 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5260 }; 5261 5262 StringRef IDVal = Parser.getTok().getIdentifier(); 5263 5264 const auto &Prefix = 5265 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5266 [&IDVal](const PrefixEntry &PE) { 5267 return PE.Spelling == IDVal; 5268 }); 5269 if (Prefix == std::end(PrefixEntries)) { 5270 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5271 return true; 5272 } 5273 5274 uint8_t CurrentFormat; 5275 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5276 case MCObjectFileInfo::IsMachO: 5277 CurrentFormat = MACHO; 5278 break; 5279 case MCObjectFileInfo::IsELF: 5280 CurrentFormat = ELF; 5281 break; 5282 case MCObjectFileInfo::IsCOFF: 5283 CurrentFormat = COFF; 5284 break; 5285 } 5286 5287 if (~Prefix->SupportedFormats & CurrentFormat) { 5288 Error(Parser.getTok().getLoc(), 5289 "cannot represent relocation in the current file format"); 5290 return true; 5291 } 5292 5293 RefKind = Prefix->VariantKind; 5294 Parser.Lex(); 5295 5296 if (getLexer().isNot(AsmToken::Colon)) { 5297 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5298 return true; 5299 } 5300 Parser.Lex(); // Eat the last ':' 5301 5302 return false; 5303 } 5304 5305 /// \brief Given a mnemonic, split out possible predication code and carry 5306 /// setting letters to form a canonical mnemonic and flags. 5307 // 5308 // FIXME: Would be nice to autogen this. 5309 // FIXME: This is a bit of a maze of special cases. 5310 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5311 unsigned &PredicationCode, 5312 bool &CarrySetting, 5313 unsigned &ProcessorIMod, 5314 StringRef &ITMask) { 5315 PredicationCode = ARMCC::AL; 5316 CarrySetting = false; 5317 ProcessorIMod = 0; 5318 5319 // Ignore some mnemonics we know aren't predicated forms. 5320 // 5321 // FIXME: Would be nice to autogen this. 5322 if ((Mnemonic == "movs" && isThumb()) || 5323 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5324 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5325 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5326 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5327 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5328 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5329 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5330 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5331 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5332 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5333 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5334 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5335 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5336 Mnemonic == "bxns" || Mnemonic == "blxns") 5337 return Mnemonic; 5338 5339 // First, split out any predication code. Ignore mnemonics we know aren't 5340 // predicated but do have a carry-set and so weren't caught above. 5341 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5342 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5343 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5344 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5345 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5346 .Case("eq", ARMCC::EQ) 5347 .Case("ne", ARMCC::NE) 5348 .Case("hs", ARMCC::HS) 5349 .Case("cs", ARMCC::HS) 5350 .Case("lo", ARMCC::LO) 5351 .Case("cc", ARMCC::LO) 5352 .Case("mi", ARMCC::MI) 5353 .Case("pl", ARMCC::PL) 5354 .Case("vs", ARMCC::VS) 5355 .Case("vc", ARMCC::VC) 5356 .Case("hi", ARMCC::HI) 5357 .Case("ls", ARMCC::LS) 5358 .Case("ge", ARMCC::GE) 5359 .Case("lt", ARMCC::LT) 5360 .Case("gt", ARMCC::GT) 5361 .Case("le", ARMCC::LE) 5362 .Case("al", ARMCC::AL) 5363 .Default(~0U); 5364 if (CC != ~0U) { 5365 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5366 PredicationCode = CC; 5367 } 5368 } 5369 5370 // Next, determine if we have a carry setting bit. We explicitly ignore all 5371 // the instructions we know end in 's'. 5372 if (Mnemonic.endswith("s") && 5373 !(Mnemonic == "cps" || Mnemonic == "mls" || 5374 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5375 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5376 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5377 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5378 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5379 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5380 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5381 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5382 (Mnemonic == "movs" && isThumb()))) { 5383 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5384 CarrySetting = true; 5385 } 5386 5387 // The "cps" instruction can have a interrupt mode operand which is glued into 5388 // the mnemonic. Check if this is the case, split it and parse the imod op 5389 if (Mnemonic.startswith("cps")) { 5390 // Split out any imod code. 5391 unsigned IMod = 5392 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5393 .Case("ie", ARM_PROC::IE) 5394 .Case("id", ARM_PROC::ID) 5395 .Default(~0U); 5396 if (IMod != ~0U) { 5397 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5398 ProcessorIMod = IMod; 5399 } 5400 } 5401 5402 // The "it" instruction has the condition mask on the end of the mnemonic. 5403 if (Mnemonic.startswith("it")) { 5404 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5405 Mnemonic = Mnemonic.slice(0, 2); 5406 } 5407 5408 return Mnemonic; 5409 } 5410 5411 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5412 /// inclusion of carry set or predication code operands. 5413 // 5414 // FIXME: It would be nice to autogen this. 5415 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5416 bool &CanAcceptCarrySet, 5417 bool &CanAcceptPredicationCode) { 5418 CanAcceptCarrySet = 5419 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5420 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5421 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5422 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5423 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5424 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5425 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5426 (!isThumb() && 5427 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5428 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5429 5430 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5431 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5432 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5433 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5434 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5435 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5436 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5437 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5438 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5439 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5440 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5441 Mnemonic == "vmovx" || Mnemonic == "vins") { 5442 // These mnemonics are never predicable 5443 CanAcceptPredicationCode = false; 5444 } else if (!isThumb()) { 5445 // Some instructions are only predicable in Thumb mode 5446 CanAcceptPredicationCode = 5447 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5448 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5449 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5450 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5451 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5452 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5453 !Mnemonic.startswith("srs"); 5454 } else if (isThumbOne()) { 5455 if (hasV6MOps()) 5456 CanAcceptPredicationCode = Mnemonic != "movs"; 5457 else 5458 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5459 } else 5460 CanAcceptPredicationCode = true; 5461 } 5462 5463 // \brief Some Thumb instructions have two operand forms that are not 5464 // available as three operand, convert to two operand form if possible. 5465 // 5466 // FIXME: We would really like to be able to tablegen'erate this. 5467 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5468 bool CarrySetting, 5469 OperandVector &Operands) { 5470 if (Operands.size() != 6) 5471 return; 5472 5473 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5474 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5475 if (!Op3.isReg() || !Op4.isReg()) 5476 return; 5477 5478 auto Op3Reg = Op3.getReg(); 5479 auto Op4Reg = Op4.getReg(); 5480 5481 // For most Thumb2 cases we just generate the 3 operand form and reduce 5482 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5483 // won't accept SP or PC so we do the transformation here taking care 5484 // with immediate range in the 'add sp, sp #imm' case. 5485 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5486 if (isThumbTwo()) { 5487 if (Mnemonic != "add") 5488 return; 5489 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5490 (Op5.isReg() && Op5.getReg() == ARM::PC); 5491 if (!TryTransform) { 5492 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5493 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5494 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5495 Op5.isImm() && !Op5.isImm0_508s4()); 5496 } 5497 if (!TryTransform) 5498 return; 5499 } else if (!isThumbOne()) 5500 return; 5501 5502 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5503 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5504 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5505 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5506 return; 5507 5508 // If first 2 operands of a 3 operand instruction are the same 5509 // then transform to 2 operand version of the same instruction 5510 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5511 bool Transform = Op3Reg == Op4Reg; 5512 5513 // For communtative operations, we might be able to transform if we swap 5514 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5515 // as tADDrsp. 5516 const ARMOperand *LastOp = &Op5; 5517 bool Swap = false; 5518 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5519 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5520 Mnemonic == "and" || Mnemonic == "eor" || 5521 Mnemonic == "adc" || Mnemonic == "orr")) { 5522 Swap = true; 5523 LastOp = &Op4; 5524 Transform = true; 5525 } 5526 5527 // If both registers are the same then remove one of them from 5528 // the operand list, with certain exceptions. 5529 if (Transform) { 5530 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5531 // 2 operand forms don't exist. 5532 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5533 LastOp->isReg()) 5534 Transform = false; 5535 5536 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5537 // 3-bits because the ARMARM says not to. 5538 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5539 Transform = false; 5540 } 5541 5542 if (Transform) { 5543 if (Swap) 5544 std::swap(Op4, Op5); 5545 Operands.erase(Operands.begin() + 3); 5546 } 5547 } 5548 5549 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5550 OperandVector &Operands) { 5551 // FIXME: This is all horribly hacky. We really need a better way to deal 5552 // with optional operands like this in the matcher table. 5553 5554 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5555 // another does not. Specifically, the MOVW instruction does not. So we 5556 // special case it here and remove the defaulted (non-setting) cc_out 5557 // operand if that's the instruction we're trying to match. 5558 // 5559 // We do this as post-processing of the explicit operands rather than just 5560 // conditionally adding the cc_out in the first place because we need 5561 // to check the type of the parsed immediate operand. 5562 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5563 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5564 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5565 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5566 return true; 5567 5568 // Register-register 'add' for thumb does not have a cc_out operand 5569 // when there are only two register operands. 5570 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5571 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5572 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5573 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5574 return true; 5575 // Register-register 'add' for thumb does not have a cc_out operand 5576 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5577 // have to check the immediate range here since Thumb2 has a variant 5578 // that can handle a different range and has a cc_out operand. 5579 if (((isThumb() && Mnemonic == "add") || 5580 (isThumbTwo() && Mnemonic == "sub")) && 5581 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5582 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5583 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5584 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5585 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5586 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5587 return true; 5588 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5589 // imm0_4095 variant. That's the least-preferred variant when 5590 // selecting via the generic "add" mnemonic, so to know that we 5591 // should remove the cc_out operand, we have to explicitly check that 5592 // it's not one of the other variants. Ugh. 5593 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5594 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5595 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5596 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5597 // Nest conditions rather than one big 'if' statement for readability. 5598 // 5599 // If both registers are low, we're in an IT block, and the immediate is 5600 // in range, we should use encoding T1 instead, which has a cc_out. 5601 if (inITBlock() && 5602 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5603 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5604 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5605 return false; 5606 // Check against T3. If the second register is the PC, this is an 5607 // alternate form of ADR, which uses encoding T4, so check for that too. 5608 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5609 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5610 return false; 5611 5612 // Otherwise, we use encoding T4, which does not have a cc_out 5613 // operand. 5614 return true; 5615 } 5616 5617 // The thumb2 multiply instruction doesn't have a CCOut register, so 5618 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5619 // use the 16-bit encoding or not. 5620 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5621 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5622 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5623 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5624 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5625 // If the registers aren't low regs, the destination reg isn't the 5626 // same as one of the source regs, or the cc_out operand is zero 5627 // outside of an IT block, we have to use the 32-bit encoding, so 5628 // remove the cc_out operand. 5629 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5630 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5631 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5632 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5633 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5634 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5635 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5636 return true; 5637 5638 // Also check the 'mul' syntax variant that doesn't specify an explicit 5639 // destination register. 5640 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5641 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5642 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5643 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5644 // If the registers aren't low regs or the cc_out operand is zero 5645 // outside of an IT block, we have to use the 32-bit encoding, so 5646 // remove the cc_out operand. 5647 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5648 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5649 !inITBlock())) 5650 return true; 5651 5652 5653 5654 // Register-register 'add/sub' for thumb does not have a cc_out operand 5655 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5656 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5657 // right, this will result in better diagnostics (which operand is off) 5658 // anyway. 5659 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5660 (Operands.size() == 5 || Operands.size() == 6) && 5661 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5662 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5663 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5664 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5665 (Operands.size() == 6 && 5666 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5667 return true; 5668 5669 return false; 5670 } 5671 5672 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5673 OperandVector &Operands) { 5674 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5675 unsigned RegIdx = 3; 5676 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5677 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5678 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5679 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5680 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5681 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5682 RegIdx = 4; 5683 5684 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5685 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5686 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5687 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5688 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5689 return true; 5690 } 5691 return false; 5692 } 5693 5694 static bool isDataTypeToken(StringRef Tok) { 5695 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5696 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5697 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5698 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5699 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5700 Tok == ".f" || Tok == ".d"; 5701 } 5702 5703 // FIXME: This bit should probably be handled via an explicit match class 5704 // in the .td files that matches the suffix instead of having it be 5705 // a literal string token the way it is now. 5706 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5707 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5708 } 5709 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5710 unsigned VariantID); 5711 5712 static bool RequiresVFPRegListValidation(StringRef Inst, 5713 bool &AcceptSinglePrecisionOnly, 5714 bool &AcceptDoublePrecisionOnly) { 5715 if (Inst.size() < 7) 5716 return false; 5717 5718 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5719 StringRef AddressingMode = Inst.substr(4, 2); 5720 if (AddressingMode == "ia" || AddressingMode == "db" || 5721 AddressingMode == "ea" || AddressingMode == "fd") { 5722 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5723 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5724 return true; 5725 } 5726 } 5727 5728 return false; 5729 } 5730 5731 /// Parse an arm instruction mnemonic followed by its operands. 5732 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5733 SMLoc NameLoc, OperandVector &Operands) { 5734 MCAsmParser &Parser = getParser(); 5735 // FIXME: Can this be done via tablegen in some fashion? 5736 bool RequireVFPRegisterListCheck; 5737 bool AcceptSinglePrecisionOnly; 5738 bool AcceptDoublePrecisionOnly; 5739 RequireVFPRegisterListCheck = 5740 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5741 AcceptDoublePrecisionOnly); 5742 5743 // Apply mnemonic aliases before doing anything else, as the destination 5744 // mnemonic may include suffices and we want to handle them normally. 5745 // The generic tblgen'erated code does this later, at the start of 5746 // MatchInstructionImpl(), but that's too late for aliases that include 5747 // any sort of suffix. 5748 uint64_t AvailableFeatures = getAvailableFeatures(); 5749 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5750 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5751 5752 // First check for the ARM-specific .req directive. 5753 if (Parser.getTok().is(AsmToken::Identifier) && 5754 Parser.getTok().getIdentifier() == ".req") { 5755 parseDirectiveReq(Name, NameLoc); 5756 // We always return 'error' for this, as we're done with this 5757 // statement and don't need to match the 'instruction." 5758 return true; 5759 } 5760 5761 // Create the leading tokens for the mnemonic, split by '.' characters. 5762 size_t Start = 0, Next = Name.find('.'); 5763 StringRef Mnemonic = Name.slice(Start, Next); 5764 5765 // Split out the predication code and carry setting flag from the mnemonic. 5766 unsigned PredicationCode; 5767 unsigned ProcessorIMod; 5768 bool CarrySetting; 5769 StringRef ITMask; 5770 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5771 ProcessorIMod, ITMask); 5772 5773 // In Thumb1, only the branch (B) instruction can be predicated. 5774 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5775 Parser.eatToEndOfStatement(); 5776 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5777 } 5778 5779 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5780 5781 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5782 // is the mask as it will be for the IT encoding if the conditional 5783 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5784 // where the conditional bit0 is zero, the instruction post-processing 5785 // will adjust the mask accordingly. 5786 if (Mnemonic == "it") { 5787 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5788 if (ITMask.size() > 3) { 5789 Parser.eatToEndOfStatement(); 5790 return Error(Loc, "too many conditions on IT instruction"); 5791 } 5792 unsigned Mask = 8; 5793 for (unsigned i = ITMask.size(); i != 0; --i) { 5794 char pos = ITMask[i - 1]; 5795 if (pos != 't' && pos != 'e') { 5796 Parser.eatToEndOfStatement(); 5797 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5798 } 5799 Mask >>= 1; 5800 if (ITMask[i - 1] == 't') 5801 Mask |= 8; 5802 } 5803 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5804 } 5805 5806 // FIXME: This is all a pretty gross hack. We should automatically handle 5807 // optional operands like this via tblgen. 5808 5809 // Next, add the CCOut and ConditionCode operands, if needed. 5810 // 5811 // For mnemonics which can ever incorporate a carry setting bit or predication 5812 // code, our matching model involves us always generating CCOut and 5813 // ConditionCode operands to match the mnemonic "as written" and then we let 5814 // the matcher deal with finding the right instruction or generating an 5815 // appropriate error. 5816 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5817 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5818 5819 // If we had a carry-set on an instruction that can't do that, issue an 5820 // error. 5821 if (!CanAcceptCarrySet && CarrySetting) { 5822 Parser.eatToEndOfStatement(); 5823 return Error(NameLoc, "instruction '" + Mnemonic + 5824 "' can not set flags, but 's' suffix specified"); 5825 } 5826 // If we had a predication code on an instruction that can't do that, issue an 5827 // error. 5828 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 5829 Parser.eatToEndOfStatement(); 5830 return Error(NameLoc, "instruction '" + Mnemonic + 5831 "' is not predicable, but condition code specified"); 5832 } 5833 5834 // Add the carry setting operand, if necessary. 5835 if (CanAcceptCarrySet) { 5836 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 5837 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 5838 Loc)); 5839 } 5840 5841 // Add the predication code operand, if necessary. 5842 if (CanAcceptPredicationCode) { 5843 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 5844 CarrySetting); 5845 Operands.push_back(ARMOperand::CreateCondCode( 5846 ARMCC::CondCodes(PredicationCode), Loc)); 5847 } 5848 5849 // Add the processor imod operand, if necessary. 5850 if (ProcessorIMod) { 5851 Operands.push_back(ARMOperand::CreateImm( 5852 MCConstantExpr::create(ProcessorIMod, getContext()), 5853 NameLoc, NameLoc)); 5854 } else if (Mnemonic == "cps" && isMClass()) { 5855 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 5856 } 5857 5858 // Add the remaining tokens in the mnemonic. 5859 while (Next != StringRef::npos) { 5860 Start = Next; 5861 Next = Name.find('.', Start + 1); 5862 StringRef ExtraToken = Name.slice(Start, Next); 5863 5864 // Some NEON instructions have an optional datatype suffix that is 5865 // completely ignored. Check for that. 5866 if (isDataTypeToken(ExtraToken) && 5867 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 5868 continue; 5869 5870 // For for ARM mode generate an error if the .n qualifier is used. 5871 if (ExtraToken == ".n" && !isThumb()) { 5872 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5873 Parser.eatToEndOfStatement(); 5874 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 5875 "arm mode"); 5876 } 5877 5878 // The .n qualifier is always discarded as that is what the tables 5879 // and matcher expect. In ARM mode the .w qualifier has no effect, 5880 // so discard it to avoid errors that can be caused by the matcher. 5881 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 5882 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5883 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 5884 } 5885 } 5886 5887 // Read the remaining operands. 5888 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5889 // Read the first operand. 5890 if (parseOperand(Operands, Mnemonic)) { 5891 Parser.eatToEndOfStatement(); 5892 return true; 5893 } 5894 5895 while (getLexer().is(AsmToken::Comma)) { 5896 Parser.Lex(); // Eat the comma. 5897 5898 // Parse and remember the operand. 5899 if (parseOperand(Operands, Mnemonic)) { 5900 Parser.eatToEndOfStatement(); 5901 return true; 5902 } 5903 } 5904 } 5905 5906 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5907 SMLoc Loc = getLexer().getLoc(); 5908 Parser.eatToEndOfStatement(); 5909 return Error(Loc, "unexpected token in argument list"); 5910 } 5911 5912 Parser.Lex(); // Consume the EndOfStatement 5913 5914 if (RequireVFPRegisterListCheck) { 5915 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 5916 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 5917 return Error(Op.getStartLoc(), 5918 "VFP/Neon single precision register expected"); 5919 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 5920 return Error(Op.getStartLoc(), 5921 "VFP/Neon double precision register expected"); 5922 } 5923 5924 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 5925 5926 // Some instructions, mostly Thumb, have forms for the same mnemonic that 5927 // do and don't have a cc_out optional-def operand. With some spot-checks 5928 // of the operand list, we can figure out which variant we're trying to 5929 // parse and adjust accordingly before actually matching. We shouldn't ever 5930 // try to remove a cc_out operand that was explicitly set on the 5931 // mnemonic, of course (CarrySetting == true). Reason number #317 the 5932 // table driven matcher doesn't fit well with the ARM instruction set. 5933 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 5934 Operands.erase(Operands.begin() + 1); 5935 5936 // Some instructions have the same mnemonic, but don't always 5937 // have a predicate. Distinguish them here and delete the 5938 // predicate if needed. 5939 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 5940 Operands.erase(Operands.begin() + 1); 5941 5942 // ARM mode 'blx' need special handling, as the register operand version 5943 // is predicable, but the label operand version is not. So, we can't rely 5944 // on the Mnemonic based checking to correctly figure out when to put 5945 // a k_CondCode operand in the list. If we're trying to match the label 5946 // version, remove the k_CondCode operand here. 5947 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 5948 static_cast<ARMOperand &>(*Operands[2]).isImm()) 5949 Operands.erase(Operands.begin() + 1); 5950 5951 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 5952 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 5953 // a single GPRPair reg operand is used in the .td file to replace the two 5954 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 5955 // expressed as a GPRPair, so we have to manually merge them. 5956 // FIXME: We would really like to be able to tablegen'erate this. 5957 if (!isThumb() && Operands.size() > 4 && 5958 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 5959 Mnemonic == "stlexd")) { 5960 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 5961 unsigned Idx = isLoad ? 2 : 3; 5962 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 5963 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 5964 5965 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 5966 // Adjust only if Op1 and Op2 are GPRs. 5967 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 5968 MRC.contains(Op2.getReg())) { 5969 unsigned Reg1 = Op1.getReg(); 5970 unsigned Reg2 = Op2.getReg(); 5971 unsigned Rt = MRI->getEncodingValue(Reg1); 5972 unsigned Rt2 = MRI->getEncodingValue(Reg2); 5973 5974 // Rt2 must be Rt + 1 and Rt must be even. 5975 if (Rt + 1 != Rt2 || (Rt & 1)) { 5976 Error(Op2.getStartLoc(), isLoad 5977 ? "destination operands must be sequential" 5978 : "source operands must be sequential"); 5979 return true; 5980 } 5981 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 5982 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 5983 Operands[Idx] = 5984 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 5985 Operands.erase(Operands.begin() + Idx + 1); 5986 } 5987 } 5988 5989 // GNU Assembler extension (compatibility) 5990 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 5991 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 5992 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5993 if (Op3.isMem()) { 5994 assert(Op2.isReg() && "expected register argument"); 5995 5996 unsigned SuperReg = MRI->getMatchingSuperReg( 5997 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 5998 5999 assert(SuperReg && "expected register pair"); 6000 6001 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 6002 6003 Operands.insert( 6004 Operands.begin() + 3, 6005 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6006 } 6007 } 6008 6009 // FIXME: As said above, this is all a pretty gross hack. This instruction 6010 // does not fit with other "subs" and tblgen. 6011 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6012 // so the Mnemonic is the original name "subs" and delete the predicate 6013 // operand so it will match the table entry. 6014 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6015 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6016 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6017 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6018 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6019 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6020 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6021 Operands.erase(Operands.begin() + 1); 6022 } 6023 return false; 6024 } 6025 6026 // Validate context-sensitive operand constraints. 6027 6028 // return 'true' if register list contains non-low GPR registers, 6029 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6030 // 'containsReg' to true. 6031 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6032 unsigned Reg, unsigned HiReg, 6033 bool &containsReg) { 6034 containsReg = false; 6035 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6036 unsigned OpReg = Inst.getOperand(i).getReg(); 6037 if (OpReg == Reg) 6038 containsReg = true; 6039 // Anything other than a low register isn't legal here. 6040 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6041 return true; 6042 } 6043 return false; 6044 } 6045 6046 // Check if the specified regisgter is in the register list of the inst, 6047 // starting at the indicated operand number. 6048 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6049 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6050 unsigned OpReg = Inst.getOperand(i).getReg(); 6051 if (OpReg == Reg) 6052 return true; 6053 } 6054 return false; 6055 } 6056 6057 // Return true if instruction has the interesting property of being 6058 // allowed in IT blocks, but not being predicable. 6059 static bool instIsBreakpoint(const MCInst &Inst) { 6060 return Inst.getOpcode() == ARM::tBKPT || 6061 Inst.getOpcode() == ARM::BKPT || 6062 Inst.getOpcode() == ARM::tHLT || 6063 Inst.getOpcode() == ARM::HLT; 6064 6065 } 6066 6067 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6068 const OperandVector &Operands, 6069 unsigned ListNo, bool IsARPop) { 6070 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6071 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6072 6073 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6074 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6075 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6076 6077 if (!IsARPop && ListContainsSP) 6078 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6079 "SP may not be in the register list"); 6080 else if (ListContainsPC && ListContainsLR) 6081 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6082 "PC and LR may not be in the register list simultaneously"); 6083 else if (inITBlock() && !lastInITBlock() && ListContainsPC) 6084 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6085 "instruction must be outside of IT block or the last " 6086 "instruction in an IT block"); 6087 return false; 6088 } 6089 6090 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6091 const OperandVector &Operands, 6092 unsigned ListNo) { 6093 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6094 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6095 6096 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6097 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6098 6099 if (ListContainsSP && ListContainsPC) 6100 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6101 "SP and PC may not be in the register list"); 6102 else if (ListContainsSP) 6103 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6104 "SP may not be in the register list"); 6105 else if (ListContainsPC) 6106 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6107 "PC may not be in the register list"); 6108 return false; 6109 } 6110 6111 // FIXME: We would really like to be able to tablegen'erate this. 6112 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6113 const OperandVector &Operands) { 6114 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6115 SMLoc Loc = Operands[0]->getStartLoc(); 6116 6117 // Check the IT block state first. 6118 // NOTE: BKPT and HLT instructions have the interesting property of being 6119 // allowed in IT blocks, but not being predicable. They just always execute. 6120 if (inITBlock() && !instIsBreakpoint(Inst)) { 6121 unsigned Bit = 1; 6122 if (ITState.FirstCond) 6123 ITState.FirstCond = false; 6124 else 6125 Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 6126 // The instruction must be predicable. 6127 if (!MCID.isPredicable()) 6128 return Error(Loc, "instructions in IT block must be predicable"); 6129 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6130 unsigned ITCond = Bit ? ITState.Cond : 6131 ARMCC::getOppositeCondition(ITState.Cond); 6132 if (Cond != ITCond) { 6133 // Find the condition code Operand to get its SMLoc information. 6134 SMLoc CondLoc; 6135 for (unsigned I = 1; I < Operands.size(); ++I) 6136 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6137 CondLoc = Operands[I]->getStartLoc(); 6138 return Error(CondLoc, "incorrect condition in IT block; got '" + 6139 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6140 "', but expected '" + 6141 ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'"); 6142 } 6143 // Check for non-'al' condition codes outside of the IT block. 6144 } else if (isThumbTwo() && MCID.isPredicable() && 6145 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6146 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6147 Inst.getOpcode() != ARM::t2Bcc) 6148 return Error(Loc, "predicated instructions must be in IT block"); 6149 6150 const unsigned Opcode = Inst.getOpcode(); 6151 switch (Opcode) { 6152 case ARM::LDRD: 6153 case ARM::LDRD_PRE: 6154 case ARM::LDRD_POST: { 6155 const unsigned RtReg = Inst.getOperand(0).getReg(); 6156 6157 // Rt can't be R14. 6158 if (RtReg == ARM::LR) 6159 return Error(Operands[3]->getStartLoc(), 6160 "Rt can't be R14"); 6161 6162 const unsigned Rt = MRI->getEncodingValue(RtReg); 6163 // Rt must be even-numbered. 6164 if ((Rt & 1) == 1) 6165 return Error(Operands[3]->getStartLoc(), 6166 "Rt must be even-numbered"); 6167 6168 // Rt2 must be Rt + 1. 6169 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6170 if (Rt2 != Rt + 1) 6171 return Error(Operands[3]->getStartLoc(), 6172 "destination operands must be sequential"); 6173 6174 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6175 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6176 // For addressing modes with writeback, the base register needs to be 6177 // different from the destination registers. 6178 if (Rn == Rt || Rn == Rt2) 6179 return Error(Operands[3]->getStartLoc(), 6180 "base register needs to be different from destination " 6181 "registers"); 6182 } 6183 6184 return false; 6185 } 6186 case ARM::t2LDRDi8: 6187 case ARM::t2LDRD_PRE: 6188 case ARM::t2LDRD_POST: { 6189 // Rt2 must be different from Rt. 6190 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6191 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6192 if (Rt2 == Rt) 6193 return Error(Operands[3]->getStartLoc(), 6194 "destination operands can't be identical"); 6195 return false; 6196 } 6197 case ARM::t2BXJ: { 6198 const unsigned RmReg = Inst.getOperand(0).getReg(); 6199 // Rm = SP is no longer unpredictable in v8-A 6200 if (RmReg == ARM::SP && !hasV8Ops()) 6201 return Error(Operands[2]->getStartLoc(), 6202 "r13 (SP) is an unpredictable operand to BXJ"); 6203 return false; 6204 } 6205 case ARM::STRD: { 6206 // Rt2 must be Rt + 1. 6207 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6208 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6209 if (Rt2 != Rt + 1) 6210 return Error(Operands[3]->getStartLoc(), 6211 "source operands must be sequential"); 6212 return false; 6213 } 6214 case ARM::STRD_PRE: 6215 case ARM::STRD_POST: { 6216 // Rt2 must be Rt + 1. 6217 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6218 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6219 if (Rt2 != Rt + 1) 6220 return Error(Operands[3]->getStartLoc(), 6221 "source operands must be sequential"); 6222 return false; 6223 } 6224 case ARM::STR_PRE_IMM: 6225 case ARM::STR_PRE_REG: 6226 case ARM::STR_POST_IMM: 6227 case ARM::STR_POST_REG: 6228 case ARM::STRH_PRE: 6229 case ARM::STRH_POST: 6230 case ARM::STRB_PRE_IMM: 6231 case ARM::STRB_PRE_REG: 6232 case ARM::STRB_POST_IMM: 6233 case ARM::STRB_POST_REG: { 6234 // Rt must be different from Rn. 6235 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6236 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6237 6238 if (Rt == Rn) 6239 return Error(Operands[3]->getStartLoc(), 6240 "source register and base register can't be identical"); 6241 return false; 6242 } 6243 case ARM::LDR_PRE_IMM: 6244 case ARM::LDR_PRE_REG: 6245 case ARM::LDR_POST_IMM: 6246 case ARM::LDR_POST_REG: 6247 case ARM::LDRH_PRE: 6248 case ARM::LDRH_POST: 6249 case ARM::LDRSH_PRE: 6250 case ARM::LDRSH_POST: 6251 case ARM::LDRB_PRE_IMM: 6252 case ARM::LDRB_PRE_REG: 6253 case ARM::LDRB_POST_IMM: 6254 case ARM::LDRB_POST_REG: 6255 case ARM::LDRSB_PRE: 6256 case ARM::LDRSB_POST: { 6257 // Rt must be different from Rn. 6258 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6259 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6260 6261 if (Rt == Rn) 6262 return Error(Operands[3]->getStartLoc(), 6263 "destination register and base register can't be identical"); 6264 return false; 6265 } 6266 case ARM::SBFX: 6267 case ARM::UBFX: { 6268 // Width must be in range [1, 32-lsb]. 6269 unsigned LSB = Inst.getOperand(2).getImm(); 6270 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6271 if (Widthm1 >= 32 - LSB) 6272 return Error(Operands[5]->getStartLoc(), 6273 "bitfield width must be in range [1,32-lsb]"); 6274 return false; 6275 } 6276 // Notionally handles ARM::tLDMIA_UPD too. 6277 case ARM::tLDMIA: { 6278 // If we're parsing Thumb2, the .w variant is available and handles 6279 // most cases that are normally illegal for a Thumb1 LDM instruction. 6280 // We'll make the transformation in processInstruction() if necessary. 6281 // 6282 // Thumb LDM instructions are writeback iff the base register is not 6283 // in the register list. 6284 unsigned Rn = Inst.getOperand(0).getReg(); 6285 bool HasWritebackToken = 6286 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6287 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6288 bool ListContainsBase; 6289 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6290 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6291 "registers must be in range r0-r7"); 6292 // If we should have writeback, then there should be a '!' token. 6293 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6294 return Error(Operands[2]->getStartLoc(), 6295 "writeback operator '!' expected"); 6296 // If we should not have writeback, there must not be a '!'. This is 6297 // true even for the 32-bit wide encodings. 6298 if (ListContainsBase && HasWritebackToken) 6299 return Error(Operands[3]->getStartLoc(), 6300 "writeback operator '!' not allowed when base register " 6301 "in register list"); 6302 6303 if (validatetLDMRegList(Inst, Operands, 3)) 6304 return true; 6305 break; 6306 } 6307 case ARM::LDMIA_UPD: 6308 case ARM::LDMDB_UPD: 6309 case ARM::LDMIB_UPD: 6310 case ARM::LDMDA_UPD: 6311 // ARM variants loading and updating the same register are only officially 6312 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6313 if (!hasV7Ops()) 6314 break; 6315 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6316 return Error(Operands.back()->getStartLoc(), 6317 "writeback register not allowed in register list"); 6318 break; 6319 case ARM::t2LDMIA: 6320 case ARM::t2LDMDB: 6321 if (validatetLDMRegList(Inst, Operands, 3)) 6322 return true; 6323 break; 6324 case ARM::t2STMIA: 6325 case ARM::t2STMDB: 6326 if (validatetSTMRegList(Inst, Operands, 3)) 6327 return true; 6328 break; 6329 case ARM::t2LDMIA_UPD: 6330 case ARM::t2LDMDB_UPD: 6331 case ARM::t2STMIA_UPD: 6332 case ARM::t2STMDB_UPD: { 6333 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6334 return Error(Operands.back()->getStartLoc(), 6335 "writeback register not allowed in register list"); 6336 6337 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6338 if (validatetLDMRegList(Inst, Operands, 3)) 6339 return true; 6340 } else { 6341 if (validatetSTMRegList(Inst, Operands, 3)) 6342 return true; 6343 } 6344 break; 6345 } 6346 case ARM::sysLDMIA_UPD: 6347 case ARM::sysLDMDA_UPD: 6348 case ARM::sysLDMDB_UPD: 6349 case ARM::sysLDMIB_UPD: 6350 if (!listContainsReg(Inst, 3, ARM::PC)) 6351 return Error(Operands[4]->getStartLoc(), 6352 "writeback register only allowed on system LDM " 6353 "if PC in register-list"); 6354 break; 6355 case ARM::sysSTMIA_UPD: 6356 case ARM::sysSTMDA_UPD: 6357 case ARM::sysSTMDB_UPD: 6358 case ARM::sysSTMIB_UPD: 6359 return Error(Operands[2]->getStartLoc(), 6360 "system STM cannot have writeback register"); 6361 case ARM::tMUL: { 6362 // The second source operand must be the same register as the destination 6363 // operand. 6364 // 6365 // In this case, we must directly check the parsed operands because the 6366 // cvtThumbMultiply() function is written in such a way that it guarantees 6367 // this first statement is always true for the new Inst. Essentially, the 6368 // destination is unconditionally copied into the second source operand 6369 // without checking to see if it matches what we actually parsed. 6370 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6371 ((ARMOperand &)*Operands[5]).getReg()) && 6372 (((ARMOperand &)*Operands[3]).getReg() != 6373 ((ARMOperand &)*Operands[4]).getReg())) { 6374 return Error(Operands[3]->getStartLoc(), 6375 "destination register must match source register"); 6376 } 6377 break; 6378 } 6379 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6380 // so only issue a diagnostic for thumb1. The instructions will be 6381 // switched to the t2 encodings in processInstruction() if necessary. 6382 case ARM::tPOP: { 6383 bool ListContainsBase; 6384 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6385 !isThumbTwo()) 6386 return Error(Operands[2]->getStartLoc(), 6387 "registers must be in range r0-r7 or pc"); 6388 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6389 return true; 6390 break; 6391 } 6392 case ARM::tPUSH: { 6393 bool ListContainsBase; 6394 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6395 !isThumbTwo()) 6396 return Error(Operands[2]->getStartLoc(), 6397 "registers must be in range r0-r7 or lr"); 6398 if (validatetSTMRegList(Inst, Operands, 2)) 6399 return true; 6400 break; 6401 } 6402 case ARM::tSTMIA_UPD: { 6403 bool ListContainsBase, InvalidLowList; 6404 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6405 0, ListContainsBase); 6406 if (InvalidLowList && !isThumbTwo()) 6407 return Error(Operands[4]->getStartLoc(), 6408 "registers must be in range r0-r7"); 6409 6410 // This would be converted to a 32-bit stm, but that's not valid if the 6411 // writeback register is in the list. 6412 if (InvalidLowList && ListContainsBase) 6413 return Error(Operands[4]->getStartLoc(), 6414 "writeback operator '!' not allowed when base register " 6415 "in register list"); 6416 6417 if (validatetSTMRegList(Inst, Operands, 4)) 6418 return true; 6419 break; 6420 } 6421 case ARM::tADDrSP: { 6422 // If the non-SP source operand and the destination operand are not the 6423 // same, we need thumb2 (for the wide encoding), or we have an error. 6424 if (!isThumbTwo() && 6425 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6426 return Error(Operands[4]->getStartLoc(), 6427 "source register must be the same as destination"); 6428 } 6429 break; 6430 } 6431 // Final range checking for Thumb unconditional branch instructions. 6432 case ARM::tB: 6433 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6434 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6435 break; 6436 case ARM::t2B: { 6437 int op = (Operands[2]->isImm()) ? 2 : 3; 6438 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6439 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6440 break; 6441 } 6442 // Final range checking for Thumb conditional branch instructions. 6443 case ARM::tBcc: 6444 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6445 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6446 break; 6447 case ARM::t2Bcc: { 6448 int Op = (Operands[2]->isImm()) ? 2 : 3; 6449 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6450 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6451 break; 6452 } 6453 case ARM::MOVi16: 6454 case ARM::t2MOVi16: 6455 case ARM::t2MOVTi16: 6456 { 6457 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6458 // especially when we turn it into a movw and the expression <symbol> does 6459 // not have a :lower16: or :upper16 as part of the expression. We don't 6460 // want the behavior of silently truncating, which can be unexpected and 6461 // lead to bugs that are difficult to find since this is an easy mistake 6462 // to make. 6463 int i = (Operands[3]->isImm()) ? 3 : 4; 6464 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6465 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6466 if (CE) break; 6467 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6468 if (!E) break; 6469 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6470 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6471 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6472 return Error( 6473 Op.getStartLoc(), 6474 "immediate expression for mov requires :lower16: or :upper16"); 6475 break; 6476 } 6477 } 6478 6479 return false; 6480 } 6481 6482 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6483 switch(Opc) { 6484 default: llvm_unreachable("unexpected opcode!"); 6485 // VST1LN 6486 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6487 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6488 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6489 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6490 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6491 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6492 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6493 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6494 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6495 6496 // VST2LN 6497 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6498 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6499 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6500 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6501 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6502 6503 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6504 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6505 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6506 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6507 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6508 6509 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6510 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6511 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6512 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6513 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6514 6515 // VST3LN 6516 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6517 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6518 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6519 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6520 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6521 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6522 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6523 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6524 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6525 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6526 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6527 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6528 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6529 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6530 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6531 6532 // VST3 6533 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6534 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6535 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6536 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6537 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6538 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6539 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6540 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6541 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6542 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6543 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6544 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6545 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6546 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6547 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6548 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6549 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6550 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6551 6552 // VST4LN 6553 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6554 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6555 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6556 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6557 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6558 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6559 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6560 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6561 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6562 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6563 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6564 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6565 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6566 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6567 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6568 6569 // VST4 6570 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6571 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6572 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6573 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6574 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6575 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6576 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6577 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6578 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6579 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6580 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6581 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6582 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6583 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6584 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6585 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6586 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6587 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6588 } 6589 } 6590 6591 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6592 switch(Opc) { 6593 default: llvm_unreachable("unexpected opcode!"); 6594 // VLD1LN 6595 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6596 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6597 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6598 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6599 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6600 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6601 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6602 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6603 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6604 6605 // VLD2LN 6606 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6607 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6608 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6609 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6610 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6611 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6612 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6613 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6614 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6615 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6616 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6617 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6618 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6619 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6620 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6621 6622 // VLD3DUP 6623 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6624 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6625 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6626 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6627 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6628 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6629 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6630 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6631 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6632 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6633 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6634 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6635 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6636 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6637 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6638 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6639 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6640 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6641 6642 // VLD3LN 6643 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6644 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6645 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6646 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6647 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6648 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6649 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6650 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6651 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6652 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6653 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6654 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6655 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6656 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6657 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6658 6659 // VLD3 6660 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6661 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6662 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6663 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6664 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6665 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6666 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6667 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6668 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6669 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6670 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6671 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6672 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6673 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6674 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6675 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6676 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6677 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6678 6679 // VLD4LN 6680 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6681 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6682 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6683 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6684 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6685 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6686 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6687 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6688 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6689 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6690 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6691 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6692 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6693 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6694 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6695 6696 // VLD4DUP 6697 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6698 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6699 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6700 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6701 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6702 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6703 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6704 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6705 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6706 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6707 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6708 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6709 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6710 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6711 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6712 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6713 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6714 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6715 6716 // VLD4 6717 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6718 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6719 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6720 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6721 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6722 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6723 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6724 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6725 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6726 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6727 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6728 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6729 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6730 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6731 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6732 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6733 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6734 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6735 } 6736 } 6737 6738 bool ARMAsmParser::processInstruction(MCInst &Inst, 6739 const OperandVector &Operands, 6740 MCStreamer &Out) { 6741 switch (Inst.getOpcode()) { 6742 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6743 case ARM::LDRT_POST: 6744 case ARM::LDRBT_POST: { 6745 const unsigned Opcode = 6746 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6747 : ARM::LDRBT_POST_IMM; 6748 MCInst TmpInst; 6749 TmpInst.setOpcode(Opcode); 6750 TmpInst.addOperand(Inst.getOperand(0)); 6751 TmpInst.addOperand(Inst.getOperand(1)); 6752 TmpInst.addOperand(Inst.getOperand(1)); 6753 TmpInst.addOperand(MCOperand::createReg(0)); 6754 TmpInst.addOperand(MCOperand::createImm(0)); 6755 TmpInst.addOperand(Inst.getOperand(2)); 6756 TmpInst.addOperand(Inst.getOperand(3)); 6757 Inst = TmpInst; 6758 return true; 6759 } 6760 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6761 case ARM::STRT_POST: 6762 case ARM::STRBT_POST: { 6763 const unsigned Opcode = 6764 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6765 : ARM::STRBT_POST_IMM; 6766 MCInst TmpInst; 6767 TmpInst.setOpcode(Opcode); 6768 TmpInst.addOperand(Inst.getOperand(1)); 6769 TmpInst.addOperand(Inst.getOperand(0)); 6770 TmpInst.addOperand(Inst.getOperand(1)); 6771 TmpInst.addOperand(MCOperand::createReg(0)); 6772 TmpInst.addOperand(MCOperand::createImm(0)); 6773 TmpInst.addOperand(Inst.getOperand(2)); 6774 TmpInst.addOperand(Inst.getOperand(3)); 6775 Inst = TmpInst; 6776 return true; 6777 } 6778 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6779 case ARM::ADDri: { 6780 if (Inst.getOperand(1).getReg() != ARM::PC || 6781 Inst.getOperand(5).getReg() != 0 || 6782 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6783 return false; 6784 MCInst TmpInst; 6785 TmpInst.setOpcode(ARM::ADR); 6786 TmpInst.addOperand(Inst.getOperand(0)); 6787 if (Inst.getOperand(2).isImm()) { 6788 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6789 // before passing it to the ADR instruction. 6790 unsigned Enc = Inst.getOperand(2).getImm(); 6791 TmpInst.addOperand(MCOperand::createImm( 6792 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6793 } else { 6794 // Turn PC-relative expression into absolute expression. 6795 // Reading PC provides the start of the current instruction + 8 and 6796 // the transform to adr is biased by that. 6797 MCSymbol *Dot = getContext().createTempSymbol(); 6798 Out.EmitLabel(Dot); 6799 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6800 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 6801 MCSymbolRefExpr::VK_None, 6802 getContext()); 6803 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 6804 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 6805 getContext()); 6806 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 6807 getContext()); 6808 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 6809 } 6810 TmpInst.addOperand(Inst.getOperand(3)); 6811 TmpInst.addOperand(Inst.getOperand(4)); 6812 Inst = TmpInst; 6813 return true; 6814 } 6815 // Aliases for alternate PC+imm syntax of LDR instructions. 6816 case ARM::t2LDRpcrel: 6817 // Select the narrow version if the immediate will fit. 6818 if (Inst.getOperand(1).getImm() > 0 && 6819 Inst.getOperand(1).getImm() <= 0xff && 6820 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 6821 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 6822 Inst.setOpcode(ARM::tLDRpci); 6823 else 6824 Inst.setOpcode(ARM::t2LDRpci); 6825 return true; 6826 case ARM::t2LDRBpcrel: 6827 Inst.setOpcode(ARM::t2LDRBpci); 6828 return true; 6829 case ARM::t2LDRHpcrel: 6830 Inst.setOpcode(ARM::t2LDRHpci); 6831 return true; 6832 case ARM::t2LDRSBpcrel: 6833 Inst.setOpcode(ARM::t2LDRSBpci); 6834 return true; 6835 case ARM::t2LDRSHpcrel: 6836 Inst.setOpcode(ARM::t2LDRSHpci); 6837 return true; 6838 // Handle NEON VST complex aliases. 6839 case ARM::VST1LNdWB_register_Asm_8: 6840 case ARM::VST1LNdWB_register_Asm_16: 6841 case ARM::VST1LNdWB_register_Asm_32: { 6842 MCInst TmpInst; 6843 // Shuffle the operands around so the lane index operand is in the 6844 // right place. 6845 unsigned Spacing; 6846 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6847 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6848 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6849 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6850 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6851 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6852 TmpInst.addOperand(Inst.getOperand(1)); // lane 6853 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6854 TmpInst.addOperand(Inst.getOperand(6)); 6855 Inst = TmpInst; 6856 return true; 6857 } 6858 6859 case ARM::VST2LNdWB_register_Asm_8: 6860 case ARM::VST2LNdWB_register_Asm_16: 6861 case ARM::VST2LNdWB_register_Asm_32: 6862 case ARM::VST2LNqWB_register_Asm_16: 6863 case ARM::VST2LNqWB_register_Asm_32: { 6864 MCInst TmpInst; 6865 // Shuffle the operands around so the lane index operand is in the 6866 // right place. 6867 unsigned Spacing; 6868 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6869 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6870 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6871 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6872 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6873 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6874 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6875 Spacing)); 6876 TmpInst.addOperand(Inst.getOperand(1)); // lane 6877 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6878 TmpInst.addOperand(Inst.getOperand(6)); 6879 Inst = TmpInst; 6880 return true; 6881 } 6882 6883 case ARM::VST3LNdWB_register_Asm_8: 6884 case ARM::VST3LNdWB_register_Asm_16: 6885 case ARM::VST3LNdWB_register_Asm_32: 6886 case ARM::VST3LNqWB_register_Asm_16: 6887 case ARM::VST3LNqWB_register_Asm_32: { 6888 MCInst TmpInst; 6889 // Shuffle the operands around so the lane index operand is in the 6890 // right place. 6891 unsigned Spacing; 6892 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6893 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6894 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6895 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6896 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6897 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6898 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6899 Spacing)); 6900 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6901 Spacing * 2)); 6902 TmpInst.addOperand(Inst.getOperand(1)); // lane 6903 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6904 TmpInst.addOperand(Inst.getOperand(6)); 6905 Inst = TmpInst; 6906 return true; 6907 } 6908 6909 case ARM::VST4LNdWB_register_Asm_8: 6910 case ARM::VST4LNdWB_register_Asm_16: 6911 case ARM::VST4LNdWB_register_Asm_32: 6912 case ARM::VST4LNqWB_register_Asm_16: 6913 case ARM::VST4LNqWB_register_Asm_32: { 6914 MCInst TmpInst; 6915 // Shuffle the operands around so the lane index operand is in the 6916 // right place. 6917 unsigned Spacing; 6918 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6919 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6920 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6921 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6922 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6923 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6924 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6925 Spacing)); 6926 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6927 Spacing * 2)); 6928 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6929 Spacing * 3)); 6930 TmpInst.addOperand(Inst.getOperand(1)); // lane 6931 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6932 TmpInst.addOperand(Inst.getOperand(6)); 6933 Inst = TmpInst; 6934 return true; 6935 } 6936 6937 case ARM::VST1LNdWB_fixed_Asm_8: 6938 case ARM::VST1LNdWB_fixed_Asm_16: 6939 case ARM::VST1LNdWB_fixed_Asm_32: { 6940 MCInst TmpInst; 6941 // Shuffle the operands around so the lane index operand is in the 6942 // right place. 6943 unsigned Spacing; 6944 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6945 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6946 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6947 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6948 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6949 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6950 TmpInst.addOperand(Inst.getOperand(1)); // lane 6951 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6952 TmpInst.addOperand(Inst.getOperand(5)); 6953 Inst = TmpInst; 6954 return true; 6955 } 6956 6957 case ARM::VST2LNdWB_fixed_Asm_8: 6958 case ARM::VST2LNdWB_fixed_Asm_16: 6959 case ARM::VST2LNdWB_fixed_Asm_32: 6960 case ARM::VST2LNqWB_fixed_Asm_16: 6961 case ARM::VST2LNqWB_fixed_Asm_32: { 6962 MCInst TmpInst; 6963 // Shuffle the operands around so the lane index operand is in the 6964 // right place. 6965 unsigned Spacing; 6966 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6967 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6968 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6969 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6970 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6971 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6972 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6973 Spacing)); 6974 TmpInst.addOperand(Inst.getOperand(1)); // lane 6975 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6976 TmpInst.addOperand(Inst.getOperand(5)); 6977 Inst = TmpInst; 6978 return true; 6979 } 6980 6981 case ARM::VST3LNdWB_fixed_Asm_8: 6982 case ARM::VST3LNdWB_fixed_Asm_16: 6983 case ARM::VST3LNdWB_fixed_Asm_32: 6984 case ARM::VST3LNqWB_fixed_Asm_16: 6985 case ARM::VST3LNqWB_fixed_Asm_32: { 6986 MCInst TmpInst; 6987 // Shuffle the operands around so the lane index operand is in the 6988 // right place. 6989 unsigned Spacing; 6990 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6991 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6992 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6993 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6994 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6995 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6996 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6997 Spacing)); 6998 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6999 Spacing * 2)); 7000 TmpInst.addOperand(Inst.getOperand(1)); // lane 7001 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7002 TmpInst.addOperand(Inst.getOperand(5)); 7003 Inst = TmpInst; 7004 return true; 7005 } 7006 7007 case ARM::VST4LNdWB_fixed_Asm_8: 7008 case ARM::VST4LNdWB_fixed_Asm_16: 7009 case ARM::VST4LNdWB_fixed_Asm_32: 7010 case ARM::VST4LNqWB_fixed_Asm_16: 7011 case ARM::VST4LNqWB_fixed_Asm_32: { 7012 MCInst TmpInst; 7013 // Shuffle the operands around so the lane index operand is in the 7014 // right place. 7015 unsigned Spacing; 7016 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7017 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7018 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7019 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7020 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7021 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7022 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7023 Spacing)); 7024 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7025 Spacing * 2)); 7026 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7027 Spacing * 3)); 7028 TmpInst.addOperand(Inst.getOperand(1)); // lane 7029 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7030 TmpInst.addOperand(Inst.getOperand(5)); 7031 Inst = TmpInst; 7032 return true; 7033 } 7034 7035 case ARM::VST1LNdAsm_8: 7036 case ARM::VST1LNdAsm_16: 7037 case ARM::VST1LNdAsm_32: { 7038 MCInst TmpInst; 7039 // Shuffle the operands around so the lane index operand is in the 7040 // right place. 7041 unsigned Spacing; 7042 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7043 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7044 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7045 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7046 TmpInst.addOperand(Inst.getOperand(1)); // lane 7047 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7048 TmpInst.addOperand(Inst.getOperand(5)); 7049 Inst = TmpInst; 7050 return true; 7051 } 7052 7053 case ARM::VST2LNdAsm_8: 7054 case ARM::VST2LNdAsm_16: 7055 case ARM::VST2LNdAsm_32: 7056 case ARM::VST2LNqAsm_16: 7057 case ARM::VST2LNqAsm_32: { 7058 MCInst TmpInst; 7059 // Shuffle the operands around so the lane index operand is in the 7060 // right place. 7061 unsigned Spacing; 7062 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7063 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7064 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7065 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7066 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7067 Spacing)); 7068 TmpInst.addOperand(Inst.getOperand(1)); // lane 7069 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7070 TmpInst.addOperand(Inst.getOperand(5)); 7071 Inst = TmpInst; 7072 return true; 7073 } 7074 7075 case ARM::VST3LNdAsm_8: 7076 case ARM::VST3LNdAsm_16: 7077 case ARM::VST3LNdAsm_32: 7078 case ARM::VST3LNqAsm_16: 7079 case ARM::VST3LNqAsm_32: { 7080 MCInst TmpInst; 7081 // Shuffle the operands around so the lane index operand is in the 7082 // right place. 7083 unsigned Spacing; 7084 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7085 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7086 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7087 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7088 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7089 Spacing)); 7090 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7091 Spacing * 2)); 7092 TmpInst.addOperand(Inst.getOperand(1)); // lane 7093 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7094 TmpInst.addOperand(Inst.getOperand(5)); 7095 Inst = TmpInst; 7096 return true; 7097 } 7098 7099 case ARM::VST4LNdAsm_8: 7100 case ARM::VST4LNdAsm_16: 7101 case ARM::VST4LNdAsm_32: 7102 case ARM::VST4LNqAsm_16: 7103 case ARM::VST4LNqAsm_32: { 7104 MCInst TmpInst; 7105 // Shuffle the operands around so the lane index operand is in the 7106 // right place. 7107 unsigned Spacing; 7108 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7109 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7110 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7111 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7112 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7113 Spacing)); 7114 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7115 Spacing * 2)); 7116 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7117 Spacing * 3)); 7118 TmpInst.addOperand(Inst.getOperand(1)); // lane 7119 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7120 TmpInst.addOperand(Inst.getOperand(5)); 7121 Inst = TmpInst; 7122 return true; 7123 } 7124 7125 // Handle NEON VLD complex aliases. 7126 case ARM::VLD1LNdWB_register_Asm_8: 7127 case ARM::VLD1LNdWB_register_Asm_16: 7128 case ARM::VLD1LNdWB_register_Asm_32: { 7129 MCInst TmpInst; 7130 // Shuffle the operands around so the lane index operand is in the 7131 // right place. 7132 unsigned Spacing; 7133 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7134 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7135 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7136 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7137 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7138 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7139 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7140 TmpInst.addOperand(Inst.getOperand(1)); // lane 7141 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7142 TmpInst.addOperand(Inst.getOperand(6)); 7143 Inst = TmpInst; 7144 return true; 7145 } 7146 7147 case ARM::VLD2LNdWB_register_Asm_8: 7148 case ARM::VLD2LNdWB_register_Asm_16: 7149 case ARM::VLD2LNdWB_register_Asm_32: 7150 case ARM::VLD2LNqWB_register_Asm_16: 7151 case ARM::VLD2LNqWB_register_Asm_32: { 7152 MCInst TmpInst; 7153 // Shuffle the operands around so the lane index operand is in the 7154 // right place. 7155 unsigned Spacing; 7156 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7157 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7158 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7159 Spacing)); 7160 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7161 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7162 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7163 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7164 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7165 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7166 Spacing)); 7167 TmpInst.addOperand(Inst.getOperand(1)); // lane 7168 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7169 TmpInst.addOperand(Inst.getOperand(6)); 7170 Inst = TmpInst; 7171 return true; 7172 } 7173 7174 case ARM::VLD3LNdWB_register_Asm_8: 7175 case ARM::VLD3LNdWB_register_Asm_16: 7176 case ARM::VLD3LNdWB_register_Asm_32: 7177 case ARM::VLD3LNqWB_register_Asm_16: 7178 case ARM::VLD3LNqWB_register_Asm_32: { 7179 MCInst TmpInst; 7180 // Shuffle the operands around so the lane index operand is in the 7181 // right place. 7182 unsigned Spacing; 7183 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7184 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7185 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7186 Spacing)); 7187 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7188 Spacing * 2)); 7189 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7190 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7191 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7192 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7193 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7194 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7195 Spacing)); 7196 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7197 Spacing * 2)); 7198 TmpInst.addOperand(Inst.getOperand(1)); // lane 7199 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7200 TmpInst.addOperand(Inst.getOperand(6)); 7201 Inst = TmpInst; 7202 return true; 7203 } 7204 7205 case ARM::VLD4LNdWB_register_Asm_8: 7206 case ARM::VLD4LNdWB_register_Asm_16: 7207 case ARM::VLD4LNdWB_register_Asm_32: 7208 case ARM::VLD4LNqWB_register_Asm_16: 7209 case ARM::VLD4LNqWB_register_Asm_32: { 7210 MCInst TmpInst; 7211 // Shuffle the operands around so the lane index operand is in the 7212 // right place. 7213 unsigned Spacing; 7214 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7215 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7216 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7217 Spacing)); 7218 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7219 Spacing * 2)); 7220 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7221 Spacing * 3)); 7222 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7223 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7224 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7225 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7226 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7227 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7228 Spacing)); 7229 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7230 Spacing * 2)); 7231 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7232 Spacing * 3)); 7233 TmpInst.addOperand(Inst.getOperand(1)); // lane 7234 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7235 TmpInst.addOperand(Inst.getOperand(6)); 7236 Inst = TmpInst; 7237 return true; 7238 } 7239 7240 case ARM::VLD1LNdWB_fixed_Asm_8: 7241 case ARM::VLD1LNdWB_fixed_Asm_16: 7242 case ARM::VLD1LNdWB_fixed_Asm_32: { 7243 MCInst TmpInst; 7244 // Shuffle the operands around so the lane index operand is in the 7245 // right place. 7246 unsigned Spacing; 7247 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7248 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7249 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7250 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7251 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7252 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7253 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7254 TmpInst.addOperand(Inst.getOperand(1)); // lane 7255 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7256 TmpInst.addOperand(Inst.getOperand(5)); 7257 Inst = TmpInst; 7258 return true; 7259 } 7260 7261 case ARM::VLD2LNdWB_fixed_Asm_8: 7262 case ARM::VLD2LNdWB_fixed_Asm_16: 7263 case ARM::VLD2LNdWB_fixed_Asm_32: 7264 case ARM::VLD2LNqWB_fixed_Asm_16: 7265 case ARM::VLD2LNqWB_fixed_Asm_32: { 7266 MCInst TmpInst; 7267 // Shuffle the operands around so the lane index operand is in the 7268 // right place. 7269 unsigned Spacing; 7270 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7271 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7272 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7273 Spacing)); 7274 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7275 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7276 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7277 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7278 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7279 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7280 Spacing)); 7281 TmpInst.addOperand(Inst.getOperand(1)); // lane 7282 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7283 TmpInst.addOperand(Inst.getOperand(5)); 7284 Inst = TmpInst; 7285 return true; 7286 } 7287 7288 case ARM::VLD3LNdWB_fixed_Asm_8: 7289 case ARM::VLD3LNdWB_fixed_Asm_16: 7290 case ARM::VLD3LNdWB_fixed_Asm_32: 7291 case ARM::VLD3LNqWB_fixed_Asm_16: 7292 case ARM::VLD3LNqWB_fixed_Asm_32: { 7293 MCInst TmpInst; 7294 // Shuffle the operands around so the lane index operand is in the 7295 // right place. 7296 unsigned Spacing; 7297 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7298 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7299 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7300 Spacing)); 7301 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7302 Spacing * 2)); 7303 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7304 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7305 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7306 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7307 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7308 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7309 Spacing)); 7310 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7311 Spacing * 2)); 7312 TmpInst.addOperand(Inst.getOperand(1)); // lane 7313 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7314 TmpInst.addOperand(Inst.getOperand(5)); 7315 Inst = TmpInst; 7316 return true; 7317 } 7318 7319 case ARM::VLD4LNdWB_fixed_Asm_8: 7320 case ARM::VLD4LNdWB_fixed_Asm_16: 7321 case ARM::VLD4LNdWB_fixed_Asm_32: 7322 case ARM::VLD4LNqWB_fixed_Asm_16: 7323 case ARM::VLD4LNqWB_fixed_Asm_32: { 7324 MCInst TmpInst; 7325 // Shuffle the operands around so the lane index operand is in the 7326 // right place. 7327 unsigned Spacing; 7328 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7329 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7330 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7331 Spacing)); 7332 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7333 Spacing * 2)); 7334 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7335 Spacing * 3)); 7336 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7337 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7338 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7339 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7340 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7341 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7342 Spacing)); 7343 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7344 Spacing * 2)); 7345 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7346 Spacing * 3)); 7347 TmpInst.addOperand(Inst.getOperand(1)); // lane 7348 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7349 TmpInst.addOperand(Inst.getOperand(5)); 7350 Inst = TmpInst; 7351 return true; 7352 } 7353 7354 case ARM::VLD1LNdAsm_8: 7355 case ARM::VLD1LNdAsm_16: 7356 case ARM::VLD1LNdAsm_32: { 7357 MCInst TmpInst; 7358 // Shuffle the operands around so the lane index operand is in the 7359 // right place. 7360 unsigned Spacing; 7361 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7362 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7363 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7364 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7365 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7366 TmpInst.addOperand(Inst.getOperand(1)); // lane 7367 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7368 TmpInst.addOperand(Inst.getOperand(5)); 7369 Inst = TmpInst; 7370 return true; 7371 } 7372 7373 case ARM::VLD2LNdAsm_8: 7374 case ARM::VLD2LNdAsm_16: 7375 case ARM::VLD2LNdAsm_32: 7376 case ARM::VLD2LNqAsm_16: 7377 case ARM::VLD2LNqAsm_32: { 7378 MCInst TmpInst; 7379 // Shuffle the operands around so the lane index operand is in the 7380 // right place. 7381 unsigned Spacing; 7382 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7383 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7384 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7385 Spacing)); 7386 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7387 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7388 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7389 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7390 Spacing)); 7391 TmpInst.addOperand(Inst.getOperand(1)); // lane 7392 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7393 TmpInst.addOperand(Inst.getOperand(5)); 7394 Inst = TmpInst; 7395 return true; 7396 } 7397 7398 case ARM::VLD3LNdAsm_8: 7399 case ARM::VLD3LNdAsm_16: 7400 case ARM::VLD3LNdAsm_32: 7401 case ARM::VLD3LNqAsm_16: 7402 case ARM::VLD3LNqAsm_32: { 7403 MCInst TmpInst; 7404 // Shuffle the operands around so the lane index operand is in the 7405 // right place. 7406 unsigned Spacing; 7407 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7408 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7409 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7410 Spacing)); 7411 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7412 Spacing * 2)); 7413 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7414 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7415 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7416 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7417 Spacing)); 7418 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7419 Spacing * 2)); 7420 TmpInst.addOperand(Inst.getOperand(1)); // lane 7421 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7422 TmpInst.addOperand(Inst.getOperand(5)); 7423 Inst = TmpInst; 7424 return true; 7425 } 7426 7427 case ARM::VLD4LNdAsm_8: 7428 case ARM::VLD4LNdAsm_16: 7429 case ARM::VLD4LNdAsm_32: 7430 case ARM::VLD4LNqAsm_16: 7431 case ARM::VLD4LNqAsm_32: { 7432 MCInst TmpInst; 7433 // Shuffle the operands around so the lane index operand is in the 7434 // right place. 7435 unsigned Spacing; 7436 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7437 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7438 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7439 Spacing)); 7440 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7441 Spacing * 2)); 7442 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7443 Spacing * 3)); 7444 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7445 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7446 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7447 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7448 Spacing)); 7449 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7450 Spacing * 2)); 7451 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7452 Spacing * 3)); 7453 TmpInst.addOperand(Inst.getOperand(1)); // lane 7454 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7455 TmpInst.addOperand(Inst.getOperand(5)); 7456 Inst = TmpInst; 7457 return true; 7458 } 7459 7460 // VLD3DUP single 3-element structure to all lanes instructions. 7461 case ARM::VLD3DUPdAsm_8: 7462 case ARM::VLD3DUPdAsm_16: 7463 case ARM::VLD3DUPdAsm_32: 7464 case ARM::VLD3DUPqAsm_8: 7465 case ARM::VLD3DUPqAsm_16: 7466 case ARM::VLD3DUPqAsm_32: { 7467 MCInst TmpInst; 7468 unsigned Spacing; 7469 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7470 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7471 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7472 Spacing)); 7473 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7474 Spacing * 2)); 7475 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7476 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7477 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7478 TmpInst.addOperand(Inst.getOperand(4)); 7479 Inst = TmpInst; 7480 return true; 7481 } 7482 7483 case ARM::VLD3DUPdWB_fixed_Asm_8: 7484 case ARM::VLD3DUPdWB_fixed_Asm_16: 7485 case ARM::VLD3DUPdWB_fixed_Asm_32: 7486 case ARM::VLD3DUPqWB_fixed_Asm_8: 7487 case ARM::VLD3DUPqWB_fixed_Asm_16: 7488 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7489 MCInst TmpInst; 7490 unsigned Spacing; 7491 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7492 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7493 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7494 Spacing)); 7495 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7496 Spacing * 2)); 7497 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7498 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7499 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7500 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7501 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7502 TmpInst.addOperand(Inst.getOperand(4)); 7503 Inst = TmpInst; 7504 return true; 7505 } 7506 7507 case ARM::VLD3DUPdWB_register_Asm_8: 7508 case ARM::VLD3DUPdWB_register_Asm_16: 7509 case ARM::VLD3DUPdWB_register_Asm_32: 7510 case ARM::VLD3DUPqWB_register_Asm_8: 7511 case ARM::VLD3DUPqWB_register_Asm_16: 7512 case ARM::VLD3DUPqWB_register_Asm_32: { 7513 MCInst TmpInst; 7514 unsigned Spacing; 7515 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7516 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7517 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7518 Spacing)); 7519 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7520 Spacing * 2)); 7521 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7522 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7523 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7524 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7525 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7526 TmpInst.addOperand(Inst.getOperand(5)); 7527 Inst = TmpInst; 7528 return true; 7529 } 7530 7531 // VLD3 multiple 3-element structure instructions. 7532 case ARM::VLD3dAsm_8: 7533 case ARM::VLD3dAsm_16: 7534 case ARM::VLD3dAsm_32: 7535 case ARM::VLD3qAsm_8: 7536 case ARM::VLD3qAsm_16: 7537 case ARM::VLD3qAsm_32: { 7538 MCInst TmpInst; 7539 unsigned Spacing; 7540 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7541 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7542 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7543 Spacing)); 7544 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7545 Spacing * 2)); 7546 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7547 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7548 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7549 TmpInst.addOperand(Inst.getOperand(4)); 7550 Inst = TmpInst; 7551 return true; 7552 } 7553 7554 case ARM::VLD3dWB_fixed_Asm_8: 7555 case ARM::VLD3dWB_fixed_Asm_16: 7556 case ARM::VLD3dWB_fixed_Asm_32: 7557 case ARM::VLD3qWB_fixed_Asm_8: 7558 case ARM::VLD3qWB_fixed_Asm_16: 7559 case ARM::VLD3qWB_fixed_Asm_32: { 7560 MCInst TmpInst; 7561 unsigned Spacing; 7562 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7563 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7564 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7565 Spacing)); 7566 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7567 Spacing * 2)); 7568 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7569 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7570 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7571 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7572 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7573 TmpInst.addOperand(Inst.getOperand(4)); 7574 Inst = TmpInst; 7575 return true; 7576 } 7577 7578 case ARM::VLD3dWB_register_Asm_8: 7579 case ARM::VLD3dWB_register_Asm_16: 7580 case ARM::VLD3dWB_register_Asm_32: 7581 case ARM::VLD3qWB_register_Asm_8: 7582 case ARM::VLD3qWB_register_Asm_16: 7583 case ARM::VLD3qWB_register_Asm_32: { 7584 MCInst TmpInst; 7585 unsigned Spacing; 7586 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7587 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7588 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7589 Spacing)); 7590 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7591 Spacing * 2)); 7592 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7593 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7594 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7595 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7596 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7597 TmpInst.addOperand(Inst.getOperand(5)); 7598 Inst = TmpInst; 7599 return true; 7600 } 7601 7602 // VLD4DUP single 3-element structure to all lanes instructions. 7603 case ARM::VLD4DUPdAsm_8: 7604 case ARM::VLD4DUPdAsm_16: 7605 case ARM::VLD4DUPdAsm_32: 7606 case ARM::VLD4DUPqAsm_8: 7607 case ARM::VLD4DUPqAsm_16: 7608 case ARM::VLD4DUPqAsm_32: { 7609 MCInst TmpInst; 7610 unsigned Spacing; 7611 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7612 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7613 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7614 Spacing)); 7615 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7616 Spacing * 2)); 7617 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7618 Spacing * 3)); 7619 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7620 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7621 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7622 TmpInst.addOperand(Inst.getOperand(4)); 7623 Inst = TmpInst; 7624 return true; 7625 } 7626 7627 case ARM::VLD4DUPdWB_fixed_Asm_8: 7628 case ARM::VLD4DUPdWB_fixed_Asm_16: 7629 case ARM::VLD4DUPdWB_fixed_Asm_32: 7630 case ARM::VLD4DUPqWB_fixed_Asm_8: 7631 case ARM::VLD4DUPqWB_fixed_Asm_16: 7632 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7633 MCInst TmpInst; 7634 unsigned Spacing; 7635 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7636 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7637 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7638 Spacing)); 7639 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7640 Spacing * 2)); 7641 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7642 Spacing * 3)); 7643 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7644 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7645 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7646 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7647 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7648 TmpInst.addOperand(Inst.getOperand(4)); 7649 Inst = TmpInst; 7650 return true; 7651 } 7652 7653 case ARM::VLD4DUPdWB_register_Asm_8: 7654 case ARM::VLD4DUPdWB_register_Asm_16: 7655 case ARM::VLD4DUPdWB_register_Asm_32: 7656 case ARM::VLD4DUPqWB_register_Asm_8: 7657 case ARM::VLD4DUPqWB_register_Asm_16: 7658 case ARM::VLD4DUPqWB_register_Asm_32: { 7659 MCInst TmpInst; 7660 unsigned Spacing; 7661 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7662 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7663 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7664 Spacing)); 7665 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7666 Spacing * 2)); 7667 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7668 Spacing * 3)); 7669 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7670 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7671 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7672 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7673 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7674 TmpInst.addOperand(Inst.getOperand(5)); 7675 Inst = TmpInst; 7676 return true; 7677 } 7678 7679 // VLD4 multiple 4-element structure instructions. 7680 case ARM::VLD4dAsm_8: 7681 case ARM::VLD4dAsm_16: 7682 case ARM::VLD4dAsm_32: 7683 case ARM::VLD4qAsm_8: 7684 case ARM::VLD4qAsm_16: 7685 case ARM::VLD4qAsm_32: { 7686 MCInst TmpInst; 7687 unsigned Spacing; 7688 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7689 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7690 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7691 Spacing)); 7692 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7693 Spacing * 2)); 7694 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7695 Spacing * 3)); 7696 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7697 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7698 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7699 TmpInst.addOperand(Inst.getOperand(4)); 7700 Inst = TmpInst; 7701 return true; 7702 } 7703 7704 case ARM::VLD4dWB_fixed_Asm_8: 7705 case ARM::VLD4dWB_fixed_Asm_16: 7706 case ARM::VLD4dWB_fixed_Asm_32: 7707 case ARM::VLD4qWB_fixed_Asm_8: 7708 case ARM::VLD4qWB_fixed_Asm_16: 7709 case ARM::VLD4qWB_fixed_Asm_32: { 7710 MCInst TmpInst; 7711 unsigned Spacing; 7712 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7713 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7714 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7715 Spacing)); 7716 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7717 Spacing * 2)); 7718 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7719 Spacing * 3)); 7720 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7721 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7722 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7723 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7724 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7725 TmpInst.addOperand(Inst.getOperand(4)); 7726 Inst = TmpInst; 7727 return true; 7728 } 7729 7730 case ARM::VLD4dWB_register_Asm_8: 7731 case ARM::VLD4dWB_register_Asm_16: 7732 case ARM::VLD4dWB_register_Asm_32: 7733 case ARM::VLD4qWB_register_Asm_8: 7734 case ARM::VLD4qWB_register_Asm_16: 7735 case ARM::VLD4qWB_register_Asm_32: { 7736 MCInst TmpInst; 7737 unsigned Spacing; 7738 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7739 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7740 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7741 Spacing)); 7742 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7743 Spacing * 2)); 7744 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7745 Spacing * 3)); 7746 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7747 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7748 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7749 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7750 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7751 TmpInst.addOperand(Inst.getOperand(5)); 7752 Inst = TmpInst; 7753 return true; 7754 } 7755 7756 // VST3 multiple 3-element structure instructions. 7757 case ARM::VST3dAsm_8: 7758 case ARM::VST3dAsm_16: 7759 case ARM::VST3dAsm_32: 7760 case ARM::VST3qAsm_8: 7761 case ARM::VST3qAsm_16: 7762 case ARM::VST3qAsm_32: { 7763 MCInst TmpInst; 7764 unsigned Spacing; 7765 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7766 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7767 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7768 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7769 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7770 Spacing)); 7771 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7772 Spacing * 2)); 7773 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7774 TmpInst.addOperand(Inst.getOperand(4)); 7775 Inst = TmpInst; 7776 return true; 7777 } 7778 7779 case ARM::VST3dWB_fixed_Asm_8: 7780 case ARM::VST3dWB_fixed_Asm_16: 7781 case ARM::VST3dWB_fixed_Asm_32: 7782 case ARM::VST3qWB_fixed_Asm_8: 7783 case ARM::VST3qWB_fixed_Asm_16: 7784 case ARM::VST3qWB_fixed_Asm_32: { 7785 MCInst TmpInst; 7786 unsigned Spacing; 7787 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7788 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7789 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7790 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7791 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7792 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7793 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7794 Spacing)); 7795 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7796 Spacing * 2)); 7797 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7798 TmpInst.addOperand(Inst.getOperand(4)); 7799 Inst = TmpInst; 7800 return true; 7801 } 7802 7803 case ARM::VST3dWB_register_Asm_8: 7804 case ARM::VST3dWB_register_Asm_16: 7805 case ARM::VST3dWB_register_Asm_32: 7806 case ARM::VST3qWB_register_Asm_8: 7807 case ARM::VST3qWB_register_Asm_16: 7808 case ARM::VST3qWB_register_Asm_32: { 7809 MCInst TmpInst; 7810 unsigned Spacing; 7811 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7812 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7813 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7814 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7815 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7816 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7817 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7818 Spacing)); 7819 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7820 Spacing * 2)); 7821 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7822 TmpInst.addOperand(Inst.getOperand(5)); 7823 Inst = TmpInst; 7824 return true; 7825 } 7826 7827 // VST4 multiple 3-element structure instructions. 7828 case ARM::VST4dAsm_8: 7829 case ARM::VST4dAsm_16: 7830 case ARM::VST4dAsm_32: 7831 case ARM::VST4qAsm_8: 7832 case ARM::VST4qAsm_16: 7833 case ARM::VST4qAsm_32: { 7834 MCInst TmpInst; 7835 unsigned Spacing; 7836 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7837 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7838 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7839 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7840 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7841 Spacing)); 7842 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7843 Spacing * 2)); 7844 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7845 Spacing * 3)); 7846 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7847 TmpInst.addOperand(Inst.getOperand(4)); 7848 Inst = TmpInst; 7849 return true; 7850 } 7851 7852 case ARM::VST4dWB_fixed_Asm_8: 7853 case ARM::VST4dWB_fixed_Asm_16: 7854 case ARM::VST4dWB_fixed_Asm_32: 7855 case ARM::VST4qWB_fixed_Asm_8: 7856 case ARM::VST4qWB_fixed_Asm_16: 7857 case ARM::VST4qWB_fixed_Asm_32: { 7858 MCInst TmpInst; 7859 unsigned Spacing; 7860 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7861 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7862 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7863 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7864 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7865 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7866 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7867 Spacing)); 7868 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7869 Spacing * 2)); 7870 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7871 Spacing * 3)); 7872 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7873 TmpInst.addOperand(Inst.getOperand(4)); 7874 Inst = TmpInst; 7875 return true; 7876 } 7877 7878 case ARM::VST4dWB_register_Asm_8: 7879 case ARM::VST4dWB_register_Asm_16: 7880 case ARM::VST4dWB_register_Asm_32: 7881 case ARM::VST4qWB_register_Asm_8: 7882 case ARM::VST4qWB_register_Asm_16: 7883 case ARM::VST4qWB_register_Asm_32: { 7884 MCInst TmpInst; 7885 unsigned Spacing; 7886 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7887 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7888 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7889 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7890 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7891 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7892 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7893 Spacing)); 7894 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7895 Spacing * 2)); 7896 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7897 Spacing * 3)); 7898 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7899 TmpInst.addOperand(Inst.getOperand(5)); 7900 Inst = TmpInst; 7901 return true; 7902 } 7903 7904 // Handle encoding choice for the shift-immediate instructions. 7905 case ARM::t2LSLri: 7906 case ARM::t2LSRri: 7907 case ARM::t2ASRri: { 7908 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7909 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7910 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 7911 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 7912 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 7913 unsigned NewOpc; 7914 switch (Inst.getOpcode()) { 7915 default: llvm_unreachable("unexpected opcode"); 7916 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 7917 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 7918 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 7919 } 7920 // The Thumb1 operands aren't in the same order. Awesome, eh? 7921 MCInst TmpInst; 7922 TmpInst.setOpcode(NewOpc); 7923 TmpInst.addOperand(Inst.getOperand(0)); 7924 TmpInst.addOperand(Inst.getOperand(5)); 7925 TmpInst.addOperand(Inst.getOperand(1)); 7926 TmpInst.addOperand(Inst.getOperand(2)); 7927 TmpInst.addOperand(Inst.getOperand(3)); 7928 TmpInst.addOperand(Inst.getOperand(4)); 7929 Inst = TmpInst; 7930 return true; 7931 } 7932 return false; 7933 } 7934 7935 // Handle the Thumb2 mode MOV complex aliases. 7936 case ARM::t2MOVsr: 7937 case ARM::t2MOVSsr: { 7938 // Which instruction to expand to depends on the CCOut operand and 7939 // whether we're in an IT block if the register operands are low 7940 // registers. 7941 bool isNarrow = false; 7942 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7943 isARMLowRegister(Inst.getOperand(1).getReg()) && 7944 isARMLowRegister(Inst.getOperand(2).getReg()) && 7945 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7946 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 7947 isNarrow = true; 7948 MCInst TmpInst; 7949 unsigned newOpc; 7950 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 7951 default: llvm_unreachable("unexpected opcode!"); 7952 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 7953 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 7954 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 7955 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 7956 } 7957 TmpInst.setOpcode(newOpc); 7958 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7959 if (isNarrow) 7960 TmpInst.addOperand(MCOperand::createReg( 7961 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7962 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7963 TmpInst.addOperand(Inst.getOperand(2)); // Rm 7964 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7965 TmpInst.addOperand(Inst.getOperand(5)); 7966 if (!isNarrow) 7967 TmpInst.addOperand(MCOperand::createReg( 7968 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7969 Inst = TmpInst; 7970 return true; 7971 } 7972 case ARM::t2MOVsi: 7973 case ARM::t2MOVSsi: { 7974 // Which instruction to expand to depends on the CCOut operand and 7975 // whether we're in an IT block if the register operands are low 7976 // registers. 7977 bool isNarrow = false; 7978 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7979 isARMLowRegister(Inst.getOperand(1).getReg()) && 7980 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 7981 isNarrow = true; 7982 MCInst TmpInst; 7983 unsigned newOpc; 7984 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { 7985 default: llvm_unreachable("unexpected opcode!"); 7986 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 7987 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 7988 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 7989 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 7990 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 7991 } 7992 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 7993 if (Amount == 32) Amount = 0; 7994 TmpInst.setOpcode(newOpc); 7995 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7996 if (isNarrow) 7997 TmpInst.addOperand(MCOperand::createReg( 7998 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7999 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8000 if (newOpc != ARM::t2RRX) 8001 TmpInst.addOperand(MCOperand::createImm(Amount)); 8002 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8003 TmpInst.addOperand(Inst.getOperand(4)); 8004 if (!isNarrow) 8005 TmpInst.addOperand(MCOperand::createReg( 8006 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8007 Inst = TmpInst; 8008 return true; 8009 } 8010 // Handle the ARM mode MOV complex aliases. 8011 case ARM::ASRr: 8012 case ARM::LSRr: 8013 case ARM::LSLr: 8014 case ARM::RORr: { 8015 ARM_AM::ShiftOpc ShiftTy; 8016 switch(Inst.getOpcode()) { 8017 default: llvm_unreachable("unexpected opcode!"); 8018 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8019 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8020 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8021 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8022 } 8023 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8024 MCInst TmpInst; 8025 TmpInst.setOpcode(ARM::MOVsr); 8026 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8027 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8028 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8029 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8030 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8031 TmpInst.addOperand(Inst.getOperand(4)); 8032 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8033 Inst = TmpInst; 8034 return true; 8035 } 8036 case ARM::ASRi: 8037 case ARM::LSRi: 8038 case ARM::LSLi: 8039 case ARM::RORi: { 8040 ARM_AM::ShiftOpc ShiftTy; 8041 switch(Inst.getOpcode()) { 8042 default: llvm_unreachable("unexpected opcode!"); 8043 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8044 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8045 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8046 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8047 } 8048 // A shift by zero is a plain MOVr, not a MOVsi. 8049 unsigned Amt = Inst.getOperand(2).getImm(); 8050 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8051 // A shift by 32 should be encoded as 0 when permitted 8052 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8053 Amt = 0; 8054 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8055 MCInst TmpInst; 8056 TmpInst.setOpcode(Opc); 8057 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8058 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8059 if (Opc == ARM::MOVsi) 8060 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8061 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8062 TmpInst.addOperand(Inst.getOperand(4)); 8063 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8064 Inst = TmpInst; 8065 return true; 8066 } 8067 case ARM::RRXi: { 8068 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8069 MCInst TmpInst; 8070 TmpInst.setOpcode(ARM::MOVsi); 8071 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8072 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8073 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8074 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8075 TmpInst.addOperand(Inst.getOperand(3)); 8076 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8077 Inst = TmpInst; 8078 return true; 8079 } 8080 case ARM::t2LDMIA_UPD: { 8081 // If this is a load of a single register, then we should use 8082 // a post-indexed LDR instruction instead, per the ARM ARM. 8083 if (Inst.getNumOperands() != 5) 8084 return false; 8085 MCInst TmpInst; 8086 TmpInst.setOpcode(ARM::t2LDR_POST); 8087 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8088 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8089 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8090 TmpInst.addOperand(MCOperand::createImm(4)); 8091 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8092 TmpInst.addOperand(Inst.getOperand(3)); 8093 Inst = TmpInst; 8094 return true; 8095 } 8096 case ARM::t2STMDB_UPD: { 8097 // If this is a store of a single register, then we should use 8098 // a pre-indexed STR instruction instead, per the ARM ARM. 8099 if (Inst.getNumOperands() != 5) 8100 return false; 8101 MCInst TmpInst; 8102 TmpInst.setOpcode(ARM::t2STR_PRE); 8103 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8104 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8105 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8106 TmpInst.addOperand(MCOperand::createImm(-4)); 8107 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8108 TmpInst.addOperand(Inst.getOperand(3)); 8109 Inst = TmpInst; 8110 return true; 8111 } 8112 case ARM::LDMIA_UPD: 8113 // If this is a load of a single register via a 'pop', then we should use 8114 // a post-indexed LDR instruction instead, per the ARM ARM. 8115 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8116 Inst.getNumOperands() == 5) { 8117 MCInst TmpInst; 8118 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8119 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8120 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8121 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8122 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8123 TmpInst.addOperand(MCOperand::createImm(4)); 8124 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8125 TmpInst.addOperand(Inst.getOperand(3)); 8126 Inst = TmpInst; 8127 return true; 8128 } 8129 break; 8130 case ARM::STMDB_UPD: 8131 // If this is a store of a single register via a 'push', then we should use 8132 // a pre-indexed STR instruction instead, per the ARM ARM. 8133 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8134 Inst.getNumOperands() == 5) { 8135 MCInst TmpInst; 8136 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8137 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8138 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8139 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8140 TmpInst.addOperand(MCOperand::createImm(-4)); 8141 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8142 TmpInst.addOperand(Inst.getOperand(3)); 8143 Inst = TmpInst; 8144 } 8145 break; 8146 case ARM::t2ADDri12: 8147 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8148 // mnemonic was used (not "addw"), encoding T3 is preferred. 8149 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8150 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8151 break; 8152 Inst.setOpcode(ARM::t2ADDri); 8153 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8154 break; 8155 case ARM::t2SUBri12: 8156 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8157 // mnemonic was used (not "subw"), encoding T3 is preferred. 8158 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8159 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8160 break; 8161 Inst.setOpcode(ARM::t2SUBri); 8162 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8163 break; 8164 case ARM::tADDi8: 8165 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8166 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8167 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8168 // to encoding T1 if <Rd> is omitted." 8169 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8170 Inst.setOpcode(ARM::tADDi3); 8171 return true; 8172 } 8173 break; 8174 case ARM::tSUBi8: 8175 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8176 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8177 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8178 // to encoding T1 if <Rd> is omitted." 8179 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8180 Inst.setOpcode(ARM::tSUBi3); 8181 return true; 8182 } 8183 break; 8184 case ARM::t2ADDri: 8185 case ARM::t2SUBri: { 8186 // If the destination and first source operand are the same, and 8187 // the flags are compatible with the current IT status, use encoding T2 8188 // instead of T3. For compatibility with the system 'as'. Make sure the 8189 // wide encoding wasn't explicit. 8190 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8191 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8192 (unsigned)Inst.getOperand(2).getImm() > 255 || 8193 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8194 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8195 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8196 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8197 break; 8198 MCInst TmpInst; 8199 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8200 ARM::tADDi8 : ARM::tSUBi8); 8201 TmpInst.addOperand(Inst.getOperand(0)); 8202 TmpInst.addOperand(Inst.getOperand(5)); 8203 TmpInst.addOperand(Inst.getOperand(0)); 8204 TmpInst.addOperand(Inst.getOperand(2)); 8205 TmpInst.addOperand(Inst.getOperand(3)); 8206 TmpInst.addOperand(Inst.getOperand(4)); 8207 Inst = TmpInst; 8208 return true; 8209 } 8210 case ARM::t2ADDrr: { 8211 // If the destination and first source operand are the same, and 8212 // there's no setting of the flags, use encoding T2 instead of T3. 8213 // Note that this is only for ADD, not SUB. This mirrors the system 8214 // 'as' behaviour. Also take advantage of ADD being commutative. 8215 // Make sure the wide encoding wasn't explicit. 8216 bool Swap = false; 8217 auto DestReg = Inst.getOperand(0).getReg(); 8218 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8219 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8220 Transform = true; 8221 Swap = true; 8222 } 8223 if (!Transform || 8224 Inst.getOperand(5).getReg() != 0 || 8225 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8226 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8227 break; 8228 MCInst TmpInst; 8229 TmpInst.setOpcode(ARM::tADDhirr); 8230 TmpInst.addOperand(Inst.getOperand(0)); 8231 TmpInst.addOperand(Inst.getOperand(0)); 8232 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8233 TmpInst.addOperand(Inst.getOperand(3)); 8234 TmpInst.addOperand(Inst.getOperand(4)); 8235 Inst = TmpInst; 8236 return true; 8237 } 8238 case ARM::tADDrSP: { 8239 // If the non-SP source operand and the destination operand are not the 8240 // same, we need to use the 32-bit encoding if it's available. 8241 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8242 Inst.setOpcode(ARM::t2ADDrr); 8243 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8244 return true; 8245 } 8246 break; 8247 } 8248 case ARM::tB: 8249 // A Thumb conditional branch outside of an IT block is a tBcc. 8250 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8251 Inst.setOpcode(ARM::tBcc); 8252 return true; 8253 } 8254 break; 8255 case ARM::t2B: 8256 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8257 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8258 Inst.setOpcode(ARM::t2Bcc); 8259 return true; 8260 } 8261 break; 8262 case ARM::t2Bcc: 8263 // If the conditional is AL or we're in an IT block, we really want t2B. 8264 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8265 Inst.setOpcode(ARM::t2B); 8266 return true; 8267 } 8268 break; 8269 case ARM::tBcc: 8270 // If the conditional is AL, we really want tB. 8271 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8272 Inst.setOpcode(ARM::tB); 8273 return true; 8274 } 8275 break; 8276 case ARM::tLDMIA: { 8277 // If the register list contains any high registers, or if the writeback 8278 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8279 // instead if we're in Thumb2. Otherwise, this should have generated 8280 // an error in validateInstruction(). 8281 unsigned Rn = Inst.getOperand(0).getReg(); 8282 bool hasWritebackToken = 8283 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8284 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8285 bool listContainsBase; 8286 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8287 (!listContainsBase && !hasWritebackToken) || 8288 (listContainsBase && hasWritebackToken)) { 8289 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8290 assert (isThumbTwo()); 8291 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8292 // If we're switching to the updating version, we need to insert 8293 // the writeback tied operand. 8294 if (hasWritebackToken) 8295 Inst.insert(Inst.begin(), 8296 MCOperand::createReg(Inst.getOperand(0).getReg())); 8297 return true; 8298 } 8299 break; 8300 } 8301 case ARM::tSTMIA_UPD: { 8302 // If the register list contains any high registers, we need to use 8303 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8304 // should have generated an error in validateInstruction(). 8305 unsigned Rn = Inst.getOperand(0).getReg(); 8306 bool listContainsBase; 8307 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8308 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8309 assert (isThumbTwo()); 8310 Inst.setOpcode(ARM::t2STMIA_UPD); 8311 return true; 8312 } 8313 break; 8314 } 8315 case ARM::tPOP: { 8316 bool listContainsBase; 8317 // If the register list contains any high registers, we need to use 8318 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8319 // should have generated an error in validateInstruction(). 8320 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8321 return false; 8322 assert (isThumbTwo()); 8323 Inst.setOpcode(ARM::t2LDMIA_UPD); 8324 // Add the base register and writeback operands. 8325 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8326 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8327 return true; 8328 } 8329 case ARM::tPUSH: { 8330 bool listContainsBase; 8331 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8332 return false; 8333 assert (isThumbTwo()); 8334 Inst.setOpcode(ARM::t2STMDB_UPD); 8335 // Add the base register and writeback operands. 8336 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8337 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8338 return true; 8339 } 8340 case ARM::t2MOVi: { 8341 // If we can use the 16-bit encoding and the user didn't explicitly 8342 // request the 32-bit variant, transform it here. 8343 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8344 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8345 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8346 Inst.getOperand(4).getReg() == ARM::CPSR) || 8347 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8348 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8349 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8350 // The operands aren't in the same order for tMOVi8... 8351 MCInst TmpInst; 8352 TmpInst.setOpcode(ARM::tMOVi8); 8353 TmpInst.addOperand(Inst.getOperand(0)); 8354 TmpInst.addOperand(Inst.getOperand(4)); 8355 TmpInst.addOperand(Inst.getOperand(1)); 8356 TmpInst.addOperand(Inst.getOperand(2)); 8357 TmpInst.addOperand(Inst.getOperand(3)); 8358 Inst = TmpInst; 8359 return true; 8360 } 8361 break; 8362 } 8363 case ARM::t2MOVr: { 8364 // If we can use the 16-bit encoding and the user didn't explicitly 8365 // request the 32-bit variant, transform it here. 8366 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8367 isARMLowRegister(Inst.getOperand(1).getReg()) && 8368 Inst.getOperand(2).getImm() == ARMCC::AL && 8369 Inst.getOperand(4).getReg() == ARM::CPSR && 8370 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8371 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8372 // The operands aren't the same for tMOV[S]r... (no cc_out) 8373 MCInst TmpInst; 8374 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8375 TmpInst.addOperand(Inst.getOperand(0)); 8376 TmpInst.addOperand(Inst.getOperand(1)); 8377 TmpInst.addOperand(Inst.getOperand(2)); 8378 TmpInst.addOperand(Inst.getOperand(3)); 8379 Inst = TmpInst; 8380 return true; 8381 } 8382 break; 8383 } 8384 case ARM::t2SXTH: 8385 case ARM::t2SXTB: 8386 case ARM::t2UXTH: 8387 case ARM::t2UXTB: { 8388 // If we can use the 16-bit encoding and the user didn't explicitly 8389 // request the 32-bit variant, transform it here. 8390 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8391 isARMLowRegister(Inst.getOperand(1).getReg()) && 8392 Inst.getOperand(2).getImm() == 0 && 8393 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8394 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8395 unsigned NewOpc; 8396 switch (Inst.getOpcode()) { 8397 default: llvm_unreachable("Illegal opcode!"); 8398 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8399 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8400 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8401 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8402 } 8403 // The operands aren't the same for thumb1 (no rotate operand). 8404 MCInst TmpInst; 8405 TmpInst.setOpcode(NewOpc); 8406 TmpInst.addOperand(Inst.getOperand(0)); 8407 TmpInst.addOperand(Inst.getOperand(1)); 8408 TmpInst.addOperand(Inst.getOperand(3)); 8409 TmpInst.addOperand(Inst.getOperand(4)); 8410 Inst = TmpInst; 8411 return true; 8412 } 8413 break; 8414 } 8415 case ARM::MOVsi: { 8416 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8417 // rrx shifts and asr/lsr of #32 is encoded as 0 8418 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8419 return false; 8420 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8421 // Shifting by zero is accepted as a vanilla 'MOVr' 8422 MCInst TmpInst; 8423 TmpInst.setOpcode(ARM::MOVr); 8424 TmpInst.addOperand(Inst.getOperand(0)); 8425 TmpInst.addOperand(Inst.getOperand(1)); 8426 TmpInst.addOperand(Inst.getOperand(3)); 8427 TmpInst.addOperand(Inst.getOperand(4)); 8428 TmpInst.addOperand(Inst.getOperand(5)); 8429 Inst = TmpInst; 8430 return true; 8431 } 8432 return false; 8433 } 8434 case ARM::ANDrsi: 8435 case ARM::ORRrsi: 8436 case ARM::EORrsi: 8437 case ARM::BICrsi: 8438 case ARM::SUBrsi: 8439 case ARM::ADDrsi: { 8440 unsigned newOpc; 8441 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8442 if (SOpc == ARM_AM::rrx) return false; 8443 switch (Inst.getOpcode()) { 8444 default: llvm_unreachable("unexpected opcode!"); 8445 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8446 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8447 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8448 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8449 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8450 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8451 } 8452 // If the shift is by zero, use the non-shifted instruction definition. 8453 // The exception is for right shifts, where 0 == 32 8454 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8455 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8456 MCInst TmpInst; 8457 TmpInst.setOpcode(newOpc); 8458 TmpInst.addOperand(Inst.getOperand(0)); 8459 TmpInst.addOperand(Inst.getOperand(1)); 8460 TmpInst.addOperand(Inst.getOperand(2)); 8461 TmpInst.addOperand(Inst.getOperand(4)); 8462 TmpInst.addOperand(Inst.getOperand(5)); 8463 TmpInst.addOperand(Inst.getOperand(6)); 8464 Inst = TmpInst; 8465 return true; 8466 } 8467 return false; 8468 } 8469 case ARM::ITasm: 8470 case ARM::t2IT: { 8471 // The mask bits for all but the first condition are represented as 8472 // the low bit of the condition code value implies 't'. We currently 8473 // always have 1 implies 't', so XOR toggle the bits if the low bit 8474 // of the condition code is zero. 8475 MCOperand &MO = Inst.getOperand(1); 8476 unsigned Mask = MO.getImm(); 8477 unsigned OrigMask = Mask; 8478 unsigned TZ = countTrailingZeros(Mask); 8479 if ((Inst.getOperand(0).getImm() & 1) == 0) { 8480 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 8481 Mask ^= (0xE << TZ) & 0xF; 8482 } 8483 MO.setImm(Mask); 8484 8485 // Set up the IT block state according to the IT instruction we just 8486 // matched. 8487 assert(!inITBlock() && "nested IT blocks?!"); 8488 ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8489 ITState.Mask = OrigMask; // Use the original mask, not the updated one. 8490 ITState.CurPosition = 0; 8491 ITState.FirstCond = true; 8492 break; 8493 } 8494 case ARM::t2LSLrr: 8495 case ARM::t2LSRrr: 8496 case ARM::t2ASRrr: 8497 case ARM::t2SBCrr: 8498 case ARM::t2RORrr: 8499 case ARM::t2BICrr: 8500 { 8501 // Assemblers should use the narrow encodings of these instructions when permissible. 8502 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8503 isARMLowRegister(Inst.getOperand(2).getReg())) && 8504 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8505 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8506 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8507 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8508 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8509 ".w"))) { 8510 unsigned NewOpc; 8511 switch (Inst.getOpcode()) { 8512 default: llvm_unreachable("unexpected opcode"); 8513 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8514 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8515 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8516 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8517 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8518 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8519 } 8520 MCInst TmpInst; 8521 TmpInst.setOpcode(NewOpc); 8522 TmpInst.addOperand(Inst.getOperand(0)); 8523 TmpInst.addOperand(Inst.getOperand(5)); 8524 TmpInst.addOperand(Inst.getOperand(1)); 8525 TmpInst.addOperand(Inst.getOperand(2)); 8526 TmpInst.addOperand(Inst.getOperand(3)); 8527 TmpInst.addOperand(Inst.getOperand(4)); 8528 Inst = TmpInst; 8529 return true; 8530 } 8531 return false; 8532 } 8533 case ARM::t2ANDrr: 8534 case ARM::t2EORrr: 8535 case ARM::t2ADCrr: 8536 case ARM::t2ORRrr: 8537 { 8538 // Assemblers should use the narrow encodings of these instructions when permissible. 8539 // These instructions are special in that they are commutable, so shorter encodings 8540 // are available more often. 8541 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8542 isARMLowRegister(Inst.getOperand(2).getReg())) && 8543 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8544 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8545 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8546 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8547 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8548 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8549 ".w"))) { 8550 unsigned NewOpc; 8551 switch (Inst.getOpcode()) { 8552 default: llvm_unreachable("unexpected opcode"); 8553 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8554 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8555 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8556 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8557 } 8558 MCInst TmpInst; 8559 TmpInst.setOpcode(NewOpc); 8560 TmpInst.addOperand(Inst.getOperand(0)); 8561 TmpInst.addOperand(Inst.getOperand(5)); 8562 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8563 TmpInst.addOperand(Inst.getOperand(1)); 8564 TmpInst.addOperand(Inst.getOperand(2)); 8565 } else { 8566 TmpInst.addOperand(Inst.getOperand(2)); 8567 TmpInst.addOperand(Inst.getOperand(1)); 8568 } 8569 TmpInst.addOperand(Inst.getOperand(3)); 8570 TmpInst.addOperand(Inst.getOperand(4)); 8571 Inst = TmpInst; 8572 return true; 8573 } 8574 return false; 8575 } 8576 } 8577 return false; 8578 } 8579 8580 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8581 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8582 // suffix depending on whether they're in an IT block or not. 8583 unsigned Opc = Inst.getOpcode(); 8584 const MCInstrDesc &MCID = MII.get(Opc); 8585 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8586 assert(MCID.hasOptionalDef() && 8587 "optionally flag setting instruction missing optional def operand"); 8588 assert(MCID.NumOperands == Inst.getNumOperands() && 8589 "operand count mismatch!"); 8590 // Find the optional-def operand (cc_out). 8591 unsigned OpNo; 8592 for (OpNo = 0; 8593 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8594 ++OpNo) 8595 ; 8596 // If we're parsing Thumb1, reject it completely. 8597 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8598 return Match_MnemonicFail; 8599 // If we're parsing Thumb2, which form is legal depends on whether we're 8600 // in an IT block. 8601 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8602 !inITBlock()) 8603 return Match_RequiresITBlock; 8604 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8605 inITBlock()) 8606 return Match_RequiresNotITBlock; 8607 } else if (isThumbOne()) { 8608 // Some high-register supporting Thumb1 encodings only allow both registers 8609 // to be from r0-r7 when in Thumb2. 8610 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8611 isARMLowRegister(Inst.getOperand(1).getReg()) && 8612 isARMLowRegister(Inst.getOperand(2).getReg())) 8613 return Match_RequiresThumb2; 8614 // Others only require ARMv6 or later. 8615 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8616 isARMLowRegister(Inst.getOperand(0).getReg()) && 8617 isARMLowRegister(Inst.getOperand(1).getReg())) 8618 return Match_RequiresV6; 8619 } 8620 8621 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8622 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8623 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8624 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8625 return Match_RequiresV8; 8626 else if (Inst.getOperand(I).getReg() == ARM::PC) 8627 return Match_InvalidOperand; 8628 } 8629 8630 return Match_Success; 8631 } 8632 8633 namespace llvm { 8634 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { 8635 return true; // In an assembly source, no need to second-guess 8636 } 8637 } 8638 8639 static const char *getSubtargetFeatureName(uint64_t Val); 8640 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 8641 OperandVector &Operands, 8642 MCStreamer &Out, uint64_t &ErrorInfo, 8643 bool MatchingInlineAsm) { 8644 MCInst Inst; 8645 unsigned MatchResult; 8646 8647 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 8648 MatchingInlineAsm); 8649 switch (MatchResult) { 8650 case Match_Success: 8651 // Context sensitive operand constraints aren't handled by the matcher, 8652 // so check them here. 8653 if (validateInstruction(Inst, Operands)) { 8654 // Still progress the IT block, otherwise one wrong condition causes 8655 // nasty cascading errors. 8656 forwardITPosition(); 8657 return true; 8658 } 8659 8660 { // processInstruction() updates inITBlock state, we need to save it away 8661 bool wasInITBlock = inITBlock(); 8662 8663 // Some instructions need post-processing to, for example, tweak which 8664 // encoding is selected. Loop on it while changes happen so the 8665 // individual transformations can chain off each other. E.g., 8666 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 8667 while (processInstruction(Inst, Operands, Out)) 8668 ; 8669 8670 // Only after the instruction is fully processed, we can validate it 8671 if (wasInITBlock && hasV8Ops() && isThumb() && 8672 !isV8EligibleForIT(&Inst)) { 8673 Warning(IDLoc, "deprecated instruction in IT block"); 8674 } 8675 } 8676 8677 // Only move forward at the very end so that everything in validate 8678 // and process gets a consistent answer about whether we're in an IT 8679 // block. 8680 forwardITPosition(); 8681 8682 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 8683 // doesn't actually encode. 8684 if (Inst.getOpcode() == ARM::ITasm) 8685 return false; 8686 8687 Inst.setLoc(IDLoc); 8688 Out.EmitInstruction(Inst, getSTI()); 8689 return false; 8690 case Match_MissingFeature: { 8691 assert(ErrorInfo && "Unknown missing feature!"); 8692 // Special case the error message for the very common case where only 8693 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 8694 std::string Msg = "instruction requires:"; 8695 uint64_t Mask = 1; 8696 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 8697 if (ErrorInfo & Mask) { 8698 Msg += " "; 8699 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 8700 } 8701 Mask <<= 1; 8702 } 8703 return Error(IDLoc, Msg); 8704 } 8705 case Match_InvalidOperand: { 8706 SMLoc ErrorLoc = IDLoc; 8707 if (ErrorInfo != ~0ULL) { 8708 if (ErrorInfo >= Operands.size()) 8709 return Error(IDLoc, "too few operands for instruction"); 8710 8711 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8712 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8713 } 8714 8715 return Error(ErrorLoc, "invalid operand for instruction"); 8716 } 8717 case Match_MnemonicFail: 8718 return Error(IDLoc, "invalid instruction", 8719 ((ARMOperand &)*Operands[0]).getLocRange()); 8720 case Match_RequiresNotITBlock: 8721 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 8722 case Match_RequiresITBlock: 8723 return Error(IDLoc, "instruction only valid inside IT block"); 8724 case Match_RequiresV6: 8725 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 8726 case Match_RequiresThumb2: 8727 return Error(IDLoc, "instruction variant requires Thumb2"); 8728 case Match_RequiresV8: 8729 return Error(IDLoc, "instruction variant requires ARMv8 or later"); 8730 case Match_ImmRange0_15: { 8731 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8732 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8733 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 8734 } 8735 case Match_ImmRange0_239: { 8736 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8737 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8738 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 8739 } 8740 case Match_AlignedMemoryRequiresNone: 8741 case Match_DupAlignedMemoryRequiresNone: 8742 case Match_AlignedMemoryRequires16: 8743 case Match_DupAlignedMemoryRequires16: 8744 case Match_AlignedMemoryRequires32: 8745 case Match_DupAlignedMemoryRequires32: 8746 case Match_AlignedMemoryRequires64: 8747 case Match_DupAlignedMemoryRequires64: 8748 case Match_AlignedMemoryRequires64or128: 8749 case Match_DupAlignedMemoryRequires64or128: 8750 case Match_AlignedMemoryRequires64or128or256: 8751 { 8752 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 8753 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8754 switch (MatchResult) { 8755 default: 8756 llvm_unreachable("Missing Match_Aligned type"); 8757 case Match_AlignedMemoryRequiresNone: 8758 case Match_DupAlignedMemoryRequiresNone: 8759 return Error(ErrorLoc, "alignment must be omitted"); 8760 case Match_AlignedMemoryRequires16: 8761 case Match_DupAlignedMemoryRequires16: 8762 return Error(ErrorLoc, "alignment must be 16 or omitted"); 8763 case Match_AlignedMemoryRequires32: 8764 case Match_DupAlignedMemoryRequires32: 8765 return Error(ErrorLoc, "alignment must be 32 or omitted"); 8766 case Match_AlignedMemoryRequires64: 8767 case Match_DupAlignedMemoryRequires64: 8768 return Error(ErrorLoc, "alignment must be 64 or omitted"); 8769 case Match_AlignedMemoryRequires64or128: 8770 case Match_DupAlignedMemoryRequires64or128: 8771 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 8772 case Match_AlignedMemoryRequires64or128or256: 8773 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 8774 } 8775 } 8776 } 8777 8778 llvm_unreachable("Implement any new match types added!"); 8779 } 8780 8781 /// parseDirective parses the arm specific directives 8782 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 8783 const MCObjectFileInfo::Environment Format = 8784 getContext().getObjectFileInfo()->getObjectFileType(); 8785 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8786 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 8787 8788 StringRef IDVal = DirectiveID.getIdentifier(); 8789 if (IDVal == ".word") 8790 return parseLiteralValues(4, DirectiveID.getLoc()); 8791 else if (IDVal == ".short" || IDVal == ".hword") 8792 return parseLiteralValues(2, DirectiveID.getLoc()); 8793 else if (IDVal == ".thumb") 8794 return parseDirectiveThumb(DirectiveID.getLoc()); 8795 else if (IDVal == ".arm") 8796 return parseDirectiveARM(DirectiveID.getLoc()); 8797 else if (IDVal == ".thumb_func") 8798 return parseDirectiveThumbFunc(DirectiveID.getLoc()); 8799 else if (IDVal == ".code") 8800 return parseDirectiveCode(DirectiveID.getLoc()); 8801 else if (IDVal == ".syntax") 8802 return parseDirectiveSyntax(DirectiveID.getLoc()); 8803 else if (IDVal == ".unreq") 8804 return parseDirectiveUnreq(DirectiveID.getLoc()); 8805 else if (IDVal == ".fnend") 8806 return parseDirectiveFnEnd(DirectiveID.getLoc()); 8807 else if (IDVal == ".cantunwind") 8808 return parseDirectiveCantUnwind(DirectiveID.getLoc()); 8809 else if (IDVal == ".personality") 8810 return parseDirectivePersonality(DirectiveID.getLoc()); 8811 else if (IDVal == ".handlerdata") 8812 return parseDirectiveHandlerData(DirectiveID.getLoc()); 8813 else if (IDVal == ".setfp") 8814 return parseDirectiveSetFP(DirectiveID.getLoc()); 8815 else if (IDVal == ".pad") 8816 return parseDirectivePad(DirectiveID.getLoc()); 8817 else if (IDVal == ".save") 8818 return parseDirectiveRegSave(DirectiveID.getLoc(), false); 8819 else if (IDVal == ".vsave") 8820 return parseDirectiveRegSave(DirectiveID.getLoc(), true); 8821 else if (IDVal == ".ltorg" || IDVal == ".pool") 8822 return parseDirectiveLtorg(DirectiveID.getLoc()); 8823 else if (IDVal == ".even") 8824 return parseDirectiveEven(DirectiveID.getLoc()); 8825 else if (IDVal == ".personalityindex") 8826 return parseDirectivePersonalityIndex(DirectiveID.getLoc()); 8827 else if (IDVal == ".unwind_raw") 8828 return parseDirectiveUnwindRaw(DirectiveID.getLoc()); 8829 else if (IDVal == ".movsp") 8830 return parseDirectiveMovSP(DirectiveID.getLoc()); 8831 else if (IDVal == ".arch_extension") 8832 return parseDirectiveArchExtension(DirectiveID.getLoc()); 8833 else if (IDVal == ".align") 8834 return parseDirectiveAlign(DirectiveID.getLoc()); 8835 else if (IDVal == ".thumb_set") 8836 return parseDirectiveThumbSet(DirectiveID.getLoc()); 8837 8838 if (!IsMachO && !IsCOFF) { 8839 if (IDVal == ".arch") 8840 return parseDirectiveArch(DirectiveID.getLoc()); 8841 else if (IDVal == ".cpu") 8842 return parseDirectiveCPU(DirectiveID.getLoc()); 8843 else if (IDVal == ".eabi_attribute") 8844 return parseDirectiveEabiAttr(DirectiveID.getLoc()); 8845 else if (IDVal == ".fpu") 8846 return parseDirectiveFPU(DirectiveID.getLoc()); 8847 else if (IDVal == ".fnstart") 8848 return parseDirectiveFnStart(DirectiveID.getLoc()); 8849 else if (IDVal == ".inst") 8850 return parseDirectiveInst(DirectiveID.getLoc()); 8851 else if (IDVal == ".inst.n") 8852 return parseDirectiveInst(DirectiveID.getLoc(), 'n'); 8853 else if (IDVal == ".inst.w") 8854 return parseDirectiveInst(DirectiveID.getLoc(), 'w'); 8855 else if (IDVal == ".object_arch") 8856 return parseDirectiveObjectArch(DirectiveID.getLoc()); 8857 else if (IDVal == ".tlsdescseq") 8858 return parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 8859 } 8860 8861 return true; 8862 } 8863 8864 /// parseLiteralValues 8865 /// ::= .hword expression [, expression]* 8866 /// ::= .short expression [, expression]* 8867 /// ::= .word expression [, expression]* 8868 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 8869 MCAsmParser &Parser = getParser(); 8870 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8871 for (;;) { 8872 const MCExpr *Value; 8873 if (getParser().parseExpression(Value)) { 8874 Parser.eatToEndOfStatement(); 8875 return false; 8876 } 8877 8878 getParser().getStreamer().EmitValue(Value, Size, L); 8879 8880 if (getLexer().is(AsmToken::EndOfStatement)) 8881 break; 8882 8883 // FIXME: Improve diagnostic. 8884 if (getLexer().isNot(AsmToken::Comma)) { 8885 Error(L, "unexpected token in directive"); 8886 return false; 8887 } 8888 Parser.Lex(); 8889 } 8890 } 8891 8892 Parser.Lex(); 8893 return false; 8894 } 8895 8896 /// parseDirectiveThumb 8897 /// ::= .thumb 8898 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 8899 MCAsmParser &Parser = getParser(); 8900 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8901 Error(L, "unexpected token in directive"); 8902 return false; 8903 } 8904 Parser.Lex(); 8905 8906 if (!hasThumb()) { 8907 Error(L, "target does not support Thumb mode"); 8908 return false; 8909 } 8910 8911 if (!isThumb()) 8912 SwitchMode(); 8913 8914 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 8915 return false; 8916 } 8917 8918 /// parseDirectiveARM 8919 /// ::= .arm 8920 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 8921 MCAsmParser &Parser = getParser(); 8922 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8923 Error(L, "unexpected token in directive"); 8924 return false; 8925 } 8926 Parser.Lex(); 8927 8928 if (!hasARM()) { 8929 Error(L, "target does not support ARM mode"); 8930 return false; 8931 } 8932 8933 if (isThumb()) 8934 SwitchMode(); 8935 8936 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 8937 return false; 8938 } 8939 8940 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 8941 if (NextSymbolIsThumb) { 8942 getParser().getStreamer().EmitThumbFunc(Symbol); 8943 NextSymbolIsThumb = false; 8944 } 8945 } 8946 8947 /// parseDirectiveThumbFunc 8948 /// ::= .thumbfunc symbol_name 8949 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 8950 MCAsmParser &Parser = getParser(); 8951 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 8952 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8953 8954 // Darwin asm has (optionally) function name after .thumb_func direction 8955 // ELF doesn't 8956 if (IsMachO) { 8957 const AsmToken &Tok = Parser.getTok(); 8958 if (Tok.isNot(AsmToken::EndOfStatement)) { 8959 if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) { 8960 Error(L, "unexpected token in .thumb_func directive"); 8961 return false; 8962 } 8963 8964 MCSymbol *Func = 8965 getParser().getContext().getOrCreateSymbol(Tok.getIdentifier()); 8966 getParser().getStreamer().EmitThumbFunc(Func); 8967 Parser.Lex(); // Consume the identifier token. 8968 return false; 8969 } 8970 } 8971 8972 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8973 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8974 Parser.eatToEndOfStatement(); 8975 return false; 8976 } 8977 8978 NextSymbolIsThumb = true; 8979 return false; 8980 } 8981 8982 /// parseDirectiveSyntax 8983 /// ::= .syntax unified | divided 8984 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 8985 MCAsmParser &Parser = getParser(); 8986 const AsmToken &Tok = Parser.getTok(); 8987 if (Tok.isNot(AsmToken::Identifier)) { 8988 Error(L, "unexpected token in .syntax directive"); 8989 return false; 8990 } 8991 8992 StringRef Mode = Tok.getString(); 8993 if (Mode == "unified" || Mode == "UNIFIED") { 8994 Parser.Lex(); 8995 } else if (Mode == "divided" || Mode == "DIVIDED") { 8996 Error(L, "'.syntax divided' arm asssembly not supported"); 8997 return false; 8998 } else { 8999 Error(L, "unrecognized syntax mode in .syntax directive"); 9000 return false; 9001 } 9002 9003 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9004 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9005 return false; 9006 } 9007 Parser.Lex(); 9008 9009 // TODO tell the MC streamer the mode 9010 // getParser().getStreamer().Emit???(); 9011 return false; 9012 } 9013 9014 /// parseDirectiveCode 9015 /// ::= .code 16 | 32 9016 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9017 MCAsmParser &Parser = getParser(); 9018 const AsmToken &Tok = Parser.getTok(); 9019 if (Tok.isNot(AsmToken::Integer)) { 9020 Error(L, "unexpected token in .code directive"); 9021 return false; 9022 } 9023 int64_t Val = Parser.getTok().getIntVal(); 9024 if (Val != 16 && Val != 32) { 9025 Error(L, "invalid operand to .code directive"); 9026 return false; 9027 } 9028 Parser.Lex(); 9029 9030 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9031 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9032 return false; 9033 } 9034 Parser.Lex(); 9035 9036 if (Val == 16) { 9037 if (!hasThumb()) { 9038 Error(L, "target does not support Thumb mode"); 9039 return false; 9040 } 9041 9042 if (!isThumb()) 9043 SwitchMode(); 9044 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9045 } else { 9046 if (!hasARM()) { 9047 Error(L, "target does not support ARM mode"); 9048 return false; 9049 } 9050 9051 if (isThumb()) 9052 SwitchMode(); 9053 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9054 } 9055 9056 return false; 9057 } 9058 9059 /// parseDirectiveReq 9060 /// ::= name .req registername 9061 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9062 MCAsmParser &Parser = getParser(); 9063 Parser.Lex(); // Eat the '.req' token. 9064 unsigned Reg; 9065 SMLoc SRegLoc, ERegLoc; 9066 if (ParseRegister(Reg, SRegLoc, ERegLoc)) { 9067 Parser.eatToEndOfStatement(); 9068 Error(SRegLoc, "register name expected"); 9069 return false; 9070 } 9071 9072 // Shouldn't be anything else. 9073 if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { 9074 Parser.eatToEndOfStatement(); 9075 Error(Parser.getTok().getLoc(), "unexpected input in .req directive."); 9076 return false; 9077 } 9078 9079 Parser.Lex(); // Consume the EndOfStatement 9080 9081 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) { 9082 Error(SRegLoc, "redefinition of '" + Name + "' does not match original."); 9083 return false; 9084 } 9085 9086 return false; 9087 } 9088 9089 /// parseDirectiveUneq 9090 /// ::= .unreq registername 9091 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9092 MCAsmParser &Parser = getParser(); 9093 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9094 Parser.eatToEndOfStatement(); 9095 Error(L, "unexpected input in .unreq directive."); 9096 return false; 9097 } 9098 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9099 Parser.Lex(); // Eat the identifier. 9100 return false; 9101 } 9102 9103 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9104 // before, if supported by the new target, or emit mapping symbols for the mode 9105 // switch. 9106 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9107 if (WasThumb != isThumb()) { 9108 if (WasThumb && hasThumb()) { 9109 // Stay in Thumb mode 9110 SwitchMode(); 9111 } else if (!WasThumb && hasARM()) { 9112 // Stay in ARM mode 9113 SwitchMode(); 9114 } else { 9115 // Mode switch forced, because the new arch doesn't support the old mode. 9116 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9117 : MCAF_Code32); 9118 // Warn about the implcit mode switch. GAS does not switch modes here, 9119 // but instead stays in the old mode, reporting an error on any following 9120 // instructions as the mode does not exist on the target. 9121 Warning(Loc, Twine("new target does not support ") + 9122 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9123 (!WasThumb ? "thumb" : "arm") + " mode"); 9124 } 9125 } 9126 } 9127 9128 /// parseDirectiveArch 9129 /// ::= .arch token 9130 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9131 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9132 9133 unsigned ID = ARM::parseArch(Arch); 9134 9135 if (ID == ARM::AK_INVALID) { 9136 Error(L, "Unknown arch name"); 9137 return false; 9138 } 9139 9140 bool WasThumb = isThumb(); 9141 Triple T; 9142 MCSubtargetInfo &STI = copySTI(); 9143 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9144 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9145 FixModeAfterArchChange(WasThumb, L); 9146 9147 getTargetStreamer().emitArch(ID); 9148 return false; 9149 } 9150 9151 /// parseDirectiveEabiAttr 9152 /// ::= .eabi_attribute int, int [, "str"] 9153 /// ::= .eabi_attribute Tag_name, int [, "str"] 9154 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9155 MCAsmParser &Parser = getParser(); 9156 int64_t Tag; 9157 SMLoc TagLoc; 9158 TagLoc = Parser.getTok().getLoc(); 9159 if (Parser.getTok().is(AsmToken::Identifier)) { 9160 StringRef Name = Parser.getTok().getIdentifier(); 9161 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9162 if (Tag == -1) { 9163 Error(TagLoc, "attribute name not recognised: " + Name); 9164 Parser.eatToEndOfStatement(); 9165 return false; 9166 } 9167 Parser.Lex(); 9168 } else { 9169 const MCExpr *AttrExpr; 9170 9171 TagLoc = Parser.getTok().getLoc(); 9172 if (Parser.parseExpression(AttrExpr)) { 9173 Parser.eatToEndOfStatement(); 9174 return false; 9175 } 9176 9177 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9178 if (!CE) { 9179 Error(TagLoc, "expected numeric constant"); 9180 Parser.eatToEndOfStatement(); 9181 return false; 9182 } 9183 9184 Tag = CE->getValue(); 9185 } 9186 9187 if (Parser.getTok().isNot(AsmToken::Comma)) { 9188 Error(Parser.getTok().getLoc(), "comma expected"); 9189 Parser.eatToEndOfStatement(); 9190 return false; 9191 } 9192 Parser.Lex(); // skip comma 9193 9194 StringRef StringValue = ""; 9195 bool IsStringValue = false; 9196 9197 int64_t IntegerValue = 0; 9198 bool IsIntegerValue = false; 9199 9200 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9201 IsStringValue = true; 9202 else if (Tag == ARMBuildAttrs::compatibility) { 9203 IsStringValue = true; 9204 IsIntegerValue = true; 9205 } else if (Tag < 32 || Tag % 2 == 0) 9206 IsIntegerValue = true; 9207 else if (Tag % 2 == 1) 9208 IsStringValue = true; 9209 else 9210 llvm_unreachable("invalid tag type"); 9211 9212 if (IsIntegerValue) { 9213 const MCExpr *ValueExpr; 9214 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9215 if (Parser.parseExpression(ValueExpr)) { 9216 Parser.eatToEndOfStatement(); 9217 return false; 9218 } 9219 9220 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9221 if (!CE) { 9222 Error(ValueExprLoc, "expected numeric constant"); 9223 Parser.eatToEndOfStatement(); 9224 return false; 9225 } 9226 9227 IntegerValue = CE->getValue(); 9228 } 9229 9230 if (Tag == ARMBuildAttrs::compatibility) { 9231 if (Parser.getTok().isNot(AsmToken::Comma)) 9232 IsStringValue = false; 9233 if (Parser.getTok().isNot(AsmToken::Comma)) { 9234 Error(Parser.getTok().getLoc(), "comma expected"); 9235 Parser.eatToEndOfStatement(); 9236 return false; 9237 } else { 9238 Parser.Lex(); 9239 } 9240 } 9241 9242 if (IsStringValue) { 9243 if (Parser.getTok().isNot(AsmToken::String)) { 9244 Error(Parser.getTok().getLoc(), "bad string constant"); 9245 Parser.eatToEndOfStatement(); 9246 return false; 9247 } 9248 9249 StringValue = Parser.getTok().getStringContents(); 9250 Parser.Lex(); 9251 } 9252 9253 if (IsIntegerValue && IsStringValue) { 9254 assert(Tag == ARMBuildAttrs::compatibility); 9255 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9256 } else if (IsIntegerValue) 9257 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9258 else if (IsStringValue) 9259 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9260 return false; 9261 } 9262 9263 /// parseDirectiveCPU 9264 /// ::= .cpu str 9265 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9266 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9267 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9268 9269 // FIXME: This is using table-gen data, but should be moved to 9270 // ARMTargetParser once that is table-gen'd. 9271 if (!getSTI().isCPUStringValid(CPU)) { 9272 Error(L, "Unknown CPU name"); 9273 return false; 9274 } 9275 9276 bool WasThumb = isThumb(); 9277 MCSubtargetInfo &STI = copySTI(); 9278 STI.setDefaultFeatures(CPU, ""); 9279 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9280 FixModeAfterArchChange(WasThumb, L); 9281 9282 return false; 9283 } 9284 /// parseDirectiveFPU 9285 /// ::= .fpu str 9286 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9287 SMLoc FPUNameLoc = getTok().getLoc(); 9288 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9289 9290 unsigned ID = ARM::parseFPU(FPU); 9291 std::vector<const char *> Features; 9292 if (!ARM::getFPUFeatures(ID, Features)) { 9293 Error(FPUNameLoc, "Unknown FPU name"); 9294 return false; 9295 } 9296 9297 MCSubtargetInfo &STI = copySTI(); 9298 for (auto Feature : Features) 9299 STI.ApplyFeatureFlag(Feature); 9300 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9301 9302 getTargetStreamer().emitFPU(ID); 9303 return false; 9304 } 9305 9306 /// parseDirectiveFnStart 9307 /// ::= .fnstart 9308 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9309 if (UC.hasFnStart()) { 9310 Error(L, ".fnstart starts before the end of previous one"); 9311 UC.emitFnStartLocNotes(); 9312 return false; 9313 } 9314 9315 // Reset the unwind directives parser state 9316 UC.reset(); 9317 9318 getTargetStreamer().emitFnStart(); 9319 9320 UC.recordFnStart(L); 9321 return false; 9322 } 9323 9324 /// parseDirectiveFnEnd 9325 /// ::= .fnend 9326 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9327 // Check the ordering of unwind directives 9328 if (!UC.hasFnStart()) { 9329 Error(L, ".fnstart must precede .fnend directive"); 9330 return false; 9331 } 9332 9333 // Reset the unwind directives parser state 9334 getTargetStreamer().emitFnEnd(); 9335 9336 UC.reset(); 9337 return false; 9338 } 9339 9340 /// parseDirectiveCantUnwind 9341 /// ::= .cantunwind 9342 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9343 UC.recordCantUnwind(L); 9344 9345 // Check the ordering of unwind directives 9346 if (!UC.hasFnStart()) { 9347 Error(L, ".fnstart must precede .cantunwind directive"); 9348 return false; 9349 } 9350 if (UC.hasHandlerData()) { 9351 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9352 UC.emitHandlerDataLocNotes(); 9353 return false; 9354 } 9355 if (UC.hasPersonality()) { 9356 Error(L, ".cantunwind can't be used with .personality directive"); 9357 UC.emitPersonalityLocNotes(); 9358 return false; 9359 } 9360 9361 getTargetStreamer().emitCantUnwind(); 9362 return false; 9363 } 9364 9365 /// parseDirectivePersonality 9366 /// ::= .personality name 9367 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9368 MCAsmParser &Parser = getParser(); 9369 bool HasExistingPersonality = UC.hasPersonality(); 9370 9371 UC.recordPersonality(L); 9372 9373 // Check the ordering of unwind directives 9374 if (!UC.hasFnStart()) { 9375 Error(L, ".fnstart must precede .personality directive"); 9376 return false; 9377 } 9378 if (UC.cantUnwind()) { 9379 Error(L, ".personality can't be used with .cantunwind directive"); 9380 UC.emitCantUnwindLocNotes(); 9381 return false; 9382 } 9383 if (UC.hasHandlerData()) { 9384 Error(L, ".personality must precede .handlerdata directive"); 9385 UC.emitHandlerDataLocNotes(); 9386 return false; 9387 } 9388 if (HasExistingPersonality) { 9389 Parser.eatToEndOfStatement(); 9390 Error(L, "multiple personality directives"); 9391 UC.emitPersonalityLocNotes(); 9392 return false; 9393 } 9394 9395 // Parse the name of the personality routine 9396 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9397 Parser.eatToEndOfStatement(); 9398 Error(L, "unexpected input in .personality directive."); 9399 return false; 9400 } 9401 StringRef Name(Parser.getTok().getIdentifier()); 9402 Parser.Lex(); 9403 9404 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9405 getTargetStreamer().emitPersonality(PR); 9406 return false; 9407 } 9408 9409 /// parseDirectiveHandlerData 9410 /// ::= .handlerdata 9411 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9412 UC.recordHandlerData(L); 9413 9414 // Check the ordering of unwind directives 9415 if (!UC.hasFnStart()) { 9416 Error(L, ".fnstart must precede .personality directive"); 9417 return false; 9418 } 9419 if (UC.cantUnwind()) { 9420 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9421 UC.emitCantUnwindLocNotes(); 9422 return false; 9423 } 9424 9425 getTargetStreamer().emitHandlerData(); 9426 return false; 9427 } 9428 9429 /// parseDirectiveSetFP 9430 /// ::= .setfp fpreg, spreg [, offset] 9431 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9432 MCAsmParser &Parser = getParser(); 9433 // Check the ordering of unwind directives 9434 if (!UC.hasFnStart()) { 9435 Error(L, ".fnstart must precede .setfp directive"); 9436 return false; 9437 } 9438 if (UC.hasHandlerData()) { 9439 Error(L, ".setfp must precede .handlerdata directive"); 9440 return false; 9441 } 9442 9443 // Parse fpreg 9444 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9445 int FPReg = tryParseRegister(); 9446 if (FPReg == -1) { 9447 Error(FPRegLoc, "frame pointer register expected"); 9448 return false; 9449 } 9450 9451 // Consume comma 9452 if (Parser.getTok().isNot(AsmToken::Comma)) { 9453 Error(Parser.getTok().getLoc(), "comma expected"); 9454 return false; 9455 } 9456 Parser.Lex(); // skip comma 9457 9458 // Parse spreg 9459 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9460 int SPReg = tryParseRegister(); 9461 if (SPReg == -1) { 9462 Error(SPRegLoc, "stack pointer register expected"); 9463 return false; 9464 } 9465 9466 if (SPReg != ARM::SP && SPReg != UC.getFPReg()) { 9467 Error(SPRegLoc, "register should be either $sp or the latest fp register"); 9468 return false; 9469 } 9470 9471 // Update the frame pointer register 9472 UC.saveFPReg(FPReg); 9473 9474 // Parse offset 9475 int64_t Offset = 0; 9476 if (Parser.getTok().is(AsmToken::Comma)) { 9477 Parser.Lex(); // skip comma 9478 9479 if (Parser.getTok().isNot(AsmToken::Hash) && 9480 Parser.getTok().isNot(AsmToken::Dollar)) { 9481 Error(Parser.getTok().getLoc(), "'#' expected"); 9482 return false; 9483 } 9484 Parser.Lex(); // skip hash token. 9485 9486 const MCExpr *OffsetExpr; 9487 SMLoc ExLoc = Parser.getTok().getLoc(); 9488 SMLoc EndLoc; 9489 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9490 Error(ExLoc, "malformed setfp offset"); 9491 return false; 9492 } 9493 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9494 if (!CE) { 9495 Error(ExLoc, "setfp offset must be an immediate"); 9496 return false; 9497 } 9498 9499 Offset = CE->getValue(); 9500 } 9501 9502 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9503 static_cast<unsigned>(SPReg), Offset); 9504 return false; 9505 } 9506 9507 /// parseDirective 9508 /// ::= .pad offset 9509 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9510 MCAsmParser &Parser = getParser(); 9511 // Check the ordering of unwind directives 9512 if (!UC.hasFnStart()) { 9513 Error(L, ".fnstart must precede .pad directive"); 9514 return false; 9515 } 9516 if (UC.hasHandlerData()) { 9517 Error(L, ".pad must precede .handlerdata directive"); 9518 return false; 9519 } 9520 9521 // Parse the offset 9522 if (Parser.getTok().isNot(AsmToken::Hash) && 9523 Parser.getTok().isNot(AsmToken::Dollar)) { 9524 Error(Parser.getTok().getLoc(), "'#' expected"); 9525 return false; 9526 } 9527 Parser.Lex(); // skip hash token. 9528 9529 const MCExpr *OffsetExpr; 9530 SMLoc ExLoc = Parser.getTok().getLoc(); 9531 SMLoc EndLoc; 9532 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9533 Error(ExLoc, "malformed pad offset"); 9534 return false; 9535 } 9536 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9537 if (!CE) { 9538 Error(ExLoc, "pad offset must be an immediate"); 9539 return false; 9540 } 9541 9542 getTargetStreamer().emitPad(CE->getValue()); 9543 return false; 9544 } 9545 9546 /// parseDirectiveRegSave 9547 /// ::= .save { registers } 9548 /// ::= .vsave { registers } 9549 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9550 // Check the ordering of unwind directives 9551 if (!UC.hasFnStart()) { 9552 Error(L, ".fnstart must precede .save or .vsave directives"); 9553 return false; 9554 } 9555 if (UC.hasHandlerData()) { 9556 Error(L, ".save or .vsave must precede .handlerdata directive"); 9557 return false; 9558 } 9559 9560 // RAII object to make sure parsed operands are deleted. 9561 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9562 9563 // Parse the register list 9564 if (parseRegisterList(Operands)) 9565 return false; 9566 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9567 if (!IsVector && !Op.isRegList()) { 9568 Error(L, ".save expects GPR registers"); 9569 return false; 9570 } 9571 if (IsVector && !Op.isDPRRegList()) { 9572 Error(L, ".vsave expects DPR registers"); 9573 return false; 9574 } 9575 9576 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9577 return false; 9578 } 9579 9580 /// parseDirectiveInst 9581 /// ::= .inst opcode [, ...] 9582 /// ::= .inst.n opcode [, ...] 9583 /// ::= .inst.w opcode [, ...] 9584 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9585 MCAsmParser &Parser = getParser(); 9586 int Width; 9587 9588 if (isThumb()) { 9589 switch (Suffix) { 9590 case 'n': 9591 Width = 2; 9592 break; 9593 case 'w': 9594 Width = 4; 9595 break; 9596 default: 9597 Parser.eatToEndOfStatement(); 9598 Error(Loc, "cannot determine Thumb instruction size, " 9599 "use inst.n/inst.w instead"); 9600 return false; 9601 } 9602 } else { 9603 if (Suffix) { 9604 Parser.eatToEndOfStatement(); 9605 Error(Loc, "width suffixes are invalid in ARM mode"); 9606 return false; 9607 } 9608 Width = 4; 9609 } 9610 9611 if (getLexer().is(AsmToken::EndOfStatement)) { 9612 Parser.eatToEndOfStatement(); 9613 Error(Loc, "expected expression following directive"); 9614 return false; 9615 } 9616 9617 for (;;) { 9618 const MCExpr *Expr; 9619 9620 if (getParser().parseExpression(Expr)) { 9621 Error(Loc, "expected expression"); 9622 return false; 9623 } 9624 9625 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9626 if (!Value) { 9627 Error(Loc, "expected constant expression"); 9628 return false; 9629 } 9630 9631 switch (Width) { 9632 case 2: 9633 if (Value->getValue() > 0xffff) { 9634 Error(Loc, "inst.n operand is too big, use inst.w instead"); 9635 return false; 9636 } 9637 break; 9638 case 4: 9639 if (Value->getValue() > 0xffffffff) { 9640 Error(Loc, 9641 StringRef(Suffix ? "inst.w" : "inst") + " operand is too big"); 9642 return false; 9643 } 9644 break; 9645 default: 9646 llvm_unreachable("only supported widths are 2 and 4"); 9647 } 9648 9649 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9650 9651 if (getLexer().is(AsmToken::EndOfStatement)) 9652 break; 9653 9654 if (getLexer().isNot(AsmToken::Comma)) { 9655 Error(Loc, "unexpected token in directive"); 9656 return false; 9657 } 9658 9659 Parser.Lex(); 9660 } 9661 9662 Parser.Lex(); 9663 return false; 9664 } 9665 9666 /// parseDirectiveLtorg 9667 /// ::= .ltorg | .pool 9668 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9669 getTargetStreamer().emitCurrentConstantPool(); 9670 return false; 9671 } 9672 9673 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9674 const MCSection *Section = getStreamer().getCurrentSection().first; 9675 9676 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9677 TokError("unexpected token in directive"); 9678 return false; 9679 } 9680 9681 if (!Section) { 9682 getStreamer().InitSections(false); 9683 Section = getStreamer().getCurrentSection().first; 9684 } 9685 9686 assert(Section && "must have section to emit alignment"); 9687 if (Section->UseCodeAlign()) 9688 getStreamer().EmitCodeAlignment(2); 9689 else 9690 getStreamer().EmitValueToAlignment(2); 9691 9692 return false; 9693 } 9694 9695 /// parseDirectivePersonalityIndex 9696 /// ::= .personalityindex index 9697 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9698 MCAsmParser &Parser = getParser(); 9699 bool HasExistingPersonality = UC.hasPersonality(); 9700 9701 UC.recordPersonalityIndex(L); 9702 9703 if (!UC.hasFnStart()) { 9704 Parser.eatToEndOfStatement(); 9705 Error(L, ".fnstart must precede .personalityindex directive"); 9706 return false; 9707 } 9708 if (UC.cantUnwind()) { 9709 Parser.eatToEndOfStatement(); 9710 Error(L, ".personalityindex cannot be used with .cantunwind"); 9711 UC.emitCantUnwindLocNotes(); 9712 return false; 9713 } 9714 if (UC.hasHandlerData()) { 9715 Parser.eatToEndOfStatement(); 9716 Error(L, ".personalityindex must precede .handlerdata directive"); 9717 UC.emitHandlerDataLocNotes(); 9718 return false; 9719 } 9720 if (HasExistingPersonality) { 9721 Parser.eatToEndOfStatement(); 9722 Error(L, "multiple personality directives"); 9723 UC.emitPersonalityLocNotes(); 9724 return false; 9725 } 9726 9727 const MCExpr *IndexExpression; 9728 SMLoc IndexLoc = Parser.getTok().getLoc(); 9729 if (Parser.parseExpression(IndexExpression)) { 9730 Parser.eatToEndOfStatement(); 9731 return false; 9732 } 9733 9734 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9735 if (!CE) { 9736 Parser.eatToEndOfStatement(); 9737 Error(IndexLoc, "index must be a constant number"); 9738 return false; 9739 } 9740 if (CE->getValue() < 0 || 9741 CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) { 9742 Parser.eatToEndOfStatement(); 9743 Error(IndexLoc, "personality routine index should be in range [0-3]"); 9744 return false; 9745 } 9746 9747 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9748 return false; 9749 } 9750 9751 /// parseDirectiveUnwindRaw 9752 /// ::= .unwind_raw offset, opcode [, opcode...] 9753 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9754 MCAsmParser &Parser = getParser(); 9755 if (!UC.hasFnStart()) { 9756 Parser.eatToEndOfStatement(); 9757 Error(L, ".fnstart must precede .unwind_raw directives"); 9758 return false; 9759 } 9760 9761 int64_t StackOffset; 9762 9763 const MCExpr *OffsetExpr; 9764 SMLoc OffsetLoc = getLexer().getLoc(); 9765 if (getLexer().is(AsmToken::EndOfStatement) || 9766 getParser().parseExpression(OffsetExpr)) { 9767 Error(OffsetLoc, "expected expression"); 9768 Parser.eatToEndOfStatement(); 9769 return false; 9770 } 9771 9772 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9773 if (!CE) { 9774 Error(OffsetLoc, "offset must be a constant"); 9775 Parser.eatToEndOfStatement(); 9776 return false; 9777 } 9778 9779 StackOffset = CE->getValue(); 9780 9781 if (getLexer().isNot(AsmToken::Comma)) { 9782 Error(getLexer().getLoc(), "expected comma"); 9783 Parser.eatToEndOfStatement(); 9784 return false; 9785 } 9786 Parser.Lex(); 9787 9788 SmallVector<uint8_t, 16> Opcodes; 9789 for (;;) { 9790 const MCExpr *OE; 9791 9792 SMLoc OpcodeLoc = getLexer().getLoc(); 9793 if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) { 9794 Error(OpcodeLoc, "expected opcode expression"); 9795 Parser.eatToEndOfStatement(); 9796 return false; 9797 } 9798 9799 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9800 if (!OC) { 9801 Error(OpcodeLoc, "opcode value must be a constant"); 9802 Parser.eatToEndOfStatement(); 9803 return false; 9804 } 9805 9806 const int64_t Opcode = OC->getValue(); 9807 if (Opcode & ~0xff) { 9808 Error(OpcodeLoc, "invalid opcode"); 9809 Parser.eatToEndOfStatement(); 9810 return false; 9811 } 9812 9813 Opcodes.push_back(uint8_t(Opcode)); 9814 9815 if (getLexer().is(AsmToken::EndOfStatement)) 9816 break; 9817 9818 if (getLexer().isNot(AsmToken::Comma)) { 9819 Error(getLexer().getLoc(), "unexpected token in directive"); 9820 Parser.eatToEndOfStatement(); 9821 return false; 9822 } 9823 9824 Parser.Lex(); 9825 } 9826 9827 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9828 9829 Parser.Lex(); 9830 return false; 9831 } 9832 9833 /// parseDirectiveTLSDescSeq 9834 /// ::= .tlsdescseq tls-variable 9835 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 9836 MCAsmParser &Parser = getParser(); 9837 9838 if (getLexer().isNot(AsmToken::Identifier)) { 9839 TokError("expected variable after '.tlsdescseq' directive"); 9840 Parser.eatToEndOfStatement(); 9841 return false; 9842 } 9843 9844 const MCSymbolRefExpr *SRE = 9845 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 9846 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 9847 Lex(); 9848 9849 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9850 Error(Parser.getTok().getLoc(), "unexpected token"); 9851 Parser.eatToEndOfStatement(); 9852 return false; 9853 } 9854 9855 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 9856 return false; 9857 } 9858 9859 /// parseDirectiveMovSP 9860 /// ::= .movsp reg [, #offset] 9861 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 9862 MCAsmParser &Parser = getParser(); 9863 if (!UC.hasFnStart()) { 9864 Parser.eatToEndOfStatement(); 9865 Error(L, ".fnstart must precede .movsp directives"); 9866 return false; 9867 } 9868 if (UC.getFPReg() != ARM::SP) { 9869 Parser.eatToEndOfStatement(); 9870 Error(L, "unexpected .movsp directive"); 9871 return false; 9872 } 9873 9874 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9875 int SPReg = tryParseRegister(); 9876 if (SPReg == -1) { 9877 Parser.eatToEndOfStatement(); 9878 Error(SPRegLoc, "register expected"); 9879 return false; 9880 } 9881 9882 if (SPReg == ARM::SP || SPReg == ARM::PC) { 9883 Parser.eatToEndOfStatement(); 9884 Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 9885 return false; 9886 } 9887 9888 int64_t Offset = 0; 9889 if (Parser.getTok().is(AsmToken::Comma)) { 9890 Parser.Lex(); 9891 9892 if (Parser.getTok().isNot(AsmToken::Hash)) { 9893 Error(Parser.getTok().getLoc(), "expected #constant"); 9894 Parser.eatToEndOfStatement(); 9895 return false; 9896 } 9897 Parser.Lex(); 9898 9899 const MCExpr *OffsetExpr; 9900 SMLoc OffsetLoc = Parser.getTok().getLoc(); 9901 if (Parser.parseExpression(OffsetExpr)) { 9902 Parser.eatToEndOfStatement(); 9903 Error(OffsetLoc, "malformed offset expression"); 9904 return false; 9905 } 9906 9907 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9908 if (!CE) { 9909 Parser.eatToEndOfStatement(); 9910 Error(OffsetLoc, "offset must be an immediate constant"); 9911 return false; 9912 } 9913 9914 Offset = CE->getValue(); 9915 } 9916 9917 getTargetStreamer().emitMovSP(SPReg, Offset); 9918 UC.saveFPReg(SPReg); 9919 9920 return false; 9921 } 9922 9923 /// parseDirectiveObjectArch 9924 /// ::= .object_arch name 9925 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 9926 MCAsmParser &Parser = getParser(); 9927 if (getLexer().isNot(AsmToken::Identifier)) { 9928 Error(getLexer().getLoc(), "unexpected token"); 9929 Parser.eatToEndOfStatement(); 9930 return false; 9931 } 9932 9933 StringRef Arch = Parser.getTok().getString(); 9934 SMLoc ArchLoc = Parser.getTok().getLoc(); 9935 getLexer().Lex(); 9936 9937 unsigned ID = ARM::parseArch(Arch); 9938 9939 if (ID == ARM::AK_INVALID) { 9940 Error(ArchLoc, "unknown architecture '" + Arch + "'"); 9941 Parser.eatToEndOfStatement(); 9942 return false; 9943 } 9944 9945 getTargetStreamer().emitObjectArch(ID); 9946 9947 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9948 Error(getLexer().getLoc(), "unexpected token"); 9949 Parser.eatToEndOfStatement(); 9950 } 9951 9952 return false; 9953 } 9954 9955 /// parseDirectiveAlign 9956 /// ::= .align 9957 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 9958 // NOTE: if this is not the end of the statement, fall back to the target 9959 // agnostic handling for this directive which will correctly handle this. 9960 if (getLexer().isNot(AsmToken::EndOfStatement)) 9961 return true; 9962 9963 // '.align' is target specifically handled to mean 2**2 byte alignment. 9964 if (getStreamer().getCurrentSection().first->UseCodeAlign()) 9965 getStreamer().EmitCodeAlignment(4, 0); 9966 else 9967 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 9968 9969 return false; 9970 } 9971 9972 /// parseDirectiveThumbSet 9973 /// ::= .thumb_set name, value 9974 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 9975 MCAsmParser &Parser = getParser(); 9976 9977 StringRef Name; 9978 if (Parser.parseIdentifier(Name)) { 9979 TokError("expected identifier after '.thumb_set'"); 9980 Parser.eatToEndOfStatement(); 9981 return false; 9982 } 9983 9984 if (getLexer().isNot(AsmToken::Comma)) { 9985 TokError("expected comma after name '" + Name + "'"); 9986 Parser.eatToEndOfStatement(); 9987 return false; 9988 } 9989 Lex(); 9990 9991 MCSymbol *Sym; 9992 const MCExpr *Value; 9993 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 9994 Parser, Sym, Value)) 9995 return true; 9996 9997 getTargetStreamer().emitThumbSet(Sym, Value); 9998 return false; 9999 } 10000 10001 /// Force static initialization. 10002 extern "C" void LLVMInitializeARMAsmParser() { 10003 RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget); 10004 RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget); 10005 RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget); 10006 RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget); 10007 } 10008 10009 #define GET_REGISTER_MATCHER 10010 #define GET_SUBTARGET_FEATURE_NAME 10011 #define GET_MATCHER_IMPLEMENTATION 10012 #include "ARMGenAsmMatcher.inc" 10013 10014 // FIXME: This structure should be moved inside ARMTargetParser 10015 // when we start to table-generate them, and we can use the ARM 10016 // flags below, that were generated by table-gen. 10017 static const struct { 10018 const unsigned Kind; 10019 const uint64_t ArchCheck; 10020 const FeatureBitset Features; 10021 } Extensions[] = { 10022 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10023 { ARM::AEK_CRYPTO, Feature_HasV8, 10024 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10025 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10026 { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10027 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 10028 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10029 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10030 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10031 // FIXME: Only available in A-class, isel not predicated 10032 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10033 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10034 // FIXME: Unsupported extensions. 10035 { ARM::AEK_OS, Feature_None, {} }, 10036 { ARM::AEK_IWMMXT, Feature_None, {} }, 10037 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10038 { ARM::AEK_MAVERICK, Feature_None, {} }, 10039 { ARM::AEK_XSCALE, Feature_None, {} }, 10040 }; 10041 10042 /// parseDirectiveArchExtension 10043 /// ::= .arch_extension [no]feature 10044 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10045 MCAsmParser &Parser = getParser(); 10046 10047 if (getLexer().isNot(AsmToken::Identifier)) { 10048 Error(getLexer().getLoc(), "unexpected token"); 10049 Parser.eatToEndOfStatement(); 10050 return false; 10051 } 10052 10053 StringRef Name = Parser.getTok().getString(); 10054 SMLoc ExtLoc = Parser.getTok().getLoc(); 10055 getLexer().Lex(); 10056 10057 bool EnableFeature = true; 10058 if (Name.startswith_lower("no")) { 10059 EnableFeature = false; 10060 Name = Name.substr(2); 10061 } 10062 unsigned FeatureKind = ARM::parseArchExt(Name); 10063 if (FeatureKind == ARM::AEK_INVALID) 10064 Error(ExtLoc, "unknown architectural extension: " + Name); 10065 10066 for (const auto &Extension : Extensions) { 10067 if (Extension.Kind != FeatureKind) 10068 continue; 10069 10070 if (Extension.Features.none()) 10071 report_fatal_error("unsupported architectural extension: " + Name); 10072 10073 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) { 10074 Error(ExtLoc, "architectural extension '" + Name + "' is not " 10075 "allowed for the current base architecture"); 10076 return false; 10077 } 10078 10079 MCSubtargetInfo &STI = copySTI(); 10080 FeatureBitset ToggleFeatures = EnableFeature 10081 ? (~STI.getFeatureBits() & Extension.Features) 10082 : ( STI.getFeatureBits() & Extension.Features); 10083 10084 uint64_t Features = 10085 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10086 setAvailableFeatures(Features); 10087 return false; 10088 } 10089 10090 Error(ExtLoc, "unknown architectural extension: " + Name); 10091 Parser.eatToEndOfStatement(); 10092 return false; 10093 } 10094 10095 // Define this matcher function after the auto-generated include so we 10096 // have the match class enum definitions. 10097 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10098 unsigned Kind) { 10099 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10100 // If the kind is a token for a literal immediate, check if our asm 10101 // operand matches. This is for InstAliases which have a fixed-value 10102 // immediate in the syntax. 10103 switch (Kind) { 10104 default: break; 10105 case MCK__35_0: 10106 if (Op.isImm()) 10107 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10108 if (CE->getValue() == 0) 10109 return Match_Success; 10110 break; 10111 case MCK_ModImm: 10112 if (Op.isImm()) { 10113 const MCExpr *SOExpr = Op.getImm(); 10114 int64_t Value; 10115 if (!SOExpr->evaluateAsAbsolute(Value)) 10116 return Match_Success; 10117 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10118 "expression value must be representable in 32 bits"); 10119 } 10120 break; 10121 case MCK_rGPR: 10122 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10123 return Match_Success; 10124 break; 10125 case MCK_GPRPair: 10126 if (Op.isReg() && 10127 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10128 return Match_Success; 10129 break; 10130 } 10131 return Match_InvalidOperand; 10132 } 10133