1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/MC/MCAsmInfo.h" 20 #include "llvm/MC/MCAssembler.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCDisassembler.h" 23 #include "llvm/MC/MCELFStreamer.h" 24 #include "llvm/MC/MCExpr.h" 25 #include "llvm/MC/MCInst.h" 26 #include "llvm/MC/MCInstrDesc.h" 27 #include "llvm/MC/MCInstrInfo.h" 28 #include "llvm/MC/MCObjectFileInfo.h" 29 #include "llvm/MC/MCParser/MCAsmLexer.h" 30 #include "llvm/MC/MCParser/MCAsmParser.h" 31 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 32 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 33 #include "llvm/MC/MCRegisterInfo.h" 34 #include "llvm/MC/MCSection.h" 35 #include "llvm/MC/MCStreamer.h" 36 #include "llvm/MC/MCSubtargetInfo.h" 37 #include "llvm/MC/MCSymbol.h" 38 #include "llvm/MC/MCTargetAsmParser.h" 39 #include "llvm/Support/ARMBuildAttributes.h" 40 #include "llvm/Support/ARMEHABI.h" 41 #include "llvm/Support/TargetParser.h" 42 #include "llvm/Support/COFF.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ELF.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SourceMgr.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Support/raw_ostream.h" 49 50 using namespace llvm; 51 52 namespace { 53 54 class ARMOperand; 55 56 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 57 58 class UnwindContext { 59 MCAsmParser &Parser; 60 61 typedef SmallVector<SMLoc, 4> Locs; 62 63 Locs FnStartLocs; 64 Locs CantUnwindLocs; 65 Locs PersonalityLocs; 66 Locs PersonalityIndexLocs; 67 Locs HandlerDataLocs; 68 int FPReg; 69 70 public: 71 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 72 73 bool hasFnStart() const { return !FnStartLocs.empty(); } 74 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 75 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 76 bool hasPersonality() const { 77 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 78 } 79 80 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 81 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 82 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 83 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 84 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 85 86 void saveFPReg(int Reg) { FPReg = Reg; } 87 int getFPReg() const { return FPReg; } 88 89 void emitFnStartLocNotes() const { 90 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 91 FI != FE; ++FI) 92 Parser.Note(*FI, ".fnstart was specified here"); 93 } 94 void emitCantUnwindLocNotes() const { 95 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 96 UE = CantUnwindLocs.end(); UI != UE; ++UI) 97 Parser.Note(*UI, ".cantunwind was specified here"); 98 } 99 void emitHandlerDataLocNotes() const { 100 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 101 HE = HandlerDataLocs.end(); HI != HE; ++HI) 102 Parser.Note(*HI, ".handlerdata was specified here"); 103 } 104 void emitPersonalityLocNotes() const { 105 for (Locs::const_iterator PI = PersonalityLocs.begin(), 106 PE = PersonalityLocs.end(), 107 PII = PersonalityIndexLocs.begin(), 108 PIE = PersonalityIndexLocs.end(); 109 PI != PE || PII != PIE;) { 110 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 111 Parser.Note(*PI++, ".personality was specified here"); 112 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 113 Parser.Note(*PII++, ".personalityindex was specified here"); 114 else 115 llvm_unreachable(".personality and .personalityindex cannot be " 116 "at the same location"); 117 } 118 } 119 120 void reset() { 121 FnStartLocs = Locs(); 122 CantUnwindLocs = Locs(); 123 PersonalityLocs = Locs(); 124 HandlerDataLocs = Locs(); 125 PersonalityIndexLocs = Locs(); 126 FPReg = ARM::SP; 127 } 128 }; 129 130 class ARMAsmParser : public MCTargetAsmParser { 131 MCSubtargetInfo &STI; 132 const MCInstrInfo &MII; 133 const MCRegisterInfo *MRI; 134 UnwindContext UC; 135 136 ARMTargetStreamer &getTargetStreamer() { 137 assert(getParser().getStreamer().getTargetStreamer() && 138 "do not have a target streamer"); 139 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 140 return static_cast<ARMTargetStreamer &>(TS); 141 } 142 143 // Map of register aliases registers via the .req directive. 144 StringMap<unsigned> RegisterReqs; 145 146 bool NextSymbolIsThumb; 147 148 struct { 149 ARMCC::CondCodes Cond; // Condition for IT block. 150 unsigned Mask:4; // Condition mask for instructions. 151 // Starting at first 1 (from lsb). 152 // '1' condition as indicated in IT. 153 // '0' inverse of condition (else). 154 // Count of instructions in IT block is 155 // 4 - trailingzeroes(mask) 156 157 bool FirstCond; // Explicit flag for when we're parsing the 158 // First instruction in the IT block. It's 159 // implied in the mask, so needs special 160 // handling. 161 162 unsigned CurPosition; // Current position in parsing of IT 163 // block. In range [0,3]. Initialized 164 // according to count of instructions in block. 165 // ~0U if no active IT block. 166 } ITState; 167 bool inITBlock() { return ITState.CurPosition != ~0U; } 168 bool lastInITBlock() { 169 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 170 } 171 void forwardITPosition() { 172 if (!inITBlock()) return; 173 // Move to the next instruction in the IT block, if there is one. If not, 174 // mark the block as done. 175 unsigned TZ = countTrailingZeros(ITState.Mask); 176 if (++ITState.CurPosition == 5 - TZ) 177 ITState.CurPosition = ~0U; // Done with the IT block after this. 178 } 179 180 void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { 181 return getParser().Note(L, Msg, Ranges); 182 } 183 bool Warning(SMLoc L, const Twine &Msg, 184 ArrayRef<SMRange> Ranges = None) { 185 return getParser().Warning(L, Msg, Ranges); 186 } 187 bool Error(SMLoc L, const Twine &Msg, 188 ArrayRef<SMRange> Ranges = None) { 189 return getParser().Error(L, Msg, Ranges); 190 } 191 192 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 193 unsigned ListNo, bool IsARPop = false); 194 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 195 unsigned ListNo); 196 197 int tryParseRegister(); 198 bool tryParseRegisterWithWriteBack(OperandVector &); 199 int tryParseShiftRegister(OperandVector &); 200 bool parseRegisterList(OperandVector &); 201 bool parseMemory(OperandVector &); 202 bool parseOperand(OperandVector &, StringRef Mnemonic); 203 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 204 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 205 unsigned &ShiftAmount); 206 bool parseLiteralValues(unsigned Size, SMLoc L); 207 bool parseDirectiveThumb(SMLoc L); 208 bool parseDirectiveARM(SMLoc L); 209 bool parseDirectiveThumbFunc(SMLoc L); 210 bool parseDirectiveCode(SMLoc L); 211 bool parseDirectiveSyntax(SMLoc L); 212 bool parseDirectiveReq(StringRef Name, SMLoc L); 213 bool parseDirectiveUnreq(SMLoc L); 214 bool parseDirectiveArch(SMLoc L); 215 bool parseDirectiveEabiAttr(SMLoc L); 216 bool parseDirectiveCPU(SMLoc L); 217 bool parseDirectiveFPU(SMLoc L); 218 bool parseDirectiveFnStart(SMLoc L); 219 bool parseDirectiveFnEnd(SMLoc L); 220 bool parseDirectiveCantUnwind(SMLoc L); 221 bool parseDirectivePersonality(SMLoc L); 222 bool parseDirectiveHandlerData(SMLoc L); 223 bool parseDirectiveSetFP(SMLoc L); 224 bool parseDirectivePad(SMLoc L); 225 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 226 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 227 bool parseDirectiveLtorg(SMLoc L); 228 bool parseDirectiveEven(SMLoc L); 229 bool parseDirectivePersonalityIndex(SMLoc L); 230 bool parseDirectiveUnwindRaw(SMLoc L); 231 bool parseDirectiveTLSDescSeq(SMLoc L); 232 bool parseDirectiveMovSP(SMLoc L); 233 bool parseDirectiveObjectArch(SMLoc L); 234 bool parseDirectiveArchExtension(SMLoc L); 235 bool parseDirectiveAlign(SMLoc L); 236 bool parseDirectiveThumbSet(SMLoc L); 237 238 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 239 bool &CarrySetting, unsigned &ProcessorIMod, 240 StringRef &ITMask); 241 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 242 bool &CanAcceptCarrySet, 243 bool &CanAcceptPredicationCode); 244 245 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 246 OperandVector &Operands); 247 bool isThumb() const { 248 // FIXME: Can tablegen auto-generate this? 249 return STI.getFeatureBits()[ARM::ModeThumb]; 250 } 251 bool isThumbOne() const { 252 return isThumb() && !STI.getFeatureBits()[ARM::FeatureThumb2]; 253 } 254 bool isThumbTwo() const { 255 return isThumb() && STI.getFeatureBits()[ARM::FeatureThumb2]; 256 } 257 bool hasThumb() const { 258 return STI.getFeatureBits()[ARM::HasV4TOps]; 259 } 260 bool hasV6Ops() const { 261 return STI.getFeatureBits()[ARM::HasV6Ops]; 262 } 263 bool hasV6MOps() const { 264 return STI.getFeatureBits()[ARM::HasV6MOps]; 265 } 266 bool hasV7Ops() const { 267 return STI.getFeatureBits()[ARM::HasV7Ops]; 268 } 269 bool hasV8Ops() const { 270 return STI.getFeatureBits()[ARM::HasV8Ops]; 271 } 272 bool hasARM() const { 273 return !STI.getFeatureBits()[ARM::FeatureNoARM]; 274 } 275 bool hasDSP() const { 276 return STI.getFeatureBits()[ARM::FeatureDSP]; 277 } 278 bool hasD16() const { 279 return STI.getFeatureBits()[ARM::FeatureD16]; 280 } 281 bool hasV8_1aOps() const { 282 return STI.getFeatureBits()[ARM::HasV8_1aOps]; 283 } 284 285 void SwitchMode() { 286 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 287 setAvailableFeatures(FB); 288 } 289 bool isMClass() const { 290 return STI.getFeatureBits()[ARM::FeatureMClass]; 291 } 292 293 /// @name Auto-generated Match Functions 294 /// { 295 296 #define GET_ASSEMBLER_HEADER 297 #include "ARMGenAsmMatcher.inc" 298 299 /// } 300 301 OperandMatchResultTy parseITCondCode(OperandVector &); 302 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 303 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 304 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 305 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 306 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 307 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 308 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 309 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 310 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 311 int High); 312 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 313 return parsePKHImm(O, "lsl", 0, 31); 314 } 315 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 316 return parsePKHImm(O, "asr", 1, 32); 317 } 318 OperandMatchResultTy parseSetEndImm(OperandVector &); 319 OperandMatchResultTy parseShifterImm(OperandVector &); 320 OperandMatchResultTy parseRotImm(OperandVector &); 321 OperandMatchResultTy parseModImm(OperandVector &); 322 OperandMatchResultTy parseBitfield(OperandVector &); 323 OperandMatchResultTy parsePostIdxReg(OperandVector &); 324 OperandMatchResultTy parseAM3Offset(OperandVector &); 325 OperandMatchResultTy parseFPImm(OperandVector &); 326 OperandMatchResultTy parseVectorList(OperandVector &); 327 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 328 SMLoc &EndLoc); 329 330 // Asm Match Converter Methods 331 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 332 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 333 334 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 335 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 336 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 337 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 338 339 public: 340 enum ARMMatchResultTy { 341 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 342 Match_RequiresNotITBlock, 343 Match_RequiresV6, 344 Match_RequiresThumb2, 345 #define GET_OPERAND_DIAGNOSTIC_TYPES 346 #include "ARMGenAsmMatcher.inc" 347 348 }; 349 350 ARMAsmParser(MCSubtargetInfo &STI, MCAsmParser &Parser, 351 const MCInstrInfo &MII, const MCTargetOptions &Options) 352 : MCTargetAsmParser(Options), STI(STI), MII(MII), UC(Parser) { 353 MCAsmParserExtension::Initialize(Parser); 354 355 // Cache the MCRegisterInfo. 356 MRI = getContext().getRegisterInfo(); 357 358 // Initialize the set of available features. 359 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 360 361 // Not in an ITBlock to start with. 362 ITState.CurPosition = ~0U; 363 364 NextSymbolIsThumb = false; 365 } 366 367 // Implementation of the MCTargetAsmParser interface: 368 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 369 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 370 SMLoc NameLoc, OperandVector &Operands) override; 371 bool ParseDirective(AsmToken DirectiveID) override; 372 373 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 374 unsigned Kind) override; 375 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 376 377 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 378 OperandVector &Operands, MCStreamer &Out, 379 uint64_t &ErrorInfo, 380 bool MatchingInlineAsm) override; 381 void onLabelParsed(MCSymbol *Symbol) override; 382 }; 383 } // end anonymous namespace 384 385 namespace { 386 387 /// ARMOperand - Instances of this class represent a parsed ARM machine 388 /// operand. 389 class ARMOperand : public MCParsedAsmOperand { 390 enum KindTy { 391 k_CondCode, 392 k_CCOut, 393 k_ITCondMask, 394 k_CoprocNum, 395 k_CoprocReg, 396 k_CoprocOption, 397 k_Immediate, 398 k_MemBarrierOpt, 399 k_InstSyncBarrierOpt, 400 k_Memory, 401 k_PostIndexRegister, 402 k_MSRMask, 403 k_BankedReg, 404 k_ProcIFlags, 405 k_VectorIndex, 406 k_Register, 407 k_RegisterList, 408 k_DPRRegisterList, 409 k_SPRRegisterList, 410 k_VectorList, 411 k_VectorListAllLanes, 412 k_VectorListIndexed, 413 k_ShiftedRegister, 414 k_ShiftedImmediate, 415 k_ShifterImmediate, 416 k_RotateImmediate, 417 k_ModifiedImmediate, 418 k_BitfieldDescriptor, 419 k_Token 420 } Kind; 421 422 SMLoc StartLoc, EndLoc, AlignmentLoc; 423 SmallVector<unsigned, 8> Registers; 424 425 struct CCOp { 426 ARMCC::CondCodes Val; 427 }; 428 429 struct CopOp { 430 unsigned Val; 431 }; 432 433 struct CoprocOptionOp { 434 unsigned Val; 435 }; 436 437 struct ITMaskOp { 438 unsigned Mask:4; 439 }; 440 441 struct MBOptOp { 442 ARM_MB::MemBOpt Val; 443 }; 444 445 struct ISBOptOp { 446 ARM_ISB::InstSyncBOpt Val; 447 }; 448 449 struct IFlagsOp { 450 ARM_PROC::IFlags Val; 451 }; 452 453 struct MMaskOp { 454 unsigned Val; 455 }; 456 457 struct BankedRegOp { 458 unsigned Val; 459 }; 460 461 struct TokOp { 462 const char *Data; 463 unsigned Length; 464 }; 465 466 struct RegOp { 467 unsigned RegNum; 468 }; 469 470 // A vector register list is a sequential list of 1 to 4 registers. 471 struct VectorListOp { 472 unsigned RegNum; 473 unsigned Count; 474 unsigned LaneIndex; 475 bool isDoubleSpaced; 476 }; 477 478 struct VectorIndexOp { 479 unsigned Val; 480 }; 481 482 struct ImmOp { 483 const MCExpr *Val; 484 }; 485 486 /// Combined record for all forms of ARM address expressions. 487 struct MemoryOp { 488 unsigned BaseRegNum; 489 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 490 // was specified. 491 const MCConstantExpr *OffsetImm; // Offset immediate value 492 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 493 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 494 unsigned ShiftImm; // shift for OffsetReg. 495 unsigned Alignment; // 0 = no alignment specified 496 // n = alignment in bytes (2, 4, 8, 16, or 32) 497 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 498 }; 499 500 struct PostIdxRegOp { 501 unsigned RegNum; 502 bool isAdd; 503 ARM_AM::ShiftOpc ShiftTy; 504 unsigned ShiftImm; 505 }; 506 507 struct ShifterImmOp { 508 bool isASR; 509 unsigned Imm; 510 }; 511 512 struct RegShiftedRegOp { 513 ARM_AM::ShiftOpc ShiftTy; 514 unsigned SrcReg; 515 unsigned ShiftReg; 516 unsigned ShiftImm; 517 }; 518 519 struct RegShiftedImmOp { 520 ARM_AM::ShiftOpc ShiftTy; 521 unsigned SrcReg; 522 unsigned ShiftImm; 523 }; 524 525 struct RotImmOp { 526 unsigned Imm; 527 }; 528 529 struct ModImmOp { 530 unsigned Bits; 531 unsigned Rot; 532 }; 533 534 struct BitfieldOp { 535 unsigned LSB; 536 unsigned Width; 537 }; 538 539 union { 540 struct CCOp CC; 541 struct CopOp Cop; 542 struct CoprocOptionOp CoprocOption; 543 struct MBOptOp MBOpt; 544 struct ISBOptOp ISBOpt; 545 struct ITMaskOp ITMask; 546 struct IFlagsOp IFlags; 547 struct MMaskOp MMask; 548 struct BankedRegOp BankedReg; 549 struct TokOp Tok; 550 struct RegOp Reg; 551 struct VectorListOp VectorList; 552 struct VectorIndexOp VectorIndex; 553 struct ImmOp Imm; 554 struct MemoryOp Memory; 555 struct PostIdxRegOp PostIdxReg; 556 struct ShifterImmOp ShifterImm; 557 struct RegShiftedRegOp RegShiftedReg; 558 struct RegShiftedImmOp RegShiftedImm; 559 struct RotImmOp RotImm; 560 struct ModImmOp ModImm; 561 struct BitfieldOp Bitfield; 562 }; 563 564 public: 565 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 566 567 /// getStartLoc - Get the location of the first token of this operand. 568 SMLoc getStartLoc() const override { return StartLoc; } 569 /// getEndLoc - Get the location of the last token of this operand. 570 SMLoc getEndLoc() const override { return EndLoc; } 571 /// getLocRange - Get the range between the first and last token of this 572 /// operand. 573 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 574 575 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 576 SMLoc getAlignmentLoc() const { 577 assert(Kind == k_Memory && "Invalid access!"); 578 return AlignmentLoc; 579 } 580 581 ARMCC::CondCodes getCondCode() const { 582 assert(Kind == k_CondCode && "Invalid access!"); 583 return CC.Val; 584 } 585 586 unsigned getCoproc() const { 587 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 588 return Cop.Val; 589 } 590 591 StringRef getToken() const { 592 assert(Kind == k_Token && "Invalid access!"); 593 return StringRef(Tok.Data, Tok.Length); 594 } 595 596 unsigned getReg() const override { 597 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 598 return Reg.RegNum; 599 } 600 601 const SmallVectorImpl<unsigned> &getRegList() const { 602 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 603 Kind == k_SPRRegisterList) && "Invalid access!"); 604 return Registers; 605 } 606 607 const MCExpr *getImm() const { 608 assert(isImm() && "Invalid access!"); 609 return Imm.Val; 610 } 611 612 unsigned getVectorIndex() const { 613 assert(Kind == k_VectorIndex && "Invalid access!"); 614 return VectorIndex.Val; 615 } 616 617 ARM_MB::MemBOpt getMemBarrierOpt() const { 618 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 619 return MBOpt.Val; 620 } 621 622 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 623 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 624 return ISBOpt.Val; 625 } 626 627 ARM_PROC::IFlags getProcIFlags() const { 628 assert(Kind == k_ProcIFlags && "Invalid access!"); 629 return IFlags.Val; 630 } 631 632 unsigned getMSRMask() const { 633 assert(Kind == k_MSRMask && "Invalid access!"); 634 return MMask.Val; 635 } 636 637 unsigned getBankedReg() const { 638 assert(Kind == k_BankedReg && "Invalid access!"); 639 return BankedReg.Val; 640 } 641 642 bool isCoprocNum() const { return Kind == k_CoprocNum; } 643 bool isCoprocReg() const { return Kind == k_CoprocReg; } 644 bool isCoprocOption() const { return Kind == k_CoprocOption; } 645 bool isCondCode() const { return Kind == k_CondCode; } 646 bool isCCOut() const { return Kind == k_CCOut; } 647 bool isITMask() const { return Kind == k_ITCondMask; } 648 bool isITCondCode() const { return Kind == k_CondCode; } 649 bool isImm() const override { return Kind == k_Immediate; } 650 // checks whether this operand is an unsigned offset which fits is a field 651 // of specified width and scaled by a specific number of bits 652 template<unsigned width, unsigned scale> 653 bool isUnsignedOffset() const { 654 if (!isImm()) return false; 655 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 656 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 657 int64_t Val = CE->getValue(); 658 int64_t Align = 1LL << scale; 659 int64_t Max = Align * ((1LL << width) - 1); 660 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 661 } 662 return false; 663 } 664 // checks whether this operand is an signed offset which fits is a field 665 // of specified width and scaled by a specific number of bits 666 template<unsigned width, unsigned scale> 667 bool isSignedOffset() const { 668 if (!isImm()) return false; 669 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 670 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 671 int64_t Val = CE->getValue(); 672 int64_t Align = 1LL << scale; 673 int64_t Max = Align * ((1LL << (width-1)) - 1); 674 int64_t Min = -Align * (1LL << (width-1)); 675 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 676 } 677 return false; 678 } 679 680 // checks whether this operand is a memory operand computed as an offset 681 // applied to PC. the offset may have 8 bits of magnitude and is represented 682 // with two bits of shift. textually it may be either [pc, #imm], #imm or 683 // relocable expression... 684 bool isThumbMemPC() const { 685 int64_t Val = 0; 686 if (isImm()) { 687 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 688 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 689 if (!CE) return false; 690 Val = CE->getValue(); 691 } 692 else if (isMem()) { 693 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 694 if(Memory.BaseRegNum != ARM::PC) return false; 695 Val = Memory.OffsetImm->getValue(); 696 } 697 else return false; 698 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 699 } 700 bool isFPImm() const { 701 if (!isImm()) return false; 702 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 703 if (!CE) return false; 704 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 705 return Val != -1; 706 } 707 bool isFBits16() const { 708 if (!isImm()) return false; 709 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 710 if (!CE) return false; 711 int64_t Value = CE->getValue(); 712 return Value >= 0 && Value <= 16; 713 } 714 bool isFBits32() const { 715 if (!isImm()) return false; 716 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 717 if (!CE) return false; 718 int64_t Value = CE->getValue(); 719 return Value >= 1 && Value <= 32; 720 } 721 bool isImm8s4() const { 722 if (!isImm()) return false; 723 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 724 if (!CE) return false; 725 int64_t Value = CE->getValue(); 726 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 727 } 728 bool isImm0_1020s4() const { 729 if (!isImm()) return false; 730 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 731 if (!CE) return false; 732 int64_t Value = CE->getValue(); 733 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 734 } 735 bool isImm0_508s4() const { 736 if (!isImm()) return false; 737 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 738 if (!CE) return false; 739 int64_t Value = CE->getValue(); 740 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 741 } 742 bool isImm0_508s4Neg() const { 743 if (!isImm()) return false; 744 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 745 if (!CE) return false; 746 int64_t Value = -CE->getValue(); 747 // explicitly exclude zero. we want that to use the normal 0_508 version. 748 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 749 } 750 bool isImm0_239() const { 751 if (!isImm()) return false; 752 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 753 if (!CE) return false; 754 int64_t Value = CE->getValue(); 755 return Value >= 0 && Value < 240; 756 } 757 bool isImm0_255() const { 758 if (!isImm()) return false; 759 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 760 if (!CE) return false; 761 int64_t Value = CE->getValue(); 762 return Value >= 0 && Value < 256; 763 } 764 bool isImm0_4095() const { 765 if (!isImm()) return false; 766 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 767 if (!CE) return false; 768 int64_t Value = CE->getValue(); 769 return Value >= 0 && Value < 4096; 770 } 771 bool isImm0_4095Neg() const { 772 if (!isImm()) return false; 773 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 774 if (!CE) return false; 775 int64_t Value = -CE->getValue(); 776 return Value > 0 && Value < 4096; 777 } 778 bool isImm0_1() const { 779 if (!isImm()) return false; 780 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 781 if (!CE) return false; 782 int64_t Value = CE->getValue(); 783 return Value >= 0 && Value < 2; 784 } 785 bool isImm0_3() const { 786 if (!isImm()) return false; 787 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 788 if (!CE) return false; 789 int64_t Value = CE->getValue(); 790 return Value >= 0 && Value < 4; 791 } 792 bool isImm0_7() const { 793 if (!isImm()) return false; 794 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 795 if (!CE) return false; 796 int64_t Value = CE->getValue(); 797 return Value >= 0 && Value < 8; 798 } 799 bool isImm0_15() const { 800 if (!isImm()) return false; 801 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 802 if (!CE) return false; 803 int64_t Value = CE->getValue(); 804 return Value >= 0 && Value < 16; 805 } 806 bool isImm0_31() const { 807 if (!isImm()) return false; 808 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 809 if (!CE) return false; 810 int64_t Value = CE->getValue(); 811 return Value >= 0 && Value < 32; 812 } 813 bool isImm0_63() const { 814 if (!isImm()) return false; 815 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 816 if (!CE) return false; 817 int64_t Value = CE->getValue(); 818 return Value >= 0 && Value < 64; 819 } 820 bool isImm8() const { 821 if (!isImm()) return false; 822 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 823 if (!CE) return false; 824 int64_t Value = CE->getValue(); 825 return Value == 8; 826 } 827 bool isImm16() const { 828 if (!isImm()) return false; 829 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 830 if (!CE) return false; 831 int64_t Value = CE->getValue(); 832 return Value == 16; 833 } 834 bool isImm32() const { 835 if (!isImm()) return false; 836 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 837 if (!CE) return false; 838 int64_t Value = CE->getValue(); 839 return Value == 32; 840 } 841 bool isShrImm8() const { 842 if (!isImm()) return false; 843 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 844 if (!CE) return false; 845 int64_t Value = CE->getValue(); 846 return Value > 0 && Value <= 8; 847 } 848 bool isShrImm16() const { 849 if (!isImm()) return false; 850 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 851 if (!CE) return false; 852 int64_t Value = CE->getValue(); 853 return Value > 0 && Value <= 16; 854 } 855 bool isShrImm32() const { 856 if (!isImm()) return false; 857 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 858 if (!CE) return false; 859 int64_t Value = CE->getValue(); 860 return Value > 0 && Value <= 32; 861 } 862 bool isShrImm64() const { 863 if (!isImm()) return false; 864 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 865 if (!CE) return false; 866 int64_t Value = CE->getValue(); 867 return Value > 0 && Value <= 64; 868 } 869 bool isImm1_7() const { 870 if (!isImm()) return false; 871 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 872 if (!CE) return false; 873 int64_t Value = CE->getValue(); 874 return Value > 0 && Value < 8; 875 } 876 bool isImm1_15() const { 877 if (!isImm()) return false; 878 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 879 if (!CE) return false; 880 int64_t Value = CE->getValue(); 881 return Value > 0 && Value < 16; 882 } 883 bool isImm1_31() const { 884 if (!isImm()) return false; 885 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 886 if (!CE) return false; 887 int64_t Value = CE->getValue(); 888 return Value > 0 && Value < 32; 889 } 890 bool isImm1_16() const { 891 if (!isImm()) return false; 892 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 893 if (!CE) return false; 894 int64_t Value = CE->getValue(); 895 return Value > 0 && Value < 17; 896 } 897 bool isImm1_32() const { 898 if (!isImm()) return false; 899 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 900 if (!CE) return false; 901 int64_t Value = CE->getValue(); 902 return Value > 0 && Value < 33; 903 } 904 bool isImm0_32() const { 905 if (!isImm()) return false; 906 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 907 if (!CE) return false; 908 int64_t Value = CE->getValue(); 909 return Value >= 0 && Value < 33; 910 } 911 bool isImm0_65535() const { 912 if (!isImm()) return false; 913 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 914 if (!CE) return false; 915 int64_t Value = CE->getValue(); 916 return Value >= 0 && Value < 65536; 917 } 918 bool isImm256_65535Expr() const { 919 if (!isImm()) return false; 920 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 921 // If it's not a constant expression, it'll generate a fixup and be 922 // handled later. 923 if (!CE) return true; 924 int64_t Value = CE->getValue(); 925 return Value >= 256 && Value < 65536; 926 } 927 bool isImm0_65535Expr() const { 928 if (!isImm()) return false; 929 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 930 // If it's not a constant expression, it'll generate a fixup and be 931 // handled later. 932 if (!CE) return true; 933 int64_t Value = CE->getValue(); 934 return Value >= 0 && Value < 65536; 935 } 936 bool isImm24bit() const { 937 if (!isImm()) return false; 938 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 939 if (!CE) return false; 940 int64_t Value = CE->getValue(); 941 return Value >= 0 && Value <= 0xffffff; 942 } 943 bool isImmThumbSR() const { 944 if (!isImm()) return false; 945 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 946 if (!CE) return false; 947 int64_t Value = CE->getValue(); 948 return Value > 0 && Value < 33; 949 } 950 bool isPKHLSLImm() const { 951 if (!isImm()) return false; 952 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 953 if (!CE) return false; 954 int64_t Value = CE->getValue(); 955 return Value >= 0 && Value < 32; 956 } 957 bool isPKHASRImm() const { 958 if (!isImm()) return false; 959 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 960 if (!CE) return false; 961 int64_t Value = CE->getValue(); 962 return Value > 0 && Value <= 32; 963 } 964 bool isAdrLabel() const { 965 // If we have an immediate that's not a constant, treat it as a label 966 // reference needing a fixup. 967 if (isImm() && !isa<MCConstantExpr>(getImm())) 968 return true; 969 970 // If it is a constant, it must fit into a modified immediate encoding. 971 if (!isImm()) return false; 972 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 973 if (!CE) return false; 974 int64_t Value = CE->getValue(); 975 return (ARM_AM::getSOImmVal(Value) != -1 || 976 ARM_AM::getSOImmVal(-Value) != -1); 977 } 978 bool isT2SOImm() const { 979 if (!isImm()) return false; 980 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 981 if (!CE) return false; 982 int64_t Value = CE->getValue(); 983 return ARM_AM::getT2SOImmVal(Value) != -1; 984 } 985 bool isT2SOImmNot() const { 986 if (!isImm()) return false; 987 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 988 if (!CE) return false; 989 int64_t Value = CE->getValue(); 990 return ARM_AM::getT2SOImmVal(Value) == -1 && 991 ARM_AM::getT2SOImmVal(~Value) != -1; 992 } 993 bool isT2SOImmNeg() const { 994 if (!isImm()) return false; 995 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 996 if (!CE) return false; 997 int64_t Value = CE->getValue(); 998 // Only use this when not representable as a plain so_imm. 999 return ARM_AM::getT2SOImmVal(Value) == -1 && 1000 ARM_AM::getT2SOImmVal(-Value) != -1; 1001 } 1002 bool isSetEndImm() const { 1003 if (!isImm()) return false; 1004 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1005 if (!CE) return false; 1006 int64_t Value = CE->getValue(); 1007 return Value == 1 || Value == 0; 1008 } 1009 bool isReg() const override { return Kind == k_Register; } 1010 bool isRegList() const { return Kind == k_RegisterList; } 1011 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1012 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1013 bool isToken() const override { return Kind == k_Token; } 1014 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1015 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1016 bool isMem() const override { return Kind == k_Memory; } 1017 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1018 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1019 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1020 bool isRotImm() const { return Kind == k_RotateImmediate; } 1021 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1022 bool isModImmNot() const { 1023 if (!isImm()) return false; 1024 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1025 if (!CE) return false; 1026 int64_t Value = CE->getValue(); 1027 return ARM_AM::getSOImmVal(~Value) != -1; 1028 } 1029 bool isModImmNeg() const { 1030 if (!isImm()) return false; 1031 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1032 if (!CE) return false; 1033 int64_t Value = CE->getValue(); 1034 return ARM_AM::getSOImmVal(Value) == -1 && 1035 ARM_AM::getSOImmVal(-Value) != -1; 1036 } 1037 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1038 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1039 bool isPostIdxReg() const { 1040 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1041 } 1042 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1043 if (!isMem()) 1044 return false; 1045 // No offset of any kind. 1046 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1047 (alignOK || Memory.Alignment == Alignment); 1048 } 1049 bool isMemPCRelImm12() const { 1050 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1051 return false; 1052 // Base register must be PC. 1053 if (Memory.BaseRegNum != ARM::PC) 1054 return false; 1055 // Immediate offset in range [-4095, 4095]. 1056 if (!Memory.OffsetImm) return true; 1057 int64_t Val = Memory.OffsetImm->getValue(); 1058 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1059 } 1060 bool isAlignedMemory() const { 1061 return isMemNoOffset(true); 1062 } 1063 bool isAlignedMemoryNone() const { 1064 return isMemNoOffset(false, 0); 1065 } 1066 bool isDupAlignedMemoryNone() const { 1067 return isMemNoOffset(false, 0); 1068 } 1069 bool isAlignedMemory16() const { 1070 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1071 return true; 1072 return isMemNoOffset(false, 0); 1073 } 1074 bool isDupAlignedMemory16() const { 1075 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1076 return true; 1077 return isMemNoOffset(false, 0); 1078 } 1079 bool isAlignedMemory32() const { 1080 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1081 return true; 1082 return isMemNoOffset(false, 0); 1083 } 1084 bool isDupAlignedMemory32() const { 1085 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1086 return true; 1087 return isMemNoOffset(false, 0); 1088 } 1089 bool isAlignedMemory64() const { 1090 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1091 return true; 1092 return isMemNoOffset(false, 0); 1093 } 1094 bool isDupAlignedMemory64() const { 1095 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1096 return true; 1097 return isMemNoOffset(false, 0); 1098 } 1099 bool isAlignedMemory64or128() const { 1100 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1101 return true; 1102 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1103 return true; 1104 return isMemNoOffset(false, 0); 1105 } 1106 bool isDupAlignedMemory64or128() const { 1107 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1108 return true; 1109 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1110 return true; 1111 return isMemNoOffset(false, 0); 1112 } 1113 bool isAlignedMemory64or128or256() const { 1114 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1115 return true; 1116 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1117 return true; 1118 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1119 return true; 1120 return isMemNoOffset(false, 0); 1121 } 1122 bool isAddrMode2() const { 1123 if (!isMem() || Memory.Alignment != 0) return false; 1124 // Check for register offset. 1125 if (Memory.OffsetRegNum) return true; 1126 // Immediate offset in range [-4095, 4095]. 1127 if (!Memory.OffsetImm) return true; 1128 int64_t Val = Memory.OffsetImm->getValue(); 1129 return Val > -4096 && Val < 4096; 1130 } 1131 bool isAM2OffsetImm() const { 1132 if (!isImm()) return false; 1133 // Immediate offset in range [-4095, 4095]. 1134 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1135 if (!CE) return false; 1136 int64_t Val = CE->getValue(); 1137 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1138 } 1139 bool isAddrMode3() const { 1140 // If we have an immediate that's not a constant, treat it as a label 1141 // reference needing a fixup. If it is a constant, it's something else 1142 // and we reject it. 1143 if (isImm() && !isa<MCConstantExpr>(getImm())) 1144 return true; 1145 if (!isMem() || Memory.Alignment != 0) return false; 1146 // No shifts are legal for AM3. 1147 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1148 // Check for register offset. 1149 if (Memory.OffsetRegNum) return true; 1150 // Immediate offset in range [-255, 255]. 1151 if (!Memory.OffsetImm) return true; 1152 int64_t Val = Memory.OffsetImm->getValue(); 1153 // The #-0 offset is encoded as INT32_MIN, and we have to check 1154 // for this too. 1155 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1156 } 1157 bool isAM3Offset() const { 1158 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1159 return false; 1160 if (Kind == k_PostIndexRegister) 1161 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1162 // Immediate offset in range [-255, 255]. 1163 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1164 if (!CE) return false; 1165 int64_t Val = CE->getValue(); 1166 // Special case, #-0 is INT32_MIN. 1167 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1168 } 1169 bool isAddrMode5() const { 1170 // If we have an immediate that's not a constant, treat it as a label 1171 // reference needing a fixup. If it is a constant, it's something else 1172 // and we reject it. 1173 if (isImm() && !isa<MCConstantExpr>(getImm())) 1174 return true; 1175 if (!isMem() || Memory.Alignment != 0) return false; 1176 // Check for register offset. 1177 if (Memory.OffsetRegNum) return false; 1178 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1179 if (!Memory.OffsetImm) return true; 1180 int64_t Val = Memory.OffsetImm->getValue(); 1181 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1182 Val == INT32_MIN; 1183 } 1184 bool isMemTBB() const { 1185 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1186 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1187 return false; 1188 return true; 1189 } 1190 bool isMemTBH() const { 1191 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1192 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1193 Memory.Alignment != 0 ) 1194 return false; 1195 return true; 1196 } 1197 bool isMemRegOffset() const { 1198 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1199 return false; 1200 return true; 1201 } 1202 bool isT2MemRegOffset() const { 1203 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1204 Memory.Alignment != 0) 1205 return false; 1206 // Only lsl #{0, 1, 2, 3} allowed. 1207 if (Memory.ShiftType == ARM_AM::no_shift) 1208 return true; 1209 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1210 return false; 1211 return true; 1212 } 1213 bool isMemThumbRR() const { 1214 // Thumb reg+reg addressing is simple. Just two registers, a base and 1215 // an offset. No shifts, negations or any other complicating factors. 1216 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1217 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1218 return false; 1219 return isARMLowRegister(Memory.BaseRegNum) && 1220 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1221 } 1222 bool isMemThumbRIs4() const { 1223 if (!isMem() || Memory.OffsetRegNum != 0 || 1224 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1225 return false; 1226 // Immediate offset, multiple of 4 in range [0, 124]. 1227 if (!Memory.OffsetImm) return true; 1228 int64_t Val = Memory.OffsetImm->getValue(); 1229 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1230 } 1231 bool isMemThumbRIs2() const { 1232 if (!isMem() || Memory.OffsetRegNum != 0 || 1233 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1234 return false; 1235 // Immediate offset, multiple of 4 in range [0, 62]. 1236 if (!Memory.OffsetImm) return true; 1237 int64_t Val = Memory.OffsetImm->getValue(); 1238 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1239 } 1240 bool isMemThumbRIs1() const { 1241 if (!isMem() || Memory.OffsetRegNum != 0 || 1242 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1243 return false; 1244 // Immediate offset in range [0, 31]. 1245 if (!Memory.OffsetImm) return true; 1246 int64_t Val = Memory.OffsetImm->getValue(); 1247 return Val >= 0 && Val <= 31; 1248 } 1249 bool isMemThumbSPI() const { 1250 if (!isMem() || Memory.OffsetRegNum != 0 || 1251 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1252 return false; 1253 // Immediate offset, multiple of 4 in range [0, 1020]. 1254 if (!Memory.OffsetImm) return true; 1255 int64_t Val = Memory.OffsetImm->getValue(); 1256 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1257 } 1258 bool isMemImm8s4Offset() const { 1259 // If we have an immediate that's not a constant, treat it as a label 1260 // reference needing a fixup. If it is a constant, it's something else 1261 // and we reject it. 1262 if (isImm() && !isa<MCConstantExpr>(getImm())) 1263 return true; 1264 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1265 return false; 1266 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1267 if (!Memory.OffsetImm) return true; 1268 int64_t Val = Memory.OffsetImm->getValue(); 1269 // Special case, #-0 is INT32_MIN. 1270 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1271 } 1272 bool isMemImm0_1020s4Offset() const { 1273 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1274 return false; 1275 // Immediate offset a multiple of 4 in range [0, 1020]. 1276 if (!Memory.OffsetImm) return true; 1277 int64_t Val = Memory.OffsetImm->getValue(); 1278 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1279 } 1280 bool isMemImm8Offset() const { 1281 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1282 return false; 1283 // Base reg of PC isn't allowed for these encodings. 1284 if (Memory.BaseRegNum == ARM::PC) return false; 1285 // Immediate offset in range [-255, 255]. 1286 if (!Memory.OffsetImm) return true; 1287 int64_t Val = Memory.OffsetImm->getValue(); 1288 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1289 } 1290 bool isMemPosImm8Offset() const { 1291 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1292 return false; 1293 // Immediate offset in range [0, 255]. 1294 if (!Memory.OffsetImm) return true; 1295 int64_t Val = Memory.OffsetImm->getValue(); 1296 return Val >= 0 && Val < 256; 1297 } 1298 bool isMemNegImm8Offset() const { 1299 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1300 return false; 1301 // Base reg of PC isn't allowed for these encodings. 1302 if (Memory.BaseRegNum == ARM::PC) return false; 1303 // Immediate offset in range [-255, -1]. 1304 if (!Memory.OffsetImm) return false; 1305 int64_t Val = Memory.OffsetImm->getValue(); 1306 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1307 } 1308 bool isMemUImm12Offset() const { 1309 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1310 return false; 1311 // Immediate offset in range [0, 4095]. 1312 if (!Memory.OffsetImm) return true; 1313 int64_t Val = Memory.OffsetImm->getValue(); 1314 return (Val >= 0 && Val < 4096); 1315 } 1316 bool isMemImm12Offset() const { 1317 // If we have an immediate that's not a constant, treat it as a label 1318 // reference needing a fixup. If it is a constant, it's something else 1319 // and we reject it. 1320 if (isImm() && !isa<MCConstantExpr>(getImm())) 1321 return true; 1322 1323 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1324 return false; 1325 // Immediate offset in range [-4095, 4095]. 1326 if (!Memory.OffsetImm) return true; 1327 int64_t Val = Memory.OffsetImm->getValue(); 1328 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1329 } 1330 bool isPostIdxImm8() const { 1331 if (!isImm()) return false; 1332 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1333 if (!CE) return false; 1334 int64_t Val = CE->getValue(); 1335 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1336 } 1337 bool isPostIdxImm8s4() const { 1338 if (!isImm()) return false; 1339 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1340 if (!CE) return false; 1341 int64_t Val = CE->getValue(); 1342 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1343 (Val == INT32_MIN); 1344 } 1345 1346 bool isMSRMask() const { return Kind == k_MSRMask; } 1347 bool isBankedReg() const { return Kind == k_BankedReg; } 1348 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1349 1350 // NEON operands. 1351 bool isSingleSpacedVectorList() const { 1352 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1353 } 1354 bool isDoubleSpacedVectorList() const { 1355 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1356 } 1357 bool isVecListOneD() const { 1358 if (!isSingleSpacedVectorList()) return false; 1359 return VectorList.Count == 1; 1360 } 1361 1362 bool isVecListDPair() const { 1363 if (!isSingleSpacedVectorList()) return false; 1364 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1365 .contains(VectorList.RegNum)); 1366 } 1367 1368 bool isVecListThreeD() const { 1369 if (!isSingleSpacedVectorList()) return false; 1370 return VectorList.Count == 3; 1371 } 1372 1373 bool isVecListFourD() const { 1374 if (!isSingleSpacedVectorList()) return false; 1375 return VectorList.Count == 4; 1376 } 1377 1378 bool isVecListDPairSpaced() const { 1379 if (Kind != k_VectorList) return false; 1380 if (isSingleSpacedVectorList()) return false; 1381 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1382 .contains(VectorList.RegNum)); 1383 } 1384 1385 bool isVecListThreeQ() const { 1386 if (!isDoubleSpacedVectorList()) return false; 1387 return VectorList.Count == 3; 1388 } 1389 1390 bool isVecListFourQ() const { 1391 if (!isDoubleSpacedVectorList()) return false; 1392 return VectorList.Count == 4; 1393 } 1394 1395 bool isSingleSpacedVectorAllLanes() const { 1396 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1397 } 1398 bool isDoubleSpacedVectorAllLanes() const { 1399 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1400 } 1401 bool isVecListOneDAllLanes() const { 1402 if (!isSingleSpacedVectorAllLanes()) return false; 1403 return VectorList.Count == 1; 1404 } 1405 1406 bool isVecListDPairAllLanes() const { 1407 if (!isSingleSpacedVectorAllLanes()) return false; 1408 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1409 .contains(VectorList.RegNum)); 1410 } 1411 1412 bool isVecListDPairSpacedAllLanes() const { 1413 if (!isDoubleSpacedVectorAllLanes()) return false; 1414 return VectorList.Count == 2; 1415 } 1416 1417 bool isVecListThreeDAllLanes() const { 1418 if (!isSingleSpacedVectorAllLanes()) return false; 1419 return VectorList.Count == 3; 1420 } 1421 1422 bool isVecListThreeQAllLanes() const { 1423 if (!isDoubleSpacedVectorAllLanes()) return false; 1424 return VectorList.Count == 3; 1425 } 1426 1427 bool isVecListFourDAllLanes() const { 1428 if (!isSingleSpacedVectorAllLanes()) return false; 1429 return VectorList.Count == 4; 1430 } 1431 1432 bool isVecListFourQAllLanes() const { 1433 if (!isDoubleSpacedVectorAllLanes()) return false; 1434 return VectorList.Count == 4; 1435 } 1436 1437 bool isSingleSpacedVectorIndexed() const { 1438 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1439 } 1440 bool isDoubleSpacedVectorIndexed() const { 1441 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1442 } 1443 bool isVecListOneDByteIndexed() const { 1444 if (!isSingleSpacedVectorIndexed()) return false; 1445 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1446 } 1447 1448 bool isVecListOneDHWordIndexed() const { 1449 if (!isSingleSpacedVectorIndexed()) return false; 1450 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1451 } 1452 1453 bool isVecListOneDWordIndexed() const { 1454 if (!isSingleSpacedVectorIndexed()) return false; 1455 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1456 } 1457 1458 bool isVecListTwoDByteIndexed() const { 1459 if (!isSingleSpacedVectorIndexed()) return false; 1460 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1461 } 1462 1463 bool isVecListTwoDHWordIndexed() const { 1464 if (!isSingleSpacedVectorIndexed()) return false; 1465 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1466 } 1467 1468 bool isVecListTwoQWordIndexed() const { 1469 if (!isDoubleSpacedVectorIndexed()) return false; 1470 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1471 } 1472 1473 bool isVecListTwoQHWordIndexed() const { 1474 if (!isDoubleSpacedVectorIndexed()) return false; 1475 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1476 } 1477 1478 bool isVecListTwoDWordIndexed() const { 1479 if (!isSingleSpacedVectorIndexed()) return false; 1480 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1481 } 1482 1483 bool isVecListThreeDByteIndexed() const { 1484 if (!isSingleSpacedVectorIndexed()) return false; 1485 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1486 } 1487 1488 bool isVecListThreeDHWordIndexed() const { 1489 if (!isSingleSpacedVectorIndexed()) return false; 1490 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1491 } 1492 1493 bool isVecListThreeQWordIndexed() const { 1494 if (!isDoubleSpacedVectorIndexed()) return false; 1495 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1496 } 1497 1498 bool isVecListThreeQHWordIndexed() const { 1499 if (!isDoubleSpacedVectorIndexed()) return false; 1500 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1501 } 1502 1503 bool isVecListThreeDWordIndexed() const { 1504 if (!isSingleSpacedVectorIndexed()) return false; 1505 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1506 } 1507 1508 bool isVecListFourDByteIndexed() const { 1509 if (!isSingleSpacedVectorIndexed()) return false; 1510 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1511 } 1512 1513 bool isVecListFourDHWordIndexed() const { 1514 if (!isSingleSpacedVectorIndexed()) return false; 1515 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1516 } 1517 1518 bool isVecListFourQWordIndexed() const { 1519 if (!isDoubleSpacedVectorIndexed()) return false; 1520 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1521 } 1522 1523 bool isVecListFourQHWordIndexed() const { 1524 if (!isDoubleSpacedVectorIndexed()) return false; 1525 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1526 } 1527 1528 bool isVecListFourDWordIndexed() const { 1529 if (!isSingleSpacedVectorIndexed()) return false; 1530 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1531 } 1532 1533 bool isVectorIndex8() const { 1534 if (Kind != k_VectorIndex) return false; 1535 return VectorIndex.Val < 8; 1536 } 1537 bool isVectorIndex16() const { 1538 if (Kind != k_VectorIndex) return false; 1539 return VectorIndex.Val < 4; 1540 } 1541 bool isVectorIndex32() const { 1542 if (Kind != k_VectorIndex) return false; 1543 return VectorIndex.Val < 2; 1544 } 1545 1546 bool isNEONi8splat() const { 1547 if (!isImm()) return false; 1548 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1549 // Must be a constant. 1550 if (!CE) return false; 1551 int64_t Value = CE->getValue(); 1552 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1553 // value. 1554 return Value >= 0 && Value < 256; 1555 } 1556 1557 bool isNEONi16splat() const { 1558 if (isNEONByteReplicate(2)) 1559 return false; // Leave that for bytes replication and forbid by default. 1560 if (!isImm()) 1561 return false; 1562 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1563 // Must be a constant. 1564 if (!CE) return false; 1565 unsigned Value = CE->getValue(); 1566 return ARM_AM::isNEONi16splat(Value); 1567 } 1568 1569 bool isNEONi16splatNot() const { 1570 if (!isImm()) 1571 return false; 1572 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1573 // Must be a constant. 1574 if (!CE) return false; 1575 unsigned Value = CE->getValue(); 1576 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1577 } 1578 1579 bool isNEONi32splat() const { 1580 if (isNEONByteReplicate(4)) 1581 return false; // Leave that for bytes replication and forbid by default. 1582 if (!isImm()) 1583 return false; 1584 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1585 // Must be a constant. 1586 if (!CE) return false; 1587 unsigned Value = CE->getValue(); 1588 return ARM_AM::isNEONi32splat(Value); 1589 } 1590 1591 bool isNEONi32splatNot() const { 1592 if (!isImm()) 1593 return false; 1594 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1595 // Must be a constant. 1596 if (!CE) return false; 1597 unsigned Value = CE->getValue(); 1598 return ARM_AM::isNEONi32splat(~Value); 1599 } 1600 1601 bool isNEONByteReplicate(unsigned NumBytes) const { 1602 if (!isImm()) 1603 return false; 1604 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1605 // Must be a constant. 1606 if (!CE) 1607 return false; 1608 int64_t Value = CE->getValue(); 1609 if (!Value) 1610 return false; // Don't bother with zero. 1611 1612 unsigned char B = Value & 0xff; 1613 for (unsigned i = 1; i < NumBytes; ++i) { 1614 Value >>= 8; 1615 if ((Value & 0xff) != B) 1616 return false; 1617 } 1618 return true; 1619 } 1620 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1621 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1622 bool isNEONi32vmov() const { 1623 if (isNEONByteReplicate(4)) 1624 return false; // Let it to be classified as byte-replicate case. 1625 if (!isImm()) 1626 return false; 1627 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1628 // Must be a constant. 1629 if (!CE) 1630 return false; 1631 int64_t Value = CE->getValue(); 1632 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1633 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1634 // FIXME: This is probably wrong and a copy and paste from previous example 1635 return (Value >= 0 && Value < 256) || 1636 (Value >= 0x0100 && Value <= 0xff00) || 1637 (Value >= 0x010000 && Value <= 0xff0000) || 1638 (Value >= 0x01000000 && Value <= 0xff000000) || 1639 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1640 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1641 } 1642 bool isNEONi32vmovNeg() const { 1643 if (!isImm()) return false; 1644 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1645 // Must be a constant. 1646 if (!CE) return false; 1647 int64_t Value = ~CE->getValue(); 1648 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1649 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1650 // FIXME: This is probably wrong and a copy and paste from previous example 1651 return (Value >= 0 && Value < 256) || 1652 (Value >= 0x0100 && Value <= 0xff00) || 1653 (Value >= 0x010000 && Value <= 0xff0000) || 1654 (Value >= 0x01000000 && Value <= 0xff000000) || 1655 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1656 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1657 } 1658 1659 bool isNEONi64splat() const { 1660 if (!isImm()) return false; 1661 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1662 // Must be a constant. 1663 if (!CE) return false; 1664 uint64_t Value = CE->getValue(); 1665 // i64 value with each byte being either 0 or 0xff. 1666 for (unsigned i = 0; i < 8; ++i) 1667 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1668 return true; 1669 } 1670 1671 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1672 // Add as immediates when possible. Null MCExpr = 0. 1673 if (!Expr) 1674 Inst.addOperand(MCOperand::createImm(0)); 1675 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1676 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1677 else 1678 Inst.addOperand(MCOperand::createExpr(Expr)); 1679 } 1680 1681 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1682 assert(N == 2 && "Invalid number of operands!"); 1683 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1684 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1685 Inst.addOperand(MCOperand::createReg(RegNum)); 1686 } 1687 1688 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1689 assert(N == 1 && "Invalid number of operands!"); 1690 Inst.addOperand(MCOperand::createImm(getCoproc())); 1691 } 1692 1693 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1694 assert(N == 1 && "Invalid number of operands!"); 1695 Inst.addOperand(MCOperand::createImm(getCoproc())); 1696 } 1697 1698 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1699 assert(N == 1 && "Invalid number of operands!"); 1700 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1701 } 1702 1703 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1704 assert(N == 1 && "Invalid number of operands!"); 1705 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1706 } 1707 1708 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1709 assert(N == 1 && "Invalid number of operands!"); 1710 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1711 } 1712 1713 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1714 assert(N == 1 && "Invalid number of operands!"); 1715 Inst.addOperand(MCOperand::createReg(getReg())); 1716 } 1717 1718 void addRegOperands(MCInst &Inst, unsigned N) const { 1719 assert(N == 1 && "Invalid number of operands!"); 1720 Inst.addOperand(MCOperand::createReg(getReg())); 1721 } 1722 1723 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1724 assert(N == 3 && "Invalid number of operands!"); 1725 assert(isRegShiftedReg() && 1726 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1727 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1728 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1729 Inst.addOperand(MCOperand::createImm( 1730 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1731 } 1732 1733 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1734 assert(N == 2 && "Invalid number of operands!"); 1735 assert(isRegShiftedImm() && 1736 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1737 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1738 // Shift of #32 is encoded as 0 where permitted 1739 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1740 Inst.addOperand(MCOperand::createImm( 1741 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1742 } 1743 1744 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1745 assert(N == 1 && "Invalid number of operands!"); 1746 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1747 ShifterImm.Imm)); 1748 } 1749 1750 void addRegListOperands(MCInst &Inst, unsigned N) const { 1751 assert(N == 1 && "Invalid number of operands!"); 1752 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1753 for (SmallVectorImpl<unsigned>::const_iterator 1754 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1755 Inst.addOperand(MCOperand::createReg(*I)); 1756 } 1757 1758 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 1759 addRegListOperands(Inst, N); 1760 } 1761 1762 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 1763 addRegListOperands(Inst, N); 1764 } 1765 1766 void addRotImmOperands(MCInst &Inst, unsigned N) const { 1767 assert(N == 1 && "Invalid number of operands!"); 1768 // Encoded as val>>3. The printer handles display as 8, 16, 24. 1769 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 1770 } 1771 1772 void addModImmOperands(MCInst &Inst, unsigned N) const { 1773 assert(N == 1 && "Invalid number of operands!"); 1774 1775 // Support for fixups (MCFixup) 1776 if (isImm()) 1777 return addImmOperands(Inst, N); 1778 1779 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 1780 } 1781 1782 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 1783 assert(N == 1 && "Invalid number of operands!"); 1784 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1785 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 1786 Inst.addOperand(MCOperand::createImm(Enc)); 1787 } 1788 1789 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 1790 assert(N == 1 && "Invalid number of operands!"); 1791 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1792 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 1793 Inst.addOperand(MCOperand::createImm(Enc)); 1794 } 1795 1796 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 1797 assert(N == 1 && "Invalid number of operands!"); 1798 // Munge the lsb/width into a bitfield mask. 1799 unsigned lsb = Bitfield.LSB; 1800 unsigned width = Bitfield.Width; 1801 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 1802 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 1803 (32 - (lsb + width))); 1804 Inst.addOperand(MCOperand::createImm(Mask)); 1805 } 1806 1807 void addImmOperands(MCInst &Inst, unsigned N) const { 1808 assert(N == 1 && "Invalid number of operands!"); 1809 addExpr(Inst, getImm()); 1810 } 1811 1812 void addFBits16Operands(MCInst &Inst, unsigned N) const { 1813 assert(N == 1 && "Invalid number of operands!"); 1814 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1815 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 1816 } 1817 1818 void addFBits32Operands(MCInst &Inst, unsigned N) const { 1819 assert(N == 1 && "Invalid number of operands!"); 1820 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1821 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 1822 } 1823 1824 void addFPImmOperands(MCInst &Inst, unsigned N) const { 1825 assert(N == 1 && "Invalid number of operands!"); 1826 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1827 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1828 Inst.addOperand(MCOperand::createImm(Val)); 1829 } 1830 1831 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 1832 assert(N == 1 && "Invalid number of operands!"); 1833 // FIXME: We really want to scale the value here, but the LDRD/STRD 1834 // instruction don't encode operands that way yet. 1835 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1836 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1837 } 1838 1839 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 1840 assert(N == 1 && "Invalid number of operands!"); 1841 // The immediate is scaled by four in the encoding and is stored 1842 // in the MCInst as such. Lop off the low two bits here. 1843 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1844 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1845 } 1846 1847 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 1848 assert(N == 1 && "Invalid number of operands!"); 1849 // The immediate is scaled by four in the encoding and is stored 1850 // in the MCInst as such. Lop off the low two bits here. 1851 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1852 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 1853 } 1854 1855 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 1856 assert(N == 1 && "Invalid number of operands!"); 1857 // The immediate is scaled by four in the encoding and is stored 1858 // in the MCInst as such. Lop off the low two bits here. 1859 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1860 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1861 } 1862 1863 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 1864 assert(N == 1 && "Invalid number of operands!"); 1865 // The constant encodes as the immediate-1, and we store in the instruction 1866 // the bits as encoded, so subtract off one here. 1867 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1868 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1869 } 1870 1871 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 1872 assert(N == 1 && "Invalid number of operands!"); 1873 // The constant encodes as the immediate-1, and we store in the instruction 1874 // the bits as encoded, so subtract off one here. 1875 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1876 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1877 } 1878 1879 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 1880 assert(N == 1 && "Invalid number of operands!"); 1881 // The constant encodes as the immediate, except for 32, which encodes as 1882 // zero. 1883 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1884 unsigned Imm = CE->getValue(); 1885 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 1886 } 1887 1888 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 1889 assert(N == 1 && "Invalid number of operands!"); 1890 // An ASR value of 32 encodes as 0, so that's how we want to add it to 1891 // the instruction as well. 1892 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1893 int Val = CE->getValue(); 1894 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 1895 } 1896 1897 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 1898 assert(N == 1 && "Invalid number of operands!"); 1899 // The operand is actually a t2_so_imm, but we have its bitwise 1900 // negation in the assembly source, so twiddle it here. 1901 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1902 Inst.addOperand(MCOperand::createImm(~CE->getValue())); 1903 } 1904 1905 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 1906 assert(N == 1 && "Invalid number of operands!"); 1907 // The operand is actually a t2_so_imm, but we have its 1908 // negation in the assembly source, so twiddle it here. 1909 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1910 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1911 } 1912 1913 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 1914 assert(N == 1 && "Invalid number of operands!"); 1915 // The operand is actually an imm0_4095, but we have its 1916 // negation in the assembly source, so twiddle it here. 1917 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1918 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1919 } 1920 1921 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 1922 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 1923 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 1924 return; 1925 } 1926 1927 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1928 assert(SR && "Unknown value type!"); 1929 Inst.addOperand(MCOperand::createExpr(SR)); 1930 } 1931 1932 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 1933 assert(N == 1 && "Invalid number of operands!"); 1934 if (isImm()) { 1935 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1936 if (CE) { 1937 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1938 return; 1939 } 1940 1941 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1942 assert(SR && "Unknown value type!"); 1943 Inst.addOperand(MCOperand::createExpr(SR)); 1944 return; 1945 } 1946 1947 assert(isMem() && "Unknown value type!"); 1948 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 1949 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 1950 } 1951 1952 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 1953 assert(N == 1 && "Invalid number of operands!"); 1954 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 1955 } 1956 1957 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 1958 assert(N == 1 && "Invalid number of operands!"); 1959 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 1960 } 1961 1962 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 1963 assert(N == 1 && "Invalid number of operands!"); 1964 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 1965 } 1966 1967 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 1968 assert(N == 1 && "Invalid number of operands!"); 1969 int32_t Imm = Memory.OffsetImm->getValue(); 1970 Inst.addOperand(MCOperand::createImm(Imm)); 1971 } 1972 1973 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 1974 assert(N == 1 && "Invalid number of operands!"); 1975 assert(isImm() && "Not an immediate!"); 1976 1977 // If we have an immediate that's not a constant, treat it as a label 1978 // reference needing a fixup. 1979 if (!isa<MCConstantExpr>(getImm())) { 1980 Inst.addOperand(MCOperand::createExpr(getImm())); 1981 return; 1982 } 1983 1984 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1985 int Val = CE->getValue(); 1986 Inst.addOperand(MCOperand::createImm(Val)); 1987 } 1988 1989 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 1990 assert(N == 2 && "Invalid number of operands!"); 1991 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 1992 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 1993 } 1994 1995 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 1996 addAlignedMemoryOperands(Inst, N); 1997 } 1998 1999 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2000 addAlignedMemoryOperands(Inst, N); 2001 } 2002 2003 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2004 addAlignedMemoryOperands(Inst, N); 2005 } 2006 2007 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2008 addAlignedMemoryOperands(Inst, N); 2009 } 2010 2011 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2012 addAlignedMemoryOperands(Inst, N); 2013 } 2014 2015 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2016 addAlignedMemoryOperands(Inst, N); 2017 } 2018 2019 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2020 addAlignedMemoryOperands(Inst, N); 2021 } 2022 2023 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2024 addAlignedMemoryOperands(Inst, N); 2025 } 2026 2027 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2028 addAlignedMemoryOperands(Inst, N); 2029 } 2030 2031 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2032 addAlignedMemoryOperands(Inst, N); 2033 } 2034 2035 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2036 addAlignedMemoryOperands(Inst, N); 2037 } 2038 2039 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2040 assert(N == 3 && "Invalid number of operands!"); 2041 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2042 if (!Memory.OffsetRegNum) { 2043 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2044 // Special case for #-0 2045 if (Val == INT32_MIN) Val = 0; 2046 if (Val < 0) Val = -Val; 2047 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2048 } else { 2049 // For register offset, we encode the shift type and negation flag 2050 // here. 2051 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2052 Memory.ShiftImm, Memory.ShiftType); 2053 } 2054 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2055 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2056 Inst.addOperand(MCOperand::createImm(Val)); 2057 } 2058 2059 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2060 assert(N == 2 && "Invalid number of operands!"); 2061 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2062 assert(CE && "non-constant AM2OffsetImm operand!"); 2063 int32_t Val = CE->getValue(); 2064 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2065 // Special case for #-0 2066 if (Val == INT32_MIN) Val = 0; 2067 if (Val < 0) Val = -Val; 2068 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2069 Inst.addOperand(MCOperand::createReg(0)); 2070 Inst.addOperand(MCOperand::createImm(Val)); 2071 } 2072 2073 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2074 assert(N == 3 && "Invalid number of operands!"); 2075 // If we have an immediate that's not a constant, treat it as a label 2076 // reference needing a fixup. If it is a constant, it's something else 2077 // and we reject it. 2078 if (isImm()) { 2079 Inst.addOperand(MCOperand::createExpr(getImm())); 2080 Inst.addOperand(MCOperand::createReg(0)); 2081 Inst.addOperand(MCOperand::createImm(0)); 2082 return; 2083 } 2084 2085 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2086 if (!Memory.OffsetRegNum) { 2087 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2088 // Special case for #-0 2089 if (Val == INT32_MIN) Val = 0; 2090 if (Val < 0) Val = -Val; 2091 Val = ARM_AM::getAM3Opc(AddSub, Val); 2092 } else { 2093 // For register offset, we encode the shift type and negation flag 2094 // here. 2095 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2096 } 2097 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2098 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2099 Inst.addOperand(MCOperand::createImm(Val)); 2100 } 2101 2102 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2103 assert(N == 2 && "Invalid number of operands!"); 2104 if (Kind == k_PostIndexRegister) { 2105 int32_t Val = 2106 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2107 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2108 Inst.addOperand(MCOperand::createImm(Val)); 2109 return; 2110 } 2111 2112 // Constant offset. 2113 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2114 int32_t Val = CE->getValue(); 2115 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2116 // Special case for #-0 2117 if (Val == INT32_MIN) Val = 0; 2118 if (Val < 0) Val = -Val; 2119 Val = ARM_AM::getAM3Opc(AddSub, Val); 2120 Inst.addOperand(MCOperand::createReg(0)); 2121 Inst.addOperand(MCOperand::createImm(Val)); 2122 } 2123 2124 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2125 assert(N == 2 && "Invalid number of operands!"); 2126 // If we have an immediate that's not a constant, treat it as a label 2127 // reference needing a fixup. If it is a constant, it's something else 2128 // and we reject it. 2129 if (isImm()) { 2130 Inst.addOperand(MCOperand::createExpr(getImm())); 2131 Inst.addOperand(MCOperand::createImm(0)); 2132 return; 2133 } 2134 2135 // The lower two bits are always zero and as such are not encoded. 2136 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2137 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2138 // Special case for #-0 2139 if (Val == INT32_MIN) Val = 0; 2140 if (Val < 0) Val = -Val; 2141 Val = ARM_AM::getAM5Opc(AddSub, Val); 2142 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2143 Inst.addOperand(MCOperand::createImm(Val)); 2144 } 2145 2146 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2147 assert(N == 2 && "Invalid number of operands!"); 2148 // If we have an immediate that's not a constant, treat it as a label 2149 // reference needing a fixup. If it is a constant, it's something else 2150 // and we reject it. 2151 if (isImm()) { 2152 Inst.addOperand(MCOperand::createExpr(getImm())); 2153 Inst.addOperand(MCOperand::createImm(0)); 2154 return; 2155 } 2156 2157 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2158 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2159 Inst.addOperand(MCOperand::createImm(Val)); 2160 } 2161 2162 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2163 assert(N == 2 && "Invalid number of operands!"); 2164 // The lower two bits are always zero and as such are not encoded. 2165 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2166 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2167 Inst.addOperand(MCOperand::createImm(Val)); 2168 } 2169 2170 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2171 assert(N == 2 && "Invalid number of operands!"); 2172 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2173 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2174 Inst.addOperand(MCOperand::createImm(Val)); 2175 } 2176 2177 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2178 addMemImm8OffsetOperands(Inst, N); 2179 } 2180 2181 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2182 addMemImm8OffsetOperands(Inst, N); 2183 } 2184 2185 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2186 assert(N == 2 && "Invalid number of operands!"); 2187 // If this is an immediate, it's a label reference. 2188 if (isImm()) { 2189 addExpr(Inst, getImm()); 2190 Inst.addOperand(MCOperand::createImm(0)); 2191 return; 2192 } 2193 2194 // Otherwise, it's a normal memory reg+offset. 2195 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2196 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2197 Inst.addOperand(MCOperand::createImm(Val)); 2198 } 2199 2200 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2201 assert(N == 2 && "Invalid number of operands!"); 2202 // If this is an immediate, it's a label reference. 2203 if (isImm()) { 2204 addExpr(Inst, getImm()); 2205 Inst.addOperand(MCOperand::createImm(0)); 2206 return; 2207 } 2208 2209 // Otherwise, it's a normal memory reg+offset. 2210 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2211 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2212 Inst.addOperand(MCOperand::createImm(Val)); 2213 } 2214 2215 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2216 assert(N == 2 && "Invalid number of operands!"); 2217 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2218 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2219 } 2220 2221 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2222 assert(N == 2 && "Invalid number of operands!"); 2223 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2224 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2225 } 2226 2227 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2228 assert(N == 3 && "Invalid number of operands!"); 2229 unsigned Val = 2230 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2231 Memory.ShiftImm, Memory.ShiftType); 2232 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2233 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2234 Inst.addOperand(MCOperand::createImm(Val)); 2235 } 2236 2237 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2238 assert(N == 3 && "Invalid number of operands!"); 2239 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2240 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2241 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2242 } 2243 2244 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2245 assert(N == 2 && "Invalid number of operands!"); 2246 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2247 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2248 } 2249 2250 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2251 assert(N == 2 && "Invalid number of operands!"); 2252 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2253 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2254 Inst.addOperand(MCOperand::createImm(Val)); 2255 } 2256 2257 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2258 assert(N == 2 && "Invalid number of operands!"); 2259 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2260 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2261 Inst.addOperand(MCOperand::createImm(Val)); 2262 } 2263 2264 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2265 assert(N == 2 && "Invalid number of operands!"); 2266 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2267 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2268 Inst.addOperand(MCOperand::createImm(Val)); 2269 } 2270 2271 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2272 assert(N == 2 && "Invalid number of operands!"); 2273 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2274 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2275 Inst.addOperand(MCOperand::createImm(Val)); 2276 } 2277 2278 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2279 assert(N == 1 && "Invalid number of operands!"); 2280 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2281 assert(CE && "non-constant post-idx-imm8 operand!"); 2282 int Imm = CE->getValue(); 2283 bool isAdd = Imm >= 0; 2284 if (Imm == INT32_MIN) Imm = 0; 2285 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2286 Inst.addOperand(MCOperand::createImm(Imm)); 2287 } 2288 2289 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2290 assert(N == 1 && "Invalid number of operands!"); 2291 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2292 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2293 int Imm = CE->getValue(); 2294 bool isAdd = Imm >= 0; 2295 if (Imm == INT32_MIN) Imm = 0; 2296 // Immediate is scaled by 4. 2297 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2298 Inst.addOperand(MCOperand::createImm(Imm)); 2299 } 2300 2301 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2302 assert(N == 2 && "Invalid number of operands!"); 2303 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2304 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2305 } 2306 2307 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2308 assert(N == 2 && "Invalid number of operands!"); 2309 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2310 // The sign, shift type, and shift amount are encoded in a single operand 2311 // using the AM2 encoding helpers. 2312 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2313 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2314 PostIdxReg.ShiftTy); 2315 Inst.addOperand(MCOperand::createImm(Imm)); 2316 } 2317 2318 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2319 assert(N == 1 && "Invalid number of operands!"); 2320 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2321 } 2322 2323 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2324 assert(N == 1 && "Invalid number of operands!"); 2325 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2326 } 2327 2328 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2329 assert(N == 1 && "Invalid number of operands!"); 2330 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2331 } 2332 2333 void addVecListOperands(MCInst &Inst, unsigned N) const { 2334 assert(N == 1 && "Invalid number of operands!"); 2335 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2336 } 2337 2338 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2339 assert(N == 2 && "Invalid number of operands!"); 2340 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2341 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2342 } 2343 2344 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2345 assert(N == 1 && "Invalid number of operands!"); 2346 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2347 } 2348 2349 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2350 assert(N == 1 && "Invalid number of operands!"); 2351 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2352 } 2353 2354 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2355 assert(N == 1 && "Invalid number of operands!"); 2356 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2357 } 2358 2359 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2360 assert(N == 1 && "Invalid number of operands!"); 2361 // The immediate encodes the type of constant as well as the value. 2362 // Mask in that this is an i8 splat. 2363 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2364 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2365 } 2366 2367 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2368 assert(N == 1 && "Invalid number of operands!"); 2369 // The immediate encodes the type of constant as well as the value. 2370 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2371 unsigned Value = CE->getValue(); 2372 Value = ARM_AM::encodeNEONi16splat(Value); 2373 Inst.addOperand(MCOperand::createImm(Value)); 2374 } 2375 2376 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2377 assert(N == 1 && "Invalid number of operands!"); 2378 // The immediate encodes the type of constant as well as the value. 2379 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2380 unsigned Value = CE->getValue(); 2381 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2382 Inst.addOperand(MCOperand::createImm(Value)); 2383 } 2384 2385 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2386 assert(N == 1 && "Invalid number of operands!"); 2387 // The immediate encodes the type of constant as well as the value. 2388 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2389 unsigned Value = CE->getValue(); 2390 Value = ARM_AM::encodeNEONi32splat(Value); 2391 Inst.addOperand(MCOperand::createImm(Value)); 2392 } 2393 2394 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2395 assert(N == 1 && "Invalid number of operands!"); 2396 // The immediate encodes the type of constant as well as the value. 2397 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2398 unsigned Value = CE->getValue(); 2399 Value = ARM_AM::encodeNEONi32splat(~Value); 2400 Inst.addOperand(MCOperand::createImm(Value)); 2401 } 2402 2403 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2404 assert(N == 1 && "Invalid number of operands!"); 2405 // The immediate encodes the type of constant as well as the value. 2406 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2407 unsigned Value = CE->getValue(); 2408 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2409 Inst.getOpcode() == ARM::VMOVv16i8) && 2410 "All vmvn instructions that wants to replicate non-zero byte " 2411 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2412 unsigned B = ((~Value) & 0xff); 2413 B |= 0xe00; // cmode = 0b1110 2414 Inst.addOperand(MCOperand::createImm(B)); 2415 } 2416 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2417 assert(N == 1 && "Invalid number of operands!"); 2418 // The immediate encodes the type of constant as well as the value. 2419 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2420 unsigned Value = CE->getValue(); 2421 if (Value >= 256 && Value <= 0xffff) 2422 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2423 else if (Value > 0xffff && Value <= 0xffffff) 2424 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2425 else if (Value > 0xffffff) 2426 Value = (Value >> 24) | 0x600; 2427 Inst.addOperand(MCOperand::createImm(Value)); 2428 } 2429 2430 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2431 assert(N == 1 && "Invalid number of operands!"); 2432 // The immediate encodes the type of constant as well as the value. 2433 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2434 unsigned Value = CE->getValue(); 2435 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2436 Inst.getOpcode() == ARM::VMOVv16i8) && 2437 "All instructions that wants to replicate non-zero byte " 2438 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2439 unsigned B = Value & 0xff; 2440 B |= 0xe00; // cmode = 0b1110 2441 Inst.addOperand(MCOperand::createImm(B)); 2442 } 2443 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2444 assert(N == 1 && "Invalid number of operands!"); 2445 // The immediate encodes the type of constant as well as the value. 2446 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2447 unsigned Value = ~CE->getValue(); 2448 if (Value >= 256 && Value <= 0xffff) 2449 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2450 else if (Value > 0xffff && Value <= 0xffffff) 2451 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2452 else if (Value > 0xffffff) 2453 Value = (Value >> 24) | 0x600; 2454 Inst.addOperand(MCOperand::createImm(Value)); 2455 } 2456 2457 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2458 assert(N == 1 && "Invalid number of operands!"); 2459 // The immediate encodes the type of constant as well as the value. 2460 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2461 uint64_t Value = CE->getValue(); 2462 unsigned Imm = 0; 2463 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2464 Imm |= (Value & 1) << i; 2465 } 2466 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2467 } 2468 2469 void print(raw_ostream &OS) const override; 2470 2471 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2472 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2473 Op->ITMask.Mask = Mask; 2474 Op->StartLoc = S; 2475 Op->EndLoc = S; 2476 return Op; 2477 } 2478 2479 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2480 SMLoc S) { 2481 auto Op = make_unique<ARMOperand>(k_CondCode); 2482 Op->CC.Val = CC; 2483 Op->StartLoc = S; 2484 Op->EndLoc = S; 2485 return Op; 2486 } 2487 2488 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2489 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2490 Op->Cop.Val = CopVal; 2491 Op->StartLoc = S; 2492 Op->EndLoc = S; 2493 return Op; 2494 } 2495 2496 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2497 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2498 Op->Cop.Val = CopVal; 2499 Op->StartLoc = S; 2500 Op->EndLoc = S; 2501 return Op; 2502 } 2503 2504 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2505 SMLoc E) { 2506 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2507 Op->Cop.Val = Val; 2508 Op->StartLoc = S; 2509 Op->EndLoc = E; 2510 return Op; 2511 } 2512 2513 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2514 auto Op = make_unique<ARMOperand>(k_CCOut); 2515 Op->Reg.RegNum = RegNum; 2516 Op->StartLoc = S; 2517 Op->EndLoc = S; 2518 return Op; 2519 } 2520 2521 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2522 auto Op = make_unique<ARMOperand>(k_Token); 2523 Op->Tok.Data = Str.data(); 2524 Op->Tok.Length = Str.size(); 2525 Op->StartLoc = S; 2526 Op->EndLoc = S; 2527 return Op; 2528 } 2529 2530 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2531 SMLoc E) { 2532 auto Op = make_unique<ARMOperand>(k_Register); 2533 Op->Reg.RegNum = RegNum; 2534 Op->StartLoc = S; 2535 Op->EndLoc = E; 2536 return Op; 2537 } 2538 2539 static std::unique_ptr<ARMOperand> 2540 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2541 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2542 SMLoc E) { 2543 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2544 Op->RegShiftedReg.ShiftTy = ShTy; 2545 Op->RegShiftedReg.SrcReg = SrcReg; 2546 Op->RegShiftedReg.ShiftReg = ShiftReg; 2547 Op->RegShiftedReg.ShiftImm = ShiftImm; 2548 Op->StartLoc = S; 2549 Op->EndLoc = E; 2550 return Op; 2551 } 2552 2553 static std::unique_ptr<ARMOperand> 2554 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2555 unsigned ShiftImm, SMLoc S, SMLoc E) { 2556 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2557 Op->RegShiftedImm.ShiftTy = ShTy; 2558 Op->RegShiftedImm.SrcReg = SrcReg; 2559 Op->RegShiftedImm.ShiftImm = ShiftImm; 2560 Op->StartLoc = S; 2561 Op->EndLoc = E; 2562 return Op; 2563 } 2564 2565 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2566 SMLoc S, SMLoc E) { 2567 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2568 Op->ShifterImm.isASR = isASR; 2569 Op->ShifterImm.Imm = Imm; 2570 Op->StartLoc = S; 2571 Op->EndLoc = E; 2572 return Op; 2573 } 2574 2575 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2576 SMLoc E) { 2577 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2578 Op->RotImm.Imm = Imm; 2579 Op->StartLoc = S; 2580 Op->EndLoc = E; 2581 return Op; 2582 } 2583 2584 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2585 SMLoc S, SMLoc E) { 2586 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2587 Op->ModImm.Bits = Bits; 2588 Op->ModImm.Rot = Rot; 2589 Op->StartLoc = S; 2590 Op->EndLoc = E; 2591 return Op; 2592 } 2593 2594 static std::unique_ptr<ARMOperand> 2595 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2596 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2597 Op->Bitfield.LSB = LSB; 2598 Op->Bitfield.Width = Width; 2599 Op->StartLoc = S; 2600 Op->EndLoc = E; 2601 return Op; 2602 } 2603 2604 static std::unique_ptr<ARMOperand> 2605 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2606 SMLoc StartLoc, SMLoc EndLoc) { 2607 assert (Regs.size() > 0 && "RegList contains no registers?"); 2608 KindTy Kind = k_RegisterList; 2609 2610 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2611 Kind = k_DPRRegisterList; 2612 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2613 contains(Regs.front().second)) 2614 Kind = k_SPRRegisterList; 2615 2616 // Sort based on the register encoding values. 2617 array_pod_sort(Regs.begin(), Regs.end()); 2618 2619 auto Op = make_unique<ARMOperand>(Kind); 2620 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2621 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2622 Op->Registers.push_back(I->second); 2623 Op->StartLoc = StartLoc; 2624 Op->EndLoc = EndLoc; 2625 return Op; 2626 } 2627 2628 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2629 unsigned Count, 2630 bool isDoubleSpaced, 2631 SMLoc S, SMLoc E) { 2632 auto Op = make_unique<ARMOperand>(k_VectorList); 2633 Op->VectorList.RegNum = RegNum; 2634 Op->VectorList.Count = Count; 2635 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2636 Op->StartLoc = S; 2637 Op->EndLoc = E; 2638 return Op; 2639 } 2640 2641 static std::unique_ptr<ARMOperand> 2642 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2643 SMLoc S, SMLoc E) { 2644 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2645 Op->VectorList.RegNum = RegNum; 2646 Op->VectorList.Count = Count; 2647 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2648 Op->StartLoc = S; 2649 Op->EndLoc = E; 2650 return Op; 2651 } 2652 2653 static std::unique_ptr<ARMOperand> 2654 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2655 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2656 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2657 Op->VectorList.RegNum = RegNum; 2658 Op->VectorList.Count = Count; 2659 Op->VectorList.LaneIndex = Index; 2660 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2661 Op->StartLoc = S; 2662 Op->EndLoc = E; 2663 return Op; 2664 } 2665 2666 static std::unique_ptr<ARMOperand> 2667 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2668 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2669 Op->VectorIndex.Val = Idx; 2670 Op->StartLoc = S; 2671 Op->EndLoc = E; 2672 return Op; 2673 } 2674 2675 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2676 SMLoc E) { 2677 auto Op = make_unique<ARMOperand>(k_Immediate); 2678 Op->Imm.Val = Val; 2679 Op->StartLoc = S; 2680 Op->EndLoc = E; 2681 return Op; 2682 } 2683 2684 static std::unique_ptr<ARMOperand> 2685 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2686 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2687 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2688 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2689 auto Op = make_unique<ARMOperand>(k_Memory); 2690 Op->Memory.BaseRegNum = BaseRegNum; 2691 Op->Memory.OffsetImm = OffsetImm; 2692 Op->Memory.OffsetRegNum = OffsetRegNum; 2693 Op->Memory.ShiftType = ShiftType; 2694 Op->Memory.ShiftImm = ShiftImm; 2695 Op->Memory.Alignment = Alignment; 2696 Op->Memory.isNegative = isNegative; 2697 Op->StartLoc = S; 2698 Op->EndLoc = E; 2699 Op->AlignmentLoc = AlignmentLoc; 2700 return Op; 2701 } 2702 2703 static std::unique_ptr<ARMOperand> 2704 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2705 unsigned ShiftImm, SMLoc S, SMLoc E) { 2706 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2707 Op->PostIdxReg.RegNum = RegNum; 2708 Op->PostIdxReg.isAdd = isAdd; 2709 Op->PostIdxReg.ShiftTy = ShiftTy; 2710 Op->PostIdxReg.ShiftImm = ShiftImm; 2711 Op->StartLoc = S; 2712 Op->EndLoc = E; 2713 return Op; 2714 } 2715 2716 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2717 SMLoc S) { 2718 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 2719 Op->MBOpt.Val = Opt; 2720 Op->StartLoc = S; 2721 Op->EndLoc = S; 2722 return Op; 2723 } 2724 2725 static std::unique_ptr<ARMOperand> 2726 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 2727 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 2728 Op->ISBOpt.Val = Opt; 2729 Op->StartLoc = S; 2730 Op->EndLoc = S; 2731 return Op; 2732 } 2733 2734 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 2735 SMLoc S) { 2736 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 2737 Op->IFlags.Val = IFlags; 2738 Op->StartLoc = S; 2739 Op->EndLoc = S; 2740 return Op; 2741 } 2742 2743 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 2744 auto Op = make_unique<ARMOperand>(k_MSRMask); 2745 Op->MMask.Val = MMask; 2746 Op->StartLoc = S; 2747 Op->EndLoc = S; 2748 return Op; 2749 } 2750 2751 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 2752 auto Op = make_unique<ARMOperand>(k_BankedReg); 2753 Op->BankedReg.Val = Reg; 2754 Op->StartLoc = S; 2755 Op->EndLoc = S; 2756 return Op; 2757 } 2758 }; 2759 2760 } // end anonymous namespace. 2761 2762 void ARMOperand::print(raw_ostream &OS) const { 2763 switch (Kind) { 2764 case k_CondCode: 2765 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 2766 break; 2767 case k_CCOut: 2768 OS << "<ccout " << getReg() << ">"; 2769 break; 2770 case k_ITCondMask: { 2771 static const char *const MaskStr[] = { 2772 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 2773 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 2774 }; 2775 assert((ITMask.Mask & 0xf) == ITMask.Mask); 2776 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 2777 break; 2778 } 2779 case k_CoprocNum: 2780 OS << "<coprocessor number: " << getCoproc() << ">"; 2781 break; 2782 case k_CoprocReg: 2783 OS << "<coprocessor register: " << getCoproc() << ">"; 2784 break; 2785 case k_CoprocOption: 2786 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 2787 break; 2788 case k_MSRMask: 2789 OS << "<mask: " << getMSRMask() << ">"; 2790 break; 2791 case k_BankedReg: 2792 OS << "<banked reg: " << getBankedReg() << ">"; 2793 break; 2794 case k_Immediate: 2795 OS << *getImm(); 2796 break; 2797 case k_MemBarrierOpt: 2798 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 2799 break; 2800 case k_InstSyncBarrierOpt: 2801 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 2802 break; 2803 case k_Memory: 2804 OS << "<memory " 2805 << " base:" << Memory.BaseRegNum; 2806 OS << ">"; 2807 break; 2808 case k_PostIndexRegister: 2809 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 2810 << PostIdxReg.RegNum; 2811 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 2812 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 2813 << PostIdxReg.ShiftImm; 2814 OS << ">"; 2815 break; 2816 case k_ProcIFlags: { 2817 OS << "<ARM_PROC::"; 2818 unsigned IFlags = getProcIFlags(); 2819 for (int i=2; i >= 0; --i) 2820 if (IFlags & (1 << i)) 2821 OS << ARM_PROC::IFlagsToString(1 << i); 2822 OS << ">"; 2823 break; 2824 } 2825 case k_Register: 2826 OS << "<register " << getReg() << ">"; 2827 break; 2828 case k_ShifterImmediate: 2829 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 2830 << " #" << ShifterImm.Imm << ">"; 2831 break; 2832 case k_ShiftedRegister: 2833 OS << "<so_reg_reg " 2834 << RegShiftedReg.SrcReg << " " 2835 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 2836 << " " << RegShiftedReg.ShiftReg << ">"; 2837 break; 2838 case k_ShiftedImmediate: 2839 OS << "<so_reg_imm " 2840 << RegShiftedImm.SrcReg << " " 2841 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 2842 << " #" << RegShiftedImm.ShiftImm << ">"; 2843 break; 2844 case k_RotateImmediate: 2845 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 2846 break; 2847 case k_ModifiedImmediate: 2848 OS << "<mod_imm #" << ModImm.Bits << ", #" 2849 << ModImm.Rot << ")>"; 2850 break; 2851 case k_BitfieldDescriptor: 2852 OS << "<bitfield " << "lsb: " << Bitfield.LSB 2853 << ", width: " << Bitfield.Width << ">"; 2854 break; 2855 case k_RegisterList: 2856 case k_DPRRegisterList: 2857 case k_SPRRegisterList: { 2858 OS << "<register_list "; 2859 2860 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2861 for (SmallVectorImpl<unsigned>::const_iterator 2862 I = RegList.begin(), E = RegList.end(); I != E; ) { 2863 OS << *I; 2864 if (++I < E) OS << ", "; 2865 } 2866 2867 OS << ">"; 2868 break; 2869 } 2870 case k_VectorList: 2871 OS << "<vector_list " << VectorList.Count << " * " 2872 << VectorList.RegNum << ">"; 2873 break; 2874 case k_VectorListAllLanes: 2875 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 2876 << VectorList.RegNum << ">"; 2877 break; 2878 case k_VectorListIndexed: 2879 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 2880 << VectorList.Count << " * " << VectorList.RegNum << ">"; 2881 break; 2882 case k_Token: 2883 OS << "'" << getToken() << "'"; 2884 break; 2885 case k_VectorIndex: 2886 OS << "<vectorindex " << getVectorIndex() << ">"; 2887 break; 2888 } 2889 } 2890 2891 /// @name Auto-generated Match Functions 2892 /// { 2893 2894 static unsigned MatchRegisterName(StringRef Name); 2895 2896 /// } 2897 2898 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 2899 SMLoc &StartLoc, SMLoc &EndLoc) { 2900 const AsmToken &Tok = getParser().getTok(); 2901 StartLoc = Tok.getLoc(); 2902 EndLoc = Tok.getEndLoc(); 2903 RegNo = tryParseRegister(); 2904 2905 return (RegNo == (unsigned)-1); 2906 } 2907 2908 /// Try to parse a register name. The token must be an Identifier when called, 2909 /// and if it is a register name the token is eaten and the register number is 2910 /// returned. Otherwise return -1. 2911 /// 2912 int ARMAsmParser::tryParseRegister() { 2913 MCAsmParser &Parser = getParser(); 2914 const AsmToken &Tok = Parser.getTok(); 2915 if (Tok.isNot(AsmToken::Identifier)) return -1; 2916 2917 std::string lowerCase = Tok.getString().lower(); 2918 unsigned RegNum = MatchRegisterName(lowerCase); 2919 if (!RegNum) { 2920 RegNum = StringSwitch<unsigned>(lowerCase) 2921 .Case("r13", ARM::SP) 2922 .Case("r14", ARM::LR) 2923 .Case("r15", ARM::PC) 2924 .Case("ip", ARM::R12) 2925 // Additional register name aliases for 'gas' compatibility. 2926 .Case("a1", ARM::R0) 2927 .Case("a2", ARM::R1) 2928 .Case("a3", ARM::R2) 2929 .Case("a4", ARM::R3) 2930 .Case("v1", ARM::R4) 2931 .Case("v2", ARM::R5) 2932 .Case("v3", ARM::R6) 2933 .Case("v4", ARM::R7) 2934 .Case("v5", ARM::R8) 2935 .Case("v6", ARM::R9) 2936 .Case("v7", ARM::R10) 2937 .Case("v8", ARM::R11) 2938 .Case("sb", ARM::R9) 2939 .Case("sl", ARM::R10) 2940 .Case("fp", ARM::R11) 2941 .Default(0); 2942 } 2943 if (!RegNum) { 2944 // Check for aliases registered via .req. Canonicalize to lower case. 2945 // That's more consistent since register names are case insensitive, and 2946 // it's how the original entry was passed in from MC/MCParser/AsmParser. 2947 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 2948 // If no match, return failure. 2949 if (Entry == RegisterReqs.end()) 2950 return -1; 2951 Parser.Lex(); // Eat identifier token. 2952 return Entry->getValue(); 2953 } 2954 2955 // Some FPUs only have 16 D registers, so D16-D31 are invalid 2956 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 2957 return -1; 2958 2959 Parser.Lex(); // Eat identifier token. 2960 2961 return RegNum; 2962 } 2963 2964 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 2965 // If a recoverable error occurs, return 1. If an irrecoverable error 2966 // occurs, return -1. An irrecoverable error is one where tokens have been 2967 // consumed in the process of trying to parse the shifter (i.e., when it is 2968 // indeed a shifter operand, but malformed). 2969 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 2970 MCAsmParser &Parser = getParser(); 2971 SMLoc S = Parser.getTok().getLoc(); 2972 const AsmToken &Tok = Parser.getTok(); 2973 if (Tok.isNot(AsmToken::Identifier)) 2974 return -1; 2975 2976 std::string lowerCase = Tok.getString().lower(); 2977 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 2978 .Case("asl", ARM_AM::lsl) 2979 .Case("lsl", ARM_AM::lsl) 2980 .Case("lsr", ARM_AM::lsr) 2981 .Case("asr", ARM_AM::asr) 2982 .Case("ror", ARM_AM::ror) 2983 .Case("rrx", ARM_AM::rrx) 2984 .Default(ARM_AM::no_shift); 2985 2986 if (ShiftTy == ARM_AM::no_shift) 2987 return 1; 2988 2989 Parser.Lex(); // Eat the operator. 2990 2991 // The source register for the shift has already been added to the 2992 // operand list, so we need to pop it off and combine it into the shifted 2993 // register operand instead. 2994 std::unique_ptr<ARMOperand> PrevOp( 2995 (ARMOperand *)Operands.pop_back_val().release()); 2996 if (!PrevOp->isReg()) 2997 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 2998 int SrcReg = PrevOp->getReg(); 2999 3000 SMLoc EndLoc; 3001 int64_t Imm = 0; 3002 int ShiftReg = 0; 3003 if (ShiftTy == ARM_AM::rrx) { 3004 // RRX Doesn't have an explicit shift amount. The encoder expects 3005 // the shift register to be the same as the source register. Seems odd, 3006 // but OK. 3007 ShiftReg = SrcReg; 3008 } else { 3009 // Figure out if this is shifted by a constant or a register (for non-RRX). 3010 if (Parser.getTok().is(AsmToken::Hash) || 3011 Parser.getTok().is(AsmToken::Dollar)) { 3012 Parser.Lex(); // Eat hash. 3013 SMLoc ImmLoc = Parser.getTok().getLoc(); 3014 const MCExpr *ShiftExpr = nullptr; 3015 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3016 Error(ImmLoc, "invalid immediate shift value"); 3017 return -1; 3018 } 3019 // The expression must be evaluatable as an immediate. 3020 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3021 if (!CE) { 3022 Error(ImmLoc, "invalid immediate shift value"); 3023 return -1; 3024 } 3025 // Range check the immediate. 3026 // lsl, ror: 0 <= imm <= 31 3027 // lsr, asr: 0 <= imm <= 32 3028 Imm = CE->getValue(); 3029 if (Imm < 0 || 3030 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3031 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3032 Error(ImmLoc, "immediate shift value out of range"); 3033 return -1; 3034 } 3035 // shift by zero is a nop. Always send it through as lsl. 3036 // ('as' compatibility) 3037 if (Imm == 0) 3038 ShiftTy = ARM_AM::lsl; 3039 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3040 SMLoc L = Parser.getTok().getLoc(); 3041 EndLoc = Parser.getTok().getEndLoc(); 3042 ShiftReg = tryParseRegister(); 3043 if (ShiftReg == -1) { 3044 Error(L, "expected immediate or register in shift operand"); 3045 return -1; 3046 } 3047 } else { 3048 Error(Parser.getTok().getLoc(), 3049 "expected immediate or register in shift operand"); 3050 return -1; 3051 } 3052 } 3053 3054 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3055 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3056 ShiftReg, Imm, 3057 S, EndLoc)); 3058 else 3059 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3060 S, EndLoc)); 3061 3062 return 0; 3063 } 3064 3065 3066 /// Try to parse a register name. The token must be an Identifier when called. 3067 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3068 /// if there is a "writeback". 'true' if it's not a register. 3069 /// 3070 /// TODO this is likely to change to allow different register types and or to 3071 /// parse for a specific register type. 3072 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3073 MCAsmParser &Parser = getParser(); 3074 const AsmToken &RegTok = Parser.getTok(); 3075 int RegNo = tryParseRegister(); 3076 if (RegNo == -1) 3077 return true; 3078 3079 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3080 RegTok.getEndLoc())); 3081 3082 const AsmToken &ExclaimTok = Parser.getTok(); 3083 if (ExclaimTok.is(AsmToken::Exclaim)) { 3084 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3085 ExclaimTok.getLoc())); 3086 Parser.Lex(); // Eat exclaim token 3087 return false; 3088 } 3089 3090 // Also check for an index operand. This is only legal for vector registers, 3091 // but that'll get caught OK in operand matching, so we don't need to 3092 // explicitly filter everything else out here. 3093 if (Parser.getTok().is(AsmToken::LBrac)) { 3094 SMLoc SIdx = Parser.getTok().getLoc(); 3095 Parser.Lex(); // Eat left bracket token. 3096 3097 const MCExpr *ImmVal; 3098 if (getParser().parseExpression(ImmVal)) 3099 return true; 3100 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3101 if (!MCE) 3102 return TokError("immediate value expected for vector index"); 3103 3104 if (Parser.getTok().isNot(AsmToken::RBrac)) 3105 return Error(Parser.getTok().getLoc(), "']' expected"); 3106 3107 SMLoc E = Parser.getTok().getEndLoc(); 3108 Parser.Lex(); // Eat right bracket token. 3109 3110 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3111 SIdx, E, 3112 getContext())); 3113 } 3114 3115 return false; 3116 } 3117 3118 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3119 /// instruction with a symbolic operand name. 3120 /// We accept "crN" syntax for GAS compatibility. 3121 /// <operand-name> ::= <prefix><number> 3122 /// If CoprocOp is 'c', then: 3123 /// <prefix> ::= c | cr 3124 /// If CoprocOp is 'p', then : 3125 /// <prefix> ::= p 3126 /// <number> ::= integer in range [0, 15] 3127 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3128 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3129 // but efficient. 3130 if (Name.size() < 2 || Name[0] != CoprocOp) 3131 return -1; 3132 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3133 3134 switch (Name.size()) { 3135 default: return -1; 3136 case 1: 3137 switch (Name[0]) { 3138 default: return -1; 3139 case '0': return 0; 3140 case '1': return 1; 3141 case '2': return 2; 3142 case '3': return 3; 3143 case '4': return 4; 3144 case '5': return 5; 3145 case '6': return 6; 3146 case '7': return 7; 3147 case '8': return 8; 3148 case '9': return 9; 3149 } 3150 case 2: 3151 if (Name[0] != '1') 3152 return -1; 3153 switch (Name[1]) { 3154 default: return -1; 3155 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3156 // However, old cores (v5/v6) did use them in that way. 3157 case '0': return 10; 3158 case '1': return 11; 3159 case '2': return 12; 3160 case '3': return 13; 3161 case '4': return 14; 3162 case '5': return 15; 3163 } 3164 } 3165 } 3166 3167 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3168 ARMAsmParser::OperandMatchResultTy 3169 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3170 MCAsmParser &Parser = getParser(); 3171 SMLoc S = Parser.getTok().getLoc(); 3172 const AsmToken &Tok = Parser.getTok(); 3173 if (!Tok.is(AsmToken::Identifier)) 3174 return MatchOperand_NoMatch; 3175 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3176 .Case("eq", ARMCC::EQ) 3177 .Case("ne", ARMCC::NE) 3178 .Case("hs", ARMCC::HS) 3179 .Case("cs", ARMCC::HS) 3180 .Case("lo", ARMCC::LO) 3181 .Case("cc", ARMCC::LO) 3182 .Case("mi", ARMCC::MI) 3183 .Case("pl", ARMCC::PL) 3184 .Case("vs", ARMCC::VS) 3185 .Case("vc", ARMCC::VC) 3186 .Case("hi", ARMCC::HI) 3187 .Case("ls", ARMCC::LS) 3188 .Case("ge", ARMCC::GE) 3189 .Case("lt", ARMCC::LT) 3190 .Case("gt", ARMCC::GT) 3191 .Case("le", ARMCC::LE) 3192 .Case("al", ARMCC::AL) 3193 .Default(~0U); 3194 if (CC == ~0U) 3195 return MatchOperand_NoMatch; 3196 Parser.Lex(); // Eat the token. 3197 3198 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3199 3200 return MatchOperand_Success; 3201 } 3202 3203 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3204 /// token must be an Identifier when called, and if it is a coprocessor 3205 /// number, the token is eaten and the operand is added to the operand list. 3206 ARMAsmParser::OperandMatchResultTy 3207 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3208 MCAsmParser &Parser = getParser(); 3209 SMLoc S = Parser.getTok().getLoc(); 3210 const AsmToken &Tok = Parser.getTok(); 3211 if (Tok.isNot(AsmToken::Identifier)) 3212 return MatchOperand_NoMatch; 3213 3214 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3215 if (Num == -1) 3216 return MatchOperand_NoMatch; 3217 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3218 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3219 return MatchOperand_NoMatch; 3220 3221 Parser.Lex(); // Eat identifier token. 3222 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3223 return MatchOperand_Success; 3224 } 3225 3226 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3227 /// token must be an Identifier when called, and if it is a coprocessor 3228 /// number, the token is eaten and the operand is added to the operand list. 3229 ARMAsmParser::OperandMatchResultTy 3230 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3231 MCAsmParser &Parser = getParser(); 3232 SMLoc S = Parser.getTok().getLoc(); 3233 const AsmToken &Tok = Parser.getTok(); 3234 if (Tok.isNot(AsmToken::Identifier)) 3235 return MatchOperand_NoMatch; 3236 3237 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3238 if (Reg == -1) 3239 return MatchOperand_NoMatch; 3240 3241 Parser.Lex(); // Eat identifier token. 3242 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3243 return MatchOperand_Success; 3244 } 3245 3246 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3247 /// coproc_option : '{' imm0_255 '}' 3248 ARMAsmParser::OperandMatchResultTy 3249 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3250 MCAsmParser &Parser = getParser(); 3251 SMLoc S = Parser.getTok().getLoc(); 3252 3253 // If this isn't a '{', this isn't a coprocessor immediate operand. 3254 if (Parser.getTok().isNot(AsmToken::LCurly)) 3255 return MatchOperand_NoMatch; 3256 Parser.Lex(); // Eat the '{' 3257 3258 const MCExpr *Expr; 3259 SMLoc Loc = Parser.getTok().getLoc(); 3260 if (getParser().parseExpression(Expr)) { 3261 Error(Loc, "illegal expression"); 3262 return MatchOperand_ParseFail; 3263 } 3264 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3265 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3266 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3267 return MatchOperand_ParseFail; 3268 } 3269 int Val = CE->getValue(); 3270 3271 // Check for and consume the closing '}' 3272 if (Parser.getTok().isNot(AsmToken::RCurly)) 3273 return MatchOperand_ParseFail; 3274 SMLoc E = Parser.getTok().getEndLoc(); 3275 Parser.Lex(); // Eat the '}' 3276 3277 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3278 return MatchOperand_Success; 3279 } 3280 3281 // For register list parsing, we need to map from raw GPR register numbering 3282 // to the enumeration values. The enumeration values aren't sorted by 3283 // register number due to our using "sp", "lr" and "pc" as canonical names. 3284 static unsigned getNextRegister(unsigned Reg) { 3285 // If this is a GPR, we need to do it manually, otherwise we can rely 3286 // on the sort ordering of the enumeration since the other reg-classes 3287 // are sane. 3288 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3289 return Reg + 1; 3290 switch(Reg) { 3291 default: llvm_unreachable("Invalid GPR number!"); 3292 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3293 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3294 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3295 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3296 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3297 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3298 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3299 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3300 } 3301 } 3302 3303 // Return the low-subreg of a given Q register. 3304 static unsigned getDRegFromQReg(unsigned QReg) { 3305 switch (QReg) { 3306 default: llvm_unreachable("expected a Q register!"); 3307 case ARM::Q0: return ARM::D0; 3308 case ARM::Q1: return ARM::D2; 3309 case ARM::Q2: return ARM::D4; 3310 case ARM::Q3: return ARM::D6; 3311 case ARM::Q4: return ARM::D8; 3312 case ARM::Q5: return ARM::D10; 3313 case ARM::Q6: return ARM::D12; 3314 case ARM::Q7: return ARM::D14; 3315 case ARM::Q8: return ARM::D16; 3316 case ARM::Q9: return ARM::D18; 3317 case ARM::Q10: return ARM::D20; 3318 case ARM::Q11: return ARM::D22; 3319 case ARM::Q12: return ARM::D24; 3320 case ARM::Q13: return ARM::D26; 3321 case ARM::Q14: return ARM::D28; 3322 case ARM::Q15: return ARM::D30; 3323 } 3324 } 3325 3326 /// Parse a register list. 3327 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3328 MCAsmParser &Parser = getParser(); 3329 assert(Parser.getTok().is(AsmToken::LCurly) && 3330 "Token is not a Left Curly Brace"); 3331 SMLoc S = Parser.getTok().getLoc(); 3332 Parser.Lex(); // Eat '{' token. 3333 SMLoc RegLoc = Parser.getTok().getLoc(); 3334 3335 // Check the first register in the list to see what register class 3336 // this is a list of. 3337 int Reg = tryParseRegister(); 3338 if (Reg == -1) 3339 return Error(RegLoc, "register expected"); 3340 3341 // The reglist instructions have at most 16 registers, so reserve 3342 // space for that many. 3343 int EReg = 0; 3344 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3345 3346 // Allow Q regs and just interpret them as the two D sub-registers. 3347 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3348 Reg = getDRegFromQReg(Reg); 3349 EReg = MRI->getEncodingValue(Reg); 3350 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3351 ++Reg; 3352 } 3353 const MCRegisterClass *RC; 3354 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3355 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3356 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3357 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3358 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3359 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3360 else 3361 return Error(RegLoc, "invalid register in register list"); 3362 3363 // Store the register. 3364 EReg = MRI->getEncodingValue(Reg); 3365 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3366 3367 // This starts immediately after the first register token in the list, 3368 // so we can see either a comma or a minus (range separator) as a legal 3369 // next token. 3370 while (Parser.getTok().is(AsmToken::Comma) || 3371 Parser.getTok().is(AsmToken::Minus)) { 3372 if (Parser.getTok().is(AsmToken::Minus)) { 3373 Parser.Lex(); // Eat the minus. 3374 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3375 int EndReg = tryParseRegister(); 3376 if (EndReg == -1) 3377 return Error(AfterMinusLoc, "register expected"); 3378 // Allow Q regs and just interpret them as the two D sub-registers. 3379 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3380 EndReg = getDRegFromQReg(EndReg) + 1; 3381 // If the register is the same as the start reg, there's nothing 3382 // more to do. 3383 if (Reg == EndReg) 3384 continue; 3385 // The register must be in the same register class as the first. 3386 if (!RC->contains(EndReg)) 3387 return Error(AfterMinusLoc, "invalid register in register list"); 3388 // Ranges must go from low to high. 3389 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3390 return Error(AfterMinusLoc, "bad range in register list"); 3391 3392 // Add all the registers in the range to the register list. 3393 while (Reg != EndReg) { 3394 Reg = getNextRegister(Reg); 3395 EReg = MRI->getEncodingValue(Reg); 3396 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3397 } 3398 continue; 3399 } 3400 Parser.Lex(); // Eat the comma. 3401 RegLoc = Parser.getTok().getLoc(); 3402 int OldReg = Reg; 3403 const AsmToken RegTok = Parser.getTok(); 3404 Reg = tryParseRegister(); 3405 if (Reg == -1) 3406 return Error(RegLoc, "register expected"); 3407 // Allow Q regs and just interpret them as the two D sub-registers. 3408 bool isQReg = false; 3409 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3410 Reg = getDRegFromQReg(Reg); 3411 isQReg = true; 3412 } 3413 // The register must be in the same register class as the first. 3414 if (!RC->contains(Reg)) 3415 return Error(RegLoc, "invalid register in register list"); 3416 // List must be monotonically increasing. 3417 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3418 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3419 Warning(RegLoc, "register list not in ascending order"); 3420 else 3421 return Error(RegLoc, "register list not in ascending order"); 3422 } 3423 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3424 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3425 ") in register list"); 3426 continue; 3427 } 3428 // VFP register lists must also be contiguous. 3429 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3430 Reg != OldReg + 1) 3431 return Error(RegLoc, "non-contiguous register range"); 3432 EReg = MRI->getEncodingValue(Reg); 3433 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3434 if (isQReg) { 3435 EReg = MRI->getEncodingValue(++Reg); 3436 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3437 } 3438 } 3439 3440 if (Parser.getTok().isNot(AsmToken::RCurly)) 3441 return Error(Parser.getTok().getLoc(), "'}' expected"); 3442 SMLoc E = Parser.getTok().getEndLoc(); 3443 Parser.Lex(); // Eat '}' token. 3444 3445 // Push the register list operand. 3446 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3447 3448 // The ARM system instruction variants for LDM/STM have a '^' token here. 3449 if (Parser.getTok().is(AsmToken::Caret)) { 3450 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3451 Parser.Lex(); // Eat '^' token. 3452 } 3453 3454 return false; 3455 } 3456 3457 // Helper function to parse the lane index for vector lists. 3458 ARMAsmParser::OperandMatchResultTy ARMAsmParser:: 3459 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3460 MCAsmParser &Parser = getParser(); 3461 Index = 0; // Always return a defined index value. 3462 if (Parser.getTok().is(AsmToken::LBrac)) { 3463 Parser.Lex(); // Eat the '['. 3464 if (Parser.getTok().is(AsmToken::RBrac)) { 3465 // "Dn[]" is the 'all lanes' syntax. 3466 LaneKind = AllLanes; 3467 EndLoc = Parser.getTok().getEndLoc(); 3468 Parser.Lex(); // Eat the ']'. 3469 return MatchOperand_Success; 3470 } 3471 3472 // There's an optional '#' token here. Normally there wouldn't be, but 3473 // inline assemble puts one in, and it's friendly to accept that. 3474 if (Parser.getTok().is(AsmToken::Hash)) 3475 Parser.Lex(); // Eat '#' or '$'. 3476 3477 const MCExpr *LaneIndex; 3478 SMLoc Loc = Parser.getTok().getLoc(); 3479 if (getParser().parseExpression(LaneIndex)) { 3480 Error(Loc, "illegal expression"); 3481 return MatchOperand_ParseFail; 3482 } 3483 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3484 if (!CE) { 3485 Error(Loc, "lane index must be empty or an integer"); 3486 return MatchOperand_ParseFail; 3487 } 3488 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3489 Error(Parser.getTok().getLoc(), "']' expected"); 3490 return MatchOperand_ParseFail; 3491 } 3492 EndLoc = Parser.getTok().getEndLoc(); 3493 Parser.Lex(); // Eat the ']'. 3494 int64_t Val = CE->getValue(); 3495 3496 // FIXME: Make this range check context sensitive for .8, .16, .32. 3497 if (Val < 0 || Val > 7) { 3498 Error(Parser.getTok().getLoc(), "lane index out of range"); 3499 return MatchOperand_ParseFail; 3500 } 3501 Index = Val; 3502 LaneKind = IndexedLane; 3503 return MatchOperand_Success; 3504 } 3505 LaneKind = NoLanes; 3506 return MatchOperand_Success; 3507 } 3508 3509 // parse a vector register list 3510 ARMAsmParser::OperandMatchResultTy 3511 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3512 MCAsmParser &Parser = getParser(); 3513 VectorLaneTy LaneKind; 3514 unsigned LaneIndex; 3515 SMLoc S = Parser.getTok().getLoc(); 3516 // As an extension (to match gas), support a plain D register or Q register 3517 // (without encosing curly braces) as a single or double entry list, 3518 // respectively. 3519 if (Parser.getTok().is(AsmToken::Identifier)) { 3520 SMLoc E = Parser.getTok().getEndLoc(); 3521 int Reg = tryParseRegister(); 3522 if (Reg == -1) 3523 return MatchOperand_NoMatch; 3524 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3525 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3526 if (Res != MatchOperand_Success) 3527 return Res; 3528 switch (LaneKind) { 3529 case NoLanes: 3530 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3531 break; 3532 case AllLanes: 3533 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3534 S, E)); 3535 break; 3536 case IndexedLane: 3537 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3538 LaneIndex, 3539 false, S, E)); 3540 break; 3541 } 3542 return MatchOperand_Success; 3543 } 3544 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3545 Reg = getDRegFromQReg(Reg); 3546 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3547 if (Res != MatchOperand_Success) 3548 return Res; 3549 switch (LaneKind) { 3550 case NoLanes: 3551 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3552 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3553 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3554 break; 3555 case AllLanes: 3556 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3557 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3558 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3559 S, E)); 3560 break; 3561 case IndexedLane: 3562 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3563 LaneIndex, 3564 false, S, E)); 3565 break; 3566 } 3567 return MatchOperand_Success; 3568 } 3569 Error(S, "vector register expected"); 3570 return MatchOperand_ParseFail; 3571 } 3572 3573 if (Parser.getTok().isNot(AsmToken::LCurly)) 3574 return MatchOperand_NoMatch; 3575 3576 Parser.Lex(); // Eat '{' token. 3577 SMLoc RegLoc = Parser.getTok().getLoc(); 3578 3579 int Reg = tryParseRegister(); 3580 if (Reg == -1) { 3581 Error(RegLoc, "register expected"); 3582 return MatchOperand_ParseFail; 3583 } 3584 unsigned Count = 1; 3585 int Spacing = 0; 3586 unsigned FirstReg = Reg; 3587 // The list is of D registers, but we also allow Q regs and just interpret 3588 // them as the two D sub-registers. 3589 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3590 FirstReg = Reg = getDRegFromQReg(Reg); 3591 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3592 // it's ambiguous with four-register single spaced. 3593 ++Reg; 3594 ++Count; 3595 } 3596 3597 SMLoc E; 3598 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3599 return MatchOperand_ParseFail; 3600 3601 while (Parser.getTok().is(AsmToken::Comma) || 3602 Parser.getTok().is(AsmToken::Minus)) { 3603 if (Parser.getTok().is(AsmToken::Minus)) { 3604 if (!Spacing) 3605 Spacing = 1; // Register range implies a single spaced list. 3606 else if (Spacing == 2) { 3607 Error(Parser.getTok().getLoc(), 3608 "sequential registers in double spaced list"); 3609 return MatchOperand_ParseFail; 3610 } 3611 Parser.Lex(); // Eat the minus. 3612 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3613 int EndReg = tryParseRegister(); 3614 if (EndReg == -1) { 3615 Error(AfterMinusLoc, "register expected"); 3616 return MatchOperand_ParseFail; 3617 } 3618 // Allow Q regs and just interpret them as the two D sub-registers. 3619 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3620 EndReg = getDRegFromQReg(EndReg) + 1; 3621 // If the register is the same as the start reg, there's nothing 3622 // more to do. 3623 if (Reg == EndReg) 3624 continue; 3625 // The register must be in the same register class as the first. 3626 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3627 Error(AfterMinusLoc, "invalid register in register list"); 3628 return MatchOperand_ParseFail; 3629 } 3630 // Ranges must go from low to high. 3631 if (Reg > EndReg) { 3632 Error(AfterMinusLoc, "bad range in register list"); 3633 return MatchOperand_ParseFail; 3634 } 3635 // Parse the lane specifier if present. 3636 VectorLaneTy NextLaneKind; 3637 unsigned NextLaneIndex; 3638 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3639 MatchOperand_Success) 3640 return MatchOperand_ParseFail; 3641 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3642 Error(AfterMinusLoc, "mismatched lane index in register list"); 3643 return MatchOperand_ParseFail; 3644 } 3645 3646 // Add all the registers in the range to the register list. 3647 Count += EndReg - Reg; 3648 Reg = EndReg; 3649 continue; 3650 } 3651 Parser.Lex(); // Eat the comma. 3652 RegLoc = Parser.getTok().getLoc(); 3653 int OldReg = Reg; 3654 Reg = tryParseRegister(); 3655 if (Reg == -1) { 3656 Error(RegLoc, "register expected"); 3657 return MatchOperand_ParseFail; 3658 } 3659 // vector register lists must be contiguous. 3660 // It's OK to use the enumeration values directly here rather, as the 3661 // VFP register classes have the enum sorted properly. 3662 // 3663 // The list is of D registers, but we also allow Q regs and just interpret 3664 // them as the two D sub-registers. 3665 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3666 if (!Spacing) 3667 Spacing = 1; // Register range implies a single spaced list. 3668 else if (Spacing == 2) { 3669 Error(RegLoc, 3670 "invalid register in double-spaced list (must be 'D' register')"); 3671 return MatchOperand_ParseFail; 3672 } 3673 Reg = getDRegFromQReg(Reg); 3674 if (Reg != OldReg + 1) { 3675 Error(RegLoc, "non-contiguous register range"); 3676 return MatchOperand_ParseFail; 3677 } 3678 ++Reg; 3679 Count += 2; 3680 // Parse the lane specifier if present. 3681 VectorLaneTy NextLaneKind; 3682 unsigned NextLaneIndex; 3683 SMLoc LaneLoc = Parser.getTok().getLoc(); 3684 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3685 MatchOperand_Success) 3686 return MatchOperand_ParseFail; 3687 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3688 Error(LaneLoc, "mismatched lane index in register list"); 3689 return MatchOperand_ParseFail; 3690 } 3691 continue; 3692 } 3693 // Normal D register. 3694 // Figure out the register spacing (single or double) of the list if 3695 // we don't know it already. 3696 if (!Spacing) 3697 Spacing = 1 + (Reg == OldReg + 2); 3698 3699 // Just check that it's contiguous and keep going. 3700 if (Reg != OldReg + Spacing) { 3701 Error(RegLoc, "non-contiguous register range"); 3702 return MatchOperand_ParseFail; 3703 } 3704 ++Count; 3705 // Parse the lane specifier if present. 3706 VectorLaneTy NextLaneKind; 3707 unsigned NextLaneIndex; 3708 SMLoc EndLoc = Parser.getTok().getLoc(); 3709 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3710 return MatchOperand_ParseFail; 3711 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3712 Error(EndLoc, "mismatched lane index in register list"); 3713 return MatchOperand_ParseFail; 3714 } 3715 } 3716 3717 if (Parser.getTok().isNot(AsmToken::RCurly)) { 3718 Error(Parser.getTok().getLoc(), "'}' expected"); 3719 return MatchOperand_ParseFail; 3720 } 3721 E = Parser.getTok().getEndLoc(); 3722 Parser.Lex(); // Eat '}' token. 3723 3724 switch (LaneKind) { 3725 case NoLanes: 3726 // Two-register operands have been converted to the 3727 // composite register classes. 3728 if (Count == 2) { 3729 const MCRegisterClass *RC = (Spacing == 1) ? 3730 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3731 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3732 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3733 } 3734 3735 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 3736 (Spacing == 2), S, E)); 3737 break; 3738 case AllLanes: 3739 // Two-register operands have been converted to the 3740 // composite register classes. 3741 if (Count == 2) { 3742 const MCRegisterClass *RC = (Spacing == 1) ? 3743 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3744 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3745 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3746 } 3747 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 3748 (Spacing == 2), 3749 S, E)); 3750 break; 3751 case IndexedLane: 3752 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 3753 LaneIndex, 3754 (Spacing == 2), 3755 S, E)); 3756 break; 3757 } 3758 return MatchOperand_Success; 3759 } 3760 3761 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 3762 ARMAsmParser::OperandMatchResultTy 3763 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 3764 MCAsmParser &Parser = getParser(); 3765 SMLoc S = Parser.getTok().getLoc(); 3766 const AsmToken &Tok = Parser.getTok(); 3767 unsigned Opt; 3768 3769 if (Tok.is(AsmToken::Identifier)) { 3770 StringRef OptStr = Tok.getString(); 3771 3772 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 3773 .Case("sy", ARM_MB::SY) 3774 .Case("st", ARM_MB::ST) 3775 .Case("ld", ARM_MB::LD) 3776 .Case("sh", ARM_MB::ISH) 3777 .Case("ish", ARM_MB::ISH) 3778 .Case("shst", ARM_MB::ISHST) 3779 .Case("ishst", ARM_MB::ISHST) 3780 .Case("ishld", ARM_MB::ISHLD) 3781 .Case("nsh", ARM_MB::NSH) 3782 .Case("un", ARM_MB::NSH) 3783 .Case("nshst", ARM_MB::NSHST) 3784 .Case("nshld", ARM_MB::NSHLD) 3785 .Case("unst", ARM_MB::NSHST) 3786 .Case("osh", ARM_MB::OSH) 3787 .Case("oshst", ARM_MB::OSHST) 3788 .Case("oshld", ARM_MB::OSHLD) 3789 .Default(~0U); 3790 3791 // ishld, oshld, nshld and ld are only available from ARMv8. 3792 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 3793 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 3794 Opt = ~0U; 3795 3796 if (Opt == ~0U) 3797 return MatchOperand_NoMatch; 3798 3799 Parser.Lex(); // Eat identifier token. 3800 } else if (Tok.is(AsmToken::Hash) || 3801 Tok.is(AsmToken::Dollar) || 3802 Tok.is(AsmToken::Integer)) { 3803 if (Parser.getTok().isNot(AsmToken::Integer)) 3804 Parser.Lex(); // Eat '#' or '$'. 3805 SMLoc Loc = Parser.getTok().getLoc(); 3806 3807 const MCExpr *MemBarrierID; 3808 if (getParser().parseExpression(MemBarrierID)) { 3809 Error(Loc, "illegal expression"); 3810 return MatchOperand_ParseFail; 3811 } 3812 3813 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 3814 if (!CE) { 3815 Error(Loc, "constant expression expected"); 3816 return MatchOperand_ParseFail; 3817 } 3818 3819 int Val = CE->getValue(); 3820 if (Val & ~0xf) { 3821 Error(Loc, "immediate value out of range"); 3822 return MatchOperand_ParseFail; 3823 } 3824 3825 Opt = ARM_MB::RESERVED_0 + Val; 3826 } else 3827 return MatchOperand_ParseFail; 3828 3829 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 3830 return MatchOperand_Success; 3831 } 3832 3833 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 3834 ARMAsmParser::OperandMatchResultTy 3835 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 3836 MCAsmParser &Parser = getParser(); 3837 SMLoc S = Parser.getTok().getLoc(); 3838 const AsmToken &Tok = Parser.getTok(); 3839 unsigned Opt; 3840 3841 if (Tok.is(AsmToken::Identifier)) { 3842 StringRef OptStr = Tok.getString(); 3843 3844 if (OptStr.equals_lower("sy")) 3845 Opt = ARM_ISB::SY; 3846 else 3847 return MatchOperand_NoMatch; 3848 3849 Parser.Lex(); // Eat identifier token. 3850 } else if (Tok.is(AsmToken::Hash) || 3851 Tok.is(AsmToken::Dollar) || 3852 Tok.is(AsmToken::Integer)) { 3853 if (Parser.getTok().isNot(AsmToken::Integer)) 3854 Parser.Lex(); // Eat '#' or '$'. 3855 SMLoc Loc = Parser.getTok().getLoc(); 3856 3857 const MCExpr *ISBarrierID; 3858 if (getParser().parseExpression(ISBarrierID)) { 3859 Error(Loc, "illegal expression"); 3860 return MatchOperand_ParseFail; 3861 } 3862 3863 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 3864 if (!CE) { 3865 Error(Loc, "constant expression expected"); 3866 return MatchOperand_ParseFail; 3867 } 3868 3869 int Val = CE->getValue(); 3870 if (Val & ~0xf) { 3871 Error(Loc, "immediate value out of range"); 3872 return MatchOperand_ParseFail; 3873 } 3874 3875 Opt = ARM_ISB::RESERVED_0 + Val; 3876 } else 3877 return MatchOperand_ParseFail; 3878 3879 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 3880 (ARM_ISB::InstSyncBOpt)Opt, S)); 3881 return MatchOperand_Success; 3882 } 3883 3884 3885 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 3886 ARMAsmParser::OperandMatchResultTy 3887 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 3888 MCAsmParser &Parser = getParser(); 3889 SMLoc S = Parser.getTok().getLoc(); 3890 const AsmToken &Tok = Parser.getTok(); 3891 if (!Tok.is(AsmToken::Identifier)) 3892 return MatchOperand_NoMatch; 3893 StringRef IFlagsStr = Tok.getString(); 3894 3895 // An iflags string of "none" is interpreted to mean that none of the AIF 3896 // bits are set. Not a terribly useful instruction, but a valid encoding. 3897 unsigned IFlags = 0; 3898 if (IFlagsStr != "none") { 3899 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 3900 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 3901 .Case("a", ARM_PROC::A) 3902 .Case("i", ARM_PROC::I) 3903 .Case("f", ARM_PROC::F) 3904 .Default(~0U); 3905 3906 // If some specific iflag is already set, it means that some letter is 3907 // present more than once, this is not acceptable. 3908 if (Flag == ~0U || (IFlags & Flag)) 3909 return MatchOperand_NoMatch; 3910 3911 IFlags |= Flag; 3912 } 3913 } 3914 3915 Parser.Lex(); // Eat identifier token. 3916 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 3917 return MatchOperand_Success; 3918 } 3919 3920 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 3921 ARMAsmParser::OperandMatchResultTy 3922 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 3923 MCAsmParser &Parser = getParser(); 3924 SMLoc S = Parser.getTok().getLoc(); 3925 const AsmToken &Tok = Parser.getTok(); 3926 if (!Tok.is(AsmToken::Identifier)) 3927 return MatchOperand_NoMatch; 3928 StringRef Mask = Tok.getString(); 3929 3930 if (isMClass()) { 3931 // See ARMv6-M 10.1.1 3932 std::string Name = Mask.lower(); 3933 unsigned FlagsVal = StringSwitch<unsigned>(Name) 3934 // Note: in the documentation: 3935 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 3936 // for MSR APSR_nzcvq. 3937 // but we do make it an alias here. This is so to get the "mask encoding" 3938 // bits correct on MSR APSR writes. 3939 // 3940 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 3941 // should really only be allowed when writing a special register. Note 3942 // they get dropped in the MRS instruction reading a special register as 3943 // the SYSm field is only 8 bits. 3944 .Case("apsr", 0x800) 3945 .Case("apsr_nzcvq", 0x800) 3946 .Case("apsr_g", 0x400) 3947 .Case("apsr_nzcvqg", 0xc00) 3948 .Case("iapsr", 0x801) 3949 .Case("iapsr_nzcvq", 0x801) 3950 .Case("iapsr_g", 0x401) 3951 .Case("iapsr_nzcvqg", 0xc01) 3952 .Case("eapsr", 0x802) 3953 .Case("eapsr_nzcvq", 0x802) 3954 .Case("eapsr_g", 0x402) 3955 .Case("eapsr_nzcvqg", 0xc02) 3956 .Case("xpsr", 0x803) 3957 .Case("xpsr_nzcvq", 0x803) 3958 .Case("xpsr_g", 0x403) 3959 .Case("xpsr_nzcvqg", 0xc03) 3960 .Case("ipsr", 0x805) 3961 .Case("epsr", 0x806) 3962 .Case("iepsr", 0x807) 3963 .Case("msp", 0x808) 3964 .Case("psp", 0x809) 3965 .Case("primask", 0x810) 3966 .Case("basepri", 0x811) 3967 .Case("basepri_max", 0x812) 3968 .Case("faultmask", 0x813) 3969 .Case("control", 0x814) 3970 .Default(~0U); 3971 3972 if (FlagsVal == ~0U) 3973 return MatchOperand_NoMatch; 3974 3975 if (!hasDSP() && (FlagsVal & 0x400)) 3976 // The _g and _nzcvqg versions are only valid if the DSP extension is 3977 // available. 3978 return MatchOperand_NoMatch; 3979 3980 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 3981 // basepri, basepri_max and faultmask only valid for V7m. 3982 return MatchOperand_NoMatch; 3983 3984 Parser.Lex(); // Eat identifier token. 3985 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 3986 return MatchOperand_Success; 3987 } 3988 3989 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 3990 size_t Start = 0, Next = Mask.find('_'); 3991 StringRef Flags = ""; 3992 std::string SpecReg = Mask.slice(Start, Next).lower(); 3993 if (Next != StringRef::npos) 3994 Flags = Mask.slice(Next+1, Mask.size()); 3995 3996 // FlagsVal contains the complete mask: 3997 // 3-0: Mask 3998 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 3999 unsigned FlagsVal = 0; 4000 4001 if (SpecReg == "apsr") { 4002 FlagsVal = StringSwitch<unsigned>(Flags) 4003 .Case("nzcvq", 0x8) // same as CPSR_f 4004 .Case("g", 0x4) // same as CPSR_s 4005 .Case("nzcvqg", 0xc) // same as CPSR_fs 4006 .Default(~0U); 4007 4008 if (FlagsVal == ~0U) { 4009 if (!Flags.empty()) 4010 return MatchOperand_NoMatch; 4011 else 4012 FlagsVal = 8; // No flag 4013 } 4014 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4015 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4016 if (Flags == "all" || Flags == "") 4017 Flags = "fc"; 4018 for (int i = 0, e = Flags.size(); i != e; ++i) { 4019 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4020 .Case("c", 1) 4021 .Case("x", 2) 4022 .Case("s", 4) 4023 .Case("f", 8) 4024 .Default(~0U); 4025 4026 // If some specific flag is already set, it means that some letter is 4027 // present more than once, this is not acceptable. 4028 if (FlagsVal == ~0U || (FlagsVal & Flag)) 4029 return MatchOperand_NoMatch; 4030 FlagsVal |= Flag; 4031 } 4032 } else // No match for special register. 4033 return MatchOperand_NoMatch; 4034 4035 // Special register without flags is NOT equivalent to "fc" flags. 4036 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4037 // two lines would enable gas compatibility at the expense of breaking 4038 // round-tripping. 4039 // 4040 // if (!FlagsVal) 4041 // FlagsVal = 0x9; 4042 4043 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4044 if (SpecReg == "spsr") 4045 FlagsVal |= 16; 4046 4047 Parser.Lex(); // Eat identifier token. 4048 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4049 return MatchOperand_Success; 4050 } 4051 4052 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4053 /// use in the MRS/MSR instructions added to support virtualization. 4054 ARMAsmParser::OperandMatchResultTy 4055 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4056 MCAsmParser &Parser = getParser(); 4057 SMLoc S = Parser.getTok().getLoc(); 4058 const AsmToken &Tok = Parser.getTok(); 4059 if (!Tok.is(AsmToken::Identifier)) 4060 return MatchOperand_NoMatch; 4061 StringRef RegName = Tok.getString(); 4062 4063 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4064 // and bit 5 is R. 4065 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4066 .Case("r8_usr", 0x00) 4067 .Case("r9_usr", 0x01) 4068 .Case("r10_usr", 0x02) 4069 .Case("r11_usr", 0x03) 4070 .Case("r12_usr", 0x04) 4071 .Case("sp_usr", 0x05) 4072 .Case("lr_usr", 0x06) 4073 .Case("r8_fiq", 0x08) 4074 .Case("r9_fiq", 0x09) 4075 .Case("r10_fiq", 0x0a) 4076 .Case("r11_fiq", 0x0b) 4077 .Case("r12_fiq", 0x0c) 4078 .Case("sp_fiq", 0x0d) 4079 .Case("lr_fiq", 0x0e) 4080 .Case("lr_irq", 0x10) 4081 .Case("sp_irq", 0x11) 4082 .Case("lr_svc", 0x12) 4083 .Case("sp_svc", 0x13) 4084 .Case("lr_abt", 0x14) 4085 .Case("sp_abt", 0x15) 4086 .Case("lr_und", 0x16) 4087 .Case("sp_und", 0x17) 4088 .Case("lr_mon", 0x1c) 4089 .Case("sp_mon", 0x1d) 4090 .Case("elr_hyp", 0x1e) 4091 .Case("sp_hyp", 0x1f) 4092 .Case("spsr_fiq", 0x2e) 4093 .Case("spsr_irq", 0x30) 4094 .Case("spsr_svc", 0x32) 4095 .Case("spsr_abt", 0x34) 4096 .Case("spsr_und", 0x36) 4097 .Case("spsr_mon", 0x3c) 4098 .Case("spsr_hyp", 0x3e) 4099 .Default(~0U); 4100 4101 if (Encoding == ~0U) 4102 return MatchOperand_NoMatch; 4103 4104 Parser.Lex(); // Eat identifier token. 4105 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4106 return MatchOperand_Success; 4107 } 4108 4109 ARMAsmParser::OperandMatchResultTy 4110 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4111 int High) { 4112 MCAsmParser &Parser = getParser(); 4113 const AsmToken &Tok = Parser.getTok(); 4114 if (Tok.isNot(AsmToken::Identifier)) { 4115 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4116 return MatchOperand_ParseFail; 4117 } 4118 StringRef ShiftName = Tok.getString(); 4119 std::string LowerOp = Op.lower(); 4120 std::string UpperOp = Op.upper(); 4121 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4122 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4123 return MatchOperand_ParseFail; 4124 } 4125 Parser.Lex(); // Eat shift type token. 4126 4127 // There must be a '#' and a shift amount. 4128 if (Parser.getTok().isNot(AsmToken::Hash) && 4129 Parser.getTok().isNot(AsmToken::Dollar)) { 4130 Error(Parser.getTok().getLoc(), "'#' expected"); 4131 return MatchOperand_ParseFail; 4132 } 4133 Parser.Lex(); // Eat hash token. 4134 4135 const MCExpr *ShiftAmount; 4136 SMLoc Loc = Parser.getTok().getLoc(); 4137 SMLoc EndLoc; 4138 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4139 Error(Loc, "illegal expression"); 4140 return MatchOperand_ParseFail; 4141 } 4142 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4143 if (!CE) { 4144 Error(Loc, "constant expression expected"); 4145 return MatchOperand_ParseFail; 4146 } 4147 int Val = CE->getValue(); 4148 if (Val < Low || Val > High) { 4149 Error(Loc, "immediate value out of range"); 4150 return MatchOperand_ParseFail; 4151 } 4152 4153 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4154 4155 return MatchOperand_Success; 4156 } 4157 4158 ARMAsmParser::OperandMatchResultTy 4159 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4160 MCAsmParser &Parser = getParser(); 4161 const AsmToken &Tok = Parser.getTok(); 4162 SMLoc S = Tok.getLoc(); 4163 if (Tok.isNot(AsmToken::Identifier)) { 4164 Error(S, "'be' or 'le' operand expected"); 4165 return MatchOperand_ParseFail; 4166 } 4167 int Val = StringSwitch<int>(Tok.getString().lower()) 4168 .Case("be", 1) 4169 .Case("le", 0) 4170 .Default(-1); 4171 Parser.Lex(); // Eat the token. 4172 4173 if (Val == -1) { 4174 Error(S, "'be' or 'le' operand expected"); 4175 return MatchOperand_ParseFail; 4176 } 4177 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4178 getContext()), 4179 S, Tok.getEndLoc())); 4180 return MatchOperand_Success; 4181 } 4182 4183 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4184 /// instructions. Legal values are: 4185 /// lsl #n 'n' in [0,31] 4186 /// asr #n 'n' in [1,32] 4187 /// n == 32 encoded as n == 0. 4188 ARMAsmParser::OperandMatchResultTy 4189 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4190 MCAsmParser &Parser = getParser(); 4191 const AsmToken &Tok = Parser.getTok(); 4192 SMLoc S = Tok.getLoc(); 4193 if (Tok.isNot(AsmToken::Identifier)) { 4194 Error(S, "shift operator 'asr' or 'lsl' expected"); 4195 return MatchOperand_ParseFail; 4196 } 4197 StringRef ShiftName = Tok.getString(); 4198 bool isASR; 4199 if (ShiftName == "lsl" || ShiftName == "LSL") 4200 isASR = false; 4201 else if (ShiftName == "asr" || ShiftName == "ASR") 4202 isASR = true; 4203 else { 4204 Error(S, "shift operator 'asr' or 'lsl' expected"); 4205 return MatchOperand_ParseFail; 4206 } 4207 Parser.Lex(); // Eat the operator. 4208 4209 // A '#' and a shift amount. 4210 if (Parser.getTok().isNot(AsmToken::Hash) && 4211 Parser.getTok().isNot(AsmToken::Dollar)) { 4212 Error(Parser.getTok().getLoc(), "'#' expected"); 4213 return MatchOperand_ParseFail; 4214 } 4215 Parser.Lex(); // Eat hash token. 4216 SMLoc ExLoc = Parser.getTok().getLoc(); 4217 4218 const MCExpr *ShiftAmount; 4219 SMLoc EndLoc; 4220 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4221 Error(ExLoc, "malformed shift expression"); 4222 return MatchOperand_ParseFail; 4223 } 4224 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4225 if (!CE) { 4226 Error(ExLoc, "shift amount must be an immediate"); 4227 return MatchOperand_ParseFail; 4228 } 4229 4230 int64_t Val = CE->getValue(); 4231 if (isASR) { 4232 // Shift amount must be in [1,32] 4233 if (Val < 1 || Val > 32) { 4234 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4235 return MatchOperand_ParseFail; 4236 } 4237 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4238 if (isThumb() && Val == 32) { 4239 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4240 return MatchOperand_ParseFail; 4241 } 4242 if (Val == 32) Val = 0; 4243 } else { 4244 // Shift amount must be in [1,32] 4245 if (Val < 0 || Val > 31) { 4246 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4247 return MatchOperand_ParseFail; 4248 } 4249 } 4250 4251 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4252 4253 return MatchOperand_Success; 4254 } 4255 4256 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4257 /// of instructions. Legal values are: 4258 /// ror #n 'n' in {0, 8, 16, 24} 4259 ARMAsmParser::OperandMatchResultTy 4260 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4261 MCAsmParser &Parser = getParser(); 4262 const AsmToken &Tok = Parser.getTok(); 4263 SMLoc S = Tok.getLoc(); 4264 if (Tok.isNot(AsmToken::Identifier)) 4265 return MatchOperand_NoMatch; 4266 StringRef ShiftName = Tok.getString(); 4267 if (ShiftName != "ror" && ShiftName != "ROR") 4268 return MatchOperand_NoMatch; 4269 Parser.Lex(); // Eat the operator. 4270 4271 // A '#' and a rotate amount. 4272 if (Parser.getTok().isNot(AsmToken::Hash) && 4273 Parser.getTok().isNot(AsmToken::Dollar)) { 4274 Error(Parser.getTok().getLoc(), "'#' expected"); 4275 return MatchOperand_ParseFail; 4276 } 4277 Parser.Lex(); // Eat hash token. 4278 SMLoc ExLoc = Parser.getTok().getLoc(); 4279 4280 const MCExpr *ShiftAmount; 4281 SMLoc EndLoc; 4282 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4283 Error(ExLoc, "malformed rotate expression"); 4284 return MatchOperand_ParseFail; 4285 } 4286 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4287 if (!CE) { 4288 Error(ExLoc, "rotate amount must be an immediate"); 4289 return MatchOperand_ParseFail; 4290 } 4291 4292 int64_t Val = CE->getValue(); 4293 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4294 // normally, zero is represented in asm by omitting the rotate operand 4295 // entirely. 4296 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4297 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4298 return MatchOperand_ParseFail; 4299 } 4300 4301 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4302 4303 return MatchOperand_Success; 4304 } 4305 4306 ARMAsmParser::OperandMatchResultTy 4307 ARMAsmParser::parseModImm(OperandVector &Operands) { 4308 MCAsmParser &Parser = getParser(); 4309 MCAsmLexer &Lexer = getLexer(); 4310 int64_t Imm1, Imm2; 4311 4312 SMLoc S = Parser.getTok().getLoc(); 4313 4314 // 1) A mod_imm operand can appear in the place of a register name: 4315 // add r0, #mod_imm 4316 // add r0, r0, #mod_imm 4317 // to correctly handle the latter, we bail out as soon as we see an 4318 // identifier. 4319 // 4320 // 2) Similarly, we do not want to parse into complex operands: 4321 // mov r0, #mod_imm 4322 // mov r0, :lower16:(_foo) 4323 if (Parser.getTok().is(AsmToken::Identifier) || 4324 Parser.getTok().is(AsmToken::Colon)) 4325 return MatchOperand_NoMatch; 4326 4327 // Hash (dollar) is optional as per the ARMARM 4328 if (Parser.getTok().is(AsmToken::Hash) || 4329 Parser.getTok().is(AsmToken::Dollar)) { 4330 // Avoid parsing into complex operands (#:) 4331 if (Lexer.peekTok().is(AsmToken::Colon)) 4332 return MatchOperand_NoMatch; 4333 4334 // Eat the hash (dollar) 4335 Parser.Lex(); 4336 } 4337 4338 SMLoc Sx1, Ex1; 4339 Sx1 = Parser.getTok().getLoc(); 4340 const MCExpr *Imm1Exp; 4341 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4342 Error(Sx1, "malformed expression"); 4343 return MatchOperand_ParseFail; 4344 } 4345 4346 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4347 4348 if (CE) { 4349 // Immediate must fit within 32-bits 4350 Imm1 = CE->getValue(); 4351 int Enc = ARM_AM::getSOImmVal(Imm1); 4352 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4353 // We have a match! 4354 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4355 (Enc & 0xF00) >> 7, 4356 Sx1, Ex1)); 4357 return MatchOperand_Success; 4358 } 4359 4360 // We have parsed an immediate which is not for us, fallback to a plain 4361 // immediate. This can happen for instruction aliases. For an example, 4362 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4363 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4364 // instruction with a mod_imm operand. The alias is defined such that the 4365 // parser method is shared, that's why we have to do this here. 4366 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4367 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4368 return MatchOperand_Success; 4369 } 4370 } else { 4371 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4372 // MCFixup). Fallback to a plain immediate. 4373 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4374 return MatchOperand_Success; 4375 } 4376 4377 // From this point onward, we expect the input to be a (#bits, #rot) pair 4378 if (Parser.getTok().isNot(AsmToken::Comma)) { 4379 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4380 return MatchOperand_ParseFail; 4381 } 4382 4383 if (Imm1 & ~0xFF) { 4384 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4385 return MatchOperand_ParseFail; 4386 } 4387 4388 // Eat the comma 4389 Parser.Lex(); 4390 4391 // Repeat for #rot 4392 SMLoc Sx2, Ex2; 4393 Sx2 = Parser.getTok().getLoc(); 4394 4395 // Eat the optional hash (dollar) 4396 if (Parser.getTok().is(AsmToken::Hash) || 4397 Parser.getTok().is(AsmToken::Dollar)) 4398 Parser.Lex(); 4399 4400 const MCExpr *Imm2Exp; 4401 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4402 Error(Sx2, "malformed expression"); 4403 return MatchOperand_ParseFail; 4404 } 4405 4406 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4407 4408 if (CE) { 4409 Imm2 = CE->getValue(); 4410 if (!(Imm2 & ~0x1E)) { 4411 // We have a match! 4412 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4413 return MatchOperand_Success; 4414 } 4415 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4416 return MatchOperand_ParseFail; 4417 } else { 4418 Error(Sx2, "constant expression expected"); 4419 return MatchOperand_ParseFail; 4420 } 4421 } 4422 4423 ARMAsmParser::OperandMatchResultTy 4424 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4425 MCAsmParser &Parser = getParser(); 4426 SMLoc S = Parser.getTok().getLoc(); 4427 // The bitfield descriptor is really two operands, the LSB and the width. 4428 if (Parser.getTok().isNot(AsmToken::Hash) && 4429 Parser.getTok().isNot(AsmToken::Dollar)) { 4430 Error(Parser.getTok().getLoc(), "'#' expected"); 4431 return MatchOperand_ParseFail; 4432 } 4433 Parser.Lex(); // Eat hash token. 4434 4435 const MCExpr *LSBExpr; 4436 SMLoc E = Parser.getTok().getLoc(); 4437 if (getParser().parseExpression(LSBExpr)) { 4438 Error(E, "malformed immediate expression"); 4439 return MatchOperand_ParseFail; 4440 } 4441 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4442 if (!CE) { 4443 Error(E, "'lsb' operand must be an immediate"); 4444 return MatchOperand_ParseFail; 4445 } 4446 4447 int64_t LSB = CE->getValue(); 4448 // The LSB must be in the range [0,31] 4449 if (LSB < 0 || LSB > 31) { 4450 Error(E, "'lsb' operand must be in the range [0,31]"); 4451 return MatchOperand_ParseFail; 4452 } 4453 E = Parser.getTok().getLoc(); 4454 4455 // Expect another immediate operand. 4456 if (Parser.getTok().isNot(AsmToken::Comma)) { 4457 Error(Parser.getTok().getLoc(), "too few operands"); 4458 return MatchOperand_ParseFail; 4459 } 4460 Parser.Lex(); // Eat hash token. 4461 if (Parser.getTok().isNot(AsmToken::Hash) && 4462 Parser.getTok().isNot(AsmToken::Dollar)) { 4463 Error(Parser.getTok().getLoc(), "'#' expected"); 4464 return MatchOperand_ParseFail; 4465 } 4466 Parser.Lex(); // Eat hash token. 4467 4468 const MCExpr *WidthExpr; 4469 SMLoc EndLoc; 4470 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4471 Error(E, "malformed immediate expression"); 4472 return MatchOperand_ParseFail; 4473 } 4474 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4475 if (!CE) { 4476 Error(E, "'width' operand must be an immediate"); 4477 return MatchOperand_ParseFail; 4478 } 4479 4480 int64_t Width = CE->getValue(); 4481 // The LSB must be in the range [1,32-lsb] 4482 if (Width < 1 || Width > 32 - LSB) { 4483 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4484 return MatchOperand_ParseFail; 4485 } 4486 4487 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4488 4489 return MatchOperand_Success; 4490 } 4491 4492 ARMAsmParser::OperandMatchResultTy 4493 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4494 // Check for a post-index addressing register operand. Specifically: 4495 // postidx_reg := '+' register {, shift} 4496 // | '-' register {, shift} 4497 // | register {, shift} 4498 4499 // This method must return MatchOperand_NoMatch without consuming any tokens 4500 // in the case where there is no match, as other alternatives take other 4501 // parse methods. 4502 MCAsmParser &Parser = getParser(); 4503 AsmToken Tok = Parser.getTok(); 4504 SMLoc S = Tok.getLoc(); 4505 bool haveEaten = false; 4506 bool isAdd = true; 4507 if (Tok.is(AsmToken::Plus)) { 4508 Parser.Lex(); // Eat the '+' token. 4509 haveEaten = true; 4510 } else if (Tok.is(AsmToken::Minus)) { 4511 Parser.Lex(); // Eat the '-' token. 4512 isAdd = false; 4513 haveEaten = true; 4514 } 4515 4516 SMLoc E = Parser.getTok().getEndLoc(); 4517 int Reg = tryParseRegister(); 4518 if (Reg == -1) { 4519 if (!haveEaten) 4520 return MatchOperand_NoMatch; 4521 Error(Parser.getTok().getLoc(), "register expected"); 4522 return MatchOperand_ParseFail; 4523 } 4524 4525 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4526 unsigned ShiftImm = 0; 4527 if (Parser.getTok().is(AsmToken::Comma)) { 4528 Parser.Lex(); // Eat the ','. 4529 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4530 return MatchOperand_ParseFail; 4531 4532 // FIXME: Only approximates end...may include intervening whitespace. 4533 E = Parser.getTok().getLoc(); 4534 } 4535 4536 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4537 ShiftImm, S, E)); 4538 4539 return MatchOperand_Success; 4540 } 4541 4542 ARMAsmParser::OperandMatchResultTy 4543 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4544 // Check for a post-index addressing register operand. Specifically: 4545 // am3offset := '+' register 4546 // | '-' register 4547 // | register 4548 // | # imm 4549 // | # + imm 4550 // | # - imm 4551 4552 // This method must return MatchOperand_NoMatch without consuming any tokens 4553 // in the case where there is no match, as other alternatives take other 4554 // parse methods. 4555 MCAsmParser &Parser = getParser(); 4556 AsmToken Tok = Parser.getTok(); 4557 SMLoc S = Tok.getLoc(); 4558 4559 // Do immediates first, as we always parse those if we have a '#'. 4560 if (Parser.getTok().is(AsmToken::Hash) || 4561 Parser.getTok().is(AsmToken::Dollar)) { 4562 Parser.Lex(); // Eat '#' or '$'. 4563 // Explicitly look for a '-', as we need to encode negative zero 4564 // differently. 4565 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4566 const MCExpr *Offset; 4567 SMLoc E; 4568 if (getParser().parseExpression(Offset, E)) 4569 return MatchOperand_ParseFail; 4570 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4571 if (!CE) { 4572 Error(S, "constant expression expected"); 4573 return MatchOperand_ParseFail; 4574 } 4575 // Negative zero is encoded as the flag value INT32_MIN. 4576 int32_t Val = CE->getValue(); 4577 if (isNegative && Val == 0) 4578 Val = INT32_MIN; 4579 4580 Operands.push_back( 4581 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4582 4583 return MatchOperand_Success; 4584 } 4585 4586 4587 bool haveEaten = false; 4588 bool isAdd = true; 4589 if (Tok.is(AsmToken::Plus)) { 4590 Parser.Lex(); // Eat the '+' token. 4591 haveEaten = true; 4592 } else if (Tok.is(AsmToken::Minus)) { 4593 Parser.Lex(); // Eat the '-' token. 4594 isAdd = false; 4595 haveEaten = true; 4596 } 4597 4598 Tok = Parser.getTok(); 4599 int Reg = tryParseRegister(); 4600 if (Reg == -1) { 4601 if (!haveEaten) 4602 return MatchOperand_NoMatch; 4603 Error(Tok.getLoc(), "register expected"); 4604 return MatchOperand_ParseFail; 4605 } 4606 4607 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4608 0, S, Tok.getEndLoc())); 4609 4610 return MatchOperand_Success; 4611 } 4612 4613 /// Convert parsed operands to MCInst. Needed here because this instruction 4614 /// only has two register operands, but multiplication is commutative so 4615 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4616 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4617 const OperandVector &Operands) { 4618 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4619 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4620 // If we have a three-operand form, make sure to set Rn to be the operand 4621 // that isn't the same as Rd. 4622 unsigned RegOp = 4; 4623 if (Operands.size() == 6 && 4624 ((ARMOperand &)*Operands[4]).getReg() == 4625 ((ARMOperand &)*Operands[3]).getReg()) 4626 RegOp = 5; 4627 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4628 Inst.addOperand(Inst.getOperand(0)); 4629 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4630 } 4631 4632 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4633 const OperandVector &Operands) { 4634 int CondOp = -1, ImmOp = -1; 4635 switch(Inst.getOpcode()) { 4636 case ARM::tB: 4637 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4638 4639 case ARM::t2B: 4640 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4641 4642 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4643 } 4644 // first decide whether or not the branch should be conditional 4645 // by looking at it's location relative to an IT block 4646 if(inITBlock()) { 4647 // inside an IT block we cannot have any conditional branches. any 4648 // such instructions needs to be converted to unconditional form 4649 switch(Inst.getOpcode()) { 4650 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4651 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4652 } 4653 } else { 4654 // outside IT blocks we can only have unconditional branches with AL 4655 // condition code or conditional branches with non-AL condition code 4656 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4657 switch(Inst.getOpcode()) { 4658 case ARM::tB: 4659 case ARM::tBcc: 4660 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4661 break; 4662 case ARM::t2B: 4663 case ARM::t2Bcc: 4664 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4665 break; 4666 } 4667 } 4668 4669 // now decide on encoding size based on branch target range 4670 switch(Inst.getOpcode()) { 4671 // classify tB as either t2B or t1B based on range of immediate operand 4672 case ARM::tB: { 4673 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4674 if (!op.isSignedOffset<11, 1>() && isThumbTwo()) 4675 Inst.setOpcode(ARM::t2B); 4676 break; 4677 } 4678 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4679 case ARM::tBcc: { 4680 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4681 if (!op.isSignedOffset<8, 1>() && isThumbTwo()) 4682 Inst.setOpcode(ARM::t2Bcc); 4683 break; 4684 } 4685 } 4686 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4687 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4688 } 4689 4690 /// Parse an ARM memory expression, return false if successful else return true 4691 /// or an error. The first token must be a '[' when called. 4692 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4693 MCAsmParser &Parser = getParser(); 4694 SMLoc S, E; 4695 assert(Parser.getTok().is(AsmToken::LBrac) && 4696 "Token is not a Left Bracket"); 4697 S = Parser.getTok().getLoc(); 4698 Parser.Lex(); // Eat left bracket token. 4699 4700 const AsmToken &BaseRegTok = Parser.getTok(); 4701 int BaseRegNum = tryParseRegister(); 4702 if (BaseRegNum == -1) 4703 return Error(BaseRegTok.getLoc(), "register expected"); 4704 4705 // The next token must either be a comma, a colon or a closing bracket. 4706 const AsmToken &Tok = Parser.getTok(); 4707 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4708 !Tok.is(AsmToken::RBrac)) 4709 return Error(Tok.getLoc(), "malformed memory operand"); 4710 4711 if (Tok.is(AsmToken::RBrac)) { 4712 E = Tok.getEndLoc(); 4713 Parser.Lex(); // Eat right bracket token. 4714 4715 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4716 ARM_AM::no_shift, 0, 0, false, 4717 S, E)); 4718 4719 // If there's a pre-indexing writeback marker, '!', just add it as a token 4720 // operand. It's rather odd, but syntactically valid. 4721 if (Parser.getTok().is(AsmToken::Exclaim)) { 4722 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4723 Parser.Lex(); // Eat the '!'. 4724 } 4725 4726 return false; 4727 } 4728 4729 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4730 "Lost colon or comma in memory operand?!"); 4731 if (Tok.is(AsmToken::Comma)) { 4732 Parser.Lex(); // Eat the comma. 4733 } 4734 4735 // If we have a ':', it's an alignment specifier. 4736 if (Parser.getTok().is(AsmToken::Colon)) { 4737 Parser.Lex(); // Eat the ':'. 4738 E = Parser.getTok().getLoc(); 4739 SMLoc AlignmentLoc = Tok.getLoc(); 4740 4741 const MCExpr *Expr; 4742 if (getParser().parseExpression(Expr)) 4743 return true; 4744 4745 // The expression has to be a constant. Memory references with relocations 4746 // don't come through here, as they use the <label> forms of the relevant 4747 // instructions. 4748 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4749 if (!CE) 4750 return Error (E, "constant expression expected"); 4751 4752 unsigned Align = 0; 4753 switch (CE->getValue()) { 4754 default: 4755 return Error(E, 4756 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4757 case 16: Align = 2; break; 4758 case 32: Align = 4; break; 4759 case 64: Align = 8; break; 4760 case 128: Align = 16; break; 4761 case 256: Align = 32; break; 4762 } 4763 4764 // Now we should have the closing ']' 4765 if (Parser.getTok().isNot(AsmToken::RBrac)) 4766 return Error(Parser.getTok().getLoc(), "']' expected"); 4767 E = Parser.getTok().getEndLoc(); 4768 Parser.Lex(); // Eat right bracket token. 4769 4770 // Don't worry about range checking the value here. That's handled by 4771 // the is*() predicates. 4772 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4773 ARM_AM::no_shift, 0, Align, 4774 false, S, E, AlignmentLoc)); 4775 4776 // If there's a pre-indexing writeback marker, '!', just add it as a token 4777 // operand. 4778 if (Parser.getTok().is(AsmToken::Exclaim)) { 4779 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4780 Parser.Lex(); // Eat the '!'. 4781 } 4782 4783 return false; 4784 } 4785 4786 // If we have a '#', it's an immediate offset, else assume it's a register 4787 // offset. Be friendly and also accept a plain integer (without a leading 4788 // hash) for gas compatibility. 4789 if (Parser.getTok().is(AsmToken::Hash) || 4790 Parser.getTok().is(AsmToken::Dollar) || 4791 Parser.getTok().is(AsmToken::Integer)) { 4792 if (Parser.getTok().isNot(AsmToken::Integer)) 4793 Parser.Lex(); // Eat '#' or '$'. 4794 E = Parser.getTok().getLoc(); 4795 4796 bool isNegative = getParser().getTok().is(AsmToken::Minus); 4797 const MCExpr *Offset; 4798 if (getParser().parseExpression(Offset)) 4799 return true; 4800 4801 // The expression has to be a constant. Memory references with relocations 4802 // don't come through here, as they use the <label> forms of the relevant 4803 // instructions. 4804 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4805 if (!CE) 4806 return Error (E, "constant expression expected"); 4807 4808 // If the constant was #-0, represent it as INT32_MIN. 4809 int32_t Val = CE->getValue(); 4810 if (isNegative && Val == 0) 4811 CE = MCConstantExpr::create(INT32_MIN, getContext()); 4812 4813 // Now we should have the closing ']' 4814 if (Parser.getTok().isNot(AsmToken::RBrac)) 4815 return Error(Parser.getTok().getLoc(), "']' expected"); 4816 E = Parser.getTok().getEndLoc(); 4817 Parser.Lex(); // Eat right bracket token. 4818 4819 // Don't worry about range checking the value here. That's handled by 4820 // the is*() predicates. 4821 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 4822 ARM_AM::no_shift, 0, 0, 4823 false, S, E)); 4824 4825 // If there's a pre-indexing writeback marker, '!', just add it as a token 4826 // operand. 4827 if (Parser.getTok().is(AsmToken::Exclaim)) { 4828 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4829 Parser.Lex(); // Eat the '!'. 4830 } 4831 4832 return false; 4833 } 4834 4835 // The register offset is optionally preceded by a '+' or '-' 4836 bool isNegative = false; 4837 if (Parser.getTok().is(AsmToken::Minus)) { 4838 isNegative = true; 4839 Parser.Lex(); // Eat the '-'. 4840 } else if (Parser.getTok().is(AsmToken::Plus)) { 4841 // Nothing to do. 4842 Parser.Lex(); // Eat the '+'. 4843 } 4844 4845 E = Parser.getTok().getLoc(); 4846 int OffsetRegNum = tryParseRegister(); 4847 if (OffsetRegNum == -1) 4848 return Error(E, "register expected"); 4849 4850 // If there's a shift operator, handle it. 4851 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 4852 unsigned ShiftImm = 0; 4853 if (Parser.getTok().is(AsmToken::Comma)) { 4854 Parser.Lex(); // Eat the ','. 4855 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 4856 return true; 4857 } 4858 4859 // Now we should have the closing ']' 4860 if (Parser.getTok().isNot(AsmToken::RBrac)) 4861 return Error(Parser.getTok().getLoc(), "']' expected"); 4862 E = Parser.getTok().getEndLoc(); 4863 Parser.Lex(); // Eat right bracket token. 4864 4865 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 4866 ShiftType, ShiftImm, 0, isNegative, 4867 S, E)); 4868 4869 // If there's a pre-indexing writeback marker, '!', just add it as a token 4870 // operand. 4871 if (Parser.getTok().is(AsmToken::Exclaim)) { 4872 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4873 Parser.Lex(); // Eat the '!'. 4874 } 4875 4876 return false; 4877 } 4878 4879 /// parseMemRegOffsetShift - one of these two: 4880 /// ( lsl | lsr | asr | ror ) , # shift_amount 4881 /// rrx 4882 /// return true if it parses a shift otherwise it returns false. 4883 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 4884 unsigned &Amount) { 4885 MCAsmParser &Parser = getParser(); 4886 SMLoc Loc = Parser.getTok().getLoc(); 4887 const AsmToken &Tok = Parser.getTok(); 4888 if (Tok.isNot(AsmToken::Identifier)) 4889 return true; 4890 StringRef ShiftName = Tok.getString(); 4891 if (ShiftName == "lsl" || ShiftName == "LSL" || 4892 ShiftName == "asl" || ShiftName == "ASL") 4893 St = ARM_AM::lsl; 4894 else if (ShiftName == "lsr" || ShiftName == "LSR") 4895 St = ARM_AM::lsr; 4896 else if (ShiftName == "asr" || ShiftName == "ASR") 4897 St = ARM_AM::asr; 4898 else if (ShiftName == "ror" || ShiftName == "ROR") 4899 St = ARM_AM::ror; 4900 else if (ShiftName == "rrx" || ShiftName == "RRX") 4901 St = ARM_AM::rrx; 4902 else 4903 return Error(Loc, "illegal shift operator"); 4904 Parser.Lex(); // Eat shift type token. 4905 4906 // rrx stands alone. 4907 Amount = 0; 4908 if (St != ARM_AM::rrx) { 4909 Loc = Parser.getTok().getLoc(); 4910 // A '#' and a shift amount. 4911 const AsmToken &HashTok = Parser.getTok(); 4912 if (HashTok.isNot(AsmToken::Hash) && 4913 HashTok.isNot(AsmToken::Dollar)) 4914 return Error(HashTok.getLoc(), "'#' expected"); 4915 Parser.Lex(); // Eat hash token. 4916 4917 const MCExpr *Expr; 4918 if (getParser().parseExpression(Expr)) 4919 return true; 4920 // Range check the immediate. 4921 // lsl, ror: 0 <= imm <= 31 4922 // lsr, asr: 0 <= imm <= 32 4923 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4924 if (!CE) 4925 return Error(Loc, "shift amount must be an immediate"); 4926 int64_t Imm = CE->getValue(); 4927 if (Imm < 0 || 4928 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 4929 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 4930 return Error(Loc, "immediate shift value out of range"); 4931 // If <ShiftTy> #0, turn it into a no_shift. 4932 if (Imm == 0) 4933 St = ARM_AM::lsl; 4934 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 4935 if (Imm == 32) 4936 Imm = 0; 4937 Amount = Imm; 4938 } 4939 4940 return false; 4941 } 4942 4943 /// parseFPImm - A floating point immediate expression operand. 4944 ARMAsmParser::OperandMatchResultTy 4945 ARMAsmParser::parseFPImm(OperandVector &Operands) { 4946 MCAsmParser &Parser = getParser(); 4947 // Anything that can accept a floating point constant as an operand 4948 // needs to go through here, as the regular parseExpression is 4949 // integer only. 4950 // 4951 // This routine still creates a generic Immediate operand, containing 4952 // a bitcast of the 64-bit floating point value. The various operands 4953 // that accept floats can check whether the value is valid for them 4954 // via the standard is*() predicates. 4955 4956 SMLoc S = Parser.getTok().getLoc(); 4957 4958 if (Parser.getTok().isNot(AsmToken::Hash) && 4959 Parser.getTok().isNot(AsmToken::Dollar)) 4960 return MatchOperand_NoMatch; 4961 4962 // Disambiguate the VMOV forms that can accept an FP immediate. 4963 // vmov.f32 <sreg>, #imm 4964 // vmov.f64 <dreg>, #imm 4965 // vmov.f32 <dreg>, #imm @ vector f32x2 4966 // vmov.f32 <qreg>, #imm @ vector f32x4 4967 // 4968 // There are also the NEON VMOV instructions which expect an 4969 // integer constant. Make sure we don't try to parse an FPImm 4970 // for these: 4971 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 4972 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 4973 bool isVmovf = TyOp.isToken() && 4974 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64"); 4975 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 4976 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 4977 Mnemonic.getToken() == "fconsts"); 4978 if (!(isVmovf || isFconst)) 4979 return MatchOperand_NoMatch; 4980 4981 Parser.Lex(); // Eat '#' or '$'. 4982 4983 // Handle negation, as that still comes through as a separate token. 4984 bool isNegative = false; 4985 if (Parser.getTok().is(AsmToken::Minus)) { 4986 isNegative = true; 4987 Parser.Lex(); 4988 } 4989 const AsmToken &Tok = Parser.getTok(); 4990 SMLoc Loc = Tok.getLoc(); 4991 if (Tok.is(AsmToken::Real) && isVmovf) { 4992 APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); 4993 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 4994 // If we had a '-' in front, toggle the sign bit. 4995 IntVal ^= (uint64_t)isNegative << 31; 4996 Parser.Lex(); // Eat the token. 4997 Operands.push_back(ARMOperand::CreateImm( 4998 MCConstantExpr::create(IntVal, getContext()), 4999 S, Parser.getTok().getLoc())); 5000 return MatchOperand_Success; 5001 } 5002 // Also handle plain integers. Instructions which allow floating point 5003 // immediates also allow a raw encoded 8-bit value. 5004 if (Tok.is(AsmToken::Integer) && isFconst) { 5005 int64_t Val = Tok.getIntVal(); 5006 Parser.Lex(); // Eat the token. 5007 if (Val > 255 || Val < 0) { 5008 Error(Loc, "encoded floating point value out of range"); 5009 return MatchOperand_ParseFail; 5010 } 5011 float RealVal = ARM_AM::getFPImmFloat(Val); 5012 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5013 5014 Operands.push_back(ARMOperand::CreateImm( 5015 MCConstantExpr::create(Val, getContext()), S, 5016 Parser.getTok().getLoc())); 5017 return MatchOperand_Success; 5018 } 5019 5020 Error(Loc, "invalid floating point immediate"); 5021 return MatchOperand_ParseFail; 5022 } 5023 5024 /// Parse a arm instruction operand. For now this parses the operand regardless 5025 /// of the mnemonic. 5026 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5027 MCAsmParser &Parser = getParser(); 5028 SMLoc S, E; 5029 5030 // Check if the current operand has a custom associated parser, if so, try to 5031 // custom parse the operand, or fallback to the general approach. 5032 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5033 if (ResTy == MatchOperand_Success) 5034 return false; 5035 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5036 // there was a match, but an error occurred, in which case, just return that 5037 // the operand parsing failed. 5038 if (ResTy == MatchOperand_ParseFail) 5039 return true; 5040 5041 switch (getLexer().getKind()) { 5042 default: 5043 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5044 return true; 5045 case AsmToken::Identifier: { 5046 // If we've seen a branch mnemonic, the next operand must be a label. This 5047 // is true even if the label is a register name. So "br r1" means branch to 5048 // label "r1". 5049 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5050 if (!ExpectLabel) { 5051 if (!tryParseRegisterWithWriteBack(Operands)) 5052 return false; 5053 int Res = tryParseShiftRegister(Operands); 5054 if (Res == 0) // success 5055 return false; 5056 else if (Res == -1) // irrecoverable error 5057 return true; 5058 // If this is VMRS, check for the apsr_nzcv operand. 5059 if (Mnemonic == "vmrs" && 5060 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5061 S = Parser.getTok().getLoc(); 5062 Parser.Lex(); 5063 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5064 return false; 5065 } 5066 } 5067 5068 // Fall though for the Identifier case that is not a register or a 5069 // special name. 5070 } 5071 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5072 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5073 case AsmToken::String: // quoted label names. 5074 case AsmToken::Dot: { // . as a branch target 5075 // This was not a register so parse other operands that start with an 5076 // identifier (like labels) as expressions and create them as immediates. 5077 const MCExpr *IdVal; 5078 S = Parser.getTok().getLoc(); 5079 if (getParser().parseExpression(IdVal)) 5080 return true; 5081 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5082 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5083 return false; 5084 } 5085 case AsmToken::LBrac: 5086 return parseMemory(Operands); 5087 case AsmToken::LCurly: 5088 return parseRegisterList(Operands); 5089 case AsmToken::Dollar: 5090 case AsmToken::Hash: { 5091 // #42 -> immediate. 5092 S = Parser.getTok().getLoc(); 5093 Parser.Lex(); 5094 5095 if (Parser.getTok().isNot(AsmToken::Colon)) { 5096 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5097 const MCExpr *ImmVal; 5098 if (getParser().parseExpression(ImmVal)) 5099 return true; 5100 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5101 if (CE) { 5102 int32_t Val = CE->getValue(); 5103 if (isNegative && Val == 0) 5104 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5105 } 5106 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5107 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5108 5109 // There can be a trailing '!' on operands that we want as a separate 5110 // '!' Token operand. Handle that here. For example, the compatibility 5111 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5112 if (Parser.getTok().is(AsmToken::Exclaim)) { 5113 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5114 Parser.getTok().getLoc())); 5115 Parser.Lex(); // Eat exclaim token 5116 } 5117 return false; 5118 } 5119 // w/ a ':' after the '#', it's just like a plain ':'. 5120 // FALLTHROUGH 5121 } 5122 case AsmToken::Colon: { 5123 // ":lower16:" and ":upper16:" expression prefixes 5124 // FIXME: Check it's an expression prefix, 5125 // e.g. (FOO - :lower16:BAR) isn't legal. 5126 ARMMCExpr::VariantKind RefKind; 5127 if (parsePrefix(RefKind)) 5128 return true; 5129 5130 const MCExpr *SubExprVal; 5131 if (getParser().parseExpression(SubExprVal)) 5132 return true; 5133 5134 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5135 getContext()); 5136 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5137 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5138 return false; 5139 } 5140 case AsmToken::Equal: { 5141 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5142 return Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5143 5144 Parser.Lex(); // Eat '=' 5145 const MCExpr *SubExprVal; 5146 if (getParser().parseExpression(SubExprVal)) 5147 return true; 5148 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5149 5150 const MCExpr *CPLoc = getTargetStreamer().addConstantPoolEntry(SubExprVal); 5151 Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E)); 5152 return false; 5153 } 5154 } 5155 } 5156 5157 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5158 // :lower16: and :upper16:. 5159 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5160 MCAsmParser &Parser = getParser(); 5161 RefKind = ARMMCExpr::VK_ARM_None; 5162 5163 // consume an optional '#' (GNU compatibility) 5164 if (getLexer().is(AsmToken::Hash)) 5165 Parser.Lex(); 5166 5167 // :lower16: and :upper16: modifiers 5168 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5169 Parser.Lex(); // Eat ':' 5170 5171 if (getLexer().isNot(AsmToken::Identifier)) { 5172 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5173 return true; 5174 } 5175 5176 enum { 5177 COFF = (1 << MCObjectFileInfo::IsCOFF), 5178 ELF = (1 << MCObjectFileInfo::IsELF), 5179 MACHO = (1 << MCObjectFileInfo::IsMachO) 5180 }; 5181 static const struct PrefixEntry { 5182 const char *Spelling; 5183 ARMMCExpr::VariantKind VariantKind; 5184 uint8_t SupportedFormats; 5185 } PrefixEntries[] = { 5186 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5187 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5188 }; 5189 5190 StringRef IDVal = Parser.getTok().getIdentifier(); 5191 5192 const auto &Prefix = 5193 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5194 [&IDVal](const PrefixEntry &PE) { 5195 return PE.Spelling == IDVal; 5196 }); 5197 if (Prefix == std::end(PrefixEntries)) { 5198 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5199 return true; 5200 } 5201 5202 uint8_t CurrentFormat; 5203 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5204 case MCObjectFileInfo::IsMachO: 5205 CurrentFormat = MACHO; 5206 break; 5207 case MCObjectFileInfo::IsELF: 5208 CurrentFormat = ELF; 5209 break; 5210 case MCObjectFileInfo::IsCOFF: 5211 CurrentFormat = COFF; 5212 break; 5213 } 5214 5215 if (~Prefix->SupportedFormats & CurrentFormat) { 5216 Error(Parser.getTok().getLoc(), 5217 "cannot represent relocation in the current file format"); 5218 return true; 5219 } 5220 5221 RefKind = Prefix->VariantKind; 5222 Parser.Lex(); 5223 5224 if (getLexer().isNot(AsmToken::Colon)) { 5225 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5226 return true; 5227 } 5228 Parser.Lex(); // Eat the last ':' 5229 5230 return false; 5231 } 5232 5233 /// \brief Given a mnemonic, split out possible predication code and carry 5234 /// setting letters to form a canonical mnemonic and flags. 5235 // 5236 // FIXME: Would be nice to autogen this. 5237 // FIXME: This is a bit of a maze of special cases. 5238 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5239 unsigned &PredicationCode, 5240 bool &CarrySetting, 5241 unsigned &ProcessorIMod, 5242 StringRef &ITMask) { 5243 PredicationCode = ARMCC::AL; 5244 CarrySetting = false; 5245 ProcessorIMod = 0; 5246 5247 // Ignore some mnemonics we know aren't predicated forms. 5248 // 5249 // FIXME: Would be nice to autogen this. 5250 if ((Mnemonic == "movs" && isThumb()) || 5251 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5252 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5253 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5254 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5255 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5256 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5257 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5258 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5259 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5260 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5261 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5262 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5263 Mnemonic.startswith("vsel")) 5264 return Mnemonic; 5265 5266 // First, split out any predication code. Ignore mnemonics we know aren't 5267 // predicated but do have a carry-set and so weren't caught above. 5268 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5269 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5270 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5271 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5272 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5273 .Case("eq", ARMCC::EQ) 5274 .Case("ne", ARMCC::NE) 5275 .Case("hs", ARMCC::HS) 5276 .Case("cs", ARMCC::HS) 5277 .Case("lo", ARMCC::LO) 5278 .Case("cc", ARMCC::LO) 5279 .Case("mi", ARMCC::MI) 5280 .Case("pl", ARMCC::PL) 5281 .Case("vs", ARMCC::VS) 5282 .Case("vc", ARMCC::VC) 5283 .Case("hi", ARMCC::HI) 5284 .Case("ls", ARMCC::LS) 5285 .Case("ge", ARMCC::GE) 5286 .Case("lt", ARMCC::LT) 5287 .Case("gt", ARMCC::GT) 5288 .Case("le", ARMCC::LE) 5289 .Case("al", ARMCC::AL) 5290 .Default(~0U); 5291 if (CC != ~0U) { 5292 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5293 PredicationCode = CC; 5294 } 5295 } 5296 5297 // Next, determine if we have a carry setting bit. We explicitly ignore all 5298 // the instructions we know end in 's'. 5299 if (Mnemonic.endswith("s") && 5300 !(Mnemonic == "cps" || Mnemonic == "mls" || 5301 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5302 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5303 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5304 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5305 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5306 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5307 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5308 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5309 (Mnemonic == "movs" && isThumb()))) { 5310 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5311 CarrySetting = true; 5312 } 5313 5314 // The "cps" instruction can have a interrupt mode operand which is glued into 5315 // the mnemonic. Check if this is the case, split it and parse the imod op 5316 if (Mnemonic.startswith("cps")) { 5317 // Split out any imod code. 5318 unsigned IMod = 5319 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5320 .Case("ie", ARM_PROC::IE) 5321 .Case("id", ARM_PROC::ID) 5322 .Default(~0U); 5323 if (IMod != ~0U) { 5324 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5325 ProcessorIMod = IMod; 5326 } 5327 } 5328 5329 // The "it" instruction has the condition mask on the end of the mnemonic. 5330 if (Mnemonic.startswith("it")) { 5331 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5332 Mnemonic = Mnemonic.slice(0, 2); 5333 } 5334 5335 return Mnemonic; 5336 } 5337 5338 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5339 /// inclusion of carry set or predication code operands. 5340 // 5341 // FIXME: It would be nice to autogen this. 5342 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5343 bool &CanAcceptCarrySet, 5344 bool &CanAcceptPredicationCode) { 5345 CanAcceptCarrySet = 5346 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5347 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5348 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5349 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5350 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5351 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5352 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5353 (!isThumb() && 5354 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5355 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5356 5357 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5358 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5359 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5360 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5361 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5362 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5363 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5364 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5365 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5366 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5367 (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) { 5368 // These mnemonics are never predicable 5369 CanAcceptPredicationCode = false; 5370 } else if (!isThumb()) { 5371 // Some instructions are only predicable in Thumb mode 5372 CanAcceptPredicationCode = 5373 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5374 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5375 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5376 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5377 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5378 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5379 !Mnemonic.startswith("srs"); 5380 } else if (isThumbOne()) { 5381 if (hasV6MOps()) 5382 CanAcceptPredicationCode = Mnemonic != "movs"; 5383 else 5384 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5385 } else 5386 CanAcceptPredicationCode = true; 5387 } 5388 5389 // \brief Some Thumb instructions have two operand forms that are not 5390 // available as three operand, convert to two operand form if possible. 5391 // 5392 // FIXME: We would really like to be able to tablegen'erate this. 5393 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5394 bool CarrySetting, 5395 OperandVector &Operands) { 5396 if (Operands.size() != 6) 5397 return; 5398 5399 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5400 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5401 if (!Op3.isReg() || !Op4.isReg()) 5402 return; 5403 5404 auto Op3Reg = Op3.getReg(); 5405 auto Op4Reg = Op4.getReg(); 5406 5407 // For most Thumb2 cases we just generate the 3 operand form and reduce 5408 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5409 // won't accept SP or PC so we do the transformation here taking care 5410 // with immediate range in the 'add sp, sp #imm' case. 5411 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5412 if (isThumbTwo()) { 5413 if (Mnemonic != "add") 5414 return; 5415 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5416 (Op5.isReg() && Op5.getReg() == ARM::PC); 5417 if (!TryTransform) { 5418 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5419 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5420 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5421 Op5.isImm() && !Op5.isImm0_508s4()); 5422 } 5423 if (!TryTransform) 5424 return; 5425 } else if (!isThumbOne()) 5426 return; 5427 5428 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5429 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5430 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5431 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5432 return; 5433 5434 // If first 2 operands of a 3 operand instruction are the same 5435 // then transform to 2 operand version of the same instruction 5436 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5437 bool Transform = Op3Reg == Op4Reg; 5438 5439 // For communtative operations, we might be able to transform if we swap 5440 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5441 // as tADDrsp. 5442 const ARMOperand *LastOp = &Op5; 5443 bool Swap = false; 5444 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5445 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5446 Mnemonic == "and" || Mnemonic == "eor" || 5447 Mnemonic == "adc" || Mnemonic == "orr")) { 5448 Swap = true; 5449 LastOp = &Op4; 5450 Transform = true; 5451 } 5452 5453 // If both registers are the same then remove one of them from 5454 // the operand list, with certain exceptions. 5455 if (Transform) { 5456 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5457 // 2 operand forms don't exist. 5458 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5459 LastOp->isReg()) 5460 Transform = false; 5461 5462 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5463 // 3-bits because the ARMARM says not to. 5464 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5465 Transform = false; 5466 } 5467 5468 if (Transform) { 5469 if (Swap) 5470 std::swap(Op4, Op5); 5471 Operands.erase(Operands.begin() + 3); 5472 } 5473 } 5474 5475 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5476 OperandVector &Operands) { 5477 // FIXME: This is all horribly hacky. We really need a better way to deal 5478 // with optional operands like this in the matcher table. 5479 5480 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5481 // another does not. Specifically, the MOVW instruction does not. So we 5482 // special case it here and remove the defaulted (non-setting) cc_out 5483 // operand if that's the instruction we're trying to match. 5484 // 5485 // We do this as post-processing of the explicit operands rather than just 5486 // conditionally adding the cc_out in the first place because we need 5487 // to check the type of the parsed immediate operand. 5488 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5489 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5490 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5491 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5492 return true; 5493 5494 // Register-register 'add' for thumb does not have a cc_out operand 5495 // when there are only two register operands. 5496 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5497 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5498 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5499 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5500 return true; 5501 // Register-register 'add' for thumb does not have a cc_out operand 5502 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5503 // have to check the immediate range here since Thumb2 has a variant 5504 // that can handle a different range and has a cc_out operand. 5505 if (((isThumb() && Mnemonic == "add") || 5506 (isThumbTwo() && Mnemonic == "sub")) && 5507 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5508 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5509 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5510 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5511 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5512 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5513 return true; 5514 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5515 // imm0_4095 variant. That's the least-preferred variant when 5516 // selecting via the generic "add" mnemonic, so to know that we 5517 // should remove the cc_out operand, we have to explicitly check that 5518 // it's not one of the other variants. Ugh. 5519 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5520 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5521 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5522 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5523 // Nest conditions rather than one big 'if' statement for readability. 5524 // 5525 // If both registers are low, we're in an IT block, and the immediate is 5526 // in range, we should use encoding T1 instead, which has a cc_out. 5527 if (inITBlock() && 5528 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5529 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5530 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5531 return false; 5532 // Check against T3. If the second register is the PC, this is an 5533 // alternate form of ADR, which uses encoding T4, so check for that too. 5534 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5535 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5536 return false; 5537 5538 // Otherwise, we use encoding T4, which does not have a cc_out 5539 // operand. 5540 return true; 5541 } 5542 5543 // The thumb2 multiply instruction doesn't have a CCOut register, so 5544 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5545 // use the 16-bit encoding or not. 5546 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5547 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5548 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5549 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5550 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5551 // If the registers aren't low regs, the destination reg isn't the 5552 // same as one of the source regs, or the cc_out operand is zero 5553 // outside of an IT block, we have to use the 32-bit encoding, so 5554 // remove the cc_out operand. 5555 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5556 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5557 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5558 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5559 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5560 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5561 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5562 return true; 5563 5564 // Also check the 'mul' syntax variant that doesn't specify an explicit 5565 // destination register. 5566 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5567 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5568 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5569 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5570 // If the registers aren't low regs or the cc_out operand is zero 5571 // outside of an IT block, we have to use the 32-bit encoding, so 5572 // remove the cc_out operand. 5573 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5574 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5575 !inITBlock())) 5576 return true; 5577 5578 5579 5580 // Register-register 'add/sub' for thumb does not have a cc_out operand 5581 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5582 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5583 // right, this will result in better diagnostics (which operand is off) 5584 // anyway. 5585 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5586 (Operands.size() == 5 || Operands.size() == 6) && 5587 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5588 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5589 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5590 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5591 (Operands.size() == 6 && 5592 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5593 return true; 5594 5595 return false; 5596 } 5597 5598 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5599 OperandVector &Operands) { 5600 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5601 unsigned RegIdx = 3; 5602 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5603 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32") { 5604 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5605 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32") 5606 RegIdx = 4; 5607 5608 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5609 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5610 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5611 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5612 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5613 return true; 5614 } 5615 return false; 5616 } 5617 5618 static bool isDataTypeToken(StringRef Tok) { 5619 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5620 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5621 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5622 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5623 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5624 Tok == ".f" || Tok == ".d"; 5625 } 5626 5627 // FIXME: This bit should probably be handled via an explicit match class 5628 // in the .td files that matches the suffix instead of having it be 5629 // a literal string token the way it is now. 5630 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5631 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5632 } 5633 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5634 unsigned VariantID); 5635 5636 static bool RequiresVFPRegListValidation(StringRef Inst, 5637 bool &AcceptSinglePrecisionOnly, 5638 bool &AcceptDoublePrecisionOnly) { 5639 if (Inst.size() < 7) 5640 return false; 5641 5642 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5643 StringRef AddressingMode = Inst.substr(4, 2); 5644 if (AddressingMode == "ia" || AddressingMode == "db" || 5645 AddressingMode == "ea" || AddressingMode == "fd") { 5646 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5647 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5648 return true; 5649 } 5650 } 5651 5652 return false; 5653 } 5654 5655 /// Parse an arm instruction mnemonic followed by its operands. 5656 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5657 SMLoc NameLoc, OperandVector &Operands) { 5658 MCAsmParser &Parser = getParser(); 5659 // FIXME: Can this be done via tablegen in some fashion? 5660 bool RequireVFPRegisterListCheck; 5661 bool AcceptSinglePrecisionOnly; 5662 bool AcceptDoublePrecisionOnly; 5663 RequireVFPRegisterListCheck = 5664 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5665 AcceptDoublePrecisionOnly); 5666 5667 // Apply mnemonic aliases before doing anything else, as the destination 5668 // mnemonic may include suffices and we want to handle them normally. 5669 // The generic tblgen'erated code does this later, at the start of 5670 // MatchInstructionImpl(), but that's too late for aliases that include 5671 // any sort of suffix. 5672 uint64_t AvailableFeatures = getAvailableFeatures(); 5673 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5674 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5675 5676 // First check for the ARM-specific .req directive. 5677 if (Parser.getTok().is(AsmToken::Identifier) && 5678 Parser.getTok().getIdentifier() == ".req") { 5679 parseDirectiveReq(Name, NameLoc); 5680 // We always return 'error' for this, as we're done with this 5681 // statement and don't need to match the 'instruction." 5682 return true; 5683 } 5684 5685 // Create the leading tokens for the mnemonic, split by '.' characters. 5686 size_t Start = 0, Next = Name.find('.'); 5687 StringRef Mnemonic = Name.slice(Start, Next); 5688 5689 // Split out the predication code and carry setting flag from the mnemonic. 5690 unsigned PredicationCode; 5691 unsigned ProcessorIMod; 5692 bool CarrySetting; 5693 StringRef ITMask; 5694 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5695 ProcessorIMod, ITMask); 5696 5697 // In Thumb1, only the branch (B) instruction can be predicated. 5698 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5699 Parser.eatToEndOfStatement(); 5700 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5701 } 5702 5703 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5704 5705 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5706 // is the mask as it will be for the IT encoding if the conditional 5707 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5708 // where the conditional bit0 is zero, the instruction post-processing 5709 // will adjust the mask accordingly. 5710 if (Mnemonic == "it") { 5711 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5712 if (ITMask.size() > 3) { 5713 Parser.eatToEndOfStatement(); 5714 return Error(Loc, "too many conditions on IT instruction"); 5715 } 5716 unsigned Mask = 8; 5717 for (unsigned i = ITMask.size(); i != 0; --i) { 5718 char pos = ITMask[i - 1]; 5719 if (pos != 't' && pos != 'e') { 5720 Parser.eatToEndOfStatement(); 5721 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5722 } 5723 Mask >>= 1; 5724 if (ITMask[i - 1] == 't') 5725 Mask |= 8; 5726 } 5727 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5728 } 5729 5730 // FIXME: This is all a pretty gross hack. We should automatically handle 5731 // optional operands like this via tblgen. 5732 5733 // Next, add the CCOut and ConditionCode operands, if needed. 5734 // 5735 // For mnemonics which can ever incorporate a carry setting bit or predication 5736 // code, our matching model involves us always generating CCOut and 5737 // ConditionCode operands to match the mnemonic "as written" and then we let 5738 // the matcher deal with finding the right instruction or generating an 5739 // appropriate error. 5740 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5741 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5742 5743 // If we had a carry-set on an instruction that can't do that, issue an 5744 // error. 5745 if (!CanAcceptCarrySet && CarrySetting) { 5746 Parser.eatToEndOfStatement(); 5747 return Error(NameLoc, "instruction '" + Mnemonic + 5748 "' can not set flags, but 's' suffix specified"); 5749 } 5750 // If we had a predication code on an instruction that can't do that, issue an 5751 // error. 5752 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 5753 Parser.eatToEndOfStatement(); 5754 return Error(NameLoc, "instruction '" + Mnemonic + 5755 "' is not predicable, but condition code specified"); 5756 } 5757 5758 // Add the carry setting operand, if necessary. 5759 if (CanAcceptCarrySet) { 5760 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 5761 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 5762 Loc)); 5763 } 5764 5765 // Add the predication code operand, if necessary. 5766 if (CanAcceptPredicationCode) { 5767 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 5768 CarrySetting); 5769 Operands.push_back(ARMOperand::CreateCondCode( 5770 ARMCC::CondCodes(PredicationCode), Loc)); 5771 } 5772 5773 // Add the processor imod operand, if necessary. 5774 if (ProcessorIMod) { 5775 Operands.push_back(ARMOperand::CreateImm( 5776 MCConstantExpr::create(ProcessorIMod, getContext()), 5777 NameLoc, NameLoc)); 5778 } else if (Mnemonic == "cps" && isMClass()) { 5779 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 5780 } 5781 5782 // Add the remaining tokens in the mnemonic. 5783 while (Next != StringRef::npos) { 5784 Start = Next; 5785 Next = Name.find('.', Start + 1); 5786 StringRef ExtraToken = Name.slice(Start, Next); 5787 5788 // Some NEON instructions have an optional datatype suffix that is 5789 // completely ignored. Check for that. 5790 if (isDataTypeToken(ExtraToken) && 5791 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 5792 continue; 5793 5794 // For for ARM mode generate an error if the .n qualifier is used. 5795 if (ExtraToken == ".n" && !isThumb()) { 5796 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5797 Parser.eatToEndOfStatement(); 5798 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 5799 "arm mode"); 5800 } 5801 5802 // The .n qualifier is always discarded as that is what the tables 5803 // and matcher expect. In ARM mode the .w qualifier has no effect, 5804 // so discard it to avoid errors that can be caused by the matcher. 5805 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 5806 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5807 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 5808 } 5809 } 5810 5811 // Read the remaining operands. 5812 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5813 // Read the first operand. 5814 if (parseOperand(Operands, Mnemonic)) { 5815 Parser.eatToEndOfStatement(); 5816 return true; 5817 } 5818 5819 while (getLexer().is(AsmToken::Comma)) { 5820 Parser.Lex(); // Eat the comma. 5821 5822 // Parse and remember the operand. 5823 if (parseOperand(Operands, Mnemonic)) { 5824 Parser.eatToEndOfStatement(); 5825 return true; 5826 } 5827 } 5828 } 5829 5830 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5831 SMLoc Loc = getLexer().getLoc(); 5832 Parser.eatToEndOfStatement(); 5833 return Error(Loc, "unexpected token in argument list"); 5834 } 5835 5836 Parser.Lex(); // Consume the EndOfStatement 5837 5838 if (RequireVFPRegisterListCheck) { 5839 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 5840 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 5841 return Error(Op.getStartLoc(), 5842 "VFP/Neon single precision register expected"); 5843 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 5844 return Error(Op.getStartLoc(), 5845 "VFP/Neon double precision register expected"); 5846 } 5847 5848 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 5849 5850 // Some instructions, mostly Thumb, have forms for the same mnemonic that 5851 // do and don't have a cc_out optional-def operand. With some spot-checks 5852 // of the operand list, we can figure out which variant we're trying to 5853 // parse and adjust accordingly before actually matching. We shouldn't ever 5854 // try to remove a cc_out operand that was explicitly set on the 5855 // mnemonic, of course (CarrySetting == true). Reason number #317 the 5856 // table driven matcher doesn't fit well with the ARM instruction set. 5857 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 5858 Operands.erase(Operands.begin() + 1); 5859 5860 // Some instructions have the same mnemonic, but don't always 5861 // have a predicate. Distinguish them here and delete the 5862 // predicate if needed. 5863 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 5864 Operands.erase(Operands.begin() + 1); 5865 5866 // ARM mode 'blx' need special handling, as the register operand version 5867 // is predicable, but the label operand version is not. So, we can't rely 5868 // on the Mnemonic based checking to correctly figure out when to put 5869 // a k_CondCode operand in the list. If we're trying to match the label 5870 // version, remove the k_CondCode operand here. 5871 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 5872 static_cast<ARMOperand &>(*Operands[2]).isImm()) 5873 Operands.erase(Operands.begin() + 1); 5874 5875 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 5876 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 5877 // a single GPRPair reg operand is used in the .td file to replace the two 5878 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 5879 // expressed as a GPRPair, so we have to manually merge them. 5880 // FIXME: We would really like to be able to tablegen'erate this. 5881 if (!isThumb() && Operands.size() > 4 && 5882 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 5883 Mnemonic == "stlexd")) { 5884 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 5885 unsigned Idx = isLoad ? 2 : 3; 5886 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 5887 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 5888 5889 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 5890 // Adjust only if Op1 and Op2 are GPRs. 5891 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 5892 MRC.contains(Op2.getReg())) { 5893 unsigned Reg1 = Op1.getReg(); 5894 unsigned Reg2 = Op2.getReg(); 5895 unsigned Rt = MRI->getEncodingValue(Reg1); 5896 unsigned Rt2 = MRI->getEncodingValue(Reg2); 5897 5898 // Rt2 must be Rt + 1 and Rt must be even. 5899 if (Rt + 1 != Rt2 || (Rt & 1)) { 5900 Error(Op2.getStartLoc(), isLoad 5901 ? "destination operands must be sequential" 5902 : "source operands must be sequential"); 5903 return true; 5904 } 5905 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 5906 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 5907 Operands[Idx] = 5908 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 5909 Operands.erase(Operands.begin() + Idx + 1); 5910 } 5911 } 5912 5913 // GNU Assembler extension (compatibility) 5914 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 5915 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 5916 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5917 if (Op3.isMem()) { 5918 assert(Op2.isReg() && "expected register argument"); 5919 5920 unsigned SuperReg = MRI->getMatchingSuperReg( 5921 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 5922 5923 assert(SuperReg && "expected register pair"); 5924 5925 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 5926 5927 Operands.insert( 5928 Operands.begin() + 3, 5929 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 5930 } 5931 } 5932 5933 // FIXME: As said above, this is all a pretty gross hack. This instruction 5934 // does not fit with other "subs" and tblgen. 5935 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 5936 // so the Mnemonic is the original name "subs" and delete the predicate 5937 // operand so it will match the table entry. 5938 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 5939 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5940 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 5941 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5942 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 5943 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5944 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 5945 Operands.erase(Operands.begin() + 1); 5946 } 5947 return false; 5948 } 5949 5950 // Validate context-sensitive operand constraints. 5951 5952 // return 'true' if register list contains non-low GPR registers, 5953 // 'false' otherwise. If Reg is in the register list or is HiReg, set 5954 // 'containsReg' to true. 5955 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 5956 unsigned Reg, unsigned HiReg, 5957 bool &containsReg) { 5958 containsReg = false; 5959 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 5960 unsigned OpReg = Inst.getOperand(i).getReg(); 5961 if (OpReg == Reg) 5962 containsReg = true; 5963 // Anything other than a low register isn't legal here. 5964 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 5965 return true; 5966 } 5967 return false; 5968 } 5969 5970 // Check if the specified regisgter is in the register list of the inst, 5971 // starting at the indicated operand number. 5972 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 5973 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 5974 unsigned OpReg = Inst.getOperand(i).getReg(); 5975 if (OpReg == Reg) 5976 return true; 5977 } 5978 return false; 5979 } 5980 5981 // Return true if instruction has the interesting property of being 5982 // allowed in IT blocks, but not being predicable. 5983 static bool instIsBreakpoint(const MCInst &Inst) { 5984 return Inst.getOpcode() == ARM::tBKPT || 5985 Inst.getOpcode() == ARM::BKPT || 5986 Inst.getOpcode() == ARM::tHLT || 5987 Inst.getOpcode() == ARM::HLT; 5988 5989 } 5990 5991 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 5992 const OperandVector &Operands, 5993 unsigned ListNo, bool IsARPop) { 5994 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 5995 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 5996 5997 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 5998 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 5999 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6000 6001 if (!IsARPop && ListContainsSP) 6002 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6003 "SP may not be in the register list"); 6004 else if (ListContainsPC && ListContainsLR) 6005 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6006 "PC and LR may not be in the register list simultaneously"); 6007 else if (inITBlock() && !lastInITBlock() && ListContainsPC) 6008 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6009 "instruction must be outside of IT block or the last " 6010 "instruction in an IT block"); 6011 return false; 6012 } 6013 6014 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6015 const OperandVector &Operands, 6016 unsigned ListNo) { 6017 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6018 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6019 6020 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6021 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6022 6023 if (ListContainsSP && ListContainsPC) 6024 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6025 "SP and PC may not be in the register list"); 6026 else if (ListContainsSP) 6027 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6028 "SP may not be in the register list"); 6029 else if (ListContainsPC) 6030 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6031 "PC may not be in the register list"); 6032 return false; 6033 } 6034 6035 // FIXME: We would really like to be able to tablegen'erate this. 6036 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6037 const OperandVector &Operands) { 6038 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6039 SMLoc Loc = Operands[0]->getStartLoc(); 6040 6041 // Check the IT block state first. 6042 // NOTE: BKPT and HLT instructions have the interesting property of being 6043 // allowed in IT blocks, but not being predicable. They just always execute. 6044 if (inITBlock() && !instIsBreakpoint(Inst)) { 6045 unsigned Bit = 1; 6046 if (ITState.FirstCond) 6047 ITState.FirstCond = false; 6048 else 6049 Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 6050 // The instruction must be predicable. 6051 if (!MCID.isPredicable()) 6052 return Error(Loc, "instructions in IT block must be predicable"); 6053 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6054 unsigned ITCond = Bit ? ITState.Cond : 6055 ARMCC::getOppositeCondition(ITState.Cond); 6056 if (Cond != ITCond) { 6057 // Find the condition code Operand to get its SMLoc information. 6058 SMLoc CondLoc; 6059 for (unsigned I = 1; I < Operands.size(); ++I) 6060 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6061 CondLoc = Operands[I]->getStartLoc(); 6062 return Error(CondLoc, "incorrect condition in IT block; got '" + 6063 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6064 "', but expected '" + 6065 ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'"); 6066 } 6067 // Check for non-'al' condition codes outside of the IT block. 6068 } else if (isThumbTwo() && MCID.isPredicable() && 6069 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6070 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6071 Inst.getOpcode() != ARM::t2Bcc) 6072 return Error(Loc, "predicated instructions must be in IT block"); 6073 6074 const unsigned Opcode = Inst.getOpcode(); 6075 switch (Opcode) { 6076 case ARM::LDRD: 6077 case ARM::LDRD_PRE: 6078 case ARM::LDRD_POST: { 6079 const unsigned RtReg = Inst.getOperand(0).getReg(); 6080 6081 // Rt can't be R14. 6082 if (RtReg == ARM::LR) 6083 return Error(Operands[3]->getStartLoc(), 6084 "Rt can't be R14"); 6085 6086 const unsigned Rt = MRI->getEncodingValue(RtReg); 6087 // Rt must be even-numbered. 6088 if ((Rt & 1) == 1) 6089 return Error(Operands[3]->getStartLoc(), 6090 "Rt must be even-numbered"); 6091 6092 // Rt2 must be Rt + 1. 6093 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6094 if (Rt2 != Rt + 1) 6095 return Error(Operands[3]->getStartLoc(), 6096 "destination operands must be sequential"); 6097 6098 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6099 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6100 // For addressing modes with writeback, the base register needs to be 6101 // different from the destination registers. 6102 if (Rn == Rt || Rn == Rt2) 6103 return Error(Operands[3]->getStartLoc(), 6104 "base register needs to be different from destination " 6105 "registers"); 6106 } 6107 6108 return false; 6109 } 6110 case ARM::t2LDRDi8: 6111 case ARM::t2LDRD_PRE: 6112 case ARM::t2LDRD_POST: { 6113 // Rt2 must be different from Rt. 6114 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6115 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6116 if (Rt2 == Rt) 6117 return Error(Operands[3]->getStartLoc(), 6118 "destination operands can't be identical"); 6119 return false; 6120 } 6121 case ARM::t2BXJ: { 6122 const unsigned RmReg = Inst.getOperand(0).getReg(); 6123 // Rm = SP is no longer unpredictable in v8-A 6124 if (RmReg == ARM::SP && !hasV8Ops()) 6125 return Error(Operands[2]->getStartLoc(), 6126 "r13 (SP) is an unpredictable operand to BXJ"); 6127 return false; 6128 } 6129 case ARM::STRD: { 6130 // Rt2 must be Rt + 1. 6131 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6132 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6133 if (Rt2 != Rt + 1) 6134 return Error(Operands[3]->getStartLoc(), 6135 "source operands must be sequential"); 6136 return false; 6137 } 6138 case ARM::STRD_PRE: 6139 case ARM::STRD_POST: { 6140 // Rt2 must be Rt + 1. 6141 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6142 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6143 if (Rt2 != Rt + 1) 6144 return Error(Operands[3]->getStartLoc(), 6145 "source operands must be sequential"); 6146 return false; 6147 } 6148 case ARM::STR_PRE_IMM: 6149 case ARM::STR_PRE_REG: 6150 case ARM::STR_POST_IMM: 6151 case ARM::STR_POST_REG: 6152 case ARM::STRH_PRE: 6153 case ARM::STRH_POST: 6154 case ARM::STRB_PRE_IMM: 6155 case ARM::STRB_PRE_REG: 6156 case ARM::STRB_POST_IMM: 6157 case ARM::STRB_POST_REG: { 6158 // Rt must be different from Rn. 6159 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6160 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6161 6162 if (Rt == Rn) 6163 return Error(Operands[3]->getStartLoc(), 6164 "source register and base register can't be identical"); 6165 return false; 6166 } 6167 case ARM::LDR_PRE_IMM: 6168 case ARM::LDR_PRE_REG: 6169 case ARM::LDR_POST_IMM: 6170 case ARM::LDR_POST_REG: 6171 case ARM::LDRH_PRE: 6172 case ARM::LDRH_POST: 6173 case ARM::LDRSH_PRE: 6174 case ARM::LDRSH_POST: 6175 case ARM::LDRB_PRE_IMM: 6176 case ARM::LDRB_PRE_REG: 6177 case ARM::LDRB_POST_IMM: 6178 case ARM::LDRB_POST_REG: 6179 case ARM::LDRSB_PRE: 6180 case ARM::LDRSB_POST: { 6181 // Rt must be different from Rn. 6182 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6183 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6184 6185 if (Rt == Rn) 6186 return Error(Operands[3]->getStartLoc(), 6187 "destination register and base register can't be identical"); 6188 return false; 6189 } 6190 case ARM::SBFX: 6191 case ARM::UBFX: { 6192 // Width must be in range [1, 32-lsb]. 6193 unsigned LSB = Inst.getOperand(2).getImm(); 6194 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6195 if (Widthm1 >= 32 - LSB) 6196 return Error(Operands[5]->getStartLoc(), 6197 "bitfield width must be in range [1,32-lsb]"); 6198 return false; 6199 } 6200 // Notionally handles ARM::tLDMIA_UPD too. 6201 case ARM::tLDMIA: { 6202 // If we're parsing Thumb2, the .w variant is available and handles 6203 // most cases that are normally illegal for a Thumb1 LDM instruction. 6204 // We'll make the transformation in processInstruction() if necessary. 6205 // 6206 // Thumb LDM instructions are writeback iff the base register is not 6207 // in the register list. 6208 unsigned Rn = Inst.getOperand(0).getReg(); 6209 bool HasWritebackToken = 6210 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6211 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6212 bool ListContainsBase; 6213 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6214 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6215 "registers must be in range r0-r7"); 6216 // If we should have writeback, then there should be a '!' token. 6217 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6218 return Error(Operands[2]->getStartLoc(), 6219 "writeback operator '!' expected"); 6220 // If we should not have writeback, there must not be a '!'. This is 6221 // true even for the 32-bit wide encodings. 6222 if (ListContainsBase && HasWritebackToken) 6223 return Error(Operands[3]->getStartLoc(), 6224 "writeback operator '!' not allowed when base register " 6225 "in register list"); 6226 6227 if (validatetLDMRegList(Inst, Operands, 3)) 6228 return true; 6229 break; 6230 } 6231 case ARM::LDMIA_UPD: 6232 case ARM::LDMDB_UPD: 6233 case ARM::LDMIB_UPD: 6234 case ARM::LDMDA_UPD: 6235 // ARM variants loading and updating the same register are only officially 6236 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6237 if (!hasV7Ops()) 6238 break; 6239 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6240 return Error(Operands.back()->getStartLoc(), 6241 "writeback register not allowed in register list"); 6242 break; 6243 case ARM::t2LDMIA: 6244 case ARM::t2LDMDB: 6245 if (validatetLDMRegList(Inst, Operands, 3)) 6246 return true; 6247 break; 6248 case ARM::t2STMIA: 6249 case ARM::t2STMDB: 6250 if (validatetSTMRegList(Inst, Operands, 3)) 6251 return true; 6252 break; 6253 case ARM::t2LDMIA_UPD: 6254 case ARM::t2LDMDB_UPD: 6255 case ARM::t2STMIA_UPD: 6256 case ARM::t2STMDB_UPD: { 6257 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6258 return Error(Operands.back()->getStartLoc(), 6259 "writeback register not allowed in register list"); 6260 6261 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6262 if (validatetLDMRegList(Inst, Operands, 3)) 6263 return true; 6264 } else { 6265 if (validatetSTMRegList(Inst, Operands, 3)) 6266 return true; 6267 } 6268 break; 6269 } 6270 case ARM::sysLDMIA_UPD: 6271 case ARM::sysLDMDA_UPD: 6272 case ARM::sysLDMDB_UPD: 6273 case ARM::sysLDMIB_UPD: 6274 if (!listContainsReg(Inst, 3, ARM::PC)) 6275 return Error(Operands[4]->getStartLoc(), 6276 "writeback register only allowed on system LDM " 6277 "if PC in register-list"); 6278 break; 6279 case ARM::sysSTMIA_UPD: 6280 case ARM::sysSTMDA_UPD: 6281 case ARM::sysSTMDB_UPD: 6282 case ARM::sysSTMIB_UPD: 6283 return Error(Operands[2]->getStartLoc(), 6284 "system STM cannot have writeback register"); 6285 case ARM::tMUL: { 6286 // The second source operand must be the same register as the destination 6287 // operand. 6288 // 6289 // In this case, we must directly check the parsed operands because the 6290 // cvtThumbMultiply() function is written in such a way that it guarantees 6291 // this first statement is always true for the new Inst. Essentially, the 6292 // destination is unconditionally copied into the second source operand 6293 // without checking to see if it matches what we actually parsed. 6294 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6295 ((ARMOperand &)*Operands[5]).getReg()) && 6296 (((ARMOperand &)*Operands[3]).getReg() != 6297 ((ARMOperand &)*Operands[4]).getReg())) { 6298 return Error(Operands[3]->getStartLoc(), 6299 "destination register must match source register"); 6300 } 6301 break; 6302 } 6303 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6304 // so only issue a diagnostic for thumb1. The instructions will be 6305 // switched to the t2 encodings in processInstruction() if necessary. 6306 case ARM::tPOP: { 6307 bool ListContainsBase; 6308 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6309 !isThumbTwo()) 6310 return Error(Operands[2]->getStartLoc(), 6311 "registers must be in range r0-r7 or pc"); 6312 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6313 return true; 6314 break; 6315 } 6316 case ARM::tPUSH: { 6317 bool ListContainsBase; 6318 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6319 !isThumbTwo()) 6320 return Error(Operands[2]->getStartLoc(), 6321 "registers must be in range r0-r7 or lr"); 6322 if (validatetSTMRegList(Inst, Operands, 2)) 6323 return true; 6324 break; 6325 } 6326 case ARM::tSTMIA_UPD: { 6327 bool ListContainsBase, InvalidLowList; 6328 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6329 0, ListContainsBase); 6330 if (InvalidLowList && !isThumbTwo()) 6331 return Error(Operands[4]->getStartLoc(), 6332 "registers must be in range r0-r7"); 6333 6334 // This would be converted to a 32-bit stm, but that's not valid if the 6335 // writeback register is in the list. 6336 if (InvalidLowList && ListContainsBase) 6337 return Error(Operands[4]->getStartLoc(), 6338 "writeback operator '!' not allowed when base register " 6339 "in register list"); 6340 6341 if (validatetSTMRegList(Inst, Operands, 4)) 6342 return true; 6343 break; 6344 } 6345 case ARM::tADDrSP: { 6346 // If the non-SP source operand and the destination operand are not the 6347 // same, we need thumb2 (for the wide encoding), or we have an error. 6348 if (!isThumbTwo() && 6349 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6350 return Error(Operands[4]->getStartLoc(), 6351 "source register must be the same as destination"); 6352 } 6353 break; 6354 } 6355 // Final range checking for Thumb unconditional branch instructions. 6356 case ARM::tB: 6357 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6358 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6359 break; 6360 case ARM::t2B: { 6361 int op = (Operands[2]->isImm()) ? 2 : 3; 6362 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6363 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6364 break; 6365 } 6366 // Final range checking for Thumb conditional branch instructions. 6367 case ARM::tBcc: 6368 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6369 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6370 break; 6371 case ARM::t2Bcc: { 6372 int Op = (Operands[2]->isImm()) ? 2 : 3; 6373 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6374 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6375 break; 6376 } 6377 case ARM::MOVi16: 6378 case ARM::t2MOVi16: 6379 case ARM::t2MOVTi16: 6380 { 6381 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6382 // especially when we turn it into a movw and the expression <symbol> does 6383 // not have a :lower16: or :upper16 as part of the expression. We don't 6384 // want the behavior of silently truncating, which can be unexpected and 6385 // lead to bugs that are difficult to find since this is an easy mistake 6386 // to make. 6387 int i = (Operands[3]->isImm()) ? 3 : 4; 6388 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6389 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6390 if (CE) break; 6391 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6392 if (!E) break; 6393 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6394 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6395 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6396 return Error( 6397 Op.getStartLoc(), 6398 "immediate expression for mov requires :lower16: or :upper16"); 6399 break; 6400 } 6401 } 6402 6403 return false; 6404 } 6405 6406 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6407 switch(Opc) { 6408 default: llvm_unreachable("unexpected opcode!"); 6409 // VST1LN 6410 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6411 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6412 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6413 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6414 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6415 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6416 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6417 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6418 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6419 6420 // VST2LN 6421 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6422 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6423 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6424 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6425 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6426 6427 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6428 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6429 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6430 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6431 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6432 6433 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6434 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6435 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6436 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6437 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6438 6439 // VST3LN 6440 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6441 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6442 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6443 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6444 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6445 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6446 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6447 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6448 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6449 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6450 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6451 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6452 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6453 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6454 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6455 6456 // VST3 6457 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6458 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6459 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6460 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6461 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6462 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6463 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6464 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6465 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6466 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6467 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6468 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6469 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6470 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6471 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6472 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6473 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6474 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6475 6476 // VST4LN 6477 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6478 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6479 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6480 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6481 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6482 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6483 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6484 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6485 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6486 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6487 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6488 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6489 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6490 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6491 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6492 6493 // VST4 6494 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6495 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6496 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6497 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6498 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6499 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6500 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6501 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6502 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6503 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6504 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6505 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6506 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6507 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6508 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6509 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6510 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6511 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6512 } 6513 } 6514 6515 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6516 switch(Opc) { 6517 default: llvm_unreachable("unexpected opcode!"); 6518 // VLD1LN 6519 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6520 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6521 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6522 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6523 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6524 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6525 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6526 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6527 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6528 6529 // VLD2LN 6530 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6531 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6532 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6533 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6534 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6535 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6536 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6537 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6538 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6539 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6540 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6541 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6542 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6543 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6544 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6545 6546 // VLD3DUP 6547 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6548 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6549 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6550 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6551 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6552 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6553 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6554 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6555 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6556 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6557 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6558 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6559 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6560 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6561 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6562 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6563 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6564 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6565 6566 // VLD3LN 6567 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6568 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6569 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6570 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6571 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6572 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6573 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6574 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6575 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6576 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6577 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6578 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6579 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6580 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6581 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6582 6583 // VLD3 6584 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6585 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6586 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6587 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6588 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6589 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6590 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6591 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6592 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6593 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6594 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6595 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6596 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6597 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6598 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6599 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6600 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6601 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6602 6603 // VLD4LN 6604 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6605 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6606 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6607 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6608 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6609 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6610 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6611 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6612 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6613 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6614 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6615 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6616 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6617 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6618 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6619 6620 // VLD4DUP 6621 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6622 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6623 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6624 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6625 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6626 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6627 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6628 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6629 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6630 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6631 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6632 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6633 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6634 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6635 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6636 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6637 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6638 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6639 6640 // VLD4 6641 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6642 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6643 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6644 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6645 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6646 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6647 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6648 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6649 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6650 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6651 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6652 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6653 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6654 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6655 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6656 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6657 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6658 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6659 } 6660 } 6661 6662 bool ARMAsmParser::processInstruction(MCInst &Inst, 6663 const OperandVector &Operands, 6664 MCStreamer &Out) { 6665 switch (Inst.getOpcode()) { 6666 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6667 case ARM::LDRT_POST: 6668 case ARM::LDRBT_POST: { 6669 const unsigned Opcode = 6670 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6671 : ARM::LDRBT_POST_IMM; 6672 MCInst TmpInst; 6673 TmpInst.setOpcode(Opcode); 6674 TmpInst.addOperand(Inst.getOperand(0)); 6675 TmpInst.addOperand(Inst.getOperand(1)); 6676 TmpInst.addOperand(Inst.getOperand(1)); 6677 TmpInst.addOperand(MCOperand::createReg(0)); 6678 TmpInst.addOperand(MCOperand::createImm(0)); 6679 TmpInst.addOperand(Inst.getOperand(2)); 6680 TmpInst.addOperand(Inst.getOperand(3)); 6681 Inst = TmpInst; 6682 return true; 6683 } 6684 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6685 case ARM::STRT_POST: 6686 case ARM::STRBT_POST: { 6687 const unsigned Opcode = 6688 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6689 : ARM::STRBT_POST_IMM; 6690 MCInst TmpInst; 6691 TmpInst.setOpcode(Opcode); 6692 TmpInst.addOperand(Inst.getOperand(1)); 6693 TmpInst.addOperand(Inst.getOperand(0)); 6694 TmpInst.addOperand(Inst.getOperand(1)); 6695 TmpInst.addOperand(MCOperand::createReg(0)); 6696 TmpInst.addOperand(MCOperand::createImm(0)); 6697 TmpInst.addOperand(Inst.getOperand(2)); 6698 TmpInst.addOperand(Inst.getOperand(3)); 6699 Inst = TmpInst; 6700 return true; 6701 } 6702 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6703 case ARM::ADDri: { 6704 if (Inst.getOperand(1).getReg() != ARM::PC || 6705 Inst.getOperand(5).getReg() != 0 || 6706 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6707 return false; 6708 MCInst TmpInst; 6709 TmpInst.setOpcode(ARM::ADR); 6710 TmpInst.addOperand(Inst.getOperand(0)); 6711 if (Inst.getOperand(2).isImm()) { 6712 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6713 // before passing it to the ADR instruction. 6714 unsigned Enc = Inst.getOperand(2).getImm(); 6715 TmpInst.addOperand(MCOperand::createImm( 6716 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6717 } else { 6718 // Turn PC-relative expression into absolute expression. 6719 // Reading PC provides the start of the current instruction + 8 and 6720 // the transform to adr is biased by that. 6721 MCSymbol *Dot = getContext().createTempSymbol(); 6722 Out.EmitLabel(Dot); 6723 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6724 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 6725 MCSymbolRefExpr::VK_None, 6726 getContext()); 6727 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 6728 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 6729 getContext()); 6730 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 6731 getContext()); 6732 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 6733 } 6734 TmpInst.addOperand(Inst.getOperand(3)); 6735 TmpInst.addOperand(Inst.getOperand(4)); 6736 Inst = TmpInst; 6737 return true; 6738 } 6739 // Aliases for alternate PC+imm syntax of LDR instructions. 6740 case ARM::t2LDRpcrel: 6741 // Select the narrow version if the immediate will fit. 6742 if (Inst.getOperand(1).getImm() > 0 && 6743 Inst.getOperand(1).getImm() <= 0xff && 6744 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 6745 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 6746 Inst.setOpcode(ARM::tLDRpci); 6747 else 6748 Inst.setOpcode(ARM::t2LDRpci); 6749 return true; 6750 case ARM::t2LDRBpcrel: 6751 Inst.setOpcode(ARM::t2LDRBpci); 6752 return true; 6753 case ARM::t2LDRHpcrel: 6754 Inst.setOpcode(ARM::t2LDRHpci); 6755 return true; 6756 case ARM::t2LDRSBpcrel: 6757 Inst.setOpcode(ARM::t2LDRSBpci); 6758 return true; 6759 case ARM::t2LDRSHpcrel: 6760 Inst.setOpcode(ARM::t2LDRSHpci); 6761 return true; 6762 // Handle NEON VST complex aliases. 6763 case ARM::VST1LNdWB_register_Asm_8: 6764 case ARM::VST1LNdWB_register_Asm_16: 6765 case ARM::VST1LNdWB_register_Asm_32: { 6766 MCInst TmpInst; 6767 // Shuffle the operands around so the lane index operand is in the 6768 // right place. 6769 unsigned Spacing; 6770 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6771 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6772 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6773 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6774 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6775 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6776 TmpInst.addOperand(Inst.getOperand(1)); // lane 6777 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6778 TmpInst.addOperand(Inst.getOperand(6)); 6779 Inst = TmpInst; 6780 return true; 6781 } 6782 6783 case ARM::VST2LNdWB_register_Asm_8: 6784 case ARM::VST2LNdWB_register_Asm_16: 6785 case ARM::VST2LNdWB_register_Asm_32: 6786 case ARM::VST2LNqWB_register_Asm_16: 6787 case ARM::VST2LNqWB_register_Asm_32: { 6788 MCInst TmpInst; 6789 // Shuffle the operands around so the lane index operand is in the 6790 // right place. 6791 unsigned Spacing; 6792 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6793 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6794 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6795 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6796 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6797 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6798 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6799 Spacing)); 6800 TmpInst.addOperand(Inst.getOperand(1)); // lane 6801 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6802 TmpInst.addOperand(Inst.getOperand(6)); 6803 Inst = TmpInst; 6804 return true; 6805 } 6806 6807 case ARM::VST3LNdWB_register_Asm_8: 6808 case ARM::VST3LNdWB_register_Asm_16: 6809 case ARM::VST3LNdWB_register_Asm_32: 6810 case ARM::VST3LNqWB_register_Asm_16: 6811 case ARM::VST3LNqWB_register_Asm_32: { 6812 MCInst TmpInst; 6813 // Shuffle the operands around so the lane index operand is in the 6814 // right place. 6815 unsigned Spacing; 6816 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6817 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6818 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6819 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6820 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6821 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6822 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6823 Spacing)); 6824 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6825 Spacing * 2)); 6826 TmpInst.addOperand(Inst.getOperand(1)); // lane 6827 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6828 TmpInst.addOperand(Inst.getOperand(6)); 6829 Inst = TmpInst; 6830 return true; 6831 } 6832 6833 case ARM::VST4LNdWB_register_Asm_8: 6834 case ARM::VST4LNdWB_register_Asm_16: 6835 case ARM::VST4LNdWB_register_Asm_32: 6836 case ARM::VST4LNqWB_register_Asm_16: 6837 case ARM::VST4LNqWB_register_Asm_32: { 6838 MCInst TmpInst; 6839 // Shuffle the operands around so the lane index operand is in the 6840 // right place. 6841 unsigned Spacing; 6842 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6843 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6844 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6845 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6846 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6847 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6848 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6849 Spacing)); 6850 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6851 Spacing * 2)); 6852 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6853 Spacing * 3)); 6854 TmpInst.addOperand(Inst.getOperand(1)); // lane 6855 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6856 TmpInst.addOperand(Inst.getOperand(6)); 6857 Inst = TmpInst; 6858 return true; 6859 } 6860 6861 case ARM::VST1LNdWB_fixed_Asm_8: 6862 case ARM::VST1LNdWB_fixed_Asm_16: 6863 case ARM::VST1LNdWB_fixed_Asm_32: { 6864 MCInst TmpInst; 6865 // Shuffle the operands around so the lane index operand is in the 6866 // right place. 6867 unsigned Spacing; 6868 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6869 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6870 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6871 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6872 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6873 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6874 TmpInst.addOperand(Inst.getOperand(1)); // lane 6875 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6876 TmpInst.addOperand(Inst.getOperand(5)); 6877 Inst = TmpInst; 6878 return true; 6879 } 6880 6881 case ARM::VST2LNdWB_fixed_Asm_8: 6882 case ARM::VST2LNdWB_fixed_Asm_16: 6883 case ARM::VST2LNdWB_fixed_Asm_32: 6884 case ARM::VST2LNqWB_fixed_Asm_16: 6885 case ARM::VST2LNqWB_fixed_Asm_32: { 6886 MCInst TmpInst; 6887 // Shuffle the operands around so the lane index operand is in the 6888 // right place. 6889 unsigned Spacing; 6890 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6891 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6892 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6893 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6894 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6895 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6896 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6897 Spacing)); 6898 TmpInst.addOperand(Inst.getOperand(1)); // lane 6899 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6900 TmpInst.addOperand(Inst.getOperand(5)); 6901 Inst = TmpInst; 6902 return true; 6903 } 6904 6905 case ARM::VST3LNdWB_fixed_Asm_8: 6906 case ARM::VST3LNdWB_fixed_Asm_16: 6907 case ARM::VST3LNdWB_fixed_Asm_32: 6908 case ARM::VST3LNqWB_fixed_Asm_16: 6909 case ARM::VST3LNqWB_fixed_Asm_32: { 6910 MCInst TmpInst; 6911 // Shuffle the operands around so the lane index operand is in the 6912 // right place. 6913 unsigned Spacing; 6914 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6915 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6916 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6917 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6918 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6919 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6920 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6921 Spacing)); 6922 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6923 Spacing * 2)); 6924 TmpInst.addOperand(Inst.getOperand(1)); // lane 6925 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6926 TmpInst.addOperand(Inst.getOperand(5)); 6927 Inst = TmpInst; 6928 return true; 6929 } 6930 6931 case ARM::VST4LNdWB_fixed_Asm_8: 6932 case ARM::VST4LNdWB_fixed_Asm_16: 6933 case ARM::VST4LNdWB_fixed_Asm_32: 6934 case ARM::VST4LNqWB_fixed_Asm_16: 6935 case ARM::VST4LNqWB_fixed_Asm_32: { 6936 MCInst TmpInst; 6937 // Shuffle the operands around so the lane index operand is in the 6938 // right place. 6939 unsigned Spacing; 6940 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6941 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6942 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6943 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6944 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6945 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6946 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6947 Spacing)); 6948 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6949 Spacing * 2)); 6950 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6951 Spacing * 3)); 6952 TmpInst.addOperand(Inst.getOperand(1)); // lane 6953 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6954 TmpInst.addOperand(Inst.getOperand(5)); 6955 Inst = TmpInst; 6956 return true; 6957 } 6958 6959 case ARM::VST1LNdAsm_8: 6960 case ARM::VST1LNdAsm_16: 6961 case ARM::VST1LNdAsm_32: { 6962 MCInst TmpInst; 6963 // Shuffle the operands around so the lane index operand is in the 6964 // right place. 6965 unsigned Spacing; 6966 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6967 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6968 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6969 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6970 TmpInst.addOperand(Inst.getOperand(1)); // lane 6971 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6972 TmpInst.addOperand(Inst.getOperand(5)); 6973 Inst = TmpInst; 6974 return true; 6975 } 6976 6977 case ARM::VST2LNdAsm_8: 6978 case ARM::VST2LNdAsm_16: 6979 case ARM::VST2LNdAsm_32: 6980 case ARM::VST2LNqAsm_16: 6981 case ARM::VST2LNqAsm_32: { 6982 MCInst TmpInst; 6983 // Shuffle the operands around so the lane index operand is in the 6984 // right place. 6985 unsigned Spacing; 6986 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6987 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6988 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6989 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6990 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6991 Spacing)); 6992 TmpInst.addOperand(Inst.getOperand(1)); // lane 6993 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6994 TmpInst.addOperand(Inst.getOperand(5)); 6995 Inst = TmpInst; 6996 return true; 6997 } 6998 6999 case ARM::VST3LNdAsm_8: 7000 case ARM::VST3LNdAsm_16: 7001 case ARM::VST3LNdAsm_32: 7002 case ARM::VST3LNqAsm_16: 7003 case ARM::VST3LNqAsm_32: { 7004 MCInst TmpInst; 7005 // Shuffle the operands around so the lane index operand is in the 7006 // right place. 7007 unsigned Spacing; 7008 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7009 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7010 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7011 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7012 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7013 Spacing)); 7014 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7015 Spacing * 2)); 7016 TmpInst.addOperand(Inst.getOperand(1)); // lane 7017 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7018 TmpInst.addOperand(Inst.getOperand(5)); 7019 Inst = TmpInst; 7020 return true; 7021 } 7022 7023 case ARM::VST4LNdAsm_8: 7024 case ARM::VST4LNdAsm_16: 7025 case ARM::VST4LNdAsm_32: 7026 case ARM::VST4LNqAsm_16: 7027 case ARM::VST4LNqAsm_32: { 7028 MCInst TmpInst; 7029 // Shuffle the operands around so the lane index operand is in the 7030 // right place. 7031 unsigned Spacing; 7032 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7033 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7034 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7035 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7036 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7037 Spacing)); 7038 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7039 Spacing * 2)); 7040 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7041 Spacing * 3)); 7042 TmpInst.addOperand(Inst.getOperand(1)); // lane 7043 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7044 TmpInst.addOperand(Inst.getOperand(5)); 7045 Inst = TmpInst; 7046 return true; 7047 } 7048 7049 // Handle NEON VLD complex aliases. 7050 case ARM::VLD1LNdWB_register_Asm_8: 7051 case ARM::VLD1LNdWB_register_Asm_16: 7052 case ARM::VLD1LNdWB_register_Asm_32: { 7053 MCInst TmpInst; 7054 // Shuffle the operands around so the lane index operand is in the 7055 // right place. 7056 unsigned Spacing; 7057 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7058 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7059 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7060 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7061 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7062 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7063 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7064 TmpInst.addOperand(Inst.getOperand(1)); // lane 7065 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7066 TmpInst.addOperand(Inst.getOperand(6)); 7067 Inst = TmpInst; 7068 return true; 7069 } 7070 7071 case ARM::VLD2LNdWB_register_Asm_8: 7072 case ARM::VLD2LNdWB_register_Asm_16: 7073 case ARM::VLD2LNdWB_register_Asm_32: 7074 case ARM::VLD2LNqWB_register_Asm_16: 7075 case ARM::VLD2LNqWB_register_Asm_32: { 7076 MCInst TmpInst; 7077 // Shuffle the operands around so the lane index operand is in the 7078 // right place. 7079 unsigned Spacing; 7080 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7081 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7082 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7083 Spacing)); 7084 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7085 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7086 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7087 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7088 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7089 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7090 Spacing)); 7091 TmpInst.addOperand(Inst.getOperand(1)); // lane 7092 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7093 TmpInst.addOperand(Inst.getOperand(6)); 7094 Inst = TmpInst; 7095 return true; 7096 } 7097 7098 case ARM::VLD3LNdWB_register_Asm_8: 7099 case ARM::VLD3LNdWB_register_Asm_16: 7100 case ARM::VLD3LNdWB_register_Asm_32: 7101 case ARM::VLD3LNqWB_register_Asm_16: 7102 case ARM::VLD3LNqWB_register_Asm_32: { 7103 MCInst TmpInst; 7104 // Shuffle the operands around so the lane index operand is in the 7105 // right place. 7106 unsigned Spacing; 7107 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7108 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7109 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7110 Spacing)); 7111 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7112 Spacing * 2)); 7113 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7114 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7115 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7116 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7117 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7118 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7119 Spacing)); 7120 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7121 Spacing * 2)); 7122 TmpInst.addOperand(Inst.getOperand(1)); // lane 7123 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7124 TmpInst.addOperand(Inst.getOperand(6)); 7125 Inst = TmpInst; 7126 return true; 7127 } 7128 7129 case ARM::VLD4LNdWB_register_Asm_8: 7130 case ARM::VLD4LNdWB_register_Asm_16: 7131 case ARM::VLD4LNdWB_register_Asm_32: 7132 case ARM::VLD4LNqWB_register_Asm_16: 7133 case ARM::VLD4LNqWB_register_Asm_32: { 7134 MCInst TmpInst; 7135 // Shuffle the operands around so the lane index operand is in the 7136 // right place. 7137 unsigned Spacing; 7138 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7139 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7140 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7141 Spacing)); 7142 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7143 Spacing * 2)); 7144 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7145 Spacing * 3)); 7146 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7147 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7148 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7149 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7150 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7151 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7152 Spacing)); 7153 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7154 Spacing * 2)); 7155 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7156 Spacing * 3)); 7157 TmpInst.addOperand(Inst.getOperand(1)); // lane 7158 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7159 TmpInst.addOperand(Inst.getOperand(6)); 7160 Inst = TmpInst; 7161 return true; 7162 } 7163 7164 case ARM::VLD1LNdWB_fixed_Asm_8: 7165 case ARM::VLD1LNdWB_fixed_Asm_16: 7166 case ARM::VLD1LNdWB_fixed_Asm_32: { 7167 MCInst TmpInst; 7168 // Shuffle the operands around so the lane index operand is in the 7169 // right place. 7170 unsigned Spacing; 7171 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7172 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7173 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7174 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7175 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7176 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7177 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7178 TmpInst.addOperand(Inst.getOperand(1)); // lane 7179 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7180 TmpInst.addOperand(Inst.getOperand(5)); 7181 Inst = TmpInst; 7182 return true; 7183 } 7184 7185 case ARM::VLD2LNdWB_fixed_Asm_8: 7186 case ARM::VLD2LNdWB_fixed_Asm_16: 7187 case ARM::VLD2LNdWB_fixed_Asm_32: 7188 case ARM::VLD2LNqWB_fixed_Asm_16: 7189 case ARM::VLD2LNqWB_fixed_Asm_32: { 7190 MCInst TmpInst; 7191 // Shuffle the operands around so the lane index operand is in the 7192 // right place. 7193 unsigned Spacing; 7194 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7195 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7196 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7197 Spacing)); 7198 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7199 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7200 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7201 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7202 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7203 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7204 Spacing)); 7205 TmpInst.addOperand(Inst.getOperand(1)); // lane 7206 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7207 TmpInst.addOperand(Inst.getOperand(5)); 7208 Inst = TmpInst; 7209 return true; 7210 } 7211 7212 case ARM::VLD3LNdWB_fixed_Asm_8: 7213 case ARM::VLD3LNdWB_fixed_Asm_16: 7214 case ARM::VLD3LNdWB_fixed_Asm_32: 7215 case ARM::VLD3LNqWB_fixed_Asm_16: 7216 case ARM::VLD3LNqWB_fixed_Asm_32: { 7217 MCInst TmpInst; 7218 // Shuffle the operands around so the lane index operand is in the 7219 // right place. 7220 unsigned Spacing; 7221 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7222 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7223 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7224 Spacing)); 7225 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7226 Spacing * 2)); 7227 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7228 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7229 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7230 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7231 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7232 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7233 Spacing)); 7234 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7235 Spacing * 2)); 7236 TmpInst.addOperand(Inst.getOperand(1)); // lane 7237 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7238 TmpInst.addOperand(Inst.getOperand(5)); 7239 Inst = TmpInst; 7240 return true; 7241 } 7242 7243 case ARM::VLD4LNdWB_fixed_Asm_8: 7244 case ARM::VLD4LNdWB_fixed_Asm_16: 7245 case ARM::VLD4LNdWB_fixed_Asm_32: 7246 case ARM::VLD4LNqWB_fixed_Asm_16: 7247 case ARM::VLD4LNqWB_fixed_Asm_32: { 7248 MCInst TmpInst; 7249 // Shuffle the operands around so the lane index operand is in the 7250 // right place. 7251 unsigned Spacing; 7252 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7253 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7254 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7255 Spacing)); 7256 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7257 Spacing * 2)); 7258 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7259 Spacing * 3)); 7260 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7261 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7262 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7263 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7264 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7265 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7266 Spacing)); 7267 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7268 Spacing * 2)); 7269 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7270 Spacing * 3)); 7271 TmpInst.addOperand(Inst.getOperand(1)); // lane 7272 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7273 TmpInst.addOperand(Inst.getOperand(5)); 7274 Inst = TmpInst; 7275 return true; 7276 } 7277 7278 case ARM::VLD1LNdAsm_8: 7279 case ARM::VLD1LNdAsm_16: 7280 case ARM::VLD1LNdAsm_32: { 7281 MCInst TmpInst; 7282 // Shuffle the operands around so the lane index operand is in the 7283 // right place. 7284 unsigned Spacing; 7285 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7286 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7287 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7288 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7289 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7290 TmpInst.addOperand(Inst.getOperand(1)); // lane 7291 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7292 TmpInst.addOperand(Inst.getOperand(5)); 7293 Inst = TmpInst; 7294 return true; 7295 } 7296 7297 case ARM::VLD2LNdAsm_8: 7298 case ARM::VLD2LNdAsm_16: 7299 case ARM::VLD2LNdAsm_32: 7300 case ARM::VLD2LNqAsm_16: 7301 case ARM::VLD2LNqAsm_32: { 7302 MCInst TmpInst; 7303 // Shuffle the operands around so the lane index operand is in the 7304 // right place. 7305 unsigned Spacing; 7306 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7307 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7308 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7309 Spacing)); 7310 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7311 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7312 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7313 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7314 Spacing)); 7315 TmpInst.addOperand(Inst.getOperand(1)); // lane 7316 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7317 TmpInst.addOperand(Inst.getOperand(5)); 7318 Inst = TmpInst; 7319 return true; 7320 } 7321 7322 case ARM::VLD3LNdAsm_8: 7323 case ARM::VLD3LNdAsm_16: 7324 case ARM::VLD3LNdAsm_32: 7325 case ARM::VLD3LNqAsm_16: 7326 case ARM::VLD3LNqAsm_32: { 7327 MCInst TmpInst; 7328 // Shuffle the operands around so the lane index operand is in the 7329 // right place. 7330 unsigned Spacing; 7331 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7332 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7333 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7334 Spacing)); 7335 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7336 Spacing * 2)); 7337 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7338 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7339 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7340 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7341 Spacing)); 7342 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7343 Spacing * 2)); 7344 TmpInst.addOperand(Inst.getOperand(1)); // lane 7345 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7346 TmpInst.addOperand(Inst.getOperand(5)); 7347 Inst = TmpInst; 7348 return true; 7349 } 7350 7351 case ARM::VLD4LNdAsm_8: 7352 case ARM::VLD4LNdAsm_16: 7353 case ARM::VLD4LNdAsm_32: 7354 case ARM::VLD4LNqAsm_16: 7355 case ARM::VLD4LNqAsm_32: { 7356 MCInst TmpInst; 7357 // Shuffle the operands around so the lane index operand is in the 7358 // right place. 7359 unsigned Spacing; 7360 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7361 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7362 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7363 Spacing)); 7364 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7365 Spacing * 2)); 7366 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7367 Spacing * 3)); 7368 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7369 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7370 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7371 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7372 Spacing)); 7373 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7374 Spacing * 2)); 7375 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7376 Spacing * 3)); 7377 TmpInst.addOperand(Inst.getOperand(1)); // lane 7378 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7379 TmpInst.addOperand(Inst.getOperand(5)); 7380 Inst = TmpInst; 7381 return true; 7382 } 7383 7384 // VLD3DUP single 3-element structure to all lanes instructions. 7385 case ARM::VLD3DUPdAsm_8: 7386 case ARM::VLD3DUPdAsm_16: 7387 case ARM::VLD3DUPdAsm_32: 7388 case ARM::VLD3DUPqAsm_8: 7389 case ARM::VLD3DUPqAsm_16: 7390 case ARM::VLD3DUPqAsm_32: { 7391 MCInst TmpInst; 7392 unsigned Spacing; 7393 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7394 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7395 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7396 Spacing)); 7397 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7398 Spacing * 2)); 7399 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7400 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7401 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7402 TmpInst.addOperand(Inst.getOperand(4)); 7403 Inst = TmpInst; 7404 return true; 7405 } 7406 7407 case ARM::VLD3DUPdWB_fixed_Asm_8: 7408 case ARM::VLD3DUPdWB_fixed_Asm_16: 7409 case ARM::VLD3DUPdWB_fixed_Asm_32: 7410 case ARM::VLD3DUPqWB_fixed_Asm_8: 7411 case ARM::VLD3DUPqWB_fixed_Asm_16: 7412 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7413 MCInst TmpInst; 7414 unsigned Spacing; 7415 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7416 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7417 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7418 Spacing)); 7419 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7420 Spacing * 2)); 7421 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7422 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7423 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7424 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7425 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7426 TmpInst.addOperand(Inst.getOperand(4)); 7427 Inst = TmpInst; 7428 return true; 7429 } 7430 7431 case ARM::VLD3DUPdWB_register_Asm_8: 7432 case ARM::VLD3DUPdWB_register_Asm_16: 7433 case ARM::VLD3DUPdWB_register_Asm_32: 7434 case ARM::VLD3DUPqWB_register_Asm_8: 7435 case ARM::VLD3DUPqWB_register_Asm_16: 7436 case ARM::VLD3DUPqWB_register_Asm_32: { 7437 MCInst TmpInst; 7438 unsigned Spacing; 7439 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7440 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7441 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7442 Spacing)); 7443 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7444 Spacing * 2)); 7445 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7446 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7447 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7448 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7449 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7450 TmpInst.addOperand(Inst.getOperand(5)); 7451 Inst = TmpInst; 7452 return true; 7453 } 7454 7455 // VLD3 multiple 3-element structure instructions. 7456 case ARM::VLD3dAsm_8: 7457 case ARM::VLD3dAsm_16: 7458 case ARM::VLD3dAsm_32: 7459 case ARM::VLD3qAsm_8: 7460 case ARM::VLD3qAsm_16: 7461 case ARM::VLD3qAsm_32: { 7462 MCInst TmpInst; 7463 unsigned Spacing; 7464 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7465 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7466 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7467 Spacing)); 7468 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7469 Spacing * 2)); 7470 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7471 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7472 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7473 TmpInst.addOperand(Inst.getOperand(4)); 7474 Inst = TmpInst; 7475 return true; 7476 } 7477 7478 case ARM::VLD3dWB_fixed_Asm_8: 7479 case ARM::VLD3dWB_fixed_Asm_16: 7480 case ARM::VLD3dWB_fixed_Asm_32: 7481 case ARM::VLD3qWB_fixed_Asm_8: 7482 case ARM::VLD3qWB_fixed_Asm_16: 7483 case ARM::VLD3qWB_fixed_Asm_32: { 7484 MCInst TmpInst; 7485 unsigned Spacing; 7486 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7487 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7488 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7489 Spacing)); 7490 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7491 Spacing * 2)); 7492 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7493 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7494 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7495 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7496 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7497 TmpInst.addOperand(Inst.getOperand(4)); 7498 Inst = TmpInst; 7499 return true; 7500 } 7501 7502 case ARM::VLD3dWB_register_Asm_8: 7503 case ARM::VLD3dWB_register_Asm_16: 7504 case ARM::VLD3dWB_register_Asm_32: 7505 case ARM::VLD3qWB_register_Asm_8: 7506 case ARM::VLD3qWB_register_Asm_16: 7507 case ARM::VLD3qWB_register_Asm_32: { 7508 MCInst TmpInst; 7509 unsigned Spacing; 7510 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7511 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7512 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7513 Spacing)); 7514 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7515 Spacing * 2)); 7516 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7517 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7518 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7519 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7520 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7521 TmpInst.addOperand(Inst.getOperand(5)); 7522 Inst = TmpInst; 7523 return true; 7524 } 7525 7526 // VLD4DUP single 3-element structure to all lanes instructions. 7527 case ARM::VLD4DUPdAsm_8: 7528 case ARM::VLD4DUPdAsm_16: 7529 case ARM::VLD4DUPdAsm_32: 7530 case ARM::VLD4DUPqAsm_8: 7531 case ARM::VLD4DUPqAsm_16: 7532 case ARM::VLD4DUPqAsm_32: { 7533 MCInst TmpInst; 7534 unsigned Spacing; 7535 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7536 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7537 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7538 Spacing)); 7539 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7540 Spacing * 2)); 7541 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7542 Spacing * 3)); 7543 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7544 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7545 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7546 TmpInst.addOperand(Inst.getOperand(4)); 7547 Inst = TmpInst; 7548 return true; 7549 } 7550 7551 case ARM::VLD4DUPdWB_fixed_Asm_8: 7552 case ARM::VLD4DUPdWB_fixed_Asm_16: 7553 case ARM::VLD4DUPdWB_fixed_Asm_32: 7554 case ARM::VLD4DUPqWB_fixed_Asm_8: 7555 case ARM::VLD4DUPqWB_fixed_Asm_16: 7556 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7557 MCInst TmpInst; 7558 unsigned Spacing; 7559 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7560 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7561 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7562 Spacing)); 7563 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7564 Spacing * 2)); 7565 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7566 Spacing * 3)); 7567 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7568 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7569 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7570 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7571 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7572 TmpInst.addOperand(Inst.getOperand(4)); 7573 Inst = TmpInst; 7574 return true; 7575 } 7576 7577 case ARM::VLD4DUPdWB_register_Asm_8: 7578 case ARM::VLD4DUPdWB_register_Asm_16: 7579 case ARM::VLD4DUPdWB_register_Asm_32: 7580 case ARM::VLD4DUPqWB_register_Asm_8: 7581 case ARM::VLD4DUPqWB_register_Asm_16: 7582 case ARM::VLD4DUPqWB_register_Asm_32: { 7583 MCInst TmpInst; 7584 unsigned Spacing; 7585 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7586 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7587 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7588 Spacing)); 7589 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7590 Spacing * 2)); 7591 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7592 Spacing * 3)); 7593 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7594 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7595 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7596 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7597 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7598 TmpInst.addOperand(Inst.getOperand(5)); 7599 Inst = TmpInst; 7600 return true; 7601 } 7602 7603 // VLD4 multiple 4-element structure instructions. 7604 case ARM::VLD4dAsm_8: 7605 case ARM::VLD4dAsm_16: 7606 case ARM::VLD4dAsm_32: 7607 case ARM::VLD4qAsm_8: 7608 case ARM::VLD4qAsm_16: 7609 case ARM::VLD4qAsm_32: { 7610 MCInst TmpInst; 7611 unsigned Spacing; 7612 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7613 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7614 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7615 Spacing)); 7616 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7617 Spacing * 2)); 7618 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7619 Spacing * 3)); 7620 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7621 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7622 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7623 TmpInst.addOperand(Inst.getOperand(4)); 7624 Inst = TmpInst; 7625 return true; 7626 } 7627 7628 case ARM::VLD4dWB_fixed_Asm_8: 7629 case ARM::VLD4dWB_fixed_Asm_16: 7630 case ARM::VLD4dWB_fixed_Asm_32: 7631 case ARM::VLD4qWB_fixed_Asm_8: 7632 case ARM::VLD4qWB_fixed_Asm_16: 7633 case ARM::VLD4qWB_fixed_Asm_32: { 7634 MCInst TmpInst; 7635 unsigned Spacing; 7636 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7637 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7638 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7639 Spacing)); 7640 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7641 Spacing * 2)); 7642 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7643 Spacing * 3)); 7644 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7645 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7646 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7647 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7648 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7649 TmpInst.addOperand(Inst.getOperand(4)); 7650 Inst = TmpInst; 7651 return true; 7652 } 7653 7654 case ARM::VLD4dWB_register_Asm_8: 7655 case ARM::VLD4dWB_register_Asm_16: 7656 case ARM::VLD4dWB_register_Asm_32: 7657 case ARM::VLD4qWB_register_Asm_8: 7658 case ARM::VLD4qWB_register_Asm_16: 7659 case ARM::VLD4qWB_register_Asm_32: { 7660 MCInst TmpInst; 7661 unsigned Spacing; 7662 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7663 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7664 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7665 Spacing)); 7666 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7667 Spacing * 2)); 7668 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7669 Spacing * 3)); 7670 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7671 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7672 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7673 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7674 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7675 TmpInst.addOperand(Inst.getOperand(5)); 7676 Inst = TmpInst; 7677 return true; 7678 } 7679 7680 // VST3 multiple 3-element structure instructions. 7681 case ARM::VST3dAsm_8: 7682 case ARM::VST3dAsm_16: 7683 case ARM::VST3dAsm_32: 7684 case ARM::VST3qAsm_8: 7685 case ARM::VST3qAsm_16: 7686 case ARM::VST3qAsm_32: { 7687 MCInst TmpInst; 7688 unsigned Spacing; 7689 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7690 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7691 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7692 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7693 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7694 Spacing)); 7695 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7696 Spacing * 2)); 7697 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7698 TmpInst.addOperand(Inst.getOperand(4)); 7699 Inst = TmpInst; 7700 return true; 7701 } 7702 7703 case ARM::VST3dWB_fixed_Asm_8: 7704 case ARM::VST3dWB_fixed_Asm_16: 7705 case ARM::VST3dWB_fixed_Asm_32: 7706 case ARM::VST3qWB_fixed_Asm_8: 7707 case ARM::VST3qWB_fixed_Asm_16: 7708 case ARM::VST3qWB_fixed_Asm_32: { 7709 MCInst TmpInst; 7710 unsigned Spacing; 7711 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7712 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7713 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7714 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7715 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7716 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7717 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7718 Spacing)); 7719 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7720 Spacing * 2)); 7721 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7722 TmpInst.addOperand(Inst.getOperand(4)); 7723 Inst = TmpInst; 7724 return true; 7725 } 7726 7727 case ARM::VST3dWB_register_Asm_8: 7728 case ARM::VST3dWB_register_Asm_16: 7729 case ARM::VST3dWB_register_Asm_32: 7730 case ARM::VST3qWB_register_Asm_8: 7731 case ARM::VST3qWB_register_Asm_16: 7732 case ARM::VST3qWB_register_Asm_32: { 7733 MCInst TmpInst; 7734 unsigned Spacing; 7735 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7736 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7737 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7738 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7739 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7740 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7741 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7742 Spacing)); 7743 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7744 Spacing * 2)); 7745 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7746 TmpInst.addOperand(Inst.getOperand(5)); 7747 Inst = TmpInst; 7748 return true; 7749 } 7750 7751 // VST4 multiple 3-element structure instructions. 7752 case ARM::VST4dAsm_8: 7753 case ARM::VST4dAsm_16: 7754 case ARM::VST4dAsm_32: 7755 case ARM::VST4qAsm_8: 7756 case ARM::VST4qAsm_16: 7757 case ARM::VST4qAsm_32: { 7758 MCInst TmpInst; 7759 unsigned Spacing; 7760 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7761 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7762 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7763 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7764 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7765 Spacing)); 7766 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7767 Spacing * 2)); 7768 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7769 Spacing * 3)); 7770 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7771 TmpInst.addOperand(Inst.getOperand(4)); 7772 Inst = TmpInst; 7773 return true; 7774 } 7775 7776 case ARM::VST4dWB_fixed_Asm_8: 7777 case ARM::VST4dWB_fixed_Asm_16: 7778 case ARM::VST4dWB_fixed_Asm_32: 7779 case ARM::VST4qWB_fixed_Asm_8: 7780 case ARM::VST4qWB_fixed_Asm_16: 7781 case ARM::VST4qWB_fixed_Asm_32: { 7782 MCInst TmpInst; 7783 unsigned Spacing; 7784 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7785 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7786 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7787 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7788 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7789 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7790 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7791 Spacing)); 7792 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7793 Spacing * 2)); 7794 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7795 Spacing * 3)); 7796 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7797 TmpInst.addOperand(Inst.getOperand(4)); 7798 Inst = TmpInst; 7799 return true; 7800 } 7801 7802 case ARM::VST4dWB_register_Asm_8: 7803 case ARM::VST4dWB_register_Asm_16: 7804 case ARM::VST4dWB_register_Asm_32: 7805 case ARM::VST4qWB_register_Asm_8: 7806 case ARM::VST4qWB_register_Asm_16: 7807 case ARM::VST4qWB_register_Asm_32: { 7808 MCInst TmpInst; 7809 unsigned Spacing; 7810 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7811 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7812 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7813 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7814 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7815 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7816 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7817 Spacing)); 7818 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7819 Spacing * 2)); 7820 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7821 Spacing * 3)); 7822 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7823 TmpInst.addOperand(Inst.getOperand(5)); 7824 Inst = TmpInst; 7825 return true; 7826 } 7827 7828 // Handle encoding choice for the shift-immediate instructions. 7829 case ARM::t2LSLri: 7830 case ARM::t2LSRri: 7831 case ARM::t2ASRri: { 7832 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7833 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7834 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 7835 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 7836 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 7837 unsigned NewOpc; 7838 switch (Inst.getOpcode()) { 7839 default: llvm_unreachable("unexpected opcode"); 7840 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 7841 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 7842 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 7843 } 7844 // The Thumb1 operands aren't in the same order. Awesome, eh? 7845 MCInst TmpInst; 7846 TmpInst.setOpcode(NewOpc); 7847 TmpInst.addOperand(Inst.getOperand(0)); 7848 TmpInst.addOperand(Inst.getOperand(5)); 7849 TmpInst.addOperand(Inst.getOperand(1)); 7850 TmpInst.addOperand(Inst.getOperand(2)); 7851 TmpInst.addOperand(Inst.getOperand(3)); 7852 TmpInst.addOperand(Inst.getOperand(4)); 7853 Inst = TmpInst; 7854 return true; 7855 } 7856 return false; 7857 } 7858 7859 // Handle the Thumb2 mode MOV complex aliases. 7860 case ARM::t2MOVsr: 7861 case ARM::t2MOVSsr: { 7862 // Which instruction to expand to depends on the CCOut operand and 7863 // whether we're in an IT block if the register operands are low 7864 // registers. 7865 bool isNarrow = false; 7866 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7867 isARMLowRegister(Inst.getOperand(1).getReg()) && 7868 isARMLowRegister(Inst.getOperand(2).getReg()) && 7869 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7870 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 7871 isNarrow = true; 7872 MCInst TmpInst; 7873 unsigned newOpc; 7874 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 7875 default: llvm_unreachable("unexpected opcode!"); 7876 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 7877 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 7878 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 7879 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 7880 } 7881 TmpInst.setOpcode(newOpc); 7882 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7883 if (isNarrow) 7884 TmpInst.addOperand(MCOperand::createReg( 7885 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7886 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7887 TmpInst.addOperand(Inst.getOperand(2)); // Rm 7888 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7889 TmpInst.addOperand(Inst.getOperand(5)); 7890 if (!isNarrow) 7891 TmpInst.addOperand(MCOperand::createReg( 7892 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7893 Inst = TmpInst; 7894 return true; 7895 } 7896 case ARM::t2MOVsi: 7897 case ARM::t2MOVSsi: { 7898 // Which instruction to expand to depends on the CCOut operand and 7899 // whether we're in an IT block if the register operands are low 7900 // registers. 7901 bool isNarrow = false; 7902 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7903 isARMLowRegister(Inst.getOperand(1).getReg()) && 7904 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 7905 isNarrow = true; 7906 MCInst TmpInst; 7907 unsigned newOpc; 7908 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { 7909 default: llvm_unreachable("unexpected opcode!"); 7910 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 7911 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 7912 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 7913 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 7914 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 7915 } 7916 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 7917 if (Amount == 32) Amount = 0; 7918 TmpInst.setOpcode(newOpc); 7919 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7920 if (isNarrow) 7921 TmpInst.addOperand(MCOperand::createReg( 7922 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7923 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7924 if (newOpc != ARM::t2RRX) 7925 TmpInst.addOperand(MCOperand::createImm(Amount)); 7926 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7927 TmpInst.addOperand(Inst.getOperand(4)); 7928 if (!isNarrow) 7929 TmpInst.addOperand(MCOperand::createReg( 7930 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7931 Inst = TmpInst; 7932 return true; 7933 } 7934 // Handle the ARM mode MOV complex aliases. 7935 case ARM::ASRr: 7936 case ARM::LSRr: 7937 case ARM::LSLr: 7938 case ARM::RORr: { 7939 ARM_AM::ShiftOpc ShiftTy; 7940 switch(Inst.getOpcode()) { 7941 default: llvm_unreachable("unexpected opcode!"); 7942 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 7943 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 7944 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 7945 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 7946 } 7947 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 7948 MCInst TmpInst; 7949 TmpInst.setOpcode(ARM::MOVsr); 7950 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7951 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7952 TmpInst.addOperand(Inst.getOperand(2)); // Rm 7953 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 7954 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7955 TmpInst.addOperand(Inst.getOperand(4)); 7956 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 7957 Inst = TmpInst; 7958 return true; 7959 } 7960 case ARM::ASRi: 7961 case ARM::LSRi: 7962 case ARM::LSLi: 7963 case ARM::RORi: { 7964 ARM_AM::ShiftOpc ShiftTy; 7965 switch(Inst.getOpcode()) { 7966 default: llvm_unreachable("unexpected opcode!"); 7967 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 7968 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 7969 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 7970 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 7971 } 7972 // A shift by zero is a plain MOVr, not a MOVsi. 7973 unsigned Amt = Inst.getOperand(2).getImm(); 7974 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 7975 // A shift by 32 should be encoded as 0 when permitted 7976 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 7977 Amt = 0; 7978 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 7979 MCInst TmpInst; 7980 TmpInst.setOpcode(Opc); 7981 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7982 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7983 if (Opc == ARM::MOVsi) 7984 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 7985 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7986 TmpInst.addOperand(Inst.getOperand(4)); 7987 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 7988 Inst = TmpInst; 7989 return true; 7990 } 7991 case ARM::RRXi: { 7992 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 7993 MCInst TmpInst; 7994 TmpInst.setOpcode(ARM::MOVsi); 7995 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7996 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7997 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 7998 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7999 TmpInst.addOperand(Inst.getOperand(3)); 8000 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8001 Inst = TmpInst; 8002 return true; 8003 } 8004 case ARM::t2LDMIA_UPD: { 8005 // If this is a load of a single register, then we should use 8006 // a post-indexed LDR instruction instead, per the ARM ARM. 8007 if (Inst.getNumOperands() != 5) 8008 return false; 8009 MCInst TmpInst; 8010 TmpInst.setOpcode(ARM::t2LDR_POST); 8011 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8012 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8013 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8014 TmpInst.addOperand(MCOperand::createImm(4)); 8015 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8016 TmpInst.addOperand(Inst.getOperand(3)); 8017 Inst = TmpInst; 8018 return true; 8019 } 8020 case ARM::t2STMDB_UPD: { 8021 // If this is a store of a single register, then we should use 8022 // a pre-indexed STR instruction instead, per the ARM ARM. 8023 if (Inst.getNumOperands() != 5) 8024 return false; 8025 MCInst TmpInst; 8026 TmpInst.setOpcode(ARM::t2STR_PRE); 8027 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8028 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8029 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8030 TmpInst.addOperand(MCOperand::createImm(-4)); 8031 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8032 TmpInst.addOperand(Inst.getOperand(3)); 8033 Inst = TmpInst; 8034 return true; 8035 } 8036 case ARM::LDMIA_UPD: 8037 // If this is a load of a single register via a 'pop', then we should use 8038 // a post-indexed LDR instruction instead, per the ARM ARM. 8039 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8040 Inst.getNumOperands() == 5) { 8041 MCInst TmpInst; 8042 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8043 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8044 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8045 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8046 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8047 TmpInst.addOperand(MCOperand::createImm(4)); 8048 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8049 TmpInst.addOperand(Inst.getOperand(3)); 8050 Inst = TmpInst; 8051 return true; 8052 } 8053 break; 8054 case ARM::STMDB_UPD: 8055 // If this is a store of a single register via a 'push', then we should use 8056 // a pre-indexed STR instruction instead, per the ARM ARM. 8057 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8058 Inst.getNumOperands() == 5) { 8059 MCInst TmpInst; 8060 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8061 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8062 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8063 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8064 TmpInst.addOperand(MCOperand::createImm(-4)); 8065 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8066 TmpInst.addOperand(Inst.getOperand(3)); 8067 Inst = TmpInst; 8068 } 8069 break; 8070 case ARM::t2ADDri12: 8071 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8072 // mnemonic was used (not "addw"), encoding T3 is preferred. 8073 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8074 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8075 break; 8076 Inst.setOpcode(ARM::t2ADDri); 8077 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8078 break; 8079 case ARM::t2SUBri12: 8080 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8081 // mnemonic was used (not "subw"), encoding T3 is preferred. 8082 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8083 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8084 break; 8085 Inst.setOpcode(ARM::t2SUBri); 8086 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8087 break; 8088 case ARM::tADDi8: 8089 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8090 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8091 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8092 // to encoding T1 if <Rd> is omitted." 8093 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8094 Inst.setOpcode(ARM::tADDi3); 8095 return true; 8096 } 8097 break; 8098 case ARM::tSUBi8: 8099 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8100 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8101 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8102 // to encoding T1 if <Rd> is omitted." 8103 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8104 Inst.setOpcode(ARM::tSUBi3); 8105 return true; 8106 } 8107 break; 8108 case ARM::t2ADDri: 8109 case ARM::t2SUBri: { 8110 // If the destination and first source operand are the same, and 8111 // the flags are compatible with the current IT status, use encoding T2 8112 // instead of T3. For compatibility with the system 'as'. Make sure the 8113 // wide encoding wasn't explicit. 8114 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8115 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8116 (unsigned)Inst.getOperand(2).getImm() > 255 || 8117 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8118 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8119 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8120 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8121 break; 8122 MCInst TmpInst; 8123 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8124 ARM::tADDi8 : ARM::tSUBi8); 8125 TmpInst.addOperand(Inst.getOperand(0)); 8126 TmpInst.addOperand(Inst.getOperand(5)); 8127 TmpInst.addOperand(Inst.getOperand(0)); 8128 TmpInst.addOperand(Inst.getOperand(2)); 8129 TmpInst.addOperand(Inst.getOperand(3)); 8130 TmpInst.addOperand(Inst.getOperand(4)); 8131 Inst = TmpInst; 8132 return true; 8133 } 8134 case ARM::t2ADDrr: { 8135 // If the destination and first source operand are the same, and 8136 // there's no setting of the flags, use encoding T2 instead of T3. 8137 // Note that this is only for ADD, not SUB. This mirrors the system 8138 // 'as' behaviour. Also take advantage of ADD being commutative. 8139 // Make sure the wide encoding wasn't explicit. 8140 bool Swap = false; 8141 auto DestReg = Inst.getOperand(0).getReg(); 8142 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8143 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8144 Transform = true; 8145 Swap = true; 8146 } 8147 if (!Transform || 8148 Inst.getOperand(5).getReg() != 0 || 8149 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8150 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8151 break; 8152 MCInst TmpInst; 8153 TmpInst.setOpcode(ARM::tADDhirr); 8154 TmpInst.addOperand(Inst.getOperand(0)); 8155 TmpInst.addOperand(Inst.getOperand(0)); 8156 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8157 TmpInst.addOperand(Inst.getOperand(3)); 8158 TmpInst.addOperand(Inst.getOperand(4)); 8159 Inst = TmpInst; 8160 return true; 8161 } 8162 case ARM::tADDrSP: { 8163 // If the non-SP source operand and the destination operand are not the 8164 // same, we need to use the 32-bit encoding if it's available. 8165 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8166 Inst.setOpcode(ARM::t2ADDrr); 8167 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8168 return true; 8169 } 8170 break; 8171 } 8172 case ARM::tB: 8173 // A Thumb conditional branch outside of an IT block is a tBcc. 8174 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8175 Inst.setOpcode(ARM::tBcc); 8176 return true; 8177 } 8178 break; 8179 case ARM::t2B: 8180 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8181 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8182 Inst.setOpcode(ARM::t2Bcc); 8183 return true; 8184 } 8185 break; 8186 case ARM::t2Bcc: 8187 // If the conditional is AL or we're in an IT block, we really want t2B. 8188 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8189 Inst.setOpcode(ARM::t2B); 8190 return true; 8191 } 8192 break; 8193 case ARM::tBcc: 8194 // If the conditional is AL, we really want tB. 8195 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8196 Inst.setOpcode(ARM::tB); 8197 return true; 8198 } 8199 break; 8200 case ARM::tLDMIA: { 8201 // If the register list contains any high registers, or if the writeback 8202 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8203 // instead if we're in Thumb2. Otherwise, this should have generated 8204 // an error in validateInstruction(). 8205 unsigned Rn = Inst.getOperand(0).getReg(); 8206 bool hasWritebackToken = 8207 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8208 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8209 bool listContainsBase; 8210 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8211 (!listContainsBase && !hasWritebackToken) || 8212 (listContainsBase && hasWritebackToken)) { 8213 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8214 assert (isThumbTwo()); 8215 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8216 // If we're switching to the updating version, we need to insert 8217 // the writeback tied operand. 8218 if (hasWritebackToken) 8219 Inst.insert(Inst.begin(), 8220 MCOperand::createReg(Inst.getOperand(0).getReg())); 8221 return true; 8222 } 8223 break; 8224 } 8225 case ARM::tSTMIA_UPD: { 8226 // If the register list contains any high registers, we need to use 8227 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8228 // should have generated an error in validateInstruction(). 8229 unsigned Rn = Inst.getOperand(0).getReg(); 8230 bool listContainsBase; 8231 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8232 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8233 assert (isThumbTwo()); 8234 Inst.setOpcode(ARM::t2STMIA_UPD); 8235 return true; 8236 } 8237 break; 8238 } 8239 case ARM::tPOP: { 8240 bool listContainsBase; 8241 // If the register list contains any high registers, we need to use 8242 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8243 // should have generated an error in validateInstruction(). 8244 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8245 return false; 8246 assert (isThumbTwo()); 8247 Inst.setOpcode(ARM::t2LDMIA_UPD); 8248 // Add the base register and writeback operands. 8249 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8250 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8251 return true; 8252 } 8253 case ARM::tPUSH: { 8254 bool listContainsBase; 8255 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8256 return false; 8257 assert (isThumbTwo()); 8258 Inst.setOpcode(ARM::t2STMDB_UPD); 8259 // Add the base register and writeback operands. 8260 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8261 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8262 return true; 8263 } 8264 case ARM::t2MOVi: { 8265 // If we can use the 16-bit encoding and the user didn't explicitly 8266 // request the 32-bit variant, transform it here. 8267 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8268 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8269 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8270 Inst.getOperand(4).getReg() == ARM::CPSR) || 8271 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8272 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8273 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8274 // The operands aren't in the same order for tMOVi8... 8275 MCInst TmpInst; 8276 TmpInst.setOpcode(ARM::tMOVi8); 8277 TmpInst.addOperand(Inst.getOperand(0)); 8278 TmpInst.addOperand(Inst.getOperand(4)); 8279 TmpInst.addOperand(Inst.getOperand(1)); 8280 TmpInst.addOperand(Inst.getOperand(2)); 8281 TmpInst.addOperand(Inst.getOperand(3)); 8282 Inst = TmpInst; 8283 return true; 8284 } 8285 break; 8286 } 8287 case ARM::t2MOVr: { 8288 // If we can use the 16-bit encoding and the user didn't explicitly 8289 // request the 32-bit variant, transform it here. 8290 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8291 isARMLowRegister(Inst.getOperand(1).getReg()) && 8292 Inst.getOperand(2).getImm() == ARMCC::AL && 8293 Inst.getOperand(4).getReg() == ARM::CPSR && 8294 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8295 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8296 // The operands aren't the same for tMOV[S]r... (no cc_out) 8297 MCInst TmpInst; 8298 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8299 TmpInst.addOperand(Inst.getOperand(0)); 8300 TmpInst.addOperand(Inst.getOperand(1)); 8301 TmpInst.addOperand(Inst.getOperand(2)); 8302 TmpInst.addOperand(Inst.getOperand(3)); 8303 Inst = TmpInst; 8304 return true; 8305 } 8306 break; 8307 } 8308 case ARM::t2SXTH: 8309 case ARM::t2SXTB: 8310 case ARM::t2UXTH: 8311 case ARM::t2UXTB: { 8312 // If we can use the 16-bit encoding and the user didn't explicitly 8313 // request the 32-bit variant, transform it here. 8314 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8315 isARMLowRegister(Inst.getOperand(1).getReg()) && 8316 Inst.getOperand(2).getImm() == 0 && 8317 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8318 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8319 unsigned NewOpc; 8320 switch (Inst.getOpcode()) { 8321 default: llvm_unreachable("Illegal opcode!"); 8322 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8323 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8324 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8325 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8326 } 8327 // The operands aren't the same for thumb1 (no rotate operand). 8328 MCInst TmpInst; 8329 TmpInst.setOpcode(NewOpc); 8330 TmpInst.addOperand(Inst.getOperand(0)); 8331 TmpInst.addOperand(Inst.getOperand(1)); 8332 TmpInst.addOperand(Inst.getOperand(3)); 8333 TmpInst.addOperand(Inst.getOperand(4)); 8334 Inst = TmpInst; 8335 return true; 8336 } 8337 break; 8338 } 8339 case ARM::MOVsi: { 8340 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8341 // rrx shifts and asr/lsr of #32 is encoded as 0 8342 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8343 return false; 8344 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8345 // Shifting by zero is accepted as a vanilla 'MOVr' 8346 MCInst TmpInst; 8347 TmpInst.setOpcode(ARM::MOVr); 8348 TmpInst.addOperand(Inst.getOperand(0)); 8349 TmpInst.addOperand(Inst.getOperand(1)); 8350 TmpInst.addOperand(Inst.getOperand(3)); 8351 TmpInst.addOperand(Inst.getOperand(4)); 8352 TmpInst.addOperand(Inst.getOperand(5)); 8353 Inst = TmpInst; 8354 return true; 8355 } 8356 return false; 8357 } 8358 case ARM::ANDrsi: 8359 case ARM::ORRrsi: 8360 case ARM::EORrsi: 8361 case ARM::BICrsi: 8362 case ARM::SUBrsi: 8363 case ARM::ADDrsi: { 8364 unsigned newOpc; 8365 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8366 if (SOpc == ARM_AM::rrx) return false; 8367 switch (Inst.getOpcode()) { 8368 default: llvm_unreachable("unexpected opcode!"); 8369 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8370 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8371 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8372 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8373 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8374 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8375 } 8376 // If the shift is by zero, use the non-shifted instruction definition. 8377 // The exception is for right shifts, where 0 == 32 8378 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8379 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8380 MCInst TmpInst; 8381 TmpInst.setOpcode(newOpc); 8382 TmpInst.addOperand(Inst.getOperand(0)); 8383 TmpInst.addOperand(Inst.getOperand(1)); 8384 TmpInst.addOperand(Inst.getOperand(2)); 8385 TmpInst.addOperand(Inst.getOperand(4)); 8386 TmpInst.addOperand(Inst.getOperand(5)); 8387 TmpInst.addOperand(Inst.getOperand(6)); 8388 Inst = TmpInst; 8389 return true; 8390 } 8391 return false; 8392 } 8393 case ARM::ITasm: 8394 case ARM::t2IT: { 8395 // The mask bits for all but the first condition are represented as 8396 // the low bit of the condition code value implies 't'. We currently 8397 // always have 1 implies 't', so XOR toggle the bits if the low bit 8398 // of the condition code is zero. 8399 MCOperand &MO = Inst.getOperand(1); 8400 unsigned Mask = MO.getImm(); 8401 unsigned OrigMask = Mask; 8402 unsigned TZ = countTrailingZeros(Mask); 8403 if ((Inst.getOperand(0).getImm() & 1) == 0) { 8404 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 8405 Mask ^= (0xE << TZ) & 0xF; 8406 } 8407 MO.setImm(Mask); 8408 8409 // Set up the IT block state according to the IT instruction we just 8410 // matched. 8411 assert(!inITBlock() && "nested IT blocks?!"); 8412 ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8413 ITState.Mask = OrigMask; // Use the original mask, not the updated one. 8414 ITState.CurPosition = 0; 8415 ITState.FirstCond = true; 8416 break; 8417 } 8418 case ARM::t2LSLrr: 8419 case ARM::t2LSRrr: 8420 case ARM::t2ASRrr: 8421 case ARM::t2SBCrr: 8422 case ARM::t2RORrr: 8423 case ARM::t2BICrr: 8424 { 8425 // Assemblers should use the narrow encodings of these instructions when permissible. 8426 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8427 isARMLowRegister(Inst.getOperand(2).getReg())) && 8428 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8429 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8430 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8431 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8432 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8433 ".w"))) { 8434 unsigned NewOpc; 8435 switch (Inst.getOpcode()) { 8436 default: llvm_unreachable("unexpected opcode"); 8437 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8438 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8439 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8440 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8441 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8442 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8443 } 8444 MCInst TmpInst; 8445 TmpInst.setOpcode(NewOpc); 8446 TmpInst.addOperand(Inst.getOperand(0)); 8447 TmpInst.addOperand(Inst.getOperand(5)); 8448 TmpInst.addOperand(Inst.getOperand(1)); 8449 TmpInst.addOperand(Inst.getOperand(2)); 8450 TmpInst.addOperand(Inst.getOperand(3)); 8451 TmpInst.addOperand(Inst.getOperand(4)); 8452 Inst = TmpInst; 8453 return true; 8454 } 8455 return false; 8456 } 8457 case ARM::t2ANDrr: 8458 case ARM::t2EORrr: 8459 case ARM::t2ADCrr: 8460 case ARM::t2ORRrr: 8461 { 8462 // Assemblers should use the narrow encodings of these instructions when permissible. 8463 // These instructions are special in that they are commutable, so shorter encodings 8464 // are available more often. 8465 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8466 isARMLowRegister(Inst.getOperand(2).getReg())) && 8467 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8468 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8469 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8470 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8471 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8472 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8473 ".w"))) { 8474 unsigned NewOpc; 8475 switch (Inst.getOpcode()) { 8476 default: llvm_unreachable("unexpected opcode"); 8477 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8478 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8479 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8480 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8481 } 8482 MCInst TmpInst; 8483 TmpInst.setOpcode(NewOpc); 8484 TmpInst.addOperand(Inst.getOperand(0)); 8485 TmpInst.addOperand(Inst.getOperand(5)); 8486 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8487 TmpInst.addOperand(Inst.getOperand(1)); 8488 TmpInst.addOperand(Inst.getOperand(2)); 8489 } else { 8490 TmpInst.addOperand(Inst.getOperand(2)); 8491 TmpInst.addOperand(Inst.getOperand(1)); 8492 } 8493 TmpInst.addOperand(Inst.getOperand(3)); 8494 TmpInst.addOperand(Inst.getOperand(4)); 8495 Inst = TmpInst; 8496 return true; 8497 } 8498 return false; 8499 } 8500 } 8501 return false; 8502 } 8503 8504 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8505 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8506 // suffix depending on whether they're in an IT block or not. 8507 unsigned Opc = Inst.getOpcode(); 8508 const MCInstrDesc &MCID = MII.get(Opc); 8509 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8510 assert(MCID.hasOptionalDef() && 8511 "optionally flag setting instruction missing optional def operand"); 8512 assert(MCID.NumOperands == Inst.getNumOperands() && 8513 "operand count mismatch!"); 8514 // Find the optional-def operand (cc_out). 8515 unsigned OpNo; 8516 for (OpNo = 0; 8517 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8518 ++OpNo) 8519 ; 8520 // If we're parsing Thumb1, reject it completely. 8521 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8522 return Match_MnemonicFail; 8523 // If we're parsing Thumb2, which form is legal depends on whether we're 8524 // in an IT block. 8525 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8526 !inITBlock()) 8527 return Match_RequiresITBlock; 8528 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8529 inITBlock()) 8530 return Match_RequiresNotITBlock; 8531 } 8532 // Some high-register supporting Thumb1 encodings only allow both registers 8533 // to be from r0-r7 when in Thumb2. 8534 else if (Opc == ARM::tADDhirr && isThumbOne() && !hasV6MOps() && 8535 isARMLowRegister(Inst.getOperand(1).getReg()) && 8536 isARMLowRegister(Inst.getOperand(2).getReg())) 8537 return Match_RequiresThumb2; 8538 // Others only require ARMv6 or later. 8539 else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() && 8540 isARMLowRegister(Inst.getOperand(0).getReg()) && 8541 isARMLowRegister(Inst.getOperand(1).getReg())) 8542 return Match_RequiresV6; 8543 return Match_Success; 8544 } 8545 8546 namespace llvm { 8547 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { 8548 return true; // In an assembly source, no need to second-guess 8549 } 8550 } 8551 8552 static const char *getSubtargetFeatureName(uint64_t Val); 8553 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 8554 OperandVector &Operands, 8555 MCStreamer &Out, uint64_t &ErrorInfo, 8556 bool MatchingInlineAsm) { 8557 MCInst Inst; 8558 unsigned MatchResult; 8559 8560 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 8561 MatchingInlineAsm); 8562 switch (MatchResult) { 8563 case Match_Success: 8564 // Context sensitive operand constraints aren't handled by the matcher, 8565 // so check them here. 8566 if (validateInstruction(Inst, Operands)) { 8567 // Still progress the IT block, otherwise one wrong condition causes 8568 // nasty cascading errors. 8569 forwardITPosition(); 8570 return true; 8571 } 8572 8573 { // processInstruction() updates inITBlock state, we need to save it away 8574 bool wasInITBlock = inITBlock(); 8575 8576 // Some instructions need post-processing to, for example, tweak which 8577 // encoding is selected. Loop on it while changes happen so the 8578 // individual transformations can chain off each other. E.g., 8579 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 8580 while (processInstruction(Inst, Operands, Out)) 8581 ; 8582 8583 // Only after the instruction is fully processed, we can validate it 8584 if (wasInITBlock && hasV8Ops() && isThumb() && 8585 !isV8EligibleForIT(&Inst)) { 8586 Warning(IDLoc, "deprecated instruction in IT block"); 8587 } 8588 } 8589 8590 // Only move forward at the very end so that everything in validate 8591 // and process gets a consistent answer about whether we're in an IT 8592 // block. 8593 forwardITPosition(); 8594 8595 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 8596 // doesn't actually encode. 8597 if (Inst.getOpcode() == ARM::ITasm) 8598 return false; 8599 8600 Inst.setLoc(IDLoc); 8601 Out.EmitInstruction(Inst, STI); 8602 return false; 8603 case Match_MissingFeature: { 8604 assert(ErrorInfo && "Unknown missing feature!"); 8605 // Special case the error message for the very common case where only 8606 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 8607 std::string Msg = "instruction requires:"; 8608 uint64_t Mask = 1; 8609 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 8610 if (ErrorInfo & Mask) { 8611 Msg += " "; 8612 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 8613 } 8614 Mask <<= 1; 8615 } 8616 return Error(IDLoc, Msg); 8617 } 8618 case Match_InvalidOperand: { 8619 SMLoc ErrorLoc = IDLoc; 8620 if (ErrorInfo != ~0ULL) { 8621 if (ErrorInfo >= Operands.size()) 8622 return Error(IDLoc, "too few operands for instruction"); 8623 8624 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8625 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8626 } 8627 8628 return Error(ErrorLoc, "invalid operand for instruction"); 8629 } 8630 case Match_MnemonicFail: 8631 return Error(IDLoc, "invalid instruction", 8632 ((ARMOperand &)*Operands[0]).getLocRange()); 8633 case Match_RequiresNotITBlock: 8634 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 8635 case Match_RequiresITBlock: 8636 return Error(IDLoc, "instruction only valid inside IT block"); 8637 case Match_RequiresV6: 8638 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 8639 case Match_RequiresThumb2: 8640 return Error(IDLoc, "instruction variant requires Thumb2"); 8641 case Match_ImmRange0_15: { 8642 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8643 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8644 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 8645 } 8646 case Match_ImmRange0_239: { 8647 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8648 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8649 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 8650 } 8651 case Match_AlignedMemoryRequiresNone: 8652 case Match_DupAlignedMemoryRequiresNone: 8653 case Match_AlignedMemoryRequires16: 8654 case Match_DupAlignedMemoryRequires16: 8655 case Match_AlignedMemoryRequires32: 8656 case Match_DupAlignedMemoryRequires32: 8657 case Match_AlignedMemoryRequires64: 8658 case Match_DupAlignedMemoryRequires64: 8659 case Match_AlignedMemoryRequires64or128: 8660 case Match_DupAlignedMemoryRequires64or128: 8661 case Match_AlignedMemoryRequires64or128or256: 8662 { 8663 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 8664 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8665 switch (MatchResult) { 8666 default: 8667 llvm_unreachable("Missing Match_Aligned type"); 8668 case Match_AlignedMemoryRequiresNone: 8669 case Match_DupAlignedMemoryRequiresNone: 8670 return Error(ErrorLoc, "alignment must be omitted"); 8671 case Match_AlignedMemoryRequires16: 8672 case Match_DupAlignedMemoryRequires16: 8673 return Error(ErrorLoc, "alignment must be 16 or omitted"); 8674 case Match_AlignedMemoryRequires32: 8675 case Match_DupAlignedMemoryRequires32: 8676 return Error(ErrorLoc, "alignment must be 32 or omitted"); 8677 case Match_AlignedMemoryRequires64: 8678 case Match_DupAlignedMemoryRequires64: 8679 return Error(ErrorLoc, "alignment must be 64 or omitted"); 8680 case Match_AlignedMemoryRequires64or128: 8681 case Match_DupAlignedMemoryRequires64or128: 8682 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 8683 case Match_AlignedMemoryRequires64or128or256: 8684 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 8685 } 8686 } 8687 } 8688 8689 llvm_unreachable("Implement any new match types added!"); 8690 } 8691 8692 /// parseDirective parses the arm specific directives 8693 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 8694 const MCObjectFileInfo::Environment Format = 8695 getContext().getObjectFileInfo()->getObjectFileType(); 8696 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8697 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 8698 8699 StringRef IDVal = DirectiveID.getIdentifier(); 8700 if (IDVal == ".word") 8701 return parseLiteralValues(4, DirectiveID.getLoc()); 8702 else if (IDVal == ".short" || IDVal == ".hword") 8703 return parseLiteralValues(2, DirectiveID.getLoc()); 8704 else if (IDVal == ".thumb") 8705 return parseDirectiveThumb(DirectiveID.getLoc()); 8706 else if (IDVal == ".arm") 8707 return parseDirectiveARM(DirectiveID.getLoc()); 8708 else if (IDVal == ".thumb_func") 8709 return parseDirectiveThumbFunc(DirectiveID.getLoc()); 8710 else if (IDVal == ".code") 8711 return parseDirectiveCode(DirectiveID.getLoc()); 8712 else if (IDVal == ".syntax") 8713 return parseDirectiveSyntax(DirectiveID.getLoc()); 8714 else if (IDVal == ".unreq") 8715 return parseDirectiveUnreq(DirectiveID.getLoc()); 8716 else if (IDVal == ".fnend") 8717 return parseDirectiveFnEnd(DirectiveID.getLoc()); 8718 else if (IDVal == ".cantunwind") 8719 return parseDirectiveCantUnwind(DirectiveID.getLoc()); 8720 else if (IDVal == ".personality") 8721 return parseDirectivePersonality(DirectiveID.getLoc()); 8722 else if (IDVal == ".handlerdata") 8723 return parseDirectiveHandlerData(DirectiveID.getLoc()); 8724 else if (IDVal == ".setfp") 8725 return parseDirectiveSetFP(DirectiveID.getLoc()); 8726 else if (IDVal == ".pad") 8727 return parseDirectivePad(DirectiveID.getLoc()); 8728 else if (IDVal == ".save") 8729 return parseDirectiveRegSave(DirectiveID.getLoc(), false); 8730 else if (IDVal == ".vsave") 8731 return parseDirectiveRegSave(DirectiveID.getLoc(), true); 8732 else if (IDVal == ".ltorg" || IDVal == ".pool") 8733 return parseDirectiveLtorg(DirectiveID.getLoc()); 8734 else if (IDVal == ".even") 8735 return parseDirectiveEven(DirectiveID.getLoc()); 8736 else if (IDVal == ".personalityindex") 8737 return parseDirectivePersonalityIndex(DirectiveID.getLoc()); 8738 else if (IDVal == ".unwind_raw") 8739 return parseDirectiveUnwindRaw(DirectiveID.getLoc()); 8740 else if (IDVal == ".movsp") 8741 return parseDirectiveMovSP(DirectiveID.getLoc()); 8742 else if (IDVal == ".arch_extension") 8743 return parseDirectiveArchExtension(DirectiveID.getLoc()); 8744 else if (IDVal == ".align") 8745 return parseDirectiveAlign(DirectiveID.getLoc()); 8746 else if (IDVal == ".thumb_set") 8747 return parseDirectiveThumbSet(DirectiveID.getLoc()); 8748 8749 if (!IsMachO && !IsCOFF) { 8750 if (IDVal == ".arch") 8751 return parseDirectiveArch(DirectiveID.getLoc()); 8752 else if (IDVal == ".cpu") 8753 return parseDirectiveCPU(DirectiveID.getLoc()); 8754 else if (IDVal == ".eabi_attribute") 8755 return parseDirectiveEabiAttr(DirectiveID.getLoc()); 8756 else if (IDVal == ".fpu") 8757 return parseDirectiveFPU(DirectiveID.getLoc()); 8758 else if (IDVal == ".fnstart") 8759 return parseDirectiveFnStart(DirectiveID.getLoc()); 8760 else if (IDVal == ".inst") 8761 return parseDirectiveInst(DirectiveID.getLoc()); 8762 else if (IDVal == ".inst.n") 8763 return parseDirectiveInst(DirectiveID.getLoc(), 'n'); 8764 else if (IDVal == ".inst.w") 8765 return parseDirectiveInst(DirectiveID.getLoc(), 'w'); 8766 else if (IDVal == ".object_arch") 8767 return parseDirectiveObjectArch(DirectiveID.getLoc()); 8768 else if (IDVal == ".tlsdescseq") 8769 return parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 8770 } 8771 8772 return true; 8773 } 8774 8775 /// parseLiteralValues 8776 /// ::= .hword expression [, expression]* 8777 /// ::= .short expression [, expression]* 8778 /// ::= .word expression [, expression]* 8779 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 8780 MCAsmParser &Parser = getParser(); 8781 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8782 for (;;) { 8783 const MCExpr *Value; 8784 if (getParser().parseExpression(Value)) { 8785 Parser.eatToEndOfStatement(); 8786 return false; 8787 } 8788 8789 getParser().getStreamer().EmitValue(Value, Size); 8790 8791 if (getLexer().is(AsmToken::EndOfStatement)) 8792 break; 8793 8794 // FIXME: Improve diagnostic. 8795 if (getLexer().isNot(AsmToken::Comma)) { 8796 Error(L, "unexpected token in directive"); 8797 return false; 8798 } 8799 Parser.Lex(); 8800 } 8801 } 8802 8803 Parser.Lex(); 8804 return false; 8805 } 8806 8807 /// parseDirectiveThumb 8808 /// ::= .thumb 8809 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 8810 MCAsmParser &Parser = getParser(); 8811 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8812 Error(L, "unexpected token in directive"); 8813 return false; 8814 } 8815 Parser.Lex(); 8816 8817 if (!hasThumb()) { 8818 Error(L, "target does not support Thumb mode"); 8819 return false; 8820 } 8821 8822 if (!isThumb()) 8823 SwitchMode(); 8824 8825 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 8826 return false; 8827 } 8828 8829 /// parseDirectiveARM 8830 /// ::= .arm 8831 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 8832 MCAsmParser &Parser = getParser(); 8833 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8834 Error(L, "unexpected token in directive"); 8835 return false; 8836 } 8837 Parser.Lex(); 8838 8839 if (!hasARM()) { 8840 Error(L, "target does not support ARM mode"); 8841 return false; 8842 } 8843 8844 if (isThumb()) 8845 SwitchMode(); 8846 8847 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 8848 return false; 8849 } 8850 8851 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 8852 if (NextSymbolIsThumb) { 8853 getParser().getStreamer().EmitThumbFunc(Symbol); 8854 NextSymbolIsThumb = false; 8855 } 8856 } 8857 8858 /// parseDirectiveThumbFunc 8859 /// ::= .thumbfunc symbol_name 8860 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 8861 MCAsmParser &Parser = getParser(); 8862 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 8863 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8864 8865 // Darwin asm has (optionally) function name after .thumb_func direction 8866 // ELF doesn't 8867 if (IsMachO) { 8868 const AsmToken &Tok = Parser.getTok(); 8869 if (Tok.isNot(AsmToken::EndOfStatement)) { 8870 if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) { 8871 Error(L, "unexpected token in .thumb_func directive"); 8872 return false; 8873 } 8874 8875 MCSymbol *Func = 8876 getParser().getContext().getOrCreateSymbol(Tok.getIdentifier()); 8877 getParser().getStreamer().EmitThumbFunc(Func); 8878 Parser.Lex(); // Consume the identifier token. 8879 return false; 8880 } 8881 } 8882 8883 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8884 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8885 Parser.eatToEndOfStatement(); 8886 return false; 8887 } 8888 8889 NextSymbolIsThumb = true; 8890 return false; 8891 } 8892 8893 /// parseDirectiveSyntax 8894 /// ::= .syntax unified | divided 8895 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 8896 MCAsmParser &Parser = getParser(); 8897 const AsmToken &Tok = Parser.getTok(); 8898 if (Tok.isNot(AsmToken::Identifier)) { 8899 Error(L, "unexpected token in .syntax directive"); 8900 return false; 8901 } 8902 8903 StringRef Mode = Tok.getString(); 8904 if (Mode == "unified" || Mode == "UNIFIED") { 8905 Parser.Lex(); 8906 } else if (Mode == "divided" || Mode == "DIVIDED") { 8907 Error(L, "'.syntax divided' arm asssembly not supported"); 8908 return false; 8909 } else { 8910 Error(L, "unrecognized syntax mode in .syntax directive"); 8911 return false; 8912 } 8913 8914 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8915 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8916 return false; 8917 } 8918 Parser.Lex(); 8919 8920 // TODO tell the MC streamer the mode 8921 // getParser().getStreamer().Emit???(); 8922 return false; 8923 } 8924 8925 /// parseDirectiveCode 8926 /// ::= .code 16 | 32 8927 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 8928 MCAsmParser &Parser = getParser(); 8929 const AsmToken &Tok = Parser.getTok(); 8930 if (Tok.isNot(AsmToken::Integer)) { 8931 Error(L, "unexpected token in .code directive"); 8932 return false; 8933 } 8934 int64_t Val = Parser.getTok().getIntVal(); 8935 if (Val != 16 && Val != 32) { 8936 Error(L, "invalid operand to .code directive"); 8937 return false; 8938 } 8939 Parser.Lex(); 8940 8941 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8942 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8943 return false; 8944 } 8945 Parser.Lex(); 8946 8947 if (Val == 16) { 8948 if (!hasThumb()) { 8949 Error(L, "target does not support Thumb mode"); 8950 return false; 8951 } 8952 8953 if (!isThumb()) 8954 SwitchMode(); 8955 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 8956 } else { 8957 if (!hasARM()) { 8958 Error(L, "target does not support ARM mode"); 8959 return false; 8960 } 8961 8962 if (isThumb()) 8963 SwitchMode(); 8964 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 8965 } 8966 8967 return false; 8968 } 8969 8970 /// parseDirectiveReq 8971 /// ::= name .req registername 8972 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 8973 MCAsmParser &Parser = getParser(); 8974 Parser.Lex(); // Eat the '.req' token. 8975 unsigned Reg; 8976 SMLoc SRegLoc, ERegLoc; 8977 if (ParseRegister(Reg, SRegLoc, ERegLoc)) { 8978 Parser.eatToEndOfStatement(); 8979 Error(SRegLoc, "register name expected"); 8980 return false; 8981 } 8982 8983 // Shouldn't be anything else. 8984 if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { 8985 Parser.eatToEndOfStatement(); 8986 Error(Parser.getTok().getLoc(), "unexpected input in .req directive."); 8987 return false; 8988 } 8989 8990 Parser.Lex(); // Consume the EndOfStatement 8991 8992 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) { 8993 Error(SRegLoc, "redefinition of '" + Name + "' does not match original."); 8994 return false; 8995 } 8996 8997 return false; 8998 } 8999 9000 /// parseDirectiveUneq 9001 /// ::= .unreq registername 9002 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9003 MCAsmParser &Parser = getParser(); 9004 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9005 Parser.eatToEndOfStatement(); 9006 Error(L, "unexpected input in .unreq directive."); 9007 return false; 9008 } 9009 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9010 Parser.Lex(); // Eat the identifier. 9011 return false; 9012 } 9013 9014 /// parseDirectiveArch 9015 /// ::= .arch token 9016 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9017 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9018 9019 unsigned ID = ARM::parseArch(Arch); 9020 9021 if (ID == ARM::AK_INVALID) { 9022 Error(L, "Unknown arch name"); 9023 return false; 9024 } 9025 9026 getTargetStreamer().emitArch(ID); 9027 return false; 9028 } 9029 9030 /// parseDirectiveEabiAttr 9031 /// ::= .eabi_attribute int, int [, "str"] 9032 /// ::= .eabi_attribute Tag_name, int [, "str"] 9033 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9034 MCAsmParser &Parser = getParser(); 9035 int64_t Tag; 9036 SMLoc TagLoc; 9037 TagLoc = Parser.getTok().getLoc(); 9038 if (Parser.getTok().is(AsmToken::Identifier)) { 9039 StringRef Name = Parser.getTok().getIdentifier(); 9040 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9041 if (Tag == -1) { 9042 Error(TagLoc, "attribute name not recognised: " + Name); 9043 Parser.eatToEndOfStatement(); 9044 return false; 9045 } 9046 Parser.Lex(); 9047 } else { 9048 const MCExpr *AttrExpr; 9049 9050 TagLoc = Parser.getTok().getLoc(); 9051 if (Parser.parseExpression(AttrExpr)) { 9052 Parser.eatToEndOfStatement(); 9053 return false; 9054 } 9055 9056 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9057 if (!CE) { 9058 Error(TagLoc, "expected numeric constant"); 9059 Parser.eatToEndOfStatement(); 9060 return false; 9061 } 9062 9063 Tag = CE->getValue(); 9064 } 9065 9066 if (Parser.getTok().isNot(AsmToken::Comma)) { 9067 Error(Parser.getTok().getLoc(), "comma expected"); 9068 Parser.eatToEndOfStatement(); 9069 return false; 9070 } 9071 Parser.Lex(); // skip comma 9072 9073 StringRef StringValue = ""; 9074 bool IsStringValue = false; 9075 9076 int64_t IntegerValue = 0; 9077 bool IsIntegerValue = false; 9078 9079 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9080 IsStringValue = true; 9081 else if (Tag == ARMBuildAttrs::compatibility) { 9082 IsStringValue = true; 9083 IsIntegerValue = true; 9084 } else if (Tag < 32 || Tag % 2 == 0) 9085 IsIntegerValue = true; 9086 else if (Tag % 2 == 1) 9087 IsStringValue = true; 9088 else 9089 llvm_unreachable("invalid tag type"); 9090 9091 if (IsIntegerValue) { 9092 const MCExpr *ValueExpr; 9093 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9094 if (Parser.parseExpression(ValueExpr)) { 9095 Parser.eatToEndOfStatement(); 9096 return false; 9097 } 9098 9099 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9100 if (!CE) { 9101 Error(ValueExprLoc, "expected numeric constant"); 9102 Parser.eatToEndOfStatement(); 9103 return false; 9104 } 9105 9106 IntegerValue = CE->getValue(); 9107 } 9108 9109 if (Tag == ARMBuildAttrs::compatibility) { 9110 if (Parser.getTok().isNot(AsmToken::Comma)) 9111 IsStringValue = false; 9112 if (Parser.getTok().isNot(AsmToken::Comma)) { 9113 Error(Parser.getTok().getLoc(), "comma expected"); 9114 Parser.eatToEndOfStatement(); 9115 return false; 9116 } else { 9117 Parser.Lex(); 9118 } 9119 } 9120 9121 if (IsStringValue) { 9122 if (Parser.getTok().isNot(AsmToken::String)) { 9123 Error(Parser.getTok().getLoc(), "bad string constant"); 9124 Parser.eatToEndOfStatement(); 9125 return false; 9126 } 9127 9128 StringValue = Parser.getTok().getStringContents(); 9129 Parser.Lex(); 9130 } 9131 9132 if (IsIntegerValue && IsStringValue) { 9133 assert(Tag == ARMBuildAttrs::compatibility); 9134 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9135 } else if (IsIntegerValue) 9136 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9137 else if (IsStringValue) 9138 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9139 return false; 9140 } 9141 9142 /// parseDirectiveCPU 9143 /// ::= .cpu str 9144 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9145 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9146 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9147 9148 // FIXME: This is using table-gen data, but should be moved to 9149 // ARMTargetParser once that is table-gen'd. 9150 if (!STI.isCPUStringValid(CPU)) { 9151 Error(L, "Unknown CPU name"); 9152 return false; 9153 } 9154 9155 STI.setDefaultFeatures(CPU); 9156 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9157 9158 return false; 9159 } 9160 /// parseDirectiveFPU 9161 /// ::= .fpu str 9162 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9163 SMLoc FPUNameLoc = getTok().getLoc(); 9164 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9165 9166 unsigned ID = ARM::parseFPU(FPU); 9167 std::vector<const char *> Features; 9168 if (!ARM::getFPUFeatures(ID, Features)) { 9169 Error(FPUNameLoc, "Unknown FPU name"); 9170 return false; 9171 } 9172 9173 for (auto Feature : Features) 9174 STI.ApplyFeatureFlag(Feature); 9175 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9176 9177 getTargetStreamer().emitFPU(ID); 9178 return false; 9179 } 9180 9181 /// parseDirectiveFnStart 9182 /// ::= .fnstart 9183 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9184 if (UC.hasFnStart()) { 9185 Error(L, ".fnstart starts before the end of previous one"); 9186 UC.emitFnStartLocNotes(); 9187 return false; 9188 } 9189 9190 // Reset the unwind directives parser state 9191 UC.reset(); 9192 9193 getTargetStreamer().emitFnStart(); 9194 9195 UC.recordFnStart(L); 9196 return false; 9197 } 9198 9199 /// parseDirectiveFnEnd 9200 /// ::= .fnend 9201 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9202 // Check the ordering of unwind directives 9203 if (!UC.hasFnStart()) { 9204 Error(L, ".fnstart must precede .fnend directive"); 9205 return false; 9206 } 9207 9208 // Reset the unwind directives parser state 9209 getTargetStreamer().emitFnEnd(); 9210 9211 UC.reset(); 9212 return false; 9213 } 9214 9215 /// parseDirectiveCantUnwind 9216 /// ::= .cantunwind 9217 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9218 UC.recordCantUnwind(L); 9219 9220 // Check the ordering of unwind directives 9221 if (!UC.hasFnStart()) { 9222 Error(L, ".fnstart must precede .cantunwind directive"); 9223 return false; 9224 } 9225 if (UC.hasHandlerData()) { 9226 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9227 UC.emitHandlerDataLocNotes(); 9228 return false; 9229 } 9230 if (UC.hasPersonality()) { 9231 Error(L, ".cantunwind can't be used with .personality directive"); 9232 UC.emitPersonalityLocNotes(); 9233 return false; 9234 } 9235 9236 getTargetStreamer().emitCantUnwind(); 9237 return false; 9238 } 9239 9240 /// parseDirectivePersonality 9241 /// ::= .personality name 9242 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9243 MCAsmParser &Parser = getParser(); 9244 bool HasExistingPersonality = UC.hasPersonality(); 9245 9246 UC.recordPersonality(L); 9247 9248 // Check the ordering of unwind directives 9249 if (!UC.hasFnStart()) { 9250 Error(L, ".fnstart must precede .personality directive"); 9251 return false; 9252 } 9253 if (UC.cantUnwind()) { 9254 Error(L, ".personality can't be used with .cantunwind directive"); 9255 UC.emitCantUnwindLocNotes(); 9256 return false; 9257 } 9258 if (UC.hasHandlerData()) { 9259 Error(L, ".personality must precede .handlerdata directive"); 9260 UC.emitHandlerDataLocNotes(); 9261 return false; 9262 } 9263 if (HasExistingPersonality) { 9264 Parser.eatToEndOfStatement(); 9265 Error(L, "multiple personality directives"); 9266 UC.emitPersonalityLocNotes(); 9267 return false; 9268 } 9269 9270 // Parse the name of the personality routine 9271 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9272 Parser.eatToEndOfStatement(); 9273 Error(L, "unexpected input in .personality directive."); 9274 return false; 9275 } 9276 StringRef Name(Parser.getTok().getIdentifier()); 9277 Parser.Lex(); 9278 9279 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9280 getTargetStreamer().emitPersonality(PR); 9281 return false; 9282 } 9283 9284 /// parseDirectiveHandlerData 9285 /// ::= .handlerdata 9286 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9287 UC.recordHandlerData(L); 9288 9289 // Check the ordering of unwind directives 9290 if (!UC.hasFnStart()) { 9291 Error(L, ".fnstart must precede .personality directive"); 9292 return false; 9293 } 9294 if (UC.cantUnwind()) { 9295 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9296 UC.emitCantUnwindLocNotes(); 9297 return false; 9298 } 9299 9300 getTargetStreamer().emitHandlerData(); 9301 return false; 9302 } 9303 9304 /// parseDirectiveSetFP 9305 /// ::= .setfp fpreg, spreg [, offset] 9306 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9307 MCAsmParser &Parser = getParser(); 9308 // Check the ordering of unwind directives 9309 if (!UC.hasFnStart()) { 9310 Error(L, ".fnstart must precede .setfp directive"); 9311 return false; 9312 } 9313 if (UC.hasHandlerData()) { 9314 Error(L, ".setfp must precede .handlerdata directive"); 9315 return false; 9316 } 9317 9318 // Parse fpreg 9319 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9320 int FPReg = tryParseRegister(); 9321 if (FPReg == -1) { 9322 Error(FPRegLoc, "frame pointer register expected"); 9323 return false; 9324 } 9325 9326 // Consume comma 9327 if (Parser.getTok().isNot(AsmToken::Comma)) { 9328 Error(Parser.getTok().getLoc(), "comma expected"); 9329 return false; 9330 } 9331 Parser.Lex(); // skip comma 9332 9333 // Parse spreg 9334 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9335 int SPReg = tryParseRegister(); 9336 if (SPReg == -1) { 9337 Error(SPRegLoc, "stack pointer register expected"); 9338 return false; 9339 } 9340 9341 if (SPReg != ARM::SP && SPReg != UC.getFPReg()) { 9342 Error(SPRegLoc, "register should be either $sp or the latest fp register"); 9343 return false; 9344 } 9345 9346 // Update the frame pointer register 9347 UC.saveFPReg(FPReg); 9348 9349 // Parse offset 9350 int64_t Offset = 0; 9351 if (Parser.getTok().is(AsmToken::Comma)) { 9352 Parser.Lex(); // skip comma 9353 9354 if (Parser.getTok().isNot(AsmToken::Hash) && 9355 Parser.getTok().isNot(AsmToken::Dollar)) { 9356 Error(Parser.getTok().getLoc(), "'#' expected"); 9357 return false; 9358 } 9359 Parser.Lex(); // skip hash token. 9360 9361 const MCExpr *OffsetExpr; 9362 SMLoc ExLoc = Parser.getTok().getLoc(); 9363 SMLoc EndLoc; 9364 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9365 Error(ExLoc, "malformed setfp offset"); 9366 return false; 9367 } 9368 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9369 if (!CE) { 9370 Error(ExLoc, "setfp offset must be an immediate"); 9371 return false; 9372 } 9373 9374 Offset = CE->getValue(); 9375 } 9376 9377 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9378 static_cast<unsigned>(SPReg), Offset); 9379 return false; 9380 } 9381 9382 /// parseDirective 9383 /// ::= .pad offset 9384 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9385 MCAsmParser &Parser = getParser(); 9386 // Check the ordering of unwind directives 9387 if (!UC.hasFnStart()) { 9388 Error(L, ".fnstart must precede .pad directive"); 9389 return false; 9390 } 9391 if (UC.hasHandlerData()) { 9392 Error(L, ".pad must precede .handlerdata directive"); 9393 return false; 9394 } 9395 9396 // Parse the offset 9397 if (Parser.getTok().isNot(AsmToken::Hash) && 9398 Parser.getTok().isNot(AsmToken::Dollar)) { 9399 Error(Parser.getTok().getLoc(), "'#' expected"); 9400 return false; 9401 } 9402 Parser.Lex(); // skip hash token. 9403 9404 const MCExpr *OffsetExpr; 9405 SMLoc ExLoc = Parser.getTok().getLoc(); 9406 SMLoc EndLoc; 9407 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9408 Error(ExLoc, "malformed pad offset"); 9409 return false; 9410 } 9411 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9412 if (!CE) { 9413 Error(ExLoc, "pad offset must be an immediate"); 9414 return false; 9415 } 9416 9417 getTargetStreamer().emitPad(CE->getValue()); 9418 return false; 9419 } 9420 9421 /// parseDirectiveRegSave 9422 /// ::= .save { registers } 9423 /// ::= .vsave { registers } 9424 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9425 // Check the ordering of unwind directives 9426 if (!UC.hasFnStart()) { 9427 Error(L, ".fnstart must precede .save or .vsave directives"); 9428 return false; 9429 } 9430 if (UC.hasHandlerData()) { 9431 Error(L, ".save or .vsave must precede .handlerdata directive"); 9432 return false; 9433 } 9434 9435 // RAII object to make sure parsed operands are deleted. 9436 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9437 9438 // Parse the register list 9439 if (parseRegisterList(Operands)) 9440 return false; 9441 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9442 if (!IsVector && !Op.isRegList()) { 9443 Error(L, ".save expects GPR registers"); 9444 return false; 9445 } 9446 if (IsVector && !Op.isDPRRegList()) { 9447 Error(L, ".vsave expects DPR registers"); 9448 return false; 9449 } 9450 9451 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9452 return false; 9453 } 9454 9455 /// parseDirectiveInst 9456 /// ::= .inst opcode [, ...] 9457 /// ::= .inst.n opcode [, ...] 9458 /// ::= .inst.w opcode [, ...] 9459 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9460 MCAsmParser &Parser = getParser(); 9461 int Width; 9462 9463 if (isThumb()) { 9464 switch (Suffix) { 9465 case 'n': 9466 Width = 2; 9467 break; 9468 case 'w': 9469 Width = 4; 9470 break; 9471 default: 9472 Parser.eatToEndOfStatement(); 9473 Error(Loc, "cannot determine Thumb instruction size, " 9474 "use inst.n/inst.w instead"); 9475 return false; 9476 } 9477 } else { 9478 if (Suffix) { 9479 Parser.eatToEndOfStatement(); 9480 Error(Loc, "width suffixes are invalid in ARM mode"); 9481 return false; 9482 } 9483 Width = 4; 9484 } 9485 9486 if (getLexer().is(AsmToken::EndOfStatement)) { 9487 Parser.eatToEndOfStatement(); 9488 Error(Loc, "expected expression following directive"); 9489 return false; 9490 } 9491 9492 for (;;) { 9493 const MCExpr *Expr; 9494 9495 if (getParser().parseExpression(Expr)) { 9496 Error(Loc, "expected expression"); 9497 return false; 9498 } 9499 9500 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9501 if (!Value) { 9502 Error(Loc, "expected constant expression"); 9503 return false; 9504 } 9505 9506 switch (Width) { 9507 case 2: 9508 if (Value->getValue() > 0xffff) { 9509 Error(Loc, "inst.n operand is too big, use inst.w instead"); 9510 return false; 9511 } 9512 break; 9513 case 4: 9514 if (Value->getValue() > 0xffffffff) { 9515 Error(Loc, 9516 StringRef(Suffix ? "inst.w" : "inst") + " operand is too big"); 9517 return false; 9518 } 9519 break; 9520 default: 9521 llvm_unreachable("only supported widths are 2 and 4"); 9522 } 9523 9524 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9525 9526 if (getLexer().is(AsmToken::EndOfStatement)) 9527 break; 9528 9529 if (getLexer().isNot(AsmToken::Comma)) { 9530 Error(Loc, "unexpected token in directive"); 9531 return false; 9532 } 9533 9534 Parser.Lex(); 9535 } 9536 9537 Parser.Lex(); 9538 return false; 9539 } 9540 9541 /// parseDirectiveLtorg 9542 /// ::= .ltorg | .pool 9543 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9544 getTargetStreamer().emitCurrentConstantPool(); 9545 return false; 9546 } 9547 9548 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9549 const MCSection *Section = getStreamer().getCurrentSection().first; 9550 9551 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9552 TokError("unexpected token in directive"); 9553 return false; 9554 } 9555 9556 if (!Section) { 9557 getStreamer().InitSections(false); 9558 Section = getStreamer().getCurrentSection().first; 9559 } 9560 9561 assert(Section && "must have section to emit alignment"); 9562 if (Section->UseCodeAlign()) 9563 getStreamer().EmitCodeAlignment(2); 9564 else 9565 getStreamer().EmitValueToAlignment(2); 9566 9567 return false; 9568 } 9569 9570 /// parseDirectivePersonalityIndex 9571 /// ::= .personalityindex index 9572 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9573 MCAsmParser &Parser = getParser(); 9574 bool HasExistingPersonality = UC.hasPersonality(); 9575 9576 UC.recordPersonalityIndex(L); 9577 9578 if (!UC.hasFnStart()) { 9579 Parser.eatToEndOfStatement(); 9580 Error(L, ".fnstart must precede .personalityindex directive"); 9581 return false; 9582 } 9583 if (UC.cantUnwind()) { 9584 Parser.eatToEndOfStatement(); 9585 Error(L, ".personalityindex cannot be used with .cantunwind"); 9586 UC.emitCantUnwindLocNotes(); 9587 return false; 9588 } 9589 if (UC.hasHandlerData()) { 9590 Parser.eatToEndOfStatement(); 9591 Error(L, ".personalityindex must precede .handlerdata directive"); 9592 UC.emitHandlerDataLocNotes(); 9593 return false; 9594 } 9595 if (HasExistingPersonality) { 9596 Parser.eatToEndOfStatement(); 9597 Error(L, "multiple personality directives"); 9598 UC.emitPersonalityLocNotes(); 9599 return false; 9600 } 9601 9602 const MCExpr *IndexExpression; 9603 SMLoc IndexLoc = Parser.getTok().getLoc(); 9604 if (Parser.parseExpression(IndexExpression)) { 9605 Parser.eatToEndOfStatement(); 9606 return false; 9607 } 9608 9609 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9610 if (!CE) { 9611 Parser.eatToEndOfStatement(); 9612 Error(IndexLoc, "index must be a constant number"); 9613 return false; 9614 } 9615 if (CE->getValue() < 0 || 9616 CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) { 9617 Parser.eatToEndOfStatement(); 9618 Error(IndexLoc, "personality routine index should be in range [0-3]"); 9619 return false; 9620 } 9621 9622 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9623 return false; 9624 } 9625 9626 /// parseDirectiveUnwindRaw 9627 /// ::= .unwind_raw offset, opcode [, opcode...] 9628 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9629 MCAsmParser &Parser = getParser(); 9630 if (!UC.hasFnStart()) { 9631 Parser.eatToEndOfStatement(); 9632 Error(L, ".fnstart must precede .unwind_raw directives"); 9633 return false; 9634 } 9635 9636 int64_t StackOffset; 9637 9638 const MCExpr *OffsetExpr; 9639 SMLoc OffsetLoc = getLexer().getLoc(); 9640 if (getLexer().is(AsmToken::EndOfStatement) || 9641 getParser().parseExpression(OffsetExpr)) { 9642 Error(OffsetLoc, "expected expression"); 9643 Parser.eatToEndOfStatement(); 9644 return false; 9645 } 9646 9647 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9648 if (!CE) { 9649 Error(OffsetLoc, "offset must be a constant"); 9650 Parser.eatToEndOfStatement(); 9651 return false; 9652 } 9653 9654 StackOffset = CE->getValue(); 9655 9656 if (getLexer().isNot(AsmToken::Comma)) { 9657 Error(getLexer().getLoc(), "expected comma"); 9658 Parser.eatToEndOfStatement(); 9659 return false; 9660 } 9661 Parser.Lex(); 9662 9663 SmallVector<uint8_t, 16> Opcodes; 9664 for (;;) { 9665 const MCExpr *OE; 9666 9667 SMLoc OpcodeLoc = getLexer().getLoc(); 9668 if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) { 9669 Error(OpcodeLoc, "expected opcode expression"); 9670 Parser.eatToEndOfStatement(); 9671 return false; 9672 } 9673 9674 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9675 if (!OC) { 9676 Error(OpcodeLoc, "opcode value must be a constant"); 9677 Parser.eatToEndOfStatement(); 9678 return false; 9679 } 9680 9681 const int64_t Opcode = OC->getValue(); 9682 if (Opcode & ~0xff) { 9683 Error(OpcodeLoc, "invalid opcode"); 9684 Parser.eatToEndOfStatement(); 9685 return false; 9686 } 9687 9688 Opcodes.push_back(uint8_t(Opcode)); 9689 9690 if (getLexer().is(AsmToken::EndOfStatement)) 9691 break; 9692 9693 if (getLexer().isNot(AsmToken::Comma)) { 9694 Error(getLexer().getLoc(), "unexpected token in directive"); 9695 Parser.eatToEndOfStatement(); 9696 return false; 9697 } 9698 9699 Parser.Lex(); 9700 } 9701 9702 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9703 9704 Parser.Lex(); 9705 return false; 9706 } 9707 9708 /// parseDirectiveTLSDescSeq 9709 /// ::= .tlsdescseq tls-variable 9710 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 9711 MCAsmParser &Parser = getParser(); 9712 9713 if (getLexer().isNot(AsmToken::Identifier)) { 9714 TokError("expected variable after '.tlsdescseq' directive"); 9715 Parser.eatToEndOfStatement(); 9716 return false; 9717 } 9718 9719 const MCSymbolRefExpr *SRE = 9720 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 9721 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 9722 Lex(); 9723 9724 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9725 Error(Parser.getTok().getLoc(), "unexpected token"); 9726 Parser.eatToEndOfStatement(); 9727 return false; 9728 } 9729 9730 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 9731 return false; 9732 } 9733 9734 /// parseDirectiveMovSP 9735 /// ::= .movsp reg [, #offset] 9736 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 9737 MCAsmParser &Parser = getParser(); 9738 if (!UC.hasFnStart()) { 9739 Parser.eatToEndOfStatement(); 9740 Error(L, ".fnstart must precede .movsp directives"); 9741 return false; 9742 } 9743 if (UC.getFPReg() != ARM::SP) { 9744 Parser.eatToEndOfStatement(); 9745 Error(L, "unexpected .movsp directive"); 9746 return false; 9747 } 9748 9749 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9750 int SPReg = tryParseRegister(); 9751 if (SPReg == -1) { 9752 Parser.eatToEndOfStatement(); 9753 Error(SPRegLoc, "register expected"); 9754 return false; 9755 } 9756 9757 if (SPReg == ARM::SP || SPReg == ARM::PC) { 9758 Parser.eatToEndOfStatement(); 9759 Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 9760 return false; 9761 } 9762 9763 int64_t Offset = 0; 9764 if (Parser.getTok().is(AsmToken::Comma)) { 9765 Parser.Lex(); 9766 9767 if (Parser.getTok().isNot(AsmToken::Hash)) { 9768 Error(Parser.getTok().getLoc(), "expected #constant"); 9769 Parser.eatToEndOfStatement(); 9770 return false; 9771 } 9772 Parser.Lex(); 9773 9774 const MCExpr *OffsetExpr; 9775 SMLoc OffsetLoc = Parser.getTok().getLoc(); 9776 if (Parser.parseExpression(OffsetExpr)) { 9777 Parser.eatToEndOfStatement(); 9778 Error(OffsetLoc, "malformed offset expression"); 9779 return false; 9780 } 9781 9782 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9783 if (!CE) { 9784 Parser.eatToEndOfStatement(); 9785 Error(OffsetLoc, "offset must be an immediate constant"); 9786 return false; 9787 } 9788 9789 Offset = CE->getValue(); 9790 } 9791 9792 getTargetStreamer().emitMovSP(SPReg, Offset); 9793 UC.saveFPReg(SPReg); 9794 9795 return false; 9796 } 9797 9798 /// parseDirectiveObjectArch 9799 /// ::= .object_arch name 9800 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 9801 MCAsmParser &Parser = getParser(); 9802 if (getLexer().isNot(AsmToken::Identifier)) { 9803 Error(getLexer().getLoc(), "unexpected token"); 9804 Parser.eatToEndOfStatement(); 9805 return false; 9806 } 9807 9808 StringRef Arch = Parser.getTok().getString(); 9809 SMLoc ArchLoc = Parser.getTok().getLoc(); 9810 getLexer().Lex(); 9811 9812 unsigned ID = ARM::parseArch(Arch); 9813 9814 if (ID == ARM::AK_INVALID) { 9815 Error(ArchLoc, "unknown architecture '" + Arch + "'"); 9816 Parser.eatToEndOfStatement(); 9817 return false; 9818 } 9819 9820 getTargetStreamer().emitObjectArch(ID); 9821 9822 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9823 Error(getLexer().getLoc(), "unexpected token"); 9824 Parser.eatToEndOfStatement(); 9825 } 9826 9827 return false; 9828 } 9829 9830 /// parseDirectiveAlign 9831 /// ::= .align 9832 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 9833 // NOTE: if this is not the end of the statement, fall back to the target 9834 // agnostic handling for this directive which will correctly handle this. 9835 if (getLexer().isNot(AsmToken::EndOfStatement)) 9836 return true; 9837 9838 // '.align' is target specifically handled to mean 2**2 byte alignment. 9839 if (getStreamer().getCurrentSection().first->UseCodeAlign()) 9840 getStreamer().EmitCodeAlignment(4, 0); 9841 else 9842 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 9843 9844 return false; 9845 } 9846 9847 /// parseDirectiveThumbSet 9848 /// ::= .thumb_set name, value 9849 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 9850 MCAsmParser &Parser = getParser(); 9851 9852 StringRef Name; 9853 if (Parser.parseIdentifier(Name)) { 9854 TokError("expected identifier after '.thumb_set'"); 9855 Parser.eatToEndOfStatement(); 9856 return false; 9857 } 9858 9859 if (getLexer().isNot(AsmToken::Comma)) { 9860 TokError("expected comma after name '" + Name + "'"); 9861 Parser.eatToEndOfStatement(); 9862 return false; 9863 } 9864 Lex(); 9865 9866 MCSymbol *Sym; 9867 const MCExpr *Value; 9868 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 9869 Parser, Sym, Value)) 9870 return true; 9871 9872 getTargetStreamer().emitThumbSet(Sym, Value); 9873 return false; 9874 } 9875 9876 /// Force static initialization. 9877 extern "C" void LLVMInitializeARMAsmParser() { 9878 RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget); 9879 RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget); 9880 RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget); 9881 RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget); 9882 } 9883 9884 #define GET_REGISTER_MATCHER 9885 #define GET_SUBTARGET_FEATURE_NAME 9886 #define GET_MATCHER_IMPLEMENTATION 9887 #include "ARMGenAsmMatcher.inc" 9888 9889 // FIXME: This structure should be moved inside ARMTargetParser 9890 // when we start to table-generate them, and we can use the ARM 9891 // flags below, that were generated by table-gen. 9892 static const struct { 9893 const unsigned Kind; 9894 const unsigned ArchCheck; 9895 const FeatureBitset Features; 9896 } Extensions[] = { 9897 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 9898 { ARM::AEK_CRYPTO, Feature_HasV8, 9899 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 9900 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 9901 { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 9902 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 9903 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 9904 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 9905 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 9906 // FIXME: Only available in A-class, isel not predicated 9907 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 9908 // FIXME: Unsupported extensions. 9909 { ARM::AEK_OS, Feature_None, {} }, 9910 { ARM::AEK_IWMMXT, Feature_None, {} }, 9911 { ARM::AEK_IWMMXT2, Feature_None, {} }, 9912 { ARM::AEK_MAVERICK, Feature_None, {} }, 9913 { ARM::AEK_XSCALE, Feature_None, {} }, 9914 }; 9915 9916 /// parseDirectiveArchExtension 9917 /// ::= .arch_extension [no]feature 9918 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 9919 MCAsmParser &Parser = getParser(); 9920 9921 if (getLexer().isNot(AsmToken::Identifier)) { 9922 Error(getLexer().getLoc(), "unexpected token"); 9923 Parser.eatToEndOfStatement(); 9924 return false; 9925 } 9926 9927 StringRef Name = Parser.getTok().getString(); 9928 SMLoc ExtLoc = Parser.getTok().getLoc(); 9929 getLexer().Lex(); 9930 9931 bool EnableFeature = true; 9932 if (Name.startswith_lower("no")) { 9933 EnableFeature = false; 9934 Name = Name.substr(2); 9935 } 9936 unsigned FeatureKind = ARM::parseArchExt(Name); 9937 if (FeatureKind == ARM::AEK_INVALID) 9938 Error(ExtLoc, "unknown architectural extension: " + Name); 9939 9940 for (const auto &Extension : Extensions) { 9941 if (Extension.Kind != FeatureKind) 9942 continue; 9943 9944 if (Extension.Features.none()) 9945 report_fatal_error("unsupported architectural extension: " + Name); 9946 9947 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) { 9948 Error(ExtLoc, "architectural extension '" + Name + "' is not " 9949 "allowed for the current base architecture"); 9950 return false; 9951 } 9952 9953 FeatureBitset ToggleFeatures = EnableFeature 9954 ? (~STI.getFeatureBits() & Extension.Features) 9955 : ( STI.getFeatureBits() & Extension.Features); 9956 9957 uint64_t Features = 9958 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 9959 setAvailableFeatures(Features); 9960 return false; 9961 } 9962 9963 Error(ExtLoc, "unknown architectural extension: " + Name); 9964 Parser.eatToEndOfStatement(); 9965 return false; 9966 } 9967 9968 // Define this matcher function after the auto-generated include so we 9969 // have the match class enum definitions. 9970 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 9971 unsigned Kind) { 9972 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 9973 // If the kind is a token for a literal immediate, check if our asm 9974 // operand matches. This is for InstAliases which have a fixed-value 9975 // immediate in the syntax. 9976 switch (Kind) { 9977 default: break; 9978 case MCK__35_0: 9979 if (Op.isImm()) 9980 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 9981 if (CE->getValue() == 0) 9982 return Match_Success; 9983 break; 9984 case MCK_ModImm: 9985 if (Op.isImm()) { 9986 const MCExpr *SOExpr = Op.getImm(); 9987 int64_t Value; 9988 if (!SOExpr->evaluateAsAbsolute(Value)) 9989 return Match_Success; 9990 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 9991 "expression value must be representable in 32 bits"); 9992 } 9993 break; 9994 case MCK_GPRPair: 9995 if (Op.isReg() && 9996 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 9997 return Match_Success; 9998 break; 9999 } 10000 return Match_InvalidOperand; 10001 } 10002