1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMFeatures.h" 10 #include "InstPrinter/ARMInstPrinter.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMMCExpr.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCInstrInfo.h" 32 #include "llvm/MC/MCObjectFileInfo.h" 33 #include "llvm/MC/MCParser/MCAsmLexer.h" 34 #include "llvm/MC/MCParser/MCAsmParser.h" 35 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 36 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 37 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 38 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSubtargetInfo.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/MC/SubtargetFeature.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/ARMEHABI.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/SMLoc.h" 53 #include "llvm/Support/TargetParser.h" 54 #include "llvm/Support/TargetRegistry.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstddef> 59 #include <cstdint> 60 #include <iterator> 61 #include <limits> 62 #include <memory> 63 #include <string> 64 #include <utility> 65 #include <vector> 66 67 #define DEBUG_TYPE "asm-parser" 68 69 using namespace llvm; 70 71 namespace { 72 73 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 74 75 static cl::opt<ImplicitItModeTy> ImplicitItMode( 76 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 77 cl::desc("Allow conditional instructions outdside of an IT block"), 78 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 79 "Accept in both ISAs, emit implicit ITs in Thumb"), 80 clEnumValN(ImplicitItModeTy::Never, "never", 81 "Warn in ARM, reject in Thumb"), 82 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 83 "Accept in ARM, reject in Thumb"), 84 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 85 "Warn in ARM, emit implicit ITs in Thumb"))); 86 87 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 88 cl::init(false)); 89 90 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 91 92 class UnwindContext { 93 using Locs = SmallVector<SMLoc, 4>; 94 95 MCAsmParser &Parser; 96 Locs FnStartLocs; 97 Locs CantUnwindLocs; 98 Locs PersonalityLocs; 99 Locs PersonalityIndexLocs; 100 Locs HandlerDataLocs; 101 int FPReg; 102 103 public: 104 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 105 106 bool hasFnStart() const { return !FnStartLocs.empty(); } 107 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 108 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 109 110 bool hasPersonality() const { 111 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 112 } 113 114 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 115 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 116 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 117 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 118 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 119 120 void saveFPReg(int Reg) { FPReg = Reg; } 121 int getFPReg() const { return FPReg; } 122 123 void emitFnStartLocNotes() const { 124 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 125 FI != FE; ++FI) 126 Parser.Note(*FI, ".fnstart was specified here"); 127 } 128 129 void emitCantUnwindLocNotes() const { 130 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 131 UE = CantUnwindLocs.end(); UI != UE; ++UI) 132 Parser.Note(*UI, ".cantunwind was specified here"); 133 } 134 135 void emitHandlerDataLocNotes() const { 136 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 137 HE = HandlerDataLocs.end(); HI != HE; ++HI) 138 Parser.Note(*HI, ".handlerdata was specified here"); 139 } 140 141 void emitPersonalityLocNotes() const { 142 for (Locs::const_iterator PI = PersonalityLocs.begin(), 143 PE = PersonalityLocs.end(), 144 PII = PersonalityIndexLocs.begin(), 145 PIE = PersonalityIndexLocs.end(); 146 PI != PE || PII != PIE;) { 147 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 148 Parser.Note(*PI++, ".personality was specified here"); 149 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 150 Parser.Note(*PII++, ".personalityindex was specified here"); 151 else 152 llvm_unreachable(".personality and .personalityindex cannot be " 153 "at the same location"); 154 } 155 } 156 157 void reset() { 158 FnStartLocs = Locs(); 159 CantUnwindLocs = Locs(); 160 PersonalityLocs = Locs(); 161 HandlerDataLocs = Locs(); 162 PersonalityIndexLocs = Locs(); 163 FPReg = ARM::SP; 164 } 165 }; 166 167 class ARMAsmParser : public MCTargetAsmParser { 168 const MCRegisterInfo *MRI; 169 UnwindContext UC; 170 171 ARMTargetStreamer &getTargetStreamer() { 172 assert(getParser().getStreamer().getTargetStreamer() && 173 "do not have a target streamer"); 174 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 175 return static_cast<ARMTargetStreamer &>(TS); 176 } 177 178 // Map of register aliases registers via the .req directive. 179 StringMap<unsigned> RegisterReqs; 180 181 bool NextSymbolIsThumb; 182 183 bool useImplicitITThumb() const { 184 return ImplicitItMode == ImplicitItModeTy::Always || 185 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 186 } 187 188 bool useImplicitITARM() const { 189 return ImplicitItMode == ImplicitItModeTy::Always || 190 ImplicitItMode == ImplicitItModeTy::ARMOnly; 191 } 192 193 struct { 194 ARMCC::CondCodes Cond; // Condition for IT block. 195 unsigned Mask:4; // Condition mask for instructions. 196 // Starting at first 1 (from lsb). 197 // '1' condition as indicated in IT. 198 // '0' inverse of condition (else). 199 // Count of instructions in IT block is 200 // 4 - trailingzeroes(mask) 201 // Note that this does not have the same encoding 202 // as in the IT instruction, which also depends 203 // on the low bit of the condition code. 204 205 unsigned CurPosition; // Current position in parsing of IT 206 // block. In range [0,4], with 0 being the IT 207 // instruction itself. Initialized according to 208 // count of instructions in block. ~0U if no 209 // active IT block. 210 211 bool IsExplicit; // true - The IT instruction was present in the 212 // input, we should not modify it. 213 // false - The IT instruction was added 214 // implicitly, we can extend it if that 215 // would be legal. 216 } ITState; 217 218 SmallVector<MCInst, 4> PendingConditionalInsts; 219 220 void flushPendingInstructions(MCStreamer &Out) override { 221 if (!inImplicitITBlock()) { 222 assert(PendingConditionalInsts.size() == 0); 223 return; 224 } 225 226 // Emit the IT instruction 227 unsigned Mask = getITMaskEncoding(); 228 MCInst ITInst; 229 ITInst.setOpcode(ARM::t2IT); 230 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 231 ITInst.addOperand(MCOperand::createImm(Mask)); 232 Out.EmitInstruction(ITInst, getSTI()); 233 234 // Emit the conditonal instructions 235 assert(PendingConditionalInsts.size() <= 4); 236 for (const MCInst &Inst : PendingConditionalInsts) { 237 Out.EmitInstruction(Inst, getSTI()); 238 } 239 PendingConditionalInsts.clear(); 240 241 // Clear the IT state 242 ITState.Mask = 0; 243 ITState.CurPosition = ~0U; 244 } 245 246 bool inITBlock() { return ITState.CurPosition != ~0U; } 247 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 248 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 249 250 bool lastInITBlock() { 251 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 252 } 253 254 void forwardITPosition() { 255 if (!inITBlock()) return; 256 // Move to the next instruction in the IT block, if there is one. If not, 257 // mark the block as done, except for implicit IT blocks, which we leave 258 // open until we find an instruction that can't be added to it. 259 unsigned TZ = countTrailingZeros(ITState.Mask); 260 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 261 ITState.CurPosition = ~0U; // Done with the IT block after this. 262 } 263 264 // Rewind the state of the current IT block, removing the last slot from it. 265 void rewindImplicitITPosition() { 266 assert(inImplicitITBlock()); 267 assert(ITState.CurPosition > 1); 268 ITState.CurPosition--; 269 unsigned TZ = countTrailingZeros(ITState.Mask); 270 unsigned NewMask = 0; 271 NewMask |= ITState.Mask & (0xC << TZ); 272 NewMask |= 0x2 << TZ; 273 ITState.Mask = NewMask; 274 } 275 276 // Rewind the state of the current IT block, removing the last slot from it. 277 // If we were at the first slot, this closes the IT block. 278 void discardImplicitITBlock() { 279 assert(inImplicitITBlock()); 280 assert(ITState.CurPosition == 1); 281 ITState.CurPosition = ~0U; 282 } 283 284 // Return the low-subreg of a given Q register. 285 unsigned getDRegFromQReg(unsigned QReg) const { 286 return MRI->getSubReg(QReg, ARM::dsub_0); 287 } 288 289 // Get the encoding of the IT mask, as it will appear in an IT instruction. 290 unsigned getITMaskEncoding() { 291 assert(inITBlock()); 292 unsigned Mask = ITState.Mask; 293 unsigned TZ = countTrailingZeros(Mask); 294 if ((ITState.Cond & 1) == 0) { 295 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 296 Mask ^= (0xE << TZ) & 0xF; 297 } 298 return Mask; 299 } 300 301 // Get the condition code corresponding to the current IT block slot. 302 ARMCC::CondCodes currentITCond() { 303 unsigned MaskBit; 304 if (ITState.CurPosition == 1) 305 MaskBit = 1; 306 else 307 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 308 309 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 310 } 311 312 // Invert the condition of the current IT block slot without changing any 313 // other slots in the same block. 314 void invertCurrentITCondition() { 315 if (ITState.CurPosition == 1) { 316 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 317 } else { 318 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 319 } 320 } 321 322 // Returns true if the current IT block is full (all 4 slots used). 323 bool isITBlockFull() { 324 return inITBlock() && (ITState.Mask & 1); 325 } 326 327 // Extend the current implicit IT block to have one more slot with the given 328 // condition code. 329 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 330 assert(inImplicitITBlock()); 331 assert(!isITBlockFull()); 332 assert(Cond == ITState.Cond || 333 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 334 unsigned TZ = countTrailingZeros(ITState.Mask); 335 unsigned NewMask = 0; 336 // Keep any existing condition bits. 337 NewMask |= ITState.Mask & (0xE << TZ); 338 // Insert the new condition bit. 339 NewMask |= (Cond == ITState.Cond) << TZ; 340 // Move the trailing 1 down one bit. 341 NewMask |= 1 << (TZ - 1); 342 ITState.Mask = NewMask; 343 } 344 345 // Create a new implicit IT block with a dummy condition code. 346 void startImplicitITBlock() { 347 assert(!inITBlock()); 348 ITState.Cond = ARMCC::AL; 349 ITState.Mask = 8; 350 ITState.CurPosition = 1; 351 ITState.IsExplicit = false; 352 } 353 354 // Create a new explicit IT block with the given condition and mask. The mask 355 // should be in the parsed format, with a 1 implying 't', regardless of the 356 // low bit of the condition. 357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 358 assert(!inITBlock()); 359 ITState.Cond = Cond; 360 ITState.Mask = Mask; 361 ITState.CurPosition = 0; 362 ITState.IsExplicit = true; 363 } 364 365 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 366 return getParser().Note(L, Msg, Range); 367 } 368 369 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 370 return getParser().Warning(L, Msg, Range); 371 } 372 373 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 374 return getParser().Error(L, Msg, Range); 375 } 376 377 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 378 unsigned ListNo, bool IsARPop = false); 379 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 380 unsigned ListNo); 381 382 int tryParseRegister(); 383 bool tryParseRegisterWithWriteBack(OperandVector &); 384 int tryParseShiftRegister(OperandVector &); 385 bool parseRegisterList(OperandVector &); 386 bool parseMemory(OperandVector &); 387 bool parseOperand(OperandVector &, StringRef Mnemonic); 388 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 389 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 390 unsigned &ShiftAmount); 391 bool parseLiteralValues(unsigned Size, SMLoc L); 392 bool parseDirectiveThumb(SMLoc L); 393 bool parseDirectiveARM(SMLoc L); 394 bool parseDirectiveThumbFunc(SMLoc L); 395 bool parseDirectiveCode(SMLoc L); 396 bool parseDirectiveSyntax(SMLoc L); 397 bool parseDirectiveReq(StringRef Name, SMLoc L); 398 bool parseDirectiveUnreq(SMLoc L); 399 bool parseDirectiveArch(SMLoc L); 400 bool parseDirectiveEabiAttr(SMLoc L); 401 bool parseDirectiveCPU(SMLoc L); 402 bool parseDirectiveFPU(SMLoc L); 403 bool parseDirectiveFnStart(SMLoc L); 404 bool parseDirectiveFnEnd(SMLoc L); 405 bool parseDirectiveCantUnwind(SMLoc L); 406 bool parseDirectivePersonality(SMLoc L); 407 bool parseDirectiveHandlerData(SMLoc L); 408 bool parseDirectiveSetFP(SMLoc L); 409 bool parseDirectivePad(SMLoc L); 410 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 411 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 412 bool parseDirectiveLtorg(SMLoc L); 413 bool parseDirectiveEven(SMLoc L); 414 bool parseDirectivePersonalityIndex(SMLoc L); 415 bool parseDirectiveUnwindRaw(SMLoc L); 416 bool parseDirectiveTLSDescSeq(SMLoc L); 417 bool parseDirectiveMovSP(SMLoc L); 418 bool parseDirectiveObjectArch(SMLoc L); 419 bool parseDirectiveArchExtension(SMLoc L); 420 bool parseDirectiveAlign(SMLoc L); 421 bool parseDirectiveThumbSet(SMLoc L); 422 423 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 424 bool &CarrySetting, unsigned &ProcessorIMod, 425 StringRef &ITMask); 426 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 427 bool &CanAcceptCarrySet, 428 bool &CanAcceptPredicationCode); 429 430 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 431 OperandVector &Operands); 432 bool isThumb() const { 433 // FIXME: Can tablegen auto-generate this? 434 return getSTI().getFeatureBits()[ARM::ModeThumb]; 435 } 436 437 bool isThumbOne() const { 438 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 439 } 440 441 bool isThumbTwo() const { 442 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 443 } 444 445 bool hasThumb() const { 446 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 447 } 448 449 bool hasThumb2() const { 450 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 451 } 452 453 bool hasV6Ops() const { 454 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 455 } 456 457 bool hasV6T2Ops() const { 458 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 459 } 460 461 bool hasV6MOps() const { 462 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 463 } 464 465 bool hasV7Ops() const { 466 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 467 } 468 469 bool hasV8Ops() const { 470 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 471 } 472 473 bool hasV8MBaseline() const { 474 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 475 } 476 477 bool hasV8MMainline() const { 478 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 479 } 480 481 bool has8MSecExt() const { 482 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 483 } 484 485 bool hasARM() const { 486 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 487 } 488 489 bool hasDSP() const { 490 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 491 } 492 493 bool hasD16() const { 494 return getSTI().getFeatureBits()[ARM::FeatureD16]; 495 } 496 497 bool hasV8_1aOps() const { 498 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 499 } 500 501 bool hasRAS() const { 502 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 503 } 504 505 void SwitchMode() { 506 MCSubtargetInfo &STI = copySTI(); 507 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 508 setAvailableFeatures(FB); 509 } 510 511 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 512 513 bool isMClass() const { 514 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 515 } 516 517 /// @name Auto-generated Match Functions 518 /// { 519 520 #define GET_ASSEMBLER_HEADER 521 #include "ARMGenAsmMatcher.inc" 522 523 /// } 524 525 OperandMatchResultTy parseITCondCode(OperandVector &); 526 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 527 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 528 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 529 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 530 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 531 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 532 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 533 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 534 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 535 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 536 int High); 537 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 538 return parsePKHImm(O, "lsl", 0, 31); 539 } 540 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 541 return parsePKHImm(O, "asr", 1, 32); 542 } 543 OperandMatchResultTy parseSetEndImm(OperandVector &); 544 OperandMatchResultTy parseShifterImm(OperandVector &); 545 OperandMatchResultTy parseRotImm(OperandVector &); 546 OperandMatchResultTy parseModImm(OperandVector &); 547 OperandMatchResultTy parseBitfield(OperandVector &); 548 OperandMatchResultTy parsePostIdxReg(OperandVector &); 549 OperandMatchResultTy parseAM3Offset(OperandVector &); 550 OperandMatchResultTy parseFPImm(OperandVector &); 551 OperandMatchResultTy parseVectorList(OperandVector &); 552 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 553 SMLoc &EndLoc); 554 555 // Asm Match Converter Methods 556 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 557 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 558 559 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 560 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 561 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 562 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 563 bool isITBlockTerminator(MCInst &Inst) const; 564 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 565 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 566 bool Load, bool ARMMode, bool Writeback); 567 568 public: 569 enum ARMMatchResultTy { 570 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 571 Match_RequiresNotITBlock, 572 Match_RequiresV6, 573 Match_RequiresThumb2, 574 Match_RequiresV8, 575 Match_RequiresFlagSetting, 576 #define GET_OPERAND_DIAGNOSTIC_TYPES 577 #include "ARMGenAsmMatcher.inc" 578 579 }; 580 581 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 582 const MCInstrInfo &MII, const MCTargetOptions &Options) 583 : MCTargetAsmParser(Options, STI, MII), UC(Parser) { 584 MCAsmParserExtension::Initialize(Parser); 585 586 // Cache the MCRegisterInfo. 587 MRI = getContext().getRegisterInfo(); 588 589 // Initialize the set of available features. 590 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 591 592 // Add build attributes based on the selected target. 593 if (AddBuildAttributes) 594 getTargetStreamer().emitTargetAttributes(STI); 595 596 // Not in an ITBlock to start with. 597 ITState.CurPosition = ~0U; 598 599 NextSymbolIsThumb = false; 600 } 601 602 // Implementation of the MCTargetAsmParser interface: 603 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 604 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 605 SMLoc NameLoc, OperandVector &Operands) override; 606 bool ParseDirective(AsmToken DirectiveID) override; 607 608 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 609 unsigned Kind) override; 610 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 611 612 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 613 OperandVector &Operands, MCStreamer &Out, 614 uint64_t &ErrorInfo, 615 bool MatchingInlineAsm) override; 616 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 617 SmallVectorImpl<NearMissInfo> &NearMisses, 618 bool MatchingInlineAsm, bool &EmitInITBlock, 619 MCStreamer &Out); 620 621 struct NearMissMessage { 622 SMLoc Loc; 623 SmallString<128> Message; 624 }; 625 626 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 627 628 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 629 SmallVectorImpl<NearMissMessage> &NearMissesOut, 630 SMLoc IDLoc, OperandVector &Operands); 631 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 632 OperandVector &Operands); 633 634 void doBeforeLabelEmit(MCSymbol *Symbol) override; 635 636 void onLabelParsed(MCSymbol *Symbol) override; 637 }; 638 639 /// ARMOperand - Instances of this class represent a parsed ARM machine 640 /// operand. 641 class ARMOperand : public MCParsedAsmOperand { 642 enum KindTy { 643 k_CondCode, 644 k_CCOut, 645 k_ITCondMask, 646 k_CoprocNum, 647 k_CoprocReg, 648 k_CoprocOption, 649 k_Immediate, 650 k_MemBarrierOpt, 651 k_InstSyncBarrierOpt, 652 k_TraceSyncBarrierOpt, 653 k_Memory, 654 k_PostIndexRegister, 655 k_MSRMask, 656 k_BankedReg, 657 k_ProcIFlags, 658 k_VectorIndex, 659 k_Register, 660 k_RegisterList, 661 k_DPRRegisterList, 662 k_SPRRegisterList, 663 k_VectorList, 664 k_VectorListAllLanes, 665 k_VectorListIndexed, 666 k_ShiftedRegister, 667 k_ShiftedImmediate, 668 k_ShifterImmediate, 669 k_RotateImmediate, 670 k_ModifiedImmediate, 671 k_ConstantPoolImmediate, 672 k_BitfieldDescriptor, 673 k_Token, 674 } Kind; 675 676 SMLoc StartLoc, EndLoc, AlignmentLoc; 677 SmallVector<unsigned, 8> Registers; 678 679 struct CCOp { 680 ARMCC::CondCodes Val; 681 }; 682 683 struct CopOp { 684 unsigned Val; 685 }; 686 687 struct CoprocOptionOp { 688 unsigned Val; 689 }; 690 691 struct ITMaskOp { 692 unsigned Mask:4; 693 }; 694 695 struct MBOptOp { 696 ARM_MB::MemBOpt Val; 697 }; 698 699 struct ISBOptOp { 700 ARM_ISB::InstSyncBOpt Val; 701 }; 702 703 struct TSBOptOp { 704 ARM_TSB::TraceSyncBOpt Val; 705 }; 706 707 struct IFlagsOp { 708 ARM_PROC::IFlags Val; 709 }; 710 711 struct MMaskOp { 712 unsigned Val; 713 }; 714 715 struct BankedRegOp { 716 unsigned Val; 717 }; 718 719 struct TokOp { 720 const char *Data; 721 unsigned Length; 722 }; 723 724 struct RegOp { 725 unsigned RegNum; 726 }; 727 728 // A vector register list is a sequential list of 1 to 4 registers. 729 struct VectorListOp { 730 unsigned RegNum; 731 unsigned Count; 732 unsigned LaneIndex; 733 bool isDoubleSpaced; 734 }; 735 736 struct VectorIndexOp { 737 unsigned Val; 738 }; 739 740 struct ImmOp { 741 const MCExpr *Val; 742 }; 743 744 /// Combined record for all forms of ARM address expressions. 745 struct MemoryOp { 746 unsigned BaseRegNum; 747 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 748 // was specified. 749 const MCConstantExpr *OffsetImm; // Offset immediate value 750 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 751 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 752 unsigned ShiftImm; // shift for OffsetReg. 753 unsigned Alignment; // 0 = no alignment specified 754 // n = alignment in bytes (2, 4, 8, 16, or 32) 755 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 756 }; 757 758 struct PostIdxRegOp { 759 unsigned RegNum; 760 bool isAdd; 761 ARM_AM::ShiftOpc ShiftTy; 762 unsigned ShiftImm; 763 }; 764 765 struct ShifterImmOp { 766 bool isASR; 767 unsigned Imm; 768 }; 769 770 struct RegShiftedRegOp { 771 ARM_AM::ShiftOpc ShiftTy; 772 unsigned SrcReg; 773 unsigned ShiftReg; 774 unsigned ShiftImm; 775 }; 776 777 struct RegShiftedImmOp { 778 ARM_AM::ShiftOpc ShiftTy; 779 unsigned SrcReg; 780 unsigned ShiftImm; 781 }; 782 783 struct RotImmOp { 784 unsigned Imm; 785 }; 786 787 struct ModImmOp { 788 unsigned Bits; 789 unsigned Rot; 790 }; 791 792 struct BitfieldOp { 793 unsigned LSB; 794 unsigned Width; 795 }; 796 797 union { 798 struct CCOp CC; 799 struct CopOp Cop; 800 struct CoprocOptionOp CoprocOption; 801 struct MBOptOp MBOpt; 802 struct ISBOptOp ISBOpt; 803 struct TSBOptOp TSBOpt; 804 struct ITMaskOp ITMask; 805 struct IFlagsOp IFlags; 806 struct MMaskOp MMask; 807 struct BankedRegOp BankedReg; 808 struct TokOp Tok; 809 struct RegOp Reg; 810 struct VectorListOp VectorList; 811 struct VectorIndexOp VectorIndex; 812 struct ImmOp Imm; 813 struct MemoryOp Memory; 814 struct PostIdxRegOp PostIdxReg; 815 struct ShifterImmOp ShifterImm; 816 struct RegShiftedRegOp RegShiftedReg; 817 struct RegShiftedImmOp RegShiftedImm; 818 struct RotImmOp RotImm; 819 struct ModImmOp ModImm; 820 struct BitfieldOp Bitfield; 821 }; 822 823 public: 824 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 825 826 /// getStartLoc - Get the location of the first token of this operand. 827 SMLoc getStartLoc() const override { return StartLoc; } 828 829 /// getEndLoc - Get the location of the last token of this operand. 830 SMLoc getEndLoc() const override { return EndLoc; } 831 832 /// getLocRange - Get the range between the first and last token of this 833 /// operand. 834 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 835 836 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 837 SMLoc getAlignmentLoc() const { 838 assert(Kind == k_Memory && "Invalid access!"); 839 return AlignmentLoc; 840 } 841 842 ARMCC::CondCodes getCondCode() const { 843 assert(Kind == k_CondCode && "Invalid access!"); 844 return CC.Val; 845 } 846 847 unsigned getCoproc() const { 848 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 849 return Cop.Val; 850 } 851 852 StringRef getToken() const { 853 assert(Kind == k_Token && "Invalid access!"); 854 return StringRef(Tok.Data, Tok.Length); 855 } 856 857 unsigned getReg() const override { 858 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 859 return Reg.RegNum; 860 } 861 862 const SmallVectorImpl<unsigned> &getRegList() const { 863 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 864 Kind == k_SPRRegisterList) && "Invalid access!"); 865 return Registers; 866 } 867 868 const MCExpr *getImm() const { 869 assert(isImm() && "Invalid access!"); 870 return Imm.Val; 871 } 872 873 const MCExpr *getConstantPoolImm() const { 874 assert(isConstantPoolImm() && "Invalid access!"); 875 return Imm.Val; 876 } 877 878 unsigned getVectorIndex() const { 879 assert(Kind == k_VectorIndex && "Invalid access!"); 880 return VectorIndex.Val; 881 } 882 883 ARM_MB::MemBOpt getMemBarrierOpt() const { 884 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 885 return MBOpt.Val; 886 } 887 888 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 889 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 890 return ISBOpt.Val; 891 } 892 893 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 894 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 895 return TSBOpt.Val; 896 } 897 898 ARM_PROC::IFlags getProcIFlags() const { 899 assert(Kind == k_ProcIFlags && "Invalid access!"); 900 return IFlags.Val; 901 } 902 903 unsigned getMSRMask() const { 904 assert(Kind == k_MSRMask && "Invalid access!"); 905 return MMask.Val; 906 } 907 908 unsigned getBankedReg() const { 909 assert(Kind == k_BankedReg && "Invalid access!"); 910 return BankedReg.Val; 911 } 912 913 bool isCoprocNum() const { return Kind == k_CoprocNum; } 914 bool isCoprocReg() const { return Kind == k_CoprocReg; } 915 bool isCoprocOption() const { return Kind == k_CoprocOption; } 916 bool isCondCode() const { return Kind == k_CondCode; } 917 bool isCCOut() const { return Kind == k_CCOut; } 918 bool isITMask() const { return Kind == k_ITCondMask; } 919 bool isITCondCode() const { return Kind == k_CondCode; } 920 bool isImm() const override { 921 return Kind == k_Immediate; 922 } 923 924 bool isARMBranchTarget() const { 925 if (!isImm()) return false; 926 927 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 928 return CE->getValue() % 4 == 0; 929 return true; 930 } 931 932 933 bool isThumbBranchTarget() const { 934 if (!isImm()) return false; 935 936 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 937 return CE->getValue() % 2 == 0; 938 return true; 939 } 940 941 // checks whether this operand is an unsigned offset which fits is a field 942 // of specified width and scaled by a specific number of bits 943 template<unsigned width, unsigned scale> 944 bool isUnsignedOffset() const { 945 if (!isImm()) return false; 946 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 947 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 948 int64_t Val = CE->getValue(); 949 int64_t Align = 1LL << scale; 950 int64_t Max = Align * ((1LL << width) - 1); 951 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 952 } 953 return false; 954 } 955 956 // checks whether this operand is an signed offset which fits is a field 957 // of specified width and scaled by a specific number of bits 958 template<unsigned width, unsigned scale> 959 bool isSignedOffset() const { 960 if (!isImm()) return false; 961 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 962 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 963 int64_t Val = CE->getValue(); 964 int64_t Align = 1LL << scale; 965 int64_t Max = Align * ((1LL << (width-1)) - 1); 966 int64_t Min = -Align * (1LL << (width-1)); 967 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 968 } 969 return false; 970 } 971 972 // checks whether this operand is a memory operand computed as an offset 973 // applied to PC. the offset may have 8 bits of magnitude and is represented 974 // with two bits of shift. textually it may be either [pc, #imm], #imm or 975 // relocable expression... 976 bool isThumbMemPC() const { 977 int64_t Val = 0; 978 if (isImm()) { 979 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 980 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 981 if (!CE) return false; 982 Val = CE->getValue(); 983 } 984 else if (isMem()) { 985 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 986 if(Memory.BaseRegNum != ARM::PC) return false; 987 Val = Memory.OffsetImm->getValue(); 988 } 989 else return false; 990 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 991 } 992 993 bool isFPImm() const { 994 if (!isImm()) return false; 995 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 996 if (!CE) return false; 997 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 998 return Val != -1; 999 } 1000 1001 template<int64_t N, int64_t M> 1002 bool isImmediate() const { 1003 if (!isImm()) return false; 1004 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1005 if (!CE) return false; 1006 int64_t Value = CE->getValue(); 1007 return Value >= N && Value <= M; 1008 } 1009 1010 template<int64_t N, int64_t M> 1011 bool isImmediateS4() const { 1012 if (!isImm()) return false; 1013 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1014 if (!CE) return false; 1015 int64_t Value = CE->getValue(); 1016 return ((Value & 3) == 0) && Value >= N && Value <= M; 1017 } 1018 1019 bool isFBits16() const { 1020 return isImmediate<0, 17>(); 1021 } 1022 bool isFBits32() const { 1023 return isImmediate<1, 33>(); 1024 } 1025 bool isImm8s4() const { 1026 return isImmediateS4<-1020, 1020>(); 1027 } 1028 bool isImm0_1020s4() const { 1029 return isImmediateS4<0, 1020>(); 1030 } 1031 bool isImm0_508s4() const { 1032 return isImmediateS4<0, 508>(); 1033 } 1034 bool isImm0_508s4Neg() const { 1035 if (!isImm()) return false; 1036 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1037 if (!CE) return false; 1038 int64_t Value = -CE->getValue(); 1039 // explicitly exclude zero. we want that to use the normal 0_508 version. 1040 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1041 } 1042 1043 bool isImm0_4095Neg() const { 1044 if (!isImm()) return false; 1045 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1046 if (!CE) return false; 1047 // isImm0_4095Neg is used with 32-bit immediates only. 1048 // 32-bit immediates are zero extended to 64-bit when parsed, 1049 // thus simple -CE->getValue() results in a big negative number, 1050 // not a small positive number as intended 1051 if ((CE->getValue() >> 32) > 0) return false; 1052 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1053 return Value > 0 && Value < 4096; 1054 } 1055 1056 bool isImm0_7() const { 1057 return isImmediate<0, 7>(); 1058 } 1059 1060 bool isImm1_16() const { 1061 return isImmediate<1, 16>(); 1062 } 1063 1064 bool isImm1_32() const { 1065 return isImmediate<1, 32>(); 1066 } 1067 1068 bool isImm8_255() const { 1069 return isImmediate<8, 255>(); 1070 } 1071 1072 bool isImm256_65535Expr() const { 1073 if (!isImm()) return false; 1074 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1075 // If it's not a constant expression, it'll generate a fixup and be 1076 // handled later. 1077 if (!CE) return true; 1078 int64_t Value = CE->getValue(); 1079 return Value >= 256 && Value < 65536; 1080 } 1081 1082 bool isImm0_65535Expr() const { 1083 if (!isImm()) return false; 1084 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1085 // If it's not a constant expression, it'll generate a fixup and be 1086 // handled later. 1087 if (!CE) return true; 1088 int64_t Value = CE->getValue(); 1089 return Value >= 0 && Value < 65536; 1090 } 1091 1092 bool isImm24bit() const { 1093 return isImmediate<0, 0xffffff + 1>(); 1094 } 1095 1096 bool isImmThumbSR() const { 1097 return isImmediate<1, 33>(); 1098 } 1099 1100 bool isPKHLSLImm() const { 1101 return isImmediate<0, 32>(); 1102 } 1103 1104 bool isPKHASRImm() const { 1105 return isImmediate<0, 33>(); 1106 } 1107 1108 bool isAdrLabel() const { 1109 // If we have an immediate that's not a constant, treat it as a label 1110 // reference needing a fixup. 1111 if (isImm() && !isa<MCConstantExpr>(getImm())) 1112 return true; 1113 1114 // If it is a constant, it must fit into a modified immediate encoding. 1115 if (!isImm()) return false; 1116 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1117 if (!CE) return false; 1118 int64_t Value = CE->getValue(); 1119 return (ARM_AM::getSOImmVal(Value) != -1 || 1120 ARM_AM::getSOImmVal(-Value) != -1); 1121 } 1122 1123 bool isT2SOImm() const { 1124 // If we have an immediate that's not a constant, treat it as an expression 1125 // needing a fixup. 1126 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1127 // We want to avoid matching :upper16: and :lower16: as we want these 1128 // expressions to match in isImm0_65535Expr() 1129 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1130 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1131 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1132 } 1133 if (!isImm()) return false; 1134 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1135 if (!CE) return false; 1136 int64_t Value = CE->getValue(); 1137 return ARM_AM::getT2SOImmVal(Value) != -1; 1138 } 1139 1140 bool isT2SOImmNot() const { 1141 if (!isImm()) return false; 1142 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1143 if (!CE) return false; 1144 int64_t Value = CE->getValue(); 1145 return ARM_AM::getT2SOImmVal(Value) == -1 && 1146 ARM_AM::getT2SOImmVal(~Value) != -1; 1147 } 1148 1149 bool isT2SOImmNeg() const { 1150 if (!isImm()) return false; 1151 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1152 if (!CE) return false; 1153 int64_t Value = CE->getValue(); 1154 // Only use this when not representable as a plain so_imm. 1155 return ARM_AM::getT2SOImmVal(Value) == -1 && 1156 ARM_AM::getT2SOImmVal(-Value) != -1; 1157 } 1158 1159 bool isSetEndImm() const { 1160 if (!isImm()) return false; 1161 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1162 if (!CE) return false; 1163 int64_t Value = CE->getValue(); 1164 return Value == 1 || Value == 0; 1165 } 1166 1167 bool isReg() const override { return Kind == k_Register; } 1168 bool isRegList() const { return Kind == k_RegisterList; } 1169 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1170 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1171 bool isToken() const override { return Kind == k_Token; } 1172 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1173 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1174 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1175 bool isMem() const override { 1176 if (Kind != k_Memory) 1177 return false; 1178 if (Memory.BaseRegNum && 1179 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1180 return false; 1181 if (Memory.OffsetRegNum && 1182 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1183 return false; 1184 return true; 1185 } 1186 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1187 bool isRegShiftedReg() const { 1188 return Kind == k_ShiftedRegister && 1189 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1190 RegShiftedReg.SrcReg) && 1191 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1192 RegShiftedReg.ShiftReg); 1193 } 1194 bool isRegShiftedImm() const { 1195 return Kind == k_ShiftedImmediate && 1196 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1197 RegShiftedImm.SrcReg); 1198 } 1199 bool isRotImm() const { return Kind == k_RotateImmediate; } 1200 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1201 1202 bool isModImmNot() const { 1203 if (!isImm()) return false; 1204 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1205 if (!CE) return false; 1206 int64_t Value = CE->getValue(); 1207 return ARM_AM::getSOImmVal(~Value) != -1; 1208 } 1209 1210 bool isModImmNeg() const { 1211 if (!isImm()) return false; 1212 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1213 if (!CE) return false; 1214 int64_t Value = CE->getValue(); 1215 return ARM_AM::getSOImmVal(Value) == -1 && 1216 ARM_AM::getSOImmVal(-Value) != -1; 1217 } 1218 1219 bool isThumbModImmNeg1_7() const { 1220 if (!isImm()) return false; 1221 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1222 if (!CE) return false; 1223 int32_t Value = -(int32_t)CE->getValue(); 1224 return 0 < Value && Value < 8; 1225 } 1226 1227 bool isThumbModImmNeg8_255() const { 1228 if (!isImm()) return false; 1229 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1230 if (!CE) return false; 1231 int32_t Value = -(int32_t)CE->getValue(); 1232 return 7 < Value && Value < 256; 1233 } 1234 1235 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1236 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1237 bool isPostIdxRegShifted() const { 1238 return Kind == k_PostIndexRegister && 1239 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1240 } 1241 bool isPostIdxReg() const { 1242 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1243 } 1244 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1245 if (!isMem()) 1246 return false; 1247 // No offset of any kind. 1248 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1249 (alignOK || Memory.Alignment == Alignment); 1250 } 1251 bool isMemPCRelImm12() const { 1252 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1253 return false; 1254 // Base register must be PC. 1255 if (Memory.BaseRegNum != ARM::PC) 1256 return false; 1257 // Immediate offset in range [-4095, 4095]. 1258 if (!Memory.OffsetImm) return true; 1259 int64_t Val = Memory.OffsetImm->getValue(); 1260 return (Val > -4096 && Val < 4096) || 1261 (Val == std::numeric_limits<int32_t>::min()); 1262 } 1263 1264 bool isAlignedMemory() const { 1265 return isMemNoOffset(true); 1266 } 1267 1268 bool isAlignedMemoryNone() const { 1269 return isMemNoOffset(false, 0); 1270 } 1271 1272 bool isDupAlignedMemoryNone() const { 1273 return isMemNoOffset(false, 0); 1274 } 1275 1276 bool isAlignedMemory16() const { 1277 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1278 return true; 1279 return isMemNoOffset(false, 0); 1280 } 1281 1282 bool isDupAlignedMemory16() const { 1283 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1284 return true; 1285 return isMemNoOffset(false, 0); 1286 } 1287 1288 bool isAlignedMemory32() const { 1289 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1290 return true; 1291 return isMemNoOffset(false, 0); 1292 } 1293 1294 bool isDupAlignedMemory32() const { 1295 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1296 return true; 1297 return isMemNoOffset(false, 0); 1298 } 1299 1300 bool isAlignedMemory64() const { 1301 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1302 return true; 1303 return isMemNoOffset(false, 0); 1304 } 1305 1306 bool isDupAlignedMemory64() const { 1307 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1308 return true; 1309 return isMemNoOffset(false, 0); 1310 } 1311 1312 bool isAlignedMemory64or128() const { 1313 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1314 return true; 1315 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1316 return true; 1317 return isMemNoOffset(false, 0); 1318 } 1319 1320 bool isDupAlignedMemory64or128() const { 1321 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1322 return true; 1323 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1324 return true; 1325 return isMemNoOffset(false, 0); 1326 } 1327 1328 bool isAlignedMemory64or128or256() const { 1329 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1330 return true; 1331 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1332 return true; 1333 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1334 return true; 1335 return isMemNoOffset(false, 0); 1336 } 1337 1338 bool isAddrMode2() const { 1339 if (!isMem() || Memory.Alignment != 0) return false; 1340 // Check for register offset. 1341 if (Memory.OffsetRegNum) return true; 1342 // Immediate offset in range [-4095, 4095]. 1343 if (!Memory.OffsetImm) return true; 1344 int64_t Val = Memory.OffsetImm->getValue(); 1345 return Val > -4096 && Val < 4096; 1346 } 1347 1348 bool isAM2OffsetImm() const { 1349 if (!isImm()) return false; 1350 // Immediate offset in range [-4095, 4095]. 1351 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1352 if (!CE) return false; 1353 int64_t Val = CE->getValue(); 1354 return (Val == std::numeric_limits<int32_t>::min()) || 1355 (Val > -4096 && Val < 4096); 1356 } 1357 1358 bool isAddrMode3() const { 1359 // If we have an immediate that's not a constant, treat it as a label 1360 // reference needing a fixup. If it is a constant, it's something else 1361 // and we reject it. 1362 if (isImm() && !isa<MCConstantExpr>(getImm())) 1363 return true; 1364 if (!isMem() || Memory.Alignment != 0) return false; 1365 // No shifts are legal for AM3. 1366 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1367 // Check for register offset. 1368 if (Memory.OffsetRegNum) return true; 1369 // Immediate offset in range [-255, 255]. 1370 if (!Memory.OffsetImm) return true; 1371 int64_t Val = Memory.OffsetImm->getValue(); 1372 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1373 // have to check for this too. 1374 return (Val > -256 && Val < 256) || 1375 Val == std::numeric_limits<int32_t>::min(); 1376 } 1377 1378 bool isAM3Offset() const { 1379 if (isPostIdxReg()) 1380 return true; 1381 if (!isImm()) 1382 return false; 1383 // Immediate offset in range [-255, 255]. 1384 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1385 if (!CE) return false; 1386 int64_t Val = CE->getValue(); 1387 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1388 return (Val > -256 && Val < 256) || 1389 Val == std::numeric_limits<int32_t>::min(); 1390 } 1391 1392 bool isAddrMode5() const { 1393 // If we have an immediate that's not a constant, treat it as a label 1394 // reference needing a fixup. If it is a constant, it's something else 1395 // and we reject it. 1396 if (isImm() && !isa<MCConstantExpr>(getImm())) 1397 return true; 1398 if (!isMem() || Memory.Alignment != 0) return false; 1399 // Check for register offset. 1400 if (Memory.OffsetRegNum) return false; 1401 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1402 if (!Memory.OffsetImm) return true; 1403 int64_t Val = Memory.OffsetImm->getValue(); 1404 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1405 Val == std::numeric_limits<int32_t>::min(); 1406 } 1407 1408 bool isAddrMode5FP16() const { 1409 // If we have an immediate that's not a constant, treat it as a label 1410 // reference needing a fixup. If it is a constant, it's something else 1411 // and we reject it. 1412 if (isImm() && !isa<MCConstantExpr>(getImm())) 1413 return true; 1414 if (!isMem() || Memory.Alignment != 0) return false; 1415 // Check for register offset. 1416 if (Memory.OffsetRegNum) return false; 1417 // Immediate offset in range [-510, 510] and a multiple of 2. 1418 if (!Memory.OffsetImm) return true; 1419 int64_t Val = Memory.OffsetImm->getValue(); 1420 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1421 Val == std::numeric_limits<int32_t>::min(); 1422 } 1423 1424 bool isMemTBB() const { 1425 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1426 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1427 return false; 1428 return true; 1429 } 1430 1431 bool isMemTBH() const { 1432 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1433 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1434 Memory.Alignment != 0 ) 1435 return false; 1436 return true; 1437 } 1438 1439 bool isMemRegOffset() const { 1440 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1441 return false; 1442 return true; 1443 } 1444 1445 bool isT2MemRegOffset() const { 1446 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1447 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1448 return false; 1449 // Only lsl #{0, 1, 2, 3} allowed. 1450 if (Memory.ShiftType == ARM_AM::no_shift) 1451 return true; 1452 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1453 return false; 1454 return true; 1455 } 1456 1457 bool isMemThumbRR() const { 1458 // Thumb reg+reg addressing is simple. Just two registers, a base and 1459 // an offset. No shifts, negations or any other complicating factors. 1460 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1461 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1462 return false; 1463 return isARMLowRegister(Memory.BaseRegNum) && 1464 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1465 } 1466 1467 bool isMemThumbRIs4() const { 1468 if (!isMem() || Memory.OffsetRegNum != 0 || 1469 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1470 return false; 1471 // Immediate offset, multiple of 4 in range [0, 124]. 1472 if (!Memory.OffsetImm) return true; 1473 int64_t Val = Memory.OffsetImm->getValue(); 1474 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1475 } 1476 1477 bool isMemThumbRIs2() const { 1478 if (!isMem() || Memory.OffsetRegNum != 0 || 1479 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1480 return false; 1481 // Immediate offset, multiple of 4 in range [0, 62]. 1482 if (!Memory.OffsetImm) return true; 1483 int64_t Val = Memory.OffsetImm->getValue(); 1484 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1485 } 1486 1487 bool isMemThumbRIs1() const { 1488 if (!isMem() || Memory.OffsetRegNum != 0 || 1489 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1490 return false; 1491 // Immediate offset in range [0, 31]. 1492 if (!Memory.OffsetImm) return true; 1493 int64_t Val = Memory.OffsetImm->getValue(); 1494 return Val >= 0 && Val <= 31; 1495 } 1496 1497 bool isMemThumbSPI() const { 1498 if (!isMem() || Memory.OffsetRegNum != 0 || 1499 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1500 return false; 1501 // Immediate offset, multiple of 4 in range [0, 1020]. 1502 if (!Memory.OffsetImm) return true; 1503 int64_t Val = Memory.OffsetImm->getValue(); 1504 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1505 } 1506 1507 bool isMemImm8s4Offset() const { 1508 // If we have an immediate that's not a constant, treat it as a label 1509 // reference needing a fixup. If it is a constant, it's something else 1510 // and we reject it. 1511 if (isImm() && !isa<MCConstantExpr>(getImm())) 1512 return true; 1513 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1514 return false; 1515 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1516 if (!Memory.OffsetImm) return true; 1517 int64_t Val = Memory.OffsetImm->getValue(); 1518 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1519 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1520 Val == std::numeric_limits<int32_t>::min(); 1521 } 1522 1523 bool isMemImm0_1020s4Offset() const { 1524 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1525 return false; 1526 // Immediate offset a multiple of 4 in range [0, 1020]. 1527 if (!Memory.OffsetImm) return true; 1528 int64_t Val = Memory.OffsetImm->getValue(); 1529 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1530 } 1531 1532 bool isMemImm8Offset() const { 1533 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1534 return false; 1535 // Base reg of PC isn't allowed for these encodings. 1536 if (Memory.BaseRegNum == ARM::PC) return false; 1537 // Immediate offset in range [-255, 255]. 1538 if (!Memory.OffsetImm) return true; 1539 int64_t Val = Memory.OffsetImm->getValue(); 1540 return (Val == std::numeric_limits<int32_t>::min()) || 1541 (Val > -256 && Val < 256); 1542 } 1543 1544 bool isMemPosImm8Offset() const { 1545 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1546 return false; 1547 // Immediate offset in range [0, 255]. 1548 if (!Memory.OffsetImm) return true; 1549 int64_t Val = Memory.OffsetImm->getValue(); 1550 return Val >= 0 && Val < 256; 1551 } 1552 1553 bool isMemNegImm8Offset() const { 1554 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1555 return false; 1556 // Base reg of PC isn't allowed for these encodings. 1557 if (Memory.BaseRegNum == ARM::PC) return false; 1558 // Immediate offset in range [-255, -1]. 1559 if (!Memory.OffsetImm) return false; 1560 int64_t Val = Memory.OffsetImm->getValue(); 1561 return (Val == std::numeric_limits<int32_t>::min()) || 1562 (Val > -256 && Val < 0); 1563 } 1564 1565 bool isMemUImm12Offset() const { 1566 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1567 return false; 1568 // Immediate offset in range [0, 4095]. 1569 if (!Memory.OffsetImm) return true; 1570 int64_t Val = Memory.OffsetImm->getValue(); 1571 return (Val >= 0 && Val < 4096); 1572 } 1573 1574 bool isMemImm12Offset() const { 1575 // If we have an immediate that's not a constant, treat it as a label 1576 // reference needing a fixup. If it is a constant, it's something else 1577 // and we reject it. 1578 1579 if (isImm() && !isa<MCConstantExpr>(getImm())) 1580 return true; 1581 1582 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1583 return false; 1584 // Immediate offset in range [-4095, 4095]. 1585 if (!Memory.OffsetImm) return true; 1586 int64_t Val = Memory.OffsetImm->getValue(); 1587 return (Val > -4096 && Val < 4096) || 1588 (Val == std::numeric_limits<int32_t>::min()); 1589 } 1590 1591 bool isConstPoolAsmImm() const { 1592 // Delay processing of Constant Pool Immediate, this will turn into 1593 // a constant. Match no other operand 1594 return (isConstantPoolImm()); 1595 } 1596 1597 bool isPostIdxImm8() const { 1598 if (!isImm()) return false; 1599 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1600 if (!CE) return false; 1601 int64_t Val = CE->getValue(); 1602 return (Val > -256 && Val < 256) || 1603 (Val == std::numeric_limits<int32_t>::min()); 1604 } 1605 1606 bool isPostIdxImm8s4() const { 1607 if (!isImm()) return false; 1608 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1609 if (!CE) return false; 1610 int64_t Val = CE->getValue(); 1611 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1612 (Val == std::numeric_limits<int32_t>::min()); 1613 } 1614 1615 bool isMSRMask() const { return Kind == k_MSRMask; } 1616 bool isBankedReg() const { return Kind == k_BankedReg; } 1617 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1618 1619 // NEON operands. 1620 bool isSingleSpacedVectorList() const { 1621 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1622 } 1623 1624 bool isDoubleSpacedVectorList() const { 1625 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1626 } 1627 1628 bool isVecListOneD() const { 1629 if (!isSingleSpacedVectorList()) return false; 1630 return VectorList.Count == 1; 1631 } 1632 1633 bool isVecListDPair() const { 1634 if (!isSingleSpacedVectorList()) return false; 1635 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1636 .contains(VectorList.RegNum)); 1637 } 1638 1639 bool isVecListThreeD() const { 1640 if (!isSingleSpacedVectorList()) return false; 1641 return VectorList.Count == 3; 1642 } 1643 1644 bool isVecListFourD() const { 1645 if (!isSingleSpacedVectorList()) return false; 1646 return VectorList.Count == 4; 1647 } 1648 1649 bool isVecListDPairSpaced() const { 1650 if (Kind != k_VectorList) return false; 1651 if (isSingleSpacedVectorList()) return false; 1652 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1653 .contains(VectorList.RegNum)); 1654 } 1655 1656 bool isVecListThreeQ() const { 1657 if (!isDoubleSpacedVectorList()) return false; 1658 return VectorList.Count == 3; 1659 } 1660 1661 bool isVecListFourQ() const { 1662 if (!isDoubleSpacedVectorList()) return false; 1663 return VectorList.Count == 4; 1664 } 1665 1666 bool isSingleSpacedVectorAllLanes() const { 1667 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1668 } 1669 1670 bool isDoubleSpacedVectorAllLanes() const { 1671 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1672 } 1673 1674 bool isVecListOneDAllLanes() const { 1675 if (!isSingleSpacedVectorAllLanes()) return false; 1676 return VectorList.Count == 1; 1677 } 1678 1679 bool isVecListDPairAllLanes() const { 1680 if (!isSingleSpacedVectorAllLanes()) return false; 1681 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1682 .contains(VectorList.RegNum)); 1683 } 1684 1685 bool isVecListDPairSpacedAllLanes() const { 1686 if (!isDoubleSpacedVectorAllLanes()) return false; 1687 return VectorList.Count == 2; 1688 } 1689 1690 bool isVecListThreeDAllLanes() const { 1691 if (!isSingleSpacedVectorAllLanes()) return false; 1692 return VectorList.Count == 3; 1693 } 1694 1695 bool isVecListThreeQAllLanes() const { 1696 if (!isDoubleSpacedVectorAllLanes()) return false; 1697 return VectorList.Count == 3; 1698 } 1699 1700 bool isVecListFourDAllLanes() const { 1701 if (!isSingleSpacedVectorAllLanes()) return false; 1702 return VectorList.Count == 4; 1703 } 1704 1705 bool isVecListFourQAllLanes() const { 1706 if (!isDoubleSpacedVectorAllLanes()) return false; 1707 return VectorList.Count == 4; 1708 } 1709 1710 bool isSingleSpacedVectorIndexed() const { 1711 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1712 } 1713 1714 bool isDoubleSpacedVectorIndexed() const { 1715 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1716 } 1717 1718 bool isVecListOneDByteIndexed() const { 1719 if (!isSingleSpacedVectorIndexed()) return false; 1720 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1721 } 1722 1723 bool isVecListOneDHWordIndexed() const { 1724 if (!isSingleSpacedVectorIndexed()) return false; 1725 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1726 } 1727 1728 bool isVecListOneDWordIndexed() const { 1729 if (!isSingleSpacedVectorIndexed()) return false; 1730 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1731 } 1732 1733 bool isVecListTwoDByteIndexed() const { 1734 if (!isSingleSpacedVectorIndexed()) return false; 1735 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1736 } 1737 1738 bool isVecListTwoDHWordIndexed() const { 1739 if (!isSingleSpacedVectorIndexed()) return false; 1740 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1741 } 1742 1743 bool isVecListTwoQWordIndexed() const { 1744 if (!isDoubleSpacedVectorIndexed()) return false; 1745 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1746 } 1747 1748 bool isVecListTwoQHWordIndexed() const { 1749 if (!isDoubleSpacedVectorIndexed()) return false; 1750 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1751 } 1752 1753 bool isVecListTwoDWordIndexed() const { 1754 if (!isSingleSpacedVectorIndexed()) return false; 1755 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1756 } 1757 1758 bool isVecListThreeDByteIndexed() const { 1759 if (!isSingleSpacedVectorIndexed()) return false; 1760 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1761 } 1762 1763 bool isVecListThreeDHWordIndexed() const { 1764 if (!isSingleSpacedVectorIndexed()) return false; 1765 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1766 } 1767 1768 bool isVecListThreeQWordIndexed() const { 1769 if (!isDoubleSpacedVectorIndexed()) return false; 1770 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1771 } 1772 1773 bool isVecListThreeQHWordIndexed() const { 1774 if (!isDoubleSpacedVectorIndexed()) return false; 1775 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1776 } 1777 1778 bool isVecListThreeDWordIndexed() const { 1779 if (!isSingleSpacedVectorIndexed()) return false; 1780 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1781 } 1782 1783 bool isVecListFourDByteIndexed() const { 1784 if (!isSingleSpacedVectorIndexed()) return false; 1785 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1786 } 1787 1788 bool isVecListFourDHWordIndexed() const { 1789 if (!isSingleSpacedVectorIndexed()) return false; 1790 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1791 } 1792 1793 bool isVecListFourQWordIndexed() const { 1794 if (!isDoubleSpacedVectorIndexed()) return false; 1795 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1796 } 1797 1798 bool isVecListFourQHWordIndexed() const { 1799 if (!isDoubleSpacedVectorIndexed()) return false; 1800 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1801 } 1802 1803 bool isVecListFourDWordIndexed() const { 1804 if (!isSingleSpacedVectorIndexed()) return false; 1805 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1806 } 1807 1808 bool isVectorIndex8() const { 1809 if (Kind != k_VectorIndex) return false; 1810 return VectorIndex.Val < 8; 1811 } 1812 1813 bool isVectorIndex16() const { 1814 if (Kind != k_VectorIndex) return false; 1815 return VectorIndex.Val < 4; 1816 } 1817 1818 bool isVectorIndex32() const { 1819 if (Kind != k_VectorIndex) return false; 1820 return VectorIndex.Val < 2; 1821 } 1822 bool isVectorIndex64() const { 1823 if (Kind != k_VectorIndex) return false; 1824 return VectorIndex.Val < 1; 1825 } 1826 1827 bool isNEONi8splat() const { 1828 if (!isImm()) return false; 1829 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1830 // Must be a constant. 1831 if (!CE) return false; 1832 int64_t Value = CE->getValue(); 1833 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1834 // value. 1835 return Value >= 0 && Value < 256; 1836 } 1837 1838 bool isNEONi16splat() const { 1839 if (isNEONByteReplicate(2)) 1840 return false; // Leave that for bytes replication and forbid by default. 1841 if (!isImm()) 1842 return false; 1843 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1844 // Must be a constant. 1845 if (!CE) return false; 1846 unsigned Value = CE->getValue(); 1847 return ARM_AM::isNEONi16splat(Value); 1848 } 1849 1850 bool isNEONi16splatNot() const { 1851 if (!isImm()) 1852 return false; 1853 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1854 // Must be a constant. 1855 if (!CE) return false; 1856 unsigned Value = CE->getValue(); 1857 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1858 } 1859 1860 bool isNEONi32splat() const { 1861 if (isNEONByteReplicate(4)) 1862 return false; // Leave that for bytes replication and forbid by default. 1863 if (!isImm()) 1864 return false; 1865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1866 // Must be a constant. 1867 if (!CE) return false; 1868 unsigned Value = CE->getValue(); 1869 return ARM_AM::isNEONi32splat(Value); 1870 } 1871 1872 bool isNEONi32splatNot() const { 1873 if (!isImm()) 1874 return false; 1875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1876 // Must be a constant. 1877 if (!CE) return false; 1878 unsigned Value = CE->getValue(); 1879 return ARM_AM::isNEONi32splat(~Value); 1880 } 1881 1882 static bool isValidNEONi32vmovImm(int64_t Value) { 1883 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1884 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1885 return ((Value & 0xffffffffffffff00) == 0) || 1886 ((Value & 0xffffffffffff00ff) == 0) || 1887 ((Value & 0xffffffffff00ffff) == 0) || 1888 ((Value & 0xffffffff00ffffff) == 0) || 1889 ((Value & 0xffffffffffff00ff) == 0xff) || 1890 ((Value & 0xffffffffff00ffff) == 0xffff); 1891 } 1892 1893 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 1894 assert((Width == 8 || Width == 16 || Width == 32) && 1895 "Invalid element width"); 1896 assert(NumElems * Width <= 64 && "Invalid result width"); 1897 1898 if (!isImm()) 1899 return false; 1900 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1901 // Must be a constant. 1902 if (!CE) 1903 return false; 1904 int64_t Value = CE->getValue(); 1905 if (!Value) 1906 return false; // Don't bother with zero. 1907 if (Inv) 1908 Value = ~Value; 1909 1910 uint64_t Mask = (1ull << Width) - 1; 1911 uint64_t Elem = Value & Mask; 1912 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 1913 return false; 1914 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 1915 return false; 1916 1917 for (unsigned i = 1; i < NumElems; ++i) { 1918 Value >>= Width; 1919 if ((Value & Mask) != Elem) 1920 return false; 1921 } 1922 return true; 1923 } 1924 1925 bool isNEONByteReplicate(unsigned NumBytes) const { 1926 return isNEONReplicate(8, NumBytes, false); 1927 } 1928 1929 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 1930 assert((FromW == 8 || FromW == 16 || FromW == 32) && 1931 "Invalid source width"); 1932 assert((ToW == 16 || ToW == 32 || ToW == 64) && 1933 "Invalid destination width"); 1934 assert(FromW < ToW && "ToW is not less than FromW"); 1935 } 1936 1937 template<unsigned FromW, unsigned ToW> 1938 bool isNEONmovReplicate() const { 1939 checkNeonReplicateArgs(FromW, ToW); 1940 if (ToW == 64 && isNEONi64splat()) 1941 return false; 1942 return isNEONReplicate(FromW, ToW / FromW, false); 1943 } 1944 1945 template<unsigned FromW, unsigned ToW> 1946 bool isNEONinvReplicate() const { 1947 checkNeonReplicateArgs(FromW, ToW); 1948 return isNEONReplicate(FromW, ToW / FromW, true); 1949 } 1950 1951 bool isNEONi32vmov() const { 1952 if (isNEONByteReplicate(4)) 1953 return false; // Let it to be classified as byte-replicate case. 1954 if (!isImm()) 1955 return false; 1956 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1957 // Must be a constant. 1958 if (!CE) 1959 return false; 1960 return isValidNEONi32vmovImm(CE->getValue()); 1961 } 1962 1963 bool isNEONi32vmovNeg() const { 1964 if (!isImm()) return false; 1965 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1966 // Must be a constant. 1967 if (!CE) return false; 1968 return isValidNEONi32vmovImm(~CE->getValue()); 1969 } 1970 1971 bool isNEONi64splat() const { 1972 if (!isImm()) return false; 1973 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1974 // Must be a constant. 1975 if (!CE) return false; 1976 uint64_t Value = CE->getValue(); 1977 // i64 value with each byte being either 0 or 0xff. 1978 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1979 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1980 return true; 1981 } 1982 1983 template<int64_t Angle, int64_t Remainder> 1984 bool isComplexRotation() const { 1985 if (!isImm()) return false; 1986 1987 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1988 if (!CE) return false; 1989 uint64_t Value = CE->getValue(); 1990 1991 return (Value % Angle == Remainder && Value <= 270); 1992 } 1993 1994 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1995 // Add as immediates when possible. Null MCExpr = 0. 1996 if (!Expr) 1997 Inst.addOperand(MCOperand::createImm(0)); 1998 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1999 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2000 else 2001 Inst.addOperand(MCOperand::createExpr(Expr)); 2002 } 2003 2004 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2005 assert(N == 1 && "Invalid number of operands!"); 2006 addExpr(Inst, getImm()); 2007 } 2008 2009 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2010 assert(N == 1 && "Invalid number of operands!"); 2011 addExpr(Inst, getImm()); 2012 } 2013 2014 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2015 assert(N == 2 && "Invalid number of operands!"); 2016 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2017 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2018 Inst.addOperand(MCOperand::createReg(RegNum)); 2019 } 2020 2021 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2022 assert(N == 1 && "Invalid number of operands!"); 2023 Inst.addOperand(MCOperand::createImm(getCoproc())); 2024 } 2025 2026 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2027 assert(N == 1 && "Invalid number of operands!"); 2028 Inst.addOperand(MCOperand::createImm(getCoproc())); 2029 } 2030 2031 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2032 assert(N == 1 && "Invalid number of operands!"); 2033 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2034 } 2035 2036 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2037 assert(N == 1 && "Invalid number of operands!"); 2038 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2039 } 2040 2041 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2042 assert(N == 1 && "Invalid number of operands!"); 2043 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2044 } 2045 2046 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2047 assert(N == 1 && "Invalid number of operands!"); 2048 Inst.addOperand(MCOperand::createReg(getReg())); 2049 } 2050 2051 void addRegOperands(MCInst &Inst, unsigned N) const { 2052 assert(N == 1 && "Invalid number of operands!"); 2053 Inst.addOperand(MCOperand::createReg(getReg())); 2054 } 2055 2056 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2057 assert(N == 3 && "Invalid number of operands!"); 2058 assert(isRegShiftedReg() && 2059 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2060 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2061 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2062 Inst.addOperand(MCOperand::createImm( 2063 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2064 } 2065 2066 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2067 assert(N == 2 && "Invalid number of operands!"); 2068 assert(isRegShiftedImm() && 2069 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2070 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2071 // Shift of #32 is encoded as 0 where permitted 2072 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2073 Inst.addOperand(MCOperand::createImm( 2074 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2075 } 2076 2077 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2078 assert(N == 1 && "Invalid number of operands!"); 2079 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2080 ShifterImm.Imm)); 2081 } 2082 2083 void addRegListOperands(MCInst &Inst, unsigned N) const { 2084 assert(N == 1 && "Invalid number of operands!"); 2085 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2086 for (SmallVectorImpl<unsigned>::const_iterator 2087 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2088 Inst.addOperand(MCOperand::createReg(*I)); 2089 } 2090 2091 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2092 addRegListOperands(Inst, N); 2093 } 2094 2095 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2096 addRegListOperands(Inst, N); 2097 } 2098 2099 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2100 assert(N == 1 && "Invalid number of operands!"); 2101 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2102 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2103 } 2104 2105 void addModImmOperands(MCInst &Inst, unsigned N) const { 2106 assert(N == 1 && "Invalid number of operands!"); 2107 2108 // Support for fixups (MCFixup) 2109 if (isImm()) 2110 return addImmOperands(Inst, N); 2111 2112 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2113 } 2114 2115 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2116 assert(N == 1 && "Invalid number of operands!"); 2117 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2118 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2119 Inst.addOperand(MCOperand::createImm(Enc)); 2120 } 2121 2122 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2123 assert(N == 1 && "Invalid number of operands!"); 2124 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2125 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2126 Inst.addOperand(MCOperand::createImm(Enc)); 2127 } 2128 2129 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2130 assert(N == 1 && "Invalid number of operands!"); 2131 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2132 uint32_t Val = -CE->getValue(); 2133 Inst.addOperand(MCOperand::createImm(Val)); 2134 } 2135 2136 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2137 assert(N == 1 && "Invalid number of operands!"); 2138 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2139 uint32_t Val = -CE->getValue(); 2140 Inst.addOperand(MCOperand::createImm(Val)); 2141 } 2142 2143 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2144 assert(N == 1 && "Invalid number of operands!"); 2145 // Munge the lsb/width into a bitfield mask. 2146 unsigned lsb = Bitfield.LSB; 2147 unsigned width = Bitfield.Width; 2148 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2149 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2150 (32 - (lsb + width))); 2151 Inst.addOperand(MCOperand::createImm(Mask)); 2152 } 2153 2154 void addImmOperands(MCInst &Inst, unsigned N) const { 2155 assert(N == 1 && "Invalid number of operands!"); 2156 addExpr(Inst, getImm()); 2157 } 2158 2159 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2160 assert(N == 1 && "Invalid number of operands!"); 2161 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2162 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2163 } 2164 2165 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2166 assert(N == 1 && "Invalid number of operands!"); 2167 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2168 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2169 } 2170 2171 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2172 assert(N == 1 && "Invalid number of operands!"); 2173 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2174 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2175 Inst.addOperand(MCOperand::createImm(Val)); 2176 } 2177 2178 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2179 assert(N == 1 && "Invalid number of operands!"); 2180 // FIXME: We really want to scale the value here, but the LDRD/STRD 2181 // instruction don't encode operands that way yet. 2182 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2183 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2184 } 2185 2186 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2187 assert(N == 1 && "Invalid number of operands!"); 2188 // The immediate is scaled by four in the encoding and is stored 2189 // in the MCInst as such. Lop off the low two bits here. 2190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2191 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2192 } 2193 2194 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2195 assert(N == 1 && "Invalid number of operands!"); 2196 // The immediate is scaled by four in the encoding and is stored 2197 // in the MCInst as such. Lop off the low two bits here. 2198 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2199 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2200 } 2201 2202 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2203 assert(N == 1 && "Invalid number of operands!"); 2204 // The immediate is scaled by four in the encoding and is stored 2205 // in the MCInst as such. Lop off the low two bits here. 2206 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2207 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2208 } 2209 2210 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2211 assert(N == 1 && "Invalid number of operands!"); 2212 // The constant encodes as the immediate-1, and we store in the instruction 2213 // the bits as encoded, so subtract off one here. 2214 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2215 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2216 } 2217 2218 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2219 assert(N == 1 && "Invalid number of operands!"); 2220 // The constant encodes as the immediate-1, and we store in the instruction 2221 // the bits as encoded, so subtract off one here. 2222 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2223 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2224 } 2225 2226 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2227 assert(N == 1 && "Invalid number of operands!"); 2228 // The constant encodes as the immediate, except for 32, which encodes as 2229 // zero. 2230 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2231 unsigned Imm = CE->getValue(); 2232 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2233 } 2234 2235 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2236 assert(N == 1 && "Invalid number of operands!"); 2237 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2238 // the instruction as well. 2239 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2240 int Val = CE->getValue(); 2241 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2242 } 2243 2244 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2245 assert(N == 1 && "Invalid number of operands!"); 2246 // The operand is actually a t2_so_imm, but we have its bitwise 2247 // negation in the assembly source, so twiddle it here. 2248 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2249 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2250 } 2251 2252 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2253 assert(N == 1 && "Invalid number of operands!"); 2254 // The operand is actually a t2_so_imm, but we have its 2255 // negation in the assembly source, so twiddle it here. 2256 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2257 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2258 } 2259 2260 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2261 assert(N == 1 && "Invalid number of operands!"); 2262 // The operand is actually an imm0_4095, but we have its 2263 // negation in the assembly source, so twiddle it here. 2264 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2265 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2266 } 2267 2268 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2269 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2270 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2271 return; 2272 } 2273 2274 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2275 assert(SR && "Unknown value type!"); 2276 Inst.addOperand(MCOperand::createExpr(SR)); 2277 } 2278 2279 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2280 assert(N == 1 && "Invalid number of operands!"); 2281 if (isImm()) { 2282 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2283 if (CE) { 2284 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2285 return; 2286 } 2287 2288 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2289 2290 assert(SR && "Unknown value type!"); 2291 Inst.addOperand(MCOperand::createExpr(SR)); 2292 return; 2293 } 2294 2295 assert(isMem() && "Unknown value type!"); 2296 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2297 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2298 } 2299 2300 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2301 assert(N == 1 && "Invalid number of operands!"); 2302 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2303 } 2304 2305 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2306 assert(N == 1 && "Invalid number of operands!"); 2307 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2308 } 2309 2310 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2311 assert(N == 1 && "Invalid number of operands!"); 2312 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2313 } 2314 2315 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2316 assert(N == 1 && "Invalid number of operands!"); 2317 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2318 } 2319 2320 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2321 assert(N == 1 && "Invalid number of operands!"); 2322 int32_t Imm = Memory.OffsetImm->getValue(); 2323 Inst.addOperand(MCOperand::createImm(Imm)); 2324 } 2325 2326 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2327 assert(N == 1 && "Invalid number of operands!"); 2328 assert(isImm() && "Not an immediate!"); 2329 2330 // If we have an immediate that's not a constant, treat it as a label 2331 // reference needing a fixup. 2332 if (!isa<MCConstantExpr>(getImm())) { 2333 Inst.addOperand(MCOperand::createExpr(getImm())); 2334 return; 2335 } 2336 2337 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2338 int Val = CE->getValue(); 2339 Inst.addOperand(MCOperand::createImm(Val)); 2340 } 2341 2342 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2343 assert(N == 2 && "Invalid number of operands!"); 2344 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2345 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2346 } 2347 2348 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2349 addAlignedMemoryOperands(Inst, N); 2350 } 2351 2352 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2353 addAlignedMemoryOperands(Inst, N); 2354 } 2355 2356 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2357 addAlignedMemoryOperands(Inst, N); 2358 } 2359 2360 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2361 addAlignedMemoryOperands(Inst, N); 2362 } 2363 2364 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2365 addAlignedMemoryOperands(Inst, N); 2366 } 2367 2368 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2369 addAlignedMemoryOperands(Inst, N); 2370 } 2371 2372 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2373 addAlignedMemoryOperands(Inst, N); 2374 } 2375 2376 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2377 addAlignedMemoryOperands(Inst, N); 2378 } 2379 2380 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2381 addAlignedMemoryOperands(Inst, N); 2382 } 2383 2384 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2385 addAlignedMemoryOperands(Inst, N); 2386 } 2387 2388 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2389 addAlignedMemoryOperands(Inst, N); 2390 } 2391 2392 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2393 assert(N == 3 && "Invalid number of operands!"); 2394 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2395 if (!Memory.OffsetRegNum) { 2396 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2397 // Special case for #-0 2398 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2399 if (Val < 0) Val = -Val; 2400 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2401 } else { 2402 // For register offset, we encode the shift type and negation flag 2403 // here. 2404 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2405 Memory.ShiftImm, Memory.ShiftType); 2406 } 2407 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2408 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2409 Inst.addOperand(MCOperand::createImm(Val)); 2410 } 2411 2412 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2413 assert(N == 2 && "Invalid number of operands!"); 2414 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2415 assert(CE && "non-constant AM2OffsetImm operand!"); 2416 int32_t Val = CE->getValue(); 2417 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2418 // Special case for #-0 2419 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2420 if (Val < 0) Val = -Val; 2421 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2422 Inst.addOperand(MCOperand::createReg(0)); 2423 Inst.addOperand(MCOperand::createImm(Val)); 2424 } 2425 2426 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2427 assert(N == 3 && "Invalid number of operands!"); 2428 // If we have an immediate that's not a constant, treat it as a label 2429 // reference needing a fixup. If it is a constant, it's something else 2430 // and we reject it. 2431 if (isImm()) { 2432 Inst.addOperand(MCOperand::createExpr(getImm())); 2433 Inst.addOperand(MCOperand::createReg(0)); 2434 Inst.addOperand(MCOperand::createImm(0)); 2435 return; 2436 } 2437 2438 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2439 if (!Memory.OffsetRegNum) { 2440 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2441 // Special case for #-0 2442 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2443 if (Val < 0) Val = -Val; 2444 Val = ARM_AM::getAM3Opc(AddSub, Val); 2445 } else { 2446 // For register offset, we encode the shift type and negation flag 2447 // here. 2448 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2449 } 2450 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2451 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2452 Inst.addOperand(MCOperand::createImm(Val)); 2453 } 2454 2455 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2456 assert(N == 2 && "Invalid number of operands!"); 2457 if (Kind == k_PostIndexRegister) { 2458 int32_t Val = 2459 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2460 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2461 Inst.addOperand(MCOperand::createImm(Val)); 2462 return; 2463 } 2464 2465 // Constant offset. 2466 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2467 int32_t Val = CE->getValue(); 2468 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2469 // Special case for #-0 2470 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2471 if (Val < 0) Val = -Val; 2472 Val = ARM_AM::getAM3Opc(AddSub, Val); 2473 Inst.addOperand(MCOperand::createReg(0)); 2474 Inst.addOperand(MCOperand::createImm(Val)); 2475 } 2476 2477 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2478 assert(N == 2 && "Invalid number of operands!"); 2479 // If we have an immediate that's not a constant, treat it as a label 2480 // reference needing a fixup. If it is a constant, it's something else 2481 // and we reject it. 2482 if (isImm()) { 2483 Inst.addOperand(MCOperand::createExpr(getImm())); 2484 Inst.addOperand(MCOperand::createImm(0)); 2485 return; 2486 } 2487 2488 // The lower two bits are always zero and as such are not encoded. 2489 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2490 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2491 // Special case for #-0 2492 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2493 if (Val < 0) Val = -Val; 2494 Val = ARM_AM::getAM5Opc(AddSub, Val); 2495 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2496 Inst.addOperand(MCOperand::createImm(Val)); 2497 } 2498 2499 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2500 assert(N == 2 && "Invalid number of operands!"); 2501 // If we have an immediate that's not a constant, treat it as a label 2502 // reference needing a fixup. If it is a constant, it's something else 2503 // and we reject it. 2504 if (isImm()) { 2505 Inst.addOperand(MCOperand::createExpr(getImm())); 2506 Inst.addOperand(MCOperand::createImm(0)); 2507 return; 2508 } 2509 2510 // The lower bit is always zero and as such is not encoded. 2511 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2512 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2513 // Special case for #-0 2514 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2515 if (Val < 0) Val = -Val; 2516 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2517 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2518 Inst.addOperand(MCOperand::createImm(Val)); 2519 } 2520 2521 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2522 assert(N == 2 && "Invalid number of operands!"); 2523 // If we have an immediate that's not a constant, treat it as a label 2524 // reference needing a fixup. If it is a constant, it's something else 2525 // and we reject it. 2526 if (isImm()) { 2527 Inst.addOperand(MCOperand::createExpr(getImm())); 2528 Inst.addOperand(MCOperand::createImm(0)); 2529 return; 2530 } 2531 2532 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2533 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2534 Inst.addOperand(MCOperand::createImm(Val)); 2535 } 2536 2537 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2538 assert(N == 2 && "Invalid number of operands!"); 2539 // The lower two bits are always zero and as such are not encoded. 2540 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2541 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2542 Inst.addOperand(MCOperand::createImm(Val)); 2543 } 2544 2545 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2546 assert(N == 2 && "Invalid number of operands!"); 2547 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2548 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2549 Inst.addOperand(MCOperand::createImm(Val)); 2550 } 2551 2552 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2553 addMemImm8OffsetOperands(Inst, N); 2554 } 2555 2556 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2557 addMemImm8OffsetOperands(Inst, N); 2558 } 2559 2560 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2561 assert(N == 2 && "Invalid number of operands!"); 2562 // If this is an immediate, it's a label reference. 2563 if (isImm()) { 2564 addExpr(Inst, getImm()); 2565 Inst.addOperand(MCOperand::createImm(0)); 2566 return; 2567 } 2568 2569 // Otherwise, it's a normal memory reg+offset. 2570 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2571 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2572 Inst.addOperand(MCOperand::createImm(Val)); 2573 } 2574 2575 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2576 assert(N == 2 && "Invalid number of operands!"); 2577 // If this is an immediate, it's a label reference. 2578 if (isImm()) { 2579 addExpr(Inst, getImm()); 2580 Inst.addOperand(MCOperand::createImm(0)); 2581 return; 2582 } 2583 2584 // Otherwise, it's a normal memory reg+offset. 2585 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2586 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2587 Inst.addOperand(MCOperand::createImm(Val)); 2588 } 2589 2590 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2591 assert(N == 1 && "Invalid number of operands!"); 2592 // This is container for the immediate that we will create the constant 2593 // pool from 2594 addExpr(Inst, getConstantPoolImm()); 2595 return; 2596 } 2597 2598 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2599 assert(N == 2 && "Invalid number of operands!"); 2600 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2601 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2602 } 2603 2604 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2605 assert(N == 2 && "Invalid number of operands!"); 2606 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2607 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2608 } 2609 2610 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2611 assert(N == 3 && "Invalid number of operands!"); 2612 unsigned Val = 2613 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2614 Memory.ShiftImm, Memory.ShiftType); 2615 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2616 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2617 Inst.addOperand(MCOperand::createImm(Val)); 2618 } 2619 2620 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2621 assert(N == 3 && "Invalid number of operands!"); 2622 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2623 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2624 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2625 } 2626 2627 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2628 assert(N == 2 && "Invalid number of operands!"); 2629 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2630 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2631 } 2632 2633 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2634 assert(N == 2 && "Invalid number of operands!"); 2635 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2636 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2637 Inst.addOperand(MCOperand::createImm(Val)); 2638 } 2639 2640 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2641 assert(N == 2 && "Invalid number of operands!"); 2642 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2643 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2644 Inst.addOperand(MCOperand::createImm(Val)); 2645 } 2646 2647 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2648 assert(N == 2 && "Invalid number of operands!"); 2649 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2650 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2651 Inst.addOperand(MCOperand::createImm(Val)); 2652 } 2653 2654 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2655 assert(N == 2 && "Invalid number of operands!"); 2656 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2657 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2658 Inst.addOperand(MCOperand::createImm(Val)); 2659 } 2660 2661 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2662 assert(N == 1 && "Invalid number of operands!"); 2663 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2664 assert(CE && "non-constant post-idx-imm8 operand!"); 2665 int Imm = CE->getValue(); 2666 bool isAdd = Imm >= 0; 2667 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2668 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2669 Inst.addOperand(MCOperand::createImm(Imm)); 2670 } 2671 2672 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2673 assert(N == 1 && "Invalid number of operands!"); 2674 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2675 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2676 int Imm = CE->getValue(); 2677 bool isAdd = Imm >= 0; 2678 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2679 // Immediate is scaled by 4. 2680 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2681 Inst.addOperand(MCOperand::createImm(Imm)); 2682 } 2683 2684 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2685 assert(N == 2 && "Invalid number of operands!"); 2686 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2687 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2688 } 2689 2690 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2691 assert(N == 2 && "Invalid number of operands!"); 2692 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2693 // The sign, shift type, and shift amount are encoded in a single operand 2694 // using the AM2 encoding helpers. 2695 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2696 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2697 PostIdxReg.ShiftTy); 2698 Inst.addOperand(MCOperand::createImm(Imm)); 2699 } 2700 2701 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2702 assert(N == 1 && "Invalid number of operands!"); 2703 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2704 } 2705 2706 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2707 assert(N == 1 && "Invalid number of operands!"); 2708 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2709 } 2710 2711 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2712 assert(N == 1 && "Invalid number of operands!"); 2713 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2714 } 2715 2716 void addVecListOperands(MCInst &Inst, unsigned N) const { 2717 assert(N == 1 && "Invalid number of operands!"); 2718 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2719 } 2720 2721 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2722 assert(N == 2 && "Invalid number of operands!"); 2723 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2724 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2725 } 2726 2727 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2728 assert(N == 1 && "Invalid number of operands!"); 2729 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2730 } 2731 2732 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2733 assert(N == 1 && "Invalid number of operands!"); 2734 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2735 } 2736 2737 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2738 assert(N == 1 && "Invalid number of operands!"); 2739 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2740 } 2741 2742 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 2743 assert(N == 1 && "Invalid number of operands!"); 2744 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2745 } 2746 2747 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2748 assert(N == 1 && "Invalid number of operands!"); 2749 // The immediate encodes the type of constant as well as the value. 2750 // Mask in that this is an i8 splat. 2751 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2752 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2753 } 2754 2755 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2756 assert(N == 1 && "Invalid number of operands!"); 2757 // The immediate encodes the type of constant as well as the value. 2758 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2759 unsigned Value = CE->getValue(); 2760 Value = ARM_AM::encodeNEONi16splat(Value); 2761 Inst.addOperand(MCOperand::createImm(Value)); 2762 } 2763 2764 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2765 assert(N == 1 && "Invalid number of operands!"); 2766 // The immediate encodes the type of constant as well as the value. 2767 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2768 unsigned Value = CE->getValue(); 2769 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2770 Inst.addOperand(MCOperand::createImm(Value)); 2771 } 2772 2773 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2774 assert(N == 1 && "Invalid number of operands!"); 2775 // The immediate encodes the type of constant as well as the value. 2776 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2777 unsigned Value = CE->getValue(); 2778 Value = ARM_AM::encodeNEONi32splat(Value); 2779 Inst.addOperand(MCOperand::createImm(Value)); 2780 } 2781 2782 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2783 assert(N == 1 && "Invalid number of operands!"); 2784 // The immediate encodes the type of constant as well as the value. 2785 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2786 unsigned Value = CE->getValue(); 2787 Value = ARM_AM::encodeNEONi32splat(~Value); 2788 Inst.addOperand(MCOperand::createImm(Value)); 2789 } 2790 2791 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 2792 // The immediate encodes the type of constant as well as the value. 2793 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2794 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2795 Inst.getOpcode() == ARM::VMOVv16i8) && 2796 "All instructions that wants to replicate non-zero byte " 2797 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2798 unsigned Value = CE->getValue(); 2799 if (Inv) 2800 Value = ~Value; 2801 unsigned B = Value & 0xff; 2802 B |= 0xe00; // cmode = 0b1110 2803 Inst.addOperand(MCOperand::createImm(B)); 2804 } 2805 2806 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 2807 assert(N == 1 && "Invalid number of operands!"); 2808 addNEONi8ReplicateOperands(Inst, true); 2809 } 2810 2811 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 2812 if (Value >= 256 && Value <= 0xffff) 2813 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2814 else if (Value > 0xffff && Value <= 0xffffff) 2815 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2816 else if (Value > 0xffffff) 2817 Value = (Value >> 24) | 0x600; 2818 return Value; 2819 } 2820 2821 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2822 assert(N == 1 && "Invalid number of operands!"); 2823 // The immediate encodes the type of constant as well as the value. 2824 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2825 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 2826 Inst.addOperand(MCOperand::createImm(Value)); 2827 } 2828 2829 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 2830 assert(N == 1 && "Invalid number of operands!"); 2831 addNEONi8ReplicateOperands(Inst, false); 2832 } 2833 2834 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 2835 assert(N == 1 && "Invalid number of operands!"); 2836 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2837 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 2838 Inst.getOpcode() == ARM::VMOVv8i16 || 2839 Inst.getOpcode() == ARM::VMVNv4i16 || 2840 Inst.getOpcode() == ARM::VMVNv8i16) && 2841 "All instructions that want to replicate non-zero half-word " 2842 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 2843 uint64_t Value = CE->getValue(); 2844 unsigned Elem = Value & 0xffff; 2845 if (Elem >= 256) 2846 Elem = (Elem >> 8) | 0x200; 2847 Inst.addOperand(MCOperand::createImm(Elem)); 2848 } 2849 2850 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2851 assert(N == 1 && "Invalid number of operands!"); 2852 // The immediate encodes the type of constant as well as the value. 2853 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2854 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 2855 Inst.addOperand(MCOperand::createImm(Value)); 2856 } 2857 2858 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 2859 assert(N == 1 && "Invalid number of operands!"); 2860 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2861 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 2862 Inst.getOpcode() == ARM::VMOVv4i32 || 2863 Inst.getOpcode() == ARM::VMVNv2i32 || 2864 Inst.getOpcode() == ARM::VMVNv4i32) && 2865 "All instructions that want to replicate non-zero word " 2866 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 2867 uint64_t Value = CE->getValue(); 2868 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 2869 Inst.addOperand(MCOperand::createImm(Elem)); 2870 } 2871 2872 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2873 assert(N == 1 && "Invalid number of operands!"); 2874 // The immediate encodes the type of constant as well as the value. 2875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2876 uint64_t Value = CE->getValue(); 2877 unsigned Imm = 0; 2878 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2879 Imm |= (Value & 1) << i; 2880 } 2881 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2882 } 2883 2884 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 2885 assert(N == 1 && "Invalid number of operands!"); 2886 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2887 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 2888 } 2889 2890 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 2891 assert(N == 1 && "Invalid number of operands!"); 2892 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2893 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 2894 } 2895 2896 void print(raw_ostream &OS) const override; 2897 2898 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2899 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2900 Op->ITMask.Mask = Mask; 2901 Op->StartLoc = S; 2902 Op->EndLoc = S; 2903 return Op; 2904 } 2905 2906 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2907 SMLoc S) { 2908 auto Op = make_unique<ARMOperand>(k_CondCode); 2909 Op->CC.Val = CC; 2910 Op->StartLoc = S; 2911 Op->EndLoc = S; 2912 return Op; 2913 } 2914 2915 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2916 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2917 Op->Cop.Val = CopVal; 2918 Op->StartLoc = S; 2919 Op->EndLoc = S; 2920 return Op; 2921 } 2922 2923 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2924 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2925 Op->Cop.Val = CopVal; 2926 Op->StartLoc = S; 2927 Op->EndLoc = S; 2928 return Op; 2929 } 2930 2931 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2932 SMLoc E) { 2933 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2934 Op->Cop.Val = Val; 2935 Op->StartLoc = S; 2936 Op->EndLoc = E; 2937 return Op; 2938 } 2939 2940 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2941 auto Op = make_unique<ARMOperand>(k_CCOut); 2942 Op->Reg.RegNum = RegNum; 2943 Op->StartLoc = S; 2944 Op->EndLoc = S; 2945 return Op; 2946 } 2947 2948 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2949 auto Op = make_unique<ARMOperand>(k_Token); 2950 Op->Tok.Data = Str.data(); 2951 Op->Tok.Length = Str.size(); 2952 Op->StartLoc = S; 2953 Op->EndLoc = S; 2954 return Op; 2955 } 2956 2957 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2958 SMLoc E) { 2959 auto Op = make_unique<ARMOperand>(k_Register); 2960 Op->Reg.RegNum = RegNum; 2961 Op->StartLoc = S; 2962 Op->EndLoc = E; 2963 return Op; 2964 } 2965 2966 static std::unique_ptr<ARMOperand> 2967 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2968 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2969 SMLoc E) { 2970 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2971 Op->RegShiftedReg.ShiftTy = ShTy; 2972 Op->RegShiftedReg.SrcReg = SrcReg; 2973 Op->RegShiftedReg.ShiftReg = ShiftReg; 2974 Op->RegShiftedReg.ShiftImm = ShiftImm; 2975 Op->StartLoc = S; 2976 Op->EndLoc = E; 2977 return Op; 2978 } 2979 2980 static std::unique_ptr<ARMOperand> 2981 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2982 unsigned ShiftImm, SMLoc S, SMLoc E) { 2983 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2984 Op->RegShiftedImm.ShiftTy = ShTy; 2985 Op->RegShiftedImm.SrcReg = SrcReg; 2986 Op->RegShiftedImm.ShiftImm = ShiftImm; 2987 Op->StartLoc = S; 2988 Op->EndLoc = E; 2989 return Op; 2990 } 2991 2992 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2993 SMLoc S, SMLoc E) { 2994 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2995 Op->ShifterImm.isASR = isASR; 2996 Op->ShifterImm.Imm = Imm; 2997 Op->StartLoc = S; 2998 Op->EndLoc = E; 2999 return Op; 3000 } 3001 3002 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3003 SMLoc E) { 3004 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 3005 Op->RotImm.Imm = Imm; 3006 Op->StartLoc = S; 3007 Op->EndLoc = E; 3008 return Op; 3009 } 3010 3011 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3012 SMLoc S, SMLoc E) { 3013 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 3014 Op->ModImm.Bits = Bits; 3015 Op->ModImm.Rot = Rot; 3016 Op->StartLoc = S; 3017 Op->EndLoc = E; 3018 return Op; 3019 } 3020 3021 static std::unique_ptr<ARMOperand> 3022 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3023 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 3024 Op->Imm.Val = Val; 3025 Op->StartLoc = S; 3026 Op->EndLoc = E; 3027 return Op; 3028 } 3029 3030 static std::unique_ptr<ARMOperand> 3031 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3032 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 3033 Op->Bitfield.LSB = LSB; 3034 Op->Bitfield.Width = Width; 3035 Op->StartLoc = S; 3036 Op->EndLoc = E; 3037 return Op; 3038 } 3039 3040 static std::unique_ptr<ARMOperand> 3041 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3042 SMLoc StartLoc, SMLoc EndLoc) { 3043 assert(Regs.size() > 0 && "RegList contains no registers?"); 3044 KindTy Kind = k_RegisterList; 3045 3046 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 3047 Kind = k_DPRRegisterList; 3048 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 3049 contains(Regs.front().second)) 3050 Kind = k_SPRRegisterList; 3051 3052 // Sort based on the register encoding values. 3053 array_pod_sort(Regs.begin(), Regs.end()); 3054 3055 auto Op = make_unique<ARMOperand>(Kind); 3056 for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator 3057 I = Regs.begin(), E = Regs.end(); I != E; ++I) 3058 Op->Registers.push_back(I->second); 3059 Op->StartLoc = StartLoc; 3060 Op->EndLoc = EndLoc; 3061 return Op; 3062 } 3063 3064 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3065 unsigned Count, 3066 bool isDoubleSpaced, 3067 SMLoc S, SMLoc E) { 3068 auto Op = make_unique<ARMOperand>(k_VectorList); 3069 Op->VectorList.RegNum = RegNum; 3070 Op->VectorList.Count = Count; 3071 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3072 Op->StartLoc = S; 3073 Op->EndLoc = E; 3074 return Op; 3075 } 3076 3077 static std::unique_ptr<ARMOperand> 3078 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3079 SMLoc S, SMLoc E) { 3080 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 3081 Op->VectorList.RegNum = RegNum; 3082 Op->VectorList.Count = Count; 3083 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3084 Op->StartLoc = S; 3085 Op->EndLoc = E; 3086 return Op; 3087 } 3088 3089 static std::unique_ptr<ARMOperand> 3090 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3091 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3092 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 3093 Op->VectorList.RegNum = RegNum; 3094 Op->VectorList.Count = Count; 3095 Op->VectorList.LaneIndex = Index; 3096 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3097 Op->StartLoc = S; 3098 Op->EndLoc = E; 3099 return Op; 3100 } 3101 3102 static std::unique_ptr<ARMOperand> 3103 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3104 auto Op = make_unique<ARMOperand>(k_VectorIndex); 3105 Op->VectorIndex.Val = Idx; 3106 Op->StartLoc = S; 3107 Op->EndLoc = E; 3108 return Op; 3109 } 3110 3111 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3112 SMLoc E) { 3113 auto Op = make_unique<ARMOperand>(k_Immediate); 3114 Op->Imm.Val = Val; 3115 Op->StartLoc = S; 3116 Op->EndLoc = E; 3117 return Op; 3118 } 3119 3120 static std::unique_ptr<ARMOperand> 3121 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3122 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3123 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3124 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3125 auto Op = make_unique<ARMOperand>(k_Memory); 3126 Op->Memory.BaseRegNum = BaseRegNum; 3127 Op->Memory.OffsetImm = OffsetImm; 3128 Op->Memory.OffsetRegNum = OffsetRegNum; 3129 Op->Memory.ShiftType = ShiftType; 3130 Op->Memory.ShiftImm = ShiftImm; 3131 Op->Memory.Alignment = Alignment; 3132 Op->Memory.isNegative = isNegative; 3133 Op->StartLoc = S; 3134 Op->EndLoc = E; 3135 Op->AlignmentLoc = AlignmentLoc; 3136 return Op; 3137 } 3138 3139 static std::unique_ptr<ARMOperand> 3140 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3141 unsigned ShiftImm, SMLoc S, SMLoc E) { 3142 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 3143 Op->PostIdxReg.RegNum = RegNum; 3144 Op->PostIdxReg.isAdd = isAdd; 3145 Op->PostIdxReg.ShiftTy = ShiftTy; 3146 Op->PostIdxReg.ShiftImm = ShiftImm; 3147 Op->StartLoc = S; 3148 Op->EndLoc = E; 3149 return Op; 3150 } 3151 3152 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3153 SMLoc S) { 3154 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3155 Op->MBOpt.Val = Opt; 3156 Op->StartLoc = S; 3157 Op->EndLoc = S; 3158 return Op; 3159 } 3160 3161 static std::unique_ptr<ARMOperand> 3162 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3163 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3164 Op->ISBOpt.Val = Opt; 3165 Op->StartLoc = S; 3166 Op->EndLoc = S; 3167 return Op; 3168 } 3169 3170 static std::unique_ptr<ARMOperand> 3171 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3172 auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3173 Op->TSBOpt.Val = Opt; 3174 Op->StartLoc = S; 3175 Op->EndLoc = S; 3176 return Op; 3177 } 3178 3179 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3180 SMLoc S) { 3181 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3182 Op->IFlags.Val = IFlags; 3183 Op->StartLoc = S; 3184 Op->EndLoc = S; 3185 return Op; 3186 } 3187 3188 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3189 auto Op = make_unique<ARMOperand>(k_MSRMask); 3190 Op->MMask.Val = MMask; 3191 Op->StartLoc = S; 3192 Op->EndLoc = S; 3193 return Op; 3194 } 3195 3196 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3197 auto Op = make_unique<ARMOperand>(k_BankedReg); 3198 Op->BankedReg.Val = Reg; 3199 Op->StartLoc = S; 3200 Op->EndLoc = S; 3201 return Op; 3202 } 3203 }; 3204 3205 } // end anonymous namespace. 3206 3207 void ARMOperand::print(raw_ostream &OS) const { 3208 auto RegName = [](unsigned Reg) { 3209 if (Reg) 3210 return ARMInstPrinter::getRegisterName(Reg); 3211 else 3212 return "noreg"; 3213 }; 3214 3215 switch (Kind) { 3216 case k_CondCode: 3217 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3218 break; 3219 case k_CCOut: 3220 OS << "<ccout " << RegName(getReg()) << ">"; 3221 break; 3222 case k_ITCondMask: { 3223 static const char *const MaskStr[] = { 3224 "(invalid)", "(teee)", "(tee)", "(teet)", 3225 "(te)", "(tete)", "(tet)", "(tett)", 3226 "(t)", "(ttee)", "(tte)", "(ttet)", 3227 "(tt)", "(ttte)", "(ttt)", "(tttt)" 3228 }; 3229 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3230 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3231 break; 3232 } 3233 case k_CoprocNum: 3234 OS << "<coprocessor number: " << getCoproc() << ">"; 3235 break; 3236 case k_CoprocReg: 3237 OS << "<coprocessor register: " << getCoproc() << ">"; 3238 break; 3239 case k_CoprocOption: 3240 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3241 break; 3242 case k_MSRMask: 3243 OS << "<mask: " << getMSRMask() << ">"; 3244 break; 3245 case k_BankedReg: 3246 OS << "<banked reg: " << getBankedReg() << ">"; 3247 break; 3248 case k_Immediate: 3249 OS << *getImm(); 3250 break; 3251 case k_MemBarrierOpt: 3252 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3253 break; 3254 case k_InstSyncBarrierOpt: 3255 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3256 break; 3257 case k_TraceSyncBarrierOpt: 3258 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3259 break; 3260 case k_Memory: 3261 OS << "<memory"; 3262 if (Memory.BaseRegNum) 3263 OS << " base:" << RegName(Memory.BaseRegNum); 3264 if (Memory.OffsetImm) 3265 OS << " offset-imm:" << *Memory.OffsetImm; 3266 if (Memory.OffsetRegNum) 3267 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3268 << RegName(Memory.OffsetRegNum); 3269 if (Memory.ShiftType != ARM_AM::no_shift) { 3270 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3271 OS << " shift-imm:" << Memory.ShiftImm; 3272 } 3273 if (Memory.Alignment) 3274 OS << " alignment:" << Memory.Alignment; 3275 OS << ">"; 3276 break; 3277 case k_PostIndexRegister: 3278 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3279 << RegName(PostIdxReg.RegNum); 3280 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3281 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3282 << PostIdxReg.ShiftImm; 3283 OS << ">"; 3284 break; 3285 case k_ProcIFlags: { 3286 OS << "<ARM_PROC::"; 3287 unsigned IFlags = getProcIFlags(); 3288 for (int i=2; i >= 0; --i) 3289 if (IFlags & (1 << i)) 3290 OS << ARM_PROC::IFlagsToString(1 << i); 3291 OS << ">"; 3292 break; 3293 } 3294 case k_Register: 3295 OS << "<register " << RegName(getReg()) << ">"; 3296 break; 3297 case k_ShifterImmediate: 3298 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3299 << " #" << ShifterImm.Imm << ">"; 3300 break; 3301 case k_ShiftedRegister: 3302 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3303 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3304 << RegName(RegShiftedReg.ShiftReg) << ">"; 3305 break; 3306 case k_ShiftedImmediate: 3307 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3308 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3309 << RegShiftedImm.ShiftImm << ">"; 3310 break; 3311 case k_RotateImmediate: 3312 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3313 break; 3314 case k_ModifiedImmediate: 3315 OS << "<mod_imm #" << ModImm.Bits << ", #" 3316 << ModImm.Rot << ")>"; 3317 break; 3318 case k_ConstantPoolImmediate: 3319 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3320 break; 3321 case k_BitfieldDescriptor: 3322 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3323 << ", width: " << Bitfield.Width << ">"; 3324 break; 3325 case k_RegisterList: 3326 case k_DPRRegisterList: 3327 case k_SPRRegisterList: { 3328 OS << "<register_list "; 3329 3330 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3331 for (SmallVectorImpl<unsigned>::const_iterator 3332 I = RegList.begin(), E = RegList.end(); I != E; ) { 3333 OS << RegName(*I); 3334 if (++I < E) OS << ", "; 3335 } 3336 3337 OS << ">"; 3338 break; 3339 } 3340 case k_VectorList: 3341 OS << "<vector_list " << VectorList.Count << " * " 3342 << RegName(VectorList.RegNum) << ">"; 3343 break; 3344 case k_VectorListAllLanes: 3345 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3346 << RegName(VectorList.RegNum) << ">"; 3347 break; 3348 case k_VectorListIndexed: 3349 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3350 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 3351 break; 3352 case k_Token: 3353 OS << "'" << getToken() << "'"; 3354 break; 3355 case k_VectorIndex: 3356 OS << "<vectorindex " << getVectorIndex() << ">"; 3357 break; 3358 } 3359 } 3360 3361 /// @name Auto-generated Match Functions 3362 /// { 3363 3364 static unsigned MatchRegisterName(StringRef Name); 3365 3366 /// } 3367 3368 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3369 SMLoc &StartLoc, SMLoc &EndLoc) { 3370 const AsmToken &Tok = getParser().getTok(); 3371 StartLoc = Tok.getLoc(); 3372 EndLoc = Tok.getEndLoc(); 3373 RegNo = tryParseRegister(); 3374 3375 return (RegNo == (unsigned)-1); 3376 } 3377 3378 /// Try to parse a register name. The token must be an Identifier when called, 3379 /// and if it is a register name the token is eaten and the register number is 3380 /// returned. Otherwise return -1. 3381 int ARMAsmParser::tryParseRegister() { 3382 MCAsmParser &Parser = getParser(); 3383 const AsmToken &Tok = Parser.getTok(); 3384 if (Tok.isNot(AsmToken::Identifier)) return -1; 3385 3386 std::string lowerCase = Tok.getString().lower(); 3387 unsigned RegNum = MatchRegisterName(lowerCase); 3388 if (!RegNum) { 3389 RegNum = StringSwitch<unsigned>(lowerCase) 3390 .Case("r13", ARM::SP) 3391 .Case("r14", ARM::LR) 3392 .Case("r15", ARM::PC) 3393 .Case("ip", ARM::R12) 3394 // Additional register name aliases for 'gas' compatibility. 3395 .Case("a1", ARM::R0) 3396 .Case("a2", ARM::R1) 3397 .Case("a3", ARM::R2) 3398 .Case("a4", ARM::R3) 3399 .Case("v1", ARM::R4) 3400 .Case("v2", ARM::R5) 3401 .Case("v3", ARM::R6) 3402 .Case("v4", ARM::R7) 3403 .Case("v5", ARM::R8) 3404 .Case("v6", ARM::R9) 3405 .Case("v7", ARM::R10) 3406 .Case("v8", ARM::R11) 3407 .Case("sb", ARM::R9) 3408 .Case("sl", ARM::R10) 3409 .Case("fp", ARM::R11) 3410 .Default(0); 3411 } 3412 if (!RegNum) { 3413 // Check for aliases registered via .req. Canonicalize to lower case. 3414 // That's more consistent since register names are case insensitive, and 3415 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3416 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3417 // If no match, return failure. 3418 if (Entry == RegisterReqs.end()) 3419 return -1; 3420 Parser.Lex(); // Eat identifier token. 3421 return Entry->getValue(); 3422 } 3423 3424 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3425 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3426 return -1; 3427 3428 Parser.Lex(); // Eat identifier token. 3429 3430 return RegNum; 3431 } 3432 3433 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3434 // If a recoverable error occurs, return 1. If an irrecoverable error 3435 // occurs, return -1. An irrecoverable error is one where tokens have been 3436 // consumed in the process of trying to parse the shifter (i.e., when it is 3437 // indeed a shifter operand, but malformed). 3438 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3439 MCAsmParser &Parser = getParser(); 3440 SMLoc S = Parser.getTok().getLoc(); 3441 const AsmToken &Tok = Parser.getTok(); 3442 if (Tok.isNot(AsmToken::Identifier)) 3443 return -1; 3444 3445 std::string lowerCase = Tok.getString().lower(); 3446 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3447 .Case("asl", ARM_AM::lsl) 3448 .Case("lsl", ARM_AM::lsl) 3449 .Case("lsr", ARM_AM::lsr) 3450 .Case("asr", ARM_AM::asr) 3451 .Case("ror", ARM_AM::ror) 3452 .Case("rrx", ARM_AM::rrx) 3453 .Default(ARM_AM::no_shift); 3454 3455 if (ShiftTy == ARM_AM::no_shift) 3456 return 1; 3457 3458 Parser.Lex(); // Eat the operator. 3459 3460 // The source register for the shift has already been added to the 3461 // operand list, so we need to pop it off and combine it into the shifted 3462 // register operand instead. 3463 std::unique_ptr<ARMOperand> PrevOp( 3464 (ARMOperand *)Operands.pop_back_val().release()); 3465 if (!PrevOp->isReg()) 3466 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3467 int SrcReg = PrevOp->getReg(); 3468 3469 SMLoc EndLoc; 3470 int64_t Imm = 0; 3471 int ShiftReg = 0; 3472 if (ShiftTy == ARM_AM::rrx) { 3473 // RRX Doesn't have an explicit shift amount. The encoder expects 3474 // the shift register to be the same as the source register. Seems odd, 3475 // but OK. 3476 ShiftReg = SrcReg; 3477 } else { 3478 // Figure out if this is shifted by a constant or a register (for non-RRX). 3479 if (Parser.getTok().is(AsmToken::Hash) || 3480 Parser.getTok().is(AsmToken::Dollar)) { 3481 Parser.Lex(); // Eat hash. 3482 SMLoc ImmLoc = Parser.getTok().getLoc(); 3483 const MCExpr *ShiftExpr = nullptr; 3484 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3485 Error(ImmLoc, "invalid immediate shift value"); 3486 return -1; 3487 } 3488 // The expression must be evaluatable as an immediate. 3489 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3490 if (!CE) { 3491 Error(ImmLoc, "invalid immediate shift value"); 3492 return -1; 3493 } 3494 // Range check the immediate. 3495 // lsl, ror: 0 <= imm <= 31 3496 // lsr, asr: 0 <= imm <= 32 3497 Imm = CE->getValue(); 3498 if (Imm < 0 || 3499 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3500 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3501 Error(ImmLoc, "immediate shift value out of range"); 3502 return -1; 3503 } 3504 // shift by zero is a nop. Always send it through as lsl. 3505 // ('as' compatibility) 3506 if (Imm == 0) 3507 ShiftTy = ARM_AM::lsl; 3508 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3509 SMLoc L = Parser.getTok().getLoc(); 3510 EndLoc = Parser.getTok().getEndLoc(); 3511 ShiftReg = tryParseRegister(); 3512 if (ShiftReg == -1) { 3513 Error(L, "expected immediate or register in shift operand"); 3514 return -1; 3515 } 3516 } else { 3517 Error(Parser.getTok().getLoc(), 3518 "expected immediate or register in shift operand"); 3519 return -1; 3520 } 3521 } 3522 3523 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3524 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3525 ShiftReg, Imm, 3526 S, EndLoc)); 3527 else 3528 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3529 S, EndLoc)); 3530 3531 return 0; 3532 } 3533 3534 /// Try to parse a register name. The token must be an Identifier when called. 3535 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3536 /// if there is a "writeback". 'true' if it's not a register. 3537 /// 3538 /// TODO this is likely to change to allow different register types and or to 3539 /// parse for a specific register type. 3540 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3541 MCAsmParser &Parser = getParser(); 3542 SMLoc RegStartLoc = Parser.getTok().getLoc(); 3543 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 3544 int RegNo = tryParseRegister(); 3545 if (RegNo == -1) 3546 return true; 3547 3548 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 3549 3550 const AsmToken &ExclaimTok = Parser.getTok(); 3551 if (ExclaimTok.is(AsmToken::Exclaim)) { 3552 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3553 ExclaimTok.getLoc())); 3554 Parser.Lex(); // Eat exclaim token 3555 return false; 3556 } 3557 3558 // Also check for an index operand. This is only legal for vector registers, 3559 // but that'll get caught OK in operand matching, so we don't need to 3560 // explicitly filter everything else out here. 3561 if (Parser.getTok().is(AsmToken::LBrac)) { 3562 SMLoc SIdx = Parser.getTok().getLoc(); 3563 Parser.Lex(); // Eat left bracket token. 3564 3565 const MCExpr *ImmVal; 3566 if (getParser().parseExpression(ImmVal)) 3567 return true; 3568 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3569 if (!MCE) 3570 return TokError("immediate value expected for vector index"); 3571 3572 if (Parser.getTok().isNot(AsmToken::RBrac)) 3573 return Error(Parser.getTok().getLoc(), "']' expected"); 3574 3575 SMLoc E = Parser.getTok().getEndLoc(); 3576 Parser.Lex(); // Eat right bracket token. 3577 3578 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3579 SIdx, E, 3580 getContext())); 3581 } 3582 3583 return false; 3584 } 3585 3586 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3587 /// instruction with a symbolic operand name. 3588 /// We accept "crN" syntax for GAS compatibility. 3589 /// <operand-name> ::= <prefix><number> 3590 /// If CoprocOp is 'c', then: 3591 /// <prefix> ::= c | cr 3592 /// If CoprocOp is 'p', then : 3593 /// <prefix> ::= p 3594 /// <number> ::= integer in range [0, 15] 3595 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3596 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3597 // but efficient. 3598 if (Name.size() < 2 || Name[0] != CoprocOp) 3599 return -1; 3600 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3601 3602 switch (Name.size()) { 3603 default: return -1; 3604 case 1: 3605 switch (Name[0]) { 3606 default: return -1; 3607 case '0': return 0; 3608 case '1': return 1; 3609 case '2': return 2; 3610 case '3': return 3; 3611 case '4': return 4; 3612 case '5': return 5; 3613 case '6': return 6; 3614 case '7': return 7; 3615 case '8': return 8; 3616 case '9': return 9; 3617 } 3618 case 2: 3619 if (Name[0] != '1') 3620 return -1; 3621 switch (Name[1]) { 3622 default: return -1; 3623 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3624 // However, old cores (v5/v6) did use them in that way. 3625 case '0': return 10; 3626 case '1': return 11; 3627 case '2': return 12; 3628 case '3': return 13; 3629 case '4': return 14; 3630 case '5': return 15; 3631 } 3632 } 3633 } 3634 3635 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3636 OperandMatchResultTy 3637 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3638 MCAsmParser &Parser = getParser(); 3639 SMLoc S = Parser.getTok().getLoc(); 3640 const AsmToken &Tok = Parser.getTok(); 3641 if (!Tok.is(AsmToken::Identifier)) 3642 return MatchOperand_NoMatch; 3643 unsigned CC = ARMCondCodeFromString(Tok.getString()); 3644 if (CC == ~0U) 3645 return MatchOperand_NoMatch; 3646 Parser.Lex(); // Eat the token. 3647 3648 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3649 3650 return MatchOperand_Success; 3651 } 3652 3653 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3654 /// token must be an Identifier when called, and if it is a coprocessor 3655 /// number, the token is eaten and the operand is added to the operand list. 3656 OperandMatchResultTy 3657 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3658 MCAsmParser &Parser = getParser(); 3659 SMLoc S = Parser.getTok().getLoc(); 3660 const AsmToken &Tok = Parser.getTok(); 3661 if (Tok.isNot(AsmToken::Identifier)) 3662 return MatchOperand_NoMatch; 3663 3664 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3665 if (Num == -1) 3666 return MatchOperand_NoMatch; 3667 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3668 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3669 return MatchOperand_NoMatch; 3670 3671 Parser.Lex(); // Eat identifier token. 3672 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3673 return MatchOperand_Success; 3674 } 3675 3676 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3677 /// token must be an Identifier when called, and if it is a coprocessor 3678 /// number, the token is eaten and the operand is added to the operand list. 3679 OperandMatchResultTy 3680 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3681 MCAsmParser &Parser = getParser(); 3682 SMLoc S = Parser.getTok().getLoc(); 3683 const AsmToken &Tok = Parser.getTok(); 3684 if (Tok.isNot(AsmToken::Identifier)) 3685 return MatchOperand_NoMatch; 3686 3687 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3688 if (Reg == -1) 3689 return MatchOperand_NoMatch; 3690 3691 Parser.Lex(); // Eat identifier token. 3692 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3693 return MatchOperand_Success; 3694 } 3695 3696 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3697 /// coproc_option : '{' imm0_255 '}' 3698 OperandMatchResultTy 3699 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3700 MCAsmParser &Parser = getParser(); 3701 SMLoc S = Parser.getTok().getLoc(); 3702 3703 // If this isn't a '{', this isn't a coprocessor immediate operand. 3704 if (Parser.getTok().isNot(AsmToken::LCurly)) 3705 return MatchOperand_NoMatch; 3706 Parser.Lex(); // Eat the '{' 3707 3708 const MCExpr *Expr; 3709 SMLoc Loc = Parser.getTok().getLoc(); 3710 if (getParser().parseExpression(Expr)) { 3711 Error(Loc, "illegal expression"); 3712 return MatchOperand_ParseFail; 3713 } 3714 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3715 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3716 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3717 return MatchOperand_ParseFail; 3718 } 3719 int Val = CE->getValue(); 3720 3721 // Check for and consume the closing '}' 3722 if (Parser.getTok().isNot(AsmToken::RCurly)) 3723 return MatchOperand_ParseFail; 3724 SMLoc E = Parser.getTok().getEndLoc(); 3725 Parser.Lex(); // Eat the '}' 3726 3727 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3728 return MatchOperand_Success; 3729 } 3730 3731 // For register list parsing, we need to map from raw GPR register numbering 3732 // to the enumeration values. The enumeration values aren't sorted by 3733 // register number due to our using "sp", "lr" and "pc" as canonical names. 3734 static unsigned getNextRegister(unsigned Reg) { 3735 // If this is a GPR, we need to do it manually, otherwise we can rely 3736 // on the sort ordering of the enumeration since the other reg-classes 3737 // are sane. 3738 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3739 return Reg + 1; 3740 switch(Reg) { 3741 default: llvm_unreachable("Invalid GPR number!"); 3742 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3743 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3744 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3745 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3746 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3747 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3748 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3749 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3750 } 3751 } 3752 3753 /// Parse a register list. 3754 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3755 MCAsmParser &Parser = getParser(); 3756 if (Parser.getTok().isNot(AsmToken::LCurly)) 3757 return TokError("Token is not a Left Curly Brace"); 3758 SMLoc S = Parser.getTok().getLoc(); 3759 Parser.Lex(); // Eat '{' token. 3760 SMLoc RegLoc = Parser.getTok().getLoc(); 3761 3762 // Check the first register in the list to see what register class 3763 // this is a list of. 3764 int Reg = tryParseRegister(); 3765 if (Reg == -1) 3766 return Error(RegLoc, "register expected"); 3767 3768 // The reglist instructions have at most 16 registers, so reserve 3769 // space for that many. 3770 int EReg = 0; 3771 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3772 3773 // Allow Q regs and just interpret them as the two D sub-registers. 3774 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3775 Reg = getDRegFromQReg(Reg); 3776 EReg = MRI->getEncodingValue(Reg); 3777 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3778 ++Reg; 3779 } 3780 const MCRegisterClass *RC; 3781 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3782 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3783 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3784 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3785 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3786 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3787 else 3788 return Error(RegLoc, "invalid register in register list"); 3789 3790 // Store the register. 3791 EReg = MRI->getEncodingValue(Reg); 3792 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3793 3794 // This starts immediately after the first register token in the list, 3795 // so we can see either a comma or a minus (range separator) as a legal 3796 // next token. 3797 while (Parser.getTok().is(AsmToken::Comma) || 3798 Parser.getTok().is(AsmToken::Minus)) { 3799 if (Parser.getTok().is(AsmToken::Minus)) { 3800 Parser.Lex(); // Eat the minus. 3801 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3802 int EndReg = tryParseRegister(); 3803 if (EndReg == -1) 3804 return Error(AfterMinusLoc, "register expected"); 3805 // Allow Q regs and just interpret them as the two D sub-registers. 3806 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3807 EndReg = getDRegFromQReg(EndReg) + 1; 3808 // If the register is the same as the start reg, there's nothing 3809 // more to do. 3810 if (Reg == EndReg) 3811 continue; 3812 // The register must be in the same register class as the first. 3813 if (!RC->contains(EndReg)) 3814 return Error(AfterMinusLoc, "invalid register in register list"); 3815 // Ranges must go from low to high. 3816 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3817 return Error(AfterMinusLoc, "bad range in register list"); 3818 3819 // Add all the registers in the range to the register list. 3820 while (Reg != EndReg) { 3821 Reg = getNextRegister(Reg); 3822 EReg = MRI->getEncodingValue(Reg); 3823 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3824 } 3825 continue; 3826 } 3827 Parser.Lex(); // Eat the comma. 3828 RegLoc = Parser.getTok().getLoc(); 3829 int OldReg = Reg; 3830 const AsmToken RegTok = Parser.getTok(); 3831 Reg = tryParseRegister(); 3832 if (Reg == -1) 3833 return Error(RegLoc, "register expected"); 3834 // Allow Q regs and just interpret them as the two D sub-registers. 3835 bool isQReg = false; 3836 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3837 Reg = getDRegFromQReg(Reg); 3838 isQReg = true; 3839 } 3840 // The register must be in the same register class as the first. 3841 if (!RC->contains(Reg)) 3842 return Error(RegLoc, "invalid register in register list"); 3843 // List must be monotonically increasing. 3844 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3845 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3846 Warning(RegLoc, "register list not in ascending order"); 3847 else 3848 return Error(RegLoc, "register list not in ascending order"); 3849 } 3850 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3851 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3852 ") in register list"); 3853 continue; 3854 } 3855 // VFP register lists must also be contiguous. 3856 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3857 Reg != OldReg + 1) 3858 return Error(RegLoc, "non-contiguous register range"); 3859 EReg = MRI->getEncodingValue(Reg); 3860 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3861 if (isQReg) { 3862 EReg = MRI->getEncodingValue(++Reg); 3863 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3864 } 3865 } 3866 3867 if (Parser.getTok().isNot(AsmToken::RCurly)) 3868 return Error(Parser.getTok().getLoc(), "'}' expected"); 3869 SMLoc E = Parser.getTok().getEndLoc(); 3870 Parser.Lex(); // Eat '}' token. 3871 3872 // Push the register list operand. 3873 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3874 3875 // The ARM system instruction variants for LDM/STM have a '^' token here. 3876 if (Parser.getTok().is(AsmToken::Caret)) { 3877 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3878 Parser.Lex(); // Eat '^' token. 3879 } 3880 3881 return false; 3882 } 3883 3884 // Helper function to parse the lane index for vector lists. 3885 OperandMatchResultTy ARMAsmParser:: 3886 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3887 MCAsmParser &Parser = getParser(); 3888 Index = 0; // Always return a defined index value. 3889 if (Parser.getTok().is(AsmToken::LBrac)) { 3890 Parser.Lex(); // Eat the '['. 3891 if (Parser.getTok().is(AsmToken::RBrac)) { 3892 // "Dn[]" is the 'all lanes' syntax. 3893 LaneKind = AllLanes; 3894 EndLoc = Parser.getTok().getEndLoc(); 3895 Parser.Lex(); // Eat the ']'. 3896 return MatchOperand_Success; 3897 } 3898 3899 // There's an optional '#' token here. Normally there wouldn't be, but 3900 // inline assemble puts one in, and it's friendly to accept that. 3901 if (Parser.getTok().is(AsmToken::Hash)) 3902 Parser.Lex(); // Eat '#' or '$'. 3903 3904 const MCExpr *LaneIndex; 3905 SMLoc Loc = Parser.getTok().getLoc(); 3906 if (getParser().parseExpression(LaneIndex)) { 3907 Error(Loc, "illegal expression"); 3908 return MatchOperand_ParseFail; 3909 } 3910 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3911 if (!CE) { 3912 Error(Loc, "lane index must be empty or an integer"); 3913 return MatchOperand_ParseFail; 3914 } 3915 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3916 Error(Parser.getTok().getLoc(), "']' expected"); 3917 return MatchOperand_ParseFail; 3918 } 3919 EndLoc = Parser.getTok().getEndLoc(); 3920 Parser.Lex(); // Eat the ']'. 3921 int64_t Val = CE->getValue(); 3922 3923 // FIXME: Make this range check context sensitive for .8, .16, .32. 3924 if (Val < 0 || Val > 7) { 3925 Error(Parser.getTok().getLoc(), "lane index out of range"); 3926 return MatchOperand_ParseFail; 3927 } 3928 Index = Val; 3929 LaneKind = IndexedLane; 3930 return MatchOperand_Success; 3931 } 3932 LaneKind = NoLanes; 3933 return MatchOperand_Success; 3934 } 3935 3936 // parse a vector register list 3937 OperandMatchResultTy 3938 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3939 MCAsmParser &Parser = getParser(); 3940 VectorLaneTy LaneKind; 3941 unsigned LaneIndex; 3942 SMLoc S = Parser.getTok().getLoc(); 3943 // As an extension (to match gas), support a plain D register or Q register 3944 // (without encosing curly braces) as a single or double entry list, 3945 // respectively. 3946 if (Parser.getTok().is(AsmToken::Identifier)) { 3947 SMLoc E = Parser.getTok().getEndLoc(); 3948 int Reg = tryParseRegister(); 3949 if (Reg == -1) 3950 return MatchOperand_NoMatch; 3951 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3952 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3953 if (Res != MatchOperand_Success) 3954 return Res; 3955 switch (LaneKind) { 3956 case NoLanes: 3957 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3958 break; 3959 case AllLanes: 3960 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3961 S, E)); 3962 break; 3963 case IndexedLane: 3964 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3965 LaneIndex, 3966 false, S, E)); 3967 break; 3968 } 3969 return MatchOperand_Success; 3970 } 3971 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3972 Reg = getDRegFromQReg(Reg); 3973 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3974 if (Res != MatchOperand_Success) 3975 return Res; 3976 switch (LaneKind) { 3977 case NoLanes: 3978 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3979 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3980 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3981 break; 3982 case AllLanes: 3983 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3984 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3985 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3986 S, E)); 3987 break; 3988 case IndexedLane: 3989 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3990 LaneIndex, 3991 false, S, E)); 3992 break; 3993 } 3994 return MatchOperand_Success; 3995 } 3996 Error(S, "vector register expected"); 3997 return MatchOperand_ParseFail; 3998 } 3999 4000 if (Parser.getTok().isNot(AsmToken::LCurly)) 4001 return MatchOperand_NoMatch; 4002 4003 Parser.Lex(); // Eat '{' token. 4004 SMLoc RegLoc = Parser.getTok().getLoc(); 4005 4006 int Reg = tryParseRegister(); 4007 if (Reg == -1) { 4008 Error(RegLoc, "register expected"); 4009 return MatchOperand_ParseFail; 4010 } 4011 unsigned Count = 1; 4012 int Spacing = 0; 4013 unsigned FirstReg = Reg; 4014 // The list is of D registers, but we also allow Q regs and just interpret 4015 // them as the two D sub-registers. 4016 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4017 FirstReg = Reg = getDRegFromQReg(Reg); 4018 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4019 // it's ambiguous with four-register single spaced. 4020 ++Reg; 4021 ++Count; 4022 } 4023 4024 SMLoc E; 4025 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4026 return MatchOperand_ParseFail; 4027 4028 while (Parser.getTok().is(AsmToken::Comma) || 4029 Parser.getTok().is(AsmToken::Minus)) { 4030 if (Parser.getTok().is(AsmToken::Minus)) { 4031 if (!Spacing) 4032 Spacing = 1; // Register range implies a single spaced list. 4033 else if (Spacing == 2) { 4034 Error(Parser.getTok().getLoc(), 4035 "sequential registers in double spaced list"); 4036 return MatchOperand_ParseFail; 4037 } 4038 Parser.Lex(); // Eat the minus. 4039 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4040 int EndReg = tryParseRegister(); 4041 if (EndReg == -1) { 4042 Error(AfterMinusLoc, "register expected"); 4043 return MatchOperand_ParseFail; 4044 } 4045 // Allow Q regs and just interpret them as the two D sub-registers. 4046 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4047 EndReg = getDRegFromQReg(EndReg) + 1; 4048 // If the register is the same as the start reg, there's nothing 4049 // more to do. 4050 if (Reg == EndReg) 4051 continue; 4052 // The register must be in the same register class as the first. 4053 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 4054 Error(AfterMinusLoc, "invalid register in register list"); 4055 return MatchOperand_ParseFail; 4056 } 4057 // Ranges must go from low to high. 4058 if (Reg > EndReg) { 4059 Error(AfterMinusLoc, "bad range in register list"); 4060 return MatchOperand_ParseFail; 4061 } 4062 // Parse the lane specifier if present. 4063 VectorLaneTy NextLaneKind; 4064 unsigned NextLaneIndex; 4065 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4066 MatchOperand_Success) 4067 return MatchOperand_ParseFail; 4068 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4069 Error(AfterMinusLoc, "mismatched lane index in register list"); 4070 return MatchOperand_ParseFail; 4071 } 4072 4073 // Add all the registers in the range to the register list. 4074 Count += EndReg - Reg; 4075 Reg = EndReg; 4076 continue; 4077 } 4078 Parser.Lex(); // Eat the comma. 4079 RegLoc = Parser.getTok().getLoc(); 4080 int OldReg = Reg; 4081 Reg = tryParseRegister(); 4082 if (Reg == -1) { 4083 Error(RegLoc, "register expected"); 4084 return MatchOperand_ParseFail; 4085 } 4086 // vector register lists must be contiguous. 4087 // It's OK to use the enumeration values directly here rather, as the 4088 // VFP register classes have the enum sorted properly. 4089 // 4090 // The list is of D registers, but we also allow Q regs and just interpret 4091 // them as the two D sub-registers. 4092 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4093 if (!Spacing) 4094 Spacing = 1; // Register range implies a single spaced list. 4095 else if (Spacing == 2) { 4096 Error(RegLoc, 4097 "invalid register in double-spaced list (must be 'D' register')"); 4098 return MatchOperand_ParseFail; 4099 } 4100 Reg = getDRegFromQReg(Reg); 4101 if (Reg != OldReg + 1) { 4102 Error(RegLoc, "non-contiguous register range"); 4103 return MatchOperand_ParseFail; 4104 } 4105 ++Reg; 4106 Count += 2; 4107 // Parse the lane specifier if present. 4108 VectorLaneTy NextLaneKind; 4109 unsigned NextLaneIndex; 4110 SMLoc LaneLoc = Parser.getTok().getLoc(); 4111 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4112 MatchOperand_Success) 4113 return MatchOperand_ParseFail; 4114 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4115 Error(LaneLoc, "mismatched lane index in register list"); 4116 return MatchOperand_ParseFail; 4117 } 4118 continue; 4119 } 4120 // Normal D register. 4121 // Figure out the register spacing (single or double) of the list if 4122 // we don't know it already. 4123 if (!Spacing) 4124 Spacing = 1 + (Reg == OldReg + 2); 4125 4126 // Just check that it's contiguous and keep going. 4127 if (Reg != OldReg + Spacing) { 4128 Error(RegLoc, "non-contiguous register range"); 4129 return MatchOperand_ParseFail; 4130 } 4131 ++Count; 4132 // Parse the lane specifier if present. 4133 VectorLaneTy NextLaneKind; 4134 unsigned NextLaneIndex; 4135 SMLoc EndLoc = Parser.getTok().getLoc(); 4136 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4137 return MatchOperand_ParseFail; 4138 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4139 Error(EndLoc, "mismatched lane index in register list"); 4140 return MatchOperand_ParseFail; 4141 } 4142 } 4143 4144 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4145 Error(Parser.getTok().getLoc(), "'}' expected"); 4146 return MatchOperand_ParseFail; 4147 } 4148 E = Parser.getTok().getEndLoc(); 4149 Parser.Lex(); // Eat '}' token. 4150 4151 switch (LaneKind) { 4152 case NoLanes: 4153 // Two-register operands have been converted to the 4154 // composite register classes. 4155 if (Count == 2) { 4156 const MCRegisterClass *RC = (Spacing == 1) ? 4157 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4158 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4159 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4160 } 4161 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 4162 (Spacing == 2), S, E)); 4163 break; 4164 case AllLanes: 4165 // Two-register operands have been converted to the 4166 // composite register classes. 4167 if (Count == 2) { 4168 const MCRegisterClass *RC = (Spacing == 1) ? 4169 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4170 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4171 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4172 } 4173 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 4174 (Spacing == 2), 4175 S, E)); 4176 break; 4177 case IndexedLane: 4178 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4179 LaneIndex, 4180 (Spacing == 2), 4181 S, E)); 4182 break; 4183 } 4184 return MatchOperand_Success; 4185 } 4186 4187 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4188 OperandMatchResultTy 4189 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4190 MCAsmParser &Parser = getParser(); 4191 SMLoc S = Parser.getTok().getLoc(); 4192 const AsmToken &Tok = Parser.getTok(); 4193 unsigned Opt; 4194 4195 if (Tok.is(AsmToken::Identifier)) { 4196 StringRef OptStr = Tok.getString(); 4197 4198 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4199 .Case("sy", ARM_MB::SY) 4200 .Case("st", ARM_MB::ST) 4201 .Case("ld", ARM_MB::LD) 4202 .Case("sh", ARM_MB::ISH) 4203 .Case("ish", ARM_MB::ISH) 4204 .Case("shst", ARM_MB::ISHST) 4205 .Case("ishst", ARM_MB::ISHST) 4206 .Case("ishld", ARM_MB::ISHLD) 4207 .Case("nsh", ARM_MB::NSH) 4208 .Case("un", ARM_MB::NSH) 4209 .Case("nshst", ARM_MB::NSHST) 4210 .Case("nshld", ARM_MB::NSHLD) 4211 .Case("unst", ARM_MB::NSHST) 4212 .Case("osh", ARM_MB::OSH) 4213 .Case("oshst", ARM_MB::OSHST) 4214 .Case("oshld", ARM_MB::OSHLD) 4215 .Default(~0U); 4216 4217 // ishld, oshld, nshld and ld are only available from ARMv8. 4218 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4219 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4220 Opt = ~0U; 4221 4222 if (Opt == ~0U) 4223 return MatchOperand_NoMatch; 4224 4225 Parser.Lex(); // Eat identifier token. 4226 } else if (Tok.is(AsmToken::Hash) || 4227 Tok.is(AsmToken::Dollar) || 4228 Tok.is(AsmToken::Integer)) { 4229 if (Parser.getTok().isNot(AsmToken::Integer)) 4230 Parser.Lex(); // Eat '#' or '$'. 4231 SMLoc Loc = Parser.getTok().getLoc(); 4232 4233 const MCExpr *MemBarrierID; 4234 if (getParser().parseExpression(MemBarrierID)) { 4235 Error(Loc, "illegal expression"); 4236 return MatchOperand_ParseFail; 4237 } 4238 4239 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4240 if (!CE) { 4241 Error(Loc, "constant expression expected"); 4242 return MatchOperand_ParseFail; 4243 } 4244 4245 int Val = CE->getValue(); 4246 if (Val & ~0xf) { 4247 Error(Loc, "immediate value out of range"); 4248 return MatchOperand_ParseFail; 4249 } 4250 4251 Opt = ARM_MB::RESERVED_0 + Val; 4252 } else 4253 return MatchOperand_ParseFail; 4254 4255 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4256 return MatchOperand_Success; 4257 } 4258 4259 OperandMatchResultTy 4260 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 4261 MCAsmParser &Parser = getParser(); 4262 SMLoc S = Parser.getTok().getLoc(); 4263 const AsmToken &Tok = Parser.getTok(); 4264 4265 if (Tok.isNot(AsmToken::Identifier)) 4266 return MatchOperand_NoMatch; 4267 4268 if (!Tok.getString().equals_lower("csync")) 4269 return MatchOperand_NoMatch; 4270 4271 Parser.Lex(); // Eat identifier token. 4272 4273 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 4274 return MatchOperand_Success; 4275 } 4276 4277 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4278 OperandMatchResultTy 4279 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4280 MCAsmParser &Parser = getParser(); 4281 SMLoc S = Parser.getTok().getLoc(); 4282 const AsmToken &Tok = Parser.getTok(); 4283 unsigned Opt; 4284 4285 if (Tok.is(AsmToken::Identifier)) { 4286 StringRef OptStr = Tok.getString(); 4287 4288 if (OptStr.equals_lower("sy")) 4289 Opt = ARM_ISB::SY; 4290 else 4291 return MatchOperand_NoMatch; 4292 4293 Parser.Lex(); // Eat identifier token. 4294 } else if (Tok.is(AsmToken::Hash) || 4295 Tok.is(AsmToken::Dollar) || 4296 Tok.is(AsmToken::Integer)) { 4297 if (Parser.getTok().isNot(AsmToken::Integer)) 4298 Parser.Lex(); // Eat '#' or '$'. 4299 SMLoc Loc = Parser.getTok().getLoc(); 4300 4301 const MCExpr *ISBarrierID; 4302 if (getParser().parseExpression(ISBarrierID)) { 4303 Error(Loc, "illegal expression"); 4304 return MatchOperand_ParseFail; 4305 } 4306 4307 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4308 if (!CE) { 4309 Error(Loc, "constant expression expected"); 4310 return MatchOperand_ParseFail; 4311 } 4312 4313 int Val = CE->getValue(); 4314 if (Val & ~0xf) { 4315 Error(Loc, "immediate value out of range"); 4316 return MatchOperand_ParseFail; 4317 } 4318 4319 Opt = ARM_ISB::RESERVED_0 + Val; 4320 } else 4321 return MatchOperand_ParseFail; 4322 4323 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4324 (ARM_ISB::InstSyncBOpt)Opt, S)); 4325 return MatchOperand_Success; 4326 } 4327 4328 4329 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4330 OperandMatchResultTy 4331 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4332 MCAsmParser &Parser = getParser(); 4333 SMLoc S = Parser.getTok().getLoc(); 4334 const AsmToken &Tok = Parser.getTok(); 4335 if (!Tok.is(AsmToken::Identifier)) 4336 return MatchOperand_NoMatch; 4337 StringRef IFlagsStr = Tok.getString(); 4338 4339 // An iflags string of "none" is interpreted to mean that none of the AIF 4340 // bits are set. Not a terribly useful instruction, but a valid encoding. 4341 unsigned IFlags = 0; 4342 if (IFlagsStr != "none") { 4343 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4344 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4345 .Case("a", ARM_PROC::A) 4346 .Case("i", ARM_PROC::I) 4347 .Case("f", ARM_PROC::F) 4348 .Default(~0U); 4349 4350 // If some specific iflag is already set, it means that some letter is 4351 // present more than once, this is not acceptable. 4352 if (Flag == ~0U || (IFlags & Flag)) 4353 return MatchOperand_NoMatch; 4354 4355 IFlags |= Flag; 4356 } 4357 } 4358 4359 Parser.Lex(); // Eat identifier token. 4360 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4361 return MatchOperand_Success; 4362 } 4363 4364 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4365 OperandMatchResultTy 4366 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4367 MCAsmParser &Parser = getParser(); 4368 SMLoc S = Parser.getTok().getLoc(); 4369 const AsmToken &Tok = Parser.getTok(); 4370 4371 if (Tok.is(AsmToken::Integer)) { 4372 int64_t Val = Tok.getIntVal(); 4373 if (Val > 255 || Val < 0) { 4374 return MatchOperand_NoMatch; 4375 } 4376 unsigned SYSmvalue = Val & 0xFF; 4377 Parser.Lex(); 4378 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4379 return MatchOperand_Success; 4380 } 4381 4382 if (!Tok.is(AsmToken::Identifier)) 4383 return MatchOperand_NoMatch; 4384 StringRef Mask = Tok.getString(); 4385 4386 if (isMClass()) { 4387 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4388 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4389 return MatchOperand_NoMatch; 4390 4391 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4392 4393 Parser.Lex(); // Eat identifier token. 4394 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4395 return MatchOperand_Success; 4396 } 4397 4398 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4399 size_t Start = 0, Next = Mask.find('_'); 4400 StringRef Flags = ""; 4401 std::string SpecReg = Mask.slice(Start, Next).lower(); 4402 if (Next != StringRef::npos) 4403 Flags = Mask.slice(Next+1, Mask.size()); 4404 4405 // FlagsVal contains the complete mask: 4406 // 3-0: Mask 4407 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4408 unsigned FlagsVal = 0; 4409 4410 if (SpecReg == "apsr") { 4411 FlagsVal = StringSwitch<unsigned>(Flags) 4412 .Case("nzcvq", 0x8) // same as CPSR_f 4413 .Case("g", 0x4) // same as CPSR_s 4414 .Case("nzcvqg", 0xc) // same as CPSR_fs 4415 .Default(~0U); 4416 4417 if (FlagsVal == ~0U) { 4418 if (!Flags.empty()) 4419 return MatchOperand_NoMatch; 4420 else 4421 FlagsVal = 8; // No flag 4422 } 4423 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4424 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4425 if (Flags == "all" || Flags == "") 4426 Flags = "fc"; 4427 for (int i = 0, e = Flags.size(); i != e; ++i) { 4428 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4429 .Case("c", 1) 4430 .Case("x", 2) 4431 .Case("s", 4) 4432 .Case("f", 8) 4433 .Default(~0U); 4434 4435 // If some specific flag is already set, it means that some letter is 4436 // present more than once, this is not acceptable. 4437 if (Flag == ~0U || (FlagsVal & Flag)) 4438 return MatchOperand_NoMatch; 4439 FlagsVal |= Flag; 4440 } 4441 } else // No match for special register. 4442 return MatchOperand_NoMatch; 4443 4444 // Special register without flags is NOT equivalent to "fc" flags. 4445 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4446 // two lines would enable gas compatibility at the expense of breaking 4447 // round-tripping. 4448 // 4449 // if (!FlagsVal) 4450 // FlagsVal = 0x9; 4451 4452 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4453 if (SpecReg == "spsr") 4454 FlagsVal |= 16; 4455 4456 Parser.Lex(); // Eat identifier token. 4457 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4458 return MatchOperand_Success; 4459 } 4460 4461 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4462 /// use in the MRS/MSR instructions added to support virtualization. 4463 OperandMatchResultTy 4464 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4465 MCAsmParser &Parser = getParser(); 4466 SMLoc S = Parser.getTok().getLoc(); 4467 const AsmToken &Tok = Parser.getTok(); 4468 if (!Tok.is(AsmToken::Identifier)) 4469 return MatchOperand_NoMatch; 4470 StringRef RegName = Tok.getString(); 4471 4472 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 4473 if (!TheReg) 4474 return MatchOperand_NoMatch; 4475 unsigned Encoding = TheReg->Encoding; 4476 4477 Parser.Lex(); // Eat identifier token. 4478 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4479 return MatchOperand_Success; 4480 } 4481 4482 OperandMatchResultTy 4483 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4484 int High) { 4485 MCAsmParser &Parser = getParser(); 4486 const AsmToken &Tok = Parser.getTok(); 4487 if (Tok.isNot(AsmToken::Identifier)) { 4488 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4489 return MatchOperand_ParseFail; 4490 } 4491 StringRef ShiftName = Tok.getString(); 4492 std::string LowerOp = Op.lower(); 4493 std::string UpperOp = Op.upper(); 4494 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4495 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4496 return MatchOperand_ParseFail; 4497 } 4498 Parser.Lex(); // Eat shift type token. 4499 4500 // There must be a '#' and a shift amount. 4501 if (Parser.getTok().isNot(AsmToken::Hash) && 4502 Parser.getTok().isNot(AsmToken::Dollar)) { 4503 Error(Parser.getTok().getLoc(), "'#' expected"); 4504 return MatchOperand_ParseFail; 4505 } 4506 Parser.Lex(); // Eat hash token. 4507 4508 const MCExpr *ShiftAmount; 4509 SMLoc Loc = Parser.getTok().getLoc(); 4510 SMLoc EndLoc; 4511 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4512 Error(Loc, "illegal expression"); 4513 return MatchOperand_ParseFail; 4514 } 4515 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4516 if (!CE) { 4517 Error(Loc, "constant expression expected"); 4518 return MatchOperand_ParseFail; 4519 } 4520 int Val = CE->getValue(); 4521 if (Val < Low || Val > High) { 4522 Error(Loc, "immediate value out of range"); 4523 return MatchOperand_ParseFail; 4524 } 4525 4526 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4527 4528 return MatchOperand_Success; 4529 } 4530 4531 OperandMatchResultTy 4532 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4533 MCAsmParser &Parser = getParser(); 4534 const AsmToken &Tok = Parser.getTok(); 4535 SMLoc S = Tok.getLoc(); 4536 if (Tok.isNot(AsmToken::Identifier)) { 4537 Error(S, "'be' or 'le' operand expected"); 4538 return MatchOperand_ParseFail; 4539 } 4540 int Val = StringSwitch<int>(Tok.getString().lower()) 4541 .Case("be", 1) 4542 .Case("le", 0) 4543 .Default(-1); 4544 Parser.Lex(); // Eat the token. 4545 4546 if (Val == -1) { 4547 Error(S, "'be' or 'le' operand expected"); 4548 return MatchOperand_ParseFail; 4549 } 4550 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4551 getContext()), 4552 S, Tok.getEndLoc())); 4553 return MatchOperand_Success; 4554 } 4555 4556 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4557 /// instructions. Legal values are: 4558 /// lsl #n 'n' in [0,31] 4559 /// asr #n 'n' in [1,32] 4560 /// n == 32 encoded as n == 0. 4561 OperandMatchResultTy 4562 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4563 MCAsmParser &Parser = getParser(); 4564 const AsmToken &Tok = Parser.getTok(); 4565 SMLoc S = Tok.getLoc(); 4566 if (Tok.isNot(AsmToken::Identifier)) { 4567 Error(S, "shift operator 'asr' or 'lsl' expected"); 4568 return MatchOperand_ParseFail; 4569 } 4570 StringRef ShiftName = Tok.getString(); 4571 bool isASR; 4572 if (ShiftName == "lsl" || ShiftName == "LSL") 4573 isASR = false; 4574 else if (ShiftName == "asr" || ShiftName == "ASR") 4575 isASR = true; 4576 else { 4577 Error(S, "shift operator 'asr' or 'lsl' expected"); 4578 return MatchOperand_ParseFail; 4579 } 4580 Parser.Lex(); // Eat the operator. 4581 4582 // A '#' and a shift amount. 4583 if (Parser.getTok().isNot(AsmToken::Hash) && 4584 Parser.getTok().isNot(AsmToken::Dollar)) { 4585 Error(Parser.getTok().getLoc(), "'#' expected"); 4586 return MatchOperand_ParseFail; 4587 } 4588 Parser.Lex(); // Eat hash token. 4589 SMLoc ExLoc = Parser.getTok().getLoc(); 4590 4591 const MCExpr *ShiftAmount; 4592 SMLoc EndLoc; 4593 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4594 Error(ExLoc, "malformed shift expression"); 4595 return MatchOperand_ParseFail; 4596 } 4597 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4598 if (!CE) { 4599 Error(ExLoc, "shift amount must be an immediate"); 4600 return MatchOperand_ParseFail; 4601 } 4602 4603 int64_t Val = CE->getValue(); 4604 if (isASR) { 4605 // Shift amount must be in [1,32] 4606 if (Val < 1 || Val > 32) { 4607 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4608 return MatchOperand_ParseFail; 4609 } 4610 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4611 if (isThumb() && Val == 32) { 4612 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4613 return MatchOperand_ParseFail; 4614 } 4615 if (Val == 32) Val = 0; 4616 } else { 4617 // Shift amount must be in [1,32] 4618 if (Val < 0 || Val > 31) { 4619 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4620 return MatchOperand_ParseFail; 4621 } 4622 } 4623 4624 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4625 4626 return MatchOperand_Success; 4627 } 4628 4629 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4630 /// of instructions. Legal values are: 4631 /// ror #n 'n' in {0, 8, 16, 24} 4632 OperandMatchResultTy 4633 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4634 MCAsmParser &Parser = getParser(); 4635 const AsmToken &Tok = Parser.getTok(); 4636 SMLoc S = Tok.getLoc(); 4637 if (Tok.isNot(AsmToken::Identifier)) 4638 return MatchOperand_NoMatch; 4639 StringRef ShiftName = Tok.getString(); 4640 if (ShiftName != "ror" && ShiftName != "ROR") 4641 return MatchOperand_NoMatch; 4642 Parser.Lex(); // Eat the operator. 4643 4644 // A '#' and a rotate amount. 4645 if (Parser.getTok().isNot(AsmToken::Hash) && 4646 Parser.getTok().isNot(AsmToken::Dollar)) { 4647 Error(Parser.getTok().getLoc(), "'#' expected"); 4648 return MatchOperand_ParseFail; 4649 } 4650 Parser.Lex(); // Eat hash token. 4651 SMLoc ExLoc = Parser.getTok().getLoc(); 4652 4653 const MCExpr *ShiftAmount; 4654 SMLoc EndLoc; 4655 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4656 Error(ExLoc, "malformed rotate expression"); 4657 return MatchOperand_ParseFail; 4658 } 4659 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4660 if (!CE) { 4661 Error(ExLoc, "rotate amount must be an immediate"); 4662 return MatchOperand_ParseFail; 4663 } 4664 4665 int64_t Val = CE->getValue(); 4666 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4667 // normally, zero is represented in asm by omitting the rotate operand 4668 // entirely. 4669 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4670 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4671 return MatchOperand_ParseFail; 4672 } 4673 4674 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4675 4676 return MatchOperand_Success; 4677 } 4678 4679 OperandMatchResultTy 4680 ARMAsmParser::parseModImm(OperandVector &Operands) { 4681 MCAsmParser &Parser = getParser(); 4682 MCAsmLexer &Lexer = getLexer(); 4683 int64_t Imm1, Imm2; 4684 4685 SMLoc S = Parser.getTok().getLoc(); 4686 4687 // 1) A mod_imm operand can appear in the place of a register name: 4688 // add r0, #mod_imm 4689 // add r0, r0, #mod_imm 4690 // to correctly handle the latter, we bail out as soon as we see an 4691 // identifier. 4692 // 4693 // 2) Similarly, we do not want to parse into complex operands: 4694 // mov r0, #mod_imm 4695 // mov r0, :lower16:(_foo) 4696 if (Parser.getTok().is(AsmToken::Identifier) || 4697 Parser.getTok().is(AsmToken::Colon)) 4698 return MatchOperand_NoMatch; 4699 4700 // Hash (dollar) is optional as per the ARMARM 4701 if (Parser.getTok().is(AsmToken::Hash) || 4702 Parser.getTok().is(AsmToken::Dollar)) { 4703 // Avoid parsing into complex operands (#:) 4704 if (Lexer.peekTok().is(AsmToken::Colon)) 4705 return MatchOperand_NoMatch; 4706 4707 // Eat the hash (dollar) 4708 Parser.Lex(); 4709 } 4710 4711 SMLoc Sx1, Ex1; 4712 Sx1 = Parser.getTok().getLoc(); 4713 const MCExpr *Imm1Exp; 4714 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4715 Error(Sx1, "malformed expression"); 4716 return MatchOperand_ParseFail; 4717 } 4718 4719 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4720 4721 if (CE) { 4722 // Immediate must fit within 32-bits 4723 Imm1 = CE->getValue(); 4724 int Enc = ARM_AM::getSOImmVal(Imm1); 4725 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4726 // We have a match! 4727 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4728 (Enc & 0xF00) >> 7, 4729 Sx1, Ex1)); 4730 return MatchOperand_Success; 4731 } 4732 4733 // We have parsed an immediate which is not for us, fallback to a plain 4734 // immediate. This can happen for instruction aliases. For an example, 4735 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4736 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4737 // instruction with a mod_imm operand. The alias is defined such that the 4738 // parser method is shared, that's why we have to do this here. 4739 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4740 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4741 return MatchOperand_Success; 4742 } 4743 } else { 4744 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4745 // MCFixup). Fallback to a plain immediate. 4746 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4747 return MatchOperand_Success; 4748 } 4749 4750 // From this point onward, we expect the input to be a (#bits, #rot) pair 4751 if (Parser.getTok().isNot(AsmToken::Comma)) { 4752 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4753 return MatchOperand_ParseFail; 4754 } 4755 4756 if (Imm1 & ~0xFF) { 4757 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4758 return MatchOperand_ParseFail; 4759 } 4760 4761 // Eat the comma 4762 Parser.Lex(); 4763 4764 // Repeat for #rot 4765 SMLoc Sx2, Ex2; 4766 Sx2 = Parser.getTok().getLoc(); 4767 4768 // Eat the optional hash (dollar) 4769 if (Parser.getTok().is(AsmToken::Hash) || 4770 Parser.getTok().is(AsmToken::Dollar)) 4771 Parser.Lex(); 4772 4773 const MCExpr *Imm2Exp; 4774 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4775 Error(Sx2, "malformed expression"); 4776 return MatchOperand_ParseFail; 4777 } 4778 4779 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4780 4781 if (CE) { 4782 Imm2 = CE->getValue(); 4783 if (!(Imm2 & ~0x1E)) { 4784 // We have a match! 4785 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4786 return MatchOperand_Success; 4787 } 4788 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4789 return MatchOperand_ParseFail; 4790 } else { 4791 Error(Sx2, "constant expression expected"); 4792 return MatchOperand_ParseFail; 4793 } 4794 } 4795 4796 OperandMatchResultTy 4797 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4798 MCAsmParser &Parser = getParser(); 4799 SMLoc S = Parser.getTok().getLoc(); 4800 // The bitfield descriptor is really two operands, the LSB and the width. 4801 if (Parser.getTok().isNot(AsmToken::Hash) && 4802 Parser.getTok().isNot(AsmToken::Dollar)) { 4803 Error(Parser.getTok().getLoc(), "'#' expected"); 4804 return MatchOperand_ParseFail; 4805 } 4806 Parser.Lex(); // Eat hash token. 4807 4808 const MCExpr *LSBExpr; 4809 SMLoc E = Parser.getTok().getLoc(); 4810 if (getParser().parseExpression(LSBExpr)) { 4811 Error(E, "malformed immediate expression"); 4812 return MatchOperand_ParseFail; 4813 } 4814 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4815 if (!CE) { 4816 Error(E, "'lsb' operand must be an immediate"); 4817 return MatchOperand_ParseFail; 4818 } 4819 4820 int64_t LSB = CE->getValue(); 4821 // The LSB must be in the range [0,31] 4822 if (LSB < 0 || LSB > 31) { 4823 Error(E, "'lsb' operand must be in the range [0,31]"); 4824 return MatchOperand_ParseFail; 4825 } 4826 E = Parser.getTok().getLoc(); 4827 4828 // Expect another immediate operand. 4829 if (Parser.getTok().isNot(AsmToken::Comma)) { 4830 Error(Parser.getTok().getLoc(), "too few operands"); 4831 return MatchOperand_ParseFail; 4832 } 4833 Parser.Lex(); // Eat hash token. 4834 if (Parser.getTok().isNot(AsmToken::Hash) && 4835 Parser.getTok().isNot(AsmToken::Dollar)) { 4836 Error(Parser.getTok().getLoc(), "'#' expected"); 4837 return MatchOperand_ParseFail; 4838 } 4839 Parser.Lex(); // Eat hash token. 4840 4841 const MCExpr *WidthExpr; 4842 SMLoc EndLoc; 4843 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4844 Error(E, "malformed immediate expression"); 4845 return MatchOperand_ParseFail; 4846 } 4847 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4848 if (!CE) { 4849 Error(E, "'width' operand must be an immediate"); 4850 return MatchOperand_ParseFail; 4851 } 4852 4853 int64_t Width = CE->getValue(); 4854 // The LSB must be in the range [1,32-lsb] 4855 if (Width < 1 || Width > 32 - LSB) { 4856 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4857 return MatchOperand_ParseFail; 4858 } 4859 4860 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4861 4862 return MatchOperand_Success; 4863 } 4864 4865 OperandMatchResultTy 4866 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4867 // Check for a post-index addressing register operand. Specifically: 4868 // postidx_reg := '+' register {, shift} 4869 // | '-' register {, shift} 4870 // | register {, shift} 4871 4872 // This method must return MatchOperand_NoMatch without consuming any tokens 4873 // in the case where there is no match, as other alternatives take other 4874 // parse methods. 4875 MCAsmParser &Parser = getParser(); 4876 AsmToken Tok = Parser.getTok(); 4877 SMLoc S = Tok.getLoc(); 4878 bool haveEaten = false; 4879 bool isAdd = true; 4880 if (Tok.is(AsmToken::Plus)) { 4881 Parser.Lex(); // Eat the '+' token. 4882 haveEaten = true; 4883 } else if (Tok.is(AsmToken::Minus)) { 4884 Parser.Lex(); // Eat the '-' token. 4885 isAdd = false; 4886 haveEaten = true; 4887 } 4888 4889 SMLoc E = Parser.getTok().getEndLoc(); 4890 int Reg = tryParseRegister(); 4891 if (Reg == -1) { 4892 if (!haveEaten) 4893 return MatchOperand_NoMatch; 4894 Error(Parser.getTok().getLoc(), "register expected"); 4895 return MatchOperand_ParseFail; 4896 } 4897 4898 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4899 unsigned ShiftImm = 0; 4900 if (Parser.getTok().is(AsmToken::Comma)) { 4901 Parser.Lex(); // Eat the ','. 4902 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4903 return MatchOperand_ParseFail; 4904 4905 // FIXME: Only approximates end...may include intervening whitespace. 4906 E = Parser.getTok().getLoc(); 4907 } 4908 4909 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4910 ShiftImm, S, E)); 4911 4912 return MatchOperand_Success; 4913 } 4914 4915 OperandMatchResultTy 4916 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4917 // Check for a post-index addressing register operand. Specifically: 4918 // am3offset := '+' register 4919 // | '-' register 4920 // | register 4921 // | # imm 4922 // | # + imm 4923 // | # - imm 4924 4925 // This method must return MatchOperand_NoMatch without consuming any tokens 4926 // in the case where there is no match, as other alternatives take other 4927 // parse methods. 4928 MCAsmParser &Parser = getParser(); 4929 AsmToken Tok = Parser.getTok(); 4930 SMLoc S = Tok.getLoc(); 4931 4932 // Do immediates first, as we always parse those if we have a '#'. 4933 if (Parser.getTok().is(AsmToken::Hash) || 4934 Parser.getTok().is(AsmToken::Dollar)) { 4935 Parser.Lex(); // Eat '#' or '$'. 4936 // Explicitly look for a '-', as we need to encode negative zero 4937 // differently. 4938 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4939 const MCExpr *Offset; 4940 SMLoc E; 4941 if (getParser().parseExpression(Offset, E)) 4942 return MatchOperand_ParseFail; 4943 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4944 if (!CE) { 4945 Error(S, "constant expression expected"); 4946 return MatchOperand_ParseFail; 4947 } 4948 // Negative zero is encoded as the flag value 4949 // std::numeric_limits<int32_t>::min(). 4950 int32_t Val = CE->getValue(); 4951 if (isNegative && Val == 0) 4952 Val = std::numeric_limits<int32_t>::min(); 4953 4954 Operands.push_back( 4955 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4956 4957 return MatchOperand_Success; 4958 } 4959 4960 bool haveEaten = false; 4961 bool isAdd = true; 4962 if (Tok.is(AsmToken::Plus)) { 4963 Parser.Lex(); // Eat the '+' token. 4964 haveEaten = true; 4965 } else if (Tok.is(AsmToken::Minus)) { 4966 Parser.Lex(); // Eat the '-' token. 4967 isAdd = false; 4968 haveEaten = true; 4969 } 4970 4971 Tok = Parser.getTok(); 4972 int Reg = tryParseRegister(); 4973 if (Reg == -1) { 4974 if (!haveEaten) 4975 return MatchOperand_NoMatch; 4976 Error(Tok.getLoc(), "register expected"); 4977 return MatchOperand_ParseFail; 4978 } 4979 4980 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4981 0, S, Tok.getEndLoc())); 4982 4983 return MatchOperand_Success; 4984 } 4985 4986 /// Convert parsed operands to MCInst. Needed here because this instruction 4987 /// only has two register operands, but multiplication is commutative so 4988 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4989 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4990 const OperandVector &Operands) { 4991 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4992 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4993 // If we have a three-operand form, make sure to set Rn to be the operand 4994 // that isn't the same as Rd. 4995 unsigned RegOp = 4; 4996 if (Operands.size() == 6 && 4997 ((ARMOperand &)*Operands[4]).getReg() == 4998 ((ARMOperand &)*Operands[3]).getReg()) 4999 RegOp = 5; 5000 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5001 Inst.addOperand(Inst.getOperand(0)); 5002 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5003 } 5004 5005 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5006 const OperandVector &Operands) { 5007 int CondOp = -1, ImmOp = -1; 5008 switch(Inst.getOpcode()) { 5009 case ARM::tB: 5010 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5011 5012 case ARM::t2B: 5013 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5014 5015 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5016 } 5017 // first decide whether or not the branch should be conditional 5018 // by looking at it's location relative to an IT block 5019 if(inITBlock()) { 5020 // inside an IT block we cannot have any conditional branches. any 5021 // such instructions needs to be converted to unconditional form 5022 switch(Inst.getOpcode()) { 5023 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5024 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5025 } 5026 } else { 5027 // outside IT blocks we can only have unconditional branches with AL 5028 // condition code or conditional branches with non-AL condition code 5029 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5030 switch(Inst.getOpcode()) { 5031 case ARM::tB: 5032 case ARM::tBcc: 5033 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5034 break; 5035 case ARM::t2B: 5036 case ARM::t2Bcc: 5037 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5038 break; 5039 } 5040 } 5041 5042 // now decide on encoding size based on branch target range 5043 switch(Inst.getOpcode()) { 5044 // classify tB as either t2B or t1B based on range of immediate operand 5045 case ARM::tB: { 5046 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5047 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5048 Inst.setOpcode(ARM::t2B); 5049 break; 5050 } 5051 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5052 case ARM::tBcc: { 5053 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5054 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5055 Inst.setOpcode(ARM::t2Bcc); 5056 break; 5057 } 5058 } 5059 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5060 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5061 } 5062 5063 /// Parse an ARM memory expression, return false if successful else return true 5064 /// or an error. The first token must be a '[' when called. 5065 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5066 MCAsmParser &Parser = getParser(); 5067 SMLoc S, E; 5068 if (Parser.getTok().isNot(AsmToken::LBrac)) 5069 return TokError("Token is not a Left Bracket"); 5070 S = Parser.getTok().getLoc(); 5071 Parser.Lex(); // Eat left bracket token. 5072 5073 const AsmToken &BaseRegTok = Parser.getTok(); 5074 int BaseRegNum = tryParseRegister(); 5075 if (BaseRegNum == -1) 5076 return Error(BaseRegTok.getLoc(), "register expected"); 5077 5078 // The next token must either be a comma, a colon or a closing bracket. 5079 const AsmToken &Tok = Parser.getTok(); 5080 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5081 !Tok.is(AsmToken::RBrac)) 5082 return Error(Tok.getLoc(), "malformed memory operand"); 5083 5084 if (Tok.is(AsmToken::RBrac)) { 5085 E = Tok.getEndLoc(); 5086 Parser.Lex(); // Eat right bracket token. 5087 5088 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5089 ARM_AM::no_shift, 0, 0, false, 5090 S, E)); 5091 5092 // If there's a pre-indexing writeback marker, '!', just add it as a token 5093 // operand. It's rather odd, but syntactically valid. 5094 if (Parser.getTok().is(AsmToken::Exclaim)) { 5095 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5096 Parser.Lex(); // Eat the '!'. 5097 } 5098 5099 return false; 5100 } 5101 5102 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5103 "Lost colon or comma in memory operand?!"); 5104 if (Tok.is(AsmToken::Comma)) { 5105 Parser.Lex(); // Eat the comma. 5106 } 5107 5108 // If we have a ':', it's an alignment specifier. 5109 if (Parser.getTok().is(AsmToken::Colon)) { 5110 Parser.Lex(); // Eat the ':'. 5111 E = Parser.getTok().getLoc(); 5112 SMLoc AlignmentLoc = Tok.getLoc(); 5113 5114 const MCExpr *Expr; 5115 if (getParser().parseExpression(Expr)) 5116 return true; 5117 5118 // The expression has to be a constant. Memory references with relocations 5119 // don't come through here, as they use the <label> forms of the relevant 5120 // instructions. 5121 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5122 if (!CE) 5123 return Error (E, "constant expression expected"); 5124 5125 unsigned Align = 0; 5126 switch (CE->getValue()) { 5127 default: 5128 return Error(E, 5129 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5130 case 16: Align = 2; break; 5131 case 32: Align = 4; break; 5132 case 64: Align = 8; break; 5133 case 128: Align = 16; break; 5134 case 256: Align = 32; break; 5135 } 5136 5137 // Now we should have the closing ']' 5138 if (Parser.getTok().isNot(AsmToken::RBrac)) 5139 return Error(Parser.getTok().getLoc(), "']' expected"); 5140 E = Parser.getTok().getEndLoc(); 5141 Parser.Lex(); // Eat right bracket token. 5142 5143 // Don't worry about range checking the value here. That's handled by 5144 // the is*() predicates. 5145 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5146 ARM_AM::no_shift, 0, Align, 5147 false, S, E, AlignmentLoc)); 5148 5149 // If there's a pre-indexing writeback marker, '!', just add it as a token 5150 // operand. 5151 if (Parser.getTok().is(AsmToken::Exclaim)) { 5152 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5153 Parser.Lex(); // Eat the '!'. 5154 } 5155 5156 return false; 5157 } 5158 5159 // If we have a '#', it's an immediate offset, else assume it's a register 5160 // offset. Be friendly and also accept a plain integer (without a leading 5161 // hash) for gas compatibility. 5162 if (Parser.getTok().is(AsmToken::Hash) || 5163 Parser.getTok().is(AsmToken::Dollar) || 5164 Parser.getTok().is(AsmToken::Integer)) { 5165 if (Parser.getTok().isNot(AsmToken::Integer)) 5166 Parser.Lex(); // Eat '#' or '$'. 5167 E = Parser.getTok().getLoc(); 5168 5169 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5170 const MCExpr *Offset; 5171 if (getParser().parseExpression(Offset)) 5172 return true; 5173 5174 // The expression has to be a constant. Memory references with relocations 5175 // don't come through here, as they use the <label> forms of the relevant 5176 // instructions. 5177 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5178 if (!CE) 5179 return Error (E, "constant expression expected"); 5180 5181 // If the constant was #-0, represent it as 5182 // std::numeric_limits<int32_t>::min(). 5183 int32_t Val = CE->getValue(); 5184 if (isNegative && Val == 0) 5185 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5186 getContext()); 5187 5188 // Now we should have the closing ']' 5189 if (Parser.getTok().isNot(AsmToken::RBrac)) 5190 return Error(Parser.getTok().getLoc(), "']' expected"); 5191 E = Parser.getTok().getEndLoc(); 5192 Parser.Lex(); // Eat right bracket token. 5193 5194 // Don't worry about range checking the value here. That's handled by 5195 // the is*() predicates. 5196 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5197 ARM_AM::no_shift, 0, 0, 5198 false, S, E)); 5199 5200 // If there's a pre-indexing writeback marker, '!', just add it as a token 5201 // operand. 5202 if (Parser.getTok().is(AsmToken::Exclaim)) { 5203 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5204 Parser.Lex(); // Eat the '!'. 5205 } 5206 5207 return false; 5208 } 5209 5210 // The register offset is optionally preceded by a '+' or '-' 5211 bool isNegative = false; 5212 if (Parser.getTok().is(AsmToken::Minus)) { 5213 isNegative = true; 5214 Parser.Lex(); // Eat the '-'. 5215 } else if (Parser.getTok().is(AsmToken::Plus)) { 5216 // Nothing to do. 5217 Parser.Lex(); // Eat the '+'. 5218 } 5219 5220 E = Parser.getTok().getLoc(); 5221 int OffsetRegNum = tryParseRegister(); 5222 if (OffsetRegNum == -1) 5223 return Error(E, "register expected"); 5224 5225 // If there's a shift operator, handle it. 5226 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5227 unsigned ShiftImm = 0; 5228 if (Parser.getTok().is(AsmToken::Comma)) { 5229 Parser.Lex(); // Eat the ','. 5230 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5231 return true; 5232 } 5233 5234 // Now we should have the closing ']' 5235 if (Parser.getTok().isNot(AsmToken::RBrac)) 5236 return Error(Parser.getTok().getLoc(), "']' expected"); 5237 E = Parser.getTok().getEndLoc(); 5238 Parser.Lex(); // Eat right bracket token. 5239 5240 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5241 ShiftType, ShiftImm, 0, isNegative, 5242 S, E)); 5243 5244 // If there's a pre-indexing writeback marker, '!', just add it as a token 5245 // operand. 5246 if (Parser.getTok().is(AsmToken::Exclaim)) { 5247 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5248 Parser.Lex(); // Eat the '!'. 5249 } 5250 5251 return false; 5252 } 5253 5254 /// parseMemRegOffsetShift - one of these two: 5255 /// ( lsl | lsr | asr | ror ) , # shift_amount 5256 /// rrx 5257 /// return true if it parses a shift otherwise it returns false. 5258 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5259 unsigned &Amount) { 5260 MCAsmParser &Parser = getParser(); 5261 SMLoc Loc = Parser.getTok().getLoc(); 5262 const AsmToken &Tok = Parser.getTok(); 5263 if (Tok.isNot(AsmToken::Identifier)) 5264 return Error(Loc, "illegal shift operator"); 5265 StringRef ShiftName = Tok.getString(); 5266 if (ShiftName == "lsl" || ShiftName == "LSL" || 5267 ShiftName == "asl" || ShiftName == "ASL") 5268 St = ARM_AM::lsl; 5269 else if (ShiftName == "lsr" || ShiftName == "LSR") 5270 St = ARM_AM::lsr; 5271 else if (ShiftName == "asr" || ShiftName == "ASR") 5272 St = ARM_AM::asr; 5273 else if (ShiftName == "ror" || ShiftName == "ROR") 5274 St = ARM_AM::ror; 5275 else if (ShiftName == "rrx" || ShiftName == "RRX") 5276 St = ARM_AM::rrx; 5277 else 5278 return Error(Loc, "illegal shift operator"); 5279 Parser.Lex(); // Eat shift type token. 5280 5281 // rrx stands alone. 5282 Amount = 0; 5283 if (St != ARM_AM::rrx) { 5284 Loc = Parser.getTok().getLoc(); 5285 // A '#' and a shift amount. 5286 const AsmToken &HashTok = Parser.getTok(); 5287 if (HashTok.isNot(AsmToken::Hash) && 5288 HashTok.isNot(AsmToken::Dollar)) 5289 return Error(HashTok.getLoc(), "'#' expected"); 5290 Parser.Lex(); // Eat hash token. 5291 5292 const MCExpr *Expr; 5293 if (getParser().parseExpression(Expr)) 5294 return true; 5295 // Range check the immediate. 5296 // lsl, ror: 0 <= imm <= 31 5297 // lsr, asr: 0 <= imm <= 32 5298 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5299 if (!CE) 5300 return Error(Loc, "shift amount must be an immediate"); 5301 int64_t Imm = CE->getValue(); 5302 if (Imm < 0 || 5303 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5304 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5305 return Error(Loc, "immediate shift value out of range"); 5306 // If <ShiftTy> #0, turn it into a no_shift. 5307 if (Imm == 0) 5308 St = ARM_AM::lsl; 5309 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5310 if (Imm == 32) 5311 Imm = 0; 5312 Amount = Imm; 5313 } 5314 5315 return false; 5316 } 5317 5318 /// parseFPImm - A floating point immediate expression operand. 5319 OperandMatchResultTy 5320 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5321 MCAsmParser &Parser = getParser(); 5322 // Anything that can accept a floating point constant as an operand 5323 // needs to go through here, as the regular parseExpression is 5324 // integer only. 5325 // 5326 // This routine still creates a generic Immediate operand, containing 5327 // a bitcast of the 64-bit floating point value. The various operands 5328 // that accept floats can check whether the value is valid for them 5329 // via the standard is*() predicates. 5330 5331 SMLoc S = Parser.getTok().getLoc(); 5332 5333 if (Parser.getTok().isNot(AsmToken::Hash) && 5334 Parser.getTok().isNot(AsmToken::Dollar)) 5335 return MatchOperand_NoMatch; 5336 5337 // Disambiguate the VMOV forms that can accept an FP immediate. 5338 // vmov.f32 <sreg>, #imm 5339 // vmov.f64 <dreg>, #imm 5340 // vmov.f32 <dreg>, #imm @ vector f32x2 5341 // vmov.f32 <qreg>, #imm @ vector f32x4 5342 // 5343 // There are also the NEON VMOV instructions which expect an 5344 // integer constant. Make sure we don't try to parse an FPImm 5345 // for these: 5346 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5347 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5348 bool isVmovf = TyOp.isToken() && 5349 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5350 TyOp.getToken() == ".f16"); 5351 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5352 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5353 Mnemonic.getToken() == "fconsts"); 5354 if (!(isVmovf || isFconst)) 5355 return MatchOperand_NoMatch; 5356 5357 Parser.Lex(); // Eat '#' or '$'. 5358 5359 // Handle negation, as that still comes through as a separate token. 5360 bool isNegative = false; 5361 if (Parser.getTok().is(AsmToken::Minus)) { 5362 isNegative = true; 5363 Parser.Lex(); 5364 } 5365 const AsmToken &Tok = Parser.getTok(); 5366 SMLoc Loc = Tok.getLoc(); 5367 if (Tok.is(AsmToken::Real) && isVmovf) { 5368 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5369 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5370 // If we had a '-' in front, toggle the sign bit. 5371 IntVal ^= (uint64_t)isNegative << 31; 5372 Parser.Lex(); // Eat the token. 5373 Operands.push_back(ARMOperand::CreateImm( 5374 MCConstantExpr::create(IntVal, getContext()), 5375 S, Parser.getTok().getLoc())); 5376 return MatchOperand_Success; 5377 } 5378 // Also handle plain integers. Instructions which allow floating point 5379 // immediates also allow a raw encoded 8-bit value. 5380 if (Tok.is(AsmToken::Integer) && isFconst) { 5381 int64_t Val = Tok.getIntVal(); 5382 Parser.Lex(); // Eat the token. 5383 if (Val > 255 || Val < 0) { 5384 Error(Loc, "encoded floating point value out of range"); 5385 return MatchOperand_ParseFail; 5386 } 5387 float RealVal = ARM_AM::getFPImmFloat(Val); 5388 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5389 5390 Operands.push_back(ARMOperand::CreateImm( 5391 MCConstantExpr::create(Val, getContext()), S, 5392 Parser.getTok().getLoc())); 5393 return MatchOperand_Success; 5394 } 5395 5396 Error(Loc, "invalid floating point immediate"); 5397 return MatchOperand_ParseFail; 5398 } 5399 5400 /// Parse a arm instruction operand. For now this parses the operand regardless 5401 /// of the mnemonic. 5402 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5403 MCAsmParser &Parser = getParser(); 5404 SMLoc S, E; 5405 5406 // Check if the current operand has a custom associated parser, if so, try to 5407 // custom parse the operand, or fallback to the general approach. 5408 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5409 if (ResTy == MatchOperand_Success) 5410 return false; 5411 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5412 // there was a match, but an error occurred, in which case, just return that 5413 // the operand parsing failed. 5414 if (ResTy == MatchOperand_ParseFail) 5415 return true; 5416 5417 switch (getLexer().getKind()) { 5418 default: 5419 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5420 return true; 5421 case AsmToken::Identifier: { 5422 // If we've seen a branch mnemonic, the next operand must be a label. This 5423 // is true even if the label is a register name. So "br r1" means branch to 5424 // label "r1". 5425 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5426 if (!ExpectLabel) { 5427 if (!tryParseRegisterWithWriteBack(Operands)) 5428 return false; 5429 int Res = tryParseShiftRegister(Operands); 5430 if (Res == 0) // success 5431 return false; 5432 else if (Res == -1) // irrecoverable error 5433 return true; 5434 // If this is VMRS, check for the apsr_nzcv operand. 5435 if (Mnemonic == "vmrs" && 5436 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5437 S = Parser.getTok().getLoc(); 5438 Parser.Lex(); 5439 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5440 return false; 5441 } 5442 } 5443 5444 // Fall though for the Identifier case that is not a register or a 5445 // special name. 5446 LLVM_FALLTHROUGH; 5447 } 5448 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5449 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5450 case AsmToken::String: // quoted label names. 5451 case AsmToken::Dot: { // . as a branch target 5452 // This was not a register so parse other operands that start with an 5453 // identifier (like labels) as expressions and create them as immediates. 5454 const MCExpr *IdVal; 5455 S = Parser.getTok().getLoc(); 5456 if (getParser().parseExpression(IdVal)) 5457 return true; 5458 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5459 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5460 return false; 5461 } 5462 case AsmToken::LBrac: 5463 return parseMemory(Operands); 5464 case AsmToken::LCurly: 5465 return parseRegisterList(Operands); 5466 case AsmToken::Dollar: 5467 case AsmToken::Hash: 5468 // #42 -> immediate. 5469 S = Parser.getTok().getLoc(); 5470 Parser.Lex(); 5471 5472 if (Parser.getTok().isNot(AsmToken::Colon)) { 5473 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5474 const MCExpr *ImmVal; 5475 if (getParser().parseExpression(ImmVal)) 5476 return true; 5477 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5478 if (CE) { 5479 int32_t Val = CE->getValue(); 5480 if (isNegative && Val == 0) 5481 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5482 getContext()); 5483 } 5484 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5485 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5486 5487 // There can be a trailing '!' on operands that we want as a separate 5488 // '!' Token operand. Handle that here. For example, the compatibility 5489 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5490 if (Parser.getTok().is(AsmToken::Exclaim)) { 5491 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5492 Parser.getTok().getLoc())); 5493 Parser.Lex(); // Eat exclaim token 5494 } 5495 return false; 5496 } 5497 // w/ a ':' after the '#', it's just like a plain ':'. 5498 LLVM_FALLTHROUGH; 5499 5500 case AsmToken::Colon: { 5501 S = Parser.getTok().getLoc(); 5502 // ":lower16:" and ":upper16:" expression prefixes 5503 // FIXME: Check it's an expression prefix, 5504 // e.g. (FOO - :lower16:BAR) isn't legal. 5505 ARMMCExpr::VariantKind RefKind; 5506 if (parsePrefix(RefKind)) 5507 return true; 5508 5509 const MCExpr *SubExprVal; 5510 if (getParser().parseExpression(SubExprVal)) 5511 return true; 5512 5513 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5514 getContext()); 5515 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5516 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5517 return false; 5518 } 5519 case AsmToken::Equal: { 5520 S = Parser.getTok().getLoc(); 5521 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5522 return Error(S, "unexpected token in operand"); 5523 Parser.Lex(); // Eat '=' 5524 const MCExpr *SubExprVal; 5525 if (getParser().parseExpression(SubExprVal)) 5526 return true; 5527 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5528 5529 // execute-only: we assume that assembly programmers know what they are 5530 // doing and allow literal pool creation here 5531 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5532 return false; 5533 } 5534 } 5535 } 5536 5537 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5538 // :lower16: and :upper16:. 5539 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5540 MCAsmParser &Parser = getParser(); 5541 RefKind = ARMMCExpr::VK_ARM_None; 5542 5543 // consume an optional '#' (GNU compatibility) 5544 if (getLexer().is(AsmToken::Hash)) 5545 Parser.Lex(); 5546 5547 // :lower16: and :upper16: modifiers 5548 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5549 Parser.Lex(); // Eat ':' 5550 5551 if (getLexer().isNot(AsmToken::Identifier)) { 5552 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5553 return true; 5554 } 5555 5556 enum { 5557 COFF = (1 << MCObjectFileInfo::IsCOFF), 5558 ELF = (1 << MCObjectFileInfo::IsELF), 5559 MACHO = (1 << MCObjectFileInfo::IsMachO), 5560 WASM = (1 << MCObjectFileInfo::IsWasm), 5561 }; 5562 static const struct PrefixEntry { 5563 const char *Spelling; 5564 ARMMCExpr::VariantKind VariantKind; 5565 uint8_t SupportedFormats; 5566 } PrefixEntries[] = { 5567 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5568 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5569 }; 5570 5571 StringRef IDVal = Parser.getTok().getIdentifier(); 5572 5573 const auto &Prefix = 5574 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5575 [&IDVal](const PrefixEntry &PE) { 5576 return PE.Spelling == IDVal; 5577 }); 5578 if (Prefix == std::end(PrefixEntries)) { 5579 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5580 return true; 5581 } 5582 5583 uint8_t CurrentFormat; 5584 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5585 case MCObjectFileInfo::IsMachO: 5586 CurrentFormat = MACHO; 5587 break; 5588 case MCObjectFileInfo::IsELF: 5589 CurrentFormat = ELF; 5590 break; 5591 case MCObjectFileInfo::IsCOFF: 5592 CurrentFormat = COFF; 5593 break; 5594 case MCObjectFileInfo::IsWasm: 5595 CurrentFormat = WASM; 5596 break; 5597 } 5598 5599 if (~Prefix->SupportedFormats & CurrentFormat) { 5600 Error(Parser.getTok().getLoc(), 5601 "cannot represent relocation in the current file format"); 5602 return true; 5603 } 5604 5605 RefKind = Prefix->VariantKind; 5606 Parser.Lex(); 5607 5608 if (getLexer().isNot(AsmToken::Colon)) { 5609 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5610 return true; 5611 } 5612 Parser.Lex(); // Eat the last ':' 5613 5614 return false; 5615 } 5616 5617 /// Given a mnemonic, split out possible predication code and carry 5618 /// setting letters to form a canonical mnemonic and flags. 5619 // 5620 // FIXME: Would be nice to autogen this. 5621 // FIXME: This is a bit of a maze of special cases. 5622 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5623 unsigned &PredicationCode, 5624 bool &CarrySetting, 5625 unsigned &ProcessorIMod, 5626 StringRef &ITMask) { 5627 PredicationCode = ARMCC::AL; 5628 CarrySetting = false; 5629 ProcessorIMod = 0; 5630 5631 // Ignore some mnemonics we know aren't predicated forms. 5632 // 5633 // FIXME: Would be nice to autogen this. 5634 if ((Mnemonic == "movs" && isThumb()) || 5635 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5636 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5637 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5638 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5639 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5640 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5641 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5642 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5643 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5644 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5645 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5646 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5647 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5648 Mnemonic == "bxns" || Mnemonic == "blxns" || 5649 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5650 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 5651 Mnemonic == "vfmal" || Mnemonic == "vfmsl") 5652 return Mnemonic; 5653 5654 // First, split out any predication code. Ignore mnemonics we know aren't 5655 // predicated but do have a carry-set and so weren't caught above. 5656 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5657 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5658 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5659 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5660 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 5661 if (CC != ~0U) { 5662 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5663 PredicationCode = CC; 5664 } 5665 } 5666 5667 // Next, determine if we have a carry setting bit. We explicitly ignore all 5668 // the instructions we know end in 's'. 5669 if (Mnemonic.endswith("s") && 5670 !(Mnemonic == "cps" || Mnemonic == "mls" || 5671 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5672 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5673 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5674 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5675 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5676 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5677 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5678 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5679 Mnemonic == "bxns" || Mnemonic == "blxns" || 5680 (Mnemonic == "movs" && isThumb()))) { 5681 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5682 CarrySetting = true; 5683 } 5684 5685 // The "cps" instruction can have a interrupt mode operand which is glued into 5686 // the mnemonic. Check if this is the case, split it and parse the imod op 5687 if (Mnemonic.startswith("cps")) { 5688 // Split out any imod code. 5689 unsigned IMod = 5690 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5691 .Case("ie", ARM_PROC::IE) 5692 .Case("id", ARM_PROC::ID) 5693 .Default(~0U); 5694 if (IMod != ~0U) { 5695 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5696 ProcessorIMod = IMod; 5697 } 5698 } 5699 5700 // The "it" instruction has the condition mask on the end of the mnemonic. 5701 if (Mnemonic.startswith("it")) { 5702 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5703 Mnemonic = Mnemonic.slice(0, 2); 5704 } 5705 5706 return Mnemonic; 5707 } 5708 5709 /// Given a canonical mnemonic, determine if the instruction ever allows 5710 /// inclusion of carry set or predication code operands. 5711 // 5712 // FIXME: It would be nice to autogen this. 5713 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5714 bool &CanAcceptCarrySet, 5715 bool &CanAcceptPredicationCode) { 5716 CanAcceptCarrySet = 5717 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5718 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5719 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5720 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5721 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5722 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5723 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5724 (!isThumb() && 5725 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5726 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5727 5728 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5729 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5730 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5731 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5732 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5733 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5734 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5735 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5736 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5737 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5738 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5739 Mnemonic == "vmovx" || Mnemonic == "vins" || 5740 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5741 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 5742 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 5743 Mnemonic == "sb" || Mnemonic == "ssbb" || 5744 Mnemonic == "pssbb") { 5745 // These mnemonics are never predicable 5746 CanAcceptPredicationCode = false; 5747 } else if (!isThumb()) { 5748 // Some instructions are only predicable in Thumb mode 5749 CanAcceptPredicationCode = 5750 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5751 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5752 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 5753 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 5754 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 5755 Mnemonic != "stc2" && Mnemonic != "stc2l" && 5756 Mnemonic != "tsb" && 5757 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 5758 } else if (isThumbOne()) { 5759 if (hasV6MOps()) 5760 CanAcceptPredicationCode = Mnemonic != "movs"; 5761 else 5762 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5763 } else 5764 CanAcceptPredicationCode = true; 5765 } 5766 5767 // Some Thumb instructions have two operand forms that are not 5768 // available as three operand, convert to two operand form if possible. 5769 // 5770 // FIXME: We would really like to be able to tablegen'erate this. 5771 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5772 bool CarrySetting, 5773 OperandVector &Operands) { 5774 if (Operands.size() != 6) 5775 return; 5776 5777 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5778 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5779 if (!Op3.isReg() || !Op4.isReg()) 5780 return; 5781 5782 auto Op3Reg = Op3.getReg(); 5783 auto Op4Reg = Op4.getReg(); 5784 5785 // For most Thumb2 cases we just generate the 3 operand form and reduce 5786 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5787 // won't accept SP or PC so we do the transformation here taking care 5788 // with immediate range in the 'add sp, sp #imm' case. 5789 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5790 if (isThumbTwo()) { 5791 if (Mnemonic != "add") 5792 return; 5793 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5794 (Op5.isReg() && Op5.getReg() == ARM::PC); 5795 if (!TryTransform) { 5796 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5797 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5798 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5799 Op5.isImm() && !Op5.isImm0_508s4()); 5800 } 5801 if (!TryTransform) 5802 return; 5803 } else if (!isThumbOne()) 5804 return; 5805 5806 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5807 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5808 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5809 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5810 return; 5811 5812 // If first 2 operands of a 3 operand instruction are the same 5813 // then transform to 2 operand version of the same instruction 5814 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5815 bool Transform = Op3Reg == Op4Reg; 5816 5817 // For communtative operations, we might be able to transform if we swap 5818 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5819 // as tADDrsp. 5820 const ARMOperand *LastOp = &Op5; 5821 bool Swap = false; 5822 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5823 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5824 Mnemonic == "and" || Mnemonic == "eor" || 5825 Mnemonic == "adc" || Mnemonic == "orr")) { 5826 Swap = true; 5827 LastOp = &Op4; 5828 Transform = true; 5829 } 5830 5831 // If both registers are the same then remove one of them from 5832 // the operand list, with certain exceptions. 5833 if (Transform) { 5834 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5835 // 2 operand forms don't exist. 5836 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5837 LastOp->isReg()) 5838 Transform = false; 5839 5840 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5841 // 3-bits because the ARMARM says not to. 5842 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5843 Transform = false; 5844 } 5845 5846 if (Transform) { 5847 if (Swap) 5848 std::swap(Op4, Op5); 5849 Operands.erase(Operands.begin() + 3); 5850 } 5851 } 5852 5853 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5854 OperandVector &Operands) { 5855 // FIXME: This is all horribly hacky. We really need a better way to deal 5856 // with optional operands like this in the matcher table. 5857 5858 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5859 // another does not. Specifically, the MOVW instruction does not. So we 5860 // special case it here and remove the defaulted (non-setting) cc_out 5861 // operand if that's the instruction we're trying to match. 5862 // 5863 // We do this as post-processing of the explicit operands rather than just 5864 // conditionally adding the cc_out in the first place because we need 5865 // to check the type of the parsed immediate operand. 5866 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5867 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5868 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5869 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5870 return true; 5871 5872 // Register-register 'add' for thumb does not have a cc_out operand 5873 // when there are only two register operands. 5874 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5875 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5876 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5877 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5878 return true; 5879 // Register-register 'add' for thumb does not have a cc_out operand 5880 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5881 // have to check the immediate range here since Thumb2 has a variant 5882 // that can handle a different range and has a cc_out operand. 5883 if (((isThumb() && Mnemonic == "add") || 5884 (isThumbTwo() && Mnemonic == "sub")) && 5885 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5886 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5887 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5888 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5889 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5890 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5891 return true; 5892 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5893 // imm0_4095 variant. That's the least-preferred variant when 5894 // selecting via the generic "add" mnemonic, so to know that we 5895 // should remove the cc_out operand, we have to explicitly check that 5896 // it's not one of the other variants. Ugh. 5897 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5898 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5899 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5900 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5901 // Nest conditions rather than one big 'if' statement for readability. 5902 // 5903 // If both registers are low, we're in an IT block, and the immediate is 5904 // in range, we should use encoding T1 instead, which has a cc_out. 5905 if (inITBlock() && 5906 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5907 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5908 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5909 return false; 5910 // Check against T3. If the second register is the PC, this is an 5911 // alternate form of ADR, which uses encoding T4, so check for that too. 5912 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5913 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5914 return false; 5915 5916 // Otherwise, we use encoding T4, which does not have a cc_out 5917 // operand. 5918 return true; 5919 } 5920 5921 // The thumb2 multiply instruction doesn't have a CCOut register, so 5922 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5923 // use the 16-bit encoding or not. 5924 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5925 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5926 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5927 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5928 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5929 // If the registers aren't low regs, the destination reg isn't the 5930 // same as one of the source regs, or the cc_out operand is zero 5931 // outside of an IT block, we have to use the 32-bit encoding, so 5932 // remove the cc_out operand. 5933 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5934 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5935 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5936 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5937 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5938 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5939 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5940 return true; 5941 5942 // Also check the 'mul' syntax variant that doesn't specify an explicit 5943 // destination register. 5944 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5945 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5946 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5947 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5948 // If the registers aren't low regs or the cc_out operand is zero 5949 // outside of an IT block, we have to use the 32-bit encoding, so 5950 // remove the cc_out operand. 5951 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5952 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5953 !inITBlock())) 5954 return true; 5955 5956 // Register-register 'add/sub' for thumb does not have a cc_out operand 5957 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5958 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5959 // right, this will result in better diagnostics (which operand is off) 5960 // anyway. 5961 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5962 (Operands.size() == 5 || Operands.size() == 6) && 5963 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5964 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5965 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5966 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5967 (Operands.size() == 6 && 5968 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5969 return true; 5970 5971 return false; 5972 } 5973 5974 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5975 OperandVector &Operands) { 5976 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 5977 unsigned RegIdx = 3; 5978 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") && 5979 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5980 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5981 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5982 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5983 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5984 RegIdx = 4; 5985 5986 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5987 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5988 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5989 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5990 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5991 return true; 5992 } 5993 return false; 5994 } 5995 5996 static bool isDataTypeToken(StringRef Tok) { 5997 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5998 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5999 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6000 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6001 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6002 Tok == ".f" || Tok == ".d"; 6003 } 6004 6005 // FIXME: This bit should probably be handled via an explicit match class 6006 // in the .td files that matches the suffix instead of having it be 6007 // a literal string token the way it is now. 6008 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6009 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6010 } 6011 6012 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 6013 unsigned VariantID); 6014 6015 // The GNU assembler has aliases of ldrd and strd with the second register 6016 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6017 // 6018 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6019 // the assmebly parser could then generate confusing diagnostics refering to 6020 // it. If we do find anything that prevents us from doing the transformation we 6021 // bail out, and let the assembly parser report an error on the instruction as 6022 // it is written. 6023 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6024 OperandVector &Operands) { 6025 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6026 return; 6027 if (Operands.size() < 4) 6028 return; 6029 6030 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6031 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6032 6033 if (!Op2.isReg()) 6034 return; 6035 if (!Op3.isMem()) 6036 return; 6037 6038 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6039 if (!GPR.contains(Op2.getReg())) 6040 return; 6041 6042 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6043 if (!isThumb() && (RtEncoding & 1)) { 6044 // In ARM mode, the registers must be from an aligned pair, this 6045 // restriction does not apply in Thumb mode. 6046 return; 6047 } 6048 if (Op2.getReg() == ARM::PC) 6049 return; 6050 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6051 if (!PairedReg || PairedReg == ARM::PC || 6052 (PairedReg == ARM::SP && !hasV8Ops())) 6053 return; 6054 6055 Operands.insert( 6056 Operands.begin() + 3, 6057 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6058 } 6059 6060 /// Parse an arm instruction mnemonic followed by its operands. 6061 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6062 SMLoc NameLoc, OperandVector &Operands) { 6063 MCAsmParser &Parser = getParser(); 6064 6065 // Apply mnemonic aliases before doing anything else, as the destination 6066 // mnemonic may include suffices and we want to handle them normally. 6067 // The generic tblgen'erated code does this later, at the start of 6068 // MatchInstructionImpl(), but that's too late for aliases that include 6069 // any sort of suffix. 6070 uint64_t AvailableFeatures = getAvailableFeatures(); 6071 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6072 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6073 6074 // First check for the ARM-specific .req directive. 6075 if (Parser.getTok().is(AsmToken::Identifier) && 6076 Parser.getTok().getIdentifier() == ".req") { 6077 parseDirectiveReq(Name, NameLoc); 6078 // We always return 'error' for this, as we're done with this 6079 // statement and don't need to match the 'instruction." 6080 return true; 6081 } 6082 6083 // Create the leading tokens for the mnemonic, split by '.' characters. 6084 size_t Start = 0, Next = Name.find('.'); 6085 StringRef Mnemonic = Name.slice(Start, Next); 6086 6087 // Split out the predication code and carry setting flag from the mnemonic. 6088 unsigned PredicationCode; 6089 unsigned ProcessorIMod; 6090 bool CarrySetting; 6091 StringRef ITMask; 6092 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 6093 ProcessorIMod, ITMask); 6094 6095 // In Thumb1, only the branch (B) instruction can be predicated. 6096 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6097 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6098 } 6099 6100 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6101 6102 // Handle the IT instruction ITMask. Convert it to a bitmask. This 6103 // is the mask as it will be for the IT encoding if the conditional 6104 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 6105 // where the conditional bit0 is zero, the instruction post-processing 6106 // will adjust the mask accordingly. 6107 if (Mnemonic == "it") { 6108 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 6109 if (ITMask.size() > 3) { 6110 return Error(Loc, "too many conditions on IT instruction"); 6111 } 6112 unsigned Mask = 8; 6113 for (unsigned i = ITMask.size(); i != 0; --i) { 6114 char pos = ITMask[i - 1]; 6115 if (pos != 't' && pos != 'e') { 6116 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6117 } 6118 Mask >>= 1; 6119 if (ITMask[i - 1] == 't') 6120 Mask |= 8; 6121 } 6122 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6123 } 6124 6125 // FIXME: This is all a pretty gross hack. We should automatically handle 6126 // optional operands like this via tblgen. 6127 6128 // Next, add the CCOut and ConditionCode operands, if needed. 6129 // 6130 // For mnemonics which can ever incorporate a carry setting bit or predication 6131 // code, our matching model involves us always generating CCOut and 6132 // ConditionCode operands to match the mnemonic "as written" and then we let 6133 // the matcher deal with finding the right instruction or generating an 6134 // appropriate error. 6135 bool CanAcceptCarrySet, CanAcceptPredicationCode; 6136 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 6137 6138 // If we had a carry-set on an instruction that can't do that, issue an 6139 // error. 6140 if (!CanAcceptCarrySet && CarrySetting) { 6141 return Error(NameLoc, "instruction '" + Mnemonic + 6142 "' can not set flags, but 's' suffix specified"); 6143 } 6144 // If we had a predication code on an instruction that can't do that, issue an 6145 // error. 6146 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6147 return Error(NameLoc, "instruction '" + Mnemonic + 6148 "' is not predicable, but condition code specified"); 6149 } 6150 6151 // Add the carry setting operand, if necessary. 6152 if (CanAcceptCarrySet) { 6153 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6154 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6155 Loc)); 6156 } 6157 6158 // Add the predication code operand, if necessary. 6159 if (CanAcceptPredicationCode) { 6160 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6161 CarrySetting); 6162 Operands.push_back(ARMOperand::CreateCondCode( 6163 ARMCC::CondCodes(PredicationCode), Loc)); 6164 } 6165 6166 // Add the processor imod operand, if necessary. 6167 if (ProcessorIMod) { 6168 Operands.push_back(ARMOperand::CreateImm( 6169 MCConstantExpr::create(ProcessorIMod, getContext()), 6170 NameLoc, NameLoc)); 6171 } else if (Mnemonic == "cps" && isMClass()) { 6172 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6173 } 6174 6175 // Add the remaining tokens in the mnemonic. 6176 while (Next != StringRef::npos) { 6177 Start = Next; 6178 Next = Name.find('.', Start + 1); 6179 StringRef ExtraToken = Name.slice(Start, Next); 6180 6181 // Some NEON instructions have an optional datatype suffix that is 6182 // completely ignored. Check for that. 6183 if (isDataTypeToken(ExtraToken) && 6184 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6185 continue; 6186 6187 // For for ARM mode generate an error if the .n qualifier is used. 6188 if (ExtraToken == ".n" && !isThumb()) { 6189 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6190 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6191 "arm mode"); 6192 } 6193 6194 // The .n qualifier is always discarded as that is what the tables 6195 // and matcher expect. In ARM mode the .w qualifier has no effect, 6196 // so discard it to avoid errors that can be caused by the matcher. 6197 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6198 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6199 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6200 } 6201 } 6202 6203 // Read the remaining operands. 6204 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6205 // Read the first operand. 6206 if (parseOperand(Operands, Mnemonic)) { 6207 return true; 6208 } 6209 6210 while (parseOptionalToken(AsmToken::Comma)) { 6211 // Parse and remember the operand. 6212 if (parseOperand(Operands, Mnemonic)) { 6213 return true; 6214 } 6215 } 6216 } 6217 6218 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6219 return true; 6220 6221 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6222 6223 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6224 // do and don't have a cc_out optional-def operand. With some spot-checks 6225 // of the operand list, we can figure out which variant we're trying to 6226 // parse and adjust accordingly before actually matching. We shouldn't ever 6227 // try to remove a cc_out operand that was explicitly set on the 6228 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6229 // table driven matcher doesn't fit well with the ARM instruction set. 6230 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6231 Operands.erase(Operands.begin() + 1); 6232 6233 // Some instructions have the same mnemonic, but don't always 6234 // have a predicate. Distinguish them here and delete the 6235 // predicate if needed. 6236 if (PredicationCode == ARMCC::AL && 6237 shouldOmitPredicateOperand(Mnemonic, Operands)) 6238 Operands.erase(Operands.begin() + 1); 6239 6240 // ARM mode 'blx' need special handling, as the register operand version 6241 // is predicable, but the label operand version is not. So, we can't rely 6242 // on the Mnemonic based checking to correctly figure out when to put 6243 // a k_CondCode operand in the list. If we're trying to match the label 6244 // version, remove the k_CondCode operand here. 6245 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6246 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6247 Operands.erase(Operands.begin() + 1); 6248 6249 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6250 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6251 // a single GPRPair reg operand is used in the .td file to replace the two 6252 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6253 // expressed as a GPRPair, so we have to manually merge them. 6254 // FIXME: We would really like to be able to tablegen'erate this. 6255 if (!isThumb() && Operands.size() > 4 && 6256 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6257 Mnemonic == "stlexd")) { 6258 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6259 unsigned Idx = isLoad ? 2 : 3; 6260 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6261 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6262 6263 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6264 // Adjust only if Op1 and Op2 are GPRs. 6265 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6266 MRC.contains(Op2.getReg())) { 6267 unsigned Reg1 = Op1.getReg(); 6268 unsigned Reg2 = Op2.getReg(); 6269 unsigned Rt = MRI->getEncodingValue(Reg1); 6270 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6271 6272 // Rt2 must be Rt + 1 and Rt must be even. 6273 if (Rt + 1 != Rt2 || (Rt & 1)) { 6274 return Error(Op2.getStartLoc(), 6275 isLoad ? "destination operands must be sequential" 6276 : "source operands must be sequential"); 6277 } 6278 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6279 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6280 Operands[Idx] = 6281 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6282 Operands.erase(Operands.begin() + Idx + 1); 6283 } 6284 } 6285 6286 // GNU Assembler extension (compatibility). 6287 fixupGNULDRDAlias(Mnemonic, Operands); 6288 6289 // FIXME: As said above, this is all a pretty gross hack. This instruction 6290 // does not fit with other "subs" and tblgen. 6291 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6292 // so the Mnemonic is the original name "subs" and delete the predicate 6293 // operand so it will match the table entry. 6294 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6295 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6296 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6297 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6298 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6299 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6300 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6301 Operands.erase(Operands.begin() + 1); 6302 } 6303 return false; 6304 } 6305 6306 // Validate context-sensitive operand constraints. 6307 6308 // return 'true' if register list contains non-low GPR registers, 6309 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6310 // 'containsReg' to true. 6311 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6312 unsigned Reg, unsigned HiReg, 6313 bool &containsReg) { 6314 containsReg = false; 6315 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6316 unsigned OpReg = Inst.getOperand(i).getReg(); 6317 if (OpReg == Reg) 6318 containsReg = true; 6319 // Anything other than a low register isn't legal here. 6320 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6321 return true; 6322 } 6323 return false; 6324 } 6325 6326 // Check if the specified regisgter is in the register list of the inst, 6327 // starting at the indicated operand number. 6328 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6329 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6330 unsigned OpReg = Inst.getOperand(i).getReg(); 6331 if (OpReg == Reg) 6332 return true; 6333 } 6334 return false; 6335 } 6336 6337 // Return true if instruction has the interesting property of being 6338 // allowed in IT blocks, but not being predicable. 6339 static bool instIsBreakpoint(const MCInst &Inst) { 6340 return Inst.getOpcode() == ARM::tBKPT || 6341 Inst.getOpcode() == ARM::BKPT || 6342 Inst.getOpcode() == ARM::tHLT || 6343 Inst.getOpcode() == ARM::HLT; 6344 } 6345 6346 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6347 const OperandVector &Operands, 6348 unsigned ListNo, bool IsARPop) { 6349 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6350 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6351 6352 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6353 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6354 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6355 6356 if (!IsARPop && ListContainsSP) 6357 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6358 "SP may not be in the register list"); 6359 else if (ListContainsPC && ListContainsLR) 6360 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6361 "PC and LR may not be in the register list simultaneously"); 6362 return false; 6363 } 6364 6365 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6366 const OperandVector &Operands, 6367 unsigned ListNo) { 6368 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6369 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6370 6371 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6372 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6373 6374 if (ListContainsSP && ListContainsPC) 6375 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6376 "SP and PC may not be in the register list"); 6377 else if (ListContainsSP) 6378 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6379 "SP may not be in the register list"); 6380 else if (ListContainsPC) 6381 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6382 "PC may not be in the register list"); 6383 return false; 6384 } 6385 6386 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 6387 const OperandVector &Operands, 6388 bool Load, bool ARMMode, bool Writeback) { 6389 unsigned RtIndex = Load || !Writeback ? 0 : 1; 6390 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 6391 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 6392 6393 if (ARMMode) { 6394 // Rt can't be R14. 6395 if (Rt == 14) 6396 return Error(Operands[3]->getStartLoc(), 6397 "Rt can't be R14"); 6398 6399 // Rt must be even-numbered. 6400 if ((Rt & 1) == 1) 6401 return Error(Operands[3]->getStartLoc(), 6402 "Rt must be even-numbered"); 6403 6404 // Rt2 must be Rt + 1. 6405 if (Rt2 != Rt + 1) { 6406 if (Load) 6407 return Error(Operands[3]->getStartLoc(), 6408 "destination operands must be sequential"); 6409 else 6410 return Error(Operands[3]->getStartLoc(), 6411 "source operands must be sequential"); 6412 } 6413 6414 // FIXME: Diagnose m == 15 6415 // FIXME: Diagnose ldrd with m == t || m == t2. 6416 } 6417 6418 if (!ARMMode && Load) { 6419 if (Rt2 == Rt) 6420 return Error(Operands[3]->getStartLoc(), 6421 "destination operands can't be identical"); 6422 } 6423 6424 if (Writeback) { 6425 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6426 6427 if (Rn == Rt || Rn == Rt2) { 6428 if (Load) 6429 return Error(Operands[3]->getStartLoc(), 6430 "base register needs to be different from destination " 6431 "registers"); 6432 else 6433 return Error(Operands[3]->getStartLoc(), 6434 "source register and base register can't be identical"); 6435 } 6436 6437 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 6438 // (Except the immediate form of ldrd?) 6439 } 6440 6441 return false; 6442 } 6443 6444 6445 // FIXME: We would really like to be able to tablegen'erate this. 6446 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6447 const OperandVector &Operands) { 6448 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6449 SMLoc Loc = Operands[0]->getStartLoc(); 6450 6451 // Check the IT block state first. 6452 // NOTE: BKPT and HLT instructions have the interesting property of being 6453 // allowed in IT blocks, but not being predicable. They just always execute. 6454 if (inITBlock() && !instIsBreakpoint(Inst)) { 6455 // The instruction must be predicable. 6456 if (!MCID.isPredicable()) 6457 return Error(Loc, "instructions in IT block must be predicable"); 6458 ARMCC::CondCodes Cond = ARMCC::CondCodes( 6459 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 6460 if (Cond != currentITCond()) { 6461 // Find the condition code Operand to get its SMLoc information. 6462 SMLoc CondLoc; 6463 for (unsigned I = 1; I < Operands.size(); ++I) 6464 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6465 CondLoc = Operands[I]->getStartLoc(); 6466 return Error(CondLoc, "incorrect condition in IT block; got '" + 6467 StringRef(ARMCondCodeToString(Cond)) + 6468 "', but expected '" + 6469 ARMCondCodeToString(currentITCond()) + "'"); 6470 } 6471 // Check for non-'al' condition codes outside of the IT block. 6472 } else if (isThumbTwo() && MCID.isPredicable() && 6473 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6474 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6475 Inst.getOpcode() != ARM::t2Bcc) { 6476 return Error(Loc, "predicated instructions must be in IT block"); 6477 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6478 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6479 ARMCC::AL) { 6480 return Warning(Loc, "predicated instructions should be in IT block"); 6481 } else if (!MCID.isPredicable()) { 6482 // Check the instruction doesn't have a predicate operand anyway 6483 // that it's not allowed to use. Sometimes this happens in order 6484 // to keep instructions the same shape even though one cannot 6485 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 6486 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 6487 if (MCID.OpInfo[i].isPredicate()) { 6488 if (Inst.getOperand(i).getImm() != ARMCC::AL) 6489 return Error(Loc, "instruction is not predicable"); 6490 break; 6491 } 6492 } 6493 } 6494 6495 // PC-setting instructions in an IT block, but not the last instruction of 6496 // the block, are UNPREDICTABLE. 6497 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 6498 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 6499 } 6500 6501 const unsigned Opcode = Inst.getOpcode(); 6502 switch (Opcode) { 6503 case ARM::t2IT: { 6504 // Encoding is unpredictable if it ever results in a notional 'NV' 6505 // predicate. Since we don't parse 'NV' directly this means an 'AL' 6506 // predicate with an "else" mask bit. 6507 unsigned Cond = Inst.getOperand(0).getImm(); 6508 unsigned Mask = Inst.getOperand(1).getImm(); 6509 6510 // Mask hasn't been modified to the IT instruction encoding yet so 6511 // conditions only allowing a 't' are a block of 1s starting at bit 3 6512 // followed by all 0s. Easiest way is to just list the 4 possibilities. 6513 if (Cond == ARMCC::AL && Mask != 8 && Mask != 12 && Mask != 14 && 6514 Mask != 15) 6515 return Error(Loc, "unpredictable IT predicate sequence"); 6516 break; 6517 } 6518 case ARM::LDRD: 6519 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 6520 /*Writeback*/false)) 6521 return true; 6522 break; 6523 case ARM::LDRD_PRE: 6524 case ARM::LDRD_POST: 6525 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 6526 /*Writeback*/true)) 6527 return true; 6528 break; 6529 case ARM::t2LDRDi8: 6530 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 6531 /*Writeback*/false)) 6532 return true; 6533 break; 6534 case ARM::t2LDRD_PRE: 6535 case ARM::t2LDRD_POST: 6536 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 6537 /*Writeback*/true)) 6538 return true; 6539 break; 6540 case ARM::t2BXJ: { 6541 const unsigned RmReg = Inst.getOperand(0).getReg(); 6542 // Rm = SP is no longer unpredictable in v8-A 6543 if (RmReg == ARM::SP && !hasV8Ops()) 6544 return Error(Operands[2]->getStartLoc(), 6545 "r13 (SP) is an unpredictable operand to BXJ"); 6546 return false; 6547 } 6548 case ARM::STRD: 6549 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 6550 /*Writeback*/false)) 6551 return true; 6552 break; 6553 case ARM::STRD_PRE: 6554 case ARM::STRD_POST: 6555 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 6556 /*Writeback*/true)) 6557 return true; 6558 break; 6559 case ARM::t2STRD_PRE: 6560 case ARM::t2STRD_POST: 6561 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 6562 /*Writeback*/true)) 6563 return true; 6564 break; 6565 case ARM::STR_PRE_IMM: 6566 case ARM::STR_PRE_REG: 6567 case ARM::t2STR_PRE: 6568 case ARM::STR_POST_IMM: 6569 case ARM::STR_POST_REG: 6570 case ARM::t2STR_POST: 6571 case ARM::STRH_PRE: 6572 case ARM::t2STRH_PRE: 6573 case ARM::STRH_POST: 6574 case ARM::t2STRH_POST: 6575 case ARM::STRB_PRE_IMM: 6576 case ARM::STRB_PRE_REG: 6577 case ARM::t2STRB_PRE: 6578 case ARM::STRB_POST_IMM: 6579 case ARM::STRB_POST_REG: 6580 case ARM::t2STRB_POST: { 6581 // Rt must be different from Rn. 6582 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6583 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6584 6585 if (Rt == Rn) 6586 return Error(Operands[3]->getStartLoc(), 6587 "source register and base register can't be identical"); 6588 return false; 6589 } 6590 case ARM::LDR_PRE_IMM: 6591 case ARM::LDR_PRE_REG: 6592 case ARM::t2LDR_PRE: 6593 case ARM::LDR_POST_IMM: 6594 case ARM::LDR_POST_REG: 6595 case ARM::t2LDR_POST: 6596 case ARM::LDRH_PRE: 6597 case ARM::t2LDRH_PRE: 6598 case ARM::LDRH_POST: 6599 case ARM::t2LDRH_POST: 6600 case ARM::LDRSH_PRE: 6601 case ARM::t2LDRSH_PRE: 6602 case ARM::LDRSH_POST: 6603 case ARM::t2LDRSH_POST: 6604 case ARM::LDRB_PRE_IMM: 6605 case ARM::LDRB_PRE_REG: 6606 case ARM::t2LDRB_PRE: 6607 case ARM::LDRB_POST_IMM: 6608 case ARM::LDRB_POST_REG: 6609 case ARM::t2LDRB_POST: 6610 case ARM::LDRSB_PRE: 6611 case ARM::t2LDRSB_PRE: 6612 case ARM::LDRSB_POST: 6613 case ARM::t2LDRSB_POST: { 6614 // Rt must be different from Rn. 6615 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6616 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6617 6618 if (Rt == Rn) 6619 return Error(Operands[3]->getStartLoc(), 6620 "destination register and base register can't be identical"); 6621 return false; 6622 } 6623 case ARM::SBFX: 6624 case ARM::t2SBFX: 6625 case ARM::UBFX: 6626 case ARM::t2UBFX: { 6627 // Width must be in range [1, 32-lsb]. 6628 unsigned LSB = Inst.getOperand(2).getImm(); 6629 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6630 if (Widthm1 >= 32 - LSB) 6631 return Error(Operands[5]->getStartLoc(), 6632 "bitfield width must be in range [1,32-lsb]"); 6633 return false; 6634 } 6635 // Notionally handles ARM::tLDMIA_UPD too. 6636 case ARM::tLDMIA: { 6637 // If we're parsing Thumb2, the .w variant is available and handles 6638 // most cases that are normally illegal for a Thumb1 LDM instruction. 6639 // We'll make the transformation in processInstruction() if necessary. 6640 // 6641 // Thumb LDM instructions are writeback iff the base register is not 6642 // in the register list. 6643 unsigned Rn = Inst.getOperand(0).getReg(); 6644 bool HasWritebackToken = 6645 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6646 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6647 bool ListContainsBase; 6648 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6649 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6650 "registers must be in range r0-r7"); 6651 // If we should have writeback, then there should be a '!' token. 6652 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6653 return Error(Operands[2]->getStartLoc(), 6654 "writeback operator '!' expected"); 6655 // If we should not have writeback, there must not be a '!'. This is 6656 // true even for the 32-bit wide encodings. 6657 if (ListContainsBase && HasWritebackToken) 6658 return Error(Operands[3]->getStartLoc(), 6659 "writeback operator '!' not allowed when base register " 6660 "in register list"); 6661 6662 if (validatetLDMRegList(Inst, Operands, 3)) 6663 return true; 6664 break; 6665 } 6666 case ARM::LDMIA_UPD: 6667 case ARM::LDMDB_UPD: 6668 case ARM::LDMIB_UPD: 6669 case ARM::LDMDA_UPD: 6670 // ARM variants loading and updating the same register are only officially 6671 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6672 if (!hasV7Ops()) 6673 break; 6674 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6675 return Error(Operands.back()->getStartLoc(), 6676 "writeback register not allowed in register list"); 6677 break; 6678 case ARM::t2LDMIA: 6679 case ARM::t2LDMDB: 6680 if (validatetLDMRegList(Inst, Operands, 3)) 6681 return true; 6682 break; 6683 case ARM::t2STMIA: 6684 case ARM::t2STMDB: 6685 if (validatetSTMRegList(Inst, Operands, 3)) 6686 return true; 6687 break; 6688 case ARM::t2LDMIA_UPD: 6689 case ARM::t2LDMDB_UPD: 6690 case ARM::t2STMIA_UPD: 6691 case ARM::t2STMDB_UPD: 6692 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6693 return Error(Operands.back()->getStartLoc(), 6694 "writeback register not allowed in register list"); 6695 6696 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6697 if (validatetLDMRegList(Inst, Operands, 3)) 6698 return true; 6699 } else { 6700 if (validatetSTMRegList(Inst, Operands, 3)) 6701 return true; 6702 } 6703 break; 6704 6705 case ARM::sysLDMIA_UPD: 6706 case ARM::sysLDMDA_UPD: 6707 case ARM::sysLDMDB_UPD: 6708 case ARM::sysLDMIB_UPD: 6709 if (!listContainsReg(Inst, 3, ARM::PC)) 6710 return Error(Operands[4]->getStartLoc(), 6711 "writeback register only allowed on system LDM " 6712 "if PC in register-list"); 6713 break; 6714 case ARM::sysSTMIA_UPD: 6715 case ARM::sysSTMDA_UPD: 6716 case ARM::sysSTMDB_UPD: 6717 case ARM::sysSTMIB_UPD: 6718 return Error(Operands[2]->getStartLoc(), 6719 "system STM cannot have writeback register"); 6720 case ARM::tMUL: 6721 // The second source operand must be the same register as the destination 6722 // operand. 6723 // 6724 // In this case, we must directly check the parsed operands because the 6725 // cvtThumbMultiply() function is written in such a way that it guarantees 6726 // this first statement is always true for the new Inst. Essentially, the 6727 // destination is unconditionally copied into the second source operand 6728 // without checking to see if it matches what we actually parsed. 6729 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6730 ((ARMOperand &)*Operands[5]).getReg()) && 6731 (((ARMOperand &)*Operands[3]).getReg() != 6732 ((ARMOperand &)*Operands[4]).getReg())) { 6733 return Error(Operands[3]->getStartLoc(), 6734 "destination register must match source register"); 6735 } 6736 break; 6737 6738 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6739 // so only issue a diagnostic for thumb1. The instructions will be 6740 // switched to the t2 encodings in processInstruction() if necessary. 6741 case ARM::tPOP: { 6742 bool ListContainsBase; 6743 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6744 !isThumbTwo()) 6745 return Error(Operands[2]->getStartLoc(), 6746 "registers must be in range r0-r7 or pc"); 6747 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6748 return true; 6749 break; 6750 } 6751 case ARM::tPUSH: { 6752 bool ListContainsBase; 6753 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6754 !isThumbTwo()) 6755 return Error(Operands[2]->getStartLoc(), 6756 "registers must be in range r0-r7 or lr"); 6757 if (validatetSTMRegList(Inst, Operands, 2)) 6758 return true; 6759 break; 6760 } 6761 case ARM::tSTMIA_UPD: { 6762 bool ListContainsBase, InvalidLowList; 6763 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6764 0, ListContainsBase); 6765 if (InvalidLowList && !isThumbTwo()) 6766 return Error(Operands[4]->getStartLoc(), 6767 "registers must be in range r0-r7"); 6768 6769 // This would be converted to a 32-bit stm, but that's not valid if the 6770 // writeback register is in the list. 6771 if (InvalidLowList && ListContainsBase) 6772 return Error(Operands[4]->getStartLoc(), 6773 "writeback operator '!' not allowed when base register " 6774 "in register list"); 6775 6776 if (validatetSTMRegList(Inst, Operands, 4)) 6777 return true; 6778 break; 6779 } 6780 case ARM::tADDrSP: 6781 // If the non-SP source operand and the destination operand are not the 6782 // same, we need thumb2 (for the wide encoding), or we have an error. 6783 if (!isThumbTwo() && 6784 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6785 return Error(Operands[4]->getStartLoc(), 6786 "source register must be the same as destination"); 6787 } 6788 break; 6789 6790 // Final range checking for Thumb unconditional branch instructions. 6791 case ARM::tB: 6792 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6793 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6794 break; 6795 case ARM::t2B: { 6796 int op = (Operands[2]->isImm()) ? 2 : 3; 6797 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6798 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6799 break; 6800 } 6801 // Final range checking for Thumb conditional branch instructions. 6802 case ARM::tBcc: 6803 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6804 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6805 break; 6806 case ARM::t2Bcc: { 6807 int Op = (Operands[2]->isImm()) ? 2 : 3; 6808 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6809 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6810 break; 6811 } 6812 case ARM::tCBZ: 6813 case ARM::tCBNZ: { 6814 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6815 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6816 break; 6817 } 6818 case ARM::MOVi16: 6819 case ARM::MOVTi16: 6820 case ARM::t2MOVi16: 6821 case ARM::t2MOVTi16: 6822 { 6823 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6824 // especially when we turn it into a movw and the expression <symbol> does 6825 // not have a :lower16: or :upper16 as part of the expression. We don't 6826 // want the behavior of silently truncating, which can be unexpected and 6827 // lead to bugs that are difficult to find since this is an easy mistake 6828 // to make. 6829 int i = (Operands[3]->isImm()) ? 3 : 4; 6830 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6831 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6832 if (CE) break; 6833 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6834 if (!E) break; 6835 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6836 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6837 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6838 return Error( 6839 Op.getStartLoc(), 6840 "immediate expression for mov requires :lower16: or :upper16"); 6841 break; 6842 } 6843 case ARM::HINT: 6844 case ARM::t2HINT: { 6845 unsigned Imm8 = Inst.getOperand(0).getImm(); 6846 unsigned Pred = Inst.getOperand(1).getImm(); 6847 // ESB is not predicable (pred must be AL). Without the RAS extension, this 6848 // behaves as any other unallocated hint. 6849 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 6850 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6851 "predicable, but condition " 6852 "code specified"); 6853 if (Imm8 == 0x14 && Pred != ARMCC::AL) 6854 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 6855 "predicable, but condition " 6856 "code specified"); 6857 break; 6858 } 6859 case ARM::DSB: 6860 case ARM::t2DSB: { 6861 6862 if (Inst.getNumOperands() < 2) 6863 break; 6864 6865 unsigned Option = Inst.getOperand(0).getImm(); 6866 unsigned Pred = Inst.getOperand(1).getImm(); 6867 6868 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 6869 if (Option == 0 && Pred != ARMCC::AL) 6870 return Error(Operands[1]->getStartLoc(), 6871 "instruction 'ssbb' is not predicable, but condition code " 6872 "specified"); 6873 if (Option == 4 && Pred != ARMCC::AL) 6874 return Error(Operands[1]->getStartLoc(), 6875 "instruction 'pssbb' is not predicable, but condition code " 6876 "specified"); 6877 break; 6878 } 6879 case ARM::VMOVRRS: { 6880 // Source registers must be sequential. 6881 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6882 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6883 if (Sm1 != Sm + 1) 6884 return Error(Operands[5]->getStartLoc(), 6885 "source operands must be sequential"); 6886 break; 6887 } 6888 case ARM::VMOVSRR: { 6889 // Destination registers must be sequential. 6890 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6891 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6892 if (Sm1 != Sm + 1) 6893 return Error(Operands[3]->getStartLoc(), 6894 "destination operands must be sequential"); 6895 break; 6896 } 6897 case ARM::VLDMDIA: 6898 case ARM::VSTMDIA: { 6899 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 6900 auto &RegList = Op.getRegList(); 6901 if (RegList.size() < 1 || RegList.size() > 16) 6902 return Error(Operands[3]->getStartLoc(), 6903 "list of registers must be at least 1 and at most 16"); 6904 break; 6905 } 6906 } 6907 6908 return false; 6909 } 6910 6911 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6912 switch(Opc) { 6913 default: llvm_unreachable("unexpected opcode!"); 6914 // VST1LN 6915 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6916 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6917 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6918 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6919 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6920 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6921 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6922 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6923 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6924 6925 // VST2LN 6926 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6927 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6928 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6929 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6930 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6931 6932 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6933 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6934 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6935 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6936 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6937 6938 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6939 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6940 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6941 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6942 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6943 6944 // VST3LN 6945 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6946 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6947 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6948 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6949 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6950 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6951 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6952 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6953 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6954 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6955 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6956 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6957 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6958 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6959 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6960 6961 // VST3 6962 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6963 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6964 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6965 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6966 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6967 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6968 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6969 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6970 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6971 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6972 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6973 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6974 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6975 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6976 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6977 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6978 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6979 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6980 6981 // VST4LN 6982 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6983 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6984 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6985 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6986 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6987 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6988 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6989 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6990 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6991 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6992 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6993 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6994 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6995 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6996 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6997 6998 // VST4 6999 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 7000 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 7001 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 7002 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 7003 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 7004 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 7005 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 7006 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 7007 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 7008 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 7009 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 7010 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 7011 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 7012 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 7013 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 7014 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 7015 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 7016 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 7017 } 7018 } 7019 7020 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 7021 switch(Opc) { 7022 default: llvm_unreachable("unexpected opcode!"); 7023 // VLD1LN 7024 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 7025 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 7026 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 7027 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 7028 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 7029 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 7030 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 7031 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 7032 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 7033 7034 // VLD2LN 7035 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 7036 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 7037 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 7038 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 7039 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 7040 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 7041 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 7042 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 7043 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 7044 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 7045 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 7046 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 7047 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 7048 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 7049 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 7050 7051 // VLD3DUP 7052 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 7053 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 7054 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 7055 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 7056 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 7057 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 7058 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 7059 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 7060 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 7061 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 7062 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 7063 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 7064 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 7065 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 7066 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 7067 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 7068 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 7069 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 7070 7071 // VLD3LN 7072 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 7073 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 7074 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 7075 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 7076 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 7077 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 7078 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 7079 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 7080 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 7081 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 7082 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 7083 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 7084 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 7085 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 7086 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 7087 7088 // VLD3 7089 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 7090 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 7091 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 7092 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 7093 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 7094 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 7095 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 7096 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 7097 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 7098 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 7099 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 7100 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 7101 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 7102 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 7103 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 7104 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 7105 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 7106 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 7107 7108 // VLD4LN 7109 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 7110 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 7111 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 7112 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 7113 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 7114 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 7115 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 7116 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 7117 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 7118 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 7119 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 7120 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 7121 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 7122 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 7123 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 7124 7125 // VLD4DUP 7126 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 7127 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 7128 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 7129 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 7130 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 7131 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 7132 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 7133 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 7134 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 7135 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 7136 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 7137 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 7138 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 7139 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 7140 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 7141 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 7142 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 7143 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 7144 7145 // VLD4 7146 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 7147 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 7148 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 7149 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 7150 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 7151 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 7152 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 7153 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 7154 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 7155 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 7156 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 7157 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 7158 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 7159 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 7160 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 7161 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 7162 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 7163 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 7164 } 7165 } 7166 7167 bool ARMAsmParser::processInstruction(MCInst &Inst, 7168 const OperandVector &Operands, 7169 MCStreamer &Out) { 7170 // Check if we have the wide qualifier, because if it's present we 7171 // must avoid selecting a 16-bit thumb instruction. 7172 bool HasWideQualifier = false; 7173 for (auto &Op : Operands) { 7174 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 7175 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 7176 HasWideQualifier = true; 7177 break; 7178 } 7179 } 7180 7181 switch (Inst.getOpcode()) { 7182 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 7183 case ARM::LDRT_POST: 7184 case ARM::LDRBT_POST: { 7185 const unsigned Opcode = 7186 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 7187 : ARM::LDRBT_POST_IMM; 7188 MCInst TmpInst; 7189 TmpInst.setOpcode(Opcode); 7190 TmpInst.addOperand(Inst.getOperand(0)); 7191 TmpInst.addOperand(Inst.getOperand(1)); 7192 TmpInst.addOperand(Inst.getOperand(1)); 7193 TmpInst.addOperand(MCOperand::createReg(0)); 7194 TmpInst.addOperand(MCOperand::createImm(0)); 7195 TmpInst.addOperand(Inst.getOperand(2)); 7196 TmpInst.addOperand(Inst.getOperand(3)); 7197 Inst = TmpInst; 7198 return true; 7199 } 7200 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 7201 case ARM::STRT_POST: 7202 case ARM::STRBT_POST: { 7203 const unsigned Opcode = 7204 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 7205 : ARM::STRBT_POST_IMM; 7206 MCInst TmpInst; 7207 TmpInst.setOpcode(Opcode); 7208 TmpInst.addOperand(Inst.getOperand(1)); 7209 TmpInst.addOperand(Inst.getOperand(0)); 7210 TmpInst.addOperand(Inst.getOperand(1)); 7211 TmpInst.addOperand(MCOperand::createReg(0)); 7212 TmpInst.addOperand(MCOperand::createImm(0)); 7213 TmpInst.addOperand(Inst.getOperand(2)); 7214 TmpInst.addOperand(Inst.getOperand(3)); 7215 Inst = TmpInst; 7216 return true; 7217 } 7218 // Alias for alternate form of 'ADR Rd, #imm' instruction. 7219 case ARM::ADDri: { 7220 if (Inst.getOperand(1).getReg() != ARM::PC || 7221 Inst.getOperand(5).getReg() != 0 || 7222 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 7223 return false; 7224 MCInst TmpInst; 7225 TmpInst.setOpcode(ARM::ADR); 7226 TmpInst.addOperand(Inst.getOperand(0)); 7227 if (Inst.getOperand(2).isImm()) { 7228 // Immediate (mod_imm) will be in its encoded form, we must unencode it 7229 // before passing it to the ADR instruction. 7230 unsigned Enc = Inst.getOperand(2).getImm(); 7231 TmpInst.addOperand(MCOperand::createImm( 7232 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 7233 } else { 7234 // Turn PC-relative expression into absolute expression. 7235 // Reading PC provides the start of the current instruction + 8 and 7236 // the transform to adr is biased by that. 7237 MCSymbol *Dot = getContext().createTempSymbol(); 7238 Out.EmitLabel(Dot); 7239 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 7240 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 7241 MCSymbolRefExpr::VK_None, 7242 getContext()); 7243 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 7244 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 7245 getContext()); 7246 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 7247 getContext()); 7248 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 7249 } 7250 TmpInst.addOperand(Inst.getOperand(3)); 7251 TmpInst.addOperand(Inst.getOperand(4)); 7252 Inst = TmpInst; 7253 return true; 7254 } 7255 // Aliases for alternate PC+imm syntax of LDR instructions. 7256 case ARM::t2LDRpcrel: 7257 // Select the narrow version if the immediate will fit. 7258 if (Inst.getOperand(1).getImm() > 0 && 7259 Inst.getOperand(1).getImm() <= 0xff && 7260 !HasWideQualifier) 7261 Inst.setOpcode(ARM::tLDRpci); 7262 else 7263 Inst.setOpcode(ARM::t2LDRpci); 7264 return true; 7265 case ARM::t2LDRBpcrel: 7266 Inst.setOpcode(ARM::t2LDRBpci); 7267 return true; 7268 case ARM::t2LDRHpcrel: 7269 Inst.setOpcode(ARM::t2LDRHpci); 7270 return true; 7271 case ARM::t2LDRSBpcrel: 7272 Inst.setOpcode(ARM::t2LDRSBpci); 7273 return true; 7274 case ARM::t2LDRSHpcrel: 7275 Inst.setOpcode(ARM::t2LDRSHpci); 7276 return true; 7277 case ARM::LDRConstPool: 7278 case ARM::tLDRConstPool: 7279 case ARM::t2LDRConstPool: { 7280 // Pseudo instruction ldr rt, =immediate is converted to a 7281 // MOV rt, immediate if immediate is known and representable 7282 // otherwise we create a constant pool entry that we load from. 7283 MCInst TmpInst; 7284 if (Inst.getOpcode() == ARM::LDRConstPool) 7285 TmpInst.setOpcode(ARM::LDRi12); 7286 else if (Inst.getOpcode() == ARM::tLDRConstPool) 7287 TmpInst.setOpcode(ARM::tLDRpci); 7288 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 7289 TmpInst.setOpcode(ARM::t2LDRpci); 7290 const ARMOperand &PoolOperand = 7291 (HasWideQualifier ? 7292 static_cast<ARMOperand &>(*Operands[4]) : 7293 static_cast<ARMOperand &>(*Operands[3])); 7294 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 7295 // If SubExprVal is a constant we may be able to use a MOV 7296 if (isa<MCConstantExpr>(SubExprVal) && 7297 Inst.getOperand(0).getReg() != ARM::PC && 7298 Inst.getOperand(0).getReg() != ARM::SP) { 7299 int64_t Value = 7300 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 7301 bool UseMov = true; 7302 bool MovHasS = true; 7303 if (Inst.getOpcode() == ARM::LDRConstPool) { 7304 // ARM Constant 7305 if (ARM_AM::getSOImmVal(Value) != -1) { 7306 Value = ARM_AM::getSOImmVal(Value); 7307 TmpInst.setOpcode(ARM::MOVi); 7308 } 7309 else if (ARM_AM::getSOImmVal(~Value) != -1) { 7310 Value = ARM_AM::getSOImmVal(~Value); 7311 TmpInst.setOpcode(ARM::MVNi); 7312 } 7313 else if (hasV6T2Ops() && 7314 Value >=0 && Value < 65536) { 7315 TmpInst.setOpcode(ARM::MOVi16); 7316 MovHasS = false; 7317 } 7318 else 7319 UseMov = false; 7320 } 7321 else { 7322 // Thumb/Thumb2 Constant 7323 if (hasThumb2() && 7324 ARM_AM::getT2SOImmVal(Value) != -1) 7325 TmpInst.setOpcode(ARM::t2MOVi); 7326 else if (hasThumb2() && 7327 ARM_AM::getT2SOImmVal(~Value) != -1) { 7328 TmpInst.setOpcode(ARM::t2MVNi); 7329 Value = ~Value; 7330 } 7331 else if (hasV8MBaseline() && 7332 Value >=0 && Value < 65536) { 7333 TmpInst.setOpcode(ARM::t2MOVi16); 7334 MovHasS = false; 7335 } 7336 else 7337 UseMov = false; 7338 } 7339 if (UseMov) { 7340 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7341 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7342 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7343 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7344 if (MovHasS) 7345 TmpInst.addOperand(MCOperand::createReg(0)); // S 7346 Inst = TmpInst; 7347 return true; 7348 } 7349 } 7350 // No opportunity to use MOV/MVN create constant pool 7351 const MCExpr *CPLoc = 7352 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7353 PoolOperand.getStartLoc()); 7354 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7355 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7356 if (TmpInst.getOpcode() == ARM::LDRi12) 7357 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7358 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7359 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7360 Inst = TmpInst; 7361 return true; 7362 } 7363 // Handle NEON VST complex aliases. 7364 case ARM::VST1LNdWB_register_Asm_8: 7365 case ARM::VST1LNdWB_register_Asm_16: 7366 case ARM::VST1LNdWB_register_Asm_32: { 7367 MCInst TmpInst; 7368 // Shuffle the operands around so the lane index operand is in the 7369 // right place. 7370 unsigned Spacing; 7371 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7372 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7373 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7374 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7375 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7376 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7377 TmpInst.addOperand(Inst.getOperand(1)); // lane 7378 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7379 TmpInst.addOperand(Inst.getOperand(6)); 7380 Inst = TmpInst; 7381 return true; 7382 } 7383 7384 case ARM::VST2LNdWB_register_Asm_8: 7385 case ARM::VST2LNdWB_register_Asm_16: 7386 case ARM::VST2LNdWB_register_Asm_32: 7387 case ARM::VST2LNqWB_register_Asm_16: 7388 case ARM::VST2LNqWB_register_Asm_32: { 7389 MCInst TmpInst; 7390 // Shuffle the operands around so the lane index operand is in the 7391 // right place. 7392 unsigned Spacing; 7393 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7394 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7395 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7396 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7397 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7398 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7399 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7400 Spacing)); 7401 TmpInst.addOperand(Inst.getOperand(1)); // lane 7402 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7403 TmpInst.addOperand(Inst.getOperand(6)); 7404 Inst = TmpInst; 7405 return true; 7406 } 7407 7408 case ARM::VST3LNdWB_register_Asm_8: 7409 case ARM::VST3LNdWB_register_Asm_16: 7410 case ARM::VST3LNdWB_register_Asm_32: 7411 case ARM::VST3LNqWB_register_Asm_16: 7412 case ARM::VST3LNqWB_register_Asm_32: { 7413 MCInst TmpInst; 7414 // Shuffle the operands around so the lane index operand is in the 7415 // right place. 7416 unsigned Spacing; 7417 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7418 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7419 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7420 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7421 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7422 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7423 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7424 Spacing)); 7425 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7426 Spacing * 2)); 7427 TmpInst.addOperand(Inst.getOperand(1)); // lane 7428 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7429 TmpInst.addOperand(Inst.getOperand(6)); 7430 Inst = TmpInst; 7431 return true; 7432 } 7433 7434 case ARM::VST4LNdWB_register_Asm_8: 7435 case ARM::VST4LNdWB_register_Asm_16: 7436 case ARM::VST4LNdWB_register_Asm_32: 7437 case ARM::VST4LNqWB_register_Asm_16: 7438 case ARM::VST4LNqWB_register_Asm_32: { 7439 MCInst TmpInst; 7440 // Shuffle the operands around so the lane index operand is in the 7441 // right place. 7442 unsigned Spacing; 7443 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7444 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7445 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7446 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7447 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7448 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7449 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7450 Spacing)); 7451 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7452 Spacing * 2)); 7453 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7454 Spacing * 3)); 7455 TmpInst.addOperand(Inst.getOperand(1)); // lane 7456 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7457 TmpInst.addOperand(Inst.getOperand(6)); 7458 Inst = TmpInst; 7459 return true; 7460 } 7461 7462 case ARM::VST1LNdWB_fixed_Asm_8: 7463 case ARM::VST1LNdWB_fixed_Asm_16: 7464 case ARM::VST1LNdWB_fixed_Asm_32: { 7465 MCInst TmpInst; 7466 // Shuffle the operands around so the lane index operand is in the 7467 // right place. 7468 unsigned Spacing; 7469 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7470 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7471 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7472 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7473 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7474 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7475 TmpInst.addOperand(Inst.getOperand(1)); // lane 7476 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7477 TmpInst.addOperand(Inst.getOperand(5)); 7478 Inst = TmpInst; 7479 return true; 7480 } 7481 7482 case ARM::VST2LNdWB_fixed_Asm_8: 7483 case ARM::VST2LNdWB_fixed_Asm_16: 7484 case ARM::VST2LNdWB_fixed_Asm_32: 7485 case ARM::VST2LNqWB_fixed_Asm_16: 7486 case ARM::VST2LNqWB_fixed_Asm_32: { 7487 MCInst TmpInst; 7488 // Shuffle the operands around so the lane index operand is in the 7489 // right place. 7490 unsigned Spacing; 7491 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7492 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7493 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7494 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7495 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7496 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7497 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7498 Spacing)); 7499 TmpInst.addOperand(Inst.getOperand(1)); // lane 7500 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7501 TmpInst.addOperand(Inst.getOperand(5)); 7502 Inst = TmpInst; 7503 return true; 7504 } 7505 7506 case ARM::VST3LNdWB_fixed_Asm_8: 7507 case ARM::VST3LNdWB_fixed_Asm_16: 7508 case ARM::VST3LNdWB_fixed_Asm_32: 7509 case ARM::VST3LNqWB_fixed_Asm_16: 7510 case ARM::VST3LNqWB_fixed_Asm_32: { 7511 MCInst TmpInst; 7512 // Shuffle the operands around so the lane index operand is in the 7513 // right place. 7514 unsigned Spacing; 7515 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7516 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7517 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7518 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7519 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7520 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7521 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7522 Spacing)); 7523 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7524 Spacing * 2)); 7525 TmpInst.addOperand(Inst.getOperand(1)); // lane 7526 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7527 TmpInst.addOperand(Inst.getOperand(5)); 7528 Inst = TmpInst; 7529 return true; 7530 } 7531 7532 case ARM::VST4LNdWB_fixed_Asm_8: 7533 case ARM::VST4LNdWB_fixed_Asm_16: 7534 case ARM::VST4LNdWB_fixed_Asm_32: 7535 case ARM::VST4LNqWB_fixed_Asm_16: 7536 case ARM::VST4LNqWB_fixed_Asm_32: { 7537 MCInst TmpInst; 7538 // Shuffle the operands around so the lane index operand is in the 7539 // right place. 7540 unsigned Spacing; 7541 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7542 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7543 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7544 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7545 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7546 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7547 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7548 Spacing)); 7549 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7550 Spacing * 2)); 7551 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7552 Spacing * 3)); 7553 TmpInst.addOperand(Inst.getOperand(1)); // lane 7554 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7555 TmpInst.addOperand(Inst.getOperand(5)); 7556 Inst = TmpInst; 7557 return true; 7558 } 7559 7560 case ARM::VST1LNdAsm_8: 7561 case ARM::VST1LNdAsm_16: 7562 case ARM::VST1LNdAsm_32: { 7563 MCInst TmpInst; 7564 // Shuffle the operands around so the lane index operand is in the 7565 // right place. 7566 unsigned Spacing; 7567 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7568 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7569 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7570 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7571 TmpInst.addOperand(Inst.getOperand(1)); // lane 7572 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7573 TmpInst.addOperand(Inst.getOperand(5)); 7574 Inst = TmpInst; 7575 return true; 7576 } 7577 7578 case ARM::VST2LNdAsm_8: 7579 case ARM::VST2LNdAsm_16: 7580 case ARM::VST2LNdAsm_32: 7581 case ARM::VST2LNqAsm_16: 7582 case ARM::VST2LNqAsm_32: { 7583 MCInst TmpInst; 7584 // Shuffle the operands around so the lane index operand is in the 7585 // right place. 7586 unsigned Spacing; 7587 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7588 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7589 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7590 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7591 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7592 Spacing)); 7593 TmpInst.addOperand(Inst.getOperand(1)); // lane 7594 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7595 TmpInst.addOperand(Inst.getOperand(5)); 7596 Inst = TmpInst; 7597 return true; 7598 } 7599 7600 case ARM::VST3LNdAsm_8: 7601 case ARM::VST3LNdAsm_16: 7602 case ARM::VST3LNdAsm_32: 7603 case ARM::VST3LNqAsm_16: 7604 case ARM::VST3LNqAsm_32: { 7605 MCInst TmpInst; 7606 // Shuffle the operands around so the lane index operand is in the 7607 // right place. 7608 unsigned Spacing; 7609 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7610 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7611 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7612 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7613 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7614 Spacing)); 7615 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7616 Spacing * 2)); 7617 TmpInst.addOperand(Inst.getOperand(1)); // lane 7618 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7619 TmpInst.addOperand(Inst.getOperand(5)); 7620 Inst = TmpInst; 7621 return true; 7622 } 7623 7624 case ARM::VST4LNdAsm_8: 7625 case ARM::VST4LNdAsm_16: 7626 case ARM::VST4LNdAsm_32: 7627 case ARM::VST4LNqAsm_16: 7628 case ARM::VST4LNqAsm_32: { 7629 MCInst TmpInst; 7630 // Shuffle the operands around so the lane index operand is in the 7631 // right place. 7632 unsigned Spacing; 7633 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7634 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7635 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7636 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7637 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7638 Spacing)); 7639 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7640 Spacing * 2)); 7641 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7642 Spacing * 3)); 7643 TmpInst.addOperand(Inst.getOperand(1)); // lane 7644 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7645 TmpInst.addOperand(Inst.getOperand(5)); 7646 Inst = TmpInst; 7647 return true; 7648 } 7649 7650 // Handle NEON VLD complex aliases. 7651 case ARM::VLD1LNdWB_register_Asm_8: 7652 case ARM::VLD1LNdWB_register_Asm_16: 7653 case ARM::VLD1LNdWB_register_Asm_32: { 7654 MCInst TmpInst; 7655 // Shuffle the operands around so the lane index operand is in the 7656 // right place. 7657 unsigned Spacing; 7658 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7659 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7660 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7661 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7662 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7663 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7664 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7665 TmpInst.addOperand(Inst.getOperand(1)); // lane 7666 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7667 TmpInst.addOperand(Inst.getOperand(6)); 7668 Inst = TmpInst; 7669 return true; 7670 } 7671 7672 case ARM::VLD2LNdWB_register_Asm_8: 7673 case ARM::VLD2LNdWB_register_Asm_16: 7674 case ARM::VLD2LNdWB_register_Asm_32: 7675 case ARM::VLD2LNqWB_register_Asm_16: 7676 case ARM::VLD2LNqWB_register_Asm_32: { 7677 MCInst TmpInst; 7678 // Shuffle the operands around so the lane index operand is in the 7679 // right place. 7680 unsigned Spacing; 7681 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7682 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7683 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7684 Spacing)); 7685 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7686 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7687 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7688 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7689 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7690 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7691 Spacing)); 7692 TmpInst.addOperand(Inst.getOperand(1)); // lane 7693 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7694 TmpInst.addOperand(Inst.getOperand(6)); 7695 Inst = TmpInst; 7696 return true; 7697 } 7698 7699 case ARM::VLD3LNdWB_register_Asm_8: 7700 case ARM::VLD3LNdWB_register_Asm_16: 7701 case ARM::VLD3LNdWB_register_Asm_32: 7702 case ARM::VLD3LNqWB_register_Asm_16: 7703 case ARM::VLD3LNqWB_register_Asm_32: { 7704 MCInst TmpInst; 7705 // Shuffle the operands around so the lane index operand is in the 7706 // right place. 7707 unsigned Spacing; 7708 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7709 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7710 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7711 Spacing)); 7712 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7713 Spacing * 2)); 7714 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7715 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7716 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7717 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7718 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7719 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7720 Spacing)); 7721 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7722 Spacing * 2)); 7723 TmpInst.addOperand(Inst.getOperand(1)); // lane 7724 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7725 TmpInst.addOperand(Inst.getOperand(6)); 7726 Inst = TmpInst; 7727 return true; 7728 } 7729 7730 case ARM::VLD4LNdWB_register_Asm_8: 7731 case ARM::VLD4LNdWB_register_Asm_16: 7732 case ARM::VLD4LNdWB_register_Asm_32: 7733 case ARM::VLD4LNqWB_register_Asm_16: 7734 case ARM::VLD4LNqWB_register_Asm_32: { 7735 MCInst TmpInst; 7736 // Shuffle the operands around so the lane index operand is in the 7737 // right place. 7738 unsigned Spacing; 7739 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7740 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7741 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7742 Spacing)); 7743 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7744 Spacing * 2)); 7745 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7746 Spacing * 3)); 7747 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7748 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7749 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7750 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7751 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7752 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7753 Spacing)); 7754 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7755 Spacing * 2)); 7756 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7757 Spacing * 3)); 7758 TmpInst.addOperand(Inst.getOperand(1)); // lane 7759 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7760 TmpInst.addOperand(Inst.getOperand(6)); 7761 Inst = TmpInst; 7762 return true; 7763 } 7764 7765 case ARM::VLD1LNdWB_fixed_Asm_8: 7766 case ARM::VLD1LNdWB_fixed_Asm_16: 7767 case ARM::VLD1LNdWB_fixed_Asm_32: { 7768 MCInst TmpInst; 7769 // Shuffle the operands around so the lane index operand is in the 7770 // right place. 7771 unsigned Spacing; 7772 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7773 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7774 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7775 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7776 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7777 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7778 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7779 TmpInst.addOperand(Inst.getOperand(1)); // lane 7780 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7781 TmpInst.addOperand(Inst.getOperand(5)); 7782 Inst = TmpInst; 7783 return true; 7784 } 7785 7786 case ARM::VLD2LNdWB_fixed_Asm_8: 7787 case ARM::VLD2LNdWB_fixed_Asm_16: 7788 case ARM::VLD2LNdWB_fixed_Asm_32: 7789 case ARM::VLD2LNqWB_fixed_Asm_16: 7790 case ARM::VLD2LNqWB_fixed_Asm_32: { 7791 MCInst TmpInst; 7792 // Shuffle the operands around so the lane index operand is in the 7793 // right place. 7794 unsigned Spacing; 7795 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7796 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7797 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7798 Spacing)); 7799 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7800 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7801 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7802 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7803 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7804 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7805 Spacing)); 7806 TmpInst.addOperand(Inst.getOperand(1)); // lane 7807 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7808 TmpInst.addOperand(Inst.getOperand(5)); 7809 Inst = TmpInst; 7810 return true; 7811 } 7812 7813 case ARM::VLD3LNdWB_fixed_Asm_8: 7814 case ARM::VLD3LNdWB_fixed_Asm_16: 7815 case ARM::VLD3LNdWB_fixed_Asm_32: 7816 case ARM::VLD3LNqWB_fixed_Asm_16: 7817 case ARM::VLD3LNqWB_fixed_Asm_32: { 7818 MCInst TmpInst; 7819 // Shuffle the operands around so the lane index operand is in the 7820 // right place. 7821 unsigned Spacing; 7822 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7823 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7824 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7825 Spacing)); 7826 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7827 Spacing * 2)); 7828 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7829 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7830 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7831 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7832 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7833 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7834 Spacing)); 7835 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7836 Spacing * 2)); 7837 TmpInst.addOperand(Inst.getOperand(1)); // lane 7838 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7839 TmpInst.addOperand(Inst.getOperand(5)); 7840 Inst = TmpInst; 7841 return true; 7842 } 7843 7844 case ARM::VLD4LNdWB_fixed_Asm_8: 7845 case ARM::VLD4LNdWB_fixed_Asm_16: 7846 case ARM::VLD4LNdWB_fixed_Asm_32: 7847 case ARM::VLD4LNqWB_fixed_Asm_16: 7848 case ARM::VLD4LNqWB_fixed_Asm_32: { 7849 MCInst TmpInst; 7850 // Shuffle the operands around so the lane index operand is in the 7851 // right place. 7852 unsigned Spacing; 7853 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7854 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7855 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7856 Spacing)); 7857 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7858 Spacing * 2)); 7859 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7860 Spacing * 3)); 7861 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7862 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7863 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7864 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7865 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7866 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7867 Spacing)); 7868 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7869 Spacing * 2)); 7870 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7871 Spacing * 3)); 7872 TmpInst.addOperand(Inst.getOperand(1)); // lane 7873 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7874 TmpInst.addOperand(Inst.getOperand(5)); 7875 Inst = TmpInst; 7876 return true; 7877 } 7878 7879 case ARM::VLD1LNdAsm_8: 7880 case ARM::VLD1LNdAsm_16: 7881 case ARM::VLD1LNdAsm_32: { 7882 MCInst TmpInst; 7883 // Shuffle the operands around so the lane index operand is in the 7884 // right place. 7885 unsigned Spacing; 7886 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7887 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7888 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7889 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7890 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7891 TmpInst.addOperand(Inst.getOperand(1)); // lane 7892 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7893 TmpInst.addOperand(Inst.getOperand(5)); 7894 Inst = TmpInst; 7895 return true; 7896 } 7897 7898 case ARM::VLD2LNdAsm_8: 7899 case ARM::VLD2LNdAsm_16: 7900 case ARM::VLD2LNdAsm_32: 7901 case ARM::VLD2LNqAsm_16: 7902 case ARM::VLD2LNqAsm_32: { 7903 MCInst TmpInst; 7904 // Shuffle the operands around so the lane index operand is in the 7905 // right place. 7906 unsigned Spacing; 7907 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7908 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7909 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7910 Spacing)); 7911 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7912 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7913 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7914 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7915 Spacing)); 7916 TmpInst.addOperand(Inst.getOperand(1)); // lane 7917 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7918 TmpInst.addOperand(Inst.getOperand(5)); 7919 Inst = TmpInst; 7920 return true; 7921 } 7922 7923 case ARM::VLD3LNdAsm_8: 7924 case ARM::VLD3LNdAsm_16: 7925 case ARM::VLD3LNdAsm_32: 7926 case ARM::VLD3LNqAsm_16: 7927 case ARM::VLD3LNqAsm_32: { 7928 MCInst TmpInst; 7929 // Shuffle the operands around so the lane index operand is in the 7930 // right place. 7931 unsigned Spacing; 7932 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7933 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7934 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7935 Spacing)); 7936 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7937 Spacing * 2)); 7938 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7939 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7940 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7941 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7942 Spacing)); 7943 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7944 Spacing * 2)); 7945 TmpInst.addOperand(Inst.getOperand(1)); // lane 7946 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7947 TmpInst.addOperand(Inst.getOperand(5)); 7948 Inst = TmpInst; 7949 return true; 7950 } 7951 7952 case ARM::VLD4LNdAsm_8: 7953 case ARM::VLD4LNdAsm_16: 7954 case ARM::VLD4LNdAsm_32: 7955 case ARM::VLD4LNqAsm_16: 7956 case ARM::VLD4LNqAsm_32: { 7957 MCInst TmpInst; 7958 // Shuffle the operands around so the lane index operand is in the 7959 // right place. 7960 unsigned Spacing; 7961 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7962 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7963 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7964 Spacing)); 7965 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7966 Spacing * 2)); 7967 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7968 Spacing * 3)); 7969 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7970 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7971 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7972 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7973 Spacing)); 7974 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7975 Spacing * 2)); 7976 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7977 Spacing * 3)); 7978 TmpInst.addOperand(Inst.getOperand(1)); // lane 7979 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7980 TmpInst.addOperand(Inst.getOperand(5)); 7981 Inst = TmpInst; 7982 return true; 7983 } 7984 7985 // VLD3DUP single 3-element structure to all lanes instructions. 7986 case ARM::VLD3DUPdAsm_8: 7987 case ARM::VLD3DUPdAsm_16: 7988 case ARM::VLD3DUPdAsm_32: 7989 case ARM::VLD3DUPqAsm_8: 7990 case ARM::VLD3DUPqAsm_16: 7991 case ARM::VLD3DUPqAsm_32: { 7992 MCInst TmpInst; 7993 unsigned Spacing; 7994 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7995 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7996 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7997 Spacing)); 7998 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7999 Spacing * 2)); 8000 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8001 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8002 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8003 TmpInst.addOperand(Inst.getOperand(4)); 8004 Inst = TmpInst; 8005 return true; 8006 } 8007 8008 case ARM::VLD3DUPdWB_fixed_Asm_8: 8009 case ARM::VLD3DUPdWB_fixed_Asm_16: 8010 case ARM::VLD3DUPdWB_fixed_Asm_32: 8011 case ARM::VLD3DUPqWB_fixed_Asm_8: 8012 case ARM::VLD3DUPqWB_fixed_Asm_16: 8013 case ARM::VLD3DUPqWB_fixed_Asm_32: { 8014 MCInst TmpInst; 8015 unsigned Spacing; 8016 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8017 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8018 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8019 Spacing)); 8020 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8021 Spacing * 2)); 8022 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8023 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8024 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8025 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8026 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8027 TmpInst.addOperand(Inst.getOperand(4)); 8028 Inst = TmpInst; 8029 return true; 8030 } 8031 8032 case ARM::VLD3DUPdWB_register_Asm_8: 8033 case ARM::VLD3DUPdWB_register_Asm_16: 8034 case ARM::VLD3DUPdWB_register_Asm_32: 8035 case ARM::VLD3DUPqWB_register_Asm_8: 8036 case ARM::VLD3DUPqWB_register_Asm_16: 8037 case ARM::VLD3DUPqWB_register_Asm_32: { 8038 MCInst TmpInst; 8039 unsigned Spacing; 8040 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8041 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8042 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8043 Spacing)); 8044 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8045 Spacing * 2)); 8046 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8047 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8048 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8049 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8050 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8051 TmpInst.addOperand(Inst.getOperand(5)); 8052 Inst = TmpInst; 8053 return true; 8054 } 8055 8056 // VLD3 multiple 3-element structure instructions. 8057 case ARM::VLD3dAsm_8: 8058 case ARM::VLD3dAsm_16: 8059 case ARM::VLD3dAsm_32: 8060 case ARM::VLD3qAsm_8: 8061 case ARM::VLD3qAsm_16: 8062 case ARM::VLD3qAsm_32: { 8063 MCInst TmpInst; 8064 unsigned Spacing; 8065 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8066 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8067 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8068 Spacing)); 8069 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8070 Spacing * 2)); 8071 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8072 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8073 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8074 TmpInst.addOperand(Inst.getOperand(4)); 8075 Inst = TmpInst; 8076 return true; 8077 } 8078 8079 case ARM::VLD3dWB_fixed_Asm_8: 8080 case ARM::VLD3dWB_fixed_Asm_16: 8081 case ARM::VLD3dWB_fixed_Asm_32: 8082 case ARM::VLD3qWB_fixed_Asm_8: 8083 case ARM::VLD3qWB_fixed_Asm_16: 8084 case ARM::VLD3qWB_fixed_Asm_32: { 8085 MCInst TmpInst; 8086 unsigned Spacing; 8087 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8088 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8089 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8090 Spacing)); 8091 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8092 Spacing * 2)); 8093 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8094 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8095 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8096 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8097 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8098 TmpInst.addOperand(Inst.getOperand(4)); 8099 Inst = TmpInst; 8100 return true; 8101 } 8102 8103 case ARM::VLD3dWB_register_Asm_8: 8104 case ARM::VLD3dWB_register_Asm_16: 8105 case ARM::VLD3dWB_register_Asm_32: 8106 case ARM::VLD3qWB_register_Asm_8: 8107 case ARM::VLD3qWB_register_Asm_16: 8108 case ARM::VLD3qWB_register_Asm_32: { 8109 MCInst TmpInst; 8110 unsigned Spacing; 8111 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8112 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8113 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8114 Spacing)); 8115 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8116 Spacing * 2)); 8117 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8118 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8119 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8120 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8121 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8122 TmpInst.addOperand(Inst.getOperand(5)); 8123 Inst = TmpInst; 8124 return true; 8125 } 8126 8127 // VLD4DUP single 3-element structure to all lanes instructions. 8128 case ARM::VLD4DUPdAsm_8: 8129 case ARM::VLD4DUPdAsm_16: 8130 case ARM::VLD4DUPdAsm_32: 8131 case ARM::VLD4DUPqAsm_8: 8132 case ARM::VLD4DUPqAsm_16: 8133 case ARM::VLD4DUPqAsm_32: { 8134 MCInst TmpInst; 8135 unsigned Spacing; 8136 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8137 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8138 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8139 Spacing)); 8140 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8141 Spacing * 2)); 8142 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8143 Spacing * 3)); 8144 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8145 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8146 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8147 TmpInst.addOperand(Inst.getOperand(4)); 8148 Inst = TmpInst; 8149 return true; 8150 } 8151 8152 case ARM::VLD4DUPdWB_fixed_Asm_8: 8153 case ARM::VLD4DUPdWB_fixed_Asm_16: 8154 case ARM::VLD4DUPdWB_fixed_Asm_32: 8155 case ARM::VLD4DUPqWB_fixed_Asm_8: 8156 case ARM::VLD4DUPqWB_fixed_Asm_16: 8157 case ARM::VLD4DUPqWB_fixed_Asm_32: { 8158 MCInst TmpInst; 8159 unsigned Spacing; 8160 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8161 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8162 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8163 Spacing)); 8164 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8165 Spacing * 2)); 8166 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8167 Spacing * 3)); 8168 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8169 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8170 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8171 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8172 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8173 TmpInst.addOperand(Inst.getOperand(4)); 8174 Inst = TmpInst; 8175 return true; 8176 } 8177 8178 case ARM::VLD4DUPdWB_register_Asm_8: 8179 case ARM::VLD4DUPdWB_register_Asm_16: 8180 case ARM::VLD4DUPdWB_register_Asm_32: 8181 case ARM::VLD4DUPqWB_register_Asm_8: 8182 case ARM::VLD4DUPqWB_register_Asm_16: 8183 case ARM::VLD4DUPqWB_register_Asm_32: { 8184 MCInst TmpInst; 8185 unsigned Spacing; 8186 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8187 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8188 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8189 Spacing)); 8190 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8191 Spacing * 2)); 8192 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8193 Spacing * 3)); 8194 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8195 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8196 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8197 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8198 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8199 TmpInst.addOperand(Inst.getOperand(5)); 8200 Inst = TmpInst; 8201 return true; 8202 } 8203 8204 // VLD4 multiple 4-element structure instructions. 8205 case ARM::VLD4dAsm_8: 8206 case ARM::VLD4dAsm_16: 8207 case ARM::VLD4dAsm_32: 8208 case ARM::VLD4qAsm_8: 8209 case ARM::VLD4qAsm_16: 8210 case ARM::VLD4qAsm_32: { 8211 MCInst TmpInst; 8212 unsigned Spacing; 8213 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8214 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8215 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8216 Spacing)); 8217 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8218 Spacing * 2)); 8219 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8220 Spacing * 3)); 8221 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8222 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8223 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8224 TmpInst.addOperand(Inst.getOperand(4)); 8225 Inst = TmpInst; 8226 return true; 8227 } 8228 8229 case ARM::VLD4dWB_fixed_Asm_8: 8230 case ARM::VLD4dWB_fixed_Asm_16: 8231 case ARM::VLD4dWB_fixed_Asm_32: 8232 case ARM::VLD4qWB_fixed_Asm_8: 8233 case ARM::VLD4qWB_fixed_Asm_16: 8234 case ARM::VLD4qWB_fixed_Asm_32: { 8235 MCInst TmpInst; 8236 unsigned Spacing; 8237 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8238 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8239 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8240 Spacing)); 8241 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8242 Spacing * 2)); 8243 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8244 Spacing * 3)); 8245 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8246 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8247 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8248 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8249 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8250 TmpInst.addOperand(Inst.getOperand(4)); 8251 Inst = TmpInst; 8252 return true; 8253 } 8254 8255 case ARM::VLD4dWB_register_Asm_8: 8256 case ARM::VLD4dWB_register_Asm_16: 8257 case ARM::VLD4dWB_register_Asm_32: 8258 case ARM::VLD4qWB_register_Asm_8: 8259 case ARM::VLD4qWB_register_Asm_16: 8260 case ARM::VLD4qWB_register_Asm_32: { 8261 MCInst TmpInst; 8262 unsigned Spacing; 8263 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8264 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8265 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8266 Spacing)); 8267 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8268 Spacing * 2)); 8269 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8270 Spacing * 3)); 8271 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8272 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8273 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8274 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8275 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8276 TmpInst.addOperand(Inst.getOperand(5)); 8277 Inst = TmpInst; 8278 return true; 8279 } 8280 8281 // VST3 multiple 3-element structure instructions. 8282 case ARM::VST3dAsm_8: 8283 case ARM::VST3dAsm_16: 8284 case ARM::VST3dAsm_32: 8285 case ARM::VST3qAsm_8: 8286 case ARM::VST3qAsm_16: 8287 case ARM::VST3qAsm_32: { 8288 MCInst TmpInst; 8289 unsigned Spacing; 8290 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8291 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8292 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8293 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8294 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8295 Spacing)); 8296 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8297 Spacing * 2)); 8298 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8299 TmpInst.addOperand(Inst.getOperand(4)); 8300 Inst = TmpInst; 8301 return true; 8302 } 8303 8304 case ARM::VST3dWB_fixed_Asm_8: 8305 case ARM::VST3dWB_fixed_Asm_16: 8306 case ARM::VST3dWB_fixed_Asm_32: 8307 case ARM::VST3qWB_fixed_Asm_8: 8308 case ARM::VST3qWB_fixed_Asm_16: 8309 case ARM::VST3qWB_fixed_Asm_32: { 8310 MCInst TmpInst; 8311 unsigned Spacing; 8312 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8313 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8314 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8315 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8316 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8317 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8318 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8319 Spacing)); 8320 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8321 Spacing * 2)); 8322 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8323 TmpInst.addOperand(Inst.getOperand(4)); 8324 Inst = TmpInst; 8325 return true; 8326 } 8327 8328 case ARM::VST3dWB_register_Asm_8: 8329 case ARM::VST3dWB_register_Asm_16: 8330 case ARM::VST3dWB_register_Asm_32: 8331 case ARM::VST3qWB_register_Asm_8: 8332 case ARM::VST3qWB_register_Asm_16: 8333 case ARM::VST3qWB_register_Asm_32: { 8334 MCInst TmpInst; 8335 unsigned Spacing; 8336 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8337 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8338 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8339 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8340 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8341 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8342 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8343 Spacing)); 8344 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8345 Spacing * 2)); 8346 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8347 TmpInst.addOperand(Inst.getOperand(5)); 8348 Inst = TmpInst; 8349 return true; 8350 } 8351 8352 // VST4 multiple 3-element structure instructions. 8353 case ARM::VST4dAsm_8: 8354 case ARM::VST4dAsm_16: 8355 case ARM::VST4dAsm_32: 8356 case ARM::VST4qAsm_8: 8357 case ARM::VST4qAsm_16: 8358 case ARM::VST4qAsm_32: { 8359 MCInst TmpInst; 8360 unsigned Spacing; 8361 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8362 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8363 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8364 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8365 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8366 Spacing)); 8367 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8368 Spacing * 2)); 8369 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8370 Spacing * 3)); 8371 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8372 TmpInst.addOperand(Inst.getOperand(4)); 8373 Inst = TmpInst; 8374 return true; 8375 } 8376 8377 case ARM::VST4dWB_fixed_Asm_8: 8378 case ARM::VST4dWB_fixed_Asm_16: 8379 case ARM::VST4dWB_fixed_Asm_32: 8380 case ARM::VST4qWB_fixed_Asm_8: 8381 case ARM::VST4qWB_fixed_Asm_16: 8382 case ARM::VST4qWB_fixed_Asm_32: { 8383 MCInst TmpInst; 8384 unsigned Spacing; 8385 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8386 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8387 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8388 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8389 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8390 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8391 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8392 Spacing)); 8393 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8394 Spacing * 2)); 8395 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8396 Spacing * 3)); 8397 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8398 TmpInst.addOperand(Inst.getOperand(4)); 8399 Inst = TmpInst; 8400 return true; 8401 } 8402 8403 case ARM::VST4dWB_register_Asm_8: 8404 case ARM::VST4dWB_register_Asm_16: 8405 case ARM::VST4dWB_register_Asm_32: 8406 case ARM::VST4qWB_register_Asm_8: 8407 case ARM::VST4qWB_register_Asm_16: 8408 case ARM::VST4qWB_register_Asm_32: { 8409 MCInst TmpInst; 8410 unsigned Spacing; 8411 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8412 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8413 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8414 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8415 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8416 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8417 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8418 Spacing)); 8419 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8420 Spacing * 2)); 8421 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8422 Spacing * 3)); 8423 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8424 TmpInst.addOperand(Inst.getOperand(5)); 8425 Inst = TmpInst; 8426 return true; 8427 } 8428 8429 // Handle encoding choice for the shift-immediate instructions. 8430 case ARM::t2LSLri: 8431 case ARM::t2LSRri: 8432 case ARM::t2ASRri: 8433 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8434 isARMLowRegister(Inst.getOperand(1).getReg()) && 8435 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8436 !HasWideQualifier) { 8437 unsigned NewOpc; 8438 switch (Inst.getOpcode()) { 8439 default: llvm_unreachable("unexpected opcode"); 8440 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8441 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8442 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8443 } 8444 // The Thumb1 operands aren't in the same order. Awesome, eh? 8445 MCInst TmpInst; 8446 TmpInst.setOpcode(NewOpc); 8447 TmpInst.addOperand(Inst.getOperand(0)); 8448 TmpInst.addOperand(Inst.getOperand(5)); 8449 TmpInst.addOperand(Inst.getOperand(1)); 8450 TmpInst.addOperand(Inst.getOperand(2)); 8451 TmpInst.addOperand(Inst.getOperand(3)); 8452 TmpInst.addOperand(Inst.getOperand(4)); 8453 Inst = TmpInst; 8454 return true; 8455 } 8456 return false; 8457 8458 // Handle the Thumb2 mode MOV complex aliases. 8459 case ARM::t2MOVsr: 8460 case ARM::t2MOVSsr: { 8461 // Which instruction to expand to depends on the CCOut operand and 8462 // whether we're in an IT block if the register operands are low 8463 // registers. 8464 bool isNarrow = false; 8465 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8466 isARMLowRegister(Inst.getOperand(1).getReg()) && 8467 isARMLowRegister(Inst.getOperand(2).getReg()) && 8468 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8469 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 8470 !HasWideQualifier) 8471 isNarrow = true; 8472 MCInst TmpInst; 8473 unsigned newOpc; 8474 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8475 default: llvm_unreachable("unexpected opcode!"); 8476 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8477 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8478 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8479 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8480 } 8481 TmpInst.setOpcode(newOpc); 8482 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8483 if (isNarrow) 8484 TmpInst.addOperand(MCOperand::createReg( 8485 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8486 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8487 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8488 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8489 TmpInst.addOperand(Inst.getOperand(5)); 8490 if (!isNarrow) 8491 TmpInst.addOperand(MCOperand::createReg( 8492 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8493 Inst = TmpInst; 8494 return true; 8495 } 8496 case ARM::t2MOVsi: 8497 case ARM::t2MOVSsi: { 8498 // Which instruction to expand to depends on the CCOut operand and 8499 // whether we're in an IT block if the register operands are low 8500 // registers. 8501 bool isNarrow = false; 8502 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8503 isARMLowRegister(Inst.getOperand(1).getReg()) && 8504 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 8505 !HasWideQualifier) 8506 isNarrow = true; 8507 MCInst TmpInst; 8508 unsigned newOpc; 8509 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8510 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8511 bool isMov = false; 8512 // MOV rd, rm, LSL #0 is actually a MOV instruction 8513 if (Shift == ARM_AM::lsl && Amount == 0) { 8514 isMov = true; 8515 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 8516 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 8517 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 8518 // instead. 8519 if (inITBlock()) { 8520 isNarrow = false; 8521 } 8522 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 8523 } else { 8524 switch(Shift) { 8525 default: llvm_unreachable("unexpected opcode!"); 8526 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8527 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8528 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8529 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8530 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8531 } 8532 } 8533 if (Amount == 32) Amount = 0; 8534 TmpInst.setOpcode(newOpc); 8535 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8536 if (isNarrow && !isMov) 8537 TmpInst.addOperand(MCOperand::createReg( 8538 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8539 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8540 if (newOpc != ARM::t2RRX && !isMov) 8541 TmpInst.addOperand(MCOperand::createImm(Amount)); 8542 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8543 TmpInst.addOperand(Inst.getOperand(4)); 8544 if (!isNarrow) 8545 TmpInst.addOperand(MCOperand::createReg( 8546 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8547 Inst = TmpInst; 8548 return true; 8549 } 8550 // Handle the ARM mode MOV complex aliases. 8551 case ARM::ASRr: 8552 case ARM::LSRr: 8553 case ARM::LSLr: 8554 case ARM::RORr: { 8555 ARM_AM::ShiftOpc ShiftTy; 8556 switch(Inst.getOpcode()) { 8557 default: llvm_unreachable("unexpected opcode!"); 8558 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8559 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8560 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8561 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8562 } 8563 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8564 MCInst TmpInst; 8565 TmpInst.setOpcode(ARM::MOVsr); 8566 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8567 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8568 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8569 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8570 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8571 TmpInst.addOperand(Inst.getOperand(4)); 8572 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8573 Inst = TmpInst; 8574 return true; 8575 } 8576 case ARM::ASRi: 8577 case ARM::LSRi: 8578 case ARM::LSLi: 8579 case ARM::RORi: { 8580 ARM_AM::ShiftOpc ShiftTy; 8581 switch(Inst.getOpcode()) { 8582 default: llvm_unreachable("unexpected opcode!"); 8583 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8584 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8585 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8586 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8587 } 8588 // A shift by zero is a plain MOVr, not a MOVsi. 8589 unsigned Amt = Inst.getOperand(2).getImm(); 8590 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8591 // A shift by 32 should be encoded as 0 when permitted 8592 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8593 Amt = 0; 8594 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8595 MCInst TmpInst; 8596 TmpInst.setOpcode(Opc); 8597 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8598 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8599 if (Opc == ARM::MOVsi) 8600 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8601 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8602 TmpInst.addOperand(Inst.getOperand(4)); 8603 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8604 Inst = TmpInst; 8605 return true; 8606 } 8607 case ARM::RRXi: { 8608 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8609 MCInst TmpInst; 8610 TmpInst.setOpcode(ARM::MOVsi); 8611 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8612 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8613 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8614 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8615 TmpInst.addOperand(Inst.getOperand(3)); 8616 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8617 Inst = TmpInst; 8618 return true; 8619 } 8620 case ARM::t2LDMIA_UPD: { 8621 // If this is a load of a single register, then we should use 8622 // a post-indexed LDR instruction instead, per the ARM ARM. 8623 if (Inst.getNumOperands() != 5) 8624 return false; 8625 MCInst TmpInst; 8626 TmpInst.setOpcode(ARM::t2LDR_POST); 8627 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8628 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8629 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8630 TmpInst.addOperand(MCOperand::createImm(4)); 8631 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8632 TmpInst.addOperand(Inst.getOperand(3)); 8633 Inst = TmpInst; 8634 return true; 8635 } 8636 case ARM::t2STMDB_UPD: { 8637 // If this is a store of a single register, then we should use 8638 // a pre-indexed STR instruction instead, per the ARM ARM. 8639 if (Inst.getNumOperands() != 5) 8640 return false; 8641 MCInst TmpInst; 8642 TmpInst.setOpcode(ARM::t2STR_PRE); 8643 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8644 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8645 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8646 TmpInst.addOperand(MCOperand::createImm(-4)); 8647 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8648 TmpInst.addOperand(Inst.getOperand(3)); 8649 Inst = TmpInst; 8650 return true; 8651 } 8652 case ARM::LDMIA_UPD: 8653 // If this is a load of a single register via a 'pop', then we should use 8654 // a post-indexed LDR instruction instead, per the ARM ARM. 8655 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8656 Inst.getNumOperands() == 5) { 8657 MCInst TmpInst; 8658 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8659 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8660 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8661 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8662 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8663 TmpInst.addOperand(MCOperand::createImm(4)); 8664 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8665 TmpInst.addOperand(Inst.getOperand(3)); 8666 Inst = TmpInst; 8667 return true; 8668 } 8669 break; 8670 case ARM::STMDB_UPD: 8671 // If this is a store of a single register via a 'push', then we should use 8672 // a pre-indexed STR instruction instead, per the ARM ARM. 8673 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8674 Inst.getNumOperands() == 5) { 8675 MCInst TmpInst; 8676 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8677 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8678 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8679 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8680 TmpInst.addOperand(MCOperand::createImm(-4)); 8681 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8682 TmpInst.addOperand(Inst.getOperand(3)); 8683 Inst = TmpInst; 8684 } 8685 break; 8686 case ARM::t2ADDri12: 8687 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8688 // mnemonic was used (not "addw"), encoding T3 is preferred. 8689 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8690 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8691 break; 8692 Inst.setOpcode(ARM::t2ADDri); 8693 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8694 break; 8695 case ARM::t2SUBri12: 8696 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8697 // mnemonic was used (not "subw"), encoding T3 is preferred. 8698 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8699 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8700 break; 8701 Inst.setOpcode(ARM::t2SUBri); 8702 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8703 break; 8704 case ARM::tADDi8: 8705 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8706 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8707 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8708 // to encoding T1 if <Rd> is omitted." 8709 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8710 Inst.setOpcode(ARM::tADDi3); 8711 return true; 8712 } 8713 break; 8714 case ARM::tSUBi8: 8715 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8716 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8717 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8718 // to encoding T1 if <Rd> is omitted." 8719 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8720 Inst.setOpcode(ARM::tSUBi3); 8721 return true; 8722 } 8723 break; 8724 case ARM::t2ADDri: 8725 case ARM::t2SUBri: { 8726 // If the destination and first source operand are the same, and 8727 // the flags are compatible with the current IT status, use encoding T2 8728 // instead of T3. For compatibility with the system 'as'. Make sure the 8729 // wide encoding wasn't explicit. 8730 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8731 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8732 (Inst.getOperand(2).isImm() && 8733 (unsigned)Inst.getOperand(2).getImm() > 255) || 8734 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 8735 HasWideQualifier) 8736 break; 8737 MCInst TmpInst; 8738 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8739 ARM::tADDi8 : ARM::tSUBi8); 8740 TmpInst.addOperand(Inst.getOperand(0)); 8741 TmpInst.addOperand(Inst.getOperand(5)); 8742 TmpInst.addOperand(Inst.getOperand(0)); 8743 TmpInst.addOperand(Inst.getOperand(2)); 8744 TmpInst.addOperand(Inst.getOperand(3)); 8745 TmpInst.addOperand(Inst.getOperand(4)); 8746 Inst = TmpInst; 8747 return true; 8748 } 8749 case ARM::t2ADDrr: { 8750 // If the destination and first source operand are the same, and 8751 // there's no setting of the flags, use encoding T2 instead of T3. 8752 // Note that this is only for ADD, not SUB. This mirrors the system 8753 // 'as' behaviour. Also take advantage of ADD being commutative. 8754 // Make sure the wide encoding wasn't explicit. 8755 bool Swap = false; 8756 auto DestReg = Inst.getOperand(0).getReg(); 8757 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8758 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8759 Transform = true; 8760 Swap = true; 8761 } 8762 if (!Transform || 8763 Inst.getOperand(5).getReg() != 0 || 8764 HasWideQualifier) 8765 break; 8766 MCInst TmpInst; 8767 TmpInst.setOpcode(ARM::tADDhirr); 8768 TmpInst.addOperand(Inst.getOperand(0)); 8769 TmpInst.addOperand(Inst.getOperand(0)); 8770 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8771 TmpInst.addOperand(Inst.getOperand(3)); 8772 TmpInst.addOperand(Inst.getOperand(4)); 8773 Inst = TmpInst; 8774 return true; 8775 } 8776 case ARM::tADDrSP: 8777 // If the non-SP source operand and the destination operand are not the 8778 // same, we need to use the 32-bit encoding if it's available. 8779 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8780 Inst.setOpcode(ARM::t2ADDrr); 8781 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8782 return true; 8783 } 8784 break; 8785 case ARM::tB: 8786 // A Thumb conditional branch outside of an IT block is a tBcc. 8787 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8788 Inst.setOpcode(ARM::tBcc); 8789 return true; 8790 } 8791 break; 8792 case ARM::t2B: 8793 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8794 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8795 Inst.setOpcode(ARM::t2Bcc); 8796 return true; 8797 } 8798 break; 8799 case ARM::t2Bcc: 8800 // If the conditional is AL or we're in an IT block, we really want t2B. 8801 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8802 Inst.setOpcode(ARM::t2B); 8803 return true; 8804 } 8805 break; 8806 case ARM::tBcc: 8807 // If the conditional is AL, we really want tB. 8808 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8809 Inst.setOpcode(ARM::tB); 8810 return true; 8811 } 8812 break; 8813 case ARM::tLDMIA: { 8814 // If the register list contains any high registers, or if the writeback 8815 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8816 // instead if we're in Thumb2. Otherwise, this should have generated 8817 // an error in validateInstruction(). 8818 unsigned Rn = Inst.getOperand(0).getReg(); 8819 bool hasWritebackToken = 8820 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8821 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8822 bool listContainsBase; 8823 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8824 (!listContainsBase && !hasWritebackToken) || 8825 (listContainsBase && hasWritebackToken)) { 8826 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8827 assert(isThumbTwo()); 8828 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8829 // If we're switching to the updating version, we need to insert 8830 // the writeback tied operand. 8831 if (hasWritebackToken) 8832 Inst.insert(Inst.begin(), 8833 MCOperand::createReg(Inst.getOperand(0).getReg())); 8834 return true; 8835 } 8836 break; 8837 } 8838 case ARM::tSTMIA_UPD: { 8839 // If the register list contains any high registers, we need to use 8840 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8841 // should have generated an error in validateInstruction(). 8842 unsigned Rn = Inst.getOperand(0).getReg(); 8843 bool listContainsBase; 8844 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8845 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8846 assert(isThumbTwo()); 8847 Inst.setOpcode(ARM::t2STMIA_UPD); 8848 return true; 8849 } 8850 break; 8851 } 8852 case ARM::tPOP: { 8853 bool listContainsBase; 8854 // If the register list contains any high registers, we need to use 8855 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8856 // should have generated an error in validateInstruction(). 8857 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8858 return false; 8859 assert(isThumbTwo()); 8860 Inst.setOpcode(ARM::t2LDMIA_UPD); 8861 // Add the base register and writeback operands. 8862 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8863 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8864 return true; 8865 } 8866 case ARM::tPUSH: { 8867 bool listContainsBase; 8868 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8869 return false; 8870 assert(isThumbTwo()); 8871 Inst.setOpcode(ARM::t2STMDB_UPD); 8872 // Add the base register and writeback operands. 8873 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8874 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8875 return true; 8876 } 8877 case ARM::t2MOVi: 8878 // If we can use the 16-bit encoding and the user didn't explicitly 8879 // request the 32-bit variant, transform it here. 8880 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8881 (Inst.getOperand(1).isImm() && 8882 (unsigned)Inst.getOperand(1).getImm() <= 255) && 8883 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8884 !HasWideQualifier) { 8885 // The operands aren't in the same order for tMOVi8... 8886 MCInst TmpInst; 8887 TmpInst.setOpcode(ARM::tMOVi8); 8888 TmpInst.addOperand(Inst.getOperand(0)); 8889 TmpInst.addOperand(Inst.getOperand(4)); 8890 TmpInst.addOperand(Inst.getOperand(1)); 8891 TmpInst.addOperand(Inst.getOperand(2)); 8892 TmpInst.addOperand(Inst.getOperand(3)); 8893 Inst = TmpInst; 8894 return true; 8895 } 8896 break; 8897 8898 case ARM::t2MOVr: 8899 // If we can use the 16-bit encoding and the user didn't explicitly 8900 // request the 32-bit variant, transform it here. 8901 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8902 isARMLowRegister(Inst.getOperand(1).getReg()) && 8903 Inst.getOperand(2).getImm() == ARMCC::AL && 8904 Inst.getOperand(4).getReg() == ARM::CPSR && 8905 !HasWideQualifier) { 8906 // The operands aren't the same for tMOV[S]r... (no cc_out) 8907 MCInst TmpInst; 8908 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8909 TmpInst.addOperand(Inst.getOperand(0)); 8910 TmpInst.addOperand(Inst.getOperand(1)); 8911 TmpInst.addOperand(Inst.getOperand(2)); 8912 TmpInst.addOperand(Inst.getOperand(3)); 8913 Inst = TmpInst; 8914 return true; 8915 } 8916 break; 8917 8918 case ARM::t2SXTH: 8919 case ARM::t2SXTB: 8920 case ARM::t2UXTH: 8921 case ARM::t2UXTB: 8922 // If we can use the 16-bit encoding and the user didn't explicitly 8923 // request the 32-bit variant, transform it here. 8924 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8925 isARMLowRegister(Inst.getOperand(1).getReg()) && 8926 Inst.getOperand(2).getImm() == 0 && 8927 !HasWideQualifier) { 8928 unsigned NewOpc; 8929 switch (Inst.getOpcode()) { 8930 default: llvm_unreachable("Illegal opcode!"); 8931 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8932 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8933 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8934 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8935 } 8936 // The operands aren't the same for thumb1 (no rotate operand). 8937 MCInst TmpInst; 8938 TmpInst.setOpcode(NewOpc); 8939 TmpInst.addOperand(Inst.getOperand(0)); 8940 TmpInst.addOperand(Inst.getOperand(1)); 8941 TmpInst.addOperand(Inst.getOperand(3)); 8942 TmpInst.addOperand(Inst.getOperand(4)); 8943 Inst = TmpInst; 8944 return true; 8945 } 8946 break; 8947 8948 case ARM::MOVsi: { 8949 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8950 // rrx shifts and asr/lsr of #32 is encoded as 0 8951 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8952 return false; 8953 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8954 // Shifting by zero is accepted as a vanilla 'MOVr' 8955 MCInst TmpInst; 8956 TmpInst.setOpcode(ARM::MOVr); 8957 TmpInst.addOperand(Inst.getOperand(0)); 8958 TmpInst.addOperand(Inst.getOperand(1)); 8959 TmpInst.addOperand(Inst.getOperand(3)); 8960 TmpInst.addOperand(Inst.getOperand(4)); 8961 TmpInst.addOperand(Inst.getOperand(5)); 8962 Inst = TmpInst; 8963 return true; 8964 } 8965 return false; 8966 } 8967 case ARM::ANDrsi: 8968 case ARM::ORRrsi: 8969 case ARM::EORrsi: 8970 case ARM::BICrsi: 8971 case ARM::SUBrsi: 8972 case ARM::ADDrsi: { 8973 unsigned newOpc; 8974 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8975 if (SOpc == ARM_AM::rrx) return false; 8976 switch (Inst.getOpcode()) { 8977 default: llvm_unreachable("unexpected opcode!"); 8978 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8979 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8980 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8981 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8982 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8983 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8984 } 8985 // If the shift is by zero, use the non-shifted instruction definition. 8986 // The exception is for right shifts, where 0 == 32 8987 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8988 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8989 MCInst TmpInst; 8990 TmpInst.setOpcode(newOpc); 8991 TmpInst.addOperand(Inst.getOperand(0)); 8992 TmpInst.addOperand(Inst.getOperand(1)); 8993 TmpInst.addOperand(Inst.getOperand(2)); 8994 TmpInst.addOperand(Inst.getOperand(4)); 8995 TmpInst.addOperand(Inst.getOperand(5)); 8996 TmpInst.addOperand(Inst.getOperand(6)); 8997 Inst = TmpInst; 8998 return true; 8999 } 9000 return false; 9001 } 9002 case ARM::ITasm: 9003 case ARM::t2IT: { 9004 MCOperand &MO = Inst.getOperand(1); 9005 unsigned Mask = MO.getImm(); 9006 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 9007 9008 // Set up the IT block state according to the IT instruction we just 9009 // matched. 9010 assert(!inITBlock() && "nested IT blocks?!"); 9011 startExplicitITBlock(Cond, Mask); 9012 MO.setImm(getITMaskEncoding()); 9013 break; 9014 } 9015 case ARM::t2LSLrr: 9016 case ARM::t2LSRrr: 9017 case ARM::t2ASRrr: 9018 case ARM::t2SBCrr: 9019 case ARM::t2RORrr: 9020 case ARM::t2BICrr: 9021 // Assemblers should use the narrow encodings of these instructions when permissible. 9022 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 9023 isARMLowRegister(Inst.getOperand(2).getReg())) && 9024 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 9025 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9026 !HasWideQualifier) { 9027 unsigned NewOpc; 9028 switch (Inst.getOpcode()) { 9029 default: llvm_unreachable("unexpected opcode"); 9030 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 9031 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 9032 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 9033 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 9034 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 9035 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 9036 } 9037 MCInst TmpInst; 9038 TmpInst.setOpcode(NewOpc); 9039 TmpInst.addOperand(Inst.getOperand(0)); 9040 TmpInst.addOperand(Inst.getOperand(5)); 9041 TmpInst.addOperand(Inst.getOperand(1)); 9042 TmpInst.addOperand(Inst.getOperand(2)); 9043 TmpInst.addOperand(Inst.getOperand(3)); 9044 TmpInst.addOperand(Inst.getOperand(4)); 9045 Inst = TmpInst; 9046 return true; 9047 } 9048 return false; 9049 9050 case ARM::t2ANDrr: 9051 case ARM::t2EORrr: 9052 case ARM::t2ADCrr: 9053 case ARM::t2ORRrr: 9054 // Assemblers should use the narrow encodings of these instructions when permissible. 9055 // These instructions are special in that they are commutable, so shorter encodings 9056 // are available more often. 9057 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 9058 isARMLowRegister(Inst.getOperand(2).getReg())) && 9059 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 9060 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 9061 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9062 !HasWideQualifier) { 9063 unsigned NewOpc; 9064 switch (Inst.getOpcode()) { 9065 default: llvm_unreachable("unexpected opcode"); 9066 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 9067 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 9068 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 9069 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 9070 } 9071 MCInst TmpInst; 9072 TmpInst.setOpcode(NewOpc); 9073 TmpInst.addOperand(Inst.getOperand(0)); 9074 TmpInst.addOperand(Inst.getOperand(5)); 9075 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 9076 TmpInst.addOperand(Inst.getOperand(1)); 9077 TmpInst.addOperand(Inst.getOperand(2)); 9078 } else { 9079 TmpInst.addOperand(Inst.getOperand(2)); 9080 TmpInst.addOperand(Inst.getOperand(1)); 9081 } 9082 TmpInst.addOperand(Inst.getOperand(3)); 9083 TmpInst.addOperand(Inst.getOperand(4)); 9084 Inst = TmpInst; 9085 return true; 9086 } 9087 return false; 9088 } 9089 return false; 9090 } 9091 9092 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 9093 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 9094 // suffix depending on whether they're in an IT block or not. 9095 unsigned Opc = Inst.getOpcode(); 9096 const MCInstrDesc &MCID = MII.get(Opc); 9097 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 9098 assert(MCID.hasOptionalDef() && 9099 "optionally flag setting instruction missing optional def operand"); 9100 assert(MCID.NumOperands == Inst.getNumOperands() && 9101 "operand count mismatch!"); 9102 // Find the optional-def operand (cc_out). 9103 unsigned OpNo; 9104 for (OpNo = 0; 9105 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 9106 ++OpNo) 9107 ; 9108 // If we're parsing Thumb1, reject it completely. 9109 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 9110 return Match_RequiresFlagSetting; 9111 // If we're parsing Thumb2, which form is legal depends on whether we're 9112 // in an IT block. 9113 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 9114 !inITBlock()) 9115 return Match_RequiresITBlock; 9116 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 9117 inITBlock()) 9118 return Match_RequiresNotITBlock; 9119 // LSL with zero immediate is not allowed in an IT block 9120 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 9121 return Match_RequiresNotITBlock; 9122 } else if (isThumbOne()) { 9123 // Some high-register supporting Thumb1 encodings only allow both registers 9124 // to be from r0-r7 when in Thumb2. 9125 if (Opc == ARM::tADDhirr && !hasV6MOps() && 9126 isARMLowRegister(Inst.getOperand(1).getReg()) && 9127 isARMLowRegister(Inst.getOperand(2).getReg())) 9128 return Match_RequiresThumb2; 9129 // Others only require ARMv6 or later. 9130 else if (Opc == ARM::tMOVr && !hasV6Ops() && 9131 isARMLowRegister(Inst.getOperand(0).getReg()) && 9132 isARMLowRegister(Inst.getOperand(1).getReg())) 9133 return Match_RequiresV6; 9134 } 9135 9136 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 9137 // than the loop below can handle, so it uses the GPRnopc register class and 9138 // we do SP handling here. 9139 if (Opc == ARM::t2MOVr && !hasV8Ops()) 9140 { 9141 // SP as both source and destination is not allowed 9142 if (Inst.getOperand(0).getReg() == ARM::SP && 9143 Inst.getOperand(1).getReg() == ARM::SP) 9144 return Match_RequiresV8; 9145 // When flags-setting SP as either source or destination is not allowed 9146 if (Inst.getOperand(4).getReg() == ARM::CPSR && 9147 (Inst.getOperand(0).getReg() == ARM::SP || 9148 Inst.getOperand(1).getReg() == ARM::SP)) 9149 return Match_RequiresV8; 9150 } 9151 9152 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 9153 // ARMv8-A. 9154 if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) && 9155 Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops())) 9156 return Match_InvalidOperand; 9157 9158 for (unsigned I = 0; I < MCID.NumOperands; ++I) 9159 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 9160 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 9161 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 9162 return Match_RequiresV8; 9163 else if (Inst.getOperand(I).getReg() == ARM::PC) 9164 return Match_InvalidOperand; 9165 } 9166 9167 return Match_Success; 9168 } 9169 9170 namespace llvm { 9171 9172 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 9173 return true; // In an assembly source, no need to second-guess 9174 } 9175 9176 } // end namespace llvm 9177 9178 // Returns true if Inst is unpredictable if it is in and IT block, but is not 9179 // the last instruction in the block. 9180 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 9181 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9182 9183 // All branch & call instructions terminate IT blocks with the exception of 9184 // SVC. 9185 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 9186 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 9187 return true; 9188 9189 // Any arithmetic instruction which writes to the PC also terminates the IT 9190 // block. 9191 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 9192 return true; 9193 9194 return false; 9195 } 9196 9197 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 9198 SmallVectorImpl<NearMissInfo> &NearMisses, 9199 bool MatchingInlineAsm, 9200 bool &EmitInITBlock, 9201 MCStreamer &Out) { 9202 // If we can't use an implicit IT block here, just match as normal. 9203 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 9204 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 9205 9206 // Try to match the instruction in an extension of the current IT block (if 9207 // there is one). 9208 if (inImplicitITBlock()) { 9209 extendImplicitITBlock(ITState.Cond); 9210 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9211 Match_Success) { 9212 // The match succeded, but we still have to check that the instruction is 9213 // valid in this implicit IT block. 9214 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9215 if (MCID.isPredicable()) { 9216 ARMCC::CondCodes InstCond = 9217 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9218 .getImm(); 9219 ARMCC::CondCodes ITCond = currentITCond(); 9220 if (InstCond == ITCond) { 9221 EmitInITBlock = true; 9222 return Match_Success; 9223 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 9224 invertCurrentITCondition(); 9225 EmitInITBlock = true; 9226 return Match_Success; 9227 } 9228 } 9229 } 9230 rewindImplicitITPosition(); 9231 } 9232 9233 // Finish the current IT block, and try to match outside any IT block. 9234 flushPendingInstructions(Out); 9235 unsigned PlainMatchResult = 9236 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 9237 if (PlainMatchResult == Match_Success) { 9238 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9239 if (MCID.isPredicable()) { 9240 ARMCC::CondCodes InstCond = 9241 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9242 .getImm(); 9243 // Some forms of the branch instruction have their own condition code 9244 // fields, so can be conditionally executed without an IT block. 9245 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 9246 EmitInITBlock = false; 9247 return Match_Success; 9248 } 9249 if (InstCond == ARMCC::AL) { 9250 EmitInITBlock = false; 9251 return Match_Success; 9252 } 9253 } else { 9254 EmitInITBlock = false; 9255 return Match_Success; 9256 } 9257 } 9258 9259 // Try to match in a new IT block. The matcher doesn't check the actual 9260 // condition, so we create an IT block with a dummy condition, and fix it up 9261 // once we know the actual condition. 9262 startImplicitITBlock(); 9263 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9264 Match_Success) { 9265 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9266 if (MCID.isPredicable()) { 9267 ITState.Cond = 9268 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9269 .getImm(); 9270 EmitInITBlock = true; 9271 return Match_Success; 9272 } 9273 } 9274 discardImplicitITBlock(); 9275 9276 // If none of these succeed, return the error we got when trying to match 9277 // outside any IT blocks. 9278 EmitInITBlock = false; 9279 return PlainMatchResult; 9280 } 9281 9282 static std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS, 9283 unsigned VariantID = 0); 9284 9285 static const char *getSubtargetFeatureName(uint64_t Val); 9286 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 9287 OperandVector &Operands, 9288 MCStreamer &Out, uint64_t &ErrorInfo, 9289 bool MatchingInlineAsm) { 9290 MCInst Inst; 9291 unsigned MatchResult; 9292 bool PendConditionalInstruction = false; 9293 9294 SmallVector<NearMissInfo, 4> NearMisses; 9295 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 9296 PendConditionalInstruction, Out); 9297 9298 switch (MatchResult) { 9299 case Match_Success: 9300 LLVM_DEBUG(dbgs() << "Parsed as: "; 9301 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 9302 dbgs() << "\n"); 9303 9304 // Context sensitive operand constraints aren't handled by the matcher, 9305 // so check them here. 9306 if (validateInstruction(Inst, Operands)) { 9307 // Still progress the IT block, otherwise one wrong condition causes 9308 // nasty cascading errors. 9309 forwardITPosition(); 9310 return true; 9311 } 9312 9313 { // processInstruction() updates inITBlock state, we need to save it away 9314 bool wasInITBlock = inITBlock(); 9315 9316 // Some instructions need post-processing to, for example, tweak which 9317 // encoding is selected. Loop on it while changes happen so the 9318 // individual transformations can chain off each other. E.g., 9319 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9320 while (processInstruction(Inst, Operands, Out)) 9321 LLVM_DEBUG(dbgs() << "Changed to: "; 9322 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 9323 dbgs() << "\n"); 9324 9325 // Only after the instruction is fully processed, we can validate it 9326 if (wasInITBlock && hasV8Ops() && isThumb() && 9327 !isV8EligibleForIT(&Inst)) { 9328 Warning(IDLoc, "deprecated instruction in IT block"); 9329 } 9330 } 9331 9332 // Only move forward at the very end so that everything in validate 9333 // and process gets a consistent answer about whether we're in an IT 9334 // block. 9335 forwardITPosition(); 9336 9337 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9338 // doesn't actually encode. 9339 if (Inst.getOpcode() == ARM::ITasm) 9340 return false; 9341 9342 Inst.setLoc(IDLoc); 9343 if (PendConditionalInstruction) { 9344 PendingConditionalInsts.push_back(Inst); 9345 if (isITBlockFull() || isITBlockTerminator(Inst)) 9346 flushPendingInstructions(Out); 9347 } else { 9348 Out.EmitInstruction(Inst, getSTI()); 9349 } 9350 return false; 9351 case Match_NearMisses: 9352 ReportNearMisses(NearMisses, IDLoc, Operands); 9353 return true; 9354 case Match_MnemonicFail: { 9355 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 9356 std::string Suggestion = ARMMnemonicSpellCheck( 9357 ((ARMOperand &)*Operands[0]).getToken(), FBS); 9358 return Error(IDLoc, "invalid instruction" + Suggestion, 9359 ((ARMOperand &)*Operands[0]).getLocRange()); 9360 } 9361 } 9362 9363 llvm_unreachable("Implement any new match types added!"); 9364 } 9365 9366 /// parseDirective parses the arm specific directives 9367 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9368 const MCObjectFileInfo::Environment Format = 9369 getContext().getObjectFileInfo()->getObjectFileType(); 9370 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9371 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9372 9373 StringRef IDVal = DirectiveID.getIdentifier(); 9374 if (IDVal == ".word") 9375 parseLiteralValues(4, DirectiveID.getLoc()); 9376 else if (IDVal == ".short" || IDVal == ".hword") 9377 parseLiteralValues(2, DirectiveID.getLoc()); 9378 else if (IDVal == ".thumb") 9379 parseDirectiveThumb(DirectiveID.getLoc()); 9380 else if (IDVal == ".arm") 9381 parseDirectiveARM(DirectiveID.getLoc()); 9382 else if (IDVal == ".thumb_func") 9383 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9384 else if (IDVal == ".code") 9385 parseDirectiveCode(DirectiveID.getLoc()); 9386 else if (IDVal == ".syntax") 9387 parseDirectiveSyntax(DirectiveID.getLoc()); 9388 else if (IDVal == ".unreq") 9389 parseDirectiveUnreq(DirectiveID.getLoc()); 9390 else if (IDVal == ".fnend") 9391 parseDirectiveFnEnd(DirectiveID.getLoc()); 9392 else if (IDVal == ".cantunwind") 9393 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9394 else if (IDVal == ".personality") 9395 parseDirectivePersonality(DirectiveID.getLoc()); 9396 else if (IDVal == ".handlerdata") 9397 parseDirectiveHandlerData(DirectiveID.getLoc()); 9398 else if (IDVal == ".setfp") 9399 parseDirectiveSetFP(DirectiveID.getLoc()); 9400 else if (IDVal == ".pad") 9401 parseDirectivePad(DirectiveID.getLoc()); 9402 else if (IDVal == ".save") 9403 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9404 else if (IDVal == ".vsave") 9405 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9406 else if (IDVal == ".ltorg" || IDVal == ".pool") 9407 parseDirectiveLtorg(DirectiveID.getLoc()); 9408 else if (IDVal == ".even") 9409 parseDirectiveEven(DirectiveID.getLoc()); 9410 else if (IDVal == ".personalityindex") 9411 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9412 else if (IDVal == ".unwind_raw") 9413 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9414 else if (IDVal == ".movsp") 9415 parseDirectiveMovSP(DirectiveID.getLoc()); 9416 else if (IDVal == ".arch_extension") 9417 parseDirectiveArchExtension(DirectiveID.getLoc()); 9418 else if (IDVal == ".align") 9419 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9420 else if (IDVal == ".thumb_set") 9421 parseDirectiveThumbSet(DirectiveID.getLoc()); 9422 else if (IDVal == ".inst") 9423 parseDirectiveInst(DirectiveID.getLoc()); 9424 else if (IDVal == ".inst.n") 9425 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9426 else if (IDVal == ".inst.w") 9427 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9428 else if (!IsMachO && !IsCOFF) { 9429 if (IDVal == ".arch") 9430 parseDirectiveArch(DirectiveID.getLoc()); 9431 else if (IDVal == ".cpu") 9432 parseDirectiveCPU(DirectiveID.getLoc()); 9433 else if (IDVal == ".eabi_attribute") 9434 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9435 else if (IDVal == ".fpu") 9436 parseDirectiveFPU(DirectiveID.getLoc()); 9437 else if (IDVal == ".fnstart") 9438 parseDirectiveFnStart(DirectiveID.getLoc()); 9439 else if (IDVal == ".object_arch") 9440 parseDirectiveObjectArch(DirectiveID.getLoc()); 9441 else if (IDVal == ".tlsdescseq") 9442 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9443 else 9444 return true; 9445 } else 9446 return true; 9447 return false; 9448 } 9449 9450 /// parseLiteralValues 9451 /// ::= .hword expression [, expression]* 9452 /// ::= .short expression [, expression]* 9453 /// ::= .word expression [, expression]* 9454 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9455 auto parseOne = [&]() -> bool { 9456 const MCExpr *Value; 9457 if (getParser().parseExpression(Value)) 9458 return true; 9459 getParser().getStreamer().EmitValue(Value, Size, L); 9460 return false; 9461 }; 9462 return (parseMany(parseOne)); 9463 } 9464 9465 /// parseDirectiveThumb 9466 /// ::= .thumb 9467 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9468 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9469 check(!hasThumb(), L, "target does not support Thumb mode")) 9470 return true; 9471 9472 if (!isThumb()) 9473 SwitchMode(); 9474 9475 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9476 return false; 9477 } 9478 9479 /// parseDirectiveARM 9480 /// ::= .arm 9481 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9482 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9483 check(!hasARM(), L, "target does not support ARM mode")) 9484 return true; 9485 9486 if (isThumb()) 9487 SwitchMode(); 9488 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9489 return false; 9490 } 9491 9492 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 9493 // We need to flush the current implicit IT block on a label, because it is 9494 // not legal to branch into an IT block. 9495 flushPendingInstructions(getStreamer()); 9496 } 9497 9498 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9499 if (NextSymbolIsThumb) { 9500 getParser().getStreamer().EmitThumbFunc(Symbol); 9501 NextSymbolIsThumb = false; 9502 } 9503 } 9504 9505 /// parseDirectiveThumbFunc 9506 /// ::= .thumbfunc symbol_name 9507 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9508 MCAsmParser &Parser = getParser(); 9509 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9510 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9511 9512 // Darwin asm has (optionally) function name after .thumb_func direction 9513 // ELF doesn't 9514 9515 if (IsMachO) { 9516 if (Parser.getTok().is(AsmToken::Identifier) || 9517 Parser.getTok().is(AsmToken::String)) { 9518 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9519 Parser.getTok().getIdentifier()); 9520 getParser().getStreamer().EmitThumbFunc(Func); 9521 Parser.Lex(); 9522 if (parseToken(AsmToken::EndOfStatement, 9523 "unexpected token in '.thumb_func' directive")) 9524 return true; 9525 return false; 9526 } 9527 } 9528 9529 if (parseToken(AsmToken::EndOfStatement, 9530 "unexpected token in '.thumb_func' directive")) 9531 return true; 9532 9533 NextSymbolIsThumb = true; 9534 return false; 9535 } 9536 9537 /// parseDirectiveSyntax 9538 /// ::= .syntax unified | divided 9539 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9540 MCAsmParser &Parser = getParser(); 9541 const AsmToken &Tok = Parser.getTok(); 9542 if (Tok.isNot(AsmToken::Identifier)) { 9543 Error(L, "unexpected token in .syntax directive"); 9544 return false; 9545 } 9546 9547 StringRef Mode = Tok.getString(); 9548 Parser.Lex(); 9549 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9550 "'.syntax divided' arm assembly not supported") || 9551 check(Mode != "unified" && Mode != "UNIFIED", L, 9552 "unrecognized syntax mode in .syntax directive") || 9553 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9554 return true; 9555 9556 // TODO tell the MC streamer the mode 9557 // getParser().getStreamer().Emit???(); 9558 return false; 9559 } 9560 9561 /// parseDirectiveCode 9562 /// ::= .code 16 | 32 9563 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9564 MCAsmParser &Parser = getParser(); 9565 const AsmToken &Tok = Parser.getTok(); 9566 if (Tok.isNot(AsmToken::Integer)) 9567 return Error(L, "unexpected token in .code directive"); 9568 int64_t Val = Parser.getTok().getIntVal(); 9569 if (Val != 16 && Val != 32) { 9570 Error(L, "invalid operand to .code directive"); 9571 return false; 9572 } 9573 Parser.Lex(); 9574 9575 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9576 return true; 9577 9578 if (Val == 16) { 9579 if (!hasThumb()) 9580 return Error(L, "target does not support Thumb mode"); 9581 9582 if (!isThumb()) 9583 SwitchMode(); 9584 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9585 } else { 9586 if (!hasARM()) 9587 return Error(L, "target does not support ARM mode"); 9588 9589 if (isThumb()) 9590 SwitchMode(); 9591 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9592 } 9593 9594 return false; 9595 } 9596 9597 /// parseDirectiveReq 9598 /// ::= name .req registername 9599 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9600 MCAsmParser &Parser = getParser(); 9601 Parser.Lex(); // Eat the '.req' token. 9602 unsigned Reg; 9603 SMLoc SRegLoc, ERegLoc; 9604 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9605 "register name expected") || 9606 parseToken(AsmToken::EndOfStatement, 9607 "unexpected input in .req directive.")) 9608 return true; 9609 9610 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9611 return Error(SRegLoc, 9612 "redefinition of '" + Name + "' does not match original."); 9613 9614 return false; 9615 } 9616 9617 /// parseDirectiveUneq 9618 /// ::= .unreq registername 9619 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9620 MCAsmParser &Parser = getParser(); 9621 if (Parser.getTok().isNot(AsmToken::Identifier)) 9622 return Error(L, "unexpected input in .unreq directive."); 9623 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9624 Parser.Lex(); // Eat the identifier. 9625 if (parseToken(AsmToken::EndOfStatement, 9626 "unexpected input in '.unreq' directive")) 9627 return true; 9628 return false; 9629 } 9630 9631 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9632 // before, if supported by the new target, or emit mapping symbols for the mode 9633 // switch. 9634 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9635 if (WasThumb != isThumb()) { 9636 if (WasThumb && hasThumb()) { 9637 // Stay in Thumb mode 9638 SwitchMode(); 9639 } else if (!WasThumb && hasARM()) { 9640 // Stay in ARM mode 9641 SwitchMode(); 9642 } else { 9643 // Mode switch forced, because the new arch doesn't support the old mode. 9644 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9645 : MCAF_Code32); 9646 // Warn about the implcit mode switch. GAS does not switch modes here, 9647 // but instead stays in the old mode, reporting an error on any following 9648 // instructions as the mode does not exist on the target. 9649 Warning(Loc, Twine("new target does not support ") + 9650 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9651 (!WasThumb ? "thumb" : "arm") + " mode"); 9652 } 9653 } 9654 } 9655 9656 /// parseDirectiveArch 9657 /// ::= .arch token 9658 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9659 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9660 ARM::ArchKind ID = ARM::parseArch(Arch); 9661 9662 if (ID == ARM::ArchKind::INVALID) 9663 return Error(L, "Unknown arch name"); 9664 9665 bool WasThumb = isThumb(); 9666 Triple T; 9667 MCSubtargetInfo &STI = copySTI(); 9668 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9669 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9670 FixModeAfterArchChange(WasThumb, L); 9671 9672 getTargetStreamer().emitArch(ID); 9673 return false; 9674 } 9675 9676 /// parseDirectiveEabiAttr 9677 /// ::= .eabi_attribute int, int [, "str"] 9678 /// ::= .eabi_attribute Tag_name, int [, "str"] 9679 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9680 MCAsmParser &Parser = getParser(); 9681 int64_t Tag; 9682 SMLoc TagLoc; 9683 TagLoc = Parser.getTok().getLoc(); 9684 if (Parser.getTok().is(AsmToken::Identifier)) { 9685 StringRef Name = Parser.getTok().getIdentifier(); 9686 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9687 if (Tag == -1) { 9688 Error(TagLoc, "attribute name not recognised: " + Name); 9689 return false; 9690 } 9691 Parser.Lex(); 9692 } else { 9693 const MCExpr *AttrExpr; 9694 9695 TagLoc = Parser.getTok().getLoc(); 9696 if (Parser.parseExpression(AttrExpr)) 9697 return true; 9698 9699 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9700 if (check(!CE, TagLoc, "expected numeric constant")) 9701 return true; 9702 9703 Tag = CE->getValue(); 9704 } 9705 9706 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9707 return true; 9708 9709 StringRef StringValue = ""; 9710 bool IsStringValue = false; 9711 9712 int64_t IntegerValue = 0; 9713 bool IsIntegerValue = false; 9714 9715 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9716 IsStringValue = true; 9717 else if (Tag == ARMBuildAttrs::compatibility) { 9718 IsStringValue = true; 9719 IsIntegerValue = true; 9720 } else if (Tag < 32 || Tag % 2 == 0) 9721 IsIntegerValue = true; 9722 else if (Tag % 2 == 1) 9723 IsStringValue = true; 9724 else 9725 llvm_unreachable("invalid tag type"); 9726 9727 if (IsIntegerValue) { 9728 const MCExpr *ValueExpr; 9729 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9730 if (Parser.parseExpression(ValueExpr)) 9731 return true; 9732 9733 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9734 if (!CE) 9735 return Error(ValueExprLoc, "expected numeric constant"); 9736 IntegerValue = CE->getValue(); 9737 } 9738 9739 if (Tag == ARMBuildAttrs::compatibility) { 9740 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9741 return true; 9742 } 9743 9744 if (IsStringValue) { 9745 if (Parser.getTok().isNot(AsmToken::String)) 9746 return Error(Parser.getTok().getLoc(), "bad string constant"); 9747 9748 StringValue = Parser.getTok().getStringContents(); 9749 Parser.Lex(); 9750 } 9751 9752 if (Parser.parseToken(AsmToken::EndOfStatement, 9753 "unexpected token in '.eabi_attribute' directive")) 9754 return true; 9755 9756 if (IsIntegerValue && IsStringValue) { 9757 assert(Tag == ARMBuildAttrs::compatibility); 9758 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9759 } else if (IsIntegerValue) 9760 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9761 else if (IsStringValue) 9762 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9763 return false; 9764 } 9765 9766 /// parseDirectiveCPU 9767 /// ::= .cpu str 9768 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9769 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9770 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9771 9772 // FIXME: This is using table-gen data, but should be moved to 9773 // ARMTargetParser once that is table-gen'd. 9774 if (!getSTI().isCPUStringValid(CPU)) 9775 return Error(L, "Unknown CPU name"); 9776 9777 bool WasThumb = isThumb(); 9778 MCSubtargetInfo &STI = copySTI(); 9779 STI.setDefaultFeatures(CPU, ""); 9780 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9781 FixModeAfterArchChange(WasThumb, L); 9782 9783 return false; 9784 } 9785 9786 /// parseDirectiveFPU 9787 /// ::= .fpu str 9788 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9789 SMLoc FPUNameLoc = getTok().getLoc(); 9790 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9791 9792 unsigned ID = ARM::parseFPU(FPU); 9793 std::vector<StringRef> Features; 9794 if (!ARM::getFPUFeatures(ID, Features)) 9795 return Error(FPUNameLoc, "Unknown FPU name"); 9796 9797 MCSubtargetInfo &STI = copySTI(); 9798 for (auto Feature : Features) 9799 STI.ApplyFeatureFlag(Feature); 9800 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9801 9802 getTargetStreamer().emitFPU(ID); 9803 return false; 9804 } 9805 9806 /// parseDirectiveFnStart 9807 /// ::= .fnstart 9808 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9809 if (parseToken(AsmToken::EndOfStatement, 9810 "unexpected token in '.fnstart' directive")) 9811 return true; 9812 9813 if (UC.hasFnStart()) { 9814 Error(L, ".fnstart starts before the end of previous one"); 9815 UC.emitFnStartLocNotes(); 9816 return true; 9817 } 9818 9819 // Reset the unwind directives parser state 9820 UC.reset(); 9821 9822 getTargetStreamer().emitFnStart(); 9823 9824 UC.recordFnStart(L); 9825 return false; 9826 } 9827 9828 /// parseDirectiveFnEnd 9829 /// ::= .fnend 9830 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9831 if (parseToken(AsmToken::EndOfStatement, 9832 "unexpected token in '.fnend' directive")) 9833 return true; 9834 // Check the ordering of unwind directives 9835 if (!UC.hasFnStart()) 9836 return Error(L, ".fnstart must precede .fnend directive"); 9837 9838 // Reset the unwind directives parser state 9839 getTargetStreamer().emitFnEnd(); 9840 9841 UC.reset(); 9842 return false; 9843 } 9844 9845 /// parseDirectiveCantUnwind 9846 /// ::= .cantunwind 9847 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9848 if (parseToken(AsmToken::EndOfStatement, 9849 "unexpected token in '.cantunwind' directive")) 9850 return true; 9851 9852 UC.recordCantUnwind(L); 9853 // Check the ordering of unwind directives 9854 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9855 return true; 9856 9857 if (UC.hasHandlerData()) { 9858 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9859 UC.emitHandlerDataLocNotes(); 9860 return true; 9861 } 9862 if (UC.hasPersonality()) { 9863 Error(L, ".cantunwind can't be used with .personality directive"); 9864 UC.emitPersonalityLocNotes(); 9865 return true; 9866 } 9867 9868 getTargetStreamer().emitCantUnwind(); 9869 return false; 9870 } 9871 9872 /// parseDirectivePersonality 9873 /// ::= .personality name 9874 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9875 MCAsmParser &Parser = getParser(); 9876 bool HasExistingPersonality = UC.hasPersonality(); 9877 9878 // Parse the name of the personality routine 9879 if (Parser.getTok().isNot(AsmToken::Identifier)) 9880 return Error(L, "unexpected input in .personality directive."); 9881 StringRef Name(Parser.getTok().getIdentifier()); 9882 Parser.Lex(); 9883 9884 if (parseToken(AsmToken::EndOfStatement, 9885 "unexpected token in '.personality' directive")) 9886 return true; 9887 9888 UC.recordPersonality(L); 9889 9890 // Check the ordering of unwind directives 9891 if (!UC.hasFnStart()) 9892 return Error(L, ".fnstart must precede .personality directive"); 9893 if (UC.cantUnwind()) { 9894 Error(L, ".personality can't be used with .cantunwind directive"); 9895 UC.emitCantUnwindLocNotes(); 9896 return true; 9897 } 9898 if (UC.hasHandlerData()) { 9899 Error(L, ".personality must precede .handlerdata directive"); 9900 UC.emitHandlerDataLocNotes(); 9901 return true; 9902 } 9903 if (HasExistingPersonality) { 9904 Error(L, "multiple personality directives"); 9905 UC.emitPersonalityLocNotes(); 9906 return true; 9907 } 9908 9909 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9910 getTargetStreamer().emitPersonality(PR); 9911 return false; 9912 } 9913 9914 /// parseDirectiveHandlerData 9915 /// ::= .handlerdata 9916 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9917 if (parseToken(AsmToken::EndOfStatement, 9918 "unexpected token in '.handlerdata' directive")) 9919 return true; 9920 9921 UC.recordHandlerData(L); 9922 // Check the ordering of unwind directives 9923 if (!UC.hasFnStart()) 9924 return Error(L, ".fnstart must precede .personality directive"); 9925 if (UC.cantUnwind()) { 9926 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9927 UC.emitCantUnwindLocNotes(); 9928 return true; 9929 } 9930 9931 getTargetStreamer().emitHandlerData(); 9932 return false; 9933 } 9934 9935 /// parseDirectiveSetFP 9936 /// ::= .setfp fpreg, spreg [, offset] 9937 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9938 MCAsmParser &Parser = getParser(); 9939 // Check the ordering of unwind directives 9940 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9941 check(UC.hasHandlerData(), L, 9942 ".setfp must precede .handlerdata directive")) 9943 return true; 9944 9945 // Parse fpreg 9946 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9947 int FPReg = tryParseRegister(); 9948 9949 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9950 Parser.parseToken(AsmToken::Comma, "comma expected")) 9951 return true; 9952 9953 // Parse spreg 9954 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9955 int SPReg = tryParseRegister(); 9956 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9957 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9958 "register should be either $sp or the latest fp register")) 9959 return true; 9960 9961 // Update the frame pointer register 9962 UC.saveFPReg(FPReg); 9963 9964 // Parse offset 9965 int64_t Offset = 0; 9966 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9967 if (Parser.getTok().isNot(AsmToken::Hash) && 9968 Parser.getTok().isNot(AsmToken::Dollar)) 9969 return Error(Parser.getTok().getLoc(), "'#' expected"); 9970 Parser.Lex(); // skip hash token. 9971 9972 const MCExpr *OffsetExpr; 9973 SMLoc ExLoc = Parser.getTok().getLoc(); 9974 SMLoc EndLoc; 9975 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9976 return Error(ExLoc, "malformed setfp offset"); 9977 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9978 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9979 return true; 9980 Offset = CE->getValue(); 9981 } 9982 9983 if (Parser.parseToken(AsmToken::EndOfStatement)) 9984 return true; 9985 9986 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9987 static_cast<unsigned>(SPReg), Offset); 9988 return false; 9989 } 9990 9991 /// parseDirective 9992 /// ::= .pad offset 9993 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9994 MCAsmParser &Parser = getParser(); 9995 // Check the ordering of unwind directives 9996 if (!UC.hasFnStart()) 9997 return Error(L, ".fnstart must precede .pad directive"); 9998 if (UC.hasHandlerData()) 9999 return Error(L, ".pad must precede .handlerdata directive"); 10000 10001 // Parse the offset 10002 if (Parser.getTok().isNot(AsmToken::Hash) && 10003 Parser.getTok().isNot(AsmToken::Dollar)) 10004 return Error(Parser.getTok().getLoc(), "'#' expected"); 10005 Parser.Lex(); // skip hash token. 10006 10007 const MCExpr *OffsetExpr; 10008 SMLoc ExLoc = Parser.getTok().getLoc(); 10009 SMLoc EndLoc; 10010 if (getParser().parseExpression(OffsetExpr, EndLoc)) 10011 return Error(ExLoc, "malformed pad offset"); 10012 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10013 if (!CE) 10014 return Error(ExLoc, "pad offset must be an immediate"); 10015 10016 if (parseToken(AsmToken::EndOfStatement, 10017 "unexpected token in '.pad' directive")) 10018 return true; 10019 10020 getTargetStreamer().emitPad(CE->getValue()); 10021 return false; 10022 } 10023 10024 /// parseDirectiveRegSave 10025 /// ::= .save { registers } 10026 /// ::= .vsave { registers } 10027 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 10028 // Check the ordering of unwind directives 10029 if (!UC.hasFnStart()) 10030 return Error(L, ".fnstart must precede .save or .vsave directives"); 10031 if (UC.hasHandlerData()) 10032 return Error(L, ".save or .vsave must precede .handlerdata directive"); 10033 10034 // RAII object to make sure parsed operands are deleted. 10035 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 10036 10037 // Parse the register list 10038 if (parseRegisterList(Operands) || 10039 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10040 return true; 10041 ARMOperand &Op = (ARMOperand &)*Operands[0]; 10042 if (!IsVector && !Op.isRegList()) 10043 return Error(L, ".save expects GPR registers"); 10044 if (IsVector && !Op.isDPRRegList()) 10045 return Error(L, ".vsave expects DPR registers"); 10046 10047 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 10048 return false; 10049 } 10050 10051 /// parseDirectiveInst 10052 /// ::= .inst opcode [, ...] 10053 /// ::= .inst.n opcode [, ...] 10054 /// ::= .inst.w opcode [, ...] 10055 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 10056 int Width = 4; 10057 10058 if (isThumb()) { 10059 switch (Suffix) { 10060 case 'n': 10061 Width = 2; 10062 break; 10063 case 'w': 10064 break; 10065 default: 10066 Width = 0; 10067 break; 10068 } 10069 } else { 10070 if (Suffix) 10071 return Error(Loc, "width suffixes are invalid in ARM mode"); 10072 } 10073 10074 auto parseOne = [&]() -> bool { 10075 const MCExpr *Expr; 10076 if (getParser().parseExpression(Expr)) 10077 return true; 10078 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 10079 if (!Value) { 10080 return Error(Loc, "expected constant expression"); 10081 } 10082 10083 char CurSuffix = Suffix; 10084 switch (Width) { 10085 case 2: 10086 if (Value->getValue() > 0xffff) 10087 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 10088 break; 10089 case 4: 10090 if (Value->getValue() > 0xffffffff) 10091 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 10092 " operand is too big"); 10093 break; 10094 case 0: 10095 // Thumb mode, no width indicated. Guess from the opcode, if possible. 10096 if (Value->getValue() < 0xe800) 10097 CurSuffix = 'n'; 10098 else if (Value->getValue() >= 0xe8000000) 10099 CurSuffix = 'w'; 10100 else 10101 return Error(Loc, "cannot determine Thumb instruction size, " 10102 "use inst.n/inst.w instead"); 10103 break; 10104 default: 10105 llvm_unreachable("only supported widths are 2 and 4"); 10106 } 10107 10108 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 10109 return false; 10110 }; 10111 10112 if (parseOptionalToken(AsmToken::EndOfStatement)) 10113 return Error(Loc, "expected expression following directive"); 10114 if (parseMany(parseOne)) 10115 return true; 10116 return false; 10117 } 10118 10119 /// parseDirectiveLtorg 10120 /// ::= .ltorg | .pool 10121 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 10122 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10123 return true; 10124 getTargetStreamer().emitCurrentConstantPool(); 10125 return false; 10126 } 10127 10128 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 10129 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10130 10131 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10132 return true; 10133 10134 if (!Section) { 10135 getStreamer().InitSections(false); 10136 Section = getStreamer().getCurrentSectionOnly(); 10137 } 10138 10139 assert(Section && "must have section to emit alignment"); 10140 if (Section->UseCodeAlign()) 10141 getStreamer().EmitCodeAlignment(2); 10142 else 10143 getStreamer().EmitValueToAlignment(2); 10144 10145 return false; 10146 } 10147 10148 /// parseDirectivePersonalityIndex 10149 /// ::= .personalityindex index 10150 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 10151 MCAsmParser &Parser = getParser(); 10152 bool HasExistingPersonality = UC.hasPersonality(); 10153 10154 const MCExpr *IndexExpression; 10155 SMLoc IndexLoc = Parser.getTok().getLoc(); 10156 if (Parser.parseExpression(IndexExpression) || 10157 parseToken(AsmToken::EndOfStatement, 10158 "unexpected token in '.personalityindex' directive")) { 10159 return true; 10160 } 10161 10162 UC.recordPersonalityIndex(L); 10163 10164 if (!UC.hasFnStart()) { 10165 return Error(L, ".fnstart must precede .personalityindex directive"); 10166 } 10167 if (UC.cantUnwind()) { 10168 Error(L, ".personalityindex cannot be used with .cantunwind"); 10169 UC.emitCantUnwindLocNotes(); 10170 return true; 10171 } 10172 if (UC.hasHandlerData()) { 10173 Error(L, ".personalityindex must precede .handlerdata directive"); 10174 UC.emitHandlerDataLocNotes(); 10175 return true; 10176 } 10177 if (HasExistingPersonality) { 10178 Error(L, "multiple personality directives"); 10179 UC.emitPersonalityLocNotes(); 10180 return true; 10181 } 10182 10183 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 10184 if (!CE) 10185 return Error(IndexLoc, "index must be a constant number"); 10186 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 10187 return Error(IndexLoc, 10188 "personality routine index should be in range [0-3]"); 10189 10190 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 10191 return false; 10192 } 10193 10194 /// parseDirectiveUnwindRaw 10195 /// ::= .unwind_raw offset, opcode [, opcode...] 10196 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 10197 MCAsmParser &Parser = getParser(); 10198 int64_t StackOffset; 10199 const MCExpr *OffsetExpr; 10200 SMLoc OffsetLoc = getLexer().getLoc(); 10201 10202 if (!UC.hasFnStart()) 10203 return Error(L, ".fnstart must precede .unwind_raw directives"); 10204 if (getParser().parseExpression(OffsetExpr)) 10205 return Error(OffsetLoc, "expected expression"); 10206 10207 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10208 if (!CE) 10209 return Error(OffsetLoc, "offset must be a constant"); 10210 10211 StackOffset = CE->getValue(); 10212 10213 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 10214 return true; 10215 10216 SmallVector<uint8_t, 16> Opcodes; 10217 10218 auto parseOne = [&]() -> bool { 10219 const MCExpr *OE; 10220 SMLoc OpcodeLoc = getLexer().getLoc(); 10221 if (check(getLexer().is(AsmToken::EndOfStatement) || 10222 Parser.parseExpression(OE), 10223 OpcodeLoc, "expected opcode expression")) 10224 return true; 10225 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 10226 if (!OC) 10227 return Error(OpcodeLoc, "opcode value must be a constant"); 10228 const int64_t Opcode = OC->getValue(); 10229 if (Opcode & ~0xff) 10230 return Error(OpcodeLoc, "invalid opcode"); 10231 Opcodes.push_back(uint8_t(Opcode)); 10232 return false; 10233 }; 10234 10235 // Must have at least 1 element 10236 SMLoc OpcodeLoc = getLexer().getLoc(); 10237 if (parseOptionalToken(AsmToken::EndOfStatement)) 10238 return Error(OpcodeLoc, "expected opcode expression"); 10239 if (parseMany(parseOne)) 10240 return true; 10241 10242 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 10243 return false; 10244 } 10245 10246 /// parseDirectiveTLSDescSeq 10247 /// ::= .tlsdescseq tls-variable 10248 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 10249 MCAsmParser &Parser = getParser(); 10250 10251 if (getLexer().isNot(AsmToken::Identifier)) 10252 return TokError("expected variable after '.tlsdescseq' directive"); 10253 10254 const MCSymbolRefExpr *SRE = 10255 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10256 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10257 Lex(); 10258 10259 if (parseToken(AsmToken::EndOfStatement, 10260 "unexpected token in '.tlsdescseq' directive")) 10261 return true; 10262 10263 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10264 return false; 10265 } 10266 10267 /// parseDirectiveMovSP 10268 /// ::= .movsp reg [, #offset] 10269 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10270 MCAsmParser &Parser = getParser(); 10271 if (!UC.hasFnStart()) 10272 return Error(L, ".fnstart must precede .movsp directives"); 10273 if (UC.getFPReg() != ARM::SP) 10274 return Error(L, "unexpected .movsp directive"); 10275 10276 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10277 int SPReg = tryParseRegister(); 10278 if (SPReg == -1) 10279 return Error(SPRegLoc, "register expected"); 10280 if (SPReg == ARM::SP || SPReg == ARM::PC) 10281 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10282 10283 int64_t Offset = 0; 10284 if (Parser.parseOptionalToken(AsmToken::Comma)) { 10285 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 10286 return true; 10287 10288 const MCExpr *OffsetExpr; 10289 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10290 10291 if (Parser.parseExpression(OffsetExpr)) 10292 return Error(OffsetLoc, "malformed offset expression"); 10293 10294 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10295 if (!CE) 10296 return Error(OffsetLoc, "offset must be an immediate constant"); 10297 10298 Offset = CE->getValue(); 10299 } 10300 10301 if (parseToken(AsmToken::EndOfStatement, 10302 "unexpected token in '.movsp' directive")) 10303 return true; 10304 10305 getTargetStreamer().emitMovSP(SPReg, Offset); 10306 UC.saveFPReg(SPReg); 10307 10308 return false; 10309 } 10310 10311 /// parseDirectiveObjectArch 10312 /// ::= .object_arch name 10313 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10314 MCAsmParser &Parser = getParser(); 10315 if (getLexer().isNot(AsmToken::Identifier)) 10316 return Error(getLexer().getLoc(), "unexpected token"); 10317 10318 StringRef Arch = Parser.getTok().getString(); 10319 SMLoc ArchLoc = Parser.getTok().getLoc(); 10320 Lex(); 10321 10322 ARM::ArchKind ID = ARM::parseArch(Arch); 10323 10324 if (ID == ARM::ArchKind::INVALID) 10325 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10326 if (parseToken(AsmToken::EndOfStatement)) 10327 return true; 10328 10329 getTargetStreamer().emitObjectArch(ID); 10330 return false; 10331 } 10332 10333 /// parseDirectiveAlign 10334 /// ::= .align 10335 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10336 // NOTE: if this is not the end of the statement, fall back to the target 10337 // agnostic handling for this directive which will correctly handle this. 10338 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10339 // '.align' is target specifically handled to mean 2**2 byte alignment. 10340 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10341 assert(Section && "must have section to emit alignment"); 10342 if (Section->UseCodeAlign()) 10343 getStreamer().EmitCodeAlignment(4, 0); 10344 else 10345 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10346 return false; 10347 } 10348 return true; 10349 } 10350 10351 /// parseDirectiveThumbSet 10352 /// ::= .thumb_set name, value 10353 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10354 MCAsmParser &Parser = getParser(); 10355 10356 StringRef Name; 10357 if (check(Parser.parseIdentifier(Name), 10358 "expected identifier after '.thumb_set'") || 10359 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10360 return true; 10361 10362 MCSymbol *Sym; 10363 const MCExpr *Value; 10364 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10365 Parser, Sym, Value)) 10366 return true; 10367 10368 getTargetStreamer().emitThumbSet(Sym, Value); 10369 return false; 10370 } 10371 10372 /// Force static initialization. 10373 extern "C" void LLVMInitializeARMAsmParser() { 10374 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10375 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10376 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10377 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10378 } 10379 10380 #define GET_REGISTER_MATCHER 10381 #define GET_SUBTARGET_FEATURE_NAME 10382 #define GET_MATCHER_IMPLEMENTATION 10383 #define GET_MNEMONIC_SPELL_CHECKER 10384 #include "ARMGenAsmMatcher.inc" 10385 10386 // Some diagnostics need to vary with subtarget features, so they are handled 10387 // here. For example, the DPR class has either 16 or 32 registers, depending 10388 // on the FPU available. 10389 const char * 10390 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 10391 switch (MatchError) { 10392 // rGPR contains sp starting with ARMv8. 10393 case Match_rGPR: 10394 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 10395 : "operand must be a register in range [r0, r12] or r14"; 10396 // DPR contains 16 registers for some FPUs, and 32 for others. 10397 case Match_DPR: 10398 return hasD16() ? "operand must be a register in range [d0, d15]" 10399 : "operand must be a register in range [d0, d31]"; 10400 case Match_DPR_RegList: 10401 return hasD16() ? "operand must be a list of registers in range [d0, d15]" 10402 : "operand must be a list of registers in range [d0, d31]"; 10403 10404 // For all other diags, use the static string from tablegen. 10405 default: 10406 return getMatchKindDiag(MatchError); 10407 } 10408 } 10409 10410 // Process the list of near-misses, throwing away ones we don't want to report 10411 // to the user, and converting the rest to a source location and string that 10412 // should be reported. 10413 void 10414 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 10415 SmallVectorImpl<NearMissMessage> &NearMissesOut, 10416 SMLoc IDLoc, OperandVector &Operands) { 10417 // TODO: If operand didn't match, sub in a dummy one and run target 10418 // predicate, so that we can avoid reporting near-misses that are invalid? 10419 // TODO: Many operand types dont have SuperClasses set, so we report 10420 // redundant ones. 10421 // TODO: Some operands are superclasses of registers (e.g. 10422 // MCK_RegShiftedImm), we don't have any way to represent that currently. 10423 // TODO: This is not all ARM-specific, can some of it be factored out? 10424 10425 // Record some information about near-misses that we have already seen, so 10426 // that we can avoid reporting redundant ones. For example, if there are 10427 // variants of an instruction that take 8- and 16-bit immediates, we want 10428 // to only report the widest one. 10429 std::multimap<unsigned, unsigned> OperandMissesSeen; 10430 SmallSet<uint64_t, 4> FeatureMissesSeen; 10431 bool ReportedTooFewOperands = false; 10432 10433 // Process the near-misses in reverse order, so that we see more general ones 10434 // first, and so can avoid emitting more specific ones. 10435 for (NearMissInfo &I : reverse(NearMissesIn)) { 10436 switch (I.getKind()) { 10437 case NearMissInfo::NearMissOperand: { 10438 SMLoc OperandLoc = 10439 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 10440 const char *OperandDiag = 10441 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 10442 10443 // If we have already emitted a message for a superclass, don't also report 10444 // the sub-class. We consider all operand classes that we don't have a 10445 // specialised diagnostic for to be equal for the propose of this check, 10446 // so that we don't report the generic error multiple times on the same 10447 // operand. 10448 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 10449 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 10450 if (std::any_of(PrevReports.first, PrevReports.second, 10451 [DupCheckMatchClass]( 10452 const std::pair<unsigned, unsigned> Pair) { 10453 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 10454 return Pair.second == DupCheckMatchClass; 10455 else 10456 return isSubclass((MatchClassKind)DupCheckMatchClass, 10457 (MatchClassKind)Pair.second); 10458 })) 10459 break; 10460 OperandMissesSeen.insert( 10461 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 10462 10463 NearMissMessage Message; 10464 Message.Loc = OperandLoc; 10465 if (OperandDiag) { 10466 Message.Message = OperandDiag; 10467 } else if (I.getOperandClass() == InvalidMatchClass) { 10468 Message.Message = "too many operands for instruction"; 10469 } else { 10470 Message.Message = "invalid operand for instruction"; 10471 LLVM_DEBUG( 10472 dbgs() << "Missing diagnostic string for operand class " 10473 << getMatchClassName((MatchClassKind)I.getOperandClass()) 10474 << I.getOperandClass() << ", error " << I.getOperandError() 10475 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 10476 } 10477 NearMissesOut.emplace_back(Message); 10478 break; 10479 } 10480 case NearMissInfo::NearMissFeature: { 10481 uint64_t MissingFeatures = I.getFeatures(); 10482 // Don't report the same set of features twice. 10483 if (FeatureMissesSeen.count(MissingFeatures)) 10484 break; 10485 FeatureMissesSeen.insert(MissingFeatures); 10486 10487 // Special case: don't report a feature set which includes arm-mode for 10488 // targets that don't have ARM mode. 10489 if ((MissingFeatures & Feature_IsARM) && !hasARM()) 10490 break; 10491 // Don't report any near-misses that both require switching instruction 10492 // set, and adding other subtarget features. 10493 if (isThumb() && (MissingFeatures & Feature_IsARM) && 10494 (MissingFeatures & ~Feature_IsARM)) 10495 break; 10496 if (!isThumb() && (MissingFeatures & Feature_IsThumb) && 10497 (MissingFeatures & ~Feature_IsThumb)) 10498 break; 10499 if (!isThumb() && (MissingFeatures & Feature_IsThumb2) && 10500 (MissingFeatures & ~(Feature_IsThumb2 | Feature_IsThumb))) 10501 break; 10502 if (isMClass() && (MissingFeatures & Feature_HasNEON)) 10503 break; 10504 10505 NearMissMessage Message; 10506 Message.Loc = IDLoc; 10507 raw_svector_ostream OS(Message.Message); 10508 10509 OS << "instruction requires:"; 10510 uint64_t Mask = 1; 10511 for (unsigned MaskPos = 0; MaskPos < (sizeof(MissingFeatures) * 8 - 1); 10512 ++MaskPos) { 10513 if (MissingFeatures & Mask) { 10514 OS << " " << getSubtargetFeatureName(MissingFeatures & Mask); 10515 } 10516 Mask <<= 1; 10517 } 10518 NearMissesOut.emplace_back(Message); 10519 10520 break; 10521 } 10522 case NearMissInfo::NearMissPredicate: { 10523 NearMissMessage Message; 10524 Message.Loc = IDLoc; 10525 switch (I.getPredicateError()) { 10526 case Match_RequiresNotITBlock: 10527 Message.Message = "flag setting instruction only valid outside IT block"; 10528 break; 10529 case Match_RequiresITBlock: 10530 Message.Message = "instruction only valid inside IT block"; 10531 break; 10532 case Match_RequiresV6: 10533 Message.Message = "instruction variant requires ARMv6 or later"; 10534 break; 10535 case Match_RequiresThumb2: 10536 Message.Message = "instruction variant requires Thumb2"; 10537 break; 10538 case Match_RequiresV8: 10539 Message.Message = "instruction variant requires ARMv8 or later"; 10540 break; 10541 case Match_RequiresFlagSetting: 10542 Message.Message = "no flag-preserving variant of this instruction available"; 10543 break; 10544 case Match_InvalidOperand: 10545 Message.Message = "invalid operand for instruction"; 10546 break; 10547 default: 10548 llvm_unreachable("Unhandled target predicate error"); 10549 break; 10550 } 10551 NearMissesOut.emplace_back(Message); 10552 break; 10553 } 10554 case NearMissInfo::NearMissTooFewOperands: { 10555 if (!ReportedTooFewOperands) { 10556 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 10557 NearMissesOut.emplace_back(NearMissMessage{ 10558 EndLoc, StringRef("too few operands for instruction")}); 10559 ReportedTooFewOperands = true; 10560 } 10561 break; 10562 } 10563 case NearMissInfo::NoNearMiss: 10564 // This should never leave the matcher. 10565 llvm_unreachable("not a near-miss"); 10566 break; 10567 } 10568 } 10569 } 10570 10571 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 10572 SMLoc IDLoc, OperandVector &Operands) { 10573 SmallVector<NearMissMessage, 4> Messages; 10574 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 10575 10576 if (Messages.size() == 0) { 10577 // No near-misses were found, so the best we can do is "invalid 10578 // instruction". 10579 Error(IDLoc, "invalid instruction"); 10580 } else if (Messages.size() == 1) { 10581 // One near miss was found, report it as the sole error. 10582 Error(Messages[0].Loc, Messages[0].Message); 10583 } else { 10584 // More than one near miss, so report a generic "invalid instruction" 10585 // error, followed by notes for each of the near-misses. 10586 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 10587 for (auto &M : Messages) { 10588 Note(M.Loc, M.Message); 10589 } 10590 } 10591 } 10592 10593 // FIXME: This structure should be moved inside ARMTargetParser 10594 // when we start to table-generate them, and we can use the ARM 10595 // flags below, that were generated by table-gen. 10596 static const struct { 10597 const unsigned Kind; 10598 const uint64_t ArchCheck; 10599 const FeatureBitset Features; 10600 } Extensions[] = { 10601 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10602 { ARM::AEK_CRYPTO, Feature_HasV8, 10603 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10604 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10605 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10606 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 10607 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10608 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10609 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10610 // FIXME: Only available in A-class, isel not predicated 10611 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10612 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10613 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10614 // FIXME: Unsupported extensions. 10615 { ARM::AEK_OS, Feature_None, {} }, 10616 { ARM::AEK_IWMMXT, Feature_None, {} }, 10617 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10618 { ARM::AEK_MAVERICK, Feature_None, {} }, 10619 { ARM::AEK_XSCALE, Feature_None, {} }, 10620 }; 10621 10622 /// parseDirectiveArchExtension 10623 /// ::= .arch_extension [no]feature 10624 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10625 MCAsmParser &Parser = getParser(); 10626 10627 if (getLexer().isNot(AsmToken::Identifier)) 10628 return Error(getLexer().getLoc(), "expected architecture extension name"); 10629 10630 StringRef Name = Parser.getTok().getString(); 10631 SMLoc ExtLoc = Parser.getTok().getLoc(); 10632 Lex(); 10633 10634 if (parseToken(AsmToken::EndOfStatement, 10635 "unexpected token in '.arch_extension' directive")) 10636 return true; 10637 10638 bool EnableFeature = true; 10639 if (Name.startswith_lower("no")) { 10640 EnableFeature = false; 10641 Name = Name.substr(2); 10642 } 10643 unsigned FeatureKind = ARM::parseArchExt(Name); 10644 if (FeatureKind == ARM::AEK_INVALID) 10645 return Error(ExtLoc, "unknown architectural extension: " + Name); 10646 10647 for (const auto &Extension : Extensions) { 10648 if (Extension.Kind != FeatureKind) 10649 continue; 10650 10651 if (Extension.Features.none()) 10652 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10653 10654 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10655 return Error(ExtLoc, "architectural extension '" + Name + 10656 "' is not " 10657 "allowed for the current base architecture"); 10658 10659 MCSubtargetInfo &STI = copySTI(); 10660 FeatureBitset ToggleFeatures = EnableFeature 10661 ? (~STI.getFeatureBits() & Extension.Features) 10662 : ( STI.getFeatureBits() & Extension.Features); 10663 10664 uint64_t Features = 10665 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10666 setAvailableFeatures(Features); 10667 return false; 10668 } 10669 10670 return Error(ExtLoc, "unknown architectural extension: " + Name); 10671 } 10672 10673 // Define this matcher function after the auto-generated include so we 10674 // have the match class enum definitions. 10675 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10676 unsigned Kind) { 10677 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10678 // If the kind is a token for a literal immediate, check if our asm 10679 // operand matches. This is for InstAliases which have a fixed-value 10680 // immediate in the syntax. 10681 switch (Kind) { 10682 default: break; 10683 case MCK__35_0: 10684 if (Op.isImm()) 10685 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10686 if (CE->getValue() == 0) 10687 return Match_Success; 10688 break; 10689 case MCK_ModImm: 10690 if (Op.isImm()) { 10691 const MCExpr *SOExpr = Op.getImm(); 10692 int64_t Value; 10693 if (!SOExpr->evaluateAsAbsolute(Value)) 10694 return Match_Success; 10695 assert((Value >= std::numeric_limits<int32_t>::min() && 10696 Value <= std::numeric_limits<uint32_t>::max()) && 10697 "expression value must be representable in 32 bits"); 10698 } 10699 break; 10700 case MCK_rGPR: 10701 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10702 return Match_Success; 10703 return Match_rGPR; 10704 case MCK_GPRPair: 10705 if (Op.isReg() && 10706 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10707 return Match_Success; 10708 break; 10709 } 10710 return Match_InvalidOperand; 10711 } 10712