1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ARMFeatures.h"
10 #include "ARMBaseInstrInfo.h"
11 #include "Utils/ARMBaseInfo.h"
12 #include "MCTargetDesc/ARMAddressingModes.h"
13 #include "MCTargetDesc/ARMBaseInfo.h"
14 #include "MCTargetDesc/ARMInstPrinter.h"
15 #include "MCTargetDesc/ARMMCExpr.h"
16 #include "MCTargetDesc/ARMMCTargetDesc.h"
17 #include "TargetInfo/ARMTargetInfo.h"
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringSet.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/StringSwitch.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCExpr.h"
32 #include "llvm/MC/MCInst.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCInstrInfo.h"
35 #include "llvm/MC/MCObjectFileInfo.h"
36 #include "llvm/MC/MCParser/MCAsmLexer.h"
37 #include "llvm/MC/MCParser/MCAsmParser.h"
38 #include "llvm/MC/MCParser/MCAsmParserExtension.h"
39 #include "llvm/MC/MCParser/MCAsmParserUtils.h"
40 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
41 #include "llvm/MC/MCParser/MCTargetAsmParser.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/MC/MCSection.h"
44 #include "llvm/MC/MCStreamer.h"
45 #include "llvm/MC/MCSubtargetInfo.h"
46 #include "llvm/MC/MCSymbol.h"
47 #include "llvm/MC/SubtargetFeature.h"
48 #include "llvm/Support/ARMBuildAttributes.h"
49 #include "llvm/Support/ARMEHABI.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/SMLoc.h"
56 #include "llvm/Support/TargetParser.h"
57 #include "llvm/Support/TargetRegistry.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstddef>
62 #include <cstdint>
63 #include <iterator>
64 #include <limits>
65 #include <memory>
66 #include <string>
67 #include <utility>
68 #include <vector>
69 
70 #define DEBUG_TYPE "asm-parser"
71 
72 using namespace llvm;
73 
74 namespace llvm {
75 extern const MCInstrDesc ARMInsts[];
76 } // end namespace llvm
77 
78 namespace {
79 
80 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
81 
82 static cl::opt<ImplicitItModeTy> ImplicitItMode(
83     "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
84     cl::desc("Allow conditional instructions outdside of an IT block"),
85     cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
86                           "Accept in both ISAs, emit implicit ITs in Thumb"),
87                clEnumValN(ImplicitItModeTy::Never, "never",
88                           "Warn in ARM, reject in Thumb"),
89                clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
90                           "Accept in ARM, reject in Thumb"),
91                clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
92                           "Warn in ARM, emit implicit ITs in Thumb")));
93 
94 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
95                                         cl::init(false));
96 
97 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
98 
99 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) {
100   // Position==0 means we're not in an IT block at all. Position==1
101   // means we want the first state bit, which is always 0 (Then).
102   // Position==2 means we want the second state bit, stored at bit 3
103   // of Mask, and so on downwards. So (5 - Position) will shift the
104   // right bit down to bit 0, including the always-0 bit at bit 4 for
105   // the mandatory initial Then.
106   return (Mask >> (5 - Position) & 1);
107 }
108 
109 class UnwindContext {
110   using Locs = SmallVector<SMLoc, 4>;
111 
112   MCAsmParser &Parser;
113   Locs FnStartLocs;
114   Locs CantUnwindLocs;
115   Locs PersonalityLocs;
116   Locs PersonalityIndexLocs;
117   Locs HandlerDataLocs;
118   int FPReg;
119 
120 public:
121   UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
122 
123   bool hasFnStart() const { return !FnStartLocs.empty(); }
124   bool cantUnwind() const { return !CantUnwindLocs.empty(); }
125   bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
126 
127   bool hasPersonality() const {
128     return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
129   }
130 
131   void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
132   void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
133   void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
134   void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
135   void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
136 
137   void saveFPReg(int Reg) { FPReg = Reg; }
138   int getFPReg() const { return FPReg; }
139 
140   void emitFnStartLocNotes() const {
141     for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
142          FI != FE; ++FI)
143       Parser.Note(*FI, ".fnstart was specified here");
144   }
145 
146   void emitCantUnwindLocNotes() const {
147     for (Locs::const_iterator UI = CantUnwindLocs.begin(),
148                               UE = CantUnwindLocs.end(); UI != UE; ++UI)
149       Parser.Note(*UI, ".cantunwind was specified here");
150   }
151 
152   void emitHandlerDataLocNotes() const {
153     for (Locs::const_iterator HI = HandlerDataLocs.begin(),
154                               HE = HandlerDataLocs.end(); HI != HE; ++HI)
155       Parser.Note(*HI, ".handlerdata was specified here");
156   }
157 
158   void emitPersonalityLocNotes() const {
159     for (Locs::const_iterator PI = PersonalityLocs.begin(),
160                               PE = PersonalityLocs.end(),
161                               PII = PersonalityIndexLocs.begin(),
162                               PIE = PersonalityIndexLocs.end();
163          PI != PE || PII != PIE;) {
164       if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
165         Parser.Note(*PI++, ".personality was specified here");
166       else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
167         Parser.Note(*PII++, ".personalityindex was specified here");
168       else
169         llvm_unreachable(".personality and .personalityindex cannot be "
170                          "at the same location");
171     }
172   }
173 
174   void reset() {
175     FnStartLocs = Locs();
176     CantUnwindLocs = Locs();
177     PersonalityLocs = Locs();
178     HandlerDataLocs = Locs();
179     PersonalityIndexLocs = Locs();
180     FPReg = ARM::SP;
181   }
182 };
183 
184 // Various sets of ARM instruction mnemonics which are used by the asm parser
185 class ARMMnemonicSets {
186   StringSet<> CDE;
187   StringSet<> CDEWithVPTSuffix;
188 public:
189   ARMMnemonicSets(const MCSubtargetInfo &STI);
190 
191   /// Returns true iff a given mnemonic is a CDE instruction
192   bool isCDEInstr(StringRef Mnemonic) {
193     // Quick check before searching the set
194     if (!Mnemonic.startswith("cx") && !Mnemonic.startswith("vcx"))
195       return false;
196     return CDE.count(Mnemonic);
197   }
198 
199   /// Returns true iff a given mnemonic is a VPT-predicable CDE instruction
200   /// (possibly with a predication suffix "e" or "t")
201   bool isVPTPredicableCDEInstr(StringRef Mnemonic) {
202     if (!Mnemonic.startswith("vcx"))
203       return false;
204     return CDEWithVPTSuffix.count(Mnemonic);
205   }
206 
207   /// Returns true iff a given mnemonic is an IT-predicable CDE instruction
208   /// (possibly with a condition suffix)
209   bool isITPredicableCDEInstr(StringRef Mnemonic) {
210     if (!Mnemonic.startswith("cx"))
211       return false;
212     return Mnemonic.startswith("cx1a") || Mnemonic.startswith("cx1da") ||
213            Mnemonic.startswith("cx2a") || Mnemonic.startswith("cx2da") ||
214            Mnemonic.startswith("cx3a") || Mnemonic.startswith("cx3da");
215   }
216 
217   /// Return true iff a given mnemonic is an integer CDE instruction with
218   /// dual-register destination
219   bool isCDEDualRegInstr(StringRef Mnemonic) {
220     if (!Mnemonic.startswith("cx"))
221       return false;
222     return Mnemonic == "cx1d" || Mnemonic == "cx1da" ||
223            Mnemonic == "cx2d" || Mnemonic == "cx2da" ||
224            Mnemonic == "cx3d" || Mnemonic == "cx3da";
225   }
226 };
227 
228 ARMMnemonicSets::ARMMnemonicSets(const MCSubtargetInfo &STI) {
229   for (StringRef Mnemonic: { "cx1", "cx1a", "cx1d", "cx1da",
230                              "cx2", "cx2a", "cx2d", "cx2da",
231                              "cx3", "cx3a", "cx3d", "cx3da", })
232     CDE.insert(Mnemonic);
233   for (StringRef Mnemonic :
234        {"vcx1", "vcx1a", "vcx2", "vcx2a", "vcx3", "vcx3a"}) {
235     CDE.insert(Mnemonic);
236     CDEWithVPTSuffix.insert(Mnemonic);
237     CDEWithVPTSuffix.insert(std::string(Mnemonic) + "t");
238     CDEWithVPTSuffix.insert(std::string(Mnemonic) + "e");
239   }
240 }
241 
242 class ARMAsmParser : public MCTargetAsmParser {
243   const MCRegisterInfo *MRI;
244   UnwindContext UC;
245   ARMMnemonicSets MS;
246 
247   ARMTargetStreamer &getTargetStreamer() {
248     assert(getParser().getStreamer().getTargetStreamer() &&
249            "do not have a target streamer");
250     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
251     return static_cast<ARMTargetStreamer &>(TS);
252   }
253 
254   // Map of register aliases registers via the .req directive.
255   StringMap<unsigned> RegisterReqs;
256 
257   bool NextSymbolIsThumb;
258 
259   bool useImplicitITThumb() const {
260     return ImplicitItMode == ImplicitItModeTy::Always ||
261            ImplicitItMode == ImplicitItModeTy::ThumbOnly;
262   }
263 
264   bool useImplicitITARM() const {
265     return ImplicitItMode == ImplicitItModeTy::Always ||
266            ImplicitItMode == ImplicitItModeTy::ARMOnly;
267   }
268 
269   struct {
270     ARMCC::CondCodes Cond;    // Condition for IT block.
271     unsigned Mask:4;          // Condition mask for instructions.
272                               // Starting at first 1 (from lsb).
273                               //   '1'  condition as indicated in IT.
274                               //   '0'  inverse of condition (else).
275                               // Count of instructions in IT block is
276                               // 4 - trailingzeroes(mask)
277                               // Note that this does not have the same encoding
278                               // as in the IT instruction, which also depends
279                               // on the low bit of the condition code.
280 
281     unsigned CurPosition;     // Current position in parsing of IT
282                               // block. In range [0,4], with 0 being the IT
283                               // instruction itself. Initialized according to
284                               // count of instructions in block.  ~0U if no
285                               // active IT block.
286 
287     bool IsExplicit;          // true  - The IT instruction was present in the
288                               //         input, we should not modify it.
289                               // false - The IT instruction was added
290                               //         implicitly, we can extend it if that
291                               //         would be legal.
292   } ITState;
293 
294   SmallVector<MCInst, 4> PendingConditionalInsts;
295 
296   void flushPendingInstructions(MCStreamer &Out) override {
297     if (!inImplicitITBlock()) {
298       assert(PendingConditionalInsts.size() == 0);
299       return;
300     }
301 
302     // Emit the IT instruction
303     MCInst ITInst;
304     ITInst.setOpcode(ARM::t2IT);
305     ITInst.addOperand(MCOperand::createImm(ITState.Cond));
306     ITInst.addOperand(MCOperand::createImm(ITState.Mask));
307     Out.emitInstruction(ITInst, getSTI());
308 
309     // Emit the conditonal instructions
310     assert(PendingConditionalInsts.size() <= 4);
311     for (const MCInst &Inst : PendingConditionalInsts) {
312       Out.emitInstruction(Inst, getSTI());
313     }
314     PendingConditionalInsts.clear();
315 
316     // Clear the IT state
317     ITState.Mask = 0;
318     ITState.CurPosition = ~0U;
319   }
320 
321   bool inITBlock() { return ITState.CurPosition != ~0U; }
322   bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
323   bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
324 
325   bool lastInITBlock() {
326     return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
327   }
328 
329   void forwardITPosition() {
330     if (!inITBlock()) return;
331     // Move to the next instruction in the IT block, if there is one. If not,
332     // mark the block as done, except for implicit IT blocks, which we leave
333     // open until we find an instruction that can't be added to it.
334     unsigned TZ = countTrailingZeros(ITState.Mask);
335     if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
336       ITState.CurPosition = ~0U; // Done with the IT block after this.
337   }
338 
339   // Rewind the state of the current IT block, removing the last slot from it.
340   void rewindImplicitITPosition() {
341     assert(inImplicitITBlock());
342     assert(ITState.CurPosition > 1);
343     ITState.CurPosition--;
344     unsigned TZ = countTrailingZeros(ITState.Mask);
345     unsigned NewMask = 0;
346     NewMask |= ITState.Mask & (0xC << TZ);
347     NewMask |= 0x2 << TZ;
348     ITState.Mask = NewMask;
349   }
350 
351   // Rewind the state of the current IT block, removing the last slot from it.
352   // If we were at the first slot, this closes the IT block.
353   void discardImplicitITBlock() {
354     assert(inImplicitITBlock());
355     assert(ITState.CurPosition == 1);
356     ITState.CurPosition = ~0U;
357   }
358 
359   // Return the low-subreg of a given Q register.
360   unsigned getDRegFromQReg(unsigned QReg) const {
361     return MRI->getSubReg(QReg, ARM::dsub_0);
362   }
363 
364   // Get the condition code corresponding to the current IT block slot.
365   ARMCC::CondCodes currentITCond() {
366     unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition);
367     return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond;
368   }
369 
370   // Invert the condition of the current IT block slot without changing any
371   // other slots in the same block.
372   void invertCurrentITCondition() {
373     if (ITState.CurPosition == 1) {
374       ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
375     } else {
376       ITState.Mask ^= 1 << (5 - ITState.CurPosition);
377     }
378   }
379 
380   // Returns true if the current IT block is full (all 4 slots used).
381   bool isITBlockFull() {
382     return inITBlock() && (ITState.Mask & 1);
383   }
384 
385   // Extend the current implicit IT block to have one more slot with the given
386   // condition code.
387   void extendImplicitITBlock(ARMCC::CondCodes Cond) {
388     assert(inImplicitITBlock());
389     assert(!isITBlockFull());
390     assert(Cond == ITState.Cond ||
391            Cond == ARMCC::getOppositeCondition(ITState.Cond));
392     unsigned TZ = countTrailingZeros(ITState.Mask);
393     unsigned NewMask = 0;
394     // Keep any existing condition bits.
395     NewMask |= ITState.Mask & (0xE << TZ);
396     // Insert the new condition bit.
397     NewMask |= (Cond != ITState.Cond) << TZ;
398     // Move the trailing 1 down one bit.
399     NewMask |= 1 << (TZ - 1);
400     ITState.Mask = NewMask;
401   }
402 
403   // Create a new implicit IT block with a dummy condition code.
404   void startImplicitITBlock() {
405     assert(!inITBlock());
406     ITState.Cond = ARMCC::AL;
407     ITState.Mask = 8;
408     ITState.CurPosition = 1;
409     ITState.IsExplicit = false;
410   }
411 
412   // Create a new explicit IT block with the given condition and mask.
413   // The mask should be in the format used in ARMOperand and
414   // MCOperand, with a 1 implying 'e', regardless of the low bit of
415   // the condition.
416   void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
417     assert(!inITBlock());
418     ITState.Cond = Cond;
419     ITState.Mask = Mask;
420     ITState.CurPosition = 0;
421     ITState.IsExplicit = true;
422   }
423 
424   struct {
425     unsigned Mask : 4;
426     unsigned CurPosition;
427   } VPTState;
428   bool inVPTBlock() { return VPTState.CurPosition != ~0U; }
429   void forwardVPTPosition() {
430     if (!inVPTBlock()) return;
431     unsigned TZ = countTrailingZeros(VPTState.Mask);
432     if (++VPTState.CurPosition == 5 - TZ)
433       VPTState.CurPosition = ~0U;
434   }
435 
436   void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
437     return getParser().Note(L, Msg, Range);
438   }
439 
440   bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
441     return getParser().Warning(L, Msg, Range);
442   }
443 
444   bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
445     return getParser().Error(L, Msg, Range);
446   }
447 
448   bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
449                            unsigned ListNo, bool IsARPop = false);
450   bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
451                            unsigned ListNo);
452 
453   int tryParseRegister();
454   bool tryParseRegisterWithWriteBack(OperandVector &);
455   int tryParseShiftRegister(OperandVector &);
456   bool parseRegisterList(OperandVector &, bool EnforceOrder = true);
457   bool parseMemory(OperandVector &);
458   bool parseOperand(OperandVector &, StringRef Mnemonic);
459   bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
460   bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
461                               unsigned &ShiftAmount);
462   bool parseLiteralValues(unsigned Size, SMLoc L);
463   bool parseDirectiveThumb(SMLoc L);
464   bool parseDirectiveARM(SMLoc L);
465   bool parseDirectiveThumbFunc(SMLoc L);
466   bool parseDirectiveCode(SMLoc L);
467   bool parseDirectiveSyntax(SMLoc L);
468   bool parseDirectiveReq(StringRef Name, SMLoc L);
469   bool parseDirectiveUnreq(SMLoc L);
470   bool parseDirectiveArch(SMLoc L);
471   bool parseDirectiveEabiAttr(SMLoc L);
472   bool parseDirectiveCPU(SMLoc L);
473   bool parseDirectiveFPU(SMLoc L);
474   bool parseDirectiveFnStart(SMLoc L);
475   bool parseDirectiveFnEnd(SMLoc L);
476   bool parseDirectiveCantUnwind(SMLoc L);
477   bool parseDirectivePersonality(SMLoc L);
478   bool parseDirectiveHandlerData(SMLoc L);
479   bool parseDirectiveSetFP(SMLoc L);
480   bool parseDirectivePad(SMLoc L);
481   bool parseDirectiveRegSave(SMLoc L, bool IsVector);
482   bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
483   bool parseDirectiveLtorg(SMLoc L);
484   bool parseDirectiveEven(SMLoc L);
485   bool parseDirectivePersonalityIndex(SMLoc L);
486   bool parseDirectiveUnwindRaw(SMLoc L);
487   bool parseDirectiveTLSDescSeq(SMLoc L);
488   bool parseDirectiveMovSP(SMLoc L);
489   bool parseDirectiveObjectArch(SMLoc L);
490   bool parseDirectiveArchExtension(SMLoc L);
491   bool parseDirectiveAlign(SMLoc L);
492   bool parseDirectiveThumbSet(SMLoc L);
493 
494   bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken);
495   StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken,
496                           unsigned &PredicationCode,
497                           unsigned &VPTPredicationCode, bool &CarrySetting,
498                           unsigned &ProcessorIMod, StringRef &ITMask);
499   void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken,
500                              StringRef FullInst, bool &CanAcceptCarrySet,
501                              bool &CanAcceptPredicationCode,
502                              bool &CanAcceptVPTPredicationCode);
503 
504   void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
505                                      OperandVector &Operands);
506   bool CDEConvertDualRegOperand(StringRef Mnemonic, OperandVector &Operands);
507 
508   bool isThumb() const {
509     // FIXME: Can tablegen auto-generate this?
510     return getSTI().getFeatureBits()[ARM::ModeThumb];
511   }
512 
513   bool isThumbOne() const {
514     return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
515   }
516 
517   bool isThumbTwo() const {
518     return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
519   }
520 
521   bool hasThumb() const {
522     return getSTI().getFeatureBits()[ARM::HasV4TOps];
523   }
524 
525   bool hasThumb2() const {
526     return getSTI().getFeatureBits()[ARM::FeatureThumb2];
527   }
528 
529   bool hasV6Ops() const {
530     return getSTI().getFeatureBits()[ARM::HasV6Ops];
531   }
532 
533   bool hasV6T2Ops() const {
534     return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
535   }
536 
537   bool hasV6MOps() const {
538     return getSTI().getFeatureBits()[ARM::HasV6MOps];
539   }
540 
541   bool hasV7Ops() const {
542     return getSTI().getFeatureBits()[ARM::HasV7Ops];
543   }
544 
545   bool hasV8Ops() const {
546     return getSTI().getFeatureBits()[ARM::HasV8Ops];
547   }
548 
549   bool hasV8MBaseline() const {
550     return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
551   }
552 
553   bool hasV8MMainline() const {
554     return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
555   }
556   bool hasV8_1MMainline() const {
557     return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps];
558   }
559   bool hasMVE() const {
560     return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps];
561   }
562   bool hasMVEFloat() const {
563     return getSTI().getFeatureBits()[ARM::HasMVEFloatOps];
564   }
565   bool hasCDE() const {
566     return getSTI().getFeatureBits()[ARM::HasCDEOps];
567   }
568   bool has8MSecExt() const {
569     return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
570   }
571 
572   bool hasARM() const {
573     return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
574   }
575 
576   bool hasDSP() const {
577     return getSTI().getFeatureBits()[ARM::FeatureDSP];
578   }
579 
580   bool hasD32() const {
581     return getSTI().getFeatureBits()[ARM::FeatureD32];
582   }
583 
584   bool hasV8_1aOps() const {
585     return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
586   }
587 
588   bool hasRAS() const {
589     return getSTI().getFeatureBits()[ARM::FeatureRAS];
590   }
591 
592   void SwitchMode() {
593     MCSubtargetInfo &STI = copySTI();
594     auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
595     setAvailableFeatures(FB);
596   }
597 
598   void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
599 
600   bool isMClass() const {
601     return getSTI().getFeatureBits()[ARM::FeatureMClass];
602   }
603 
604   /// @name Auto-generated Match Functions
605   /// {
606 
607 #define GET_ASSEMBLER_HEADER
608 #include "ARMGenAsmMatcher.inc"
609 
610   /// }
611 
612   OperandMatchResultTy parseITCondCode(OperandVector &);
613   OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
614   OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
615   OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
616   OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
617   OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
618   OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
619   OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
620   OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
621   OperandMatchResultTy parseBankedRegOperand(OperandVector &);
622   OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
623                                    int High);
624   OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
625     return parsePKHImm(O, "lsl", 0, 31);
626   }
627   OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
628     return parsePKHImm(O, "asr", 1, 32);
629   }
630   OperandMatchResultTy parseSetEndImm(OperandVector &);
631   OperandMatchResultTy parseShifterImm(OperandVector &);
632   OperandMatchResultTy parseRotImm(OperandVector &);
633   OperandMatchResultTy parseModImm(OperandVector &);
634   OperandMatchResultTy parseBitfield(OperandVector &);
635   OperandMatchResultTy parsePostIdxReg(OperandVector &);
636   OperandMatchResultTy parseAM3Offset(OperandVector &);
637   OperandMatchResultTy parseFPImm(OperandVector &);
638   OperandMatchResultTy parseVectorList(OperandVector &);
639   OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
640                                        SMLoc &EndLoc);
641 
642   // Asm Match Converter Methods
643   void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
644   void cvtThumbBranches(MCInst &Inst, const OperandVector &);
645   void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &);
646 
647   bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
648   bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
649   bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
650   bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
651   bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
652   bool isITBlockTerminator(MCInst &Inst) const;
653   void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
654   bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
655                         bool Load, bool ARMMode, bool Writeback);
656 
657 public:
658   enum ARMMatchResultTy {
659     Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
660     Match_RequiresNotITBlock,
661     Match_RequiresV6,
662     Match_RequiresThumb2,
663     Match_RequiresV8,
664     Match_RequiresFlagSetting,
665 #define GET_OPERAND_DIAGNOSTIC_TYPES
666 #include "ARMGenAsmMatcher.inc"
667 
668   };
669 
670   ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
671                const MCInstrInfo &MII, const MCTargetOptions &Options)
672     : MCTargetAsmParser(Options, STI, MII), UC(Parser), MS(STI) {
673     MCAsmParserExtension::Initialize(Parser);
674 
675     // Cache the MCRegisterInfo.
676     MRI = getContext().getRegisterInfo();
677 
678     // Initialize the set of available features.
679     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
680 
681     // Add build attributes based on the selected target.
682     if (AddBuildAttributes)
683       getTargetStreamer().emitTargetAttributes(STI);
684 
685     // Not in an ITBlock to start with.
686     ITState.CurPosition = ~0U;
687 
688     VPTState.CurPosition = ~0U;
689 
690     NextSymbolIsThumb = false;
691   }
692 
693   // Implementation of the MCTargetAsmParser interface:
694   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
695   OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
696                                         SMLoc &EndLoc) override;
697   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
698                         SMLoc NameLoc, OperandVector &Operands) override;
699   bool ParseDirective(AsmToken DirectiveID) override;
700 
701   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
702                                       unsigned Kind) override;
703   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
704 
705   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
706                                OperandVector &Operands, MCStreamer &Out,
707                                uint64_t &ErrorInfo,
708                                bool MatchingInlineAsm) override;
709   unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
710                             SmallVectorImpl<NearMissInfo> &NearMisses,
711                             bool MatchingInlineAsm, bool &EmitInITBlock,
712                             MCStreamer &Out);
713 
714   struct NearMissMessage {
715     SMLoc Loc;
716     SmallString<128> Message;
717   };
718 
719   const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
720 
721   void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
722                         SmallVectorImpl<NearMissMessage> &NearMissesOut,
723                         SMLoc IDLoc, OperandVector &Operands);
724   void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
725                         OperandVector &Operands);
726 
727   void doBeforeLabelEmit(MCSymbol *Symbol) override;
728 
729   void onLabelParsed(MCSymbol *Symbol) override;
730 };
731 
732 /// ARMOperand - Instances of this class represent a parsed ARM machine
733 /// operand.
734 class ARMOperand : public MCParsedAsmOperand {
735   enum KindTy {
736     k_CondCode,
737     k_VPTPred,
738     k_CCOut,
739     k_ITCondMask,
740     k_CoprocNum,
741     k_CoprocReg,
742     k_CoprocOption,
743     k_Immediate,
744     k_MemBarrierOpt,
745     k_InstSyncBarrierOpt,
746     k_TraceSyncBarrierOpt,
747     k_Memory,
748     k_PostIndexRegister,
749     k_MSRMask,
750     k_BankedReg,
751     k_ProcIFlags,
752     k_VectorIndex,
753     k_Register,
754     k_RegisterList,
755     k_RegisterListWithAPSR,
756     k_DPRRegisterList,
757     k_SPRRegisterList,
758     k_FPSRegisterListWithVPR,
759     k_FPDRegisterListWithVPR,
760     k_VectorList,
761     k_VectorListAllLanes,
762     k_VectorListIndexed,
763     k_ShiftedRegister,
764     k_ShiftedImmediate,
765     k_ShifterImmediate,
766     k_RotateImmediate,
767     k_ModifiedImmediate,
768     k_ConstantPoolImmediate,
769     k_BitfieldDescriptor,
770     k_Token,
771   } Kind;
772 
773   SMLoc StartLoc, EndLoc, AlignmentLoc;
774   SmallVector<unsigned, 8> Registers;
775 
776   struct CCOp {
777     ARMCC::CondCodes Val;
778   };
779 
780   struct VCCOp {
781     ARMVCC::VPTCodes Val;
782   };
783 
784   struct CopOp {
785     unsigned Val;
786   };
787 
788   struct CoprocOptionOp {
789     unsigned Val;
790   };
791 
792   struct ITMaskOp {
793     unsigned Mask:4;
794   };
795 
796   struct MBOptOp {
797     ARM_MB::MemBOpt Val;
798   };
799 
800   struct ISBOptOp {
801     ARM_ISB::InstSyncBOpt Val;
802   };
803 
804   struct TSBOptOp {
805     ARM_TSB::TraceSyncBOpt Val;
806   };
807 
808   struct IFlagsOp {
809     ARM_PROC::IFlags Val;
810   };
811 
812   struct MMaskOp {
813     unsigned Val;
814   };
815 
816   struct BankedRegOp {
817     unsigned Val;
818   };
819 
820   struct TokOp {
821     const char *Data;
822     unsigned Length;
823   };
824 
825   struct RegOp {
826     unsigned RegNum;
827   };
828 
829   // A vector register list is a sequential list of 1 to 4 registers.
830   struct VectorListOp {
831     unsigned RegNum;
832     unsigned Count;
833     unsigned LaneIndex;
834     bool isDoubleSpaced;
835   };
836 
837   struct VectorIndexOp {
838     unsigned Val;
839   };
840 
841   struct ImmOp {
842     const MCExpr *Val;
843   };
844 
845   /// Combined record for all forms of ARM address expressions.
846   struct MemoryOp {
847     unsigned BaseRegNum;
848     // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
849     // was specified.
850     const MCConstantExpr *OffsetImm;  // Offset immediate value
851     unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
852     ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
853     unsigned ShiftImm;        // shift for OffsetReg.
854     unsigned Alignment;       // 0 = no alignment specified
855     // n = alignment in bytes (2, 4, 8, 16, or 32)
856     unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
857   };
858 
859   struct PostIdxRegOp {
860     unsigned RegNum;
861     bool isAdd;
862     ARM_AM::ShiftOpc ShiftTy;
863     unsigned ShiftImm;
864   };
865 
866   struct ShifterImmOp {
867     bool isASR;
868     unsigned Imm;
869   };
870 
871   struct RegShiftedRegOp {
872     ARM_AM::ShiftOpc ShiftTy;
873     unsigned SrcReg;
874     unsigned ShiftReg;
875     unsigned ShiftImm;
876   };
877 
878   struct RegShiftedImmOp {
879     ARM_AM::ShiftOpc ShiftTy;
880     unsigned SrcReg;
881     unsigned ShiftImm;
882   };
883 
884   struct RotImmOp {
885     unsigned Imm;
886   };
887 
888   struct ModImmOp {
889     unsigned Bits;
890     unsigned Rot;
891   };
892 
893   struct BitfieldOp {
894     unsigned LSB;
895     unsigned Width;
896   };
897 
898   union {
899     struct CCOp CC;
900     struct VCCOp VCC;
901     struct CopOp Cop;
902     struct CoprocOptionOp CoprocOption;
903     struct MBOptOp MBOpt;
904     struct ISBOptOp ISBOpt;
905     struct TSBOptOp TSBOpt;
906     struct ITMaskOp ITMask;
907     struct IFlagsOp IFlags;
908     struct MMaskOp MMask;
909     struct BankedRegOp BankedReg;
910     struct TokOp Tok;
911     struct RegOp Reg;
912     struct VectorListOp VectorList;
913     struct VectorIndexOp VectorIndex;
914     struct ImmOp Imm;
915     struct MemoryOp Memory;
916     struct PostIdxRegOp PostIdxReg;
917     struct ShifterImmOp ShifterImm;
918     struct RegShiftedRegOp RegShiftedReg;
919     struct RegShiftedImmOp RegShiftedImm;
920     struct RotImmOp RotImm;
921     struct ModImmOp ModImm;
922     struct BitfieldOp Bitfield;
923   };
924 
925 public:
926   ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
927 
928   /// getStartLoc - Get the location of the first token of this operand.
929   SMLoc getStartLoc() const override { return StartLoc; }
930 
931   /// getEndLoc - Get the location of the last token of this operand.
932   SMLoc getEndLoc() const override { return EndLoc; }
933 
934   /// getLocRange - Get the range between the first and last token of this
935   /// operand.
936   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
937 
938   /// getAlignmentLoc - Get the location of the Alignment token of this operand.
939   SMLoc getAlignmentLoc() const {
940     assert(Kind == k_Memory && "Invalid access!");
941     return AlignmentLoc;
942   }
943 
944   ARMCC::CondCodes getCondCode() const {
945     assert(Kind == k_CondCode && "Invalid access!");
946     return CC.Val;
947   }
948 
949   ARMVCC::VPTCodes getVPTPred() const {
950     assert(isVPTPred() && "Invalid access!");
951     return VCC.Val;
952   }
953 
954   unsigned getCoproc() const {
955     assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
956     return Cop.Val;
957   }
958 
959   StringRef getToken() const {
960     assert(Kind == k_Token && "Invalid access!");
961     return StringRef(Tok.Data, Tok.Length);
962   }
963 
964   unsigned getReg() const override {
965     assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
966     return Reg.RegNum;
967   }
968 
969   const SmallVectorImpl<unsigned> &getRegList() const {
970     assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR ||
971             Kind == k_DPRRegisterList || Kind == k_SPRRegisterList ||
972             Kind == k_FPSRegisterListWithVPR ||
973             Kind == k_FPDRegisterListWithVPR) &&
974            "Invalid access!");
975     return Registers;
976   }
977 
978   const MCExpr *getImm() const {
979     assert(isImm() && "Invalid access!");
980     return Imm.Val;
981   }
982 
983   const MCExpr *getConstantPoolImm() const {
984     assert(isConstantPoolImm() && "Invalid access!");
985     return Imm.Val;
986   }
987 
988   unsigned getVectorIndex() const {
989     assert(Kind == k_VectorIndex && "Invalid access!");
990     return VectorIndex.Val;
991   }
992 
993   ARM_MB::MemBOpt getMemBarrierOpt() const {
994     assert(Kind == k_MemBarrierOpt && "Invalid access!");
995     return MBOpt.Val;
996   }
997 
998   ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
999     assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
1000     return ISBOpt.Val;
1001   }
1002 
1003   ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
1004     assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
1005     return TSBOpt.Val;
1006   }
1007 
1008   ARM_PROC::IFlags getProcIFlags() const {
1009     assert(Kind == k_ProcIFlags && "Invalid access!");
1010     return IFlags.Val;
1011   }
1012 
1013   unsigned getMSRMask() const {
1014     assert(Kind == k_MSRMask && "Invalid access!");
1015     return MMask.Val;
1016   }
1017 
1018   unsigned getBankedReg() const {
1019     assert(Kind == k_BankedReg && "Invalid access!");
1020     return BankedReg.Val;
1021   }
1022 
1023   bool isCoprocNum() const { return Kind == k_CoprocNum; }
1024   bool isCoprocReg() const { return Kind == k_CoprocReg; }
1025   bool isCoprocOption() const { return Kind == k_CoprocOption; }
1026   bool isCondCode() const { return Kind == k_CondCode; }
1027   bool isVPTPred() const { return Kind == k_VPTPred; }
1028   bool isCCOut() const { return Kind == k_CCOut; }
1029   bool isITMask() const { return Kind == k_ITCondMask; }
1030   bool isITCondCode() const { return Kind == k_CondCode; }
1031   bool isImm() const override {
1032     return Kind == k_Immediate;
1033   }
1034 
1035   bool isARMBranchTarget() const {
1036     if (!isImm()) return false;
1037 
1038     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
1039       return CE->getValue() % 4 == 0;
1040     return true;
1041   }
1042 
1043 
1044   bool isThumbBranchTarget() const {
1045     if (!isImm()) return false;
1046 
1047     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
1048       return CE->getValue() % 2 == 0;
1049     return true;
1050   }
1051 
1052   // checks whether this operand is an unsigned offset which fits is a field
1053   // of specified width and scaled by a specific number of bits
1054   template<unsigned width, unsigned scale>
1055   bool isUnsignedOffset() const {
1056     if (!isImm()) return false;
1057     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1058     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1059       int64_t Val = CE->getValue();
1060       int64_t Align = 1LL << scale;
1061       int64_t Max = Align * ((1LL << width) - 1);
1062       return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
1063     }
1064     return false;
1065   }
1066 
1067   // checks whether this operand is an signed offset which fits is a field
1068   // of specified width and scaled by a specific number of bits
1069   template<unsigned width, unsigned scale>
1070   bool isSignedOffset() const {
1071     if (!isImm()) return false;
1072     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1073     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1074       int64_t Val = CE->getValue();
1075       int64_t Align = 1LL << scale;
1076       int64_t Max = Align * ((1LL << (width-1)) - 1);
1077       int64_t Min = -Align * (1LL << (width-1));
1078       return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
1079     }
1080     return false;
1081   }
1082 
1083   // checks whether this operand is an offset suitable for the LE /
1084   // LETP instructions in Arm v8.1M
1085   bool isLEOffset() const {
1086     if (!isImm()) return false;
1087     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1088     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
1089       int64_t Val = CE->getValue();
1090       return Val < 0 && Val >= -4094 && (Val & 1) == 0;
1091     }
1092     return false;
1093   }
1094 
1095   // checks whether this operand is a memory operand computed as an offset
1096   // applied to PC. the offset may have 8 bits of magnitude and is represented
1097   // with two bits of shift. textually it may be either [pc, #imm], #imm or
1098   // relocable expression...
1099   bool isThumbMemPC() const {
1100     int64_t Val = 0;
1101     if (isImm()) {
1102       if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
1103       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
1104       if (!CE) return false;
1105       Val = CE->getValue();
1106     }
1107     else if (isGPRMem()) {
1108       if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
1109       if(Memory.BaseRegNum != ARM::PC) return false;
1110       Val = Memory.OffsetImm->getValue();
1111     }
1112     else return false;
1113     return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
1114   }
1115 
1116   bool isFPImm() const {
1117     if (!isImm()) return false;
1118     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1119     if (!CE) return false;
1120     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1121     return Val != -1;
1122   }
1123 
1124   template<int64_t N, int64_t M>
1125   bool isImmediate() const {
1126     if (!isImm()) return false;
1127     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1128     if (!CE) return false;
1129     int64_t Value = CE->getValue();
1130     return Value >= N && Value <= M;
1131   }
1132 
1133   template<int64_t N, int64_t M>
1134   bool isImmediateS4() const {
1135     if (!isImm()) return false;
1136     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1137     if (!CE) return false;
1138     int64_t Value = CE->getValue();
1139     return ((Value & 3) == 0) && Value >= N && Value <= M;
1140   }
1141   template<int64_t N, int64_t M>
1142   bool isImmediateS2() const {
1143     if (!isImm()) return false;
1144     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1145     if (!CE) return false;
1146     int64_t Value = CE->getValue();
1147     return ((Value & 1) == 0) && Value >= N && Value <= M;
1148   }
1149   bool isFBits16() const {
1150     return isImmediate<0, 17>();
1151   }
1152   bool isFBits32() const {
1153     return isImmediate<1, 33>();
1154   }
1155   bool isImm8s4() const {
1156     return isImmediateS4<-1020, 1020>();
1157   }
1158   bool isImm7s4() const {
1159     return isImmediateS4<-508, 508>();
1160   }
1161   bool isImm7Shift0() const {
1162     return isImmediate<-127, 127>();
1163   }
1164   bool isImm7Shift1() const {
1165     return isImmediateS2<-255, 255>();
1166   }
1167   bool isImm7Shift2() const {
1168     return isImmediateS4<-511, 511>();
1169   }
1170   bool isImm7() const {
1171     return isImmediate<-127, 127>();
1172   }
1173   bool isImm0_1020s4() const {
1174     return isImmediateS4<0, 1020>();
1175   }
1176   bool isImm0_508s4() const {
1177     return isImmediateS4<0, 508>();
1178   }
1179   bool isImm0_508s4Neg() const {
1180     if (!isImm()) return false;
1181     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1182     if (!CE) return false;
1183     int64_t Value = -CE->getValue();
1184     // explicitly exclude zero. we want that to use the normal 0_508 version.
1185     return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1186   }
1187 
1188   bool isImm0_4095Neg() const {
1189     if (!isImm()) return false;
1190     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1191     if (!CE) return false;
1192     // isImm0_4095Neg is used with 32-bit immediates only.
1193     // 32-bit immediates are zero extended to 64-bit when parsed,
1194     // thus simple -CE->getValue() results in a big negative number,
1195     // not a small positive number as intended
1196     if ((CE->getValue() >> 32) > 0) return false;
1197     uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1198     return Value > 0 && Value < 4096;
1199   }
1200 
1201   bool isImm0_7() const {
1202     return isImmediate<0, 7>();
1203   }
1204 
1205   bool isImm1_16() const {
1206     return isImmediate<1, 16>();
1207   }
1208 
1209   bool isImm1_32() const {
1210     return isImmediate<1, 32>();
1211   }
1212 
1213   bool isImm8_255() const {
1214     return isImmediate<8, 255>();
1215   }
1216 
1217   bool isImm256_65535Expr() const {
1218     if (!isImm()) return false;
1219     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1220     // If it's not a constant expression, it'll generate a fixup and be
1221     // handled later.
1222     if (!CE) return true;
1223     int64_t Value = CE->getValue();
1224     return Value >= 256 && Value < 65536;
1225   }
1226 
1227   bool isImm0_65535Expr() const {
1228     if (!isImm()) return false;
1229     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1230     // If it's not a constant expression, it'll generate a fixup and be
1231     // handled later.
1232     if (!CE) return true;
1233     int64_t Value = CE->getValue();
1234     return Value >= 0 && Value < 65536;
1235   }
1236 
1237   bool isImm24bit() const {
1238     return isImmediate<0, 0xffffff + 1>();
1239   }
1240 
1241   bool isImmThumbSR() const {
1242     return isImmediate<1, 33>();
1243   }
1244 
1245   template<int shift>
1246   bool isExpImmValue(uint64_t Value) const {
1247     uint64_t mask = (1 << shift) - 1;
1248     if ((Value & mask) != 0 || (Value >> shift) > 0xff)
1249       return false;
1250     return true;
1251   }
1252 
1253   template<int shift>
1254   bool isExpImm() const {
1255     if (!isImm()) return false;
1256     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1257     if (!CE) return false;
1258 
1259     return isExpImmValue<shift>(CE->getValue());
1260   }
1261 
1262   template<int shift, int size>
1263   bool isInvertedExpImm() const {
1264     if (!isImm()) return false;
1265     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1266     if (!CE) return false;
1267 
1268     uint64_t OriginalValue = CE->getValue();
1269     uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1);
1270     return isExpImmValue<shift>(InvertedValue);
1271   }
1272 
1273   bool isPKHLSLImm() const {
1274     return isImmediate<0, 32>();
1275   }
1276 
1277   bool isPKHASRImm() const {
1278     return isImmediate<0, 33>();
1279   }
1280 
1281   bool isAdrLabel() const {
1282     // If we have an immediate that's not a constant, treat it as a label
1283     // reference needing a fixup.
1284     if (isImm() && !isa<MCConstantExpr>(getImm()))
1285       return true;
1286 
1287     // If it is a constant, it must fit into a modified immediate encoding.
1288     if (!isImm()) return false;
1289     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1290     if (!CE) return false;
1291     int64_t Value = CE->getValue();
1292     return (ARM_AM::getSOImmVal(Value) != -1 ||
1293             ARM_AM::getSOImmVal(-Value) != -1);
1294   }
1295 
1296   bool isT2SOImm() const {
1297     // If we have an immediate that's not a constant, treat it as an expression
1298     // needing a fixup.
1299     if (isImm() && !isa<MCConstantExpr>(getImm())) {
1300       // We want to avoid matching :upper16: and :lower16: as we want these
1301       // expressions to match in isImm0_65535Expr()
1302       const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1303       return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1304                              ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1305     }
1306     if (!isImm()) return false;
1307     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1308     if (!CE) return false;
1309     int64_t Value = CE->getValue();
1310     return ARM_AM::getT2SOImmVal(Value) != -1;
1311   }
1312 
1313   bool isT2SOImmNot() const {
1314     if (!isImm()) return false;
1315     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1316     if (!CE) return false;
1317     int64_t Value = CE->getValue();
1318     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1319       ARM_AM::getT2SOImmVal(~Value) != -1;
1320   }
1321 
1322   bool isT2SOImmNeg() const {
1323     if (!isImm()) return false;
1324     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1325     if (!CE) return false;
1326     int64_t Value = CE->getValue();
1327     // Only use this when not representable as a plain so_imm.
1328     return ARM_AM::getT2SOImmVal(Value) == -1 &&
1329       ARM_AM::getT2SOImmVal(-Value) != -1;
1330   }
1331 
1332   bool isSetEndImm() const {
1333     if (!isImm()) return false;
1334     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1335     if (!CE) return false;
1336     int64_t Value = CE->getValue();
1337     return Value == 1 || Value == 0;
1338   }
1339 
1340   bool isReg() const override { return Kind == k_Register; }
1341   bool isRegList() const { return Kind == k_RegisterList; }
1342   bool isRegListWithAPSR() const {
1343     return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList;
1344   }
1345   bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1346   bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1347   bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; }
1348   bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; }
1349   bool isToken() const override { return Kind == k_Token; }
1350   bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1351   bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1352   bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
1353   bool isMem() const override {
1354       return isGPRMem() || isMVEMem();
1355   }
1356   bool isMVEMem() const {
1357     if (Kind != k_Memory)
1358       return false;
1359     if (Memory.BaseRegNum &&
1360         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) &&
1361         !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum))
1362       return false;
1363     if (Memory.OffsetRegNum &&
1364         !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1365             Memory.OffsetRegNum))
1366       return false;
1367     return true;
1368   }
1369   bool isGPRMem() const {
1370     if (Kind != k_Memory)
1371       return false;
1372     if (Memory.BaseRegNum &&
1373         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1374       return false;
1375     if (Memory.OffsetRegNum &&
1376         !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1377       return false;
1378     return true;
1379   }
1380   bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1381   bool isRegShiftedReg() const {
1382     return Kind == k_ShiftedRegister &&
1383            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1384                RegShiftedReg.SrcReg) &&
1385            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1386                RegShiftedReg.ShiftReg);
1387   }
1388   bool isRegShiftedImm() const {
1389     return Kind == k_ShiftedImmediate &&
1390            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1391                RegShiftedImm.SrcReg);
1392   }
1393   bool isRotImm() const { return Kind == k_RotateImmediate; }
1394 
1395   template<unsigned Min, unsigned Max>
1396   bool isPowerTwoInRange() const {
1397     if (!isImm()) return false;
1398     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1399     if (!CE) return false;
1400     int64_t Value = CE->getValue();
1401     return Value > 0 && countPopulation((uint64_t)Value) == 1 &&
1402            Value >= Min && Value <= Max;
1403   }
1404   bool isModImm() const { return Kind == k_ModifiedImmediate; }
1405 
1406   bool isModImmNot() const {
1407     if (!isImm()) return false;
1408     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1409     if (!CE) return false;
1410     int64_t Value = CE->getValue();
1411     return ARM_AM::getSOImmVal(~Value) != -1;
1412   }
1413 
1414   bool isModImmNeg() const {
1415     if (!isImm()) return false;
1416     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1417     if (!CE) return false;
1418     int64_t Value = CE->getValue();
1419     return ARM_AM::getSOImmVal(Value) == -1 &&
1420       ARM_AM::getSOImmVal(-Value) != -1;
1421   }
1422 
1423   bool isThumbModImmNeg1_7() const {
1424     if (!isImm()) return false;
1425     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1426     if (!CE) return false;
1427     int32_t Value = -(int32_t)CE->getValue();
1428     return 0 < Value && Value < 8;
1429   }
1430 
1431   bool isThumbModImmNeg8_255() const {
1432     if (!isImm()) return false;
1433     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1434     if (!CE) return false;
1435     int32_t Value = -(int32_t)CE->getValue();
1436     return 7 < Value && Value < 256;
1437   }
1438 
1439   bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
1440   bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1441   bool isPostIdxRegShifted() const {
1442     return Kind == k_PostIndexRegister &&
1443            ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1444   }
1445   bool isPostIdxReg() const {
1446     return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1447   }
1448   bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1449     if (!isGPRMem())
1450       return false;
1451     // No offset of any kind.
1452     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1453      (alignOK || Memory.Alignment == Alignment);
1454   }
1455   bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const {
1456     if (!isGPRMem())
1457       return false;
1458 
1459     if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1460             Memory.BaseRegNum))
1461       return false;
1462 
1463     // No offset of any kind.
1464     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1465      (alignOK || Memory.Alignment == Alignment);
1466   }
1467   bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const {
1468     if (!isGPRMem())
1469       return false;
1470 
1471     if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains(
1472             Memory.BaseRegNum))
1473       return false;
1474 
1475     // No offset of any kind.
1476     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1477      (alignOK || Memory.Alignment == Alignment);
1478   }
1479   bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const {
1480     if (!isGPRMem())
1481       return false;
1482 
1483     if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains(
1484             Memory.BaseRegNum))
1485       return false;
1486 
1487     // No offset of any kind.
1488     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1489      (alignOK || Memory.Alignment == Alignment);
1490   }
1491   bool isMemPCRelImm12() const {
1492     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1493       return false;
1494     // Base register must be PC.
1495     if (Memory.BaseRegNum != ARM::PC)
1496       return false;
1497     // Immediate offset in range [-4095, 4095].
1498     if (!Memory.OffsetImm) return true;
1499     int64_t Val = Memory.OffsetImm->getValue();
1500     return (Val > -4096 && Val < 4096) ||
1501            (Val == std::numeric_limits<int32_t>::min());
1502   }
1503 
1504   bool isAlignedMemory() const {
1505     return isMemNoOffset(true);
1506   }
1507 
1508   bool isAlignedMemoryNone() const {
1509     return isMemNoOffset(false, 0);
1510   }
1511 
1512   bool isDupAlignedMemoryNone() const {
1513     return isMemNoOffset(false, 0);
1514   }
1515 
1516   bool isAlignedMemory16() const {
1517     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1518       return true;
1519     return isMemNoOffset(false, 0);
1520   }
1521 
1522   bool isDupAlignedMemory16() const {
1523     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1524       return true;
1525     return isMemNoOffset(false, 0);
1526   }
1527 
1528   bool isAlignedMemory32() const {
1529     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1530       return true;
1531     return isMemNoOffset(false, 0);
1532   }
1533 
1534   bool isDupAlignedMemory32() const {
1535     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1536       return true;
1537     return isMemNoOffset(false, 0);
1538   }
1539 
1540   bool isAlignedMemory64() const {
1541     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1542       return true;
1543     return isMemNoOffset(false, 0);
1544   }
1545 
1546   bool isDupAlignedMemory64() const {
1547     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1548       return true;
1549     return isMemNoOffset(false, 0);
1550   }
1551 
1552   bool isAlignedMemory64or128() const {
1553     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1554       return true;
1555     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1556       return true;
1557     return isMemNoOffset(false, 0);
1558   }
1559 
1560   bool isDupAlignedMemory64or128() const {
1561     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1562       return true;
1563     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1564       return true;
1565     return isMemNoOffset(false, 0);
1566   }
1567 
1568   bool isAlignedMemory64or128or256() const {
1569     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1570       return true;
1571     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1572       return true;
1573     if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1574       return true;
1575     return isMemNoOffset(false, 0);
1576   }
1577 
1578   bool isAddrMode2() const {
1579     if (!isGPRMem() || Memory.Alignment != 0) return false;
1580     // Check for register offset.
1581     if (Memory.OffsetRegNum) return true;
1582     // Immediate offset in range [-4095, 4095].
1583     if (!Memory.OffsetImm) return true;
1584     int64_t Val = Memory.OffsetImm->getValue();
1585     return Val > -4096 && Val < 4096;
1586   }
1587 
1588   bool isAM2OffsetImm() const {
1589     if (!isImm()) return false;
1590     // Immediate offset in range [-4095, 4095].
1591     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1592     if (!CE) return false;
1593     int64_t Val = CE->getValue();
1594     return (Val == std::numeric_limits<int32_t>::min()) ||
1595            (Val > -4096 && Val < 4096);
1596   }
1597 
1598   bool isAddrMode3() const {
1599     // If we have an immediate that's not a constant, treat it as a label
1600     // reference needing a fixup. If it is a constant, it's something else
1601     // and we reject it.
1602     if (isImm() && !isa<MCConstantExpr>(getImm()))
1603       return true;
1604     if (!isGPRMem() || Memory.Alignment != 0) return false;
1605     // No shifts are legal for AM3.
1606     if (Memory.ShiftType != ARM_AM::no_shift) return false;
1607     // Check for register offset.
1608     if (Memory.OffsetRegNum) return true;
1609     // Immediate offset in range [-255, 255].
1610     if (!Memory.OffsetImm) return true;
1611     int64_t Val = Memory.OffsetImm->getValue();
1612     // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
1613     // have to check for this too.
1614     return (Val > -256 && Val < 256) ||
1615            Val == std::numeric_limits<int32_t>::min();
1616   }
1617 
1618   bool isAM3Offset() const {
1619     if (isPostIdxReg())
1620       return true;
1621     if (!isImm())
1622       return false;
1623     // Immediate offset in range [-255, 255].
1624     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1625     if (!CE) return false;
1626     int64_t Val = CE->getValue();
1627     // Special case, #-0 is std::numeric_limits<int32_t>::min().
1628     return (Val > -256 && Val < 256) ||
1629            Val == std::numeric_limits<int32_t>::min();
1630   }
1631 
1632   bool isAddrMode5() const {
1633     // If we have an immediate that's not a constant, treat it as a label
1634     // reference needing a fixup. If it is a constant, it's something else
1635     // and we reject it.
1636     if (isImm() && !isa<MCConstantExpr>(getImm()))
1637       return true;
1638     if (!isGPRMem() || Memory.Alignment != 0) return false;
1639     // Check for register offset.
1640     if (Memory.OffsetRegNum) return false;
1641     // Immediate offset in range [-1020, 1020] and a multiple of 4.
1642     if (!Memory.OffsetImm) return true;
1643     int64_t Val = Memory.OffsetImm->getValue();
1644     return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1645       Val == std::numeric_limits<int32_t>::min();
1646   }
1647 
1648   bool isAddrMode5FP16() const {
1649     // If we have an immediate that's not a constant, treat it as a label
1650     // reference needing a fixup. If it is a constant, it's something else
1651     // and we reject it.
1652     if (isImm() && !isa<MCConstantExpr>(getImm()))
1653       return true;
1654     if (!isGPRMem() || Memory.Alignment != 0) return false;
1655     // Check for register offset.
1656     if (Memory.OffsetRegNum) return false;
1657     // Immediate offset in range [-510, 510] and a multiple of 2.
1658     if (!Memory.OffsetImm) return true;
1659     int64_t Val = Memory.OffsetImm->getValue();
1660     return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1661            Val == std::numeric_limits<int32_t>::min();
1662   }
1663 
1664   bool isMemTBB() const {
1665     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1666         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1667       return false;
1668     return true;
1669   }
1670 
1671   bool isMemTBH() const {
1672     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1673         Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1674         Memory.Alignment != 0 )
1675       return false;
1676     return true;
1677   }
1678 
1679   bool isMemRegOffset() const {
1680     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1681       return false;
1682     return true;
1683   }
1684 
1685   bool isT2MemRegOffset() const {
1686     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1687         Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1688       return false;
1689     // Only lsl #{0, 1, 2, 3} allowed.
1690     if (Memory.ShiftType == ARM_AM::no_shift)
1691       return true;
1692     if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1693       return false;
1694     return true;
1695   }
1696 
1697   bool isMemThumbRR() const {
1698     // Thumb reg+reg addressing is simple. Just two registers, a base and
1699     // an offset. No shifts, negations or any other complicating factors.
1700     if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1701         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1702       return false;
1703     return isARMLowRegister(Memory.BaseRegNum) &&
1704       (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1705   }
1706 
1707   bool isMemThumbRIs4() const {
1708     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1709         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1710       return false;
1711     // Immediate offset, multiple of 4 in range [0, 124].
1712     if (!Memory.OffsetImm) return true;
1713     int64_t Val = Memory.OffsetImm->getValue();
1714     return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1715   }
1716 
1717   bool isMemThumbRIs2() const {
1718     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1719         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1720       return false;
1721     // Immediate offset, multiple of 4 in range [0, 62].
1722     if (!Memory.OffsetImm) return true;
1723     int64_t Val = Memory.OffsetImm->getValue();
1724     return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1725   }
1726 
1727   bool isMemThumbRIs1() const {
1728     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1729         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1730       return false;
1731     // Immediate offset in range [0, 31].
1732     if (!Memory.OffsetImm) return true;
1733     int64_t Val = Memory.OffsetImm->getValue();
1734     return Val >= 0 && Val <= 31;
1735   }
1736 
1737   bool isMemThumbSPI() const {
1738     if (!isGPRMem() || Memory.OffsetRegNum != 0 ||
1739         Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1740       return false;
1741     // Immediate offset, multiple of 4 in range [0, 1020].
1742     if (!Memory.OffsetImm) return true;
1743     int64_t Val = Memory.OffsetImm->getValue();
1744     return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1745   }
1746 
1747   bool isMemImm8s4Offset() const {
1748     // If we have an immediate that's not a constant, treat it as a label
1749     // reference needing a fixup. If it is a constant, it's something else
1750     // and we reject it.
1751     if (isImm() && !isa<MCConstantExpr>(getImm()))
1752       return true;
1753     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1754       return false;
1755     // Immediate offset a multiple of 4 in range [-1020, 1020].
1756     if (!Memory.OffsetImm) return true;
1757     int64_t Val = Memory.OffsetImm->getValue();
1758     // Special case, #-0 is std::numeric_limits<int32_t>::min().
1759     return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1760            Val == std::numeric_limits<int32_t>::min();
1761   }
1762   bool isMemImm7s4Offset() const {
1763     // If we have an immediate that's not a constant, treat it as a label
1764     // reference needing a fixup. If it is a constant, it's something else
1765     // and we reject it.
1766     if (isImm() && !isa<MCConstantExpr>(getImm()))
1767       return true;
1768     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1769         !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1770             Memory.BaseRegNum))
1771       return false;
1772     // Immediate offset a multiple of 4 in range [-508, 508].
1773     if (!Memory.OffsetImm) return true;
1774     int64_t Val = Memory.OffsetImm->getValue();
1775     // Special case, #-0 is INT32_MIN.
1776     return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN;
1777   }
1778   bool isMemImm0_1020s4Offset() const {
1779     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1780       return false;
1781     // Immediate offset a multiple of 4 in range [0, 1020].
1782     if (!Memory.OffsetImm) return true;
1783     int64_t Val = Memory.OffsetImm->getValue();
1784     return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1785   }
1786 
1787   bool isMemImm8Offset() const {
1788     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1789       return false;
1790     // Base reg of PC isn't allowed for these encodings.
1791     if (Memory.BaseRegNum == ARM::PC) return false;
1792     // Immediate offset in range [-255, 255].
1793     if (!Memory.OffsetImm) return true;
1794     int64_t Val = Memory.OffsetImm->getValue();
1795     return (Val == std::numeric_limits<int32_t>::min()) ||
1796            (Val > -256 && Val < 256);
1797   }
1798 
1799   template<unsigned Bits, unsigned RegClassID>
1800   bool isMemImm7ShiftedOffset() const {
1801     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 ||
1802         !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum))
1803       return false;
1804 
1805     // Expect an immediate offset equal to an element of the range
1806     // [-127, 127], shifted left by Bits.
1807 
1808     if (!Memory.OffsetImm) return true;
1809     int64_t Val = Memory.OffsetImm->getValue();
1810 
1811     // INT32_MIN is a special-case value (indicating the encoding with
1812     // zero offset and the subtract bit set)
1813     if (Val == INT32_MIN)
1814       return true;
1815 
1816     unsigned Divisor = 1U << Bits;
1817 
1818     // Check that the low bits are zero
1819     if (Val % Divisor != 0)
1820       return false;
1821 
1822     // Check that the remaining offset is within range.
1823     Val /= Divisor;
1824     return (Val >= -127 && Val <= 127);
1825   }
1826 
1827   template <int shift> bool isMemRegRQOffset() const {
1828     if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0)
1829       return false;
1830 
1831     if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains(
1832             Memory.BaseRegNum))
1833       return false;
1834     if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1835             Memory.OffsetRegNum))
1836       return false;
1837 
1838     if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift)
1839       return false;
1840 
1841     if (shift > 0 &&
1842         (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift))
1843       return false;
1844 
1845     return true;
1846   }
1847 
1848   template <int shift> bool isMemRegQOffset() const {
1849     if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1850       return false;
1851 
1852     if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1853             Memory.BaseRegNum))
1854       return false;
1855 
1856     if(!Memory.OffsetImm) return true;
1857     static_assert(shift < 56,
1858                   "Such that we dont shift by a value higher than 62");
1859     int64_t Val = Memory.OffsetImm->getValue();
1860 
1861     // The value must be a multiple of (1 << shift)
1862     if ((Val & ((1U << shift) - 1)) != 0)
1863       return false;
1864 
1865     // And be in the right range, depending on the amount that it is shifted
1866     // by.  Shift 0, is equal to 7 unsigned bits, the sign bit is set
1867     // separately.
1868     int64_t Range = (1U << (7+shift)) - 1;
1869     return (Val == INT32_MIN) || (Val > -Range && Val < Range);
1870   }
1871 
1872   bool isMemPosImm8Offset() const {
1873     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1874       return false;
1875     // Immediate offset in range [0, 255].
1876     if (!Memory.OffsetImm) return true;
1877     int64_t Val = Memory.OffsetImm->getValue();
1878     return Val >= 0 && Val < 256;
1879   }
1880 
1881   bool isMemNegImm8Offset() const {
1882     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1883       return false;
1884     // Base reg of PC isn't allowed for these encodings.
1885     if (Memory.BaseRegNum == ARM::PC) return false;
1886     // Immediate offset in range [-255, -1].
1887     if (!Memory.OffsetImm) return false;
1888     int64_t Val = Memory.OffsetImm->getValue();
1889     return (Val == std::numeric_limits<int32_t>::min()) ||
1890            (Val > -256 && Val < 0);
1891   }
1892 
1893   bool isMemUImm12Offset() const {
1894     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1895       return false;
1896     // Immediate offset in range [0, 4095].
1897     if (!Memory.OffsetImm) return true;
1898     int64_t Val = Memory.OffsetImm->getValue();
1899     return (Val >= 0 && Val < 4096);
1900   }
1901 
1902   bool isMemImm12Offset() const {
1903     // If we have an immediate that's not a constant, treat it as a label
1904     // reference needing a fixup. If it is a constant, it's something else
1905     // and we reject it.
1906 
1907     if (isImm() && !isa<MCConstantExpr>(getImm()))
1908       return true;
1909 
1910     if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1911       return false;
1912     // Immediate offset in range [-4095, 4095].
1913     if (!Memory.OffsetImm) return true;
1914     int64_t Val = Memory.OffsetImm->getValue();
1915     return (Val > -4096 && Val < 4096) ||
1916            (Val == std::numeric_limits<int32_t>::min());
1917   }
1918 
1919   bool isConstPoolAsmImm() const {
1920     // Delay processing of Constant Pool Immediate, this will turn into
1921     // a constant. Match no other operand
1922     return (isConstantPoolImm());
1923   }
1924 
1925   bool isPostIdxImm8() const {
1926     if (!isImm()) return false;
1927     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1928     if (!CE) return false;
1929     int64_t Val = CE->getValue();
1930     return (Val > -256 && Val < 256) ||
1931            (Val == std::numeric_limits<int32_t>::min());
1932   }
1933 
1934   bool isPostIdxImm8s4() const {
1935     if (!isImm()) return false;
1936     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1937     if (!CE) return false;
1938     int64_t Val = CE->getValue();
1939     return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1940            (Val == std::numeric_limits<int32_t>::min());
1941   }
1942 
1943   bool isMSRMask() const { return Kind == k_MSRMask; }
1944   bool isBankedReg() const { return Kind == k_BankedReg; }
1945   bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1946 
1947   // NEON operands.
1948   bool isSingleSpacedVectorList() const {
1949     return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1950   }
1951 
1952   bool isDoubleSpacedVectorList() const {
1953     return Kind == k_VectorList && VectorList.isDoubleSpaced;
1954   }
1955 
1956   bool isVecListOneD() const {
1957     if (!isSingleSpacedVectorList()) return false;
1958     return VectorList.Count == 1;
1959   }
1960 
1961   bool isVecListTwoMQ() const {
1962     return isSingleSpacedVectorList() && VectorList.Count == 2 &&
1963            ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
1964                VectorList.RegNum);
1965   }
1966 
1967   bool isVecListDPair() const {
1968     if (!isSingleSpacedVectorList()) return false;
1969     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1970               .contains(VectorList.RegNum));
1971   }
1972 
1973   bool isVecListThreeD() const {
1974     if (!isSingleSpacedVectorList()) return false;
1975     return VectorList.Count == 3;
1976   }
1977 
1978   bool isVecListFourD() const {
1979     if (!isSingleSpacedVectorList()) return false;
1980     return VectorList.Count == 4;
1981   }
1982 
1983   bool isVecListDPairSpaced() const {
1984     if (Kind != k_VectorList) return false;
1985     if (isSingleSpacedVectorList()) return false;
1986     return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1987               .contains(VectorList.RegNum));
1988   }
1989 
1990   bool isVecListThreeQ() const {
1991     if (!isDoubleSpacedVectorList()) return false;
1992     return VectorList.Count == 3;
1993   }
1994 
1995   bool isVecListFourQ() const {
1996     if (!isDoubleSpacedVectorList()) return false;
1997     return VectorList.Count == 4;
1998   }
1999 
2000   bool isVecListFourMQ() const {
2001     return isSingleSpacedVectorList() && VectorList.Count == 4 &&
2002            ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(
2003                VectorList.RegNum);
2004   }
2005 
2006   bool isSingleSpacedVectorAllLanes() const {
2007     return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
2008   }
2009 
2010   bool isDoubleSpacedVectorAllLanes() const {
2011     return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
2012   }
2013 
2014   bool isVecListOneDAllLanes() const {
2015     if (!isSingleSpacedVectorAllLanes()) return false;
2016     return VectorList.Count == 1;
2017   }
2018 
2019   bool isVecListDPairAllLanes() const {
2020     if (!isSingleSpacedVectorAllLanes()) return false;
2021     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
2022               .contains(VectorList.RegNum));
2023   }
2024 
2025   bool isVecListDPairSpacedAllLanes() const {
2026     if (!isDoubleSpacedVectorAllLanes()) return false;
2027     return VectorList.Count == 2;
2028   }
2029 
2030   bool isVecListThreeDAllLanes() const {
2031     if (!isSingleSpacedVectorAllLanes()) return false;
2032     return VectorList.Count == 3;
2033   }
2034 
2035   bool isVecListThreeQAllLanes() const {
2036     if (!isDoubleSpacedVectorAllLanes()) return false;
2037     return VectorList.Count == 3;
2038   }
2039 
2040   bool isVecListFourDAllLanes() const {
2041     if (!isSingleSpacedVectorAllLanes()) return false;
2042     return VectorList.Count == 4;
2043   }
2044 
2045   bool isVecListFourQAllLanes() const {
2046     if (!isDoubleSpacedVectorAllLanes()) return false;
2047     return VectorList.Count == 4;
2048   }
2049 
2050   bool isSingleSpacedVectorIndexed() const {
2051     return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
2052   }
2053 
2054   bool isDoubleSpacedVectorIndexed() const {
2055     return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
2056   }
2057 
2058   bool isVecListOneDByteIndexed() const {
2059     if (!isSingleSpacedVectorIndexed()) return false;
2060     return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
2061   }
2062 
2063   bool isVecListOneDHWordIndexed() const {
2064     if (!isSingleSpacedVectorIndexed()) return false;
2065     return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
2066   }
2067 
2068   bool isVecListOneDWordIndexed() const {
2069     if (!isSingleSpacedVectorIndexed()) return false;
2070     return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
2071   }
2072 
2073   bool isVecListTwoDByteIndexed() const {
2074     if (!isSingleSpacedVectorIndexed()) return false;
2075     return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
2076   }
2077 
2078   bool isVecListTwoDHWordIndexed() const {
2079     if (!isSingleSpacedVectorIndexed()) return false;
2080     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2081   }
2082 
2083   bool isVecListTwoQWordIndexed() const {
2084     if (!isDoubleSpacedVectorIndexed()) return false;
2085     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2086   }
2087 
2088   bool isVecListTwoQHWordIndexed() const {
2089     if (!isDoubleSpacedVectorIndexed()) return false;
2090     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
2091   }
2092 
2093   bool isVecListTwoDWordIndexed() const {
2094     if (!isSingleSpacedVectorIndexed()) return false;
2095     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
2096   }
2097 
2098   bool isVecListThreeDByteIndexed() const {
2099     if (!isSingleSpacedVectorIndexed()) return false;
2100     return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
2101   }
2102 
2103   bool isVecListThreeDHWordIndexed() const {
2104     if (!isSingleSpacedVectorIndexed()) return false;
2105     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2106   }
2107 
2108   bool isVecListThreeQWordIndexed() const {
2109     if (!isDoubleSpacedVectorIndexed()) return false;
2110     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2111   }
2112 
2113   bool isVecListThreeQHWordIndexed() const {
2114     if (!isDoubleSpacedVectorIndexed()) return false;
2115     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
2116   }
2117 
2118   bool isVecListThreeDWordIndexed() const {
2119     if (!isSingleSpacedVectorIndexed()) return false;
2120     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
2121   }
2122 
2123   bool isVecListFourDByteIndexed() const {
2124     if (!isSingleSpacedVectorIndexed()) return false;
2125     return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
2126   }
2127 
2128   bool isVecListFourDHWordIndexed() const {
2129     if (!isSingleSpacedVectorIndexed()) return false;
2130     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2131   }
2132 
2133   bool isVecListFourQWordIndexed() const {
2134     if (!isDoubleSpacedVectorIndexed()) return false;
2135     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2136   }
2137 
2138   bool isVecListFourQHWordIndexed() const {
2139     if (!isDoubleSpacedVectorIndexed()) return false;
2140     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
2141   }
2142 
2143   bool isVecListFourDWordIndexed() const {
2144     if (!isSingleSpacedVectorIndexed()) return false;
2145     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
2146   }
2147 
2148   bool isVectorIndex() const { return Kind == k_VectorIndex; }
2149 
2150   template <unsigned NumLanes>
2151   bool isVectorIndexInRange() const {
2152     if (Kind != k_VectorIndex) return false;
2153     return VectorIndex.Val < NumLanes;
2154   }
2155 
2156   bool isVectorIndex8()  const { return isVectorIndexInRange<8>(); }
2157   bool isVectorIndex16() const { return isVectorIndexInRange<4>(); }
2158   bool isVectorIndex32() const { return isVectorIndexInRange<2>(); }
2159   bool isVectorIndex64() const { return isVectorIndexInRange<1>(); }
2160 
2161   template<int PermittedValue, int OtherPermittedValue>
2162   bool isMVEPairVectorIndex() const {
2163     if (Kind != k_VectorIndex) return false;
2164     return VectorIndex.Val == PermittedValue ||
2165            VectorIndex.Val == OtherPermittedValue;
2166   }
2167 
2168   bool isNEONi8splat() const {
2169     if (!isImm()) return false;
2170     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2171     // Must be a constant.
2172     if (!CE) return false;
2173     int64_t Value = CE->getValue();
2174     // i8 value splatted across 8 bytes. The immediate is just the 8 byte
2175     // value.
2176     return Value >= 0 && Value < 256;
2177   }
2178 
2179   bool isNEONi16splat() const {
2180     if (isNEONByteReplicate(2))
2181       return false; // Leave that for bytes replication and forbid by default.
2182     if (!isImm())
2183       return false;
2184     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2185     // Must be a constant.
2186     if (!CE) return false;
2187     unsigned Value = CE->getValue();
2188     return ARM_AM::isNEONi16splat(Value);
2189   }
2190 
2191   bool isNEONi16splatNot() const {
2192     if (!isImm())
2193       return false;
2194     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2195     // Must be a constant.
2196     if (!CE) return false;
2197     unsigned Value = CE->getValue();
2198     return ARM_AM::isNEONi16splat(~Value & 0xffff);
2199   }
2200 
2201   bool isNEONi32splat() const {
2202     if (isNEONByteReplicate(4))
2203       return false; // Leave that for bytes replication and forbid by default.
2204     if (!isImm())
2205       return false;
2206     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2207     // Must be a constant.
2208     if (!CE) return false;
2209     unsigned Value = CE->getValue();
2210     return ARM_AM::isNEONi32splat(Value);
2211   }
2212 
2213   bool isNEONi32splatNot() const {
2214     if (!isImm())
2215       return false;
2216     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2217     // Must be a constant.
2218     if (!CE) return false;
2219     unsigned Value = CE->getValue();
2220     return ARM_AM::isNEONi32splat(~Value);
2221   }
2222 
2223   static bool isValidNEONi32vmovImm(int64_t Value) {
2224     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
2225     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
2226     return ((Value & 0xffffffffffffff00) == 0) ||
2227            ((Value & 0xffffffffffff00ff) == 0) ||
2228            ((Value & 0xffffffffff00ffff) == 0) ||
2229            ((Value & 0xffffffff00ffffff) == 0) ||
2230            ((Value & 0xffffffffffff00ff) == 0xff) ||
2231            ((Value & 0xffffffffff00ffff) == 0xffff);
2232   }
2233 
2234   bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
2235     assert((Width == 8 || Width == 16 || Width == 32) &&
2236            "Invalid element width");
2237     assert(NumElems * Width <= 64 && "Invalid result width");
2238 
2239     if (!isImm())
2240       return false;
2241     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2242     // Must be a constant.
2243     if (!CE)
2244       return false;
2245     int64_t Value = CE->getValue();
2246     if (!Value)
2247       return false; // Don't bother with zero.
2248     if (Inv)
2249       Value = ~Value;
2250 
2251     uint64_t Mask = (1ull << Width) - 1;
2252     uint64_t Elem = Value & Mask;
2253     if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
2254       return false;
2255     if (Width == 32 && !isValidNEONi32vmovImm(Elem))
2256       return false;
2257 
2258     for (unsigned i = 1; i < NumElems; ++i) {
2259       Value >>= Width;
2260       if ((Value & Mask) != Elem)
2261         return false;
2262     }
2263     return true;
2264   }
2265 
2266   bool isNEONByteReplicate(unsigned NumBytes) const {
2267     return isNEONReplicate(8, NumBytes, false);
2268   }
2269 
2270   static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
2271     assert((FromW == 8 || FromW == 16 || FromW == 32) &&
2272            "Invalid source width");
2273     assert((ToW == 16 || ToW == 32 || ToW == 64) &&
2274            "Invalid destination width");
2275     assert(FromW < ToW && "ToW is not less than FromW");
2276   }
2277 
2278   template<unsigned FromW, unsigned ToW>
2279   bool isNEONmovReplicate() const {
2280     checkNeonReplicateArgs(FromW, ToW);
2281     if (ToW == 64 && isNEONi64splat())
2282       return false;
2283     return isNEONReplicate(FromW, ToW / FromW, false);
2284   }
2285 
2286   template<unsigned FromW, unsigned ToW>
2287   bool isNEONinvReplicate() const {
2288     checkNeonReplicateArgs(FromW, ToW);
2289     return isNEONReplicate(FromW, ToW / FromW, true);
2290   }
2291 
2292   bool isNEONi32vmov() const {
2293     if (isNEONByteReplicate(4))
2294       return false; // Let it to be classified as byte-replicate case.
2295     if (!isImm())
2296       return false;
2297     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2298     // Must be a constant.
2299     if (!CE)
2300       return false;
2301     return isValidNEONi32vmovImm(CE->getValue());
2302   }
2303 
2304   bool isNEONi32vmovNeg() const {
2305     if (!isImm()) return false;
2306     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2307     // Must be a constant.
2308     if (!CE) return false;
2309     return isValidNEONi32vmovImm(~CE->getValue());
2310   }
2311 
2312   bool isNEONi64splat() const {
2313     if (!isImm()) return false;
2314     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2315     // Must be a constant.
2316     if (!CE) return false;
2317     uint64_t Value = CE->getValue();
2318     // i64 value with each byte being either 0 or 0xff.
2319     for (unsigned i = 0; i < 8; ++i, Value >>= 8)
2320       if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
2321     return true;
2322   }
2323 
2324   template<int64_t Angle, int64_t Remainder>
2325   bool isComplexRotation() const {
2326     if (!isImm()) return false;
2327 
2328     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2329     if (!CE) return false;
2330     uint64_t Value = CE->getValue();
2331 
2332     return (Value % Angle == Remainder && Value <= 270);
2333   }
2334 
2335   bool isMVELongShift() const {
2336     if (!isImm()) return false;
2337     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2338     // Must be a constant.
2339     if (!CE) return false;
2340     uint64_t Value = CE->getValue();
2341     return Value >= 1 && Value <= 32;
2342   }
2343 
2344   bool isMveSaturateOp() const {
2345     if (!isImm()) return false;
2346     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2347     if (!CE) return false;
2348     uint64_t Value = CE->getValue();
2349     return Value == 48 || Value == 64;
2350   }
2351 
2352   bool isITCondCodeNoAL() const {
2353     if (!isITCondCode()) return false;
2354     ARMCC::CondCodes CC = getCondCode();
2355     return CC != ARMCC::AL;
2356   }
2357 
2358   bool isITCondCodeRestrictedI() const {
2359     if (!isITCondCode())
2360       return false;
2361     ARMCC::CondCodes CC = getCondCode();
2362     return CC == ARMCC::EQ || CC == ARMCC::NE;
2363   }
2364 
2365   bool isITCondCodeRestrictedS() const {
2366     if (!isITCondCode())
2367       return false;
2368     ARMCC::CondCodes CC = getCondCode();
2369     return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE ||
2370            CC == ARMCC::GE;
2371   }
2372 
2373   bool isITCondCodeRestrictedU() const {
2374     if (!isITCondCode())
2375       return false;
2376     ARMCC::CondCodes CC = getCondCode();
2377     return CC == ARMCC::HS || CC == ARMCC::HI;
2378   }
2379 
2380   bool isITCondCodeRestrictedFP() const {
2381     if (!isITCondCode())
2382       return false;
2383     ARMCC::CondCodes CC = getCondCode();
2384     return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT ||
2385            CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE;
2386   }
2387 
2388   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
2389     // Add as immediates when possible.  Null MCExpr = 0.
2390     if (!Expr)
2391       Inst.addOperand(MCOperand::createImm(0));
2392     else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
2393       Inst.addOperand(MCOperand::createImm(CE->getValue()));
2394     else
2395       Inst.addOperand(MCOperand::createExpr(Expr));
2396   }
2397 
2398   void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2399     assert(N == 1 && "Invalid number of operands!");
2400     addExpr(Inst, getImm());
2401   }
2402 
2403   void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2404     assert(N == 1 && "Invalid number of operands!");
2405     addExpr(Inst, getImm());
2406   }
2407 
2408   void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2409     assert(N == 2 && "Invalid number of operands!");
2410     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2411     unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2412     Inst.addOperand(MCOperand::createReg(RegNum));
2413   }
2414 
2415   void addVPTPredNOperands(MCInst &Inst, unsigned N) const {
2416     assert(N == 2 && "Invalid number of operands!");
2417     Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred())));
2418     unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0;
2419     Inst.addOperand(MCOperand::createReg(RegNum));
2420   }
2421 
2422   void addVPTPredROperands(MCInst &Inst, unsigned N) const {
2423     assert(N == 3 && "Invalid number of operands!");
2424     addVPTPredNOperands(Inst, N-1);
2425     unsigned RegNum;
2426     if (getVPTPred() == ARMVCC::None) {
2427       RegNum = 0;
2428     } else {
2429       unsigned NextOpIndex = Inst.getNumOperands();
2430       const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()];
2431       int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO);
2432       assert(TiedOp >= 0 &&
2433              "Inactive register in vpred_r is not tied to an output!");
2434       RegNum = Inst.getOperand(TiedOp).getReg();
2435     }
2436     Inst.addOperand(MCOperand::createReg(RegNum));
2437   }
2438 
2439   void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2440     assert(N == 1 && "Invalid number of operands!");
2441     Inst.addOperand(MCOperand::createImm(getCoproc()));
2442   }
2443 
2444   void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2445     assert(N == 1 && "Invalid number of operands!");
2446     Inst.addOperand(MCOperand::createImm(getCoproc()));
2447   }
2448 
2449   void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2450     assert(N == 1 && "Invalid number of operands!");
2451     Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2452   }
2453 
2454   void addITMaskOperands(MCInst &Inst, unsigned N) const {
2455     assert(N == 1 && "Invalid number of operands!");
2456     Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2457   }
2458 
2459   void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2460     assert(N == 1 && "Invalid number of operands!");
2461     Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2462   }
2463 
2464   void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const {
2465     assert(N == 1 && "Invalid number of operands!");
2466     Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode()))));
2467   }
2468 
2469   void addCCOutOperands(MCInst &Inst, unsigned N) const {
2470     assert(N == 1 && "Invalid number of operands!");
2471     Inst.addOperand(MCOperand::createReg(getReg()));
2472   }
2473 
2474   void addRegOperands(MCInst &Inst, unsigned N) const {
2475     assert(N == 1 && "Invalid number of operands!");
2476     Inst.addOperand(MCOperand::createReg(getReg()));
2477   }
2478 
2479   void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2480     assert(N == 3 && "Invalid number of operands!");
2481     assert(isRegShiftedReg() &&
2482            "addRegShiftedRegOperands() on non-RegShiftedReg!");
2483     Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2484     Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2485     Inst.addOperand(MCOperand::createImm(
2486       ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2487   }
2488 
2489   void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2490     assert(N == 2 && "Invalid number of operands!");
2491     assert(isRegShiftedImm() &&
2492            "addRegShiftedImmOperands() on non-RegShiftedImm!");
2493     Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2494     // Shift of #32 is encoded as 0 where permitted
2495     unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2496     Inst.addOperand(MCOperand::createImm(
2497       ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2498   }
2499 
2500   void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2501     assert(N == 1 && "Invalid number of operands!");
2502     Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2503                                          ShifterImm.Imm));
2504   }
2505 
2506   void addRegListOperands(MCInst &Inst, unsigned N) const {
2507     assert(N == 1 && "Invalid number of operands!");
2508     const SmallVectorImpl<unsigned> &RegList = getRegList();
2509     for (SmallVectorImpl<unsigned>::const_iterator
2510            I = RegList.begin(), E = RegList.end(); I != E; ++I)
2511       Inst.addOperand(MCOperand::createReg(*I));
2512   }
2513 
2514   void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const {
2515     assert(N == 1 && "Invalid number of operands!");
2516     const SmallVectorImpl<unsigned> &RegList = getRegList();
2517     for (SmallVectorImpl<unsigned>::const_iterator
2518            I = RegList.begin(), E = RegList.end(); I != E; ++I)
2519       Inst.addOperand(MCOperand::createReg(*I));
2520   }
2521 
2522   void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2523     addRegListOperands(Inst, N);
2524   }
2525 
2526   void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2527     addRegListOperands(Inst, N);
2528   }
2529 
2530   void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2531     addRegListOperands(Inst, N);
2532   }
2533 
2534   void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const {
2535     addRegListOperands(Inst, N);
2536   }
2537 
2538   void addRotImmOperands(MCInst &Inst, unsigned N) const {
2539     assert(N == 1 && "Invalid number of operands!");
2540     // Encoded as val>>3. The printer handles display as 8, 16, 24.
2541     Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2542   }
2543 
2544   void addModImmOperands(MCInst &Inst, unsigned N) const {
2545     assert(N == 1 && "Invalid number of operands!");
2546 
2547     // Support for fixups (MCFixup)
2548     if (isImm())
2549       return addImmOperands(Inst, N);
2550 
2551     Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2552   }
2553 
2554   void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2555     assert(N == 1 && "Invalid number of operands!");
2556     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2557     uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2558     Inst.addOperand(MCOperand::createImm(Enc));
2559   }
2560 
2561   void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2562     assert(N == 1 && "Invalid number of operands!");
2563     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2564     uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2565     Inst.addOperand(MCOperand::createImm(Enc));
2566   }
2567 
2568   void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2569     assert(N == 1 && "Invalid number of operands!");
2570     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2571     uint32_t Val = -CE->getValue();
2572     Inst.addOperand(MCOperand::createImm(Val));
2573   }
2574 
2575   void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2576     assert(N == 1 && "Invalid number of operands!");
2577     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2578     uint32_t Val = -CE->getValue();
2579     Inst.addOperand(MCOperand::createImm(Val));
2580   }
2581 
2582   void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2583     assert(N == 1 && "Invalid number of operands!");
2584     // Munge the lsb/width into a bitfield mask.
2585     unsigned lsb = Bitfield.LSB;
2586     unsigned width = Bitfield.Width;
2587     // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2588     uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2589                       (32 - (lsb + width)));
2590     Inst.addOperand(MCOperand::createImm(Mask));
2591   }
2592 
2593   void addImmOperands(MCInst &Inst, unsigned N) const {
2594     assert(N == 1 && "Invalid number of operands!");
2595     addExpr(Inst, getImm());
2596   }
2597 
2598   void addFBits16Operands(MCInst &Inst, unsigned N) const {
2599     assert(N == 1 && "Invalid number of operands!");
2600     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2601     Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2602   }
2603 
2604   void addFBits32Operands(MCInst &Inst, unsigned N) const {
2605     assert(N == 1 && "Invalid number of operands!");
2606     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2607     Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2608   }
2609 
2610   void addFPImmOperands(MCInst &Inst, unsigned N) const {
2611     assert(N == 1 && "Invalid number of operands!");
2612     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2613     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2614     Inst.addOperand(MCOperand::createImm(Val));
2615   }
2616 
2617   void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2618     assert(N == 1 && "Invalid number of operands!");
2619     // FIXME: We really want to scale the value here, but the LDRD/STRD
2620     // instruction don't encode operands that way yet.
2621     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2622     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2623   }
2624 
2625   void addImm7s4Operands(MCInst &Inst, unsigned N) const {
2626     assert(N == 1 && "Invalid number of operands!");
2627     // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR
2628     // instruction don't encode operands that way yet.
2629     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2630     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2631   }
2632 
2633   void addImm7Shift0Operands(MCInst &Inst, unsigned N) const {
2634     assert(N == 1 && "Invalid number of operands!");
2635     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2636     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2637   }
2638 
2639   void addImm7Shift1Operands(MCInst &Inst, unsigned N) const {
2640     assert(N == 1 && "Invalid number of operands!");
2641     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2642     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2643   }
2644 
2645   void addImm7Shift2Operands(MCInst &Inst, unsigned N) const {
2646     assert(N == 1 && "Invalid number of operands!");
2647     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2648     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2649   }
2650 
2651   void addImm7Operands(MCInst &Inst, unsigned N) const {
2652     assert(N == 1 && "Invalid number of operands!");
2653     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2654     Inst.addOperand(MCOperand::createImm(CE->getValue()));
2655   }
2656 
2657   void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2658     assert(N == 1 && "Invalid number of operands!");
2659     // The immediate is scaled by four in the encoding and is stored
2660     // in the MCInst as such. Lop off the low two bits here.
2661     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2662     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2663   }
2664 
2665   void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2666     assert(N == 1 && "Invalid number of operands!");
2667     // The immediate is scaled by four in the encoding and is stored
2668     // in the MCInst as such. Lop off the low two bits here.
2669     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2670     Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2671   }
2672 
2673   void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2674     assert(N == 1 && "Invalid number of operands!");
2675     // The immediate is scaled by four in the encoding and is stored
2676     // in the MCInst as such. Lop off the low two bits here.
2677     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2678     Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2679   }
2680 
2681   void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2682     assert(N == 1 && "Invalid number of operands!");
2683     // The constant encodes as the immediate-1, and we store in the instruction
2684     // the bits as encoded, so subtract off one here.
2685     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2686     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2687   }
2688 
2689   void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2690     assert(N == 1 && "Invalid number of operands!");
2691     // The constant encodes as the immediate-1, and we store in the instruction
2692     // the bits as encoded, so subtract off one here.
2693     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2694     Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2695   }
2696 
2697   void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2698     assert(N == 1 && "Invalid number of operands!");
2699     // The constant encodes as the immediate, except for 32, which encodes as
2700     // zero.
2701     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2702     unsigned Imm = CE->getValue();
2703     Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2704   }
2705 
2706   void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2707     assert(N == 1 && "Invalid number of operands!");
2708     // An ASR value of 32 encodes as 0, so that's how we want to add it to
2709     // the instruction as well.
2710     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2711     int Val = CE->getValue();
2712     Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2713   }
2714 
2715   void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2716     assert(N == 1 && "Invalid number of operands!");
2717     // The operand is actually a t2_so_imm, but we have its bitwise
2718     // negation in the assembly source, so twiddle it here.
2719     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2720     Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
2721   }
2722 
2723   void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2724     assert(N == 1 && "Invalid number of operands!");
2725     // The operand is actually a t2_so_imm, but we have its
2726     // negation in the assembly source, so twiddle it here.
2727     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2728     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2729   }
2730 
2731   void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2732     assert(N == 1 && "Invalid number of operands!");
2733     // The operand is actually an imm0_4095, but we have its
2734     // negation in the assembly source, so twiddle it here.
2735     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2736     Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2737   }
2738 
2739   void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2740     if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2741       Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2742       return;
2743     }
2744     const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
2745     Inst.addOperand(MCOperand::createExpr(SR));
2746   }
2747 
2748   void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2749     assert(N == 1 && "Invalid number of operands!");
2750     if (isImm()) {
2751       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2752       if (CE) {
2753         Inst.addOperand(MCOperand::createImm(CE->getValue()));
2754         return;
2755       }
2756       const MCSymbolRefExpr *SR = cast<MCSymbolRefExpr>(Imm.Val);
2757       Inst.addOperand(MCOperand::createExpr(SR));
2758       return;
2759     }
2760 
2761     assert(isGPRMem()  && "Unknown value type!");
2762     assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2763     Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue()));
2764   }
2765 
2766   void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2767     assert(N == 1 && "Invalid number of operands!");
2768     Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2769   }
2770 
2771   void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2772     assert(N == 1 && "Invalid number of operands!");
2773     Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2774   }
2775 
2776   void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2777     assert(N == 1 && "Invalid number of operands!");
2778     Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2779   }
2780 
2781   void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2782     assert(N == 1 && "Invalid number of operands!");
2783     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2784   }
2785 
2786   void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const {
2787     assert(N == 1 && "Invalid number of operands!");
2788     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2789   }
2790 
2791   void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const {
2792     assert(N == 1 && "Invalid number of operands!");
2793     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2794   }
2795 
2796   void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const {
2797     assert(N == 1 && "Invalid number of operands!");
2798     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2799   }
2800 
2801   void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2802     assert(N == 1 && "Invalid number of operands!");
2803     int32_t Imm = Memory.OffsetImm->getValue();
2804     Inst.addOperand(MCOperand::createImm(Imm));
2805   }
2806 
2807   void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2808     assert(N == 1 && "Invalid number of operands!");
2809     assert(isImm() && "Not an immediate!");
2810 
2811     // If we have an immediate that's not a constant, treat it as a label
2812     // reference needing a fixup.
2813     if (!isa<MCConstantExpr>(getImm())) {
2814       Inst.addOperand(MCOperand::createExpr(getImm()));
2815       return;
2816     }
2817 
2818     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
2819     int Val = CE->getValue();
2820     Inst.addOperand(MCOperand::createImm(Val));
2821   }
2822 
2823   void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2824     assert(N == 2 && "Invalid number of operands!");
2825     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2826     Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2827   }
2828 
2829   void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2830     addAlignedMemoryOperands(Inst, N);
2831   }
2832 
2833   void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2834     addAlignedMemoryOperands(Inst, N);
2835   }
2836 
2837   void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2838     addAlignedMemoryOperands(Inst, N);
2839   }
2840 
2841   void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2842     addAlignedMemoryOperands(Inst, N);
2843   }
2844 
2845   void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2846     addAlignedMemoryOperands(Inst, N);
2847   }
2848 
2849   void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2850     addAlignedMemoryOperands(Inst, N);
2851   }
2852 
2853   void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2854     addAlignedMemoryOperands(Inst, N);
2855   }
2856 
2857   void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2858     addAlignedMemoryOperands(Inst, N);
2859   }
2860 
2861   void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2862     addAlignedMemoryOperands(Inst, N);
2863   }
2864 
2865   void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2866     addAlignedMemoryOperands(Inst, N);
2867   }
2868 
2869   void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2870     addAlignedMemoryOperands(Inst, N);
2871   }
2872 
2873   void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2874     assert(N == 3 && "Invalid number of operands!");
2875     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2876     if (!Memory.OffsetRegNum) {
2877       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2878       // Special case for #-0
2879       if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2880       if (Val < 0) Val = -Val;
2881       Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2882     } else {
2883       // For register offset, we encode the shift type and negation flag
2884       // here.
2885       Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2886                               Memory.ShiftImm, Memory.ShiftType);
2887     }
2888     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2889     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2890     Inst.addOperand(MCOperand::createImm(Val));
2891   }
2892 
2893   void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2894     assert(N == 2 && "Invalid number of operands!");
2895     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2896     assert(CE && "non-constant AM2OffsetImm operand!");
2897     int32_t Val = CE->getValue();
2898     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2899     // Special case for #-0
2900     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2901     if (Val < 0) Val = -Val;
2902     Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2903     Inst.addOperand(MCOperand::createReg(0));
2904     Inst.addOperand(MCOperand::createImm(Val));
2905   }
2906 
2907   void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2908     assert(N == 3 && "Invalid number of operands!");
2909     // If we have an immediate that's not a constant, treat it as a label
2910     // reference needing a fixup. If it is a constant, it's something else
2911     // and we reject it.
2912     if (isImm()) {
2913       Inst.addOperand(MCOperand::createExpr(getImm()));
2914       Inst.addOperand(MCOperand::createReg(0));
2915       Inst.addOperand(MCOperand::createImm(0));
2916       return;
2917     }
2918 
2919     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2920     if (!Memory.OffsetRegNum) {
2921       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2922       // Special case for #-0
2923       if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2924       if (Val < 0) Val = -Val;
2925       Val = ARM_AM::getAM3Opc(AddSub, Val);
2926     } else {
2927       // For register offset, we encode the shift type and negation flag
2928       // here.
2929       Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
2930     }
2931     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2932     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2933     Inst.addOperand(MCOperand::createImm(Val));
2934   }
2935 
2936   void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
2937     assert(N == 2 && "Invalid number of operands!");
2938     if (Kind == k_PostIndexRegister) {
2939       int32_t Val =
2940         ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
2941       Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2942       Inst.addOperand(MCOperand::createImm(Val));
2943       return;
2944     }
2945 
2946     // Constant offset.
2947     const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
2948     int32_t Val = CE->getValue();
2949     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2950     // Special case for #-0
2951     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2952     if (Val < 0) Val = -Val;
2953     Val = ARM_AM::getAM3Opc(AddSub, Val);
2954     Inst.addOperand(MCOperand::createReg(0));
2955     Inst.addOperand(MCOperand::createImm(Val));
2956   }
2957 
2958   void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
2959     assert(N == 2 && "Invalid number of operands!");
2960     // If we have an immediate that's not a constant, treat it as a label
2961     // reference needing a fixup. If it is a constant, it's something else
2962     // and we reject it.
2963     if (isImm()) {
2964       Inst.addOperand(MCOperand::createExpr(getImm()));
2965       Inst.addOperand(MCOperand::createImm(0));
2966       return;
2967     }
2968 
2969     // The lower two bits are always zero and as such are not encoded.
2970     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2971     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2972     // Special case for #-0
2973     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2974     if (Val < 0) Val = -Val;
2975     Val = ARM_AM::getAM5Opc(AddSub, Val);
2976     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2977     Inst.addOperand(MCOperand::createImm(Val));
2978   }
2979 
2980   void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
2981     assert(N == 2 && "Invalid number of operands!");
2982     // If we have an immediate that's not a constant, treat it as a label
2983     // reference needing a fixup. If it is a constant, it's something else
2984     // and we reject it.
2985     if (isImm()) {
2986       Inst.addOperand(MCOperand::createExpr(getImm()));
2987       Inst.addOperand(MCOperand::createImm(0));
2988       return;
2989     }
2990 
2991     // The lower bit is always zero and as such is not encoded.
2992     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0;
2993     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2994     // Special case for #-0
2995     if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2996     if (Val < 0) Val = -Val;
2997     Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
2998     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2999     Inst.addOperand(MCOperand::createImm(Val));
3000   }
3001 
3002   void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
3003     assert(N == 2 && "Invalid number of operands!");
3004     // If we have an immediate that's not a constant, treat it as a label
3005     // reference needing a fixup. If it is a constant, it's something else
3006     // and we reject it.
3007     if (isImm()) {
3008       Inst.addOperand(MCOperand::createExpr(getImm()));
3009       Inst.addOperand(MCOperand::createImm(0));
3010       return;
3011     }
3012 
3013     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
3014     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3015     Inst.addOperand(MCOperand::createImm(Val));
3016   }
3017 
3018   void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const {
3019     assert(N == 2 && "Invalid number of operands!");
3020     // If we have an immediate that's not a constant, treat it as a label
3021     // reference needing a fixup. If it is a constant, it's something else
3022     // and we reject it.
3023     if (isImm()) {
3024       Inst.addOperand(MCOperand::createExpr(getImm()));
3025       Inst.addOperand(MCOperand::createImm(0));
3026       return;
3027     }
3028 
3029     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
3030     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3031     Inst.addOperand(MCOperand::createImm(Val));
3032   }
3033 
3034   void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
3035     assert(N == 2 && "Invalid number of operands!");
3036     // The lower two bits are always zero and as such are not encoded.
3037     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
3038     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3039     Inst.addOperand(MCOperand::createImm(Val));
3040   }
3041 
3042   void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const {
3043     assert(N == 2 && "Invalid number of operands!");
3044     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
3045     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3046     Inst.addOperand(MCOperand::createImm(Val));
3047   }
3048 
3049   void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const {
3050     assert(N == 2 && "Invalid number of operands!");
3051     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3052     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3053   }
3054 
3055   void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3056     assert(N == 2 && "Invalid number of operands!");
3057     // If this is an immediate, it's a label reference.
3058     if (isImm()) {
3059       addExpr(Inst, getImm());
3060       Inst.addOperand(MCOperand::createImm(0));
3061       return;
3062     }
3063 
3064     // Otherwise, it's a normal memory reg+offset.
3065     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
3066     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3067     Inst.addOperand(MCOperand::createImm(Val));
3068   }
3069 
3070   void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
3071     assert(N == 2 && "Invalid number of operands!");
3072     // If this is an immediate, it's a label reference.
3073     if (isImm()) {
3074       addExpr(Inst, getImm());
3075       Inst.addOperand(MCOperand::createImm(0));
3076       return;
3077     }
3078 
3079     // Otherwise, it's a normal memory reg+offset.
3080     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
3081     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3082     Inst.addOperand(MCOperand::createImm(Val));
3083   }
3084 
3085   void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
3086     assert(N == 1 && "Invalid number of operands!");
3087     // This is container for the immediate that we will create the constant
3088     // pool from
3089     addExpr(Inst, getConstantPoolImm());
3090     return;
3091   }
3092 
3093   void addMemTBBOperands(MCInst &Inst, unsigned N) const {
3094     assert(N == 2 && "Invalid number of operands!");
3095     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3096     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3097   }
3098 
3099   void addMemTBHOperands(MCInst &Inst, unsigned N) const {
3100     assert(N == 2 && "Invalid number of operands!");
3101     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3102     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3103   }
3104 
3105   void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3106     assert(N == 3 && "Invalid number of operands!");
3107     unsigned Val =
3108       ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
3109                         Memory.ShiftImm, Memory.ShiftType);
3110     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3111     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3112     Inst.addOperand(MCOperand::createImm(Val));
3113   }
3114 
3115   void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
3116     assert(N == 3 && "Invalid number of operands!");
3117     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3118     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3119     Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
3120   }
3121 
3122   void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
3123     assert(N == 2 && "Invalid number of operands!");
3124     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3125     Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
3126   }
3127 
3128   void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
3129     assert(N == 2 && "Invalid number of operands!");
3130     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
3131     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3132     Inst.addOperand(MCOperand::createImm(Val));
3133   }
3134 
3135   void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
3136     assert(N == 2 && "Invalid number of operands!");
3137     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
3138     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3139     Inst.addOperand(MCOperand::createImm(Val));
3140   }
3141 
3142   void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
3143     assert(N == 2 && "Invalid number of operands!");
3144     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
3145     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3146     Inst.addOperand(MCOperand::createImm(Val));
3147   }
3148 
3149   void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
3150     assert(N == 2 && "Invalid number of operands!");
3151     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
3152     Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
3153     Inst.addOperand(MCOperand::createImm(Val));
3154   }
3155 
3156   void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
3157     assert(N == 1 && "Invalid number of operands!");
3158     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3159     assert(CE && "non-constant post-idx-imm8 operand!");
3160     int Imm = CE->getValue();
3161     bool isAdd = Imm >= 0;
3162     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3163     Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
3164     Inst.addOperand(MCOperand::createImm(Imm));
3165   }
3166 
3167   void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
3168     assert(N == 1 && "Invalid number of operands!");
3169     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
3170     assert(CE && "non-constant post-idx-imm8s4 operand!");
3171     int Imm = CE->getValue();
3172     bool isAdd = Imm >= 0;
3173     if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
3174     // Immediate is scaled by 4.
3175     Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
3176     Inst.addOperand(MCOperand::createImm(Imm));
3177   }
3178 
3179   void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
3180     assert(N == 2 && "Invalid number of operands!");
3181     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3182     Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
3183   }
3184 
3185   void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
3186     assert(N == 2 && "Invalid number of operands!");
3187     Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
3188     // The sign, shift type, and shift amount are encoded in a single operand
3189     // using the AM2 encoding helpers.
3190     ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
3191     unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
3192                                      PostIdxReg.ShiftTy);
3193     Inst.addOperand(MCOperand::createImm(Imm));
3194   }
3195 
3196   void addPowerTwoOperands(MCInst &Inst, unsigned N) const {
3197     assert(N == 1 && "Invalid number of operands!");
3198     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3199     Inst.addOperand(MCOperand::createImm(CE->getValue()));
3200   }
3201 
3202   void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
3203     assert(N == 1 && "Invalid number of operands!");
3204     Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
3205   }
3206 
3207   void addBankedRegOperands(MCInst &Inst, unsigned N) const {
3208     assert(N == 1 && "Invalid number of operands!");
3209     Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
3210   }
3211 
3212   void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
3213     assert(N == 1 && "Invalid number of operands!");
3214     Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
3215   }
3216 
3217   void addVecListOperands(MCInst &Inst, unsigned N) const {
3218     assert(N == 1 && "Invalid number of operands!");
3219     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3220   }
3221 
3222   void addMVEVecListOperands(MCInst &Inst, unsigned N) const {
3223     assert(N == 1 && "Invalid number of operands!");
3224 
3225     // When we come here, the VectorList field will identify a range
3226     // of q-registers by its base register and length, and it will
3227     // have already been error-checked to be the expected length of
3228     // range and contain only q-regs in the range q0-q7. So we can
3229     // count on the base register being in the range q0-q6 (for 2
3230     // regs) or q0-q4 (for 4)
3231     //
3232     // The MVE instructions taking a register range of this kind will
3233     // need an operand in the QQPR or QQQQPR class, representing the
3234     // entire range as a unit. So we must translate into that class,
3235     // by finding the index of the base register in the MQPR reg
3236     // class, and returning the super-register at the corresponding
3237     // index in the target class.
3238 
3239     const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID];
3240     const MCRegisterClass *RC_out = (VectorList.Count == 2) ?
3241       &ARMMCRegisterClasses[ARM::QQPRRegClassID] :
3242       &ARMMCRegisterClasses[ARM::QQQQPRRegClassID];
3243 
3244     unsigned I, E = RC_out->getNumRegs();
3245     for (I = 0; I < E; I++)
3246       if (RC_in->getRegister(I) == VectorList.RegNum)
3247         break;
3248     assert(I < E && "Invalid vector list start register!");
3249 
3250     Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I)));
3251   }
3252 
3253   void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
3254     assert(N == 2 && "Invalid number of operands!");
3255     Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
3256     Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
3257   }
3258 
3259   void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
3260     assert(N == 1 && "Invalid number of operands!");
3261     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3262   }
3263 
3264   void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
3265     assert(N == 1 && "Invalid number of operands!");
3266     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3267   }
3268 
3269   void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
3270     assert(N == 1 && "Invalid number of operands!");
3271     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3272   }
3273 
3274   void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
3275     assert(N == 1 && "Invalid number of operands!");
3276     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3277   }
3278 
3279   void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const {
3280     assert(N == 1 && "Invalid number of operands!");
3281     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3282   }
3283 
3284   void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const {
3285     assert(N == 1 && "Invalid number of operands!");
3286     Inst.addOperand(MCOperand::createImm(getVectorIndex()));
3287   }
3288 
3289   void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
3290     assert(N == 1 && "Invalid number of operands!");
3291     // The immediate encodes the type of constant as well as the value.
3292     // Mask in that this is an i8 splat.
3293     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3294     Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
3295   }
3296 
3297   void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
3298     assert(N == 1 && "Invalid number of operands!");
3299     // The immediate encodes the type of constant as well as the value.
3300     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3301     unsigned Value = CE->getValue();
3302     Value = ARM_AM::encodeNEONi16splat(Value);
3303     Inst.addOperand(MCOperand::createImm(Value));
3304   }
3305 
3306   void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
3307     assert(N == 1 && "Invalid number of operands!");
3308     // The immediate encodes the type of constant as well as the value.
3309     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3310     unsigned Value = CE->getValue();
3311     Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
3312     Inst.addOperand(MCOperand::createImm(Value));
3313   }
3314 
3315   void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
3316     assert(N == 1 && "Invalid number of operands!");
3317     // The immediate encodes the type of constant as well as the value.
3318     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3319     unsigned Value = CE->getValue();
3320     Value = ARM_AM::encodeNEONi32splat(Value);
3321     Inst.addOperand(MCOperand::createImm(Value));
3322   }
3323 
3324   void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
3325     assert(N == 1 && "Invalid number of operands!");
3326     // The immediate encodes the type of constant as well as the value.
3327     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3328     unsigned Value = CE->getValue();
3329     Value = ARM_AM::encodeNEONi32splat(~Value);
3330     Inst.addOperand(MCOperand::createImm(Value));
3331   }
3332 
3333   void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
3334     // The immediate encodes the type of constant as well as the value.
3335     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3336     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
3337             Inst.getOpcode() == ARM::VMOVv16i8) &&
3338           "All instructions that wants to replicate non-zero byte "
3339           "always must be replaced with VMOVv8i8 or VMOVv16i8.");
3340     unsigned Value = CE->getValue();
3341     if (Inv)
3342       Value = ~Value;
3343     unsigned B = Value & 0xff;
3344     B |= 0xe00; // cmode = 0b1110
3345     Inst.addOperand(MCOperand::createImm(B));
3346   }
3347 
3348   void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3349     assert(N == 1 && "Invalid number of operands!");
3350     addNEONi8ReplicateOperands(Inst, true);
3351   }
3352 
3353   static unsigned encodeNeonVMOVImmediate(unsigned Value) {
3354     if (Value >= 256 && Value <= 0xffff)
3355       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
3356     else if (Value > 0xffff && Value <= 0xffffff)
3357       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
3358     else if (Value > 0xffffff)
3359       Value = (Value >> 24) | 0x600;
3360     return Value;
3361   }
3362 
3363   void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
3364     assert(N == 1 && "Invalid number of operands!");
3365     // The immediate encodes the type of constant as well as the value.
3366     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3367     unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
3368     Inst.addOperand(MCOperand::createImm(Value));
3369   }
3370 
3371   void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
3372     assert(N == 1 && "Invalid number of operands!");
3373     addNEONi8ReplicateOperands(Inst, false);
3374   }
3375 
3376   void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
3377     assert(N == 1 && "Invalid number of operands!");
3378     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3379     assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
3380             Inst.getOpcode() == ARM::VMOVv8i16 ||
3381             Inst.getOpcode() == ARM::VMVNv4i16 ||
3382             Inst.getOpcode() == ARM::VMVNv8i16) &&
3383           "All instructions that want to replicate non-zero half-word "
3384           "always must be replaced with V{MOV,MVN}v{4,8}i16.");
3385     uint64_t Value = CE->getValue();
3386     unsigned Elem = Value & 0xffff;
3387     if (Elem >= 256)
3388       Elem = (Elem >> 8) | 0x200;
3389     Inst.addOperand(MCOperand::createImm(Elem));
3390   }
3391 
3392   void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
3393     assert(N == 1 && "Invalid number of operands!");
3394     // The immediate encodes the type of constant as well as the value.
3395     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3396     unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
3397     Inst.addOperand(MCOperand::createImm(Value));
3398   }
3399 
3400   void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
3401     assert(N == 1 && "Invalid number of operands!");
3402     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3403     assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
3404             Inst.getOpcode() == ARM::VMOVv4i32 ||
3405             Inst.getOpcode() == ARM::VMVNv2i32 ||
3406             Inst.getOpcode() == ARM::VMVNv4i32) &&
3407           "All instructions that want to replicate non-zero word "
3408           "always must be replaced with V{MOV,MVN}v{2,4}i32.");
3409     uint64_t Value = CE->getValue();
3410     unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
3411     Inst.addOperand(MCOperand::createImm(Elem));
3412   }
3413 
3414   void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
3415     assert(N == 1 && "Invalid number of operands!");
3416     // The immediate encodes the type of constant as well as the value.
3417     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3418     uint64_t Value = CE->getValue();
3419     unsigned Imm = 0;
3420     for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
3421       Imm |= (Value & 1) << i;
3422     }
3423     Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
3424   }
3425 
3426   void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
3427     assert(N == 1 && "Invalid number of operands!");
3428     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3429     Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
3430   }
3431 
3432   void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
3433     assert(N == 1 && "Invalid number of operands!");
3434     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3435     Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
3436   }
3437 
3438   void addMveSaturateOperands(MCInst &Inst, unsigned N) const {
3439     assert(N == 1 && "Invalid number of operands!");
3440     const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
3441     unsigned Imm = CE->getValue();
3442     assert((Imm == 48 || Imm == 64) && "Invalid saturate operand");
3443     Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0));
3444   }
3445 
3446   void print(raw_ostream &OS) const override;
3447 
3448   static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
3449     auto Op = std::make_unique<ARMOperand>(k_ITCondMask);
3450     Op->ITMask.Mask = Mask;
3451     Op->StartLoc = S;
3452     Op->EndLoc = S;
3453     return Op;
3454   }
3455 
3456   static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
3457                                                     SMLoc S) {
3458     auto Op = std::make_unique<ARMOperand>(k_CondCode);
3459     Op->CC.Val = CC;
3460     Op->StartLoc = S;
3461     Op->EndLoc = S;
3462     return Op;
3463   }
3464 
3465   static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC,
3466                                                    SMLoc S) {
3467     auto Op = std::make_unique<ARMOperand>(k_VPTPred);
3468     Op->VCC.Val = CC;
3469     Op->StartLoc = S;
3470     Op->EndLoc = S;
3471     return Op;
3472   }
3473 
3474   static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
3475     auto Op = std::make_unique<ARMOperand>(k_CoprocNum);
3476     Op->Cop.Val = CopVal;
3477     Op->StartLoc = S;
3478     Op->EndLoc = S;
3479     return Op;
3480   }
3481 
3482   static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
3483     auto Op = std::make_unique<ARMOperand>(k_CoprocReg);
3484     Op->Cop.Val = CopVal;
3485     Op->StartLoc = S;
3486     Op->EndLoc = S;
3487     return Op;
3488   }
3489 
3490   static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
3491                                                         SMLoc E) {
3492     auto Op = std::make_unique<ARMOperand>(k_CoprocOption);
3493     Op->Cop.Val = Val;
3494     Op->StartLoc = S;
3495     Op->EndLoc = E;
3496     return Op;
3497   }
3498 
3499   static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
3500     auto Op = std::make_unique<ARMOperand>(k_CCOut);
3501     Op->Reg.RegNum = RegNum;
3502     Op->StartLoc = S;
3503     Op->EndLoc = S;
3504     return Op;
3505   }
3506 
3507   static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
3508     auto Op = std::make_unique<ARMOperand>(k_Token);
3509     Op->Tok.Data = Str.data();
3510     Op->Tok.Length = Str.size();
3511     Op->StartLoc = S;
3512     Op->EndLoc = S;
3513     return Op;
3514   }
3515 
3516   static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
3517                                                SMLoc E) {
3518     auto Op = std::make_unique<ARMOperand>(k_Register);
3519     Op->Reg.RegNum = RegNum;
3520     Op->StartLoc = S;
3521     Op->EndLoc = E;
3522     return Op;
3523   }
3524 
3525   static std::unique_ptr<ARMOperand>
3526   CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3527                         unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
3528                         SMLoc E) {
3529     auto Op = std::make_unique<ARMOperand>(k_ShiftedRegister);
3530     Op->RegShiftedReg.ShiftTy = ShTy;
3531     Op->RegShiftedReg.SrcReg = SrcReg;
3532     Op->RegShiftedReg.ShiftReg = ShiftReg;
3533     Op->RegShiftedReg.ShiftImm = ShiftImm;
3534     Op->StartLoc = S;
3535     Op->EndLoc = E;
3536     return Op;
3537   }
3538 
3539   static std::unique_ptr<ARMOperand>
3540   CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
3541                          unsigned ShiftImm, SMLoc S, SMLoc E) {
3542     auto Op = std::make_unique<ARMOperand>(k_ShiftedImmediate);
3543     Op->RegShiftedImm.ShiftTy = ShTy;
3544     Op->RegShiftedImm.SrcReg = SrcReg;
3545     Op->RegShiftedImm.ShiftImm = ShiftImm;
3546     Op->StartLoc = S;
3547     Op->EndLoc = E;
3548     return Op;
3549   }
3550 
3551   static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
3552                                                       SMLoc S, SMLoc E) {
3553     auto Op = std::make_unique<ARMOperand>(k_ShifterImmediate);
3554     Op->ShifterImm.isASR = isASR;
3555     Op->ShifterImm.Imm = Imm;
3556     Op->StartLoc = S;
3557     Op->EndLoc = E;
3558     return Op;
3559   }
3560 
3561   static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3562                                                   SMLoc E) {
3563     auto Op = std::make_unique<ARMOperand>(k_RotateImmediate);
3564     Op->RotImm.Imm = Imm;
3565     Op->StartLoc = S;
3566     Op->EndLoc = E;
3567     return Op;
3568   }
3569 
3570   static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3571                                                   SMLoc S, SMLoc E) {
3572     auto Op = std::make_unique<ARMOperand>(k_ModifiedImmediate);
3573     Op->ModImm.Bits = Bits;
3574     Op->ModImm.Rot = Rot;
3575     Op->StartLoc = S;
3576     Op->EndLoc = E;
3577     return Op;
3578   }
3579 
3580   static std::unique_ptr<ARMOperand>
3581   CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3582     auto Op = std::make_unique<ARMOperand>(k_ConstantPoolImmediate);
3583     Op->Imm.Val = Val;
3584     Op->StartLoc = S;
3585     Op->EndLoc = E;
3586     return Op;
3587   }
3588 
3589   static std::unique_ptr<ARMOperand>
3590   CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3591     auto Op = std::make_unique<ARMOperand>(k_BitfieldDescriptor);
3592     Op->Bitfield.LSB = LSB;
3593     Op->Bitfield.Width = Width;
3594     Op->StartLoc = S;
3595     Op->EndLoc = E;
3596     return Op;
3597   }
3598 
3599   static std::unique_ptr<ARMOperand>
3600   CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3601                 SMLoc StartLoc, SMLoc EndLoc) {
3602     assert(Regs.size() > 0 && "RegList contains no registers?");
3603     KindTy Kind = k_RegisterList;
3604 
3605     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
3606             Regs.front().second)) {
3607       if (Regs.back().second == ARM::VPR)
3608         Kind = k_FPDRegisterListWithVPR;
3609       else
3610         Kind = k_DPRRegisterList;
3611     } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
3612                    Regs.front().second)) {
3613       if (Regs.back().second == ARM::VPR)
3614         Kind = k_FPSRegisterListWithVPR;
3615       else
3616         Kind = k_SPRRegisterList;
3617     }
3618 
3619     if (Kind == k_RegisterList && Regs.back().second == ARM::APSR)
3620       Kind = k_RegisterListWithAPSR;
3621 
3622     assert(std::is_sorted(Regs.begin(), Regs.end()) &&
3623            "Register list must be sorted by encoding");
3624 
3625     auto Op = std::make_unique<ARMOperand>(Kind);
3626     for (const auto &P : Regs)
3627       Op->Registers.push_back(P.second);
3628 
3629     Op->StartLoc = StartLoc;
3630     Op->EndLoc = EndLoc;
3631     return Op;
3632   }
3633 
3634   static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3635                                                       unsigned Count,
3636                                                       bool isDoubleSpaced,
3637                                                       SMLoc S, SMLoc E) {
3638     auto Op = std::make_unique<ARMOperand>(k_VectorList);
3639     Op->VectorList.RegNum = RegNum;
3640     Op->VectorList.Count = Count;
3641     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3642     Op->StartLoc = S;
3643     Op->EndLoc = E;
3644     return Op;
3645   }
3646 
3647   static std::unique_ptr<ARMOperand>
3648   CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3649                            SMLoc S, SMLoc E) {
3650     auto Op = std::make_unique<ARMOperand>(k_VectorListAllLanes);
3651     Op->VectorList.RegNum = RegNum;
3652     Op->VectorList.Count = Count;
3653     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3654     Op->StartLoc = S;
3655     Op->EndLoc = E;
3656     return Op;
3657   }
3658 
3659   static std::unique_ptr<ARMOperand>
3660   CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3661                           bool isDoubleSpaced, SMLoc S, SMLoc E) {
3662     auto Op = std::make_unique<ARMOperand>(k_VectorListIndexed);
3663     Op->VectorList.RegNum = RegNum;
3664     Op->VectorList.Count = Count;
3665     Op->VectorList.LaneIndex = Index;
3666     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3667     Op->StartLoc = S;
3668     Op->EndLoc = E;
3669     return Op;
3670   }
3671 
3672   static std::unique_ptr<ARMOperand>
3673   CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3674     auto Op = std::make_unique<ARMOperand>(k_VectorIndex);
3675     Op->VectorIndex.Val = Idx;
3676     Op->StartLoc = S;
3677     Op->EndLoc = E;
3678     return Op;
3679   }
3680 
3681   static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3682                                                SMLoc E) {
3683     auto Op = std::make_unique<ARMOperand>(k_Immediate);
3684     Op->Imm.Val = Val;
3685     Op->StartLoc = S;
3686     Op->EndLoc = E;
3687     return Op;
3688   }
3689 
3690   static std::unique_ptr<ARMOperand>
3691   CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
3692             unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
3693             unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
3694             SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3695     auto Op = std::make_unique<ARMOperand>(k_Memory);
3696     Op->Memory.BaseRegNum = BaseRegNum;
3697     Op->Memory.OffsetImm = OffsetImm;
3698     Op->Memory.OffsetRegNum = OffsetRegNum;
3699     Op->Memory.ShiftType = ShiftType;
3700     Op->Memory.ShiftImm = ShiftImm;
3701     Op->Memory.Alignment = Alignment;
3702     Op->Memory.isNegative = isNegative;
3703     Op->StartLoc = S;
3704     Op->EndLoc = E;
3705     Op->AlignmentLoc = AlignmentLoc;
3706     return Op;
3707   }
3708 
3709   static std::unique_ptr<ARMOperand>
3710   CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3711                    unsigned ShiftImm, SMLoc S, SMLoc E) {
3712     auto Op = std::make_unique<ARMOperand>(k_PostIndexRegister);
3713     Op->PostIdxReg.RegNum = RegNum;
3714     Op->PostIdxReg.isAdd = isAdd;
3715     Op->PostIdxReg.ShiftTy = ShiftTy;
3716     Op->PostIdxReg.ShiftImm = ShiftImm;
3717     Op->StartLoc = S;
3718     Op->EndLoc = E;
3719     return Op;
3720   }
3721 
3722   static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3723                                                          SMLoc S) {
3724     auto Op = std::make_unique<ARMOperand>(k_MemBarrierOpt);
3725     Op->MBOpt.Val = Opt;
3726     Op->StartLoc = S;
3727     Op->EndLoc = S;
3728     return Op;
3729   }
3730 
3731   static std::unique_ptr<ARMOperand>
3732   CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3733     auto Op = std::make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3734     Op->ISBOpt.Val = Opt;
3735     Op->StartLoc = S;
3736     Op->EndLoc = S;
3737     return Op;
3738   }
3739 
3740   static std::unique_ptr<ARMOperand>
3741   CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3742     auto Op = std::make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3743     Op->TSBOpt.Val = Opt;
3744     Op->StartLoc = S;
3745     Op->EndLoc = S;
3746     return Op;
3747   }
3748 
3749   static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3750                                                       SMLoc S) {
3751     auto Op = std::make_unique<ARMOperand>(k_ProcIFlags);
3752     Op->IFlags.Val = IFlags;
3753     Op->StartLoc = S;
3754     Op->EndLoc = S;
3755     return Op;
3756   }
3757 
3758   static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3759     auto Op = std::make_unique<ARMOperand>(k_MSRMask);
3760     Op->MMask.Val = MMask;
3761     Op->StartLoc = S;
3762     Op->EndLoc = S;
3763     return Op;
3764   }
3765 
3766   static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3767     auto Op = std::make_unique<ARMOperand>(k_BankedReg);
3768     Op->BankedReg.Val = Reg;
3769     Op->StartLoc = S;
3770     Op->EndLoc = S;
3771     return Op;
3772   }
3773 };
3774 
3775 } // end anonymous namespace.
3776 
3777 void ARMOperand::print(raw_ostream &OS) const {
3778   auto RegName = [](unsigned Reg) {
3779     if (Reg)
3780       return ARMInstPrinter::getRegisterName(Reg);
3781     else
3782       return "noreg";
3783   };
3784 
3785   switch (Kind) {
3786   case k_CondCode:
3787     OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3788     break;
3789   case k_VPTPred:
3790     OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">";
3791     break;
3792   case k_CCOut:
3793     OS << "<ccout " << RegName(getReg()) << ">";
3794     break;
3795   case k_ITCondMask: {
3796     static const char *const MaskStr[] = {
3797       "(invalid)", "(tttt)", "(ttt)", "(ttte)",
3798       "(tt)",      "(ttet)", "(tte)", "(ttee)",
3799       "(t)",       "(tett)", "(tet)", "(tete)",
3800       "(te)",      "(teet)", "(tee)", "(teee)",
3801     };
3802     assert((ITMask.Mask & 0xf) == ITMask.Mask);
3803     OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3804     break;
3805   }
3806   case k_CoprocNum:
3807     OS << "<coprocessor number: " << getCoproc() << ">";
3808     break;
3809   case k_CoprocReg:
3810     OS << "<coprocessor register: " << getCoproc() << ">";
3811     break;
3812   case k_CoprocOption:
3813     OS << "<coprocessor option: " << CoprocOption.Val << ">";
3814     break;
3815   case k_MSRMask:
3816     OS << "<mask: " << getMSRMask() << ">";
3817     break;
3818   case k_BankedReg:
3819     OS << "<banked reg: " << getBankedReg() << ">";
3820     break;
3821   case k_Immediate:
3822     OS << *getImm();
3823     break;
3824   case k_MemBarrierOpt:
3825     OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3826     break;
3827   case k_InstSyncBarrierOpt:
3828     OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3829     break;
3830   case k_TraceSyncBarrierOpt:
3831     OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3832     break;
3833   case k_Memory:
3834     OS << "<memory";
3835     if (Memory.BaseRegNum)
3836       OS << " base:" << RegName(Memory.BaseRegNum);
3837     if (Memory.OffsetImm)
3838       OS << " offset-imm:" << *Memory.OffsetImm;
3839     if (Memory.OffsetRegNum)
3840       OS << " offset-reg:" << (Memory.isNegative ? "-" : "")
3841          << RegName(Memory.OffsetRegNum);
3842     if (Memory.ShiftType != ARM_AM::no_shift) {
3843       OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType);
3844       OS << " shift-imm:" << Memory.ShiftImm;
3845     }
3846     if (Memory.Alignment)
3847       OS << " alignment:" << Memory.Alignment;
3848     OS << ">";
3849     break;
3850   case k_PostIndexRegister:
3851     OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3852        << RegName(PostIdxReg.RegNum);
3853     if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3854       OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3855          << PostIdxReg.ShiftImm;
3856     OS << ">";
3857     break;
3858   case k_ProcIFlags: {
3859     OS << "<ARM_PROC::";
3860     unsigned IFlags = getProcIFlags();
3861     for (int i=2; i >= 0; --i)
3862       if (IFlags & (1 << i))
3863         OS << ARM_PROC::IFlagsToString(1 << i);
3864     OS << ">";
3865     break;
3866   }
3867   case k_Register:
3868     OS << "<register " << RegName(getReg()) << ">";
3869     break;
3870   case k_ShifterImmediate:
3871     OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3872        << " #" << ShifterImm.Imm << ">";
3873     break;
3874   case k_ShiftedRegister:
3875     OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " "
3876        << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " "
3877        << RegName(RegShiftedReg.ShiftReg) << ">";
3878     break;
3879   case k_ShiftedImmediate:
3880     OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " "
3881        << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #"
3882        << RegShiftedImm.ShiftImm << ">";
3883     break;
3884   case k_RotateImmediate:
3885     OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
3886     break;
3887   case k_ModifiedImmediate:
3888     OS << "<mod_imm #" << ModImm.Bits << ", #"
3889        <<  ModImm.Rot << ")>";
3890     break;
3891   case k_ConstantPoolImmediate:
3892     OS << "<constant_pool_imm #" << *getConstantPoolImm();
3893     break;
3894   case k_BitfieldDescriptor:
3895     OS << "<bitfield " << "lsb: " << Bitfield.LSB
3896        << ", width: " << Bitfield.Width << ">";
3897     break;
3898   case k_RegisterList:
3899   case k_RegisterListWithAPSR:
3900   case k_DPRRegisterList:
3901   case k_SPRRegisterList:
3902   case k_FPSRegisterListWithVPR:
3903   case k_FPDRegisterListWithVPR: {
3904     OS << "<register_list ";
3905 
3906     const SmallVectorImpl<unsigned> &RegList = getRegList();
3907     for (SmallVectorImpl<unsigned>::const_iterator
3908            I = RegList.begin(), E = RegList.end(); I != E; ) {
3909       OS << RegName(*I);
3910       if (++I < E) OS << ", ";
3911     }
3912 
3913     OS << ">";
3914     break;
3915   }
3916   case k_VectorList:
3917     OS << "<vector_list " << VectorList.Count << " * "
3918        << RegName(VectorList.RegNum) << ">";
3919     break;
3920   case k_VectorListAllLanes:
3921     OS << "<vector_list(all lanes) " << VectorList.Count << " * "
3922        << RegName(VectorList.RegNum) << ">";
3923     break;
3924   case k_VectorListIndexed:
3925     OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
3926        << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">";
3927     break;
3928   case k_Token:
3929     OS << "'" << getToken() << "'";
3930     break;
3931   case k_VectorIndex:
3932     OS << "<vectorindex " << getVectorIndex() << ">";
3933     break;
3934   }
3935 }
3936 
3937 /// @name Auto-generated Match Functions
3938 /// {
3939 
3940 static unsigned MatchRegisterName(StringRef Name);
3941 
3942 /// }
3943 
3944 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
3945                                  SMLoc &StartLoc, SMLoc &EndLoc) {
3946   const AsmToken &Tok = getParser().getTok();
3947   StartLoc = Tok.getLoc();
3948   EndLoc = Tok.getEndLoc();
3949   RegNo = tryParseRegister();
3950 
3951   return (RegNo == (unsigned)-1);
3952 }
3953 
3954 OperandMatchResultTy ARMAsmParser::tryParseRegister(unsigned &RegNo,
3955                                                     SMLoc &StartLoc,
3956                                                     SMLoc &EndLoc) {
3957   if (ParseRegister(RegNo, StartLoc, EndLoc))
3958     return MatchOperand_NoMatch;
3959   return MatchOperand_Success;
3960 }
3961 
3962 /// Try to parse a register name.  The token must be an Identifier when called,
3963 /// and if it is a register name the token is eaten and the register number is
3964 /// returned.  Otherwise return -1.
3965 int ARMAsmParser::tryParseRegister() {
3966   MCAsmParser &Parser = getParser();
3967   const AsmToken &Tok = Parser.getTok();
3968   if (Tok.isNot(AsmToken::Identifier)) return -1;
3969 
3970   std::string lowerCase = Tok.getString().lower();
3971   unsigned RegNum = MatchRegisterName(lowerCase);
3972   if (!RegNum) {
3973     RegNum = StringSwitch<unsigned>(lowerCase)
3974       .Case("r13", ARM::SP)
3975       .Case("r14", ARM::LR)
3976       .Case("r15", ARM::PC)
3977       .Case("ip", ARM::R12)
3978       // Additional register name aliases for 'gas' compatibility.
3979       .Case("a1", ARM::R0)
3980       .Case("a2", ARM::R1)
3981       .Case("a3", ARM::R2)
3982       .Case("a4", ARM::R3)
3983       .Case("v1", ARM::R4)
3984       .Case("v2", ARM::R5)
3985       .Case("v3", ARM::R6)
3986       .Case("v4", ARM::R7)
3987       .Case("v5", ARM::R8)
3988       .Case("v6", ARM::R9)
3989       .Case("v7", ARM::R10)
3990       .Case("v8", ARM::R11)
3991       .Case("sb", ARM::R9)
3992       .Case("sl", ARM::R10)
3993       .Case("fp", ARM::R11)
3994       .Default(0);
3995   }
3996   if (!RegNum) {
3997     // Check for aliases registered via .req. Canonicalize to lower case.
3998     // That's more consistent since register names are case insensitive, and
3999     // it's how the original entry was passed in from MC/MCParser/AsmParser.
4000     StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
4001     // If no match, return failure.
4002     if (Entry == RegisterReqs.end())
4003       return -1;
4004     Parser.Lex(); // Eat identifier token.
4005     return Entry->getValue();
4006   }
4007 
4008   // Some FPUs only have 16 D registers, so D16-D31 are invalid
4009   if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
4010     return -1;
4011 
4012   Parser.Lex(); // Eat identifier token.
4013 
4014   return RegNum;
4015 }
4016 
4017 // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
4018 // If a recoverable error occurs, return 1. If an irrecoverable error
4019 // occurs, return -1. An irrecoverable error is one where tokens have been
4020 // consumed in the process of trying to parse the shifter (i.e., when it is
4021 // indeed a shifter operand, but malformed).
4022 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
4023   MCAsmParser &Parser = getParser();
4024   SMLoc S = Parser.getTok().getLoc();
4025   const AsmToken &Tok = Parser.getTok();
4026   if (Tok.isNot(AsmToken::Identifier))
4027     return -1;
4028 
4029   std::string lowerCase = Tok.getString().lower();
4030   ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
4031       .Case("asl", ARM_AM::lsl)
4032       .Case("lsl", ARM_AM::lsl)
4033       .Case("lsr", ARM_AM::lsr)
4034       .Case("asr", ARM_AM::asr)
4035       .Case("ror", ARM_AM::ror)
4036       .Case("rrx", ARM_AM::rrx)
4037       .Default(ARM_AM::no_shift);
4038 
4039   if (ShiftTy == ARM_AM::no_shift)
4040     return 1;
4041 
4042   Parser.Lex(); // Eat the operator.
4043 
4044   // The source register for the shift has already been added to the
4045   // operand list, so we need to pop it off and combine it into the shifted
4046   // register operand instead.
4047   std::unique_ptr<ARMOperand> PrevOp(
4048       (ARMOperand *)Operands.pop_back_val().release());
4049   if (!PrevOp->isReg())
4050     return Error(PrevOp->getStartLoc(), "shift must be of a register");
4051   int SrcReg = PrevOp->getReg();
4052 
4053   SMLoc EndLoc;
4054   int64_t Imm = 0;
4055   int ShiftReg = 0;
4056   if (ShiftTy == ARM_AM::rrx) {
4057     // RRX Doesn't have an explicit shift amount. The encoder expects
4058     // the shift register to be the same as the source register. Seems odd,
4059     // but OK.
4060     ShiftReg = SrcReg;
4061   } else {
4062     // Figure out if this is shifted by a constant or a register (for non-RRX).
4063     if (Parser.getTok().is(AsmToken::Hash) ||
4064         Parser.getTok().is(AsmToken::Dollar)) {
4065       Parser.Lex(); // Eat hash.
4066       SMLoc ImmLoc = Parser.getTok().getLoc();
4067       const MCExpr *ShiftExpr = nullptr;
4068       if (getParser().parseExpression(ShiftExpr, EndLoc)) {
4069         Error(ImmLoc, "invalid immediate shift value");
4070         return -1;
4071       }
4072       // The expression must be evaluatable as an immediate.
4073       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
4074       if (!CE) {
4075         Error(ImmLoc, "invalid immediate shift value");
4076         return -1;
4077       }
4078       // Range check the immediate.
4079       // lsl, ror: 0 <= imm <= 31
4080       // lsr, asr: 0 <= imm <= 32
4081       Imm = CE->getValue();
4082       if (Imm < 0 ||
4083           ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
4084           ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
4085         Error(ImmLoc, "immediate shift value out of range");
4086         return -1;
4087       }
4088       // shift by zero is a nop. Always send it through as lsl.
4089       // ('as' compatibility)
4090       if (Imm == 0)
4091         ShiftTy = ARM_AM::lsl;
4092     } else if (Parser.getTok().is(AsmToken::Identifier)) {
4093       SMLoc L = Parser.getTok().getLoc();
4094       EndLoc = Parser.getTok().getEndLoc();
4095       ShiftReg = tryParseRegister();
4096       if (ShiftReg == -1) {
4097         Error(L, "expected immediate or register in shift operand");
4098         return -1;
4099       }
4100     } else {
4101       Error(Parser.getTok().getLoc(),
4102             "expected immediate or register in shift operand");
4103       return -1;
4104     }
4105   }
4106 
4107   if (ShiftReg && ShiftTy != ARM_AM::rrx)
4108     Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
4109                                                          ShiftReg, Imm,
4110                                                          S, EndLoc));
4111   else
4112     Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
4113                                                           S, EndLoc));
4114 
4115   return 0;
4116 }
4117 
4118 /// Try to parse a register name.  The token must be an Identifier when called.
4119 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
4120 /// if there is a "writeback". 'true' if it's not a register.
4121 ///
4122 /// TODO this is likely to change to allow different register types and or to
4123 /// parse for a specific register type.
4124 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
4125   MCAsmParser &Parser = getParser();
4126   SMLoc RegStartLoc = Parser.getTok().getLoc();
4127   SMLoc RegEndLoc = Parser.getTok().getEndLoc();
4128   int RegNo = tryParseRegister();
4129   if (RegNo == -1)
4130     return true;
4131 
4132   Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
4133 
4134   const AsmToken &ExclaimTok = Parser.getTok();
4135   if (ExclaimTok.is(AsmToken::Exclaim)) {
4136     Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
4137                                                ExclaimTok.getLoc()));
4138     Parser.Lex(); // Eat exclaim token
4139     return false;
4140   }
4141 
4142   // Also check for an index operand. This is only legal for vector registers,
4143   // but that'll get caught OK in operand matching, so we don't need to
4144   // explicitly filter everything else out here.
4145   if (Parser.getTok().is(AsmToken::LBrac)) {
4146     SMLoc SIdx = Parser.getTok().getLoc();
4147     Parser.Lex(); // Eat left bracket token.
4148 
4149     const MCExpr *ImmVal;
4150     if (getParser().parseExpression(ImmVal))
4151       return true;
4152     const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
4153     if (!MCE)
4154       return TokError("immediate value expected for vector index");
4155 
4156     if (Parser.getTok().isNot(AsmToken::RBrac))
4157       return Error(Parser.getTok().getLoc(), "']' expected");
4158 
4159     SMLoc E = Parser.getTok().getEndLoc();
4160     Parser.Lex(); // Eat right bracket token.
4161 
4162     Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
4163                                                      SIdx, E,
4164                                                      getContext()));
4165   }
4166 
4167   return false;
4168 }
4169 
4170 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
4171 /// instruction with a symbolic operand name.
4172 /// We accept "crN" syntax for GAS compatibility.
4173 /// <operand-name> ::= <prefix><number>
4174 /// If CoprocOp is 'c', then:
4175 ///   <prefix> ::= c | cr
4176 /// If CoprocOp is 'p', then :
4177 ///   <prefix> ::= p
4178 /// <number> ::= integer in range [0, 15]
4179 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
4180   // Use the same layout as the tablegen'erated register name matcher. Ugly,
4181   // but efficient.
4182   if (Name.size() < 2 || Name[0] != CoprocOp)
4183     return -1;
4184   Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
4185 
4186   switch (Name.size()) {
4187   default: return -1;
4188   case 1:
4189     switch (Name[0]) {
4190     default:  return -1;
4191     case '0': return 0;
4192     case '1': return 1;
4193     case '2': return 2;
4194     case '3': return 3;
4195     case '4': return 4;
4196     case '5': return 5;
4197     case '6': return 6;
4198     case '7': return 7;
4199     case '8': return 8;
4200     case '9': return 9;
4201     }
4202   case 2:
4203     if (Name[0] != '1')
4204       return -1;
4205     switch (Name[1]) {
4206     default:  return -1;
4207     // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
4208     // However, old cores (v5/v6) did use them in that way.
4209     case '0': return 10;
4210     case '1': return 11;
4211     case '2': return 12;
4212     case '3': return 13;
4213     case '4': return 14;
4214     case '5': return 15;
4215     }
4216   }
4217 }
4218 
4219 /// parseITCondCode - Try to parse a condition code for an IT instruction.
4220 OperandMatchResultTy
4221 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
4222   MCAsmParser &Parser = getParser();
4223   SMLoc S = Parser.getTok().getLoc();
4224   const AsmToken &Tok = Parser.getTok();
4225   if (!Tok.is(AsmToken::Identifier))
4226     return MatchOperand_NoMatch;
4227   unsigned CC = ARMCondCodeFromString(Tok.getString());
4228   if (CC == ~0U)
4229     return MatchOperand_NoMatch;
4230   Parser.Lex(); // Eat the token.
4231 
4232   Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
4233 
4234   return MatchOperand_Success;
4235 }
4236 
4237 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
4238 /// token must be an Identifier when called, and if it is a coprocessor
4239 /// number, the token is eaten and the operand is added to the operand list.
4240 OperandMatchResultTy
4241 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
4242   MCAsmParser &Parser = getParser();
4243   SMLoc S = Parser.getTok().getLoc();
4244   const AsmToken &Tok = Parser.getTok();
4245   if (Tok.isNot(AsmToken::Identifier))
4246     return MatchOperand_NoMatch;
4247 
4248   int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p');
4249   if (Num == -1)
4250     return MatchOperand_NoMatch;
4251   if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits()))
4252     return MatchOperand_NoMatch;
4253 
4254   Parser.Lex(); // Eat identifier token.
4255   Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
4256   return MatchOperand_Success;
4257 }
4258 
4259 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
4260 /// token must be an Identifier when called, and if it is a coprocessor
4261 /// number, the token is eaten and the operand is added to the operand list.
4262 OperandMatchResultTy
4263 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
4264   MCAsmParser &Parser = getParser();
4265   SMLoc S = Parser.getTok().getLoc();
4266   const AsmToken &Tok = Parser.getTok();
4267   if (Tok.isNot(AsmToken::Identifier))
4268     return MatchOperand_NoMatch;
4269 
4270   int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c');
4271   if (Reg == -1)
4272     return MatchOperand_NoMatch;
4273 
4274   Parser.Lex(); // Eat identifier token.
4275   Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
4276   return MatchOperand_Success;
4277 }
4278 
4279 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
4280 /// coproc_option : '{' imm0_255 '}'
4281 OperandMatchResultTy
4282 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
4283   MCAsmParser &Parser = getParser();
4284   SMLoc S = Parser.getTok().getLoc();
4285 
4286   // If this isn't a '{', this isn't a coprocessor immediate operand.
4287   if (Parser.getTok().isNot(AsmToken::LCurly))
4288     return MatchOperand_NoMatch;
4289   Parser.Lex(); // Eat the '{'
4290 
4291   const MCExpr *Expr;
4292   SMLoc Loc = Parser.getTok().getLoc();
4293   if (getParser().parseExpression(Expr)) {
4294     Error(Loc, "illegal expression");
4295     return MatchOperand_ParseFail;
4296   }
4297   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4298   if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
4299     Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
4300     return MatchOperand_ParseFail;
4301   }
4302   int Val = CE->getValue();
4303 
4304   // Check for and consume the closing '}'
4305   if (Parser.getTok().isNot(AsmToken::RCurly))
4306     return MatchOperand_ParseFail;
4307   SMLoc E = Parser.getTok().getEndLoc();
4308   Parser.Lex(); // Eat the '}'
4309 
4310   Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
4311   return MatchOperand_Success;
4312 }
4313 
4314 // For register list parsing, we need to map from raw GPR register numbering
4315 // to the enumeration values. The enumeration values aren't sorted by
4316 // register number due to our using "sp", "lr" and "pc" as canonical names.
4317 static unsigned getNextRegister(unsigned Reg) {
4318   // If this is a GPR, we need to do it manually, otherwise we can rely
4319   // on the sort ordering of the enumeration since the other reg-classes
4320   // are sane.
4321   if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4322     return Reg + 1;
4323   switch(Reg) {
4324   default: llvm_unreachable("Invalid GPR number!");
4325   case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
4326   case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
4327   case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
4328   case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
4329   case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
4330   case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
4331   case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
4332   case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
4333   }
4334 }
4335 
4336 // Insert an <Encoding, Register> pair in an ordered vector. Return true on
4337 // success, or false, if duplicate encoding found.
4338 static bool
4339 insertNoDuplicates(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
4340                    unsigned Enc, unsigned Reg) {
4341   Regs.emplace_back(Enc, Reg);
4342   for (auto I = Regs.rbegin(), J = I + 1, E = Regs.rend(); J != E; ++I, ++J) {
4343     if (J->first == Enc) {
4344       Regs.erase(J.base());
4345       return false;
4346     }
4347     if (J->first < Enc)
4348       break;
4349     std::swap(*I, *J);
4350   }
4351   return true;
4352 }
4353 
4354 /// Parse a register list.
4355 bool ARMAsmParser::parseRegisterList(OperandVector &Operands,
4356                                      bool EnforceOrder) {
4357   MCAsmParser &Parser = getParser();
4358   if (Parser.getTok().isNot(AsmToken::LCurly))
4359     return TokError("Token is not a Left Curly Brace");
4360   SMLoc S = Parser.getTok().getLoc();
4361   Parser.Lex(); // Eat '{' token.
4362   SMLoc RegLoc = Parser.getTok().getLoc();
4363 
4364   // Check the first register in the list to see what register class
4365   // this is a list of.
4366   int Reg = tryParseRegister();
4367   if (Reg == -1)
4368     return Error(RegLoc, "register expected");
4369 
4370   // The reglist instructions have at most 16 registers, so reserve
4371   // space for that many.
4372   int EReg = 0;
4373   SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
4374 
4375   // Allow Q regs and just interpret them as the two D sub-registers.
4376   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4377     Reg = getDRegFromQReg(Reg);
4378     EReg = MRI->getEncodingValue(Reg);
4379     Registers.emplace_back(EReg, Reg);
4380     ++Reg;
4381   }
4382   const MCRegisterClass *RC;
4383   if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4384     RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
4385   else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
4386     RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
4387   else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
4388     RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
4389   else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4390     RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4391   else
4392     return Error(RegLoc, "invalid register in register list");
4393 
4394   // Store the register.
4395   EReg = MRI->getEncodingValue(Reg);
4396   Registers.emplace_back(EReg, Reg);
4397 
4398   // This starts immediately after the first register token in the list,
4399   // so we can see either a comma or a minus (range separator) as a legal
4400   // next token.
4401   while (Parser.getTok().is(AsmToken::Comma) ||
4402          Parser.getTok().is(AsmToken::Minus)) {
4403     if (Parser.getTok().is(AsmToken::Minus)) {
4404       Parser.Lex(); // Eat the minus.
4405       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4406       int EndReg = tryParseRegister();
4407       if (EndReg == -1)
4408         return Error(AfterMinusLoc, "register expected");
4409       // Allow Q regs and just interpret them as the two D sub-registers.
4410       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4411         EndReg = getDRegFromQReg(EndReg) + 1;
4412       // If the register is the same as the start reg, there's nothing
4413       // more to do.
4414       if (Reg == EndReg)
4415         continue;
4416       // The register must be in the same register class as the first.
4417       if (!RC->contains(EndReg))
4418         return Error(AfterMinusLoc, "invalid register in register list");
4419       // Ranges must go from low to high.
4420       if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
4421         return Error(AfterMinusLoc, "bad range in register list");
4422 
4423       // Add all the registers in the range to the register list.
4424       while (Reg != EndReg) {
4425         Reg = getNextRegister(Reg);
4426         EReg = MRI->getEncodingValue(Reg);
4427         if (!insertNoDuplicates(Registers, EReg, Reg)) {
4428           Warning(AfterMinusLoc, StringRef("duplicated register (") +
4429                                      ARMInstPrinter::getRegisterName(Reg) +
4430                                      ") in register list");
4431         }
4432       }
4433       continue;
4434     }
4435     Parser.Lex(); // Eat the comma.
4436     RegLoc = Parser.getTok().getLoc();
4437     int OldReg = Reg;
4438     const AsmToken RegTok = Parser.getTok();
4439     Reg = tryParseRegister();
4440     if (Reg == -1)
4441       return Error(RegLoc, "register expected");
4442     // Allow Q regs and just interpret them as the two D sub-registers.
4443     bool isQReg = false;
4444     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4445       Reg = getDRegFromQReg(Reg);
4446       isQReg = true;
4447     }
4448     if (!RC->contains(Reg) &&
4449         RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() &&
4450         ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) {
4451       // switch the register classes, as GPRwithAPSRnospRegClassID is a partial
4452       // subset of GPRRegClassId except it contains APSR as well.
4453       RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID];
4454     }
4455     if (Reg == ARM::VPR &&
4456         (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] ||
4457          RC == &ARMMCRegisterClasses[ARM::DPRRegClassID] ||
4458          RC == &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID])) {
4459       RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID];
4460       EReg = MRI->getEncodingValue(Reg);
4461       if (!insertNoDuplicates(Registers, EReg, Reg)) {
4462         Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4463                             ") in register list");
4464       }
4465       continue;
4466     }
4467     // The register must be in the same register class as the first.
4468     if (!RC->contains(Reg))
4469       return Error(RegLoc, "invalid register in register list");
4470     // In most cases, the list must be monotonically increasing. An
4471     // exception is CLRM, which is order-independent anyway, so
4472     // there's no potential for confusion if you write clrm {r2,r1}
4473     // instead of clrm {r1,r2}.
4474     if (EnforceOrder &&
4475         MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
4476       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
4477         Warning(RegLoc, "register list not in ascending order");
4478       else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg))
4479         return Error(RegLoc, "register list not in ascending order");
4480     }
4481     // VFP register lists must also be contiguous.
4482     if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
4483         RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] &&
4484         Reg != OldReg + 1)
4485       return Error(RegLoc, "non-contiguous register range");
4486     EReg = MRI->getEncodingValue(Reg);
4487     if (!insertNoDuplicates(Registers, EReg, Reg)) {
4488       Warning(RegLoc, "duplicated register (" + RegTok.getString() +
4489                           ") in register list");
4490     }
4491     if (isQReg) {
4492       EReg = MRI->getEncodingValue(++Reg);
4493       Registers.emplace_back(EReg, Reg);
4494     }
4495   }
4496 
4497   if (Parser.getTok().isNot(AsmToken::RCurly))
4498     return Error(Parser.getTok().getLoc(), "'}' expected");
4499   SMLoc E = Parser.getTok().getEndLoc();
4500   Parser.Lex(); // Eat '}' token.
4501 
4502   // Push the register list operand.
4503   Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
4504 
4505   // The ARM system instruction variants for LDM/STM have a '^' token here.
4506   if (Parser.getTok().is(AsmToken::Caret)) {
4507     Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
4508     Parser.Lex(); // Eat '^' token.
4509   }
4510 
4511   return false;
4512 }
4513 
4514 // Helper function to parse the lane index for vector lists.
4515 OperandMatchResultTy ARMAsmParser::
4516 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
4517   MCAsmParser &Parser = getParser();
4518   Index = 0; // Always return a defined index value.
4519   if (Parser.getTok().is(AsmToken::LBrac)) {
4520     Parser.Lex(); // Eat the '['.
4521     if (Parser.getTok().is(AsmToken::RBrac)) {
4522       // "Dn[]" is the 'all lanes' syntax.
4523       LaneKind = AllLanes;
4524       EndLoc = Parser.getTok().getEndLoc();
4525       Parser.Lex(); // Eat the ']'.
4526       return MatchOperand_Success;
4527     }
4528 
4529     // There's an optional '#' token here. Normally there wouldn't be, but
4530     // inline assemble puts one in, and it's friendly to accept that.
4531     if (Parser.getTok().is(AsmToken::Hash))
4532       Parser.Lex(); // Eat '#' or '$'.
4533 
4534     const MCExpr *LaneIndex;
4535     SMLoc Loc = Parser.getTok().getLoc();
4536     if (getParser().parseExpression(LaneIndex)) {
4537       Error(Loc, "illegal expression");
4538       return MatchOperand_ParseFail;
4539     }
4540     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
4541     if (!CE) {
4542       Error(Loc, "lane index must be empty or an integer");
4543       return MatchOperand_ParseFail;
4544     }
4545     if (Parser.getTok().isNot(AsmToken::RBrac)) {
4546       Error(Parser.getTok().getLoc(), "']' expected");
4547       return MatchOperand_ParseFail;
4548     }
4549     EndLoc = Parser.getTok().getEndLoc();
4550     Parser.Lex(); // Eat the ']'.
4551     int64_t Val = CE->getValue();
4552 
4553     // FIXME: Make this range check context sensitive for .8, .16, .32.
4554     if (Val < 0 || Val > 7) {
4555       Error(Parser.getTok().getLoc(), "lane index out of range");
4556       return MatchOperand_ParseFail;
4557     }
4558     Index = Val;
4559     LaneKind = IndexedLane;
4560     return MatchOperand_Success;
4561   }
4562   LaneKind = NoLanes;
4563   return MatchOperand_Success;
4564 }
4565 
4566 // parse a vector register list
4567 OperandMatchResultTy
4568 ARMAsmParser::parseVectorList(OperandVector &Operands) {
4569   MCAsmParser &Parser = getParser();
4570   VectorLaneTy LaneKind;
4571   unsigned LaneIndex;
4572   SMLoc S = Parser.getTok().getLoc();
4573   // As an extension (to match gas), support a plain D register or Q register
4574   // (without encosing curly braces) as a single or double entry list,
4575   // respectively.
4576   if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) {
4577     SMLoc E = Parser.getTok().getEndLoc();
4578     int Reg = tryParseRegister();
4579     if (Reg == -1)
4580       return MatchOperand_NoMatch;
4581     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
4582       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4583       if (Res != MatchOperand_Success)
4584         return Res;
4585       switch (LaneKind) {
4586       case NoLanes:
4587         Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
4588         break;
4589       case AllLanes:
4590         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
4591                                                                 S, E));
4592         break;
4593       case IndexedLane:
4594         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
4595                                                                LaneIndex,
4596                                                                false, S, E));
4597         break;
4598       }
4599       return MatchOperand_Success;
4600     }
4601     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4602       Reg = getDRegFromQReg(Reg);
4603       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
4604       if (Res != MatchOperand_Success)
4605         return Res;
4606       switch (LaneKind) {
4607       case NoLanes:
4608         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4609                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4610         Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
4611         break;
4612       case AllLanes:
4613         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
4614                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
4615         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
4616                                                                 S, E));
4617         break;
4618       case IndexedLane:
4619         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
4620                                                                LaneIndex,
4621                                                                false, S, E));
4622         break;
4623       }
4624       return MatchOperand_Success;
4625     }
4626     Error(S, "vector register expected");
4627     return MatchOperand_ParseFail;
4628   }
4629 
4630   if (Parser.getTok().isNot(AsmToken::LCurly))
4631     return MatchOperand_NoMatch;
4632 
4633   Parser.Lex(); // Eat '{' token.
4634   SMLoc RegLoc = Parser.getTok().getLoc();
4635 
4636   int Reg = tryParseRegister();
4637   if (Reg == -1) {
4638     Error(RegLoc, "register expected");
4639     return MatchOperand_ParseFail;
4640   }
4641   unsigned Count = 1;
4642   int Spacing = 0;
4643   unsigned FirstReg = Reg;
4644 
4645   if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4646       Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected");
4647       return MatchOperand_ParseFail;
4648   }
4649   // The list is of D registers, but we also allow Q regs and just interpret
4650   // them as the two D sub-registers.
4651   else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4652     FirstReg = Reg = getDRegFromQReg(Reg);
4653     Spacing = 1; // double-spacing requires explicit D registers, otherwise
4654                  // it's ambiguous with four-register single spaced.
4655     ++Reg;
4656     ++Count;
4657   }
4658 
4659   SMLoc E;
4660   if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4661     return MatchOperand_ParseFail;
4662 
4663   while (Parser.getTok().is(AsmToken::Comma) ||
4664          Parser.getTok().is(AsmToken::Minus)) {
4665     if (Parser.getTok().is(AsmToken::Minus)) {
4666       if (!Spacing)
4667         Spacing = 1; // Register range implies a single spaced list.
4668       else if (Spacing == 2) {
4669         Error(Parser.getTok().getLoc(),
4670               "sequential registers in double spaced list");
4671         return MatchOperand_ParseFail;
4672       }
4673       Parser.Lex(); // Eat the minus.
4674       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4675       int EndReg = tryParseRegister();
4676       if (EndReg == -1) {
4677         Error(AfterMinusLoc, "register expected");
4678         return MatchOperand_ParseFail;
4679       }
4680       // Allow Q regs and just interpret them as the two D sub-registers.
4681       if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4682         EndReg = getDRegFromQReg(EndReg) + 1;
4683       // If the register is the same as the start reg, there's nothing
4684       // more to do.
4685       if (Reg == EndReg)
4686         continue;
4687       // The register must be in the same register class as the first.
4688       if ((hasMVE() &&
4689            !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) ||
4690           (!hasMVE() &&
4691            !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) {
4692         Error(AfterMinusLoc, "invalid register in register list");
4693         return MatchOperand_ParseFail;
4694       }
4695       // Ranges must go from low to high.
4696       if (Reg > EndReg) {
4697         Error(AfterMinusLoc, "bad range in register list");
4698         return MatchOperand_ParseFail;
4699       }
4700       // Parse the lane specifier if present.
4701       VectorLaneTy NextLaneKind;
4702       unsigned NextLaneIndex;
4703       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4704           MatchOperand_Success)
4705         return MatchOperand_ParseFail;
4706       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4707         Error(AfterMinusLoc, "mismatched lane index in register list");
4708         return MatchOperand_ParseFail;
4709       }
4710 
4711       // Add all the registers in the range to the register list.
4712       Count += EndReg - Reg;
4713       Reg = EndReg;
4714       continue;
4715     }
4716     Parser.Lex(); // Eat the comma.
4717     RegLoc = Parser.getTok().getLoc();
4718     int OldReg = Reg;
4719     Reg = tryParseRegister();
4720     if (Reg == -1) {
4721       Error(RegLoc, "register expected");
4722       return MatchOperand_ParseFail;
4723     }
4724 
4725     if (hasMVE()) {
4726       if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) {
4727         Error(RegLoc, "vector register in range Q0-Q7 expected");
4728         return MatchOperand_ParseFail;
4729       }
4730       Spacing = 1;
4731     }
4732     // vector register lists must be contiguous.
4733     // It's OK to use the enumeration values directly here rather, as the
4734     // VFP register classes have the enum sorted properly.
4735     //
4736     // The list is of D registers, but we also allow Q regs and just interpret
4737     // them as the two D sub-registers.
4738     else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4739       if (!Spacing)
4740         Spacing = 1; // Register range implies a single spaced list.
4741       else if (Spacing == 2) {
4742         Error(RegLoc,
4743               "invalid register in double-spaced list (must be 'D' register')");
4744         return MatchOperand_ParseFail;
4745       }
4746       Reg = getDRegFromQReg(Reg);
4747       if (Reg != OldReg + 1) {
4748         Error(RegLoc, "non-contiguous register range");
4749         return MatchOperand_ParseFail;
4750       }
4751       ++Reg;
4752       Count += 2;
4753       // Parse the lane specifier if present.
4754       VectorLaneTy NextLaneKind;
4755       unsigned NextLaneIndex;
4756       SMLoc LaneLoc = Parser.getTok().getLoc();
4757       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4758           MatchOperand_Success)
4759         return MatchOperand_ParseFail;
4760       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4761         Error(LaneLoc, "mismatched lane index in register list");
4762         return MatchOperand_ParseFail;
4763       }
4764       continue;
4765     }
4766     // Normal D register.
4767     // Figure out the register spacing (single or double) of the list if
4768     // we don't know it already.
4769     if (!Spacing)
4770       Spacing = 1 + (Reg == OldReg + 2);
4771 
4772     // Just check that it's contiguous and keep going.
4773     if (Reg != OldReg + Spacing) {
4774       Error(RegLoc, "non-contiguous register range");
4775       return MatchOperand_ParseFail;
4776     }
4777     ++Count;
4778     // Parse the lane specifier if present.
4779     VectorLaneTy NextLaneKind;
4780     unsigned NextLaneIndex;
4781     SMLoc EndLoc = Parser.getTok().getLoc();
4782     if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4783       return MatchOperand_ParseFail;
4784     if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4785       Error(EndLoc, "mismatched lane index in register list");
4786       return MatchOperand_ParseFail;
4787     }
4788   }
4789 
4790   if (Parser.getTok().isNot(AsmToken::RCurly)) {
4791     Error(Parser.getTok().getLoc(), "'}' expected");
4792     return MatchOperand_ParseFail;
4793   }
4794   E = Parser.getTok().getEndLoc();
4795   Parser.Lex(); // Eat '}' token.
4796 
4797   switch (LaneKind) {
4798   case NoLanes:
4799   case AllLanes: {
4800     // Two-register operands have been converted to the
4801     // composite register classes.
4802     if (Count == 2 && !hasMVE()) {
4803       const MCRegisterClass *RC = (Spacing == 1) ?
4804         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4805         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4806       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4807     }
4808     auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList :
4809                    ARMOperand::CreateVectorListAllLanes);
4810     Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E));
4811     break;
4812   }
4813   case IndexedLane:
4814     Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4815                                                            LaneIndex,
4816                                                            (Spacing == 2),
4817                                                            S, E));
4818     break;
4819   }
4820   return MatchOperand_Success;
4821 }
4822 
4823 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4824 OperandMatchResultTy
4825 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4826   MCAsmParser &Parser = getParser();
4827   SMLoc S = Parser.getTok().getLoc();
4828   const AsmToken &Tok = Parser.getTok();
4829   unsigned Opt;
4830 
4831   if (Tok.is(AsmToken::Identifier)) {
4832     StringRef OptStr = Tok.getString();
4833 
4834     Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4835       .Case("sy",    ARM_MB::SY)
4836       .Case("st",    ARM_MB::ST)
4837       .Case("ld",    ARM_MB::LD)
4838       .Case("sh",    ARM_MB::ISH)
4839       .Case("ish",   ARM_MB::ISH)
4840       .Case("shst",  ARM_MB::ISHST)
4841       .Case("ishst", ARM_MB::ISHST)
4842       .Case("ishld", ARM_MB::ISHLD)
4843       .Case("nsh",   ARM_MB::NSH)
4844       .Case("un",    ARM_MB::NSH)
4845       .Case("nshst", ARM_MB::NSHST)
4846       .Case("nshld", ARM_MB::NSHLD)
4847       .Case("unst",  ARM_MB::NSHST)
4848       .Case("osh",   ARM_MB::OSH)
4849       .Case("oshst", ARM_MB::OSHST)
4850       .Case("oshld", ARM_MB::OSHLD)
4851       .Default(~0U);
4852 
4853     // ishld, oshld, nshld and ld are only available from ARMv8.
4854     if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4855                         Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4856       Opt = ~0U;
4857 
4858     if (Opt == ~0U)
4859       return MatchOperand_NoMatch;
4860 
4861     Parser.Lex(); // Eat identifier token.
4862   } else if (Tok.is(AsmToken::Hash) ||
4863              Tok.is(AsmToken::Dollar) ||
4864              Tok.is(AsmToken::Integer)) {
4865     if (Parser.getTok().isNot(AsmToken::Integer))
4866       Parser.Lex(); // Eat '#' or '$'.
4867     SMLoc Loc = Parser.getTok().getLoc();
4868 
4869     const MCExpr *MemBarrierID;
4870     if (getParser().parseExpression(MemBarrierID)) {
4871       Error(Loc, "illegal expression");
4872       return MatchOperand_ParseFail;
4873     }
4874 
4875     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
4876     if (!CE) {
4877       Error(Loc, "constant expression expected");
4878       return MatchOperand_ParseFail;
4879     }
4880 
4881     int Val = CE->getValue();
4882     if (Val & ~0xf) {
4883       Error(Loc, "immediate value out of range");
4884       return MatchOperand_ParseFail;
4885     }
4886 
4887     Opt = ARM_MB::RESERVED_0 + Val;
4888   } else
4889     return MatchOperand_ParseFail;
4890 
4891   Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
4892   return MatchOperand_Success;
4893 }
4894 
4895 OperandMatchResultTy
4896 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
4897   MCAsmParser &Parser = getParser();
4898   SMLoc S = Parser.getTok().getLoc();
4899   const AsmToken &Tok = Parser.getTok();
4900 
4901   if (Tok.isNot(AsmToken::Identifier))
4902      return MatchOperand_NoMatch;
4903 
4904   if (!Tok.getString().equals_lower("csync"))
4905     return MatchOperand_NoMatch;
4906 
4907   Parser.Lex(); // Eat identifier token.
4908 
4909   Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
4910   return MatchOperand_Success;
4911 }
4912 
4913 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
4914 OperandMatchResultTy
4915 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
4916   MCAsmParser &Parser = getParser();
4917   SMLoc S = Parser.getTok().getLoc();
4918   const AsmToken &Tok = Parser.getTok();
4919   unsigned Opt;
4920 
4921   if (Tok.is(AsmToken::Identifier)) {
4922     StringRef OptStr = Tok.getString();
4923 
4924     if (OptStr.equals_lower("sy"))
4925       Opt = ARM_ISB::SY;
4926     else
4927       return MatchOperand_NoMatch;
4928 
4929     Parser.Lex(); // Eat identifier token.
4930   } else if (Tok.is(AsmToken::Hash) ||
4931              Tok.is(AsmToken::Dollar) ||
4932              Tok.is(AsmToken::Integer)) {
4933     if (Parser.getTok().isNot(AsmToken::Integer))
4934       Parser.Lex(); // Eat '#' or '$'.
4935     SMLoc Loc = Parser.getTok().getLoc();
4936 
4937     const MCExpr *ISBarrierID;
4938     if (getParser().parseExpression(ISBarrierID)) {
4939       Error(Loc, "illegal expression");
4940       return MatchOperand_ParseFail;
4941     }
4942 
4943     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
4944     if (!CE) {
4945       Error(Loc, "constant expression expected");
4946       return MatchOperand_ParseFail;
4947     }
4948 
4949     int Val = CE->getValue();
4950     if (Val & ~0xf) {
4951       Error(Loc, "immediate value out of range");
4952       return MatchOperand_ParseFail;
4953     }
4954 
4955     Opt = ARM_ISB::RESERVED_0 + Val;
4956   } else
4957     return MatchOperand_ParseFail;
4958 
4959   Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
4960           (ARM_ISB::InstSyncBOpt)Opt, S));
4961   return MatchOperand_Success;
4962 }
4963 
4964 
4965 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
4966 OperandMatchResultTy
4967 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
4968   MCAsmParser &Parser = getParser();
4969   SMLoc S = Parser.getTok().getLoc();
4970   const AsmToken &Tok = Parser.getTok();
4971   if (!Tok.is(AsmToken::Identifier))
4972     return MatchOperand_NoMatch;
4973   StringRef IFlagsStr = Tok.getString();
4974 
4975   // An iflags string of "none" is interpreted to mean that none of the AIF
4976   // bits are set.  Not a terribly useful instruction, but a valid encoding.
4977   unsigned IFlags = 0;
4978   if (IFlagsStr != "none") {
4979         for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
4980       unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
4981         .Case("a", ARM_PROC::A)
4982         .Case("i", ARM_PROC::I)
4983         .Case("f", ARM_PROC::F)
4984         .Default(~0U);
4985 
4986       // If some specific iflag is already set, it means that some letter is
4987       // present more than once, this is not acceptable.
4988       if (Flag == ~0U || (IFlags & Flag))
4989         return MatchOperand_NoMatch;
4990 
4991       IFlags |= Flag;
4992     }
4993   }
4994 
4995   Parser.Lex(); // Eat identifier token.
4996   Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
4997   return MatchOperand_Success;
4998 }
4999 
5000 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
5001 OperandMatchResultTy
5002 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
5003   MCAsmParser &Parser = getParser();
5004   SMLoc S = Parser.getTok().getLoc();
5005   const AsmToken &Tok = Parser.getTok();
5006 
5007   if (Tok.is(AsmToken::Integer)) {
5008     int64_t Val = Tok.getIntVal();
5009     if (Val > 255 || Val < 0) {
5010       return MatchOperand_NoMatch;
5011     }
5012     unsigned SYSmvalue = Val & 0xFF;
5013     Parser.Lex();
5014     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
5015     return MatchOperand_Success;
5016   }
5017 
5018   if (!Tok.is(AsmToken::Identifier))
5019     return MatchOperand_NoMatch;
5020   StringRef Mask = Tok.getString();
5021 
5022   if (isMClass()) {
5023     auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
5024     if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
5025       return MatchOperand_NoMatch;
5026 
5027     unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
5028 
5029     Parser.Lex(); // Eat identifier token.
5030     Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
5031     return MatchOperand_Success;
5032   }
5033 
5034   // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
5035   size_t Start = 0, Next = Mask.find('_');
5036   StringRef Flags = "";
5037   std::string SpecReg = Mask.slice(Start, Next).lower();
5038   if (Next != StringRef::npos)
5039     Flags = Mask.slice(Next+1, Mask.size());
5040 
5041   // FlagsVal contains the complete mask:
5042   // 3-0: Mask
5043   // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5044   unsigned FlagsVal = 0;
5045 
5046   if (SpecReg == "apsr") {
5047     FlagsVal = StringSwitch<unsigned>(Flags)
5048     .Case("nzcvq",  0x8) // same as CPSR_f
5049     .Case("g",      0x4) // same as CPSR_s
5050     .Case("nzcvqg", 0xc) // same as CPSR_fs
5051     .Default(~0U);
5052 
5053     if (FlagsVal == ~0U) {
5054       if (!Flags.empty())
5055         return MatchOperand_NoMatch;
5056       else
5057         FlagsVal = 8; // No flag
5058     }
5059   } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
5060     // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
5061     if (Flags == "all" || Flags == "")
5062       Flags = "fc";
5063     for (int i = 0, e = Flags.size(); i != e; ++i) {
5064       unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
5065       .Case("c", 1)
5066       .Case("x", 2)
5067       .Case("s", 4)
5068       .Case("f", 8)
5069       .Default(~0U);
5070 
5071       // If some specific flag is already set, it means that some letter is
5072       // present more than once, this is not acceptable.
5073       if (Flag == ~0U || (FlagsVal & Flag))
5074         return MatchOperand_NoMatch;
5075       FlagsVal |= Flag;
5076     }
5077   } else // No match for special register.
5078     return MatchOperand_NoMatch;
5079 
5080   // Special register without flags is NOT equivalent to "fc" flags.
5081   // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
5082   // two lines would enable gas compatibility at the expense of breaking
5083   // round-tripping.
5084   //
5085   // if (!FlagsVal)
5086   //  FlagsVal = 0x9;
5087 
5088   // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
5089   if (SpecReg == "spsr")
5090     FlagsVal |= 16;
5091 
5092   Parser.Lex(); // Eat identifier token.
5093   Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
5094   return MatchOperand_Success;
5095 }
5096 
5097 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
5098 /// use in the MRS/MSR instructions added to support virtualization.
5099 OperandMatchResultTy
5100 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
5101   MCAsmParser &Parser = getParser();
5102   SMLoc S = Parser.getTok().getLoc();
5103   const AsmToken &Tok = Parser.getTok();
5104   if (!Tok.is(AsmToken::Identifier))
5105     return MatchOperand_NoMatch;
5106   StringRef RegName = Tok.getString();
5107 
5108   auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
5109   if (!TheReg)
5110     return MatchOperand_NoMatch;
5111   unsigned Encoding = TheReg->Encoding;
5112 
5113   Parser.Lex(); // Eat identifier token.
5114   Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
5115   return MatchOperand_Success;
5116 }
5117 
5118 OperandMatchResultTy
5119 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
5120                           int High) {
5121   MCAsmParser &Parser = getParser();
5122   const AsmToken &Tok = Parser.getTok();
5123   if (Tok.isNot(AsmToken::Identifier)) {
5124     Error(Parser.getTok().getLoc(), Op + " operand expected.");
5125     return MatchOperand_ParseFail;
5126   }
5127   StringRef ShiftName = Tok.getString();
5128   std::string LowerOp = Op.lower();
5129   std::string UpperOp = Op.upper();
5130   if (ShiftName != LowerOp && ShiftName != UpperOp) {
5131     Error(Parser.getTok().getLoc(), Op + " operand expected.");
5132     return MatchOperand_ParseFail;
5133   }
5134   Parser.Lex(); // Eat shift type token.
5135 
5136   // There must be a '#' and a shift amount.
5137   if (Parser.getTok().isNot(AsmToken::Hash) &&
5138       Parser.getTok().isNot(AsmToken::Dollar)) {
5139     Error(Parser.getTok().getLoc(), "'#' expected");
5140     return MatchOperand_ParseFail;
5141   }
5142   Parser.Lex(); // Eat hash token.
5143 
5144   const MCExpr *ShiftAmount;
5145   SMLoc Loc = Parser.getTok().getLoc();
5146   SMLoc EndLoc;
5147   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5148     Error(Loc, "illegal expression");
5149     return MatchOperand_ParseFail;
5150   }
5151   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5152   if (!CE) {
5153     Error(Loc, "constant expression expected");
5154     return MatchOperand_ParseFail;
5155   }
5156   int Val = CE->getValue();
5157   if (Val < Low || Val > High) {
5158     Error(Loc, "immediate value out of range");
5159     return MatchOperand_ParseFail;
5160   }
5161 
5162   Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
5163 
5164   return MatchOperand_Success;
5165 }
5166 
5167 OperandMatchResultTy
5168 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
5169   MCAsmParser &Parser = getParser();
5170   const AsmToken &Tok = Parser.getTok();
5171   SMLoc S = Tok.getLoc();
5172   if (Tok.isNot(AsmToken::Identifier)) {
5173     Error(S, "'be' or 'le' operand expected");
5174     return MatchOperand_ParseFail;
5175   }
5176   int Val = StringSwitch<int>(Tok.getString().lower())
5177     .Case("be", 1)
5178     .Case("le", 0)
5179     .Default(-1);
5180   Parser.Lex(); // Eat the token.
5181 
5182   if (Val == -1) {
5183     Error(S, "'be' or 'le' operand expected");
5184     return MatchOperand_ParseFail;
5185   }
5186   Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
5187                                                                   getContext()),
5188                                            S, Tok.getEndLoc()));
5189   return MatchOperand_Success;
5190 }
5191 
5192 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
5193 /// instructions. Legal values are:
5194 ///     lsl #n  'n' in [0,31]
5195 ///     asr #n  'n' in [1,32]
5196 ///             n == 32 encoded as n == 0.
5197 OperandMatchResultTy
5198 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
5199   MCAsmParser &Parser = getParser();
5200   const AsmToken &Tok = Parser.getTok();
5201   SMLoc S = Tok.getLoc();
5202   if (Tok.isNot(AsmToken::Identifier)) {
5203     Error(S, "shift operator 'asr' or 'lsl' expected");
5204     return MatchOperand_ParseFail;
5205   }
5206   StringRef ShiftName = Tok.getString();
5207   bool isASR;
5208   if (ShiftName == "lsl" || ShiftName == "LSL")
5209     isASR = false;
5210   else if (ShiftName == "asr" || ShiftName == "ASR")
5211     isASR = true;
5212   else {
5213     Error(S, "shift operator 'asr' or 'lsl' expected");
5214     return MatchOperand_ParseFail;
5215   }
5216   Parser.Lex(); // Eat the operator.
5217 
5218   // A '#' and a shift amount.
5219   if (Parser.getTok().isNot(AsmToken::Hash) &&
5220       Parser.getTok().isNot(AsmToken::Dollar)) {
5221     Error(Parser.getTok().getLoc(), "'#' expected");
5222     return MatchOperand_ParseFail;
5223   }
5224   Parser.Lex(); // Eat hash token.
5225   SMLoc ExLoc = Parser.getTok().getLoc();
5226 
5227   const MCExpr *ShiftAmount;
5228   SMLoc EndLoc;
5229   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5230     Error(ExLoc, "malformed shift expression");
5231     return MatchOperand_ParseFail;
5232   }
5233   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5234   if (!CE) {
5235     Error(ExLoc, "shift amount must be an immediate");
5236     return MatchOperand_ParseFail;
5237   }
5238 
5239   int64_t Val = CE->getValue();
5240   if (isASR) {
5241     // Shift amount must be in [1,32]
5242     if (Val < 1 || Val > 32) {
5243       Error(ExLoc, "'asr' shift amount must be in range [1,32]");
5244       return MatchOperand_ParseFail;
5245     }
5246     // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
5247     if (isThumb() && Val == 32) {
5248       Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
5249       return MatchOperand_ParseFail;
5250     }
5251     if (Val == 32) Val = 0;
5252   } else {
5253     // Shift amount must be in [1,32]
5254     if (Val < 0 || Val > 31) {
5255       Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
5256       return MatchOperand_ParseFail;
5257     }
5258   }
5259 
5260   Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
5261 
5262   return MatchOperand_Success;
5263 }
5264 
5265 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
5266 /// of instructions. Legal values are:
5267 ///     ror #n  'n' in {0, 8, 16, 24}
5268 OperandMatchResultTy
5269 ARMAsmParser::parseRotImm(OperandVector &Operands) {
5270   MCAsmParser &Parser = getParser();
5271   const AsmToken &Tok = Parser.getTok();
5272   SMLoc S = Tok.getLoc();
5273   if (Tok.isNot(AsmToken::Identifier))
5274     return MatchOperand_NoMatch;
5275   StringRef ShiftName = Tok.getString();
5276   if (ShiftName != "ror" && ShiftName != "ROR")
5277     return MatchOperand_NoMatch;
5278   Parser.Lex(); // Eat the operator.
5279 
5280   // A '#' and a rotate amount.
5281   if (Parser.getTok().isNot(AsmToken::Hash) &&
5282       Parser.getTok().isNot(AsmToken::Dollar)) {
5283     Error(Parser.getTok().getLoc(), "'#' expected");
5284     return MatchOperand_ParseFail;
5285   }
5286   Parser.Lex(); // Eat hash token.
5287   SMLoc ExLoc = Parser.getTok().getLoc();
5288 
5289   const MCExpr *ShiftAmount;
5290   SMLoc EndLoc;
5291   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
5292     Error(ExLoc, "malformed rotate expression");
5293     return MatchOperand_ParseFail;
5294   }
5295   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
5296   if (!CE) {
5297     Error(ExLoc, "rotate amount must be an immediate");
5298     return MatchOperand_ParseFail;
5299   }
5300 
5301   int64_t Val = CE->getValue();
5302   // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
5303   // normally, zero is represented in asm by omitting the rotate operand
5304   // entirely.
5305   if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
5306     Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
5307     return MatchOperand_ParseFail;
5308   }
5309 
5310   Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
5311 
5312   return MatchOperand_Success;
5313 }
5314 
5315 OperandMatchResultTy
5316 ARMAsmParser::parseModImm(OperandVector &Operands) {
5317   MCAsmParser &Parser = getParser();
5318   MCAsmLexer &Lexer = getLexer();
5319   int64_t Imm1, Imm2;
5320 
5321   SMLoc S = Parser.getTok().getLoc();
5322 
5323   // 1) A mod_imm operand can appear in the place of a register name:
5324   //   add r0, #mod_imm
5325   //   add r0, r0, #mod_imm
5326   // to correctly handle the latter, we bail out as soon as we see an
5327   // identifier.
5328   //
5329   // 2) Similarly, we do not want to parse into complex operands:
5330   //   mov r0, #mod_imm
5331   //   mov r0, :lower16:(_foo)
5332   if (Parser.getTok().is(AsmToken::Identifier) ||
5333       Parser.getTok().is(AsmToken::Colon))
5334     return MatchOperand_NoMatch;
5335 
5336   // Hash (dollar) is optional as per the ARMARM
5337   if (Parser.getTok().is(AsmToken::Hash) ||
5338       Parser.getTok().is(AsmToken::Dollar)) {
5339     // Avoid parsing into complex operands (#:)
5340     if (Lexer.peekTok().is(AsmToken::Colon))
5341       return MatchOperand_NoMatch;
5342 
5343     // Eat the hash (dollar)
5344     Parser.Lex();
5345   }
5346 
5347   SMLoc Sx1, Ex1;
5348   Sx1 = Parser.getTok().getLoc();
5349   const MCExpr *Imm1Exp;
5350   if (getParser().parseExpression(Imm1Exp, Ex1)) {
5351     Error(Sx1, "malformed expression");
5352     return MatchOperand_ParseFail;
5353   }
5354 
5355   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
5356 
5357   if (CE) {
5358     // Immediate must fit within 32-bits
5359     Imm1 = CE->getValue();
5360     int Enc = ARM_AM::getSOImmVal(Imm1);
5361     if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
5362       // We have a match!
5363       Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
5364                                                   (Enc & 0xF00) >> 7,
5365                                                   Sx1, Ex1));
5366       return MatchOperand_Success;
5367     }
5368 
5369     // We have parsed an immediate which is not for us, fallback to a plain
5370     // immediate. This can happen for instruction aliases. For an example,
5371     // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
5372     // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
5373     // instruction with a mod_imm operand. The alias is defined such that the
5374     // parser method is shared, that's why we have to do this here.
5375     if (Parser.getTok().is(AsmToken::EndOfStatement)) {
5376       Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5377       return MatchOperand_Success;
5378     }
5379   } else {
5380     // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
5381     // MCFixup). Fallback to a plain immediate.
5382     Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
5383     return MatchOperand_Success;
5384   }
5385 
5386   // From this point onward, we expect the input to be a (#bits, #rot) pair
5387   if (Parser.getTok().isNot(AsmToken::Comma)) {
5388     Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
5389     return MatchOperand_ParseFail;
5390   }
5391 
5392   if (Imm1 & ~0xFF) {
5393     Error(Sx1, "immediate operand must a number in the range [0, 255]");
5394     return MatchOperand_ParseFail;
5395   }
5396 
5397   // Eat the comma
5398   Parser.Lex();
5399 
5400   // Repeat for #rot
5401   SMLoc Sx2, Ex2;
5402   Sx2 = Parser.getTok().getLoc();
5403 
5404   // Eat the optional hash (dollar)
5405   if (Parser.getTok().is(AsmToken::Hash) ||
5406       Parser.getTok().is(AsmToken::Dollar))
5407     Parser.Lex();
5408 
5409   const MCExpr *Imm2Exp;
5410   if (getParser().parseExpression(Imm2Exp, Ex2)) {
5411     Error(Sx2, "malformed expression");
5412     return MatchOperand_ParseFail;
5413   }
5414 
5415   CE = dyn_cast<MCConstantExpr>(Imm2Exp);
5416 
5417   if (CE) {
5418     Imm2 = CE->getValue();
5419     if (!(Imm2 & ~0x1E)) {
5420       // We have a match!
5421       Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
5422       return MatchOperand_Success;
5423     }
5424     Error(Sx2, "immediate operand must an even number in the range [0, 30]");
5425     return MatchOperand_ParseFail;
5426   } else {
5427     Error(Sx2, "constant expression expected");
5428     return MatchOperand_ParseFail;
5429   }
5430 }
5431 
5432 OperandMatchResultTy
5433 ARMAsmParser::parseBitfield(OperandVector &Operands) {
5434   MCAsmParser &Parser = getParser();
5435   SMLoc S = Parser.getTok().getLoc();
5436   // The bitfield descriptor is really two operands, the LSB and the width.
5437   if (Parser.getTok().isNot(AsmToken::Hash) &&
5438       Parser.getTok().isNot(AsmToken::Dollar)) {
5439     Error(Parser.getTok().getLoc(), "'#' expected");
5440     return MatchOperand_ParseFail;
5441   }
5442   Parser.Lex(); // Eat hash token.
5443 
5444   const MCExpr *LSBExpr;
5445   SMLoc E = Parser.getTok().getLoc();
5446   if (getParser().parseExpression(LSBExpr)) {
5447     Error(E, "malformed immediate expression");
5448     return MatchOperand_ParseFail;
5449   }
5450   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
5451   if (!CE) {
5452     Error(E, "'lsb' operand must be an immediate");
5453     return MatchOperand_ParseFail;
5454   }
5455 
5456   int64_t LSB = CE->getValue();
5457   // The LSB must be in the range [0,31]
5458   if (LSB < 0 || LSB > 31) {
5459     Error(E, "'lsb' operand must be in the range [0,31]");
5460     return MatchOperand_ParseFail;
5461   }
5462   E = Parser.getTok().getLoc();
5463 
5464   // Expect another immediate operand.
5465   if (Parser.getTok().isNot(AsmToken::Comma)) {
5466     Error(Parser.getTok().getLoc(), "too few operands");
5467     return MatchOperand_ParseFail;
5468   }
5469   Parser.Lex(); // Eat hash token.
5470   if (Parser.getTok().isNot(AsmToken::Hash) &&
5471       Parser.getTok().isNot(AsmToken::Dollar)) {
5472     Error(Parser.getTok().getLoc(), "'#' expected");
5473     return MatchOperand_ParseFail;
5474   }
5475   Parser.Lex(); // Eat hash token.
5476 
5477   const MCExpr *WidthExpr;
5478   SMLoc EndLoc;
5479   if (getParser().parseExpression(WidthExpr, EndLoc)) {
5480     Error(E, "malformed immediate expression");
5481     return MatchOperand_ParseFail;
5482   }
5483   CE = dyn_cast<MCConstantExpr>(WidthExpr);
5484   if (!CE) {
5485     Error(E, "'width' operand must be an immediate");
5486     return MatchOperand_ParseFail;
5487   }
5488 
5489   int64_t Width = CE->getValue();
5490   // The LSB must be in the range [1,32-lsb]
5491   if (Width < 1 || Width > 32 - LSB) {
5492     Error(E, "'width' operand must be in the range [1,32-lsb]");
5493     return MatchOperand_ParseFail;
5494   }
5495 
5496   Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
5497 
5498   return MatchOperand_Success;
5499 }
5500 
5501 OperandMatchResultTy
5502 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
5503   // Check for a post-index addressing register operand. Specifically:
5504   // postidx_reg := '+' register {, shift}
5505   //              | '-' register {, shift}
5506   //              | register {, shift}
5507 
5508   // This method must return MatchOperand_NoMatch without consuming any tokens
5509   // in the case where there is no match, as other alternatives take other
5510   // parse methods.
5511   MCAsmParser &Parser = getParser();
5512   AsmToken Tok = Parser.getTok();
5513   SMLoc S = Tok.getLoc();
5514   bool haveEaten = false;
5515   bool isAdd = true;
5516   if (Tok.is(AsmToken::Plus)) {
5517     Parser.Lex(); // Eat the '+' token.
5518     haveEaten = true;
5519   } else if (Tok.is(AsmToken::Minus)) {
5520     Parser.Lex(); // Eat the '-' token.
5521     isAdd = false;
5522     haveEaten = true;
5523   }
5524 
5525   SMLoc E = Parser.getTok().getEndLoc();
5526   int Reg = tryParseRegister();
5527   if (Reg == -1) {
5528     if (!haveEaten)
5529       return MatchOperand_NoMatch;
5530     Error(Parser.getTok().getLoc(), "register expected");
5531     return MatchOperand_ParseFail;
5532   }
5533 
5534   ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
5535   unsigned ShiftImm = 0;
5536   if (Parser.getTok().is(AsmToken::Comma)) {
5537     Parser.Lex(); // Eat the ','.
5538     if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
5539       return MatchOperand_ParseFail;
5540 
5541     // FIXME: Only approximates end...may include intervening whitespace.
5542     E = Parser.getTok().getLoc();
5543   }
5544 
5545   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
5546                                                   ShiftImm, S, E));
5547 
5548   return MatchOperand_Success;
5549 }
5550 
5551 OperandMatchResultTy
5552 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
5553   // Check for a post-index addressing register operand. Specifically:
5554   // am3offset := '+' register
5555   //              | '-' register
5556   //              | register
5557   //              | # imm
5558   //              | # + imm
5559   //              | # - imm
5560 
5561   // This method must return MatchOperand_NoMatch without consuming any tokens
5562   // in the case where there is no match, as other alternatives take other
5563   // parse methods.
5564   MCAsmParser &Parser = getParser();
5565   AsmToken Tok = Parser.getTok();
5566   SMLoc S = Tok.getLoc();
5567 
5568   // Do immediates first, as we always parse those if we have a '#'.
5569   if (Parser.getTok().is(AsmToken::Hash) ||
5570       Parser.getTok().is(AsmToken::Dollar)) {
5571     Parser.Lex(); // Eat '#' or '$'.
5572     // Explicitly look for a '-', as we need to encode negative zero
5573     // differently.
5574     bool isNegative = Parser.getTok().is(AsmToken::Minus);
5575     const MCExpr *Offset;
5576     SMLoc E;
5577     if (getParser().parseExpression(Offset, E))
5578       return MatchOperand_ParseFail;
5579     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5580     if (!CE) {
5581       Error(S, "constant expression expected");
5582       return MatchOperand_ParseFail;
5583     }
5584     // Negative zero is encoded as the flag value
5585     // std::numeric_limits<int32_t>::min().
5586     int32_t Val = CE->getValue();
5587     if (isNegative && Val == 0)
5588       Val = std::numeric_limits<int32_t>::min();
5589 
5590     Operands.push_back(
5591       ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
5592 
5593     return MatchOperand_Success;
5594   }
5595 
5596   bool haveEaten = false;
5597   bool isAdd = true;
5598   if (Tok.is(AsmToken::Plus)) {
5599     Parser.Lex(); // Eat the '+' token.
5600     haveEaten = true;
5601   } else if (Tok.is(AsmToken::Minus)) {
5602     Parser.Lex(); // Eat the '-' token.
5603     isAdd = false;
5604     haveEaten = true;
5605   }
5606 
5607   Tok = Parser.getTok();
5608   int Reg = tryParseRegister();
5609   if (Reg == -1) {
5610     if (!haveEaten)
5611       return MatchOperand_NoMatch;
5612     Error(Tok.getLoc(), "register expected");
5613     return MatchOperand_ParseFail;
5614   }
5615 
5616   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
5617                                                   0, S, Tok.getEndLoc()));
5618 
5619   return MatchOperand_Success;
5620 }
5621 
5622 /// Convert parsed operands to MCInst.  Needed here because this instruction
5623 /// only has two register operands, but multiplication is commutative so
5624 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
5625 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
5626                                     const OperandVector &Operands) {
5627   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
5628   ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
5629   // If we have a three-operand form, make sure to set Rn to be the operand
5630   // that isn't the same as Rd.
5631   unsigned RegOp = 4;
5632   if (Operands.size() == 6 &&
5633       ((ARMOperand &)*Operands[4]).getReg() ==
5634           ((ARMOperand &)*Operands[3]).getReg())
5635     RegOp = 5;
5636   ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
5637   Inst.addOperand(Inst.getOperand(0));
5638   ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
5639 }
5640 
5641 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
5642                                     const OperandVector &Operands) {
5643   int CondOp = -1, ImmOp = -1;
5644   switch(Inst.getOpcode()) {
5645     case ARM::tB:
5646     case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
5647 
5648     case ARM::t2B:
5649     case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
5650 
5651     default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
5652   }
5653   // first decide whether or not the branch should be conditional
5654   // by looking at it's location relative to an IT block
5655   if(inITBlock()) {
5656     // inside an IT block we cannot have any conditional branches. any
5657     // such instructions needs to be converted to unconditional form
5658     switch(Inst.getOpcode()) {
5659       case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5660       case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5661     }
5662   } else {
5663     // outside IT blocks we can only have unconditional branches with AL
5664     // condition code or conditional branches with non-AL condition code
5665     unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5666     switch(Inst.getOpcode()) {
5667       case ARM::tB:
5668       case ARM::tBcc:
5669         Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5670         break;
5671       case ARM::t2B:
5672       case ARM::t2Bcc:
5673         Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5674         break;
5675     }
5676   }
5677 
5678   // now decide on encoding size based on branch target range
5679   switch(Inst.getOpcode()) {
5680     // classify tB as either t2B or t1B based on range of immediate operand
5681     case ARM::tB: {
5682       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5683       if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5684         Inst.setOpcode(ARM::t2B);
5685       break;
5686     }
5687     // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5688     case ARM::tBcc: {
5689       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5690       if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5691         Inst.setOpcode(ARM::t2Bcc);
5692       break;
5693     }
5694   }
5695   ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5696   ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5697 }
5698 
5699 void ARMAsmParser::cvtMVEVMOVQtoDReg(
5700   MCInst &Inst, const OperandVector &Operands) {
5701 
5702   // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2
5703   assert(Operands.size() == 8);
5704 
5705   ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt
5706   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2
5707   ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd
5708   ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx
5709   // skip second copy of Qd in Operands[6]
5710   ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2
5711   ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code
5712 }
5713 
5714 /// Parse an ARM memory expression, return false if successful else return true
5715 /// or an error.  The first token must be a '[' when called.
5716 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5717   MCAsmParser &Parser = getParser();
5718   SMLoc S, E;
5719   if (Parser.getTok().isNot(AsmToken::LBrac))
5720     return TokError("Token is not a Left Bracket");
5721   S = Parser.getTok().getLoc();
5722   Parser.Lex(); // Eat left bracket token.
5723 
5724   const AsmToken &BaseRegTok = Parser.getTok();
5725   int BaseRegNum = tryParseRegister();
5726   if (BaseRegNum == -1)
5727     return Error(BaseRegTok.getLoc(), "register expected");
5728 
5729   // The next token must either be a comma, a colon or a closing bracket.
5730   const AsmToken &Tok = Parser.getTok();
5731   if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5732       !Tok.is(AsmToken::RBrac))
5733     return Error(Tok.getLoc(), "malformed memory operand");
5734 
5735   if (Tok.is(AsmToken::RBrac)) {
5736     E = Tok.getEndLoc();
5737     Parser.Lex(); // Eat right bracket token.
5738 
5739     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5740                                              ARM_AM::no_shift, 0, 0, false,
5741                                              S, E));
5742 
5743     // If there's a pre-indexing writeback marker, '!', just add it as a token
5744     // operand. It's rather odd, but syntactically valid.
5745     if (Parser.getTok().is(AsmToken::Exclaim)) {
5746       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5747       Parser.Lex(); // Eat the '!'.
5748     }
5749 
5750     return false;
5751   }
5752 
5753   assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5754          "Lost colon or comma in memory operand?!");
5755   if (Tok.is(AsmToken::Comma)) {
5756     Parser.Lex(); // Eat the comma.
5757   }
5758 
5759   // If we have a ':', it's an alignment specifier.
5760   if (Parser.getTok().is(AsmToken::Colon)) {
5761     Parser.Lex(); // Eat the ':'.
5762     E = Parser.getTok().getLoc();
5763     SMLoc AlignmentLoc = Tok.getLoc();
5764 
5765     const MCExpr *Expr;
5766     if (getParser().parseExpression(Expr))
5767      return true;
5768 
5769     // The expression has to be a constant. Memory references with relocations
5770     // don't come through here, as they use the <label> forms of the relevant
5771     // instructions.
5772     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5773     if (!CE)
5774       return Error (E, "constant expression expected");
5775 
5776     unsigned Align = 0;
5777     switch (CE->getValue()) {
5778     default:
5779       return Error(E,
5780                    "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5781     case 16:  Align = 2; break;
5782     case 32:  Align = 4; break;
5783     case 64:  Align = 8; break;
5784     case 128: Align = 16; break;
5785     case 256: Align = 32; break;
5786     }
5787 
5788     // Now we should have the closing ']'
5789     if (Parser.getTok().isNot(AsmToken::RBrac))
5790       return Error(Parser.getTok().getLoc(), "']' expected");
5791     E = Parser.getTok().getEndLoc();
5792     Parser.Lex(); // Eat right bracket token.
5793 
5794     // Don't worry about range checking the value here. That's handled by
5795     // the is*() predicates.
5796     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5797                                              ARM_AM::no_shift, 0, Align,
5798                                              false, S, E, AlignmentLoc));
5799 
5800     // If there's a pre-indexing writeback marker, '!', just add it as a token
5801     // operand.
5802     if (Parser.getTok().is(AsmToken::Exclaim)) {
5803       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5804       Parser.Lex(); // Eat the '!'.
5805     }
5806 
5807     return false;
5808   }
5809 
5810   // If we have a '#' or '$', it's an immediate offset, else assume it's a
5811   // register offset. Be friendly and also accept a plain integer or expression
5812   // (without a leading hash) for gas compatibility.
5813   if (Parser.getTok().is(AsmToken::Hash) ||
5814       Parser.getTok().is(AsmToken::Dollar) ||
5815       Parser.getTok().is(AsmToken::LParen) ||
5816       Parser.getTok().is(AsmToken::Integer)) {
5817     if (Parser.getTok().is(AsmToken::Hash) ||
5818         Parser.getTok().is(AsmToken::Dollar))
5819       Parser.Lex(); // Eat '#' or '$'
5820     E = Parser.getTok().getLoc();
5821 
5822     bool isNegative = getParser().getTok().is(AsmToken::Minus);
5823     const MCExpr *Offset;
5824     if (getParser().parseExpression(Offset))
5825      return true;
5826 
5827     // The expression has to be a constant. Memory references with relocations
5828     // don't come through here, as they use the <label> forms of the relevant
5829     // instructions.
5830     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5831     if (!CE)
5832       return Error (E, "constant expression expected");
5833 
5834     // If the constant was #-0, represent it as
5835     // std::numeric_limits<int32_t>::min().
5836     int32_t Val = CE->getValue();
5837     if (isNegative && Val == 0)
5838       CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5839                                   getContext());
5840 
5841     // Now we should have the closing ']'
5842     if (Parser.getTok().isNot(AsmToken::RBrac))
5843       return Error(Parser.getTok().getLoc(), "']' expected");
5844     E = Parser.getTok().getEndLoc();
5845     Parser.Lex(); // Eat right bracket token.
5846 
5847     // Don't worry about range checking the value here. That's handled by
5848     // the is*() predicates.
5849     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
5850                                              ARM_AM::no_shift, 0, 0,
5851                                              false, S, E));
5852 
5853     // If there's a pre-indexing writeback marker, '!', just add it as a token
5854     // operand.
5855     if (Parser.getTok().is(AsmToken::Exclaim)) {
5856       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5857       Parser.Lex(); // Eat the '!'.
5858     }
5859 
5860     return false;
5861   }
5862 
5863   // The register offset is optionally preceded by a '+' or '-'
5864   bool isNegative = false;
5865   if (Parser.getTok().is(AsmToken::Minus)) {
5866     isNegative = true;
5867     Parser.Lex(); // Eat the '-'.
5868   } else if (Parser.getTok().is(AsmToken::Plus)) {
5869     // Nothing to do.
5870     Parser.Lex(); // Eat the '+'.
5871   }
5872 
5873   E = Parser.getTok().getLoc();
5874   int OffsetRegNum = tryParseRegister();
5875   if (OffsetRegNum == -1)
5876     return Error(E, "register expected");
5877 
5878   // If there's a shift operator, handle it.
5879   ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
5880   unsigned ShiftImm = 0;
5881   if (Parser.getTok().is(AsmToken::Comma)) {
5882     Parser.Lex(); // Eat the ','.
5883     if (parseMemRegOffsetShift(ShiftType, ShiftImm))
5884       return true;
5885   }
5886 
5887   // Now we should have the closing ']'
5888   if (Parser.getTok().isNot(AsmToken::RBrac))
5889     return Error(Parser.getTok().getLoc(), "']' expected");
5890   E = Parser.getTok().getEndLoc();
5891   Parser.Lex(); // Eat right bracket token.
5892 
5893   Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
5894                                            ShiftType, ShiftImm, 0, isNegative,
5895                                            S, E));
5896 
5897   // If there's a pre-indexing writeback marker, '!', just add it as a token
5898   // operand.
5899   if (Parser.getTok().is(AsmToken::Exclaim)) {
5900     Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5901     Parser.Lex(); // Eat the '!'.
5902   }
5903 
5904   return false;
5905 }
5906 
5907 /// parseMemRegOffsetShift - one of these two:
5908 ///   ( lsl | lsr | asr | ror ) , # shift_amount
5909 ///   rrx
5910 /// return true if it parses a shift otherwise it returns false.
5911 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
5912                                           unsigned &Amount) {
5913   MCAsmParser &Parser = getParser();
5914   SMLoc Loc = Parser.getTok().getLoc();
5915   const AsmToken &Tok = Parser.getTok();
5916   if (Tok.isNot(AsmToken::Identifier))
5917     return Error(Loc, "illegal shift operator");
5918   StringRef ShiftName = Tok.getString();
5919   if (ShiftName == "lsl" || ShiftName == "LSL" ||
5920       ShiftName == "asl" || ShiftName == "ASL")
5921     St = ARM_AM::lsl;
5922   else if (ShiftName == "lsr" || ShiftName == "LSR")
5923     St = ARM_AM::lsr;
5924   else if (ShiftName == "asr" || ShiftName == "ASR")
5925     St = ARM_AM::asr;
5926   else if (ShiftName == "ror" || ShiftName == "ROR")
5927     St = ARM_AM::ror;
5928   else if (ShiftName == "rrx" || ShiftName == "RRX")
5929     St = ARM_AM::rrx;
5930   else if (ShiftName == "uxtw" || ShiftName == "UXTW")
5931     St = ARM_AM::uxtw;
5932   else
5933     return Error(Loc, "illegal shift operator");
5934   Parser.Lex(); // Eat shift type token.
5935 
5936   // rrx stands alone.
5937   Amount = 0;
5938   if (St != ARM_AM::rrx) {
5939     Loc = Parser.getTok().getLoc();
5940     // A '#' and a shift amount.
5941     const AsmToken &HashTok = Parser.getTok();
5942     if (HashTok.isNot(AsmToken::Hash) &&
5943         HashTok.isNot(AsmToken::Dollar))
5944       return Error(HashTok.getLoc(), "'#' expected");
5945     Parser.Lex(); // Eat hash token.
5946 
5947     const MCExpr *Expr;
5948     if (getParser().parseExpression(Expr))
5949       return true;
5950     // Range check the immediate.
5951     // lsl, ror: 0 <= imm <= 31
5952     // lsr, asr: 0 <= imm <= 32
5953     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5954     if (!CE)
5955       return Error(Loc, "shift amount must be an immediate");
5956     int64_t Imm = CE->getValue();
5957     if (Imm < 0 ||
5958         ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
5959         ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
5960       return Error(Loc, "immediate shift value out of range");
5961     // If <ShiftTy> #0, turn it into a no_shift.
5962     if (Imm == 0)
5963       St = ARM_AM::lsl;
5964     // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
5965     if (Imm == 32)
5966       Imm = 0;
5967     Amount = Imm;
5968   }
5969 
5970   return false;
5971 }
5972 
5973 /// parseFPImm - A floating point immediate expression operand.
5974 OperandMatchResultTy
5975 ARMAsmParser::parseFPImm(OperandVector &Operands) {
5976   MCAsmParser &Parser = getParser();
5977   // Anything that can accept a floating point constant as an operand
5978   // needs to go through here, as the regular parseExpression is
5979   // integer only.
5980   //
5981   // This routine still creates a generic Immediate operand, containing
5982   // a bitcast of the 64-bit floating point value. The various operands
5983   // that accept floats can check whether the value is valid for them
5984   // via the standard is*() predicates.
5985 
5986   SMLoc S = Parser.getTok().getLoc();
5987 
5988   if (Parser.getTok().isNot(AsmToken::Hash) &&
5989       Parser.getTok().isNot(AsmToken::Dollar))
5990     return MatchOperand_NoMatch;
5991 
5992   // Disambiguate the VMOV forms that can accept an FP immediate.
5993   // vmov.f32 <sreg>, #imm
5994   // vmov.f64 <dreg>, #imm
5995   // vmov.f32 <dreg>, #imm  @ vector f32x2
5996   // vmov.f32 <qreg>, #imm  @ vector f32x4
5997   //
5998   // There are also the NEON VMOV instructions which expect an
5999   // integer constant. Make sure we don't try to parse an FPImm
6000   // for these:
6001   // vmov.i{8|16|32|64} <dreg|qreg>, #imm
6002   ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
6003   bool isVmovf = TyOp.isToken() &&
6004                  (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
6005                   TyOp.getToken() == ".f16");
6006   ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
6007   bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
6008                                          Mnemonic.getToken() == "fconsts");
6009   if (!(isVmovf || isFconst))
6010     return MatchOperand_NoMatch;
6011 
6012   Parser.Lex(); // Eat '#' or '$'.
6013 
6014   // Handle negation, as that still comes through as a separate token.
6015   bool isNegative = false;
6016   if (Parser.getTok().is(AsmToken::Minus)) {
6017     isNegative = true;
6018     Parser.Lex();
6019   }
6020   const AsmToken &Tok = Parser.getTok();
6021   SMLoc Loc = Tok.getLoc();
6022   if (Tok.is(AsmToken::Real) && isVmovf) {
6023     APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
6024     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
6025     // If we had a '-' in front, toggle the sign bit.
6026     IntVal ^= (uint64_t)isNegative << 31;
6027     Parser.Lex(); // Eat the token.
6028     Operands.push_back(ARMOperand::CreateImm(
6029           MCConstantExpr::create(IntVal, getContext()),
6030           S, Parser.getTok().getLoc()));
6031     return MatchOperand_Success;
6032   }
6033   // Also handle plain integers. Instructions which allow floating point
6034   // immediates also allow a raw encoded 8-bit value.
6035   if (Tok.is(AsmToken::Integer) && isFconst) {
6036     int64_t Val = Tok.getIntVal();
6037     Parser.Lex(); // Eat the token.
6038     if (Val > 255 || Val < 0) {
6039       Error(Loc, "encoded floating point value out of range");
6040       return MatchOperand_ParseFail;
6041     }
6042     float RealVal = ARM_AM::getFPImmFloat(Val);
6043     Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
6044 
6045     Operands.push_back(ARMOperand::CreateImm(
6046         MCConstantExpr::create(Val, getContext()), S,
6047         Parser.getTok().getLoc()));
6048     return MatchOperand_Success;
6049   }
6050 
6051   Error(Loc, "invalid floating point immediate");
6052   return MatchOperand_ParseFail;
6053 }
6054 
6055 /// Parse a arm instruction operand.  For now this parses the operand regardless
6056 /// of the mnemonic.
6057 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
6058   MCAsmParser &Parser = getParser();
6059   SMLoc S, E;
6060 
6061   // Check if the current operand has a custom associated parser, if so, try to
6062   // custom parse the operand, or fallback to the general approach.
6063   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
6064   if (ResTy == MatchOperand_Success)
6065     return false;
6066   // If there wasn't a custom match, try the generic matcher below. Otherwise,
6067   // there was a match, but an error occurred, in which case, just return that
6068   // the operand parsing failed.
6069   if (ResTy == MatchOperand_ParseFail)
6070     return true;
6071 
6072   switch (getLexer().getKind()) {
6073   default:
6074     Error(Parser.getTok().getLoc(), "unexpected token in operand");
6075     return true;
6076   case AsmToken::Identifier: {
6077     // If we've seen a branch mnemonic, the next operand must be a label.  This
6078     // is true even if the label is a register name.  So "br r1" means branch to
6079     // label "r1".
6080     bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
6081     if (!ExpectLabel) {
6082       if (!tryParseRegisterWithWriteBack(Operands))
6083         return false;
6084       int Res = tryParseShiftRegister(Operands);
6085       if (Res == 0) // success
6086         return false;
6087       else if (Res == -1) // irrecoverable error
6088         return true;
6089       // If this is VMRS, check for the apsr_nzcv operand.
6090       if (Mnemonic == "vmrs" &&
6091           Parser.getTok().getString().equals_lower("apsr_nzcv")) {
6092         S = Parser.getTok().getLoc();
6093         Parser.Lex();
6094         Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
6095         return false;
6096       }
6097     }
6098 
6099     // Fall though for the Identifier case that is not a register or a
6100     // special name.
6101     LLVM_FALLTHROUGH;
6102   }
6103   case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
6104   case AsmToken::Integer: // things like 1f and 2b as a branch targets
6105   case AsmToken::String:  // quoted label names.
6106   case AsmToken::Dot: {   // . as a branch target
6107     // This was not a register so parse other operands that start with an
6108     // identifier (like labels) as expressions and create them as immediates.
6109     const MCExpr *IdVal;
6110     S = Parser.getTok().getLoc();
6111     if (getParser().parseExpression(IdVal))
6112       return true;
6113     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6114     Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
6115     return false;
6116   }
6117   case AsmToken::LBrac:
6118     return parseMemory(Operands);
6119   case AsmToken::LCurly:
6120     return parseRegisterList(Operands, !Mnemonic.startswith("clr"));
6121   case AsmToken::Dollar:
6122   case AsmToken::Hash: {
6123     // #42 -> immediate
6124     // $ 42 -> immediate
6125     // $foo -> symbol name
6126     // $42 -> symbol name
6127     S = Parser.getTok().getLoc();
6128 
6129     // Favor the interpretation of $-prefixed operands as symbol names.
6130     // Cases where immediates are explicitly expected are handled by their
6131     // specific ParseMethod implementations.
6132     auto AdjacentToken = getLexer().peekTok(/*ShouldSkipSpace=*/false);
6133     bool ExpectIdentifier = Parser.getTok().is(AsmToken::Dollar) &&
6134                             (AdjacentToken.is(AsmToken::Identifier) ||
6135                              AdjacentToken.is(AsmToken::Integer));
6136     if (!ExpectIdentifier) {
6137       // Token is not part of identifier. Drop leading $ or # before parsing
6138       // expression.
6139       Parser.Lex();
6140     }
6141 
6142     if (Parser.getTok().isNot(AsmToken::Colon)) {
6143       bool IsNegative = Parser.getTok().is(AsmToken::Minus);
6144       const MCExpr *ImmVal;
6145       if (getParser().parseExpression(ImmVal))
6146         return true;
6147       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
6148       if (CE) {
6149         int32_t Val = CE->getValue();
6150         if (IsNegative && Val == 0)
6151           ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
6152                                           getContext());
6153       }
6154       E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6155       Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
6156 
6157       // There can be a trailing '!' on operands that we want as a separate
6158       // '!' Token operand. Handle that here. For example, the compatibility
6159       // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
6160       if (Parser.getTok().is(AsmToken::Exclaim)) {
6161         Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
6162                                                    Parser.getTok().getLoc()));
6163         Parser.Lex(); // Eat exclaim token
6164       }
6165       return false;
6166     }
6167     // w/ a ':' after the '#', it's just like a plain ':'.
6168     LLVM_FALLTHROUGH;
6169   }
6170   case AsmToken::Colon: {
6171     S = Parser.getTok().getLoc();
6172     // ":lower16:" and ":upper16:" expression prefixes
6173     // FIXME: Check it's an expression prefix,
6174     // e.g. (FOO - :lower16:BAR) isn't legal.
6175     ARMMCExpr::VariantKind RefKind;
6176     if (parsePrefix(RefKind))
6177       return true;
6178 
6179     const MCExpr *SubExprVal;
6180     if (getParser().parseExpression(SubExprVal))
6181       return true;
6182 
6183     const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
6184                                               getContext());
6185     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6186     Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
6187     return false;
6188   }
6189   case AsmToken::Equal: {
6190     S = Parser.getTok().getLoc();
6191     if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
6192       return Error(S, "unexpected token in operand");
6193     Parser.Lex(); // Eat '='
6194     const MCExpr *SubExprVal;
6195     if (getParser().parseExpression(SubExprVal))
6196       return true;
6197     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
6198 
6199     // execute-only: we assume that assembly programmers know what they are
6200     // doing and allow literal pool creation here
6201     Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
6202     return false;
6203   }
6204   }
6205 }
6206 
6207 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
6208 //  :lower16: and :upper16:.
6209 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
6210   MCAsmParser &Parser = getParser();
6211   RefKind = ARMMCExpr::VK_ARM_None;
6212 
6213   // consume an optional '#' (GNU compatibility)
6214   if (getLexer().is(AsmToken::Hash))
6215     Parser.Lex();
6216 
6217   // :lower16: and :upper16: modifiers
6218   assert(getLexer().is(AsmToken::Colon) && "expected a :");
6219   Parser.Lex(); // Eat ':'
6220 
6221   if (getLexer().isNot(AsmToken::Identifier)) {
6222     Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
6223     return true;
6224   }
6225 
6226   enum {
6227     COFF = (1 << MCObjectFileInfo::IsCOFF),
6228     ELF = (1 << MCObjectFileInfo::IsELF),
6229     MACHO = (1 << MCObjectFileInfo::IsMachO),
6230     WASM = (1 << MCObjectFileInfo::IsWasm),
6231   };
6232   static const struct PrefixEntry {
6233     const char *Spelling;
6234     ARMMCExpr::VariantKind VariantKind;
6235     uint8_t SupportedFormats;
6236   } PrefixEntries[] = {
6237     { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
6238     { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
6239   };
6240 
6241   StringRef IDVal = Parser.getTok().getIdentifier();
6242 
6243   const auto &Prefix =
6244       std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
6245                    [&IDVal](const PrefixEntry &PE) {
6246                       return PE.Spelling == IDVal;
6247                    });
6248   if (Prefix == std::end(PrefixEntries)) {
6249     Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
6250     return true;
6251   }
6252 
6253   uint8_t CurrentFormat;
6254   switch (getContext().getObjectFileInfo()->getObjectFileType()) {
6255   case MCObjectFileInfo::IsMachO:
6256     CurrentFormat = MACHO;
6257     break;
6258   case MCObjectFileInfo::IsELF:
6259     CurrentFormat = ELF;
6260     break;
6261   case MCObjectFileInfo::IsCOFF:
6262     CurrentFormat = COFF;
6263     break;
6264   case MCObjectFileInfo::IsWasm:
6265     CurrentFormat = WASM;
6266     break;
6267   case MCObjectFileInfo::IsXCOFF:
6268     llvm_unreachable("unexpected object format");
6269     break;
6270   }
6271 
6272   if (~Prefix->SupportedFormats & CurrentFormat) {
6273     Error(Parser.getTok().getLoc(),
6274           "cannot represent relocation in the current file format");
6275     return true;
6276   }
6277 
6278   RefKind = Prefix->VariantKind;
6279   Parser.Lex();
6280 
6281   if (getLexer().isNot(AsmToken::Colon)) {
6282     Error(Parser.getTok().getLoc(), "unexpected token after prefix");
6283     return true;
6284   }
6285   Parser.Lex(); // Eat the last ':'
6286 
6287   return false;
6288 }
6289 
6290 /// Given a mnemonic, split out possible predication code and carry
6291 /// setting letters to form a canonical mnemonic and flags.
6292 //
6293 // FIXME: Would be nice to autogen this.
6294 // FIXME: This is a bit of a maze of special cases.
6295 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
6296                                       StringRef ExtraToken,
6297                                       unsigned &PredicationCode,
6298                                       unsigned &VPTPredicationCode,
6299                                       bool &CarrySetting,
6300                                       unsigned &ProcessorIMod,
6301                                       StringRef &ITMask) {
6302   PredicationCode = ARMCC::AL;
6303   VPTPredicationCode = ARMVCC::None;
6304   CarrySetting = false;
6305   ProcessorIMod = 0;
6306 
6307   // Ignore some mnemonics we know aren't predicated forms.
6308   //
6309   // FIXME: Would be nice to autogen this.
6310   if ((Mnemonic == "movs" && isThumb()) ||
6311       Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
6312       Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
6313       Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
6314       Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
6315       Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
6316       Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
6317       Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
6318       Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
6319       Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
6320       Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
6321       Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
6322       Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
6323       Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
6324       Mnemonic == "bxns"  || Mnemonic == "blxns" ||
6325       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6326       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6327       Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6328       Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" ||
6329       Mnemonic == "csel" || Mnemonic == "csinc" ||
6330       Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" ||
6331       Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" ||
6332       Mnemonic == "csetm")
6333     return Mnemonic;
6334 
6335   // First, split out any predication code. Ignore mnemonics we know aren't
6336   // predicated but do have a carry-set and so weren't caught above.
6337   if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
6338       Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
6339       Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
6340       Mnemonic != "sbcs" && Mnemonic != "rscs" &&
6341       !(hasMVE() &&
6342         (Mnemonic == "vmine" ||
6343          Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" ||
6344          Mnemonic == "vrshle" || Mnemonic == "vrshlt" ||
6345          Mnemonic == "vmvne" || Mnemonic == "vorne" ||
6346          Mnemonic == "vnege" || Mnemonic == "vnegt" ||
6347          Mnemonic == "vmule" || Mnemonic == "vmult" ||
6348          Mnemonic == "vrintne" ||
6349          Mnemonic == "vcmult" || Mnemonic == "vcmule" ||
6350          Mnemonic == "vpsele" || Mnemonic == "vpselt" ||
6351          Mnemonic.startswith("vq")))) {
6352     unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
6353     if (CC != ~0U) {
6354       Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
6355       PredicationCode = CC;
6356     }
6357   }
6358 
6359   // Next, determine if we have a carry setting bit. We explicitly ignore all
6360   // the instructions we know end in 's'.
6361   if (Mnemonic.endswith("s") &&
6362       !(Mnemonic == "cps" || Mnemonic == "mls" ||
6363         Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
6364         Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
6365         Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
6366         Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
6367         Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
6368         Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
6369         Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
6370         Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
6371         Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" ||
6372         Mnemonic == "vmlas" ||
6373         (Mnemonic == "movs" && isThumb()))) {
6374     Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
6375     CarrySetting = true;
6376   }
6377 
6378   // The "cps" instruction can have a interrupt mode operand which is glued into
6379   // the mnemonic. Check if this is the case, split it and parse the imod op
6380   if (Mnemonic.startswith("cps")) {
6381     // Split out any imod code.
6382     unsigned IMod =
6383       StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
6384       .Case("ie", ARM_PROC::IE)
6385       .Case("id", ARM_PROC::ID)
6386       .Default(~0U);
6387     if (IMod != ~0U) {
6388       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
6389       ProcessorIMod = IMod;
6390     }
6391   }
6392 
6393   if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" &&
6394       Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" &&
6395       Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" &&
6396       Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" &&
6397       Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" &&
6398       Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" &&
6399       Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") {
6400     unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1));
6401     if (CC != ~0U) {
6402       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1);
6403       VPTPredicationCode = CC;
6404     }
6405     return Mnemonic;
6406   }
6407 
6408   // The "it" instruction has the condition mask on the end of the mnemonic.
6409   if (Mnemonic.startswith("it")) {
6410     ITMask = Mnemonic.slice(2, Mnemonic.size());
6411     Mnemonic = Mnemonic.slice(0, 2);
6412   }
6413 
6414   if (Mnemonic.startswith("vpst")) {
6415     ITMask = Mnemonic.slice(4, Mnemonic.size());
6416     Mnemonic = Mnemonic.slice(0, 4);
6417   }
6418   else if (Mnemonic.startswith("vpt")) {
6419     ITMask = Mnemonic.slice(3, Mnemonic.size());
6420     Mnemonic = Mnemonic.slice(0, 3);
6421   }
6422 
6423   return Mnemonic;
6424 }
6425 
6426 /// Given a canonical mnemonic, determine if the instruction ever allows
6427 /// inclusion of carry set or predication code operands.
6428 //
6429 // FIXME: It would be nice to autogen this.
6430 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic,
6431                                          StringRef ExtraToken,
6432                                          StringRef FullInst,
6433                                          bool &CanAcceptCarrySet,
6434                                          bool &CanAcceptPredicationCode,
6435                                          bool &CanAcceptVPTPredicationCode) {
6436   CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken);
6437 
6438   CanAcceptCarrySet =
6439       Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6440       Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
6441       Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
6442       Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
6443       Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
6444       Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
6445       Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
6446       (!isThumb() &&
6447        (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
6448         Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
6449 
6450   if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
6451       Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
6452       Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
6453       Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
6454       Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
6455       Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
6456       Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
6457       Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
6458       Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
6459       Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
6460       (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
6461       Mnemonic == "vmovx" || Mnemonic == "vins" ||
6462       Mnemonic == "vudot" || Mnemonic == "vsdot" ||
6463       Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
6464       Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
6465       Mnemonic == "sb"    || Mnemonic == "ssbb"  ||
6466       Mnemonic == "pssbb" ||
6467       Mnemonic == "bfcsel" || Mnemonic == "wls" ||
6468       Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" ||
6469       Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" ||
6470       Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" ||
6471       Mnemonic == "cset" || Mnemonic == "csetm" ||
6472       Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") ||
6473       (hasCDE() && MS.isCDEInstr(Mnemonic) &&
6474        !MS.isITPredicableCDEInstr(Mnemonic)) ||
6475       (hasMVE() &&
6476        (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") ||
6477         Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") ||
6478         Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") ||
6479         Mnemonic.startswith("letp")))) {
6480     // These mnemonics are never predicable
6481     CanAcceptPredicationCode = false;
6482   } else if (!isThumb()) {
6483     // Some instructions are only predicable in Thumb mode
6484     CanAcceptPredicationCode =
6485         Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
6486         Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
6487         Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
6488         Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
6489         Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
6490         Mnemonic != "stc2" && Mnemonic != "stc2l" &&
6491         Mnemonic != "tsb" &&
6492         !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
6493   } else if (isThumbOne()) {
6494     if (hasV6MOps())
6495       CanAcceptPredicationCode = Mnemonic != "movs";
6496     else
6497       CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
6498   } else
6499     CanAcceptPredicationCode = true;
6500 }
6501 
6502 // Some Thumb instructions have two operand forms that are not
6503 // available as three operand, convert to two operand form if possible.
6504 //
6505 // FIXME: We would really like to be able to tablegen'erate this.
6506 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
6507                                                  bool CarrySetting,
6508                                                  OperandVector &Operands) {
6509   if (Operands.size() != 6)
6510     return;
6511 
6512   const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6513         auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
6514   if (!Op3.isReg() || !Op4.isReg())
6515     return;
6516 
6517   auto Op3Reg = Op3.getReg();
6518   auto Op4Reg = Op4.getReg();
6519 
6520   // For most Thumb2 cases we just generate the 3 operand form and reduce
6521   // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
6522   // won't accept SP or PC so we do the transformation here taking care
6523   // with immediate range in the 'add sp, sp #imm' case.
6524   auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
6525   if (isThumbTwo()) {
6526     if (Mnemonic != "add")
6527       return;
6528     bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
6529                         (Op5.isReg() && Op5.getReg() == ARM::PC);
6530     if (!TryTransform) {
6531       TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
6532                       (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
6533                      !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
6534                        Op5.isImm() && !Op5.isImm0_508s4());
6535     }
6536     if (!TryTransform)
6537       return;
6538   } else if (!isThumbOne())
6539     return;
6540 
6541   if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
6542         Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
6543         Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
6544         Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
6545     return;
6546 
6547   // If first 2 operands of a 3 operand instruction are the same
6548   // then transform to 2 operand version of the same instruction
6549   // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
6550   bool Transform = Op3Reg == Op4Reg;
6551 
6552   // For communtative operations, we might be able to transform if we swap
6553   // Op4 and Op5.  The 'ADD Rdm, SP, Rdm' form is already handled specially
6554   // as tADDrsp.
6555   const ARMOperand *LastOp = &Op5;
6556   bool Swap = false;
6557   if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
6558       ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
6559        Mnemonic == "and" || Mnemonic == "eor" ||
6560        Mnemonic == "adc" || Mnemonic == "orr")) {
6561     Swap = true;
6562     LastOp = &Op4;
6563     Transform = true;
6564   }
6565 
6566   // If both registers are the same then remove one of them from
6567   // the operand list, with certain exceptions.
6568   if (Transform) {
6569     // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
6570     // 2 operand forms don't exist.
6571     if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
6572         LastOp->isReg())
6573       Transform = false;
6574 
6575     // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
6576     // 3-bits because the ARMARM says not to.
6577     if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
6578       Transform = false;
6579   }
6580 
6581   if (Transform) {
6582     if (Swap)
6583       std::swap(Op4, Op5);
6584     Operands.erase(Operands.begin() + 3);
6585   }
6586 }
6587 
6588 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
6589                                           OperandVector &Operands) {
6590   // FIXME: This is all horribly hacky. We really need a better way to deal
6591   // with optional operands like this in the matcher table.
6592 
6593   // The 'mov' mnemonic is special. One variant has a cc_out operand, while
6594   // another does not. Specifically, the MOVW instruction does not. So we
6595   // special case it here and remove the defaulted (non-setting) cc_out
6596   // operand if that's the instruction we're trying to match.
6597   //
6598   // We do this as post-processing of the explicit operands rather than just
6599   // conditionally adding the cc_out in the first place because we need
6600   // to check the type of the parsed immediate operand.
6601   if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
6602       !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
6603       static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
6604       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6605     return true;
6606 
6607   // Register-register 'add' for thumb does not have a cc_out operand
6608   // when there are only two register operands.
6609   if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
6610       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6611       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6612       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
6613     return true;
6614   // Register-register 'add' for thumb does not have a cc_out operand
6615   // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
6616   // have to check the immediate range here since Thumb2 has a variant
6617   // that can handle a different range and has a cc_out operand.
6618   if (((isThumb() && Mnemonic == "add") ||
6619        (isThumbTwo() && Mnemonic == "sub")) &&
6620       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6621       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6622       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
6623       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6624       ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
6625        static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
6626     return true;
6627   // For Thumb2, add/sub immediate does not have a cc_out operand for the
6628   // imm0_4095 variant. That's the least-preferred variant when
6629   // selecting via the generic "add" mnemonic, so to know that we
6630   // should remove the cc_out operand, we have to explicitly check that
6631   // it's not one of the other variants. Ugh.
6632   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6633       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6634       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6635       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6636     // Nest conditions rather than one big 'if' statement for readability.
6637     //
6638     // If both registers are low, we're in an IT block, and the immediate is
6639     // in range, we should use encoding T1 instead, which has a cc_out.
6640     if (inITBlock() &&
6641         isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
6642         isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
6643         static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
6644       return false;
6645     // Check against T3. If the second register is the PC, this is an
6646     // alternate form of ADR, which uses encoding T4, so check for that too.
6647     if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
6648         (static_cast<ARMOperand &>(*Operands[5]).isT2SOImm() ||
6649          static_cast<ARMOperand &>(*Operands[5]).isT2SOImmNeg()))
6650       return false;
6651 
6652     // Otherwise, we use encoding T4, which does not have a cc_out
6653     // operand.
6654     return true;
6655   }
6656 
6657   // The thumb2 multiply instruction doesn't have a CCOut register, so
6658   // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
6659   // use the 16-bit encoding or not.
6660   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
6661       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6662       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6663       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6664       static_cast<ARMOperand &>(*Operands[5]).isReg() &&
6665       // If the registers aren't low regs, the destination reg isn't the
6666       // same as one of the source regs, or the cc_out operand is zero
6667       // outside of an IT block, we have to use the 32-bit encoding, so
6668       // remove the cc_out operand.
6669       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6670        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6671        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
6672        !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6673                             static_cast<ARMOperand &>(*Operands[5]).getReg() &&
6674                         static_cast<ARMOperand &>(*Operands[3]).getReg() !=
6675                             static_cast<ARMOperand &>(*Operands[4]).getReg())))
6676     return true;
6677 
6678   // Also check the 'mul' syntax variant that doesn't specify an explicit
6679   // destination register.
6680   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
6681       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6682       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6683       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6684       // If the registers aren't low regs  or the cc_out operand is zero
6685       // outside of an IT block, we have to use the 32-bit encoding, so
6686       // remove the cc_out operand.
6687       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
6688        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
6689        !inITBlock()))
6690     return true;
6691 
6692   // Register-register 'add/sub' for thumb does not have a cc_out operand
6693   // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
6694   // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
6695   // right, this will result in better diagnostics (which operand is off)
6696   // anyway.
6697   if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
6698       (Operands.size() == 5 || Operands.size() == 6) &&
6699       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6700       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
6701       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6702       (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
6703        (Operands.size() == 6 &&
6704         static_cast<ARMOperand &>(*Operands[5]).isImm()))) {
6705     // Thumb2 (add|sub){s}{p}.w GPRnopc, sp, #{T2SOImm} has cc_out
6706     return (!(isThumbTwo() &&
6707               (static_cast<ARMOperand &>(*Operands[4]).isT2SOImm() ||
6708                static_cast<ARMOperand &>(*Operands[4]).isT2SOImmNeg())));
6709   }
6710   // Fixme: Should join all the thumb+thumb2 (add|sub) in a single if case
6711   // Thumb2 ADD r0, #4095 -> ADDW r0, r0, #4095 (T4)
6712   // Thumb2 SUB r0, #4095 -> SUBW r0, r0, #4095
6713   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
6714       (Operands.size() == 5) &&
6715       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6716       static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::SP &&
6717       static_cast<ARMOperand &>(*Operands[3]).getReg() != ARM::PC &&
6718       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
6719       static_cast<ARMOperand &>(*Operands[4]).isImm()) {
6720     const ARMOperand &IMM = static_cast<ARMOperand &>(*Operands[4]);
6721     if (IMM.isT2SOImm() || IMM.isT2SOImmNeg())
6722       return false; // add.w / sub.w
6723     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IMM.getImm())) {
6724       const int64_t Value = CE->getValue();
6725       // Thumb1 imm8 sub / add
6726       if ((Value < ((1 << 7) - 1) << 2) && inITBlock() && (!(Value & 3)) &&
6727           isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()))
6728         return false;
6729       return true; // Thumb2 T4 addw / subw
6730     }
6731   }
6732   return false;
6733 }
6734 
6735 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
6736                                               OperandVector &Operands) {
6737   // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
6738   unsigned RegIdx = 3;
6739   if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) ||
6740       Mnemonic == "vrintr") &&
6741       (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
6742        static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
6743     if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6744         (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
6745          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
6746       RegIdx = 4;
6747 
6748     if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
6749         (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6750              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
6751          ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6752              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
6753       return true;
6754   }
6755   return false;
6756 }
6757 
6758 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic,
6759                                                     OperandVector &Operands) {
6760   if (!hasMVE() || Operands.size() < 3)
6761     return true;
6762 
6763   if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") ||
6764       Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4"))
6765     return true;
6766 
6767   if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot"))
6768     return false;
6769 
6770   if (Mnemonic.startswith("vmov") &&
6771       !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") ||
6772         Mnemonic.startswith("vmovx"))) {
6773     for (auto &Operand : Operands) {
6774       if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6775           ((*Operand).isReg() &&
6776            (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(
6777              (*Operand).getReg()) ||
6778             ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
6779               (*Operand).getReg())))) {
6780         return true;
6781       }
6782     }
6783     return false;
6784   } else {
6785     for (auto &Operand : Operands) {
6786       // We check the larger class QPR instead of just the legal class
6787       // MQPR, to more accurately report errors when using Q registers
6788       // outside of the allowed range.
6789       if (static_cast<ARMOperand &>(*Operand).isVectorIndex() ||
6790           (Operand->isReg() &&
6791            (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
6792              Operand->getReg()))))
6793         return false;
6794     }
6795     return true;
6796   }
6797 }
6798 
6799 static bool isDataTypeToken(StringRef Tok) {
6800   return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
6801     Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
6802     Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
6803     Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
6804     Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
6805     Tok == ".f" || Tok == ".d";
6806 }
6807 
6808 // FIXME: This bit should probably be handled via an explicit match class
6809 // in the .td files that matches the suffix instead of having it be
6810 // a literal string token the way it is now.
6811 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
6812   return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
6813 }
6814 
6815 static void applyMnemonicAliases(StringRef &Mnemonic,
6816                                  const FeatureBitset &Features,
6817                                  unsigned VariantID);
6818 
6819 // The GNU assembler has aliases of ldrd and strd with the second register
6820 // omitted. We don't have a way to do that in tablegen, so fix it up here.
6821 //
6822 // We have to be careful to not emit an invalid Rt2 here, because the rest of
6823 // the assembly parser could then generate confusing diagnostics refering to
6824 // it. If we do find anything that prevents us from doing the transformation we
6825 // bail out, and let the assembly parser report an error on the instruction as
6826 // it is written.
6827 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
6828                                      OperandVector &Operands) {
6829   if (Mnemonic != "ldrd" && Mnemonic != "strd")
6830     return;
6831   if (Operands.size() < 4)
6832     return;
6833 
6834   ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6835   ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6836 
6837   if (!Op2.isReg())
6838     return;
6839   if (!Op3.isGPRMem())
6840     return;
6841 
6842   const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6843   if (!GPR.contains(Op2.getReg()))
6844     return;
6845 
6846   unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6847   if (!isThumb() && (RtEncoding & 1)) {
6848     // In ARM mode, the registers must be from an aligned pair, this
6849     // restriction does not apply in Thumb mode.
6850     return;
6851   }
6852   if (Op2.getReg() == ARM::PC)
6853     return;
6854   unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
6855   if (!PairedReg || PairedReg == ARM::PC ||
6856       (PairedReg == ARM::SP && !hasV8Ops()))
6857     return;
6858 
6859   Operands.insert(
6860       Operands.begin() + 3,
6861       ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
6862 }
6863 
6864 // Dual-register instruction have the following syntax:
6865 // <mnemonic> <predicate>? <coproc>, <Rdest>, <Rdest+1>, <Rsrc>, ..., #imm
6866 // This function tries to remove <Rdest+1> and replace <Rdest> with a pair
6867 // operand. If the conversion fails an error is diagnosed, and the function
6868 // returns true.
6869 bool ARMAsmParser::CDEConvertDualRegOperand(StringRef Mnemonic,
6870                                             OperandVector &Operands) {
6871   assert(MS.isCDEDualRegInstr(Mnemonic));
6872   bool isPredicable =
6873       Mnemonic == "cx1da" || Mnemonic == "cx2da" || Mnemonic == "cx3da";
6874   size_t NumPredOps = isPredicable ? 1 : 0;
6875 
6876   if (Operands.size() <= 3 + NumPredOps)
6877     return false;
6878 
6879   StringRef Op2Diag(
6880       "operand must be an even-numbered register in the range [r0, r10]");
6881 
6882   const MCParsedAsmOperand &Op2 = *Operands[2 + NumPredOps];
6883   if (!Op2.isReg())
6884     return Error(Op2.getStartLoc(), Op2Diag);
6885 
6886   unsigned RNext;
6887   unsigned RPair;
6888   switch (Op2.getReg()) {
6889   default:
6890     return Error(Op2.getStartLoc(), Op2Diag);
6891   case ARM::R0:
6892     RNext = ARM::R1;
6893     RPair = ARM::R0_R1;
6894     break;
6895   case ARM::R2:
6896     RNext = ARM::R3;
6897     RPair = ARM::R2_R3;
6898     break;
6899   case ARM::R4:
6900     RNext = ARM::R5;
6901     RPair = ARM::R4_R5;
6902     break;
6903   case ARM::R6:
6904     RNext = ARM::R7;
6905     RPair = ARM::R6_R7;
6906     break;
6907   case ARM::R8:
6908     RNext = ARM::R9;
6909     RPair = ARM::R8_R9;
6910     break;
6911   case ARM::R10:
6912     RNext = ARM::R11;
6913     RPair = ARM::R10_R11;
6914     break;
6915   }
6916 
6917   const MCParsedAsmOperand &Op3 = *Operands[3 + NumPredOps];
6918   if (!Op3.isReg() || Op3.getReg() != RNext)
6919     return Error(Op3.getStartLoc(), "operand must be a consecutive register");
6920 
6921   Operands.erase(Operands.begin() + 3 + NumPredOps);
6922   Operands[2 + NumPredOps] =
6923       ARMOperand::CreateReg(RPair, Op2.getStartLoc(), Op2.getEndLoc());
6924   return false;
6925 }
6926 
6927 /// Parse an arm instruction mnemonic followed by its operands.
6928 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
6929                                     SMLoc NameLoc, OperandVector &Operands) {
6930   MCAsmParser &Parser = getParser();
6931 
6932   // Apply mnemonic aliases before doing anything else, as the destination
6933   // mnemonic may include suffices and we want to handle them normally.
6934   // The generic tblgen'erated code does this later, at the start of
6935   // MatchInstructionImpl(), but that's too late for aliases that include
6936   // any sort of suffix.
6937   const FeatureBitset &AvailableFeatures = getAvailableFeatures();
6938   unsigned AssemblerDialect = getParser().getAssemblerDialect();
6939   applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
6940 
6941   // First check for the ARM-specific .req directive.
6942   if (Parser.getTok().is(AsmToken::Identifier) &&
6943       Parser.getTok().getIdentifier().lower() == ".req") {
6944     parseDirectiveReq(Name, NameLoc);
6945     // We always return 'error' for this, as we're done with this
6946     // statement and don't need to match the 'instruction."
6947     return true;
6948   }
6949 
6950   // Create the leading tokens for the mnemonic, split by '.' characters.
6951   size_t Start = 0, Next = Name.find('.');
6952   StringRef Mnemonic = Name.slice(Start, Next);
6953   StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1));
6954 
6955   // Split out the predication code and carry setting flag from the mnemonic.
6956   unsigned PredicationCode;
6957   unsigned VPTPredicationCode;
6958   unsigned ProcessorIMod;
6959   bool CarrySetting;
6960   StringRef ITMask;
6961   Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode,
6962                            CarrySetting, ProcessorIMod, ITMask);
6963 
6964   // In Thumb1, only the branch (B) instruction can be predicated.
6965   if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
6966     return Error(NameLoc, "conditional execution not supported in Thumb1");
6967   }
6968 
6969   Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
6970 
6971   // Handle the mask for IT and VPT instructions. In ARMOperand and
6972   // MCOperand, this is stored in a format independent of the
6973   // condition code: the lowest set bit indicates the end of the
6974   // encoding, and above that, a 1 bit indicates 'else', and an 0
6975   // indicates 'then'. E.g.
6976   //    IT    -> 1000
6977   //    ITx   -> x100    (ITT -> 0100, ITE -> 1100)
6978   //    ITxy  -> xy10    (e.g. ITET -> 1010)
6979   //    ITxyz -> xyz1    (e.g. ITEET -> 1101)
6980   if (Mnemonic == "it" || Mnemonic.startswith("vpt") ||
6981       Mnemonic.startswith("vpst")) {
6982     SMLoc Loc = Mnemonic == "it"  ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) :
6983                 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) :
6984                                     SMLoc::getFromPointer(NameLoc.getPointer() + 4);
6985     if (ITMask.size() > 3) {
6986       if (Mnemonic == "it")
6987         return Error(Loc, "too many conditions on IT instruction");
6988       return Error(Loc, "too many conditions on VPT instruction");
6989     }
6990     unsigned Mask = 8;
6991     for (unsigned i = ITMask.size(); i != 0; --i) {
6992       char pos = ITMask[i - 1];
6993       if (pos != 't' && pos != 'e') {
6994         return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
6995       }
6996       Mask >>= 1;
6997       if (ITMask[i - 1] == 'e')
6998         Mask |= 8;
6999     }
7000     Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
7001   }
7002 
7003   // FIXME: This is all a pretty gross hack. We should automatically handle
7004   // optional operands like this via tblgen.
7005 
7006   // Next, add the CCOut and ConditionCode operands, if needed.
7007   //
7008   // For mnemonics which can ever incorporate a carry setting bit or predication
7009   // code, our matching model involves us always generating CCOut and
7010   // ConditionCode operands to match the mnemonic "as written" and then we let
7011   // the matcher deal with finding the right instruction or generating an
7012   // appropriate error.
7013   bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode;
7014   getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet,
7015                         CanAcceptPredicationCode, CanAcceptVPTPredicationCode);
7016 
7017   // If we had a carry-set on an instruction that can't do that, issue an
7018   // error.
7019   if (!CanAcceptCarrySet && CarrySetting) {
7020     return Error(NameLoc, "instruction '" + Mnemonic +
7021                  "' can not set flags, but 's' suffix specified");
7022   }
7023   // If we had a predication code on an instruction that can't do that, issue an
7024   // error.
7025   if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
7026     return Error(NameLoc, "instruction '" + Mnemonic +
7027                  "' is not predicable, but condition code specified");
7028   }
7029 
7030   // If we had a VPT predication code on an instruction that can't do that, issue an
7031   // error.
7032   if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) {
7033     return Error(NameLoc, "instruction '" + Mnemonic +
7034                  "' is not VPT predicable, but VPT code T/E is specified");
7035   }
7036 
7037   // Add the carry setting operand, if necessary.
7038   if (CanAcceptCarrySet) {
7039     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
7040     Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
7041                                                Loc));
7042   }
7043 
7044   // Add the predication code operand, if necessary.
7045   if (CanAcceptPredicationCode) {
7046     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
7047                                       CarrySetting);
7048     Operands.push_back(ARMOperand::CreateCondCode(
7049                        ARMCC::CondCodes(PredicationCode), Loc));
7050   }
7051 
7052   // Add the VPT predication code operand, if necessary.
7053   // FIXME: We don't add them for the instructions filtered below as these can
7054   // have custom operands which need special parsing.  This parsing requires
7055   // the operand to be in the same place in the OperandVector as their
7056   // definition in tblgen.  Since these instructions may also have the
7057   // scalar predication operand we do not add the vector one and leave until
7058   // now to fix it up.
7059   if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" &&
7060       !Mnemonic.startswith("vcmp") &&
7061       !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" &&
7062         Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) {
7063     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
7064                                       CarrySetting);
7065     Operands.push_back(ARMOperand::CreateVPTPred(
7066                          ARMVCC::VPTCodes(VPTPredicationCode), Loc));
7067   }
7068 
7069   // Add the processor imod operand, if necessary.
7070   if (ProcessorIMod) {
7071     Operands.push_back(ARMOperand::CreateImm(
7072           MCConstantExpr::create(ProcessorIMod, getContext()),
7073                                  NameLoc, NameLoc));
7074   } else if (Mnemonic == "cps" && isMClass()) {
7075     return Error(NameLoc, "instruction 'cps' requires effect for M-class");
7076   }
7077 
7078   // Add the remaining tokens in the mnemonic.
7079   while (Next != StringRef::npos) {
7080     Start = Next;
7081     Next = Name.find('.', Start + 1);
7082     ExtraToken = Name.slice(Start, Next);
7083 
7084     // Some NEON instructions have an optional datatype suffix that is
7085     // completely ignored. Check for that.
7086     if (isDataTypeToken(ExtraToken) &&
7087         doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
7088       continue;
7089 
7090     // For for ARM mode generate an error if the .n qualifier is used.
7091     if (ExtraToken == ".n" && !isThumb()) {
7092       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
7093       return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
7094                    "arm mode");
7095     }
7096 
7097     // The .n qualifier is always discarded as that is what the tables
7098     // and matcher expect.  In ARM mode the .w qualifier has no effect,
7099     // so discard it to avoid errors that can be caused by the matcher.
7100     if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
7101       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
7102       Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
7103     }
7104   }
7105 
7106   // Read the remaining operands.
7107   if (getLexer().isNot(AsmToken::EndOfStatement)) {
7108     // Read the first operand.
7109     if (parseOperand(Operands, Mnemonic)) {
7110       return true;
7111     }
7112 
7113     while (parseOptionalToken(AsmToken::Comma)) {
7114       // Parse and remember the operand.
7115       if (parseOperand(Operands, Mnemonic)) {
7116         return true;
7117       }
7118     }
7119   }
7120 
7121   if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
7122     return true;
7123 
7124   tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
7125 
7126   if (hasCDE() && MS.isCDEInstr(Mnemonic)) {
7127     // Dual-register instructions use even-odd register pairs as their
7128     // destination operand, in assembly such pair is spelled as two
7129     // consecutive registers, without any special syntax. ConvertDualRegOperand
7130     // tries to convert such operand into register pair, e.g. r2, r3 -> r2_r3.
7131     // It returns true, if an error message has been emitted. If the function
7132     // returns false, the function either succeeded or an error (e.g. missing
7133     // operand) will be diagnosed elsewhere.
7134     if (MS.isCDEDualRegInstr(Mnemonic)) {
7135       bool GotError = CDEConvertDualRegOperand(Mnemonic, Operands);
7136       if (GotError)
7137         return GotError;
7138     }
7139   }
7140 
7141   // Some instructions, mostly Thumb, have forms for the same mnemonic that
7142   // do and don't have a cc_out optional-def operand. With some spot-checks
7143   // of the operand list, we can figure out which variant we're trying to
7144   // parse and adjust accordingly before actually matching. We shouldn't ever
7145   // try to remove a cc_out operand that was explicitly set on the
7146   // mnemonic, of course (CarrySetting == true). Reason number #317 the
7147   // table driven matcher doesn't fit well with the ARM instruction set.
7148   if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
7149     Operands.erase(Operands.begin() + 1);
7150 
7151   // Some instructions have the same mnemonic, but don't always
7152   // have a predicate. Distinguish them here and delete the
7153   // appropriate predicate if needed.  This could be either the scalar
7154   // predication code or the vector predication code.
7155   if (PredicationCode == ARMCC::AL &&
7156       shouldOmitPredicateOperand(Mnemonic, Operands))
7157     Operands.erase(Operands.begin() + 1);
7158 
7159 
7160   if (hasMVE()) {
7161     if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) &&
7162         Mnemonic == "vmov" && PredicationCode == ARMCC::LT) {
7163       // Very nasty hack to deal with the vector predicated variant of vmovlt
7164       // the scalar predicated vmov with condition 'lt'.  We can not tell them
7165       // apart until we have parsed their operands.
7166       Operands.erase(Operands.begin() + 1);
7167       Operands.erase(Operands.begin());
7168       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7169       SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7170                                          Mnemonic.size() - 1 + CarrySetting);
7171       Operands.insert(Operands.begin(),
7172                       ARMOperand::CreateVPTPred(ARMVCC::None, PLoc));
7173       Operands.insert(Operands.begin(),
7174                       ARMOperand::CreateToken(StringRef("vmovlt"), MLoc));
7175     } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE &&
7176                !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7177       // Another nasty hack to deal with the ambiguity between vcvt with scalar
7178       // predication 'ne' and vcvtn with vector predication 'e'.  As above we
7179       // can only distinguish between the two after we have parsed their
7180       // operands.
7181       Operands.erase(Operands.begin() + 1);
7182       Operands.erase(Operands.begin());
7183       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7184       SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7185                                          Mnemonic.size() - 1 + CarrySetting);
7186       Operands.insert(Operands.begin(),
7187                       ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc));
7188       Operands.insert(Operands.begin(),
7189                       ARMOperand::CreateToken(StringRef("vcvtn"), MLoc));
7190     } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT &&
7191                !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7192       // Another hack, this time to distinguish between scalar predicated vmul
7193       // with 'lt' predication code and the vector instruction vmullt with
7194       // vector predication code "none"
7195       Operands.erase(Operands.begin() + 1);
7196       Operands.erase(Operands.begin());
7197       SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7198       Operands.insert(Operands.begin(),
7199                       ARMOperand::CreateToken(StringRef("vmullt"), MLoc));
7200     }
7201     // For vmov and vcmp, as mentioned earlier, we did not add the vector
7202     // predication code, since these may contain operands that require
7203     // special parsing.  So now we have to see if they require vector
7204     // predication and replace the scalar one with the vector predication
7205     // operand if that is the case.
7206     else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") ||
7207              (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") &&
7208               !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") &&
7209               !Mnemonic.startswith("vcvtm"))) {
7210       if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7211         // We could not split the vector predicate off vcvt because it might
7212         // have been the scalar vcvtt instruction.  Now we know its a vector
7213         // instruction, we still need to check whether its the vector
7214         // predicated vcvt with 'Then' predication or the vector vcvtt.  We can
7215         // distinguish the two based on the suffixes, if it is any of
7216         // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt.
7217         if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) {
7218           auto Sz1 = static_cast<ARMOperand &>(*Operands[2]);
7219           auto Sz2 = static_cast<ARMOperand &>(*Operands[3]);
7220           if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") &&
7221               Sz2.isToken() && Sz2.getToken().startswith(".f"))) {
7222             Operands.erase(Operands.begin());
7223             SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer());
7224             VPTPredicationCode = ARMVCC::Then;
7225 
7226             Mnemonic = Mnemonic.substr(0, 4);
7227             Operands.insert(Operands.begin(),
7228                             ARMOperand::CreateToken(Mnemonic, MLoc));
7229           }
7230         }
7231         Operands.erase(Operands.begin() + 1);
7232         SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
7233                                           Mnemonic.size() + CarrySetting);
7234         Operands.insert(Operands.begin() + 1,
7235                         ARMOperand::CreateVPTPred(
7236                             ARMVCC::VPTCodes(VPTPredicationCode), PLoc));
7237       }
7238     } else if (CanAcceptVPTPredicationCode) {
7239       // For all other instructions, make sure only one of the two
7240       // predication operands is left behind, depending on whether we should
7241       // use the vector predication.
7242       if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) {
7243         if (CanAcceptPredicationCode)
7244           Operands.erase(Operands.begin() + 2);
7245         else
7246           Operands.erase(Operands.begin() + 1);
7247       } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) {
7248         Operands.erase(Operands.begin() + 1);
7249       }
7250     }
7251   }
7252 
7253   if (VPTPredicationCode != ARMVCC::None) {
7254     bool usedVPTPredicationCode = false;
7255     for (unsigned I = 1; I < Operands.size(); ++I)
7256       if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7257         usedVPTPredicationCode = true;
7258     if (!usedVPTPredicationCode) {
7259       // If we have a VPT predication code and we haven't just turned it
7260       // into an operand, then it was a mistake for splitMnemonic to
7261       // separate it from the rest of the mnemonic in the first place,
7262       // and this may lead to wrong disassembly (e.g. scalar floating
7263       // point VCMPE is actually a different instruction from VCMP, so
7264       // we mustn't treat them the same). In that situation, glue it
7265       // back on.
7266       Mnemonic = Name.slice(0, Mnemonic.size() + 1);
7267       Operands.erase(Operands.begin());
7268       Operands.insert(Operands.begin(),
7269                       ARMOperand::CreateToken(Mnemonic, NameLoc));
7270     }
7271   }
7272 
7273     // ARM mode 'blx' need special handling, as the register operand version
7274     // is predicable, but the label operand version is not. So, we can't rely
7275     // on the Mnemonic based checking to correctly figure out when to put
7276     // a k_CondCode operand in the list. If we're trying to match the label
7277     // version, remove the k_CondCode operand here.
7278     if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
7279         static_cast<ARMOperand &>(*Operands[2]).isImm())
7280       Operands.erase(Operands.begin() + 1);
7281 
7282     // Adjust operands of ldrexd/strexd to MCK_GPRPair.
7283     // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
7284     // a single GPRPair reg operand is used in the .td file to replace the two
7285     // GPRs. However, when parsing from asm, the two GRPs cannot be
7286     // automatically
7287     // expressed as a GPRPair, so we have to manually merge them.
7288     // FIXME: We would really like to be able to tablegen'erate this.
7289     if (!isThumb() && Operands.size() > 4 &&
7290         (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
7291          Mnemonic == "stlexd")) {
7292       bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
7293       unsigned Idx = isLoad ? 2 : 3;
7294       ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
7295       ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
7296 
7297       const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID);
7298       // Adjust only if Op1 and Op2 are GPRs.
7299       if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
7300           MRC.contains(Op2.getReg())) {
7301         unsigned Reg1 = Op1.getReg();
7302         unsigned Reg2 = Op2.getReg();
7303         unsigned Rt = MRI->getEncodingValue(Reg1);
7304         unsigned Rt2 = MRI->getEncodingValue(Reg2);
7305 
7306         // Rt2 must be Rt + 1 and Rt must be even.
7307         if (Rt + 1 != Rt2 || (Rt & 1)) {
7308           return Error(Op2.getStartLoc(),
7309                        isLoad ? "destination operands must be sequential"
7310                               : "source operands must be sequential");
7311         }
7312         unsigned NewReg = MRI->getMatchingSuperReg(
7313             Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID)));
7314         Operands[Idx] =
7315             ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
7316         Operands.erase(Operands.begin() + Idx + 1);
7317       }
7318   }
7319 
7320   // GNU Assembler extension (compatibility).
7321   fixupGNULDRDAlias(Mnemonic, Operands);
7322 
7323   // FIXME: As said above, this is all a pretty gross hack.  This instruction
7324   // does not fit with other "subs" and tblgen.
7325   // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
7326   // so the Mnemonic is the original name "subs" and delete the predicate
7327   // operand so it will match the table entry.
7328   if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
7329       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
7330       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
7331       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
7332       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
7333       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
7334     Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
7335     Operands.erase(Operands.begin() + 1);
7336   }
7337   return false;
7338 }
7339 
7340 // Validate context-sensitive operand constraints.
7341 
7342 // return 'true' if register list contains non-low GPR registers,
7343 // 'false' otherwise. If Reg is in the register list or is HiReg, set
7344 // 'containsReg' to true.
7345 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
7346                                  unsigned Reg, unsigned HiReg,
7347                                  bool &containsReg) {
7348   containsReg = false;
7349   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
7350     unsigned OpReg = Inst.getOperand(i).getReg();
7351     if (OpReg == Reg)
7352       containsReg = true;
7353     // Anything other than a low register isn't legal here.
7354     if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
7355       return true;
7356   }
7357   return false;
7358 }
7359 
7360 // Check if the specified regisgter is in the register list of the inst,
7361 // starting at the indicated operand number.
7362 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
7363   for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
7364     unsigned OpReg = Inst.getOperand(i).getReg();
7365     if (OpReg == Reg)
7366       return true;
7367   }
7368   return false;
7369 }
7370 
7371 // Return true if instruction has the interesting property of being
7372 // allowed in IT blocks, but not being predicable.
7373 static bool instIsBreakpoint(const MCInst &Inst) {
7374     return Inst.getOpcode() == ARM::tBKPT ||
7375            Inst.getOpcode() == ARM::BKPT ||
7376            Inst.getOpcode() == ARM::tHLT ||
7377            Inst.getOpcode() == ARM::HLT;
7378 }
7379 
7380 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
7381                                        const OperandVector &Operands,
7382                                        unsigned ListNo, bool IsARPop) {
7383   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7384   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7385 
7386   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7387   bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
7388   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7389 
7390   if (!IsARPop && ListContainsSP)
7391     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7392                  "SP may not be in the register list");
7393   else if (ListContainsPC && ListContainsLR)
7394     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7395                  "PC and LR may not be in the register list simultaneously");
7396   return false;
7397 }
7398 
7399 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
7400                                        const OperandVector &Operands,
7401                                        unsigned ListNo) {
7402   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
7403   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
7404 
7405   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
7406   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
7407 
7408   if (ListContainsSP && ListContainsPC)
7409     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7410                  "SP and PC may not be in the register list");
7411   else if (ListContainsSP)
7412     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7413                  "SP may not be in the register list");
7414   else if (ListContainsPC)
7415     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
7416                  "PC may not be in the register list");
7417   return false;
7418 }
7419 
7420 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
7421                                     const OperandVector &Operands,
7422                                     bool Load, bool ARMMode, bool Writeback) {
7423   unsigned RtIndex = Load || !Writeback ? 0 : 1;
7424   unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
7425   unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
7426 
7427   if (ARMMode) {
7428     // Rt can't be R14.
7429     if (Rt == 14)
7430       return Error(Operands[3]->getStartLoc(),
7431                   "Rt can't be R14");
7432 
7433     // Rt must be even-numbered.
7434     if ((Rt & 1) == 1)
7435       return Error(Operands[3]->getStartLoc(),
7436                    "Rt must be even-numbered");
7437 
7438     // Rt2 must be Rt + 1.
7439     if (Rt2 != Rt + 1) {
7440       if (Load)
7441         return Error(Operands[3]->getStartLoc(),
7442                      "destination operands must be sequential");
7443       else
7444         return Error(Operands[3]->getStartLoc(),
7445                      "source operands must be sequential");
7446     }
7447 
7448     // FIXME: Diagnose m == 15
7449     // FIXME: Diagnose ldrd with m == t || m == t2.
7450   }
7451 
7452   if (!ARMMode && Load) {
7453     if (Rt2 == Rt)
7454       return Error(Operands[3]->getStartLoc(),
7455                    "destination operands can't be identical");
7456   }
7457 
7458   if (Writeback) {
7459     unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
7460 
7461     if (Rn == Rt || Rn == Rt2) {
7462       if (Load)
7463         return Error(Operands[3]->getStartLoc(),
7464                      "base register needs to be different from destination "
7465                      "registers");
7466       else
7467         return Error(Operands[3]->getStartLoc(),
7468                      "source register and base register can't be identical");
7469     }
7470 
7471     // FIXME: Diagnose ldrd/strd with writeback and n == 15.
7472     // (Except the immediate form of ldrd?)
7473   }
7474 
7475   return false;
7476 }
7477 
7478 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) {
7479   for (unsigned i = 0; i < MCID.NumOperands; ++i) {
7480     if (ARM::isVpred(MCID.OpInfo[i].OperandType))
7481       return i;
7482   }
7483   return -1;
7484 }
7485 
7486 static bool isVectorPredicable(const MCInstrDesc &MCID) {
7487   return findFirstVectorPredOperandIdx(MCID) != -1;
7488 }
7489 
7490 // FIXME: We would really like to be able to tablegen'erate this.
7491 bool ARMAsmParser::validateInstruction(MCInst &Inst,
7492                                        const OperandVector &Operands) {
7493   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
7494   SMLoc Loc = Operands[0]->getStartLoc();
7495 
7496   // Check the IT block state first.
7497   // NOTE: BKPT and HLT instructions have the interesting property of being
7498   // allowed in IT blocks, but not being predicable. They just always execute.
7499   if (inITBlock() && !instIsBreakpoint(Inst)) {
7500     // The instruction must be predicable.
7501     if (!MCID.isPredicable())
7502       return Error(Loc, "instructions in IT block must be predicable");
7503     ARMCC::CondCodes Cond = ARMCC::CondCodes(
7504         Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
7505     if (Cond != currentITCond()) {
7506       // Find the condition code Operand to get its SMLoc information.
7507       SMLoc CondLoc;
7508       for (unsigned I = 1; I < Operands.size(); ++I)
7509         if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
7510           CondLoc = Operands[I]->getStartLoc();
7511       return Error(CondLoc, "incorrect condition in IT block; got '" +
7512                                 StringRef(ARMCondCodeToString(Cond)) +
7513                                 "', but expected '" +
7514                                 ARMCondCodeToString(currentITCond()) + "'");
7515     }
7516   // Check for non-'al' condition codes outside of the IT block.
7517   } else if (isThumbTwo() && MCID.isPredicable() &&
7518              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7519              ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
7520              Inst.getOpcode() != ARM::t2Bcc &&
7521              Inst.getOpcode() != ARM::t2BFic) {
7522     return Error(Loc, "predicated instructions must be in IT block");
7523   } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
7524              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
7525                  ARMCC::AL) {
7526     return Warning(Loc, "predicated instructions should be in IT block");
7527   } else if (!MCID.isPredicable()) {
7528     // Check the instruction doesn't have a predicate operand anyway
7529     // that it's not allowed to use. Sometimes this happens in order
7530     // to keep instructions the same shape even though one cannot
7531     // legally be predicated, e.g. vmul.f16 vs vmul.f32.
7532     for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
7533       if (MCID.OpInfo[i].isPredicate()) {
7534         if (Inst.getOperand(i).getImm() != ARMCC::AL)
7535           return Error(Loc, "instruction is not predicable");
7536         break;
7537       }
7538     }
7539   }
7540 
7541   // PC-setting instructions in an IT block, but not the last instruction of
7542   // the block, are UNPREDICTABLE.
7543   if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
7544     return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
7545   }
7546 
7547   if (inVPTBlock() && !instIsBreakpoint(Inst)) {
7548     unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition);
7549     if (!isVectorPredicable(MCID))
7550       return Error(Loc, "instruction in VPT block must be predicable");
7551     unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm();
7552     unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then;
7553     if (Pred != VPTPred) {
7554       SMLoc PredLoc;
7555       for (unsigned I = 1; I < Operands.size(); ++I)
7556         if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred())
7557           PredLoc = Operands[I]->getStartLoc();
7558       return Error(PredLoc, "incorrect predication in VPT block; got '" +
7559                    StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) +
7560                    "', but expected '" +
7561                    ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'");
7562     }
7563   }
7564   else if (isVectorPredicable(MCID) &&
7565            Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() !=
7566            ARMVCC::None)
7567     return Error(Loc, "VPT predicated instructions must be in VPT block");
7568 
7569   const unsigned Opcode = Inst.getOpcode();
7570   switch (Opcode) {
7571   case ARM::t2IT: {
7572     // Encoding is unpredictable if it ever results in a notional 'NV'
7573     // predicate. Since we don't parse 'NV' directly this means an 'AL'
7574     // predicate with an "else" mask bit.
7575     unsigned Cond = Inst.getOperand(0).getImm();
7576     unsigned Mask = Inst.getOperand(1).getImm();
7577 
7578     // Conditions only allowing a 't' are those with no set bit except
7579     // the lowest-order one that indicates the end of the sequence. In
7580     // other words, powers of 2.
7581     if (Cond == ARMCC::AL && countPopulation(Mask) != 1)
7582       return Error(Loc, "unpredictable IT predicate sequence");
7583     break;
7584   }
7585   case ARM::LDRD:
7586     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7587                          /*Writeback*/false))
7588       return true;
7589     break;
7590   case ARM::LDRD_PRE:
7591   case ARM::LDRD_POST:
7592     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
7593                          /*Writeback*/true))
7594       return true;
7595     break;
7596   case ARM::t2LDRDi8:
7597     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7598                          /*Writeback*/false))
7599       return true;
7600     break;
7601   case ARM::t2LDRD_PRE:
7602   case ARM::t2LDRD_POST:
7603     if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
7604                          /*Writeback*/true))
7605       return true;
7606     break;
7607   case ARM::t2BXJ: {
7608     const unsigned RmReg = Inst.getOperand(0).getReg();
7609     // Rm = SP is no longer unpredictable in v8-A
7610     if (RmReg == ARM::SP && !hasV8Ops())
7611       return Error(Operands[2]->getStartLoc(),
7612                    "r13 (SP) is an unpredictable operand to BXJ");
7613     return false;
7614   }
7615   case ARM::STRD:
7616     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7617                          /*Writeback*/false))
7618       return true;
7619     break;
7620   case ARM::STRD_PRE:
7621   case ARM::STRD_POST:
7622     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
7623                          /*Writeback*/true))
7624       return true;
7625     break;
7626   case ARM::t2STRD_PRE:
7627   case ARM::t2STRD_POST:
7628     if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
7629                          /*Writeback*/true))
7630       return true;
7631     break;
7632   case ARM::STR_PRE_IMM:
7633   case ARM::STR_PRE_REG:
7634   case ARM::t2STR_PRE:
7635   case ARM::STR_POST_IMM:
7636   case ARM::STR_POST_REG:
7637   case ARM::t2STR_POST:
7638   case ARM::STRH_PRE:
7639   case ARM::t2STRH_PRE:
7640   case ARM::STRH_POST:
7641   case ARM::t2STRH_POST:
7642   case ARM::STRB_PRE_IMM:
7643   case ARM::STRB_PRE_REG:
7644   case ARM::t2STRB_PRE:
7645   case ARM::STRB_POST_IMM:
7646   case ARM::STRB_POST_REG:
7647   case ARM::t2STRB_POST: {
7648     // Rt must be different from Rn.
7649     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
7650     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7651 
7652     if (Rt == Rn)
7653       return Error(Operands[3]->getStartLoc(),
7654                    "source register and base register can't be identical");
7655     return false;
7656   }
7657   case ARM::LDR_PRE_IMM:
7658   case ARM::LDR_PRE_REG:
7659   case ARM::t2LDR_PRE:
7660   case ARM::LDR_POST_IMM:
7661   case ARM::LDR_POST_REG:
7662   case ARM::t2LDR_POST:
7663   case ARM::LDRH_PRE:
7664   case ARM::t2LDRH_PRE:
7665   case ARM::LDRH_POST:
7666   case ARM::t2LDRH_POST:
7667   case ARM::LDRSH_PRE:
7668   case ARM::t2LDRSH_PRE:
7669   case ARM::LDRSH_POST:
7670   case ARM::t2LDRSH_POST:
7671   case ARM::LDRB_PRE_IMM:
7672   case ARM::LDRB_PRE_REG:
7673   case ARM::t2LDRB_PRE:
7674   case ARM::LDRB_POST_IMM:
7675   case ARM::LDRB_POST_REG:
7676   case ARM::t2LDRB_POST:
7677   case ARM::LDRSB_PRE:
7678   case ARM::t2LDRSB_PRE:
7679   case ARM::LDRSB_POST:
7680   case ARM::t2LDRSB_POST: {
7681     // Rt must be different from Rn.
7682     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
7683     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
7684 
7685     if (Rt == Rn)
7686       return Error(Operands[3]->getStartLoc(),
7687                    "destination register and base register can't be identical");
7688     return false;
7689   }
7690 
7691   case ARM::MVE_VLDRBU8_rq:
7692   case ARM::MVE_VLDRBU16_rq:
7693   case ARM::MVE_VLDRBS16_rq:
7694   case ARM::MVE_VLDRBU32_rq:
7695   case ARM::MVE_VLDRBS32_rq:
7696   case ARM::MVE_VLDRHU16_rq:
7697   case ARM::MVE_VLDRHU16_rq_u:
7698   case ARM::MVE_VLDRHU32_rq:
7699   case ARM::MVE_VLDRHU32_rq_u:
7700   case ARM::MVE_VLDRHS32_rq:
7701   case ARM::MVE_VLDRHS32_rq_u:
7702   case ARM::MVE_VLDRWU32_rq:
7703   case ARM::MVE_VLDRWU32_rq_u:
7704   case ARM::MVE_VLDRDU64_rq:
7705   case ARM::MVE_VLDRDU64_rq_u:
7706   case ARM::MVE_VLDRWU32_qi:
7707   case ARM::MVE_VLDRWU32_qi_pre:
7708   case ARM::MVE_VLDRDU64_qi:
7709   case ARM::MVE_VLDRDU64_qi_pre: {
7710     // Qd must be different from Qm.
7711     unsigned QdIdx = 0, QmIdx = 2;
7712     bool QmIsPointer = false;
7713     switch (Opcode) {
7714     case ARM::MVE_VLDRWU32_qi:
7715     case ARM::MVE_VLDRDU64_qi:
7716       QmIdx = 1;
7717       QmIsPointer = true;
7718       break;
7719     case ARM::MVE_VLDRWU32_qi_pre:
7720     case ARM::MVE_VLDRDU64_qi_pre:
7721       QdIdx = 1;
7722       QmIsPointer = true;
7723       break;
7724     }
7725 
7726     const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg());
7727     const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg());
7728 
7729     if (Qd == Qm) {
7730       return Error(Operands[3]->getStartLoc(),
7731                    Twine("destination vector register and vector ") +
7732                    (QmIsPointer ? "pointer" : "offset") +
7733                    " register can't be identical");
7734     }
7735     return false;
7736   }
7737 
7738   case ARM::SBFX:
7739   case ARM::t2SBFX:
7740   case ARM::UBFX:
7741   case ARM::t2UBFX: {
7742     // Width must be in range [1, 32-lsb].
7743     unsigned LSB = Inst.getOperand(2).getImm();
7744     unsigned Widthm1 = Inst.getOperand(3).getImm();
7745     if (Widthm1 >= 32 - LSB)
7746       return Error(Operands[5]->getStartLoc(),
7747                    "bitfield width must be in range [1,32-lsb]");
7748     return false;
7749   }
7750   // Notionally handles ARM::tLDMIA_UPD too.
7751   case ARM::tLDMIA: {
7752     // If we're parsing Thumb2, the .w variant is available and handles
7753     // most cases that are normally illegal for a Thumb1 LDM instruction.
7754     // We'll make the transformation in processInstruction() if necessary.
7755     //
7756     // Thumb LDM instructions are writeback iff the base register is not
7757     // in the register list.
7758     unsigned Rn = Inst.getOperand(0).getReg();
7759     bool HasWritebackToken =
7760         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
7761          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
7762     bool ListContainsBase;
7763     if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
7764       return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
7765                    "registers must be in range r0-r7");
7766     // If we should have writeback, then there should be a '!' token.
7767     if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
7768       return Error(Operands[2]->getStartLoc(),
7769                    "writeback operator '!' expected");
7770     // If we should not have writeback, there must not be a '!'. This is
7771     // true even for the 32-bit wide encodings.
7772     if (ListContainsBase && HasWritebackToken)
7773       return Error(Operands[3]->getStartLoc(),
7774                    "writeback operator '!' not allowed when base register "
7775                    "in register list");
7776 
7777     if (validatetLDMRegList(Inst, Operands, 3))
7778       return true;
7779     break;
7780   }
7781   case ARM::LDMIA_UPD:
7782   case ARM::LDMDB_UPD:
7783   case ARM::LDMIB_UPD:
7784   case ARM::LDMDA_UPD:
7785     // ARM variants loading and updating the same register are only officially
7786     // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
7787     if (!hasV7Ops())
7788       break;
7789     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7790       return Error(Operands.back()->getStartLoc(),
7791                    "writeback register not allowed in register list");
7792     break;
7793   case ARM::t2LDMIA:
7794   case ARM::t2LDMDB:
7795     if (validatetLDMRegList(Inst, Operands, 3))
7796       return true;
7797     break;
7798   case ARM::t2STMIA:
7799   case ARM::t2STMDB:
7800     if (validatetSTMRegList(Inst, Operands, 3))
7801       return true;
7802     break;
7803   case ARM::t2LDMIA_UPD:
7804   case ARM::t2LDMDB_UPD:
7805   case ARM::t2STMIA_UPD:
7806   case ARM::t2STMDB_UPD:
7807     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
7808       return Error(Operands.back()->getStartLoc(),
7809                    "writeback register not allowed in register list");
7810 
7811     if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
7812       if (validatetLDMRegList(Inst, Operands, 3))
7813         return true;
7814     } else {
7815       if (validatetSTMRegList(Inst, Operands, 3))
7816         return true;
7817     }
7818     break;
7819 
7820   case ARM::sysLDMIA_UPD:
7821   case ARM::sysLDMDA_UPD:
7822   case ARM::sysLDMDB_UPD:
7823   case ARM::sysLDMIB_UPD:
7824     if (!listContainsReg(Inst, 3, ARM::PC))
7825       return Error(Operands[4]->getStartLoc(),
7826                    "writeback register only allowed on system LDM "
7827                    "if PC in register-list");
7828     break;
7829   case ARM::sysSTMIA_UPD:
7830   case ARM::sysSTMDA_UPD:
7831   case ARM::sysSTMDB_UPD:
7832   case ARM::sysSTMIB_UPD:
7833     return Error(Operands[2]->getStartLoc(),
7834                  "system STM cannot have writeback register");
7835   case ARM::tMUL:
7836     // The second source operand must be the same register as the destination
7837     // operand.
7838     //
7839     // In this case, we must directly check the parsed operands because the
7840     // cvtThumbMultiply() function is written in such a way that it guarantees
7841     // this first statement is always true for the new Inst.  Essentially, the
7842     // destination is unconditionally copied into the second source operand
7843     // without checking to see if it matches what we actually parsed.
7844     if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
7845                                  ((ARMOperand &)*Operands[5]).getReg()) &&
7846         (((ARMOperand &)*Operands[3]).getReg() !=
7847          ((ARMOperand &)*Operands[4]).getReg())) {
7848       return Error(Operands[3]->getStartLoc(),
7849                    "destination register must match source register");
7850     }
7851     break;
7852 
7853   // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
7854   // so only issue a diagnostic for thumb1. The instructions will be
7855   // switched to the t2 encodings in processInstruction() if necessary.
7856   case ARM::tPOP: {
7857     bool ListContainsBase;
7858     if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
7859         !isThumbTwo())
7860       return Error(Operands[2]->getStartLoc(),
7861                    "registers must be in range r0-r7 or pc");
7862     if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
7863       return true;
7864     break;
7865   }
7866   case ARM::tPUSH: {
7867     bool ListContainsBase;
7868     if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
7869         !isThumbTwo())
7870       return Error(Operands[2]->getStartLoc(),
7871                    "registers must be in range r0-r7 or lr");
7872     if (validatetSTMRegList(Inst, Operands, 2))
7873       return true;
7874     break;
7875   }
7876   case ARM::tSTMIA_UPD: {
7877     bool ListContainsBase, InvalidLowList;
7878     InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
7879                                           0, ListContainsBase);
7880     if (InvalidLowList && !isThumbTwo())
7881       return Error(Operands[4]->getStartLoc(),
7882                    "registers must be in range r0-r7");
7883 
7884     // This would be converted to a 32-bit stm, but that's not valid if the
7885     // writeback register is in the list.
7886     if (InvalidLowList && ListContainsBase)
7887       return Error(Operands[4]->getStartLoc(),
7888                    "writeback operator '!' not allowed when base register "
7889                    "in register list");
7890 
7891     if (validatetSTMRegList(Inst, Operands, 4))
7892       return true;
7893     break;
7894   }
7895   case ARM::tADDrSP:
7896     // If the non-SP source operand and the destination operand are not the
7897     // same, we need thumb2 (for the wide encoding), or we have an error.
7898     if (!isThumbTwo() &&
7899         Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
7900       return Error(Operands[4]->getStartLoc(),
7901                    "source register must be the same as destination");
7902     }
7903     break;
7904 
7905   case ARM::t2ADDrr:
7906   case ARM::t2ADDrs:
7907   case ARM::t2SUBrr:
7908   case ARM::t2SUBrs:
7909     if (Inst.getOperand(0).getReg() == ARM::SP &&
7910         Inst.getOperand(1).getReg() != ARM::SP)
7911       return Error(Operands[4]->getStartLoc(),
7912                    "source register must be sp if destination is sp");
7913     break;
7914 
7915   // Final range checking for Thumb unconditional branch instructions.
7916   case ARM::tB:
7917     if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
7918       return Error(Operands[2]->getStartLoc(), "branch target out of range");
7919     break;
7920   case ARM::t2B: {
7921     int op = (Operands[2]->isImm()) ? 2 : 3;
7922     if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
7923       return Error(Operands[op]->getStartLoc(), "branch target out of range");
7924     break;
7925   }
7926   // Final range checking for Thumb conditional branch instructions.
7927   case ARM::tBcc:
7928     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
7929       return Error(Operands[2]->getStartLoc(), "branch target out of range");
7930     break;
7931   case ARM::t2Bcc: {
7932     int Op = (Operands[2]->isImm()) ? 2 : 3;
7933     if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
7934       return Error(Operands[Op]->getStartLoc(), "branch target out of range");
7935     break;
7936   }
7937   case ARM::tCBZ:
7938   case ARM::tCBNZ: {
7939     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
7940       return Error(Operands[2]->getStartLoc(), "branch target out of range");
7941     break;
7942   }
7943   case ARM::MOVi16:
7944   case ARM::MOVTi16:
7945   case ARM::t2MOVi16:
7946   case ARM::t2MOVTi16:
7947     {
7948     // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
7949     // especially when we turn it into a movw and the expression <symbol> does
7950     // not have a :lower16: or :upper16 as part of the expression.  We don't
7951     // want the behavior of silently truncating, which can be unexpected and
7952     // lead to bugs that are difficult to find since this is an easy mistake
7953     // to make.
7954     int i = (Operands[3]->isImm()) ? 3 : 4;
7955     ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
7956     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
7957     if (CE) break;
7958     const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
7959     if (!E) break;
7960     const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
7961     if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
7962                        ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
7963       return Error(
7964           Op.getStartLoc(),
7965           "immediate expression for mov requires :lower16: or :upper16");
7966     break;
7967   }
7968   case ARM::HINT:
7969   case ARM::t2HINT: {
7970     unsigned Imm8 = Inst.getOperand(0).getImm();
7971     unsigned Pred = Inst.getOperand(1).getImm();
7972     // ESB is not predicable (pred must be AL). Without the RAS extension, this
7973     // behaves as any other unallocated hint.
7974     if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
7975       return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
7976                                                "predicable, but condition "
7977                                                "code specified");
7978     if (Imm8 == 0x14 && Pred != ARMCC::AL)
7979       return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
7980                                                "predicable, but condition "
7981                                                "code specified");
7982     break;
7983   }
7984   case ARM::t2BFi:
7985   case ARM::t2BFr:
7986   case ARM::t2BFLi:
7987   case ARM::t2BFLr: {
7988     if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() ||
7989         (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
7990       return Error(Operands[2]->getStartLoc(),
7991                    "branch location out of range or not a multiple of 2");
7992 
7993     if (Opcode == ARM::t2BFi) {
7994       if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>())
7995         return Error(Operands[3]->getStartLoc(),
7996                      "branch target out of range or not a multiple of 2");
7997     } else if (Opcode == ARM::t2BFLi) {
7998       if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>())
7999         return Error(Operands[3]->getStartLoc(),
8000                      "branch target out of range or not a multiple of 2");
8001     }
8002     break;
8003   }
8004   case ARM::t2BFic: {
8005     if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() ||
8006         (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0))
8007       return Error(Operands[1]->getStartLoc(),
8008                    "branch location out of range or not a multiple of 2");
8009 
8010     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>())
8011       return Error(Operands[2]->getStartLoc(),
8012                    "branch target out of range or not a multiple of 2");
8013 
8014     assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() &&
8015            "branch location and else branch target should either both be "
8016            "immediates or both labels");
8017 
8018     if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) {
8019       int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm();
8020       if (Diff != 4 && Diff != 2)
8021         return Error(
8022             Operands[3]->getStartLoc(),
8023             "else branch target must be 2 or 4 greater than the branch location");
8024     }
8025     break;
8026   }
8027   case ARM::t2CLRM: {
8028     for (unsigned i = 2; i < Inst.getNumOperands(); i++) {
8029       if (Inst.getOperand(i).isReg() &&
8030           !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(
8031               Inst.getOperand(i).getReg())) {
8032         return Error(Operands[2]->getStartLoc(),
8033                      "invalid register in register list. Valid registers are "
8034                      "r0-r12, lr/r14 and APSR.");
8035       }
8036     }
8037     break;
8038   }
8039   case ARM::DSB:
8040   case ARM::t2DSB: {
8041 
8042     if (Inst.getNumOperands() < 2)
8043       break;
8044 
8045     unsigned Option = Inst.getOperand(0).getImm();
8046     unsigned Pred = Inst.getOperand(1).getImm();
8047 
8048     // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
8049     if (Option == 0 && Pred != ARMCC::AL)
8050       return Error(Operands[1]->getStartLoc(),
8051                    "instruction 'ssbb' is not predicable, but condition code "
8052                    "specified");
8053     if (Option == 4 && Pred != ARMCC::AL)
8054       return Error(Operands[1]->getStartLoc(),
8055                    "instruction 'pssbb' is not predicable, but condition code "
8056                    "specified");
8057     break;
8058   }
8059   case ARM::VMOVRRS: {
8060     // Source registers must be sequential.
8061     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
8062     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
8063     if (Sm1 != Sm + 1)
8064       return Error(Operands[5]->getStartLoc(),
8065                    "source operands must be sequential");
8066     break;
8067   }
8068   case ARM::VMOVSRR: {
8069     // Destination registers must be sequential.
8070     const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
8071     const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
8072     if (Sm1 != Sm + 1)
8073       return Error(Operands[3]->getStartLoc(),
8074                    "destination operands must be sequential");
8075     break;
8076   }
8077   case ARM::VLDMDIA:
8078   case ARM::VSTMDIA: {
8079     ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
8080     auto &RegList = Op.getRegList();
8081     if (RegList.size() < 1 || RegList.size() > 16)
8082       return Error(Operands[3]->getStartLoc(),
8083                    "list of registers must be at least 1 and at most 16");
8084     break;
8085   }
8086   case ARM::MVE_VQDMULLs32bh:
8087   case ARM::MVE_VQDMULLs32th:
8088   case ARM::MVE_VCMULf32:
8089   case ARM::MVE_VMULLBs32:
8090   case ARM::MVE_VMULLTs32:
8091   case ARM::MVE_VMULLBu32:
8092   case ARM::MVE_VMULLTu32: {
8093     if (Operands[3]->getReg() == Operands[4]->getReg()) {
8094       return Error (Operands[3]->getStartLoc(),
8095                     "Qd register and Qn register can't be identical");
8096     }
8097     if (Operands[3]->getReg() == Operands[5]->getReg()) {
8098       return Error (Operands[3]->getStartLoc(),
8099                     "Qd register and Qm register can't be identical");
8100     }
8101     break;
8102   }
8103   case ARM::MVE_VMOV_rr_q: {
8104     if (Operands[4]->getReg() != Operands[6]->getReg())
8105       return Error (Operands[4]->getStartLoc(), "Q-registers must be the same");
8106     if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() !=
8107         static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2)
8108       return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
8109     break;
8110   }
8111   case ARM::MVE_VMOV_q_rr: {
8112     if (Operands[2]->getReg() != Operands[4]->getReg())
8113       return Error (Operands[2]->getStartLoc(), "Q-registers must be the same");
8114     if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() !=
8115         static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2)
8116       return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1");
8117     break;
8118   }
8119   case ARM::UMAAL:
8120   case ARM::UMLAL:
8121   case ARM::UMULL:
8122   case ARM::t2UMAAL:
8123   case ARM::t2UMLAL:
8124   case ARM::t2UMULL:
8125   case ARM::SMLAL:
8126   case ARM::SMLALBB:
8127   case ARM::SMLALBT:
8128   case ARM::SMLALD:
8129   case ARM::SMLALDX:
8130   case ARM::SMLALTB:
8131   case ARM::SMLALTT:
8132   case ARM::SMLSLD:
8133   case ARM::SMLSLDX:
8134   case ARM::SMULL:
8135   case ARM::t2SMLAL:
8136   case ARM::t2SMLALBB:
8137   case ARM::t2SMLALBT:
8138   case ARM::t2SMLALD:
8139   case ARM::t2SMLALDX:
8140   case ARM::t2SMLALTB:
8141   case ARM::t2SMLALTT:
8142   case ARM::t2SMLSLD:
8143   case ARM::t2SMLSLDX:
8144   case ARM::t2SMULL: {
8145     unsigned RdHi = Inst.getOperand(0).getReg();
8146     unsigned RdLo = Inst.getOperand(1).getReg();
8147     if(RdHi == RdLo) {
8148       return Error(Loc,
8149                    "unpredictable instruction, RdHi and RdLo must be different");
8150     }
8151     break;
8152   }
8153 
8154   case ARM::CDE_CX1:
8155   case ARM::CDE_CX1A:
8156   case ARM::CDE_CX1D:
8157   case ARM::CDE_CX1DA:
8158   case ARM::CDE_CX2:
8159   case ARM::CDE_CX2A:
8160   case ARM::CDE_CX2D:
8161   case ARM::CDE_CX2DA:
8162   case ARM::CDE_CX3:
8163   case ARM::CDE_CX3A:
8164   case ARM::CDE_CX3D:
8165   case ARM::CDE_CX3DA:
8166   case ARM::CDE_VCX1_vec:
8167   case ARM::CDE_VCX1_fpsp:
8168   case ARM::CDE_VCX1_fpdp:
8169   case ARM::CDE_VCX1A_vec:
8170   case ARM::CDE_VCX1A_fpsp:
8171   case ARM::CDE_VCX1A_fpdp:
8172   case ARM::CDE_VCX2_vec:
8173   case ARM::CDE_VCX2_fpsp:
8174   case ARM::CDE_VCX2_fpdp:
8175   case ARM::CDE_VCX2A_vec:
8176   case ARM::CDE_VCX2A_fpsp:
8177   case ARM::CDE_VCX2A_fpdp:
8178   case ARM::CDE_VCX3_vec:
8179   case ARM::CDE_VCX3_fpsp:
8180   case ARM::CDE_VCX3_fpdp:
8181   case ARM::CDE_VCX3A_vec:
8182   case ARM::CDE_VCX3A_fpsp:
8183   case ARM::CDE_VCX3A_fpdp: {
8184     assert(Inst.getOperand(1).isImm() &&
8185            "CDE operand 1 must be a coprocessor ID");
8186     int64_t Coproc = Inst.getOperand(1).getImm();
8187     if (Coproc < 8 && !ARM::isCDECoproc(Coproc, *STI))
8188       return Error(Operands[1]->getStartLoc(),
8189                    "coprocessor must be configured as CDE");
8190     else if (Coproc >= 8)
8191       return Error(Operands[1]->getStartLoc(),
8192                    "coprocessor must be in the range [p0, p7]");
8193     break;
8194   }
8195 
8196   case ARM::t2CDP:
8197   case ARM::t2CDP2:
8198   case ARM::t2LDC2L_OFFSET:
8199   case ARM::t2LDC2L_OPTION:
8200   case ARM::t2LDC2L_POST:
8201   case ARM::t2LDC2L_PRE:
8202   case ARM::t2LDC2_OFFSET:
8203   case ARM::t2LDC2_OPTION:
8204   case ARM::t2LDC2_POST:
8205   case ARM::t2LDC2_PRE:
8206   case ARM::t2LDCL_OFFSET:
8207   case ARM::t2LDCL_OPTION:
8208   case ARM::t2LDCL_POST:
8209   case ARM::t2LDCL_PRE:
8210   case ARM::t2LDC_OFFSET:
8211   case ARM::t2LDC_OPTION:
8212   case ARM::t2LDC_POST:
8213   case ARM::t2LDC_PRE:
8214   case ARM::t2MCR:
8215   case ARM::t2MCR2:
8216   case ARM::t2MCRR:
8217   case ARM::t2MCRR2:
8218   case ARM::t2MRC:
8219   case ARM::t2MRC2:
8220   case ARM::t2MRRC:
8221   case ARM::t2MRRC2:
8222   case ARM::t2STC2L_OFFSET:
8223   case ARM::t2STC2L_OPTION:
8224   case ARM::t2STC2L_POST:
8225   case ARM::t2STC2L_PRE:
8226   case ARM::t2STC2_OFFSET:
8227   case ARM::t2STC2_OPTION:
8228   case ARM::t2STC2_POST:
8229   case ARM::t2STC2_PRE:
8230   case ARM::t2STCL_OFFSET:
8231   case ARM::t2STCL_OPTION:
8232   case ARM::t2STCL_POST:
8233   case ARM::t2STCL_PRE:
8234   case ARM::t2STC_OFFSET:
8235   case ARM::t2STC_OPTION:
8236   case ARM::t2STC_POST:
8237   case ARM::t2STC_PRE: {
8238     unsigned Opcode = Inst.getOpcode();
8239     // Inst.getOperand indexes operands in the (oops ...) and (iops ...) dags,
8240     // CopInd is the index of the coprocessor operand.
8241     size_t CopInd = 0;
8242     if (Opcode == ARM::t2MRRC || Opcode == ARM::t2MRRC2)
8243       CopInd = 2;
8244     else if (Opcode == ARM::t2MRC || Opcode == ARM::t2MRC2)
8245       CopInd = 1;
8246     assert(Inst.getOperand(CopInd).isImm() &&
8247            "Operand must be a coprocessor ID");
8248     int64_t Coproc = Inst.getOperand(CopInd).getImm();
8249     // Operands[2] is the coprocessor operand at syntactic level
8250     if (ARM::isCDECoproc(Coproc, *STI))
8251       return Error(Operands[2]->getStartLoc(),
8252                    "coprocessor must be configured as GCP");
8253     break;
8254   }
8255   }
8256 
8257   return false;
8258 }
8259 
8260 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
8261   switch(Opc) {
8262   default: llvm_unreachable("unexpected opcode!");
8263   // VST1LN
8264   case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
8265   case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
8266   case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
8267   case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
8268   case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
8269   case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
8270   case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
8271   case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
8272   case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
8273 
8274   // VST2LN
8275   case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
8276   case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
8277   case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
8278   case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
8279   case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
8280 
8281   case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
8282   case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
8283   case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
8284   case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
8285   case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
8286 
8287   case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
8288   case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
8289   case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
8290   case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
8291   case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
8292 
8293   // VST3LN
8294   case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
8295   case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
8296   case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
8297   case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
8298   case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
8299   case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
8300   case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
8301   case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
8302   case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
8303   case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
8304   case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
8305   case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
8306   case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
8307   case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
8308   case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
8309 
8310   // VST3
8311   case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
8312   case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
8313   case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
8314   case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
8315   case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
8316   case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
8317   case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
8318   case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
8319   case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
8320   case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
8321   case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
8322   case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
8323   case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
8324   case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
8325   case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
8326   case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
8327   case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
8328   case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
8329 
8330   // VST4LN
8331   case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
8332   case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8333   case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8334   case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
8335   case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8336   case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
8337   case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
8338   case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
8339   case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
8340   case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
8341   case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
8342   case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
8343   case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
8344   case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
8345   case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
8346 
8347   // VST4
8348   case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
8349   case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8350   case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8351   case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
8352   case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8353   case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8354   case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
8355   case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
8356   case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
8357   case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
8358   case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
8359   case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
8360   case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
8361   case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
8362   case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
8363   case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
8364   case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
8365   case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
8366   }
8367 }
8368 
8369 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
8370   switch(Opc) {
8371   default: llvm_unreachable("unexpected opcode!");
8372   // VLD1LN
8373   case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
8374   case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8375   case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8376   case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
8377   case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
8378   case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
8379   case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
8380   case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
8381   case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
8382 
8383   // VLD2LN
8384   case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
8385   case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8386   case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8387   case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
8388   case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8389   case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
8390   case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
8391   case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
8392   case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
8393   case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
8394   case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
8395   case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
8396   case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
8397   case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
8398   case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
8399 
8400   // VLD3DUP
8401   case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
8402   case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8403   case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8404   case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
8405   case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8406   case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8407   case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
8408   case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
8409   case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
8410   case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
8411   case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
8412   case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
8413   case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
8414   case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
8415   case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
8416   case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
8417   case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
8418   case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
8419 
8420   // VLD3LN
8421   case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
8422   case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8423   case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8424   case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
8425   case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8426   case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
8427   case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
8428   case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
8429   case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
8430   case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
8431   case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
8432   case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
8433   case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
8434   case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
8435   case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
8436 
8437   // VLD3
8438   case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
8439   case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8440   case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8441   case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
8442   case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8443   case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8444   case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
8445   case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
8446   case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
8447   case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
8448   case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
8449   case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
8450   case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
8451   case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
8452   case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
8453   case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
8454   case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
8455   case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
8456 
8457   // VLD4LN
8458   case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
8459   case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8460   case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8461   case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8462   case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8463   case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
8464   case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
8465   case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
8466   case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
8467   case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
8468   case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
8469   case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
8470   case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
8471   case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
8472   case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
8473 
8474   // VLD4DUP
8475   case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
8476   case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8477   case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8478   case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
8479   case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
8480   case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8481   case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
8482   case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
8483   case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
8484   case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
8485   case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
8486   case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
8487   case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
8488   case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
8489   case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
8490   case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
8491   case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
8492   case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
8493 
8494   // VLD4
8495   case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
8496   case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8497   case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8498   case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
8499   case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8500   case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8501   case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
8502   case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
8503   case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
8504   case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
8505   case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
8506   case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
8507   case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
8508   case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
8509   case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
8510   case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
8511   case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
8512   case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
8513   }
8514 }
8515 
8516 bool ARMAsmParser::processInstruction(MCInst &Inst,
8517                                       const OperandVector &Operands,
8518                                       MCStreamer &Out) {
8519   // Check if we have the wide qualifier, because if it's present we
8520   // must avoid selecting a 16-bit thumb instruction.
8521   bool HasWideQualifier = false;
8522   for (auto &Op : Operands) {
8523     ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
8524     if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
8525       HasWideQualifier = true;
8526       break;
8527     }
8528   }
8529 
8530   switch (Inst.getOpcode()) {
8531   // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
8532   case ARM::LDRT_POST:
8533   case ARM::LDRBT_POST: {
8534     const unsigned Opcode =
8535       (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
8536                                            : ARM::LDRBT_POST_IMM;
8537     MCInst TmpInst;
8538     TmpInst.setOpcode(Opcode);
8539     TmpInst.addOperand(Inst.getOperand(0));
8540     TmpInst.addOperand(Inst.getOperand(1));
8541     TmpInst.addOperand(Inst.getOperand(1));
8542     TmpInst.addOperand(MCOperand::createReg(0));
8543     TmpInst.addOperand(MCOperand::createImm(0));
8544     TmpInst.addOperand(Inst.getOperand(2));
8545     TmpInst.addOperand(Inst.getOperand(3));
8546     Inst = TmpInst;
8547     return true;
8548   }
8549   // Alias for 'ldr{sb,h,sh}t Rt, [Rn] {, #imm}' for ommitted immediate.
8550   case ARM::LDRSBTii:
8551   case ARM::LDRHTii:
8552   case ARM::LDRSHTii: {
8553     MCInst TmpInst;
8554 
8555     if (Inst.getOpcode() == ARM::LDRSBTii)
8556       TmpInst.setOpcode(ARM::LDRSBTi);
8557     else if (Inst.getOpcode() == ARM::LDRHTii)
8558       TmpInst.setOpcode(ARM::LDRHTi);
8559     else if (Inst.getOpcode() == ARM::LDRSHTii)
8560       TmpInst.setOpcode(ARM::LDRSHTi);
8561     TmpInst.addOperand(Inst.getOperand(0));
8562     TmpInst.addOperand(Inst.getOperand(1));
8563     TmpInst.addOperand(Inst.getOperand(1));
8564     TmpInst.addOperand(MCOperand::createImm(256));
8565     TmpInst.addOperand(Inst.getOperand(2));
8566     Inst = TmpInst;
8567     return true;
8568   }
8569   // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
8570   case ARM::STRT_POST:
8571   case ARM::STRBT_POST: {
8572     const unsigned Opcode =
8573       (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
8574                                            : ARM::STRBT_POST_IMM;
8575     MCInst TmpInst;
8576     TmpInst.setOpcode(Opcode);
8577     TmpInst.addOperand(Inst.getOperand(1));
8578     TmpInst.addOperand(Inst.getOperand(0));
8579     TmpInst.addOperand(Inst.getOperand(1));
8580     TmpInst.addOperand(MCOperand::createReg(0));
8581     TmpInst.addOperand(MCOperand::createImm(0));
8582     TmpInst.addOperand(Inst.getOperand(2));
8583     TmpInst.addOperand(Inst.getOperand(3));
8584     Inst = TmpInst;
8585     return true;
8586   }
8587   // Alias for alternate form of 'ADR Rd, #imm' instruction.
8588   case ARM::ADDri: {
8589     if (Inst.getOperand(1).getReg() != ARM::PC ||
8590         Inst.getOperand(5).getReg() != 0 ||
8591         !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
8592       return false;
8593     MCInst TmpInst;
8594     TmpInst.setOpcode(ARM::ADR);
8595     TmpInst.addOperand(Inst.getOperand(0));
8596     if (Inst.getOperand(2).isImm()) {
8597       // Immediate (mod_imm) will be in its encoded form, we must unencode it
8598       // before passing it to the ADR instruction.
8599       unsigned Enc = Inst.getOperand(2).getImm();
8600       TmpInst.addOperand(MCOperand::createImm(
8601         ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
8602     } else {
8603       // Turn PC-relative expression into absolute expression.
8604       // Reading PC provides the start of the current instruction + 8 and
8605       // the transform to adr is biased by that.
8606       MCSymbol *Dot = getContext().createTempSymbol();
8607       Out.emitLabel(Dot);
8608       const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
8609       const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
8610                                                      MCSymbolRefExpr::VK_None,
8611                                                      getContext());
8612       const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
8613       const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
8614                                                      getContext());
8615       const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
8616                                                         getContext());
8617       TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
8618     }
8619     TmpInst.addOperand(Inst.getOperand(3));
8620     TmpInst.addOperand(Inst.getOperand(4));
8621     Inst = TmpInst;
8622     return true;
8623   }
8624   // Aliases for alternate PC+imm syntax of LDR instructions.
8625   case ARM::t2LDRpcrel:
8626     // Select the narrow version if the immediate will fit.
8627     if (Inst.getOperand(1).getImm() > 0 &&
8628         Inst.getOperand(1).getImm() <= 0xff &&
8629         !HasWideQualifier)
8630       Inst.setOpcode(ARM::tLDRpci);
8631     else
8632       Inst.setOpcode(ARM::t2LDRpci);
8633     return true;
8634   case ARM::t2LDRBpcrel:
8635     Inst.setOpcode(ARM::t2LDRBpci);
8636     return true;
8637   case ARM::t2LDRHpcrel:
8638     Inst.setOpcode(ARM::t2LDRHpci);
8639     return true;
8640   case ARM::t2LDRSBpcrel:
8641     Inst.setOpcode(ARM::t2LDRSBpci);
8642     return true;
8643   case ARM::t2LDRSHpcrel:
8644     Inst.setOpcode(ARM::t2LDRSHpci);
8645     return true;
8646   case ARM::LDRConstPool:
8647   case ARM::tLDRConstPool:
8648   case ARM::t2LDRConstPool: {
8649     // Pseudo instruction ldr rt, =immediate is converted to a
8650     // MOV rt, immediate if immediate is known and representable
8651     // otherwise we create a constant pool entry that we load from.
8652     MCInst TmpInst;
8653     if (Inst.getOpcode() == ARM::LDRConstPool)
8654       TmpInst.setOpcode(ARM::LDRi12);
8655     else if (Inst.getOpcode() == ARM::tLDRConstPool)
8656       TmpInst.setOpcode(ARM::tLDRpci);
8657     else if (Inst.getOpcode() == ARM::t2LDRConstPool)
8658       TmpInst.setOpcode(ARM::t2LDRpci);
8659     const ARMOperand &PoolOperand =
8660       (HasWideQualifier ?
8661        static_cast<ARMOperand &>(*Operands[4]) :
8662        static_cast<ARMOperand &>(*Operands[3]));
8663     const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
8664     // If SubExprVal is a constant we may be able to use a MOV
8665     if (isa<MCConstantExpr>(SubExprVal) &&
8666         Inst.getOperand(0).getReg() != ARM::PC &&
8667         Inst.getOperand(0).getReg() != ARM::SP) {
8668       int64_t Value =
8669         (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
8670       bool UseMov  = true;
8671       bool MovHasS = true;
8672       if (Inst.getOpcode() == ARM::LDRConstPool) {
8673         // ARM Constant
8674         if (ARM_AM::getSOImmVal(Value) != -1) {
8675           Value = ARM_AM::getSOImmVal(Value);
8676           TmpInst.setOpcode(ARM::MOVi);
8677         }
8678         else if (ARM_AM::getSOImmVal(~Value) != -1) {
8679           Value = ARM_AM::getSOImmVal(~Value);
8680           TmpInst.setOpcode(ARM::MVNi);
8681         }
8682         else if (hasV6T2Ops() &&
8683                  Value >=0 && Value < 65536) {
8684           TmpInst.setOpcode(ARM::MOVi16);
8685           MovHasS = false;
8686         }
8687         else
8688           UseMov = false;
8689       }
8690       else {
8691         // Thumb/Thumb2 Constant
8692         if (hasThumb2() &&
8693             ARM_AM::getT2SOImmVal(Value) != -1)
8694           TmpInst.setOpcode(ARM::t2MOVi);
8695         else if (hasThumb2() &&
8696                  ARM_AM::getT2SOImmVal(~Value) != -1) {
8697           TmpInst.setOpcode(ARM::t2MVNi);
8698           Value = ~Value;
8699         }
8700         else if (hasV8MBaseline() &&
8701                  Value >=0 && Value < 65536) {
8702           TmpInst.setOpcode(ARM::t2MOVi16);
8703           MovHasS = false;
8704         }
8705         else
8706           UseMov = false;
8707       }
8708       if (UseMov) {
8709         TmpInst.addOperand(Inst.getOperand(0));           // Rt
8710         TmpInst.addOperand(MCOperand::createImm(Value));  // Immediate
8711         TmpInst.addOperand(Inst.getOperand(2));           // CondCode
8712         TmpInst.addOperand(Inst.getOperand(3));           // CondCode
8713         if (MovHasS)
8714           TmpInst.addOperand(MCOperand::createReg(0));    // S
8715         Inst = TmpInst;
8716         return true;
8717       }
8718     }
8719     // No opportunity to use MOV/MVN create constant pool
8720     const MCExpr *CPLoc =
8721       getTargetStreamer().addConstantPoolEntry(SubExprVal,
8722                                                PoolOperand.getStartLoc());
8723     TmpInst.addOperand(Inst.getOperand(0));           // Rt
8724     TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
8725     if (TmpInst.getOpcode() == ARM::LDRi12)
8726       TmpInst.addOperand(MCOperand::createImm(0));    // unused offset
8727     TmpInst.addOperand(Inst.getOperand(2));           // CondCode
8728     TmpInst.addOperand(Inst.getOperand(3));           // CondCode
8729     Inst = TmpInst;
8730     return true;
8731   }
8732   // Handle NEON VST complex aliases.
8733   case ARM::VST1LNdWB_register_Asm_8:
8734   case ARM::VST1LNdWB_register_Asm_16:
8735   case ARM::VST1LNdWB_register_Asm_32: {
8736     MCInst TmpInst;
8737     // Shuffle the operands around so the lane index operand is in the
8738     // right place.
8739     unsigned Spacing;
8740     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8741     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8742     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8743     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8744     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8745     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8746     TmpInst.addOperand(Inst.getOperand(1)); // lane
8747     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8748     TmpInst.addOperand(Inst.getOperand(6));
8749     Inst = TmpInst;
8750     return true;
8751   }
8752 
8753   case ARM::VST2LNdWB_register_Asm_8:
8754   case ARM::VST2LNdWB_register_Asm_16:
8755   case ARM::VST2LNdWB_register_Asm_32:
8756   case ARM::VST2LNqWB_register_Asm_16:
8757   case ARM::VST2LNqWB_register_Asm_32: {
8758     MCInst TmpInst;
8759     // Shuffle the operands around so the lane index operand is in the
8760     // right place.
8761     unsigned Spacing;
8762     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8763     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8764     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8765     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8766     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8767     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8768     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8769                                             Spacing));
8770     TmpInst.addOperand(Inst.getOperand(1)); // lane
8771     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8772     TmpInst.addOperand(Inst.getOperand(6));
8773     Inst = TmpInst;
8774     return true;
8775   }
8776 
8777   case ARM::VST3LNdWB_register_Asm_8:
8778   case ARM::VST3LNdWB_register_Asm_16:
8779   case ARM::VST3LNdWB_register_Asm_32:
8780   case ARM::VST3LNqWB_register_Asm_16:
8781   case ARM::VST3LNqWB_register_Asm_32: {
8782     MCInst TmpInst;
8783     // Shuffle the operands around so the lane index operand is in the
8784     // right place.
8785     unsigned Spacing;
8786     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8787     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8788     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8789     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8790     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8791     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8792     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8793                                             Spacing));
8794     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8795                                             Spacing * 2));
8796     TmpInst.addOperand(Inst.getOperand(1)); // lane
8797     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8798     TmpInst.addOperand(Inst.getOperand(6));
8799     Inst = TmpInst;
8800     return true;
8801   }
8802 
8803   case ARM::VST4LNdWB_register_Asm_8:
8804   case ARM::VST4LNdWB_register_Asm_16:
8805   case ARM::VST4LNdWB_register_Asm_32:
8806   case ARM::VST4LNqWB_register_Asm_16:
8807   case ARM::VST4LNqWB_register_Asm_32: {
8808     MCInst TmpInst;
8809     // Shuffle the operands around so the lane index operand is in the
8810     // right place.
8811     unsigned Spacing;
8812     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8813     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8814     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8815     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8816     TmpInst.addOperand(Inst.getOperand(4)); // Rm
8817     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8818     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8819                                             Spacing));
8820     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8821                                             Spacing * 2));
8822     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8823                                             Spacing * 3));
8824     TmpInst.addOperand(Inst.getOperand(1)); // lane
8825     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
8826     TmpInst.addOperand(Inst.getOperand(6));
8827     Inst = TmpInst;
8828     return true;
8829   }
8830 
8831   case ARM::VST1LNdWB_fixed_Asm_8:
8832   case ARM::VST1LNdWB_fixed_Asm_16:
8833   case ARM::VST1LNdWB_fixed_Asm_32: {
8834     MCInst TmpInst;
8835     // Shuffle the operands around so the lane index operand is in the
8836     // right place.
8837     unsigned Spacing;
8838     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8839     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8840     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8841     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8842     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8843     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8844     TmpInst.addOperand(Inst.getOperand(1)); // lane
8845     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8846     TmpInst.addOperand(Inst.getOperand(5));
8847     Inst = TmpInst;
8848     return true;
8849   }
8850 
8851   case ARM::VST2LNdWB_fixed_Asm_8:
8852   case ARM::VST2LNdWB_fixed_Asm_16:
8853   case ARM::VST2LNdWB_fixed_Asm_32:
8854   case ARM::VST2LNqWB_fixed_Asm_16:
8855   case ARM::VST2LNqWB_fixed_Asm_32: {
8856     MCInst TmpInst;
8857     // Shuffle the operands around so the lane index operand is in the
8858     // right place.
8859     unsigned Spacing;
8860     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8861     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8862     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8863     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8864     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8865     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8866     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8867                                             Spacing));
8868     TmpInst.addOperand(Inst.getOperand(1)); // lane
8869     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8870     TmpInst.addOperand(Inst.getOperand(5));
8871     Inst = TmpInst;
8872     return true;
8873   }
8874 
8875   case ARM::VST3LNdWB_fixed_Asm_8:
8876   case ARM::VST3LNdWB_fixed_Asm_16:
8877   case ARM::VST3LNdWB_fixed_Asm_32:
8878   case ARM::VST3LNqWB_fixed_Asm_16:
8879   case ARM::VST3LNqWB_fixed_Asm_32: {
8880     MCInst TmpInst;
8881     // Shuffle the operands around so the lane index operand is in the
8882     // right place.
8883     unsigned Spacing;
8884     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8885     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8886     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8887     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8888     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8889     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8890     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8891                                             Spacing));
8892     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8893                                             Spacing * 2));
8894     TmpInst.addOperand(Inst.getOperand(1)); // lane
8895     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8896     TmpInst.addOperand(Inst.getOperand(5));
8897     Inst = TmpInst;
8898     return true;
8899   }
8900 
8901   case ARM::VST4LNdWB_fixed_Asm_8:
8902   case ARM::VST4LNdWB_fixed_Asm_16:
8903   case ARM::VST4LNdWB_fixed_Asm_32:
8904   case ARM::VST4LNqWB_fixed_Asm_16:
8905   case ARM::VST4LNqWB_fixed_Asm_32: {
8906     MCInst TmpInst;
8907     // Shuffle the operands around so the lane index operand is in the
8908     // right place.
8909     unsigned Spacing;
8910     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8911     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
8912     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8913     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8914     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8915     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8916     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8917                                             Spacing));
8918     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8919                                             Spacing * 2));
8920     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8921                                             Spacing * 3));
8922     TmpInst.addOperand(Inst.getOperand(1)); // lane
8923     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8924     TmpInst.addOperand(Inst.getOperand(5));
8925     Inst = TmpInst;
8926     return true;
8927   }
8928 
8929   case ARM::VST1LNdAsm_8:
8930   case ARM::VST1LNdAsm_16:
8931   case ARM::VST1LNdAsm_32: {
8932     MCInst TmpInst;
8933     // Shuffle the operands around so the lane index operand is in the
8934     // right place.
8935     unsigned Spacing;
8936     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8937     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8938     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8939     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8940     TmpInst.addOperand(Inst.getOperand(1)); // lane
8941     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8942     TmpInst.addOperand(Inst.getOperand(5));
8943     Inst = TmpInst;
8944     return true;
8945   }
8946 
8947   case ARM::VST2LNdAsm_8:
8948   case ARM::VST2LNdAsm_16:
8949   case ARM::VST2LNdAsm_32:
8950   case ARM::VST2LNqAsm_16:
8951   case ARM::VST2LNqAsm_32: {
8952     MCInst TmpInst;
8953     // Shuffle the operands around so the lane index operand is in the
8954     // right place.
8955     unsigned Spacing;
8956     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8957     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8958     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8959     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8960     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8961                                             Spacing));
8962     TmpInst.addOperand(Inst.getOperand(1)); // lane
8963     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8964     TmpInst.addOperand(Inst.getOperand(5));
8965     Inst = TmpInst;
8966     return true;
8967   }
8968 
8969   case ARM::VST3LNdAsm_8:
8970   case ARM::VST3LNdAsm_16:
8971   case ARM::VST3LNdAsm_32:
8972   case ARM::VST3LNqAsm_16:
8973   case ARM::VST3LNqAsm_32: {
8974     MCInst TmpInst;
8975     // Shuffle the operands around so the lane index operand is in the
8976     // right place.
8977     unsigned Spacing;
8978     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8979     TmpInst.addOperand(Inst.getOperand(2)); // Rn
8980     TmpInst.addOperand(Inst.getOperand(3)); // alignment
8981     TmpInst.addOperand(Inst.getOperand(0)); // Vd
8982     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8983                                             Spacing));
8984     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8985                                             Spacing * 2));
8986     TmpInst.addOperand(Inst.getOperand(1)); // lane
8987     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8988     TmpInst.addOperand(Inst.getOperand(5));
8989     Inst = TmpInst;
8990     return true;
8991   }
8992 
8993   case ARM::VST4LNdAsm_8:
8994   case ARM::VST4LNdAsm_16:
8995   case ARM::VST4LNdAsm_32:
8996   case ARM::VST4LNqAsm_16:
8997   case ARM::VST4LNqAsm_32: {
8998     MCInst TmpInst;
8999     // Shuffle the operands around so the lane index operand is in the
9000     // right place.
9001     unsigned Spacing;
9002     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9003     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9004     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9005     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9006     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9007                                             Spacing));
9008     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9009                                             Spacing * 2));
9010     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9011                                             Spacing * 3));
9012     TmpInst.addOperand(Inst.getOperand(1)); // lane
9013     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9014     TmpInst.addOperand(Inst.getOperand(5));
9015     Inst = TmpInst;
9016     return true;
9017   }
9018 
9019   // Handle NEON VLD complex aliases.
9020   case ARM::VLD1LNdWB_register_Asm_8:
9021   case ARM::VLD1LNdWB_register_Asm_16:
9022   case ARM::VLD1LNdWB_register_Asm_32: {
9023     MCInst TmpInst;
9024     // Shuffle the operands around so the lane index operand is in the
9025     // right place.
9026     unsigned Spacing;
9027     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9028     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9029     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9030     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9031     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9032     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9033     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9034     TmpInst.addOperand(Inst.getOperand(1)); // lane
9035     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9036     TmpInst.addOperand(Inst.getOperand(6));
9037     Inst = TmpInst;
9038     return true;
9039   }
9040 
9041   case ARM::VLD2LNdWB_register_Asm_8:
9042   case ARM::VLD2LNdWB_register_Asm_16:
9043   case ARM::VLD2LNdWB_register_Asm_32:
9044   case ARM::VLD2LNqWB_register_Asm_16:
9045   case ARM::VLD2LNqWB_register_Asm_32: {
9046     MCInst TmpInst;
9047     // Shuffle the operands around so the lane index operand is in the
9048     // right place.
9049     unsigned Spacing;
9050     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9051     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9052     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9053                                             Spacing));
9054     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9055     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9056     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9057     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9058     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9059     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9060                                             Spacing));
9061     TmpInst.addOperand(Inst.getOperand(1)); // lane
9062     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9063     TmpInst.addOperand(Inst.getOperand(6));
9064     Inst = TmpInst;
9065     return true;
9066   }
9067 
9068   case ARM::VLD3LNdWB_register_Asm_8:
9069   case ARM::VLD3LNdWB_register_Asm_16:
9070   case ARM::VLD3LNdWB_register_Asm_32:
9071   case ARM::VLD3LNqWB_register_Asm_16:
9072   case ARM::VLD3LNqWB_register_Asm_32: {
9073     MCInst TmpInst;
9074     // Shuffle the operands around so the lane index operand is in the
9075     // right place.
9076     unsigned Spacing;
9077     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9078     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9079     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9080                                             Spacing));
9081     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9082                                             Spacing * 2));
9083     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9084     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9085     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9086     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9087     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9088     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9089                                             Spacing));
9090     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9091                                             Spacing * 2));
9092     TmpInst.addOperand(Inst.getOperand(1)); // lane
9093     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9094     TmpInst.addOperand(Inst.getOperand(6));
9095     Inst = TmpInst;
9096     return true;
9097   }
9098 
9099   case ARM::VLD4LNdWB_register_Asm_8:
9100   case ARM::VLD4LNdWB_register_Asm_16:
9101   case ARM::VLD4LNdWB_register_Asm_32:
9102   case ARM::VLD4LNqWB_register_Asm_16:
9103   case ARM::VLD4LNqWB_register_Asm_32: {
9104     MCInst TmpInst;
9105     // Shuffle the operands around so the lane index operand is in the
9106     // right place.
9107     unsigned Spacing;
9108     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9109     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9110     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9111                                             Spacing));
9112     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9113                                             Spacing * 2));
9114     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9115                                             Spacing * 3));
9116     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9117     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9118     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9119     TmpInst.addOperand(Inst.getOperand(4)); // Rm
9120     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9121     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9122                                             Spacing));
9123     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9124                                             Spacing * 2));
9125     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9126                                             Spacing * 3));
9127     TmpInst.addOperand(Inst.getOperand(1)); // lane
9128     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
9129     TmpInst.addOperand(Inst.getOperand(6));
9130     Inst = TmpInst;
9131     return true;
9132   }
9133 
9134   case ARM::VLD1LNdWB_fixed_Asm_8:
9135   case ARM::VLD1LNdWB_fixed_Asm_16:
9136   case ARM::VLD1LNdWB_fixed_Asm_32: {
9137     MCInst TmpInst;
9138     // Shuffle the operands around so the lane index operand is in the
9139     // right place.
9140     unsigned Spacing;
9141     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9142     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9143     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9144     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9145     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9146     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9147     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9148     TmpInst.addOperand(Inst.getOperand(1)); // lane
9149     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9150     TmpInst.addOperand(Inst.getOperand(5));
9151     Inst = TmpInst;
9152     return true;
9153   }
9154 
9155   case ARM::VLD2LNdWB_fixed_Asm_8:
9156   case ARM::VLD2LNdWB_fixed_Asm_16:
9157   case ARM::VLD2LNdWB_fixed_Asm_32:
9158   case ARM::VLD2LNqWB_fixed_Asm_16:
9159   case ARM::VLD2LNqWB_fixed_Asm_32: {
9160     MCInst TmpInst;
9161     // Shuffle the operands around so the lane index operand is in the
9162     // right place.
9163     unsigned Spacing;
9164     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9165     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9166     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9167                                             Spacing));
9168     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9169     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9170     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9171     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9172     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9173     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9174                                             Spacing));
9175     TmpInst.addOperand(Inst.getOperand(1)); // lane
9176     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9177     TmpInst.addOperand(Inst.getOperand(5));
9178     Inst = TmpInst;
9179     return true;
9180   }
9181 
9182   case ARM::VLD3LNdWB_fixed_Asm_8:
9183   case ARM::VLD3LNdWB_fixed_Asm_16:
9184   case ARM::VLD3LNdWB_fixed_Asm_32:
9185   case ARM::VLD3LNqWB_fixed_Asm_16:
9186   case ARM::VLD3LNqWB_fixed_Asm_32: {
9187     MCInst TmpInst;
9188     // Shuffle the operands around so the lane index operand is in the
9189     // right place.
9190     unsigned Spacing;
9191     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9192     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9193     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9194                                             Spacing));
9195     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9196                                             Spacing * 2));
9197     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9198     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9199     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9200     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9201     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9202     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9203                                             Spacing));
9204     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9205                                             Spacing * 2));
9206     TmpInst.addOperand(Inst.getOperand(1)); // lane
9207     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9208     TmpInst.addOperand(Inst.getOperand(5));
9209     Inst = TmpInst;
9210     return true;
9211   }
9212 
9213   case ARM::VLD4LNdWB_fixed_Asm_8:
9214   case ARM::VLD4LNdWB_fixed_Asm_16:
9215   case ARM::VLD4LNdWB_fixed_Asm_32:
9216   case ARM::VLD4LNqWB_fixed_Asm_16:
9217   case ARM::VLD4LNqWB_fixed_Asm_32: {
9218     MCInst TmpInst;
9219     // Shuffle the operands around so the lane index operand is in the
9220     // right place.
9221     unsigned Spacing;
9222     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9223     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9224     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9225                                             Spacing));
9226     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9227                                             Spacing * 2));
9228     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9229                                             Spacing * 3));
9230     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
9231     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9232     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9233     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9234     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9235     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9236                                             Spacing));
9237     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9238                                             Spacing * 2));
9239     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9240                                             Spacing * 3));
9241     TmpInst.addOperand(Inst.getOperand(1)); // lane
9242     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9243     TmpInst.addOperand(Inst.getOperand(5));
9244     Inst = TmpInst;
9245     return true;
9246   }
9247 
9248   case ARM::VLD1LNdAsm_8:
9249   case ARM::VLD1LNdAsm_16:
9250   case ARM::VLD1LNdAsm_32: {
9251     MCInst TmpInst;
9252     // Shuffle the operands around so the lane index operand is in the
9253     // right place.
9254     unsigned Spacing;
9255     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9256     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9257     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9258     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9259     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9260     TmpInst.addOperand(Inst.getOperand(1)); // lane
9261     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9262     TmpInst.addOperand(Inst.getOperand(5));
9263     Inst = TmpInst;
9264     return true;
9265   }
9266 
9267   case ARM::VLD2LNdAsm_8:
9268   case ARM::VLD2LNdAsm_16:
9269   case ARM::VLD2LNdAsm_32:
9270   case ARM::VLD2LNqAsm_16:
9271   case ARM::VLD2LNqAsm_32: {
9272     MCInst TmpInst;
9273     // Shuffle the operands around so the lane index operand is in the
9274     // right place.
9275     unsigned Spacing;
9276     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9277     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9278     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9279                                             Spacing));
9280     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9281     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9282     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9283     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9284                                             Spacing));
9285     TmpInst.addOperand(Inst.getOperand(1)); // lane
9286     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9287     TmpInst.addOperand(Inst.getOperand(5));
9288     Inst = TmpInst;
9289     return true;
9290   }
9291 
9292   case ARM::VLD3LNdAsm_8:
9293   case ARM::VLD3LNdAsm_16:
9294   case ARM::VLD3LNdAsm_32:
9295   case ARM::VLD3LNqAsm_16:
9296   case ARM::VLD3LNqAsm_32: {
9297     MCInst TmpInst;
9298     // Shuffle the operands around so the lane index operand is in the
9299     // right place.
9300     unsigned Spacing;
9301     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9302     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9303     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9304                                             Spacing));
9305     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9306                                             Spacing * 2));
9307     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9308     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9309     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9310     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9311                                             Spacing));
9312     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9313                                             Spacing * 2));
9314     TmpInst.addOperand(Inst.getOperand(1)); // lane
9315     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9316     TmpInst.addOperand(Inst.getOperand(5));
9317     Inst = TmpInst;
9318     return true;
9319   }
9320 
9321   case ARM::VLD4LNdAsm_8:
9322   case ARM::VLD4LNdAsm_16:
9323   case ARM::VLD4LNdAsm_32:
9324   case ARM::VLD4LNqAsm_16:
9325   case ARM::VLD4LNqAsm_32: {
9326     MCInst TmpInst;
9327     // Shuffle the operands around so the lane index operand is in the
9328     // right place.
9329     unsigned Spacing;
9330     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9331     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9332     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9333                                             Spacing));
9334     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9335                                             Spacing * 2));
9336     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9337                                             Spacing * 3));
9338     TmpInst.addOperand(Inst.getOperand(2)); // Rn
9339     TmpInst.addOperand(Inst.getOperand(3)); // alignment
9340     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
9341     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9342                                             Spacing));
9343     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9344                                             Spacing * 2));
9345     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9346                                             Spacing * 3));
9347     TmpInst.addOperand(Inst.getOperand(1)); // lane
9348     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9349     TmpInst.addOperand(Inst.getOperand(5));
9350     Inst = TmpInst;
9351     return true;
9352   }
9353 
9354   // VLD3DUP single 3-element structure to all lanes instructions.
9355   case ARM::VLD3DUPdAsm_8:
9356   case ARM::VLD3DUPdAsm_16:
9357   case ARM::VLD3DUPdAsm_32:
9358   case ARM::VLD3DUPqAsm_8:
9359   case ARM::VLD3DUPqAsm_16:
9360   case ARM::VLD3DUPqAsm_32: {
9361     MCInst TmpInst;
9362     unsigned Spacing;
9363     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9364     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9365     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9366                                             Spacing));
9367     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9368                                             Spacing * 2));
9369     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9370     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9371     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9372     TmpInst.addOperand(Inst.getOperand(4));
9373     Inst = TmpInst;
9374     return true;
9375   }
9376 
9377   case ARM::VLD3DUPdWB_fixed_Asm_8:
9378   case ARM::VLD3DUPdWB_fixed_Asm_16:
9379   case ARM::VLD3DUPdWB_fixed_Asm_32:
9380   case ARM::VLD3DUPqWB_fixed_Asm_8:
9381   case ARM::VLD3DUPqWB_fixed_Asm_16:
9382   case ARM::VLD3DUPqWB_fixed_Asm_32: {
9383     MCInst TmpInst;
9384     unsigned Spacing;
9385     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9386     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9387     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9388                                             Spacing));
9389     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9390                                             Spacing * 2));
9391     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9392     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9393     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9394     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9395     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9396     TmpInst.addOperand(Inst.getOperand(4));
9397     Inst = TmpInst;
9398     return true;
9399   }
9400 
9401   case ARM::VLD3DUPdWB_register_Asm_8:
9402   case ARM::VLD3DUPdWB_register_Asm_16:
9403   case ARM::VLD3DUPdWB_register_Asm_32:
9404   case ARM::VLD3DUPqWB_register_Asm_8:
9405   case ARM::VLD3DUPqWB_register_Asm_16:
9406   case ARM::VLD3DUPqWB_register_Asm_32: {
9407     MCInst TmpInst;
9408     unsigned Spacing;
9409     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9410     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9411     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9412                                             Spacing));
9413     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9414                                             Spacing * 2));
9415     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9416     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9417     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9418     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9419     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9420     TmpInst.addOperand(Inst.getOperand(5));
9421     Inst = TmpInst;
9422     return true;
9423   }
9424 
9425   // VLD3 multiple 3-element structure instructions.
9426   case ARM::VLD3dAsm_8:
9427   case ARM::VLD3dAsm_16:
9428   case ARM::VLD3dAsm_32:
9429   case ARM::VLD3qAsm_8:
9430   case ARM::VLD3qAsm_16:
9431   case ARM::VLD3qAsm_32: {
9432     MCInst TmpInst;
9433     unsigned Spacing;
9434     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9435     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9436     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9437                                             Spacing));
9438     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9439                                             Spacing * 2));
9440     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9441     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9442     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9443     TmpInst.addOperand(Inst.getOperand(4));
9444     Inst = TmpInst;
9445     return true;
9446   }
9447 
9448   case ARM::VLD3dWB_fixed_Asm_8:
9449   case ARM::VLD3dWB_fixed_Asm_16:
9450   case ARM::VLD3dWB_fixed_Asm_32:
9451   case ARM::VLD3qWB_fixed_Asm_8:
9452   case ARM::VLD3qWB_fixed_Asm_16:
9453   case ARM::VLD3qWB_fixed_Asm_32: {
9454     MCInst TmpInst;
9455     unsigned Spacing;
9456     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9457     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9458     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9459                                             Spacing));
9460     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9461                                             Spacing * 2));
9462     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9463     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9464     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9465     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9466     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9467     TmpInst.addOperand(Inst.getOperand(4));
9468     Inst = TmpInst;
9469     return true;
9470   }
9471 
9472   case ARM::VLD3dWB_register_Asm_8:
9473   case ARM::VLD3dWB_register_Asm_16:
9474   case ARM::VLD3dWB_register_Asm_32:
9475   case ARM::VLD3qWB_register_Asm_8:
9476   case ARM::VLD3qWB_register_Asm_16:
9477   case ARM::VLD3qWB_register_Asm_32: {
9478     MCInst TmpInst;
9479     unsigned Spacing;
9480     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9481     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9482     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9483                                             Spacing));
9484     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9485                                             Spacing * 2));
9486     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9487     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9488     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9489     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9490     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9491     TmpInst.addOperand(Inst.getOperand(5));
9492     Inst = TmpInst;
9493     return true;
9494   }
9495 
9496   // VLD4DUP single 3-element structure to all lanes instructions.
9497   case ARM::VLD4DUPdAsm_8:
9498   case ARM::VLD4DUPdAsm_16:
9499   case ARM::VLD4DUPdAsm_32:
9500   case ARM::VLD4DUPqAsm_8:
9501   case ARM::VLD4DUPqAsm_16:
9502   case ARM::VLD4DUPqAsm_32: {
9503     MCInst TmpInst;
9504     unsigned Spacing;
9505     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9506     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9507     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9508                                             Spacing));
9509     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9510                                             Spacing * 2));
9511     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9512                                             Spacing * 3));
9513     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9514     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9515     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9516     TmpInst.addOperand(Inst.getOperand(4));
9517     Inst = TmpInst;
9518     return true;
9519   }
9520 
9521   case ARM::VLD4DUPdWB_fixed_Asm_8:
9522   case ARM::VLD4DUPdWB_fixed_Asm_16:
9523   case ARM::VLD4DUPdWB_fixed_Asm_32:
9524   case ARM::VLD4DUPqWB_fixed_Asm_8:
9525   case ARM::VLD4DUPqWB_fixed_Asm_16:
9526   case ARM::VLD4DUPqWB_fixed_Asm_32: {
9527     MCInst TmpInst;
9528     unsigned Spacing;
9529     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9530     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9531     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9532                                             Spacing));
9533     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9534                                             Spacing * 2));
9535     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9536                                             Spacing * 3));
9537     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9538     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9539     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9540     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9541     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9542     TmpInst.addOperand(Inst.getOperand(4));
9543     Inst = TmpInst;
9544     return true;
9545   }
9546 
9547   case ARM::VLD4DUPdWB_register_Asm_8:
9548   case ARM::VLD4DUPdWB_register_Asm_16:
9549   case ARM::VLD4DUPdWB_register_Asm_32:
9550   case ARM::VLD4DUPqWB_register_Asm_8:
9551   case ARM::VLD4DUPqWB_register_Asm_16:
9552   case ARM::VLD4DUPqWB_register_Asm_32: {
9553     MCInst TmpInst;
9554     unsigned Spacing;
9555     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9556     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9557     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9558                                             Spacing));
9559     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9560                                             Spacing * 2));
9561     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9562                                             Spacing * 3));
9563     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9564     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9565     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9566     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9567     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9568     TmpInst.addOperand(Inst.getOperand(5));
9569     Inst = TmpInst;
9570     return true;
9571   }
9572 
9573   // VLD4 multiple 4-element structure instructions.
9574   case ARM::VLD4dAsm_8:
9575   case ARM::VLD4dAsm_16:
9576   case ARM::VLD4dAsm_32:
9577   case ARM::VLD4qAsm_8:
9578   case ARM::VLD4qAsm_16:
9579   case ARM::VLD4qAsm_32: {
9580     MCInst TmpInst;
9581     unsigned Spacing;
9582     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9583     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9584     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9585                                             Spacing));
9586     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9587                                             Spacing * 2));
9588     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9589                                             Spacing * 3));
9590     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9591     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9592     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9593     TmpInst.addOperand(Inst.getOperand(4));
9594     Inst = TmpInst;
9595     return true;
9596   }
9597 
9598   case ARM::VLD4dWB_fixed_Asm_8:
9599   case ARM::VLD4dWB_fixed_Asm_16:
9600   case ARM::VLD4dWB_fixed_Asm_32:
9601   case ARM::VLD4qWB_fixed_Asm_8:
9602   case ARM::VLD4qWB_fixed_Asm_16:
9603   case ARM::VLD4qWB_fixed_Asm_32: {
9604     MCInst TmpInst;
9605     unsigned Spacing;
9606     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9607     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9608     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9609                                             Spacing));
9610     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9611                                             Spacing * 2));
9612     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9613                                             Spacing * 3));
9614     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9615     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9616     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9617     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9618     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9619     TmpInst.addOperand(Inst.getOperand(4));
9620     Inst = TmpInst;
9621     return true;
9622   }
9623 
9624   case ARM::VLD4dWB_register_Asm_8:
9625   case ARM::VLD4dWB_register_Asm_16:
9626   case ARM::VLD4dWB_register_Asm_32:
9627   case ARM::VLD4qWB_register_Asm_8:
9628   case ARM::VLD4qWB_register_Asm_16:
9629   case ARM::VLD4qWB_register_Asm_32: {
9630     MCInst TmpInst;
9631     unsigned Spacing;
9632     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
9633     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9634     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9635                                             Spacing));
9636     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9637                                             Spacing * 2));
9638     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9639                                             Spacing * 3));
9640     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9641     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9642     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9643     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9644     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9645     TmpInst.addOperand(Inst.getOperand(5));
9646     Inst = TmpInst;
9647     return true;
9648   }
9649 
9650   // VST3 multiple 3-element structure instructions.
9651   case ARM::VST3dAsm_8:
9652   case ARM::VST3dAsm_16:
9653   case ARM::VST3dAsm_32:
9654   case ARM::VST3qAsm_8:
9655   case ARM::VST3qAsm_16:
9656   case ARM::VST3qAsm_32: {
9657     MCInst TmpInst;
9658     unsigned Spacing;
9659     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9660     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9661     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9662     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9663     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9664                                             Spacing));
9665     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9666                                             Spacing * 2));
9667     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9668     TmpInst.addOperand(Inst.getOperand(4));
9669     Inst = TmpInst;
9670     return true;
9671   }
9672 
9673   case ARM::VST3dWB_fixed_Asm_8:
9674   case ARM::VST3dWB_fixed_Asm_16:
9675   case ARM::VST3dWB_fixed_Asm_32:
9676   case ARM::VST3qWB_fixed_Asm_8:
9677   case ARM::VST3qWB_fixed_Asm_16:
9678   case ARM::VST3qWB_fixed_Asm_32: {
9679     MCInst TmpInst;
9680     unsigned Spacing;
9681     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9682     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9683     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9684     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9685     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9686     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9687     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9688                                             Spacing));
9689     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9690                                             Spacing * 2));
9691     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9692     TmpInst.addOperand(Inst.getOperand(4));
9693     Inst = TmpInst;
9694     return true;
9695   }
9696 
9697   case ARM::VST3dWB_register_Asm_8:
9698   case ARM::VST3dWB_register_Asm_16:
9699   case ARM::VST3dWB_register_Asm_32:
9700   case ARM::VST3qWB_register_Asm_8:
9701   case ARM::VST3qWB_register_Asm_16:
9702   case ARM::VST3qWB_register_Asm_32: {
9703     MCInst TmpInst;
9704     unsigned Spacing;
9705     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9706     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9707     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9708     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9709     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9710     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9711     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9712                                             Spacing));
9713     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9714                                             Spacing * 2));
9715     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9716     TmpInst.addOperand(Inst.getOperand(5));
9717     Inst = TmpInst;
9718     return true;
9719   }
9720 
9721   // VST4 multiple 3-element structure instructions.
9722   case ARM::VST4dAsm_8:
9723   case ARM::VST4dAsm_16:
9724   case ARM::VST4dAsm_32:
9725   case ARM::VST4qAsm_8:
9726   case ARM::VST4qAsm_16:
9727   case ARM::VST4qAsm_32: {
9728     MCInst TmpInst;
9729     unsigned Spacing;
9730     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9731     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9732     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9733     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9734     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9735                                             Spacing));
9736     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9737                                             Spacing * 2));
9738     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9739                                             Spacing * 3));
9740     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9741     TmpInst.addOperand(Inst.getOperand(4));
9742     Inst = TmpInst;
9743     return true;
9744   }
9745 
9746   case ARM::VST4dWB_fixed_Asm_8:
9747   case ARM::VST4dWB_fixed_Asm_16:
9748   case ARM::VST4dWB_fixed_Asm_32:
9749   case ARM::VST4qWB_fixed_Asm_8:
9750   case ARM::VST4qWB_fixed_Asm_16:
9751   case ARM::VST4qWB_fixed_Asm_32: {
9752     MCInst TmpInst;
9753     unsigned Spacing;
9754     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9755     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9756     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9757     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9758     TmpInst.addOperand(MCOperand::createReg(0)); // Rm
9759     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9760     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9761                                             Spacing));
9762     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9763                                             Spacing * 2));
9764     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9765                                             Spacing * 3));
9766     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9767     TmpInst.addOperand(Inst.getOperand(4));
9768     Inst = TmpInst;
9769     return true;
9770   }
9771 
9772   case ARM::VST4dWB_register_Asm_8:
9773   case ARM::VST4dWB_register_Asm_16:
9774   case ARM::VST4dWB_register_Asm_32:
9775   case ARM::VST4qWB_register_Asm_8:
9776   case ARM::VST4qWB_register_Asm_16:
9777   case ARM::VST4qWB_register_Asm_32: {
9778     MCInst TmpInst;
9779     unsigned Spacing;
9780     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
9781     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9782     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
9783     TmpInst.addOperand(Inst.getOperand(2)); // alignment
9784     TmpInst.addOperand(Inst.getOperand(3)); // Rm
9785     TmpInst.addOperand(Inst.getOperand(0)); // Vd
9786     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9787                                             Spacing));
9788     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9789                                             Spacing * 2));
9790     TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
9791                                             Spacing * 3));
9792     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9793     TmpInst.addOperand(Inst.getOperand(5));
9794     Inst = TmpInst;
9795     return true;
9796   }
9797 
9798   // Handle encoding choice for the shift-immediate instructions.
9799   case ARM::t2LSLri:
9800   case ARM::t2LSRri:
9801   case ARM::t2ASRri:
9802     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9803         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9804         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9805         !HasWideQualifier) {
9806       unsigned NewOpc;
9807       switch (Inst.getOpcode()) {
9808       default: llvm_unreachable("unexpected opcode");
9809       case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
9810       case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
9811       case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
9812       }
9813       // The Thumb1 operands aren't in the same order. Awesome, eh?
9814       MCInst TmpInst;
9815       TmpInst.setOpcode(NewOpc);
9816       TmpInst.addOperand(Inst.getOperand(0));
9817       TmpInst.addOperand(Inst.getOperand(5));
9818       TmpInst.addOperand(Inst.getOperand(1));
9819       TmpInst.addOperand(Inst.getOperand(2));
9820       TmpInst.addOperand(Inst.getOperand(3));
9821       TmpInst.addOperand(Inst.getOperand(4));
9822       Inst = TmpInst;
9823       return true;
9824     }
9825     return false;
9826 
9827   // Handle the Thumb2 mode MOV complex aliases.
9828   case ARM::t2MOVsr:
9829   case ARM::t2MOVSsr: {
9830     // Which instruction to expand to depends on the CCOut operand and
9831     // whether we're in an IT block if the register operands are low
9832     // registers.
9833     bool isNarrow = false;
9834     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9835         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9836         isARMLowRegister(Inst.getOperand(2).getReg()) &&
9837         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
9838         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
9839         !HasWideQualifier)
9840       isNarrow = true;
9841     MCInst TmpInst;
9842     unsigned newOpc;
9843     switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
9844     default: llvm_unreachable("unexpected opcode!");
9845     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
9846     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
9847     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
9848     case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
9849     }
9850     TmpInst.setOpcode(newOpc);
9851     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9852     if (isNarrow)
9853       TmpInst.addOperand(MCOperand::createReg(
9854           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
9855     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9856     TmpInst.addOperand(Inst.getOperand(2)); // Rm
9857     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
9858     TmpInst.addOperand(Inst.getOperand(5));
9859     if (!isNarrow)
9860       TmpInst.addOperand(MCOperand::createReg(
9861           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
9862     Inst = TmpInst;
9863     return true;
9864   }
9865   case ARM::t2MOVsi:
9866   case ARM::t2MOVSsi: {
9867     // Which instruction to expand to depends on the CCOut operand and
9868     // whether we're in an IT block if the register operands are low
9869     // registers.
9870     bool isNarrow = false;
9871     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
9872         isARMLowRegister(Inst.getOperand(1).getReg()) &&
9873         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
9874         !HasWideQualifier)
9875       isNarrow = true;
9876     MCInst TmpInst;
9877     unsigned newOpc;
9878     unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
9879     unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
9880     bool isMov = false;
9881     // MOV rd, rm, LSL #0 is actually a MOV instruction
9882     if (Shift == ARM_AM::lsl && Amount == 0) {
9883       isMov = true;
9884       // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
9885       // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
9886       // unpredictable in an IT block so the 32-bit encoding T3 has to be used
9887       // instead.
9888       if (inITBlock()) {
9889         isNarrow = false;
9890       }
9891       newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
9892     } else {
9893       switch(Shift) {
9894       default: llvm_unreachable("unexpected opcode!");
9895       case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
9896       case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
9897       case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
9898       case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
9899       case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
9900       }
9901     }
9902     if (Amount == 32) Amount = 0;
9903     TmpInst.setOpcode(newOpc);
9904     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9905     if (isNarrow && !isMov)
9906       TmpInst.addOperand(MCOperand::createReg(
9907           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
9908     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9909     if (newOpc != ARM::t2RRX && !isMov)
9910       TmpInst.addOperand(MCOperand::createImm(Amount));
9911     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9912     TmpInst.addOperand(Inst.getOperand(4));
9913     if (!isNarrow)
9914       TmpInst.addOperand(MCOperand::createReg(
9915           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
9916     Inst = TmpInst;
9917     return true;
9918   }
9919   // Handle the ARM mode MOV complex aliases.
9920   case ARM::ASRr:
9921   case ARM::LSRr:
9922   case ARM::LSLr:
9923   case ARM::RORr: {
9924     ARM_AM::ShiftOpc ShiftTy;
9925     switch(Inst.getOpcode()) {
9926     default: llvm_unreachable("unexpected opcode!");
9927     case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
9928     case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
9929     case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
9930     case ARM::RORr: ShiftTy = ARM_AM::ror; break;
9931     }
9932     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
9933     MCInst TmpInst;
9934     TmpInst.setOpcode(ARM::MOVsr);
9935     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9936     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9937     TmpInst.addOperand(Inst.getOperand(2)); // Rm
9938     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
9939     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9940     TmpInst.addOperand(Inst.getOperand(4));
9941     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
9942     Inst = TmpInst;
9943     return true;
9944   }
9945   case ARM::ASRi:
9946   case ARM::LSRi:
9947   case ARM::LSLi:
9948   case ARM::RORi: {
9949     ARM_AM::ShiftOpc ShiftTy;
9950     switch(Inst.getOpcode()) {
9951     default: llvm_unreachable("unexpected opcode!");
9952     case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
9953     case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
9954     case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
9955     case ARM::RORi: ShiftTy = ARM_AM::ror; break;
9956     }
9957     // A shift by zero is a plain MOVr, not a MOVsi.
9958     unsigned Amt = Inst.getOperand(2).getImm();
9959     unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
9960     // A shift by 32 should be encoded as 0 when permitted
9961     if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
9962       Amt = 0;
9963     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
9964     MCInst TmpInst;
9965     TmpInst.setOpcode(Opc);
9966     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9967     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9968     if (Opc == ARM::MOVsi)
9969       TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
9970     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
9971     TmpInst.addOperand(Inst.getOperand(4));
9972     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
9973     Inst = TmpInst;
9974     return true;
9975   }
9976   case ARM::RRXi: {
9977     unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
9978     MCInst TmpInst;
9979     TmpInst.setOpcode(ARM::MOVsi);
9980     TmpInst.addOperand(Inst.getOperand(0)); // Rd
9981     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9982     TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
9983     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
9984     TmpInst.addOperand(Inst.getOperand(3));
9985     TmpInst.addOperand(Inst.getOperand(4)); // cc_out
9986     Inst = TmpInst;
9987     return true;
9988   }
9989   case ARM::t2LDMIA_UPD: {
9990     // If this is a load of a single register, then we should use
9991     // a post-indexed LDR instruction instead, per the ARM ARM.
9992     if (Inst.getNumOperands() != 5)
9993       return false;
9994     MCInst TmpInst;
9995     TmpInst.setOpcode(ARM::t2LDR_POST);
9996     TmpInst.addOperand(Inst.getOperand(4)); // Rt
9997     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
9998     TmpInst.addOperand(Inst.getOperand(1)); // Rn
9999     TmpInst.addOperand(MCOperand::createImm(4));
10000     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10001     TmpInst.addOperand(Inst.getOperand(3));
10002     Inst = TmpInst;
10003     return true;
10004   }
10005   case ARM::t2STMDB_UPD: {
10006     // If this is a store of a single register, then we should use
10007     // a pre-indexed STR instruction instead, per the ARM ARM.
10008     if (Inst.getNumOperands() != 5)
10009       return false;
10010     MCInst TmpInst;
10011     TmpInst.setOpcode(ARM::t2STR_PRE);
10012     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10013     TmpInst.addOperand(Inst.getOperand(4)); // Rt
10014     TmpInst.addOperand(Inst.getOperand(1)); // Rn
10015     TmpInst.addOperand(MCOperand::createImm(-4));
10016     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10017     TmpInst.addOperand(Inst.getOperand(3));
10018     Inst = TmpInst;
10019     return true;
10020   }
10021   case ARM::LDMIA_UPD:
10022     // If this is a load of a single register via a 'pop', then we should use
10023     // a post-indexed LDR instruction instead, per the ARM ARM.
10024     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
10025         Inst.getNumOperands() == 5) {
10026       MCInst TmpInst;
10027       TmpInst.setOpcode(ARM::LDR_POST_IMM);
10028       TmpInst.addOperand(Inst.getOperand(4)); // Rt
10029       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10030       TmpInst.addOperand(Inst.getOperand(1)); // Rn
10031       TmpInst.addOperand(MCOperand::createReg(0));  // am2offset
10032       TmpInst.addOperand(MCOperand::createImm(4));
10033       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10034       TmpInst.addOperand(Inst.getOperand(3));
10035       Inst = TmpInst;
10036       return true;
10037     }
10038     break;
10039   case ARM::STMDB_UPD:
10040     // If this is a store of a single register via a 'push', then we should use
10041     // a pre-indexed STR instruction instead, per the ARM ARM.
10042     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
10043         Inst.getNumOperands() == 5) {
10044       MCInst TmpInst;
10045       TmpInst.setOpcode(ARM::STR_PRE_IMM);
10046       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
10047       TmpInst.addOperand(Inst.getOperand(4)); // Rt
10048       TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
10049       TmpInst.addOperand(MCOperand::createImm(-4));
10050       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
10051       TmpInst.addOperand(Inst.getOperand(3));
10052       Inst = TmpInst;
10053     }
10054     break;
10055   case ARM::t2ADDri12:
10056   case ARM::t2SUBri12:
10057   case ARM::t2ADDspImm12:
10058   case ARM::t2SUBspImm12: {
10059     // If the immediate fits for encoding T3 and the generic
10060     // mnemonic was used, encoding T3 is preferred.
10061     const StringRef Token = static_cast<ARMOperand &>(*Operands[0]).getToken();
10062     if ((Token != "add" && Token != "sub") ||
10063         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
10064       break;
10065     switch (Inst.getOpcode()) {
10066     case ARM::t2ADDri12:
10067       Inst.setOpcode(ARM::t2ADDri);
10068       break;
10069     case ARM::t2SUBri12:
10070       Inst.setOpcode(ARM::t2SUBri);
10071       break;
10072     case ARM::t2ADDspImm12:
10073       Inst.setOpcode(ARM::t2ADDspImm);
10074       break;
10075     case ARM::t2SUBspImm12:
10076       Inst.setOpcode(ARM::t2SUBspImm);
10077       break;
10078     }
10079 
10080     Inst.addOperand(MCOperand::createReg(0)); // cc_out
10081     return true;
10082   }
10083   case ARM::tADDi8:
10084     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
10085     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
10086     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
10087     // to encoding T1 if <Rd> is omitted."
10088     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
10089       Inst.setOpcode(ARM::tADDi3);
10090       return true;
10091     }
10092     break;
10093   case ARM::tSUBi8:
10094     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
10095     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
10096     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
10097     // to encoding T1 if <Rd> is omitted."
10098     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
10099       Inst.setOpcode(ARM::tSUBi3);
10100       return true;
10101     }
10102     break;
10103   case ARM::t2ADDri:
10104   case ARM::t2SUBri: {
10105     // If the destination and first source operand are the same, and
10106     // the flags are compatible with the current IT status, use encoding T2
10107     // instead of T3. For compatibility with the system 'as'. Make sure the
10108     // wide encoding wasn't explicit.
10109     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
10110         !isARMLowRegister(Inst.getOperand(0).getReg()) ||
10111         (Inst.getOperand(2).isImm() &&
10112          (unsigned)Inst.getOperand(2).getImm() > 255) ||
10113         Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
10114         HasWideQualifier)
10115       break;
10116     MCInst TmpInst;
10117     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
10118                       ARM::tADDi8 : ARM::tSUBi8);
10119     TmpInst.addOperand(Inst.getOperand(0));
10120     TmpInst.addOperand(Inst.getOperand(5));
10121     TmpInst.addOperand(Inst.getOperand(0));
10122     TmpInst.addOperand(Inst.getOperand(2));
10123     TmpInst.addOperand(Inst.getOperand(3));
10124     TmpInst.addOperand(Inst.getOperand(4));
10125     Inst = TmpInst;
10126     return true;
10127   }
10128   case ARM::t2ADDspImm:
10129   case ARM::t2SUBspImm: {
10130     // Prefer T1 encoding if possible
10131     if (Inst.getOperand(5).getReg() != 0 || HasWideQualifier)
10132       break;
10133     unsigned V = Inst.getOperand(2).getImm();
10134     if (V & 3 || V > ((1 << 7) - 1) << 2)
10135       break;
10136     MCInst TmpInst;
10137     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDspImm ? ARM::tADDspi
10138                                                           : ARM::tSUBspi);
10139     TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // destination reg
10140     TmpInst.addOperand(MCOperand::createReg(ARM::SP)); // source reg
10141     TmpInst.addOperand(MCOperand::createImm(V / 4));   // immediate
10142     TmpInst.addOperand(Inst.getOperand(3));            // pred
10143     TmpInst.addOperand(Inst.getOperand(4));
10144     Inst = TmpInst;
10145     return true;
10146   }
10147   case ARM::t2ADDrr: {
10148     // If the destination and first source operand are the same, and
10149     // there's no setting of the flags, use encoding T2 instead of T3.
10150     // Note that this is only for ADD, not SUB. This mirrors the system
10151     // 'as' behaviour.  Also take advantage of ADD being commutative.
10152     // Make sure the wide encoding wasn't explicit.
10153     bool Swap = false;
10154     auto DestReg = Inst.getOperand(0).getReg();
10155     bool Transform = DestReg == Inst.getOperand(1).getReg();
10156     if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
10157       Transform = true;
10158       Swap = true;
10159     }
10160     if (!Transform ||
10161         Inst.getOperand(5).getReg() != 0 ||
10162         HasWideQualifier)
10163       break;
10164     MCInst TmpInst;
10165     TmpInst.setOpcode(ARM::tADDhirr);
10166     TmpInst.addOperand(Inst.getOperand(0));
10167     TmpInst.addOperand(Inst.getOperand(0));
10168     TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
10169     TmpInst.addOperand(Inst.getOperand(3));
10170     TmpInst.addOperand(Inst.getOperand(4));
10171     Inst = TmpInst;
10172     return true;
10173   }
10174   case ARM::tADDrSP:
10175     // If the non-SP source operand and the destination operand are not the
10176     // same, we need to use the 32-bit encoding if it's available.
10177     if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
10178       Inst.setOpcode(ARM::t2ADDrr);
10179       Inst.addOperand(MCOperand::createReg(0)); // cc_out
10180       return true;
10181     }
10182     break;
10183   case ARM::tB:
10184     // A Thumb conditional branch outside of an IT block is a tBcc.
10185     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
10186       Inst.setOpcode(ARM::tBcc);
10187       return true;
10188     }
10189     break;
10190   case ARM::t2B:
10191     // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
10192     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
10193       Inst.setOpcode(ARM::t2Bcc);
10194       return true;
10195     }
10196     break;
10197   case ARM::t2Bcc:
10198     // If the conditional is AL or we're in an IT block, we really want t2B.
10199     if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
10200       Inst.setOpcode(ARM::t2B);
10201       return true;
10202     }
10203     break;
10204   case ARM::tBcc:
10205     // If the conditional is AL, we really want tB.
10206     if (Inst.getOperand(1).getImm() == ARMCC::AL) {
10207       Inst.setOpcode(ARM::tB);
10208       return true;
10209     }
10210     break;
10211   case ARM::tLDMIA: {
10212     // If the register list contains any high registers, or if the writeback
10213     // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
10214     // instead if we're in Thumb2. Otherwise, this should have generated
10215     // an error in validateInstruction().
10216     unsigned Rn = Inst.getOperand(0).getReg();
10217     bool hasWritebackToken =
10218         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
10219          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
10220     bool listContainsBase;
10221     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
10222         (!listContainsBase && !hasWritebackToken) ||
10223         (listContainsBase && hasWritebackToken)) {
10224       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
10225       assert(isThumbTwo());
10226       Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
10227       // If we're switching to the updating version, we need to insert
10228       // the writeback tied operand.
10229       if (hasWritebackToken)
10230         Inst.insert(Inst.begin(),
10231                     MCOperand::createReg(Inst.getOperand(0).getReg()));
10232       return true;
10233     }
10234     break;
10235   }
10236   case ARM::tSTMIA_UPD: {
10237     // If the register list contains any high registers, we need to use
10238     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
10239     // should have generated an error in validateInstruction().
10240     unsigned Rn = Inst.getOperand(0).getReg();
10241     bool listContainsBase;
10242     if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
10243       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
10244       assert(isThumbTwo());
10245       Inst.setOpcode(ARM::t2STMIA_UPD);
10246       return true;
10247     }
10248     break;
10249   }
10250   case ARM::tPOP: {
10251     bool listContainsBase;
10252     // If the register list contains any high registers, we need to use
10253     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
10254     // should have generated an error in validateInstruction().
10255     if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
10256       return false;
10257     assert(isThumbTwo());
10258     Inst.setOpcode(ARM::t2LDMIA_UPD);
10259     // Add the base register and writeback operands.
10260     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10261     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10262     return true;
10263   }
10264   case ARM::tPUSH: {
10265     bool listContainsBase;
10266     if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
10267       return false;
10268     assert(isThumbTwo());
10269     Inst.setOpcode(ARM::t2STMDB_UPD);
10270     // Add the base register and writeback operands.
10271     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10272     Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
10273     return true;
10274   }
10275   case ARM::t2MOVi:
10276     // If we can use the 16-bit encoding and the user didn't explicitly
10277     // request the 32-bit variant, transform it here.
10278     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10279         (Inst.getOperand(1).isImm() &&
10280          (unsigned)Inst.getOperand(1).getImm() <= 255) &&
10281         Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10282         !HasWideQualifier) {
10283       // The operands aren't in the same order for tMOVi8...
10284       MCInst TmpInst;
10285       TmpInst.setOpcode(ARM::tMOVi8);
10286       TmpInst.addOperand(Inst.getOperand(0));
10287       TmpInst.addOperand(Inst.getOperand(4));
10288       TmpInst.addOperand(Inst.getOperand(1));
10289       TmpInst.addOperand(Inst.getOperand(2));
10290       TmpInst.addOperand(Inst.getOperand(3));
10291       Inst = TmpInst;
10292       return true;
10293     }
10294     break;
10295 
10296   case ARM::t2MOVr:
10297     // If we can use the 16-bit encoding and the user didn't explicitly
10298     // request the 32-bit variant, transform it here.
10299     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10300         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10301         Inst.getOperand(2).getImm() == ARMCC::AL &&
10302         Inst.getOperand(4).getReg() == ARM::CPSR &&
10303         !HasWideQualifier) {
10304       // The operands aren't the same for tMOV[S]r... (no cc_out)
10305       MCInst TmpInst;
10306       TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
10307       TmpInst.addOperand(Inst.getOperand(0));
10308       TmpInst.addOperand(Inst.getOperand(1));
10309       TmpInst.addOperand(Inst.getOperand(2));
10310       TmpInst.addOperand(Inst.getOperand(3));
10311       Inst = TmpInst;
10312       return true;
10313     }
10314     break;
10315 
10316   case ARM::t2SXTH:
10317   case ARM::t2SXTB:
10318   case ARM::t2UXTH:
10319   case ARM::t2UXTB:
10320     // If we can use the 16-bit encoding and the user didn't explicitly
10321     // request the 32-bit variant, transform it here.
10322     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
10323         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10324         Inst.getOperand(2).getImm() == 0 &&
10325         !HasWideQualifier) {
10326       unsigned NewOpc;
10327       switch (Inst.getOpcode()) {
10328       default: llvm_unreachable("Illegal opcode!");
10329       case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
10330       case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
10331       case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
10332       case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
10333       }
10334       // The operands aren't the same for thumb1 (no rotate operand).
10335       MCInst TmpInst;
10336       TmpInst.setOpcode(NewOpc);
10337       TmpInst.addOperand(Inst.getOperand(0));
10338       TmpInst.addOperand(Inst.getOperand(1));
10339       TmpInst.addOperand(Inst.getOperand(3));
10340       TmpInst.addOperand(Inst.getOperand(4));
10341       Inst = TmpInst;
10342       return true;
10343     }
10344     break;
10345 
10346   case ARM::MOVsi: {
10347     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
10348     // rrx shifts and asr/lsr of #32 is encoded as 0
10349     if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
10350       return false;
10351     if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
10352       // Shifting by zero is accepted as a vanilla 'MOVr'
10353       MCInst TmpInst;
10354       TmpInst.setOpcode(ARM::MOVr);
10355       TmpInst.addOperand(Inst.getOperand(0));
10356       TmpInst.addOperand(Inst.getOperand(1));
10357       TmpInst.addOperand(Inst.getOperand(3));
10358       TmpInst.addOperand(Inst.getOperand(4));
10359       TmpInst.addOperand(Inst.getOperand(5));
10360       Inst = TmpInst;
10361       return true;
10362     }
10363     return false;
10364   }
10365   case ARM::ANDrsi:
10366   case ARM::ORRrsi:
10367   case ARM::EORrsi:
10368   case ARM::BICrsi:
10369   case ARM::SUBrsi:
10370   case ARM::ADDrsi: {
10371     unsigned newOpc;
10372     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
10373     if (SOpc == ARM_AM::rrx) return false;
10374     switch (Inst.getOpcode()) {
10375     default: llvm_unreachable("unexpected opcode!");
10376     case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
10377     case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
10378     case ARM::EORrsi: newOpc = ARM::EORrr; break;
10379     case ARM::BICrsi: newOpc = ARM::BICrr; break;
10380     case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
10381     case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
10382     }
10383     // If the shift is by zero, use the non-shifted instruction definition.
10384     // The exception is for right shifts, where 0 == 32
10385     if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
10386         !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
10387       MCInst TmpInst;
10388       TmpInst.setOpcode(newOpc);
10389       TmpInst.addOperand(Inst.getOperand(0));
10390       TmpInst.addOperand(Inst.getOperand(1));
10391       TmpInst.addOperand(Inst.getOperand(2));
10392       TmpInst.addOperand(Inst.getOperand(4));
10393       TmpInst.addOperand(Inst.getOperand(5));
10394       TmpInst.addOperand(Inst.getOperand(6));
10395       Inst = TmpInst;
10396       return true;
10397     }
10398     return false;
10399   }
10400   case ARM::ITasm:
10401   case ARM::t2IT: {
10402     // Set up the IT block state according to the IT instruction we just
10403     // matched.
10404     assert(!inITBlock() && "nested IT blocks?!");
10405     startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()),
10406                          Inst.getOperand(1).getImm());
10407     break;
10408   }
10409   case ARM::t2LSLrr:
10410   case ARM::t2LSRrr:
10411   case ARM::t2ASRrr:
10412   case ARM::t2SBCrr:
10413   case ARM::t2RORrr:
10414   case ARM::t2BICrr:
10415     // Assemblers should use the narrow encodings of these instructions when permissible.
10416     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10417          isARMLowRegister(Inst.getOperand(2).getReg())) &&
10418         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
10419         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10420         !HasWideQualifier) {
10421       unsigned NewOpc;
10422       switch (Inst.getOpcode()) {
10423         default: llvm_unreachable("unexpected opcode");
10424         case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
10425         case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
10426         case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
10427         case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
10428         case ARM::t2RORrr: NewOpc = ARM::tROR; break;
10429         case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
10430       }
10431       MCInst TmpInst;
10432       TmpInst.setOpcode(NewOpc);
10433       TmpInst.addOperand(Inst.getOperand(0));
10434       TmpInst.addOperand(Inst.getOperand(5));
10435       TmpInst.addOperand(Inst.getOperand(1));
10436       TmpInst.addOperand(Inst.getOperand(2));
10437       TmpInst.addOperand(Inst.getOperand(3));
10438       TmpInst.addOperand(Inst.getOperand(4));
10439       Inst = TmpInst;
10440       return true;
10441     }
10442     return false;
10443 
10444   case ARM::t2ANDrr:
10445   case ARM::t2EORrr:
10446   case ARM::t2ADCrr:
10447   case ARM::t2ORRrr:
10448     // Assemblers should use the narrow encodings of these instructions when permissible.
10449     // These instructions are special in that they are commutable, so shorter encodings
10450     // are available more often.
10451     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
10452          isARMLowRegister(Inst.getOperand(2).getReg())) &&
10453         (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
10454          Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
10455         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
10456         !HasWideQualifier) {
10457       unsigned NewOpc;
10458       switch (Inst.getOpcode()) {
10459         default: llvm_unreachable("unexpected opcode");
10460         case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
10461         case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
10462         case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
10463         case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
10464       }
10465       MCInst TmpInst;
10466       TmpInst.setOpcode(NewOpc);
10467       TmpInst.addOperand(Inst.getOperand(0));
10468       TmpInst.addOperand(Inst.getOperand(5));
10469       if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
10470         TmpInst.addOperand(Inst.getOperand(1));
10471         TmpInst.addOperand(Inst.getOperand(2));
10472       } else {
10473         TmpInst.addOperand(Inst.getOperand(2));
10474         TmpInst.addOperand(Inst.getOperand(1));
10475       }
10476       TmpInst.addOperand(Inst.getOperand(3));
10477       TmpInst.addOperand(Inst.getOperand(4));
10478       Inst = TmpInst;
10479       return true;
10480     }
10481     return false;
10482   case ARM::MVE_VPST:
10483   case ARM::MVE_VPTv16i8:
10484   case ARM::MVE_VPTv8i16:
10485   case ARM::MVE_VPTv4i32:
10486   case ARM::MVE_VPTv16u8:
10487   case ARM::MVE_VPTv8u16:
10488   case ARM::MVE_VPTv4u32:
10489   case ARM::MVE_VPTv16s8:
10490   case ARM::MVE_VPTv8s16:
10491   case ARM::MVE_VPTv4s32:
10492   case ARM::MVE_VPTv4f32:
10493   case ARM::MVE_VPTv8f16:
10494   case ARM::MVE_VPTv16i8r:
10495   case ARM::MVE_VPTv8i16r:
10496   case ARM::MVE_VPTv4i32r:
10497   case ARM::MVE_VPTv16u8r:
10498   case ARM::MVE_VPTv8u16r:
10499   case ARM::MVE_VPTv4u32r:
10500   case ARM::MVE_VPTv16s8r:
10501   case ARM::MVE_VPTv8s16r:
10502   case ARM::MVE_VPTv4s32r:
10503   case ARM::MVE_VPTv4f32r:
10504   case ARM::MVE_VPTv8f16r: {
10505     assert(!inVPTBlock() && "Nested VPT blocks are not allowed");
10506     MCOperand &MO = Inst.getOperand(0);
10507     VPTState.Mask = MO.getImm();
10508     VPTState.CurPosition = 0;
10509     break;
10510   }
10511   }
10512   return false;
10513 }
10514 
10515 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
10516   // 16-bit thumb arithmetic instructions either require or preclude the 'S'
10517   // suffix depending on whether they're in an IT block or not.
10518   unsigned Opc = Inst.getOpcode();
10519   const MCInstrDesc &MCID = MII.get(Opc);
10520   if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
10521     assert(MCID.hasOptionalDef() &&
10522            "optionally flag setting instruction missing optional def operand");
10523     assert(MCID.NumOperands == Inst.getNumOperands() &&
10524            "operand count mismatch!");
10525     // Find the optional-def operand (cc_out).
10526     unsigned OpNo;
10527     for (OpNo = 0;
10528          !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
10529          ++OpNo)
10530       ;
10531     // If we're parsing Thumb1, reject it completely.
10532     if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
10533       return Match_RequiresFlagSetting;
10534     // If we're parsing Thumb2, which form is legal depends on whether we're
10535     // in an IT block.
10536     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
10537         !inITBlock())
10538       return Match_RequiresITBlock;
10539     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
10540         inITBlock())
10541       return Match_RequiresNotITBlock;
10542     // LSL with zero immediate is not allowed in an IT block
10543     if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
10544       return Match_RequiresNotITBlock;
10545   } else if (isThumbOne()) {
10546     // Some high-register supporting Thumb1 encodings only allow both registers
10547     // to be from r0-r7 when in Thumb2.
10548     if (Opc == ARM::tADDhirr && !hasV6MOps() &&
10549         isARMLowRegister(Inst.getOperand(1).getReg()) &&
10550         isARMLowRegister(Inst.getOperand(2).getReg()))
10551       return Match_RequiresThumb2;
10552     // Others only require ARMv6 or later.
10553     else if (Opc == ARM::tMOVr && !hasV6Ops() &&
10554              isARMLowRegister(Inst.getOperand(0).getReg()) &&
10555              isARMLowRegister(Inst.getOperand(1).getReg()))
10556       return Match_RequiresV6;
10557   }
10558 
10559   // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
10560   // than the loop below can handle, so it uses the GPRnopc register class and
10561   // we do SP handling here.
10562   if (Opc == ARM::t2MOVr && !hasV8Ops())
10563   {
10564     // SP as both source and destination is not allowed
10565     if (Inst.getOperand(0).getReg() == ARM::SP &&
10566         Inst.getOperand(1).getReg() == ARM::SP)
10567       return Match_RequiresV8;
10568     // When flags-setting SP as either source or destination is not allowed
10569     if (Inst.getOperand(4).getReg() == ARM::CPSR &&
10570         (Inst.getOperand(0).getReg() == ARM::SP ||
10571          Inst.getOperand(1).getReg() == ARM::SP))
10572       return Match_RequiresV8;
10573   }
10574 
10575   switch (Inst.getOpcode()) {
10576   case ARM::VMRS:
10577   case ARM::VMSR:
10578   case ARM::VMRS_FPCXTS:
10579   case ARM::VMRS_FPCXTNS:
10580   case ARM::VMSR_FPCXTS:
10581   case ARM::VMSR_FPCXTNS:
10582   case ARM::VMRS_FPSCR_NZCVQC:
10583   case ARM::VMSR_FPSCR_NZCVQC:
10584   case ARM::FMSTAT:
10585   case ARM::VMRS_VPR:
10586   case ARM::VMRS_P0:
10587   case ARM::VMSR_VPR:
10588   case ARM::VMSR_P0:
10589     // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
10590     // ARMv8-A.
10591     if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP &&
10592         (isThumb() && !hasV8Ops()))
10593       return Match_InvalidOperand;
10594     break;
10595   default:
10596     break;
10597   }
10598 
10599   for (unsigned I = 0; I < MCID.NumOperands; ++I)
10600     if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
10601       // rGPRRegClass excludes PC, and also excluded SP before ARMv8
10602       const auto &Op = Inst.getOperand(I);
10603       if (!Op.isReg()) {
10604         // This can happen in awkward cases with tied operands, e.g. a
10605         // writeback load/store with a complex addressing mode in
10606         // which there's an output operand corresponding to the
10607         // updated written-back base register: the Tablegen-generated
10608         // AsmMatcher will have written a placeholder operand to that
10609         // slot in the form of an immediate 0, because it can't
10610         // generate the register part of the complex addressing-mode
10611         // operand ahead of time.
10612         continue;
10613       }
10614 
10615       unsigned Reg = Op.getReg();
10616       if ((Reg == ARM::SP) && !hasV8Ops())
10617         return Match_RequiresV8;
10618       else if (Reg == ARM::PC)
10619         return Match_InvalidOperand;
10620     }
10621 
10622   return Match_Success;
10623 }
10624 
10625 namespace llvm {
10626 
10627 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
10628   return true; // In an assembly source, no need to second-guess
10629 }
10630 
10631 } // end namespace llvm
10632 
10633 // Returns true if Inst is unpredictable if it is in and IT block, but is not
10634 // the last instruction in the block.
10635 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
10636   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10637 
10638   // All branch & call instructions terminate IT blocks with the exception of
10639   // SVC.
10640   if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
10641       MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
10642     return true;
10643 
10644   // Any arithmetic instruction which writes to the PC also terminates the IT
10645   // block.
10646   if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI))
10647     return true;
10648 
10649   return false;
10650 }
10651 
10652 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
10653                                           SmallVectorImpl<NearMissInfo> &NearMisses,
10654                                           bool MatchingInlineAsm,
10655                                           bool &EmitInITBlock,
10656                                           MCStreamer &Out) {
10657   // If we can't use an implicit IT block here, just match as normal.
10658   if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
10659     return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10660 
10661   // Try to match the instruction in an extension of the current IT block (if
10662   // there is one).
10663   if (inImplicitITBlock()) {
10664     extendImplicitITBlock(ITState.Cond);
10665     if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10666             Match_Success) {
10667       // The match succeded, but we still have to check that the instruction is
10668       // valid in this implicit IT block.
10669       const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10670       if (MCID.isPredicable()) {
10671         ARMCC::CondCodes InstCond =
10672             (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10673                 .getImm();
10674         ARMCC::CondCodes ITCond = currentITCond();
10675         if (InstCond == ITCond) {
10676           EmitInITBlock = true;
10677           return Match_Success;
10678         } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
10679           invertCurrentITCondition();
10680           EmitInITBlock = true;
10681           return Match_Success;
10682         }
10683       }
10684     }
10685     rewindImplicitITPosition();
10686   }
10687 
10688   // Finish the current IT block, and try to match outside any IT block.
10689   flushPendingInstructions(Out);
10690   unsigned PlainMatchResult =
10691       MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
10692   if (PlainMatchResult == Match_Success) {
10693     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10694     if (MCID.isPredicable()) {
10695       ARMCC::CondCodes InstCond =
10696           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10697               .getImm();
10698       // Some forms of the branch instruction have their own condition code
10699       // fields, so can be conditionally executed without an IT block.
10700       if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
10701         EmitInITBlock = false;
10702         return Match_Success;
10703       }
10704       if (InstCond == ARMCC::AL) {
10705         EmitInITBlock = false;
10706         return Match_Success;
10707       }
10708     } else {
10709       EmitInITBlock = false;
10710       return Match_Success;
10711     }
10712   }
10713 
10714   // Try to match in a new IT block. The matcher doesn't check the actual
10715   // condition, so we create an IT block with a dummy condition, and fix it up
10716   // once we know the actual condition.
10717   startImplicitITBlock();
10718   if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
10719       Match_Success) {
10720     const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
10721     if (MCID.isPredicable()) {
10722       ITState.Cond =
10723           (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
10724               .getImm();
10725       EmitInITBlock = true;
10726       return Match_Success;
10727     }
10728   }
10729   discardImplicitITBlock();
10730 
10731   // If none of these succeed, return the error we got when trying to match
10732   // outside any IT blocks.
10733   EmitInITBlock = false;
10734   return PlainMatchResult;
10735 }
10736 
10737 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,
10738                                          unsigned VariantID = 0);
10739 
10740 static const char *getSubtargetFeatureName(uint64_t Val);
10741 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
10742                                            OperandVector &Operands,
10743                                            MCStreamer &Out, uint64_t &ErrorInfo,
10744                                            bool MatchingInlineAsm) {
10745   MCInst Inst;
10746   unsigned MatchResult;
10747   bool PendConditionalInstruction = false;
10748 
10749   SmallVector<NearMissInfo, 4> NearMisses;
10750   MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
10751                                  PendConditionalInstruction, Out);
10752 
10753   switch (MatchResult) {
10754   case Match_Success:
10755     LLVM_DEBUG(dbgs() << "Parsed as: ";
10756                Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10757                dbgs() << "\n");
10758 
10759     // Context sensitive operand constraints aren't handled by the matcher,
10760     // so check them here.
10761     if (validateInstruction(Inst, Operands)) {
10762       // Still progress the IT block, otherwise one wrong condition causes
10763       // nasty cascading errors.
10764       forwardITPosition();
10765       forwardVPTPosition();
10766       return true;
10767     }
10768 
10769     { // processInstruction() updates inITBlock state, we need to save it away
10770       bool wasInITBlock = inITBlock();
10771 
10772       // Some instructions need post-processing to, for example, tweak which
10773       // encoding is selected. Loop on it while changes happen so the
10774       // individual transformations can chain off each other. E.g.,
10775       // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
10776       while (processInstruction(Inst, Operands, Out))
10777         LLVM_DEBUG(dbgs() << "Changed to: ";
10778                    Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode()));
10779                    dbgs() << "\n");
10780 
10781       // Only after the instruction is fully processed, we can validate it
10782       if (wasInITBlock && hasV8Ops() && isThumb() &&
10783           !isV8EligibleForIT(&Inst)) {
10784         Warning(IDLoc, "deprecated instruction in IT block");
10785       }
10786     }
10787 
10788     // Only move forward at the very end so that everything in validate
10789     // and process gets a consistent answer about whether we're in an IT
10790     // block.
10791     forwardITPosition();
10792     forwardVPTPosition();
10793 
10794     // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
10795     // doesn't actually encode.
10796     if (Inst.getOpcode() == ARM::ITasm)
10797       return false;
10798 
10799     Inst.setLoc(IDLoc);
10800     if (PendConditionalInstruction) {
10801       PendingConditionalInsts.push_back(Inst);
10802       if (isITBlockFull() || isITBlockTerminator(Inst))
10803         flushPendingInstructions(Out);
10804     } else {
10805       Out.emitInstruction(Inst, getSTI());
10806     }
10807     return false;
10808   case Match_NearMisses:
10809     ReportNearMisses(NearMisses, IDLoc, Operands);
10810     return true;
10811   case Match_MnemonicFail: {
10812     FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
10813     std::string Suggestion = ARMMnemonicSpellCheck(
10814       ((ARMOperand &)*Operands[0]).getToken(), FBS);
10815     return Error(IDLoc, "invalid instruction" + Suggestion,
10816                  ((ARMOperand &)*Operands[0]).getLocRange());
10817   }
10818   }
10819 
10820   llvm_unreachable("Implement any new match types added!");
10821 }
10822 
10823 /// parseDirective parses the arm specific directives
10824 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
10825   const MCObjectFileInfo::Environment Format =
10826     getContext().getObjectFileInfo()->getObjectFileType();
10827   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
10828   bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
10829 
10830   std::string IDVal = DirectiveID.getIdentifier().lower();
10831   if (IDVal == ".word")
10832     parseLiteralValues(4, DirectiveID.getLoc());
10833   else if (IDVal == ".short" || IDVal == ".hword")
10834     parseLiteralValues(2, DirectiveID.getLoc());
10835   else if (IDVal == ".thumb")
10836     parseDirectiveThumb(DirectiveID.getLoc());
10837   else if (IDVal == ".arm")
10838     parseDirectiveARM(DirectiveID.getLoc());
10839   else if (IDVal == ".thumb_func")
10840     parseDirectiveThumbFunc(DirectiveID.getLoc());
10841   else if (IDVal == ".code")
10842     parseDirectiveCode(DirectiveID.getLoc());
10843   else if (IDVal == ".syntax")
10844     parseDirectiveSyntax(DirectiveID.getLoc());
10845   else if (IDVal == ".unreq")
10846     parseDirectiveUnreq(DirectiveID.getLoc());
10847   else if (IDVal == ".fnend")
10848     parseDirectiveFnEnd(DirectiveID.getLoc());
10849   else if (IDVal == ".cantunwind")
10850     parseDirectiveCantUnwind(DirectiveID.getLoc());
10851   else if (IDVal == ".personality")
10852     parseDirectivePersonality(DirectiveID.getLoc());
10853   else if (IDVal == ".handlerdata")
10854     parseDirectiveHandlerData(DirectiveID.getLoc());
10855   else if (IDVal == ".setfp")
10856     parseDirectiveSetFP(DirectiveID.getLoc());
10857   else if (IDVal == ".pad")
10858     parseDirectivePad(DirectiveID.getLoc());
10859   else if (IDVal == ".save")
10860     parseDirectiveRegSave(DirectiveID.getLoc(), false);
10861   else if (IDVal == ".vsave")
10862     parseDirectiveRegSave(DirectiveID.getLoc(), true);
10863   else if (IDVal == ".ltorg" || IDVal == ".pool")
10864     parseDirectiveLtorg(DirectiveID.getLoc());
10865   else if (IDVal == ".even")
10866     parseDirectiveEven(DirectiveID.getLoc());
10867   else if (IDVal == ".personalityindex")
10868     parseDirectivePersonalityIndex(DirectiveID.getLoc());
10869   else if (IDVal == ".unwind_raw")
10870     parseDirectiveUnwindRaw(DirectiveID.getLoc());
10871   else if (IDVal == ".movsp")
10872     parseDirectiveMovSP(DirectiveID.getLoc());
10873   else if (IDVal == ".arch_extension")
10874     parseDirectiveArchExtension(DirectiveID.getLoc());
10875   else if (IDVal == ".align")
10876     return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
10877   else if (IDVal == ".thumb_set")
10878     parseDirectiveThumbSet(DirectiveID.getLoc());
10879   else if (IDVal == ".inst")
10880     parseDirectiveInst(DirectiveID.getLoc());
10881   else if (IDVal == ".inst.n")
10882     parseDirectiveInst(DirectiveID.getLoc(), 'n');
10883   else if (IDVal == ".inst.w")
10884     parseDirectiveInst(DirectiveID.getLoc(), 'w');
10885   else if (!IsMachO && !IsCOFF) {
10886     if (IDVal == ".arch")
10887       parseDirectiveArch(DirectiveID.getLoc());
10888     else if (IDVal == ".cpu")
10889       parseDirectiveCPU(DirectiveID.getLoc());
10890     else if (IDVal == ".eabi_attribute")
10891       parseDirectiveEabiAttr(DirectiveID.getLoc());
10892     else if (IDVal == ".fpu")
10893       parseDirectiveFPU(DirectiveID.getLoc());
10894     else if (IDVal == ".fnstart")
10895       parseDirectiveFnStart(DirectiveID.getLoc());
10896     else if (IDVal == ".object_arch")
10897       parseDirectiveObjectArch(DirectiveID.getLoc());
10898     else if (IDVal == ".tlsdescseq")
10899       parseDirectiveTLSDescSeq(DirectiveID.getLoc());
10900     else
10901       return true;
10902   } else
10903     return true;
10904   return false;
10905 }
10906 
10907 /// parseLiteralValues
10908 ///  ::= .hword expression [, expression]*
10909 ///  ::= .short expression [, expression]*
10910 ///  ::= .word expression [, expression]*
10911 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
10912   auto parseOne = [&]() -> bool {
10913     const MCExpr *Value;
10914     if (getParser().parseExpression(Value))
10915       return true;
10916     getParser().getStreamer().emitValue(Value, Size, L);
10917     return false;
10918   };
10919   return (parseMany(parseOne));
10920 }
10921 
10922 /// parseDirectiveThumb
10923 ///  ::= .thumb
10924 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
10925   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
10926       check(!hasThumb(), L, "target does not support Thumb mode"))
10927     return true;
10928 
10929   if (!isThumb())
10930     SwitchMode();
10931 
10932   getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
10933   return false;
10934 }
10935 
10936 /// parseDirectiveARM
10937 ///  ::= .arm
10938 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
10939   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
10940       check(!hasARM(), L, "target does not support ARM mode"))
10941     return true;
10942 
10943   if (isThumb())
10944     SwitchMode();
10945   getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
10946   return false;
10947 }
10948 
10949 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
10950   // We need to flush the current implicit IT block on a label, because it is
10951   // not legal to branch into an IT block.
10952   flushPendingInstructions(getStreamer());
10953 }
10954 
10955 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
10956   if (NextSymbolIsThumb) {
10957     getParser().getStreamer().emitThumbFunc(Symbol);
10958     NextSymbolIsThumb = false;
10959   }
10960 }
10961 
10962 /// parseDirectiveThumbFunc
10963 ///  ::= .thumbfunc symbol_name
10964 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
10965   MCAsmParser &Parser = getParser();
10966   const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
10967   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
10968 
10969   // Darwin asm has (optionally) function name after .thumb_func direction
10970   // ELF doesn't
10971 
10972   if (IsMachO) {
10973     if (Parser.getTok().is(AsmToken::Identifier) ||
10974         Parser.getTok().is(AsmToken::String)) {
10975       MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
10976           Parser.getTok().getIdentifier());
10977       getParser().getStreamer().emitThumbFunc(Func);
10978       Parser.Lex();
10979       if (parseToken(AsmToken::EndOfStatement,
10980                      "unexpected token in '.thumb_func' directive"))
10981         return true;
10982       return false;
10983     }
10984   }
10985 
10986   if (parseToken(AsmToken::EndOfStatement,
10987                  "unexpected token in '.thumb_func' directive"))
10988     return true;
10989 
10990   NextSymbolIsThumb = true;
10991   return false;
10992 }
10993 
10994 /// parseDirectiveSyntax
10995 ///  ::= .syntax unified | divided
10996 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
10997   MCAsmParser &Parser = getParser();
10998   const AsmToken &Tok = Parser.getTok();
10999   if (Tok.isNot(AsmToken::Identifier)) {
11000     Error(L, "unexpected token in .syntax directive");
11001     return false;
11002   }
11003 
11004   StringRef Mode = Tok.getString();
11005   Parser.Lex();
11006   if (check(Mode == "divided" || Mode == "DIVIDED", L,
11007             "'.syntax divided' arm assembly not supported") ||
11008       check(Mode != "unified" && Mode != "UNIFIED", L,
11009             "unrecognized syntax mode in .syntax directive") ||
11010       parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11011     return true;
11012 
11013   // TODO tell the MC streamer the mode
11014   // getParser().getStreamer().Emit???();
11015   return false;
11016 }
11017 
11018 /// parseDirectiveCode
11019 ///  ::= .code 16 | 32
11020 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
11021   MCAsmParser &Parser = getParser();
11022   const AsmToken &Tok = Parser.getTok();
11023   if (Tok.isNot(AsmToken::Integer))
11024     return Error(L, "unexpected token in .code directive");
11025   int64_t Val = Parser.getTok().getIntVal();
11026   if (Val != 16 && Val != 32) {
11027     Error(L, "invalid operand to .code directive");
11028     return false;
11029   }
11030   Parser.Lex();
11031 
11032   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11033     return true;
11034 
11035   if (Val == 16) {
11036     if (!hasThumb())
11037       return Error(L, "target does not support Thumb mode");
11038 
11039     if (!isThumb())
11040       SwitchMode();
11041     getParser().getStreamer().emitAssemblerFlag(MCAF_Code16);
11042   } else {
11043     if (!hasARM())
11044       return Error(L, "target does not support ARM mode");
11045 
11046     if (isThumb())
11047       SwitchMode();
11048     getParser().getStreamer().emitAssemblerFlag(MCAF_Code32);
11049   }
11050 
11051   return false;
11052 }
11053 
11054 /// parseDirectiveReq
11055 ///  ::= name .req registername
11056 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
11057   MCAsmParser &Parser = getParser();
11058   Parser.Lex(); // Eat the '.req' token.
11059   unsigned Reg;
11060   SMLoc SRegLoc, ERegLoc;
11061   if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
11062             "register name expected") ||
11063       parseToken(AsmToken::EndOfStatement,
11064                  "unexpected input in .req directive."))
11065     return true;
11066 
11067   if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
11068     return Error(SRegLoc,
11069                  "redefinition of '" + Name + "' does not match original.");
11070 
11071   return false;
11072 }
11073 
11074 /// parseDirectiveUneq
11075 ///  ::= .unreq registername
11076 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
11077   MCAsmParser &Parser = getParser();
11078   if (Parser.getTok().isNot(AsmToken::Identifier))
11079     return Error(L, "unexpected input in .unreq directive.");
11080   RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
11081   Parser.Lex(); // Eat the identifier.
11082   if (parseToken(AsmToken::EndOfStatement,
11083                  "unexpected input in '.unreq' directive"))
11084     return true;
11085   return false;
11086 }
11087 
11088 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
11089 // before, if supported by the new target, or emit mapping symbols for the mode
11090 // switch.
11091 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
11092   if (WasThumb != isThumb()) {
11093     if (WasThumb && hasThumb()) {
11094       // Stay in Thumb mode
11095       SwitchMode();
11096     } else if (!WasThumb && hasARM()) {
11097       // Stay in ARM mode
11098       SwitchMode();
11099     } else {
11100       // Mode switch forced, because the new arch doesn't support the old mode.
11101       getParser().getStreamer().emitAssemblerFlag(isThumb() ? MCAF_Code16
11102                                                             : MCAF_Code32);
11103       // Warn about the implcit mode switch. GAS does not switch modes here,
11104       // but instead stays in the old mode, reporting an error on any following
11105       // instructions as the mode does not exist on the target.
11106       Warning(Loc, Twine("new target does not support ") +
11107                        (WasThumb ? "thumb" : "arm") + " mode, switching to " +
11108                        (!WasThumb ? "thumb" : "arm") + " mode");
11109     }
11110   }
11111 }
11112 
11113 /// parseDirectiveArch
11114 ///  ::= .arch token
11115 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
11116   StringRef Arch = getParser().parseStringToEndOfStatement().trim();
11117   ARM::ArchKind ID = ARM::parseArch(Arch);
11118 
11119   if (ID == ARM::ArchKind::INVALID)
11120     return Error(L, "Unknown arch name");
11121 
11122   bool WasThumb = isThumb();
11123   Triple T;
11124   MCSubtargetInfo &STI = copySTI();
11125   STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str());
11126   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11127   FixModeAfterArchChange(WasThumb, L);
11128 
11129   getTargetStreamer().emitArch(ID);
11130   return false;
11131 }
11132 
11133 /// parseDirectiveEabiAttr
11134 ///  ::= .eabi_attribute int, int [, "str"]
11135 ///  ::= .eabi_attribute Tag_name, int [, "str"]
11136 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
11137   MCAsmParser &Parser = getParser();
11138   int64_t Tag;
11139   SMLoc TagLoc;
11140   TagLoc = Parser.getTok().getLoc();
11141   if (Parser.getTok().is(AsmToken::Identifier)) {
11142     StringRef Name = Parser.getTok().getIdentifier();
11143     Tag = ARMBuildAttrs::AttrTypeFromString(Name);
11144     if (Tag == -1) {
11145       Error(TagLoc, "attribute name not recognised: " + Name);
11146       return false;
11147     }
11148     Parser.Lex();
11149   } else {
11150     const MCExpr *AttrExpr;
11151 
11152     TagLoc = Parser.getTok().getLoc();
11153     if (Parser.parseExpression(AttrExpr))
11154       return true;
11155 
11156     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
11157     if (check(!CE, TagLoc, "expected numeric constant"))
11158       return true;
11159 
11160     Tag = CE->getValue();
11161   }
11162 
11163   if (Parser.parseToken(AsmToken::Comma, "comma expected"))
11164     return true;
11165 
11166   StringRef StringValue = "";
11167   bool IsStringValue = false;
11168 
11169   int64_t IntegerValue = 0;
11170   bool IsIntegerValue = false;
11171 
11172   if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
11173     IsStringValue = true;
11174   else if (Tag == ARMBuildAttrs::compatibility) {
11175     IsStringValue = true;
11176     IsIntegerValue = true;
11177   } else if (Tag < 32 || Tag % 2 == 0)
11178     IsIntegerValue = true;
11179   else if (Tag % 2 == 1)
11180     IsStringValue = true;
11181   else
11182     llvm_unreachable("invalid tag type");
11183 
11184   if (IsIntegerValue) {
11185     const MCExpr *ValueExpr;
11186     SMLoc ValueExprLoc = Parser.getTok().getLoc();
11187     if (Parser.parseExpression(ValueExpr))
11188       return true;
11189 
11190     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
11191     if (!CE)
11192       return Error(ValueExprLoc, "expected numeric constant");
11193     IntegerValue = CE->getValue();
11194   }
11195 
11196   if (Tag == ARMBuildAttrs::compatibility) {
11197     if (Parser.parseToken(AsmToken::Comma, "comma expected"))
11198       return true;
11199   }
11200 
11201   if (IsStringValue) {
11202     if (Parser.getTok().isNot(AsmToken::String))
11203       return Error(Parser.getTok().getLoc(), "bad string constant");
11204 
11205     StringValue = Parser.getTok().getStringContents();
11206     Parser.Lex();
11207   }
11208 
11209   if (Parser.parseToken(AsmToken::EndOfStatement,
11210                         "unexpected token in '.eabi_attribute' directive"))
11211     return true;
11212 
11213   if (IsIntegerValue && IsStringValue) {
11214     assert(Tag == ARMBuildAttrs::compatibility);
11215     getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
11216   } else if (IsIntegerValue)
11217     getTargetStreamer().emitAttribute(Tag, IntegerValue);
11218   else if (IsStringValue)
11219     getTargetStreamer().emitTextAttribute(Tag, StringValue);
11220   return false;
11221 }
11222 
11223 /// parseDirectiveCPU
11224 ///  ::= .cpu str
11225 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
11226   StringRef CPU = getParser().parseStringToEndOfStatement().trim();
11227   getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
11228 
11229   // FIXME: This is using table-gen data, but should be moved to
11230   // ARMTargetParser once that is table-gen'd.
11231   if (!getSTI().isCPUStringValid(CPU))
11232     return Error(L, "Unknown CPU name");
11233 
11234   bool WasThumb = isThumb();
11235   MCSubtargetInfo &STI = copySTI();
11236   STI.setDefaultFeatures(CPU, "");
11237   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11238   FixModeAfterArchChange(WasThumb, L);
11239 
11240   return false;
11241 }
11242 
11243 /// parseDirectiveFPU
11244 ///  ::= .fpu str
11245 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
11246   SMLoc FPUNameLoc = getTok().getLoc();
11247   StringRef FPU = getParser().parseStringToEndOfStatement().trim();
11248 
11249   unsigned ID = ARM::parseFPU(FPU);
11250   std::vector<StringRef> Features;
11251   if (!ARM::getFPUFeatures(ID, Features))
11252     return Error(FPUNameLoc, "Unknown FPU name");
11253 
11254   MCSubtargetInfo &STI = copySTI();
11255   for (auto Feature : Features)
11256     STI.ApplyFeatureFlag(Feature);
11257   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
11258 
11259   getTargetStreamer().emitFPU(ID);
11260   return false;
11261 }
11262 
11263 /// parseDirectiveFnStart
11264 ///  ::= .fnstart
11265 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
11266   if (parseToken(AsmToken::EndOfStatement,
11267                  "unexpected token in '.fnstart' directive"))
11268     return true;
11269 
11270   if (UC.hasFnStart()) {
11271     Error(L, ".fnstart starts before the end of previous one");
11272     UC.emitFnStartLocNotes();
11273     return true;
11274   }
11275 
11276   // Reset the unwind directives parser state
11277   UC.reset();
11278 
11279   getTargetStreamer().emitFnStart();
11280 
11281   UC.recordFnStart(L);
11282   return false;
11283 }
11284 
11285 /// parseDirectiveFnEnd
11286 ///  ::= .fnend
11287 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
11288   if (parseToken(AsmToken::EndOfStatement,
11289                  "unexpected token in '.fnend' directive"))
11290     return true;
11291   // Check the ordering of unwind directives
11292   if (!UC.hasFnStart())
11293     return Error(L, ".fnstart must precede .fnend directive");
11294 
11295   // Reset the unwind directives parser state
11296   getTargetStreamer().emitFnEnd();
11297 
11298   UC.reset();
11299   return false;
11300 }
11301 
11302 /// parseDirectiveCantUnwind
11303 ///  ::= .cantunwind
11304 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
11305   if (parseToken(AsmToken::EndOfStatement,
11306                  "unexpected token in '.cantunwind' directive"))
11307     return true;
11308 
11309   UC.recordCantUnwind(L);
11310   // Check the ordering of unwind directives
11311   if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
11312     return true;
11313 
11314   if (UC.hasHandlerData()) {
11315     Error(L, ".cantunwind can't be used with .handlerdata directive");
11316     UC.emitHandlerDataLocNotes();
11317     return true;
11318   }
11319   if (UC.hasPersonality()) {
11320     Error(L, ".cantunwind can't be used with .personality directive");
11321     UC.emitPersonalityLocNotes();
11322     return true;
11323   }
11324 
11325   getTargetStreamer().emitCantUnwind();
11326   return false;
11327 }
11328 
11329 /// parseDirectivePersonality
11330 ///  ::= .personality name
11331 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
11332   MCAsmParser &Parser = getParser();
11333   bool HasExistingPersonality = UC.hasPersonality();
11334 
11335   // Parse the name of the personality routine
11336   if (Parser.getTok().isNot(AsmToken::Identifier))
11337     return Error(L, "unexpected input in .personality directive.");
11338   StringRef Name(Parser.getTok().getIdentifier());
11339   Parser.Lex();
11340 
11341   if (parseToken(AsmToken::EndOfStatement,
11342                  "unexpected token in '.personality' directive"))
11343     return true;
11344 
11345   UC.recordPersonality(L);
11346 
11347   // Check the ordering of unwind directives
11348   if (!UC.hasFnStart())
11349     return Error(L, ".fnstart must precede .personality directive");
11350   if (UC.cantUnwind()) {
11351     Error(L, ".personality can't be used with .cantunwind directive");
11352     UC.emitCantUnwindLocNotes();
11353     return true;
11354   }
11355   if (UC.hasHandlerData()) {
11356     Error(L, ".personality must precede .handlerdata directive");
11357     UC.emitHandlerDataLocNotes();
11358     return true;
11359   }
11360   if (HasExistingPersonality) {
11361     Error(L, "multiple personality directives");
11362     UC.emitPersonalityLocNotes();
11363     return true;
11364   }
11365 
11366   MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
11367   getTargetStreamer().emitPersonality(PR);
11368   return false;
11369 }
11370 
11371 /// parseDirectiveHandlerData
11372 ///  ::= .handlerdata
11373 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
11374   if (parseToken(AsmToken::EndOfStatement,
11375                  "unexpected token in '.handlerdata' directive"))
11376     return true;
11377 
11378   UC.recordHandlerData(L);
11379   // Check the ordering of unwind directives
11380   if (!UC.hasFnStart())
11381     return Error(L, ".fnstart must precede .personality directive");
11382   if (UC.cantUnwind()) {
11383     Error(L, ".handlerdata can't be used with .cantunwind directive");
11384     UC.emitCantUnwindLocNotes();
11385     return true;
11386   }
11387 
11388   getTargetStreamer().emitHandlerData();
11389   return false;
11390 }
11391 
11392 /// parseDirectiveSetFP
11393 ///  ::= .setfp fpreg, spreg [, offset]
11394 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
11395   MCAsmParser &Parser = getParser();
11396   // Check the ordering of unwind directives
11397   if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
11398       check(UC.hasHandlerData(), L,
11399             ".setfp must precede .handlerdata directive"))
11400     return true;
11401 
11402   // Parse fpreg
11403   SMLoc FPRegLoc = Parser.getTok().getLoc();
11404   int FPReg = tryParseRegister();
11405 
11406   if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
11407       Parser.parseToken(AsmToken::Comma, "comma expected"))
11408     return true;
11409 
11410   // Parse spreg
11411   SMLoc SPRegLoc = Parser.getTok().getLoc();
11412   int SPReg = tryParseRegister();
11413   if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
11414       check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
11415             "register should be either $sp or the latest fp register"))
11416     return true;
11417 
11418   // Update the frame pointer register
11419   UC.saveFPReg(FPReg);
11420 
11421   // Parse offset
11422   int64_t Offset = 0;
11423   if (Parser.parseOptionalToken(AsmToken::Comma)) {
11424     if (Parser.getTok().isNot(AsmToken::Hash) &&
11425         Parser.getTok().isNot(AsmToken::Dollar))
11426       return Error(Parser.getTok().getLoc(), "'#' expected");
11427     Parser.Lex(); // skip hash token.
11428 
11429     const MCExpr *OffsetExpr;
11430     SMLoc ExLoc = Parser.getTok().getLoc();
11431     SMLoc EndLoc;
11432     if (getParser().parseExpression(OffsetExpr, EndLoc))
11433       return Error(ExLoc, "malformed setfp offset");
11434     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11435     if (check(!CE, ExLoc, "setfp offset must be an immediate"))
11436       return true;
11437     Offset = CE->getValue();
11438   }
11439 
11440   if (Parser.parseToken(AsmToken::EndOfStatement))
11441     return true;
11442 
11443   getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
11444                                 static_cast<unsigned>(SPReg), Offset);
11445   return false;
11446 }
11447 
11448 /// parseDirective
11449 ///  ::= .pad offset
11450 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
11451   MCAsmParser &Parser = getParser();
11452   // Check the ordering of unwind directives
11453   if (!UC.hasFnStart())
11454     return Error(L, ".fnstart must precede .pad directive");
11455   if (UC.hasHandlerData())
11456     return Error(L, ".pad must precede .handlerdata directive");
11457 
11458   // Parse the offset
11459   if (Parser.getTok().isNot(AsmToken::Hash) &&
11460       Parser.getTok().isNot(AsmToken::Dollar))
11461     return Error(Parser.getTok().getLoc(), "'#' expected");
11462   Parser.Lex(); // skip hash token.
11463 
11464   const MCExpr *OffsetExpr;
11465   SMLoc ExLoc = Parser.getTok().getLoc();
11466   SMLoc EndLoc;
11467   if (getParser().parseExpression(OffsetExpr, EndLoc))
11468     return Error(ExLoc, "malformed pad offset");
11469   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11470   if (!CE)
11471     return Error(ExLoc, "pad offset must be an immediate");
11472 
11473   if (parseToken(AsmToken::EndOfStatement,
11474                  "unexpected token in '.pad' directive"))
11475     return true;
11476 
11477   getTargetStreamer().emitPad(CE->getValue());
11478   return false;
11479 }
11480 
11481 /// parseDirectiveRegSave
11482 ///  ::= .save  { registers }
11483 ///  ::= .vsave { registers }
11484 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
11485   // Check the ordering of unwind directives
11486   if (!UC.hasFnStart())
11487     return Error(L, ".fnstart must precede .save or .vsave directives");
11488   if (UC.hasHandlerData())
11489     return Error(L, ".save or .vsave must precede .handlerdata directive");
11490 
11491   // RAII object to make sure parsed operands are deleted.
11492   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
11493 
11494   // Parse the register list
11495   if (parseRegisterList(Operands) ||
11496       parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11497     return true;
11498   ARMOperand &Op = (ARMOperand &)*Operands[0];
11499   if (!IsVector && !Op.isRegList())
11500     return Error(L, ".save expects GPR registers");
11501   if (IsVector && !Op.isDPRRegList())
11502     return Error(L, ".vsave expects DPR registers");
11503 
11504   getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
11505   return false;
11506 }
11507 
11508 /// parseDirectiveInst
11509 ///  ::= .inst opcode [, ...]
11510 ///  ::= .inst.n opcode [, ...]
11511 ///  ::= .inst.w opcode [, ...]
11512 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
11513   int Width = 4;
11514 
11515   if (isThumb()) {
11516     switch (Suffix) {
11517     case 'n':
11518       Width = 2;
11519       break;
11520     case 'w':
11521       break;
11522     default:
11523       Width = 0;
11524       break;
11525     }
11526   } else {
11527     if (Suffix)
11528       return Error(Loc, "width suffixes are invalid in ARM mode");
11529   }
11530 
11531   auto parseOne = [&]() -> bool {
11532     const MCExpr *Expr;
11533     if (getParser().parseExpression(Expr))
11534       return true;
11535     const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
11536     if (!Value) {
11537       return Error(Loc, "expected constant expression");
11538     }
11539 
11540     char CurSuffix = Suffix;
11541     switch (Width) {
11542     case 2:
11543       if (Value->getValue() > 0xffff)
11544         return Error(Loc, "inst.n operand is too big, use inst.w instead");
11545       break;
11546     case 4:
11547       if (Value->getValue() > 0xffffffff)
11548         return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
11549                               " operand is too big");
11550       break;
11551     case 0:
11552       // Thumb mode, no width indicated. Guess from the opcode, if possible.
11553       if (Value->getValue() < 0xe800)
11554         CurSuffix = 'n';
11555       else if (Value->getValue() >= 0xe8000000)
11556         CurSuffix = 'w';
11557       else
11558         return Error(Loc, "cannot determine Thumb instruction size, "
11559                           "use inst.n/inst.w instead");
11560       break;
11561     default:
11562       llvm_unreachable("only supported widths are 2 and 4");
11563     }
11564 
11565     getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
11566     return false;
11567   };
11568 
11569   if (parseOptionalToken(AsmToken::EndOfStatement))
11570     return Error(Loc, "expected expression following directive");
11571   if (parseMany(parseOne))
11572     return true;
11573   return false;
11574 }
11575 
11576 /// parseDirectiveLtorg
11577 ///  ::= .ltorg | .pool
11578 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
11579   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11580     return true;
11581   getTargetStreamer().emitCurrentConstantPool();
11582   return false;
11583 }
11584 
11585 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
11586   const MCSection *Section = getStreamer().getCurrentSectionOnly();
11587 
11588   if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
11589     return true;
11590 
11591   if (!Section) {
11592     getStreamer().InitSections(false);
11593     Section = getStreamer().getCurrentSectionOnly();
11594   }
11595 
11596   assert(Section && "must have section to emit alignment");
11597   if (Section->UseCodeAlign())
11598     getStreamer().emitCodeAlignment(2);
11599   else
11600     getStreamer().emitValueToAlignment(2);
11601 
11602   return false;
11603 }
11604 
11605 /// parseDirectivePersonalityIndex
11606 ///   ::= .personalityindex index
11607 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
11608   MCAsmParser &Parser = getParser();
11609   bool HasExistingPersonality = UC.hasPersonality();
11610 
11611   const MCExpr *IndexExpression;
11612   SMLoc IndexLoc = Parser.getTok().getLoc();
11613   if (Parser.parseExpression(IndexExpression) ||
11614       parseToken(AsmToken::EndOfStatement,
11615                  "unexpected token in '.personalityindex' directive")) {
11616     return true;
11617   }
11618 
11619   UC.recordPersonalityIndex(L);
11620 
11621   if (!UC.hasFnStart()) {
11622     return Error(L, ".fnstart must precede .personalityindex directive");
11623   }
11624   if (UC.cantUnwind()) {
11625     Error(L, ".personalityindex cannot be used with .cantunwind");
11626     UC.emitCantUnwindLocNotes();
11627     return true;
11628   }
11629   if (UC.hasHandlerData()) {
11630     Error(L, ".personalityindex must precede .handlerdata directive");
11631     UC.emitHandlerDataLocNotes();
11632     return true;
11633   }
11634   if (HasExistingPersonality) {
11635     Error(L, "multiple personality directives");
11636     UC.emitPersonalityLocNotes();
11637     return true;
11638   }
11639 
11640   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
11641   if (!CE)
11642     return Error(IndexLoc, "index must be a constant number");
11643   if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
11644     return Error(IndexLoc,
11645                  "personality routine index should be in range [0-3]");
11646 
11647   getTargetStreamer().emitPersonalityIndex(CE->getValue());
11648   return false;
11649 }
11650 
11651 /// parseDirectiveUnwindRaw
11652 ///   ::= .unwind_raw offset, opcode [, opcode...]
11653 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
11654   MCAsmParser &Parser = getParser();
11655   int64_t StackOffset;
11656   const MCExpr *OffsetExpr;
11657   SMLoc OffsetLoc = getLexer().getLoc();
11658 
11659   if (!UC.hasFnStart())
11660     return Error(L, ".fnstart must precede .unwind_raw directives");
11661   if (getParser().parseExpression(OffsetExpr))
11662     return Error(OffsetLoc, "expected expression");
11663 
11664   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11665   if (!CE)
11666     return Error(OffsetLoc, "offset must be a constant");
11667 
11668   StackOffset = CE->getValue();
11669 
11670   if (Parser.parseToken(AsmToken::Comma, "expected comma"))
11671     return true;
11672 
11673   SmallVector<uint8_t, 16> Opcodes;
11674 
11675   auto parseOne = [&]() -> bool {
11676     const MCExpr *OE = nullptr;
11677     SMLoc OpcodeLoc = getLexer().getLoc();
11678     if (check(getLexer().is(AsmToken::EndOfStatement) ||
11679                   Parser.parseExpression(OE),
11680               OpcodeLoc, "expected opcode expression"))
11681       return true;
11682     const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
11683     if (!OC)
11684       return Error(OpcodeLoc, "opcode value must be a constant");
11685     const int64_t Opcode = OC->getValue();
11686     if (Opcode & ~0xff)
11687       return Error(OpcodeLoc, "invalid opcode");
11688     Opcodes.push_back(uint8_t(Opcode));
11689     return false;
11690   };
11691 
11692   // Must have at least 1 element
11693   SMLoc OpcodeLoc = getLexer().getLoc();
11694   if (parseOptionalToken(AsmToken::EndOfStatement))
11695     return Error(OpcodeLoc, "expected opcode expression");
11696   if (parseMany(parseOne))
11697     return true;
11698 
11699   getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
11700   return false;
11701 }
11702 
11703 /// parseDirectiveTLSDescSeq
11704 ///   ::= .tlsdescseq tls-variable
11705 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
11706   MCAsmParser &Parser = getParser();
11707 
11708   if (getLexer().isNot(AsmToken::Identifier))
11709     return TokError("expected variable after '.tlsdescseq' directive");
11710 
11711   const MCSymbolRefExpr *SRE =
11712     MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
11713                             MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
11714   Lex();
11715 
11716   if (parseToken(AsmToken::EndOfStatement,
11717                  "unexpected token in '.tlsdescseq' directive"))
11718     return true;
11719 
11720   getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
11721   return false;
11722 }
11723 
11724 /// parseDirectiveMovSP
11725 ///  ::= .movsp reg [, #offset]
11726 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
11727   MCAsmParser &Parser = getParser();
11728   if (!UC.hasFnStart())
11729     return Error(L, ".fnstart must precede .movsp directives");
11730   if (UC.getFPReg() != ARM::SP)
11731     return Error(L, "unexpected .movsp directive");
11732 
11733   SMLoc SPRegLoc = Parser.getTok().getLoc();
11734   int SPReg = tryParseRegister();
11735   if (SPReg == -1)
11736     return Error(SPRegLoc, "register expected");
11737   if (SPReg == ARM::SP || SPReg == ARM::PC)
11738     return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
11739 
11740   int64_t Offset = 0;
11741   if (Parser.parseOptionalToken(AsmToken::Comma)) {
11742     if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
11743       return true;
11744 
11745     const MCExpr *OffsetExpr;
11746     SMLoc OffsetLoc = Parser.getTok().getLoc();
11747 
11748     if (Parser.parseExpression(OffsetExpr))
11749       return Error(OffsetLoc, "malformed offset expression");
11750 
11751     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
11752     if (!CE)
11753       return Error(OffsetLoc, "offset must be an immediate constant");
11754 
11755     Offset = CE->getValue();
11756   }
11757 
11758   if (parseToken(AsmToken::EndOfStatement,
11759                  "unexpected token in '.movsp' directive"))
11760     return true;
11761 
11762   getTargetStreamer().emitMovSP(SPReg, Offset);
11763   UC.saveFPReg(SPReg);
11764 
11765   return false;
11766 }
11767 
11768 /// parseDirectiveObjectArch
11769 ///   ::= .object_arch name
11770 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
11771   MCAsmParser &Parser = getParser();
11772   if (getLexer().isNot(AsmToken::Identifier))
11773     return Error(getLexer().getLoc(), "unexpected token");
11774 
11775   StringRef Arch = Parser.getTok().getString();
11776   SMLoc ArchLoc = Parser.getTok().getLoc();
11777   Lex();
11778 
11779   ARM::ArchKind ID = ARM::parseArch(Arch);
11780 
11781   if (ID == ARM::ArchKind::INVALID)
11782     return Error(ArchLoc, "unknown architecture '" + Arch + "'");
11783   if (parseToken(AsmToken::EndOfStatement))
11784     return true;
11785 
11786   getTargetStreamer().emitObjectArch(ID);
11787   return false;
11788 }
11789 
11790 /// parseDirectiveAlign
11791 ///   ::= .align
11792 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
11793   // NOTE: if this is not the end of the statement, fall back to the target
11794   // agnostic handling for this directive which will correctly handle this.
11795   if (parseOptionalToken(AsmToken::EndOfStatement)) {
11796     // '.align' is target specifically handled to mean 2**2 byte alignment.
11797     const MCSection *Section = getStreamer().getCurrentSectionOnly();
11798     assert(Section && "must have section to emit alignment");
11799     if (Section->UseCodeAlign())
11800       getStreamer().emitCodeAlignment(4, 0);
11801     else
11802       getStreamer().emitValueToAlignment(4, 0, 1, 0);
11803     return false;
11804   }
11805   return true;
11806 }
11807 
11808 /// parseDirectiveThumbSet
11809 ///  ::= .thumb_set name, value
11810 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
11811   MCAsmParser &Parser = getParser();
11812 
11813   StringRef Name;
11814   if (check(Parser.parseIdentifier(Name),
11815             "expected identifier after '.thumb_set'") ||
11816       parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
11817     return true;
11818 
11819   MCSymbol *Sym;
11820   const MCExpr *Value;
11821   if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
11822                                                Parser, Sym, Value))
11823     return true;
11824 
11825   getTargetStreamer().emitThumbSet(Sym, Value);
11826   return false;
11827 }
11828 
11829 /// Force static initialization.
11830 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmParser() {
11831   RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
11832   RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
11833   RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
11834   RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
11835 }
11836 
11837 #define GET_REGISTER_MATCHER
11838 #define GET_SUBTARGET_FEATURE_NAME
11839 #define GET_MATCHER_IMPLEMENTATION
11840 #define GET_MNEMONIC_SPELL_CHECKER
11841 #include "ARMGenAsmMatcher.inc"
11842 
11843 // Some diagnostics need to vary with subtarget features, so they are handled
11844 // here. For example, the DPR class has either 16 or 32 registers, depending
11845 // on the FPU available.
11846 const char *
11847 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
11848   switch (MatchError) {
11849   // rGPR contains sp starting with ARMv8.
11850   case Match_rGPR:
11851     return hasV8Ops() ? "operand must be a register in range [r0, r14]"
11852                       : "operand must be a register in range [r0, r12] or r14";
11853   // DPR contains 16 registers for some FPUs, and 32 for others.
11854   case Match_DPR:
11855     return hasD32() ? "operand must be a register in range [d0, d31]"
11856                     : "operand must be a register in range [d0, d15]";
11857   case Match_DPR_RegList:
11858     return hasD32() ? "operand must be a list of registers in range [d0, d31]"
11859                     : "operand must be a list of registers in range [d0, d15]";
11860 
11861   // For all other diags, use the static string from tablegen.
11862   default:
11863     return getMatchKindDiag(MatchError);
11864   }
11865 }
11866 
11867 // Process the list of near-misses, throwing away ones we don't want to report
11868 // to the user, and converting the rest to a source location and string that
11869 // should be reported.
11870 void
11871 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
11872                                SmallVectorImpl<NearMissMessage> &NearMissesOut,
11873                                SMLoc IDLoc, OperandVector &Operands) {
11874   // TODO: If operand didn't match, sub in a dummy one and run target
11875   // predicate, so that we can avoid reporting near-misses that are invalid?
11876   // TODO: Many operand types dont have SuperClasses set, so we report
11877   // redundant ones.
11878   // TODO: Some operands are superclasses of registers (e.g.
11879   // MCK_RegShiftedImm), we don't have any way to represent that currently.
11880   // TODO: This is not all ARM-specific, can some of it be factored out?
11881 
11882   // Record some information about near-misses that we have already seen, so
11883   // that we can avoid reporting redundant ones. For example, if there are
11884   // variants of an instruction that take 8- and 16-bit immediates, we want
11885   // to only report the widest one.
11886   std::multimap<unsigned, unsigned> OperandMissesSeen;
11887   SmallSet<FeatureBitset, 4> FeatureMissesSeen;
11888   bool ReportedTooFewOperands = false;
11889 
11890   // Process the near-misses in reverse order, so that we see more general ones
11891   // first, and so can avoid emitting more specific ones.
11892   for (NearMissInfo &I : reverse(NearMissesIn)) {
11893     switch (I.getKind()) {
11894     case NearMissInfo::NearMissOperand: {
11895       SMLoc OperandLoc =
11896           ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
11897       const char *OperandDiag =
11898           getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
11899 
11900       // If we have already emitted a message for a superclass, don't also report
11901       // the sub-class. We consider all operand classes that we don't have a
11902       // specialised diagnostic for to be equal for the propose of this check,
11903       // so that we don't report the generic error multiple times on the same
11904       // operand.
11905       unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
11906       auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
11907       if (std::any_of(PrevReports.first, PrevReports.second,
11908                       [DupCheckMatchClass](
11909                           const std::pair<unsigned, unsigned> Pair) {
11910             if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
11911               return Pair.second == DupCheckMatchClass;
11912             else
11913               return isSubclass((MatchClassKind)DupCheckMatchClass,
11914                                 (MatchClassKind)Pair.second);
11915           }))
11916         break;
11917       OperandMissesSeen.insert(
11918           std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
11919 
11920       NearMissMessage Message;
11921       Message.Loc = OperandLoc;
11922       if (OperandDiag) {
11923         Message.Message = OperandDiag;
11924       } else if (I.getOperandClass() == InvalidMatchClass) {
11925         Message.Message = "too many operands for instruction";
11926       } else {
11927         Message.Message = "invalid operand for instruction";
11928         LLVM_DEBUG(
11929             dbgs() << "Missing diagnostic string for operand class "
11930                    << getMatchClassName((MatchClassKind)I.getOperandClass())
11931                    << I.getOperandClass() << ", error " << I.getOperandError()
11932                    << ", opcode " << MII.getName(I.getOpcode()) << "\n");
11933       }
11934       NearMissesOut.emplace_back(Message);
11935       break;
11936     }
11937     case NearMissInfo::NearMissFeature: {
11938       const FeatureBitset &MissingFeatures = I.getFeatures();
11939       // Don't report the same set of features twice.
11940       if (FeatureMissesSeen.count(MissingFeatures))
11941         break;
11942       FeatureMissesSeen.insert(MissingFeatures);
11943 
11944       // Special case: don't report a feature set which includes arm-mode for
11945       // targets that don't have ARM mode.
11946       if (MissingFeatures.test(Feature_IsARMBit) && !hasARM())
11947         break;
11948       // Don't report any near-misses that both require switching instruction
11949       // set, and adding other subtarget features.
11950       if (isThumb() && MissingFeatures.test(Feature_IsARMBit) &&
11951           MissingFeatures.count() > 1)
11952         break;
11953       if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) &&
11954           MissingFeatures.count() > 1)
11955         break;
11956       if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) &&
11957           (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit,
11958                                              Feature_IsThumbBit})).any())
11959         break;
11960       if (isMClass() && MissingFeatures.test(Feature_HasNEONBit))
11961         break;
11962 
11963       NearMissMessage Message;
11964       Message.Loc = IDLoc;
11965       raw_svector_ostream OS(Message.Message);
11966 
11967       OS << "instruction requires:";
11968       for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)
11969         if (MissingFeatures.test(i))
11970           OS << ' ' << getSubtargetFeatureName(i);
11971 
11972       NearMissesOut.emplace_back(Message);
11973 
11974       break;
11975     }
11976     case NearMissInfo::NearMissPredicate: {
11977       NearMissMessage Message;
11978       Message.Loc = IDLoc;
11979       switch (I.getPredicateError()) {
11980       case Match_RequiresNotITBlock:
11981         Message.Message = "flag setting instruction only valid outside IT block";
11982         break;
11983       case Match_RequiresITBlock:
11984         Message.Message = "instruction only valid inside IT block";
11985         break;
11986       case Match_RequiresV6:
11987         Message.Message = "instruction variant requires ARMv6 or later";
11988         break;
11989       case Match_RequiresThumb2:
11990         Message.Message = "instruction variant requires Thumb2";
11991         break;
11992       case Match_RequiresV8:
11993         Message.Message = "instruction variant requires ARMv8 or later";
11994         break;
11995       case Match_RequiresFlagSetting:
11996         Message.Message = "no flag-preserving variant of this instruction available";
11997         break;
11998       case Match_InvalidOperand:
11999         Message.Message = "invalid operand for instruction";
12000         break;
12001       default:
12002         llvm_unreachable("Unhandled target predicate error");
12003         break;
12004       }
12005       NearMissesOut.emplace_back(Message);
12006       break;
12007     }
12008     case NearMissInfo::NearMissTooFewOperands: {
12009       if (!ReportedTooFewOperands) {
12010         SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
12011         NearMissesOut.emplace_back(NearMissMessage{
12012             EndLoc, StringRef("too few operands for instruction")});
12013         ReportedTooFewOperands = true;
12014       }
12015       break;
12016     }
12017     case NearMissInfo::NoNearMiss:
12018       // This should never leave the matcher.
12019       llvm_unreachable("not a near-miss");
12020       break;
12021     }
12022   }
12023 }
12024 
12025 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
12026                                     SMLoc IDLoc, OperandVector &Operands) {
12027   SmallVector<NearMissMessage, 4> Messages;
12028   FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
12029 
12030   if (Messages.size() == 0) {
12031     // No near-misses were found, so the best we can do is "invalid
12032     // instruction".
12033     Error(IDLoc, "invalid instruction");
12034   } else if (Messages.size() == 1) {
12035     // One near miss was found, report it as the sole error.
12036     Error(Messages[0].Loc, Messages[0].Message);
12037   } else {
12038     // More than one near miss, so report a generic "invalid instruction"
12039     // error, followed by notes for each of the near-misses.
12040     Error(IDLoc, "invalid instruction, any one of the following would fix this:");
12041     for (auto &M : Messages) {
12042       Note(M.Loc, M.Message);
12043     }
12044   }
12045 }
12046 
12047 /// parseDirectiveArchExtension
12048 ///   ::= .arch_extension [no]feature
12049 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
12050   // FIXME: This structure should be moved inside ARMTargetParser
12051   // when we start to table-generate them, and we can use the ARM
12052   // flags below, that were generated by table-gen.
12053   static const struct {
12054     const uint64_t Kind;
12055     const FeatureBitset ArchCheck;
12056     const FeatureBitset Features;
12057   } Extensions[] = {
12058     { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} },
12059     { ARM::AEK_CRYPTO,  {Feature_HasV8Bit},
12060       {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} },
12061     { ARM::AEK_FP, {Feature_HasV8Bit},
12062       {ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} },
12063     { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM),
12064       {Feature_HasV7Bit, Feature_IsNotMClassBit},
12065       {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} },
12066     { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit},
12067       {ARM::FeatureMP} },
12068     { ARM::AEK_SIMD, {Feature_HasV8Bit},
12069       {ARM::FeatureNEON, ARM::FeatureVFP2_SP, ARM::FeatureFPARMv8} },
12070     { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} },
12071     // FIXME: Only available in A-class, isel not predicated
12072     { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} },
12073     { ARM::AEK_FP16, {Feature_HasV8_2aBit},
12074       {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} },
12075     { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} },
12076     { ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} },
12077     // FIXME: Unsupported extensions.
12078     { ARM::AEK_OS, {}, {} },
12079     { ARM::AEK_IWMMXT, {}, {} },
12080     { ARM::AEK_IWMMXT2, {}, {} },
12081     { ARM::AEK_MAVERICK, {}, {} },
12082     { ARM::AEK_XSCALE, {}, {} },
12083   };
12084 
12085   MCAsmParser &Parser = getParser();
12086 
12087   if (getLexer().isNot(AsmToken::Identifier))
12088     return Error(getLexer().getLoc(), "expected architecture extension name");
12089 
12090   StringRef Name = Parser.getTok().getString();
12091   SMLoc ExtLoc = Parser.getTok().getLoc();
12092   Lex();
12093 
12094   if (parseToken(AsmToken::EndOfStatement,
12095                  "unexpected token in '.arch_extension' directive"))
12096     return true;
12097 
12098   bool EnableFeature = true;
12099   if (Name.startswith_lower("no")) {
12100     EnableFeature = false;
12101     Name = Name.substr(2);
12102   }
12103   uint64_t FeatureKind = ARM::parseArchExt(Name);
12104   if (FeatureKind == ARM::AEK_INVALID)
12105     return Error(ExtLoc, "unknown architectural extension: " + Name);
12106 
12107   for (const auto &Extension : Extensions) {
12108     if (Extension.Kind != FeatureKind)
12109       continue;
12110 
12111     if (Extension.Features.none())
12112       return Error(ExtLoc, "unsupported architectural extension: " + Name);
12113 
12114     if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
12115       return Error(ExtLoc, "architectural extension '" + Name +
12116                                "' is not "
12117                                "allowed for the current base architecture");
12118 
12119     MCSubtargetInfo &STI = copySTI();
12120     if (EnableFeature) {
12121       STI.SetFeatureBitsTransitively(Extension.Features);
12122     } else {
12123       STI.ClearFeatureBitsTransitively(Extension.Features);
12124     }
12125     FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits());
12126     setAvailableFeatures(Features);
12127     return false;
12128   }
12129 
12130   return Error(ExtLoc, "unknown architectural extension: " + Name);
12131 }
12132 
12133 // Define this matcher function after the auto-generated include so we
12134 // have the match class enum definitions.
12135 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
12136                                                   unsigned Kind) {
12137   ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
12138   // If the kind is a token for a literal immediate, check if our asm
12139   // operand matches. This is for InstAliases which have a fixed-value
12140   // immediate in the syntax.
12141   switch (Kind) {
12142   default: break;
12143   case MCK__HASH_0:
12144     if (Op.isImm())
12145       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12146         if (CE->getValue() == 0)
12147           return Match_Success;
12148     break;
12149   case MCK__HASH_8:
12150     if (Op.isImm())
12151       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12152         if (CE->getValue() == 8)
12153           return Match_Success;
12154     break;
12155   case MCK__HASH_16:
12156     if (Op.isImm())
12157       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
12158         if (CE->getValue() == 16)
12159           return Match_Success;
12160     break;
12161   case MCK_ModImm:
12162     if (Op.isImm()) {
12163       const MCExpr *SOExpr = Op.getImm();
12164       int64_t Value;
12165       if (!SOExpr->evaluateAsAbsolute(Value))
12166         return Match_Success;
12167       assert((Value >= std::numeric_limits<int32_t>::min() &&
12168               Value <= std::numeric_limits<uint32_t>::max()) &&
12169              "expression value must be representable in 32 bits");
12170     }
12171     break;
12172   case MCK_rGPR:
12173     if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
12174       return Match_Success;
12175     return Match_rGPR;
12176   case MCK_GPRPair:
12177     if (Op.isReg() &&
12178         MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
12179       return Match_Success;
12180     break;
12181   }
12182   return Match_InvalidOperand;
12183 }
12184 
12185 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic,
12186                                            StringRef ExtraToken) {
12187   if (!hasMVE())
12188     return false;
12189 
12190   return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") ||
12191          Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") ||
12192          Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") ||
12193          Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") ||
12194          Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") ||
12195          Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") ||
12196          Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") ||
12197          Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") ||
12198          Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") ||
12199          Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") ||
12200          Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") ||
12201          Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") ||
12202          Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") ||
12203          Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") ||
12204          Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") ||
12205          Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") ||
12206          Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") ||
12207          Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") ||
12208          Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") ||
12209          Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") ||
12210          Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") ||
12211          Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") ||
12212          Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") ||
12213          Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") ||
12214          Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") ||
12215          Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") ||
12216          Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") ||
12217          Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") ||
12218          Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") ||
12219          Mnemonic.startswith("vqabs") ||
12220          (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") ||
12221          Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") ||
12222          Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") ||
12223          Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") ||
12224          Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") ||
12225          Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") ||
12226          Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") ||
12227          Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") ||
12228          Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") ||
12229          Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") ||
12230          Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") ||
12231          Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") ||
12232          Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") ||
12233          Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") ||
12234          Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") ||
12235          Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") ||
12236          Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") ||
12237          Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") ||
12238          Mnemonic.startswith("vldrb") ||
12239          (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") ||
12240          (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") ||
12241          Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") ||
12242          Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") ||
12243          Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") ||
12244          Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") ||
12245          Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") ||
12246          Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") ||
12247          Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") ||
12248          Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") ||
12249          Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") ||
12250          Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") ||
12251          Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") ||
12252          Mnemonic.startswith("vcvt") ||
12253          MS.isVPTPredicableCDEInstr(Mnemonic) ||
12254          (Mnemonic.startswith("vmov") &&
12255           !(ExtraToken == ".f16" || ExtraToken == ".32" ||
12256             ExtraToken == ".16" || ExtraToken == ".8"));
12257 }
12258