1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMFeatures.h" 10 #include "ARMBaseInstrInfo.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMInstPrinter.h" 15 #include "MCTargetDesc/ARMMCExpr.h" 16 #include "MCTargetDesc/ARMMCTargetDesc.h" 17 #include "TargetInfo/ARMTargetInfo.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCInstrDesc.h" 33 #include "llvm/MC/MCInstrInfo.h" 34 #include "llvm/MC/MCObjectFileInfo.h" 35 #include "llvm/MC/MCParser/MCAsmLexer.h" 36 #include "llvm/MC/MCParser/MCAsmParser.h" 37 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 38 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 40 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSubtargetInfo.h" 45 #include "llvm/MC/MCSymbol.h" 46 #include "llvm/MC/SubtargetFeature.h" 47 #include "llvm/Support/ARMBuildAttributes.h" 48 #include "llvm/Support/ARMEHABI.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/SMLoc.h" 55 #include "llvm/Support/TargetParser.h" 56 #include "llvm/Support/TargetRegistry.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <utility> 67 #include <vector> 68 69 #define DEBUG_TYPE "asm-parser" 70 71 using namespace llvm; 72 73 namespace llvm { 74 extern const MCInstrDesc ARMInsts[]; 75 } // end namespace llvm 76 77 namespace { 78 79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 80 81 static cl::opt<ImplicitItModeTy> ImplicitItMode( 82 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 83 cl::desc("Allow conditional instructions outdside of an IT block"), 84 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 85 "Accept in both ISAs, emit implicit ITs in Thumb"), 86 clEnumValN(ImplicitItModeTy::Never, "never", 87 "Warn in ARM, reject in Thumb"), 88 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 89 "Accept in ARM, reject in Thumb"), 90 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 91 "Warn in ARM, emit implicit ITs in Thumb"))); 92 93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 94 cl::init(false)); 95 96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 97 98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) { 99 // Position==0 means we're not in an IT block at all. Position==1 100 // means we want the first state bit, which is always 0 (Then). 101 // Position==2 means we want the second state bit, stored at bit 3 102 // of Mask, and so on downwards. So (5 - Position) will shift the 103 // right bit down to bit 0, including the always-0 bit at bit 4 for 104 // the mandatory initial Then. 105 return (Mask >> (5 - Position) & 1); 106 } 107 108 class UnwindContext { 109 using Locs = SmallVector<SMLoc, 4>; 110 111 MCAsmParser &Parser; 112 Locs FnStartLocs; 113 Locs CantUnwindLocs; 114 Locs PersonalityLocs; 115 Locs PersonalityIndexLocs; 116 Locs HandlerDataLocs; 117 int FPReg; 118 119 public: 120 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 121 122 bool hasFnStart() const { return !FnStartLocs.empty(); } 123 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 124 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 125 126 bool hasPersonality() const { 127 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 128 } 129 130 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 131 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 132 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 133 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 134 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 135 136 void saveFPReg(int Reg) { FPReg = Reg; } 137 int getFPReg() const { return FPReg; } 138 139 void emitFnStartLocNotes() const { 140 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 141 FI != FE; ++FI) 142 Parser.Note(*FI, ".fnstart was specified here"); 143 } 144 145 void emitCantUnwindLocNotes() const { 146 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 147 UE = CantUnwindLocs.end(); UI != UE; ++UI) 148 Parser.Note(*UI, ".cantunwind was specified here"); 149 } 150 151 void emitHandlerDataLocNotes() const { 152 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 153 HE = HandlerDataLocs.end(); HI != HE; ++HI) 154 Parser.Note(*HI, ".handlerdata was specified here"); 155 } 156 157 void emitPersonalityLocNotes() const { 158 for (Locs::const_iterator PI = PersonalityLocs.begin(), 159 PE = PersonalityLocs.end(), 160 PII = PersonalityIndexLocs.begin(), 161 PIE = PersonalityIndexLocs.end(); 162 PI != PE || PII != PIE;) { 163 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 164 Parser.Note(*PI++, ".personality was specified here"); 165 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 166 Parser.Note(*PII++, ".personalityindex was specified here"); 167 else 168 llvm_unreachable(".personality and .personalityindex cannot be " 169 "at the same location"); 170 } 171 } 172 173 void reset() { 174 FnStartLocs = Locs(); 175 CantUnwindLocs = Locs(); 176 PersonalityLocs = Locs(); 177 HandlerDataLocs = Locs(); 178 PersonalityIndexLocs = Locs(); 179 FPReg = ARM::SP; 180 } 181 }; 182 183 184 class ARMAsmParser : public MCTargetAsmParser { 185 const MCRegisterInfo *MRI; 186 UnwindContext UC; 187 188 ARMTargetStreamer &getTargetStreamer() { 189 assert(getParser().getStreamer().getTargetStreamer() && 190 "do not have a target streamer"); 191 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 192 return static_cast<ARMTargetStreamer &>(TS); 193 } 194 195 // Map of register aliases registers via the .req directive. 196 StringMap<unsigned> RegisterReqs; 197 198 bool NextSymbolIsThumb; 199 200 bool useImplicitITThumb() const { 201 return ImplicitItMode == ImplicitItModeTy::Always || 202 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 203 } 204 205 bool useImplicitITARM() const { 206 return ImplicitItMode == ImplicitItModeTy::Always || 207 ImplicitItMode == ImplicitItModeTy::ARMOnly; 208 } 209 210 struct { 211 ARMCC::CondCodes Cond; // Condition for IT block. 212 unsigned Mask:4; // Condition mask for instructions. 213 // Starting at first 1 (from lsb). 214 // '1' condition as indicated in IT. 215 // '0' inverse of condition (else). 216 // Count of instructions in IT block is 217 // 4 - trailingzeroes(mask) 218 // Note that this does not have the same encoding 219 // as in the IT instruction, which also depends 220 // on the low bit of the condition code. 221 222 unsigned CurPosition; // Current position in parsing of IT 223 // block. In range [0,4], with 0 being the IT 224 // instruction itself. Initialized according to 225 // count of instructions in block. ~0U if no 226 // active IT block. 227 228 bool IsExplicit; // true - The IT instruction was present in the 229 // input, we should not modify it. 230 // false - The IT instruction was added 231 // implicitly, we can extend it if that 232 // would be legal. 233 } ITState; 234 235 SmallVector<MCInst, 4> PendingConditionalInsts; 236 237 void flushPendingInstructions(MCStreamer &Out) override { 238 if (!inImplicitITBlock()) { 239 assert(PendingConditionalInsts.size() == 0); 240 return; 241 } 242 243 // Emit the IT instruction 244 MCInst ITInst; 245 ITInst.setOpcode(ARM::t2IT); 246 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 247 ITInst.addOperand(MCOperand::createImm(ITState.Mask)); 248 Out.emitInstruction(ITInst, getSTI()); 249 250 // Emit the conditonal instructions 251 assert(PendingConditionalInsts.size() <= 4); 252 for (const MCInst &Inst : PendingConditionalInsts) { 253 Out.emitInstruction(Inst, getSTI()); 254 } 255 PendingConditionalInsts.clear(); 256 257 // Clear the IT state 258 ITState.Mask = 0; 259 ITState.CurPosition = ~0U; 260 } 261 262 bool inITBlock() { return ITState.CurPosition != ~0U; } 263 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 264 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 265 266 bool lastInITBlock() { 267 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 268 } 269 270 void forwardITPosition() { 271 if (!inITBlock()) return; 272 // Move to the next instruction in the IT block, if there is one. If not, 273 // mark the block as done, except for implicit IT blocks, which we leave 274 // open until we find an instruction that can't be added to it. 275 unsigned TZ = countTrailingZeros(ITState.Mask); 276 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 277 ITState.CurPosition = ~0U; // Done with the IT block after this. 278 } 279 280 // Rewind the state of the current IT block, removing the last slot from it. 281 void rewindImplicitITPosition() { 282 assert(inImplicitITBlock()); 283 assert(ITState.CurPosition > 1); 284 ITState.CurPosition--; 285 unsigned TZ = countTrailingZeros(ITState.Mask); 286 unsigned NewMask = 0; 287 NewMask |= ITState.Mask & (0xC << TZ); 288 NewMask |= 0x2 << TZ; 289 ITState.Mask = NewMask; 290 } 291 292 // Rewind the state of the current IT block, removing the last slot from it. 293 // If we were at the first slot, this closes the IT block. 294 void discardImplicitITBlock() { 295 assert(inImplicitITBlock()); 296 assert(ITState.CurPosition == 1); 297 ITState.CurPosition = ~0U; 298 } 299 300 // Return the low-subreg of a given Q register. 301 unsigned getDRegFromQReg(unsigned QReg) const { 302 return MRI->getSubReg(QReg, ARM::dsub_0); 303 } 304 305 // Get the condition code corresponding to the current IT block slot. 306 ARMCC::CondCodes currentITCond() { 307 unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition); 308 return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond; 309 } 310 311 // Invert the condition of the current IT block slot without changing any 312 // other slots in the same block. 313 void invertCurrentITCondition() { 314 if (ITState.CurPosition == 1) { 315 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 316 } else { 317 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 318 } 319 } 320 321 // Returns true if the current IT block is full (all 4 slots used). 322 bool isITBlockFull() { 323 return inITBlock() && (ITState.Mask & 1); 324 } 325 326 // Extend the current implicit IT block to have one more slot with the given 327 // condition code. 328 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 329 assert(inImplicitITBlock()); 330 assert(!isITBlockFull()); 331 assert(Cond == ITState.Cond || 332 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 333 unsigned TZ = countTrailingZeros(ITState.Mask); 334 unsigned NewMask = 0; 335 // Keep any existing condition bits. 336 NewMask |= ITState.Mask & (0xE << TZ); 337 // Insert the new condition bit. 338 NewMask |= (Cond != ITState.Cond) << TZ; 339 // Move the trailing 1 down one bit. 340 NewMask |= 1 << (TZ - 1); 341 ITState.Mask = NewMask; 342 } 343 344 // Create a new implicit IT block with a dummy condition code. 345 void startImplicitITBlock() { 346 assert(!inITBlock()); 347 ITState.Cond = ARMCC::AL; 348 ITState.Mask = 8; 349 ITState.CurPosition = 1; 350 ITState.IsExplicit = false; 351 } 352 353 // Create a new explicit IT block with the given condition and mask. 354 // The mask should be in the format used in ARMOperand and 355 // MCOperand, with a 1 implying 'e', regardless of the low bit of 356 // the condition. 357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 358 assert(!inITBlock()); 359 ITState.Cond = Cond; 360 ITState.Mask = Mask; 361 ITState.CurPosition = 0; 362 ITState.IsExplicit = true; 363 } 364 365 struct { 366 unsigned Mask : 4; 367 unsigned CurPosition; 368 } VPTState; 369 bool inVPTBlock() { return VPTState.CurPosition != ~0U; } 370 void forwardVPTPosition() { 371 if (!inVPTBlock()) return; 372 unsigned TZ = countTrailingZeros(VPTState.Mask); 373 if (++VPTState.CurPosition == 5 - TZ) 374 VPTState.CurPosition = ~0U; 375 } 376 377 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 378 return getParser().Note(L, Msg, Range); 379 } 380 381 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 382 return getParser().Warning(L, Msg, Range); 383 } 384 385 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 386 return getParser().Error(L, Msg, Range); 387 } 388 389 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 390 unsigned ListNo, bool IsARPop = false); 391 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 392 unsigned ListNo); 393 394 int tryParseRegister(); 395 bool tryParseRegisterWithWriteBack(OperandVector &); 396 int tryParseShiftRegister(OperandVector &); 397 bool parseRegisterList(OperandVector &, bool EnforceOrder = true); 398 bool parseMemory(OperandVector &); 399 bool parseOperand(OperandVector &, StringRef Mnemonic); 400 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 401 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 402 unsigned &ShiftAmount); 403 bool parseLiteralValues(unsigned Size, SMLoc L); 404 bool parseDirectiveThumb(SMLoc L); 405 bool parseDirectiveARM(SMLoc L); 406 bool parseDirectiveThumbFunc(SMLoc L); 407 bool parseDirectiveCode(SMLoc L); 408 bool parseDirectiveSyntax(SMLoc L); 409 bool parseDirectiveReq(StringRef Name, SMLoc L); 410 bool parseDirectiveUnreq(SMLoc L); 411 bool parseDirectiveArch(SMLoc L); 412 bool parseDirectiveEabiAttr(SMLoc L); 413 bool parseDirectiveCPU(SMLoc L); 414 bool parseDirectiveFPU(SMLoc L); 415 bool parseDirectiveFnStart(SMLoc L); 416 bool parseDirectiveFnEnd(SMLoc L); 417 bool parseDirectiveCantUnwind(SMLoc L); 418 bool parseDirectivePersonality(SMLoc L); 419 bool parseDirectiveHandlerData(SMLoc L); 420 bool parseDirectiveSetFP(SMLoc L); 421 bool parseDirectivePad(SMLoc L); 422 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 423 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 424 bool parseDirectiveLtorg(SMLoc L); 425 bool parseDirectiveEven(SMLoc L); 426 bool parseDirectivePersonalityIndex(SMLoc L); 427 bool parseDirectiveUnwindRaw(SMLoc L); 428 bool parseDirectiveTLSDescSeq(SMLoc L); 429 bool parseDirectiveMovSP(SMLoc L); 430 bool parseDirectiveObjectArch(SMLoc L); 431 bool parseDirectiveArchExtension(SMLoc L); 432 bool parseDirectiveAlign(SMLoc L); 433 bool parseDirectiveThumbSet(SMLoc L); 434 435 bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken); 436 StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken, 437 unsigned &PredicationCode, 438 unsigned &VPTPredicationCode, bool &CarrySetting, 439 unsigned &ProcessorIMod, StringRef &ITMask); 440 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken, 441 StringRef FullInst, bool &CanAcceptCarrySet, 442 bool &CanAcceptPredicationCode, 443 bool &CanAcceptVPTPredicationCode); 444 445 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 446 OperandVector &Operands); 447 bool isThumb() const { 448 // FIXME: Can tablegen auto-generate this? 449 return getSTI().getFeatureBits()[ARM::ModeThumb]; 450 } 451 452 bool isThumbOne() const { 453 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 454 } 455 456 bool isThumbTwo() const { 457 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 458 } 459 460 bool hasThumb() const { 461 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 462 } 463 464 bool hasThumb2() const { 465 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 466 } 467 468 bool hasV6Ops() const { 469 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 470 } 471 472 bool hasV6T2Ops() const { 473 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 474 } 475 476 bool hasV6MOps() const { 477 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 478 } 479 480 bool hasV7Ops() const { 481 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 482 } 483 484 bool hasV8Ops() const { 485 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 486 } 487 488 bool hasV8MBaseline() const { 489 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 490 } 491 492 bool hasV8MMainline() const { 493 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 494 } 495 bool hasV8_1MMainline() const { 496 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps]; 497 } 498 bool hasMVE() const { 499 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps]; 500 } 501 bool hasMVEFloat() const { 502 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps]; 503 } 504 bool has8MSecExt() const { 505 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 506 } 507 508 bool hasARM() const { 509 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 510 } 511 512 bool hasDSP() const { 513 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 514 } 515 516 bool hasD32() const { 517 return getSTI().getFeatureBits()[ARM::FeatureD32]; 518 } 519 520 bool hasV8_1aOps() const { 521 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 522 } 523 524 bool hasRAS() const { 525 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 526 } 527 528 void SwitchMode() { 529 MCSubtargetInfo &STI = copySTI(); 530 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 531 setAvailableFeatures(FB); 532 } 533 534 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 535 536 bool isMClass() const { 537 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 538 } 539 540 /// @name Auto-generated Match Functions 541 /// { 542 543 #define GET_ASSEMBLER_HEADER 544 #include "ARMGenAsmMatcher.inc" 545 546 /// } 547 548 OperandMatchResultTy parseITCondCode(OperandVector &); 549 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 550 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 551 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 552 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 553 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 554 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 555 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 556 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 557 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 558 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 559 int High); 560 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 561 return parsePKHImm(O, "lsl", 0, 31); 562 } 563 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 564 return parsePKHImm(O, "asr", 1, 32); 565 } 566 OperandMatchResultTy parseSetEndImm(OperandVector &); 567 OperandMatchResultTy parseShifterImm(OperandVector &); 568 OperandMatchResultTy parseRotImm(OperandVector &); 569 OperandMatchResultTy parseModImm(OperandVector &); 570 OperandMatchResultTy parseBitfield(OperandVector &); 571 OperandMatchResultTy parsePostIdxReg(OperandVector &); 572 OperandMatchResultTy parseAM3Offset(OperandVector &); 573 OperandMatchResultTy parseFPImm(OperandVector &); 574 OperandMatchResultTy parseVectorList(OperandVector &); 575 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 576 SMLoc &EndLoc); 577 578 // Asm Match Converter Methods 579 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 580 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 581 void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); 582 583 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 584 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 585 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 586 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 587 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 588 bool isITBlockTerminator(MCInst &Inst) const; 589 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 590 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 591 bool Load, bool ARMMode, bool Writeback); 592 593 public: 594 enum ARMMatchResultTy { 595 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 596 Match_RequiresNotITBlock, 597 Match_RequiresV6, 598 Match_RequiresThumb2, 599 Match_RequiresV8, 600 Match_RequiresFlagSetting, 601 #define GET_OPERAND_DIAGNOSTIC_TYPES 602 #include "ARMGenAsmMatcher.inc" 603 604 }; 605 606 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 607 const MCInstrInfo &MII, const MCTargetOptions &Options) 608 : MCTargetAsmParser(Options, STI, MII), UC(Parser) { 609 MCAsmParserExtension::Initialize(Parser); 610 611 // Cache the MCRegisterInfo. 612 MRI = getContext().getRegisterInfo(); 613 614 // Initialize the set of available features. 615 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 616 617 // Add build attributes based on the selected target. 618 if (AddBuildAttributes) 619 getTargetStreamer().emitTargetAttributes(STI); 620 621 // Not in an ITBlock to start with. 622 ITState.CurPosition = ~0U; 623 624 VPTState.CurPosition = ~0U; 625 626 NextSymbolIsThumb = false; 627 } 628 629 // Implementation of the MCTargetAsmParser interface: 630 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 631 OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc, 632 SMLoc &EndLoc) override; 633 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 634 SMLoc NameLoc, OperandVector &Operands) override; 635 bool ParseDirective(AsmToken DirectiveID) override; 636 637 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 638 unsigned Kind) override; 639 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 640 641 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 642 OperandVector &Operands, MCStreamer &Out, 643 uint64_t &ErrorInfo, 644 bool MatchingInlineAsm) override; 645 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 646 SmallVectorImpl<NearMissInfo> &NearMisses, 647 bool MatchingInlineAsm, bool &EmitInITBlock, 648 MCStreamer &Out); 649 650 struct NearMissMessage { 651 SMLoc Loc; 652 SmallString<128> Message; 653 }; 654 655 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 656 657 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 658 SmallVectorImpl<NearMissMessage> &NearMissesOut, 659 SMLoc IDLoc, OperandVector &Operands); 660 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 661 OperandVector &Operands); 662 663 void doBeforeLabelEmit(MCSymbol *Symbol) override; 664 665 void onLabelParsed(MCSymbol *Symbol) override; 666 }; 667 668 /// ARMOperand - Instances of this class represent a parsed ARM machine 669 /// operand. 670 class ARMOperand : public MCParsedAsmOperand { 671 enum KindTy { 672 k_CondCode, 673 k_VPTPred, 674 k_CCOut, 675 k_ITCondMask, 676 k_CoprocNum, 677 k_CoprocReg, 678 k_CoprocOption, 679 k_Immediate, 680 k_MemBarrierOpt, 681 k_InstSyncBarrierOpt, 682 k_TraceSyncBarrierOpt, 683 k_Memory, 684 k_PostIndexRegister, 685 k_MSRMask, 686 k_BankedReg, 687 k_ProcIFlags, 688 k_VectorIndex, 689 k_Register, 690 k_RegisterList, 691 k_RegisterListWithAPSR, 692 k_DPRRegisterList, 693 k_SPRRegisterList, 694 k_FPSRegisterListWithVPR, 695 k_FPDRegisterListWithVPR, 696 k_VectorList, 697 k_VectorListAllLanes, 698 k_VectorListIndexed, 699 k_ShiftedRegister, 700 k_ShiftedImmediate, 701 k_ShifterImmediate, 702 k_RotateImmediate, 703 k_ModifiedImmediate, 704 k_ConstantPoolImmediate, 705 k_BitfieldDescriptor, 706 k_Token, 707 } Kind; 708 709 SMLoc StartLoc, EndLoc, AlignmentLoc; 710 SmallVector<unsigned, 8> Registers; 711 712 struct CCOp { 713 ARMCC::CondCodes Val; 714 }; 715 716 struct VCCOp { 717 ARMVCC::VPTCodes Val; 718 }; 719 720 struct CopOp { 721 unsigned Val; 722 }; 723 724 struct CoprocOptionOp { 725 unsigned Val; 726 }; 727 728 struct ITMaskOp { 729 unsigned Mask:4; 730 }; 731 732 struct MBOptOp { 733 ARM_MB::MemBOpt Val; 734 }; 735 736 struct ISBOptOp { 737 ARM_ISB::InstSyncBOpt Val; 738 }; 739 740 struct TSBOptOp { 741 ARM_TSB::TraceSyncBOpt Val; 742 }; 743 744 struct IFlagsOp { 745 ARM_PROC::IFlags Val; 746 }; 747 748 struct MMaskOp { 749 unsigned Val; 750 }; 751 752 struct BankedRegOp { 753 unsigned Val; 754 }; 755 756 struct TokOp { 757 const char *Data; 758 unsigned Length; 759 }; 760 761 struct RegOp { 762 unsigned RegNum; 763 }; 764 765 // A vector register list is a sequential list of 1 to 4 registers. 766 struct VectorListOp { 767 unsigned RegNum; 768 unsigned Count; 769 unsigned LaneIndex; 770 bool isDoubleSpaced; 771 }; 772 773 struct VectorIndexOp { 774 unsigned Val; 775 }; 776 777 struct ImmOp { 778 const MCExpr *Val; 779 }; 780 781 /// Combined record for all forms of ARM address expressions. 782 struct MemoryOp { 783 unsigned BaseRegNum; 784 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 785 // was specified. 786 const MCConstantExpr *OffsetImm; // Offset immediate value 787 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 788 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 789 unsigned ShiftImm; // shift for OffsetReg. 790 unsigned Alignment; // 0 = no alignment specified 791 // n = alignment in bytes (2, 4, 8, 16, or 32) 792 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 793 }; 794 795 struct PostIdxRegOp { 796 unsigned RegNum; 797 bool isAdd; 798 ARM_AM::ShiftOpc ShiftTy; 799 unsigned ShiftImm; 800 }; 801 802 struct ShifterImmOp { 803 bool isASR; 804 unsigned Imm; 805 }; 806 807 struct RegShiftedRegOp { 808 ARM_AM::ShiftOpc ShiftTy; 809 unsigned SrcReg; 810 unsigned ShiftReg; 811 unsigned ShiftImm; 812 }; 813 814 struct RegShiftedImmOp { 815 ARM_AM::ShiftOpc ShiftTy; 816 unsigned SrcReg; 817 unsigned ShiftImm; 818 }; 819 820 struct RotImmOp { 821 unsigned Imm; 822 }; 823 824 struct ModImmOp { 825 unsigned Bits; 826 unsigned Rot; 827 }; 828 829 struct BitfieldOp { 830 unsigned LSB; 831 unsigned Width; 832 }; 833 834 union { 835 struct CCOp CC; 836 struct VCCOp VCC; 837 struct CopOp Cop; 838 struct CoprocOptionOp CoprocOption; 839 struct MBOptOp MBOpt; 840 struct ISBOptOp ISBOpt; 841 struct TSBOptOp TSBOpt; 842 struct ITMaskOp ITMask; 843 struct IFlagsOp IFlags; 844 struct MMaskOp MMask; 845 struct BankedRegOp BankedReg; 846 struct TokOp Tok; 847 struct RegOp Reg; 848 struct VectorListOp VectorList; 849 struct VectorIndexOp VectorIndex; 850 struct ImmOp Imm; 851 struct MemoryOp Memory; 852 struct PostIdxRegOp PostIdxReg; 853 struct ShifterImmOp ShifterImm; 854 struct RegShiftedRegOp RegShiftedReg; 855 struct RegShiftedImmOp RegShiftedImm; 856 struct RotImmOp RotImm; 857 struct ModImmOp ModImm; 858 struct BitfieldOp Bitfield; 859 }; 860 861 public: 862 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 863 864 /// getStartLoc - Get the location of the first token of this operand. 865 SMLoc getStartLoc() const override { return StartLoc; } 866 867 /// getEndLoc - Get the location of the last token of this operand. 868 SMLoc getEndLoc() const override { return EndLoc; } 869 870 /// getLocRange - Get the range between the first and last token of this 871 /// operand. 872 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 873 874 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 875 SMLoc getAlignmentLoc() const { 876 assert(Kind == k_Memory && "Invalid access!"); 877 return AlignmentLoc; 878 } 879 880 ARMCC::CondCodes getCondCode() const { 881 assert(Kind == k_CondCode && "Invalid access!"); 882 return CC.Val; 883 } 884 885 ARMVCC::VPTCodes getVPTPred() const { 886 assert(isVPTPred() && "Invalid access!"); 887 return VCC.Val; 888 } 889 890 unsigned getCoproc() const { 891 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 892 return Cop.Val; 893 } 894 895 StringRef getToken() const { 896 assert(Kind == k_Token && "Invalid access!"); 897 return StringRef(Tok.Data, Tok.Length); 898 } 899 900 unsigned getReg() const override { 901 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 902 return Reg.RegNum; 903 } 904 905 const SmallVectorImpl<unsigned> &getRegList() const { 906 assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || 907 Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || 908 Kind == k_FPSRegisterListWithVPR || 909 Kind == k_FPDRegisterListWithVPR) && 910 "Invalid access!"); 911 return Registers; 912 } 913 914 const MCExpr *getImm() const { 915 assert(isImm() && "Invalid access!"); 916 return Imm.Val; 917 } 918 919 const MCExpr *getConstantPoolImm() const { 920 assert(isConstantPoolImm() && "Invalid access!"); 921 return Imm.Val; 922 } 923 924 unsigned getVectorIndex() const { 925 assert(Kind == k_VectorIndex && "Invalid access!"); 926 return VectorIndex.Val; 927 } 928 929 ARM_MB::MemBOpt getMemBarrierOpt() const { 930 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 931 return MBOpt.Val; 932 } 933 934 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 935 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 936 return ISBOpt.Val; 937 } 938 939 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 940 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 941 return TSBOpt.Val; 942 } 943 944 ARM_PROC::IFlags getProcIFlags() const { 945 assert(Kind == k_ProcIFlags && "Invalid access!"); 946 return IFlags.Val; 947 } 948 949 unsigned getMSRMask() const { 950 assert(Kind == k_MSRMask && "Invalid access!"); 951 return MMask.Val; 952 } 953 954 unsigned getBankedReg() const { 955 assert(Kind == k_BankedReg && "Invalid access!"); 956 return BankedReg.Val; 957 } 958 959 bool isCoprocNum() const { return Kind == k_CoprocNum; } 960 bool isCoprocReg() const { return Kind == k_CoprocReg; } 961 bool isCoprocOption() const { return Kind == k_CoprocOption; } 962 bool isCondCode() const { return Kind == k_CondCode; } 963 bool isVPTPred() const { return Kind == k_VPTPred; } 964 bool isCCOut() const { return Kind == k_CCOut; } 965 bool isITMask() const { return Kind == k_ITCondMask; } 966 bool isITCondCode() const { return Kind == k_CondCode; } 967 bool isImm() const override { 968 return Kind == k_Immediate; 969 } 970 971 bool isARMBranchTarget() const { 972 if (!isImm()) return false; 973 974 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 975 return CE->getValue() % 4 == 0; 976 return true; 977 } 978 979 980 bool isThumbBranchTarget() const { 981 if (!isImm()) return false; 982 983 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 984 return CE->getValue() % 2 == 0; 985 return true; 986 } 987 988 // checks whether this operand is an unsigned offset which fits is a field 989 // of specified width and scaled by a specific number of bits 990 template<unsigned width, unsigned scale> 991 bool isUnsignedOffset() const { 992 if (!isImm()) return false; 993 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 994 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 995 int64_t Val = CE->getValue(); 996 int64_t Align = 1LL << scale; 997 int64_t Max = Align * ((1LL << width) - 1); 998 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 999 } 1000 return false; 1001 } 1002 1003 // checks whether this operand is an signed offset which fits is a field 1004 // of specified width and scaled by a specific number of bits 1005 template<unsigned width, unsigned scale> 1006 bool isSignedOffset() const { 1007 if (!isImm()) return false; 1008 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1009 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1010 int64_t Val = CE->getValue(); 1011 int64_t Align = 1LL << scale; 1012 int64_t Max = Align * ((1LL << (width-1)) - 1); 1013 int64_t Min = -Align * (1LL << (width-1)); 1014 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 1015 } 1016 return false; 1017 } 1018 1019 // checks whether this operand is an offset suitable for the LE / 1020 // LETP instructions in Arm v8.1M 1021 bool isLEOffset() const { 1022 if (!isImm()) return false; 1023 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1024 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1025 int64_t Val = CE->getValue(); 1026 return Val < 0 && Val >= -4094 && (Val & 1) == 0; 1027 } 1028 return false; 1029 } 1030 1031 // checks whether this operand is a memory operand computed as an offset 1032 // applied to PC. the offset may have 8 bits of magnitude and is represented 1033 // with two bits of shift. textually it may be either [pc, #imm], #imm or 1034 // relocable expression... 1035 bool isThumbMemPC() const { 1036 int64_t Val = 0; 1037 if (isImm()) { 1038 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1039 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 1040 if (!CE) return false; 1041 Val = CE->getValue(); 1042 } 1043 else if (isGPRMem()) { 1044 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 1045 if(Memory.BaseRegNum != ARM::PC) return false; 1046 Val = Memory.OffsetImm->getValue(); 1047 } 1048 else return false; 1049 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 1050 } 1051 1052 bool isFPImm() const { 1053 if (!isImm()) return false; 1054 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1055 if (!CE) return false; 1056 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1057 return Val != -1; 1058 } 1059 1060 template<int64_t N, int64_t M> 1061 bool isImmediate() const { 1062 if (!isImm()) return false; 1063 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1064 if (!CE) return false; 1065 int64_t Value = CE->getValue(); 1066 return Value >= N && Value <= M; 1067 } 1068 1069 template<int64_t N, int64_t M> 1070 bool isImmediateS4() const { 1071 if (!isImm()) return false; 1072 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1073 if (!CE) return false; 1074 int64_t Value = CE->getValue(); 1075 return ((Value & 3) == 0) && Value >= N && Value <= M; 1076 } 1077 template<int64_t N, int64_t M> 1078 bool isImmediateS2() const { 1079 if (!isImm()) return false; 1080 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1081 if (!CE) return false; 1082 int64_t Value = CE->getValue(); 1083 return ((Value & 1) == 0) && Value >= N && Value <= M; 1084 } 1085 bool isFBits16() const { 1086 return isImmediate<0, 17>(); 1087 } 1088 bool isFBits32() const { 1089 return isImmediate<1, 33>(); 1090 } 1091 bool isImm8s4() const { 1092 return isImmediateS4<-1020, 1020>(); 1093 } 1094 bool isImm7s4() const { 1095 return isImmediateS4<-508, 508>(); 1096 } 1097 bool isImm7Shift0() const { 1098 return isImmediate<-127, 127>(); 1099 } 1100 bool isImm7Shift1() const { 1101 return isImmediateS2<-255, 255>(); 1102 } 1103 bool isImm7Shift2() const { 1104 return isImmediateS4<-511, 511>(); 1105 } 1106 bool isImm7() const { 1107 return isImmediate<-127, 127>(); 1108 } 1109 bool isImm0_1020s4() const { 1110 return isImmediateS4<0, 1020>(); 1111 } 1112 bool isImm0_508s4() const { 1113 return isImmediateS4<0, 508>(); 1114 } 1115 bool isImm0_508s4Neg() const { 1116 if (!isImm()) return false; 1117 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1118 if (!CE) return false; 1119 int64_t Value = -CE->getValue(); 1120 // explicitly exclude zero. we want that to use the normal 0_508 version. 1121 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1122 } 1123 1124 bool isImm0_4095Neg() const { 1125 if (!isImm()) return false; 1126 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1127 if (!CE) return false; 1128 // isImm0_4095Neg is used with 32-bit immediates only. 1129 // 32-bit immediates are zero extended to 64-bit when parsed, 1130 // thus simple -CE->getValue() results in a big negative number, 1131 // not a small positive number as intended 1132 if ((CE->getValue() >> 32) > 0) return false; 1133 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1134 return Value > 0 && Value < 4096; 1135 } 1136 1137 bool isImm0_7() const { 1138 return isImmediate<0, 7>(); 1139 } 1140 1141 bool isImm1_16() const { 1142 return isImmediate<1, 16>(); 1143 } 1144 1145 bool isImm1_32() const { 1146 return isImmediate<1, 32>(); 1147 } 1148 1149 bool isImm8_255() const { 1150 return isImmediate<8, 255>(); 1151 } 1152 1153 bool isImm256_65535Expr() const { 1154 if (!isImm()) return false; 1155 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1156 // If it's not a constant expression, it'll generate a fixup and be 1157 // handled later. 1158 if (!CE) return true; 1159 int64_t Value = CE->getValue(); 1160 return Value >= 256 && Value < 65536; 1161 } 1162 1163 bool isImm0_65535Expr() const { 1164 if (!isImm()) return false; 1165 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1166 // If it's not a constant expression, it'll generate a fixup and be 1167 // handled later. 1168 if (!CE) return true; 1169 int64_t Value = CE->getValue(); 1170 return Value >= 0 && Value < 65536; 1171 } 1172 1173 bool isImm24bit() const { 1174 return isImmediate<0, 0xffffff + 1>(); 1175 } 1176 1177 bool isImmThumbSR() const { 1178 return isImmediate<1, 33>(); 1179 } 1180 1181 template<int shift> 1182 bool isExpImmValue(uint64_t Value) const { 1183 uint64_t mask = (1 << shift) - 1; 1184 if ((Value & mask) != 0 || (Value >> shift) > 0xff) 1185 return false; 1186 return true; 1187 } 1188 1189 template<int shift> 1190 bool isExpImm() const { 1191 if (!isImm()) return false; 1192 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1193 if (!CE) return false; 1194 1195 return isExpImmValue<shift>(CE->getValue()); 1196 } 1197 1198 template<int shift, int size> 1199 bool isInvertedExpImm() const { 1200 if (!isImm()) return false; 1201 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1202 if (!CE) return false; 1203 1204 uint64_t OriginalValue = CE->getValue(); 1205 uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1); 1206 return isExpImmValue<shift>(InvertedValue); 1207 } 1208 1209 bool isPKHLSLImm() const { 1210 return isImmediate<0, 32>(); 1211 } 1212 1213 bool isPKHASRImm() const { 1214 return isImmediate<0, 33>(); 1215 } 1216 1217 bool isAdrLabel() const { 1218 // If we have an immediate that's not a constant, treat it as a label 1219 // reference needing a fixup. 1220 if (isImm() && !isa<MCConstantExpr>(getImm())) 1221 return true; 1222 1223 // If it is a constant, it must fit into a modified immediate encoding. 1224 if (!isImm()) return false; 1225 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1226 if (!CE) return false; 1227 int64_t Value = CE->getValue(); 1228 return (ARM_AM::getSOImmVal(Value) != -1 || 1229 ARM_AM::getSOImmVal(-Value) != -1); 1230 } 1231 1232 bool isT2SOImm() const { 1233 // If we have an immediate that's not a constant, treat it as an expression 1234 // needing a fixup. 1235 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1236 // We want to avoid matching :upper16: and :lower16: as we want these 1237 // expressions to match in isImm0_65535Expr() 1238 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1239 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1240 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1241 } 1242 if (!isImm()) return false; 1243 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1244 if (!CE) return false; 1245 int64_t Value = CE->getValue(); 1246 return ARM_AM::getT2SOImmVal(Value) != -1; 1247 } 1248 1249 bool isT2SOImmNot() const { 1250 if (!isImm()) return false; 1251 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1252 if (!CE) return false; 1253 int64_t Value = CE->getValue(); 1254 return ARM_AM::getT2SOImmVal(Value) == -1 && 1255 ARM_AM::getT2SOImmVal(~Value) != -1; 1256 } 1257 1258 bool isT2SOImmNeg() const { 1259 if (!isImm()) return false; 1260 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1261 if (!CE) return false; 1262 int64_t Value = CE->getValue(); 1263 // Only use this when not representable as a plain so_imm. 1264 return ARM_AM::getT2SOImmVal(Value) == -1 && 1265 ARM_AM::getT2SOImmVal(-Value) != -1; 1266 } 1267 1268 bool isSetEndImm() const { 1269 if (!isImm()) return false; 1270 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1271 if (!CE) return false; 1272 int64_t Value = CE->getValue(); 1273 return Value == 1 || Value == 0; 1274 } 1275 1276 bool isReg() const override { return Kind == k_Register; } 1277 bool isRegList() const { return Kind == k_RegisterList; } 1278 bool isRegListWithAPSR() const { 1279 return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; 1280 } 1281 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1282 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1283 bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } 1284 bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } 1285 bool isToken() const override { return Kind == k_Token; } 1286 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1287 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1288 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1289 bool isMem() const override { 1290 return isGPRMem() || isMVEMem(); 1291 } 1292 bool isMVEMem() const { 1293 if (Kind != k_Memory) 1294 return false; 1295 if (Memory.BaseRegNum && 1296 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) && 1297 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum)) 1298 return false; 1299 if (Memory.OffsetRegNum && 1300 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1301 Memory.OffsetRegNum)) 1302 return false; 1303 return true; 1304 } 1305 bool isGPRMem() const { 1306 if (Kind != k_Memory) 1307 return false; 1308 if (Memory.BaseRegNum && 1309 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1310 return false; 1311 if (Memory.OffsetRegNum && 1312 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1313 return false; 1314 return true; 1315 } 1316 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1317 bool isRegShiftedReg() const { 1318 return Kind == k_ShiftedRegister && 1319 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1320 RegShiftedReg.SrcReg) && 1321 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1322 RegShiftedReg.ShiftReg); 1323 } 1324 bool isRegShiftedImm() const { 1325 return Kind == k_ShiftedImmediate && 1326 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1327 RegShiftedImm.SrcReg); 1328 } 1329 bool isRotImm() const { return Kind == k_RotateImmediate; } 1330 1331 template<unsigned Min, unsigned Max> 1332 bool isPowerTwoInRange() const { 1333 if (!isImm()) return false; 1334 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1335 if (!CE) return false; 1336 int64_t Value = CE->getValue(); 1337 return Value > 0 && countPopulation((uint64_t)Value) == 1 && 1338 Value >= Min && Value <= Max; 1339 } 1340 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1341 1342 bool isModImmNot() const { 1343 if (!isImm()) return false; 1344 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1345 if (!CE) return false; 1346 int64_t Value = CE->getValue(); 1347 return ARM_AM::getSOImmVal(~Value) != -1; 1348 } 1349 1350 bool isModImmNeg() const { 1351 if (!isImm()) return false; 1352 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1353 if (!CE) return false; 1354 int64_t Value = CE->getValue(); 1355 return ARM_AM::getSOImmVal(Value) == -1 && 1356 ARM_AM::getSOImmVal(-Value) != -1; 1357 } 1358 1359 bool isThumbModImmNeg1_7() const { 1360 if (!isImm()) return false; 1361 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1362 if (!CE) return false; 1363 int32_t Value = -(int32_t)CE->getValue(); 1364 return 0 < Value && Value < 8; 1365 } 1366 1367 bool isThumbModImmNeg8_255() const { 1368 if (!isImm()) return false; 1369 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1370 if (!CE) return false; 1371 int32_t Value = -(int32_t)CE->getValue(); 1372 return 7 < Value && Value < 256; 1373 } 1374 1375 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1376 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1377 bool isPostIdxRegShifted() const { 1378 return Kind == k_PostIndexRegister && 1379 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1380 } 1381 bool isPostIdxReg() const { 1382 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1383 } 1384 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1385 if (!isGPRMem()) 1386 return false; 1387 // No offset of any kind. 1388 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1389 (alignOK || Memory.Alignment == Alignment); 1390 } 1391 bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { 1392 if (!isGPRMem()) 1393 return false; 1394 1395 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1396 Memory.BaseRegNum)) 1397 return false; 1398 1399 // No offset of any kind. 1400 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1401 (alignOK || Memory.Alignment == Alignment); 1402 } 1403 bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { 1404 if (!isGPRMem()) 1405 return false; 1406 1407 if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( 1408 Memory.BaseRegNum)) 1409 return false; 1410 1411 // No offset of any kind. 1412 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1413 (alignOK || Memory.Alignment == Alignment); 1414 } 1415 bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { 1416 if (!isGPRMem()) 1417 return false; 1418 1419 if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( 1420 Memory.BaseRegNum)) 1421 return false; 1422 1423 // No offset of any kind. 1424 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1425 (alignOK || Memory.Alignment == Alignment); 1426 } 1427 bool isMemPCRelImm12() const { 1428 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1429 return false; 1430 // Base register must be PC. 1431 if (Memory.BaseRegNum != ARM::PC) 1432 return false; 1433 // Immediate offset in range [-4095, 4095]. 1434 if (!Memory.OffsetImm) return true; 1435 int64_t Val = Memory.OffsetImm->getValue(); 1436 return (Val > -4096 && Val < 4096) || 1437 (Val == std::numeric_limits<int32_t>::min()); 1438 } 1439 1440 bool isAlignedMemory() const { 1441 return isMemNoOffset(true); 1442 } 1443 1444 bool isAlignedMemoryNone() const { 1445 return isMemNoOffset(false, 0); 1446 } 1447 1448 bool isDupAlignedMemoryNone() const { 1449 return isMemNoOffset(false, 0); 1450 } 1451 1452 bool isAlignedMemory16() const { 1453 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1454 return true; 1455 return isMemNoOffset(false, 0); 1456 } 1457 1458 bool isDupAlignedMemory16() const { 1459 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1460 return true; 1461 return isMemNoOffset(false, 0); 1462 } 1463 1464 bool isAlignedMemory32() const { 1465 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1466 return true; 1467 return isMemNoOffset(false, 0); 1468 } 1469 1470 bool isDupAlignedMemory32() const { 1471 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1472 return true; 1473 return isMemNoOffset(false, 0); 1474 } 1475 1476 bool isAlignedMemory64() const { 1477 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1478 return true; 1479 return isMemNoOffset(false, 0); 1480 } 1481 1482 bool isDupAlignedMemory64() const { 1483 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1484 return true; 1485 return isMemNoOffset(false, 0); 1486 } 1487 1488 bool isAlignedMemory64or128() const { 1489 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1490 return true; 1491 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1492 return true; 1493 return isMemNoOffset(false, 0); 1494 } 1495 1496 bool isDupAlignedMemory64or128() const { 1497 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1498 return true; 1499 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1500 return true; 1501 return isMemNoOffset(false, 0); 1502 } 1503 1504 bool isAlignedMemory64or128or256() const { 1505 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1506 return true; 1507 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1508 return true; 1509 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1510 return true; 1511 return isMemNoOffset(false, 0); 1512 } 1513 1514 bool isAddrMode2() const { 1515 if (!isGPRMem() || Memory.Alignment != 0) return false; 1516 // Check for register offset. 1517 if (Memory.OffsetRegNum) return true; 1518 // Immediate offset in range [-4095, 4095]. 1519 if (!Memory.OffsetImm) return true; 1520 int64_t Val = Memory.OffsetImm->getValue(); 1521 return Val > -4096 && Val < 4096; 1522 } 1523 1524 bool isAM2OffsetImm() const { 1525 if (!isImm()) return false; 1526 // Immediate offset in range [-4095, 4095]. 1527 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1528 if (!CE) return false; 1529 int64_t Val = CE->getValue(); 1530 return (Val == std::numeric_limits<int32_t>::min()) || 1531 (Val > -4096 && Val < 4096); 1532 } 1533 1534 bool isAddrMode3() const { 1535 // If we have an immediate that's not a constant, treat it as a label 1536 // reference needing a fixup. If it is a constant, it's something else 1537 // and we reject it. 1538 if (isImm() && !isa<MCConstantExpr>(getImm())) 1539 return true; 1540 if (!isGPRMem() || Memory.Alignment != 0) return false; 1541 // No shifts are legal for AM3. 1542 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1543 // Check for register offset. 1544 if (Memory.OffsetRegNum) return true; 1545 // Immediate offset in range [-255, 255]. 1546 if (!Memory.OffsetImm) return true; 1547 int64_t Val = Memory.OffsetImm->getValue(); 1548 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1549 // have to check for this too. 1550 return (Val > -256 && Val < 256) || 1551 Val == std::numeric_limits<int32_t>::min(); 1552 } 1553 1554 bool isAM3Offset() const { 1555 if (isPostIdxReg()) 1556 return true; 1557 if (!isImm()) 1558 return false; 1559 // Immediate offset in range [-255, 255]. 1560 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1561 if (!CE) return false; 1562 int64_t Val = CE->getValue(); 1563 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1564 return (Val > -256 && Val < 256) || 1565 Val == std::numeric_limits<int32_t>::min(); 1566 } 1567 1568 bool isAddrMode5() const { 1569 // If we have an immediate that's not a constant, treat it as a label 1570 // reference needing a fixup. If it is a constant, it's something else 1571 // and we reject it. 1572 if (isImm() && !isa<MCConstantExpr>(getImm())) 1573 return true; 1574 if (!isGPRMem() || Memory.Alignment != 0) return false; 1575 // Check for register offset. 1576 if (Memory.OffsetRegNum) return false; 1577 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1578 if (!Memory.OffsetImm) return true; 1579 int64_t Val = Memory.OffsetImm->getValue(); 1580 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1581 Val == std::numeric_limits<int32_t>::min(); 1582 } 1583 1584 bool isAddrMode5FP16() const { 1585 // If we have an immediate that's not a constant, treat it as a label 1586 // reference needing a fixup. If it is a constant, it's something else 1587 // and we reject it. 1588 if (isImm() && !isa<MCConstantExpr>(getImm())) 1589 return true; 1590 if (!isGPRMem() || Memory.Alignment != 0) return false; 1591 // Check for register offset. 1592 if (Memory.OffsetRegNum) return false; 1593 // Immediate offset in range [-510, 510] and a multiple of 2. 1594 if (!Memory.OffsetImm) return true; 1595 int64_t Val = Memory.OffsetImm->getValue(); 1596 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1597 Val == std::numeric_limits<int32_t>::min(); 1598 } 1599 1600 bool isMemTBB() const { 1601 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1602 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1603 return false; 1604 return true; 1605 } 1606 1607 bool isMemTBH() const { 1608 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1609 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1610 Memory.Alignment != 0 ) 1611 return false; 1612 return true; 1613 } 1614 1615 bool isMemRegOffset() const { 1616 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1617 return false; 1618 return true; 1619 } 1620 1621 bool isT2MemRegOffset() const { 1622 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1623 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1624 return false; 1625 // Only lsl #{0, 1, 2, 3} allowed. 1626 if (Memory.ShiftType == ARM_AM::no_shift) 1627 return true; 1628 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1629 return false; 1630 return true; 1631 } 1632 1633 bool isMemThumbRR() const { 1634 // Thumb reg+reg addressing is simple. Just two registers, a base and 1635 // an offset. No shifts, negations or any other complicating factors. 1636 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1637 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1638 return false; 1639 return isARMLowRegister(Memory.BaseRegNum) && 1640 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1641 } 1642 1643 bool isMemThumbRIs4() const { 1644 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1645 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1646 return false; 1647 // Immediate offset, multiple of 4 in range [0, 124]. 1648 if (!Memory.OffsetImm) return true; 1649 int64_t Val = Memory.OffsetImm->getValue(); 1650 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1651 } 1652 1653 bool isMemThumbRIs2() const { 1654 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1655 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1656 return false; 1657 // Immediate offset, multiple of 4 in range [0, 62]. 1658 if (!Memory.OffsetImm) return true; 1659 int64_t Val = Memory.OffsetImm->getValue(); 1660 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1661 } 1662 1663 bool isMemThumbRIs1() const { 1664 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1665 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1666 return false; 1667 // Immediate offset in range [0, 31]. 1668 if (!Memory.OffsetImm) return true; 1669 int64_t Val = Memory.OffsetImm->getValue(); 1670 return Val >= 0 && Val <= 31; 1671 } 1672 1673 bool isMemThumbSPI() const { 1674 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1675 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1676 return false; 1677 // Immediate offset, multiple of 4 in range [0, 1020]. 1678 if (!Memory.OffsetImm) return true; 1679 int64_t Val = Memory.OffsetImm->getValue(); 1680 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1681 } 1682 1683 bool isMemImm8s4Offset() const { 1684 // If we have an immediate that's not a constant, treat it as a label 1685 // reference needing a fixup. If it is a constant, it's something else 1686 // and we reject it. 1687 if (isImm() && !isa<MCConstantExpr>(getImm())) 1688 return true; 1689 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1690 return false; 1691 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1692 if (!Memory.OffsetImm) return true; 1693 int64_t Val = Memory.OffsetImm->getValue(); 1694 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1695 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1696 Val == std::numeric_limits<int32_t>::min(); 1697 } 1698 bool isMemImm7s4Offset() const { 1699 // If we have an immediate that's not a constant, treat it as a label 1700 // reference needing a fixup. If it is a constant, it's something else 1701 // and we reject it. 1702 if (isImm() && !isa<MCConstantExpr>(getImm())) 1703 return true; 1704 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1705 !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1706 Memory.BaseRegNum)) 1707 return false; 1708 // Immediate offset a multiple of 4 in range [-508, 508]. 1709 if (!Memory.OffsetImm) return true; 1710 int64_t Val = Memory.OffsetImm->getValue(); 1711 // Special case, #-0 is INT32_MIN. 1712 return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; 1713 } 1714 bool isMemImm0_1020s4Offset() const { 1715 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1716 return false; 1717 // Immediate offset a multiple of 4 in range [0, 1020]. 1718 if (!Memory.OffsetImm) return true; 1719 int64_t Val = Memory.OffsetImm->getValue(); 1720 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1721 } 1722 1723 bool isMemImm8Offset() const { 1724 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1725 return false; 1726 // Base reg of PC isn't allowed for these encodings. 1727 if (Memory.BaseRegNum == ARM::PC) return false; 1728 // Immediate offset in range [-255, 255]. 1729 if (!Memory.OffsetImm) return true; 1730 int64_t Val = Memory.OffsetImm->getValue(); 1731 return (Val == std::numeric_limits<int32_t>::min()) || 1732 (Val > -256 && Val < 256); 1733 } 1734 1735 template<unsigned Bits, unsigned RegClassID> 1736 bool isMemImm7ShiftedOffset() const { 1737 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1738 !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum)) 1739 return false; 1740 1741 // Expect an immediate offset equal to an element of the range 1742 // [-127, 127], shifted left by Bits. 1743 1744 if (!Memory.OffsetImm) return true; 1745 int64_t Val = Memory.OffsetImm->getValue(); 1746 1747 // INT32_MIN is a special-case value (indicating the encoding with 1748 // zero offset and the subtract bit set) 1749 if (Val == INT32_MIN) 1750 return true; 1751 1752 unsigned Divisor = 1U << Bits; 1753 1754 // Check that the low bits are zero 1755 if (Val % Divisor != 0) 1756 return false; 1757 1758 // Check that the remaining offset is within range. 1759 Val /= Divisor; 1760 return (Val >= -127 && Val <= 127); 1761 } 1762 1763 template <int shift> bool isMemRegRQOffset() const { 1764 if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0) 1765 return false; 1766 1767 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1768 Memory.BaseRegNum)) 1769 return false; 1770 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1771 Memory.OffsetRegNum)) 1772 return false; 1773 1774 if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) 1775 return false; 1776 1777 if (shift > 0 && 1778 (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) 1779 return false; 1780 1781 return true; 1782 } 1783 1784 template <int shift> bool isMemRegQOffset() const { 1785 if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1786 return false; 1787 1788 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1789 Memory.BaseRegNum)) 1790 return false; 1791 1792 if(!Memory.OffsetImm) return true; 1793 static_assert(shift < 56, 1794 "Such that we dont shift by a value higher than 62"); 1795 int64_t Val = Memory.OffsetImm->getValue(); 1796 1797 // The value must be a multiple of (1 << shift) 1798 if ((Val & ((1U << shift) - 1)) != 0) 1799 return false; 1800 1801 // And be in the right range, depending on the amount that it is shifted 1802 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set 1803 // separately. 1804 int64_t Range = (1U << (7+shift)) - 1; 1805 return (Val == INT32_MIN) || (Val > -Range && Val < Range); 1806 } 1807 1808 bool isMemPosImm8Offset() const { 1809 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1810 return false; 1811 // Immediate offset in range [0, 255]. 1812 if (!Memory.OffsetImm) return true; 1813 int64_t Val = Memory.OffsetImm->getValue(); 1814 return Val >= 0 && Val < 256; 1815 } 1816 1817 bool isMemNegImm8Offset() const { 1818 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1819 return false; 1820 // Base reg of PC isn't allowed for these encodings. 1821 if (Memory.BaseRegNum == ARM::PC) return false; 1822 // Immediate offset in range [-255, -1]. 1823 if (!Memory.OffsetImm) return false; 1824 int64_t Val = Memory.OffsetImm->getValue(); 1825 return (Val == std::numeric_limits<int32_t>::min()) || 1826 (Val > -256 && Val < 0); 1827 } 1828 1829 bool isMemUImm12Offset() const { 1830 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1831 return false; 1832 // Immediate offset in range [0, 4095]. 1833 if (!Memory.OffsetImm) return true; 1834 int64_t Val = Memory.OffsetImm->getValue(); 1835 return (Val >= 0 && Val < 4096); 1836 } 1837 1838 bool isMemImm12Offset() const { 1839 // If we have an immediate that's not a constant, treat it as a label 1840 // reference needing a fixup. If it is a constant, it's something else 1841 // and we reject it. 1842 1843 if (isImm() && !isa<MCConstantExpr>(getImm())) 1844 return true; 1845 1846 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1847 return false; 1848 // Immediate offset in range [-4095, 4095]. 1849 if (!Memory.OffsetImm) return true; 1850 int64_t Val = Memory.OffsetImm->getValue(); 1851 return (Val > -4096 && Val < 4096) || 1852 (Val == std::numeric_limits<int32_t>::min()); 1853 } 1854 1855 bool isConstPoolAsmImm() const { 1856 // Delay processing of Constant Pool Immediate, this will turn into 1857 // a constant. Match no other operand 1858 return (isConstantPoolImm()); 1859 } 1860 1861 bool isPostIdxImm8() const { 1862 if (!isImm()) return false; 1863 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1864 if (!CE) return false; 1865 int64_t Val = CE->getValue(); 1866 return (Val > -256 && Val < 256) || 1867 (Val == std::numeric_limits<int32_t>::min()); 1868 } 1869 1870 bool isPostIdxImm8s4() const { 1871 if (!isImm()) return false; 1872 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1873 if (!CE) return false; 1874 int64_t Val = CE->getValue(); 1875 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1876 (Val == std::numeric_limits<int32_t>::min()); 1877 } 1878 1879 bool isMSRMask() const { return Kind == k_MSRMask; } 1880 bool isBankedReg() const { return Kind == k_BankedReg; } 1881 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1882 1883 // NEON operands. 1884 bool isSingleSpacedVectorList() const { 1885 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1886 } 1887 1888 bool isDoubleSpacedVectorList() const { 1889 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1890 } 1891 1892 bool isVecListOneD() const { 1893 if (!isSingleSpacedVectorList()) return false; 1894 return VectorList.Count == 1; 1895 } 1896 1897 bool isVecListTwoMQ() const { 1898 return isSingleSpacedVectorList() && VectorList.Count == 2 && 1899 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1900 VectorList.RegNum); 1901 } 1902 1903 bool isVecListDPair() const { 1904 if (!isSingleSpacedVectorList()) return false; 1905 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1906 .contains(VectorList.RegNum)); 1907 } 1908 1909 bool isVecListThreeD() const { 1910 if (!isSingleSpacedVectorList()) return false; 1911 return VectorList.Count == 3; 1912 } 1913 1914 bool isVecListFourD() const { 1915 if (!isSingleSpacedVectorList()) return false; 1916 return VectorList.Count == 4; 1917 } 1918 1919 bool isVecListDPairSpaced() const { 1920 if (Kind != k_VectorList) return false; 1921 if (isSingleSpacedVectorList()) return false; 1922 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1923 .contains(VectorList.RegNum)); 1924 } 1925 1926 bool isVecListThreeQ() const { 1927 if (!isDoubleSpacedVectorList()) return false; 1928 return VectorList.Count == 3; 1929 } 1930 1931 bool isVecListFourQ() const { 1932 if (!isDoubleSpacedVectorList()) return false; 1933 return VectorList.Count == 4; 1934 } 1935 1936 bool isVecListFourMQ() const { 1937 return isSingleSpacedVectorList() && VectorList.Count == 4 && 1938 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1939 VectorList.RegNum); 1940 } 1941 1942 bool isSingleSpacedVectorAllLanes() const { 1943 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1944 } 1945 1946 bool isDoubleSpacedVectorAllLanes() const { 1947 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1948 } 1949 1950 bool isVecListOneDAllLanes() const { 1951 if (!isSingleSpacedVectorAllLanes()) return false; 1952 return VectorList.Count == 1; 1953 } 1954 1955 bool isVecListDPairAllLanes() const { 1956 if (!isSingleSpacedVectorAllLanes()) return false; 1957 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1958 .contains(VectorList.RegNum)); 1959 } 1960 1961 bool isVecListDPairSpacedAllLanes() const { 1962 if (!isDoubleSpacedVectorAllLanes()) return false; 1963 return VectorList.Count == 2; 1964 } 1965 1966 bool isVecListThreeDAllLanes() const { 1967 if (!isSingleSpacedVectorAllLanes()) return false; 1968 return VectorList.Count == 3; 1969 } 1970 1971 bool isVecListThreeQAllLanes() const { 1972 if (!isDoubleSpacedVectorAllLanes()) return false; 1973 return VectorList.Count == 3; 1974 } 1975 1976 bool isVecListFourDAllLanes() const { 1977 if (!isSingleSpacedVectorAllLanes()) return false; 1978 return VectorList.Count == 4; 1979 } 1980 1981 bool isVecListFourQAllLanes() const { 1982 if (!isDoubleSpacedVectorAllLanes()) return false; 1983 return VectorList.Count == 4; 1984 } 1985 1986 bool isSingleSpacedVectorIndexed() const { 1987 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1988 } 1989 1990 bool isDoubleSpacedVectorIndexed() const { 1991 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1992 } 1993 1994 bool isVecListOneDByteIndexed() const { 1995 if (!isSingleSpacedVectorIndexed()) return false; 1996 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1997 } 1998 1999 bool isVecListOneDHWordIndexed() const { 2000 if (!isSingleSpacedVectorIndexed()) return false; 2001 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 2002 } 2003 2004 bool isVecListOneDWordIndexed() const { 2005 if (!isSingleSpacedVectorIndexed()) return false; 2006 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 2007 } 2008 2009 bool isVecListTwoDByteIndexed() const { 2010 if (!isSingleSpacedVectorIndexed()) return false; 2011 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 2012 } 2013 2014 bool isVecListTwoDHWordIndexed() const { 2015 if (!isSingleSpacedVectorIndexed()) return false; 2016 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2017 } 2018 2019 bool isVecListTwoQWordIndexed() const { 2020 if (!isDoubleSpacedVectorIndexed()) return false; 2021 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2022 } 2023 2024 bool isVecListTwoQHWordIndexed() const { 2025 if (!isDoubleSpacedVectorIndexed()) return false; 2026 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2027 } 2028 2029 bool isVecListTwoDWordIndexed() const { 2030 if (!isSingleSpacedVectorIndexed()) return false; 2031 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2032 } 2033 2034 bool isVecListThreeDByteIndexed() const { 2035 if (!isSingleSpacedVectorIndexed()) return false; 2036 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 2037 } 2038 2039 bool isVecListThreeDHWordIndexed() const { 2040 if (!isSingleSpacedVectorIndexed()) return false; 2041 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2042 } 2043 2044 bool isVecListThreeQWordIndexed() const { 2045 if (!isDoubleSpacedVectorIndexed()) return false; 2046 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2047 } 2048 2049 bool isVecListThreeQHWordIndexed() const { 2050 if (!isDoubleSpacedVectorIndexed()) return false; 2051 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2052 } 2053 2054 bool isVecListThreeDWordIndexed() const { 2055 if (!isSingleSpacedVectorIndexed()) return false; 2056 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2057 } 2058 2059 bool isVecListFourDByteIndexed() const { 2060 if (!isSingleSpacedVectorIndexed()) return false; 2061 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 2062 } 2063 2064 bool isVecListFourDHWordIndexed() const { 2065 if (!isSingleSpacedVectorIndexed()) return false; 2066 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2067 } 2068 2069 bool isVecListFourQWordIndexed() const { 2070 if (!isDoubleSpacedVectorIndexed()) return false; 2071 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2072 } 2073 2074 bool isVecListFourQHWordIndexed() const { 2075 if (!isDoubleSpacedVectorIndexed()) return false; 2076 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2077 } 2078 2079 bool isVecListFourDWordIndexed() const { 2080 if (!isSingleSpacedVectorIndexed()) return false; 2081 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2082 } 2083 2084 bool isVectorIndex() const { return Kind == k_VectorIndex; } 2085 2086 template <unsigned NumLanes> 2087 bool isVectorIndexInRange() const { 2088 if (Kind != k_VectorIndex) return false; 2089 return VectorIndex.Val < NumLanes; 2090 } 2091 2092 bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } 2093 bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } 2094 bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } 2095 bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } 2096 2097 template<int PermittedValue, int OtherPermittedValue> 2098 bool isMVEPairVectorIndex() const { 2099 if (Kind != k_VectorIndex) return false; 2100 return VectorIndex.Val == PermittedValue || 2101 VectorIndex.Val == OtherPermittedValue; 2102 } 2103 2104 bool isNEONi8splat() const { 2105 if (!isImm()) return false; 2106 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2107 // Must be a constant. 2108 if (!CE) return false; 2109 int64_t Value = CE->getValue(); 2110 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 2111 // value. 2112 return Value >= 0 && Value < 256; 2113 } 2114 2115 bool isNEONi16splat() const { 2116 if (isNEONByteReplicate(2)) 2117 return false; // Leave that for bytes replication and forbid by default. 2118 if (!isImm()) 2119 return false; 2120 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2121 // Must be a constant. 2122 if (!CE) return false; 2123 unsigned Value = CE->getValue(); 2124 return ARM_AM::isNEONi16splat(Value); 2125 } 2126 2127 bool isNEONi16splatNot() const { 2128 if (!isImm()) 2129 return false; 2130 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2131 // Must be a constant. 2132 if (!CE) return false; 2133 unsigned Value = CE->getValue(); 2134 return ARM_AM::isNEONi16splat(~Value & 0xffff); 2135 } 2136 2137 bool isNEONi32splat() const { 2138 if (isNEONByteReplicate(4)) 2139 return false; // Leave that for bytes replication and forbid by default. 2140 if (!isImm()) 2141 return false; 2142 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2143 // Must be a constant. 2144 if (!CE) return false; 2145 unsigned Value = CE->getValue(); 2146 return ARM_AM::isNEONi32splat(Value); 2147 } 2148 2149 bool isNEONi32splatNot() const { 2150 if (!isImm()) 2151 return false; 2152 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2153 // Must be a constant. 2154 if (!CE) return false; 2155 unsigned Value = CE->getValue(); 2156 return ARM_AM::isNEONi32splat(~Value); 2157 } 2158 2159 static bool isValidNEONi32vmovImm(int64_t Value) { 2160 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 2161 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 2162 return ((Value & 0xffffffffffffff00) == 0) || 2163 ((Value & 0xffffffffffff00ff) == 0) || 2164 ((Value & 0xffffffffff00ffff) == 0) || 2165 ((Value & 0xffffffff00ffffff) == 0) || 2166 ((Value & 0xffffffffffff00ff) == 0xff) || 2167 ((Value & 0xffffffffff00ffff) == 0xffff); 2168 } 2169 2170 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 2171 assert((Width == 8 || Width == 16 || Width == 32) && 2172 "Invalid element width"); 2173 assert(NumElems * Width <= 64 && "Invalid result width"); 2174 2175 if (!isImm()) 2176 return false; 2177 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2178 // Must be a constant. 2179 if (!CE) 2180 return false; 2181 int64_t Value = CE->getValue(); 2182 if (!Value) 2183 return false; // Don't bother with zero. 2184 if (Inv) 2185 Value = ~Value; 2186 2187 uint64_t Mask = (1ull << Width) - 1; 2188 uint64_t Elem = Value & Mask; 2189 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 2190 return false; 2191 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 2192 return false; 2193 2194 for (unsigned i = 1; i < NumElems; ++i) { 2195 Value >>= Width; 2196 if ((Value & Mask) != Elem) 2197 return false; 2198 } 2199 return true; 2200 } 2201 2202 bool isNEONByteReplicate(unsigned NumBytes) const { 2203 return isNEONReplicate(8, NumBytes, false); 2204 } 2205 2206 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 2207 assert((FromW == 8 || FromW == 16 || FromW == 32) && 2208 "Invalid source width"); 2209 assert((ToW == 16 || ToW == 32 || ToW == 64) && 2210 "Invalid destination width"); 2211 assert(FromW < ToW && "ToW is not less than FromW"); 2212 } 2213 2214 template<unsigned FromW, unsigned ToW> 2215 bool isNEONmovReplicate() const { 2216 checkNeonReplicateArgs(FromW, ToW); 2217 if (ToW == 64 && isNEONi64splat()) 2218 return false; 2219 return isNEONReplicate(FromW, ToW / FromW, false); 2220 } 2221 2222 template<unsigned FromW, unsigned ToW> 2223 bool isNEONinvReplicate() const { 2224 checkNeonReplicateArgs(FromW, ToW); 2225 return isNEONReplicate(FromW, ToW / FromW, true); 2226 } 2227 2228 bool isNEONi32vmov() const { 2229 if (isNEONByteReplicate(4)) 2230 return false; // Let it to be classified as byte-replicate case. 2231 if (!isImm()) 2232 return false; 2233 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2234 // Must be a constant. 2235 if (!CE) 2236 return false; 2237 return isValidNEONi32vmovImm(CE->getValue()); 2238 } 2239 2240 bool isNEONi32vmovNeg() const { 2241 if (!isImm()) return false; 2242 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2243 // Must be a constant. 2244 if (!CE) return false; 2245 return isValidNEONi32vmovImm(~CE->getValue()); 2246 } 2247 2248 bool isNEONi64splat() const { 2249 if (!isImm()) return false; 2250 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2251 // Must be a constant. 2252 if (!CE) return false; 2253 uint64_t Value = CE->getValue(); 2254 // i64 value with each byte being either 0 or 0xff. 2255 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 2256 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 2257 return true; 2258 } 2259 2260 template<int64_t Angle, int64_t Remainder> 2261 bool isComplexRotation() const { 2262 if (!isImm()) return false; 2263 2264 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2265 if (!CE) return false; 2266 uint64_t Value = CE->getValue(); 2267 2268 return (Value % Angle == Remainder && Value <= 270); 2269 } 2270 2271 bool isMVELongShift() const { 2272 if (!isImm()) return false; 2273 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2274 // Must be a constant. 2275 if (!CE) return false; 2276 uint64_t Value = CE->getValue(); 2277 return Value >= 1 && Value <= 32; 2278 } 2279 2280 bool isMveSaturateOp() const { 2281 if (!isImm()) return false; 2282 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2283 if (!CE) return false; 2284 uint64_t Value = CE->getValue(); 2285 return Value == 48 || Value == 64; 2286 } 2287 2288 bool isITCondCodeNoAL() const { 2289 if (!isITCondCode()) return false; 2290 ARMCC::CondCodes CC = getCondCode(); 2291 return CC != ARMCC::AL; 2292 } 2293 2294 bool isITCondCodeRestrictedI() const { 2295 if (!isITCondCode()) 2296 return false; 2297 ARMCC::CondCodes CC = getCondCode(); 2298 return CC == ARMCC::EQ || CC == ARMCC::NE; 2299 } 2300 2301 bool isITCondCodeRestrictedS() const { 2302 if (!isITCondCode()) 2303 return false; 2304 ARMCC::CondCodes CC = getCondCode(); 2305 return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || 2306 CC == ARMCC::GE; 2307 } 2308 2309 bool isITCondCodeRestrictedU() const { 2310 if (!isITCondCode()) 2311 return false; 2312 ARMCC::CondCodes CC = getCondCode(); 2313 return CC == ARMCC::HS || CC == ARMCC::HI; 2314 } 2315 2316 bool isITCondCodeRestrictedFP() const { 2317 if (!isITCondCode()) 2318 return false; 2319 ARMCC::CondCodes CC = getCondCode(); 2320 return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || 2321 CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; 2322 } 2323 2324 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 2325 // Add as immediates when possible. Null MCExpr = 0. 2326 if (!Expr) 2327 Inst.addOperand(MCOperand::createImm(0)); 2328 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 2329 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2330 else 2331 Inst.addOperand(MCOperand::createExpr(Expr)); 2332 } 2333 2334 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2335 assert(N == 1 && "Invalid number of operands!"); 2336 addExpr(Inst, getImm()); 2337 } 2338 2339 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2340 assert(N == 1 && "Invalid number of operands!"); 2341 addExpr(Inst, getImm()); 2342 } 2343 2344 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2345 assert(N == 2 && "Invalid number of operands!"); 2346 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2347 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2348 Inst.addOperand(MCOperand::createReg(RegNum)); 2349 } 2350 2351 void addVPTPredNOperands(MCInst &Inst, unsigned N) const { 2352 assert(N == 2 && "Invalid number of operands!"); 2353 Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred()))); 2354 unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; 2355 Inst.addOperand(MCOperand::createReg(RegNum)); 2356 } 2357 2358 void addVPTPredROperands(MCInst &Inst, unsigned N) const { 2359 assert(N == 3 && "Invalid number of operands!"); 2360 addVPTPredNOperands(Inst, N-1); 2361 unsigned RegNum; 2362 if (getVPTPred() == ARMVCC::None) { 2363 RegNum = 0; 2364 } else { 2365 unsigned NextOpIndex = Inst.getNumOperands(); 2366 const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()]; 2367 int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO); 2368 assert(TiedOp >= 0 && 2369 "Inactive register in vpred_r is not tied to an output!"); 2370 RegNum = Inst.getOperand(TiedOp).getReg(); 2371 } 2372 Inst.addOperand(MCOperand::createReg(RegNum)); 2373 } 2374 2375 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2376 assert(N == 1 && "Invalid number of operands!"); 2377 Inst.addOperand(MCOperand::createImm(getCoproc())); 2378 } 2379 2380 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2381 assert(N == 1 && "Invalid number of operands!"); 2382 Inst.addOperand(MCOperand::createImm(getCoproc())); 2383 } 2384 2385 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2386 assert(N == 1 && "Invalid number of operands!"); 2387 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2388 } 2389 2390 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2391 assert(N == 1 && "Invalid number of operands!"); 2392 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2393 } 2394 2395 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2396 assert(N == 1 && "Invalid number of operands!"); 2397 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2398 } 2399 2400 void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { 2401 assert(N == 1 && "Invalid number of operands!"); 2402 Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode())))); 2403 } 2404 2405 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2406 assert(N == 1 && "Invalid number of operands!"); 2407 Inst.addOperand(MCOperand::createReg(getReg())); 2408 } 2409 2410 void addRegOperands(MCInst &Inst, unsigned N) const { 2411 assert(N == 1 && "Invalid number of operands!"); 2412 Inst.addOperand(MCOperand::createReg(getReg())); 2413 } 2414 2415 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2416 assert(N == 3 && "Invalid number of operands!"); 2417 assert(isRegShiftedReg() && 2418 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2419 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2420 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2421 Inst.addOperand(MCOperand::createImm( 2422 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2423 } 2424 2425 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2426 assert(N == 2 && "Invalid number of operands!"); 2427 assert(isRegShiftedImm() && 2428 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2429 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2430 // Shift of #32 is encoded as 0 where permitted 2431 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2432 Inst.addOperand(MCOperand::createImm( 2433 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2434 } 2435 2436 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2437 assert(N == 1 && "Invalid number of operands!"); 2438 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2439 ShifterImm.Imm)); 2440 } 2441 2442 void addRegListOperands(MCInst &Inst, unsigned N) const { 2443 assert(N == 1 && "Invalid number of operands!"); 2444 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2445 for (SmallVectorImpl<unsigned>::const_iterator 2446 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2447 Inst.addOperand(MCOperand::createReg(*I)); 2448 } 2449 2450 void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { 2451 assert(N == 1 && "Invalid number of operands!"); 2452 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2453 for (SmallVectorImpl<unsigned>::const_iterator 2454 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2455 Inst.addOperand(MCOperand::createReg(*I)); 2456 } 2457 2458 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2459 addRegListOperands(Inst, N); 2460 } 2461 2462 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2463 addRegListOperands(Inst, N); 2464 } 2465 2466 void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2467 addRegListOperands(Inst, N); 2468 } 2469 2470 void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2471 addRegListOperands(Inst, N); 2472 } 2473 2474 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2475 assert(N == 1 && "Invalid number of operands!"); 2476 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2477 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2478 } 2479 2480 void addModImmOperands(MCInst &Inst, unsigned N) const { 2481 assert(N == 1 && "Invalid number of operands!"); 2482 2483 // Support for fixups (MCFixup) 2484 if (isImm()) 2485 return addImmOperands(Inst, N); 2486 2487 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2488 } 2489 2490 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2491 assert(N == 1 && "Invalid number of operands!"); 2492 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2493 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2494 Inst.addOperand(MCOperand::createImm(Enc)); 2495 } 2496 2497 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2498 assert(N == 1 && "Invalid number of operands!"); 2499 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2500 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2501 Inst.addOperand(MCOperand::createImm(Enc)); 2502 } 2503 2504 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2505 assert(N == 1 && "Invalid number of operands!"); 2506 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2507 uint32_t Val = -CE->getValue(); 2508 Inst.addOperand(MCOperand::createImm(Val)); 2509 } 2510 2511 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2512 assert(N == 1 && "Invalid number of operands!"); 2513 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2514 uint32_t Val = -CE->getValue(); 2515 Inst.addOperand(MCOperand::createImm(Val)); 2516 } 2517 2518 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2519 assert(N == 1 && "Invalid number of operands!"); 2520 // Munge the lsb/width into a bitfield mask. 2521 unsigned lsb = Bitfield.LSB; 2522 unsigned width = Bitfield.Width; 2523 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2524 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2525 (32 - (lsb + width))); 2526 Inst.addOperand(MCOperand::createImm(Mask)); 2527 } 2528 2529 void addImmOperands(MCInst &Inst, unsigned N) const { 2530 assert(N == 1 && "Invalid number of operands!"); 2531 addExpr(Inst, getImm()); 2532 } 2533 2534 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2535 assert(N == 1 && "Invalid number of operands!"); 2536 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2537 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2538 } 2539 2540 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2541 assert(N == 1 && "Invalid number of operands!"); 2542 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2543 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2544 } 2545 2546 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2547 assert(N == 1 && "Invalid number of operands!"); 2548 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2549 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2550 Inst.addOperand(MCOperand::createImm(Val)); 2551 } 2552 2553 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2554 assert(N == 1 && "Invalid number of operands!"); 2555 // FIXME: We really want to scale the value here, but the LDRD/STRD 2556 // instruction don't encode operands that way yet. 2557 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2558 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2559 } 2560 2561 void addImm7s4Operands(MCInst &Inst, unsigned N) const { 2562 assert(N == 1 && "Invalid number of operands!"); 2563 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR 2564 // instruction don't encode operands that way yet. 2565 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2566 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2567 } 2568 2569 void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { 2570 assert(N == 1 && "Invalid number of operands!"); 2571 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2572 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2573 } 2574 2575 void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { 2576 assert(N == 1 && "Invalid number of operands!"); 2577 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2578 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2579 } 2580 2581 void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { 2582 assert(N == 1 && "Invalid number of operands!"); 2583 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2584 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2585 } 2586 2587 void addImm7Operands(MCInst &Inst, unsigned N) const { 2588 assert(N == 1 && "Invalid number of operands!"); 2589 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2590 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2591 } 2592 2593 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2594 assert(N == 1 && "Invalid number of operands!"); 2595 // The immediate is scaled by four in the encoding and is stored 2596 // in the MCInst as such. Lop off the low two bits here. 2597 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2598 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2599 } 2600 2601 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2602 assert(N == 1 && "Invalid number of operands!"); 2603 // The immediate is scaled by four in the encoding and is stored 2604 // in the MCInst as such. Lop off the low two bits here. 2605 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2606 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2607 } 2608 2609 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2610 assert(N == 1 && "Invalid number of operands!"); 2611 // The immediate is scaled by four in the encoding and is stored 2612 // in the MCInst as such. Lop off the low two bits here. 2613 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2614 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2615 } 2616 2617 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2618 assert(N == 1 && "Invalid number of operands!"); 2619 // The constant encodes as the immediate-1, and we store in the instruction 2620 // the bits as encoded, so subtract off one here. 2621 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2622 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2623 } 2624 2625 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2626 assert(N == 1 && "Invalid number of operands!"); 2627 // The constant encodes as the immediate-1, and we store in the instruction 2628 // the bits as encoded, so subtract off one here. 2629 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2630 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2631 } 2632 2633 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2634 assert(N == 1 && "Invalid number of operands!"); 2635 // The constant encodes as the immediate, except for 32, which encodes as 2636 // zero. 2637 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2638 unsigned Imm = CE->getValue(); 2639 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2640 } 2641 2642 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2643 assert(N == 1 && "Invalid number of operands!"); 2644 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2645 // the instruction as well. 2646 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2647 int Val = CE->getValue(); 2648 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2649 } 2650 2651 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2652 assert(N == 1 && "Invalid number of operands!"); 2653 // The operand is actually a t2_so_imm, but we have its bitwise 2654 // negation in the assembly source, so twiddle it here. 2655 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2656 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2657 } 2658 2659 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2660 assert(N == 1 && "Invalid number of operands!"); 2661 // The operand is actually a t2_so_imm, but we have its 2662 // negation in the assembly source, so twiddle it here. 2663 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2664 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2665 } 2666 2667 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2668 assert(N == 1 && "Invalid number of operands!"); 2669 // The operand is actually an imm0_4095, but we have its 2670 // negation in the assembly source, so twiddle it here. 2671 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2672 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2673 } 2674 2675 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2676 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2677 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2678 return; 2679 } 2680 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2681 Inst.addOperand(MCOperand::createExpr(SR)); 2682 } 2683 2684 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2685 assert(N == 1 && "Invalid number of operands!"); 2686 if (isImm()) { 2687 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2688 if (CE) { 2689 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2690 return; 2691 } 2692 const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val); 2693 Inst.addOperand(MCOperand::createExpr(SR)); 2694 return; 2695 } 2696 2697 assert(isGPRMem() && "Unknown value type!"); 2698 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2699 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2700 } 2701 2702 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2703 assert(N == 1 && "Invalid number of operands!"); 2704 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2705 } 2706 2707 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2708 assert(N == 1 && "Invalid number of operands!"); 2709 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2710 } 2711 2712 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2713 assert(N == 1 && "Invalid number of operands!"); 2714 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2715 } 2716 2717 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2718 assert(N == 1 && "Invalid number of operands!"); 2719 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2720 } 2721 2722 void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { 2723 assert(N == 1 && "Invalid number of operands!"); 2724 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2725 } 2726 2727 void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { 2728 assert(N == 1 && "Invalid number of operands!"); 2729 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2730 } 2731 2732 void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { 2733 assert(N == 1 && "Invalid number of operands!"); 2734 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2735 } 2736 2737 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2738 assert(N == 1 && "Invalid number of operands!"); 2739 int32_t Imm = Memory.OffsetImm->getValue(); 2740 Inst.addOperand(MCOperand::createImm(Imm)); 2741 } 2742 2743 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2744 assert(N == 1 && "Invalid number of operands!"); 2745 assert(isImm() && "Not an immediate!"); 2746 2747 // If we have an immediate that's not a constant, treat it as a label 2748 // reference needing a fixup. 2749 if (!isa<MCConstantExpr>(getImm())) { 2750 Inst.addOperand(MCOperand::createExpr(getImm())); 2751 return; 2752 } 2753 2754 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 2755 int Val = CE->getValue(); 2756 Inst.addOperand(MCOperand::createImm(Val)); 2757 } 2758 2759 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2760 assert(N == 2 && "Invalid number of operands!"); 2761 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2762 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2763 } 2764 2765 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2766 addAlignedMemoryOperands(Inst, N); 2767 } 2768 2769 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2770 addAlignedMemoryOperands(Inst, N); 2771 } 2772 2773 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2774 addAlignedMemoryOperands(Inst, N); 2775 } 2776 2777 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2778 addAlignedMemoryOperands(Inst, N); 2779 } 2780 2781 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2782 addAlignedMemoryOperands(Inst, N); 2783 } 2784 2785 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2786 addAlignedMemoryOperands(Inst, N); 2787 } 2788 2789 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2790 addAlignedMemoryOperands(Inst, N); 2791 } 2792 2793 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2794 addAlignedMemoryOperands(Inst, N); 2795 } 2796 2797 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2798 addAlignedMemoryOperands(Inst, N); 2799 } 2800 2801 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2802 addAlignedMemoryOperands(Inst, N); 2803 } 2804 2805 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2806 addAlignedMemoryOperands(Inst, N); 2807 } 2808 2809 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2810 assert(N == 3 && "Invalid number of operands!"); 2811 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2812 if (!Memory.OffsetRegNum) { 2813 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2814 // Special case for #-0 2815 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2816 if (Val < 0) Val = -Val; 2817 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2818 } else { 2819 // For register offset, we encode the shift type and negation flag 2820 // here. 2821 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2822 Memory.ShiftImm, Memory.ShiftType); 2823 } 2824 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2825 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2826 Inst.addOperand(MCOperand::createImm(Val)); 2827 } 2828 2829 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2830 assert(N == 2 && "Invalid number of operands!"); 2831 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2832 assert(CE && "non-constant AM2OffsetImm operand!"); 2833 int32_t Val = CE->getValue(); 2834 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2835 // Special case for #-0 2836 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2837 if (Val < 0) Val = -Val; 2838 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2839 Inst.addOperand(MCOperand::createReg(0)); 2840 Inst.addOperand(MCOperand::createImm(Val)); 2841 } 2842 2843 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2844 assert(N == 3 && "Invalid number of operands!"); 2845 // If we have an immediate that's not a constant, treat it as a label 2846 // reference needing a fixup. If it is a constant, it's something else 2847 // and we reject it. 2848 if (isImm()) { 2849 Inst.addOperand(MCOperand::createExpr(getImm())); 2850 Inst.addOperand(MCOperand::createReg(0)); 2851 Inst.addOperand(MCOperand::createImm(0)); 2852 return; 2853 } 2854 2855 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2856 if (!Memory.OffsetRegNum) { 2857 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2858 // Special case for #-0 2859 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2860 if (Val < 0) Val = -Val; 2861 Val = ARM_AM::getAM3Opc(AddSub, Val); 2862 } else { 2863 // For register offset, we encode the shift type and negation flag 2864 // here. 2865 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2866 } 2867 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2868 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2869 Inst.addOperand(MCOperand::createImm(Val)); 2870 } 2871 2872 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2873 assert(N == 2 && "Invalid number of operands!"); 2874 if (Kind == k_PostIndexRegister) { 2875 int32_t Val = 2876 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2877 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2878 Inst.addOperand(MCOperand::createImm(Val)); 2879 return; 2880 } 2881 2882 // Constant offset. 2883 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2884 int32_t Val = CE->getValue(); 2885 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2886 // Special case for #-0 2887 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2888 if (Val < 0) Val = -Val; 2889 Val = ARM_AM::getAM3Opc(AddSub, Val); 2890 Inst.addOperand(MCOperand::createReg(0)); 2891 Inst.addOperand(MCOperand::createImm(Val)); 2892 } 2893 2894 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2895 assert(N == 2 && "Invalid number of operands!"); 2896 // If we have an immediate that's not a constant, treat it as a label 2897 // reference needing a fixup. If it is a constant, it's something else 2898 // and we reject it. 2899 if (isImm()) { 2900 Inst.addOperand(MCOperand::createExpr(getImm())); 2901 Inst.addOperand(MCOperand::createImm(0)); 2902 return; 2903 } 2904 2905 // The lower two bits are always zero and as such are not encoded. 2906 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2907 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2908 // Special case for #-0 2909 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2910 if (Val < 0) Val = -Val; 2911 Val = ARM_AM::getAM5Opc(AddSub, Val); 2912 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2913 Inst.addOperand(MCOperand::createImm(Val)); 2914 } 2915 2916 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2917 assert(N == 2 && "Invalid number of operands!"); 2918 // If we have an immediate that's not a constant, treat it as a label 2919 // reference needing a fixup. If it is a constant, it's something else 2920 // and we reject it. 2921 if (isImm()) { 2922 Inst.addOperand(MCOperand::createExpr(getImm())); 2923 Inst.addOperand(MCOperand::createImm(0)); 2924 return; 2925 } 2926 2927 // The lower bit is always zero and as such is not encoded. 2928 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2929 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2930 // Special case for #-0 2931 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2932 if (Val < 0) Val = -Val; 2933 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2934 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2935 Inst.addOperand(MCOperand::createImm(Val)); 2936 } 2937 2938 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2939 assert(N == 2 && "Invalid number of operands!"); 2940 // If we have an immediate that's not a constant, treat it as a label 2941 // reference needing a fixup. If it is a constant, it's something else 2942 // and we reject it. 2943 if (isImm()) { 2944 Inst.addOperand(MCOperand::createExpr(getImm())); 2945 Inst.addOperand(MCOperand::createImm(0)); 2946 return; 2947 } 2948 2949 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2950 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2951 Inst.addOperand(MCOperand::createImm(Val)); 2952 } 2953 2954 void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { 2955 assert(N == 2 && "Invalid number of operands!"); 2956 // If we have an immediate that's not a constant, treat it as a label 2957 // reference needing a fixup. If it is a constant, it's something else 2958 // and we reject it. 2959 if (isImm()) { 2960 Inst.addOperand(MCOperand::createExpr(getImm())); 2961 Inst.addOperand(MCOperand::createImm(0)); 2962 return; 2963 } 2964 2965 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2966 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2967 Inst.addOperand(MCOperand::createImm(Val)); 2968 } 2969 2970 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2971 assert(N == 2 && "Invalid number of operands!"); 2972 // The lower two bits are always zero and as such are not encoded. 2973 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2974 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2975 Inst.addOperand(MCOperand::createImm(Val)); 2976 } 2977 2978 void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { 2979 assert(N == 2 && "Invalid number of operands!"); 2980 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2981 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2982 Inst.addOperand(MCOperand::createImm(Val)); 2983 } 2984 2985 void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { 2986 assert(N == 2 && "Invalid number of operands!"); 2987 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2988 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2989 } 2990 2991 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2992 assert(N == 2 && "Invalid number of operands!"); 2993 // If this is an immediate, it's a label reference. 2994 if (isImm()) { 2995 addExpr(Inst, getImm()); 2996 Inst.addOperand(MCOperand::createImm(0)); 2997 return; 2998 } 2999 3000 // Otherwise, it's a normal memory reg+offset. 3001 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3002 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3003 Inst.addOperand(MCOperand::createImm(Val)); 3004 } 3005 3006 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3007 assert(N == 2 && "Invalid number of operands!"); 3008 // If this is an immediate, it's a label reference. 3009 if (isImm()) { 3010 addExpr(Inst, getImm()); 3011 Inst.addOperand(MCOperand::createImm(0)); 3012 return; 3013 } 3014 3015 // Otherwise, it's a normal memory reg+offset. 3016 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3017 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3018 Inst.addOperand(MCOperand::createImm(Val)); 3019 } 3020 3021 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 3022 assert(N == 1 && "Invalid number of operands!"); 3023 // This is container for the immediate that we will create the constant 3024 // pool from 3025 addExpr(Inst, getConstantPoolImm()); 3026 return; 3027 } 3028 3029 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 3030 assert(N == 2 && "Invalid number of operands!"); 3031 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3032 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3033 } 3034 3035 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 3036 assert(N == 2 && "Invalid number of operands!"); 3037 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3038 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3039 } 3040 3041 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3042 assert(N == 3 && "Invalid number of operands!"); 3043 unsigned Val = 3044 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 3045 Memory.ShiftImm, Memory.ShiftType); 3046 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3047 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3048 Inst.addOperand(MCOperand::createImm(Val)); 3049 } 3050 3051 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3052 assert(N == 3 && "Invalid number of operands!"); 3053 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3054 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3055 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 3056 } 3057 3058 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 3059 assert(N == 2 && "Invalid number of operands!"); 3060 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3061 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3062 } 3063 3064 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 3065 assert(N == 2 && "Invalid number of operands!"); 3066 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3067 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3068 Inst.addOperand(MCOperand::createImm(Val)); 3069 } 3070 3071 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 3072 assert(N == 2 && "Invalid number of operands!"); 3073 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 3074 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3075 Inst.addOperand(MCOperand::createImm(Val)); 3076 } 3077 3078 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 3079 assert(N == 2 && "Invalid number of operands!"); 3080 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 3081 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3082 Inst.addOperand(MCOperand::createImm(Val)); 3083 } 3084 3085 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 3086 assert(N == 2 && "Invalid number of operands!"); 3087 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3088 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3089 Inst.addOperand(MCOperand::createImm(Val)); 3090 } 3091 3092 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 3093 assert(N == 1 && "Invalid number of operands!"); 3094 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3095 assert(CE && "non-constant post-idx-imm8 operand!"); 3096 int Imm = CE->getValue(); 3097 bool isAdd = Imm >= 0; 3098 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3099 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 3100 Inst.addOperand(MCOperand::createImm(Imm)); 3101 } 3102 3103 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 3104 assert(N == 1 && "Invalid number of operands!"); 3105 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3106 assert(CE && "non-constant post-idx-imm8s4 operand!"); 3107 int Imm = CE->getValue(); 3108 bool isAdd = Imm >= 0; 3109 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3110 // Immediate is scaled by 4. 3111 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 3112 Inst.addOperand(MCOperand::createImm(Imm)); 3113 } 3114 3115 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 3116 assert(N == 2 && "Invalid number of operands!"); 3117 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3118 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 3119 } 3120 3121 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 3122 assert(N == 2 && "Invalid number of operands!"); 3123 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3124 // The sign, shift type, and shift amount are encoded in a single operand 3125 // using the AM2 encoding helpers. 3126 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 3127 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 3128 PostIdxReg.ShiftTy); 3129 Inst.addOperand(MCOperand::createImm(Imm)); 3130 } 3131 3132 void addPowerTwoOperands(MCInst &Inst, unsigned N) const { 3133 assert(N == 1 && "Invalid number of operands!"); 3134 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3135 Inst.addOperand(MCOperand::createImm(CE->getValue())); 3136 } 3137 3138 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 3139 assert(N == 1 && "Invalid number of operands!"); 3140 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 3141 } 3142 3143 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 3144 assert(N == 1 && "Invalid number of operands!"); 3145 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 3146 } 3147 3148 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 3149 assert(N == 1 && "Invalid number of operands!"); 3150 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 3151 } 3152 3153 void addVecListOperands(MCInst &Inst, unsigned N) const { 3154 assert(N == 1 && "Invalid number of operands!"); 3155 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3156 } 3157 3158 void addMVEVecListOperands(MCInst &Inst, unsigned N) const { 3159 assert(N == 1 && "Invalid number of operands!"); 3160 3161 // When we come here, the VectorList field will identify a range 3162 // of q-registers by its base register and length, and it will 3163 // have already been error-checked to be the expected length of 3164 // range and contain only q-regs in the range q0-q7. So we can 3165 // count on the base register being in the range q0-q6 (for 2 3166 // regs) or q0-q4 (for 4) 3167 // 3168 // The MVE instructions taking a register range of this kind will 3169 // need an operand in the QQPR or QQQQPR class, representing the 3170 // entire range as a unit. So we must translate into that class, 3171 // by finding the index of the base register in the MQPR reg 3172 // class, and returning the super-register at the corresponding 3173 // index in the target class. 3174 3175 const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; 3176 const MCRegisterClass *RC_out = (VectorList.Count == 2) ? 3177 &ARMMCRegisterClasses[ARM::QQPRRegClassID] : 3178 &ARMMCRegisterClasses[ARM::QQQQPRRegClassID]; 3179 3180 unsigned I, E = RC_out->getNumRegs(); 3181 for (I = 0; I < E; I++) 3182 if (RC_in->getRegister(I) == VectorList.RegNum) 3183 break; 3184 assert(I < E && "Invalid vector list start register!"); 3185 3186 Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I))); 3187 } 3188 3189 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 3190 assert(N == 2 && "Invalid number of operands!"); 3191 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3192 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 3193 } 3194 3195 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 3196 assert(N == 1 && "Invalid number of operands!"); 3197 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3198 } 3199 3200 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 3201 assert(N == 1 && "Invalid number of operands!"); 3202 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3203 } 3204 3205 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 3206 assert(N == 1 && "Invalid number of operands!"); 3207 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3208 } 3209 3210 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 3211 assert(N == 1 && "Invalid number of operands!"); 3212 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3213 } 3214 3215 void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { 3216 assert(N == 1 && "Invalid number of operands!"); 3217 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3218 } 3219 3220 void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { 3221 assert(N == 1 && "Invalid number of operands!"); 3222 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3223 } 3224 3225 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 3226 assert(N == 1 && "Invalid number of operands!"); 3227 // The immediate encodes the type of constant as well as the value. 3228 // Mask in that this is an i8 splat. 3229 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3230 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 3231 } 3232 3233 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 3234 assert(N == 1 && "Invalid number of operands!"); 3235 // The immediate encodes the type of constant as well as the value. 3236 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3237 unsigned Value = CE->getValue(); 3238 Value = ARM_AM::encodeNEONi16splat(Value); 3239 Inst.addOperand(MCOperand::createImm(Value)); 3240 } 3241 3242 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 3243 assert(N == 1 && "Invalid number of operands!"); 3244 // The immediate encodes the type of constant as well as the value. 3245 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3246 unsigned Value = CE->getValue(); 3247 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 3248 Inst.addOperand(MCOperand::createImm(Value)); 3249 } 3250 3251 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 3252 assert(N == 1 && "Invalid number of operands!"); 3253 // The immediate encodes the type of constant as well as the value. 3254 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3255 unsigned Value = CE->getValue(); 3256 Value = ARM_AM::encodeNEONi32splat(Value); 3257 Inst.addOperand(MCOperand::createImm(Value)); 3258 } 3259 3260 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 3261 assert(N == 1 && "Invalid number of operands!"); 3262 // The immediate encodes the type of constant as well as the value. 3263 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3264 unsigned Value = CE->getValue(); 3265 Value = ARM_AM::encodeNEONi32splat(~Value); 3266 Inst.addOperand(MCOperand::createImm(Value)); 3267 } 3268 3269 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 3270 // The immediate encodes the type of constant as well as the value. 3271 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3272 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 3273 Inst.getOpcode() == ARM::VMOVv16i8) && 3274 "All instructions that wants to replicate non-zero byte " 3275 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 3276 unsigned Value = CE->getValue(); 3277 if (Inv) 3278 Value = ~Value; 3279 unsigned B = Value & 0xff; 3280 B |= 0xe00; // cmode = 0b1110 3281 Inst.addOperand(MCOperand::createImm(B)); 3282 } 3283 3284 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3285 assert(N == 1 && "Invalid number of operands!"); 3286 addNEONi8ReplicateOperands(Inst, true); 3287 } 3288 3289 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 3290 if (Value >= 256 && Value <= 0xffff) 3291 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 3292 else if (Value > 0xffff && Value <= 0xffffff) 3293 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 3294 else if (Value > 0xffffff) 3295 Value = (Value >> 24) | 0x600; 3296 return Value; 3297 } 3298 3299 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 3300 assert(N == 1 && "Invalid number of operands!"); 3301 // The immediate encodes the type of constant as well as the value. 3302 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3303 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 3304 Inst.addOperand(MCOperand::createImm(Value)); 3305 } 3306 3307 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3308 assert(N == 1 && "Invalid number of operands!"); 3309 addNEONi8ReplicateOperands(Inst, false); 3310 } 3311 3312 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 3313 assert(N == 1 && "Invalid number of operands!"); 3314 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3315 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 3316 Inst.getOpcode() == ARM::VMOVv8i16 || 3317 Inst.getOpcode() == ARM::VMVNv4i16 || 3318 Inst.getOpcode() == ARM::VMVNv8i16) && 3319 "All instructions that want to replicate non-zero half-word " 3320 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 3321 uint64_t Value = CE->getValue(); 3322 unsigned Elem = Value & 0xffff; 3323 if (Elem >= 256) 3324 Elem = (Elem >> 8) | 0x200; 3325 Inst.addOperand(MCOperand::createImm(Elem)); 3326 } 3327 3328 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 3329 assert(N == 1 && "Invalid number of operands!"); 3330 // The immediate encodes the type of constant as well as the value. 3331 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3332 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 3333 Inst.addOperand(MCOperand::createImm(Value)); 3334 } 3335 3336 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 3337 assert(N == 1 && "Invalid number of operands!"); 3338 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3339 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 3340 Inst.getOpcode() == ARM::VMOVv4i32 || 3341 Inst.getOpcode() == ARM::VMVNv2i32 || 3342 Inst.getOpcode() == ARM::VMVNv4i32) && 3343 "All instructions that want to replicate non-zero word " 3344 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 3345 uint64_t Value = CE->getValue(); 3346 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 3347 Inst.addOperand(MCOperand::createImm(Elem)); 3348 } 3349 3350 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 3351 assert(N == 1 && "Invalid number of operands!"); 3352 // The immediate encodes the type of constant as well as the value. 3353 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3354 uint64_t Value = CE->getValue(); 3355 unsigned Imm = 0; 3356 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 3357 Imm |= (Value & 1) << i; 3358 } 3359 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 3360 } 3361 3362 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 3363 assert(N == 1 && "Invalid number of operands!"); 3364 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3365 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 3366 } 3367 3368 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 3369 assert(N == 1 && "Invalid number of operands!"); 3370 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3371 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 3372 } 3373 3374 void addMveSaturateOperands(MCInst &Inst, unsigned N) const { 3375 assert(N == 1 && "Invalid number of operands!"); 3376 const MCConstantExpr *CE = cast<MCConstantExpr>(getImm()); 3377 unsigned Imm = CE->getValue(); 3378 assert((Imm == 48 || Imm == 64) && "Invalid saturate operand"); 3379 Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0)); 3380 } 3381 3382 void print(raw_ostream &OS) const override; 3383 3384 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 3385 auto Op = std::make_unique<ARMOperand>(k_ITCondMask); 3386 Op->ITMask.Mask = Mask; 3387 Op->StartLoc = S; 3388 Op->EndLoc = S; 3389 return Op; 3390 } 3391 3392 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 3393 SMLoc S) { 3394 auto Op = std::make_unique<ARMOperand>(k_CondCode); 3395 Op->CC.Val = CC; 3396 Op->StartLoc = S; 3397 Op->EndLoc = S; 3398 return Op; 3399 } 3400 3401 static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, 3402 SMLoc S) { 3403 auto Op = std::make_unique<ARMOperand>(k_VPTPred); 3404 Op->VCC.Val = CC; 3405 Op->StartLoc = S; 3406 Op->EndLoc = S; 3407 return Op; 3408 } 3409 3410 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 3411 auto Op = std::make_unique<ARMOperand>(k_CoprocNum); 3412 Op->Cop.Val = CopVal; 3413 Op->StartLoc = S; 3414 Op->EndLoc = S; 3415 return Op; 3416 } 3417 3418 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 3419 auto Op = std::make_unique<ARMOperand>(k_CoprocReg); 3420 Op->Cop.Val = CopVal; 3421 Op->StartLoc = S; 3422 Op->EndLoc = S; 3423 return Op; 3424 } 3425 3426 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 3427 SMLoc E) { 3428 auto Op = std::make_unique<ARMOperand>(k_CoprocOption); 3429 Op->Cop.Val = Val; 3430 Op->StartLoc = S; 3431 Op->EndLoc = E; 3432 return Op; 3433 } 3434 3435 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 3436 auto Op = std::make_unique<ARMOperand>(k_CCOut); 3437 Op->Reg.RegNum = RegNum; 3438 Op->StartLoc = S; 3439 Op->EndLoc = S; 3440 return Op; 3441 } 3442 3443 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 3444 auto Op = std::make_unique<ARMOperand>(k_Token); 3445 Op->Tok.Data = Str.data(); 3446 Op->Tok.Length = Str.size(); 3447 Op->StartLoc = S; 3448 Op->EndLoc = S; 3449 return Op; 3450 } 3451 3452 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 3453 SMLoc E) { 3454 auto Op = std::make_unique<ARMOperand>(k_Register); 3455 Op->Reg.RegNum = RegNum; 3456 Op->StartLoc = S; 3457 Op->EndLoc = E; 3458 return Op; 3459 } 3460 3461 static std::unique_ptr<ARMOperand> 3462 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3463 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 3464 SMLoc E) { 3465 auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister); 3466 Op->RegShiftedReg.ShiftTy = ShTy; 3467 Op->RegShiftedReg.SrcReg = SrcReg; 3468 Op->RegShiftedReg.ShiftReg = ShiftReg; 3469 Op->RegShiftedReg.ShiftImm = ShiftImm; 3470 Op->StartLoc = S; 3471 Op->EndLoc = E; 3472 return Op; 3473 } 3474 3475 static std::unique_ptr<ARMOperand> 3476 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3477 unsigned ShiftImm, SMLoc S, SMLoc E) { 3478 auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate); 3479 Op->RegShiftedImm.ShiftTy = ShTy; 3480 Op->RegShiftedImm.SrcReg = SrcReg; 3481 Op->RegShiftedImm.ShiftImm = ShiftImm; 3482 Op->StartLoc = S; 3483 Op->EndLoc = E; 3484 return Op; 3485 } 3486 3487 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 3488 SMLoc S, SMLoc E) { 3489 auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate); 3490 Op->ShifterImm.isASR = isASR; 3491 Op->ShifterImm.Imm = Imm; 3492 Op->StartLoc = S; 3493 Op->EndLoc = E; 3494 return Op; 3495 } 3496 3497 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3498 SMLoc E) { 3499 auto Op = std::make_unique<ARMOperand>(k_RotateImmediate); 3500 Op->RotImm.Imm = Imm; 3501 Op->StartLoc = S; 3502 Op->EndLoc = E; 3503 return Op; 3504 } 3505 3506 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3507 SMLoc S, SMLoc E) { 3508 auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate); 3509 Op->ModImm.Bits = Bits; 3510 Op->ModImm.Rot = Rot; 3511 Op->StartLoc = S; 3512 Op->EndLoc = E; 3513 return Op; 3514 } 3515 3516 static std::unique_ptr<ARMOperand> 3517 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3518 auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate); 3519 Op->Imm.Val = Val; 3520 Op->StartLoc = S; 3521 Op->EndLoc = E; 3522 return Op; 3523 } 3524 3525 static std::unique_ptr<ARMOperand> 3526 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3527 auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor); 3528 Op->Bitfield.LSB = LSB; 3529 Op->Bitfield.Width = Width; 3530 Op->StartLoc = S; 3531 Op->EndLoc = E; 3532 return Op; 3533 } 3534 3535 static std::unique_ptr<ARMOperand> 3536 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3537 SMLoc StartLoc, SMLoc EndLoc) { 3538 assert(Regs.size() > 0 && "RegList contains no registers?"); 3539 KindTy Kind = k_RegisterList; 3540 3541 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 3542 Regs.front().second)) { 3543 if (Regs.back().second == ARM::VPR) 3544 Kind = k_FPDRegisterListWithVPR; 3545 else 3546 Kind = k_DPRRegisterList; 3547 } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 3548 Regs.front().second)) { 3549 if (Regs.back().second == ARM::VPR) 3550 Kind = k_FPSRegisterListWithVPR; 3551 else 3552 Kind = k_SPRRegisterList; 3553 } 3554 3555 if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) 3556 Kind = k_RegisterListWithAPSR; 3557 3558 assert(std::is_sorted(Regs.begin(), Regs.end()) && 3559 "Register list must be sorted by encoding"); 3560 3561 auto Op = std::make_unique<ARMOperand>(Kind); 3562 for (const auto &P : Regs) 3563 Op->Registers.push_back(P.second); 3564 3565 Op->StartLoc = StartLoc; 3566 Op->EndLoc = EndLoc; 3567 return Op; 3568 } 3569 3570 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3571 unsigned Count, 3572 bool isDoubleSpaced, 3573 SMLoc S, SMLoc E) { 3574 auto Op = std::make_unique<ARMOperand>(k_VectorList); 3575 Op->VectorList.RegNum = RegNum; 3576 Op->VectorList.Count = Count; 3577 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3578 Op->StartLoc = S; 3579 Op->EndLoc = E; 3580 return Op; 3581 } 3582 3583 static std::unique_ptr<ARMOperand> 3584 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3585 SMLoc S, SMLoc E) { 3586 auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes); 3587 Op->VectorList.RegNum = RegNum; 3588 Op->VectorList.Count = Count; 3589 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3590 Op->StartLoc = S; 3591 Op->EndLoc = E; 3592 return Op; 3593 } 3594 3595 static std::unique_ptr<ARMOperand> 3596 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3597 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3598 auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed); 3599 Op->VectorList.RegNum = RegNum; 3600 Op->VectorList.Count = Count; 3601 Op->VectorList.LaneIndex = Index; 3602 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3603 Op->StartLoc = S; 3604 Op->EndLoc = E; 3605 return Op; 3606 } 3607 3608 static std::unique_ptr<ARMOperand> 3609 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3610 auto Op = std::make_unique<ARMOperand>(k_VectorIndex); 3611 Op->VectorIndex.Val = Idx; 3612 Op->StartLoc = S; 3613 Op->EndLoc = E; 3614 return Op; 3615 } 3616 3617 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3618 SMLoc E) { 3619 auto Op = std::make_unique<ARMOperand>(k_Immediate); 3620 Op->Imm.Val = Val; 3621 Op->StartLoc = S; 3622 Op->EndLoc = E; 3623 return Op; 3624 } 3625 3626 static std::unique_ptr<ARMOperand> 3627 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3628 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3629 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3630 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3631 auto Op = std::make_unique<ARMOperand>(k_Memory); 3632 Op->Memory.BaseRegNum = BaseRegNum; 3633 Op->Memory.OffsetImm = OffsetImm; 3634 Op->Memory.OffsetRegNum = OffsetRegNum; 3635 Op->Memory.ShiftType = ShiftType; 3636 Op->Memory.ShiftImm = ShiftImm; 3637 Op->Memory.Alignment = Alignment; 3638 Op->Memory.isNegative = isNegative; 3639 Op->StartLoc = S; 3640 Op->EndLoc = E; 3641 Op->AlignmentLoc = AlignmentLoc; 3642 return Op; 3643 } 3644 3645 static std::unique_ptr<ARMOperand> 3646 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3647 unsigned ShiftImm, SMLoc S, SMLoc E) { 3648 auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister); 3649 Op->PostIdxReg.RegNum = RegNum; 3650 Op->PostIdxReg.isAdd = isAdd; 3651 Op->PostIdxReg.ShiftTy = ShiftTy; 3652 Op->PostIdxReg.ShiftImm = ShiftImm; 3653 Op->StartLoc = S; 3654 Op->EndLoc = E; 3655 return Op; 3656 } 3657 3658 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3659 SMLoc S) { 3660 auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt); 3661 Op->MBOpt.Val = Opt; 3662 Op->StartLoc = S; 3663 Op->EndLoc = S; 3664 return Op; 3665 } 3666 3667 static std::unique_ptr<ARMOperand> 3668 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3669 auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3670 Op->ISBOpt.Val = Opt; 3671 Op->StartLoc = S; 3672 Op->EndLoc = S; 3673 return Op; 3674 } 3675 3676 static std::unique_ptr<ARMOperand> 3677 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3678 auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3679 Op->TSBOpt.Val = Opt; 3680 Op->StartLoc = S; 3681 Op->EndLoc = S; 3682 return Op; 3683 } 3684 3685 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3686 SMLoc S) { 3687 auto Op = std::make_unique<ARMOperand>(k_ProcIFlags); 3688 Op->IFlags.Val = IFlags; 3689 Op->StartLoc = S; 3690 Op->EndLoc = S; 3691 return Op; 3692 } 3693 3694 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3695 auto Op = std::make_unique<ARMOperand>(k_MSRMask); 3696 Op->MMask.Val = MMask; 3697 Op->StartLoc = S; 3698 Op->EndLoc = S; 3699 return Op; 3700 } 3701 3702 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3703 auto Op = std::make_unique<ARMOperand>(k_BankedReg); 3704 Op->BankedReg.Val = Reg; 3705 Op->StartLoc = S; 3706 Op->EndLoc = S; 3707 return Op; 3708 } 3709 }; 3710 3711 } // end anonymous namespace. 3712 3713 void ARMOperand::print(raw_ostream &OS) const { 3714 auto RegName = [](unsigned Reg) { 3715 if (Reg) 3716 return ARMInstPrinter::getRegisterName(Reg); 3717 else 3718 return "noreg"; 3719 }; 3720 3721 switch (Kind) { 3722 case k_CondCode: 3723 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3724 break; 3725 case k_VPTPred: 3726 OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">"; 3727 break; 3728 case k_CCOut: 3729 OS << "<ccout " << RegName(getReg()) << ">"; 3730 break; 3731 case k_ITCondMask: { 3732 static const char *const MaskStr[] = { 3733 "(invalid)", "(tttt)", "(ttt)", "(ttte)", 3734 "(tt)", "(ttet)", "(tte)", "(ttee)", 3735 "(t)", "(tett)", "(tet)", "(tete)", 3736 "(te)", "(teet)", "(tee)", "(teee)", 3737 }; 3738 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3739 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3740 break; 3741 } 3742 case k_CoprocNum: 3743 OS << "<coprocessor number: " << getCoproc() << ">"; 3744 break; 3745 case k_CoprocReg: 3746 OS << "<coprocessor register: " << getCoproc() << ">"; 3747 break; 3748 case k_CoprocOption: 3749 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3750 break; 3751 case k_MSRMask: 3752 OS << "<mask: " << getMSRMask() << ">"; 3753 break; 3754 case k_BankedReg: 3755 OS << "<banked reg: " << getBankedReg() << ">"; 3756 break; 3757 case k_Immediate: 3758 OS << *getImm(); 3759 break; 3760 case k_MemBarrierOpt: 3761 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3762 break; 3763 case k_InstSyncBarrierOpt: 3764 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3765 break; 3766 case k_TraceSyncBarrierOpt: 3767 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3768 break; 3769 case k_Memory: 3770 OS << "<memory"; 3771 if (Memory.BaseRegNum) 3772 OS << " base:" << RegName(Memory.BaseRegNum); 3773 if (Memory.OffsetImm) 3774 OS << " offset-imm:" << *Memory.OffsetImm; 3775 if (Memory.OffsetRegNum) 3776 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3777 << RegName(Memory.OffsetRegNum); 3778 if (Memory.ShiftType != ARM_AM::no_shift) { 3779 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3780 OS << " shift-imm:" << Memory.ShiftImm; 3781 } 3782 if (Memory.Alignment) 3783 OS << " alignment:" << Memory.Alignment; 3784 OS << ">"; 3785 break; 3786 case k_PostIndexRegister: 3787 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3788 << RegName(PostIdxReg.RegNum); 3789 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3790 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3791 << PostIdxReg.ShiftImm; 3792 OS << ">"; 3793 break; 3794 case k_ProcIFlags: { 3795 OS << "<ARM_PROC::"; 3796 unsigned IFlags = getProcIFlags(); 3797 for (int i=2; i >= 0; --i) 3798 if (IFlags & (1 << i)) 3799 OS << ARM_PROC::IFlagsToString(1 << i); 3800 OS << ">"; 3801 break; 3802 } 3803 case k_Register: 3804 OS << "<register " << RegName(getReg()) << ">"; 3805 break; 3806 case k_ShifterImmediate: 3807 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3808 << " #" << ShifterImm.Imm << ">"; 3809 break; 3810 case k_ShiftedRegister: 3811 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3812 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3813 << RegName(RegShiftedReg.ShiftReg) << ">"; 3814 break; 3815 case k_ShiftedImmediate: 3816 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3817 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3818 << RegShiftedImm.ShiftImm << ">"; 3819 break; 3820 case k_RotateImmediate: 3821 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3822 break; 3823 case k_ModifiedImmediate: 3824 OS << "<mod_imm #" << ModImm.Bits << ", #" 3825 << ModImm.Rot << ")>"; 3826 break; 3827 case k_ConstantPoolImmediate: 3828 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3829 break; 3830 case k_BitfieldDescriptor: 3831 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3832 << ", width: " << Bitfield.Width << ">"; 3833 break; 3834 case k_RegisterList: 3835 case k_RegisterListWithAPSR: 3836 case k_DPRRegisterList: 3837 case k_SPRRegisterList: 3838 case k_FPSRegisterListWithVPR: 3839 case k_FPDRegisterListWithVPR: { 3840 OS << "<register_list "; 3841 3842 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3843 for (SmallVectorImpl<unsigned>::const_iterator 3844 I = RegList.begin(), E = RegList.end(); I != E; ) { 3845 OS << RegName(*I); 3846 if (++I < E) OS << ", "; 3847 } 3848 3849 OS << ">"; 3850 break; 3851 } 3852 case k_VectorList: 3853 OS << "<vector_list " << VectorList.Count << " * " 3854 << RegName(VectorList.RegNum) << ">"; 3855 break; 3856 case k_VectorListAllLanes: 3857 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3858 << RegName(VectorList.RegNum) << ">"; 3859 break; 3860 case k_VectorListIndexed: 3861 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3862 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 3863 break; 3864 case k_Token: 3865 OS << "'" << getToken() << "'"; 3866 break; 3867 case k_VectorIndex: 3868 OS << "<vectorindex " << getVectorIndex() << ">"; 3869 break; 3870 } 3871 } 3872 3873 /// @name Auto-generated Match Functions 3874 /// { 3875 3876 static unsigned MatchRegisterName(StringRef Name); 3877 3878 /// } 3879 3880 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3881 SMLoc &StartLoc, SMLoc &EndLoc) { 3882 const AsmToken &Tok = getParser().getTok(); 3883 StartLoc = Tok.getLoc(); 3884 EndLoc = Tok.getEndLoc(); 3885 RegNo = tryParseRegister(); 3886 3887 return (RegNo == (unsigned)-1); 3888 } 3889 3890 OperandMatchResultTy ARMAsmParser::tryParseRegister(unsigned &RegNo, 3891 SMLoc &StartLoc, 3892 SMLoc &EndLoc) { 3893 if (ParseRegister(RegNo, StartLoc, EndLoc)) 3894 return MatchOperand_NoMatch; 3895 return MatchOperand_Success; 3896 } 3897 3898 /// Try to parse a register name. The token must be an Identifier when called, 3899 /// and if it is a register name the token is eaten and the register number is 3900 /// returned. Otherwise return -1. 3901 int ARMAsmParser::tryParseRegister() { 3902 MCAsmParser &Parser = getParser(); 3903 const AsmToken &Tok = Parser.getTok(); 3904 if (Tok.isNot(AsmToken::Identifier)) return -1; 3905 3906 std::string lowerCase = Tok.getString().lower(); 3907 unsigned RegNum = MatchRegisterName(lowerCase); 3908 if (!RegNum) { 3909 RegNum = StringSwitch<unsigned>(lowerCase) 3910 .Case("r13", ARM::SP) 3911 .Case("r14", ARM::LR) 3912 .Case("r15", ARM::PC) 3913 .Case("ip", ARM::R12) 3914 // Additional register name aliases for 'gas' compatibility. 3915 .Case("a1", ARM::R0) 3916 .Case("a2", ARM::R1) 3917 .Case("a3", ARM::R2) 3918 .Case("a4", ARM::R3) 3919 .Case("v1", ARM::R4) 3920 .Case("v2", ARM::R5) 3921 .Case("v3", ARM::R6) 3922 .Case("v4", ARM::R7) 3923 .Case("v5", ARM::R8) 3924 .Case("v6", ARM::R9) 3925 .Case("v7", ARM::R10) 3926 .Case("v8", ARM::R11) 3927 .Case("sb", ARM::R9) 3928 .Case("sl", ARM::R10) 3929 .Case("fp", ARM::R11) 3930 .Default(0); 3931 } 3932 if (!RegNum) { 3933 // Check for aliases registered via .req. Canonicalize to lower case. 3934 // That's more consistent since register names are case insensitive, and 3935 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3936 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3937 // If no match, return failure. 3938 if (Entry == RegisterReqs.end()) 3939 return -1; 3940 Parser.Lex(); // Eat identifier token. 3941 return Entry->getValue(); 3942 } 3943 3944 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3945 if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3946 return -1; 3947 3948 Parser.Lex(); // Eat identifier token. 3949 3950 return RegNum; 3951 } 3952 3953 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3954 // If a recoverable error occurs, return 1. If an irrecoverable error 3955 // occurs, return -1. An irrecoverable error is one where tokens have been 3956 // consumed in the process of trying to parse the shifter (i.e., when it is 3957 // indeed a shifter operand, but malformed). 3958 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3959 MCAsmParser &Parser = getParser(); 3960 SMLoc S = Parser.getTok().getLoc(); 3961 const AsmToken &Tok = Parser.getTok(); 3962 if (Tok.isNot(AsmToken::Identifier)) 3963 return -1; 3964 3965 std::string lowerCase = Tok.getString().lower(); 3966 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3967 .Case("asl", ARM_AM::lsl) 3968 .Case("lsl", ARM_AM::lsl) 3969 .Case("lsr", ARM_AM::lsr) 3970 .Case("asr", ARM_AM::asr) 3971 .Case("ror", ARM_AM::ror) 3972 .Case("rrx", ARM_AM::rrx) 3973 .Default(ARM_AM::no_shift); 3974 3975 if (ShiftTy == ARM_AM::no_shift) 3976 return 1; 3977 3978 Parser.Lex(); // Eat the operator. 3979 3980 // The source register for the shift has already been added to the 3981 // operand list, so we need to pop it off and combine it into the shifted 3982 // register operand instead. 3983 std::unique_ptr<ARMOperand> PrevOp( 3984 (ARMOperand *)Operands.pop_back_val().release()); 3985 if (!PrevOp->isReg()) 3986 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3987 int SrcReg = PrevOp->getReg(); 3988 3989 SMLoc EndLoc; 3990 int64_t Imm = 0; 3991 int ShiftReg = 0; 3992 if (ShiftTy == ARM_AM::rrx) { 3993 // RRX Doesn't have an explicit shift amount. The encoder expects 3994 // the shift register to be the same as the source register. Seems odd, 3995 // but OK. 3996 ShiftReg = SrcReg; 3997 } else { 3998 // Figure out if this is shifted by a constant or a register (for non-RRX). 3999 if (Parser.getTok().is(AsmToken::Hash) || 4000 Parser.getTok().is(AsmToken::Dollar)) { 4001 Parser.Lex(); // Eat hash. 4002 SMLoc ImmLoc = Parser.getTok().getLoc(); 4003 const MCExpr *ShiftExpr = nullptr; 4004 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 4005 Error(ImmLoc, "invalid immediate shift value"); 4006 return -1; 4007 } 4008 // The expression must be evaluatable as an immediate. 4009 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 4010 if (!CE) { 4011 Error(ImmLoc, "invalid immediate shift value"); 4012 return -1; 4013 } 4014 // Range check the immediate. 4015 // lsl, ror: 0 <= imm <= 31 4016 // lsr, asr: 0 <= imm <= 32 4017 Imm = CE->getValue(); 4018 if (Imm < 0 || 4019 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 4020 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 4021 Error(ImmLoc, "immediate shift value out of range"); 4022 return -1; 4023 } 4024 // shift by zero is a nop. Always send it through as lsl. 4025 // ('as' compatibility) 4026 if (Imm == 0) 4027 ShiftTy = ARM_AM::lsl; 4028 } else if (Parser.getTok().is(AsmToken::Identifier)) { 4029 SMLoc L = Parser.getTok().getLoc(); 4030 EndLoc = Parser.getTok().getEndLoc(); 4031 ShiftReg = tryParseRegister(); 4032 if (ShiftReg == -1) { 4033 Error(L, "expected immediate or register in shift operand"); 4034 return -1; 4035 } 4036 } else { 4037 Error(Parser.getTok().getLoc(), 4038 "expected immediate or register in shift operand"); 4039 return -1; 4040 } 4041 } 4042 4043 if (ShiftReg && ShiftTy != ARM_AM::rrx) 4044 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 4045 ShiftReg, Imm, 4046 S, EndLoc)); 4047 else 4048 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 4049 S, EndLoc)); 4050 4051 return 0; 4052 } 4053 4054 /// Try to parse a register name. The token must be an Identifier when called. 4055 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 4056 /// if there is a "writeback". 'true' if it's not a register. 4057 /// 4058 /// TODO this is likely to change to allow different register types and or to 4059 /// parse for a specific register type. 4060 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 4061 MCAsmParser &Parser = getParser(); 4062 SMLoc RegStartLoc = Parser.getTok().getLoc(); 4063 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 4064 int RegNo = tryParseRegister(); 4065 if (RegNo == -1) 4066 return true; 4067 4068 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 4069 4070 const AsmToken &ExclaimTok = Parser.getTok(); 4071 if (ExclaimTok.is(AsmToken::Exclaim)) { 4072 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 4073 ExclaimTok.getLoc())); 4074 Parser.Lex(); // Eat exclaim token 4075 return false; 4076 } 4077 4078 // Also check for an index operand. This is only legal for vector registers, 4079 // but that'll get caught OK in operand matching, so we don't need to 4080 // explicitly filter everything else out here. 4081 if (Parser.getTok().is(AsmToken::LBrac)) { 4082 SMLoc SIdx = Parser.getTok().getLoc(); 4083 Parser.Lex(); // Eat left bracket token. 4084 4085 const MCExpr *ImmVal; 4086 if (getParser().parseExpression(ImmVal)) 4087 return true; 4088 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 4089 if (!MCE) 4090 return TokError("immediate value expected for vector index"); 4091 4092 if (Parser.getTok().isNot(AsmToken::RBrac)) 4093 return Error(Parser.getTok().getLoc(), "']' expected"); 4094 4095 SMLoc E = Parser.getTok().getEndLoc(); 4096 Parser.Lex(); // Eat right bracket token. 4097 4098 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 4099 SIdx, E, 4100 getContext())); 4101 } 4102 4103 return false; 4104 } 4105 4106 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 4107 /// instruction with a symbolic operand name. 4108 /// We accept "crN" syntax for GAS compatibility. 4109 /// <operand-name> ::= <prefix><number> 4110 /// If CoprocOp is 'c', then: 4111 /// <prefix> ::= c | cr 4112 /// If CoprocOp is 'p', then : 4113 /// <prefix> ::= p 4114 /// <number> ::= integer in range [0, 15] 4115 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 4116 // Use the same layout as the tablegen'erated register name matcher. Ugly, 4117 // but efficient. 4118 if (Name.size() < 2 || Name[0] != CoprocOp) 4119 return -1; 4120 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 4121 4122 switch (Name.size()) { 4123 default: return -1; 4124 case 1: 4125 switch (Name[0]) { 4126 default: return -1; 4127 case '0': return 0; 4128 case '1': return 1; 4129 case '2': return 2; 4130 case '3': return 3; 4131 case '4': return 4; 4132 case '5': return 5; 4133 case '6': return 6; 4134 case '7': return 7; 4135 case '8': return 8; 4136 case '9': return 9; 4137 } 4138 case 2: 4139 if (Name[0] != '1') 4140 return -1; 4141 switch (Name[1]) { 4142 default: return -1; 4143 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 4144 // However, old cores (v5/v6) did use them in that way. 4145 case '0': return 10; 4146 case '1': return 11; 4147 case '2': return 12; 4148 case '3': return 13; 4149 case '4': return 14; 4150 case '5': return 15; 4151 } 4152 } 4153 } 4154 4155 /// parseITCondCode - Try to parse a condition code for an IT instruction. 4156 OperandMatchResultTy 4157 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 4158 MCAsmParser &Parser = getParser(); 4159 SMLoc S = Parser.getTok().getLoc(); 4160 const AsmToken &Tok = Parser.getTok(); 4161 if (!Tok.is(AsmToken::Identifier)) 4162 return MatchOperand_NoMatch; 4163 unsigned CC = ARMCondCodeFromString(Tok.getString()); 4164 if (CC == ~0U) 4165 return MatchOperand_NoMatch; 4166 Parser.Lex(); // Eat the token. 4167 4168 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 4169 4170 return MatchOperand_Success; 4171 } 4172 4173 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 4174 /// token must be an Identifier when called, and if it is a coprocessor 4175 /// number, the token is eaten and the operand is added to the operand list. 4176 OperandMatchResultTy 4177 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 4178 MCAsmParser &Parser = getParser(); 4179 SMLoc S = Parser.getTok().getLoc(); 4180 const AsmToken &Tok = Parser.getTok(); 4181 if (Tok.isNot(AsmToken::Identifier)) 4182 return MatchOperand_NoMatch; 4183 4184 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); 4185 if (Num == -1) 4186 return MatchOperand_NoMatch; 4187 if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits())) 4188 return MatchOperand_NoMatch; 4189 4190 Parser.Lex(); // Eat identifier token. 4191 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 4192 return MatchOperand_Success; 4193 } 4194 4195 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 4196 /// token must be an Identifier when called, and if it is a coprocessor 4197 /// number, the token is eaten and the operand is added to the operand list. 4198 OperandMatchResultTy 4199 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 4200 MCAsmParser &Parser = getParser(); 4201 SMLoc S = Parser.getTok().getLoc(); 4202 const AsmToken &Tok = Parser.getTok(); 4203 if (Tok.isNot(AsmToken::Identifier)) 4204 return MatchOperand_NoMatch; 4205 4206 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); 4207 if (Reg == -1) 4208 return MatchOperand_NoMatch; 4209 4210 Parser.Lex(); // Eat identifier token. 4211 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 4212 return MatchOperand_Success; 4213 } 4214 4215 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 4216 /// coproc_option : '{' imm0_255 '}' 4217 OperandMatchResultTy 4218 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 4219 MCAsmParser &Parser = getParser(); 4220 SMLoc S = Parser.getTok().getLoc(); 4221 4222 // If this isn't a '{', this isn't a coprocessor immediate operand. 4223 if (Parser.getTok().isNot(AsmToken::LCurly)) 4224 return MatchOperand_NoMatch; 4225 Parser.Lex(); // Eat the '{' 4226 4227 const MCExpr *Expr; 4228 SMLoc Loc = Parser.getTok().getLoc(); 4229 if (getParser().parseExpression(Expr)) { 4230 Error(Loc, "illegal expression"); 4231 return MatchOperand_ParseFail; 4232 } 4233 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4234 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 4235 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 4236 return MatchOperand_ParseFail; 4237 } 4238 int Val = CE->getValue(); 4239 4240 // Check for and consume the closing '}' 4241 if (Parser.getTok().isNot(AsmToken::RCurly)) 4242 return MatchOperand_ParseFail; 4243 SMLoc E = Parser.getTok().getEndLoc(); 4244 Parser.Lex(); // Eat the '}' 4245 4246 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 4247 return MatchOperand_Success; 4248 } 4249 4250 // For register list parsing, we need to map from raw GPR register numbering 4251 // to the enumeration values. The enumeration values aren't sorted by 4252 // register number due to our using "sp", "lr" and "pc" as canonical names. 4253 static unsigned getNextRegister(unsigned Reg) { 4254 // If this is a GPR, we need to do it manually, otherwise we can rely 4255 // on the sort ordering of the enumeration since the other reg-classes 4256 // are sane. 4257 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4258 return Reg + 1; 4259 switch(Reg) { 4260 default: llvm_unreachable("Invalid GPR number!"); 4261 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 4262 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 4263 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 4264 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 4265 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 4266 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 4267 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 4268 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 4269 } 4270 } 4271 4272 // Insert an <Encoding, Register> pair in an ordered vector. Return true on 4273 // success, or false, if duplicate encoding found. 4274 static bool 4275 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 4276 unsigned Enc, unsigned Reg) { 4277 Regs.emplace_back(Enc, Reg); 4278 for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) { 4279 if (J->first == Enc) { 4280 Regs.erase(J.base()); 4281 return false; 4282 } 4283 if (J->first < Enc) 4284 break; 4285 std::swap(*I, *J); 4286 } 4287 return true; 4288 } 4289 4290 /// Parse a register list. 4291 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, 4292 bool EnforceOrder) { 4293 MCAsmParser &Parser = getParser(); 4294 if (Parser.getTok().isNot(AsmToken::LCurly)) 4295 return TokError("Token is not a Left Curly Brace"); 4296 SMLoc S = Parser.getTok().getLoc(); 4297 Parser.Lex(); // Eat '{' token. 4298 SMLoc RegLoc = Parser.getTok().getLoc(); 4299 4300 // Check the first register in the list to see what register class 4301 // this is a list of. 4302 int Reg = tryParseRegister(); 4303 if (Reg == -1) 4304 return Error(RegLoc, "register expected"); 4305 4306 // The reglist instructions have at most 16 registers, so reserve 4307 // space for that many. 4308 int EReg = 0; 4309 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 4310 4311 // Allow Q regs and just interpret them as the two D sub-registers. 4312 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4313 Reg = getDRegFromQReg(Reg); 4314 EReg = MRI->getEncodingValue(Reg); 4315 Registers.emplace_back(EReg, Reg); 4316 ++Reg; 4317 } 4318 const MCRegisterClass *RC; 4319 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4320 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 4321 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 4322 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 4323 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 4324 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 4325 else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4326 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4327 else 4328 return Error(RegLoc, "invalid register in register list"); 4329 4330 // Store the register. 4331 EReg = MRI->getEncodingValue(Reg); 4332 Registers.emplace_back(EReg, Reg); 4333 4334 // This starts immediately after the first register token in the list, 4335 // so we can see either a comma or a minus (range separator) as a legal 4336 // next token. 4337 while (Parser.getTok().is(AsmToken::Comma) || 4338 Parser.getTok().is(AsmToken::Minus)) { 4339 if (Parser.getTok().is(AsmToken::Minus)) { 4340 Parser.Lex(); // Eat the minus. 4341 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4342 int EndReg = tryParseRegister(); 4343 if (EndReg == -1) 4344 return Error(AfterMinusLoc, "register expected"); 4345 // Allow Q regs and just interpret them as the two D sub-registers. 4346 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4347 EndReg = getDRegFromQReg(EndReg) + 1; 4348 // If the register is the same as the start reg, there's nothing 4349 // more to do. 4350 if (Reg == EndReg) 4351 continue; 4352 // The register must be in the same register class as the first. 4353 if (!RC->contains(EndReg)) 4354 return Error(AfterMinusLoc, "invalid register in register list"); 4355 // Ranges must go from low to high. 4356 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 4357 return Error(AfterMinusLoc, "bad range in register list"); 4358 4359 // Add all the registers in the range to the register list. 4360 while (Reg != EndReg) { 4361 Reg = getNextRegister(Reg); 4362 EReg = MRI->getEncodingValue(Reg); 4363 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4364 Warning(AfterMinusLoc, StringRef("duplicated register (") + 4365 ARMInstPrinter::getRegisterName(Reg) + 4366 ") in register list"); 4367 } 4368 } 4369 continue; 4370 } 4371 Parser.Lex(); // Eat the comma. 4372 RegLoc = Parser.getTok().getLoc(); 4373 int OldReg = Reg; 4374 const AsmToken RegTok = Parser.getTok(); 4375 Reg = tryParseRegister(); 4376 if (Reg == -1) 4377 return Error(RegLoc, "register expected"); 4378 // Allow Q regs and just interpret them as the two D sub-registers. 4379 bool isQReg = false; 4380 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4381 Reg = getDRegFromQReg(Reg); 4382 isQReg = true; 4383 } 4384 if (!RC->contains(Reg) && 4385 RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && 4386 ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { 4387 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial 4388 // subset of GPRRegClassId except it contains APSR as well. 4389 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4390 } 4391 if (Reg == ARM::VPR && 4392 (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || 4393 RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] || 4394 RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) { 4395 RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; 4396 EReg = MRI->getEncodingValue(Reg); 4397 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4398 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4399 ") in register list"); 4400 } 4401 continue; 4402 } 4403 // The register must be in the same register class as the first. 4404 if (!RC->contains(Reg)) 4405 return Error(RegLoc, "invalid register in register list"); 4406 // In most cases, the list must be monotonically increasing. An 4407 // exception is CLRM, which is order-independent anyway, so 4408 // there's no potential for confusion if you write clrm {r2,r1} 4409 // instead of clrm {r1,r2}. 4410 if (EnforceOrder && 4411 MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 4412 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4413 Warning(RegLoc, "register list not in ascending order"); 4414 else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4415 return Error(RegLoc, "register list not in ascending order"); 4416 } 4417 // VFP register lists must also be contiguous. 4418 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 4419 RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && 4420 Reg != OldReg + 1) 4421 return Error(RegLoc, "non-contiguous register range"); 4422 EReg = MRI->getEncodingValue(Reg); 4423 if (!insertNoDuplicates(Registers, EReg, Reg)) { 4424 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4425 ") in register list"); 4426 } 4427 if (isQReg) { 4428 EReg = MRI->getEncodingValue(++Reg); 4429 Registers.emplace_back(EReg, Reg); 4430 } 4431 } 4432 4433 if (Parser.getTok().isNot(AsmToken::RCurly)) 4434 return Error(Parser.getTok().getLoc(), "'}' expected"); 4435 SMLoc E = Parser.getTok().getEndLoc(); 4436 Parser.Lex(); // Eat '}' token. 4437 4438 // Push the register list operand. 4439 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 4440 4441 // The ARM system instruction variants for LDM/STM have a '^' token here. 4442 if (Parser.getTok().is(AsmToken::Caret)) { 4443 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 4444 Parser.Lex(); // Eat '^' token. 4445 } 4446 4447 return false; 4448 } 4449 4450 // Helper function to parse the lane index for vector lists. 4451 OperandMatchResultTy ARMAsmParser:: 4452 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 4453 MCAsmParser &Parser = getParser(); 4454 Index = 0; // Always return a defined index value. 4455 if (Parser.getTok().is(AsmToken::LBrac)) { 4456 Parser.Lex(); // Eat the '['. 4457 if (Parser.getTok().is(AsmToken::RBrac)) { 4458 // "Dn[]" is the 'all lanes' syntax. 4459 LaneKind = AllLanes; 4460 EndLoc = Parser.getTok().getEndLoc(); 4461 Parser.Lex(); // Eat the ']'. 4462 return MatchOperand_Success; 4463 } 4464 4465 // There's an optional '#' token here. Normally there wouldn't be, but 4466 // inline assemble puts one in, and it's friendly to accept that. 4467 if (Parser.getTok().is(AsmToken::Hash)) 4468 Parser.Lex(); // Eat '#' or '$'. 4469 4470 const MCExpr *LaneIndex; 4471 SMLoc Loc = Parser.getTok().getLoc(); 4472 if (getParser().parseExpression(LaneIndex)) { 4473 Error(Loc, "illegal expression"); 4474 return MatchOperand_ParseFail; 4475 } 4476 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 4477 if (!CE) { 4478 Error(Loc, "lane index must be empty or an integer"); 4479 return MatchOperand_ParseFail; 4480 } 4481 if (Parser.getTok().isNot(AsmToken::RBrac)) { 4482 Error(Parser.getTok().getLoc(), "']' expected"); 4483 return MatchOperand_ParseFail; 4484 } 4485 EndLoc = Parser.getTok().getEndLoc(); 4486 Parser.Lex(); // Eat the ']'. 4487 int64_t Val = CE->getValue(); 4488 4489 // FIXME: Make this range check context sensitive for .8, .16, .32. 4490 if (Val < 0 || Val > 7) { 4491 Error(Parser.getTok().getLoc(), "lane index out of range"); 4492 return MatchOperand_ParseFail; 4493 } 4494 Index = Val; 4495 LaneKind = IndexedLane; 4496 return MatchOperand_Success; 4497 } 4498 LaneKind = NoLanes; 4499 return MatchOperand_Success; 4500 } 4501 4502 // parse a vector register list 4503 OperandMatchResultTy 4504 ARMAsmParser::parseVectorList(OperandVector &Operands) { 4505 MCAsmParser &Parser = getParser(); 4506 VectorLaneTy LaneKind; 4507 unsigned LaneIndex; 4508 SMLoc S = Parser.getTok().getLoc(); 4509 // As an extension (to match gas), support a plain D register or Q register 4510 // (without encosing curly braces) as a single or double entry list, 4511 // respectively. 4512 if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) { 4513 SMLoc E = Parser.getTok().getEndLoc(); 4514 int Reg = tryParseRegister(); 4515 if (Reg == -1) 4516 return MatchOperand_NoMatch; 4517 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 4518 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4519 if (Res != MatchOperand_Success) 4520 return Res; 4521 switch (LaneKind) { 4522 case NoLanes: 4523 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 4524 break; 4525 case AllLanes: 4526 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 4527 S, E)); 4528 break; 4529 case IndexedLane: 4530 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 4531 LaneIndex, 4532 false, S, E)); 4533 break; 4534 } 4535 return MatchOperand_Success; 4536 } 4537 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4538 Reg = getDRegFromQReg(Reg); 4539 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4540 if (Res != MatchOperand_Success) 4541 return Res; 4542 switch (LaneKind) { 4543 case NoLanes: 4544 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4545 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4546 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 4547 break; 4548 case AllLanes: 4549 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4550 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4551 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 4552 S, E)); 4553 break; 4554 case IndexedLane: 4555 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 4556 LaneIndex, 4557 false, S, E)); 4558 break; 4559 } 4560 return MatchOperand_Success; 4561 } 4562 Error(S, "vector register expected"); 4563 return MatchOperand_ParseFail; 4564 } 4565 4566 if (Parser.getTok().isNot(AsmToken::LCurly)) 4567 return MatchOperand_NoMatch; 4568 4569 Parser.Lex(); // Eat '{' token. 4570 SMLoc RegLoc = Parser.getTok().getLoc(); 4571 4572 int Reg = tryParseRegister(); 4573 if (Reg == -1) { 4574 Error(RegLoc, "register expected"); 4575 return MatchOperand_ParseFail; 4576 } 4577 unsigned Count = 1; 4578 int Spacing = 0; 4579 unsigned FirstReg = Reg; 4580 4581 if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4582 Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected"); 4583 return MatchOperand_ParseFail; 4584 } 4585 // The list is of D registers, but we also allow Q regs and just interpret 4586 // them as the two D sub-registers. 4587 else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4588 FirstReg = Reg = getDRegFromQReg(Reg); 4589 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4590 // it's ambiguous with four-register single spaced. 4591 ++Reg; 4592 ++Count; 4593 } 4594 4595 SMLoc E; 4596 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4597 return MatchOperand_ParseFail; 4598 4599 while (Parser.getTok().is(AsmToken::Comma) || 4600 Parser.getTok().is(AsmToken::Minus)) { 4601 if (Parser.getTok().is(AsmToken::Minus)) { 4602 if (!Spacing) 4603 Spacing = 1; // Register range implies a single spaced list. 4604 else if (Spacing == 2) { 4605 Error(Parser.getTok().getLoc(), 4606 "sequential registers in double spaced list"); 4607 return MatchOperand_ParseFail; 4608 } 4609 Parser.Lex(); // Eat the minus. 4610 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4611 int EndReg = tryParseRegister(); 4612 if (EndReg == -1) { 4613 Error(AfterMinusLoc, "register expected"); 4614 return MatchOperand_ParseFail; 4615 } 4616 // Allow Q regs and just interpret them as the two D sub-registers. 4617 if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4618 EndReg = getDRegFromQReg(EndReg) + 1; 4619 // If the register is the same as the start reg, there's nothing 4620 // more to do. 4621 if (Reg == EndReg) 4622 continue; 4623 // The register must be in the same register class as the first. 4624 if ((hasMVE() && 4625 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) || 4626 (!hasMVE() && 4627 !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) { 4628 Error(AfterMinusLoc, "invalid register in register list"); 4629 return MatchOperand_ParseFail; 4630 } 4631 // Ranges must go from low to high. 4632 if (Reg > EndReg) { 4633 Error(AfterMinusLoc, "bad range in register list"); 4634 return MatchOperand_ParseFail; 4635 } 4636 // Parse the lane specifier if present. 4637 VectorLaneTy NextLaneKind; 4638 unsigned NextLaneIndex; 4639 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4640 MatchOperand_Success) 4641 return MatchOperand_ParseFail; 4642 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4643 Error(AfterMinusLoc, "mismatched lane index in register list"); 4644 return MatchOperand_ParseFail; 4645 } 4646 4647 // Add all the registers in the range to the register list. 4648 Count += EndReg - Reg; 4649 Reg = EndReg; 4650 continue; 4651 } 4652 Parser.Lex(); // Eat the comma. 4653 RegLoc = Parser.getTok().getLoc(); 4654 int OldReg = Reg; 4655 Reg = tryParseRegister(); 4656 if (Reg == -1) { 4657 Error(RegLoc, "register expected"); 4658 return MatchOperand_ParseFail; 4659 } 4660 4661 if (hasMVE()) { 4662 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4663 Error(RegLoc, "vector register in range Q0-Q7 expected"); 4664 return MatchOperand_ParseFail; 4665 } 4666 Spacing = 1; 4667 } 4668 // vector register lists must be contiguous. 4669 // It's OK to use the enumeration values directly here rather, as the 4670 // VFP register classes have the enum sorted properly. 4671 // 4672 // The list is of D registers, but we also allow Q regs and just interpret 4673 // them as the two D sub-registers. 4674 else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4675 if (!Spacing) 4676 Spacing = 1; // Register range implies a single spaced list. 4677 else if (Spacing == 2) { 4678 Error(RegLoc, 4679 "invalid register in double-spaced list (must be 'D' register')"); 4680 return MatchOperand_ParseFail; 4681 } 4682 Reg = getDRegFromQReg(Reg); 4683 if (Reg != OldReg + 1) { 4684 Error(RegLoc, "non-contiguous register range"); 4685 return MatchOperand_ParseFail; 4686 } 4687 ++Reg; 4688 Count += 2; 4689 // Parse the lane specifier if present. 4690 VectorLaneTy NextLaneKind; 4691 unsigned NextLaneIndex; 4692 SMLoc LaneLoc = Parser.getTok().getLoc(); 4693 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4694 MatchOperand_Success) 4695 return MatchOperand_ParseFail; 4696 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4697 Error(LaneLoc, "mismatched lane index in register list"); 4698 return MatchOperand_ParseFail; 4699 } 4700 continue; 4701 } 4702 // Normal D register. 4703 // Figure out the register spacing (single or double) of the list if 4704 // we don't know it already. 4705 if (!Spacing) 4706 Spacing = 1 + (Reg == OldReg + 2); 4707 4708 // Just check that it's contiguous and keep going. 4709 if (Reg != OldReg + Spacing) { 4710 Error(RegLoc, "non-contiguous register range"); 4711 return MatchOperand_ParseFail; 4712 } 4713 ++Count; 4714 // Parse the lane specifier if present. 4715 VectorLaneTy NextLaneKind; 4716 unsigned NextLaneIndex; 4717 SMLoc EndLoc = Parser.getTok().getLoc(); 4718 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4719 return MatchOperand_ParseFail; 4720 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4721 Error(EndLoc, "mismatched lane index in register list"); 4722 return MatchOperand_ParseFail; 4723 } 4724 } 4725 4726 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4727 Error(Parser.getTok().getLoc(), "'}' expected"); 4728 return MatchOperand_ParseFail; 4729 } 4730 E = Parser.getTok().getEndLoc(); 4731 Parser.Lex(); // Eat '}' token. 4732 4733 switch (LaneKind) { 4734 case NoLanes: 4735 case AllLanes: { 4736 // Two-register operands have been converted to the 4737 // composite register classes. 4738 if (Count == 2 && !hasMVE()) { 4739 const MCRegisterClass *RC = (Spacing == 1) ? 4740 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4741 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4742 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4743 } 4744 auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : 4745 ARMOperand::CreateVectorListAllLanes); 4746 Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E)); 4747 break; 4748 } 4749 case IndexedLane: 4750 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4751 LaneIndex, 4752 (Spacing == 2), 4753 S, E)); 4754 break; 4755 } 4756 return MatchOperand_Success; 4757 } 4758 4759 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4760 OperandMatchResultTy 4761 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4762 MCAsmParser &Parser = getParser(); 4763 SMLoc S = Parser.getTok().getLoc(); 4764 const AsmToken &Tok = Parser.getTok(); 4765 unsigned Opt; 4766 4767 if (Tok.is(AsmToken::Identifier)) { 4768 StringRef OptStr = Tok.getString(); 4769 4770 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4771 .Case("sy", ARM_MB::SY) 4772 .Case("st", ARM_MB::ST) 4773 .Case("ld", ARM_MB::LD) 4774 .Case("sh", ARM_MB::ISH) 4775 .Case("ish", ARM_MB::ISH) 4776 .Case("shst", ARM_MB::ISHST) 4777 .Case("ishst", ARM_MB::ISHST) 4778 .Case("ishld", ARM_MB::ISHLD) 4779 .Case("nsh", ARM_MB::NSH) 4780 .Case("un", ARM_MB::NSH) 4781 .Case("nshst", ARM_MB::NSHST) 4782 .Case("nshld", ARM_MB::NSHLD) 4783 .Case("unst", ARM_MB::NSHST) 4784 .Case("osh", ARM_MB::OSH) 4785 .Case("oshst", ARM_MB::OSHST) 4786 .Case("oshld", ARM_MB::OSHLD) 4787 .Default(~0U); 4788 4789 // ishld, oshld, nshld and ld are only available from ARMv8. 4790 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4791 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4792 Opt = ~0U; 4793 4794 if (Opt == ~0U) 4795 return MatchOperand_NoMatch; 4796 4797 Parser.Lex(); // Eat identifier token. 4798 } else if (Tok.is(AsmToken::Hash) || 4799 Tok.is(AsmToken::Dollar) || 4800 Tok.is(AsmToken::Integer)) { 4801 if (Parser.getTok().isNot(AsmToken::Integer)) 4802 Parser.Lex(); // Eat '#' or '$'. 4803 SMLoc Loc = Parser.getTok().getLoc(); 4804 4805 const MCExpr *MemBarrierID; 4806 if (getParser().parseExpression(MemBarrierID)) { 4807 Error(Loc, "illegal expression"); 4808 return MatchOperand_ParseFail; 4809 } 4810 4811 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4812 if (!CE) { 4813 Error(Loc, "constant expression expected"); 4814 return MatchOperand_ParseFail; 4815 } 4816 4817 int Val = CE->getValue(); 4818 if (Val & ~0xf) { 4819 Error(Loc, "immediate value out of range"); 4820 return MatchOperand_ParseFail; 4821 } 4822 4823 Opt = ARM_MB::RESERVED_0 + Val; 4824 } else 4825 return MatchOperand_ParseFail; 4826 4827 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4828 return MatchOperand_Success; 4829 } 4830 4831 OperandMatchResultTy 4832 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 4833 MCAsmParser &Parser = getParser(); 4834 SMLoc S = Parser.getTok().getLoc(); 4835 const AsmToken &Tok = Parser.getTok(); 4836 4837 if (Tok.isNot(AsmToken::Identifier)) 4838 return MatchOperand_NoMatch; 4839 4840 if (!Tok.getString().equals_lower("csync")) 4841 return MatchOperand_NoMatch; 4842 4843 Parser.Lex(); // Eat identifier token. 4844 4845 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 4846 return MatchOperand_Success; 4847 } 4848 4849 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4850 OperandMatchResultTy 4851 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4852 MCAsmParser &Parser = getParser(); 4853 SMLoc S = Parser.getTok().getLoc(); 4854 const AsmToken &Tok = Parser.getTok(); 4855 unsigned Opt; 4856 4857 if (Tok.is(AsmToken::Identifier)) { 4858 StringRef OptStr = Tok.getString(); 4859 4860 if (OptStr.equals_lower("sy")) 4861 Opt = ARM_ISB::SY; 4862 else 4863 return MatchOperand_NoMatch; 4864 4865 Parser.Lex(); // Eat identifier token. 4866 } else if (Tok.is(AsmToken::Hash) || 4867 Tok.is(AsmToken::Dollar) || 4868 Tok.is(AsmToken::Integer)) { 4869 if (Parser.getTok().isNot(AsmToken::Integer)) 4870 Parser.Lex(); // Eat '#' or '$'. 4871 SMLoc Loc = Parser.getTok().getLoc(); 4872 4873 const MCExpr *ISBarrierID; 4874 if (getParser().parseExpression(ISBarrierID)) { 4875 Error(Loc, "illegal expression"); 4876 return MatchOperand_ParseFail; 4877 } 4878 4879 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4880 if (!CE) { 4881 Error(Loc, "constant expression expected"); 4882 return MatchOperand_ParseFail; 4883 } 4884 4885 int Val = CE->getValue(); 4886 if (Val & ~0xf) { 4887 Error(Loc, "immediate value out of range"); 4888 return MatchOperand_ParseFail; 4889 } 4890 4891 Opt = ARM_ISB::RESERVED_0 + Val; 4892 } else 4893 return MatchOperand_ParseFail; 4894 4895 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4896 (ARM_ISB::InstSyncBOpt)Opt, S)); 4897 return MatchOperand_Success; 4898 } 4899 4900 4901 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4902 OperandMatchResultTy 4903 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4904 MCAsmParser &Parser = getParser(); 4905 SMLoc S = Parser.getTok().getLoc(); 4906 const AsmToken &Tok = Parser.getTok(); 4907 if (!Tok.is(AsmToken::Identifier)) 4908 return MatchOperand_NoMatch; 4909 StringRef IFlagsStr = Tok.getString(); 4910 4911 // An iflags string of "none" is interpreted to mean that none of the AIF 4912 // bits are set. Not a terribly useful instruction, but a valid encoding. 4913 unsigned IFlags = 0; 4914 if (IFlagsStr != "none") { 4915 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4916 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4917 .Case("a", ARM_PROC::A) 4918 .Case("i", ARM_PROC::I) 4919 .Case("f", ARM_PROC::F) 4920 .Default(~0U); 4921 4922 // If some specific iflag is already set, it means that some letter is 4923 // present more than once, this is not acceptable. 4924 if (Flag == ~0U || (IFlags & Flag)) 4925 return MatchOperand_NoMatch; 4926 4927 IFlags |= Flag; 4928 } 4929 } 4930 4931 Parser.Lex(); // Eat identifier token. 4932 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4933 return MatchOperand_Success; 4934 } 4935 4936 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4937 OperandMatchResultTy 4938 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4939 MCAsmParser &Parser = getParser(); 4940 SMLoc S = Parser.getTok().getLoc(); 4941 const AsmToken &Tok = Parser.getTok(); 4942 4943 if (Tok.is(AsmToken::Integer)) { 4944 int64_t Val = Tok.getIntVal(); 4945 if (Val > 255 || Val < 0) { 4946 return MatchOperand_NoMatch; 4947 } 4948 unsigned SYSmvalue = Val & 0xFF; 4949 Parser.Lex(); 4950 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4951 return MatchOperand_Success; 4952 } 4953 4954 if (!Tok.is(AsmToken::Identifier)) 4955 return MatchOperand_NoMatch; 4956 StringRef Mask = Tok.getString(); 4957 4958 if (isMClass()) { 4959 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4960 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4961 return MatchOperand_NoMatch; 4962 4963 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4964 4965 Parser.Lex(); // Eat identifier token. 4966 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4967 return MatchOperand_Success; 4968 } 4969 4970 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4971 size_t Start = 0, Next = Mask.find('_'); 4972 StringRef Flags = ""; 4973 std::string SpecReg = Mask.slice(Start, Next).lower(); 4974 if (Next != StringRef::npos) 4975 Flags = Mask.slice(Next+1, Mask.size()); 4976 4977 // FlagsVal contains the complete mask: 4978 // 3-0: Mask 4979 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4980 unsigned FlagsVal = 0; 4981 4982 if (SpecReg == "apsr") { 4983 FlagsVal = StringSwitch<unsigned>(Flags) 4984 .Case("nzcvq", 0x8) // same as CPSR_f 4985 .Case("g", 0x4) // same as CPSR_s 4986 .Case("nzcvqg", 0xc) // same as CPSR_fs 4987 .Default(~0U); 4988 4989 if (FlagsVal == ~0U) { 4990 if (!Flags.empty()) 4991 return MatchOperand_NoMatch; 4992 else 4993 FlagsVal = 8; // No flag 4994 } 4995 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4996 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4997 if (Flags == "all" || Flags == "") 4998 Flags = "fc"; 4999 for (int i = 0, e = Flags.size(); i != e; ++i) { 5000 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 5001 .Case("c", 1) 5002 .Case("x", 2) 5003 .Case("s", 4) 5004 .Case("f", 8) 5005 .Default(~0U); 5006 5007 // If some specific flag is already set, it means that some letter is 5008 // present more than once, this is not acceptable. 5009 if (Flag == ~0U || (FlagsVal & Flag)) 5010 return MatchOperand_NoMatch; 5011 FlagsVal |= Flag; 5012 } 5013 } else // No match for special register. 5014 return MatchOperand_NoMatch; 5015 5016 // Special register without flags is NOT equivalent to "fc" flags. 5017 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 5018 // two lines would enable gas compatibility at the expense of breaking 5019 // round-tripping. 5020 // 5021 // if (!FlagsVal) 5022 // FlagsVal = 0x9; 5023 5024 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5025 if (SpecReg == "spsr") 5026 FlagsVal |= 16; 5027 5028 Parser.Lex(); // Eat identifier token. 5029 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 5030 return MatchOperand_Success; 5031 } 5032 5033 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 5034 /// use in the MRS/MSR instructions added to support virtualization. 5035 OperandMatchResultTy 5036 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 5037 MCAsmParser &Parser = getParser(); 5038 SMLoc S = Parser.getTok().getLoc(); 5039 const AsmToken &Tok = Parser.getTok(); 5040 if (!Tok.is(AsmToken::Identifier)) 5041 return MatchOperand_NoMatch; 5042 StringRef RegName = Tok.getString(); 5043 5044 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 5045 if (!TheReg) 5046 return MatchOperand_NoMatch; 5047 unsigned Encoding = TheReg->Encoding; 5048 5049 Parser.Lex(); // Eat identifier token. 5050 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 5051 return MatchOperand_Success; 5052 } 5053 5054 OperandMatchResultTy 5055 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 5056 int High) { 5057 MCAsmParser &Parser = getParser(); 5058 const AsmToken &Tok = Parser.getTok(); 5059 if (Tok.isNot(AsmToken::Identifier)) { 5060 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5061 return MatchOperand_ParseFail; 5062 } 5063 StringRef ShiftName = Tok.getString(); 5064 std::string LowerOp = Op.lower(); 5065 std::string UpperOp = Op.upper(); 5066 if (ShiftName != LowerOp && ShiftName != UpperOp) { 5067 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5068 return MatchOperand_ParseFail; 5069 } 5070 Parser.Lex(); // Eat shift type token. 5071 5072 // There must be a '#' and a shift amount. 5073 if (Parser.getTok().isNot(AsmToken::Hash) && 5074 Parser.getTok().isNot(AsmToken::Dollar)) { 5075 Error(Parser.getTok().getLoc(), "'#' expected"); 5076 return MatchOperand_ParseFail; 5077 } 5078 Parser.Lex(); // Eat hash token. 5079 5080 const MCExpr *ShiftAmount; 5081 SMLoc Loc = Parser.getTok().getLoc(); 5082 SMLoc EndLoc; 5083 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5084 Error(Loc, "illegal expression"); 5085 return MatchOperand_ParseFail; 5086 } 5087 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5088 if (!CE) { 5089 Error(Loc, "constant expression expected"); 5090 return MatchOperand_ParseFail; 5091 } 5092 int Val = CE->getValue(); 5093 if (Val < Low || Val > High) { 5094 Error(Loc, "immediate value out of range"); 5095 return MatchOperand_ParseFail; 5096 } 5097 5098 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 5099 5100 return MatchOperand_Success; 5101 } 5102 5103 OperandMatchResultTy 5104 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 5105 MCAsmParser &Parser = getParser(); 5106 const AsmToken &Tok = Parser.getTok(); 5107 SMLoc S = Tok.getLoc(); 5108 if (Tok.isNot(AsmToken::Identifier)) { 5109 Error(S, "'be' or 'le' operand expected"); 5110 return MatchOperand_ParseFail; 5111 } 5112 int Val = StringSwitch<int>(Tok.getString().lower()) 5113 .Case("be", 1) 5114 .Case("le", 0) 5115 .Default(-1); 5116 Parser.Lex(); // Eat the token. 5117 5118 if (Val == -1) { 5119 Error(S, "'be' or 'le' operand expected"); 5120 return MatchOperand_ParseFail; 5121 } 5122 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 5123 getContext()), 5124 S, Tok.getEndLoc())); 5125 return MatchOperand_Success; 5126 } 5127 5128 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 5129 /// instructions. Legal values are: 5130 /// lsl #n 'n' in [0,31] 5131 /// asr #n 'n' in [1,32] 5132 /// n == 32 encoded as n == 0. 5133 OperandMatchResultTy 5134 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 5135 MCAsmParser &Parser = getParser(); 5136 const AsmToken &Tok = Parser.getTok(); 5137 SMLoc S = Tok.getLoc(); 5138 if (Tok.isNot(AsmToken::Identifier)) { 5139 Error(S, "shift operator 'asr' or 'lsl' expected"); 5140 return MatchOperand_ParseFail; 5141 } 5142 StringRef ShiftName = Tok.getString(); 5143 bool isASR; 5144 if (ShiftName == "lsl" || ShiftName == "LSL") 5145 isASR = false; 5146 else if (ShiftName == "asr" || ShiftName == "ASR") 5147 isASR = true; 5148 else { 5149 Error(S, "shift operator 'asr' or 'lsl' expected"); 5150 return MatchOperand_ParseFail; 5151 } 5152 Parser.Lex(); // Eat the operator. 5153 5154 // A '#' and a shift amount. 5155 if (Parser.getTok().isNot(AsmToken::Hash) && 5156 Parser.getTok().isNot(AsmToken::Dollar)) { 5157 Error(Parser.getTok().getLoc(), "'#' expected"); 5158 return MatchOperand_ParseFail; 5159 } 5160 Parser.Lex(); // Eat hash token. 5161 SMLoc ExLoc = Parser.getTok().getLoc(); 5162 5163 const MCExpr *ShiftAmount; 5164 SMLoc EndLoc; 5165 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5166 Error(ExLoc, "malformed shift expression"); 5167 return MatchOperand_ParseFail; 5168 } 5169 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5170 if (!CE) { 5171 Error(ExLoc, "shift amount must be an immediate"); 5172 return MatchOperand_ParseFail; 5173 } 5174 5175 int64_t Val = CE->getValue(); 5176 if (isASR) { 5177 // Shift amount must be in [1,32] 5178 if (Val < 1 || Val > 32) { 5179 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 5180 return MatchOperand_ParseFail; 5181 } 5182 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 5183 if (isThumb() && Val == 32) { 5184 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 5185 return MatchOperand_ParseFail; 5186 } 5187 if (Val == 32) Val = 0; 5188 } else { 5189 // Shift amount must be in [1,32] 5190 if (Val < 0 || Val > 31) { 5191 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 5192 return MatchOperand_ParseFail; 5193 } 5194 } 5195 5196 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 5197 5198 return MatchOperand_Success; 5199 } 5200 5201 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 5202 /// of instructions. Legal values are: 5203 /// ror #n 'n' in {0, 8, 16, 24} 5204 OperandMatchResultTy 5205 ARMAsmParser::parseRotImm(OperandVector &Operands) { 5206 MCAsmParser &Parser = getParser(); 5207 const AsmToken &Tok = Parser.getTok(); 5208 SMLoc S = Tok.getLoc(); 5209 if (Tok.isNot(AsmToken::Identifier)) 5210 return MatchOperand_NoMatch; 5211 StringRef ShiftName = Tok.getString(); 5212 if (ShiftName != "ror" && ShiftName != "ROR") 5213 return MatchOperand_NoMatch; 5214 Parser.Lex(); // Eat the operator. 5215 5216 // A '#' and a rotate amount. 5217 if (Parser.getTok().isNot(AsmToken::Hash) && 5218 Parser.getTok().isNot(AsmToken::Dollar)) { 5219 Error(Parser.getTok().getLoc(), "'#' expected"); 5220 return MatchOperand_ParseFail; 5221 } 5222 Parser.Lex(); // Eat hash token. 5223 SMLoc ExLoc = Parser.getTok().getLoc(); 5224 5225 const MCExpr *ShiftAmount; 5226 SMLoc EndLoc; 5227 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5228 Error(ExLoc, "malformed rotate expression"); 5229 return MatchOperand_ParseFail; 5230 } 5231 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5232 if (!CE) { 5233 Error(ExLoc, "rotate amount must be an immediate"); 5234 return MatchOperand_ParseFail; 5235 } 5236 5237 int64_t Val = CE->getValue(); 5238 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 5239 // normally, zero is represented in asm by omitting the rotate operand 5240 // entirely. 5241 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 5242 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 5243 return MatchOperand_ParseFail; 5244 } 5245 5246 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 5247 5248 return MatchOperand_Success; 5249 } 5250 5251 OperandMatchResultTy 5252 ARMAsmParser::parseModImm(OperandVector &Operands) { 5253 MCAsmParser &Parser = getParser(); 5254 MCAsmLexer &Lexer = getLexer(); 5255 int64_t Imm1, Imm2; 5256 5257 SMLoc S = Parser.getTok().getLoc(); 5258 5259 // 1) A mod_imm operand can appear in the place of a register name: 5260 // add r0, #mod_imm 5261 // add r0, r0, #mod_imm 5262 // to correctly handle the latter, we bail out as soon as we see an 5263 // identifier. 5264 // 5265 // 2) Similarly, we do not want to parse into complex operands: 5266 // mov r0, #mod_imm 5267 // mov r0, :lower16:(_foo) 5268 if (Parser.getTok().is(AsmToken::Identifier) || 5269 Parser.getTok().is(AsmToken::Colon)) 5270 return MatchOperand_NoMatch; 5271 5272 // Hash (dollar) is optional as per the ARMARM 5273 if (Parser.getTok().is(AsmToken::Hash) || 5274 Parser.getTok().is(AsmToken::Dollar)) { 5275 // Avoid parsing into complex operands (#:) 5276 if (Lexer.peekTok().is(AsmToken::Colon)) 5277 return MatchOperand_NoMatch; 5278 5279 // Eat the hash (dollar) 5280 Parser.Lex(); 5281 } 5282 5283 SMLoc Sx1, Ex1; 5284 Sx1 = Parser.getTok().getLoc(); 5285 const MCExpr *Imm1Exp; 5286 if (getParser().parseExpression(Imm1Exp, Ex1)) { 5287 Error(Sx1, "malformed expression"); 5288 return MatchOperand_ParseFail; 5289 } 5290 5291 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 5292 5293 if (CE) { 5294 // Immediate must fit within 32-bits 5295 Imm1 = CE->getValue(); 5296 int Enc = ARM_AM::getSOImmVal(Imm1); 5297 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 5298 // We have a match! 5299 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 5300 (Enc & 0xF00) >> 7, 5301 Sx1, Ex1)); 5302 return MatchOperand_Success; 5303 } 5304 5305 // We have parsed an immediate which is not for us, fallback to a plain 5306 // immediate. This can happen for instruction aliases. For an example, 5307 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 5308 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 5309 // instruction with a mod_imm operand. The alias is defined such that the 5310 // parser method is shared, that's why we have to do this here. 5311 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 5312 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5313 return MatchOperand_Success; 5314 } 5315 } else { 5316 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 5317 // MCFixup). Fallback to a plain immediate. 5318 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5319 return MatchOperand_Success; 5320 } 5321 5322 // From this point onward, we expect the input to be a (#bits, #rot) pair 5323 if (Parser.getTok().isNot(AsmToken::Comma)) { 5324 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 5325 return MatchOperand_ParseFail; 5326 } 5327 5328 if (Imm1 & ~0xFF) { 5329 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 5330 return MatchOperand_ParseFail; 5331 } 5332 5333 // Eat the comma 5334 Parser.Lex(); 5335 5336 // Repeat for #rot 5337 SMLoc Sx2, Ex2; 5338 Sx2 = Parser.getTok().getLoc(); 5339 5340 // Eat the optional hash (dollar) 5341 if (Parser.getTok().is(AsmToken::Hash) || 5342 Parser.getTok().is(AsmToken::Dollar)) 5343 Parser.Lex(); 5344 5345 const MCExpr *Imm2Exp; 5346 if (getParser().parseExpression(Imm2Exp, Ex2)) { 5347 Error(Sx2, "malformed expression"); 5348 return MatchOperand_ParseFail; 5349 } 5350 5351 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 5352 5353 if (CE) { 5354 Imm2 = CE->getValue(); 5355 if (!(Imm2 & ~0x1E)) { 5356 // We have a match! 5357 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 5358 return MatchOperand_Success; 5359 } 5360 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 5361 return MatchOperand_ParseFail; 5362 } else { 5363 Error(Sx2, "constant expression expected"); 5364 return MatchOperand_ParseFail; 5365 } 5366 } 5367 5368 OperandMatchResultTy 5369 ARMAsmParser::parseBitfield(OperandVector &Operands) { 5370 MCAsmParser &Parser = getParser(); 5371 SMLoc S = Parser.getTok().getLoc(); 5372 // The bitfield descriptor is really two operands, the LSB and the width. 5373 if (Parser.getTok().isNot(AsmToken::Hash) && 5374 Parser.getTok().isNot(AsmToken::Dollar)) { 5375 Error(Parser.getTok().getLoc(), "'#' expected"); 5376 return MatchOperand_ParseFail; 5377 } 5378 Parser.Lex(); // Eat hash token. 5379 5380 const MCExpr *LSBExpr; 5381 SMLoc E = Parser.getTok().getLoc(); 5382 if (getParser().parseExpression(LSBExpr)) { 5383 Error(E, "malformed immediate expression"); 5384 return MatchOperand_ParseFail; 5385 } 5386 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 5387 if (!CE) { 5388 Error(E, "'lsb' operand must be an immediate"); 5389 return MatchOperand_ParseFail; 5390 } 5391 5392 int64_t LSB = CE->getValue(); 5393 // The LSB must be in the range [0,31] 5394 if (LSB < 0 || LSB > 31) { 5395 Error(E, "'lsb' operand must be in the range [0,31]"); 5396 return MatchOperand_ParseFail; 5397 } 5398 E = Parser.getTok().getLoc(); 5399 5400 // Expect another immediate operand. 5401 if (Parser.getTok().isNot(AsmToken::Comma)) { 5402 Error(Parser.getTok().getLoc(), "too few operands"); 5403 return MatchOperand_ParseFail; 5404 } 5405 Parser.Lex(); // Eat hash token. 5406 if (Parser.getTok().isNot(AsmToken::Hash) && 5407 Parser.getTok().isNot(AsmToken::Dollar)) { 5408 Error(Parser.getTok().getLoc(), "'#' expected"); 5409 return MatchOperand_ParseFail; 5410 } 5411 Parser.Lex(); // Eat hash token. 5412 5413 const MCExpr *WidthExpr; 5414 SMLoc EndLoc; 5415 if (getParser().parseExpression(WidthExpr, EndLoc)) { 5416 Error(E, "malformed immediate expression"); 5417 return MatchOperand_ParseFail; 5418 } 5419 CE = dyn_cast<MCConstantExpr>(WidthExpr); 5420 if (!CE) { 5421 Error(E, "'width' operand must be an immediate"); 5422 return MatchOperand_ParseFail; 5423 } 5424 5425 int64_t Width = CE->getValue(); 5426 // The LSB must be in the range [1,32-lsb] 5427 if (Width < 1 || Width > 32 - LSB) { 5428 Error(E, "'width' operand must be in the range [1,32-lsb]"); 5429 return MatchOperand_ParseFail; 5430 } 5431 5432 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 5433 5434 return MatchOperand_Success; 5435 } 5436 5437 OperandMatchResultTy 5438 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 5439 // Check for a post-index addressing register operand. Specifically: 5440 // postidx_reg := '+' register {, shift} 5441 // | '-' register {, shift} 5442 // | register {, shift} 5443 5444 // This method must return MatchOperand_NoMatch without consuming any tokens 5445 // in the case where there is no match, as other alternatives take other 5446 // parse methods. 5447 MCAsmParser &Parser = getParser(); 5448 AsmToken Tok = Parser.getTok(); 5449 SMLoc S = Tok.getLoc(); 5450 bool haveEaten = false; 5451 bool isAdd = true; 5452 if (Tok.is(AsmToken::Plus)) { 5453 Parser.Lex(); // Eat the '+' token. 5454 haveEaten = true; 5455 } else if (Tok.is(AsmToken::Minus)) { 5456 Parser.Lex(); // Eat the '-' token. 5457 isAdd = false; 5458 haveEaten = true; 5459 } 5460 5461 SMLoc E = Parser.getTok().getEndLoc(); 5462 int Reg = tryParseRegister(); 5463 if (Reg == -1) { 5464 if (!haveEaten) 5465 return MatchOperand_NoMatch; 5466 Error(Parser.getTok().getLoc(), "register expected"); 5467 return MatchOperand_ParseFail; 5468 } 5469 5470 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 5471 unsigned ShiftImm = 0; 5472 if (Parser.getTok().is(AsmToken::Comma)) { 5473 Parser.Lex(); // Eat the ','. 5474 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 5475 return MatchOperand_ParseFail; 5476 5477 // FIXME: Only approximates end...may include intervening whitespace. 5478 E = Parser.getTok().getLoc(); 5479 } 5480 5481 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 5482 ShiftImm, S, E)); 5483 5484 return MatchOperand_Success; 5485 } 5486 5487 OperandMatchResultTy 5488 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 5489 // Check for a post-index addressing register operand. Specifically: 5490 // am3offset := '+' register 5491 // | '-' register 5492 // | register 5493 // | # imm 5494 // | # + imm 5495 // | # - imm 5496 5497 // This method must return MatchOperand_NoMatch without consuming any tokens 5498 // in the case where there is no match, as other alternatives take other 5499 // parse methods. 5500 MCAsmParser &Parser = getParser(); 5501 AsmToken Tok = Parser.getTok(); 5502 SMLoc S = Tok.getLoc(); 5503 5504 // Do immediates first, as we always parse those if we have a '#'. 5505 if (Parser.getTok().is(AsmToken::Hash) || 5506 Parser.getTok().is(AsmToken::Dollar)) { 5507 Parser.Lex(); // Eat '#' or '$'. 5508 // Explicitly look for a '-', as we need to encode negative zero 5509 // differently. 5510 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5511 const MCExpr *Offset; 5512 SMLoc E; 5513 if (getParser().parseExpression(Offset, E)) 5514 return MatchOperand_ParseFail; 5515 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5516 if (!CE) { 5517 Error(S, "constant expression expected"); 5518 return MatchOperand_ParseFail; 5519 } 5520 // Negative zero is encoded as the flag value 5521 // std::numeric_limits<int32_t>::min(). 5522 int32_t Val = CE->getValue(); 5523 if (isNegative && Val == 0) 5524 Val = std::numeric_limits<int32_t>::min(); 5525 5526 Operands.push_back( 5527 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 5528 5529 return MatchOperand_Success; 5530 } 5531 5532 bool haveEaten = false; 5533 bool isAdd = true; 5534 if (Tok.is(AsmToken::Plus)) { 5535 Parser.Lex(); // Eat the '+' token. 5536 haveEaten = true; 5537 } else if (Tok.is(AsmToken::Minus)) { 5538 Parser.Lex(); // Eat the '-' token. 5539 isAdd = false; 5540 haveEaten = true; 5541 } 5542 5543 Tok = Parser.getTok(); 5544 int Reg = tryParseRegister(); 5545 if (Reg == -1) { 5546 if (!haveEaten) 5547 return MatchOperand_NoMatch; 5548 Error(Tok.getLoc(), "register expected"); 5549 return MatchOperand_ParseFail; 5550 } 5551 5552 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 5553 0, S, Tok.getEndLoc())); 5554 5555 return MatchOperand_Success; 5556 } 5557 5558 /// Convert parsed operands to MCInst. Needed here because this instruction 5559 /// only has two register operands, but multiplication is commutative so 5560 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 5561 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 5562 const OperandVector &Operands) { 5563 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 5564 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 5565 // If we have a three-operand form, make sure to set Rn to be the operand 5566 // that isn't the same as Rd. 5567 unsigned RegOp = 4; 5568 if (Operands.size() == 6 && 5569 ((ARMOperand &)*Operands[4]).getReg() == 5570 ((ARMOperand &)*Operands[3]).getReg()) 5571 RegOp = 5; 5572 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5573 Inst.addOperand(Inst.getOperand(0)); 5574 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5575 } 5576 5577 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5578 const OperandVector &Operands) { 5579 int CondOp = -1, ImmOp = -1; 5580 switch(Inst.getOpcode()) { 5581 case ARM::tB: 5582 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5583 5584 case ARM::t2B: 5585 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5586 5587 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5588 } 5589 // first decide whether or not the branch should be conditional 5590 // by looking at it's location relative to an IT block 5591 if(inITBlock()) { 5592 // inside an IT block we cannot have any conditional branches. any 5593 // such instructions needs to be converted to unconditional form 5594 switch(Inst.getOpcode()) { 5595 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5596 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5597 } 5598 } else { 5599 // outside IT blocks we can only have unconditional branches with AL 5600 // condition code or conditional branches with non-AL condition code 5601 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5602 switch(Inst.getOpcode()) { 5603 case ARM::tB: 5604 case ARM::tBcc: 5605 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5606 break; 5607 case ARM::t2B: 5608 case ARM::t2Bcc: 5609 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5610 break; 5611 } 5612 } 5613 5614 // now decide on encoding size based on branch target range 5615 switch(Inst.getOpcode()) { 5616 // classify tB as either t2B or t1B based on range of immediate operand 5617 case ARM::tB: { 5618 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5619 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5620 Inst.setOpcode(ARM::t2B); 5621 break; 5622 } 5623 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5624 case ARM::tBcc: { 5625 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5626 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5627 Inst.setOpcode(ARM::t2Bcc); 5628 break; 5629 } 5630 } 5631 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5632 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5633 } 5634 5635 void ARMAsmParser::cvtMVEVMOVQtoDReg( 5636 MCInst &Inst, const OperandVector &Operands) { 5637 5638 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 5639 assert(Operands.size() == 8); 5640 5641 ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt 5642 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2 5643 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd 5644 ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx 5645 // skip second copy of Qd in Operands[6] 5646 ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2 5647 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code 5648 } 5649 5650 /// Parse an ARM memory expression, return false if successful else return true 5651 /// or an error. The first token must be a '[' when called. 5652 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5653 MCAsmParser &Parser = getParser(); 5654 SMLoc S, E; 5655 if (Parser.getTok().isNot(AsmToken::LBrac)) 5656 return TokError("Token is not a Left Bracket"); 5657 S = Parser.getTok().getLoc(); 5658 Parser.Lex(); // Eat left bracket token. 5659 5660 const AsmToken &BaseRegTok = Parser.getTok(); 5661 int BaseRegNum = tryParseRegister(); 5662 if (BaseRegNum == -1) 5663 return Error(BaseRegTok.getLoc(), "register expected"); 5664 5665 // The next token must either be a comma, a colon or a closing bracket. 5666 const AsmToken &Tok = Parser.getTok(); 5667 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5668 !Tok.is(AsmToken::RBrac)) 5669 return Error(Tok.getLoc(), "malformed memory operand"); 5670 5671 if (Tok.is(AsmToken::RBrac)) { 5672 E = Tok.getEndLoc(); 5673 Parser.Lex(); // Eat right bracket token. 5674 5675 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5676 ARM_AM::no_shift, 0, 0, false, 5677 S, E)); 5678 5679 // If there's a pre-indexing writeback marker, '!', just add it as a token 5680 // operand. It's rather odd, but syntactically valid. 5681 if (Parser.getTok().is(AsmToken::Exclaim)) { 5682 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5683 Parser.Lex(); // Eat the '!'. 5684 } 5685 5686 return false; 5687 } 5688 5689 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5690 "Lost colon or comma in memory operand?!"); 5691 if (Tok.is(AsmToken::Comma)) { 5692 Parser.Lex(); // Eat the comma. 5693 } 5694 5695 // If we have a ':', it's an alignment specifier. 5696 if (Parser.getTok().is(AsmToken::Colon)) { 5697 Parser.Lex(); // Eat the ':'. 5698 E = Parser.getTok().getLoc(); 5699 SMLoc AlignmentLoc = Tok.getLoc(); 5700 5701 const MCExpr *Expr; 5702 if (getParser().parseExpression(Expr)) 5703 return true; 5704 5705 // The expression has to be a constant. Memory references with relocations 5706 // don't come through here, as they use the <label> forms of the relevant 5707 // instructions. 5708 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5709 if (!CE) 5710 return Error (E, "constant expression expected"); 5711 5712 unsigned Align = 0; 5713 switch (CE->getValue()) { 5714 default: 5715 return Error(E, 5716 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5717 case 16: Align = 2; break; 5718 case 32: Align = 4; break; 5719 case 64: Align = 8; break; 5720 case 128: Align = 16; break; 5721 case 256: Align = 32; break; 5722 } 5723 5724 // Now we should have the closing ']' 5725 if (Parser.getTok().isNot(AsmToken::RBrac)) 5726 return Error(Parser.getTok().getLoc(), "']' expected"); 5727 E = Parser.getTok().getEndLoc(); 5728 Parser.Lex(); // Eat right bracket token. 5729 5730 // Don't worry about range checking the value here. That's handled by 5731 // the is*() predicates. 5732 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5733 ARM_AM::no_shift, 0, Align, 5734 false, S, E, AlignmentLoc)); 5735 5736 // If there's a pre-indexing writeback marker, '!', just add it as a token 5737 // operand. 5738 if (Parser.getTok().is(AsmToken::Exclaim)) { 5739 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5740 Parser.Lex(); // Eat the '!'. 5741 } 5742 5743 return false; 5744 } 5745 5746 // If we have a '#' or '$', it's an immediate offset, else assume it's a 5747 // register offset. Be friendly and also accept a plain integer or expression 5748 // (without a leading hash) for gas compatibility. 5749 if (Parser.getTok().is(AsmToken::Hash) || 5750 Parser.getTok().is(AsmToken::Dollar) || 5751 Parser.getTok().is(AsmToken::LParen) || 5752 Parser.getTok().is(AsmToken::Integer)) { 5753 if (Parser.getTok().is(AsmToken::Hash) || 5754 Parser.getTok().is(AsmToken::Dollar)) 5755 Parser.Lex(); // Eat '#' or '$' 5756 E = Parser.getTok().getLoc(); 5757 5758 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5759 const MCExpr *Offset; 5760 if (getParser().parseExpression(Offset)) 5761 return true; 5762 5763 // The expression has to be a constant. Memory references with relocations 5764 // don't come through here, as they use the <label> forms of the relevant 5765 // instructions. 5766 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5767 if (!CE) 5768 return Error (E, "constant expression expected"); 5769 5770 // If the constant was #-0, represent it as 5771 // std::numeric_limits<int32_t>::min(). 5772 int32_t Val = CE->getValue(); 5773 if (isNegative && Val == 0) 5774 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5775 getContext()); 5776 5777 // Now we should have the closing ']' 5778 if (Parser.getTok().isNot(AsmToken::RBrac)) 5779 return Error(Parser.getTok().getLoc(), "']' expected"); 5780 E = Parser.getTok().getEndLoc(); 5781 Parser.Lex(); // Eat right bracket token. 5782 5783 // Don't worry about range checking the value here. That's handled by 5784 // the is*() predicates. 5785 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5786 ARM_AM::no_shift, 0, 0, 5787 false, S, E)); 5788 5789 // If there's a pre-indexing writeback marker, '!', just add it as a token 5790 // operand. 5791 if (Parser.getTok().is(AsmToken::Exclaim)) { 5792 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5793 Parser.Lex(); // Eat the '!'. 5794 } 5795 5796 return false; 5797 } 5798 5799 // The register offset is optionally preceded by a '+' or '-' 5800 bool isNegative = false; 5801 if (Parser.getTok().is(AsmToken::Minus)) { 5802 isNegative = true; 5803 Parser.Lex(); // Eat the '-'. 5804 } else if (Parser.getTok().is(AsmToken::Plus)) { 5805 // Nothing to do. 5806 Parser.Lex(); // Eat the '+'. 5807 } 5808 5809 E = Parser.getTok().getLoc(); 5810 int OffsetRegNum = tryParseRegister(); 5811 if (OffsetRegNum == -1) 5812 return Error(E, "register expected"); 5813 5814 // If there's a shift operator, handle it. 5815 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5816 unsigned ShiftImm = 0; 5817 if (Parser.getTok().is(AsmToken::Comma)) { 5818 Parser.Lex(); // Eat the ','. 5819 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5820 return true; 5821 } 5822 5823 // Now we should have the closing ']' 5824 if (Parser.getTok().isNot(AsmToken::RBrac)) 5825 return Error(Parser.getTok().getLoc(), "']' expected"); 5826 E = Parser.getTok().getEndLoc(); 5827 Parser.Lex(); // Eat right bracket token. 5828 5829 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5830 ShiftType, ShiftImm, 0, isNegative, 5831 S, E)); 5832 5833 // If there's a pre-indexing writeback marker, '!', just add it as a token 5834 // operand. 5835 if (Parser.getTok().is(AsmToken::Exclaim)) { 5836 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5837 Parser.Lex(); // Eat the '!'. 5838 } 5839 5840 return false; 5841 } 5842 5843 /// parseMemRegOffsetShift - one of these two: 5844 /// ( lsl | lsr | asr | ror ) , # shift_amount 5845 /// rrx 5846 /// return true if it parses a shift otherwise it returns false. 5847 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5848 unsigned &Amount) { 5849 MCAsmParser &Parser = getParser(); 5850 SMLoc Loc = Parser.getTok().getLoc(); 5851 const AsmToken &Tok = Parser.getTok(); 5852 if (Tok.isNot(AsmToken::Identifier)) 5853 return Error(Loc, "illegal shift operator"); 5854 StringRef ShiftName = Tok.getString(); 5855 if (ShiftName == "lsl" || ShiftName == "LSL" || 5856 ShiftName == "asl" || ShiftName == "ASL") 5857 St = ARM_AM::lsl; 5858 else if (ShiftName == "lsr" || ShiftName == "LSR") 5859 St = ARM_AM::lsr; 5860 else if (ShiftName == "asr" || ShiftName == "ASR") 5861 St = ARM_AM::asr; 5862 else if (ShiftName == "ror" || ShiftName == "ROR") 5863 St = ARM_AM::ror; 5864 else if (ShiftName == "rrx" || ShiftName == "RRX") 5865 St = ARM_AM::rrx; 5866 else if (ShiftName == "uxtw" || ShiftName == "UXTW") 5867 St = ARM_AM::uxtw; 5868 else 5869 return Error(Loc, "illegal shift operator"); 5870 Parser.Lex(); // Eat shift type token. 5871 5872 // rrx stands alone. 5873 Amount = 0; 5874 if (St != ARM_AM::rrx) { 5875 Loc = Parser.getTok().getLoc(); 5876 // A '#' and a shift amount. 5877 const AsmToken &HashTok = Parser.getTok(); 5878 if (HashTok.isNot(AsmToken::Hash) && 5879 HashTok.isNot(AsmToken::Dollar)) 5880 return Error(HashTok.getLoc(), "'#' expected"); 5881 Parser.Lex(); // Eat hash token. 5882 5883 const MCExpr *Expr; 5884 if (getParser().parseExpression(Expr)) 5885 return true; 5886 // Range check the immediate. 5887 // lsl, ror: 0 <= imm <= 31 5888 // lsr, asr: 0 <= imm <= 32 5889 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5890 if (!CE) 5891 return Error(Loc, "shift amount must be an immediate"); 5892 int64_t Imm = CE->getValue(); 5893 if (Imm < 0 || 5894 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5895 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5896 return Error(Loc, "immediate shift value out of range"); 5897 // If <ShiftTy> #0, turn it into a no_shift. 5898 if (Imm == 0) 5899 St = ARM_AM::lsl; 5900 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5901 if (Imm == 32) 5902 Imm = 0; 5903 Amount = Imm; 5904 } 5905 5906 return false; 5907 } 5908 5909 /// parseFPImm - A floating point immediate expression operand. 5910 OperandMatchResultTy 5911 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5912 MCAsmParser &Parser = getParser(); 5913 // Anything that can accept a floating point constant as an operand 5914 // needs to go through here, as the regular parseExpression is 5915 // integer only. 5916 // 5917 // This routine still creates a generic Immediate operand, containing 5918 // a bitcast of the 64-bit floating point value. The various operands 5919 // that accept floats can check whether the value is valid for them 5920 // via the standard is*() predicates. 5921 5922 SMLoc S = Parser.getTok().getLoc(); 5923 5924 if (Parser.getTok().isNot(AsmToken::Hash) && 5925 Parser.getTok().isNot(AsmToken::Dollar)) 5926 return MatchOperand_NoMatch; 5927 5928 // Disambiguate the VMOV forms that can accept an FP immediate. 5929 // vmov.f32 <sreg>, #imm 5930 // vmov.f64 <dreg>, #imm 5931 // vmov.f32 <dreg>, #imm @ vector f32x2 5932 // vmov.f32 <qreg>, #imm @ vector f32x4 5933 // 5934 // There are also the NEON VMOV instructions which expect an 5935 // integer constant. Make sure we don't try to parse an FPImm 5936 // for these: 5937 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5938 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5939 bool isVmovf = TyOp.isToken() && 5940 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5941 TyOp.getToken() == ".f16"); 5942 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5943 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5944 Mnemonic.getToken() == "fconsts"); 5945 if (!(isVmovf || isFconst)) 5946 return MatchOperand_NoMatch; 5947 5948 Parser.Lex(); // Eat '#' or '$'. 5949 5950 // Handle negation, as that still comes through as a separate token. 5951 bool isNegative = false; 5952 if (Parser.getTok().is(AsmToken::Minus)) { 5953 isNegative = true; 5954 Parser.Lex(); 5955 } 5956 const AsmToken &Tok = Parser.getTok(); 5957 SMLoc Loc = Tok.getLoc(); 5958 if (Tok.is(AsmToken::Real) && isVmovf) { 5959 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5960 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5961 // If we had a '-' in front, toggle the sign bit. 5962 IntVal ^= (uint64_t)isNegative << 31; 5963 Parser.Lex(); // Eat the token. 5964 Operands.push_back(ARMOperand::CreateImm( 5965 MCConstantExpr::create(IntVal, getContext()), 5966 S, Parser.getTok().getLoc())); 5967 return MatchOperand_Success; 5968 } 5969 // Also handle plain integers. Instructions which allow floating point 5970 // immediates also allow a raw encoded 8-bit value. 5971 if (Tok.is(AsmToken::Integer) && isFconst) { 5972 int64_t Val = Tok.getIntVal(); 5973 Parser.Lex(); // Eat the token. 5974 if (Val > 255 || Val < 0) { 5975 Error(Loc, "encoded floating point value out of range"); 5976 return MatchOperand_ParseFail; 5977 } 5978 float RealVal = ARM_AM::getFPImmFloat(Val); 5979 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5980 5981 Operands.push_back(ARMOperand::CreateImm( 5982 MCConstantExpr::create(Val, getContext()), S, 5983 Parser.getTok().getLoc())); 5984 return MatchOperand_Success; 5985 } 5986 5987 Error(Loc, "invalid floating point immediate"); 5988 return MatchOperand_ParseFail; 5989 } 5990 5991 /// Parse a arm instruction operand. For now this parses the operand regardless 5992 /// of the mnemonic. 5993 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5994 MCAsmParser &Parser = getParser(); 5995 SMLoc S, E; 5996 5997 // Check if the current operand has a custom associated parser, if so, try to 5998 // custom parse the operand, or fallback to the general approach. 5999 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 6000 if (ResTy == MatchOperand_Success) 6001 return false; 6002 // If there wasn't a custom match, try the generic matcher below. Otherwise, 6003 // there was a match, but an error occurred, in which case, just return that 6004 // the operand parsing failed. 6005 if (ResTy == MatchOperand_ParseFail) 6006 return true; 6007 6008 switch (getLexer().getKind()) { 6009 default: 6010 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 6011 return true; 6012 case AsmToken::Identifier: { 6013 // If we've seen a branch mnemonic, the next operand must be a label. This 6014 // is true even if the label is a register name. So "br r1" means branch to 6015 // label "r1". 6016 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 6017 if (!ExpectLabel) { 6018 if (!tryParseRegisterWithWriteBack(Operands)) 6019 return false; 6020 int Res = tryParseShiftRegister(Operands); 6021 if (Res == 0) // success 6022 return false; 6023 else if (Res == -1) // irrecoverable error 6024 return true; 6025 // If this is VMRS, check for the apsr_nzcv operand. 6026 if (Mnemonic == "vmrs" && 6027 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 6028 S = Parser.getTok().getLoc(); 6029 Parser.Lex(); 6030 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 6031 return false; 6032 } 6033 } 6034 6035 // Fall though for the Identifier case that is not a register or a 6036 // special name. 6037 LLVM_FALLTHROUGH; 6038 } 6039 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 6040 case AsmToken::Integer: // things like 1f and 2b as a branch targets 6041 case AsmToken::String: // quoted label names. 6042 case AsmToken::Dot: { // . as a branch target 6043 // This was not a register so parse other operands that start with an 6044 // identifier (like labels) as expressions and create them as immediates. 6045 const MCExpr *IdVal; 6046 S = Parser.getTok().getLoc(); 6047 if (getParser().parseExpression(IdVal)) 6048 return true; 6049 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6050 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 6051 return false; 6052 } 6053 case AsmToken::LBrac: 6054 return parseMemory(Operands); 6055 case AsmToken::LCurly: 6056 return parseRegisterList(Operands, !Mnemonic.startswith("clr")); 6057 case AsmToken::Dollar: 6058 case AsmToken::Hash: 6059 // #42 -> immediate. 6060 S = Parser.getTok().getLoc(); 6061 Parser.Lex(); 6062 6063 if (Parser.getTok().isNot(AsmToken::Colon)) { 6064 bool isNegative = Parser.getTok().is(AsmToken::Minus); 6065 const MCExpr *ImmVal; 6066 if (getParser().parseExpression(ImmVal)) 6067 return true; 6068 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 6069 if (CE) { 6070 int32_t Val = CE->getValue(); 6071 if (isNegative && Val == 0) 6072 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 6073 getContext()); 6074 } 6075 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6076 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 6077 6078 // There can be a trailing '!' on operands that we want as a separate 6079 // '!' Token operand. Handle that here. For example, the compatibility 6080 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 6081 if (Parser.getTok().is(AsmToken::Exclaim)) { 6082 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 6083 Parser.getTok().getLoc())); 6084 Parser.Lex(); // Eat exclaim token 6085 } 6086 return false; 6087 } 6088 // w/ a ':' after the '#', it's just like a plain ':'. 6089 LLVM_FALLTHROUGH; 6090 6091 case AsmToken::Colon: { 6092 S = Parser.getTok().getLoc(); 6093 // ":lower16:" and ":upper16:" expression prefixes 6094 // FIXME: Check it's an expression prefix, 6095 // e.g. (FOO - :lower16:BAR) isn't legal. 6096 ARMMCExpr::VariantKind RefKind; 6097 if (parsePrefix(RefKind)) 6098 return true; 6099 6100 const MCExpr *SubExprVal; 6101 if (getParser().parseExpression(SubExprVal)) 6102 return true; 6103 6104 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 6105 getContext()); 6106 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6107 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 6108 return false; 6109 } 6110 case AsmToken::Equal: { 6111 S = Parser.getTok().getLoc(); 6112 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 6113 return Error(S, "unexpected token in operand"); 6114 Parser.Lex(); // Eat '=' 6115 const MCExpr *SubExprVal; 6116 if (getParser().parseExpression(SubExprVal)) 6117 return true; 6118 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6119 6120 // execute-only: we assume that assembly programmers know what they are 6121 // doing and allow literal pool creation here 6122 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 6123 return false; 6124 } 6125 } 6126 } 6127 6128 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 6129 // :lower16: and :upper16:. 6130 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 6131 MCAsmParser &Parser = getParser(); 6132 RefKind = ARMMCExpr::VK_ARM_None; 6133 6134 // consume an optional '#' (GNU compatibility) 6135 if (getLexer().is(AsmToken::Hash)) 6136 Parser.Lex(); 6137 6138 // :lower16: and :upper16: modifiers 6139 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 6140 Parser.Lex(); // Eat ':' 6141 6142 if (getLexer().isNot(AsmToken::Identifier)) { 6143 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 6144 return true; 6145 } 6146 6147 enum { 6148 COFF = (1 << MCObjectFileInfo::IsCOFF), 6149 ELF = (1 << MCObjectFileInfo::IsELF), 6150 MACHO = (1 << MCObjectFileInfo::IsMachO), 6151 WASM = (1 << MCObjectFileInfo::IsWasm), 6152 }; 6153 static const struct PrefixEntry { 6154 const char *Spelling; 6155 ARMMCExpr::VariantKind VariantKind; 6156 uint8_t SupportedFormats; 6157 } PrefixEntries[] = { 6158 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 6159 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 6160 }; 6161 6162 StringRef IDVal = Parser.getTok().getIdentifier(); 6163 6164 const auto &Prefix = 6165 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 6166 [&IDVal](const PrefixEntry &PE) { 6167 return PE.Spelling == IDVal; 6168 }); 6169 if (Prefix == std::end(PrefixEntries)) { 6170 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 6171 return true; 6172 } 6173 6174 uint8_t CurrentFormat; 6175 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 6176 case MCObjectFileInfo::IsMachO: 6177 CurrentFormat = MACHO; 6178 break; 6179 case MCObjectFileInfo::IsELF: 6180 CurrentFormat = ELF; 6181 break; 6182 case MCObjectFileInfo::IsCOFF: 6183 CurrentFormat = COFF; 6184 break; 6185 case MCObjectFileInfo::IsWasm: 6186 CurrentFormat = WASM; 6187 break; 6188 case MCObjectFileInfo::IsXCOFF: 6189 llvm_unreachable("unexpected object format"); 6190 break; 6191 } 6192 6193 if (~Prefix->SupportedFormats & CurrentFormat) { 6194 Error(Parser.getTok().getLoc(), 6195 "cannot represent relocation in the current file format"); 6196 return true; 6197 } 6198 6199 RefKind = Prefix->VariantKind; 6200 Parser.Lex(); 6201 6202 if (getLexer().isNot(AsmToken::Colon)) { 6203 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 6204 return true; 6205 } 6206 Parser.Lex(); // Eat the last ':' 6207 6208 return false; 6209 } 6210 6211 /// Given a mnemonic, split out possible predication code and carry 6212 /// setting letters to form a canonical mnemonic and flags. 6213 // 6214 // FIXME: Would be nice to autogen this. 6215 // FIXME: This is a bit of a maze of special cases. 6216 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 6217 StringRef ExtraToken, 6218 unsigned &PredicationCode, 6219 unsigned &VPTPredicationCode, 6220 bool &CarrySetting, 6221 unsigned &ProcessorIMod, 6222 StringRef &ITMask) { 6223 PredicationCode = ARMCC::AL; 6224 VPTPredicationCode = ARMVCC::None; 6225 CarrySetting = false; 6226 ProcessorIMod = 0; 6227 6228 // Ignore some mnemonics we know aren't predicated forms. 6229 // 6230 // FIXME: Would be nice to autogen this. 6231 if ((Mnemonic == "movs" && isThumb()) || 6232 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 6233 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 6234 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 6235 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 6236 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 6237 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 6238 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 6239 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 6240 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 6241 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 6242 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 6243 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 6244 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 6245 Mnemonic == "bxns" || Mnemonic == "blxns" || 6246 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6247 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6248 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6249 Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" || 6250 Mnemonic == "csel" || Mnemonic == "csinc" || 6251 Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" || 6252 Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" || 6253 Mnemonic == "csetm") 6254 return Mnemonic; 6255 6256 // First, split out any predication code. Ignore mnemonics we know aren't 6257 // predicated but do have a carry-set and so weren't caught above. 6258 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 6259 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 6260 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 6261 Mnemonic != "sbcs" && Mnemonic != "rscs" && 6262 !(hasMVE() && 6263 (Mnemonic == "vmine" || 6264 Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" || 6265 Mnemonic == "vrshle" || Mnemonic == "vrshlt" || 6266 Mnemonic == "vmvne" || Mnemonic == "vorne" || 6267 Mnemonic == "vnege" || Mnemonic == "vnegt" || 6268 Mnemonic == "vmule" || Mnemonic == "vmult" || 6269 Mnemonic == "vrintne" || 6270 Mnemonic == "vcmult" || Mnemonic == "vcmule" || 6271 Mnemonic == "vpsele" || Mnemonic == "vpselt" || 6272 Mnemonic.startswith("vq")))) { 6273 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 6274 if (CC != ~0U) { 6275 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 6276 PredicationCode = CC; 6277 } 6278 } 6279 6280 // Next, determine if we have a carry setting bit. We explicitly ignore all 6281 // the instructions we know end in 's'. 6282 if (Mnemonic.endswith("s") && 6283 !(Mnemonic == "cps" || Mnemonic == "mls" || 6284 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 6285 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 6286 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 6287 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 6288 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 6289 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 6290 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 6291 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 6292 Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" || 6293 Mnemonic == "vmlas" || 6294 (Mnemonic == "movs" && isThumb()))) { 6295 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 6296 CarrySetting = true; 6297 } 6298 6299 // The "cps" instruction can have a interrupt mode operand which is glued into 6300 // the mnemonic. Check if this is the case, split it and parse the imod op 6301 if (Mnemonic.startswith("cps")) { 6302 // Split out any imod code. 6303 unsigned IMod = 6304 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 6305 .Case("ie", ARM_PROC::IE) 6306 .Case("id", ARM_PROC::ID) 6307 .Default(~0U); 6308 if (IMod != ~0U) { 6309 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 6310 ProcessorIMod = IMod; 6311 } 6312 } 6313 6314 if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && 6315 Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && 6316 Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && 6317 Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && 6318 Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && 6319 Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" && 6320 Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") { 6321 unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1)); 6322 if (CC != ~0U) { 6323 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1); 6324 VPTPredicationCode = CC; 6325 } 6326 return Mnemonic; 6327 } 6328 6329 // The "it" instruction has the condition mask on the end of the mnemonic. 6330 if (Mnemonic.startswith("it")) { 6331 ITMask = Mnemonic.slice(2, Mnemonic.size()); 6332 Mnemonic = Mnemonic.slice(0, 2); 6333 } 6334 6335 if (Mnemonic.startswith("vpst")) { 6336 ITMask = Mnemonic.slice(4, Mnemonic.size()); 6337 Mnemonic = Mnemonic.slice(0, 4); 6338 } 6339 else if (Mnemonic.startswith("vpt")) { 6340 ITMask = Mnemonic.slice(3, Mnemonic.size()); 6341 Mnemonic = Mnemonic.slice(0, 3); 6342 } 6343 6344 return Mnemonic; 6345 } 6346 6347 /// Given a canonical mnemonic, determine if the instruction ever allows 6348 /// inclusion of carry set or predication code operands. 6349 // 6350 // FIXME: It would be nice to autogen this. 6351 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, 6352 StringRef ExtraToken, 6353 StringRef FullInst, 6354 bool &CanAcceptCarrySet, 6355 bool &CanAcceptPredicationCode, 6356 bool &CanAcceptVPTPredicationCode) { 6357 CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); 6358 6359 CanAcceptCarrySet = 6360 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6361 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 6362 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 6363 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 6364 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 6365 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 6366 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 6367 (!isThumb() && 6368 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 6369 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 6370 6371 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 6372 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 6373 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 6374 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 6375 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 6376 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 6377 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 6378 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 6379 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 6380 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 6381 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 6382 Mnemonic == "vmovx" || Mnemonic == "vins" || 6383 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6384 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6385 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6386 Mnemonic == "sb" || Mnemonic == "ssbb" || 6387 Mnemonic == "pssbb" || 6388 Mnemonic == "bfcsel" || Mnemonic == "wls" || 6389 Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" || 6390 Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || 6391 Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || 6392 Mnemonic == "cset" || Mnemonic == "csetm" || 6393 Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") || 6394 (hasMVE() && 6395 (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") || 6396 Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") || 6397 Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") || 6398 Mnemonic.startswith("letp")))) { 6399 // These mnemonics are never predicable 6400 CanAcceptPredicationCode = false; 6401 } else if (!isThumb()) { 6402 // Some instructions are only predicable in Thumb mode 6403 CanAcceptPredicationCode = 6404 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 6405 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 6406 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 6407 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 6408 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 6409 Mnemonic != "stc2" && Mnemonic != "stc2l" && 6410 Mnemonic != "tsb" && 6411 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 6412 } else if (isThumbOne()) { 6413 if (hasV6MOps()) 6414 CanAcceptPredicationCode = Mnemonic != "movs"; 6415 else 6416 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 6417 } else 6418 CanAcceptPredicationCode = true; 6419 } 6420 6421 // Some Thumb instructions have two operand forms that are not 6422 // available as three operand, convert to two operand form if possible. 6423 // 6424 // FIXME: We would really like to be able to tablegen'erate this. 6425 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 6426 bool CarrySetting, 6427 OperandVector &Operands) { 6428 if (Operands.size() != 6) 6429 return; 6430 6431 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6432 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 6433 if (!Op3.isReg() || !Op4.isReg()) 6434 return; 6435 6436 auto Op3Reg = Op3.getReg(); 6437 auto Op4Reg = Op4.getReg(); 6438 6439 // For most Thumb2 cases we just generate the 3 operand form and reduce 6440 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 6441 // won't accept SP or PC so we do the transformation here taking care 6442 // with immediate range in the 'add sp, sp #imm' case. 6443 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 6444 if (isThumbTwo()) { 6445 if (Mnemonic != "add") 6446 return; 6447 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 6448 (Op5.isReg() && Op5.getReg() == ARM::PC); 6449 if (!TryTransform) { 6450 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 6451 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 6452 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 6453 Op5.isImm() && !Op5.isImm0_508s4()); 6454 } 6455 if (!TryTransform) 6456 return; 6457 } else if (!isThumbOne()) 6458 return; 6459 6460 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 6461 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6462 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 6463 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 6464 return; 6465 6466 // If first 2 operands of a 3 operand instruction are the same 6467 // then transform to 2 operand version of the same instruction 6468 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 6469 bool Transform = Op3Reg == Op4Reg; 6470 6471 // For communtative operations, we might be able to transform if we swap 6472 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 6473 // as tADDrsp. 6474 const ARMOperand *LastOp = &Op5; 6475 bool Swap = false; 6476 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 6477 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 6478 Mnemonic == "and" || Mnemonic == "eor" || 6479 Mnemonic == "adc" || Mnemonic == "orr")) { 6480 Swap = true; 6481 LastOp = &Op4; 6482 Transform = true; 6483 } 6484 6485 // If both registers are the same then remove one of them from 6486 // the operand list, with certain exceptions. 6487 if (Transform) { 6488 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 6489 // 2 operand forms don't exist. 6490 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 6491 LastOp->isReg()) 6492 Transform = false; 6493 6494 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 6495 // 3-bits because the ARMARM says not to. 6496 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 6497 Transform = false; 6498 } 6499 6500 if (Transform) { 6501 if (Swap) 6502 std::swap(Op4, Op5); 6503 Operands.erase(Operands.begin() + 3); 6504 } 6505 } 6506 6507 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 6508 OperandVector &Operands) { 6509 // FIXME: This is all horribly hacky. We really need a better way to deal 6510 // with optional operands like this in the matcher table. 6511 6512 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 6513 // another does not. Specifically, the MOVW instruction does not. So we 6514 // special case it here and remove the defaulted (non-setting) cc_out 6515 // operand if that's the instruction we're trying to match. 6516 // 6517 // We do this as post-processing of the explicit operands rather than just 6518 // conditionally adding the cc_out in the first place because we need 6519 // to check the type of the parsed immediate operand. 6520 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 6521 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 6522 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 6523 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6524 return true; 6525 6526 // Register-register 'add' for thumb does not have a cc_out operand 6527 // when there are only two register operands. 6528 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 6529 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6530 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6531 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6532 return true; 6533 // Register-register 'add' for thumb does not have a cc_out operand 6534 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 6535 // have to check the immediate range here since Thumb2 has a variant 6536 // that can handle a different range and has a cc_out operand. 6537 if (((isThumb() && Mnemonic == "add") || 6538 (isThumbTwo() && Mnemonic == "sub")) && 6539 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6540 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6541 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 6542 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6543 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 6544 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 6545 return true; 6546 // For Thumb2, add/sub immediate does not have a cc_out operand for the 6547 // imm0_4095 variant. That's the least-preferred variant when 6548 // selecting via the generic "add" mnemonic, so to know that we 6549 // should remove the cc_out operand, we have to explicitly check that 6550 // it's not one of the other variants. Ugh. 6551 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6552 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6553 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6554 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6555 // Nest conditions rather than one big 'if' statement for readability. 6556 // 6557 // If both registers are low, we're in an IT block, and the immediate is 6558 // in range, we should use encoding T1 instead, which has a cc_out. 6559 if (inITBlock() && 6560 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 6561 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 6562 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 6563 return false; 6564 // Check against T3. If the second register is the PC, this is an 6565 // alternate form of ADR, which uses encoding T4, so check for that too. 6566 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 6567 (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() || 6568 static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg())) 6569 return false; 6570 6571 // Otherwise, we use encoding T4, which does not have a cc_out 6572 // operand. 6573 return true; 6574 } 6575 6576 // The thumb2 multiply instruction doesn't have a CCOut register, so 6577 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 6578 // use the 16-bit encoding or not. 6579 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 6580 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6581 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6582 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6583 static_cast<ARMOperand &>(*Operands[5]).isReg() && 6584 // If the registers aren't low regs, the destination reg isn't the 6585 // same as one of the source regs, or the cc_out operand is zero 6586 // outside of an IT block, we have to use the 32-bit encoding, so 6587 // remove the cc_out operand. 6588 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6589 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6590 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 6591 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 6592 static_cast<ARMOperand &>(*Operands[5]).getReg() && 6593 static_cast<ARMOperand &>(*Operands[3]).getReg() != 6594 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 6595 return true; 6596 6597 // Also check the 'mul' syntax variant that doesn't specify an explicit 6598 // destination register. 6599 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 6600 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6601 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6602 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6603 // If the registers aren't low regs or the cc_out operand is zero 6604 // outside of an IT block, we have to use the 32-bit encoding, so 6605 // remove the cc_out operand. 6606 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6607 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6608 !inITBlock())) 6609 return true; 6610 6611 // Register-register 'add/sub' for thumb does not have a cc_out operand 6612 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 6613 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 6614 // right, this will result in better diagnostics (which operand is off) 6615 // anyway. 6616 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 6617 (Operands.size() == 5 || Operands.size() == 6) && 6618 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6619 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 6620 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6621 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 6622 (Operands.size() == 6 && 6623 static_cast<ARMOperand &>(*Operands[5]).isImm()))) { 6624 // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out 6625 return (!(isThumbTwo() && 6626 (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() || 6627 static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg()))); 6628 } 6629 // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case 6630 // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4) 6631 // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095 6632 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6633 (Operands.size() == 5) && 6634 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6635 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP && 6636 static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC && 6637 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6638 static_cast<ARMOperand &>(*Operands[4]).isImm()) { 6639 const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]); 6640 if (IMM.isT2SOImm() || IMM.isT2SOImmNeg()) 6641 return false; // add.w / sub.w 6642 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) { 6643 const int64_t Value = CE->getValue(); 6644 // Thumb1 imm8 sub / add 6645 if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) && 6646 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg())) 6647 return false; 6648 return true; // Thumb2 T4 addw / subw 6649 } 6650 } 6651 return false; 6652 } 6653 6654 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 6655 OperandVector &Operands) { 6656 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 6657 unsigned RegIdx = 3; 6658 if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) || 6659 Mnemonic == "vrintr") && 6660 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 6661 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 6662 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6663 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 6664 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 6665 RegIdx = 4; 6666 6667 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 6668 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6669 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 6670 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6671 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 6672 return true; 6673 } 6674 return false; 6675 } 6676 6677 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic, 6678 OperandVector &Operands) { 6679 if (!hasMVE() || Operands.size() < 3) 6680 return true; 6681 6682 if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") || 6683 Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4")) 6684 return true; 6685 6686 if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot")) 6687 return false; 6688 6689 if (Mnemonic.startswith("vmov") && 6690 !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") || 6691 Mnemonic.startswith("vmovx"))) { 6692 for (auto &Operand : Operands) { 6693 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6694 ((*Operand).isReg() && 6695 (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 6696 (*Operand).getReg()) || 6697 ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6698 (*Operand).getReg())))) { 6699 return true; 6700 } 6701 } 6702 return false; 6703 } else { 6704 for (auto &Operand : Operands) { 6705 // We check the larger class QPR instead of just the legal class 6706 // MQPR, to more accurately report errors when using Q registers 6707 // outside of the allowed range. 6708 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6709 (Operand->isReg() && 6710 (ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6711 Operand->getReg())))) 6712 return false; 6713 } 6714 return true; 6715 } 6716 } 6717 6718 static bool isDataTypeToken(StringRef Tok) { 6719 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 6720 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 6721 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6722 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6723 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6724 Tok == ".f" || Tok == ".d"; 6725 } 6726 6727 // FIXME: This bit should probably be handled via an explicit match class 6728 // in the .td files that matches the suffix instead of having it be 6729 // a literal string token the way it is now. 6730 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6731 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6732 } 6733 6734 static void applyMnemonicAliases(StringRef &Mnemonic, 6735 const FeatureBitset &Features, 6736 unsigned VariantID); 6737 6738 // The GNU assembler has aliases of ldrd and strd with the second register 6739 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6740 // 6741 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6742 // the assembly parser could then generate confusing diagnostics refering to 6743 // it. If we do find anything that prevents us from doing the transformation we 6744 // bail out, and let the assembly parser report an error on the instruction as 6745 // it is written. 6746 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6747 OperandVector &Operands) { 6748 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6749 return; 6750 if (Operands.size() < 4) 6751 return; 6752 6753 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6754 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6755 6756 if (!Op2.isReg()) 6757 return; 6758 if (!Op3.isGPRMem()) 6759 return; 6760 6761 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6762 if (!GPR.contains(Op2.getReg())) 6763 return; 6764 6765 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6766 if (!isThumb() && (RtEncoding & 1)) { 6767 // In ARM mode, the registers must be from an aligned pair, this 6768 // restriction does not apply in Thumb mode. 6769 return; 6770 } 6771 if (Op2.getReg() == ARM::PC) 6772 return; 6773 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6774 if (!PairedReg || PairedReg == ARM::PC || 6775 (PairedReg == ARM::SP && !hasV8Ops())) 6776 return; 6777 6778 Operands.insert( 6779 Operands.begin() + 3, 6780 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6781 } 6782 6783 /// Parse an arm instruction mnemonic followed by its operands. 6784 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6785 SMLoc NameLoc, OperandVector &Operands) { 6786 MCAsmParser &Parser = getParser(); 6787 6788 // Apply mnemonic aliases before doing anything else, as the destination 6789 // mnemonic may include suffices and we want to handle them normally. 6790 // The generic tblgen'erated code does this later, at the start of 6791 // MatchInstructionImpl(), but that's too late for aliases that include 6792 // any sort of suffix. 6793 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 6794 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6795 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6796 6797 // First check for the ARM-specific .req directive. 6798 if (Parser.getTok().is(AsmToken::Identifier) && 6799 Parser.getTok().getIdentifier().lower() == ".req") { 6800 parseDirectiveReq(Name, NameLoc); 6801 // We always return 'error' for this, as we're done with this 6802 // statement and don't need to match the 'instruction." 6803 return true; 6804 } 6805 6806 // Create the leading tokens for the mnemonic, split by '.' characters. 6807 size_t Start = 0, Next = Name.find('.'); 6808 StringRef Mnemonic = Name.slice(Start, Next); 6809 StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1)); 6810 6811 // Split out the predication code and carry setting flag from the mnemonic. 6812 unsigned PredicationCode; 6813 unsigned VPTPredicationCode; 6814 unsigned ProcessorIMod; 6815 bool CarrySetting; 6816 StringRef ITMask; 6817 Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, 6818 CarrySetting, ProcessorIMod, ITMask); 6819 6820 // In Thumb1, only the branch (B) instruction can be predicated. 6821 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6822 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6823 } 6824 6825 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6826 6827 // Handle the mask for IT and VPT instructions. In ARMOperand and 6828 // MCOperand, this is stored in a format independent of the 6829 // condition code: the lowest set bit indicates the end of the 6830 // encoding, and above that, a 1 bit indicates 'else', and an 0 6831 // indicates 'then'. E.g. 6832 // IT -> 1000 6833 // ITx -> x100 (ITT -> 0100, ITE -> 1100) 6834 // ITxy -> xy10 (e.g. ITET -> 1010) 6835 // ITxyz -> xyz1 (e.g. ITEET -> 1101) 6836 if (Mnemonic == "it" || Mnemonic.startswith("vpt") || 6837 Mnemonic.startswith("vpst")) { 6838 SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) : 6839 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) : 6840 SMLoc::getFromPointer(NameLoc.getPointer() + 4); 6841 if (ITMask.size() > 3) { 6842 if (Mnemonic == "it") 6843 return Error(Loc, "too many conditions on IT instruction"); 6844 return Error(Loc, "too many conditions on VPT instruction"); 6845 } 6846 unsigned Mask = 8; 6847 for (unsigned i = ITMask.size(); i != 0; --i) { 6848 char pos = ITMask[i - 1]; 6849 if (pos != 't' && pos != 'e') { 6850 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6851 } 6852 Mask >>= 1; 6853 if (ITMask[i - 1] == 'e') 6854 Mask |= 8; 6855 } 6856 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6857 } 6858 6859 // FIXME: This is all a pretty gross hack. We should automatically handle 6860 // optional operands like this via tblgen. 6861 6862 // Next, add the CCOut and ConditionCode operands, if needed. 6863 // 6864 // For mnemonics which can ever incorporate a carry setting bit or predication 6865 // code, our matching model involves us always generating CCOut and 6866 // ConditionCode operands to match the mnemonic "as written" and then we let 6867 // the matcher deal with finding the right instruction or generating an 6868 // appropriate error. 6869 bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; 6870 getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet, 6871 CanAcceptPredicationCode, CanAcceptVPTPredicationCode); 6872 6873 // If we had a carry-set on an instruction that can't do that, issue an 6874 // error. 6875 if (!CanAcceptCarrySet && CarrySetting) { 6876 return Error(NameLoc, "instruction '" + Mnemonic + 6877 "' can not set flags, but 's' suffix specified"); 6878 } 6879 // If we had a predication code on an instruction that can't do that, issue an 6880 // error. 6881 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6882 return Error(NameLoc, "instruction '" + Mnemonic + 6883 "' is not predicable, but condition code specified"); 6884 } 6885 6886 // If we had a VPT predication code on an instruction that can't do that, issue an 6887 // error. 6888 if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { 6889 return Error(NameLoc, "instruction '" + Mnemonic + 6890 "' is not VPT predicable, but VPT code T/E is specified"); 6891 } 6892 6893 // Add the carry setting operand, if necessary. 6894 if (CanAcceptCarrySet) { 6895 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6896 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6897 Loc)); 6898 } 6899 6900 // Add the predication code operand, if necessary. 6901 if (CanAcceptPredicationCode) { 6902 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6903 CarrySetting); 6904 Operands.push_back(ARMOperand::CreateCondCode( 6905 ARMCC::CondCodes(PredicationCode), Loc)); 6906 } 6907 6908 // Add the VPT predication code operand, if necessary. 6909 // FIXME: We don't add them for the instructions filtered below as these can 6910 // have custom operands which need special parsing. This parsing requires 6911 // the operand to be in the same place in the OperandVector as their 6912 // definition in tblgen. Since these instructions may also have the 6913 // scalar predication operand we do not add the vector one and leave until 6914 // now to fix it up. 6915 if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" && 6916 !Mnemonic.startswith("vcmp") && 6917 !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" && 6918 Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) { 6919 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6920 CarrySetting); 6921 Operands.push_back(ARMOperand::CreateVPTPred( 6922 ARMVCC::VPTCodes(VPTPredicationCode), Loc)); 6923 } 6924 6925 // Add the processor imod operand, if necessary. 6926 if (ProcessorIMod) { 6927 Operands.push_back(ARMOperand::CreateImm( 6928 MCConstantExpr::create(ProcessorIMod, getContext()), 6929 NameLoc, NameLoc)); 6930 } else if (Mnemonic == "cps" && isMClass()) { 6931 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6932 } 6933 6934 // Add the remaining tokens in the mnemonic. 6935 while (Next != StringRef::npos) { 6936 Start = Next; 6937 Next = Name.find('.', Start + 1); 6938 ExtraToken = Name.slice(Start, Next); 6939 6940 // Some NEON instructions have an optional datatype suffix that is 6941 // completely ignored. Check for that. 6942 if (isDataTypeToken(ExtraToken) && 6943 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6944 continue; 6945 6946 // For for ARM mode generate an error if the .n qualifier is used. 6947 if (ExtraToken == ".n" && !isThumb()) { 6948 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6949 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6950 "arm mode"); 6951 } 6952 6953 // The .n qualifier is always discarded as that is what the tables 6954 // and matcher expect. In ARM mode the .w qualifier has no effect, 6955 // so discard it to avoid errors that can be caused by the matcher. 6956 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6957 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6958 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6959 } 6960 } 6961 6962 // Read the remaining operands. 6963 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6964 // Read the first operand. 6965 if (parseOperand(Operands, Mnemonic)) { 6966 return true; 6967 } 6968 6969 while (parseOptionalToken(AsmToken::Comma)) { 6970 // Parse and remember the operand. 6971 if (parseOperand(Operands, Mnemonic)) { 6972 return true; 6973 } 6974 } 6975 } 6976 6977 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6978 return true; 6979 6980 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6981 6982 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6983 // do and don't have a cc_out optional-def operand. With some spot-checks 6984 // of the operand list, we can figure out which variant we're trying to 6985 // parse and adjust accordingly before actually matching. We shouldn't ever 6986 // try to remove a cc_out operand that was explicitly set on the 6987 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6988 // table driven matcher doesn't fit well with the ARM instruction set. 6989 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6990 Operands.erase(Operands.begin() + 1); 6991 6992 // Some instructions have the same mnemonic, but don't always 6993 // have a predicate. Distinguish them here and delete the 6994 // appropriate predicate if needed. This could be either the scalar 6995 // predication code or the vector predication code. 6996 if (PredicationCode == ARMCC::AL && 6997 shouldOmitPredicateOperand(Mnemonic, Operands)) 6998 Operands.erase(Operands.begin() + 1); 6999 7000 7001 if (hasMVE()) { 7002 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) && 7003 Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { 7004 // Very nasty hack to deal with the vector predicated variant of vmovlt 7005 // the scalar predicated vmov with condition 'lt'. We can not tell them 7006 // apart until we have parsed their operands. 7007 Operands.erase(Operands.begin() + 1); 7008 Operands.erase(Operands.begin()); 7009 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7010 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7011 Mnemonic.size() - 1 + CarrySetting); 7012 Operands.insert(Operands.begin(), 7013 ARMOperand::CreateVPTPred(ARMVCC::None, PLoc)); 7014 Operands.insert(Operands.begin(), 7015 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc)); 7016 } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && 7017 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7018 // Another nasty hack to deal with the ambiguity between vcvt with scalar 7019 // predication 'ne' and vcvtn with vector predication 'e'. As above we 7020 // can only distinguish between the two after we have parsed their 7021 // operands. 7022 Operands.erase(Operands.begin() + 1); 7023 Operands.erase(Operands.begin()); 7024 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7025 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7026 Mnemonic.size() - 1 + CarrySetting); 7027 Operands.insert(Operands.begin(), 7028 ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc)); 7029 Operands.insert(Operands.begin(), 7030 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc)); 7031 } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && 7032 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7033 // Another hack, this time to distinguish between scalar predicated vmul 7034 // with 'lt' predication code and the vector instruction vmullt with 7035 // vector predication code "none" 7036 Operands.erase(Operands.begin() + 1); 7037 Operands.erase(Operands.begin()); 7038 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7039 Operands.insert(Operands.begin(), 7040 ARMOperand::CreateToken(StringRef("vmullt"), MLoc)); 7041 } 7042 // For vmov and vcmp, as mentioned earlier, we did not add the vector 7043 // predication code, since these may contain operands that require 7044 // special parsing. So now we have to see if they require vector 7045 // predication and replace the scalar one with the vector predication 7046 // operand if that is the case. 7047 else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") || 7048 (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") && 7049 !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") && 7050 !Mnemonic.startswith("vcvtm"))) { 7051 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7052 // We could not split the vector predicate off vcvt because it might 7053 // have been the scalar vcvtt instruction. Now we know its a vector 7054 // instruction, we still need to check whether its the vector 7055 // predicated vcvt with 'Then' predication or the vector vcvtt. We can 7056 // distinguish the two based on the suffixes, if it is any of 7057 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. 7058 if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) { 7059 auto Sz1 = static_cast<ARMOperand &>(*Operands[2]); 7060 auto Sz2 = static_cast<ARMOperand &>(*Operands[3]); 7061 if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") && 7062 Sz2.isToken() && Sz2.getToken().startswith(".f"))) { 7063 Operands.erase(Operands.begin()); 7064 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7065 VPTPredicationCode = ARMVCC::Then; 7066 7067 Mnemonic = Mnemonic.substr(0, 4); 7068 Operands.insert(Operands.begin(), 7069 ARMOperand::CreateToken(Mnemonic, MLoc)); 7070 } 7071 } 7072 Operands.erase(Operands.begin() + 1); 7073 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7074 Mnemonic.size() + CarrySetting); 7075 Operands.insert(Operands.begin() + 1, 7076 ARMOperand::CreateVPTPred( 7077 ARMVCC::VPTCodes(VPTPredicationCode), PLoc)); 7078 } 7079 } else if (CanAcceptVPTPredicationCode) { 7080 // For all other instructions, make sure only one of the two 7081 // predication operands is left behind, depending on whether we should 7082 // use the vector predication. 7083 if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7084 if (CanAcceptPredicationCode) 7085 Operands.erase(Operands.begin() + 2); 7086 else 7087 Operands.erase(Operands.begin() + 1); 7088 } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) { 7089 Operands.erase(Operands.begin() + 1); 7090 } 7091 } 7092 } 7093 7094 if (VPTPredicationCode != ARMVCC::None) { 7095 bool usedVPTPredicationCode = false; 7096 for (unsigned I = 1; I < Operands.size(); ++I) 7097 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7098 usedVPTPredicationCode = true; 7099 if (!usedVPTPredicationCode) { 7100 // If we have a VPT predication code and we haven't just turned it 7101 // into an operand, then it was a mistake for splitMnemonic to 7102 // separate it from the rest of the mnemonic in the first place, 7103 // and this may lead to wrong disassembly (e.g. scalar floating 7104 // point VCMPE is actually a different instruction from VCMP, so 7105 // we mustn't treat them the same). In that situation, glue it 7106 // back on. 7107 Mnemonic = Name.slice(0, Mnemonic.size() + 1); 7108 Operands.erase(Operands.begin()); 7109 Operands.insert(Operands.begin(), 7110 ARMOperand::CreateToken(Mnemonic, NameLoc)); 7111 } 7112 } 7113 7114 // ARM mode 'blx' need special handling, as the register operand version 7115 // is predicable, but the label operand version is not. So, we can't rely 7116 // on the Mnemonic based checking to correctly figure out when to put 7117 // a k_CondCode operand in the list. If we're trying to match the label 7118 // version, remove the k_CondCode operand here. 7119 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 7120 static_cast<ARMOperand &>(*Operands[2]).isImm()) 7121 Operands.erase(Operands.begin() + 1); 7122 7123 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 7124 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 7125 // a single GPRPair reg operand is used in the .td file to replace the two 7126 // GPRs. However, when parsing from asm, the two GRPs cannot be 7127 // automatically 7128 // expressed as a GPRPair, so we have to manually merge them. 7129 // FIXME: We would really like to be able to tablegen'erate this. 7130 if (!isThumb() && Operands.size() > 4 && 7131 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 7132 Mnemonic == "stlexd")) { 7133 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 7134 unsigned Idx = isLoad ? 2 : 3; 7135 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 7136 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 7137 7138 const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID); 7139 // Adjust only if Op1 and Op2 are GPRs. 7140 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 7141 MRC.contains(Op2.getReg())) { 7142 unsigned Reg1 = Op1.getReg(); 7143 unsigned Reg2 = Op2.getReg(); 7144 unsigned Rt = MRI->getEncodingValue(Reg1); 7145 unsigned Rt2 = MRI->getEncodingValue(Reg2); 7146 7147 // Rt2 must be Rt + 1 and Rt must be even. 7148 if (Rt + 1 != Rt2 || (Rt & 1)) { 7149 return Error(Op2.getStartLoc(), 7150 isLoad ? "destination operands must be sequential" 7151 : "source operands must be sequential"); 7152 } 7153 unsigned NewReg = MRI->getMatchingSuperReg( 7154 Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID))); 7155 Operands[Idx] = 7156 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 7157 Operands.erase(Operands.begin() + Idx + 1); 7158 } 7159 } 7160 7161 // GNU Assembler extension (compatibility). 7162 fixupGNULDRDAlias(Mnemonic, Operands); 7163 7164 // FIXME: As said above, this is all a pretty gross hack. This instruction 7165 // does not fit with other "subs" and tblgen. 7166 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 7167 // so the Mnemonic is the original name "subs" and delete the predicate 7168 // operand so it will match the table entry. 7169 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 7170 static_cast<ARMOperand &>(*Operands[3]).isReg() && 7171 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 7172 static_cast<ARMOperand &>(*Operands[4]).isReg() && 7173 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 7174 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 7175 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 7176 Operands.erase(Operands.begin() + 1); 7177 } 7178 return false; 7179 } 7180 7181 // Validate context-sensitive operand constraints. 7182 7183 // return 'true' if register list contains non-low GPR registers, 7184 // 'false' otherwise. If Reg is in the register list or is HiReg, set 7185 // 'containsReg' to true. 7186 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 7187 unsigned Reg, unsigned HiReg, 7188 bool &containsReg) { 7189 containsReg = false; 7190 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 7191 unsigned OpReg = Inst.getOperand(i).getReg(); 7192 if (OpReg == Reg) 7193 containsReg = true; 7194 // Anything other than a low register isn't legal here. 7195 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 7196 return true; 7197 } 7198 return false; 7199 } 7200 7201 // Check if the specified regisgter is in the register list of the inst, 7202 // starting at the indicated operand number. 7203 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 7204 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 7205 unsigned OpReg = Inst.getOperand(i).getReg(); 7206 if (OpReg == Reg) 7207 return true; 7208 } 7209 return false; 7210 } 7211 7212 // Return true if instruction has the interesting property of being 7213 // allowed in IT blocks, but not being predicable. 7214 static bool instIsBreakpoint(const MCInst &Inst) { 7215 return Inst.getOpcode() == ARM::tBKPT || 7216 Inst.getOpcode() == ARM::BKPT || 7217 Inst.getOpcode() == ARM::tHLT || 7218 Inst.getOpcode() == ARM::HLT; 7219 } 7220 7221 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 7222 const OperandVector &Operands, 7223 unsigned ListNo, bool IsARPop) { 7224 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7225 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7226 7227 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7228 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 7229 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7230 7231 if (!IsARPop && ListContainsSP) 7232 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7233 "SP may not be in the register list"); 7234 else if (ListContainsPC && ListContainsLR) 7235 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7236 "PC and LR may not be in the register list simultaneously"); 7237 return false; 7238 } 7239 7240 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 7241 const OperandVector &Operands, 7242 unsigned ListNo) { 7243 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7244 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7245 7246 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7247 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7248 7249 if (ListContainsSP && ListContainsPC) 7250 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7251 "SP and PC may not be in the register list"); 7252 else if (ListContainsSP) 7253 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7254 "SP may not be in the register list"); 7255 else if (ListContainsPC) 7256 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7257 "PC may not be in the register list"); 7258 return false; 7259 } 7260 7261 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 7262 const OperandVector &Operands, 7263 bool Load, bool ARMMode, bool Writeback) { 7264 unsigned RtIndex = Load || !Writeback ? 0 : 1; 7265 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 7266 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 7267 7268 if (ARMMode) { 7269 // Rt can't be R14. 7270 if (Rt == 14) 7271 return Error(Operands[3]->getStartLoc(), 7272 "Rt can't be R14"); 7273 7274 // Rt must be even-numbered. 7275 if ((Rt & 1) == 1) 7276 return Error(Operands[3]->getStartLoc(), 7277 "Rt must be even-numbered"); 7278 7279 // Rt2 must be Rt + 1. 7280 if (Rt2 != Rt + 1) { 7281 if (Load) 7282 return Error(Operands[3]->getStartLoc(), 7283 "destination operands must be sequential"); 7284 else 7285 return Error(Operands[3]->getStartLoc(), 7286 "source operands must be sequential"); 7287 } 7288 7289 // FIXME: Diagnose m == 15 7290 // FIXME: Diagnose ldrd with m == t || m == t2. 7291 } 7292 7293 if (!ARMMode && Load) { 7294 if (Rt2 == Rt) 7295 return Error(Operands[3]->getStartLoc(), 7296 "destination operands can't be identical"); 7297 } 7298 7299 if (Writeback) { 7300 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7301 7302 if (Rn == Rt || Rn == Rt2) { 7303 if (Load) 7304 return Error(Operands[3]->getStartLoc(), 7305 "base register needs to be different from destination " 7306 "registers"); 7307 else 7308 return Error(Operands[3]->getStartLoc(), 7309 "source register and base register can't be identical"); 7310 } 7311 7312 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 7313 // (Except the immediate form of ldrd?) 7314 } 7315 7316 return false; 7317 } 7318 7319 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { 7320 for (unsigned i = 0; i < MCID.NumOperands; ++i) { 7321 if (ARM::isVpred(MCID.OpInfo[i].OperandType)) 7322 return i; 7323 } 7324 return -1; 7325 } 7326 7327 static bool isVectorPredicable(const MCInstrDesc &MCID) { 7328 return findFirstVectorPredOperandIdx(MCID) != -1; 7329 } 7330 7331 // FIXME: We would really like to be able to tablegen'erate this. 7332 bool ARMAsmParser::validateInstruction(MCInst &Inst, 7333 const OperandVector &Operands) { 7334 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 7335 SMLoc Loc = Operands[0]->getStartLoc(); 7336 7337 // Check the IT block state first. 7338 // NOTE: BKPT and HLT instructions have the interesting property of being 7339 // allowed in IT blocks, but not being predicable. They just always execute. 7340 if (inITBlock() && !instIsBreakpoint(Inst)) { 7341 // The instruction must be predicable. 7342 if (!MCID.isPredicable()) 7343 return Error(Loc, "instructions in IT block must be predicable"); 7344 ARMCC::CondCodes Cond = ARMCC::CondCodes( 7345 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 7346 if (Cond != currentITCond()) { 7347 // Find the condition code Operand to get its SMLoc information. 7348 SMLoc CondLoc; 7349 for (unsigned I = 1; I < Operands.size(); ++I) 7350 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 7351 CondLoc = Operands[I]->getStartLoc(); 7352 return Error(CondLoc, "incorrect condition in IT block; got '" + 7353 StringRef(ARMCondCodeToString(Cond)) + 7354 "', but expected '" + 7355 ARMCondCodeToString(currentITCond()) + "'"); 7356 } 7357 // Check for non-'al' condition codes outside of the IT block. 7358 } else if (isThumbTwo() && MCID.isPredicable() && 7359 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7360 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 7361 Inst.getOpcode() != ARM::t2Bcc && 7362 Inst.getOpcode() != ARM::t2BFic) { 7363 return Error(Loc, "predicated instructions must be in IT block"); 7364 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 7365 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7366 ARMCC::AL) { 7367 return Warning(Loc, "predicated instructions should be in IT block"); 7368 } else if (!MCID.isPredicable()) { 7369 // Check the instruction doesn't have a predicate operand anyway 7370 // that it's not allowed to use. Sometimes this happens in order 7371 // to keep instructions the same shape even though one cannot 7372 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 7373 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 7374 if (MCID.OpInfo[i].isPredicate()) { 7375 if (Inst.getOperand(i).getImm() != ARMCC::AL) 7376 return Error(Loc, "instruction is not predicable"); 7377 break; 7378 } 7379 } 7380 } 7381 7382 // PC-setting instructions in an IT block, but not the last instruction of 7383 // the block, are UNPREDICTABLE. 7384 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 7385 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 7386 } 7387 7388 if (inVPTBlock() && !instIsBreakpoint(Inst)) { 7389 unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition); 7390 if (!isVectorPredicable(MCID)) 7391 return Error(Loc, "instruction in VPT block must be predicable"); 7392 unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm(); 7393 unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; 7394 if (Pred != VPTPred) { 7395 SMLoc PredLoc; 7396 for (unsigned I = 1; I < Operands.size(); ++I) 7397 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7398 PredLoc = Operands[I]->getStartLoc(); 7399 return Error(PredLoc, "incorrect predication in VPT block; got '" + 7400 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) + 7401 "', but expected '" + 7402 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'"); 7403 } 7404 } 7405 else if (isVectorPredicable(MCID) && 7406 Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() != 7407 ARMVCC::None) 7408 return Error(Loc, "VPT predicated instructions must be in VPT block"); 7409 7410 const unsigned Opcode = Inst.getOpcode(); 7411 switch (Opcode) { 7412 case ARM::t2IT: { 7413 // Encoding is unpredictable if it ever results in a notional 'NV' 7414 // predicate. Since we don't parse 'NV' directly this means an 'AL' 7415 // predicate with an "else" mask bit. 7416 unsigned Cond = Inst.getOperand(0).getImm(); 7417 unsigned Mask = Inst.getOperand(1).getImm(); 7418 7419 // Conditions only allowing a 't' are those with no set bit except 7420 // the lowest-order one that indicates the end of the sequence. In 7421 // other words, powers of 2. 7422 if (Cond == ARMCC::AL && countPopulation(Mask) != 1) 7423 return Error(Loc, "unpredictable IT predicate sequence"); 7424 break; 7425 } 7426 case ARM::LDRD: 7427 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7428 /*Writeback*/false)) 7429 return true; 7430 break; 7431 case ARM::LDRD_PRE: 7432 case ARM::LDRD_POST: 7433 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7434 /*Writeback*/true)) 7435 return true; 7436 break; 7437 case ARM::t2LDRDi8: 7438 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7439 /*Writeback*/false)) 7440 return true; 7441 break; 7442 case ARM::t2LDRD_PRE: 7443 case ARM::t2LDRD_POST: 7444 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7445 /*Writeback*/true)) 7446 return true; 7447 break; 7448 case ARM::t2BXJ: { 7449 const unsigned RmReg = Inst.getOperand(0).getReg(); 7450 // Rm = SP is no longer unpredictable in v8-A 7451 if (RmReg == ARM::SP && !hasV8Ops()) 7452 return Error(Operands[2]->getStartLoc(), 7453 "r13 (SP) is an unpredictable operand to BXJ"); 7454 return false; 7455 } 7456 case ARM::STRD: 7457 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7458 /*Writeback*/false)) 7459 return true; 7460 break; 7461 case ARM::STRD_PRE: 7462 case ARM::STRD_POST: 7463 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7464 /*Writeback*/true)) 7465 return true; 7466 break; 7467 case ARM::t2STRD_PRE: 7468 case ARM::t2STRD_POST: 7469 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 7470 /*Writeback*/true)) 7471 return true; 7472 break; 7473 case ARM::STR_PRE_IMM: 7474 case ARM::STR_PRE_REG: 7475 case ARM::t2STR_PRE: 7476 case ARM::STR_POST_IMM: 7477 case ARM::STR_POST_REG: 7478 case ARM::t2STR_POST: 7479 case ARM::STRH_PRE: 7480 case ARM::t2STRH_PRE: 7481 case ARM::STRH_POST: 7482 case ARM::t2STRH_POST: 7483 case ARM::STRB_PRE_IMM: 7484 case ARM::STRB_PRE_REG: 7485 case ARM::t2STRB_PRE: 7486 case ARM::STRB_POST_IMM: 7487 case ARM::STRB_POST_REG: 7488 case ARM::t2STRB_POST: { 7489 // Rt must be different from Rn. 7490 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7491 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7492 7493 if (Rt == Rn) 7494 return Error(Operands[3]->getStartLoc(), 7495 "source register and base register can't be identical"); 7496 return false; 7497 } 7498 case ARM::LDR_PRE_IMM: 7499 case ARM::LDR_PRE_REG: 7500 case ARM::t2LDR_PRE: 7501 case ARM::LDR_POST_IMM: 7502 case ARM::LDR_POST_REG: 7503 case ARM::t2LDR_POST: 7504 case ARM::LDRH_PRE: 7505 case ARM::t2LDRH_PRE: 7506 case ARM::LDRH_POST: 7507 case ARM::t2LDRH_POST: 7508 case ARM::LDRSH_PRE: 7509 case ARM::t2LDRSH_PRE: 7510 case ARM::LDRSH_POST: 7511 case ARM::t2LDRSH_POST: 7512 case ARM::LDRB_PRE_IMM: 7513 case ARM::LDRB_PRE_REG: 7514 case ARM::t2LDRB_PRE: 7515 case ARM::LDRB_POST_IMM: 7516 case ARM::LDRB_POST_REG: 7517 case ARM::t2LDRB_POST: 7518 case ARM::LDRSB_PRE: 7519 case ARM::t2LDRSB_PRE: 7520 case ARM::LDRSB_POST: 7521 case ARM::t2LDRSB_POST: { 7522 // Rt must be different from Rn. 7523 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7524 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7525 7526 if (Rt == Rn) 7527 return Error(Operands[3]->getStartLoc(), 7528 "destination register and base register can't be identical"); 7529 return false; 7530 } 7531 7532 case ARM::MVE_VLDRBU8_rq: 7533 case ARM::MVE_VLDRBU16_rq: 7534 case ARM::MVE_VLDRBS16_rq: 7535 case ARM::MVE_VLDRBU32_rq: 7536 case ARM::MVE_VLDRBS32_rq: 7537 case ARM::MVE_VLDRHU16_rq: 7538 case ARM::MVE_VLDRHU16_rq_u: 7539 case ARM::MVE_VLDRHU32_rq: 7540 case ARM::MVE_VLDRHU32_rq_u: 7541 case ARM::MVE_VLDRHS32_rq: 7542 case ARM::MVE_VLDRHS32_rq_u: 7543 case ARM::MVE_VLDRWU32_rq: 7544 case ARM::MVE_VLDRWU32_rq_u: 7545 case ARM::MVE_VLDRDU64_rq: 7546 case ARM::MVE_VLDRDU64_rq_u: 7547 case ARM::MVE_VLDRWU32_qi: 7548 case ARM::MVE_VLDRWU32_qi_pre: 7549 case ARM::MVE_VLDRDU64_qi: 7550 case ARM::MVE_VLDRDU64_qi_pre: { 7551 // Qd must be different from Qm. 7552 unsigned QdIdx = 0, QmIdx = 2; 7553 bool QmIsPointer = false; 7554 switch (Opcode) { 7555 case ARM::MVE_VLDRWU32_qi: 7556 case ARM::MVE_VLDRDU64_qi: 7557 QmIdx = 1; 7558 QmIsPointer = true; 7559 break; 7560 case ARM::MVE_VLDRWU32_qi_pre: 7561 case ARM::MVE_VLDRDU64_qi_pre: 7562 QdIdx = 1; 7563 QmIsPointer = true; 7564 break; 7565 } 7566 7567 const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg()); 7568 const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg()); 7569 7570 if (Qd == Qm) { 7571 return Error(Operands[3]->getStartLoc(), 7572 Twine("destination vector register and vector ") + 7573 (QmIsPointer ? "pointer" : "offset") + 7574 " register can't be identical"); 7575 } 7576 return false; 7577 } 7578 7579 case ARM::SBFX: 7580 case ARM::t2SBFX: 7581 case ARM::UBFX: 7582 case ARM::t2UBFX: { 7583 // Width must be in range [1, 32-lsb]. 7584 unsigned LSB = Inst.getOperand(2).getImm(); 7585 unsigned Widthm1 = Inst.getOperand(3).getImm(); 7586 if (Widthm1 >= 32 - LSB) 7587 return Error(Operands[5]->getStartLoc(), 7588 "bitfield width must be in range [1,32-lsb]"); 7589 return false; 7590 } 7591 // Notionally handles ARM::tLDMIA_UPD too. 7592 case ARM::tLDMIA: { 7593 // If we're parsing Thumb2, the .w variant is available and handles 7594 // most cases that are normally illegal for a Thumb1 LDM instruction. 7595 // We'll make the transformation in processInstruction() if necessary. 7596 // 7597 // Thumb LDM instructions are writeback iff the base register is not 7598 // in the register list. 7599 unsigned Rn = Inst.getOperand(0).getReg(); 7600 bool HasWritebackToken = 7601 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7602 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 7603 bool ListContainsBase; 7604 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 7605 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 7606 "registers must be in range r0-r7"); 7607 // If we should have writeback, then there should be a '!' token. 7608 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 7609 return Error(Operands[2]->getStartLoc(), 7610 "writeback operator '!' expected"); 7611 // If we should not have writeback, there must not be a '!'. This is 7612 // true even for the 32-bit wide encodings. 7613 if (ListContainsBase && HasWritebackToken) 7614 return Error(Operands[3]->getStartLoc(), 7615 "writeback operator '!' not allowed when base register " 7616 "in register list"); 7617 7618 if (validatetLDMRegList(Inst, Operands, 3)) 7619 return true; 7620 break; 7621 } 7622 case ARM::LDMIA_UPD: 7623 case ARM::LDMDB_UPD: 7624 case ARM::LDMIB_UPD: 7625 case ARM::LDMDA_UPD: 7626 // ARM variants loading and updating the same register are only officially 7627 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 7628 if (!hasV7Ops()) 7629 break; 7630 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7631 return Error(Operands.back()->getStartLoc(), 7632 "writeback register not allowed in register list"); 7633 break; 7634 case ARM::t2LDMIA: 7635 case ARM::t2LDMDB: 7636 if (validatetLDMRegList(Inst, Operands, 3)) 7637 return true; 7638 break; 7639 case ARM::t2STMIA: 7640 case ARM::t2STMDB: 7641 if (validatetSTMRegList(Inst, Operands, 3)) 7642 return true; 7643 break; 7644 case ARM::t2LDMIA_UPD: 7645 case ARM::t2LDMDB_UPD: 7646 case ARM::t2STMIA_UPD: 7647 case ARM::t2STMDB_UPD: 7648 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7649 return Error(Operands.back()->getStartLoc(), 7650 "writeback register not allowed in register list"); 7651 7652 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 7653 if (validatetLDMRegList(Inst, Operands, 3)) 7654 return true; 7655 } else { 7656 if (validatetSTMRegList(Inst, Operands, 3)) 7657 return true; 7658 } 7659 break; 7660 7661 case ARM::sysLDMIA_UPD: 7662 case ARM::sysLDMDA_UPD: 7663 case ARM::sysLDMDB_UPD: 7664 case ARM::sysLDMIB_UPD: 7665 if (!listContainsReg(Inst, 3, ARM::PC)) 7666 return Error(Operands[4]->getStartLoc(), 7667 "writeback register only allowed on system LDM " 7668 "if PC in register-list"); 7669 break; 7670 case ARM::sysSTMIA_UPD: 7671 case ARM::sysSTMDA_UPD: 7672 case ARM::sysSTMDB_UPD: 7673 case ARM::sysSTMIB_UPD: 7674 return Error(Operands[2]->getStartLoc(), 7675 "system STM cannot have writeback register"); 7676 case ARM::tMUL: 7677 // The second source operand must be the same register as the destination 7678 // operand. 7679 // 7680 // In this case, we must directly check the parsed operands because the 7681 // cvtThumbMultiply() function is written in such a way that it guarantees 7682 // this first statement is always true for the new Inst. Essentially, the 7683 // destination is unconditionally copied into the second source operand 7684 // without checking to see if it matches what we actually parsed. 7685 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 7686 ((ARMOperand &)*Operands[5]).getReg()) && 7687 (((ARMOperand &)*Operands[3]).getReg() != 7688 ((ARMOperand &)*Operands[4]).getReg())) { 7689 return Error(Operands[3]->getStartLoc(), 7690 "destination register must match source register"); 7691 } 7692 break; 7693 7694 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 7695 // so only issue a diagnostic for thumb1. The instructions will be 7696 // switched to the t2 encodings in processInstruction() if necessary. 7697 case ARM::tPOP: { 7698 bool ListContainsBase; 7699 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 7700 !isThumbTwo()) 7701 return Error(Operands[2]->getStartLoc(), 7702 "registers must be in range r0-r7 or pc"); 7703 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 7704 return true; 7705 break; 7706 } 7707 case ARM::tPUSH: { 7708 bool ListContainsBase; 7709 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 7710 !isThumbTwo()) 7711 return Error(Operands[2]->getStartLoc(), 7712 "registers must be in range r0-r7 or lr"); 7713 if (validatetSTMRegList(Inst, Operands, 2)) 7714 return true; 7715 break; 7716 } 7717 case ARM::tSTMIA_UPD: { 7718 bool ListContainsBase, InvalidLowList; 7719 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 7720 0, ListContainsBase); 7721 if (InvalidLowList && !isThumbTwo()) 7722 return Error(Operands[4]->getStartLoc(), 7723 "registers must be in range r0-r7"); 7724 7725 // This would be converted to a 32-bit stm, but that's not valid if the 7726 // writeback register is in the list. 7727 if (InvalidLowList && ListContainsBase) 7728 return Error(Operands[4]->getStartLoc(), 7729 "writeback operator '!' not allowed when base register " 7730 "in register list"); 7731 7732 if (validatetSTMRegList(Inst, Operands, 4)) 7733 return true; 7734 break; 7735 } 7736 case ARM::tADDrSP: 7737 // If the non-SP source operand and the destination operand are not the 7738 // same, we need thumb2 (for the wide encoding), or we have an error. 7739 if (!isThumbTwo() && 7740 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 7741 return Error(Operands[4]->getStartLoc(), 7742 "source register must be the same as destination"); 7743 } 7744 break; 7745 7746 case ARM::t2ADDrr: 7747 case ARM::t2ADDrs: 7748 case ARM::t2SUBrr: 7749 case ARM::t2SUBrs: 7750 if (Inst.getOperand(0).getReg() == ARM::SP && 7751 Inst.getOperand(1).getReg() != ARM::SP) 7752 return Error(Operands[4]->getStartLoc(), 7753 "source register must be sp if destination is sp"); 7754 break; 7755 7756 // Final range checking for Thumb unconditional branch instructions. 7757 case ARM::tB: 7758 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 7759 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7760 break; 7761 case ARM::t2B: { 7762 int op = (Operands[2]->isImm()) ? 2 : 3; 7763 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 7764 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 7765 break; 7766 } 7767 // Final range checking for Thumb conditional branch instructions. 7768 case ARM::tBcc: 7769 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 7770 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7771 break; 7772 case ARM::t2Bcc: { 7773 int Op = (Operands[2]->isImm()) ? 2 : 3; 7774 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 7775 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 7776 break; 7777 } 7778 case ARM::tCBZ: 7779 case ARM::tCBNZ: { 7780 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 7781 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7782 break; 7783 } 7784 case ARM::MOVi16: 7785 case ARM::MOVTi16: 7786 case ARM::t2MOVi16: 7787 case ARM::t2MOVTi16: 7788 { 7789 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 7790 // especially when we turn it into a movw and the expression <symbol> does 7791 // not have a :lower16: or :upper16 as part of the expression. We don't 7792 // want the behavior of silently truncating, which can be unexpected and 7793 // lead to bugs that are difficult to find since this is an easy mistake 7794 // to make. 7795 int i = (Operands[3]->isImm()) ? 3 : 4; 7796 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 7797 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 7798 if (CE) break; 7799 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 7800 if (!E) break; 7801 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 7802 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 7803 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 7804 return Error( 7805 Op.getStartLoc(), 7806 "immediate expression for mov requires :lower16: or :upper16"); 7807 break; 7808 } 7809 case ARM::HINT: 7810 case ARM::t2HINT: { 7811 unsigned Imm8 = Inst.getOperand(0).getImm(); 7812 unsigned Pred = Inst.getOperand(1).getImm(); 7813 // ESB is not predicable (pred must be AL). Without the RAS extension, this 7814 // behaves as any other unallocated hint. 7815 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 7816 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 7817 "predicable, but condition " 7818 "code specified"); 7819 if (Imm8 == 0x14 && Pred != ARMCC::AL) 7820 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 7821 "predicable, but condition " 7822 "code specified"); 7823 break; 7824 } 7825 case ARM::t2BFi: 7826 case ARM::t2BFr: 7827 case ARM::t2BFLi: 7828 case ARM::t2BFLr: { 7829 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() || 7830 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 7831 return Error(Operands[2]->getStartLoc(), 7832 "branch location out of range or not a multiple of 2"); 7833 7834 if (Opcode == ARM::t2BFi) { 7835 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>()) 7836 return Error(Operands[3]->getStartLoc(), 7837 "branch target out of range or not a multiple of 2"); 7838 } else if (Opcode == ARM::t2BFLi) { 7839 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>()) 7840 return Error(Operands[3]->getStartLoc(), 7841 "branch target out of range or not a multiple of 2"); 7842 } 7843 break; 7844 } 7845 case ARM::t2BFic: { 7846 if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() || 7847 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 7848 return Error(Operands[1]->getStartLoc(), 7849 "branch location out of range or not a multiple of 2"); 7850 7851 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>()) 7852 return Error(Operands[2]->getStartLoc(), 7853 "branch target out of range or not a multiple of 2"); 7854 7855 assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && 7856 "branch location and else branch target should either both be " 7857 "immediates or both labels"); 7858 7859 if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) { 7860 int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm(); 7861 if (Diff != 4 && Diff != 2) 7862 return Error( 7863 Operands[3]->getStartLoc(), 7864 "else branch target must be 2 or 4 greater than the branch location"); 7865 } 7866 break; 7867 } 7868 case ARM::t2CLRM: { 7869 for (unsigned i = 2; i < Inst.getNumOperands(); i++) { 7870 if (Inst.getOperand(i).isReg() && 7871 !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( 7872 Inst.getOperand(i).getReg())) { 7873 return Error(Operands[2]->getStartLoc(), 7874 "invalid register in register list. Valid registers are " 7875 "r0-r12, lr/r14 and APSR."); 7876 } 7877 } 7878 break; 7879 } 7880 case ARM::DSB: 7881 case ARM::t2DSB: { 7882 7883 if (Inst.getNumOperands() < 2) 7884 break; 7885 7886 unsigned Option = Inst.getOperand(0).getImm(); 7887 unsigned Pred = Inst.getOperand(1).getImm(); 7888 7889 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 7890 if (Option == 0 && Pred != ARMCC::AL) 7891 return Error(Operands[1]->getStartLoc(), 7892 "instruction 'ssbb' is not predicable, but condition code " 7893 "specified"); 7894 if (Option == 4 && Pred != ARMCC::AL) 7895 return Error(Operands[1]->getStartLoc(), 7896 "instruction 'pssbb' is not predicable, but condition code " 7897 "specified"); 7898 break; 7899 } 7900 case ARM::VMOVRRS: { 7901 // Source registers must be sequential. 7902 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7903 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7904 if (Sm1 != Sm + 1) 7905 return Error(Operands[5]->getStartLoc(), 7906 "source operands must be sequential"); 7907 break; 7908 } 7909 case ARM::VMOVSRR: { 7910 // Destination registers must be sequential. 7911 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7912 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7913 if (Sm1 != Sm + 1) 7914 return Error(Operands[3]->getStartLoc(), 7915 "destination operands must be sequential"); 7916 break; 7917 } 7918 case ARM::VLDMDIA: 7919 case ARM::VSTMDIA: { 7920 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 7921 auto &RegList = Op.getRegList(); 7922 if (RegList.size() < 1 || RegList.size() > 16) 7923 return Error(Operands[3]->getStartLoc(), 7924 "list of registers must be at least 1 and at most 16"); 7925 break; 7926 } 7927 case ARM::MVE_VQDMULLs32bh: 7928 case ARM::MVE_VQDMULLs32th: 7929 case ARM::MVE_VCMULf32: 7930 case ARM::MVE_VMULLBs32: 7931 case ARM::MVE_VMULLTs32: 7932 case ARM::MVE_VMULLBu32: 7933 case ARM::MVE_VMULLTu32: { 7934 if (Operands[3]->getReg() == Operands[4]->getReg()) { 7935 return Error (Operands[3]->getStartLoc(), 7936 "Qd register and Qn register can't be identical"); 7937 } 7938 if (Operands[3]->getReg() == Operands[5]->getReg()) { 7939 return Error (Operands[3]->getStartLoc(), 7940 "Qd register and Qm register can't be identical"); 7941 } 7942 break; 7943 } 7944 case ARM::MVE_VMOV_rr_q: { 7945 if (Operands[4]->getReg() != Operands[6]->getReg()) 7946 return Error (Operands[4]->getStartLoc(), "Q-registers must be the same"); 7947 if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() != 7948 static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2) 7949 return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 7950 break; 7951 } 7952 case ARM::MVE_VMOV_q_rr: { 7953 if (Operands[2]->getReg() != Operands[4]->getReg()) 7954 return Error (Operands[2]->getStartLoc(), "Q-registers must be the same"); 7955 if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() != 7956 static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2) 7957 return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 7958 break; 7959 } 7960 case ARM::UMAAL: 7961 case ARM::UMLAL: 7962 case ARM::UMULL: 7963 case ARM::t2UMAAL: 7964 case ARM::t2UMLAL: 7965 case ARM::t2UMULL: 7966 case ARM::SMLAL: 7967 case ARM::SMLALBB: 7968 case ARM::SMLALBT: 7969 case ARM::SMLALD: 7970 case ARM::SMLALDX: 7971 case ARM::SMLALTB: 7972 case ARM::SMLALTT: 7973 case ARM::SMLSLD: 7974 case ARM::SMLSLDX: 7975 case ARM::SMULL: 7976 case ARM::t2SMLAL: 7977 case ARM::t2SMLALBB: 7978 case ARM::t2SMLALBT: 7979 case ARM::t2SMLALD: 7980 case ARM::t2SMLALDX: 7981 case ARM::t2SMLALTB: 7982 case ARM::t2SMLALTT: 7983 case ARM::t2SMLSLD: 7984 case ARM::t2SMLSLDX: 7985 case ARM::t2SMULL: { 7986 unsigned RdHi = Inst.getOperand(0).getReg(); 7987 unsigned RdLo = Inst.getOperand(1).getReg(); 7988 if(RdHi == RdLo) { 7989 return Error(Loc, 7990 "unpredictable instruction, RdHi and RdLo must be different"); 7991 } 7992 break; 7993 } 7994 } 7995 7996 return false; 7997 } 7998 7999 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 8000 switch(Opc) { 8001 default: llvm_unreachable("unexpected opcode!"); 8002 // VST1LN 8003 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8004 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8005 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8006 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 8007 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 8008 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 8009 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 8010 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 8011 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 8012 8013 // VST2LN 8014 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8015 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8016 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8017 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8018 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8019 8020 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 8021 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 8022 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 8023 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 8024 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 8025 8026 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 8027 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 8028 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 8029 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 8030 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 8031 8032 // VST3LN 8033 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8034 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8035 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8036 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 8037 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8038 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 8039 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 8040 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 8041 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 8042 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 8043 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 8044 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 8045 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 8046 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 8047 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 8048 8049 // VST3 8050 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8051 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8052 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8053 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8054 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8055 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8056 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 8057 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 8058 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 8059 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 8060 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 8061 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 8062 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 8063 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 8064 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 8065 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 8066 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 8067 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 8068 8069 // VST4LN 8070 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8071 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8072 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8073 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 8074 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8075 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 8076 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 8077 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 8078 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 8079 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 8080 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 8081 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 8082 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 8083 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 8084 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 8085 8086 // VST4 8087 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8088 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8089 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8090 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8091 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8092 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8093 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8094 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8095 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8096 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8097 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8098 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8099 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 8100 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 8101 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 8102 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 8103 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 8104 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 8105 } 8106 } 8107 8108 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 8109 switch(Opc) { 8110 default: llvm_unreachable("unexpected opcode!"); 8111 // VLD1LN 8112 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8113 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8114 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8115 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8116 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8117 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8118 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 8119 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 8120 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 8121 8122 // VLD2LN 8123 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8124 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8125 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8126 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 8127 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8128 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8129 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8130 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8131 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 8132 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8133 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 8134 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 8135 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 8136 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 8137 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 8138 8139 // VLD3DUP 8140 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8141 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8142 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8143 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 8144 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8145 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8146 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8147 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8148 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8149 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 8150 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8151 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8152 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 8153 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 8154 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 8155 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 8156 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 8157 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 8158 8159 // VLD3LN 8160 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8161 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8162 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8163 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 8164 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8165 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8166 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8167 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8168 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 8169 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8170 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 8171 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 8172 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 8173 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 8174 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 8175 8176 // VLD3 8177 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8178 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8179 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8180 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8181 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8182 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8183 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8184 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8185 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8186 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8187 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8188 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8189 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 8190 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 8191 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 8192 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 8193 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 8194 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 8195 8196 // VLD4LN 8197 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8198 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8199 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8200 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8201 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8202 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8203 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8204 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8205 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8206 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8207 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 8208 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 8209 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 8210 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 8211 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 8212 8213 // VLD4DUP 8214 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8215 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8216 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8217 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 8218 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 8219 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8220 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8221 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8222 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8223 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 8224 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 8225 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8226 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 8227 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 8228 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 8229 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 8230 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 8231 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 8232 8233 // VLD4 8234 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8235 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8236 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8237 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8238 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8239 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8240 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8241 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8242 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8243 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8244 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8245 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8246 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 8247 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 8248 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 8249 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 8250 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 8251 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 8252 } 8253 } 8254 8255 bool ARMAsmParser::processInstruction(MCInst &Inst, 8256 const OperandVector &Operands, 8257 MCStreamer &Out) { 8258 // Check if we have the wide qualifier, because if it's present we 8259 // must avoid selecting a 16-bit thumb instruction. 8260 bool HasWideQualifier = false; 8261 for (auto &Op : Operands) { 8262 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 8263 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 8264 HasWideQualifier = true; 8265 break; 8266 } 8267 } 8268 8269 switch (Inst.getOpcode()) { 8270 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 8271 case ARM::LDRT_POST: 8272 case ARM::LDRBT_POST: { 8273 const unsigned Opcode = 8274 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 8275 : ARM::LDRBT_POST_IMM; 8276 MCInst TmpInst; 8277 TmpInst.setOpcode(Opcode); 8278 TmpInst.addOperand(Inst.getOperand(0)); 8279 TmpInst.addOperand(Inst.getOperand(1)); 8280 TmpInst.addOperand(Inst.getOperand(1)); 8281 TmpInst.addOperand(MCOperand::createReg(0)); 8282 TmpInst.addOperand(MCOperand::createImm(0)); 8283 TmpInst.addOperand(Inst.getOperand(2)); 8284 TmpInst.addOperand(Inst.getOperand(3)); 8285 Inst = TmpInst; 8286 return true; 8287 } 8288 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 8289 case ARM::STRT_POST: 8290 case ARM::STRBT_POST: { 8291 const unsigned Opcode = 8292 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 8293 : ARM::STRBT_POST_IMM; 8294 MCInst TmpInst; 8295 TmpInst.setOpcode(Opcode); 8296 TmpInst.addOperand(Inst.getOperand(1)); 8297 TmpInst.addOperand(Inst.getOperand(0)); 8298 TmpInst.addOperand(Inst.getOperand(1)); 8299 TmpInst.addOperand(MCOperand::createReg(0)); 8300 TmpInst.addOperand(MCOperand::createImm(0)); 8301 TmpInst.addOperand(Inst.getOperand(2)); 8302 TmpInst.addOperand(Inst.getOperand(3)); 8303 Inst = TmpInst; 8304 return true; 8305 } 8306 // Alias for alternate form of 'ADR Rd, #imm' instruction. 8307 case ARM::ADDri: { 8308 if (Inst.getOperand(1).getReg() != ARM::PC || 8309 Inst.getOperand(5).getReg() != 0 || 8310 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 8311 return false; 8312 MCInst TmpInst; 8313 TmpInst.setOpcode(ARM::ADR); 8314 TmpInst.addOperand(Inst.getOperand(0)); 8315 if (Inst.getOperand(2).isImm()) { 8316 // Immediate (mod_imm) will be in its encoded form, we must unencode it 8317 // before passing it to the ADR instruction. 8318 unsigned Enc = Inst.getOperand(2).getImm(); 8319 TmpInst.addOperand(MCOperand::createImm( 8320 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 8321 } else { 8322 // Turn PC-relative expression into absolute expression. 8323 // Reading PC provides the start of the current instruction + 8 and 8324 // the transform to adr is biased by that. 8325 MCSymbol *Dot = getContext().createTempSymbol(); 8326 Out.emitLabel(Dot); 8327 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 8328 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 8329 MCSymbolRefExpr::VK_None, 8330 getContext()); 8331 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 8332 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 8333 getContext()); 8334 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 8335 getContext()); 8336 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 8337 } 8338 TmpInst.addOperand(Inst.getOperand(3)); 8339 TmpInst.addOperand(Inst.getOperand(4)); 8340 Inst = TmpInst; 8341 return true; 8342 } 8343 // Aliases for alternate PC+imm syntax of LDR instructions. 8344 case ARM::t2LDRpcrel: 8345 // Select the narrow version if the immediate will fit. 8346 if (Inst.getOperand(1).getImm() > 0 && 8347 Inst.getOperand(1).getImm() <= 0xff && 8348 !HasWideQualifier) 8349 Inst.setOpcode(ARM::tLDRpci); 8350 else 8351 Inst.setOpcode(ARM::t2LDRpci); 8352 return true; 8353 case ARM::t2LDRBpcrel: 8354 Inst.setOpcode(ARM::t2LDRBpci); 8355 return true; 8356 case ARM::t2LDRHpcrel: 8357 Inst.setOpcode(ARM::t2LDRHpci); 8358 return true; 8359 case ARM::t2LDRSBpcrel: 8360 Inst.setOpcode(ARM::t2LDRSBpci); 8361 return true; 8362 case ARM::t2LDRSHpcrel: 8363 Inst.setOpcode(ARM::t2LDRSHpci); 8364 return true; 8365 case ARM::LDRConstPool: 8366 case ARM::tLDRConstPool: 8367 case ARM::t2LDRConstPool: { 8368 // Pseudo instruction ldr rt, =immediate is converted to a 8369 // MOV rt, immediate if immediate is known and representable 8370 // otherwise we create a constant pool entry that we load from. 8371 MCInst TmpInst; 8372 if (Inst.getOpcode() == ARM::LDRConstPool) 8373 TmpInst.setOpcode(ARM::LDRi12); 8374 else if (Inst.getOpcode() == ARM::tLDRConstPool) 8375 TmpInst.setOpcode(ARM::tLDRpci); 8376 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 8377 TmpInst.setOpcode(ARM::t2LDRpci); 8378 const ARMOperand &PoolOperand = 8379 (HasWideQualifier ? 8380 static_cast<ARMOperand &>(*Operands[4]) : 8381 static_cast<ARMOperand &>(*Operands[3])); 8382 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 8383 // If SubExprVal is a constant we may be able to use a MOV 8384 if (isa<MCConstantExpr>(SubExprVal) && 8385 Inst.getOperand(0).getReg() != ARM::PC && 8386 Inst.getOperand(0).getReg() != ARM::SP) { 8387 int64_t Value = 8388 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 8389 bool UseMov = true; 8390 bool MovHasS = true; 8391 if (Inst.getOpcode() == ARM::LDRConstPool) { 8392 // ARM Constant 8393 if (ARM_AM::getSOImmVal(Value) != -1) { 8394 Value = ARM_AM::getSOImmVal(Value); 8395 TmpInst.setOpcode(ARM::MOVi); 8396 } 8397 else if (ARM_AM::getSOImmVal(~Value) != -1) { 8398 Value = ARM_AM::getSOImmVal(~Value); 8399 TmpInst.setOpcode(ARM::MVNi); 8400 } 8401 else if (hasV6T2Ops() && 8402 Value >=0 && Value < 65536) { 8403 TmpInst.setOpcode(ARM::MOVi16); 8404 MovHasS = false; 8405 } 8406 else 8407 UseMov = false; 8408 } 8409 else { 8410 // Thumb/Thumb2 Constant 8411 if (hasThumb2() && 8412 ARM_AM::getT2SOImmVal(Value) != -1) 8413 TmpInst.setOpcode(ARM::t2MOVi); 8414 else if (hasThumb2() && 8415 ARM_AM::getT2SOImmVal(~Value) != -1) { 8416 TmpInst.setOpcode(ARM::t2MVNi); 8417 Value = ~Value; 8418 } 8419 else if (hasV8MBaseline() && 8420 Value >=0 && Value < 65536) { 8421 TmpInst.setOpcode(ARM::t2MOVi16); 8422 MovHasS = false; 8423 } 8424 else 8425 UseMov = false; 8426 } 8427 if (UseMov) { 8428 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8429 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 8430 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8431 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8432 if (MovHasS) 8433 TmpInst.addOperand(MCOperand::createReg(0)); // S 8434 Inst = TmpInst; 8435 return true; 8436 } 8437 } 8438 // No opportunity to use MOV/MVN create constant pool 8439 const MCExpr *CPLoc = 8440 getTargetStreamer().addConstantPoolEntry(SubExprVal, 8441 PoolOperand.getStartLoc()); 8442 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8443 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 8444 if (TmpInst.getOpcode() == ARM::LDRi12) 8445 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 8446 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8447 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8448 Inst = TmpInst; 8449 return true; 8450 } 8451 // Handle NEON VST complex aliases. 8452 case ARM::VST1LNdWB_register_Asm_8: 8453 case ARM::VST1LNdWB_register_Asm_16: 8454 case ARM::VST1LNdWB_register_Asm_32: { 8455 MCInst TmpInst; 8456 // Shuffle the operands around so the lane index operand is in the 8457 // right place. 8458 unsigned Spacing; 8459 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8460 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8461 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8462 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8463 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8464 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8465 TmpInst.addOperand(Inst.getOperand(1)); // lane 8466 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8467 TmpInst.addOperand(Inst.getOperand(6)); 8468 Inst = TmpInst; 8469 return true; 8470 } 8471 8472 case ARM::VST2LNdWB_register_Asm_8: 8473 case ARM::VST2LNdWB_register_Asm_16: 8474 case ARM::VST2LNdWB_register_Asm_32: 8475 case ARM::VST2LNqWB_register_Asm_16: 8476 case ARM::VST2LNqWB_register_Asm_32: { 8477 MCInst TmpInst; 8478 // Shuffle the operands around so the lane index operand is in the 8479 // right place. 8480 unsigned Spacing; 8481 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8482 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8483 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8484 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8485 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8486 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8487 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8488 Spacing)); 8489 TmpInst.addOperand(Inst.getOperand(1)); // lane 8490 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8491 TmpInst.addOperand(Inst.getOperand(6)); 8492 Inst = TmpInst; 8493 return true; 8494 } 8495 8496 case ARM::VST3LNdWB_register_Asm_8: 8497 case ARM::VST3LNdWB_register_Asm_16: 8498 case ARM::VST3LNdWB_register_Asm_32: 8499 case ARM::VST3LNqWB_register_Asm_16: 8500 case ARM::VST3LNqWB_register_Asm_32: { 8501 MCInst TmpInst; 8502 // Shuffle the operands around so the lane index operand is in the 8503 // right place. 8504 unsigned Spacing; 8505 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8506 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8507 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8508 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8509 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8510 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8511 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8512 Spacing)); 8513 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8514 Spacing * 2)); 8515 TmpInst.addOperand(Inst.getOperand(1)); // lane 8516 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8517 TmpInst.addOperand(Inst.getOperand(6)); 8518 Inst = TmpInst; 8519 return true; 8520 } 8521 8522 case ARM::VST4LNdWB_register_Asm_8: 8523 case ARM::VST4LNdWB_register_Asm_16: 8524 case ARM::VST4LNdWB_register_Asm_32: 8525 case ARM::VST4LNqWB_register_Asm_16: 8526 case ARM::VST4LNqWB_register_Asm_32: { 8527 MCInst TmpInst; 8528 // Shuffle the operands around so the lane index operand is in the 8529 // right place. 8530 unsigned Spacing; 8531 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8532 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8533 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8534 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8535 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8536 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8537 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8538 Spacing)); 8539 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8540 Spacing * 2)); 8541 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8542 Spacing * 3)); 8543 TmpInst.addOperand(Inst.getOperand(1)); // lane 8544 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8545 TmpInst.addOperand(Inst.getOperand(6)); 8546 Inst = TmpInst; 8547 return true; 8548 } 8549 8550 case ARM::VST1LNdWB_fixed_Asm_8: 8551 case ARM::VST1LNdWB_fixed_Asm_16: 8552 case ARM::VST1LNdWB_fixed_Asm_32: { 8553 MCInst TmpInst; 8554 // Shuffle the operands around so the lane index operand is in the 8555 // right place. 8556 unsigned Spacing; 8557 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8558 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8559 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8560 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8561 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8562 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8563 TmpInst.addOperand(Inst.getOperand(1)); // lane 8564 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8565 TmpInst.addOperand(Inst.getOperand(5)); 8566 Inst = TmpInst; 8567 return true; 8568 } 8569 8570 case ARM::VST2LNdWB_fixed_Asm_8: 8571 case ARM::VST2LNdWB_fixed_Asm_16: 8572 case ARM::VST2LNdWB_fixed_Asm_32: 8573 case ARM::VST2LNqWB_fixed_Asm_16: 8574 case ARM::VST2LNqWB_fixed_Asm_32: { 8575 MCInst TmpInst; 8576 // Shuffle the operands around so the lane index operand is in the 8577 // right place. 8578 unsigned Spacing; 8579 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8580 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8581 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8582 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8583 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8584 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8585 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8586 Spacing)); 8587 TmpInst.addOperand(Inst.getOperand(1)); // lane 8588 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8589 TmpInst.addOperand(Inst.getOperand(5)); 8590 Inst = TmpInst; 8591 return true; 8592 } 8593 8594 case ARM::VST3LNdWB_fixed_Asm_8: 8595 case ARM::VST3LNdWB_fixed_Asm_16: 8596 case ARM::VST3LNdWB_fixed_Asm_32: 8597 case ARM::VST3LNqWB_fixed_Asm_16: 8598 case ARM::VST3LNqWB_fixed_Asm_32: { 8599 MCInst TmpInst; 8600 // Shuffle the operands around so the lane index operand is in the 8601 // right place. 8602 unsigned Spacing; 8603 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8604 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8605 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8606 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8607 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8608 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8609 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8610 Spacing)); 8611 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8612 Spacing * 2)); 8613 TmpInst.addOperand(Inst.getOperand(1)); // lane 8614 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8615 TmpInst.addOperand(Inst.getOperand(5)); 8616 Inst = TmpInst; 8617 return true; 8618 } 8619 8620 case ARM::VST4LNdWB_fixed_Asm_8: 8621 case ARM::VST4LNdWB_fixed_Asm_16: 8622 case ARM::VST4LNdWB_fixed_Asm_32: 8623 case ARM::VST4LNqWB_fixed_Asm_16: 8624 case ARM::VST4LNqWB_fixed_Asm_32: { 8625 MCInst TmpInst; 8626 // Shuffle the operands around so the lane index operand is in the 8627 // right place. 8628 unsigned Spacing; 8629 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8630 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8631 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8632 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8633 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8634 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8635 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8636 Spacing)); 8637 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8638 Spacing * 2)); 8639 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8640 Spacing * 3)); 8641 TmpInst.addOperand(Inst.getOperand(1)); // lane 8642 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8643 TmpInst.addOperand(Inst.getOperand(5)); 8644 Inst = TmpInst; 8645 return true; 8646 } 8647 8648 case ARM::VST1LNdAsm_8: 8649 case ARM::VST1LNdAsm_16: 8650 case ARM::VST1LNdAsm_32: { 8651 MCInst TmpInst; 8652 // Shuffle the operands around so the lane index operand is in the 8653 // right place. 8654 unsigned Spacing; 8655 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8656 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8657 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8658 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8659 TmpInst.addOperand(Inst.getOperand(1)); // lane 8660 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8661 TmpInst.addOperand(Inst.getOperand(5)); 8662 Inst = TmpInst; 8663 return true; 8664 } 8665 8666 case ARM::VST2LNdAsm_8: 8667 case ARM::VST2LNdAsm_16: 8668 case ARM::VST2LNdAsm_32: 8669 case ARM::VST2LNqAsm_16: 8670 case ARM::VST2LNqAsm_32: { 8671 MCInst TmpInst; 8672 // Shuffle the operands around so the lane index operand is in the 8673 // right place. 8674 unsigned Spacing; 8675 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8676 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8677 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8678 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8679 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8680 Spacing)); 8681 TmpInst.addOperand(Inst.getOperand(1)); // lane 8682 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8683 TmpInst.addOperand(Inst.getOperand(5)); 8684 Inst = TmpInst; 8685 return true; 8686 } 8687 8688 case ARM::VST3LNdAsm_8: 8689 case ARM::VST3LNdAsm_16: 8690 case ARM::VST3LNdAsm_32: 8691 case ARM::VST3LNqAsm_16: 8692 case ARM::VST3LNqAsm_32: { 8693 MCInst TmpInst; 8694 // Shuffle the operands around so the lane index operand is in the 8695 // right place. 8696 unsigned Spacing; 8697 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8698 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8699 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8700 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8701 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8702 Spacing)); 8703 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8704 Spacing * 2)); 8705 TmpInst.addOperand(Inst.getOperand(1)); // lane 8706 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8707 TmpInst.addOperand(Inst.getOperand(5)); 8708 Inst = TmpInst; 8709 return true; 8710 } 8711 8712 case ARM::VST4LNdAsm_8: 8713 case ARM::VST4LNdAsm_16: 8714 case ARM::VST4LNdAsm_32: 8715 case ARM::VST4LNqAsm_16: 8716 case ARM::VST4LNqAsm_32: { 8717 MCInst TmpInst; 8718 // Shuffle the operands around so the lane index operand is in the 8719 // right place. 8720 unsigned Spacing; 8721 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8722 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8723 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8724 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8725 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8726 Spacing)); 8727 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8728 Spacing * 2)); 8729 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8730 Spacing * 3)); 8731 TmpInst.addOperand(Inst.getOperand(1)); // lane 8732 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8733 TmpInst.addOperand(Inst.getOperand(5)); 8734 Inst = TmpInst; 8735 return true; 8736 } 8737 8738 // Handle NEON VLD complex aliases. 8739 case ARM::VLD1LNdWB_register_Asm_8: 8740 case ARM::VLD1LNdWB_register_Asm_16: 8741 case ARM::VLD1LNdWB_register_Asm_32: { 8742 MCInst TmpInst; 8743 // Shuffle the operands around so the lane index operand is in the 8744 // right place. 8745 unsigned Spacing; 8746 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8747 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8748 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8749 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8750 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8751 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8752 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8753 TmpInst.addOperand(Inst.getOperand(1)); // lane 8754 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8755 TmpInst.addOperand(Inst.getOperand(6)); 8756 Inst = TmpInst; 8757 return true; 8758 } 8759 8760 case ARM::VLD2LNdWB_register_Asm_8: 8761 case ARM::VLD2LNdWB_register_Asm_16: 8762 case ARM::VLD2LNdWB_register_Asm_32: 8763 case ARM::VLD2LNqWB_register_Asm_16: 8764 case ARM::VLD2LNqWB_register_Asm_32: { 8765 MCInst TmpInst; 8766 // Shuffle the operands around so the lane index operand is in the 8767 // right place. 8768 unsigned Spacing; 8769 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8770 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8771 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8772 Spacing)); 8773 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8774 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8775 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8776 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8777 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8778 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8779 Spacing)); 8780 TmpInst.addOperand(Inst.getOperand(1)); // lane 8781 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8782 TmpInst.addOperand(Inst.getOperand(6)); 8783 Inst = TmpInst; 8784 return true; 8785 } 8786 8787 case ARM::VLD3LNdWB_register_Asm_8: 8788 case ARM::VLD3LNdWB_register_Asm_16: 8789 case ARM::VLD3LNdWB_register_Asm_32: 8790 case ARM::VLD3LNqWB_register_Asm_16: 8791 case ARM::VLD3LNqWB_register_Asm_32: { 8792 MCInst TmpInst; 8793 // Shuffle the operands around so the lane index operand is in the 8794 // right place. 8795 unsigned Spacing; 8796 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8797 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8798 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8799 Spacing)); 8800 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8801 Spacing * 2)); 8802 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8803 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8804 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8805 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8806 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8807 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8808 Spacing)); 8809 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8810 Spacing * 2)); 8811 TmpInst.addOperand(Inst.getOperand(1)); // lane 8812 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8813 TmpInst.addOperand(Inst.getOperand(6)); 8814 Inst = TmpInst; 8815 return true; 8816 } 8817 8818 case ARM::VLD4LNdWB_register_Asm_8: 8819 case ARM::VLD4LNdWB_register_Asm_16: 8820 case ARM::VLD4LNdWB_register_Asm_32: 8821 case ARM::VLD4LNqWB_register_Asm_16: 8822 case ARM::VLD4LNqWB_register_Asm_32: { 8823 MCInst TmpInst; 8824 // Shuffle the operands around so the lane index operand is in the 8825 // right place. 8826 unsigned Spacing; 8827 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8828 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8829 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8830 Spacing)); 8831 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8832 Spacing * 2)); 8833 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8834 Spacing * 3)); 8835 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8836 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8837 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8838 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8839 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8840 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8841 Spacing)); 8842 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8843 Spacing * 2)); 8844 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8845 Spacing * 3)); 8846 TmpInst.addOperand(Inst.getOperand(1)); // lane 8847 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8848 TmpInst.addOperand(Inst.getOperand(6)); 8849 Inst = TmpInst; 8850 return true; 8851 } 8852 8853 case ARM::VLD1LNdWB_fixed_Asm_8: 8854 case ARM::VLD1LNdWB_fixed_Asm_16: 8855 case ARM::VLD1LNdWB_fixed_Asm_32: { 8856 MCInst TmpInst; 8857 // Shuffle the operands around so the lane index operand is in the 8858 // right place. 8859 unsigned Spacing; 8860 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8861 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8862 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8863 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8864 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8865 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8866 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8867 TmpInst.addOperand(Inst.getOperand(1)); // lane 8868 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8869 TmpInst.addOperand(Inst.getOperand(5)); 8870 Inst = TmpInst; 8871 return true; 8872 } 8873 8874 case ARM::VLD2LNdWB_fixed_Asm_8: 8875 case ARM::VLD2LNdWB_fixed_Asm_16: 8876 case ARM::VLD2LNdWB_fixed_Asm_32: 8877 case ARM::VLD2LNqWB_fixed_Asm_16: 8878 case ARM::VLD2LNqWB_fixed_Asm_32: { 8879 MCInst TmpInst; 8880 // Shuffle the operands around so the lane index operand is in the 8881 // right place. 8882 unsigned Spacing; 8883 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8884 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8885 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8886 Spacing)); 8887 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8888 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8889 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8890 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8891 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8892 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8893 Spacing)); 8894 TmpInst.addOperand(Inst.getOperand(1)); // lane 8895 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8896 TmpInst.addOperand(Inst.getOperand(5)); 8897 Inst = TmpInst; 8898 return true; 8899 } 8900 8901 case ARM::VLD3LNdWB_fixed_Asm_8: 8902 case ARM::VLD3LNdWB_fixed_Asm_16: 8903 case ARM::VLD3LNdWB_fixed_Asm_32: 8904 case ARM::VLD3LNqWB_fixed_Asm_16: 8905 case ARM::VLD3LNqWB_fixed_Asm_32: { 8906 MCInst TmpInst; 8907 // Shuffle the operands around so the lane index operand is in the 8908 // right place. 8909 unsigned Spacing; 8910 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8911 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8912 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8913 Spacing)); 8914 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8915 Spacing * 2)); 8916 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8917 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8918 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8919 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8920 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8921 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8922 Spacing)); 8923 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8924 Spacing * 2)); 8925 TmpInst.addOperand(Inst.getOperand(1)); // lane 8926 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8927 TmpInst.addOperand(Inst.getOperand(5)); 8928 Inst = TmpInst; 8929 return true; 8930 } 8931 8932 case ARM::VLD4LNdWB_fixed_Asm_8: 8933 case ARM::VLD4LNdWB_fixed_Asm_16: 8934 case ARM::VLD4LNdWB_fixed_Asm_32: 8935 case ARM::VLD4LNqWB_fixed_Asm_16: 8936 case ARM::VLD4LNqWB_fixed_Asm_32: { 8937 MCInst TmpInst; 8938 // Shuffle the operands around so the lane index operand is in the 8939 // right place. 8940 unsigned Spacing; 8941 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8942 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8943 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8944 Spacing)); 8945 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8946 Spacing * 2)); 8947 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8948 Spacing * 3)); 8949 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8950 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8951 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8952 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8953 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8954 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8955 Spacing)); 8956 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8957 Spacing * 2)); 8958 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8959 Spacing * 3)); 8960 TmpInst.addOperand(Inst.getOperand(1)); // lane 8961 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8962 TmpInst.addOperand(Inst.getOperand(5)); 8963 Inst = TmpInst; 8964 return true; 8965 } 8966 8967 case ARM::VLD1LNdAsm_8: 8968 case ARM::VLD1LNdAsm_16: 8969 case ARM::VLD1LNdAsm_32: { 8970 MCInst TmpInst; 8971 // Shuffle the operands around so the lane index operand is in the 8972 // right place. 8973 unsigned Spacing; 8974 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8975 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8976 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8977 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8978 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8979 TmpInst.addOperand(Inst.getOperand(1)); // lane 8980 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8981 TmpInst.addOperand(Inst.getOperand(5)); 8982 Inst = TmpInst; 8983 return true; 8984 } 8985 8986 case ARM::VLD2LNdAsm_8: 8987 case ARM::VLD2LNdAsm_16: 8988 case ARM::VLD2LNdAsm_32: 8989 case ARM::VLD2LNqAsm_16: 8990 case ARM::VLD2LNqAsm_32: { 8991 MCInst TmpInst; 8992 // Shuffle the operands around so the lane index operand is in the 8993 // right place. 8994 unsigned Spacing; 8995 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8996 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8997 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8998 Spacing)); 8999 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9000 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9001 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9002 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9003 Spacing)); 9004 TmpInst.addOperand(Inst.getOperand(1)); // lane 9005 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9006 TmpInst.addOperand(Inst.getOperand(5)); 9007 Inst = TmpInst; 9008 return true; 9009 } 9010 9011 case ARM::VLD3LNdAsm_8: 9012 case ARM::VLD3LNdAsm_16: 9013 case ARM::VLD3LNdAsm_32: 9014 case ARM::VLD3LNqAsm_16: 9015 case ARM::VLD3LNqAsm_32: { 9016 MCInst TmpInst; 9017 // Shuffle the operands around so the lane index operand is in the 9018 // right place. 9019 unsigned Spacing; 9020 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9021 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9022 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9023 Spacing)); 9024 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9025 Spacing * 2)); 9026 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9027 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9028 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9029 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9030 Spacing)); 9031 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9032 Spacing * 2)); 9033 TmpInst.addOperand(Inst.getOperand(1)); // lane 9034 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9035 TmpInst.addOperand(Inst.getOperand(5)); 9036 Inst = TmpInst; 9037 return true; 9038 } 9039 9040 case ARM::VLD4LNdAsm_8: 9041 case ARM::VLD4LNdAsm_16: 9042 case ARM::VLD4LNdAsm_32: 9043 case ARM::VLD4LNqAsm_16: 9044 case ARM::VLD4LNqAsm_32: { 9045 MCInst TmpInst; 9046 // Shuffle the operands around so the lane index operand is in the 9047 // right place. 9048 unsigned Spacing; 9049 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9050 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9051 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9052 Spacing)); 9053 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9054 Spacing * 2)); 9055 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9056 Spacing * 3)); 9057 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9058 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9059 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9060 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9061 Spacing)); 9062 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9063 Spacing * 2)); 9064 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9065 Spacing * 3)); 9066 TmpInst.addOperand(Inst.getOperand(1)); // lane 9067 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9068 TmpInst.addOperand(Inst.getOperand(5)); 9069 Inst = TmpInst; 9070 return true; 9071 } 9072 9073 // VLD3DUP single 3-element structure to all lanes instructions. 9074 case ARM::VLD3DUPdAsm_8: 9075 case ARM::VLD3DUPdAsm_16: 9076 case ARM::VLD3DUPdAsm_32: 9077 case ARM::VLD3DUPqAsm_8: 9078 case ARM::VLD3DUPqAsm_16: 9079 case ARM::VLD3DUPqAsm_32: { 9080 MCInst TmpInst; 9081 unsigned Spacing; 9082 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9083 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9084 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9085 Spacing)); 9086 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9087 Spacing * 2)); 9088 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9089 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9090 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9091 TmpInst.addOperand(Inst.getOperand(4)); 9092 Inst = TmpInst; 9093 return true; 9094 } 9095 9096 case ARM::VLD3DUPdWB_fixed_Asm_8: 9097 case ARM::VLD3DUPdWB_fixed_Asm_16: 9098 case ARM::VLD3DUPdWB_fixed_Asm_32: 9099 case ARM::VLD3DUPqWB_fixed_Asm_8: 9100 case ARM::VLD3DUPqWB_fixed_Asm_16: 9101 case ARM::VLD3DUPqWB_fixed_Asm_32: { 9102 MCInst TmpInst; 9103 unsigned Spacing; 9104 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9105 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9106 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9107 Spacing)); 9108 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9109 Spacing * 2)); 9110 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9111 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9112 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9113 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9114 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9115 TmpInst.addOperand(Inst.getOperand(4)); 9116 Inst = TmpInst; 9117 return true; 9118 } 9119 9120 case ARM::VLD3DUPdWB_register_Asm_8: 9121 case ARM::VLD3DUPdWB_register_Asm_16: 9122 case ARM::VLD3DUPdWB_register_Asm_32: 9123 case ARM::VLD3DUPqWB_register_Asm_8: 9124 case ARM::VLD3DUPqWB_register_Asm_16: 9125 case ARM::VLD3DUPqWB_register_Asm_32: { 9126 MCInst TmpInst; 9127 unsigned Spacing; 9128 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9129 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9130 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9131 Spacing)); 9132 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9133 Spacing * 2)); 9134 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9135 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9136 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9137 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9138 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9139 TmpInst.addOperand(Inst.getOperand(5)); 9140 Inst = TmpInst; 9141 return true; 9142 } 9143 9144 // VLD3 multiple 3-element structure instructions. 9145 case ARM::VLD3dAsm_8: 9146 case ARM::VLD3dAsm_16: 9147 case ARM::VLD3dAsm_32: 9148 case ARM::VLD3qAsm_8: 9149 case ARM::VLD3qAsm_16: 9150 case ARM::VLD3qAsm_32: { 9151 MCInst TmpInst; 9152 unsigned Spacing; 9153 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9154 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9155 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9156 Spacing)); 9157 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9158 Spacing * 2)); 9159 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9160 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9161 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9162 TmpInst.addOperand(Inst.getOperand(4)); 9163 Inst = TmpInst; 9164 return true; 9165 } 9166 9167 case ARM::VLD3dWB_fixed_Asm_8: 9168 case ARM::VLD3dWB_fixed_Asm_16: 9169 case ARM::VLD3dWB_fixed_Asm_32: 9170 case ARM::VLD3qWB_fixed_Asm_8: 9171 case ARM::VLD3qWB_fixed_Asm_16: 9172 case ARM::VLD3qWB_fixed_Asm_32: { 9173 MCInst TmpInst; 9174 unsigned Spacing; 9175 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9176 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9177 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9178 Spacing)); 9179 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9180 Spacing * 2)); 9181 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9182 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9183 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9184 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9185 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9186 TmpInst.addOperand(Inst.getOperand(4)); 9187 Inst = TmpInst; 9188 return true; 9189 } 9190 9191 case ARM::VLD3dWB_register_Asm_8: 9192 case ARM::VLD3dWB_register_Asm_16: 9193 case ARM::VLD3dWB_register_Asm_32: 9194 case ARM::VLD3qWB_register_Asm_8: 9195 case ARM::VLD3qWB_register_Asm_16: 9196 case ARM::VLD3qWB_register_Asm_32: { 9197 MCInst TmpInst; 9198 unsigned Spacing; 9199 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9200 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9201 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9202 Spacing)); 9203 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9204 Spacing * 2)); 9205 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9206 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9207 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9208 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9209 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9210 TmpInst.addOperand(Inst.getOperand(5)); 9211 Inst = TmpInst; 9212 return true; 9213 } 9214 9215 // VLD4DUP single 3-element structure to all lanes instructions. 9216 case ARM::VLD4DUPdAsm_8: 9217 case ARM::VLD4DUPdAsm_16: 9218 case ARM::VLD4DUPdAsm_32: 9219 case ARM::VLD4DUPqAsm_8: 9220 case ARM::VLD4DUPqAsm_16: 9221 case ARM::VLD4DUPqAsm_32: { 9222 MCInst TmpInst; 9223 unsigned Spacing; 9224 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9225 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9226 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9227 Spacing)); 9228 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9229 Spacing * 2)); 9230 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9231 Spacing * 3)); 9232 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9233 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9234 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9235 TmpInst.addOperand(Inst.getOperand(4)); 9236 Inst = TmpInst; 9237 return true; 9238 } 9239 9240 case ARM::VLD4DUPdWB_fixed_Asm_8: 9241 case ARM::VLD4DUPdWB_fixed_Asm_16: 9242 case ARM::VLD4DUPdWB_fixed_Asm_32: 9243 case ARM::VLD4DUPqWB_fixed_Asm_8: 9244 case ARM::VLD4DUPqWB_fixed_Asm_16: 9245 case ARM::VLD4DUPqWB_fixed_Asm_32: { 9246 MCInst TmpInst; 9247 unsigned Spacing; 9248 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9249 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9250 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9251 Spacing)); 9252 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9253 Spacing * 2)); 9254 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9255 Spacing * 3)); 9256 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9257 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9258 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9259 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9260 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9261 TmpInst.addOperand(Inst.getOperand(4)); 9262 Inst = TmpInst; 9263 return true; 9264 } 9265 9266 case ARM::VLD4DUPdWB_register_Asm_8: 9267 case ARM::VLD4DUPdWB_register_Asm_16: 9268 case ARM::VLD4DUPdWB_register_Asm_32: 9269 case ARM::VLD4DUPqWB_register_Asm_8: 9270 case ARM::VLD4DUPqWB_register_Asm_16: 9271 case ARM::VLD4DUPqWB_register_Asm_32: { 9272 MCInst TmpInst; 9273 unsigned Spacing; 9274 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9275 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9276 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9277 Spacing)); 9278 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9279 Spacing * 2)); 9280 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9281 Spacing * 3)); 9282 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9283 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9284 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9285 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9286 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9287 TmpInst.addOperand(Inst.getOperand(5)); 9288 Inst = TmpInst; 9289 return true; 9290 } 9291 9292 // VLD4 multiple 4-element structure instructions. 9293 case ARM::VLD4dAsm_8: 9294 case ARM::VLD4dAsm_16: 9295 case ARM::VLD4dAsm_32: 9296 case ARM::VLD4qAsm_8: 9297 case ARM::VLD4qAsm_16: 9298 case ARM::VLD4qAsm_32: { 9299 MCInst TmpInst; 9300 unsigned Spacing; 9301 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9302 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9303 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9304 Spacing)); 9305 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9306 Spacing * 2)); 9307 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9308 Spacing * 3)); 9309 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9310 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9311 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9312 TmpInst.addOperand(Inst.getOperand(4)); 9313 Inst = TmpInst; 9314 return true; 9315 } 9316 9317 case ARM::VLD4dWB_fixed_Asm_8: 9318 case ARM::VLD4dWB_fixed_Asm_16: 9319 case ARM::VLD4dWB_fixed_Asm_32: 9320 case ARM::VLD4qWB_fixed_Asm_8: 9321 case ARM::VLD4qWB_fixed_Asm_16: 9322 case ARM::VLD4qWB_fixed_Asm_32: { 9323 MCInst TmpInst; 9324 unsigned Spacing; 9325 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9326 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9327 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9328 Spacing)); 9329 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9330 Spacing * 2)); 9331 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9332 Spacing * 3)); 9333 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9334 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9335 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9336 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9337 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9338 TmpInst.addOperand(Inst.getOperand(4)); 9339 Inst = TmpInst; 9340 return true; 9341 } 9342 9343 case ARM::VLD4dWB_register_Asm_8: 9344 case ARM::VLD4dWB_register_Asm_16: 9345 case ARM::VLD4dWB_register_Asm_32: 9346 case ARM::VLD4qWB_register_Asm_8: 9347 case ARM::VLD4qWB_register_Asm_16: 9348 case ARM::VLD4qWB_register_Asm_32: { 9349 MCInst TmpInst; 9350 unsigned Spacing; 9351 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9352 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9353 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9354 Spacing)); 9355 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9356 Spacing * 2)); 9357 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9358 Spacing * 3)); 9359 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9360 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9361 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9362 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9363 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9364 TmpInst.addOperand(Inst.getOperand(5)); 9365 Inst = TmpInst; 9366 return true; 9367 } 9368 9369 // VST3 multiple 3-element structure instructions. 9370 case ARM::VST3dAsm_8: 9371 case ARM::VST3dAsm_16: 9372 case ARM::VST3dAsm_32: 9373 case ARM::VST3qAsm_8: 9374 case ARM::VST3qAsm_16: 9375 case ARM::VST3qAsm_32: { 9376 MCInst TmpInst; 9377 unsigned Spacing; 9378 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9379 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9380 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9381 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9382 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9383 Spacing)); 9384 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9385 Spacing * 2)); 9386 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9387 TmpInst.addOperand(Inst.getOperand(4)); 9388 Inst = TmpInst; 9389 return true; 9390 } 9391 9392 case ARM::VST3dWB_fixed_Asm_8: 9393 case ARM::VST3dWB_fixed_Asm_16: 9394 case ARM::VST3dWB_fixed_Asm_32: 9395 case ARM::VST3qWB_fixed_Asm_8: 9396 case ARM::VST3qWB_fixed_Asm_16: 9397 case ARM::VST3qWB_fixed_Asm_32: { 9398 MCInst TmpInst; 9399 unsigned Spacing; 9400 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9401 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9402 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9403 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9404 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9405 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9406 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9407 Spacing)); 9408 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9409 Spacing * 2)); 9410 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9411 TmpInst.addOperand(Inst.getOperand(4)); 9412 Inst = TmpInst; 9413 return true; 9414 } 9415 9416 case ARM::VST3dWB_register_Asm_8: 9417 case ARM::VST3dWB_register_Asm_16: 9418 case ARM::VST3dWB_register_Asm_32: 9419 case ARM::VST3qWB_register_Asm_8: 9420 case ARM::VST3qWB_register_Asm_16: 9421 case ARM::VST3qWB_register_Asm_32: { 9422 MCInst TmpInst; 9423 unsigned Spacing; 9424 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9425 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9426 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9427 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9428 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9429 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9430 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9431 Spacing)); 9432 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9433 Spacing * 2)); 9434 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9435 TmpInst.addOperand(Inst.getOperand(5)); 9436 Inst = TmpInst; 9437 return true; 9438 } 9439 9440 // VST4 multiple 3-element structure instructions. 9441 case ARM::VST4dAsm_8: 9442 case ARM::VST4dAsm_16: 9443 case ARM::VST4dAsm_32: 9444 case ARM::VST4qAsm_8: 9445 case ARM::VST4qAsm_16: 9446 case ARM::VST4qAsm_32: { 9447 MCInst TmpInst; 9448 unsigned Spacing; 9449 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9450 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9451 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9452 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9453 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9454 Spacing)); 9455 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9456 Spacing * 2)); 9457 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9458 Spacing * 3)); 9459 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9460 TmpInst.addOperand(Inst.getOperand(4)); 9461 Inst = TmpInst; 9462 return true; 9463 } 9464 9465 case ARM::VST4dWB_fixed_Asm_8: 9466 case ARM::VST4dWB_fixed_Asm_16: 9467 case ARM::VST4dWB_fixed_Asm_32: 9468 case ARM::VST4qWB_fixed_Asm_8: 9469 case ARM::VST4qWB_fixed_Asm_16: 9470 case ARM::VST4qWB_fixed_Asm_32: { 9471 MCInst TmpInst; 9472 unsigned Spacing; 9473 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9474 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9475 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9476 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9477 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9478 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9479 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9480 Spacing)); 9481 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9482 Spacing * 2)); 9483 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9484 Spacing * 3)); 9485 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9486 TmpInst.addOperand(Inst.getOperand(4)); 9487 Inst = TmpInst; 9488 return true; 9489 } 9490 9491 case ARM::VST4dWB_register_Asm_8: 9492 case ARM::VST4dWB_register_Asm_16: 9493 case ARM::VST4dWB_register_Asm_32: 9494 case ARM::VST4qWB_register_Asm_8: 9495 case ARM::VST4qWB_register_Asm_16: 9496 case ARM::VST4qWB_register_Asm_32: { 9497 MCInst TmpInst; 9498 unsigned Spacing; 9499 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9500 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9501 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9502 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9503 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9504 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9505 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9506 Spacing)); 9507 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9508 Spacing * 2)); 9509 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9510 Spacing * 3)); 9511 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9512 TmpInst.addOperand(Inst.getOperand(5)); 9513 Inst = TmpInst; 9514 return true; 9515 } 9516 9517 // Handle encoding choice for the shift-immediate instructions. 9518 case ARM::t2LSLri: 9519 case ARM::t2LSRri: 9520 case ARM::t2ASRri: 9521 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9522 isARMLowRegister(Inst.getOperand(1).getReg()) && 9523 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9524 !HasWideQualifier) { 9525 unsigned NewOpc; 9526 switch (Inst.getOpcode()) { 9527 default: llvm_unreachable("unexpected opcode"); 9528 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 9529 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 9530 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 9531 } 9532 // The Thumb1 operands aren't in the same order. Awesome, eh? 9533 MCInst TmpInst; 9534 TmpInst.setOpcode(NewOpc); 9535 TmpInst.addOperand(Inst.getOperand(0)); 9536 TmpInst.addOperand(Inst.getOperand(5)); 9537 TmpInst.addOperand(Inst.getOperand(1)); 9538 TmpInst.addOperand(Inst.getOperand(2)); 9539 TmpInst.addOperand(Inst.getOperand(3)); 9540 TmpInst.addOperand(Inst.getOperand(4)); 9541 Inst = TmpInst; 9542 return true; 9543 } 9544 return false; 9545 9546 // Handle the Thumb2 mode MOV complex aliases. 9547 case ARM::t2MOVsr: 9548 case ARM::t2MOVSsr: { 9549 // Which instruction to expand to depends on the CCOut operand and 9550 // whether we're in an IT block if the register operands are low 9551 // registers. 9552 bool isNarrow = false; 9553 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9554 isARMLowRegister(Inst.getOperand(1).getReg()) && 9555 isARMLowRegister(Inst.getOperand(2).getReg()) && 9556 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 9557 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 9558 !HasWideQualifier) 9559 isNarrow = true; 9560 MCInst TmpInst; 9561 unsigned newOpc; 9562 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 9563 default: llvm_unreachable("unexpected opcode!"); 9564 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 9565 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 9566 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 9567 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 9568 } 9569 TmpInst.setOpcode(newOpc); 9570 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9571 if (isNarrow) 9572 TmpInst.addOperand(MCOperand::createReg( 9573 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9574 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9575 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9576 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9577 TmpInst.addOperand(Inst.getOperand(5)); 9578 if (!isNarrow) 9579 TmpInst.addOperand(MCOperand::createReg( 9580 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9581 Inst = TmpInst; 9582 return true; 9583 } 9584 case ARM::t2MOVsi: 9585 case ARM::t2MOVSsi: { 9586 // Which instruction to expand to depends on the CCOut operand and 9587 // whether we're in an IT block if the register operands are low 9588 // registers. 9589 bool isNarrow = false; 9590 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9591 isARMLowRegister(Inst.getOperand(1).getReg()) && 9592 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 9593 !HasWideQualifier) 9594 isNarrow = true; 9595 MCInst TmpInst; 9596 unsigned newOpc; 9597 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 9598 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 9599 bool isMov = false; 9600 // MOV rd, rm, LSL #0 is actually a MOV instruction 9601 if (Shift == ARM_AM::lsl && Amount == 0) { 9602 isMov = true; 9603 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 9604 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 9605 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 9606 // instead. 9607 if (inITBlock()) { 9608 isNarrow = false; 9609 } 9610 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 9611 } else { 9612 switch(Shift) { 9613 default: llvm_unreachable("unexpected opcode!"); 9614 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 9615 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 9616 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 9617 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 9618 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 9619 } 9620 } 9621 if (Amount == 32) Amount = 0; 9622 TmpInst.setOpcode(newOpc); 9623 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9624 if (isNarrow && !isMov) 9625 TmpInst.addOperand(MCOperand::createReg( 9626 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9627 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9628 if (newOpc != ARM::t2RRX && !isMov) 9629 TmpInst.addOperand(MCOperand::createImm(Amount)); 9630 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9631 TmpInst.addOperand(Inst.getOperand(4)); 9632 if (!isNarrow) 9633 TmpInst.addOperand(MCOperand::createReg( 9634 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9635 Inst = TmpInst; 9636 return true; 9637 } 9638 // Handle the ARM mode MOV complex aliases. 9639 case ARM::ASRr: 9640 case ARM::LSRr: 9641 case ARM::LSLr: 9642 case ARM::RORr: { 9643 ARM_AM::ShiftOpc ShiftTy; 9644 switch(Inst.getOpcode()) { 9645 default: llvm_unreachable("unexpected opcode!"); 9646 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 9647 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 9648 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 9649 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 9650 } 9651 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 9652 MCInst TmpInst; 9653 TmpInst.setOpcode(ARM::MOVsr); 9654 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9655 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9656 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9657 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9658 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9659 TmpInst.addOperand(Inst.getOperand(4)); 9660 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9661 Inst = TmpInst; 9662 return true; 9663 } 9664 case ARM::ASRi: 9665 case ARM::LSRi: 9666 case ARM::LSLi: 9667 case ARM::RORi: { 9668 ARM_AM::ShiftOpc ShiftTy; 9669 switch(Inst.getOpcode()) { 9670 default: llvm_unreachable("unexpected opcode!"); 9671 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 9672 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 9673 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 9674 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 9675 } 9676 // A shift by zero is a plain MOVr, not a MOVsi. 9677 unsigned Amt = Inst.getOperand(2).getImm(); 9678 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 9679 // A shift by 32 should be encoded as 0 when permitted 9680 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 9681 Amt = 0; 9682 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 9683 MCInst TmpInst; 9684 TmpInst.setOpcode(Opc); 9685 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9686 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9687 if (Opc == ARM::MOVsi) 9688 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9689 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9690 TmpInst.addOperand(Inst.getOperand(4)); 9691 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9692 Inst = TmpInst; 9693 return true; 9694 } 9695 case ARM::RRXi: { 9696 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 9697 MCInst TmpInst; 9698 TmpInst.setOpcode(ARM::MOVsi); 9699 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9700 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9701 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9702 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9703 TmpInst.addOperand(Inst.getOperand(3)); 9704 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 9705 Inst = TmpInst; 9706 return true; 9707 } 9708 case ARM::t2LDMIA_UPD: { 9709 // If this is a load of a single register, then we should use 9710 // a post-indexed LDR instruction instead, per the ARM ARM. 9711 if (Inst.getNumOperands() != 5) 9712 return false; 9713 MCInst TmpInst; 9714 TmpInst.setOpcode(ARM::t2LDR_POST); 9715 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9716 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9717 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9718 TmpInst.addOperand(MCOperand::createImm(4)); 9719 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9720 TmpInst.addOperand(Inst.getOperand(3)); 9721 Inst = TmpInst; 9722 return true; 9723 } 9724 case ARM::t2STMDB_UPD: { 9725 // If this is a store of a single register, then we should use 9726 // a pre-indexed STR instruction instead, per the ARM ARM. 9727 if (Inst.getNumOperands() != 5) 9728 return false; 9729 MCInst TmpInst; 9730 TmpInst.setOpcode(ARM::t2STR_PRE); 9731 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9732 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9733 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9734 TmpInst.addOperand(MCOperand::createImm(-4)); 9735 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9736 TmpInst.addOperand(Inst.getOperand(3)); 9737 Inst = TmpInst; 9738 return true; 9739 } 9740 case ARM::LDMIA_UPD: 9741 // If this is a load of a single register via a 'pop', then we should use 9742 // a post-indexed LDR instruction instead, per the ARM ARM. 9743 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 9744 Inst.getNumOperands() == 5) { 9745 MCInst TmpInst; 9746 TmpInst.setOpcode(ARM::LDR_POST_IMM); 9747 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9748 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9749 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9750 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 9751 TmpInst.addOperand(MCOperand::createImm(4)); 9752 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9753 TmpInst.addOperand(Inst.getOperand(3)); 9754 Inst = TmpInst; 9755 return true; 9756 } 9757 break; 9758 case ARM::STMDB_UPD: 9759 // If this is a store of a single register via a 'push', then we should use 9760 // a pre-indexed STR instruction instead, per the ARM ARM. 9761 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 9762 Inst.getNumOperands() == 5) { 9763 MCInst TmpInst; 9764 TmpInst.setOpcode(ARM::STR_PRE_IMM); 9765 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9766 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9767 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 9768 TmpInst.addOperand(MCOperand::createImm(-4)); 9769 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9770 TmpInst.addOperand(Inst.getOperand(3)); 9771 Inst = TmpInst; 9772 } 9773 break; 9774 case ARM::t2ADDri12: 9775 case ARM::t2SUBri12: 9776 case ARM::t2ADDspImm12: 9777 case ARM::t2SUBspImm12: { 9778 // If the immediate fits for encoding T3 and the generic 9779 // mnemonic was used, encoding T3 is preferred. 9780 const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken(); 9781 if ((Token != "add" && Token != "sub") || 9782 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 9783 break; 9784 switch (Inst.getOpcode()) { 9785 case ARM::t2ADDri12: 9786 Inst.setOpcode(ARM::t2ADDri); 9787 break; 9788 case ARM::t2SUBri12: 9789 Inst.setOpcode(ARM::t2SUBri); 9790 break; 9791 case ARM::t2ADDspImm12: 9792 Inst.setOpcode(ARM::t2ADDspImm); 9793 break; 9794 case ARM::t2SUBspImm12: 9795 Inst.setOpcode(ARM::t2SUBspImm); 9796 break; 9797 } 9798 9799 Inst.addOperand(MCOperand::createReg(0)); // cc_out 9800 return true; 9801 } 9802 case ARM::tADDi8: 9803 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 9804 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 9805 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 9806 // to encoding T1 if <Rd> is omitted." 9807 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 9808 Inst.setOpcode(ARM::tADDi3); 9809 return true; 9810 } 9811 break; 9812 case ARM::tSUBi8: 9813 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 9814 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 9815 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 9816 // to encoding T1 if <Rd> is omitted." 9817 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 9818 Inst.setOpcode(ARM::tSUBi3); 9819 return true; 9820 } 9821 break; 9822 case ARM::t2ADDri: 9823 case ARM::t2SUBri: { 9824 // If the destination and first source operand are the same, and 9825 // the flags are compatible with the current IT status, use encoding T2 9826 // instead of T3. For compatibility with the system 'as'. Make sure the 9827 // wide encoding wasn't explicit. 9828 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 9829 !isARMLowRegister(Inst.getOperand(0).getReg()) || 9830 (Inst.getOperand(2).isImm() && 9831 (unsigned)Inst.getOperand(2).getImm() > 255) || 9832 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 9833 HasWideQualifier) 9834 break; 9835 MCInst TmpInst; 9836 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 9837 ARM::tADDi8 : ARM::tSUBi8); 9838 TmpInst.addOperand(Inst.getOperand(0)); 9839 TmpInst.addOperand(Inst.getOperand(5)); 9840 TmpInst.addOperand(Inst.getOperand(0)); 9841 TmpInst.addOperand(Inst.getOperand(2)); 9842 TmpInst.addOperand(Inst.getOperand(3)); 9843 TmpInst.addOperand(Inst.getOperand(4)); 9844 Inst = TmpInst; 9845 return true; 9846 } 9847 case ARM::t2ADDspImm: 9848 case ARM::t2SUBspImm: { 9849 // Prefer T1 encoding if possible 9850 if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier) 9851 break; 9852 unsigned V = Inst.getOperand(2).getImm(); 9853 if (V & 3 || V > ((1 << 7) - 1) << 2) 9854 break; 9855 MCInst TmpInst; 9856 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi 9857 : ARM::tSUBspi); 9858 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg 9859 TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg 9860 TmpInst.addOperand(MCOperand::createImm(V / 4)); // immediate 9861 TmpInst.addOperand(Inst.getOperand(3)); // pred 9862 TmpInst.addOperand(Inst.getOperand(4)); 9863 Inst = TmpInst; 9864 return true; 9865 } 9866 case ARM::t2ADDrr: { 9867 // If the destination and first source operand are the same, and 9868 // there's no setting of the flags, use encoding T2 instead of T3. 9869 // Note that this is only for ADD, not SUB. This mirrors the system 9870 // 'as' behaviour. Also take advantage of ADD being commutative. 9871 // Make sure the wide encoding wasn't explicit. 9872 bool Swap = false; 9873 auto DestReg = Inst.getOperand(0).getReg(); 9874 bool Transform = DestReg == Inst.getOperand(1).getReg(); 9875 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 9876 Transform = true; 9877 Swap = true; 9878 } 9879 if (!Transform || 9880 Inst.getOperand(5).getReg() != 0 || 9881 HasWideQualifier) 9882 break; 9883 MCInst TmpInst; 9884 TmpInst.setOpcode(ARM::tADDhirr); 9885 TmpInst.addOperand(Inst.getOperand(0)); 9886 TmpInst.addOperand(Inst.getOperand(0)); 9887 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 9888 TmpInst.addOperand(Inst.getOperand(3)); 9889 TmpInst.addOperand(Inst.getOperand(4)); 9890 Inst = TmpInst; 9891 return true; 9892 } 9893 case ARM::tADDrSP: 9894 // If the non-SP source operand and the destination operand are not the 9895 // same, we need to use the 32-bit encoding if it's available. 9896 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 9897 Inst.setOpcode(ARM::t2ADDrr); 9898 Inst.addOperand(MCOperand::createReg(0)); // cc_out 9899 return true; 9900 } 9901 break; 9902 case ARM::tB: 9903 // A Thumb conditional branch outside of an IT block is a tBcc. 9904 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 9905 Inst.setOpcode(ARM::tBcc); 9906 return true; 9907 } 9908 break; 9909 case ARM::t2B: 9910 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 9911 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 9912 Inst.setOpcode(ARM::t2Bcc); 9913 return true; 9914 } 9915 break; 9916 case ARM::t2Bcc: 9917 // If the conditional is AL or we're in an IT block, we really want t2B. 9918 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 9919 Inst.setOpcode(ARM::t2B); 9920 return true; 9921 } 9922 break; 9923 case ARM::tBcc: 9924 // If the conditional is AL, we really want tB. 9925 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 9926 Inst.setOpcode(ARM::tB); 9927 return true; 9928 } 9929 break; 9930 case ARM::tLDMIA: { 9931 // If the register list contains any high registers, or if the writeback 9932 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 9933 // instead if we're in Thumb2. Otherwise, this should have generated 9934 // an error in validateInstruction(). 9935 unsigned Rn = Inst.getOperand(0).getReg(); 9936 bool hasWritebackToken = 9937 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 9938 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 9939 bool listContainsBase; 9940 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 9941 (!listContainsBase && !hasWritebackToken) || 9942 (listContainsBase && hasWritebackToken)) { 9943 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 9944 assert(isThumbTwo()); 9945 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 9946 // If we're switching to the updating version, we need to insert 9947 // the writeback tied operand. 9948 if (hasWritebackToken) 9949 Inst.insert(Inst.begin(), 9950 MCOperand::createReg(Inst.getOperand(0).getReg())); 9951 return true; 9952 } 9953 break; 9954 } 9955 case ARM::tSTMIA_UPD: { 9956 // If the register list contains any high registers, we need to use 9957 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 9958 // should have generated an error in validateInstruction(). 9959 unsigned Rn = Inst.getOperand(0).getReg(); 9960 bool listContainsBase; 9961 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 9962 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 9963 assert(isThumbTwo()); 9964 Inst.setOpcode(ARM::t2STMIA_UPD); 9965 return true; 9966 } 9967 break; 9968 } 9969 case ARM::tPOP: { 9970 bool listContainsBase; 9971 // If the register list contains any high registers, we need to use 9972 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 9973 // should have generated an error in validateInstruction(). 9974 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 9975 return false; 9976 assert(isThumbTwo()); 9977 Inst.setOpcode(ARM::t2LDMIA_UPD); 9978 // Add the base register and writeback operands. 9979 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9980 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9981 return true; 9982 } 9983 case ARM::tPUSH: { 9984 bool listContainsBase; 9985 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 9986 return false; 9987 assert(isThumbTwo()); 9988 Inst.setOpcode(ARM::t2STMDB_UPD); 9989 // Add the base register and writeback operands. 9990 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9991 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9992 return true; 9993 } 9994 case ARM::t2MOVi: 9995 // If we can use the 16-bit encoding and the user didn't explicitly 9996 // request the 32-bit variant, transform it here. 9997 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9998 (Inst.getOperand(1).isImm() && 9999 (unsigned)Inst.getOperand(1).getImm() <= 255) && 10000 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10001 !HasWideQualifier) { 10002 // The operands aren't in the same order for tMOVi8... 10003 MCInst TmpInst; 10004 TmpInst.setOpcode(ARM::tMOVi8); 10005 TmpInst.addOperand(Inst.getOperand(0)); 10006 TmpInst.addOperand(Inst.getOperand(4)); 10007 TmpInst.addOperand(Inst.getOperand(1)); 10008 TmpInst.addOperand(Inst.getOperand(2)); 10009 TmpInst.addOperand(Inst.getOperand(3)); 10010 Inst = TmpInst; 10011 return true; 10012 } 10013 break; 10014 10015 case ARM::t2MOVr: 10016 // If we can use the 16-bit encoding and the user didn't explicitly 10017 // request the 32-bit variant, transform it here. 10018 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10019 isARMLowRegister(Inst.getOperand(1).getReg()) && 10020 Inst.getOperand(2).getImm() == ARMCC::AL && 10021 Inst.getOperand(4).getReg() == ARM::CPSR && 10022 !HasWideQualifier) { 10023 // The operands aren't the same for tMOV[S]r... (no cc_out) 10024 MCInst TmpInst; 10025 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 10026 TmpInst.addOperand(Inst.getOperand(0)); 10027 TmpInst.addOperand(Inst.getOperand(1)); 10028 TmpInst.addOperand(Inst.getOperand(2)); 10029 TmpInst.addOperand(Inst.getOperand(3)); 10030 Inst = TmpInst; 10031 return true; 10032 } 10033 break; 10034 10035 case ARM::t2SXTH: 10036 case ARM::t2SXTB: 10037 case ARM::t2UXTH: 10038 case ARM::t2UXTB: 10039 // If we can use the 16-bit encoding and the user didn't explicitly 10040 // request the 32-bit variant, transform it here. 10041 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 10042 isARMLowRegister(Inst.getOperand(1).getReg()) && 10043 Inst.getOperand(2).getImm() == 0 && 10044 !HasWideQualifier) { 10045 unsigned NewOpc; 10046 switch (Inst.getOpcode()) { 10047 default: llvm_unreachable("Illegal opcode!"); 10048 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 10049 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 10050 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 10051 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 10052 } 10053 // The operands aren't the same for thumb1 (no rotate operand). 10054 MCInst TmpInst; 10055 TmpInst.setOpcode(NewOpc); 10056 TmpInst.addOperand(Inst.getOperand(0)); 10057 TmpInst.addOperand(Inst.getOperand(1)); 10058 TmpInst.addOperand(Inst.getOperand(3)); 10059 TmpInst.addOperand(Inst.getOperand(4)); 10060 Inst = TmpInst; 10061 return true; 10062 } 10063 break; 10064 10065 case ARM::MOVsi: { 10066 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 10067 // rrx shifts and asr/lsr of #32 is encoded as 0 10068 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 10069 return false; 10070 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 10071 // Shifting by zero is accepted as a vanilla 'MOVr' 10072 MCInst TmpInst; 10073 TmpInst.setOpcode(ARM::MOVr); 10074 TmpInst.addOperand(Inst.getOperand(0)); 10075 TmpInst.addOperand(Inst.getOperand(1)); 10076 TmpInst.addOperand(Inst.getOperand(3)); 10077 TmpInst.addOperand(Inst.getOperand(4)); 10078 TmpInst.addOperand(Inst.getOperand(5)); 10079 Inst = TmpInst; 10080 return true; 10081 } 10082 return false; 10083 } 10084 case ARM::ANDrsi: 10085 case ARM::ORRrsi: 10086 case ARM::EORrsi: 10087 case ARM::BICrsi: 10088 case ARM::SUBrsi: 10089 case ARM::ADDrsi: { 10090 unsigned newOpc; 10091 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 10092 if (SOpc == ARM_AM::rrx) return false; 10093 switch (Inst.getOpcode()) { 10094 default: llvm_unreachable("unexpected opcode!"); 10095 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 10096 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 10097 case ARM::EORrsi: newOpc = ARM::EORrr; break; 10098 case ARM::BICrsi: newOpc = ARM::BICrr; break; 10099 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 10100 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 10101 } 10102 // If the shift is by zero, use the non-shifted instruction definition. 10103 // The exception is for right shifts, where 0 == 32 10104 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 10105 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 10106 MCInst TmpInst; 10107 TmpInst.setOpcode(newOpc); 10108 TmpInst.addOperand(Inst.getOperand(0)); 10109 TmpInst.addOperand(Inst.getOperand(1)); 10110 TmpInst.addOperand(Inst.getOperand(2)); 10111 TmpInst.addOperand(Inst.getOperand(4)); 10112 TmpInst.addOperand(Inst.getOperand(5)); 10113 TmpInst.addOperand(Inst.getOperand(6)); 10114 Inst = TmpInst; 10115 return true; 10116 } 10117 return false; 10118 } 10119 case ARM::ITasm: 10120 case ARM::t2IT: { 10121 // Set up the IT block state according to the IT instruction we just 10122 // matched. 10123 assert(!inITBlock() && "nested IT blocks?!"); 10124 startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()), 10125 Inst.getOperand(1).getImm()); 10126 break; 10127 } 10128 case ARM::t2LSLrr: 10129 case ARM::t2LSRrr: 10130 case ARM::t2ASRrr: 10131 case ARM::t2SBCrr: 10132 case ARM::t2RORrr: 10133 case ARM::t2BICrr: 10134 // Assemblers should use the narrow encodings of these instructions when permissible. 10135 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10136 isARMLowRegister(Inst.getOperand(2).getReg())) && 10137 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10138 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10139 !HasWideQualifier) { 10140 unsigned NewOpc; 10141 switch (Inst.getOpcode()) { 10142 default: llvm_unreachable("unexpected opcode"); 10143 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 10144 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 10145 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 10146 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 10147 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 10148 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 10149 } 10150 MCInst TmpInst; 10151 TmpInst.setOpcode(NewOpc); 10152 TmpInst.addOperand(Inst.getOperand(0)); 10153 TmpInst.addOperand(Inst.getOperand(5)); 10154 TmpInst.addOperand(Inst.getOperand(1)); 10155 TmpInst.addOperand(Inst.getOperand(2)); 10156 TmpInst.addOperand(Inst.getOperand(3)); 10157 TmpInst.addOperand(Inst.getOperand(4)); 10158 Inst = TmpInst; 10159 return true; 10160 } 10161 return false; 10162 10163 case ARM::t2ANDrr: 10164 case ARM::t2EORrr: 10165 case ARM::t2ADCrr: 10166 case ARM::t2ORRrr: 10167 // Assemblers should use the narrow encodings of these instructions when permissible. 10168 // These instructions are special in that they are commutable, so shorter encodings 10169 // are available more often. 10170 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10171 isARMLowRegister(Inst.getOperand(2).getReg())) && 10172 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 10173 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 10174 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10175 !HasWideQualifier) { 10176 unsigned NewOpc; 10177 switch (Inst.getOpcode()) { 10178 default: llvm_unreachable("unexpected opcode"); 10179 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 10180 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 10181 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 10182 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 10183 } 10184 MCInst TmpInst; 10185 TmpInst.setOpcode(NewOpc); 10186 TmpInst.addOperand(Inst.getOperand(0)); 10187 TmpInst.addOperand(Inst.getOperand(5)); 10188 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 10189 TmpInst.addOperand(Inst.getOperand(1)); 10190 TmpInst.addOperand(Inst.getOperand(2)); 10191 } else { 10192 TmpInst.addOperand(Inst.getOperand(2)); 10193 TmpInst.addOperand(Inst.getOperand(1)); 10194 } 10195 TmpInst.addOperand(Inst.getOperand(3)); 10196 TmpInst.addOperand(Inst.getOperand(4)); 10197 Inst = TmpInst; 10198 return true; 10199 } 10200 return false; 10201 case ARM::MVE_VPST: 10202 case ARM::MVE_VPTv16i8: 10203 case ARM::MVE_VPTv8i16: 10204 case ARM::MVE_VPTv4i32: 10205 case ARM::MVE_VPTv16u8: 10206 case ARM::MVE_VPTv8u16: 10207 case ARM::MVE_VPTv4u32: 10208 case ARM::MVE_VPTv16s8: 10209 case ARM::MVE_VPTv8s16: 10210 case ARM::MVE_VPTv4s32: 10211 case ARM::MVE_VPTv4f32: 10212 case ARM::MVE_VPTv8f16: 10213 case ARM::MVE_VPTv16i8r: 10214 case ARM::MVE_VPTv8i16r: 10215 case ARM::MVE_VPTv4i32r: 10216 case ARM::MVE_VPTv16u8r: 10217 case ARM::MVE_VPTv8u16r: 10218 case ARM::MVE_VPTv4u32r: 10219 case ARM::MVE_VPTv16s8r: 10220 case ARM::MVE_VPTv8s16r: 10221 case ARM::MVE_VPTv4s32r: 10222 case ARM::MVE_VPTv4f32r: 10223 case ARM::MVE_VPTv8f16r: { 10224 assert(!inVPTBlock() && "Nested VPT blocks are not allowed"); 10225 MCOperand &MO = Inst.getOperand(0); 10226 VPTState.Mask = MO.getImm(); 10227 VPTState.CurPosition = 0; 10228 break; 10229 } 10230 } 10231 return false; 10232 } 10233 10234 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 10235 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 10236 // suffix depending on whether they're in an IT block or not. 10237 unsigned Opc = Inst.getOpcode(); 10238 const MCInstrDesc &MCID = MII.get(Opc); 10239 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 10240 assert(MCID.hasOptionalDef() && 10241 "optionally flag setting instruction missing optional def operand"); 10242 assert(MCID.NumOperands == Inst.getNumOperands() && 10243 "operand count mismatch!"); 10244 // Find the optional-def operand (cc_out). 10245 unsigned OpNo; 10246 for (OpNo = 0; 10247 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 10248 ++OpNo) 10249 ; 10250 // If we're parsing Thumb1, reject it completely. 10251 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 10252 return Match_RequiresFlagSetting; 10253 // If we're parsing Thumb2, which form is legal depends on whether we're 10254 // in an IT block. 10255 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 10256 !inITBlock()) 10257 return Match_RequiresITBlock; 10258 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 10259 inITBlock()) 10260 return Match_RequiresNotITBlock; 10261 // LSL with zero immediate is not allowed in an IT block 10262 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 10263 return Match_RequiresNotITBlock; 10264 } else if (isThumbOne()) { 10265 // Some high-register supporting Thumb1 encodings only allow both registers 10266 // to be from r0-r7 when in Thumb2. 10267 if (Opc == ARM::tADDhirr && !hasV6MOps() && 10268 isARMLowRegister(Inst.getOperand(1).getReg()) && 10269 isARMLowRegister(Inst.getOperand(2).getReg())) 10270 return Match_RequiresThumb2; 10271 // Others only require ARMv6 or later. 10272 else if (Opc == ARM::tMOVr && !hasV6Ops() && 10273 isARMLowRegister(Inst.getOperand(0).getReg()) && 10274 isARMLowRegister(Inst.getOperand(1).getReg())) 10275 return Match_RequiresV6; 10276 } 10277 10278 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 10279 // than the loop below can handle, so it uses the GPRnopc register class and 10280 // we do SP handling here. 10281 if (Opc == ARM::t2MOVr && !hasV8Ops()) 10282 { 10283 // SP as both source and destination is not allowed 10284 if (Inst.getOperand(0).getReg() == ARM::SP && 10285 Inst.getOperand(1).getReg() == ARM::SP) 10286 return Match_RequiresV8; 10287 // When flags-setting SP as either source or destination is not allowed 10288 if (Inst.getOperand(4).getReg() == ARM::CPSR && 10289 (Inst.getOperand(0).getReg() == ARM::SP || 10290 Inst.getOperand(1).getReg() == ARM::SP)) 10291 return Match_RequiresV8; 10292 } 10293 10294 switch (Inst.getOpcode()) { 10295 case ARM::VMRS: 10296 case ARM::VMSR: 10297 case ARM::VMRS_FPCXTS: 10298 case ARM::VMRS_FPCXTNS: 10299 case ARM::VMSR_FPCXTS: 10300 case ARM::VMSR_FPCXTNS: 10301 case ARM::VMRS_FPSCR_NZCVQC: 10302 case ARM::VMSR_FPSCR_NZCVQC: 10303 case ARM::FMSTAT: 10304 case ARM::VMRS_VPR: 10305 case ARM::VMRS_P0: 10306 case ARM::VMSR_VPR: 10307 case ARM::VMSR_P0: 10308 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 10309 // ARMv8-A. 10310 if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP && 10311 (isThumb() && !hasV8Ops())) 10312 return Match_InvalidOperand; 10313 break; 10314 default: 10315 break; 10316 } 10317 10318 for (unsigned I = 0; I < MCID.NumOperands; ++I) 10319 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 10320 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 10321 const auto &Op = Inst.getOperand(I); 10322 if (!Op.isReg()) { 10323 // This can happen in awkward cases with tied operands, e.g. a 10324 // writeback load/store with a complex addressing mode in 10325 // which there's an output operand corresponding to the 10326 // updated written-back base register: the Tablegen-generated 10327 // AsmMatcher will have written a placeholder operand to that 10328 // slot in the form of an immediate 0, because it can't 10329 // generate the register part of the complex addressing-mode 10330 // operand ahead of time. 10331 continue; 10332 } 10333 10334 unsigned Reg = Op.getReg(); 10335 if ((Reg == ARM::SP) && !hasV8Ops()) 10336 return Match_RequiresV8; 10337 else if (Reg == ARM::PC) 10338 return Match_InvalidOperand; 10339 } 10340 10341 return Match_Success; 10342 } 10343 10344 namespace llvm { 10345 10346 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 10347 return true; // In an assembly source, no need to second-guess 10348 } 10349 10350 } // end namespace llvm 10351 10352 // Returns true if Inst is unpredictable if it is in and IT block, but is not 10353 // the last instruction in the block. 10354 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 10355 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10356 10357 // All branch & call instructions terminate IT blocks with the exception of 10358 // SVC. 10359 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 10360 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 10361 return true; 10362 10363 // Any arithmetic instruction which writes to the PC also terminates the IT 10364 // block. 10365 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 10366 return true; 10367 10368 return false; 10369 } 10370 10371 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 10372 SmallVectorImpl<NearMissInfo> &NearMisses, 10373 bool MatchingInlineAsm, 10374 bool &EmitInITBlock, 10375 MCStreamer &Out) { 10376 // If we can't use an implicit IT block here, just match as normal. 10377 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 10378 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10379 10380 // Try to match the instruction in an extension of the current IT block (if 10381 // there is one). 10382 if (inImplicitITBlock()) { 10383 extendImplicitITBlock(ITState.Cond); 10384 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10385 Match_Success) { 10386 // The match succeded, but we still have to check that the instruction is 10387 // valid in this implicit IT block. 10388 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10389 if (MCID.isPredicable()) { 10390 ARMCC::CondCodes InstCond = 10391 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10392 .getImm(); 10393 ARMCC::CondCodes ITCond = currentITCond(); 10394 if (InstCond == ITCond) { 10395 EmitInITBlock = true; 10396 return Match_Success; 10397 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 10398 invertCurrentITCondition(); 10399 EmitInITBlock = true; 10400 return Match_Success; 10401 } 10402 } 10403 } 10404 rewindImplicitITPosition(); 10405 } 10406 10407 // Finish the current IT block, and try to match outside any IT block. 10408 flushPendingInstructions(Out); 10409 unsigned PlainMatchResult = 10410 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10411 if (PlainMatchResult == Match_Success) { 10412 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10413 if (MCID.isPredicable()) { 10414 ARMCC::CondCodes InstCond = 10415 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10416 .getImm(); 10417 // Some forms of the branch instruction have their own condition code 10418 // fields, so can be conditionally executed without an IT block. 10419 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 10420 EmitInITBlock = false; 10421 return Match_Success; 10422 } 10423 if (InstCond == ARMCC::AL) { 10424 EmitInITBlock = false; 10425 return Match_Success; 10426 } 10427 } else { 10428 EmitInITBlock = false; 10429 return Match_Success; 10430 } 10431 } 10432 10433 // Try to match in a new IT block. The matcher doesn't check the actual 10434 // condition, so we create an IT block with a dummy condition, and fix it up 10435 // once we know the actual condition. 10436 startImplicitITBlock(); 10437 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10438 Match_Success) { 10439 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10440 if (MCID.isPredicable()) { 10441 ITState.Cond = 10442 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10443 .getImm(); 10444 EmitInITBlock = true; 10445 return Match_Success; 10446 } 10447 } 10448 discardImplicitITBlock(); 10449 10450 // If none of these succeed, return the error we got when trying to match 10451 // outside any IT blocks. 10452 EmitInITBlock = false; 10453 return PlainMatchResult; 10454 } 10455 10456 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 10457 unsigned VariantID = 0); 10458 10459 static const char *getSubtargetFeatureName(uint64_t Val); 10460 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 10461 OperandVector &Operands, 10462 MCStreamer &Out, uint64_t &ErrorInfo, 10463 bool MatchingInlineAsm) { 10464 MCInst Inst; 10465 unsigned MatchResult; 10466 bool PendConditionalInstruction = false; 10467 10468 SmallVector<NearMissInfo, 4> NearMisses; 10469 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 10470 PendConditionalInstruction, Out); 10471 10472 switch (MatchResult) { 10473 case Match_Success: 10474 LLVM_DEBUG(dbgs() << "Parsed as: "; 10475 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10476 dbgs() << "\n"); 10477 10478 // Context sensitive operand constraints aren't handled by the matcher, 10479 // so check them here. 10480 if (validateInstruction(Inst, Operands)) { 10481 // Still progress the IT block, otherwise one wrong condition causes 10482 // nasty cascading errors. 10483 forwardITPosition(); 10484 forwardVPTPosition(); 10485 return true; 10486 } 10487 10488 { // processInstruction() updates inITBlock state, we need to save it away 10489 bool wasInITBlock = inITBlock(); 10490 10491 // Some instructions need post-processing to, for example, tweak which 10492 // encoding is selected. Loop on it while changes happen so the 10493 // individual transformations can chain off each other. E.g., 10494 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 10495 while (processInstruction(Inst, Operands, Out)) 10496 LLVM_DEBUG(dbgs() << "Changed to: "; 10497 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10498 dbgs() << "\n"); 10499 10500 // Only after the instruction is fully processed, we can validate it 10501 if (wasInITBlock && hasV8Ops() && isThumb() && 10502 !isV8EligibleForIT(&Inst)) { 10503 Warning(IDLoc, "deprecated instruction in IT block"); 10504 } 10505 } 10506 10507 // Only move forward at the very end so that everything in validate 10508 // and process gets a consistent answer about whether we're in an IT 10509 // block. 10510 forwardITPosition(); 10511 forwardVPTPosition(); 10512 10513 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 10514 // doesn't actually encode. 10515 if (Inst.getOpcode() == ARM::ITasm) 10516 return false; 10517 10518 Inst.setLoc(IDLoc); 10519 if (PendConditionalInstruction) { 10520 PendingConditionalInsts.push_back(Inst); 10521 if (isITBlockFull() || isITBlockTerminator(Inst)) 10522 flushPendingInstructions(Out); 10523 } else { 10524 Out.emitInstruction(Inst, getSTI()); 10525 } 10526 return false; 10527 case Match_NearMisses: 10528 ReportNearMisses(NearMisses, IDLoc, Operands); 10529 return true; 10530 case Match_MnemonicFail: { 10531 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 10532 std::string Suggestion = ARMMnemonicSpellCheck( 10533 ((ARMOperand &)*Operands[0]).getToken(), FBS); 10534 return Error(IDLoc, "invalid instruction" + Suggestion, 10535 ((ARMOperand &)*Operands[0]).getLocRange()); 10536 } 10537 } 10538 10539 llvm_unreachable("Implement any new match types added!"); 10540 } 10541 10542 /// parseDirective parses the arm specific directives 10543 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 10544 const MCObjectFileInfo::Environment Format = 10545 getContext().getObjectFileInfo()->getObjectFileType(); 10546 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10547 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 10548 10549 std::string IDVal = DirectiveID.getIdentifier().lower(); 10550 if (IDVal == ".word") 10551 parseLiteralValues(4, DirectiveID.getLoc()); 10552 else if (IDVal == ".short" || IDVal == ".hword") 10553 parseLiteralValues(2, DirectiveID.getLoc()); 10554 else if (IDVal == ".thumb") 10555 parseDirectiveThumb(DirectiveID.getLoc()); 10556 else if (IDVal == ".arm") 10557 parseDirectiveARM(DirectiveID.getLoc()); 10558 else if (IDVal == ".thumb_func") 10559 parseDirectiveThumbFunc(DirectiveID.getLoc()); 10560 else if (IDVal == ".code") 10561 parseDirectiveCode(DirectiveID.getLoc()); 10562 else if (IDVal == ".syntax") 10563 parseDirectiveSyntax(DirectiveID.getLoc()); 10564 else if (IDVal == ".unreq") 10565 parseDirectiveUnreq(DirectiveID.getLoc()); 10566 else if (IDVal == ".fnend") 10567 parseDirectiveFnEnd(DirectiveID.getLoc()); 10568 else if (IDVal == ".cantunwind") 10569 parseDirectiveCantUnwind(DirectiveID.getLoc()); 10570 else if (IDVal == ".personality") 10571 parseDirectivePersonality(DirectiveID.getLoc()); 10572 else if (IDVal == ".handlerdata") 10573 parseDirectiveHandlerData(DirectiveID.getLoc()); 10574 else if (IDVal == ".setfp") 10575 parseDirectiveSetFP(DirectiveID.getLoc()); 10576 else if (IDVal == ".pad") 10577 parseDirectivePad(DirectiveID.getLoc()); 10578 else if (IDVal == ".save") 10579 parseDirectiveRegSave(DirectiveID.getLoc(), false); 10580 else if (IDVal == ".vsave") 10581 parseDirectiveRegSave(DirectiveID.getLoc(), true); 10582 else if (IDVal == ".ltorg" || IDVal == ".pool") 10583 parseDirectiveLtorg(DirectiveID.getLoc()); 10584 else if (IDVal == ".even") 10585 parseDirectiveEven(DirectiveID.getLoc()); 10586 else if (IDVal == ".personalityindex") 10587 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 10588 else if (IDVal == ".unwind_raw") 10589 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 10590 else if (IDVal == ".movsp") 10591 parseDirectiveMovSP(DirectiveID.getLoc()); 10592 else if (IDVal == ".arch_extension") 10593 parseDirectiveArchExtension(DirectiveID.getLoc()); 10594 else if (IDVal == ".align") 10595 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 10596 else if (IDVal == ".thumb_set") 10597 parseDirectiveThumbSet(DirectiveID.getLoc()); 10598 else if (IDVal == ".inst") 10599 parseDirectiveInst(DirectiveID.getLoc()); 10600 else if (IDVal == ".inst.n") 10601 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 10602 else if (IDVal == ".inst.w") 10603 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 10604 else if (!IsMachO && !IsCOFF) { 10605 if (IDVal == ".arch") 10606 parseDirectiveArch(DirectiveID.getLoc()); 10607 else if (IDVal == ".cpu") 10608 parseDirectiveCPU(DirectiveID.getLoc()); 10609 else if (IDVal == ".eabi_attribute") 10610 parseDirectiveEabiAttr(DirectiveID.getLoc()); 10611 else if (IDVal == ".fpu") 10612 parseDirectiveFPU(DirectiveID.getLoc()); 10613 else if (IDVal == ".fnstart") 10614 parseDirectiveFnStart(DirectiveID.getLoc()); 10615 else if (IDVal == ".object_arch") 10616 parseDirectiveObjectArch(DirectiveID.getLoc()); 10617 else if (IDVal == ".tlsdescseq") 10618 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 10619 else 10620 return true; 10621 } else 10622 return true; 10623 return false; 10624 } 10625 10626 /// parseLiteralValues 10627 /// ::= .hword expression [, expression]* 10628 /// ::= .short expression [, expression]* 10629 /// ::= .word expression [, expression]* 10630 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 10631 auto parseOne = [&]() -> bool { 10632 const MCExpr *Value; 10633 if (getParser().parseExpression(Value)) 10634 return true; 10635 getParser().getStreamer().emitValue(Value, Size, L); 10636 return false; 10637 }; 10638 return (parseMany(parseOne)); 10639 } 10640 10641 /// parseDirectiveThumb 10642 /// ::= .thumb 10643 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 10644 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10645 check(!hasThumb(), L, "target does not support Thumb mode")) 10646 return true; 10647 10648 if (!isThumb()) 10649 SwitchMode(); 10650 10651 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 10652 return false; 10653 } 10654 10655 /// parseDirectiveARM 10656 /// ::= .arm 10657 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 10658 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10659 check(!hasARM(), L, "target does not support ARM mode")) 10660 return true; 10661 10662 if (isThumb()) 10663 SwitchMode(); 10664 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 10665 return false; 10666 } 10667 10668 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 10669 // We need to flush the current implicit IT block on a label, because it is 10670 // not legal to branch into an IT block. 10671 flushPendingInstructions(getStreamer()); 10672 } 10673 10674 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 10675 if (NextSymbolIsThumb) { 10676 getParser().getStreamer().emitThumbFunc(Symbol); 10677 NextSymbolIsThumb = false; 10678 } 10679 } 10680 10681 /// parseDirectiveThumbFunc 10682 /// ::= .thumbfunc symbol_name 10683 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 10684 MCAsmParser &Parser = getParser(); 10685 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 10686 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10687 10688 // Darwin asm has (optionally) function name after .thumb_func direction 10689 // ELF doesn't 10690 10691 if (IsMachO) { 10692 if (Parser.getTok().is(AsmToken::Identifier) || 10693 Parser.getTok().is(AsmToken::String)) { 10694 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 10695 Parser.getTok().getIdentifier()); 10696 getParser().getStreamer().emitThumbFunc(Func); 10697 Parser.Lex(); 10698 if (parseToken(AsmToken::EndOfStatement, 10699 "unexpected token in '.thumb_func' directive")) 10700 return true; 10701 return false; 10702 } 10703 } 10704 10705 if (parseToken(AsmToken::EndOfStatement, 10706 "unexpected token in '.thumb_func' directive")) 10707 return true; 10708 10709 NextSymbolIsThumb = true; 10710 return false; 10711 } 10712 10713 /// parseDirectiveSyntax 10714 /// ::= .syntax unified | divided 10715 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 10716 MCAsmParser &Parser = getParser(); 10717 const AsmToken &Tok = Parser.getTok(); 10718 if (Tok.isNot(AsmToken::Identifier)) { 10719 Error(L, "unexpected token in .syntax directive"); 10720 return false; 10721 } 10722 10723 StringRef Mode = Tok.getString(); 10724 Parser.Lex(); 10725 if (check(Mode == "divided" || Mode == "DIVIDED", L, 10726 "'.syntax divided' arm assembly not supported") || 10727 check(Mode != "unified" && Mode != "UNIFIED", L, 10728 "unrecognized syntax mode in .syntax directive") || 10729 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10730 return true; 10731 10732 // TODO tell the MC streamer the mode 10733 // getParser().getStreamer().Emit???(); 10734 return false; 10735 } 10736 10737 /// parseDirectiveCode 10738 /// ::= .code 16 | 32 10739 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 10740 MCAsmParser &Parser = getParser(); 10741 const AsmToken &Tok = Parser.getTok(); 10742 if (Tok.isNot(AsmToken::Integer)) 10743 return Error(L, "unexpected token in .code directive"); 10744 int64_t Val = Parser.getTok().getIntVal(); 10745 if (Val != 16 && Val != 32) { 10746 Error(L, "invalid operand to .code directive"); 10747 return false; 10748 } 10749 Parser.Lex(); 10750 10751 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10752 return true; 10753 10754 if (Val == 16) { 10755 if (!hasThumb()) 10756 return Error(L, "target does not support Thumb mode"); 10757 10758 if (!isThumb()) 10759 SwitchMode(); 10760 getParser().getStreamer().emitAssemblerFlag(MCAF_Code16); 10761 } else { 10762 if (!hasARM()) 10763 return Error(L, "target does not support ARM mode"); 10764 10765 if (isThumb()) 10766 SwitchMode(); 10767 getParser().getStreamer().emitAssemblerFlag(MCAF_Code32); 10768 } 10769 10770 return false; 10771 } 10772 10773 /// parseDirectiveReq 10774 /// ::= name .req registername 10775 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 10776 MCAsmParser &Parser = getParser(); 10777 Parser.Lex(); // Eat the '.req' token. 10778 unsigned Reg; 10779 SMLoc SRegLoc, ERegLoc; 10780 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 10781 "register name expected") || 10782 parseToken(AsmToken::EndOfStatement, 10783 "unexpected input in .req directive.")) 10784 return true; 10785 10786 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 10787 return Error(SRegLoc, 10788 "redefinition of '" + Name + "' does not match original."); 10789 10790 return false; 10791 } 10792 10793 /// parseDirectiveUneq 10794 /// ::= .unreq registername 10795 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 10796 MCAsmParser &Parser = getParser(); 10797 if (Parser.getTok().isNot(AsmToken::Identifier)) 10798 return Error(L, "unexpected input in .unreq directive."); 10799 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 10800 Parser.Lex(); // Eat the identifier. 10801 if (parseToken(AsmToken::EndOfStatement, 10802 "unexpected input in '.unreq' directive")) 10803 return true; 10804 return false; 10805 } 10806 10807 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 10808 // before, if supported by the new target, or emit mapping symbols for the mode 10809 // switch. 10810 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 10811 if (WasThumb != isThumb()) { 10812 if (WasThumb && hasThumb()) { 10813 // Stay in Thumb mode 10814 SwitchMode(); 10815 } else if (!WasThumb && hasARM()) { 10816 // Stay in ARM mode 10817 SwitchMode(); 10818 } else { 10819 // Mode switch forced, because the new arch doesn't support the old mode. 10820 getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16 10821 : MCAF_Code32); 10822 // Warn about the implcit mode switch. GAS does not switch modes here, 10823 // but instead stays in the old mode, reporting an error on any following 10824 // instructions as the mode does not exist on the target. 10825 Warning(Loc, Twine("new target does not support ") + 10826 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 10827 (!WasThumb ? "thumb" : "arm") + " mode"); 10828 } 10829 } 10830 } 10831 10832 /// parseDirectiveArch 10833 /// ::= .arch token 10834 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 10835 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 10836 ARM::ArchKind ID = ARM::parseArch(Arch); 10837 10838 if (ID == ARM::ArchKind::INVALID) 10839 return Error(L, "Unknown arch name"); 10840 10841 bool WasThumb = isThumb(); 10842 Triple T; 10843 MCSubtargetInfo &STI = copySTI(); 10844 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 10845 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10846 FixModeAfterArchChange(WasThumb, L); 10847 10848 getTargetStreamer().emitArch(ID); 10849 return false; 10850 } 10851 10852 /// parseDirectiveEabiAttr 10853 /// ::= .eabi_attribute int, int [, "str"] 10854 /// ::= .eabi_attribute Tag_name, int [, "str"] 10855 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 10856 MCAsmParser &Parser = getParser(); 10857 int64_t Tag; 10858 SMLoc TagLoc; 10859 TagLoc = Parser.getTok().getLoc(); 10860 if (Parser.getTok().is(AsmToken::Identifier)) { 10861 StringRef Name = Parser.getTok().getIdentifier(); 10862 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 10863 if (Tag == -1) { 10864 Error(TagLoc, "attribute name not recognised: " + Name); 10865 return false; 10866 } 10867 Parser.Lex(); 10868 } else { 10869 const MCExpr *AttrExpr; 10870 10871 TagLoc = Parser.getTok().getLoc(); 10872 if (Parser.parseExpression(AttrExpr)) 10873 return true; 10874 10875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 10876 if (check(!CE, TagLoc, "expected numeric constant")) 10877 return true; 10878 10879 Tag = CE->getValue(); 10880 } 10881 10882 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 10883 return true; 10884 10885 StringRef StringValue = ""; 10886 bool IsStringValue = false; 10887 10888 int64_t IntegerValue = 0; 10889 bool IsIntegerValue = false; 10890 10891 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 10892 IsStringValue = true; 10893 else if (Tag == ARMBuildAttrs::compatibility) { 10894 IsStringValue = true; 10895 IsIntegerValue = true; 10896 } else if (Tag < 32 || Tag % 2 == 0) 10897 IsIntegerValue = true; 10898 else if (Tag % 2 == 1) 10899 IsStringValue = true; 10900 else 10901 llvm_unreachable("invalid tag type"); 10902 10903 if (IsIntegerValue) { 10904 const MCExpr *ValueExpr; 10905 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 10906 if (Parser.parseExpression(ValueExpr)) 10907 return true; 10908 10909 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 10910 if (!CE) 10911 return Error(ValueExprLoc, "expected numeric constant"); 10912 IntegerValue = CE->getValue(); 10913 } 10914 10915 if (Tag == ARMBuildAttrs::compatibility) { 10916 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 10917 return true; 10918 } 10919 10920 if (IsStringValue) { 10921 if (Parser.getTok().isNot(AsmToken::String)) 10922 return Error(Parser.getTok().getLoc(), "bad string constant"); 10923 10924 StringValue = Parser.getTok().getStringContents(); 10925 Parser.Lex(); 10926 } 10927 10928 if (Parser.parseToken(AsmToken::EndOfStatement, 10929 "unexpected token in '.eabi_attribute' directive")) 10930 return true; 10931 10932 if (IsIntegerValue && IsStringValue) { 10933 assert(Tag == ARMBuildAttrs::compatibility); 10934 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 10935 } else if (IsIntegerValue) 10936 getTargetStreamer().emitAttribute(Tag, IntegerValue); 10937 else if (IsStringValue) 10938 getTargetStreamer().emitTextAttribute(Tag, StringValue); 10939 return false; 10940 } 10941 10942 /// parseDirectiveCPU 10943 /// ::= .cpu str 10944 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 10945 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 10946 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 10947 10948 // FIXME: This is using table-gen data, but should be moved to 10949 // ARMTargetParser once that is table-gen'd. 10950 if (!getSTI().isCPUStringValid(CPU)) 10951 return Error(L, "Unknown CPU name"); 10952 10953 bool WasThumb = isThumb(); 10954 MCSubtargetInfo &STI = copySTI(); 10955 STI.setDefaultFeatures(CPU, ""); 10956 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10957 FixModeAfterArchChange(WasThumb, L); 10958 10959 return false; 10960 } 10961 10962 /// parseDirectiveFPU 10963 /// ::= .fpu str 10964 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 10965 SMLoc FPUNameLoc = getTok().getLoc(); 10966 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 10967 10968 unsigned ID = ARM::parseFPU(FPU); 10969 std::vector<StringRef> Features; 10970 if (!ARM::getFPUFeatures(ID, Features)) 10971 return Error(FPUNameLoc, "Unknown FPU name"); 10972 10973 MCSubtargetInfo &STI = copySTI(); 10974 for (auto Feature : Features) 10975 STI.ApplyFeatureFlag(Feature); 10976 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10977 10978 getTargetStreamer().emitFPU(ID); 10979 return false; 10980 } 10981 10982 /// parseDirectiveFnStart 10983 /// ::= .fnstart 10984 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 10985 if (parseToken(AsmToken::EndOfStatement, 10986 "unexpected token in '.fnstart' directive")) 10987 return true; 10988 10989 if (UC.hasFnStart()) { 10990 Error(L, ".fnstart starts before the end of previous one"); 10991 UC.emitFnStartLocNotes(); 10992 return true; 10993 } 10994 10995 // Reset the unwind directives parser state 10996 UC.reset(); 10997 10998 getTargetStreamer().emitFnStart(); 10999 11000 UC.recordFnStart(L); 11001 return false; 11002 } 11003 11004 /// parseDirectiveFnEnd 11005 /// ::= .fnend 11006 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 11007 if (parseToken(AsmToken::EndOfStatement, 11008 "unexpected token in '.fnend' directive")) 11009 return true; 11010 // Check the ordering of unwind directives 11011 if (!UC.hasFnStart()) 11012 return Error(L, ".fnstart must precede .fnend directive"); 11013 11014 // Reset the unwind directives parser state 11015 getTargetStreamer().emitFnEnd(); 11016 11017 UC.reset(); 11018 return false; 11019 } 11020 11021 /// parseDirectiveCantUnwind 11022 /// ::= .cantunwind 11023 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 11024 if (parseToken(AsmToken::EndOfStatement, 11025 "unexpected token in '.cantunwind' directive")) 11026 return true; 11027 11028 UC.recordCantUnwind(L); 11029 // Check the ordering of unwind directives 11030 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 11031 return true; 11032 11033 if (UC.hasHandlerData()) { 11034 Error(L, ".cantunwind can't be used with .handlerdata directive"); 11035 UC.emitHandlerDataLocNotes(); 11036 return true; 11037 } 11038 if (UC.hasPersonality()) { 11039 Error(L, ".cantunwind can't be used with .personality directive"); 11040 UC.emitPersonalityLocNotes(); 11041 return true; 11042 } 11043 11044 getTargetStreamer().emitCantUnwind(); 11045 return false; 11046 } 11047 11048 /// parseDirectivePersonality 11049 /// ::= .personality name 11050 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 11051 MCAsmParser &Parser = getParser(); 11052 bool HasExistingPersonality = UC.hasPersonality(); 11053 11054 // Parse the name of the personality routine 11055 if (Parser.getTok().isNot(AsmToken::Identifier)) 11056 return Error(L, "unexpected input in .personality directive."); 11057 StringRef Name(Parser.getTok().getIdentifier()); 11058 Parser.Lex(); 11059 11060 if (parseToken(AsmToken::EndOfStatement, 11061 "unexpected token in '.personality' directive")) 11062 return true; 11063 11064 UC.recordPersonality(L); 11065 11066 // Check the ordering of unwind directives 11067 if (!UC.hasFnStart()) 11068 return Error(L, ".fnstart must precede .personality directive"); 11069 if (UC.cantUnwind()) { 11070 Error(L, ".personality can't be used with .cantunwind directive"); 11071 UC.emitCantUnwindLocNotes(); 11072 return true; 11073 } 11074 if (UC.hasHandlerData()) { 11075 Error(L, ".personality must precede .handlerdata directive"); 11076 UC.emitHandlerDataLocNotes(); 11077 return true; 11078 } 11079 if (HasExistingPersonality) { 11080 Error(L, "multiple personality directives"); 11081 UC.emitPersonalityLocNotes(); 11082 return true; 11083 } 11084 11085 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 11086 getTargetStreamer().emitPersonality(PR); 11087 return false; 11088 } 11089 11090 /// parseDirectiveHandlerData 11091 /// ::= .handlerdata 11092 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 11093 if (parseToken(AsmToken::EndOfStatement, 11094 "unexpected token in '.handlerdata' directive")) 11095 return true; 11096 11097 UC.recordHandlerData(L); 11098 // Check the ordering of unwind directives 11099 if (!UC.hasFnStart()) 11100 return Error(L, ".fnstart must precede .personality directive"); 11101 if (UC.cantUnwind()) { 11102 Error(L, ".handlerdata can't be used with .cantunwind directive"); 11103 UC.emitCantUnwindLocNotes(); 11104 return true; 11105 } 11106 11107 getTargetStreamer().emitHandlerData(); 11108 return false; 11109 } 11110 11111 /// parseDirectiveSetFP 11112 /// ::= .setfp fpreg, spreg [, offset] 11113 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 11114 MCAsmParser &Parser = getParser(); 11115 // Check the ordering of unwind directives 11116 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 11117 check(UC.hasHandlerData(), L, 11118 ".setfp must precede .handlerdata directive")) 11119 return true; 11120 11121 // Parse fpreg 11122 SMLoc FPRegLoc = Parser.getTok().getLoc(); 11123 int FPReg = tryParseRegister(); 11124 11125 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 11126 Parser.parseToken(AsmToken::Comma, "comma expected")) 11127 return true; 11128 11129 // Parse spreg 11130 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11131 int SPReg = tryParseRegister(); 11132 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 11133 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 11134 "register should be either $sp or the latest fp register")) 11135 return true; 11136 11137 // Update the frame pointer register 11138 UC.saveFPReg(FPReg); 11139 11140 // Parse offset 11141 int64_t Offset = 0; 11142 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11143 if (Parser.getTok().isNot(AsmToken::Hash) && 11144 Parser.getTok().isNot(AsmToken::Dollar)) 11145 return Error(Parser.getTok().getLoc(), "'#' expected"); 11146 Parser.Lex(); // skip hash token. 11147 11148 const MCExpr *OffsetExpr; 11149 SMLoc ExLoc = Parser.getTok().getLoc(); 11150 SMLoc EndLoc; 11151 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11152 return Error(ExLoc, "malformed setfp offset"); 11153 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11154 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 11155 return true; 11156 Offset = CE->getValue(); 11157 } 11158 11159 if (Parser.parseToken(AsmToken::EndOfStatement)) 11160 return true; 11161 11162 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 11163 static_cast<unsigned>(SPReg), Offset); 11164 return false; 11165 } 11166 11167 /// parseDirective 11168 /// ::= .pad offset 11169 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 11170 MCAsmParser &Parser = getParser(); 11171 // Check the ordering of unwind directives 11172 if (!UC.hasFnStart()) 11173 return Error(L, ".fnstart must precede .pad directive"); 11174 if (UC.hasHandlerData()) 11175 return Error(L, ".pad must precede .handlerdata directive"); 11176 11177 // Parse the offset 11178 if (Parser.getTok().isNot(AsmToken::Hash) && 11179 Parser.getTok().isNot(AsmToken::Dollar)) 11180 return Error(Parser.getTok().getLoc(), "'#' expected"); 11181 Parser.Lex(); // skip hash token. 11182 11183 const MCExpr *OffsetExpr; 11184 SMLoc ExLoc = Parser.getTok().getLoc(); 11185 SMLoc EndLoc; 11186 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11187 return Error(ExLoc, "malformed pad offset"); 11188 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11189 if (!CE) 11190 return Error(ExLoc, "pad offset must be an immediate"); 11191 11192 if (parseToken(AsmToken::EndOfStatement, 11193 "unexpected token in '.pad' directive")) 11194 return true; 11195 11196 getTargetStreamer().emitPad(CE->getValue()); 11197 return false; 11198 } 11199 11200 /// parseDirectiveRegSave 11201 /// ::= .save { registers } 11202 /// ::= .vsave { registers } 11203 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 11204 // Check the ordering of unwind directives 11205 if (!UC.hasFnStart()) 11206 return Error(L, ".fnstart must precede .save or .vsave directives"); 11207 if (UC.hasHandlerData()) 11208 return Error(L, ".save or .vsave must precede .handlerdata directive"); 11209 11210 // RAII object to make sure parsed operands are deleted. 11211 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 11212 11213 // Parse the register list 11214 if (parseRegisterList(Operands) || 11215 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11216 return true; 11217 ARMOperand &Op = (ARMOperand &)*Operands[0]; 11218 if (!IsVector && !Op.isRegList()) 11219 return Error(L, ".save expects GPR registers"); 11220 if (IsVector && !Op.isDPRRegList()) 11221 return Error(L, ".vsave expects DPR registers"); 11222 11223 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 11224 return false; 11225 } 11226 11227 /// parseDirectiveInst 11228 /// ::= .inst opcode [, ...] 11229 /// ::= .inst.n opcode [, ...] 11230 /// ::= .inst.w opcode [, ...] 11231 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 11232 int Width = 4; 11233 11234 if (isThumb()) { 11235 switch (Suffix) { 11236 case 'n': 11237 Width = 2; 11238 break; 11239 case 'w': 11240 break; 11241 default: 11242 Width = 0; 11243 break; 11244 } 11245 } else { 11246 if (Suffix) 11247 return Error(Loc, "width suffixes are invalid in ARM mode"); 11248 } 11249 11250 auto parseOne = [&]() -> bool { 11251 const MCExpr *Expr; 11252 if (getParser().parseExpression(Expr)) 11253 return true; 11254 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 11255 if (!Value) { 11256 return Error(Loc, "expected constant expression"); 11257 } 11258 11259 char CurSuffix = Suffix; 11260 switch (Width) { 11261 case 2: 11262 if (Value->getValue() > 0xffff) 11263 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 11264 break; 11265 case 4: 11266 if (Value->getValue() > 0xffffffff) 11267 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 11268 " operand is too big"); 11269 break; 11270 case 0: 11271 // Thumb mode, no width indicated. Guess from the opcode, if possible. 11272 if (Value->getValue() < 0xe800) 11273 CurSuffix = 'n'; 11274 else if (Value->getValue() >= 0xe8000000) 11275 CurSuffix = 'w'; 11276 else 11277 return Error(Loc, "cannot determine Thumb instruction size, " 11278 "use inst.n/inst.w instead"); 11279 break; 11280 default: 11281 llvm_unreachable("only supported widths are 2 and 4"); 11282 } 11283 11284 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 11285 return false; 11286 }; 11287 11288 if (parseOptionalToken(AsmToken::EndOfStatement)) 11289 return Error(Loc, "expected expression following directive"); 11290 if (parseMany(parseOne)) 11291 return true; 11292 return false; 11293 } 11294 11295 /// parseDirectiveLtorg 11296 /// ::= .ltorg | .pool 11297 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 11298 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11299 return true; 11300 getTargetStreamer().emitCurrentConstantPool(); 11301 return false; 11302 } 11303 11304 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 11305 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11306 11307 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11308 return true; 11309 11310 if (!Section) { 11311 getStreamer().InitSections(false); 11312 Section = getStreamer().getCurrentSectionOnly(); 11313 } 11314 11315 assert(Section && "must have section to emit alignment"); 11316 if (Section->UseCodeAlign()) 11317 getStreamer().emitCodeAlignment(2); 11318 else 11319 getStreamer().emitValueToAlignment(2); 11320 11321 return false; 11322 } 11323 11324 /// parseDirectivePersonalityIndex 11325 /// ::= .personalityindex index 11326 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 11327 MCAsmParser &Parser = getParser(); 11328 bool HasExistingPersonality = UC.hasPersonality(); 11329 11330 const MCExpr *IndexExpression; 11331 SMLoc IndexLoc = Parser.getTok().getLoc(); 11332 if (Parser.parseExpression(IndexExpression) || 11333 parseToken(AsmToken::EndOfStatement, 11334 "unexpected token in '.personalityindex' directive")) { 11335 return true; 11336 } 11337 11338 UC.recordPersonalityIndex(L); 11339 11340 if (!UC.hasFnStart()) { 11341 return Error(L, ".fnstart must precede .personalityindex directive"); 11342 } 11343 if (UC.cantUnwind()) { 11344 Error(L, ".personalityindex cannot be used with .cantunwind"); 11345 UC.emitCantUnwindLocNotes(); 11346 return true; 11347 } 11348 if (UC.hasHandlerData()) { 11349 Error(L, ".personalityindex must precede .handlerdata directive"); 11350 UC.emitHandlerDataLocNotes(); 11351 return true; 11352 } 11353 if (HasExistingPersonality) { 11354 Error(L, "multiple personality directives"); 11355 UC.emitPersonalityLocNotes(); 11356 return true; 11357 } 11358 11359 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 11360 if (!CE) 11361 return Error(IndexLoc, "index must be a constant number"); 11362 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 11363 return Error(IndexLoc, 11364 "personality routine index should be in range [0-3]"); 11365 11366 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 11367 return false; 11368 } 11369 11370 /// parseDirectiveUnwindRaw 11371 /// ::= .unwind_raw offset, opcode [, opcode...] 11372 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 11373 MCAsmParser &Parser = getParser(); 11374 int64_t StackOffset; 11375 const MCExpr *OffsetExpr; 11376 SMLoc OffsetLoc = getLexer().getLoc(); 11377 11378 if (!UC.hasFnStart()) 11379 return Error(L, ".fnstart must precede .unwind_raw directives"); 11380 if (getParser().parseExpression(OffsetExpr)) 11381 return Error(OffsetLoc, "expected expression"); 11382 11383 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11384 if (!CE) 11385 return Error(OffsetLoc, "offset must be a constant"); 11386 11387 StackOffset = CE->getValue(); 11388 11389 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 11390 return true; 11391 11392 SmallVector<uint8_t, 16> Opcodes; 11393 11394 auto parseOne = [&]() -> bool { 11395 const MCExpr *OE = nullptr; 11396 SMLoc OpcodeLoc = getLexer().getLoc(); 11397 if (check(getLexer().is(AsmToken::EndOfStatement) || 11398 Parser.parseExpression(OE), 11399 OpcodeLoc, "expected opcode expression")) 11400 return true; 11401 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 11402 if (!OC) 11403 return Error(OpcodeLoc, "opcode value must be a constant"); 11404 const int64_t Opcode = OC->getValue(); 11405 if (Opcode & ~0xff) 11406 return Error(OpcodeLoc, "invalid opcode"); 11407 Opcodes.push_back(uint8_t(Opcode)); 11408 return false; 11409 }; 11410 11411 // Must have at least 1 element 11412 SMLoc OpcodeLoc = getLexer().getLoc(); 11413 if (parseOptionalToken(AsmToken::EndOfStatement)) 11414 return Error(OpcodeLoc, "expected opcode expression"); 11415 if (parseMany(parseOne)) 11416 return true; 11417 11418 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 11419 return false; 11420 } 11421 11422 /// parseDirectiveTLSDescSeq 11423 /// ::= .tlsdescseq tls-variable 11424 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 11425 MCAsmParser &Parser = getParser(); 11426 11427 if (getLexer().isNot(AsmToken::Identifier)) 11428 return TokError("expected variable after '.tlsdescseq' directive"); 11429 11430 const MCSymbolRefExpr *SRE = 11431 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 11432 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 11433 Lex(); 11434 11435 if (parseToken(AsmToken::EndOfStatement, 11436 "unexpected token in '.tlsdescseq' directive")) 11437 return true; 11438 11439 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 11440 return false; 11441 } 11442 11443 /// parseDirectiveMovSP 11444 /// ::= .movsp reg [, #offset] 11445 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 11446 MCAsmParser &Parser = getParser(); 11447 if (!UC.hasFnStart()) 11448 return Error(L, ".fnstart must precede .movsp directives"); 11449 if (UC.getFPReg() != ARM::SP) 11450 return Error(L, "unexpected .movsp directive"); 11451 11452 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11453 int SPReg = tryParseRegister(); 11454 if (SPReg == -1) 11455 return Error(SPRegLoc, "register expected"); 11456 if (SPReg == ARM::SP || SPReg == ARM::PC) 11457 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 11458 11459 int64_t Offset = 0; 11460 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11461 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 11462 return true; 11463 11464 const MCExpr *OffsetExpr; 11465 SMLoc OffsetLoc = Parser.getTok().getLoc(); 11466 11467 if (Parser.parseExpression(OffsetExpr)) 11468 return Error(OffsetLoc, "malformed offset expression"); 11469 11470 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11471 if (!CE) 11472 return Error(OffsetLoc, "offset must be an immediate constant"); 11473 11474 Offset = CE->getValue(); 11475 } 11476 11477 if (parseToken(AsmToken::EndOfStatement, 11478 "unexpected token in '.movsp' directive")) 11479 return true; 11480 11481 getTargetStreamer().emitMovSP(SPReg, Offset); 11482 UC.saveFPReg(SPReg); 11483 11484 return false; 11485 } 11486 11487 /// parseDirectiveObjectArch 11488 /// ::= .object_arch name 11489 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 11490 MCAsmParser &Parser = getParser(); 11491 if (getLexer().isNot(AsmToken::Identifier)) 11492 return Error(getLexer().getLoc(), "unexpected token"); 11493 11494 StringRef Arch = Parser.getTok().getString(); 11495 SMLoc ArchLoc = Parser.getTok().getLoc(); 11496 Lex(); 11497 11498 ARM::ArchKind ID = ARM::parseArch(Arch); 11499 11500 if (ID == ARM::ArchKind::INVALID) 11501 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 11502 if (parseToken(AsmToken::EndOfStatement)) 11503 return true; 11504 11505 getTargetStreamer().emitObjectArch(ID); 11506 return false; 11507 } 11508 11509 /// parseDirectiveAlign 11510 /// ::= .align 11511 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 11512 // NOTE: if this is not the end of the statement, fall back to the target 11513 // agnostic handling for this directive which will correctly handle this. 11514 if (parseOptionalToken(AsmToken::EndOfStatement)) { 11515 // '.align' is target specifically handled to mean 2**2 byte alignment. 11516 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11517 assert(Section && "must have section to emit alignment"); 11518 if (Section->UseCodeAlign()) 11519 getStreamer().emitCodeAlignment(4, 0); 11520 else 11521 getStreamer().emitValueToAlignment(4, 0, 1, 0); 11522 return false; 11523 } 11524 return true; 11525 } 11526 11527 /// parseDirectiveThumbSet 11528 /// ::= .thumb_set name, value 11529 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 11530 MCAsmParser &Parser = getParser(); 11531 11532 StringRef Name; 11533 if (check(Parser.parseIdentifier(Name), 11534 "expected identifier after '.thumb_set'") || 11535 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 11536 return true; 11537 11538 MCSymbol *Sym; 11539 const MCExpr *Value; 11540 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 11541 Parser, Sym, Value)) 11542 return true; 11543 11544 getTargetStreamer().emitThumbSet(Sym, Value); 11545 return false; 11546 } 11547 11548 /// Force static initialization. 11549 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() { 11550 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 11551 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 11552 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 11553 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 11554 } 11555 11556 #define GET_REGISTER_MATCHER 11557 #define GET_SUBTARGET_FEATURE_NAME 11558 #define GET_MATCHER_IMPLEMENTATION 11559 #define GET_MNEMONIC_SPELL_CHECKER 11560 #include "ARMGenAsmMatcher.inc" 11561 11562 // Some diagnostics need to vary with subtarget features, so they are handled 11563 // here. For example, the DPR class has either 16 or 32 registers, depending 11564 // on the FPU available. 11565 const char * 11566 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 11567 switch (MatchError) { 11568 // rGPR contains sp starting with ARMv8. 11569 case Match_rGPR: 11570 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 11571 : "operand must be a register in range [r0, r12] or r14"; 11572 // DPR contains 16 registers for some FPUs, and 32 for others. 11573 case Match_DPR: 11574 return hasD32() ? "operand must be a register in range [d0, d31]" 11575 : "operand must be a register in range [d0, d15]"; 11576 case Match_DPR_RegList: 11577 return hasD32() ? "operand must be a list of registers in range [d0, d31]" 11578 : "operand must be a list of registers in range [d0, d15]"; 11579 11580 // For all other diags, use the static string from tablegen. 11581 default: 11582 return getMatchKindDiag(MatchError); 11583 } 11584 } 11585 11586 // Process the list of near-misses, throwing away ones we don't want to report 11587 // to the user, and converting the rest to a source location and string that 11588 // should be reported. 11589 void 11590 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 11591 SmallVectorImpl<NearMissMessage> &NearMissesOut, 11592 SMLoc IDLoc, OperandVector &Operands) { 11593 // TODO: If operand didn't match, sub in a dummy one and run target 11594 // predicate, so that we can avoid reporting near-misses that are invalid? 11595 // TODO: Many operand types dont have SuperClasses set, so we report 11596 // redundant ones. 11597 // TODO: Some operands are superclasses of registers (e.g. 11598 // MCK_RegShiftedImm), we don't have any way to represent that currently. 11599 // TODO: This is not all ARM-specific, can some of it be factored out? 11600 11601 // Record some information about near-misses that we have already seen, so 11602 // that we can avoid reporting redundant ones. For example, if there are 11603 // variants of an instruction that take 8- and 16-bit immediates, we want 11604 // to only report the widest one. 11605 std::multimap<unsigned, unsigned> OperandMissesSeen; 11606 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 11607 bool ReportedTooFewOperands = false; 11608 11609 // Process the near-misses in reverse order, so that we see more general ones 11610 // first, and so can avoid emitting more specific ones. 11611 for (NearMissInfo &I : reverse(NearMissesIn)) { 11612 switch (I.getKind()) { 11613 case NearMissInfo::NearMissOperand: { 11614 SMLoc OperandLoc = 11615 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 11616 const char *OperandDiag = 11617 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 11618 11619 // If we have already emitted a message for a superclass, don't also report 11620 // the sub-class. We consider all operand classes that we don't have a 11621 // specialised diagnostic for to be equal for the propose of this check, 11622 // so that we don't report the generic error multiple times on the same 11623 // operand. 11624 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 11625 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 11626 if (std::any_of(PrevReports.first, PrevReports.second, 11627 [DupCheckMatchClass]( 11628 const std::pair<unsigned, unsigned> Pair) { 11629 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 11630 return Pair.second == DupCheckMatchClass; 11631 else 11632 return isSubclass((MatchClassKind)DupCheckMatchClass, 11633 (MatchClassKind)Pair.second); 11634 })) 11635 break; 11636 OperandMissesSeen.insert( 11637 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 11638 11639 NearMissMessage Message; 11640 Message.Loc = OperandLoc; 11641 if (OperandDiag) { 11642 Message.Message = OperandDiag; 11643 } else if (I.getOperandClass() == InvalidMatchClass) { 11644 Message.Message = "too many operands for instruction"; 11645 } else { 11646 Message.Message = "invalid operand for instruction"; 11647 LLVM_DEBUG( 11648 dbgs() << "Missing diagnostic string for operand class " 11649 << getMatchClassName((MatchClassKind)I.getOperandClass()) 11650 << I.getOperandClass() << ", error " << I.getOperandError() 11651 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 11652 } 11653 NearMissesOut.emplace_back(Message); 11654 break; 11655 } 11656 case NearMissInfo::NearMissFeature: { 11657 const FeatureBitset &MissingFeatures = I.getFeatures(); 11658 // Don't report the same set of features twice. 11659 if (FeatureMissesSeen.count(MissingFeatures)) 11660 break; 11661 FeatureMissesSeen.insert(MissingFeatures); 11662 11663 // Special case: don't report a feature set which includes arm-mode for 11664 // targets that don't have ARM mode. 11665 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 11666 break; 11667 // Don't report any near-misses that both require switching instruction 11668 // set, and adding other subtarget features. 11669 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 11670 MissingFeatures.count() > 1) 11671 break; 11672 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 11673 MissingFeatures.count() > 1) 11674 break; 11675 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 11676 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 11677 Feature_IsThumbBit})).any()) 11678 break; 11679 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 11680 break; 11681 11682 NearMissMessage Message; 11683 Message.Loc = IDLoc; 11684 raw_svector_ostream OS(Message.Message); 11685 11686 OS << "instruction requires:"; 11687 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 11688 if (MissingFeatures.test(i)) 11689 OS << ' ' << getSubtargetFeatureName(i); 11690 11691 NearMissesOut.emplace_back(Message); 11692 11693 break; 11694 } 11695 case NearMissInfo::NearMissPredicate: { 11696 NearMissMessage Message; 11697 Message.Loc = IDLoc; 11698 switch (I.getPredicateError()) { 11699 case Match_RequiresNotITBlock: 11700 Message.Message = "flag setting instruction only valid outside IT block"; 11701 break; 11702 case Match_RequiresITBlock: 11703 Message.Message = "instruction only valid inside IT block"; 11704 break; 11705 case Match_RequiresV6: 11706 Message.Message = "instruction variant requires ARMv6 or later"; 11707 break; 11708 case Match_RequiresThumb2: 11709 Message.Message = "instruction variant requires Thumb2"; 11710 break; 11711 case Match_RequiresV8: 11712 Message.Message = "instruction variant requires ARMv8 or later"; 11713 break; 11714 case Match_RequiresFlagSetting: 11715 Message.Message = "no flag-preserving variant of this instruction available"; 11716 break; 11717 case Match_InvalidOperand: 11718 Message.Message = "invalid operand for instruction"; 11719 break; 11720 default: 11721 llvm_unreachable("Unhandled target predicate error"); 11722 break; 11723 } 11724 NearMissesOut.emplace_back(Message); 11725 break; 11726 } 11727 case NearMissInfo::NearMissTooFewOperands: { 11728 if (!ReportedTooFewOperands) { 11729 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 11730 NearMissesOut.emplace_back(NearMissMessage{ 11731 EndLoc, StringRef("too few operands for instruction")}); 11732 ReportedTooFewOperands = true; 11733 } 11734 break; 11735 } 11736 case NearMissInfo::NoNearMiss: 11737 // This should never leave the matcher. 11738 llvm_unreachable("not a near-miss"); 11739 break; 11740 } 11741 } 11742 } 11743 11744 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 11745 SMLoc IDLoc, OperandVector &Operands) { 11746 SmallVector<NearMissMessage, 4> Messages; 11747 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 11748 11749 if (Messages.size() == 0) { 11750 // No near-misses were found, so the best we can do is "invalid 11751 // instruction". 11752 Error(IDLoc, "invalid instruction"); 11753 } else if (Messages.size() == 1) { 11754 // One near miss was found, report it as the sole error. 11755 Error(Messages[0].Loc, Messages[0].Message); 11756 } else { 11757 // More than one near miss, so report a generic "invalid instruction" 11758 // error, followed by notes for each of the near-misses. 11759 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 11760 for (auto &M : Messages) { 11761 Note(M.Loc, M.Message); 11762 } 11763 } 11764 } 11765 11766 /// parseDirectiveArchExtension 11767 /// ::= .arch_extension [no]feature 11768 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 11769 // FIXME: This structure should be moved inside ARMTargetParser 11770 // when we start to table-generate them, and we can use the ARM 11771 // flags below, that were generated by table-gen. 11772 static const struct { 11773 const uint64_t Kind; 11774 const FeatureBitset ArchCheck; 11775 const FeatureBitset Features; 11776 } Extensions[] = { 11777 { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} }, 11778 { ARM::AEK_CRYPTO, {Feature_HasV8Bit}, 11779 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 11780 { ARM::AEK_FP, {Feature_HasV8Bit}, 11781 {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} }, 11782 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 11783 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 11784 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 11785 { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit}, 11786 {ARM::FeatureMP} }, 11787 { ARM::AEK_SIMD, {Feature_HasV8Bit}, 11788 {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} }, 11789 { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} }, 11790 // FIXME: Only available in A-class, isel not predicated 11791 { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} }, 11792 { ARM::AEK_FP16, {Feature_HasV8_2aBit}, 11793 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 11794 { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} }, 11795 { ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} }, 11796 // FIXME: Unsupported extensions. 11797 { ARM::AEK_OS, {}, {} }, 11798 { ARM::AEK_IWMMXT, {}, {} }, 11799 { ARM::AEK_IWMMXT2, {}, {} }, 11800 { ARM::AEK_MAVERICK, {}, {} }, 11801 { ARM::AEK_XSCALE, {}, {} }, 11802 }; 11803 11804 MCAsmParser &Parser = getParser(); 11805 11806 if (getLexer().isNot(AsmToken::Identifier)) 11807 return Error(getLexer().getLoc(), "expected architecture extension name"); 11808 11809 StringRef Name = Parser.getTok().getString(); 11810 SMLoc ExtLoc = Parser.getTok().getLoc(); 11811 Lex(); 11812 11813 if (parseToken(AsmToken::EndOfStatement, 11814 "unexpected token in '.arch_extension' directive")) 11815 return true; 11816 11817 bool EnableFeature = true; 11818 if (Name.startswith_lower("no")) { 11819 EnableFeature = false; 11820 Name = Name.substr(2); 11821 } 11822 uint64_t FeatureKind = ARM::parseArchExt(Name); 11823 if (FeatureKind == ARM::AEK_INVALID) 11824 return Error(ExtLoc, "unknown architectural extension: " + Name); 11825 11826 for (const auto &Extension : Extensions) { 11827 if (Extension.Kind != FeatureKind) 11828 continue; 11829 11830 if (Extension.Features.none()) 11831 return Error(ExtLoc, "unsupported architectural extension: " + Name); 11832 11833 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 11834 return Error(ExtLoc, "architectural extension '" + Name + 11835 "' is not " 11836 "allowed for the current base architecture"); 11837 11838 MCSubtargetInfo &STI = copySTI(); 11839 if (EnableFeature) { 11840 STI.SetFeatureBitsTransitively(Extension.Features); 11841 } else { 11842 STI.ClearFeatureBitsTransitively(Extension.Features); 11843 } 11844 FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits()); 11845 setAvailableFeatures(Features); 11846 return false; 11847 } 11848 11849 return Error(ExtLoc, "unknown architectural extension: " + Name); 11850 } 11851 11852 // Define this matcher function after the auto-generated include so we 11853 // have the match class enum definitions. 11854 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 11855 unsigned Kind) { 11856 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 11857 // If the kind is a token for a literal immediate, check if our asm 11858 // operand matches. This is for InstAliases which have a fixed-value 11859 // immediate in the syntax. 11860 switch (Kind) { 11861 default: break; 11862 case MCK__HASH_0: 11863 if (Op.isImm()) 11864 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11865 if (CE->getValue() == 0) 11866 return Match_Success; 11867 break; 11868 case MCK__HASH_8: 11869 if (Op.isImm()) 11870 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11871 if (CE->getValue() == 8) 11872 return Match_Success; 11873 break; 11874 case MCK__HASH_16: 11875 if (Op.isImm()) 11876 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11877 if (CE->getValue() == 16) 11878 return Match_Success; 11879 break; 11880 case MCK_ModImm: 11881 if (Op.isImm()) { 11882 const MCExpr *SOExpr = Op.getImm(); 11883 int64_t Value; 11884 if (!SOExpr->evaluateAsAbsolute(Value)) 11885 return Match_Success; 11886 assert((Value >= std::numeric_limits<int32_t>::min() && 11887 Value <= std::numeric_limits<uint32_t>::max()) && 11888 "expression value must be representable in 32 bits"); 11889 } 11890 break; 11891 case MCK_rGPR: 11892 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 11893 return Match_Success; 11894 return Match_rGPR; 11895 case MCK_GPRPair: 11896 if (Op.isReg() && 11897 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 11898 return Match_Success; 11899 break; 11900 } 11901 return Match_InvalidOperand; 11902 } 11903 11904 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, 11905 StringRef ExtraToken) { 11906 if (!hasMVE()) 11907 return false; 11908 11909 return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") || 11910 Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") || 11911 Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") || 11912 Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") || 11913 Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") || 11914 Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") || 11915 Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") || 11916 Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") || 11917 Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") || 11918 Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") || 11919 Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") || 11920 Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") || 11921 Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") || 11922 Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") || 11923 Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") || 11924 Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") || 11925 Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") || 11926 Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") || 11927 Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") || 11928 Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") || 11929 Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") || 11930 Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") || 11931 Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") || 11932 Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") || 11933 Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") || 11934 Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") || 11935 Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") || 11936 Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") || 11937 Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") || 11938 Mnemonic.startswith("vqabs") || 11939 (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") || 11940 Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") || 11941 Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") || 11942 Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") || 11943 Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") || 11944 Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") || 11945 Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") || 11946 Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") || 11947 Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") || 11948 Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") || 11949 Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") || 11950 Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") || 11951 Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") || 11952 Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") || 11953 Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") || 11954 Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") || 11955 Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") || 11956 Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") || 11957 Mnemonic.startswith("vldrb") || 11958 (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") || 11959 (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") || 11960 Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") || 11961 Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") || 11962 Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") || 11963 Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") || 11964 Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") || 11965 Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") || 11966 Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") || 11967 Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") || 11968 Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") || 11969 Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") || 11970 Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") || 11971 Mnemonic.startswith("vcvt") || 11972 (Mnemonic.startswith("vmov") && 11973 !(ExtraToken == ".f16" || ExtraToken == ".32" || 11974 ExtraToken == ".16" || ExtraToken == ".8")); 11975 } 11976