1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMMCExpr.h" 15 #include "MCTargetDesc/ARMMCTargetDesc.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/MC/MCContext.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/MC/MCInst.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCInstrInfo.h" 32 #include "llvm/MC/MCObjectFileInfo.h" 33 #include "llvm/MC/MCParser/MCAsmLexer.h" 34 #include "llvm/MC/MCParser/MCAsmParser.h" 35 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 36 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 37 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 38 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCStreamer.h" 42 #include "llvm/MC/MCSubtargetInfo.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/MC/SubtargetFeature.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/ARMEHABI.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/SMLoc.h" 53 #include "llvm/Support/TargetParser.h" 54 #include "llvm/Support/TargetRegistry.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstddef> 59 #include <cstdint> 60 #include <iterator> 61 #include <limits> 62 #include <memory> 63 #include <string> 64 #include <utility> 65 #include <vector> 66 67 #define DEBUG_TYPE "asm-parser" 68 69 using namespace llvm; 70 71 namespace { 72 73 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 74 75 static cl::opt<ImplicitItModeTy> ImplicitItMode( 76 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 77 cl::desc("Allow conditional instructions outdside of an IT block"), 78 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 79 "Accept in both ISAs, emit implicit ITs in Thumb"), 80 clEnumValN(ImplicitItModeTy::Never, "never", 81 "Warn in ARM, reject in Thumb"), 82 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 83 "Accept in ARM, reject in Thumb"), 84 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 85 "Warn in ARM, emit implicit ITs in Thumb"))); 86 87 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 88 cl::init(false)); 89 90 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 91 92 class UnwindContext { 93 using Locs = SmallVector<SMLoc, 4>; 94 95 MCAsmParser &Parser; 96 Locs FnStartLocs; 97 Locs CantUnwindLocs; 98 Locs PersonalityLocs; 99 Locs PersonalityIndexLocs; 100 Locs HandlerDataLocs; 101 int FPReg; 102 103 public: 104 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 105 106 bool hasFnStart() const { return !FnStartLocs.empty(); } 107 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 108 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 109 110 bool hasPersonality() const { 111 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 112 } 113 114 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 115 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 116 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 117 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 118 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 119 120 void saveFPReg(int Reg) { FPReg = Reg; } 121 int getFPReg() const { return FPReg; } 122 123 void emitFnStartLocNotes() const { 124 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 125 FI != FE; ++FI) 126 Parser.Note(*FI, ".fnstart was specified here"); 127 } 128 129 void emitCantUnwindLocNotes() const { 130 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 131 UE = CantUnwindLocs.end(); UI != UE; ++UI) 132 Parser.Note(*UI, ".cantunwind was specified here"); 133 } 134 135 void emitHandlerDataLocNotes() const { 136 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 137 HE = HandlerDataLocs.end(); HI != HE; ++HI) 138 Parser.Note(*HI, ".handlerdata was specified here"); 139 } 140 141 void emitPersonalityLocNotes() const { 142 for (Locs::const_iterator PI = PersonalityLocs.begin(), 143 PE = PersonalityLocs.end(), 144 PII = PersonalityIndexLocs.begin(), 145 PIE = PersonalityIndexLocs.end(); 146 PI != PE || PII != PIE;) { 147 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 148 Parser.Note(*PI++, ".personality was specified here"); 149 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 150 Parser.Note(*PII++, ".personalityindex was specified here"); 151 else 152 llvm_unreachable(".personality and .personalityindex cannot be " 153 "at the same location"); 154 } 155 } 156 157 void reset() { 158 FnStartLocs = Locs(); 159 CantUnwindLocs = Locs(); 160 PersonalityLocs = Locs(); 161 HandlerDataLocs = Locs(); 162 PersonalityIndexLocs = Locs(); 163 FPReg = ARM::SP; 164 } 165 }; 166 167 class ARMAsmParser : public MCTargetAsmParser { 168 const MCRegisterInfo *MRI; 169 UnwindContext UC; 170 171 ARMTargetStreamer &getTargetStreamer() { 172 assert(getParser().getStreamer().getTargetStreamer() && 173 "do not have a target streamer"); 174 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 175 return static_cast<ARMTargetStreamer &>(TS); 176 } 177 178 // Map of register aliases registers via the .req directive. 179 StringMap<unsigned> RegisterReqs; 180 181 bool NextSymbolIsThumb; 182 183 bool useImplicitITThumb() const { 184 return ImplicitItMode == ImplicitItModeTy::Always || 185 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 186 } 187 188 bool useImplicitITARM() const { 189 return ImplicitItMode == ImplicitItModeTy::Always || 190 ImplicitItMode == ImplicitItModeTy::ARMOnly; 191 } 192 193 struct { 194 ARMCC::CondCodes Cond; // Condition for IT block. 195 unsigned Mask:4; // Condition mask for instructions. 196 // Starting at first 1 (from lsb). 197 // '1' condition as indicated in IT. 198 // '0' inverse of condition (else). 199 // Count of instructions in IT block is 200 // 4 - trailingzeroes(mask) 201 // Note that this does not have the same encoding 202 // as in the IT instruction, which also depends 203 // on the low bit of the condition code. 204 205 unsigned CurPosition; // Current position in parsing of IT 206 // block. In range [0,4], with 0 being the IT 207 // instruction itself. Initialized according to 208 // count of instructions in block. ~0U if no 209 // active IT block. 210 211 bool IsExplicit; // true - The IT instruction was present in the 212 // input, we should not modify it. 213 // false - The IT instruction was added 214 // implicitly, we can extend it if that 215 // would be legal. 216 } ITState; 217 218 SmallVector<MCInst, 4> PendingConditionalInsts; 219 220 void flushPendingInstructions(MCStreamer &Out) override { 221 if (!inImplicitITBlock()) { 222 assert(PendingConditionalInsts.size() == 0); 223 return; 224 } 225 226 // Emit the IT instruction 227 unsigned Mask = getITMaskEncoding(); 228 MCInst ITInst; 229 ITInst.setOpcode(ARM::t2IT); 230 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 231 ITInst.addOperand(MCOperand::createImm(Mask)); 232 Out.EmitInstruction(ITInst, getSTI()); 233 234 // Emit the conditonal instructions 235 assert(PendingConditionalInsts.size() <= 4); 236 for (const MCInst &Inst : PendingConditionalInsts) { 237 Out.EmitInstruction(Inst, getSTI()); 238 } 239 PendingConditionalInsts.clear(); 240 241 // Clear the IT state 242 ITState.Mask = 0; 243 ITState.CurPosition = ~0U; 244 } 245 246 bool inITBlock() { return ITState.CurPosition != ~0U; } 247 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 248 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 249 250 bool lastInITBlock() { 251 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 252 } 253 254 void forwardITPosition() { 255 if (!inITBlock()) return; 256 // Move to the next instruction in the IT block, if there is one. If not, 257 // mark the block as done, except for implicit IT blocks, which we leave 258 // open until we find an instruction that can't be added to it. 259 unsigned TZ = countTrailingZeros(ITState.Mask); 260 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 261 ITState.CurPosition = ~0U; // Done with the IT block after this. 262 } 263 264 // Rewind the state of the current IT block, removing the last slot from it. 265 void rewindImplicitITPosition() { 266 assert(inImplicitITBlock()); 267 assert(ITState.CurPosition > 1); 268 ITState.CurPosition--; 269 unsigned TZ = countTrailingZeros(ITState.Mask); 270 unsigned NewMask = 0; 271 NewMask |= ITState.Mask & (0xC << TZ); 272 NewMask |= 0x2 << TZ; 273 ITState.Mask = NewMask; 274 } 275 276 // Rewind the state of the current IT block, removing the last slot from it. 277 // If we were at the first slot, this closes the IT block. 278 void discardImplicitITBlock() { 279 assert(inImplicitITBlock()); 280 assert(ITState.CurPosition == 1); 281 ITState.CurPosition = ~0U; 282 } 283 284 // Return the low-subreg of a given Q register. 285 unsigned getDRegFromQReg(unsigned QReg) const { 286 return MRI->getSubReg(QReg, ARM::dsub_0); 287 } 288 289 // Get the encoding of the IT mask, as it will appear in an IT instruction. 290 unsigned getITMaskEncoding() { 291 assert(inITBlock()); 292 unsigned Mask = ITState.Mask; 293 unsigned TZ = countTrailingZeros(Mask); 294 if ((ITState.Cond & 1) == 0) { 295 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 296 Mask ^= (0xE << TZ) & 0xF; 297 } 298 return Mask; 299 } 300 301 // Get the condition code corresponding to the current IT block slot. 302 ARMCC::CondCodes currentITCond() { 303 unsigned MaskBit; 304 if (ITState.CurPosition == 1) 305 MaskBit = 1; 306 else 307 MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 308 309 return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond); 310 } 311 312 // Invert the condition of the current IT block slot without changing any 313 // other slots in the same block. 314 void invertCurrentITCondition() { 315 if (ITState.CurPosition == 1) { 316 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 317 } else { 318 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 319 } 320 } 321 322 // Returns true if the current IT block is full (all 4 slots used). 323 bool isITBlockFull() { 324 return inITBlock() && (ITState.Mask & 1); 325 } 326 327 // Extend the current implicit IT block to have one more slot with the given 328 // condition code. 329 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 330 assert(inImplicitITBlock()); 331 assert(!isITBlockFull()); 332 assert(Cond == ITState.Cond || 333 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 334 unsigned TZ = countTrailingZeros(ITState.Mask); 335 unsigned NewMask = 0; 336 // Keep any existing condition bits. 337 NewMask |= ITState.Mask & (0xE << TZ); 338 // Insert the new condition bit. 339 NewMask |= (Cond == ITState.Cond) << TZ; 340 // Move the trailing 1 down one bit. 341 NewMask |= 1 << (TZ - 1); 342 ITState.Mask = NewMask; 343 } 344 345 // Create a new implicit IT block with a dummy condition code. 346 void startImplicitITBlock() { 347 assert(!inITBlock()); 348 ITState.Cond = ARMCC::AL; 349 ITState.Mask = 8; 350 ITState.CurPosition = 1; 351 ITState.IsExplicit = false; 352 } 353 354 // Create a new explicit IT block with the given condition and mask. The mask 355 // should be in the parsed format, with a 1 implying 't', regardless of the 356 // low bit of the condition. 357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 358 assert(!inITBlock()); 359 ITState.Cond = Cond; 360 ITState.Mask = Mask; 361 ITState.CurPosition = 0; 362 ITState.IsExplicit = true; 363 } 364 365 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 366 return getParser().Note(L, Msg, Range); 367 } 368 369 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 370 return getParser().Warning(L, Msg, Range); 371 } 372 373 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 374 return getParser().Error(L, Msg, Range); 375 } 376 377 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 378 unsigned ListNo, bool IsARPop = false); 379 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 380 unsigned ListNo); 381 382 int tryParseRegister(); 383 bool tryParseRegisterWithWriteBack(OperandVector &); 384 int tryParseShiftRegister(OperandVector &); 385 bool parseRegisterList(OperandVector &); 386 bool parseMemory(OperandVector &); 387 bool parseOperand(OperandVector &, StringRef Mnemonic); 388 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 389 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 390 unsigned &ShiftAmount); 391 bool parseLiteralValues(unsigned Size, SMLoc L); 392 bool parseDirectiveThumb(SMLoc L); 393 bool parseDirectiveARM(SMLoc L); 394 bool parseDirectiveThumbFunc(SMLoc L); 395 bool parseDirectiveCode(SMLoc L); 396 bool parseDirectiveSyntax(SMLoc L); 397 bool parseDirectiveReq(StringRef Name, SMLoc L); 398 bool parseDirectiveUnreq(SMLoc L); 399 bool parseDirectiveArch(SMLoc L); 400 bool parseDirectiveEabiAttr(SMLoc L); 401 bool parseDirectiveCPU(SMLoc L); 402 bool parseDirectiveFPU(SMLoc L); 403 bool parseDirectiveFnStart(SMLoc L); 404 bool parseDirectiveFnEnd(SMLoc L); 405 bool parseDirectiveCantUnwind(SMLoc L); 406 bool parseDirectivePersonality(SMLoc L); 407 bool parseDirectiveHandlerData(SMLoc L); 408 bool parseDirectiveSetFP(SMLoc L); 409 bool parseDirectivePad(SMLoc L); 410 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 411 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 412 bool parseDirectiveLtorg(SMLoc L); 413 bool parseDirectiveEven(SMLoc L); 414 bool parseDirectivePersonalityIndex(SMLoc L); 415 bool parseDirectiveUnwindRaw(SMLoc L); 416 bool parseDirectiveTLSDescSeq(SMLoc L); 417 bool parseDirectiveMovSP(SMLoc L); 418 bool parseDirectiveObjectArch(SMLoc L); 419 bool parseDirectiveArchExtension(SMLoc L); 420 bool parseDirectiveAlign(SMLoc L); 421 bool parseDirectiveThumbSet(SMLoc L); 422 423 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 424 bool &CarrySetting, unsigned &ProcessorIMod, 425 StringRef &ITMask); 426 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 427 bool &CanAcceptCarrySet, 428 bool &CanAcceptPredicationCode); 429 430 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 431 OperandVector &Operands); 432 bool isThumb() const { 433 // FIXME: Can tablegen auto-generate this? 434 return getSTI().getFeatureBits()[ARM::ModeThumb]; 435 } 436 437 bool isThumbOne() const { 438 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 439 } 440 441 bool isThumbTwo() const { 442 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 443 } 444 445 bool hasThumb() const { 446 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 447 } 448 449 bool hasThumb2() const { 450 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 451 } 452 453 bool hasV6Ops() const { 454 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 455 } 456 457 bool hasV6T2Ops() const { 458 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 459 } 460 461 bool hasV6MOps() const { 462 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 463 } 464 465 bool hasV7Ops() const { 466 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 467 } 468 469 bool hasV8Ops() const { 470 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 471 } 472 473 bool hasV8MBaseline() const { 474 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 475 } 476 477 bool hasV8MMainline() const { 478 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 479 } 480 481 bool has8MSecExt() const { 482 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 483 } 484 485 bool hasARM() const { 486 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 487 } 488 489 bool hasDSP() const { 490 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 491 } 492 493 bool hasD16() const { 494 return getSTI().getFeatureBits()[ARM::FeatureD16]; 495 } 496 497 bool hasV8_1aOps() const { 498 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 499 } 500 501 bool hasRAS() const { 502 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 503 } 504 505 void SwitchMode() { 506 MCSubtargetInfo &STI = copySTI(); 507 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 508 setAvailableFeatures(FB); 509 } 510 511 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 512 513 bool isMClass() const { 514 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 515 } 516 517 /// @name Auto-generated Match Functions 518 /// { 519 520 #define GET_ASSEMBLER_HEADER 521 #include "ARMGenAsmMatcher.inc" 522 523 /// } 524 525 OperandMatchResultTy parseITCondCode(OperandVector &); 526 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 527 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 528 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 529 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 530 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 531 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 532 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 533 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 534 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 535 int High); 536 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 537 return parsePKHImm(O, "lsl", 0, 31); 538 } 539 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 540 return parsePKHImm(O, "asr", 1, 32); 541 } 542 OperandMatchResultTy parseSetEndImm(OperandVector &); 543 OperandMatchResultTy parseShifterImm(OperandVector &); 544 OperandMatchResultTy parseRotImm(OperandVector &); 545 OperandMatchResultTy parseModImm(OperandVector &); 546 OperandMatchResultTy parseBitfield(OperandVector &); 547 OperandMatchResultTy parsePostIdxReg(OperandVector &); 548 OperandMatchResultTy parseAM3Offset(OperandVector &); 549 OperandMatchResultTy parseFPImm(OperandVector &); 550 OperandMatchResultTy parseVectorList(OperandVector &); 551 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 552 SMLoc &EndLoc); 553 554 // Asm Match Converter Methods 555 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 556 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 557 558 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 559 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 560 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 561 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 562 bool isITBlockTerminator(MCInst &Inst) const; 563 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 564 565 public: 566 enum ARMMatchResultTy { 567 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 568 Match_RequiresNotITBlock, 569 Match_RequiresV6, 570 Match_RequiresThumb2, 571 Match_RequiresV8, 572 Match_RequiresFlagSetting, 573 #define GET_OPERAND_DIAGNOSTIC_TYPES 574 #include "ARMGenAsmMatcher.inc" 575 576 }; 577 578 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 579 const MCInstrInfo &MII, const MCTargetOptions &Options) 580 : MCTargetAsmParser(Options, STI, MII), UC(Parser) { 581 MCAsmParserExtension::Initialize(Parser); 582 583 // Cache the MCRegisterInfo. 584 MRI = getContext().getRegisterInfo(); 585 586 // Initialize the set of available features. 587 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 588 589 // Add build attributes based on the selected target. 590 if (AddBuildAttributes) 591 getTargetStreamer().emitTargetAttributes(STI); 592 593 // Not in an ITBlock to start with. 594 ITState.CurPosition = ~0U; 595 596 NextSymbolIsThumb = false; 597 } 598 599 // Implementation of the MCTargetAsmParser interface: 600 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 601 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 602 SMLoc NameLoc, OperandVector &Operands) override; 603 bool ParseDirective(AsmToken DirectiveID) override; 604 605 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 606 unsigned Kind) override; 607 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 608 609 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 610 OperandVector &Operands, MCStreamer &Out, 611 uint64_t &ErrorInfo, 612 bool MatchingInlineAsm) override; 613 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 614 SmallVectorImpl<NearMissInfo> &NearMisses, 615 bool MatchingInlineAsm, bool &EmitInITBlock, 616 MCStreamer &Out); 617 618 struct NearMissMessage { 619 SMLoc Loc; 620 SmallString<128> Message; 621 }; 622 623 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 624 625 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 626 SmallVectorImpl<NearMissMessage> &NearMissesOut, 627 SMLoc IDLoc, OperandVector &Operands); 628 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 629 OperandVector &Operands); 630 631 void onLabelParsed(MCSymbol *Symbol) override; 632 }; 633 634 /// ARMOperand - Instances of this class represent a parsed ARM machine 635 /// operand. 636 class ARMOperand : public MCParsedAsmOperand { 637 enum KindTy { 638 k_CondCode, 639 k_CCOut, 640 k_ITCondMask, 641 k_CoprocNum, 642 k_CoprocReg, 643 k_CoprocOption, 644 k_Immediate, 645 k_MemBarrierOpt, 646 k_InstSyncBarrierOpt, 647 k_Memory, 648 k_PostIndexRegister, 649 k_MSRMask, 650 k_BankedReg, 651 k_ProcIFlags, 652 k_VectorIndex, 653 k_Register, 654 k_RegisterList, 655 k_DPRRegisterList, 656 k_SPRRegisterList, 657 k_VectorList, 658 k_VectorListAllLanes, 659 k_VectorListIndexed, 660 k_ShiftedRegister, 661 k_ShiftedImmediate, 662 k_ShifterImmediate, 663 k_RotateImmediate, 664 k_ModifiedImmediate, 665 k_ConstantPoolImmediate, 666 k_BitfieldDescriptor, 667 k_Token, 668 } Kind; 669 670 SMLoc StartLoc, EndLoc, AlignmentLoc; 671 SmallVector<unsigned, 8> Registers; 672 673 struct CCOp { 674 ARMCC::CondCodes Val; 675 }; 676 677 struct CopOp { 678 unsigned Val; 679 }; 680 681 struct CoprocOptionOp { 682 unsigned Val; 683 }; 684 685 struct ITMaskOp { 686 unsigned Mask:4; 687 }; 688 689 struct MBOptOp { 690 ARM_MB::MemBOpt Val; 691 }; 692 693 struct ISBOptOp { 694 ARM_ISB::InstSyncBOpt Val; 695 }; 696 697 struct IFlagsOp { 698 ARM_PROC::IFlags Val; 699 }; 700 701 struct MMaskOp { 702 unsigned Val; 703 }; 704 705 struct BankedRegOp { 706 unsigned Val; 707 }; 708 709 struct TokOp { 710 const char *Data; 711 unsigned Length; 712 }; 713 714 struct RegOp { 715 unsigned RegNum; 716 }; 717 718 // A vector register list is a sequential list of 1 to 4 registers. 719 struct VectorListOp { 720 unsigned RegNum; 721 unsigned Count; 722 unsigned LaneIndex; 723 bool isDoubleSpaced; 724 }; 725 726 struct VectorIndexOp { 727 unsigned Val; 728 }; 729 730 struct ImmOp { 731 const MCExpr *Val; 732 }; 733 734 /// Combined record for all forms of ARM address expressions. 735 struct MemoryOp { 736 unsigned BaseRegNum; 737 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 738 // was specified. 739 const MCConstantExpr *OffsetImm; // Offset immediate value 740 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 741 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 742 unsigned ShiftImm; // shift for OffsetReg. 743 unsigned Alignment; // 0 = no alignment specified 744 // n = alignment in bytes (2, 4, 8, 16, or 32) 745 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 746 }; 747 748 struct PostIdxRegOp { 749 unsigned RegNum; 750 bool isAdd; 751 ARM_AM::ShiftOpc ShiftTy; 752 unsigned ShiftImm; 753 }; 754 755 struct ShifterImmOp { 756 bool isASR; 757 unsigned Imm; 758 }; 759 760 struct RegShiftedRegOp { 761 ARM_AM::ShiftOpc ShiftTy; 762 unsigned SrcReg; 763 unsigned ShiftReg; 764 unsigned ShiftImm; 765 }; 766 767 struct RegShiftedImmOp { 768 ARM_AM::ShiftOpc ShiftTy; 769 unsigned SrcReg; 770 unsigned ShiftImm; 771 }; 772 773 struct RotImmOp { 774 unsigned Imm; 775 }; 776 777 struct ModImmOp { 778 unsigned Bits; 779 unsigned Rot; 780 }; 781 782 struct BitfieldOp { 783 unsigned LSB; 784 unsigned Width; 785 }; 786 787 union { 788 struct CCOp CC; 789 struct CopOp Cop; 790 struct CoprocOptionOp CoprocOption; 791 struct MBOptOp MBOpt; 792 struct ISBOptOp ISBOpt; 793 struct ITMaskOp ITMask; 794 struct IFlagsOp IFlags; 795 struct MMaskOp MMask; 796 struct BankedRegOp BankedReg; 797 struct TokOp Tok; 798 struct RegOp Reg; 799 struct VectorListOp VectorList; 800 struct VectorIndexOp VectorIndex; 801 struct ImmOp Imm; 802 struct MemoryOp Memory; 803 struct PostIdxRegOp PostIdxReg; 804 struct ShifterImmOp ShifterImm; 805 struct RegShiftedRegOp RegShiftedReg; 806 struct RegShiftedImmOp RegShiftedImm; 807 struct RotImmOp RotImm; 808 struct ModImmOp ModImm; 809 struct BitfieldOp Bitfield; 810 }; 811 812 public: 813 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 814 815 /// getStartLoc - Get the location of the first token of this operand. 816 SMLoc getStartLoc() const override { return StartLoc; } 817 818 /// getEndLoc - Get the location of the last token of this operand. 819 SMLoc getEndLoc() const override { return EndLoc; } 820 821 /// getLocRange - Get the range between the first and last token of this 822 /// operand. 823 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 824 825 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 826 SMLoc getAlignmentLoc() const { 827 assert(Kind == k_Memory && "Invalid access!"); 828 return AlignmentLoc; 829 } 830 831 ARMCC::CondCodes getCondCode() const { 832 assert(Kind == k_CondCode && "Invalid access!"); 833 return CC.Val; 834 } 835 836 unsigned getCoproc() const { 837 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 838 return Cop.Val; 839 } 840 841 StringRef getToken() const { 842 assert(Kind == k_Token && "Invalid access!"); 843 return StringRef(Tok.Data, Tok.Length); 844 } 845 846 unsigned getReg() const override { 847 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 848 return Reg.RegNum; 849 } 850 851 const SmallVectorImpl<unsigned> &getRegList() const { 852 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 853 Kind == k_SPRRegisterList) && "Invalid access!"); 854 return Registers; 855 } 856 857 const MCExpr *getImm() const { 858 assert(isImm() && "Invalid access!"); 859 return Imm.Val; 860 } 861 862 const MCExpr *getConstantPoolImm() const { 863 assert(isConstantPoolImm() && "Invalid access!"); 864 return Imm.Val; 865 } 866 867 unsigned getVectorIndex() const { 868 assert(Kind == k_VectorIndex && "Invalid access!"); 869 return VectorIndex.Val; 870 } 871 872 ARM_MB::MemBOpt getMemBarrierOpt() const { 873 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 874 return MBOpt.Val; 875 } 876 877 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 878 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 879 return ISBOpt.Val; 880 } 881 882 ARM_PROC::IFlags getProcIFlags() const { 883 assert(Kind == k_ProcIFlags && "Invalid access!"); 884 return IFlags.Val; 885 } 886 887 unsigned getMSRMask() const { 888 assert(Kind == k_MSRMask && "Invalid access!"); 889 return MMask.Val; 890 } 891 892 unsigned getBankedReg() const { 893 assert(Kind == k_BankedReg && "Invalid access!"); 894 return BankedReg.Val; 895 } 896 897 bool isCoprocNum() const { return Kind == k_CoprocNum; } 898 bool isCoprocReg() const { return Kind == k_CoprocReg; } 899 bool isCoprocOption() const { return Kind == k_CoprocOption; } 900 bool isCondCode() const { return Kind == k_CondCode; } 901 bool isCCOut() const { return Kind == k_CCOut; } 902 bool isITMask() const { return Kind == k_ITCondMask; } 903 bool isITCondCode() const { return Kind == k_CondCode; } 904 bool isImm() const override { 905 return Kind == k_Immediate; 906 } 907 908 bool isARMBranchTarget() const { 909 if (!isImm()) return false; 910 911 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 912 return CE->getValue() % 4 == 0; 913 return true; 914 } 915 916 917 bool isThumbBranchTarget() const { 918 if (!isImm()) return false; 919 920 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 921 return CE->getValue() % 2 == 0; 922 return true; 923 } 924 925 // checks whether this operand is an unsigned offset which fits is a field 926 // of specified width and scaled by a specific number of bits 927 template<unsigned width, unsigned scale> 928 bool isUnsignedOffset() const { 929 if (!isImm()) return false; 930 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 931 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 932 int64_t Val = CE->getValue(); 933 int64_t Align = 1LL << scale; 934 int64_t Max = Align * ((1LL << width) - 1); 935 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 936 } 937 return false; 938 } 939 940 // checks whether this operand is an signed offset which fits is a field 941 // of specified width and scaled by a specific number of bits 942 template<unsigned width, unsigned scale> 943 bool isSignedOffset() const { 944 if (!isImm()) return false; 945 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 946 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 947 int64_t Val = CE->getValue(); 948 int64_t Align = 1LL << scale; 949 int64_t Max = Align * ((1LL << (width-1)) - 1); 950 int64_t Min = -Align * (1LL << (width-1)); 951 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 952 } 953 return false; 954 } 955 956 // checks whether this operand is a memory operand computed as an offset 957 // applied to PC. the offset may have 8 bits of magnitude and is represented 958 // with two bits of shift. textually it may be either [pc, #imm], #imm or 959 // relocable expression... 960 bool isThumbMemPC() const { 961 int64_t Val = 0; 962 if (isImm()) { 963 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 964 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 965 if (!CE) return false; 966 Val = CE->getValue(); 967 } 968 else if (isMem()) { 969 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 970 if(Memory.BaseRegNum != ARM::PC) return false; 971 Val = Memory.OffsetImm->getValue(); 972 } 973 else return false; 974 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 975 } 976 977 bool isFPImm() const { 978 if (!isImm()) return false; 979 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 980 if (!CE) return false; 981 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 982 return Val != -1; 983 } 984 985 template<int64_t N, int64_t M> 986 bool isImmediate() const { 987 if (!isImm()) return false; 988 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 989 if (!CE) return false; 990 int64_t Value = CE->getValue(); 991 return Value >= N && Value <= M; 992 } 993 994 template<int64_t N, int64_t M> 995 bool isImmediateS4() const { 996 if (!isImm()) return false; 997 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 998 if (!CE) return false; 999 int64_t Value = CE->getValue(); 1000 return ((Value & 3) == 0) && Value >= N && Value <= M; 1001 } 1002 1003 bool isFBits16() const { 1004 return isImmediate<0, 17>(); 1005 } 1006 bool isFBits32() const { 1007 return isImmediate<1, 33>(); 1008 } 1009 bool isImm8s4() const { 1010 return isImmediateS4<-1020, 1020>(); 1011 } 1012 bool isImm0_1020s4() const { 1013 return isImmediateS4<0, 1020>(); 1014 } 1015 bool isImm0_508s4() const { 1016 return isImmediateS4<0, 508>(); 1017 } 1018 bool isImm0_508s4Neg() const { 1019 if (!isImm()) return false; 1020 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1021 if (!CE) return false; 1022 int64_t Value = -CE->getValue(); 1023 // explicitly exclude zero. we want that to use the normal 0_508 version. 1024 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1025 } 1026 1027 bool isImm0_4095Neg() const { 1028 if (!isImm()) return false; 1029 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1030 if (!CE) return false; 1031 int64_t Value = -CE->getValue(); 1032 return Value > 0 && Value < 4096; 1033 } 1034 1035 bool isImm0_7() const { 1036 return isImmediate<0, 7>(); 1037 } 1038 1039 bool isImm1_16() const { 1040 return isImmediate<1, 16>(); 1041 } 1042 1043 bool isImm1_32() const { 1044 return isImmediate<1, 32>(); 1045 } 1046 1047 bool isImm8_255() const { 1048 return isImmediate<8, 255>(); 1049 } 1050 1051 bool isImm256_65535Expr() const { 1052 if (!isImm()) return false; 1053 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1054 // If it's not a constant expression, it'll generate a fixup and be 1055 // handled later. 1056 if (!CE) return true; 1057 int64_t Value = CE->getValue(); 1058 return Value >= 256 && Value < 65536; 1059 } 1060 1061 bool isImm0_65535Expr() const { 1062 if (!isImm()) return false; 1063 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1064 // If it's not a constant expression, it'll generate a fixup and be 1065 // handled later. 1066 if (!CE) return true; 1067 int64_t Value = CE->getValue(); 1068 return Value >= 0 && Value < 65536; 1069 } 1070 1071 bool isImm24bit() const { 1072 return isImmediate<0, 0xffffff + 1>(); 1073 } 1074 1075 bool isImmThumbSR() const { 1076 return isImmediate<1, 33>(); 1077 } 1078 1079 bool isPKHLSLImm() const { 1080 return isImmediate<0, 32>(); 1081 } 1082 1083 bool isPKHASRImm() const { 1084 return isImmediate<0, 33>(); 1085 } 1086 1087 bool isAdrLabel() const { 1088 // If we have an immediate that's not a constant, treat it as a label 1089 // reference needing a fixup. 1090 if (isImm() && !isa<MCConstantExpr>(getImm())) 1091 return true; 1092 1093 // If it is a constant, it must fit into a modified immediate encoding. 1094 if (!isImm()) return false; 1095 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1096 if (!CE) return false; 1097 int64_t Value = CE->getValue(); 1098 return (ARM_AM::getSOImmVal(Value) != -1 || 1099 ARM_AM::getSOImmVal(-Value) != -1); 1100 } 1101 1102 bool isT2SOImm() const { 1103 // If we have an immediate that's not a constant, treat it as an expression 1104 // needing a fixup. 1105 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1106 // We want to avoid matching :upper16: and :lower16: as we want these 1107 // expressions to match in isImm0_65535Expr() 1108 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1109 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1110 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1111 } 1112 if (!isImm()) return false; 1113 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1114 if (!CE) return false; 1115 int64_t Value = CE->getValue(); 1116 return ARM_AM::getT2SOImmVal(Value) != -1; 1117 } 1118 1119 bool isT2SOImmNot() const { 1120 if (!isImm()) return false; 1121 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1122 if (!CE) return false; 1123 int64_t Value = CE->getValue(); 1124 return ARM_AM::getT2SOImmVal(Value) == -1 && 1125 ARM_AM::getT2SOImmVal(~Value) != -1; 1126 } 1127 1128 bool isT2SOImmNeg() const { 1129 if (!isImm()) return false; 1130 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1131 if (!CE) return false; 1132 int64_t Value = CE->getValue(); 1133 // Only use this when not representable as a plain so_imm. 1134 return ARM_AM::getT2SOImmVal(Value) == -1 && 1135 ARM_AM::getT2SOImmVal(-Value) != -1; 1136 } 1137 1138 bool isSetEndImm() const { 1139 if (!isImm()) return false; 1140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1141 if (!CE) return false; 1142 int64_t Value = CE->getValue(); 1143 return Value == 1 || Value == 0; 1144 } 1145 1146 bool isReg() const override { return Kind == k_Register; } 1147 bool isRegList() const { return Kind == k_RegisterList; } 1148 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1149 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1150 bool isToken() const override { return Kind == k_Token; } 1151 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1152 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1153 bool isMem() const override { 1154 if (Kind != k_Memory) 1155 return false; 1156 if (Memory.BaseRegNum && 1157 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1158 return false; 1159 if (Memory.OffsetRegNum && 1160 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1161 return false; 1162 return true; 1163 } 1164 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1165 bool isRegShiftedReg() const { 1166 return Kind == k_ShiftedRegister && 1167 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1168 RegShiftedReg.SrcReg) && 1169 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1170 RegShiftedReg.ShiftReg); 1171 } 1172 bool isRegShiftedImm() const { 1173 return Kind == k_ShiftedImmediate && 1174 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1175 RegShiftedImm.SrcReg); 1176 } 1177 bool isRotImm() const { return Kind == k_RotateImmediate; } 1178 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1179 1180 bool isModImmNot() const { 1181 if (!isImm()) return false; 1182 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1183 if (!CE) return false; 1184 int64_t Value = CE->getValue(); 1185 return ARM_AM::getSOImmVal(~Value) != -1; 1186 } 1187 1188 bool isModImmNeg() const { 1189 if (!isImm()) return false; 1190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1191 if (!CE) return false; 1192 int64_t Value = CE->getValue(); 1193 return ARM_AM::getSOImmVal(Value) == -1 && 1194 ARM_AM::getSOImmVal(-Value) != -1; 1195 } 1196 1197 bool isThumbModImmNeg1_7() const { 1198 if (!isImm()) return false; 1199 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1200 if (!CE) return false; 1201 int32_t Value = -(int32_t)CE->getValue(); 1202 return 0 < Value && Value < 8; 1203 } 1204 1205 bool isThumbModImmNeg8_255() const { 1206 if (!isImm()) return false; 1207 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1208 if (!CE) return false; 1209 int32_t Value = -(int32_t)CE->getValue(); 1210 return 7 < Value && Value < 256; 1211 } 1212 1213 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1214 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1215 bool isPostIdxRegShifted() const { 1216 return Kind == k_PostIndexRegister && 1217 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1218 } 1219 bool isPostIdxReg() const { 1220 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1221 } 1222 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1223 if (!isMem()) 1224 return false; 1225 // No offset of any kind. 1226 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1227 (alignOK || Memory.Alignment == Alignment); 1228 } 1229 bool isMemPCRelImm12() const { 1230 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1231 return false; 1232 // Base register must be PC. 1233 if (Memory.BaseRegNum != ARM::PC) 1234 return false; 1235 // Immediate offset in range [-4095, 4095]. 1236 if (!Memory.OffsetImm) return true; 1237 int64_t Val = Memory.OffsetImm->getValue(); 1238 return (Val > -4096 && Val < 4096) || 1239 (Val == std::numeric_limits<int32_t>::min()); 1240 } 1241 1242 bool isAlignedMemory() const { 1243 return isMemNoOffset(true); 1244 } 1245 1246 bool isAlignedMemoryNone() const { 1247 return isMemNoOffset(false, 0); 1248 } 1249 1250 bool isDupAlignedMemoryNone() const { 1251 return isMemNoOffset(false, 0); 1252 } 1253 1254 bool isAlignedMemory16() const { 1255 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1256 return true; 1257 return isMemNoOffset(false, 0); 1258 } 1259 1260 bool isDupAlignedMemory16() const { 1261 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1262 return true; 1263 return isMemNoOffset(false, 0); 1264 } 1265 1266 bool isAlignedMemory32() const { 1267 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1268 return true; 1269 return isMemNoOffset(false, 0); 1270 } 1271 1272 bool isDupAlignedMemory32() const { 1273 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1274 return true; 1275 return isMemNoOffset(false, 0); 1276 } 1277 1278 bool isAlignedMemory64() const { 1279 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1280 return true; 1281 return isMemNoOffset(false, 0); 1282 } 1283 1284 bool isDupAlignedMemory64() const { 1285 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1286 return true; 1287 return isMemNoOffset(false, 0); 1288 } 1289 1290 bool isAlignedMemory64or128() const { 1291 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1292 return true; 1293 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1294 return true; 1295 return isMemNoOffset(false, 0); 1296 } 1297 1298 bool isDupAlignedMemory64or128() const { 1299 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1300 return true; 1301 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1302 return true; 1303 return isMemNoOffset(false, 0); 1304 } 1305 1306 bool isAlignedMemory64or128or256() const { 1307 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1308 return true; 1309 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1310 return true; 1311 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1312 return true; 1313 return isMemNoOffset(false, 0); 1314 } 1315 1316 bool isAddrMode2() const { 1317 if (!isMem() || Memory.Alignment != 0) return false; 1318 // Check for register offset. 1319 if (Memory.OffsetRegNum) return true; 1320 // Immediate offset in range [-4095, 4095]. 1321 if (!Memory.OffsetImm) return true; 1322 int64_t Val = Memory.OffsetImm->getValue(); 1323 return Val > -4096 && Val < 4096; 1324 } 1325 1326 bool isAM2OffsetImm() const { 1327 if (!isImm()) return false; 1328 // Immediate offset in range [-4095, 4095]. 1329 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1330 if (!CE) return false; 1331 int64_t Val = CE->getValue(); 1332 return (Val == std::numeric_limits<int32_t>::min()) || 1333 (Val > -4096 && Val < 4096); 1334 } 1335 1336 bool isAddrMode3() const { 1337 // If we have an immediate that's not a constant, treat it as a label 1338 // reference needing a fixup. If it is a constant, it's something else 1339 // and we reject it. 1340 if (isImm() && !isa<MCConstantExpr>(getImm())) 1341 return true; 1342 if (!isMem() || Memory.Alignment != 0) return false; 1343 // No shifts are legal for AM3. 1344 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1345 // Check for register offset. 1346 if (Memory.OffsetRegNum) return true; 1347 // Immediate offset in range [-255, 255]. 1348 if (!Memory.OffsetImm) return true; 1349 int64_t Val = Memory.OffsetImm->getValue(); 1350 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1351 // have to check for this too. 1352 return (Val > -256 && Val < 256) || 1353 Val == std::numeric_limits<int32_t>::min(); 1354 } 1355 1356 bool isAM3Offset() const { 1357 if (isPostIdxReg()) 1358 return true; 1359 if (!isImm()) 1360 return false; 1361 // Immediate offset in range [-255, 255]. 1362 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1363 if (!CE) return false; 1364 int64_t Val = CE->getValue(); 1365 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1366 return (Val > -256 && Val < 256) || 1367 Val == std::numeric_limits<int32_t>::min(); 1368 } 1369 1370 bool isAddrMode5() const { 1371 // If we have an immediate that's not a constant, treat it as a label 1372 // reference needing a fixup. If it is a constant, it's something else 1373 // and we reject it. 1374 if (isImm() && !isa<MCConstantExpr>(getImm())) 1375 return true; 1376 if (!isMem() || Memory.Alignment != 0) return false; 1377 // Check for register offset. 1378 if (Memory.OffsetRegNum) return false; 1379 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1380 if (!Memory.OffsetImm) return true; 1381 int64_t Val = Memory.OffsetImm->getValue(); 1382 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1383 Val == std::numeric_limits<int32_t>::min(); 1384 } 1385 1386 bool isAddrMode5FP16() const { 1387 // If we have an immediate that's not a constant, treat it as a label 1388 // reference needing a fixup. If it is a constant, it's something else 1389 // and we reject it. 1390 if (isImm() && !isa<MCConstantExpr>(getImm())) 1391 return true; 1392 if (!isMem() || Memory.Alignment != 0) return false; 1393 // Check for register offset. 1394 if (Memory.OffsetRegNum) return false; 1395 // Immediate offset in range [-510, 510] and a multiple of 2. 1396 if (!Memory.OffsetImm) return true; 1397 int64_t Val = Memory.OffsetImm->getValue(); 1398 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1399 Val == std::numeric_limits<int32_t>::min(); 1400 } 1401 1402 bool isMemTBB() const { 1403 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1404 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1405 return false; 1406 return true; 1407 } 1408 1409 bool isMemTBH() const { 1410 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1411 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1412 Memory.Alignment != 0 ) 1413 return false; 1414 return true; 1415 } 1416 1417 bool isMemRegOffset() const { 1418 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1419 return false; 1420 return true; 1421 } 1422 1423 bool isT2MemRegOffset() const { 1424 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1425 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1426 return false; 1427 // Only lsl #{0, 1, 2, 3} allowed. 1428 if (Memory.ShiftType == ARM_AM::no_shift) 1429 return true; 1430 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1431 return false; 1432 return true; 1433 } 1434 1435 bool isMemThumbRR() const { 1436 // Thumb reg+reg addressing is simple. Just two registers, a base and 1437 // an offset. No shifts, negations or any other complicating factors. 1438 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1439 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1440 return false; 1441 return isARMLowRegister(Memory.BaseRegNum) && 1442 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1443 } 1444 1445 bool isMemThumbRIs4() const { 1446 if (!isMem() || Memory.OffsetRegNum != 0 || 1447 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1448 return false; 1449 // Immediate offset, multiple of 4 in range [0, 124]. 1450 if (!Memory.OffsetImm) return true; 1451 int64_t Val = Memory.OffsetImm->getValue(); 1452 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1453 } 1454 1455 bool isMemThumbRIs2() const { 1456 if (!isMem() || Memory.OffsetRegNum != 0 || 1457 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1458 return false; 1459 // Immediate offset, multiple of 4 in range [0, 62]. 1460 if (!Memory.OffsetImm) return true; 1461 int64_t Val = Memory.OffsetImm->getValue(); 1462 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1463 } 1464 1465 bool isMemThumbRIs1() const { 1466 if (!isMem() || Memory.OffsetRegNum != 0 || 1467 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1468 return false; 1469 // Immediate offset in range [0, 31]. 1470 if (!Memory.OffsetImm) return true; 1471 int64_t Val = Memory.OffsetImm->getValue(); 1472 return Val >= 0 && Val <= 31; 1473 } 1474 1475 bool isMemThumbSPI() const { 1476 if (!isMem() || Memory.OffsetRegNum != 0 || 1477 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1478 return false; 1479 // Immediate offset, multiple of 4 in range [0, 1020]. 1480 if (!Memory.OffsetImm) return true; 1481 int64_t Val = Memory.OffsetImm->getValue(); 1482 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1483 } 1484 1485 bool isMemImm8s4Offset() const { 1486 // If we have an immediate that's not a constant, treat it as a label 1487 // reference needing a fixup. If it is a constant, it's something else 1488 // and we reject it. 1489 if (isImm() && !isa<MCConstantExpr>(getImm())) 1490 return true; 1491 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1492 return false; 1493 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1494 if (!Memory.OffsetImm) return true; 1495 int64_t Val = Memory.OffsetImm->getValue(); 1496 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1497 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1498 Val == std::numeric_limits<int32_t>::min(); 1499 } 1500 1501 bool isMemImm0_1020s4Offset() const { 1502 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1503 return false; 1504 // Immediate offset a multiple of 4 in range [0, 1020]. 1505 if (!Memory.OffsetImm) return true; 1506 int64_t Val = Memory.OffsetImm->getValue(); 1507 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1508 } 1509 1510 bool isMemImm8Offset() const { 1511 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1512 return false; 1513 // Base reg of PC isn't allowed for these encodings. 1514 if (Memory.BaseRegNum == ARM::PC) return false; 1515 // Immediate offset in range [-255, 255]. 1516 if (!Memory.OffsetImm) return true; 1517 int64_t Val = Memory.OffsetImm->getValue(); 1518 return (Val == std::numeric_limits<int32_t>::min()) || 1519 (Val > -256 && Val < 256); 1520 } 1521 1522 bool isMemPosImm8Offset() const { 1523 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1524 return false; 1525 // Immediate offset in range [0, 255]. 1526 if (!Memory.OffsetImm) return true; 1527 int64_t Val = Memory.OffsetImm->getValue(); 1528 return Val >= 0 && Val < 256; 1529 } 1530 1531 bool isMemNegImm8Offset() const { 1532 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1533 return false; 1534 // Base reg of PC isn't allowed for these encodings. 1535 if (Memory.BaseRegNum == ARM::PC) return false; 1536 // Immediate offset in range [-255, -1]. 1537 if (!Memory.OffsetImm) return false; 1538 int64_t Val = Memory.OffsetImm->getValue(); 1539 return (Val == std::numeric_limits<int32_t>::min()) || 1540 (Val > -256 && Val < 0); 1541 } 1542 1543 bool isMemUImm12Offset() const { 1544 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1545 return false; 1546 // Immediate offset in range [0, 4095]. 1547 if (!Memory.OffsetImm) return true; 1548 int64_t Val = Memory.OffsetImm->getValue(); 1549 return (Val >= 0 && Val < 4096); 1550 } 1551 1552 bool isMemImm12Offset() const { 1553 // If we have an immediate that's not a constant, treat it as a label 1554 // reference needing a fixup. If it is a constant, it's something else 1555 // and we reject it. 1556 1557 if (isImm() && !isa<MCConstantExpr>(getImm())) 1558 return true; 1559 1560 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1561 return false; 1562 // Immediate offset in range [-4095, 4095]. 1563 if (!Memory.OffsetImm) return true; 1564 int64_t Val = Memory.OffsetImm->getValue(); 1565 return (Val > -4096 && Val < 4096) || 1566 (Val == std::numeric_limits<int32_t>::min()); 1567 } 1568 1569 bool isConstPoolAsmImm() const { 1570 // Delay processing of Constant Pool Immediate, this will turn into 1571 // a constant. Match no other operand 1572 return (isConstantPoolImm()); 1573 } 1574 1575 bool isPostIdxImm8() const { 1576 if (!isImm()) return false; 1577 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1578 if (!CE) return false; 1579 int64_t Val = CE->getValue(); 1580 return (Val > -256 && Val < 256) || 1581 (Val == std::numeric_limits<int32_t>::min()); 1582 } 1583 1584 bool isPostIdxImm8s4() const { 1585 if (!isImm()) return false; 1586 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1587 if (!CE) return false; 1588 int64_t Val = CE->getValue(); 1589 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1590 (Val == std::numeric_limits<int32_t>::min()); 1591 } 1592 1593 bool isMSRMask() const { return Kind == k_MSRMask; } 1594 bool isBankedReg() const { return Kind == k_BankedReg; } 1595 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1596 1597 // NEON operands. 1598 bool isSingleSpacedVectorList() const { 1599 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1600 } 1601 1602 bool isDoubleSpacedVectorList() const { 1603 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1604 } 1605 1606 bool isVecListOneD() const { 1607 if (!isSingleSpacedVectorList()) return false; 1608 return VectorList.Count == 1; 1609 } 1610 1611 bool isVecListDPair() const { 1612 if (!isSingleSpacedVectorList()) return false; 1613 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1614 .contains(VectorList.RegNum)); 1615 } 1616 1617 bool isVecListThreeD() const { 1618 if (!isSingleSpacedVectorList()) return false; 1619 return VectorList.Count == 3; 1620 } 1621 1622 bool isVecListFourD() const { 1623 if (!isSingleSpacedVectorList()) return false; 1624 return VectorList.Count == 4; 1625 } 1626 1627 bool isVecListDPairSpaced() const { 1628 if (Kind != k_VectorList) return false; 1629 if (isSingleSpacedVectorList()) return false; 1630 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1631 .contains(VectorList.RegNum)); 1632 } 1633 1634 bool isVecListThreeQ() const { 1635 if (!isDoubleSpacedVectorList()) return false; 1636 return VectorList.Count == 3; 1637 } 1638 1639 bool isVecListFourQ() const { 1640 if (!isDoubleSpacedVectorList()) return false; 1641 return VectorList.Count == 4; 1642 } 1643 1644 bool isSingleSpacedVectorAllLanes() const { 1645 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1646 } 1647 1648 bool isDoubleSpacedVectorAllLanes() const { 1649 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1650 } 1651 1652 bool isVecListOneDAllLanes() const { 1653 if (!isSingleSpacedVectorAllLanes()) return false; 1654 return VectorList.Count == 1; 1655 } 1656 1657 bool isVecListDPairAllLanes() const { 1658 if (!isSingleSpacedVectorAllLanes()) return false; 1659 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1660 .contains(VectorList.RegNum)); 1661 } 1662 1663 bool isVecListDPairSpacedAllLanes() const { 1664 if (!isDoubleSpacedVectorAllLanes()) return false; 1665 return VectorList.Count == 2; 1666 } 1667 1668 bool isVecListThreeDAllLanes() const { 1669 if (!isSingleSpacedVectorAllLanes()) return false; 1670 return VectorList.Count == 3; 1671 } 1672 1673 bool isVecListThreeQAllLanes() const { 1674 if (!isDoubleSpacedVectorAllLanes()) return false; 1675 return VectorList.Count == 3; 1676 } 1677 1678 bool isVecListFourDAllLanes() const { 1679 if (!isSingleSpacedVectorAllLanes()) return false; 1680 return VectorList.Count == 4; 1681 } 1682 1683 bool isVecListFourQAllLanes() const { 1684 if (!isDoubleSpacedVectorAllLanes()) return false; 1685 return VectorList.Count == 4; 1686 } 1687 1688 bool isSingleSpacedVectorIndexed() const { 1689 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1690 } 1691 1692 bool isDoubleSpacedVectorIndexed() const { 1693 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1694 } 1695 1696 bool isVecListOneDByteIndexed() const { 1697 if (!isSingleSpacedVectorIndexed()) return false; 1698 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1699 } 1700 1701 bool isVecListOneDHWordIndexed() const { 1702 if (!isSingleSpacedVectorIndexed()) return false; 1703 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1704 } 1705 1706 bool isVecListOneDWordIndexed() const { 1707 if (!isSingleSpacedVectorIndexed()) return false; 1708 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1709 } 1710 1711 bool isVecListTwoDByteIndexed() const { 1712 if (!isSingleSpacedVectorIndexed()) return false; 1713 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1714 } 1715 1716 bool isVecListTwoDHWordIndexed() const { 1717 if (!isSingleSpacedVectorIndexed()) return false; 1718 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1719 } 1720 1721 bool isVecListTwoQWordIndexed() const { 1722 if (!isDoubleSpacedVectorIndexed()) return false; 1723 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1724 } 1725 1726 bool isVecListTwoQHWordIndexed() const { 1727 if (!isDoubleSpacedVectorIndexed()) return false; 1728 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1729 } 1730 1731 bool isVecListTwoDWordIndexed() const { 1732 if (!isSingleSpacedVectorIndexed()) return false; 1733 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1734 } 1735 1736 bool isVecListThreeDByteIndexed() const { 1737 if (!isSingleSpacedVectorIndexed()) return false; 1738 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1739 } 1740 1741 bool isVecListThreeDHWordIndexed() const { 1742 if (!isSingleSpacedVectorIndexed()) return false; 1743 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1744 } 1745 1746 bool isVecListThreeQWordIndexed() const { 1747 if (!isDoubleSpacedVectorIndexed()) return false; 1748 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1749 } 1750 1751 bool isVecListThreeQHWordIndexed() const { 1752 if (!isDoubleSpacedVectorIndexed()) return false; 1753 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1754 } 1755 1756 bool isVecListThreeDWordIndexed() const { 1757 if (!isSingleSpacedVectorIndexed()) return false; 1758 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1759 } 1760 1761 bool isVecListFourDByteIndexed() const { 1762 if (!isSingleSpacedVectorIndexed()) return false; 1763 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1764 } 1765 1766 bool isVecListFourDHWordIndexed() const { 1767 if (!isSingleSpacedVectorIndexed()) return false; 1768 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1769 } 1770 1771 bool isVecListFourQWordIndexed() const { 1772 if (!isDoubleSpacedVectorIndexed()) return false; 1773 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1774 } 1775 1776 bool isVecListFourQHWordIndexed() const { 1777 if (!isDoubleSpacedVectorIndexed()) return false; 1778 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1779 } 1780 1781 bool isVecListFourDWordIndexed() const { 1782 if (!isSingleSpacedVectorIndexed()) return false; 1783 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1784 } 1785 1786 bool isVectorIndex8() const { 1787 if (Kind != k_VectorIndex) return false; 1788 return VectorIndex.Val < 8; 1789 } 1790 1791 bool isVectorIndex16() const { 1792 if (Kind != k_VectorIndex) return false; 1793 return VectorIndex.Val < 4; 1794 } 1795 1796 bool isVectorIndex32() const { 1797 if (Kind != k_VectorIndex) return false; 1798 return VectorIndex.Val < 2; 1799 } 1800 bool isVectorIndex64() const { 1801 if (Kind != k_VectorIndex) return false; 1802 return VectorIndex.Val < 1; 1803 } 1804 1805 bool isNEONi8splat() const { 1806 if (!isImm()) return false; 1807 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1808 // Must be a constant. 1809 if (!CE) return false; 1810 int64_t Value = CE->getValue(); 1811 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1812 // value. 1813 return Value >= 0 && Value < 256; 1814 } 1815 1816 bool isNEONi16splat() const { 1817 if (isNEONByteReplicate(2)) 1818 return false; // Leave that for bytes replication and forbid by default. 1819 if (!isImm()) 1820 return false; 1821 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1822 // Must be a constant. 1823 if (!CE) return false; 1824 unsigned Value = CE->getValue(); 1825 return ARM_AM::isNEONi16splat(Value); 1826 } 1827 1828 bool isNEONi16splatNot() const { 1829 if (!isImm()) 1830 return false; 1831 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1832 // Must be a constant. 1833 if (!CE) return false; 1834 unsigned Value = CE->getValue(); 1835 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1836 } 1837 1838 bool isNEONi32splat() const { 1839 if (isNEONByteReplicate(4)) 1840 return false; // Leave that for bytes replication and forbid by default. 1841 if (!isImm()) 1842 return false; 1843 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1844 // Must be a constant. 1845 if (!CE) return false; 1846 unsigned Value = CE->getValue(); 1847 return ARM_AM::isNEONi32splat(Value); 1848 } 1849 1850 bool isNEONi32splatNot() const { 1851 if (!isImm()) 1852 return false; 1853 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1854 // Must be a constant. 1855 if (!CE) return false; 1856 unsigned Value = CE->getValue(); 1857 return ARM_AM::isNEONi32splat(~Value); 1858 } 1859 1860 static bool isValidNEONi32vmovImm(int64_t Value) { 1861 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1862 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1863 return ((Value & 0xffffffffffffff00) == 0) || 1864 ((Value & 0xffffffffffff00ff) == 0) || 1865 ((Value & 0xffffffffff00ffff) == 0) || 1866 ((Value & 0xffffffff00ffffff) == 0) || 1867 ((Value & 0xffffffffffff00ff) == 0xff) || 1868 ((Value & 0xffffffffff00ffff) == 0xffff); 1869 } 1870 1871 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 1872 assert((Width == 8 || Width == 16 || Width == 32) && 1873 "Invalid element width"); 1874 assert(NumElems * Width <= 64 && "Invalid result width"); 1875 1876 if (!isImm()) 1877 return false; 1878 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1879 // Must be a constant. 1880 if (!CE) 1881 return false; 1882 int64_t Value = CE->getValue(); 1883 if (!Value) 1884 return false; // Don't bother with zero. 1885 if (Inv) 1886 Value = ~Value; 1887 1888 uint64_t Mask = (1ull << Width) - 1; 1889 uint64_t Elem = Value & Mask; 1890 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 1891 return false; 1892 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 1893 return false; 1894 1895 for (unsigned i = 1; i < NumElems; ++i) { 1896 Value >>= Width; 1897 if ((Value & Mask) != Elem) 1898 return false; 1899 } 1900 return true; 1901 } 1902 1903 bool isNEONByteReplicate(unsigned NumBytes) const { 1904 return isNEONReplicate(8, NumBytes, false); 1905 } 1906 1907 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 1908 assert((FromW == 8 || FromW == 16 || FromW == 32) && 1909 "Invalid source width"); 1910 assert((ToW == 16 || ToW == 32 || ToW == 64) && 1911 "Invalid destination width"); 1912 assert(FromW < ToW && "ToW is not less than FromW"); 1913 } 1914 1915 template<unsigned FromW, unsigned ToW> 1916 bool isNEONmovReplicate() const { 1917 checkNeonReplicateArgs(FromW, ToW); 1918 if (ToW == 64 && isNEONi64splat()) 1919 return false; 1920 return isNEONReplicate(FromW, ToW / FromW, false); 1921 } 1922 1923 template<unsigned FromW, unsigned ToW> 1924 bool isNEONinvReplicate() const { 1925 checkNeonReplicateArgs(FromW, ToW); 1926 return isNEONReplicate(FromW, ToW / FromW, true); 1927 } 1928 1929 bool isNEONi32vmov() const { 1930 if (isNEONByteReplicate(4)) 1931 return false; // Let it to be classified as byte-replicate case. 1932 if (!isImm()) 1933 return false; 1934 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1935 // Must be a constant. 1936 if (!CE) 1937 return false; 1938 return isValidNEONi32vmovImm(CE->getValue()); 1939 } 1940 1941 bool isNEONi32vmovNeg() const { 1942 if (!isImm()) return false; 1943 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1944 // Must be a constant. 1945 if (!CE) return false; 1946 return isValidNEONi32vmovImm(~CE->getValue()); 1947 } 1948 1949 bool isNEONi64splat() const { 1950 if (!isImm()) return false; 1951 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1952 // Must be a constant. 1953 if (!CE) return false; 1954 uint64_t Value = CE->getValue(); 1955 // i64 value with each byte being either 0 or 0xff. 1956 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 1957 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1958 return true; 1959 } 1960 1961 template<int64_t Angle, int64_t Remainder> 1962 bool isComplexRotation() const { 1963 if (!isImm()) return false; 1964 1965 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1966 if (!CE) return false; 1967 uint64_t Value = CE->getValue(); 1968 1969 return (Value % Angle == Remainder && Value <= 270); 1970 } 1971 1972 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1973 // Add as immediates when possible. Null MCExpr = 0. 1974 if (!Expr) 1975 Inst.addOperand(MCOperand::createImm(0)); 1976 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1977 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1978 else 1979 Inst.addOperand(MCOperand::createExpr(Expr)); 1980 } 1981 1982 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 1983 assert(N == 1 && "Invalid number of operands!"); 1984 addExpr(Inst, getImm()); 1985 } 1986 1987 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 1988 assert(N == 1 && "Invalid number of operands!"); 1989 addExpr(Inst, getImm()); 1990 } 1991 1992 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1993 assert(N == 2 && "Invalid number of operands!"); 1994 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1995 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1996 Inst.addOperand(MCOperand::createReg(RegNum)); 1997 } 1998 1999 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2000 assert(N == 1 && "Invalid number of operands!"); 2001 Inst.addOperand(MCOperand::createImm(getCoproc())); 2002 } 2003 2004 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2005 assert(N == 1 && "Invalid number of operands!"); 2006 Inst.addOperand(MCOperand::createImm(getCoproc())); 2007 } 2008 2009 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2010 assert(N == 1 && "Invalid number of operands!"); 2011 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2012 } 2013 2014 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2015 assert(N == 1 && "Invalid number of operands!"); 2016 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2017 } 2018 2019 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2020 assert(N == 1 && "Invalid number of operands!"); 2021 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2022 } 2023 2024 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2025 assert(N == 1 && "Invalid number of operands!"); 2026 Inst.addOperand(MCOperand::createReg(getReg())); 2027 } 2028 2029 void addRegOperands(MCInst &Inst, unsigned N) const { 2030 assert(N == 1 && "Invalid number of operands!"); 2031 Inst.addOperand(MCOperand::createReg(getReg())); 2032 } 2033 2034 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2035 assert(N == 3 && "Invalid number of operands!"); 2036 assert(isRegShiftedReg() && 2037 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2038 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2039 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2040 Inst.addOperand(MCOperand::createImm( 2041 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2042 } 2043 2044 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2045 assert(N == 2 && "Invalid number of operands!"); 2046 assert(isRegShiftedImm() && 2047 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2048 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2049 // Shift of #32 is encoded as 0 where permitted 2050 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2051 Inst.addOperand(MCOperand::createImm( 2052 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2053 } 2054 2055 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2056 assert(N == 1 && "Invalid number of operands!"); 2057 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2058 ShifterImm.Imm)); 2059 } 2060 2061 void addRegListOperands(MCInst &Inst, unsigned N) const { 2062 assert(N == 1 && "Invalid number of operands!"); 2063 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2064 for (SmallVectorImpl<unsigned>::const_iterator 2065 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2066 Inst.addOperand(MCOperand::createReg(*I)); 2067 } 2068 2069 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2070 addRegListOperands(Inst, N); 2071 } 2072 2073 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2074 addRegListOperands(Inst, N); 2075 } 2076 2077 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2078 assert(N == 1 && "Invalid number of operands!"); 2079 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2080 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2081 } 2082 2083 void addModImmOperands(MCInst &Inst, unsigned N) const { 2084 assert(N == 1 && "Invalid number of operands!"); 2085 2086 // Support for fixups (MCFixup) 2087 if (isImm()) 2088 return addImmOperands(Inst, N); 2089 2090 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2091 } 2092 2093 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2094 assert(N == 1 && "Invalid number of operands!"); 2095 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2096 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2097 Inst.addOperand(MCOperand::createImm(Enc)); 2098 } 2099 2100 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2101 assert(N == 1 && "Invalid number of operands!"); 2102 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2103 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2104 Inst.addOperand(MCOperand::createImm(Enc)); 2105 } 2106 2107 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2108 assert(N == 1 && "Invalid number of operands!"); 2109 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2110 uint32_t Val = -CE->getValue(); 2111 Inst.addOperand(MCOperand::createImm(Val)); 2112 } 2113 2114 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2115 assert(N == 1 && "Invalid number of operands!"); 2116 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2117 uint32_t Val = -CE->getValue(); 2118 Inst.addOperand(MCOperand::createImm(Val)); 2119 } 2120 2121 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2122 assert(N == 1 && "Invalid number of operands!"); 2123 // Munge the lsb/width into a bitfield mask. 2124 unsigned lsb = Bitfield.LSB; 2125 unsigned width = Bitfield.Width; 2126 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2127 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2128 (32 - (lsb + width))); 2129 Inst.addOperand(MCOperand::createImm(Mask)); 2130 } 2131 2132 void addImmOperands(MCInst &Inst, unsigned N) const { 2133 assert(N == 1 && "Invalid number of operands!"); 2134 addExpr(Inst, getImm()); 2135 } 2136 2137 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2138 assert(N == 1 && "Invalid number of operands!"); 2139 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2140 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2141 } 2142 2143 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2144 assert(N == 1 && "Invalid number of operands!"); 2145 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2146 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2147 } 2148 2149 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2150 assert(N == 1 && "Invalid number of operands!"); 2151 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2152 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2153 Inst.addOperand(MCOperand::createImm(Val)); 2154 } 2155 2156 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2157 assert(N == 1 && "Invalid number of operands!"); 2158 // FIXME: We really want to scale the value here, but the LDRD/STRD 2159 // instruction don't encode operands that way yet. 2160 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2161 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2162 } 2163 2164 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2165 assert(N == 1 && "Invalid number of operands!"); 2166 // The immediate is scaled by four in the encoding and is stored 2167 // in the MCInst as such. Lop off the low two bits here. 2168 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2169 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2170 } 2171 2172 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2173 assert(N == 1 && "Invalid number of operands!"); 2174 // The immediate is scaled by four in the encoding and is stored 2175 // in the MCInst as such. Lop off the low two bits here. 2176 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2177 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2178 } 2179 2180 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2181 assert(N == 1 && "Invalid number of operands!"); 2182 // The immediate is scaled by four in the encoding and is stored 2183 // in the MCInst as such. Lop off the low two bits here. 2184 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2185 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2186 } 2187 2188 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2189 assert(N == 1 && "Invalid number of operands!"); 2190 // The constant encodes as the immediate-1, and we store in the instruction 2191 // the bits as encoded, so subtract off one here. 2192 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2193 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2194 } 2195 2196 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2197 assert(N == 1 && "Invalid number of operands!"); 2198 // The constant encodes as the immediate-1, and we store in the instruction 2199 // the bits as encoded, so subtract off one here. 2200 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2201 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2202 } 2203 2204 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2205 assert(N == 1 && "Invalid number of operands!"); 2206 // The constant encodes as the immediate, except for 32, which encodes as 2207 // zero. 2208 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2209 unsigned Imm = CE->getValue(); 2210 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2211 } 2212 2213 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2214 assert(N == 1 && "Invalid number of operands!"); 2215 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2216 // the instruction as well. 2217 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2218 int Val = CE->getValue(); 2219 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2220 } 2221 2222 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2223 assert(N == 1 && "Invalid number of operands!"); 2224 // The operand is actually a t2_so_imm, but we have its bitwise 2225 // negation in the assembly source, so twiddle it here. 2226 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2227 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2228 } 2229 2230 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2231 assert(N == 1 && "Invalid number of operands!"); 2232 // The operand is actually a t2_so_imm, but we have its 2233 // negation in the assembly source, so twiddle it here. 2234 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2235 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2236 } 2237 2238 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2239 assert(N == 1 && "Invalid number of operands!"); 2240 // The operand is actually an imm0_4095, but we have its 2241 // negation in the assembly source, so twiddle it here. 2242 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2243 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 2244 } 2245 2246 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2247 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2248 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2249 return; 2250 } 2251 2252 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2253 assert(SR && "Unknown value type!"); 2254 Inst.addOperand(MCOperand::createExpr(SR)); 2255 } 2256 2257 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2258 assert(N == 1 && "Invalid number of operands!"); 2259 if (isImm()) { 2260 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2261 if (CE) { 2262 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2263 return; 2264 } 2265 2266 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2267 2268 assert(SR && "Unknown value type!"); 2269 Inst.addOperand(MCOperand::createExpr(SR)); 2270 return; 2271 } 2272 2273 assert(isMem() && "Unknown value type!"); 2274 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2275 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2276 } 2277 2278 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2279 assert(N == 1 && "Invalid number of operands!"); 2280 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2281 } 2282 2283 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2284 assert(N == 1 && "Invalid number of operands!"); 2285 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2286 } 2287 2288 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2289 assert(N == 1 && "Invalid number of operands!"); 2290 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2291 } 2292 2293 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2294 assert(N == 1 && "Invalid number of operands!"); 2295 int32_t Imm = Memory.OffsetImm->getValue(); 2296 Inst.addOperand(MCOperand::createImm(Imm)); 2297 } 2298 2299 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2300 assert(N == 1 && "Invalid number of operands!"); 2301 assert(isImm() && "Not an immediate!"); 2302 2303 // If we have an immediate that's not a constant, treat it as a label 2304 // reference needing a fixup. 2305 if (!isa<MCConstantExpr>(getImm())) { 2306 Inst.addOperand(MCOperand::createExpr(getImm())); 2307 return; 2308 } 2309 2310 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2311 int Val = CE->getValue(); 2312 Inst.addOperand(MCOperand::createImm(Val)); 2313 } 2314 2315 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2316 assert(N == 2 && "Invalid number of operands!"); 2317 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2318 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2319 } 2320 2321 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2322 addAlignedMemoryOperands(Inst, N); 2323 } 2324 2325 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2326 addAlignedMemoryOperands(Inst, N); 2327 } 2328 2329 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2330 addAlignedMemoryOperands(Inst, N); 2331 } 2332 2333 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2334 addAlignedMemoryOperands(Inst, N); 2335 } 2336 2337 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2338 addAlignedMemoryOperands(Inst, N); 2339 } 2340 2341 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2342 addAlignedMemoryOperands(Inst, N); 2343 } 2344 2345 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2346 addAlignedMemoryOperands(Inst, N); 2347 } 2348 2349 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2350 addAlignedMemoryOperands(Inst, N); 2351 } 2352 2353 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2354 addAlignedMemoryOperands(Inst, N); 2355 } 2356 2357 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2358 addAlignedMemoryOperands(Inst, N); 2359 } 2360 2361 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2362 addAlignedMemoryOperands(Inst, N); 2363 } 2364 2365 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2366 assert(N == 3 && "Invalid number of operands!"); 2367 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2368 if (!Memory.OffsetRegNum) { 2369 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2370 // Special case for #-0 2371 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2372 if (Val < 0) Val = -Val; 2373 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2374 } else { 2375 // For register offset, we encode the shift type and negation flag 2376 // here. 2377 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2378 Memory.ShiftImm, Memory.ShiftType); 2379 } 2380 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2381 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2382 Inst.addOperand(MCOperand::createImm(Val)); 2383 } 2384 2385 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2386 assert(N == 2 && "Invalid number of operands!"); 2387 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2388 assert(CE && "non-constant AM2OffsetImm operand!"); 2389 int32_t Val = CE->getValue(); 2390 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2391 // Special case for #-0 2392 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2393 if (Val < 0) Val = -Val; 2394 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2395 Inst.addOperand(MCOperand::createReg(0)); 2396 Inst.addOperand(MCOperand::createImm(Val)); 2397 } 2398 2399 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2400 assert(N == 3 && "Invalid number of operands!"); 2401 // If we have an immediate that's not a constant, treat it as a label 2402 // reference needing a fixup. If it is a constant, it's something else 2403 // and we reject it. 2404 if (isImm()) { 2405 Inst.addOperand(MCOperand::createExpr(getImm())); 2406 Inst.addOperand(MCOperand::createReg(0)); 2407 Inst.addOperand(MCOperand::createImm(0)); 2408 return; 2409 } 2410 2411 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2412 if (!Memory.OffsetRegNum) { 2413 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2414 // Special case for #-0 2415 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2416 if (Val < 0) Val = -Val; 2417 Val = ARM_AM::getAM3Opc(AddSub, Val); 2418 } else { 2419 // For register offset, we encode the shift type and negation flag 2420 // here. 2421 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2422 } 2423 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2424 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2425 Inst.addOperand(MCOperand::createImm(Val)); 2426 } 2427 2428 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2429 assert(N == 2 && "Invalid number of operands!"); 2430 if (Kind == k_PostIndexRegister) { 2431 int32_t Val = 2432 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2433 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2434 Inst.addOperand(MCOperand::createImm(Val)); 2435 return; 2436 } 2437 2438 // Constant offset. 2439 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2440 int32_t Val = CE->getValue(); 2441 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2442 // Special case for #-0 2443 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2444 if (Val < 0) Val = -Val; 2445 Val = ARM_AM::getAM3Opc(AddSub, Val); 2446 Inst.addOperand(MCOperand::createReg(0)); 2447 Inst.addOperand(MCOperand::createImm(Val)); 2448 } 2449 2450 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2451 assert(N == 2 && "Invalid number of operands!"); 2452 // If we have an immediate that's not a constant, treat it as a label 2453 // reference needing a fixup. If it is a constant, it's something else 2454 // and we reject it. 2455 if (isImm()) { 2456 Inst.addOperand(MCOperand::createExpr(getImm())); 2457 Inst.addOperand(MCOperand::createImm(0)); 2458 return; 2459 } 2460 2461 // The lower two bits are always zero and as such are not encoded. 2462 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2463 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2464 // Special case for #-0 2465 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2466 if (Val < 0) Val = -Val; 2467 Val = ARM_AM::getAM5Opc(AddSub, Val); 2468 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2469 Inst.addOperand(MCOperand::createImm(Val)); 2470 } 2471 2472 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2473 assert(N == 2 && "Invalid number of operands!"); 2474 // If we have an immediate that's not a constant, treat it as a label 2475 // reference needing a fixup. If it is a constant, it's something else 2476 // and we reject it. 2477 if (isImm()) { 2478 Inst.addOperand(MCOperand::createExpr(getImm())); 2479 Inst.addOperand(MCOperand::createImm(0)); 2480 return; 2481 } 2482 2483 // The lower bit is always zero and as such is not encoded. 2484 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2485 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2486 // Special case for #-0 2487 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2488 if (Val < 0) Val = -Val; 2489 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2490 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2491 Inst.addOperand(MCOperand::createImm(Val)); 2492 } 2493 2494 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2495 assert(N == 2 && "Invalid number of operands!"); 2496 // If we have an immediate that's not a constant, treat it as a label 2497 // reference needing a fixup. If it is a constant, it's something else 2498 // and we reject it. 2499 if (isImm()) { 2500 Inst.addOperand(MCOperand::createExpr(getImm())); 2501 Inst.addOperand(MCOperand::createImm(0)); 2502 return; 2503 } 2504 2505 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2506 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2507 Inst.addOperand(MCOperand::createImm(Val)); 2508 } 2509 2510 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2511 assert(N == 2 && "Invalid number of operands!"); 2512 // The lower two bits are always zero and as such are not encoded. 2513 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2514 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2515 Inst.addOperand(MCOperand::createImm(Val)); 2516 } 2517 2518 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2519 assert(N == 2 && "Invalid number of operands!"); 2520 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2521 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2522 Inst.addOperand(MCOperand::createImm(Val)); 2523 } 2524 2525 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2526 addMemImm8OffsetOperands(Inst, N); 2527 } 2528 2529 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2530 addMemImm8OffsetOperands(Inst, N); 2531 } 2532 2533 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2534 assert(N == 2 && "Invalid number of operands!"); 2535 // If this is an immediate, it's a label reference. 2536 if (isImm()) { 2537 addExpr(Inst, getImm()); 2538 Inst.addOperand(MCOperand::createImm(0)); 2539 return; 2540 } 2541 2542 // Otherwise, it's a normal memory reg+offset. 2543 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2544 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2545 Inst.addOperand(MCOperand::createImm(Val)); 2546 } 2547 2548 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2549 assert(N == 2 && "Invalid number of operands!"); 2550 // If this is an immediate, it's a label reference. 2551 if (isImm()) { 2552 addExpr(Inst, getImm()); 2553 Inst.addOperand(MCOperand::createImm(0)); 2554 return; 2555 } 2556 2557 // Otherwise, it's a normal memory reg+offset. 2558 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2559 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2560 Inst.addOperand(MCOperand::createImm(Val)); 2561 } 2562 2563 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2564 assert(N == 1 && "Invalid number of operands!"); 2565 // This is container for the immediate that we will create the constant 2566 // pool from 2567 addExpr(Inst, getConstantPoolImm()); 2568 return; 2569 } 2570 2571 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2572 assert(N == 2 && "Invalid number of operands!"); 2573 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2574 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2575 } 2576 2577 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2578 assert(N == 2 && "Invalid number of operands!"); 2579 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2580 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2581 } 2582 2583 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2584 assert(N == 3 && "Invalid number of operands!"); 2585 unsigned Val = 2586 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2587 Memory.ShiftImm, Memory.ShiftType); 2588 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2589 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2590 Inst.addOperand(MCOperand::createImm(Val)); 2591 } 2592 2593 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2594 assert(N == 3 && "Invalid number of operands!"); 2595 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2596 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2597 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2598 } 2599 2600 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2601 assert(N == 2 && "Invalid number of operands!"); 2602 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2603 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2604 } 2605 2606 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2607 assert(N == 2 && "Invalid number of operands!"); 2608 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2609 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2610 Inst.addOperand(MCOperand::createImm(Val)); 2611 } 2612 2613 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2614 assert(N == 2 && "Invalid number of operands!"); 2615 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2616 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2617 Inst.addOperand(MCOperand::createImm(Val)); 2618 } 2619 2620 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2621 assert(N == 2 && "Invalid number of operands!"); 2622 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2623 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2624 Inst.addOperand(MCOperand::createImm(Val)); 2625 } 2626 2627 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2628 assert(N == 2 && "Invalid number of operands!"); 2629 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2630 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2631 Inst.addOperand(MCOperand::createImm(Val)); 2632 } 2633 2634 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2635 assert(N == 1 && "Invalid number of operands!"); 2636 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2637 assert(CE && "non-constant post-idx-imm8 operand!"); 2638 int Imm = CE->getValue(); 2639 bool isAdd = Imm >= 0; 2640 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2641 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2642 Inst.addOperand(MCOperand::createImm(Imm)); 2643 } 2644 2645 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2646 assert(N == 1 && "Invalid number of operands!"); 2647 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2648 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2649 int Imm = CE->getValue(); 2650 bool isAdd = Imm >= 0; 2651 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 2652 // Immediate is scaled by 4. 2653 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2654 Inst.addOperand(MCOperand::createImm(Imm)); 2655 } 2656 2657 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2658 assert(N == 2 && "Invalid number of operands!"); 2659 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2660 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2661 } 2662 2663 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2664 assert(N == 2 && "Invalid number of operands!"); 2665 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2666 // The sign, shift type, and shift amount are encoded in a single operand 2667 // using the AM2 encoding helpers. 2668 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2669 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2670 PostIdxReg.ShiftTy); 2671 Inst.addOperand(MCOperand::createImm(Imm)); 2672 } 2673 2674 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2675 assert(N == 1 && "Invalid number of operands!"); 2676 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2677 } 2678 2679 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2680 assert(N == 1 && "Invalid number of operands!"); 2681 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2682 } 2683 2684 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2685 assert(N == 1 && "Invalid number of operands!"); 2686 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2687 } 2688 2689 void addVecListOperands(MCInst &Inst, unsigned N) const { 2690 assert(N == 1 && "Invalid number of operands!"); 2691 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2692 } 2693 2694 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2695 assert(N == 2 && "Invalid number of operands!"); 2696 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2697 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2698 } 2699 2700 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2701 assert(N == 1 && "Invalid number of operands!"); 2702 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2703 } 2704 2705 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2706 assert(N == 1 && "Invalid number of operands!"); 2707 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2708 } 2709 2710 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2711 assert(N == 1 && "Invalid number of operands!"); 2712 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2713 } 2714 2715 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 2716 assert(N == 1 && "Invalid number of operands!"); 2717 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2718 } 2719 2720 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2721 assert(N == 1 && "Invalid number of operands!"); 2722 // The immediate encodes the type of constant as well as the value. 2723 // Mask in that this is an i8 splat. 2724 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2725 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2726 } 2727 2728 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2729 assert(N == 1 && "Invalid number of operands!"); 2730 // The immediate encodes the type of constant as well as the value. 2731 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2732 unsigned Value = CE->getValue(); 2733 Value = ARM_AM::encodeNEONi16splat(Value); 2734 Inst.addOperand(MCOperand::createImm(Value)); 2735 } 2736 2737 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2738 assert(N == 1 && "Invalid number of operands!"); 2739 // The immediate encodes the type of constant as well as the value. 2740 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2741 unsigned Value = CE->getValue(); 2742 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2743 Inst.addOperand(MCOperand::createImm(Value)); 2744 } 2745 2746 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2747 assert(N == 1 && "Invalid number of operands!"); 2748 // The immediate encodes the type of constant as well as the value. 2749 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2750 unsigned Value = CE->getValue(); 2751 Value = ARM_AM::encodeNEONi32splat(Value); 2752 Inst.addOperand(MCOperand::createImm(Value)); 2753 } 2754 2755 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2756 assert(N == 1 && "Invalid number of operands!"); 2757 // The immediate encodes the type of constant as well as the value. 2758 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2759 unsigned Value = CE->getValue(); 2760 Value = ARM_AM::encodeNEONi32splat(~Value); 2761 Inst.addOperand(MCOperand::createImm(Value)); 2762 } 2763 2764 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 2765 // The immediate encodes the type of constant as well as the value. 2766 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2767 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2768 Inst.getOpcode() == ARM::VMOVv16i8) && 2769 "All instructions that wants to replicate non-zero byte " 2770 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2771 unsigned Value = CE->getValue(); 2772 if (Inv) 2773 Value = ~Value; 2774 unsigned B = Value & 0xff; 2775 B |= 0xe00; // cmode = 0b1110 2776 Inst.addOperand(MCOperand::createImm(B)); 2777 } 2778 2779 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 2780 assert(N == 1 && "Invalid number of operands!"); 2781 addNEONi8ReplicateOperands(Inst, true); 2782 } 2783 2784 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 2785 if (Value >= 256 && Value <= 0xffff) 2786 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2787 else if (Value > 0xffff && Value <= 0xffffff) 2788 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2789 else if (Value > 0xffffff) 2790 Value = (Value >> 24) | 0x600; 2791 return Value; 2792 } 2793 2794 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2795 assert(N == 1 && "Invalid number of operands!"); 2796 // The immediate encodes the type of constant as well as the value. 2797 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2798 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 2799 Inst.addOperand(MCOperand::createImm(Value)); 2800 } 2801 2802 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 2803 assert(N == 1 && "Invalid number of operands!"); 2804 addNEONi8ReplicateOperands(Inst, false); 2805 } 2806 2807 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 2808 assert(N == 1 && "Invalid number of operands!"); 2809 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2810 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 2811 Inst.getOpcode() == ARM::VMOVv8i16 || 2812 Inst.getOpcode() == ARM::VMVNv4i16 || 2813 Inst.getOpcode() == ARM::VMVNv8i16) && 2814 "All instructions that want to replicate non-zero half-word " 2815 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 2816 uint64_t Value = CE->getValue(); 2817 unsigned Elem = Value & 0xffff; 2818 if (Elem >= 256) 2819 Elem = (Elem >> 8) | 0x200; 2820 Inst.addOperand(MCOperand::createImm(Elem)); 2821 } 2822 2823 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2824 assert(N == 1 && "Invalid number of operands!"); 2825 // The immediate encodes the type of constant as well as the value. 2826 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2827 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 2828 Inst.addOperand(MCOperand::createImm(Value)); 2829 } 2830 2831 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 2832 assert(N == 1 && "Invalid number of operands!"); 2833 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2834 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 2835 Inst.getOpcode() == ARM::VMOVv4i32 || 2836 Inst.getOpcode() == ARM::VMVNv2i32 || 2837 Inst.getOpcode() == ARM::VMVNv4i32) && 2838 "All instructions that want to replicate non-zero word " 2839 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 2840 uint64_t Value = CE->getValue(); 2841 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 2842 Inst.addOperand(MCOperand::createImm(Elem)); 2843 } 2844 2845 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2846 assert(N == 1 && "Invalid number of operands!"); 2847 // The immediate encodes the type of constant as well as the value. 2848 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2849 uint64_t Value = CE->getValue(); 2850 unsigned Imm = 0; 2851 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2852 Imm |= (Value & 1) << i; 2853 } 2854 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2855 } 2856 2857 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 2858 assert(N == 1 && "Invalid number of operands!"); 2859 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2860 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 2861 } 2862 2863 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 2864 assert(N == 1 && "Invalid number of operands!"); 2865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2866 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 2867 } 2868 2869 void print(raw_ostream &OS) const override; 2870 2871 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2872 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2873 Op->ITMask.Mask = Mask; 2874 Op->StartLoc = S; 2875 Op->EndLoc = S; 2876 return Op; 2877 } 2878 2879 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2880 SMLoc S) { 2881 auto Op = make_unique<ARMOperand>(k_CondCode); 2882 Op->CC.Val = CC; 2883 Op->StartLoc = S; 2884 Op->EndLoc = S; 2885 return Op; 2886 } 2887 2888 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2889 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2890 Op->Cop.Val = CopVal; 2891 Op->StartLoc = S; 2892 Op->EndLoc = S; 2893 return Op; 2894 } 2895 2896 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2897 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2898 Op->Cop.Val = CopVal; 2899 Op->StartLoc = S; 2900 Op->EndLoc = S; 2901 return Op; 2902 } 2903 2904 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2905 SMLoc E) { 2906 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2907 Op->Cop.Val = Val; 2908 Op->StartLoc = S; 2909 Op->EndLoc = E; 2910 return Op; 2911 } 2912 2913 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2914 auto Op = make_unique<ARMOperand>(k_CCOut); 2915 Op->Reg.RegNum = RegNum; 2916 Op->StartLoc = S; 2917 Op->EndLoc = S; 2918 return Op; 2919 } 2920 2921 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2922 auto Op = make_unique<ARMOperand>(k_Token); 2923 Op->Tok.Data = Str.data(); 2924 Op->Tok.Length = Str.size(); 2925 Op->StartLoc = S; 2926 Op->EndLoc = S; 2927 return Op; 2928 } 2929 2930 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2931 SMLoc E) { 2932 auto Op = make_unique<ARMOperand>(k_Register); 2933 Op->Reg.RegNum = RegNum; 2934 Op->StartLoc = S; 2935 Op->EndLoc = E; 2936 return Op; 2937 } 2938 2939 static std::unique_ptr<ARMOperand> 2940 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2941 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2942 SMLoc E) { 2943 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2944 Op->RegShiftedReg.ShiftTy = ShTy; 2945 Op->RegShiftedReg.SrcReg = SrcReg; 2946 Op->RegShiftedReg.ShiftReg = ShiftReg; 2947 Op->RegShiftedReg.ShiftImm = ShiftImm; 2948 Op->StartLoc = S; 2949 Op->EndLoc = E; 2950 return Op; 2951 } 2952 2953 static std::unique_ptr<ARMOperand> 2954 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2955 unsigned ShiftImm, SMLoc S, SMLoc E) { 2956 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2957 Op->RegShiftedImm.ShiftTy = ShTy; 2958 Op->RegShiftedImm.SrcReg = SrcReg; 2959 Op->RegShiftedImm.ShiftImm = ShiftImm; 2960 Op->StartLoc = S; 2961 Op->EndLoc = E; 2962 return Op; 2963 } 2964 2965 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2966 SMLoc S, SMLoc E) { 2967 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2968 Op->ShifterImm.isASR = isASR; 2969 Op->ShifterImm.Imm = Imm; 2970 Op->StartLoc = S; 2971 Op->EndLoc = E; 2972 return Op; 2973 } 2974 2975 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2976 SMLoc E) { 2977 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2978 Op->RotImm.Imm = Imm; 2979 Op->StartLoc = S; 2980 Op->EndLoc = E; 2981 return Op; 2982 } 2983 2984 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2985 SMLoc S, SMLoc E) { 2986 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2987 Op->ModImm.Bits = Bits; 2988 Op->ModImm.Rot = Rot; 2989 Op->StartLoc = S; 2990 Op->EndLoc = E; 2991 return Op; 2992 } 2993 2994 static std::unique_ptr<ARMOperand> 2995 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 2996 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 2997 Op->Imm.Val = Val; 2998 Op->StartLoc = S; 2999 Op->EndLoc = E; 3000 return Op; 3001 } 3002 3003 static std::unique_ptr<ARMOperand> 3004 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3005 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 3006 Op->Bitfield.LSB = LSB; 3007 Op->Bitfield.Width = Width; 3008 Op->StartLoc = S; 3009 Op->EndLoc = E; 3010 return Op; 3011 } 3012 3013 static std::unique_ptr<ARMOperand> 3014 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3015 SMLoc StartLoc, SMLoc EndLoc) { 3016 assert(Regs.size() > 0 && "RegList contains no registers?"); 3017 KindTy Kind = k_RegisterList; 3018 3019 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 3020 Kind = k_DPRRegisterList; 3021 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 3022 contains(Regs.front().second)) 3023 Kind = k_SPRRegisterList; 3024 3025 // Sort based on the register encoding values. 3026 array_pod_sort(Regs.begin(), Regs.end()); 3027 3028 auto Op = make_unique<ARMOperand>(Kind); 3029 for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator 3030 I = Regs.begin(), E = Regs.end(); I != E; ++I) 3031 Op->Registers.push_back(I->second); 3032 Op->StartLoc = StartLoc; 3033 Op->EndLoc = EndLoc; 3034 return Op; 3035 } 3036 3037 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3038 unsigned Count, 3039 bool isDoubleSpaced, 3040 SMLoc S, SMLoc E) { 3041 auto Op = make_unique<ARMOperand>(k_VectorList); 3042 Op->VectorList.RegNum = RegNum; 3043 Op->VectorList.Count = Count; 3044 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3045 Op->StartLoc = S; 3046 Op->EndLoc = E; 3047 return Op; 3048 } 3049 3050 static std::unique_ptr<ARMOperand> 3051 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3052 SMLoc S, SMLoc E) { 3053 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 3054 Op->VectorList.RegNum = RegNum; 3055 Op->VectorList.Count = Count; 3056 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3057 Op->StartLoc = S; 3058 Op->EndLoc = E; 3059 return Op; 3060 } 3061 3062 static std::unique_ptr<ARMOperand> 3063 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3064 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3065 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 3066 Op->VectorList.RegNum = RegNum; 3067 Op->VectorList.Count = Count; 3068 Op->VectorList.LaneIndex = Index; 3069 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3070 Op->StartLoc = S; 3071 Op->EndLoc = E; 3072 return Op; 3073 } 3074 3075 static std::unique_ptr<ARMOperand> 3076 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3077 auto Op = make_unique<ARMOperand>(k_VectorIndex); 3078 Op->VectorIndex.Val = Idx; 3079 Op->StartLoc = S; 3080 Op->EndLoc = E; 3081 return Op; 3082 } 3083 3084 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3085 SMLoc E) { 3086 auto Op = make_unique<ARMOperand>(k_Immediate); 3087 Op->Imm.Val = Val; 3088 Op->StartLoc = S; 3089 Op->EndLoc = E; 3090 return Op; 3091 } 3092 3093 static std::unique_ptr<ARMOperand> 3094 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3095 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3096 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3097 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3098 auto Op = make_unique<ARMOperand>(k_Memory); 3099 Op->Memory.BaseRegNum = BaseRegNum; 3100 Op->Memory.OffsetImm = OffsetImm; 3101 Op->Memory.OffsetRegNum = OffsetRegNum; 3102 Op->Memory.ShiftType = ShiftType; 3103 Op->Memory.ShiftImm = ShiftImm; 3104 Op->Memory.Alignment = Alignment; 3105 Op->Memory.isNegative = isNegative; 3106 Op->StartLoc = S; 3107 Op->EndLoc = E; 3108 Op->AlignmentLoc = AlignmentLoc; 3109 return Op; 3110 } 3111 3112 static std::unique_ptr<ARMOperand> 3113 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3114 unsigned ShiftImm, SMLoc S, SMLoc E) { 3115 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 3116 Op->PostIdxReg.RegNum = RegNum; 3117 Op->PostIdxReg.isAdd = isAdd; 3118 Op->PostIdxReg.ShiftTy = ShiftTy; 3119 Op->PostIdxReg.ShiftImm = ShiftImm; 3120 Op->StartLoc = S; 3121 Op->EndLoc = E; 3122 return Op; 3123 } 3124 3125 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3126 SMLoc S) { 3127 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3128 Op->MBOpt.Val = Opt; 3129 Op->StartLoc = S; 3130 Op->EndLoc = S; 3131 return Op; 3132 } 3133 3134 static std::unique_ptr<ARMOperand> 3135 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3136 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3137 Op->ISBOpt.Val = Opt; 3138 Op->StartLoc = S; 3139 Op->EndLoc = S; 3140 return Op; 3141 } 3142 3143 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3144 SMLoc S) { 3145 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3146 Op->IFlags.Val = IFlags; 3147 Op->StartLoc = S; 3148 Op->EndLoc = S; 3149 return Op; 3150 } 3151 3152 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3153 auto Op = make_unique<ARMOperand>(k_MSRMask); 3154 Op->MMask.Val = MMask; 3155 Op->StartLoc = S; 3156 Op->EndLoc = S; 3157 return Op; 3158 } 3159 3160 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3161 auto Op = make_unique<ARMOperand>(k_BankedReg); 3162 Op->BankedReg.Val = Reg; 3163 Op->StartLoc = S; 3164 Op->EndLoc = S; 3165 return Op; 3166 } 3167 }; 3168 3169 } // end anonymous namespace. 3170 3171 void ARMOperand::print(raw_ostream &OS) const { 3172 switch (Kind) { 3173 case k_CondCode: 3174 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3175 break; 3176 case k_CCOut: 3177 OS << "<ccout " << getReg() << ">"; 3178 break; 3179 case k_ITCondMask: { 3180 static const char *const MaskStr[] = { 3181 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 3182 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 3183 }; 3184 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3185 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3186 break; 3187 } 3188 case k_CoprocNum: 3189 OS << "<coprocessor number: " << getCoproc() << ">"; 3190 break; 3191 case k_CoprocReg: 3192 OS << "<coprocessor register: " << getCoproc() << ">"; 3193 break; 3194 case k_CoprocOption: 3195 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3196 break; 3197 case k_MSRMask: 3198 OS << "<mask: " << getMSRMask() << ">"; 3199 break; 3200 case k_BankedReg: 3201 OS << "<banked reg: " << getBankedReg() << ">"; 3202 break; 3203 case k_Immediate: 3204 OS << *getImm(); 3205 break; 3206 case k_MemBarrierOpt: 3207 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3208 break; 3209 case k_InstSyncBarrierOpt: 3210 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3211 break; 3212 case k_Memory: 3213 OS << "<memory " 3214 << " base:" << Memory.BaseRegNum; 3215 OS << ">"; 3216 break; 3217 case k_PostIndexRegister: 3218 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3219 << PostIdxReg.RegNum; 3220 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3221 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3222 << PostIdxReg.ShiftImm; 3223 OS << ">"; 3224 break; 3225 case k_ProcIFlags: { 3226 OS << "<ARM_PROC::"; 3227 unsigned IFlags = getProcIFlags(); 3228 for (int i=2; i >= 0; --i) 3229 if (IFlags & (1 << i)) 3230 OS << ARM_PROC::IFlagsToString(1 << i); 3231 OS << ">"; 3232 break; 3233 } 3234 case k_Register: 3235 OS << "<register " << getReg() << ">"; 3236 break; 3237 case k_ShifterImmediate: 3238 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3239 << " #" << ShifterImm.Imm << ">"; 3240 break; 3241 case k_ShiftedRegister: 3242 OS << "<so_reg_reg " 3243 << RegShiftedReg.SrcReg << " " 3244 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 3245 << " " << RegShiftedReg.ShiftReg << ">"; 3246 break; 3247 case k_ShiftedImmediate: 3248 OS << "<so_reg_imm " 3249 << RegShiftedImm.SrcReg << " " 3250 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 3251 << " #" << RegShiftedImm.ShiftImm << ">"; 3252 break; 3253 case k_RotateImmediate: 3254 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3255 break; 3256 case k_ModifiedImmediate: 3257 OS << "<mod_imm #" << ModImm.Bits << ", #" 3258 << ModImm.Rot << ")>"; 3259 break; 3260 case k_ConstantPoolImmediate: 3261 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3262 break; 3263 case k_BitfieldDescriptor: 3264 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3265 << ", width: " << Bitfield.Width << ">"; 3266 break; 3267 case k_RegisterList: 3268 case k_DPRRegisterList: 3269 case k_SPRRegisterList: { 3270 OS << "<register_list "; 3271 3272 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3273 for (SmallVectorImpl<unsigned>::const_iterator 3274 I = RegList.begin(), E = RegList.end(); I != E; ) { 3275 OS << *I; 3276 if (++I < E) OS << ", "; 3277 } 3278 3279 OS << ">"; 3280 break; 3281 } 3282 case k_VectorList: 3283 OS << "<vector_list " << VectorList.Count << " * " 3284 << VectorList.RegNum << ">"; 3285 break; 3286 case k_VectorListAllLanes: 3287 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3288 << VectorList.RegNum << ">"; 3289 break; 3290 case k_VectorListIndexed: 3291 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3292 << VectorList.Count << " * " << VectorList.RegNum << ">"; 3293 break; 3294 case k_Token: 3295 OS << "'" << getToken() << "'"; 3296 break; 3297 case k_VectorIndex: 3298 OS << "<vectorindex " << getVectorIndex() << ">"; 3299 break; 3300 } 3301 } 3302 3303 /// @name Auto-generated Match Functions 3304 /// { 3305 3306 static unsigned MatchRegisterName(StringRef Name); 3307 3308 /// } 3309 3310 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3311 SMLoc &StartLoc, SMLoc &EndLoc) { 3312 const AsmToken &Tok = getParser().getTok(); 3313 StartLoc = Tok.getLoc(); 3314 EndLoc = Tok.getEndLoc(); 3315 RegNo = tryParseRegister(); 3316 3317 return (RegNo == (unsigned)-1); 3318 } 3319 3320 /// Try to parse a register name. The token must be an Identifier when called, 3321 /// and if it is a register name the token is eaten and the register number is 3322 /// returned. Otherwise return -1. 3323 int ARMAsmParser::tryParseRegister() { 3324 MCAsmParser &Parser = getParser(); 3325 const AsmToken &Tok = Parser.getTok(); 3326 if (Tok.isNot(AsmToken::Identifier)) return -1; 3327 3328 std::string lowerCase = Tok.getString().lower(); 3329 unsigned RegNum = MatchRegisterName(lowerCase); 3330 if (!RegNum) { 3331 RegNum = StringSwitch<unsigned>(lowerCase) 3332 .Case("r13", ARM::SP) 3333 .Case("r14", ARM::LR) 3334 .Case("r15", ARM::PC) 3335 .Case("ip", ARM::R12) 3336 // Additional register name aliases for 'gas' compatibility. 3337 .Case("a1", ARM::R0) 3338 .Case("a2", ARM::R1) 3339 .Case("a3", ARM::R2) 3340 .Case("a4", ARM::R3) 3341 .Case("v1", ARM::R4) 3342 .Case("v2", ARM::R5) 3343 .Case("v3", ARM::R6) 3344 .Case("v4", ARM::R7) 3345 .Case("v5", ARM::R8) 3346 .Case("v6", ARM::R9) 3347 .Case("v7", ARM::R10) 3348 .Case("v8", ARM::R11) 3349 .Case("sb", ARM::R9) 3350 .Case("sl", ARM::R10) 3351 .Case("fp", ARM::R11) 3352 .Default(0); 3353 } 3354 if (!RegNum) { 3355 // Check for aliases registered via .req. Canonicalize to lower case. 3356 // That's more consistent since register names are case insensitive, and 3357 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3358 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3359 // If no match, return failure. 3360 if (Entry == RegisterReqs.end()) 3361 return -1; 3362 Parser.Lex(); // Eat identifier token. 3363 return Entry->getValue(); 3364 } 3365 3366 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3367 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3368 return -1; 3369 3370 Parser.Lex(); // Eat identifier token. 3371 3372 return RegNum; 3373 } 3374 3375 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3376 // If a recoverable error occurs, return 1. If an irrecoverable error 3377 // occurs, return -1. An irrecoverable error is one where tokens have been 3378 // consumed in the process of trying to parse the shifter (i.e., when it is 3379 // indeed a shifter operand, but malformed). 3380 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3381 MCAsmParser &Parser = getParser(); 3382 SMLoc S = Parser.getTok().getLoc(); 3383 const AsmToken &Tok = Parser.getTok(); 3384 if (Tok.isNot(AsmToken::Identifier)) 3385 return -1; 3386 3387 std::string lowerCase = Tok.getString().lower(); 3388 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3389 .Case("asl", ARM_AM::lsl) 3390 .Case("lsl", ARM_AM::lsl) 3391 .Case("lsr", ARM_AM::lsr) 3392 .Case("asr", ARM_AM::asr) 3393 .Case("ror", ARM_AM::ror) 3394 .Case("rrx", ARM_AM::rrx) 3395 .Default(ARM_AM::no_shift); 3396 3397 if (ShiftTy == ARM_AM::no_shift) 3398 return 1; 3399 3400 Parser.Lex(); // Eat the operator. 3401 3402 // The source register for the shift has already been added to the 3403 // operand list, so we need to pop it off and combine it into the shifted 3404 // register operand instead. 3405 std::unique_ptr<ARMOperand> PrevOp( 3406 (ARMOperand *)Operands.pop_back_val().release()); 3407 if (!PrevOp->isReg()) 3408 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3409 int SrcReg = PrevOp->getReg(); 3410 3411 SMLoc EndLoc; 3412 int64_t Imm = 0; 3413 int ShiftReg = 0; 3414 if (ShiftTy == ARM_AM::rrx) { 3415 // RRX Doesn't have an explicit shift amount. The encoder expects 3416 // the shift register to be the same as the source register. Seems odd, 3417 // but OK. 3418 ShiftReg = SrcReg; 3419 } else { 3420 // Figure out if this is shifted by a constant or a register (for non-RRX). 3421 if (Parser.getTok().is(AsmToken::Hash) || 3422 Parser.getTok().is(AsmToken::Dollar)) { 3423 Parser.Lex(); // Eat hash. 3424 SMLoc ImmLoc = Parser.getTok().getLoc(); 3425 const MCExpr *ShiftExpr = nullptr; 3426 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3427 Error(ImmLoc, "invalid immediate shift value"); 3428 return -1; 3429 } 3430 // The expression must be evaluatable as an immediate. 3431 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3432 if (!CE) { 3433 Error(ImmLoc, "invalid immediate shift value"); 3434 return -1; 3435 } 3436 // Range check the immediate. 3437 // lsl, ror: 0 <= imm <= 31 3438 // lsr, asr: 0 <= imm <= 32 3439 Imm = CE->getValue(); 3440 if (Imm < 0 || 3441 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3442 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3443 Error(ImmLoc, "immediate shift value out of range"); 3444 return -1; 3445 } 3446 // shift by zero is a nop. Always send it through as lsl. 3447 // ('as' compatibility) 3448 if (Imm == 0) 3449 ShiftTy = ARM_AM::lsl; 3450 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3451 SMLoc L = Parser.getTok().getLoc(); 3452 EndLoc = Parser.getTok().getEndLoc(); 3453 ShiftReg = tryParseRegister(); 3454 if (ShiftReg == -1) { 3455 Error(L, "expected immediate or register in shift operand"); 3456 return -1; 3457 } 3458 } else { 3459 Error(Parser.getTok().getLoc(), 3460 "expected immediate or register in shift operand"); 3461 return -1; 3462 } 3463 } 3464 3465 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3466 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3467 ShiftReg, Imm, 3468 S, EndLoc)); 3469 else 3470 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3471 S, EndLoc)); 3472 3473 return 0; 3474 } 3475 3476 /// Try to parse a register name. The token must be an Identifier when called. 3477 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3478 /// if there is a "writeback". 'true' if it's not a register. 3479 /// 3480 /// TODO this is likely to change to allow different register types and or to 3481 /// parse for a specific register type. 3482 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3483 MCAsmParser &Parser = getParser(); 3484 SMLoc RegStartLoc = Parser.getTok().getLoc(); 3485 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 3486 int RegNo = tryParseRegister(); 3487 if (RegNo == -1) 3488 return true; 3489 3490 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 3491 3492 const AsmToken &ExclaimTok = Parser.getTok(); 3493 if (ExclaimTok.is(AsmToken::Exclaim)) { 3494 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3495 ExclaimTok.getLoc())); 3496 Parser.Lex(); // Eat exclaim token 3497 return false; 3498 } 3499 3500 // Also check for an index operand. This is only legal for vector registers, 3501 // but that'll get caught OK in operand matching, so we don't need to 3502 // explicitly filter everything else out here. 3503 if (Parser.getTok().is(AsmToken::LBrac)) { 3504 SMLoc SIdx = Parser.getTok().getLoc(); 3505 Parser.Lex(); // Eat left bracket token. 3506 3507 const MCExpr *ImmVal; 3508 if (getParser().parseExpression(ImmVal)) 3509 return true; 3510 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3511 if (!MCE) 3512 return TokError("immediate value expected for vector index"); 3513 3514 if (Parser.getTok().isNot(AsmToken::RBrac)) 3515 return Error(Parser.getTok().getLoc(), "']' expected"); 3516 3517 SMLoc E = Parser.getTok().getEndLoc(); 3518 Parser.Lex(); // Eat right bracket token. 3519 3520 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3521 SIdx, E, 3522 getContext())); 3523 } 3524 3525 return false; 3526 } 3527 3528 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3529 /// instruction with a symbolic operand name. 3530 /// We accept "crN" syntax for GAS compatibility. 3531 /// <operand-name> ::= <prefix><number> 3532 /// If CoprocOp is 'c', then: 3533 /// <prefix> ::= c | cr 3534 /// If CoprocOp is 'p', then : 3535 /// <prefix> ::= p 3536 /// <number> ::= integer in range [0, 15] 3537 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3538 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3539 // but efficient. 3540 if (Name.size() < 2 || Name[0] != CoprocOp) 3541 return -1; 3542 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3543 3544 switch (Name.size()) { 3545 default: return -1; 3546 case 1: 3547 switch (Name[0]) { 3548 default: return -1; 3549 case '0': return 0; 3550 case '1': return 1; 3551 case '2': return 2; 3552 case '3': return 3; 3553 case '4': return 4; 3554 case '5': return 5; 3555 case '6': return 6; 3556 case '7': return 7; 3557 case '8': return 8; 3558 case '9': return 9; 3559 } 3560 case 2: 3561 if (Name[0] != '1') 3562 return -1; 3563 switch (Name[1]) { 3564 default: return -1; 3565 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3566 // However, old cores (v5/v6) did use them in that way. 3567 case '0': return 10; 3568 case '1': return 11; 3569 case '2': return 12; 3570 case '3': return 13; 3571 case '4': return 14; 3572 case '5': return 15; 3573 } 3574 } 3575 } 3576 3577 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3578 OperandMatchResultTy 3579 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3580 MCAsmParser &Parser = getParser(); 3581 SMLoc S = Parser.getTok().getLoc(); 3582 const AsmToken &Tok = Parser.getTok(); 3583 if (!Tok.is(AsmToken::Identifier)) 3584 return MatchOperand_NoMatch; 3585 unsigned CC = ARMCondCodeFromString(Tok.getString()); 3586 if (CC == ~0U) 3587 return MatchOperand_NoMatch; 3588 Parser.Lex(); // Eat the token. 3589 3590 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3591 3592 return MatchOperand_Success; 3593 } 3594 3595 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3596 /// token must be an Identifier when called, and if it is a coprocessor 3597 /// number, the token is eaten and the operand is added to the operand list. 3598 OperandMatchResultTy 3599 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3600 MCAsmParser &Parser = getParser(); 3601 SMLoc S = Parser.getTok().getLoc(); 3602 const AsmToken &Tok = Parser.getTok(); 3603 if (Tok.isNot(AsmToken::Identifier)) 3604 return MatchOperand_NoMatch; 3605 3606 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3607 if (Num == -1) 3608 return MatchOperand_NoMatch; 3609 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3610 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3611 return MatchOperand_NoMatch; 3612 3613 Parser.Lex(); // Eat identifier token. 3614 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3615 return MatchOperand_Success; 3616 } 3617 3618 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3619 /// token must be an Identifier when called, and if it is a coprocessor 3620 /// number, the token is eaten and the operand is added to the operand list. 3621 OperandMatchResultTy 3622 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3623 MCAsmParser &Parser = getParser(); 3624 SMLoc S = Parser.getTok().getLoc(); 3625 const AsmToken &Tok = Parser.getTok(); 3626 if (Tok.isNot(AsmToken::Identifier)) 3627 return MatchOperand_NoMatch; 3628 3629 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3630 if (Reg == -1) 3631 return MatchOperand_NoMatch; 3632 3633 Parser.Lex(); // Eat identifier token. 3634 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3635 return MatchOperand_Success; 3636 } 3637 3638 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3639 /// coproc_option : '{' imm0_255 '}' 3640 OperandMatchResultTy 3641 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3642 MCAsmParser &Parser = getParser(); 3643 SMLoc S = Parser.getTok().getLoc(); 3644 3645 // If this isn't a '{', this isn't a coprocessor immediate operand. 3646 if (Parser.getTok().isNot(AsmToken::LCurly)) 3647 return MatchOperand_NoMatch; 3648 Parser.Lex(); // Eat the '{' 3649 3650 const MCExpr *Expr; 3651 SMLoc Loc = Parser.getTok().getLoc(); 3652 if (getParser().parseExpression(Expr)) { 3653 Error(Loc, "illegal expression"); 3654 return MatchOperand_ParseFail; 3655 } 3656 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3657 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3658 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3659 return MatchOperand_ParseFail; 3660 } 3661 int Val = CE->getValue(); 3662 3663 // Check for and consume the closing '}' 3664 if (Parser.getTok().isNot(AsmToken::RCurly)) 3665 return MatchOperand_ParseFail; 3666 SMLoc E = Parser.getTok().getEndLoc(); 3667 Parser.Lex(); // Eat the '}' 3668 3669 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3670 return MatchOperand_Success; 3671 } 3672 3673 // For register list parsing, we need to map from raw GPR register numbering 3674 // to the enumeration values. The enumeration values aren't sorted by 3675 // register number due to our using "sp", "lr" and "pc" as canonical names. 3676 static unsigned getNextRegister(unsigned Reg) { 3677 // If this is a GPR, we need to do it manually, otherwise we can rely 3678 // on the sort ordering of the enumeration since the other reg-classes 3679 // are sane. 3680 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3681 return Reg + 1; 3682 switch(Reg) { 3683 default: llvm_unreachable("Invalid GPR number!"); 3684 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3685 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3686 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3687 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3688 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3689 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3690 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3691 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3692 } 3693 } 3694 3695 /// Parse a register list. 3696 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3697 MCAsmParser &Parser = getParser(); 3698 if (Parser.getTok().isNot(AsmToken::LCurly)) 3699 return TokError("Token is not a Left Curly Brace"); 3700 SMLoc S = Parser.getTok().getLoc(); 3701 Parser.Lex(); // Eat '{' token. 3702 SMLoc RegLoc = Parser.getTok().getLoc(); 3703 3704 // Check the first register in the list to see what register class 3705 // this is a list of. 3706 int Reg = tryParseRegister(); 3707 if (Reg == -1) 3708 return Error(RegLoc, "register expected"); 3709 3710 // The reglist instructions have at most 16 registers, so reserve 3711 // space for that many. 3712 int EReg = 0; 3713 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3714 3715 // Allow Q regs and just interpret them as the two D sub-registers. 3716 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3717 Reg = getDRegFromQReg(Reg); 3718 EReg = MRI->getEncodingValue(Reg); 3719 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3720 ++Reg; 3721 } 3722 const MCRegisterClass *RC; 3723 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3724 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3725 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3726 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3727 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3728 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3729 else 3730 return Error(RegLoc, "invalid register in register list"); 3731 3732 // Store the register. 3733 EReg = MRI->getEncodingValue(Reg); 3734 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3735 3736 // This starts immediately after the first register token in the list, 3737 // so we can see either a comma or a minus (range separator) as a legal 3738 // next token. 3739 while (Parser.getTok().is(AsmToken::Comma) || 3740 Parser.getTok().is(AsmToken::Minus)) { 3741 if (Parser.getTok().is(AsmToken::Minus)) { 3742 Parser.Lex(); // Eat the minus. 3743 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3744 int EndReg = tryParseRegister(); 3745 if (EndReg == -1) 3746 return Error(AfterMinusLoc, "register expected"); 3747 // Allow Q regs and just interpret them as the two D sub-registers. 3748 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3749 EndReg = getDRegFromQReg(EndReg) + 1; 3750 // If the register is the same as the start reg, there's nothing 3751 // more to do. 3752 if (Reg == EndReg) 3753 continue; 3754 // The register must be in the same register class as the first. 3755 if (!RC->contains(EndReg)) 3756 return Error(AfterMinusLoc, "invalid register in register list"); 3757 // Ranges must go from low to high. 3758 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3759 return Error(AfterMinusLoc, "bad range in register list"); 3760 3761 // Add all the registers in the range to the register list. 3762 while (Reg != EndReg) { 3763 Reg = getNextRegister(Reg); 3764 EReg = MRI->getEncodingValue(Reg); 3765 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3766 } 3767 continue; 3768 } 3769 Parser.Lex(); // Eat the comma. 3770 RegLoc = Parser.getTok().getLoc(); 3771 int OldReg = Reg; 3772 const AsmToken RegTok = Parser.getTok(); 3773 Reg = tryParseRegister(); 3774 if (Reg == -1) 3775 return Error(RegLoc, "register expected"); 3776 // Allow Q regs and just interpret them as the two D sub-registers. 3777 bool isQReg = false; 3778 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3779 Reg = getDRegFromQReg(Reg); 3780 isQReg = true; 3781 } 3782 // The register must be in the same register class as the first. 3783 if (!RC->contains(Reg)) 3784 return Error(RegLoc, "invalid register in register list"); 3785 // List must be monotonically increasing. 3786 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3787 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3788 Warning(RegLoc, "register list not in ascending order"); 3789 else 3790 return Error(RegLoc, "register list not in ascending order"); 3791 } 3792 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3793 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3794 ") in register list"); 3795 continue; 3796 } 3797 // VFP register lists must also be contiguous. 3798 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3799 Reg != OldReg + 1) 3800 return Error(RegLoc, "non-contiguous register range"); 3801 EReg = MRI->getEncodingValue(Reg); 3802 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3803 if (isQReg) { 3804 EReg = MRI->getEncodingValue(++Reg); 3805 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3806 } 3807 } 3808 3809 if (Parser.getTok().isNot(AsmToken::RCurly)) 3810 return Error(Parser.getTok().getLoc(), "'}' expected"); 3811 SMLoc E = Parser.getTok().getEndLoc(); 3812 Parser.Lex(); // Eat '}' token. 3813 3814 // Push the register list operand. 3815 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3816 3817 // The ARM system instruction variants for LDM/STM have a '^' token here. 3818 if (Parser.getTok().is(AsmToken::Caret)) { 3819 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3820 Parser.Lex(); // Eat '^' token. 3821 } 3822 3823 return false; 3824 } 3825 3826 // Helper function to parse the lane index for vector lists. 3827 OperandMatchResultTy ARMAsmParser:: 3828 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3829 MCAsmParser &Parser = getParser(); 3830 Index = 0; // Always return a defined index value. 3831 if (Parser.getTok().is(AsmToken::LBrac)) { 3832 Parser.Lex(); // Eat the '['. 3833 if (Parser.getTok().is(AsmToken::RBrac)) { 3834 // "Dn[]" is the 'all lanes' syntax. 3835 LaneKind = AllLanes; 3836 EndLoc = Parser.getTok().getEndLoc(); 3837 Parser.Lex(); // Eat the ']'. 3838 return MatchOperand_Success; 3839 } 3840 3841 // There's an optional '#' token here. Normally there wouldn't be, but 3842 // inline assemble puts one in, and it's friendly to accept that. 3843 if (Parser.getTok().is(AsmToken::Hash)) 3844 Parser.Lex(); // Eat '#' or '$'. 3845 3846 const MCExpr *LaneIndex; 3847 SMLoc Loc = Parser.getTok().getLoc(); 3848 if (getParser().parseExpression(LaneIndex)) { 3849 Error(Loc, "illegal expression"); 3850 return MatchOperand_ParseFail; 3851 } 3852 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3853 if (!CE) { 3854 Error(Loc, "lane index must be empty or an integer"); 3855 return MatchOperand_ParseFail; 3856 } 3857 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3858 Error(Parser.getTok().getLoc(), "']' expected"); 3859 return MatchOperand_ParseFail; 3860 } 3861 EndLoc = Parser.getTok().getEndLoc(); 3862 Parser.Lex(); // Eat the ']'. 3863 int64_t Val = CE->getValue(); 3864 3865 // FIXME: Make this range check context sensitive for .8, .16, .32. 3866 if (Val < 0 || Val > 7) { 3867 Error(Parser.getTok().getLoc(), "lane index out of range"); 3868 return MatchOperand_ParseFail; 3869 } 3870 Index = Val; 3871 LaneKind = IndexedLane; 3872 return MatchOperand_Success; 3873 } 3874 LaneKind = NoLanes; 3875 return MatchOperand_Success; 3876 } 3877 3878 // parse a vector register list 3879 OperandMatchResultTy 3880 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3881 MCAsmParser &Parser = getParser(); 3882 VectorLaneTy LaneKind; 3883 unsigned LaneIndex; 3884 SMLoc S = Parser.getTok().getLoc(); 3885 // As an extension (to match gas), support a plain D register or Q register 3886 // (without encosing curly braces) as a single or double entry list, 3887 // respectively. 3888 if (Parser.getTok().is(AsmToken::Identifier)) { 3889 SMLoc E = Parser.getTok().getEndLoc(); 3890 int Reg = tryParseRegister(); 3891 if (Reg == -1) 3892 return MatchOperand_NoMatch; 3893 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3894 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3895 if (Res != MatchOperand_Success) 3896 return Res; 3897 switch (LaneKind) { 3898 case NoLanes: 3899 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3900 break; 3901 case AllLanes: 3902 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3903 S, E)); 3904 break; 3905 case IndexedLane: 3906 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3907 LaneIndex, 3908 false, S, E)); 3909 break; 3910 } 3911 return MatchOperand_Success; 3912 } 3913 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3914 Reg = getDRegFromQReg(Reg); 3915 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3916 if (Res != MatchOperand_Success) 3917 return Res; 3918 switch (LaneKind) { 3919 case NoLanes: 3920 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3921 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3922 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3923 break; 3924 case AllLanes: 3925 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3926 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3927 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3928 S, E)); 3929 break; 3930 case IndexedLane: 3931 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3932 LaneIndex, 3933 false, S, E)); 3934 break; 3935 } 3936 return MatchOperand_Success; 3937 } 3938 Error(S, "vector register expected"); 3939 return MatchOperand_ParseFail; 3940 } 3941 3942 if (Parser.getTok().isNot(AsmToken::LCurly)) 3943 return MatchOperand_NoMatch; 3944 3945 Parser.Lex(); // Eat '{' token. 3946 SMLoc RegLoc = Parser.getTok().getLoc(); 3947 3948 int Reg = tryParseRegister(); 3949 if (Reg == -1) { 3950 Error(RegLoc, "register expected"); 3951 return MatchOperand_ParseFail; 3952 } 3953 unsigned Count = 1; 3954 int Spacing = 0; 3955 unsigned FirstReg = Reg; 3956 // The list is of D registers, but we also allow Q regs and just interpret 3957 // them as the two D sub-registers. 3958 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3959 FirstReg = Reg = getDRegFromQReg(Reg); 3960 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3961 // it's ambiguous with four-register single spaced. 3962 ++Reg; 3963 ++Count; 3964 } 3965 3966 SMLoc E; 3967 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3968 return MatchOperand_ParseFail; 3969 3970 while (Parser.getTok().is(AsmToken::Comma) || 3971 Parser.getTok().is(AsmToken::Minus)) { 3972 if (Parser.getTok().is(AsmToken::Minus)) { 3973 if (!Spacing) 3974 Spacing = 1; // Register range implies a single spaced list. 3975 else if (Spacing == 2) { 3976 Error(Parser.getTok().getLoc(), 3977 "sequential registers in double spaced list"); 3978 return MatchOperand_ParseFail; 3979 } 3980 Parser.Lex(); // Eat the minus. 3981 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3982 int EndReg = tryParseRegister(); 3983 if (EndReg == -1) { 3984 Error(AfterMinusLoc, "register expected"); 3985 return MatchOperand_ParseFail; 3986 } 3987 // Allow Q regs and just interpret them as the two D sub-registers. 3988 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3989 EndReg = getDRegFromQReg(EndReg) + 1; 3990 // If the register is the same as the start reg, there's nothing 3991 // more to do. 3992 if (Reg == EndReg) 3993 continue; 3994 // The register must be in the same register class as the first. 3995 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3996 Error(AfterMinusLoc, "invalid register in register list"); 3997 return MatchOperand_ParseFail; 3998 } 3999 // Ranges must go from low to high. 4000 if (Reg > EndReg) { 4001 Error(AfterMinusLoc, "bad range in register list"); 4002 return MatchOperand_ParseFail; 4003 } 4004 // Parse the lane specifier if present. 4005 VectorLaneTy NextLaneKind; 4006 unsigned NextLaneIndex; 4007 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4008 MatchOperand_Success) 4009 return MatchOperand_ParseFail; 4010 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4011 Error(AfterMinusLoc, "mismatched lane index in register list"); 4012 return MatchOperand_ParseFail; 4013 } 4014 4015 // Add all the registers in the range to the register list. 4016 Count += EndReg - Reg; 4017 Reg = EndReg; 4018 continue; 4019 } 4020 Parser.Lex(); // Eat the comma. 4021 RegLoc = Parser.getTok().getLoc(); 4022 int OldReg = Reg; 4023 Reg = tryParseRegister(); 4024 if (Reg == -1) { 4025 Error(RegLoc, "register expected"); 4026 return MatchOperand_ParseFail; 4027 } 4028 // vector register lists must be contiguous. 4029 // It's OK to use the enumeration values directly here rather, as the 4030 // VFP register classes have the enum sorted properly. 4031 // 4032 // The list is of D registers, but we also allow Q regs and just interpret 4033 // them as the two D sub-registers. 4034 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4035 if (!Spacing) 4036 Spacing = 1; // Register range implies a single spaced list. 4037 else if (Spacing == 2) { 4038 Error(RegLoc, 4039 "invalid register in double-spaced list (must be 'D' register')"); 4040 return MatchOperand_ParseFail; 4041 } 4042 Reg = getDRegFromQReg(Reg); 4043 if (Reg != OldReg + 1) { 4044 Error(RegLoc, "non-contiguous register range"); 4045 return MatchOperand_ParseFail; 4046 } 4047 ++Reg; 4048 Count += 2; 4049 // Parse the lane specifier if present. 4050 VectorLaneTy NextLaneKind; 4051 unsigned NextLaneIndex; 4052 SMLoc LaneLoc = Parser.getTok().getLoc(); 4053 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4054 MatchOperand_Success) 4055 return MatchOperand_ParseFail; 4056 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4057 Error(LaneLoc, "mismatched lane index in register list"); 4058 return MatchOperand_ParseFail; 4059 } 4060 continue; 4061 } 4062 // Normal D register. 4063 // Figure out the register spacing (single or double) of the list if 4064 // we don't know it already. 4065 if (!Spacing) 4066 Spacing = 1 + (Reg == OldReg + 2); 4067 4068 // Just check that it's contiguous and keep going. 4069 if (Reg != OldReg + Spacing) { 4070 Error(RegLoc, "non-contiguous register range"); 4071 return MatchOperand_ParseFail; 4072 } 4073 ++Count; 4074 // Parse the lane specifier if present. 4075 VectorLaneTy NextLaneKind; 4076 unsigned NextLaneIndex; 4077 SMLoc EndLoc = Parser.getTok().getLoc(); 4078 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4079 return MatchOperand_ParseFail; 4080 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4081 Error(EndLoc, "mismatched lane index in register list"); 4082 return MatchOperand_ParseFail; 4083 } 4084 } 4085 4086 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4087 Error(Parser.getTok().getLoc(), "'}' expected"); 4088 return MatchOperand_ParseFail; 4089 } 4090 E = Parser.getTok().getEndLoc(); 4091 Parser.Lex(); // Eat '}' token. 4092 4093 switch (LaneKind) { 4094 case NoLanes: 4095 // Two-register operands have been converted to the 4096 // composite register classes. 4097 if (Count == 2) { 4098 const MCRegisterClass *RC = (Spacing == 1) ? 4099 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4100 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4101 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4102 } 4103 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 4104 (Spacing == 2), S, E)); 4105 break; 4106 case AllLanes: 4107 // Two-register operands have been converted to the 4108 // composite register classes. 4109 if (Count == 2) { 4110 const MCRegisterClass *RC = (Spacing == 1) ? 4111 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4112 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4113 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4114 } 4115 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 4116 (Spacing == 2), 4117 S, E)); 4118 break; 4119 case IndexedLane: 4120 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4121 LaneIndex, 4122 (Spacing == 2), 4123 S, E)); 4124 break; 4125 } 4126 return MatchOperand_Success; 4127 } 4128 4129 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4130 OperandMatchResultTy 4131 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4132 MCAsmParser &Parser = getParser(); 4133 SMLoc S = Parser.getTok().getLoc(); 4134 const AsmToken &Tok = Parser.getTok(); 4135 unsigned Opt; 4136 4137 if (Tok.is(AsmToken::Identifier)) { 4138 StringRef OptStr = Tok.getString(); 4139 4140 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4141 .Case("sy", ARM_MB::SY) 4142 .Case("st", ARM_MB::ST) 4143 .Case("ld", ARM_MB::LD) 4144 .Case("sh", ARM_MB::ISH) 4145 .Case("ish", ARM_MB::ISH) 4146 .Case("shst", ARM_MB::ISHST) 4147 .Case("ishst", ARM_MB::ISHST) 4148 .Case("ishld", ARM_MB::ISHLD) 4149 .Case("nsh", ARM_MB::NSH) 4150 .Case("un", ARM_MB::NSH) 4151 .Case("nshst", ARM_MB::NSHST) 4152 .Case("nshld", ARM_MB::NSHLD) 4153 .Case("unst", ARM_MB::NSHST) 4154 .Case("osh", ARM_MB::OSH) 4155 .Case("oshst", ARM_MB::OSHST) 4156 .Case("oshld", ARM_MB::OSHLD) 4157 .Default(~0U); 4158 4159 // ishld, oshld, nshld and ld are only available from ARMv8. 4160 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4161 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4162 Opt = ~0U; 4163 4164 if (Opt == ~0U) 4165 return MatchOperand_NoMatch; 4166 4167 Parser.Lex(); // Eat identifier token. 4168 } else if (Tok.is(AsmToken::Hash) || 4169 Tok.is(AsmToken::Dollar) || 4170 Tok.is(AsmToken::Integer)) { 4171 if (Parser.getTok().isNot(AsmToken::Integer)) 4172 Parser.Lex(); // Eat '#' or '$'. 4173 SMLoc Loc = Parser.getTok().getLoc(); 4174 4175 const MCExpr *MemBarrierID; 4176 if (getParser().parseExpression(MemBarrierID)) { 4177 Error(Loc, "illegal expression"); 4178 return MatchOperand_ParseFail; 4179 } 4180 4181 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4182 if (!CE) { 4183 Error(Loc, "constant expression expected"); 4184 return MatchOperand_ParseFail; 4185 } 4186 4187 int Val = CE->getValue(); 4188 if (Val & ~0xf) { 4189 Error(Loc, "immediate value out of range"); 4190 return MatchOperand_ParseFail; 4191 } 4192 4193 Opt = ARM_MB::RESERVED_0 + Val; 4194 } else 4195 return MatchOperand_ParseFail; 4196 4197 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4198 return MatchOperand_Success; 4199 } 4200 4201 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4202 OperandMatchResultTy 4203 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4204 MCAsmParser &Parser = getParser(); 4205 SMLoc S = Parser.getTok().getLoc(); 4206 const AsmToken &Tok = Parser.getTok(); 4207 unsigned Opt; 4208 4209 if (Tok.is(AsmToken::Identifier)) { 4210 StringRef OptStr = Tok.getString(); 4211 4212 if (OptStr.equals_lower("sy")) 4213 Opt = ARM_ISB::SY; 4214 else 4215 return MatchOperand_NoMatch; 4216 4217 Parser.Lex(); // Eat identifier token. 4218 } else if (Tok.is(AsmToken::Hash) || 4219 Tok.is(AsmToken::Dollar) || 4220 Tok.is(AsmToken::Integer)) { 4221 if (Parser.getTok().isNot(AsmToken::Integer)) 4222 Parser.Lex(); // Eat '#' or '$'. 4223 SMLoc Loc = Parser.getTok().getLoc(); 4224 4225 const MCExpr *ISBarrierID; 4226 if (getParser().parseExpression(ISBarrierID)) { 4227 Error(Loc, "illegal expression"); 4228 return MatchOperand_ParseFail; 4229 } 4230 4231 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4232 if (!CE) { 4233 Error(Loc, "constant expression expected"); 4234 return MatchOperand_ParseFail; 4235 } 4236 4237 int Val = CE->getValue(); 4238 if (Val & ~0xf) { 4239 Error(Loc, "immediate value out of range"); 4240 return MatchOperand_ParseFail; 4241 } 4242 4243 Opt = ARM_ISB::RESERVED_0 + Val; 4244 } else 4245 return MatchOperand_ParseFail; 4246 4247 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4248 (ARM_ISB::InstSyncBOpt)Opt, S)); 4249 return MatchOperand_Success; 4250 } 4251 4252 4253 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4254 OperandMatchResultTy 4255 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4256 MCAsmParser &Parser = getParser(); 4257 SMLoc S = Parser.getTok().getLoc(); 4258 const AsmToken &Tok = Parser.getTok(); 4259 if (!Tok.is(AsmToken::Identifier)) 4260 return MatchOperand_NoMatch; 4261 StringRef IFlagsStr = Tok.getString(); 4262 4263 // An iflags string of "none" is interpreted to mean that none of the AIF 4264 // bits are set. Not a terribly useful instruction, but a valid encoding. 4265 unsigned IFlags = 0; 4266 if (IFlagsStr != "none") { 4267 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4268 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4269 .Case("a", ARM_PROC::A) 4270 .Case("i", ARM_PROC::I) 4271 .Case("f", ARM_PROC::F) 4272 .Default(~0U); 4273 4274 // If some specific iflag is already set, it means that some letter is 4275 // present more than once, this is not acceptable. 4276 if (Flag == ~0U || (IFlags & Flag)) 4277 return MatchOperand_NoMatch; 4278 4279 IFlags |= Flag; 4280 } 4281 } 4282 4283 Parser.Lex(); // Eat identifier token. 4284 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4285 return MatchOperand_Success; 4286 } 4287 4288 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4289 OperandMatchResultTy 4290 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4291 MCAsmParser &Parser = getParser(); 4292 SMLoc S = Parser.getTok().getLoc(); 4293 const AsmToken &Tok = Parser.getTok(); 4294 4295 if (Tok.is(AsmToken::Integer)) { 4296 int64_t Val = Tok.getIntVal(); 4297 if (Val > 255 || Val < 0) { 4298 return MatchOperand_NoMatch; 4299 } 4300 unsigned SYSmvalue = Val & 0xFF; 4301 Parser.Lex(); 4302 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4303 return MatchOperand_Success; 4304 } 4305 4306 if (!Tok.is(AsmToken::Identifier)) 4307 return MatchOperand_NoMatch; 4308 StringRef Mask = Tok.getString(); 4309 4310 if (isMClass()) { 4311 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4312 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4313 return MatchOperand_NoMatch; 4314 4315 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4316 4317 Parser.Lex(); // Eat identifier token. 4318 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4319 return MatchOperand_Success; 4320 } 4321 4322 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4323 size_t Start = 0, Next = Mask.find('_'); 4324 StringRef Flags = ""; 4325 std::string SpecReg = Mask.slice(Start, Next).lower(); 4326 if (Next != StringRef::npos) 4327 Flags = Mask.slice(Next+1, Mask.size()); 4328 4329 // FlagsVal contains the complete mask: 4330 // 3-0: Mask 4331 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4332 unsigned FlagsVal = 0; 4333 4334 if (SpecReg == "apsr") { 4335 FlagsVal = StringSwitch<unsigned>(Flags) 4336 .Case("nzcvq", 0x8) // same as CPSR_f 4337 .Case("g", 0x4) // same as CPSR_s 4338 .Case("nzcvqg", 0xc) // same as CPSR_fs 4339 .Default(~0U); 4340 4341 if (FlagsVal == ~0U) { 4342 if (!Flags.empty()) 4343 return MatchOperand_NoMatch; 4344 else 4345 FlagsVal = 8; // No flag 4346 } 4347 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4348 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4349 if (Flags == "all" || Flags == "") 4350 Flags = "fc"; 4351 for (int i = 0, e = Flags.size(); i != e; ++i) { 4352 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4353 .Case("c", 1) 4354 .Case("x", 2) 4355 .Case("s", 4) 4356 .Case("f", 8) 4357 .Default(~0U); 4358 4359 // If some specific flag is already set, it means that some letter is 4360 // present more than once, this is not acceptable. 4361 if (Flag == ~0U || (FlagsVal & Flag)) 4362 return MatchOperand_NoMatch; 4363 FlagsVal |= Flag; 4364 } 4365 } else // No match for special register. 4366 return MatchOperand_NoMatch; 4367 4368 // Special register without flags is NOT equivalent to "fc" flags. 4369 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4370 // two lines would enable gas compatibility at the expense of breaking 4371 // round-tripping. 4372 // 4373 // if (!FlagsVal) 4374 // FlagsVal = 0x9; 4375 4376 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4377 if (SpecReg == "spsr") 4378 FlagsVal |= 16; 4379 4380 Parser.Lex(); // Eat identifier token. 4381 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4382 return MatchOperand_Success; 4383 } 4384 4385 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4386 /// use in the MRS/MSR instructions added to support virtualization. 4387 OperandMatchResultTy 4388 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4389 MCAsmParser &Parser = getParser(); 4390 SMLoc S = Parser.getTok().getLoc(); 4391 const AsmToken &Tok = Parser.getTok(); 4392 if (!Tok.is(AsmToken::Identifier)) 4393 return MatchOperand_NoMatch; 4394 StringRef RegName = Tok.getString(); 4395 4396 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 4397 if (!TheReg) 4398 return MatchOperand_NoMatch; 4399 unsigned Encoding = TheReg->Encoding; 4400 4401 Parser.Lex(); // Eat identifier token. 4402 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4403 return MatchOperand_Success; 4404 } 4405 4406 OperandMatchResultTy 4407 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4408 int High) { 4409 MCAsmParser &Parser = getParser(); 4410 const AsmToken &Tok = Parser.getTok(); 4411 if (Tok.isNot(AsmToken::Identifier)) { 4412 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4413 return MatchOperand_ParseFail; 4414 } 4415 StringRef ShiftName = Tok.getString(); 4416 std::string LowerOp = Op.lower(); 4417 std::string UpperOp = Op.upper(); 4418 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4419 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4420 return MatchOperand_ParseFail; 4421 } 4422 Parser.Lex(); // Eat shift type token. 4423 4424 // There must be a '#' and a shift amount. 4425 if (Parser.getTok().isNot(AsmToken::Hash) && 4426 Parser.getTok().isNot(AsmToken::Dollar)) { 4427 Error(Parser.getTok().getLoc(), "'#' expected"); 4428 return MatchOperand_ParseFail; 4429 } 4430 Parser.Lex(); // Eat hash token. 4431 4432 const MCExpr *ShiftAmount; 4433 SMLoc Loc = Parser.getTok().getLoc(); 4434 SMLoc EndLoc; 4435 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4436 Error(Loc, "illegal expression"); 4437 return MatchOperand_ParseFail; 4438 } 4439 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4440 if (!CE) { 4441 Error(Loc, "constant expression expected"); 4442 return MatchOperand_ParseFail; 4443 } 4444 int Val = CE->getValue(); 4445 if (Val < Low || Val > High) { 4446 Error(Loc, "immediate value out of range"); 4447 return MatchOperand_ParseFail; 4448 } 4449 4450 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4451 4452 return MatchOperand_Success; 4453 } 4454 4455 OperandMatchResultTy 4456 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4457 MCAsmParser &Parser = getParser(); 4458 const AsmToken &Tok = Parser.getTok(); 4459 SMLoc S = Tok.getLoc(); 4460 if (Tok.isNot(AsmToken::Identifier)) { 4461 Error(S, "'be' or 'le' operand expected"); 4462 return MatchOperand_ParseFail; 4463 } 4464 int Val = StringSwitch<int>(Tok.getString().lower()) 4465 .Case("be", 1) 4466 .Case("le", 0) 4467 .Default(-1); 4468 Parser.Lex(); // Eat the token. 4469 4470 if (Val == -1) { 4471 Error(S, "'be' or 'le' operand expected"); 4472 return MatchOperand_ParseFail; 4473 } 4474 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4475 getContext()), 4476 S, Tok.getEndLoc())); 4477 return MatchOperand_Success; 4478 } 4479 4480 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4481 /// instructions. Legal values are: 4482 /// lsl #n 'n' in [0,31] 4483 /// asr #n 'n' in [1,32] 4484 /// n == 32 encoded as n == 0. 4485 OperandMatchResultTy 4486 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4487 MCAsmParser &Parser = getParser(); 4488 const AsmToken &Tok = Parser.getTok(); 4489 SMLoc S = Tok.getLoc(); 4490 if (Tok.isNot(AsmToken::Identifier)) { 4491 Error(S, "shift operator 'asr' or 'lsl' expected"); 4492 return MatchOperand_ParseFail; 4493 } 4494 StringRef ShiftName = Tok.getString(); 4495 bool isASR; 4496 if (ShiftName == "lsl" || ShiftName == "LSL") 4497 isASR = false; 4498 else if (ShiftName == "asr" || ShiftName == "ASR") 4499 isASR = true; 4500 else { 4501 Error(S, "shift operator 'asr' or 'lsl' expected"); 4502 return MatchOperand_ParseFail; 4503 } 4504 Parser.Lex(); // Eat the operator. 4505 4506 // A '#' and a shift amount. 4507 if (Parser.getTok().isNot(AsmToken::Hash) && 4508 Parser.getTok().isNot(AsmToken::Dollar)) { 4509 Error(Parser.getTok().getLoc(), "'#' expected"); 4510 return MatchOperand_ParseFail; 4511 } 4512 Parser.Lex(); // Eat hash token. 4513 SMLoc ExLoc = Parser.getTok().getLoc(); 4514 4515 const MCExpr *ShiftAmount; 4516 SMLoc EndLoc; 4517 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4518 Error(ExLoc, "malformed shift expression"); 4519 return MatchOperand_ParseFail; 4520 } 4521 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4522 if (!CE) { 4523 Error(ExLoc, "shift amount must be an immediate"); 4524 return MatchOperand_ParseFail; 4525 } 4526 4527 int64_t Val = CE->getValue(); 4528 if (isASR) { 4529 // Shift amount must be in [1,32] 4530 if (Val < 1 || Val > 32) { 4531 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4532 return MatchOperand_ParseFail; 4533 } 4534 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4535 if (isThumb() && Val == 32) { 4536 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4537 return MatchOperand_ParseFail; 4538 } 4539 if (Val == 32) Val = 0; 4540 } else { 4541 // Shift amount must be in [1,32] 4542 if (Val < 0 || Val > 31) { 4543 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4544 return MatchOperand_ParseFail; 4545 } 4546 } 4547 4548 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4549 4550 return MatchOperand_Success; 4551 } 4552 4553 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4554 /// of instructions. Legal values are: 4555 /// ror #n 'n' in {0, 8, 16, 24} 4556 OperandMatchResultTy 4557 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4558 MCAsmParser &Parser = getParser(); 4559 const AsmToken &Tok = Parser.getTok(); 4560 SMLoc S = Tok.getLoc(); 4561 if (Tok.isNot(AsmToken::Identifier)) 4562 return MatchOperand_NoMatch; 4563 StringRef ShiftName = Tok.getString(); 4564 if (ShiftName != "ror" && ShiftName != "ROR") 4565 return MatchOperand_NoMatch; 4566 Parser.Lex(); // Eat the operator. 4567 4568 // A '#' and a rotate amount. 4569 if (Parser.getTok().isNot(AsmToken::Hash) && 4570 Parser.getTok().isNot(AsmToken::Dollar)) { 4571 Error(Parser.getTok().getLoc(), "'#' expected"); 4572 return MatchOperand_ParseFail; 4573 } 4574 Parser.Lex(); // Eat hash token. 4575 SMLoc ExLoc = Parser.getTok().getLoc(); 4576 4577 const MCExpr *ShiftAmount; 4578 SMLoc EndLoc; 4579 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4580 Error(ExLoc, "malformed rotate expression"); 4581 return MatchOperand_ParseFail; 4582 } 4583 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4584 if (!CE) { 4585 Error(ExLoc, "rotate amount must be an immediate"); 4586 return MatchOperand_ParseFail; 4587 } 4588 4589 int64_t Val = CE->getValue(); 4590 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4591 // normally, zero is represented in asm by omitting the rotate operand 4592 // entirely. 4593 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4594 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4595 return MatchOperand_ParseFail; 4596 } 4597 4598 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4599 4600 return MatchOperand_Success; 4601 } 4602 4603 OperandMatchResultTy 4604 ARMAsmParser::parseModImm(OperandVector &Operands) { 4605 MCAsmParser &Parser = getParser(); 4606 MCAsmLexer &Lexer = getLexer(); 4607 int64_t Imm1, Imm2; 4608 4609 SMLoc S = Parser.getTok().getLoc(); 4610 4611 // 1) A mod_imm operand can appear in the place of a register name: 4612 // add r0, #mod_imm 4613 // add r0, r0, #mod_imm 4614 // to correctly handle the latter, we bail out as soon as we see an 4615 // identifier. 4616 // 4617 // 2) Similarly, we do not want to parse into complex operands: 4618 // mov r0, #mod_imm 4619 // mov r0, :lower16:(_foo) 4620 if (Parser.getTok().is(AsmToken::Identifier) || 4621 Parser.getTok().is(AsmToken::Colon)) 4622 return MatchOperand_NoMatch; 4623 4624 // Hash (dollar) is optional as per the ARMARM 4625 if (Parser.getTok().is(AsmToken::Hash) || 4626 Parser.getTok().is(AsmToken::Dollar)) { 4627 // Avoid parsing into complex operands (#:) 4628 if (Lexer.peekTok().is(AsmToken::Colon)) 4629 return MatchOperand_NoMatch; 4630 4631 // Eat the hash (dollar) 4632 Parser.Lex(); 4633 } 4634 4635 SMLoc Sx1, Ex1; 4636 Sx1 = Parser.getTok().getLoc(); 4637 const MCExpr *Imm1Exp; 4638 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4639 Error(Sx1, "malformed expression"); 4640 return MatchOperand_ParseFail; 4641 } 4642 4643 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4644 4645 if (CE) { 4646 // Immediate must fit within 32-bits 4647 Imm1 = CE->getValue(); 4648 int Enc = ARM_AM::getSOImmVal(Imm1); 4649 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4650 // We have a match! 4651 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4652 (Enc & 0xF00) >> 7, 4653 Sx1, Ex1)); 4654 return MatchOperand_Success; 4655 } 4656 4657 // We have parsed an immediate which is not for us, fallback to a plain 4658 // immediate. This can happen for instruction aliases. For an example, 4659 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4660 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4661 // instruction with a mod_imm operand. The alias is defined such that the 4662 // parser method is shared, that's why we have to do this here. 4663 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4664 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4665 return MatchOperand_Success; 4666 } 4667 } else { 4668 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4669 // MCFixup). Fallback to a plain immediate. 4670 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4671 return MatchOperand_Success; 4672 } 4673 4674 // From this point onward, we expect the input to be a (#bits, #rot) pair 4675 if (Parser.getTok().isNot(AsmToken::Comma)) { 4676 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4677 return MatchOperand_ParseFail; 4678 } 4679 4680 if (Imm1 & ~0xFF) { 4681 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4682 return MatchOperand_ParseFail; 4683 } 4684 4685 // Eat the comma 4686 Parser.Lex(); 4687 4688 // Repeat for #rot 4689 SMLoc Sx2, Ex2; 4690 Sx2 = Parser.getTok().getLoc(); 4691 4692 // Eat the optional hash (dollar) 4693 if (Parser.getTok().is(AsmToken::Hash) || 4694 Parser.getTok().is(AsmToken::Dollar)) 4695 Parser.Lex(); 4696 4697 const MCExpr *Imm2Exp; 4698 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4699 Error(Sx2, "malformed expression"); 4700 return MatchOperand_ParseFail; 4701 } 4702 4703 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4704 4705 if (CE) { 4706 Imm2 = CE->getValue(); 4707 if (!(Imm2 & ~0x1E)) { 4708 // We have a match! 4709 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4710 return MatchOperand_Success; 4711 } 4712 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4713 return MatchOperand_ParseFail; 4714 } else { 4715 Error(Sx2, "constant expression expected"); 4716 return MatchOperand_ParseFail; 4717 } 4718 } 4719 4720 OperandMatchResultTy 4721 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4722 MCAsmParser &Parser = getParser(); 4723 SMLoc S = Parser.getTok().getLoc(); 4724 // The bitfield descriptor is really two operands, the LSB and the width. 4725 if (Parser.getTok().isNot(AsmToken::Hash) && 4726 Parser.getTok().isNot(AsmToken::Dollar)) { 4727 Error(Parser.getTok().getLoc(), "'#' expected"); 4728 return MatchOperand_ParseFail; 4729 } 4730 Parser.Lex(); // Eat hash token. 4731 4732 const MCExpr *LSBExpr; 4733 SMLoc E = Parser.getTok().getLoc(); 4734 if (getParser().parseExpression(LSBExpr)) { 4735 Error(E, "malformed immediate expression"); 4736 return MatchOperand_ParseFail; 4737 } 4738 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4739 if (!CE) { 4740 Error(E, "'lsb' operand must be an immediate"); 4741 return MatchOperand_ParseFail; 4742 } 4743 4744 int64_t LSB = CE->getValue(); 4745 // The LSB must be in the range [0,31] 4746 if (LSB < 0 || LSB > 31) { 4747 Error(E, "'lsb' operand must be in the range [0,31]"); 4748 return MatchOperand_ParseFail; 4749 } 4750 E = Parser.getTok().getLoc(); 4751 4752 // Expect another immediate operand. 4753 if (Parser.getTok().isNot(AsmToken::Comma)) { 4754 Error(Parser.getTok().getLoc(), "too few operands"); 4755 return MatchOperand_ParseFail; 4756 } 4757 Parser.Lex(); // Eat hash token. 4758 if (Parser.getTok().isNot(AsmToken::Hash) && 4759 Parser.getTok().isNot(AsmToken::Dollar)) { 4760 Error(Parser.getTok().getLoc(), "'#' expected"); 4761 return MatchOperand_ParseFail; 4762 } 4763 Parser.Lex(); // Eat hash token. 4764 4765 const MCExpr *WidthExpr; 4766 SMLoc EndLoc; 4767 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4768 Error(E, "malformed immediate expression"); 4769 return MatchOperand_ParseFail; 4770 } 4771 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4772 if (!CE) { 4773 Error(E, "'width' operand must be an immediate"); 4774 return MatchOperand_ParseFail; 4775 } 4776 4777 int64_t Width = CE->getValue(); 4778 // The LSB must be in the range [1,32-lsb] 4779 if (Width < 1 || Width > 32 - LSB) { 4780 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4781 return MatchOperand_ParseFail; 4782 } 4783 4784 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4785 4786 return MatchOperand_Success; 4787 } 4788 4789 OperandMatchResultTy 4790 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4791 // Check for a post-index addressing register operand. Specifically: 4792 // postidx_reg := '+' register {, shift} 4793 // | '-' register {, shift} 4794 // | register {, shift} 4795 4796 // This method must return MatchOperand_NoMatch without consuming any tokens 4797 // in the case where there is no match, as other alternatives take other 4798 // parse methods. 4799 MCAsmParser &Parser = getParser(); 4800 AsmToken Tok = Parser.getTok(); 4801 SMLoc S = Tok.getLoc(); 4802 bool haveEaten = false; 4803 bool isAdd = true; 4804 if (Tok.is(AsmToken::Plus)) { 4805 Parser.Lex(); // Eat the '+' token. 4806 haveEaten = true; 4807 } else if (Tok.is(AsmToken::Minus)) { 4808 Parser.Lex(); // Eat the '-' token. 4809 isAdd = false; 4810 haveEaten = true; 4811 } 4812 4813 SMLoc E = Parser.getTok().getEndLoc(); 4814 int Reg = tryParseRegister(); 4815 if (Reg == -1) { 4816 if (!haveEaten) 4817 return MatchOperand_NoMatch; 4818 Error(Parser.getTok().getLoc(), "register expected"); 4819 return MatchOperand_ParseFail; 4820 } 4821 4822 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4823 unsigned ShiftImm = 0; 4824 if (Parser.getTok().is(AsmToken::Comma)) { 4825 Parser.Lex(); // Eat the ','. 4826 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4827 return MatchOperand_ParseFail; 4828 4829 // FIXME: Only approximates end...may include intervening whitespace. 4830 E = Parser.getTok().getLoc(); 4831 } 4832 4833 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4834 ShiftImm, S, E)); 4835 4836 return MatchOperand_Success; 4837 } 4838 4839 OperandMatchResultTy 4840 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4841 // Check for a post-index addressing register operand. Specifically: 4842 // am3offset := '+' register 4843 // | '-' register 4844 // | register 4845 // | # imm 4846 // | # + imm 4847 // | # - imm 4848 4849 // This method must return MatchOperand_NoMatch without consuming any tokens 4850 // in the case where there is no match, as other alternatives take other 4851 // parse methods. 4852 MCAsmParser &Parser = getParser(); 4853 AsmToken Tok = Parser.getTok(); 4854 SMLoc S = Tok.getLoc(); 4855 4856 // Do immediates first, as we always parse those if we have a '#'. 4857 if (Parser.getTok().is(AsmToken::Hash) || 4858 Parser.getTok().is(AsmToken::Dollar)) { 4859 Parser.Lex(); // Eat '#' or '$'. 4860 // Explicitly look for a '-', as we need to encode negative zero 4861 // differently. 4862 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4863 const MCExpr *Offset; 4864 SMLoc E; 4865 if (getParser().parseExpression(Offset, E)) 4866 return MatchOperand_ParseFail; 4867 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4868 if (!CE) { 4869 Error(S, "constant expression expected"); 4870 return MatchOperand_ParseFail; 4871 } 4872 // Negative zero is encoded as the flag value 4873 // std::numeric_limits<int32_t>::min(). 4874 int32_t Val = CE->getValue(); 4875 if (isNegative && Val == 0) 4876 Val = std::numeric_limits<int32_t>::min(); 4877 4878 Operands.push_back( 4879 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4880 4881 return MatchOperand_Success; 4882 } 4883 4884 bool haveEaten = false; 4885 bool isAdd = true; 4886 if (Tok.is(AsmToken::Plus)) { 4887 Parser.Lex(); // Eat the '+' token. 4888 haveEaten = true; 4889 } else if (Tok.is(AsmToken::Minus)) { 4890 Parser.Lex(); // Eat the '-' token. 4891 isAdd = false; 4892 haveEaten = true; 4893 } 4894 4895 Tok = Parser.getTok(); 4896 int Reg = tryParseRegister(); 4897 if (Reg == -1) { 4898 if (!haveEaten) 4899 return MatchOperand_NoMatch; 4900 Error(Tok.getLoc(), "register expected"); 4901 return MatchOperand_ParseFail; 4902 } 4903 4904 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4905 0, S, Tok.getEndLoc())); 4906 4907 return MatchOperand_Success; 4908 } 4909 4910 /// Convert parsed operands to MCInst. Needed here because this instruction 4911 /// only has two register operands, but multiplication is commutative so 4912 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4913 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4914 const OperandVector &Operands) { 4915 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4916 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4917 // If we have a three-operand form, make sure to set Rn to be the operand 4918 // that isn't the same as Rd. 4919 unsigned RegOp = 4; 4920 if (Operands.size() == 6 && 4921 ((ARMOperand &)*Operands[4]).getReg() == 4922 ((ARMOperand &)*Operands[3]).getReg()) 4923 RegOp = 5; 4924 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4925 Inst.addOperand(Inst.getOperand(0)); 4926 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4927 } 4928 4929 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4930 const OperandVector &Operands) { 4931 int CondOp = -1, ImmOp = -1; 4932 switch(Inst.getOpcode()) { 4933 case ARM::tB: 4934 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4935 4936 case ARM::t2B: 4937 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4938 4939 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4940 } 4941 // first decide whether or not the branch should be conditional 4942 // by looking at it's location relative to an IT block 4943 if(inITBlock()) { 4944 // inside an IT block we cannot have any conditional branches. any 4945 // such instructions needs to be converted to unconditional form 4946 switch(Inst.getOpcode()) { 4947 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4948 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4949 } 4950 } else { 4951 // outside IT blocks we can only have unconditional branches with AL 4952 // condition code or conditional branches with non-AL condition code 4953 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4954 switch(Inst.getOpcode()) { 4955 case ARM::tB: 4956 case ARM::tBcc: 4957 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4958 break; 4959 case ARM::t2B: 4960 case ARM::t2Bcc: 4961 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4962 break; 4963 } 4964 } 4965 4966 // now decide on encoding size based on branch target range 4967 switch(Inst.getOpcode()) { 4968 // classify tB as either t2B or t1B based on range of immediate operand 4969 case ARM::tB: { 4970 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4971 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 4972 Inst.setOpcode(ARM::t2B); 4973 break; 4974 } 4975 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4976 case ARM::tBcc: { 4977 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4978 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 4979 Inst.setOpcode(ARM::t2Bcc); 4980 break; 4981 } 4982 } 4983 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4984 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4985 } 4986 4987 /// Parse an ARM memory expression, return false if successful else return true 4988 /// or an error. The first token must be a '[' when called. 4989 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4990 MCAsmParser &Parser = getParser(); 4991 SMLoc S, E; 4992 if (Parser.getTok().isNot(AsmToken::LBrac)) 4993 return TokError("Token is not a Left Bracket"); 4994 S = Parser.getTok().getLoc(); 4995 Parser.Lex(); // Eat left bracket token. 4996 4997 const AsmToken &BaseRegTok = Parser.getTok(); 4998 int BaseRegNum = tryParseRegister(); 4999 if (BaseRegNum == -1) 5000 return Error(BaseRegTok.getLoc(), "register expected"); 5001 5002 // The next token must either be a comma, a colon or a closing bracket. 5003 const AsmToken &Tok = Parser.getTok(); 5004 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5005 !Tok.is(AsmToken::RBrac)) 5006 return Error(Tok.getLoc(), "malformed memory operand"); 5007 5008 if (Tok.is(AsmToken::RBrac)) { 5009 E = Tok.getEndLoc(); 5010 Parser.Lex(); // Eat right bracket token. 5011 5012 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5013 ARM_AM::no_shift, 0, 0, false, 5014 S, E)); 5015 5016 // If there's a pre-indexing writeback marker, '!', just add it as a token 5017 // operand. It's rather odd, but syntactically valid. 5018 if (Parser.getTok().is(AsmToken::Exclaim)) { 5019 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5020 Parser.Lex(); // Eat the '!'. 5021 } 5022 5023 return false; 5024 } 5025 5026 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5027 "Lost colon or comma in memory operand?!"); 5028 if (Tok.is(AsmToken::Comma)) { 5029 Parser.Lex(); // Eat the comma. 5030 } 5031 5032 // If we have a ':', it's an alignment specifier. 5033 if (Parser.getTok().is(AsmToken::Colon)) { 5034 Parser.Lex(); // Eat the ':'. 5035 E = Parser.getTok().getLoc(); 5036 SMLoc AlignmentLoc = Tok.getLoc(); 5037 5038 const MCExpr *Expr; 5039 if (getParser().parseExpression(Expr)) 5040 return true; 5041 5042 // The expression has to be a constant. Memory references with relocations 5043 // don't come through here, as they use the <label> forms of the relevant 5044 // instructions. 5045 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5046 if (!CE) 5047 return Error (E, "constant expression expected"); 5048 5049 unsigned Align = 0; 5050 switch (CE->getValue()) { 5051 default: 5052 return Error(E, 5053 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5054 case 16: Align = 2; break; 5055 case 32: Align = 4; break; 5056 case 64: Align = 8; break; 5057 case 128: Align = 16; break; 5058 case 256: Align = 32; break; 5059 } 5060 5061 // Now we should have the closing ']' 5062 if (Parser.getTok().isNot(AsmToken::RBrac)) 5063 return Error(Parser.getTok().getLoc(), "']' expected"); 5064 E = Parser.getTok().getEndLoc(); 5065 Parser.Lex(); // Eat right bracket token. 5066 5067 // Don't worry about range checking the value here. That's handled by 5068 // the is*() predicates. 5069 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5070 ARM_AM::no_shift, 0, Align, 5071 false, S, E, AlignmentLoc)); 5072 5073 // If there's a pre-indexing writeback marker, '!', just add it as a token 5074 // operand. 5075 if (Parser.getTok().is(AsmToken::Exclaim)) { 5076 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5077 Parser.Lex(); // Eat the '!'. 5078 } 5079 5080 return false; 5081 } 5082 5083 // If we have a '#', it's an immediate offset, else assume it's a register 5084 // offset. Be friendly and also accept a plain integer (without a leading 5085 // hash) for gas compatibility. 5086 if (Parser.getTok().is(AsmToken::Hash) || 5087 Parser.getTok().is(AsmToken::Dollar) || 5088 Parser.getTok().is(AsmToken::Integer)) { 5089 if (Parser.getTok().isNot(AsmToken::Integer)) 5090 Parser.Lex(); // Eat '#' or '$'. 5091 E = Parser.getTok().getLoc(); 5092 5093 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5094 const MCExpr *Offset; 5095 if (getParser().parseExpression(Offset)) 5096 return true; 5097 5098 // The expression has to be a constant. Memory references with relocations 5099 // don't come through here, as they use the <label> forms of the relevant 5100 // instructions. 5101 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5102 if (!CE) 5103 return Error (E, "constant expression expected"); 5104 5105 // If the constant was #-0, represent it as 5106 // std::numeric_limits<int32_t>::min(). 5107 int32_t Val = CE->getValue(); 5108 if (isNegative && Val == 0) 5109 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5110 getContext()); 5111 5112 // Now we should have the closing ']' 5113 if (Parser.getTok().isNot(AsmToken::RBrac)) 5114 return Error(Parser.getTok().getLoc(), "']' expected"); 5115 E = Parser.getTok().getEndLoc(); 5116 Parser.Lex(); // Eat right bracket token. 5117 5118 // Don't worry about range checking the value here. That's handled by 5119 // the is*() predicates. 5120 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5121 ARM_AM::no_shift, 0, 0, 5122 false, S, E)); 5123 5124 // If there's a pre-indexing writeback marker, '!', just add it as a token 5125 // operand. 5126 if (Parser.getTok().is(AsmToken::Exclaim)) { 5127 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5128 Parser.Lex(); // Eat the '!'. 5129 } 5130 5131 return false; 5132 } 5133 5134 // The register offset is optionally preceded by a '+' or '-' 5135 bool isNegative = false; 5136 if (Parser.getTok().is(AsmToken::Minus)) { 5137 isNegative = true; 5138 Parser.Lex(); // Eat the '-'. 5139 } else if (Parser.getTok().is(AsmToken::Plus)) { 5140 // Nothing to do. 5141 Parser.Lex(); // Eat the '+'. 5142 } 5143 5144 E = Parser.getTok().getLoc(); 5145 int OffsetRegNum = tryParseRegister(); 5146 if (OffsetRegNum == -1) 5147 return Error(E, "register expected"); 5148 5149 // If there's a shift operator, handle it. 5150 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5151 unsigned ShiftImm = 0; 5152 if (Parser.getTok().is(AsmToken::Comma)) { 5153 Parser.Lex(); // Eat the ','. 5154 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5155 return true; 5156 } 5157 5158 // Now we should have the closing ']' 5159 if (Parser.getTok().isNot(AsmToken::RBrac)) 5160 return Error(Parser.getTok().getLoc(), "']' expected"); 5161 E = Parser.getTok().getEndLoc(); 5162 Parser.Lex(); // Eat right bracket token. 5163 5164 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5165 ShiftType, ShiftImm, 0, isNegative, 5166 S, E)); 5167 5168 // If there's a pre-indexing writeback marker, '!', just add it as a token 5169 // operand. 5170 if (Parser.getTok().is(AsmToken::Exclaim)) { 5171 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5172 Parser.Lex(); // Eat the '!'. 5173 } 5174 5175 return false; 5176 } 5177 5178 /// parseMemRegOffsetShift - one of these two: 5179 /// ( lsl | lsr | asr | ror ) , # shift_amount 5180 /// rrx 5181 /// return true if it parses a shift otherwise it returns false. 5182 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5183 unsigned &Amount) { 5184 MCAsmParser &Parser = getParser(); 5185 SMLoc Loc = Parser.getTok().getLoc(); 5186 const AsmToken &Tok = Parser.getTok(); 5187 if (Tok.isNot(AsmToken::Identifier)) 5188 return Error(Loc, "illegal shift operator"); 5189 StringRef ShiftName = Tok.getString(); 5190 if (ShiftName == "lsl" || ShiftName == "LSL" || 5191 ShiftName == "asl" || ShiftName == "ASL") 5192 St = ARM_AM::lsl; 5193 else if (ShiftName == "lsr" || ShiftName == "LSR") 5194 St = ARM_AM::lsr; 5195 else if (ShiftName == "asr" || ShiftName == "ASR") 5196 St = ARM_AM::asr; 5197 else if (ShiftName == "ror" || ShiftName == "ROR") 5198 St = ARM_AM::ror; 5199 else if (ShiftName == "rrx" || ShiftName == "RRX") 5200 St = ARM_AM::rrx; 5201 else 5202 return Error(Loc, "illegal shift operator"); 5203 Parser.Lex(); // Eat shift type token. 5204 5205 // rrx stands alone. 5206 Amount = 0; 5207 if (St != ARM_AM::rrx) { 5208 Loc = Parser.getTok().getLoc(); 5209 // A '#' and a shift amount. 5210 const AsmToken &HashTok = Parser.getTok(); 5211 if (HashTok.isNot(AsmToken::Hash) && 5212 HashTok.isNot(AsmToken::Dollar)) 5213 return Error(HashTok.getLoc(), "'#' expected"); 5214 Parser.Lex(); // Eat hash token. 5215 5216 const MCExpr *Expr; 5217 if (getParser().parseExpression(Expr)) 5218 return true; 5219 // Range check the immediate. 5220 // lsl, ror: 0 <= imm <= 31 5221 // lsr, asr: 0 <= imm <= 32 5222 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5223 if (!CE) 5224 return Error(Loc, "shift amount must be an immediate"); 5225 int64_t Imm = CE->getValue(); 5226 if (Imm < 0 || 5227 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5228 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5229 return Error(Loc, "immediate shift value out of range"); 5230 // If <ShiftTy> #0, turn it into a no_shift. 5231 if (Imm == 0) 5232 St = ARM_AM::lsl; 5233 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5234 if (Imm == 32) 5235 Imm = 0; 5236 Amount = Imm; 5237 } 5238 5239 return false; 5240 } 5241 5242 /// parseFPImm - A floating point immediate expression operand. 5243 OperandMatchResultTy 5244 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5245 MCAsmParser &Parser = getParser(); 5246 // Anything that can accept a floating point constant as an operand 5247 // needs to go through here, as the regular parseExpression is 5248 // integer only. 5249 // 5250 // This routine still creates a generic Immediate operand, containing 5251 // a bitcast of the 64-bit floating point value. The various operands 5252 // that accept floats can check whether the value is valid for them 5253 // via the standard is*() predicates. 5254 5255 SMLoc S = Parser.getTok().getLoc(); 5256 5257 if (Parser.getTok().isNot(AsmToken::Hash) && 5258 Parser.getTok().isNot(AsmToken::Dollar)) 5259 return MatchOperand_NoMatch; 5260 5261 // Disambiguate the VMOV forms that can accept an FP immediate. 5262 // vmov.f32 <sreg>, #imm 5263 // vmov.f64 <dreg>, #imm 5264 // vmov.f32 <dreg>, #imm @ vector f32x2 5265 // vmov.f32 <qreg>, #imm @ vector f32x4 5266 // 5267 // There are also the NEON VMOV instructions which expect an 5268 // integer constant. Make sure we don't try to parse an FPImm 5269 // for these: 5270 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5271 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5272 bool isVmovf = TyOp.isToken() && 5273 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5274 TyOp.getToken() == ".f16"); 5275 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5276 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5277 Mnemonic.getToken() == "fconsts"); 5278 if (!(isVmovf || isFconst)) 5279 return MatchOperand_NoMatch; 5280 5281 Parser.Lex(); // Eat '#' or '$'. 5282 5283 // Handle negation, as that still comes through as a separate token. 5284 bool isNegative = false; 5285 if (Parser.getTok().is(AsmToken::Minus)) { 5286 isNegative = true; 5287 Parser.Lex(); 5288 } 5289 const AsmToken &Tok = Parser.getTok(); 5290 SMLoc Loc = Tok.getLoc(); 5291 if (Tok.is(AsmToken::Real) && isVmovf) { 5292 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5293 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5294 // If we had a '-' in front, toggle the sign bit. 5295 IntVal ^= (uint64_t)isNegative << 31; 5296 Parser.Lex(); // Eat the token. 5297 Operands.push_back(ARMOperand::CreateImm( 5298 MCConstantExpr::create(IntVal, getContext()), 5299 S, Parser.getTok().getLoc())); 5300 return MatchOperand_Success; 5301 } 5302 // Also handle plain integers. Instructions which allow floating point 5303 // immediates also allow a raw encoded 8-bit value. 5304 if (Tok.is(AsmToken::Integer) && isFconst) { 5305 int64_t Val = Tok.getIntVal(); 5306 Parser.Lex(); // Eat the token. 5307 if (Val > 255 || Val < 0) { 5308 Error(Loc, "encoded floating point value out of range"); 5309 return MatchOperand_ParseFail; 5310 } 5311 float RealVal = ARM_AM::getFPImmFloat(Val); 5312 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5313 5314 Operands.push_back(ARMOperand::CreateImm( 5315 MCConstantExpr::create(Val, getContext()), S, 5316 Parser.getTok().getLoc())); 5317 return MatchOperand_Success; 5318 } 5319 5320 Error(Loc, "invalid floating point immediate"); 5321 return MatchOperand_ParseFail; 5322 } 5323 5324 /// Parse a arm instruction operand. For now this parses the operand regardless 5325 /// of the mnemonic. 5326 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5327 MCAsmParser &Parser = getParser(); 5328 SMLoc S, E; 5329 5330 // Check if the current operand has a custom associated parser, if so, try to 5331 // custom parse the operand, or fallback to the general approach. 5332 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5333 if (ResTy == MatchOperand_Success) 5334 return false; 5335 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5336 // there was a match, but an error occurred, in which case, just return that 5337 // the operand parsing failed. 5338 if (ResTy == MatchOperand_ParseFail) 5339 return true; 5340 5341 switch (getLexer().getKind()) { 5342 default: 5343 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5344 return true; 5345 case AsmToken::Identifier: { 5346 // If we've seen a branch mnemonic, the next operand must be a label. This 5347 // is true even if the label is a register name. So "br r1" means branch to 5348 // label "r1". 5349 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5350 if (!ExpectLabel) { 5351 if (!tryParseRegisterWithWriteBack(Operands)) 5352 return false; 5353 int Res = tryParseShiftRegister(Operands); 5354 if (Res == 0) // success 5355 return false; 5356 else if (Res == -1) // irrecoverable error 5357 return true; 5358 // If this is VMRS, check for the apsr_nzcv operand. 5359 if (Mnemonic == "vmrs" && 5360 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5361 S = Parser.getTok().getLoc(); 5362 Parser.Lex(); 5363 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5364 return false; 5365 } 5366 } 5367 5368 // Fall though for the Identifier case that is not a register or a 5369 // special name. 5370 LLVM_FALLTHROUGH; 5371 } 5372 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5373 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5374 case AsmToken::String: // quoted label names. 5375 case AsmToken::Dot: { // . as a branch target 5376 // This was not a register so parse other operands that start with an 5377 // identifier (like labels) as expressions and create them as immediates. 5378 const MCExpr *IdVal; 5379 S = Parser.getTok().getLoc(); 5380 if (getParser().parseExpression(IdVal)) 5381 return true; 5382 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5383 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5384 return false; 5385 } 5386 case AsmToken::LBrac: 5387 return parseMemory(Operands); 5388 case AsmToken::LCurly: 5389 return parseRegisterList(Operands); 5390 case AsmToken::Dollar: 5391 case AsmToken::Hash: 5392 // #42 -> immediate. 5393 S = Parser.getTok().getLoc(); 5394 Parser.Lex(); 5395 5396 if (Parser.getTok().isNot(AsmToken::Colon)) { 5397 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5398 const MCExpr *ImmVal; 5399 if (getParser().parseExpression(ImmVal)) 5400 return true; 5401 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5402 if (CE) { 5403 int32_t Val = CE->getValue(); 5404 if (isNegative && Val == 0) 5405 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5406 getContext()); 5407 } 5408 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5409 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5410 5411 // There can be a trailing '!' on operands that we want as a separate 5412 // '!' Token operand. Handle that here. For example, the compatibility 5413 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5414 if (Parser.getTok().is(AsmToken::Exclaim)) { 5415 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5416 Parser.getTok().getLoc())); 5417 Parser.Lex(); // Eat exclaim token 5418 } 5419 return false; 5420 } 5421 // w/ a ':' after the '#', it's just like a plain ':'. 5422 LLVM_FALLTHROUGH; 5423 5424 case AsmToken::Colon: { 5425 S = Parser.getTok().getLoc(); 5426 // ":lower16:" and ":upper16:" expression prefixes 5427 // FIXME: Check it's an expression prefix, 5428 // e.g. (FOO - :lower16:BAR) isn't legal. 5429 ARMMCExpr::VariantKind RefKind; 5430 if (parsePrefix(RefKind)) 5431 return true; 5432 5433 const MCExpr *SubExprVal; 5434 if (getParser().parseExpression(SubExprVal)) 5435 return true; 5436 5437 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5438 getContext()); 5439 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5440 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5441 return false; 5442 } 5443 case AsmToken::Equal: { 5444 S = Parser.getTok().getLoc(); 5445 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5446 return Error(S, "unexpected token in operand"); 5447 Parser.Lex(); // Eat '=' 5448 const MCExpr *SubExprVal; 5449 if (getParser().parseExpression(SubExprVal)) 5450 return true; 5451 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5452 5453 // execute-only: we assume that assembly programmers know what they are 5454 // doing and allow literal pool creation here 5455 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5456 return false; 5457 } 5458 } 5459 } 5460 5461 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5462 // :lower16: and :upper16:. 5463 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5464 MCAsmParser &Parser = getParser(); 5465 RefKind = ARMMCExpr::VK_ARM_None; 5466 5467 // consume an optional '#' (GNU compatibility) 5468 if (getLexer().is(AsmToken::Hash)) 5469 Parser.Lex(); 5470 5471 // :lower16: and :upper16: modifiers 5472 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5473 Parser.Lex(); // Eat ':' 5474 5475 if (getLexer().isNot(AsmToken::Identifier)) { 5476 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5477 return true; 5478 } 5479 5480 enum { 5481 COFF = (1 << MCObjectFileInfo::IsCOFF), 5482 ELF = (1 << MCObjectFileInfo::IsELF), 5483 MACHO = (1 << MCObjectFileInfo::IsMachO), 5484 WASM = (1 << MCObjectFileInfo::IsWasm), 5485 }; 5486 static const struct PrefixEntry { 5487 const char *Spelling; 5488 ARMMCExpr::VariantKind VariantKind; 5489 uint8_t SupportedFormats; 5490 } PrefixEntries[] = { 5491 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5492 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5493 }; 5494 5495 StringRef IDVal = Parser.getTok().getIdentifier(); 5496 5497 const auto &Prefix = 5498 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5499 [&IDVal](const PrefixEntry &PE) { 5500 return PE.Spelling == IDVal; 5501 }); 5502 if (Prefix == std::end(PrefixEntries)) { 5503 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5504 return true; 5505 } 5506 5507 uint8_t CurrentFormat; 5508 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5509 case MCObjectFileInfo::IsMachO: 5510 CurrentFormat = MACHO; 5511 break; 5512 case MCObjectFileInfo::IsELF: 5513 CurrentFormat = ELF; 5514 break; 5515 case MCObjectFileInfo::IsCOFF: 5516 CurrentFormat = COFF; 5517 break; 5518 case MCObjectFileInfo::IsWasm: 5519 CurrentFormat = WASM; 5520 break; 5521 } 5522 5523 if (~Prefix->SupportedFormats & CurrentFormat) { 5524 Error(Parser.getTok().getLoc(), 5525 "cannot represent relocation in the current file format"); 5526 return true; 5527 } 5528 5529 RefKind = Prefix->VariantKind; 5530 Parser.Lex(); 5531 5532 if (getLexer().isNot(AsmToken::Colon)) { 5533 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5534 return true; 5535 } 5536 Parser.Lex(); // Eat the last ':' 5537 5538 return false; 5539 } 5540 5541 /// Given a mnemonic, split out possible predication code and carry 5542 /// setting letters to form a canonical mnemonic and flags. 5543 // 5544 // FIXME: Would be nice to autogen this. 5545 // FIXME: This is a bit of a maze of special cases. 5546 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5547 unsigned &PredicationCode, 5548 bool &CarrySetting, 5549 unsigned &ProcessorIMod, 5550 StringRef &ITMask) { 5551 PredicationCode = ARMCC::AL; 5552 CarrySetting = false; 5553 ProcessorIMod = 0; 5554 5555 // Ignore some mnemonics we know aren't predicated forms. 5556 // 5557 // FIXME: Would be nice to autogen this. 5558 if ((Mnemonic == "movs" && isThumb()) || 5559 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5560 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5561 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5562 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5563 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5564 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5565 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5566 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5567 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5568 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5569 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5570 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5571 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5572 Mnemonic == "bxns" || Mnemonic == "blxns" || 5573 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5574 Mnemonic == "vcmla" || Mnemonic == "vcadd") 5575 return Mnemonic; 5576 5577 // First, split out any predication code. Ignore mnemonics we know aren't 5578 // predicated but do have a carry-set and so weren't caught above. 5579 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5580 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5581 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5582 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5583 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 5584 if (CC != ~0U) { 5585 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5586 PredicationCode = CC; 5587 } 5588 } 5589 5590 // Next, determine if we have a carry setting bit. We explicitly ignore all 5591 // the instructions we know end in 's'. 5592 if (Mnemonic.endswith("s") && 5593 !(Mnemonic == "cps" || Mnemonic == "mls" || 5594 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5595 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5596 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5597 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5598 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5599 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5600 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5601 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5602 Mnemonic == "bxns" || Mnemonic == "blxns" || 5603 (Mnemonic == "movs" && isThumb()))) { 5604 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5605 CarrySetting = true; 5606 } 5607 5608 // The "cps" instruction can have a interrupt mode operand which is glued into 5609 // the mnemonic. Check if this is the case, split it and parse the imod op 5610 if (Mnemonic.startswith("cps")) { 5611 // Split out any imod code. 5612 unsigned IMod = 5613 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5614 .Case("ie", ARM_PROC::IE) 5615 .Case("id", ARM_PROC::ID) 5616 .Default(~0U); 5617 if (IMod != ~0U) { 5618 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5619 ProcessorIMod = IMod; 5620 } 5621 } 5622 5623 // The "it" instruction has the condition mask on the end of the mnemonic. 5624 if (Mnemonic.startswith("it")) { 5625 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5626 Mnemonic = Mnemonic.slice(0, 2); 5627 } 5628 5629 return Mnemonic; 5630 } 5631 5632 /// Given a canonical mnemonic, determine if the instruction ever allows 5633 /// inclusion of carry set or predication code operands. 5634 // 5635 // FIXME: It would be nice to autogen this. 5636 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5637 bool &CanAcceptCarrySet, 5638 bool &CanAcceptPredicationCode) { 5639 CanAcceptCarrySet = 5640 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5641 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5642 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5643 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5644 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5645 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5646 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5647 (!isThumb() && 5648 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5649 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5650 5651 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5652 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5653 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5654 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5655 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5656 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5657 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5658 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5659 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5660 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5661 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5662 Mnemonic == "vmovx" || Mnemonic == "vins" || 5663 Mnemonic == "vudot" || Mnemonic == "vsdot" || 5664 Mnemonic == "vcmla" || Mnemonic == "vcadd") { 5665 // These mnemonics are never predicable 5666 CanAcceptPredicationCode = false; 5667 } else if (!isThumb()) { 5668 // Some instructions are only predicable in Thumb mode 5669 CanAcceptPredicationCode = 5670 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5671 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5672 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 5673 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 5674 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 5675 Mnemonic != "stc2" && Mnemonic != "stc2l" && 5676 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 5677 } else if (isThumbOne()) { 5678 if (hasV6MOps()) 5679 CanAcceptPredicationCode = Mnemonic != "movs"; 5680 else 5681 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5682 } else 5683 CanAcceptPredicationCode = true; 5684 } 5685 5686 // Some Thumb instructions have two operand forms that are not 5687 // available as three operand, convert to two operand form if possible. 5688 // 5689 // FIXME: We would really like to be able to tablegen'erate this. 5690 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5691 bool CarrySetting, 5692 OperandVector &Operands) { 5693 if (Operands.size() != 6) 5694 return; 5695 5696 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5697 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5698 if (!Op3.isReg() || !Op4.isReg()) 5699 return; 5700 5701 auto Op3Reg = Op3.getReg(); 5702 auto Op4Reg = Op4.getReg(); 5703 5704 // For most Thumb2 cases we just generate the 3 operand form and reduce 5705 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5706 // won't accept SP or PC so we do the transformation here taking care 5707 // with immediate range in the 'add sp, sp #imm' case. 5708 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5709 if (isThumbTwo()) { 5710 if (Mnemonic != "add") 5711 return; 5712 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5713 (Op5.isReg() && Op5.getReg() == ARM::PC); 5714 if (!TryTransform) { 5715 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5716 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5717 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5718 Op5.isImm() && !Op5.isImm0_508s4()); 5719 } 5720 if (!TryTransform) 5721 return; 5722 } else if (!isThumbOne()) 5723 return; 5724 5725 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5726 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5727 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5728 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5729 return; 5730 5731 // If first 2 operands of a 3 operand instruction are the same 5732 // then transform to 2 operand version of the same instruction 5733 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5734 bool Transform = Op3Reg == Op4Reg; 5735 5736 // For communtative operations, we might be able to transform if we swap 5737 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5738 // as tADDrsp. 5739 const ARMOperand *LastOp = &Op5; 5740 bool Swap = false; 5741 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5742 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5743 Mnemonic == "and" || Mnemonic == "eor" || 5744 Mnemonic == "adc" || Mnemonic == "orr")) { 5745 Swap = true; 5746 LastOp = &Op4; 5747 Transform = true; 5748 } 5749 5750 // If both registers are the same then remove one of them from 5751 // the operand list, with certain exceptions. 5752 if (Transform) { 5753 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5754 // 2 operand forms don't exist. 5755 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5756 LastOp->isReg()) 5757 Transform = false; 5758 5759 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5760 // 3-bits because the ARMARM says not to. 5761 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5762 Transform = false; 5763 } 5764 5765 if (Transform) { 5766 if (Swap) 5767 std::swap(Op4, Op5); 5768 Operands.erase(Operands.begin() + 3); 5769 } 5770 } 5771 5772 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5773 OperandVector &Operands) { 5774 // FIXME: This is all horribly hacky. We really need a better way to deal 5775 // with optional operands like this in the matcher table. 5776 5777 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5778 // another does not. Specifically, the MOVW instruction does not. So we 5779 // special case it here and remove the defaulted (non-setting) cc_out 5780 // operand if that's the instruction we're trying to match. 5781 // 5782 // We do this as post-processing of the explicit operands rather than just 5783 // conditionally adding the cc_out in the first place because we need 5784 // to check the type of the parsed immediate operand. 5785 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5786 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5787 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5788 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5789 return true; 5790 5791 // Register-register 'add' for thumb does not have a cc_out operand 5792 // when there are only two register operands. 5793 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5794 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5795 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5796 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5797 return true; 5798 // Register-register 'add' for thumb does not have a cc_out operand 5799 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5800 // have to check the immediate range here since Thumb2 has a variant 5801 // that can handle a different range and has a cc_out operand. 5802 if (((isThumb() && Mnemonic == "add") || 5803 (isThumbTwo() && Mnemonic == "sub")) && 5804 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5805 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5806 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5807 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5808 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5809 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5810 return true; 5811 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5812 // imm0_4095 variant. That's the least-preferred variant when 5813 // selecting via the generic "add" mnemonic, so to know that we 5814 // should remove the cc_out operand, we have to explicitly check that 5815 // it's not one of the other variants. Ugh. 5816 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5817 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5818 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5819 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5820 // Nest conditions rather than one big 'if' statement for readability. 5821 // 5822 // If both registers are low, we're in an IT block, and the immediate is 5823 // in range, we should use encoding T1 instead, which has a cc_out. 5824 if (inITBlock() && 5825 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5826 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5827 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5828 return false; 5829 // Check against T3. If the second register is the PC, this is an 5830 // alternate form of ADR, which uses encoding T4, so check for that too. 5831 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5832 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5833 return false; 5834 5835 // Otherwise, we use encoding T4, which does not have a cc_out 5836 // operand. 5837 return true; 5838 } 5839 5840 // The thumb2 multiply instruction doesn't have a CCOut register, so 5841 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5842 // use the 16-bit encoding or not. 5843 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5844 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5845 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5846 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5847 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5848 // If the registers aren't low regs, the destination reg isn't the 5849 // same as one of the source regs, or the cc_out operand is zero 5850 // outside of an IT block, we have to use the 32-bit encoding, so 5851 // remove the cc_out operand. 5852 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5853 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5854 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5855 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5856 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5857 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5858 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5859 return true; 5860 5861 // Also check the 'mul' syntax variant that doesn't specify an explicit 5862 // destination register. 5863 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5864 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5865 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5866 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5867 // If the registers aren't low regs or the cc_out operand is zero 5868 // outside of an IT block, we have to use the 32-bit encoding, so 5869 // remove the cc_out operand. 5870 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5871 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5872 !inITBlock())) 5873 return true; 5874 5875 // Register-register 'add/sub' for thumb does not have a cc_out operand 5876 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5877 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5878 // right, this will result in better diagnostics (which operand is off) 5879 // anyway. 5880 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5881 (Operands.size() == 5 || Operands.size() == 6) && 5882 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5883 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5884 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5885 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5886 (Operands.size() == 6 && 5887 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5888 return true; 5889 5890 return false; 5891 } 5892 5893 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5894 OperandVector &Operands) { 5895 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 5896 unsigned RegIdx = 3; 5897 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") && 5898 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5899 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5900 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5901 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5902 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5903 RegIdx = 4; 5904 5905 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5906 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5907 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5908 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5909 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5910 return true; 5911 } 5912 return false; 5913 } 5914 5915 static bool isDataTypeToken(StringRef Tok) { 5916 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5917 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5918 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5919 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5920 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5921 Tok == ".f" || Tok == ".d"; 5922 } 5923 5924 // FIXME: This bit should probably be handled via an explicit match class 5925 // in the .td files that matches the suffix instead of having it be 5926 // a literal string token the way it is now. 5927 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5928 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5929 } 5930 5931 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5932 unsigned VariantID); 5933 5934 // The GNU assembler has aliases of ldrd and strd with the second register 5935 // omitted. We don't have a way to do that in tablegen, so fix it up here. 5936 // 5937 // We have to be careful to not emit an invalid Rt2 here, because the rest of 5938 // the assmebly parser could then generate confusing diagnostics refering to 5939 // it. If we do find anything that prevents us from doing the transformation we 5940 // bail out, and let the assembly parser report an error on the instruction as 5941 // it is written. 5942 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 5943 OperandVector &Operands) { 5944 if (Mnemonic != "ldrd" && Mnemonic != "strd") 5945 return; 5946 if (Operands.size() < 4) 5947 return; 5948 5949 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 5950 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5951 5952 if (!Op2.isReg()) 5953 return; 5954 if (!Op3.isMem()) 5955 return; 5956 5957 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 5958 if (!GPR.contains(Op2.getReg())) 5959 return; 5960 5961 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 5962 if (!isThumb() && (RtEncoding & 1)) { 5963 // In ARM mode, the registers must be from an aligned pair, this 5964 // restriction does not apply in Thumb mode. 5965 return; 5966 } 5967 if (Op2.getReg() == ARM::PC) 5968 return; 5969 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 5970 if (!PairedReg || PairedReg == ARM::PC || 5971 (PairedReg == ARM::SP && !hasV8Ops())) 5972 return; 5973 5974 Operands.insert( 5975 Operands.begin() + 3, 5976 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 5977 } 5978 5979 /// Parse an arm instruction mnemonic followed by its operands. 5980 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5981 SMLoc NameLoc, OperandVector &Operands) { 5982 MCAsmParser &Parser = getParser(); 5983 5984 // Apply mnemonic aliases before doing anything else, as the destination 5985 // mnemonic may include suffices and we want to handle them normally. 5986 // The generic tblgen'erated code does this later, at the start of 5987 // MatchInstructionImpl(), but that's too late for aliases that include 5988 // any sort of suffix. 5989 uint64_t AvailableFeatures = getAvailableFeatures(); 5990 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5991 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5992 5993 // First check for the ARM-specific .req directive. 5994 if (Parser.getTok().is(AsmToken::Identifier) && 5995 Parser.getTok().getIdentifier() == ".req") { 5996 parseDirectiveReq(Name, NameLoc); 5997 // We always return 'error' for this, as we're done with this 5998 // statement and don't need to match the 'instruction." 5999 return true; 6000 } 6001 6002 // Create the leading tokens for the mnemonic, split by '.' characters. 6003 size_t Start = 0, Next = Name.find('.'); 6004 StringRef Mnemonic = Name.slice(Start, Next); 6005 6006 // Split out the predication code and carry setting flag from the mnemonic. 6007 unsigned PredicationCode; 6008 unsigned ProcessorIMod; 6009 bool CarrySetting; 6010 StringRef ITMask; 6011 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 6012 ProcessorIMod, ITMask); 6013 6014 // In Thumb1, only the branch (B) instruction can be predicated. 6015 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6016 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6017 } 6018 6019 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6020 6021 // Handle the IT instruction ITMask. Convert it to a bitmask. This 6022 // is the mask as it will be for the IT encoding if the conditional 6023 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 6024 // where the conditional bit0 is zero, the instruction post-processing 6025 // will adjust the mask accordingly. 6026 if (Mnemonic == "it") { 6027 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 6028 if (ITMask.size() > 3) { 6029 return Error(Loc, "too many conditions on IT instruction"); 6030 } 6031 unsigned Mask = 8; 6032 for (unsigned i = ITMask.size(); i != 0; --i) { 6033 char pos = ITMask[i - 1]; 6034 if (pos != 't' && pos != 'e') { 6035 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6036 } 6037 Mask >>= 1; 6038 if (ITMask[i - 1] == 't') 6039 Mask |= 8; 6040 } 6041 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6042 } 6043 6044 // FIXME: This is all a pretty gross hack. We should automatically handle 6045 // optional operands like this via tblgen. 6046 6047 // Next, add the CCOut and ConditionCode operands, if needed. 6048 // 6049 // For mnemonics which can ever incorporate a carry setting bit or predication 6050 // code, our matching model involves us always generating CCOut and 6051 // ConditionCode operands to match the mnemonic "as written" and then we let 6052 // the matcher deal with finding the right instruction or generating an 6053 // appropriate error. 6054 bool CanAcceptCarrySet, CanAcceptPredicationCode; 6055 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 6056 6057 // If we had a carry-set on an instruction that can't do that, issue an 6058 // error. 6059 if (!CanAcceptCarrySet && CarrySetting) { 6060 return Error(NameLoc, "instruction '" + Mnemonic + 6061 "' can not set flags, but 's' suffix specified"); 6062 } 6063 // If we had a predication code on an instruction that can't do that, issue an 6064 // error. 6065 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6066 return Error(NameLoc, "instruction '" + Mnemonic + 6067 "' is not predicable, but condition code specified"); 6068 } 6069 6070 // Add the carry setting operand, if necessary. 6071 if (CanAcceptCarrySet) { 6072 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6073 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6074 Loc)); 6075 } 6076 6077 // Add the predication code operand, if necessary. 6078 if (CanAcceptPredicationCode) { 6079 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6080 CarrySetting); 6081 Operands.push_back(ARMOperand::CreateCondCode( 6082 ARMCC::CondCodes(PredicationCode), Loc)); 6083 } 6084 6085 // Add the processor imod operand, if necessary. 6086 if (ProcessorIMod) { 6087 Operands.push_back(ARMOperand::CreateImm( 6088 MCConstantExpr::create(ProcessorIMod, getContext()), 6089 NameLoc, NameLoc)); 6090 } else if (Mnemonic == "cps" && isMClass()) { 6091 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6092 } 6093 6094 // Add the remaining tokens in the mnemonic. 6095 while (Next != StringRef::npos) { 6096 Start = Next; 6097 Next = Name.find('.', Start + 1); 6098 StringRef ExtraToken = Name.slice(Start, Next); 6099 6100 // Some NEON instructions have an optional datatype suffix that is 6101 // completely ignored. Check for that. 6102 if (isDataTypeToken(ExtraToken) && 6103 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6104 continue; 6105 6106 // For for ARM mode generate an error if the .n qualifier is used. 6107 if (ExtraToken == ".n" && !isThumb()) { 6108 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6109 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6110 "arm mode"); 6111 } 6112 6113 // The .n qualifier is always discarded as that is what the tables 6114 // and matcher expect. In ARM mode the .w qualifier has no effect, 6115 // so discard it to avoid errors that can be caused by the matcher. 6116 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6117 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6118 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6119 } 6120 } 6121 6122 // Read the remaining operands. 6123 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6124 // Read the first operand. 6125 if (parseOperand(Operands, Mnemonic)) { 6126 return true; 6127 } 6128 6129 while (parseOptionalToken(AsmToken::Comma)) { 6130 // Parse and remember the operand. 6131 if (parseOperand(Operands, Mnemonic)) { 6132 return true; 6133 } 6134 } 6135 } 6136 6137 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6138 return true; 6139 6140 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6141 6142 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6143 // do and don't have a cc_out optional-def operand. With some spot-checks 6144 // of the operand list, we can figure out which variant we're trying to 6145 // parse and adjust accordingly before actually matching. We shouldn't ever 6146 // try to remove a cc_out operand that was explicitly set on the 6147 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6148 // table driven matcher doesn't fit well with the ARM instruction set. 6149 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6150 Operands.erase(Operands.begin() + 1); 6151 6152 // Some instructions have the same mnemonic, but don't always 6153 // have a predicate. Distinguish them here and delete the 6154 // predicate if needed. 6155 if (PredicationCode == ARMCC::AL && 6156 shouldOmitPredicateOperand(Mnemonic, Operands)) 6157 Operands.erase(Operands.begin() + 1); 6158 6159 // ARM mode 'blx' need special handling, as the register operand version 6160 // is predicable, but the label operand version is not. So, we can't rely 6161 // on the Mnemonic based checking to correctly figure out when to put 6162 // a k_CondCode operand in the list. If we're trying to match the label 6163 // version, remove the k_CondCode operand here. 6164 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 6165 static_cast<ARMOperand &>(*Operands[2]).isImm()) 6166 Operands.erase(Operands.begin() + 1); 6167 6168 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 6169 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 6170 // a single GPRPair reg operand is used in the .td file to replace the two 6171 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 6172 // expressed as a GPRPair, so we have to manually merge them. 6173 // FIXME: We would really like to be able to tablegen'erate this. 6174 if (!isThumb() && Operands.size() > 4 && 6175 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 6176 Mnemonic == "stlexd")) { 6177 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 6178 unsigned Idx = isLoad ? 2 : 3; 6179 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6180 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6181 6182 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6183 // Adjust only if Op1 and Op2 are GPRs. 6184 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6185 MRC.contains(Op2.getReg())) { 6186 unsigned Reg1 = Op1.getReg(); 6187 unsigned Reg2 = Op2.getReg(); 6188 unsigned Rt = MRI->getEncodingValue(Reg1); 6189 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6190 6191 // Rt2 must be Rt + 1 and Rt must be even. 6192 if (Rt + 1 != Rt2 || (Rt & 1)) { 6193 return Error(Op2.getStartLoc(), 6194 isLoad ? "destination operands must be sequential" 6195 : "source operands must be sequential"); 6196 } 6197 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6198 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6199 Operands[Idx] = 6200 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6201 Operands.erase(Operands.begin() + Idx + 1); 6202 } 6203 } 6204 6205 // GNU Assembler extension (compatibility). 6206 fixupGNULDRDAlias(Mnemonic, Operands); 6207 6208 // FIXME: As said above, this is all a pretty gross hack. This instruction 6209 // does not fit with other "subs" and tblgen. 6210 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6211 // so the Mnemonic is the original name "subs" and delete the predicate 6212 // operand so it will match the table entry. 6213 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6214 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6215 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6216 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6217 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6218 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6219 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6220 Operands.erase(Operands.begin() + 1); 6221 } 6222 return false; 6223 } 6224 6225 // Validate context-sensitive operand constraints. 6226 6227 // return 'true' if register list contains non-low GPR registers, 6228 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6229 // 'containsReg' to true. 6230 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6231 unsigned Reg, unsigned HiReg, 6232 bool &containsReg) { 6233 containsReg = false; 6234 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6235 unsigned OpReg = Inst.getOperand(i).getReg(); 6236 if (OpReg == Reg) 6237 containsReg = true; 6238 // Anything other than a low register isn't legal here. 6239 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6240 return true; 6241 } 6242 return false; 6243 } 6244 6245 // Check if the specified regisgter is in the register list of the inst, 6246 // starting at the indicated operand number. 6247 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6248 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6249 unsigned OpReg = Inst.getOperand(i).getReg(); 6250 if (OpReg == Reg) 6251 return true; 6252 } 6253 return false; 6254 } 6255 6256 // Return true if instruction has the interesting property of being 6257 // allowed in IT blocks, but not being predicable. 6258 static bool instIsBreakpoint(const MCInst &Inst) { 6259 return Inst.getOpcode() == ARM::tBKPT || 6260 Inst.getOpcode() == ARM::BKPT || 6261 Inst.getOpcode() == ARM::tHLT || 6262 Inst.getOpcode() == ARM::HLT; 6263 } 6264 6265 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6266 const OperandVector &Operands, 6267 unsigned ListNo, bool IsARPop) { 6268 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6269 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6270 6271 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6272 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6273 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6274 6275 if (!IsARPop && ListContainsSP) 6276 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6277 "SP may not be in the register list"); 6278 else if (ListContainsPC && ListContainsLR) 6279 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6280 "PC and LR may not be in the register list simultaneously"); 6281 return false; 6282 } 6283 6284 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6285 const OperandVector &Operands, 6286 unsigned ListNo) { 6287 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6288 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6289 6290 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6291 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6292 6293 if (ListContainsSP && ListContainsPC) 6294 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6295 "SP and PC may not be in the register list"); 6296 else if (ListContainsSP) 6297 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6298 "SP may not be in the register list"); 6299 else if (ListContainsPC) 6300 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6301 "PC may not be in the register list"); 6302 return false; 6303 } 6304 6305 // FIXME: We would really like to be able to tablegen'erate this. 6306 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6307 const OperandVector &Operands) { 6308 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6309 SMLoc Loc = Operands[0]->getStartLoc(); 6310 6311 // Check the IT block state first. 6312 // NOTE: BKPT and HLT instructions have the interesting property of being 6313 // allowed in IT blocks, but not being predicable. They just always execute. 6314 if (inITBlock() && !instIsBreakpoint(Inst)) { 6315 // The instruction must be predicable. 6316 if (!MCID.isPredicable()) 6317 return Error(Loc, "instructions in IT block must be predicable"); 6318 ARMCC::CondCodes Cond = ARMCC::CondCodes( 6319 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 6320 if (Cond != currentITCond()) { 6321 // Find the condition code Operand to get its SMLoc information. 6322 SMLoc CondLoc; 6323 for (unsigned I = 1; I < Operands.size(); ++I) 6324 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6325 CondLoc = Operands[I]->getStartLoc(); 6326 return Error(CondLoc, "incorrect condition in IT block; got '" + 6327 StringRef(ARMCondCodeToString(Cond)) + 6328 "', but expected '" + 6329 ARMCondCodeToString(currentITCond()) + "'"); 6330 } 6331 // Check for non-'al' condition codes outside of the IT block. 6332 } else if (isThumbTwo() && MCID.isPredicable() && 6333 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6334 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6335 Inst.getOpcode() != ARM::t2Bcc) { 6336 return Error(Loc, "predicated instructions must be in IT block"); 6337 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 6338 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6339 ARMCC::AL) { 6340 return Warning(Loc, "predicated instructions should be in IT block"); 6341 } 6342 6343 // PC-setting instructions in an IT block, but not the last instruction of 6344 // the block, are UNPREDICTABLE. 6345 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 6346 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 6347 } 6348 6349 const unsigned Opcode = Inst.getOpcode(); 6350 switch (Opcode) { 6351 case ARM::LDRD: 6352 case ARM::LDRD_PRE: 6353 case ARM::LDRD_POST: { 6354 const unsigned RtReg = Inst.getOperand(0).getReg(); 6355 6356 // Rt can't be R14. 6357 if (RtReg == ARM::LR) 6358 return Error(Operands[3]->getStartLoc(), 6359 "Rt can't be R14"); 6360 6361 const unsigned Rt = MRI->getEncodingValue(RtReg); 6362 // Rt must be even-numbered. 6363 if ((Rt & 1) == 1) 6364 return Error(Operands[3]->getStartLoc(), 6365 "Rt must be even-numbered"); 6366 6367 // Rt2 must be Rt + 1. 6368 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6369 if (Rt2 != Rt + 1) 6370 return Error(Operands[3]->getStartLoc(), 6371 "destination operands must be sequential"); 6372 6373 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6374 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6375 // For addressing modes with writeback, the base register needs to be 6376 // different from the destination registers. 6377 if (Rn == Rt || Rn == Rt2) 6378 return Error(Operands[3]->getStartLoc(), 6379 "base register needs to be different from destination " 6380 "registers"); 6381 } 6382 6383 return false; 6384 } 6385 case ARM::t2LDRDi8: 6386 case ARM::t2LDRD_PRE: 6387 case ARM::t2LDRD_POST: { 6388 // Rt2 must be different from Rt. 6389 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6390 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6391 if (Rt2 == Rt) 6392 return Error(Operands[3]->getStartLoc(), 6393 "destination operands can't be identical"); 6394 return false; 6395 } 6396 case ARM::t2BXJ: { 6397 const unsigned RmReg = Inst.getOperand(0).getReg(); 6398 // Rm = SP is no longer unpredictable in v8-A 6399 if (RmReg == ARM::SP && !hasV8Ops()) 6400 return Error(Operands[2]->getStartLoc(), 6401 "r13 (SP) is an unpredictable operand to BXJ"); 6402 return false; 6403 } 6404 case ARM::STRD: { 6405 // Rt2 must be Rt + 1. 6406 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6407 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6408 if (Rt2 != Rt + 1) 6409 return Error(Operands[3]->getStartLoc(), 6410 "source operands must be sequential"); 6411 return false; 6412 } 6413 case ARM::STRD_PRE: 6414 case ARM::STRD_POST: { 6415 // Rt2 must be Rt + 1. 6416 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6417 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6418 if (Rt2 != Rt + 1) 6419 return Error(Operands[3]->getStartLoc(), 6420 "source operands must be sequential"); 6421 return false; 6422 } 6423 case ARM::STR_PRE_IMM: 6424 case ARM::STR_PRE_REG: 6425 case ARM::STR_POST_IMM: 6426 case ARM::STR_POST_REG: 6427 case ARM::STRH_PRE: 6428 case ARM::STRH_POST: 6429 case ARM::STRB_PRE_IMM: 6430 case ARM::STRB_PRE_REG: 6431 case ARM::STRB_POST_IMM: 6432 case ARM::STRB_POST_REG: { 6433 // Rt must be different from Rn. 6434 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6435 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6436 6437 if (Rt == Rn) 6438 return Error(Operands[3]->getStartLoc(), 6439 "source register and base register can't be identical"); 6440 return false; 6441 } 6442 case ARM::LDR_PRE_IMM: 6443 case ARM::LDR_PRE_REG: 6444 case ARM::LDR_POST_IMM: 6445 case ARM::LDR_POST_REG: 6446 case ARM::LDRH_PRE: 6447 case ARM::LDRH_POST: 6448 case ARM::LDRSH_PRE: 6449 case ARM::LDRSH_POST: 6450 case ARM::LDRB_PRE_IMM: 6451 case ARM::LDRB_PRE_REG: 6452 case ARM::LDRB_POST_IMM: 6453 case ARM::LDRB_POST_REG: 6454 case ARM::LDRSB_PRE: 6455 case ARM::LDRSB_POST: { 6456 // Rt must be different from Rn. 6457 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6458 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6459 6460 if (Rt == Rn) 6461 return Error(Operands[3]->getStartLoc(), 6462 "destination register and base register can't be identical"); 6463 return false; 6464 } 6465 case ARM::SBFX: 6466 case ARM::UBFX: { 6467 // Width must be in range [1, 32-lsb]. 6468 unsigned LSB = Inst.getOperand(2).getImm(); 6469 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6470 if (Widthm1 >= 32 - LSB) 6471 return Error(Operands[5]->getStartLoc(), 6472 "bitfield width must be in range [1,32-lsb]"); 6473 return false; 6474 } 6475 // Notionally handles ARM::tLDMIA_UPD too. 6476 case ARM::tLDMIA: { 6477 // If we're parsing Thumb2, the .w variant is available and handles 6478 // most cases that are normally illegal for a Thumb1 LDM instruction. 6479 // We'll make the transformation in processInstruction() if necessary. 6480 // 6481 // Thumb LDM instructions are writeback iff the base register is not 6482 // in the register list. 6483 unsigned Rn = Inst.getOperand(0).getReg(); 6484 bool HasWritebackToken = 6485 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6486 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6487 bool ListContainsBase; 6488 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6489 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6490 "registers must be in range r0-r7"); 6491 // If we should have writeback, then there should be a '!' token. 6492 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6493 return Error(Operands[2]->getStartLoc(), 6494 "writeback operator '!' expected"); 6495 // If we should not have writeback, there must not be a '!'. This is 6496 // true even for the 32-bit wide encodings. 6497 if (ListContainsBase && HasWritebackToken) 6498 return Error(Operands[3]->getStartLoc(), 6499 "writeback operator '!' not allowed when base register " 6500 "in register list"); 6501 6502 if (validatetLDMRegList(Inst, Operands, 3)) 6503 return true; 6504 break; 6505 } 6506 case ARM::LDMIA_UPD: 6507 case ARM::LDMDB_UPD: 6508 case ARM::LDMIB_UPD: 6509 case ARM::LDMDA_UPD: 6510 // ARM variants loading and updating the same register are only officially 6511 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6512 if (!hasV7Ops()) 6513 break; 6514 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6515 return Error(Operands.back()->getStartLoc(), 6516 "writeback register not allowed in register list"); 6517 break; 6518 case ARM::t2LDMIA: 6519 case ARM::t2LDMDB: 6520 if (validatetLDMRegList(Inst, Operands, 3)) 6521 return true; 6522 break; 6523 case ARM::t2STMIA: 6524 case ARM::t2STMDB: 6525 if (validatetSTMRegList(Inst, Operands, 3)) 6526 return true; 6527 break; 6528 case ARM::t2LDMIA_UPD: 6529 case ARM::t2LDMDB_UPD: 6530 case ARM::t2STMIA_UPD: 6531 case ARM::t2STMDB_UPD: 6532 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6533 return Error(Operands.back()->getStartLoc(), 6534 "writeback register not allowed in register list"); 6535 6536 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6537 if (validatetLDMRegList(Inst, Operands, 3)) 6538 return true; 6539 } else { 6540 if (validatetSTMRegList(Inst, Operands, 3)) 6541 return true; 6542 } 6543 break; 6544 6545 case ARM::sysLDMIA_UPD: 6546 case ARM::sysLDMDA_UPD: 6547 case ARM::sysLDMDB_UPD: 6548 case ARM::sysLDMIB_UPD: 6549 if (!listContainsReg(Inst, 3, ARM::PC)) 6550 return Error(Operands[4]->getStartLoc(), 6551 "writeback register only allowed on system LDM " 6552 "if PC in register-list"); 6553 break; 6554 case ARM::sysSTMIA_UPD: 6555 case ARM::sysSTMDA_UPD: 6556 case ARM::sysSTMDB_UPD: 6557 case ARM::sysSTMIB_UPD: 6558 return Error(Operands[2]->getStartLoc(), 6559 "system STM cannot have writeback register"); 6560 case ARM::tMUL: 6561 // The second source operand must be the same register as the destination 6562 // operand. 6563 // 6564 // In this case, we must directly check the parsed operands because the 6565 // cvtThumbMultiply() function is written in such a way that it guarantees 6566 // this first statement is always true for the new Inst. Essentially, the 6567 // destination is unconditionally copied into the second source operand 6568 // without checking to see if it matches what we actually parsed. 6569 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6570 ((ARMOperand &)*Operands[5]).getReg()) && 6571 (((ARMOperand &)*Operands[3]).getReg() != 6572 ((ARMOperand &)*Operands[4]).getReg())) { 6573 return Error(Operands[3]->getStartLoc(), 6574 "destination register must match source register"); 6575 } 6576 break; 6577 6578 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6579 // so only issue a diagnostic for thumb1. The instructions will be 6580 // switched to the t2 encodings in processInstruction() if necessary. 6581 case ARM::tPOP: { 6582 bool ListContainsBase; 6583 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6584 !isThumbTwo()) 6585 return Error(Operands[2]->getStartLoc(), 6586 "registers must be in range r0-r7 or pc"); 6587 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6588 return true; 6589 break; 6590 } 6591 case ARM::tPUSH: { 6592 bool ListContainsBase; 6593 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6594 !isThumbTwo()) 6595 return Error(Operands[2]->getStartLoc(), 6596 "registers must be in range r0-r7 or lr"); 6597 if (validatetSTMRegList(Inst, Operands, 2)) 6598 return true; 6599 break; 6600 } 6601 case ARM::tSTMIA_UPD: { 6602 bool ListContainsBase, InvalidLowList; 6603 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6604 0, ListContainsBase); 6605 if (InvalidLowList && !isThumbTwo()) 6606 return Error(Operands[4]->getStartLoc(), 6607 "registers must be in range r0-r7"); 6608 6609 // This would be converted to a 32-bit stm, but that's not valid if the 6610 // writeback register is in the list. 6611 if (InvalidLowList && ListContainsBase) 6612 return Error(Operands[4]->getStartLoc(), 6613 "writeback operator '!' not allowed when base register " 6614 "in register list"); 6615 6616 if (validatetSTMRegList(Inst, Operands, 4)) 6617 return true; 6618 break; 6619 } 6620 case ARM::tADDrSP: 6621 // If the non-SP source operand and the destination operand are not the 6622 // same, we need thumb2 (for the wide encoding), or we have an error. 6623 if (!isThumbTwo() && 6624 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6625 return Error(Operands[4]->getStartLoc(), 6626 "source register must be the same as destination"); 6627 } 6628 break; 6629 6630 // Final range checking for Thumb unconditional branch instructions. 6631 case ARM::tB: 6632 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6633 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6634 break; 6635 case ARM::t2B: { 6636 int op = (Operands[2]->isImm()) ? 2 : 3; 6637 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6638 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6639 break; 6640 } 6641 // Final range checking for Thumb conditional branch instructions. 6642 case ARM::tBcc: 6643 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6644 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6645 break; 6646 case ARM::t2Bcc: { 6647 int Op = (Operands[2]->isImm()) ? 2 : 3; 6648 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6649 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6650 break; 6651 } 6652 case ARM::tCBZ: 6653 case ARM::tCBNZ: { 6654 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 6655 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6656 break; 6657 } 6658 case ARM::MOVi16: 6659 case ARM::MOVTi16: 6660 case ARM::t2MOVi16: 6661 case ARM::t2MOVTi16: 6662 { 6663 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6664 // especially when we turn it into a movw and the expression <symbol> does 6665 // not have a :lower16: or :upper16 as part of the expression. We don't 6666 // want the behavior of silently truncating, which can be unexpected and 6667 // lead to bugs that are difficult to find since this is an easy mistake 6668 // to make. 6669 int i = (Operands[3]->isImm()) ? 3 : 4; 6670 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6671 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6672 if (CE) break; 6673 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6674 if (!E) break; 6675 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6676 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6677 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6678 return Error( 6679 Op.getStartLoc(), 6680 "immediate expression for mov requires :lower16: or :upper16"); 6681 break; 6682 } 6683 case ARM::HINT: 6684 case ARM::t2HINT: { 6685 unsigned Imm8 = Inst.getOperand(0).getImm(); 6686 unsigned Pred = Inst.getOperand(1).getImm(); 6687 // ESB is not predicable (pred must be AL). Without the RAS extension, this 6688 // behaves as any other unallocated hint. 6689 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 6690 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 6691 "predicable, but condition " 6692 "code specified"); 6693 if (Imm8 == 0x14 && Pred != ARMCC::AL) 6694 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 6695 "predicable, but condition " 6696 "code specified"); 6697 break; 6698 } 6699 case ARM::VMOVRRS: { 6700 // Source registers must be sequential. 6701 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6702 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6703 if (Sm1 != Sm + 1) 6704 return Error(Operands[5]->getStartLoc(), 6705 "source operands must be sequential"); 6706 break; 6707 } 6708 case ARM::VMOVSRR: { 6709 // Destination registers must be sequential. 6710 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6711 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6712 if (Sm1 != Sm + 1) 6713 return Error(Operands[3]->getStartLoc(), 6714 "destination operands must be sequential"); 6715 break; 6716 } 6717 } 6718 6719 return false; 6720 } 6721 6722 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6723 switch(Opc) { 6724 default: llvm_unreachable("unexpected opcode!"); 6725 // VST1LN 6726 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6727 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6728 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6729 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6730 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6731 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6732 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6733 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6734 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6735 6736 // VST2LN 6737 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6738 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6739 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6740 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6741 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6742 6743 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6744 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6745 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6746 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6747 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6748 6749 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6750 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6751 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6752 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6753 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6754 6755 // VST3LN 6756 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6757 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6758 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6759 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6760 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6761 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6762 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6763 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6764 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6765 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6766 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6767 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6768 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6769 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6770 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6771 6772 // VST3 6773 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6774 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6775 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6776 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6777 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6778 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6779 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6780 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6781 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6782 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6783 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6784 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6785 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6786 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6787 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6788 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6789 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6790 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6791 6792 // VST4LN 6793 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6794 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6795 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6796 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6797 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6798 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6799 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6800 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6801 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6802 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6803 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6804 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6805 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6806 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6807 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6808 6809 // VST4 6810 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6811 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6812 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6813 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6814 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6815 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6816 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6817 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6818 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6819 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6820 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6821 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6822 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6823 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6824 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6825 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6826 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6827 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6828 } 6829 } 6830 6831 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6832 switch(Opc) { 6833 default: llvm_unreachable("unexpected opcode!"); 6834 // VLD1LN 6835 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6836 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6837 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6838 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6839 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6840 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6841 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6842 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6843 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6844 6845 // VLD2LN 6846 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6847 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6848 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6849 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6850 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6851 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6852 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6853 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6854 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6855 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6856 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6857 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6858 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6859 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6860 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6861 6862 // VLD3DUP 6863 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6864 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6865 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6866 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6867 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6868 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6869 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6870 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6871 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6872 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6873 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6874 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6875 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6876 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6877 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6878 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6879 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6880 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6881 6882 // VLD3LN 6883 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6884 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6885 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6886 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6887 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6888 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6889 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6890 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6891 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6892 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6893 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6894 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6895 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6896 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6897 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6898 6899 // VLD3 6900 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6901 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6902 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6903 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6904 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6905 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6906 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6907 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6908 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6909 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6910 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6911 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6912 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6913 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6914 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6915 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6916 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6917 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6918 6919 // VLD4LN 6920 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6921 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6922 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6923 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6924 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6925 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6926 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6927 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6928 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6929 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6930 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6931 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6932 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6933 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6934 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6935 6936 // VLD4DUP 6937 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6938 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6939 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6940 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6941 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6942 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6943 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6944 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6945 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6946 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6947 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6948 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6949 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6950 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6951 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6952 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6953 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6954 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6955 6956 // VLD4 6957 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6958 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6959 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6960 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6961 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6962 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6963 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6964 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6965 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6966 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6967 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6968 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6969 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6970 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6971 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6972 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6973 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6974 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6975 } 6976 } 6977 6978 bool ARMAsmParser::processInstruction(MCInst &Inst, 6979 const OperandVector &Operands, 6980 MCStreamer &Out) { 6981 // Check if we have the wide qualifier, because if it's present we 6982 // must avoid selecting a 16-bit thumb instruction. 6983 bool HasWideQualifier = false; 6984 for (auto &Op : Operands) { 6985 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 6986 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 6987 HasWideQualifier = true; 6988 break; 6989 } 6990 } 6991 6992 switch (Inst.getOpcode()) { 6993 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6994 case ARM::LDRT_POST: 6995 case ARM::LDRBT_POST: { 6996 const unsigned Opcode = 6997 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6998 : ARM::LDRBT_POST_IMM; 6999 MCInst TmpInst; 7000 TmpInst.setOpcode(Opcode); 7001 TmpInst.addOperand(Inst.getOperand(0)); 7002 TmpInst.addOperand(Inst.getOperand(1)); 7003 TmpInst.addOperand(Inst.getOperand(1)); 7004 TmpInst.addOperand(MCOperand::createReg(0)); 7005 TmpInst.addOperand(MCOperand::createImm(0)); 7006 TmpInst.addOperand(Inst.getOperand(2)); 7007 TmpInst.addOperand(Inst.getOperand(3)); 7008 Inst = TmpInst; 7009 return true; 7010 } 7011 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 7012 case ARM::STRT_POST: 7013 case ARM::STRBT_POST: { 7014 const unsigned Opcode = 7015 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 7016 : ARM::STRBT_POST_IMM; 7017 MCInst TmpInst; 7018 TmpInst.setOpcode(Opcode); 7019 TmpInst.addOperand(Inst.getOperand(1)); 7020 TmpInst.addOperand(Inst.getOperand(0)); 7021 TmpInst.addOperand(Inst.getOperand(1)); 7022 TmpInst.addOperand(MCOperand::createReg(0)); 7023 TmpInst.addOperand(MCOperand::createImm(0)); 7024 TmpInst.addOperand(Inst.getOperand(2)); 7025 TmpInst.addOperand(Inst.getOperand(3)); 7026 Inst = TmpInst; 7027 return true; 7028 } 7029 // Alias for alternate form of 'ADR Rd, #imm' instruction. 7030 case ARM::ADDri: { 7031 if (Inst.getOperand(1).getReg() != ARM::PC || 7032 Inst.getOperand(5).getReg() != 0 || 7033 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 7034 return false; 7035 MCInst TmpInst; 7036 TmpInst.setOpcode(ARM::ADR); 7037 TmpInst.addOperand(Inst.getOperand(0)); 7038 if (Inst.getOperand(2).isImm()) { 7039 // Immediate (mod_imm) will be in its encoded form, we must unencode it 7040 // before passing it to the ADR instruction. 7041 unsigned Enc = Inst.getOperand(2).getImm(); 7042 TmpInst.addOperand(MCOperand::createImm( 7043 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 7044 } else { 7045 // Turn PC-relative expression into absolute expression. 7046 // Reading PC provides the start of the current instruction + 8 and 7047 // the transform to adr is biased by that. 7048 MCSymbol *Dot = getContext().createTempSymbol(); 7049 Out.EmitLabel(Dot); 7050 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 7051 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 7052 MCSymbolRefExpr::VK_None, 7053 getContext()); 7054 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 7055 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 7056 getContext()); 7057 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 7058 getContext()); 7059 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 7060 } 7061 TmpInst.addOperand(Inst.getOperand(3)); 7062 TmpInst.addOperand(Inst.getOperand(4)); 7063 Inst = TmpInst; 7064 return true; 7065 } 7066 // Aliases for alternate PC+imm syntax of LDR instructions. 7067 case ARM::t2LDRpcrel: 7068 // Select the narrow version if the immediate will fit. 7069 if (Inst.getOperand(1).getImm() > 0 && 7070 Inst.getOperand(1).getImm() <= 0xff && 7071 !HasWideQualifier) 7072 Inst.setOpcode(ARM::tLDRpci); 7073 else 7074 Inst.setOpcode(ARM::t2LDRpci); 7075 return true; 7076 case ARM::t2LDRBpcrel: 7077 Inst.setOpcode(ARM::t2LDRBpci); 7078 return true; 7079 case ARM::t2LDRHpcrel: 7080 Inst.setOpcode(ARM::t2LDRHpci); 7081 return true; 7082 case ARM::t2LDRSBpcrel: 7083 Inst.setOpcode(ARM::t2LDRSBpci); 7084 return true; 7085 case ARM::t2LDRSHpcrel: 7086 Inst.setOpcode(ARM::t2LDRSHpci); 7087 return true; 7088 case ARM::LDRConstPool: 7089 case ARM::tLDRConstPool: 7090 case ARM::t2LDRConstPool: { 7091 // Pseudo instruction ldr rt, =immediate is converted to a 7092 // MOV rt, immediate if immediate is known and representable 7093 // otherwise we create a constant pool entry that we load from. 7094 MCInst TmpInst; 7095 if (Inst.getOpcode() == ARM::LDRConstPool) 7096 TmpInst.setOpcode(ARM::LDRi12); 7097 else if (Inst.getOpcode() == ARM::tLDRConstPool) 7098 TmpInst.setOpcode(ARM::tLDRpci); 7099 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 7100 TmpInst.setOpcode(ARM::t2LDRpci); 7101 const ARMOperand &PoolOperand = 7102 (HasWideQualifier ? 7103 static_cast<ARMOperand &>(*Operands[4]) : 7104 static_cast<ARMOperand &>(*Operands[3])); 7105 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 7106 // If SubExprVal is a constant we may be able to use a MOV 7107 if (isa<MCConstantExpr>(SubExprVal) && 7108 Inst.getOperand(0).getReg() != ARM::PC && 7109 Inst.getOperand(0).getReg() != ARM::SP) { 7110 int64_t Value = 7111 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 7112 bool UseMov = true; 7113 bool MovHasS = true; 7114 if (Inst.getOpcode() == ARM::LDRConstPool) { 7115 // ARM Constant 7116 if (ARM_AM::getSOImmVal(Value) != -1) { 7117 Value = ARM_AM::getSOImmVal(Value); 7118 TmpInst.setOpcode(ARM::MOVi); 7119 } 7120 else if (ARM_AM::getSOImmVal(~Value) != -1) { 7121 Value = ARM_AM::getSOImmVal(~Value); 7122 TmpInst.setOpcode(ARM::MVNi); 7123 } 7124 else if (hasV6T2Ops() && 7125 Value >=0 && Value < 65536) { 7126 TmpInst.setOpcode(ARM::MOVi16); 7127 MovHasS = false; 7128 } 7129 else 7130 UseMov = false; 7131 } 7132 else { 7133 // Thumb/Thumb2 Constant 7134 if (hasThumb2() && 7135 ARM_AM::getT2SOImmVal(Value) != -1) 7136 TmpInst.setOpcode(ARM::t2MOVi); 7137 else if (hasThumb2() && 7138 ARM_AM::getT2SOImmVal(~Value) != -1) { 7139 TmpInst.setOpcode(ARM::t2MVNi); 7140 Value = ~Value; 7141 } 7142 else if (hasV8MBaseline() && 7143 Value >=0 && Value < 65536) { 7144 TmpInst.setOpcode(ARM::t2MOVi16); 7145 MovHasS = false; 7146 } 7147 else 7148 UseMov = false; 7149 } 7150 if (UseMov) { 7151 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7152 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 7153 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7154 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7155 if (MovHasS) 7156 TmpInst.addOperand(MCOperand::createReg(0)); // S 7157 Inst = TmpInst; 7158 return true; 7159 } 7160 } 7161 // No opportunity to use MOV/MVN create constant pool 7162 const MCExpr *CPLoc = 7163 getTargetStreamer().addConstantPoolEntry(SubExprVal, 7164 PoolOperand.getStartLoc()); 7165 TmpInst.addOperand(Inst.getOperand(0)); // Rt 7166 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 7167 if (TmpInst.getOpcode() == ARM::LDRi12) 7168 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 7169 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 7170 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7171 Inst = TmpInst; 7172 return true; 7173 } 7174 // Handle NEON VST complex aliases. 7175 case ARM::VST1LNdWB_register_Asm_8: 7176 case ARM::VST1LNdWB_register_Asm_16: 7177 case ARM::VST1LNdWB_register_Asm_32: { 7178 MCInst TmpInst; 7179 // Shuffle the operands around so the lane index operand is in the 7180 // right place. 7181 unsigned Spacing; 7182 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7183 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7184 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7185 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7186 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7187 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7188 TmpInst.addOperand(Inst.getOperand(1)); // lane 7189 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7190 TmpInst.addOperand(Inst.getOperand(6)); 7191 Inst = TmpInst; 7192 return true; 7193 } 7194 7195 case ARM::VST2LNdWB_register_Asm_8: 7196 case ARM::VST2LNdWB_register_Asm_16: 7197 case ARM::VST2LNdWB_register_Asm_32: 7198 case ARM::VST2LNqWB_register_Asm_16: 7199 case ARM::VST2LNqWB_register_Asm_32: { 7200 MCInst TmpInst; 7201 // Shuffle the operands around so the lane index operand is in the 7202 // right place. 7203 unsigned Spacing; 7204 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7205 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7206 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7207 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7208 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7209 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7210 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7211 Spacing)); 7212 TmpInst.addOperand(Inst.getOperand(1)); // lane 7213 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7214 TmpInst.addOperand(Inst.getOperand(6)); 7215 Inst = TmpInst; 7216 return true; 7217 } 7218 7219 case ARM::VST3LNdWB_register_Asm_8: 7220 case ARM::VST3LNdWB_register_Asm_16: 7221 case ARM::VST3LNdWB_register_Asm_32: 7222 case ARM::VST3LNqWB_register_Asm_16: 7223 case ARM::VST3LNqWB_register_Asm_32: { 7224 MCInst TmpInst; 7225 // Shuffle the operands around so the lane index operand is in the 7226 // right place. 7227 unsigned Spacing; 7228 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7229 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7230 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7231 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7232 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7233 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7234 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7235 Spacing)); 7236 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7237 Spacing * 2)); 7238 TmpInst.addOperand(Inst.getOperand(1)); // lane 7239 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7240 TmpInst.addOperand(Inst.getOperand(6)); 7241 Inst = TmpInst; 7242 return true; 7243 } 7244 7245 case ARM::VST4LNdWB_register_Asm_8: 7246 case ARM::VST4LNdWB_register_Asm_16: 7247 case ARM::VST4LNdWB_register_Asm_32: 7248 case ARM::VST4LNqWB_register_Asm_16: 7249 case ARM::VST4LNqWB_register_Asm_32: { 7250 MCInst TmpInst; 7251 // Shuffle the operands around so the lane index operand is in the 7252 // right place. 7253 unsigned Spacing; 7254 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7255 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7256 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7257 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7258 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7259 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7260 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7261 Spacing)); 7262 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7263 Spacing * 2)); 7264 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7265 Spacing * 3)); 7266 TmpInst.addOperand(Inst.getOperand(1)); // lane 7267 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7268 TmpInst.addOperand(Inst.getOperand(6)); 7269 Inst = TmpInst; 7270 return true; 7271 } 7272 7273 case ARM::VST1LNdWB_fixed_Asm_8: 7274 case ARM::VST1LNdWB_fixed_Asm_16: 7275 case ARM::VST1LNdWB_fixed_Asm_32: { 7276 MCInst TmpInst; 7277 // Shuffle the operands around so the lane index operand is in the 7278 // right place. 7279 unsigned Spacing; 7280 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7281 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7282 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7283 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7284 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7285 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7286 TmpInst.addOperand(Inst.getOperand(1)); // lane 7287 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7288 TmpInst.addOperand(Inst.getOperand(5)); 7289 Inst = TmpInst; 7290 return true; 7291 } 7292 7293 case ARM::VST2LNdWB_fixed_Asm_8: 7294 case ARM::VST2LNdWB_fixed_Asm_16: 7295 case ARM::VST2LNdWB_fixed_Asm_32: 7296 case ARM::VST2LNqWB_fixed_Asm_16: 7297 case ARM::VST2LNqWB_fixed_Asm_32: { 7298 MCInst TmpInst; 7299 // Shuffle the operands around so the lane index operand is in the 7300 // right place. 7301 unsigned Spacing; 7302 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7303 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7304 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7305 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7306 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7307 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7308 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7309 Spacing)); 7310 TmpInst.addOperand(Inst.getOperand(1)); // lane 7311 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7312 TmpInst.addOperand(Inst.getOperand(5)); 7313 Inst = TmpInst; 7314 return true; 7315 } 7316 7317 case ARM::VST3LNdWB_fixed_Asm_8: 7318 case ARM::VST3LNdWB_fixed_Asm_16: 7319 case ARM::VST3LNdWB_fixed_Asm_32: 7320 case ARM::VST3LNqWB_fixed_Asm_16: 7321 case ARM::VST3LNqWB_fixed_Asm_32: { 7322 MCInst TmpInst; 7323 // Shuffle the operands around so the lane index operand is in the 7324 // right place. 7325 unsigned Spacing; 7326 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7327 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7328 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7329 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7330 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7331 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7332 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7333 Spacing)); 7334 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7335 Spacing * 2)); 7336 TmpInst.addOperand(Inst.getOperand(1)); // lane 7337 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7338 TmpInst.addOperand(Inst.getOperand(5)); 7339 Inst = TmpInst; 7340 return true; 7341 } 7342 7343 case ARM::VST4LNdWB_fixed_Asm_8: 7344 case ARM::VST4LNdWB_fixed_Asm_16: 7345 case ARM::VST4LNdWB_fixed_Asm_32: 7346 case ARM::VST4LNqWB_fixed_Asm_16: 7347 case ARM::VST4LNqWB_fixed_Asm_32: { 7348 MCInst TmpInst; 7349 // Shuffle the operands around so the lane index operand is in the 7350 // right place. 7351 unsigned Spacing; 7352 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7353 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7354 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7355 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7356 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7357 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7358 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7359 Spacing)); 7360 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7361 Spacing * 2)); 7362 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7363 Spacing * 3)); 7364 TmpInst.addOperand(Inst.getOperand(1)); // lane 7365 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7366 TmpInst.addOperand(Inst.getOperand(5)); 7367 Inst = TmpInst; 7368 return true; 7369 } 7370 7371 case ARM::VST1LNdAsm_8: 7372 case ARM::VST1LNdAsm_16: 7373 case ARM::VST1LNdAsm_32: { 7374 MCInst TmpInst; 7375 // Shuffle the operands around so the lane index operand is in the 7376 // right place. 7377 unsigned Spacing; 7378 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7379 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7380 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7381 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7382 TmpInst.addOperand(Inst.getOperand(1)); // lane 7383 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7384 TmpInst.addOperand(Inst.getOperand(5)); 7385 Inst = TmpInst; 7386 return true; 7387 } 7388 7389 case ARM::VST2LNdAsm_8: 7390 case ARM::VST2LNdAsm_16: 7391 case ARM::VST2LNdAsm_32: 7392 case ARM::VST2LNqAsm_16: 7393 case ARM::VST2LNqAsm_32: { 7394 MCInst TmpInst; 7395 // Shuffle the operands around so the lane index operand is in the 7396 // right place. 7397 unsigned Spacing; 7398 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7399 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7400 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7401 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7402 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7403 Spacing)); 7404 TmpInst.addOperand(Inst.getOperand(1)); // lane 7405 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7406 TmpInst.addOperand(Inst.getOperand(5)); 7407 Inst = TmpInst; 7408 return true; 7409 } 7410 7411 case ARM::VST3LNdAsm_8: 7412 case ARM::VST3LNdAsm_16: 7413 case ARM::VST3LNdAsm_32: 7414 case ARM::VST3LNqAsm_16: 7415 case ARM::VST3LNqAsm_32: { 7416 MCInst TmpInst; 7417 // Shuffle the operands around so the lane index operand is in the 7418 // right place. 7419 unsigned Spacing; 7420 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7421 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7422 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7423 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7424 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7425 Spacing)); 7426 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7427 Spacing * 2)); 7428 TmpInst.addOperand(Inst.getOperand(1)); // lane 7429 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7430 TmpInst.addOperand(Inst.getOperand(5)); 7431 Inst = TmpInst; 7432 return true; 7433 } 7434 7435 case ARM::VST4LNdAsm_8: 7436 case ARM::VST4LNdAsm_16: 7437 case ARM::VST4LNdAsm_32: 7438 case ARM::VST4LNqAsm_16: 7439 case ARM::VST4LNqAsm_32: { 7440 MCInst TmpInst; 7441 // Shuffle the operands around so the lane index operand is in the 7442 // right place. 7443 unsigned Spacing; 7444 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7445 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7446 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7447 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7448 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7449 Spacing)); 7450 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7451 Spacing * 2)); 7452 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7453 Spacing * 3)); 7454 TmpInst.addOperand(Inst.getOperand(1)); // lane 7455 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7456 TmpInst.addOperand(Inst.getOperand(5)); 7457 Inst = TmpInst; 7458 return true; 7459 } 7460 7461 // Handle NEON VLD complex aliases. 7462 case ARM::VLD1LNdWB_register_Asm_8: 7463 case ARM::VLD1LNdWB_register_Asm_16: 7464 case ARM::VLD1LNdWB_register_Asm_32: { 7465 MCInst TmpInst; 7466 // Shuffle the operands around so the lane index operand is in the 7467 // right place. 7468 unsigned Spacing; 7469 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7470 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7471 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7472 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7473 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7474 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7475 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7476 TmpInst.addOperand(Inst.getOperand(1)); // lane 7477 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7478 TmpInst.addOperand(Inst.getOperand(6)); 7479 Inst = TmpInst; 7480 return true; 7481 } 7482 7483 case ARM::VLD2LNdWB_register_Asm_8: 7484 case ARM::VLD2LNdWB_register_Asm_16: 7485 case ARM::VLD2LNdWB_register_Asm_32: 7486 case ARM::VLD2LNqWB_register_Asm_16: 7487 case ARM::VLD2LNqWB_register_Asm_32: { 7488 MCInst TmpInst; 7489 // Shuffle the operands around so the lane index operand is in the 7490 // right place. 7491 unsigned Spacing; 7492 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7493 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7494 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7495 Spacing)); 7496 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7497 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7498 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7499 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7500 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7501 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7502 Spacing)); 7503 TmpInst.addOperand(Inst.getOperand(1)); // lane 7504 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7505 TmpInst.addOperand(Inst.getOperand(6)); 7506 Inst = TmpInst; 7507 return true; 7508 } 7509 7510 case ARM::VLD3LNdWB_register_Asm_8: 7511 case ARM::VLD3LNdWB_register_Asm_16: 7512 case ARM::VLD3LNdWB_register_Asm_32: 7513 case ARM::VLD3LNqWB_register_Asm_16: 7514 case ARM::VLD3LNqWB_register_Asm_32: { 7515 MCInst TmpInst; 7516 // Shuffle the operands around so the lane index operand is in the 7517 // right place. 7518 unsigned Spacing; 7519 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7520 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7521 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7522 Spacing)); 7523 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7524 Spacing * 2)); 7525 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7526 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7527 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7528 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7529 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7530 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7531 Spacing)); 7532 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7533 Spacing * 2)); 7534 TmpInst.addOperand(Inst.getOperand(1)); // lane 7535 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7536 TmpInst.addOperand(Inst.getOperand(6)); 7537 Inst = TmpInst; 7538 return true; 7539 } 7540 7541 case ARM::VLD4LNdWB_register_Asm_8: 7542 case ARM::VLD4LNdWB_register_Asm_16: 7543 case ARM::VLD4LNdWB_register_Asm_32: 7544 case ARM::VLD4LNqWB_register_Asm_16: 7545 case ARM::VLD4LNqWB_register_Asm_32: { 7546 MCInst TmpInst; 7547 // Shuffle the operands around so the lane index operand is in the 7548 // right place. 7549 unsigned Spacing; 7550 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7551 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7552 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7553 Spacing)); 7554 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7555 Spacing * 2)); 7556 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7557 Spacing * 3)); 7558 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7559 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7560 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7561 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7562 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7563 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7564 Spacing)); 7565 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7566 Spacing * 2)); 7567 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7568 Spacing * 3)); 7569 TmpInst.addOperand(Inst.getOperand(1)); // lane 7570 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7571 TmpInst.addOperand(Inst.getOperand(6)); 7572 Inst = TmpInst; 7573 return true; 7574 } 7575 7576 case ARM::VLD1LNdWB_fixed_Asm_8: 7577 case ARM::VLD1LNdWB_fixed_Asm_16: 7578 case ARM::VLD1LNdWB_fixed_Asm_32: { 7579 MCInst TmpInst; 7580 // Shuffle the operands around so the lane index operand is in the 7581 // right place. 7582 unsigned Spacing; 7583 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7584 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7585 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7586 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7587 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7588 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7589 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7590 TmpInst.addOperand(Inst.getOperand(1)); // lane 7591 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7592 TmpInst.addOperand(Inst.getOperand(5)); 7593 Inst = TmpInst; 7594 return true; 7595 } 7596 7597 case ARM::VLD2LNdWB_fixed_Asm_8: 7598 case ARM::VLD2LNdWB_fixed_Asm_16: 7599 case ARM::VLD2LNdWB_fixed_Asm_32: 7600 case ARM::VLD2LNqWB_fixed_Asm_16: 7601 case ARM::VLD2LNqWB_fixed_Asm_32: { 7602 MCInst TmpInst; 7603 // Shuffle the operands around so the lane index operand is in the 7604 // right place. 7605 unsigned Spacing; 7606 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7607 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7608 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7609 Spacing)); 7610 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7611 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7612 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7613 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7614 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7615 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7616 Spacing)); 7617 TmpInst.addOperand(Inst.getOperand(1)); // lane 7618 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7619 TmpInst.addOperand(Inst.getOperand(5)); 7620 Inst = TmpInst; 7621 return true; 7622 } 7623 7624 case ARM::VLD3LNdWB_fixed_Asm_8: 7625 case ARM::VLD3LNdWB_fixed_Asm_16: 7626 case ARM::VLD3LNdWB_fixed_Asm_32: 7627 case ARM::VLD3LNqWB_fixed_Asm_16: 7628 case ARM::VLD3LNqWB_fixed_Asm_32: { 7629 MCInst TmpInst; 7630 // Shuffle the operands around so the lane index operand is in the 7631 // right place. 7632 unsigned Spacing; 7633 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7634 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7635 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7636 Spacing)); 7637 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7638 Spacing * 2)); 7639 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7640 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7641 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7642 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7643 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7644 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7645 Spacing)); 7646 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7647 Spacing * 2)); 7648 TmpInst.addOperand(Inst.getOperand(1)); // lane 7649 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7650 TmpInst.addOperand(Inst.getOperand(5)); 7651 Inst = TmpInst; 7652 return true; 7653 } 7654 7655 case ARM::VLD4LNdWB_fixed_Asm_8: 7656 case ARM::VLD4LNdWB_fixed_Asm_16: 7657 case ARM::VLD4LNdWB_fixed_Asm_32: 7658 case ARM::VLD4LNqWB_fixed_Asm_16: 7659 case ARM::VLD4LNqWB_fixed_Asm_32: { 7660 MCInst TmpInst; 7661 // Shuffle the operands around so the lane index operand is in the 7662 // right place. 7663 unsigned Spacing; 7664 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7665 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7666 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7667 Spacing)); 7668 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7669 Spacing * 2)); 7670 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7671 Spacing * 3)); 7672 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7673 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7674 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7675 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7676 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7677 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7678 Spacing)); 7679 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7680 Spacing * 2)); 7681 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7682 Spacing * 3)); 7683 TmpInst.addOperand(Inst.getOperand(1)); // lane 7684 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7685 TmpInst.addOperand(Inst.getOperand(5)); 7686 Inst = TmpInst; 7687 return true; 7688 } 7689 7690 case ARM::VLD1LNdAsm_8: 7691 case ARM::VLD1LNdAsm_16: 7692 case ARM::VLD1LNdAsm_32: { 7693 MCInst TmpInst; 7694 // Shuffle the operands around so the lane index operand is in the 7695 // right place. 7696 unsigned Spacing; 7697 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7698 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7699 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7700 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7701 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7702 TmpInst.addOperand(Inst.getOperand(1)); // lane 7703 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7704 TmpInst.addOperand(Inst.getOperand(5)); 7705 Inst = TmpInst; 7706 return true; 7707 } 7708 7709 case ARM::VLD2LNdAsm_8: 7710 case ARM::VLD2LNdAsm_16: 7711 case ARM::VLD2LNdAsm_32: 7712 case ARM::VLD2LNqAsm_16: 7713 case ARM::VLD2LNqAsm_32: { 7714 MCInst TmpInst; 7715 // Shuffle the operands around so the lane index operand is in the 7716 // right place. 7717 unsigned Spacing; 7718 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7719 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7720 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7721 Spacing)); 7722 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7723 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7724 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7725 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7726 Spacing)); 7727 TmpInst.addOperand(Inst.getOperand(1)); // lane 7728 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7729 TmpInst.addOperand(Inst.getOperand(5)); 7730 Inst = TmpInst; 7731 return true; 7732 } 7733 7734 case ARM::VLD3LNdAsm_8: 7735 case ARM::VLD3LNdAsm_16: 7736 case ARM::VLD3LNdAsm_32: 7737 case ARM::VLD3LNqAsm_16: 7738 case ARM::VLD3LNqAsm_32: { 7739 MCInst TmpInst; 7740 // Shuffle the operands around so the lane index operand is in the 7741 // right place. 7742 unsigned Spacing; 7743 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7744 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7745 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7746 Spacing)); 7747 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7748 Spacing * 2)); 7749 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7750 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7751 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7752 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7753 Spacing)); 7754 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7755 Spacing * 2)); 7756 TmpInst.addOperand(Inst.getOperand(1)); // lane 7757 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7758 TmpInst.addOperand(Inst.getOperand(5)); 7759 Inst = TmpInst; 7760 return true; 7761 } 7762 7763 case ARM::VLD4LNdAsm_8: 7764 case ARM::VLD4LNdAsm_16: 7765 case ARM::VLD4LNdAsm_32: 7766 case ARM::VLD4LNqAsm_16: 7767 case ARM::VLD4LNqAsm_32: { 7768 MCInst TmpInst; 7769 // Shuffle the operands around so the lane index operand is in the 7770 // right place. 7771 unsigned Spacing; 7772 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7773 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7774 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7775 Spacing)); 7776 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7777 Spacing * 2)); 7778 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7779 Spacing * 3)); 7780 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7781 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7782 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7783 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7784 Spacing)); 7785 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7786 Spacing * 2)); 7787 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7788 Spacing * 3)); 7789 TmpInst.addOperand(Inst.getOperand(1)); // lane 7790 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7791 TmpInst.addOperand(Inst.getOperand(5)); 7792 Inst = TmpInst; 7793 return true; 7794 } 7795 7796 // VLD3DUP single 3-element structure to all lanes instructions. 7797 case ARM::VLD3DUPdAsm_8: 7798 case ARM::VLD3DUPdAsm_16: 7799 case ARM::VLD3DUPdAsm_32: 7800 case ARM::VLD3DUPqAsm_8: 7801 case ARM::VLD3DUPqAsm_16: 7802 case ARM::VLD3DUPqAsm_32: { 7803 MCInst TmpInst; 7804 unsigned Spacing; 7805 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7806 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7807 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7808 Spacing)); 7809 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7810 Spacing * 2)); 7811 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7812 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7813 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7814 TmpInst.addOperand(Inst.getOperand(4)); 7815 Inst = TmpInst; 7816 return true; 7817 } 7818 7819 case ARM::VLD3DUPdWB_fixed_Asm_8: 7820 case ARM::VLD3DUPdWB_fixed_Asm_16: 7821 case ARM::VLD3DUPdWB_fixed_Asm_32: 7822 case ARM::VLD3DUPqWB_fixed_Asm_8: 7823 case ARM::VLD3DUPqWB_fixed_Asm_16: 7824 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7825 MCInst TmpInst; 7826 unsigned Spacing; 7827 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7828 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7829 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7830 Spacing)); 7831 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7832 Spacing * 2)); 7833 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7834 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7835 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7836 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7837 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7838 TmpInst.addOperand(Inst.getOperand(4)); 7839 Inst = TmpInst; 7840 return true; 7841 } 7842 7843 case ARM::VLD3DUPdWB_register_Asm_8: 7844 case ARM::VLD3DUPdWB_register_Asm_16: 7845 case ARM::VLD3DUPdWB_register_Asm_32: 7846 case ARM::VLD3DUPqWB_register_Asm_8: 7847 case ARM::VLD3DUPqWB_register_Asm_16: 7848 case ARM::VLD3DUPqWB_register_Asm_32: { 7849 MCInst TmpInst; 7850 unsigned Spacing; 7851 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7852 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7853 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7854 Spacing)); 7855 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7856 Spacing * 2)); 7857 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7858 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7859 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7860 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7861 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7862 TmpInst.addOperand(Inst.getOperand(5)); 7863 Inst = TmpInst; 7864 return true; 7865 } 7866 7867 // VLD3 multiple 3-element structure instructions. 7868 case ARM::VLD3dAsm_8: 7869 case ARM::VLD3dAsm_16: 7870 case ARM::VLD3dAsm_32: 7871 case ARM::VLD3qAsm_8: 7872 case ARM::VLD3qAsm_16: 7873 case ARM::VLD3qAsm_32: { 7874 MCInst TmpInst; 7875 unsigned Spacing; 7876 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7877 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7878 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7879 Spacing)); 7880 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7881 Spacing * 2)); 7882 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7883 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7884 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7885 TmpInst.addOperand(Inst.getOperand(4)); 7886 Inst = TmpInst; 7887 return true; 7888 } 7889 7890 case ARM::VLD3dWB_fixed_Asm_8: 7891 case ARM::VLD3dWB_fixed_Asm_16: 7892 case ARM::VLD3dWB_fixed_Asm_32: 7893 case ARM::VLD3qWB_fixed_Asm_8: 7894 case ARM::VLD3qWB_fixed_Asm_16: 7895 case ARM::VLD3qWB_fixed_Asm_32: { 7896 MCInst TmpInst; 7897 unsigned Spacing; 7898 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7899 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7900 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7901 Spacing)); 7902 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7903 Spacing * 2)); 7904 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7905 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7906 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7907 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7908 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7909 TmpInst.addOperand(Inst.getOperand(4)); 7910 Inst = TmpInst; 7911 return true; 7912 } 7913 7914 case ARM::VLD3dWB_register_Asm_8: 7915 case ARM::VLD3dWB_register_Asm_16: 7916 case ARM::VLD3dWB_register_Asm_32: 7917 case ARM::VLD3qWB_register_Asm_8: 7918 case ARM::VLD3qWB_register_Asm_16: 7919 case ARM::VLD3qWB_register_Asm_32: { 7920 MCInst TmpInst; 7921 unsigned Spacing; 7922 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7923 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7924 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7925 Spacing)); 7926 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7927 Spacing * 2)); 7928 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7929 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7930 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7931 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7932 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7933 TmpInst.addOperand(Inst.getOperand(5)); 7934 Inst = TmpInst; 7935 return true; 7936 } 7937 7938 // VLD4DUP single 3-element structure to all lanes instructions. 7939 case ARM::VLD4DUPdAsm_8: 7940 case ARM::VLD4DUPdAsm_16: 7941 case ARM::VLD4DUPdAsm_32: 7942 case ARM::VLD4DUPqAsm_8: 7943 case ARM::VLD4DUPqAsm_16: 7944 case ARM::VLD4DUPqAsm_32: { 7945 MCInst TmpInst; 7946 unsigned Spacing; 7947 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7948 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7949 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7950 Spacing)); 7951 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7952 Spacing * 2)); 7953 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7954 Spacing * 3)); 7955 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7956 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7957 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7958 TmpInst.addOperand(Inst.getOperand(4)); 7959 Inst = TmpInst; 7960 return true; 7961 } 7962 7963 case ARM::VLD4DUPdWB_fixed_Asm_8: 7964 case ARM::VLD4DUPdWB_fixed_Asm_16: 7965 case ARM::VLD4DUPdWB_fixed_Asm_32: 7966 case ARM::VLD4DUPqWB_fixed_Asm_8: 7967 case ARM::VLD4DUPqWB_fixed_Asm_16: 7968 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7969 MCInst TmpInst; 7970 unsigned Spacing; 7971 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7972 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7973 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7974 Spacing)); 7975 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7976 Spacing * 2)); 7977 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7978 Spacing * 3)); 7979 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7980 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7981 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7982 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7983 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7984 TmpInst.addOperand(Inst.getOperand(4)); 7985 Inst = TmpInst; 7986 return true; 7987 } 7988 7989 case ARM::VLD4DUPdWB_register_Asm_8: 7990 case ARM::VLD4DUPdWB_register_Asm_16: 7991 case ARM::VLD4DUPdWB_register_Asm_32: 7992 case ARM::VLD4DUPqWB_register_Asm_8: 7993 case ARM::VLD4DUPqWB_register_Asm_16: 7994 case ARM::VLD4DUPqWB_register_Asm_32: { 7995 MCInst TmpInst; 7996 unsigned Spacing; 7997 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7998 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7999 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8000 Spacing)); 8001 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8002 Spacing * 2)); 8003 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8004 Spacing * 3)); 8005 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8006 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8007 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8008 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8009 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8010 TmpInst.addOperand(Inst.getOperand(5)); 8011 Inst = TmpInst; 8012 return true; 8013 } 8014 8015 // VLD4 multiple 4-element structure instructions. 8016 case ARM::VLD4dAsm_8: 8017 case ARM::VLD4dAsm_16: 8018 case ARM::VLD4dAsm_32: 8019 case ARM::VLD4qAsm_8: 8020 case ARM::VLD4qAsm_16: 8021 case ARM::VLD4qAsm_32: { 8022 MCInst TmpInst; 8023 unsigned Spacing; 8024 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8025 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8026 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8027 Spacing)); 8028 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8029 Spacing * 2)); 8030 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8031 Spacing * 3)); 8032 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8033 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8034 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8035 TmpInst.addOperand(Inst.getOperand(4)); 8036 Inst = TmpInst; 8037 return true; 8038 } 8039 8040 case ARM::VLD4dWB_fixed_Asm_8: 8041 case ARM::VLD4dWB_fixed_Asm_16: 8042 case ARM::VLD4dWB_fixed_Asm_32: 8043 case ARM::VLD4qWB_fixed_Asm_8: 8044 case ARM::VLD4qWB_fixed_Asm_16: 8045 case ARM::VLD4qWB_fixed_Asm_32: { 8046 MCInst TmpInst; 8047 unsigned Spacing; 8048 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8049 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8050 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8051 Spacing)); 8052 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8053 Spacing * 2)); 8054 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8055 Spacing * 3)); 8056 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8057 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8058 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8059 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8060 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8061 TmpInst.addOperand(Inst.getOperand(4)); 8062 Inst = TmpInst; 8063 return true; 8064 } 8065 8066 case ARM::VLD4dWB_register_Asm_8: 8067 case ARM::VLD4dWB_register_Asm_16: 8068 case ARM::VLD4dWB_register_Asm_32: 8069 case ARM::VLD4qWB_register_Asm_8: 8070 case ARM::VLD4qWB_register_Asm_16: 8071 case ARM::VLD4qWB_register_Asm_32: { 8072 MCInst TmpInst; 8073 unsigned Spacing; 8074 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8075 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8076 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8077 Spacing)); 8078 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8079 Spacing * 2)); 8080 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8081 Spacing * 3)); 8082 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8083 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8084 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8085 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8086 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8087 TmpInst.addOperand(Inst.getOperand(5)); 8088 Inst = TmpInst; 8089 return true; 8090 } 8091 8092 // VST3 multiple 3-element structure instructions. 8093 case ARM::VST3dAsm_8: 8094 case ARM::VST3dAsm_16: 8095 case ARM::VST3dAsm_32: 8096 case ARM::VST3qAsm_8: 8097 case ARM::VST3qAsm_16: 8098 case ARM::VST3qAsm_32: { 8099 MCInst TmpInst; 8100 unsigned Spacing; 8101 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8102 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8103 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8104 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8105 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8106 Spacing)); 8107 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8108 Spacing * 2)); 8109 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8110 TmpInst.addOperand(Inst.getOperand(4)); 8111 Inst = TmpInst; 8112 return true; 8113 } 8114 8115 case ARM::VST3dWB_fixed_Asm_8: 8116 case ARM::VST3dWB_fixed_Asm_16: 8117 case ARM::VST3dWB_fixed_Asm_32: 8118 case ARM::VST3qWB_fixed_Asm_8: 8119 case ARM::VST3qWB_fixed_Asm_16: 8120 case ARM::VST3qWB_fixed_Asm_32: { 8121 MCInst TmpInst; 8122 unsigned Spacing; 8123 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8124 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8125 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8126 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8127 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8128 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8129 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8130 Spacing)); 8131 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8132 Spacing * 2)); 8133 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8134 TmpInst.addOperand(Inst.getOperand(4)); 8135 Inst = TmpInst; 8136 return true; 8137 } 8138 8139 case ARM::VST3dWB_register_Asm_8: 8140 case ARM::VST3dWB_register_Asm_16: 8141 case ARM::VST3dWB_register_Asm_32: 8142 case ARM::VST3qWB_register_Asm_8: 8143 case ARM::VST3qWB_register_Asm_16: 8144 case ARM::VST3qWB_register_Asm_32: { 8145 MCInst TmpInst; 8146 unsigned Spacing; 8147 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8148 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8149 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8150 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8151 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8152 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8153 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8154 Spacing)); 8155 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8156 Spacing * 2)); 8157 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8158 TmpInst.addOperand(Inst.getOperand(5)); 8159 Inst = TmpInst; 8160 return true; 8161 } 8162 8163 // VST4 multiple 3-element structure instructions. 8164 case ARM::VST4dAsm_8: 8165 case ARM::VST4dAsm_16: 8166 case ARM::VST4dAsm_32: 8167 case ARM::VST4qAsm_8: 8168 case ARM::VST4qAsm_16: 8169 case ARM::VST4qAsm_32: { 8170 MCInst TmpInst; 8171 unsigned Spacing; 8172 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8173 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8174 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8175 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8176 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8177 Spacing)); 8178 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8179 Spacing * 2)); 8180 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8181 Spacing * 3)); 8182 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8183 TmpInst.addOperand(Inst.getOperand(4)); 8184 Inst = TmpInst; 8185 return true; 8186 } 8187 8188 case ARM::VST4dWB_fixed_Asm_8: 8189 case ARM::VST4dWB_fixed_Asm_16: 8190 case ARM::VST4dWB_fixed_Asm_32: 8191 case ARM::VST4qWB_fixed_Asm_8: 8192 case ARM::VST4qWB_fixed_Asm_16: 8193 case ARM::VST4qWB_fixed_Asm_32: { 8194 MCInst TmpInst; 8195 unsigned Spacing; 8196 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8197 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8198 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8199 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8200 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8201 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8202 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8203 Spacing)); 8204 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8205 Spacing * 2)); 8206 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8207 Spacing * 3)); 8208 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8209 TmpInst.addOperand(Inst.getOperand(4)); 8210 Inst = TmpInst; 8211 return true; 8212 } 8213 8214 case ARM::VST4dWB_register_Asm_8: 8215 case ARM::VST4dWB_register_Asm_16: 8216 case ARM::VST4dWB_register_Asm_32: 8217 case ARM::VST4qWB_register_Asm_8: 8218 case ARM::VST4qWB_register_Asm_16: 8219 case ARM::VST4qWB_register_Asm_32: { 8220 MCInst TmpInst; 8221 unsigned Spacing; 8222 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8223 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8224 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8225 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8226 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8227 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8228 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8229 Spacing)); 8230 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8231 Spacing * 2)); 8232 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8233 Spacing * 3)); 8234 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8235 TmpInst.addOperand(Inst.getOperand(5)); 8236 Inst = TmpInst; 8237 return true; 8238 } 8239 8240 // Handle encoding choice for the shift-immediate instructions. 8241 case ARM::t2LSLri: 8242 case ARM::t2LSRri: 8243 case ARM::t2ASRri: 8244 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8245 isARMLowRegister(Inst.getOperand(1).getReg()) && 8246 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8247 !HasWideQualifier) { 8248 unsigned NewOpc; 8249 switch (Inst.getOpcode()) { 8250 default: llvm_unreachable("unexpected opcode"); 8251 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8252 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8253 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8254 } 8255 // The Thumb1 operands aren't in the same order. Awesome, eh? 8256 MCInst TmpInst; 8257 TmpInst.setOpcode(NewOpc); 8258 TmpInst.addOperand(Inst.getOperand(0)); 8259 TmpInst.addOperand(Inst.getOperand(5)); 8260 TmpInst.addOperand(Inst.getOperand(1)); 8261 TmpInst.addOperand(Inst.getOperand(2)); 8262 TmpInst.addOperand(Inst.getOperand(3)); 8263 TmpInst.addOperand(Inst.getOperand(4)); 8264 Inst = TmpInst; 8265 return true; 8266 } 8267 return false; 8268 8269 // Handle the Thumb2 mode MOV complex aliases. 8270 case ARM::t2MOVsr: 8271 case ARM::t2MOVSsr: { 8272 // Which instruction to expand to depends on the CCOut operand and 8273 // whether we're in an IT block if the register operands are low 8274 // registers. 8275 bool isNarrow = false; 8276 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8277 isARMLowRegister(Inst.getOperand(1).getReg()) && 8278 isARMLowRegister(Inst.getOperand(2).getReg()) && 8279 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8280 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 8281 !HasWideQualifier) 8282 isNarrow = true; 8283 MCInst TmpInst; 8284 unsigned newOpc; 8285 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8286 default: llvm_unreachable("unexpected opcode!"); 8287 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8288 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8289 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8290 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8291 } 8292 TmpInst.setOpcode(newOpc); 8293 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8294 if (isNarrow) 8295 TmpInst.addOperand(MCOperand::createReg( 8296 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8297 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8298 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8299 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8300 TmpInst.addOperand(Inst.getOperand(5)); 8301 if (!isNarrow) 8302 TmpInst.addOperand(MCOperand::createReg( 8303 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8304 Inst = TmpInst; 8305 return true; 8306 } 8307 case ARM::t2MOVsi: 8308 case ARM::t2MOVSsi: { 8309 // Which instruction to expand to depends on the CCOut operand and 8310 // whether we're in an IT block if the register operands are low 8311 // registers. 8312 bool isNarrow = false; 8313 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8314 isARMLowRegister(Inst.getOperand(1).getReg()) && 8315 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 8316 !HasWideQualifier) 8317 isNarrow = true; 8318 MCInst TmpInst; 8319 unsigned newOpc; 8320 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8321 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8322 bool isMov = false; 8323 // MOV rd, rm, LSL #0 is actually a MOV instruction 8324 if (Shift == ARM_AM::lsl && Amount == 0) { 8325 isMov = true; 8326 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 8327 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 8328 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 8329 // instead. 8330 if (inITBlock()) { 8331 isNarrow = false; 8332 } 8333 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 8334 } else { 8335 switch(Shift) { 8336 default: llvm_unreachable("unexpected opcode!"); 8337 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8338 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8339 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8340 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8341 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8342 } 8343 } 8344 if (Amount == 32) Amount = 0; 8345 TmpInst.setOpcode(newOpc); 8346 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8347 if (isNarrow && !isMov) 8348 TmpInst.addOperand(MCOperand::createReg( 8349 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8350 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8351 if (newOpc != ARM::t2RRX && !isMov) 8352 TmpInst.addOperand(MCOperand::createImm(Amount)); 8353 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8354 TmpInst.addOperand(Inst.getOperand(4)); 8355 if (!isNarrow) 8356 TmpInst.addOperand(MCOperand::createReg( 8357 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8358 Inst = TmpInst; 8359 return true; 8360 } 8361 // Handle the ARM mode MOV complex aliases. 8362 case ARM::ASRr: 8363 case ARM::LSRr: 8364 case ARM::LSLr: 8365 case ARM::RORr: { 8366 ARM_AM::ShiftOpc ShiftTy; 8367 switch(Inst.getOpcode()) { 8368 default: llvm_unreachable("unexpected opcode!"); 8369 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8370 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8371 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8372 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8373 } 8374 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8375 MCInst TmpInst; 8376 TmpInst.setOpcode(ARM::MOVsr); 8377 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8378 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8379 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8380 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8381 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8382 TmpInst.addOperand(Inst.getOperand(4)); 8383 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8384 Inst = TmpInst; 8385 return true; 8386 } 8387 case ARM::ASRi: 8388 case ARM::LSRi: 8389 case ARM::LSLi: 8390 case ARM::RORi: { 8391 ARM_AM::ShiftOpc ShiftTy; 8392 switch(Inst.getOpcode()) { 8393 default: llvm_unreachable("unexpected opcode!"); 8394 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8395 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8396 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8397 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8398 } 8399 // A shift by zero is a plain MOVr, not a MOVsi. 8400 unsigned Amt = Inst.getOperand(2).getImm(); 8401 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8402 // A shift by 32 should be encoded as 0 when permitted 8403 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8404 Amt = 0; 8405 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8406 MCInst TmpInst; 8407 TmpInst.setOpcode(Opc); 8408 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8409 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8410 if (Opc == ARM::MOVsi) 8411 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8412 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8413 TmpInst.addOperand(Inst.getOperand(4)); 8414 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8415 Inst = TmpInst; 8416 return true; 8417 } 8418 case ARM::RRXi: { 8419 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8420 MCInst TmpInst; 8421 TmpInst.setOpcode(ARM::MOVsi); 8422 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8423 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8424 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8425 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8426 TmpInst.addOperand(Inst.getOperand(3)); 8427 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8428 Inst = TmpInst; 8429 return true; 8430 } 8431 case ARM::t2LDMIA_UPD: { 8432 // If this is a load of a single register, then we should use 8433 // a post-indexed LDR instruction instead, per the ARM ARM. 8434 if (Inst.getNumOperands() != 5) 8435 return false; 8436 MCInst TmpInst; 8437 TmpInst.setOpcode(ARM::t2LDR_POST); 8438 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8439 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8440 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8441 TmpInst.addOperand(MCOperand::createImm(4)); 8442 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8443 TmpInst.addOperand(Inst.getOperand(3)); 8444 Inst = TmpInst; 8445 return true; 8446 } 8447 case ARM::t2STMDB_UPD: { 8448 // If this is a store of a single register, then we should use 8449 // a pre-indexed STR instruction instead, per the ARM ARM. 8450 if (Inst.getNumOperands() != 5) 8451 return false; 8452 MCInst TmpInst; 8453 TmpInst.setOpcode(ARM::t2STR_PRE); 8454 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8455 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8456 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8457 TmpInst.addOperand(MCOperand::createImm(-4)); 8458 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8459 TmpInst.addOperand(Inst.getOperand(3)); 8460 Inst = TmpInst; 8461 return true; 8462 } 8463 case ARM::LDMIA_UPD: 8464 // If this is a load of a single register via a 'pop', then we should use 8465 // a post-indexed LDR instruction instead, per the ARM ARM. 8466 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8467 Inst.getNumOperands() == 5) { 8468 MCInst TmpInst; 8469 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8470 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8471 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8472 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8473 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8474 TmpInst.addOperand(MCOperand::createImm(4)); 8475 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8476 TmpInst.addOperand(Inst.getOperand(3)); 8477 Inst = TmpInst; 8478 return true; 8479 } 8480 break; 8481 case ARM::STMDB_UPD: 8482 // If this is a store of a single register via a 'push', then we should use 8483 // a pre-indexed STR instruction instead, per the ARM ARM. 8484 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8485 Inst.getNumOperands() == 5) { 8486 MCInst TmpInst; 8487 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8488 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8489 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8490 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8491 TmpInst.addOperand(MCOperand::createImm(-4)); 8492 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8493 TmpInst.addOperand(Inst.getOperand(3)); 8494 Inst = TmpInst; 8495 } 8496 break; 8497 case ARM::t2ADDri12: 8498 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8499 // mnemonic was used (not "addw"), encoding T3 is preferred. 8500 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8501 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8502 break; 8503 Inst.setOpcode(ARM::t2ADDri); 8504 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8505 break; 8506 case ARM::t2SUBri12: 8507 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8508 // mnemonic was used (not "subw"), encoding T3 is preferred. 8509 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8510 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8511 break; 8512 Inst.setOpcode(ARM::t2SUBri); 8513 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8514 break; 8515 case ARM::tADDi8: 8516 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8517 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8518 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8519 // to encoding T1 if <Rd> is omitted." 8520 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8521 Inst.setOpcode(ARM::tADDi3); 8522 return true; 8523 } 8524 break; 8525 case ARM::tSUBi8: 8526 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8527 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8528 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8529 // to encoding T1 if <Rd> is omitted." 8530 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8531 Inst.setOpcode(ARM::tSUBi3); 8532 return true; 8533 } 8534 break; 8535 case ARM::t2ADDri: 8536 case ARM::t2SUBri: { 8537 // If the destination and first source operand are the same, and 8538 // the flags are compatible with the current IT status, use encoding T2 8539 // instead of T3. For compatibility with the system 'as'. Make sure the 8540 // wide encoding wasn't explicit. 8541 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8542 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8543 (Inst.getOperand(2).isImm() && 8544 (unsigned)Inst.getOperand(2).getImm() > 255) || 8545 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 8546 HasWideQualifier) 8547 break; 8548 MCInst TmpInst; 8549 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8550 ARM::tADDi8 : ARM::tSUBi8); 8551 TmpInst.addOperand(Inst.getOperand(0)); 8552 TmpInst.addOperand(Inst.getOperand(5)); 8553 TmpInst.addOperand(Inst.getOperand(0)); 8554 TmpInst.addOperand(Inst.getOperand(2)); 8555 TmpInst.addOperand(Inst.getOperand(3)); 8556 TmpInst.addOperand(Inst.getOperand(4)); 8557 Inst = TmpInst; 8558 return true; 8559 } 8560 case ARM::t2ADDrr: { 8561 // If the destination and first source operand are the same, and 8562 // there's no setting of the flags, use encoding T2 instead of T3. 8563 // Note that this is only for ADD, not SUB. This mirrors the system 8564 // 'as' behaviour. Also take advantage of ADD being commutative. 8565 // Make sure the wide encoding wasn't explicit. 8566 bool Swap = false; 8567 auto DestReg = Inst.getOperand(0).getReg(); 8568 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8569 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8570 Transform = true; 8571 Swap = true; 8572 } 8573 if (!Transform || 8574 Inst.getOperand(5).getReg() != 0 || 8575 HasWideQualifier) 8576 break; 8577 MCInst TmpInst; 8578 TmpInst.setOpcode(ARM::tADDhirr); 8579 TmpInst.addOperand(Inst.getOperand(0)); 8580 TmpInst.addOperand(Inst.getOperand(0)); 8581 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8582 TmpInst.addOperand(Inst.getOperand(3)); 8583 TmpInst.addOperand(Inst.getOperand(4)); 8584 Inst = TmpInst; 8585 return true; 8586 } 8587 case ARM::tADDrSP: 8588 // If the non-SP source operand and the destination operand are not the 8589 // same, we need to use the 32-bit encoding if it's available. 8590 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8591 Inst.setOpcode(ARM::t2ADDrr); 8592 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8593 return true; 8594 } 8595 break; 8596 case ARM::tB: 8597 // A Thumb conditional branch outside of an IT block is a tBcc. 8598 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8599 Inst.setOpcode(ARM::tBcc); 8600 return true; 8601 } 8602 break; 8603 case ARM::t2B: 8604 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8605 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8606 Inst.setOpcode(ARM::t2Bcc); 8607 return true; 8608 } 8609 break; 8610 case ARM::t2Bcc: 8611 // If the conditional is AL or we're in an IT block, we really want t2B. 8612 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8613 Inst.setOpcode(ARM::t2B); 8614 return true; 8615 } 8616 break; 8617 case ARM::tBcc: 8618 // If the conditional is AL, we really want tB. 8619 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8620 Inst.setOpcode(ARM::tB); 8621 return true; 8622 } 8623 break; 8624 case ARM::tLDMIA: { 8625 // If the register list contains any high registers, or if the writeback 8626 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8627 // instead if we're in Thumb2. Otherwise, this should have generated 8628 // an error in validateInstruction(). 8629 unsigned Rn = Inst.getOperand(0).getReg(); 8630 bool hasWritebackToken = 8631 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8632 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8633 bool listContainsBase; 8634 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8635 (!listContainsBase && !hasWritebackToken) || 8636 (listContainsBase && hasWritebackToken)) { 8637 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8638 assert(isThumbTwo()); 8639 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8640 // If we're switching to the updating version, we need to insert 8641 // the writeback tied operand. 8642 if (hasWritebackToken) 8643 Inst.insert(Inst.begin(), 8644 MCOperand::createReg(Inst.getOperand(0).getReg())); 8645 return true; 8646 } 8647 break; 8648 } 8649 case ARM::tSTMIA_UPD: { 8650 // If the register list contains any high registers, we need to use 8651 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8652 // should have generated an error in validateInstruction(). 8653 unsigned Rn = Inst.getOperand(0).getReg(); 8654 bool listContainsBase; 8655 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8656 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8657 assert(isThumbTwo()); 8658 Inst.setOpcode(ARM::t2STMIA_UPD); 8659 return true; 8660 } 8661 break; 8662 } 8663 case ARM::tPOP: { 8664 bool listContainsBase; 8665 // If the register list contains any high registers, we need to use 8666 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8667 // should have generated an error in validateInstruction(). 8668 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8669 return false; 8670 assert(isThumbTwo()); 8671 Inst.setOpcode(ARM::t2LDMIA_UPD); 8672 // Add the base register and writeback operands. 8673 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8674 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8675 return true; 8676 } 8677 case ARM::tPUSH: { 8678 bool listContainsBase; 8679 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8680 return false; 8681 assert(isThumbTwo()); 8682 Inst.setOpcode(ARM::t2STMDB_UPD); 8683 // Add the base register and writeback operands. 8684 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8685 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8686 return true; 8687 } 8688 case ARM::t2MOVi: 8689 // If we can use the 16-bit encoding and the user didn't explicitly 8690 // request the 32-bit variant, transform it here. 8691 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8692 (Inst.getOperand(1).isImm() && 8693 (unsigned)Inst.getOperand(1).getImm() <= 255) && 8694 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8695 !HasWideQualifier) { 8696 // The operands aren't in the same order for tMOVi8... 8697 MCInst TmpInst; 8698 TmpInst.setOpcode(ARM::tMOVi8); 8699 TmpInst.addOperand(Inst.getOperand(0)); 8700 TmpInst.addOperand(Inst.getOperand(4)); 8701 TmpInst.addOperand(Inst.getOperand(1)); 8702 TmpInst.addOperand(Inst.getOperand(2)); 8703 TmpInst.addOperand(Inst.getOperand(3)); 8704 Inst = TmpInst; 8705 return true; 8706 } 8707 break; 8708 8709 case ARM::t2MOVr: 8710 // If we can use the 16-bit encoding and the user didn't explicitly 8711 // request the 32-bit variant, transform it here. 8712 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8713 isARMLowRegister(Inst.getOperand(1).getReg()) && 8714 Inst.getOperand(2).getImm() == ARMCC::AL && 8715 Inst.getOperand(4).getReg() == ARM::CPSR && 8716 !HasWideQualifier) { 8717 // The operands aren't the same for tMOV[S]r... (no cc_out) 8718 MCInst TmpInst; 8719 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8720 TmpInst.addOperand(Inst.getOperand(0)); 8721 TmpInst.addOperand(Inst.getOperand(1)); 8722 TmpInst.addOperand(Inst.getOperand(2)); 8723 TmpInst.addOperand(Inst.getOperand(3)); 8724 Inst = TmpInst; 8725 return true; 8726 } 8727 break; 8728 8729 case ARM::t2SXTH: 8730 case ARM::t2SXTB: 8731 case ARM::t2UXTH: 8732 case ARM::t2UXTB: 8733 // If we can use the 16-bit encoding and the user didn't explicitly 8734 // request the 32-bit variant, transform it here. 8735 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8736 isARMLowRegister(Inst.getOperand(1).getReg()) && 8737 Inst.getOperand(2).getImm() == 0 && 8738 !HasWideQualifier) { 8739 unsigned NewOpc; 8740 switch (Inst.getOpcode()) { 8741 default: llvm_unreachable("Illegal opcode!"); 8742 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8743 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8744 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8745 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8746 } 8747 // The operands aren't the same for thumb1 (no rotate operand). 8748 MCInst TmpInst; 8749 TmpInst.setOpcode(NewOpc); 8750 TmpInst.addOperand(Inst.getOperand(0)); 8751 TmpInst.addOperand(Inst.getOperand(1)); 8752 TmpInst.addOperand(Inst.getOperand(3)); 8753 TmpInst.addOperand(Inst.getOperand(4)); 8754 Inst = TmpInst; 8755 return true; 8756 } 8757 break; 8758 8759 case ARM::MOVsi: { 8760 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8761 // rrx shifts and asr/lsr of #32 is encoded as 0 8762 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8763 return false; 8764 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8765 // Shifting by zero is accepted as a vanilla 'MOVr' 8766 MCInst TmpInst; 8767 TmpInst.setOpcode(ARM::MOVr); 8768 TmpInst.addOperand(Inst.getOperand(0)); 8769 TmpInst.addOperand(Inst.getOperand(1)); 8770 TmpInst.addOperand(Inst.getOperand(3)); 8771 TmpInst.addOperand(Inst.getOperand(4)); 8772 TmpInst.addOperand(Inst.getOperand(5)); 8773 Inst = TmpInst; 8774 return true; 8775 } 8776 return false; 8777 } 8778 case ARM::ANDrsi: 8779 case ARM::ORRrsi: 8780 case ARM::EORrsi: 8781 case ARM::BICrsi: 8782 case ARM::SUBrsi: 8783 case ARM::ADDrsi: { 8784 unsigned newOpc; 8785 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8786 if (SOpc == ARM_AM::rrx) return false; 8787 switch (Inst.getOpcode()) { 8788 default: llvm_unreachable("unexpected opcode!"); 8789 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8790 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8791 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8792 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8793 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8794 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8795 } 8796 // If the shift is by zero, use the non-shifted instruction definition. 8797 // The exception is for right shifts, where 0 == 32 8798 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8799 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8800 MCInst TmpInst; 8801 TmpInst.setOpcode(newOpc); 8802 TmpInst.addOperand(Inst.getOperand(0)); 8803 TmpInst.addOperand(Inst.getOperand(1)); 8804 TmpInst.addOperand(Inst.getOperand(2)); 8805 TmpInst.addOperand(Inst.getOperand(4)); 8806 TmpInst.addOperand(Inst.getOperand(5)); 8807 TmpInst.addOperand(Inst.getOperand(6)); 8808 Inst = TmpInst; 8809 return true; 8810 } 8811 return false; 8812 } 8813 case ARM::ITasm: 8814 case ARM::t2IT: { 8815 MCOperand &MO = Inst.getOperand(1); 8816 unsigned Mask = MO.getImm(); 8817 ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8818 8819 // Set up the IT block state according to the IT instruction we just 8820 // matched. 8821 assert(!inITBlock() && "nested IT blocks?!"); 8822 startExplicitITBlock(Cond, Mask); 8823 MO.setImm(getITMaskEncoding()); 8824 break; 8825 } 8826 case ARM::t2LSLrr: 8827 case ARM::t2LSRrr: 8828 case ARM::t2ASRrr: 8829 case ARM::t2SBCrr: 8830 case ARM::t2RORrr: 8831 case ARM::t2BICrr: 8832 // Assemblers should use the narrow encodings of these instructions when permissible. 8833 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8834 isARMLowRegister(Inst.getOperand(2).getReg())) && 8835 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8836 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8837 !HasWideQualifier) { 8838 unsigned NewOpc; 8839 switch (Inst.getOpcode()) { 8840 default: llvm_unreachable("unexpected opcode"); 8841 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8842 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8843 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8844 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8845 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8846 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8847 } 8848 MCInst TmpInst; 8849 TmpInst.setOpcode(NewOpc); 8850 TmpInst.addOperand(Inst.getOperand(0)); 8851 TmpInst.addOperand(Inst.getOperand(5)); 8852 TmpInst.addOperand(Inst.getOperand(1)); 8853 TmpInst.addOperand(Inst.getOperand(2)); 8854 TmpInst.addOperand(Inst.getOperand(3)); 8855 TmpInst.addOperand(Inst.getOperand(4)); 8856 Inst = TmpInst; 8857 return true; 8858 } 8859 return false; 8860 8861 case ARM::t2ANDrr: 8862 case ARM::t2EORrr: 8863 case ARM::t2ADCrr: 8864 case ARM::t2ORRrr: 8865 // Assemblers should use the narrow encodings of these instructions when permissible. 8866 // These instructions are special in that they are commutable, so shorter encodings 8867 // are available more often. 8868 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8869 isARMLowRegister(Inst.getOperand(2).getReg())) && 8870 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8871 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8872 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8873 !HasWideQualifier) { 8874 unsigned NewOpc; 8875 switch (Inst.getOpcode()) { 8876 default: llvm_unreachable("unexpected opcode"); 8877 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8878 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8879 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8880 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8881 } 8882 MCInst TmpInst; 8883 TmpInst.setOpcode(NewOpc); 8884 TmpInst.addOperand(Inst.getOperand(0)); 8885 TmpInst.addOperand(Inst.getOperand(5)); 8886 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8887 TmpInst.addOperand(Inst.getOperand(1)); 8888 TmpInst.addOperand(Inst.getOperand(2)); 8889 } else { 8890 TmpInst.addOperand(Inst.getOperand(2)); 8891 TmpInst.addOperand(Inst.getOperand(1)); 8892 } 8893 TmpInst.addOperand(Inst.getOperand(3)); 8894 TmpInst.addOperand(Inst.getOperand(4)); 8895 Inst = TmpInst; 8896 return true; 8897 } 8898 return false; 8899 } 8900 return false; 8901 } 8902 8903 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8904 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8905 // suffix depending on whether they're in an IT block or not. 8906 unsigned Opc = Inst.getOpcode(); 8907 const MCInstrDesc &MCID = MII.get(Opc); 8908 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8909 assert(MCID.hasOptionalDef() && 8910 "optionally flag setting instruction missing optional def operand"); 8911 assert(MCID.NumOperands == Inst.getNumOperands() && 8912 "operand count mismatch!"); 8913 // Find the optional-def operand (cc_out). 8914 unsigned OpNo; 8915 for (OpNo = 0; 8916 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8917 ++OpNo) 8918 ; 8919 // If we're parsing Thumb1, reject it completely. 8920 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8921 return Match_RequiresFlagSetting; 8922 // If we're parsing Thumb2, which form is legal depends on whether we're 8923 // in an IT block. 8924 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8925 !inITBlock()) 8926 return Match_RequiresITBlock; 8927 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8928 inITBlock()) 8929 return Match_RequiresNotITBlock; 8930 // LSL with zero immediate is not allowed in an IT block 8931 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 8932 return Match_RequiresNotITBlock; 8933 } else if (isThumbOne()) { 8934 // Some high-register supporting Thumb1 encodings only allow both registers 8935 // to be from r0-r7 when in Thumb2. 8936 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8937 isARMLowRegister(Inst.getOperand(1).getReg()) && 8938 isARMLowRegister(Inst.getOperand(2).getReg())) 8939 return Match_RequiresThumb2; 8940 // Others only require ARMv6 or later. 8941 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8942 isARMLowRegister(Inst.getOperand(0).getReg()) && 8943 isARMLowRegister(Inst.getOperand(1).getReg())) 8944 return Match_RequiresV6; 8945 } 8946 8947 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 8948 // than the loop below can handle, so it uses the GPRnopc register class and 8949 // we do SP handling here. 8950 if (Opc == ARM::t2MOVr && !hasV8Ops()) 8951 { 8952 // SP as both source and destination is not allowed 8953 if (Inst.getOperand(0).getReg() == ARM::SP && 8954 Inst.getOperand(1).getReg() == ARM::SP) 8955 return Match_RequiresV8; 8956 // When flags-setting SP as either source or destination is not allowed 8957 if (Inst.getOperand(4).getReg() == ARM::CPSR && 8958 (Inst.getOperand(0).getReg() == ARM::SP || 8959 Inst.getOperand(1).getReg() == ARM::SP)) 8960 return Match_RequiresV8; 8961 } 8962 8963 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 8964 // ARMv8-A. 8965 if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) && 8966 Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops())) 8967 return Match_InvalidOperand; 8968 8969 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8970 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8971 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8972 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8973 return Match_RequiresV8; 8974 else if (Inst.getOperand(I).getReg() == ARM::PC) 8975 return Match_InvalidOperand; 8976 } 8977 8978 return Match_Success; 8979 } 8980 8981 namespace llvm { 8982 8983 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 8984 return true; // In an assembly source, no need to second-guess 8985 } 8986 8987 } // end namespace llvm 8988 8989 // Returns true if Inst is unpredictable if it is in and IT block, but is not 8990 // the last instruction in the block. 8991 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 8992 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 8993 8994 // All branch & call instructions terminate IT blocks with the exception of 8995 // SVC. 8996 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 8997 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 8998 return true; 8999 9000 // Any arithmetic instruction which writes to the PC also terminates the IT 9001 // block. 9002 for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) { 9003 MCOperand &Op = Inst.getOperand(OpIdx); 9004 if (Op.isReg() && Op.getReg() == ARM::PC) 9005 return true; 9006 } 9007 9008 if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI)) 9009 return true; 9010 9011 // Instructions with variable operand lists, which write to the variable 9012 // operands. We only care about Thumb instructions here, as ARM instructions 9013 // obviously can't be in an IT block. 9014 switch (Inst.getOpcode()) { 9015 case ARM::tLDMIA: 9016 case ARM::t2LDMIA: 9017 case ARM::t2LDMIA_UPD: 9018 case ARM::t2LDMDB: 9019 case ARM::t2LDMDB_UPD: 9020 if (listContainsReg(Inst, 3, ARM::PC)) 9021 return true; 9022 break; 9023 case ARM::tPOP: 9024 if (listContainsReg(Inst, 2, ARM::PC)) 9025 return true; 9026 break; 9027 } 9028 9029 return false; 9030 } 9031 9032 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 9033 SmallVectorImpl<NearMissInfo> &NearMisses, 9034 bool MatchingInlineAsm, 9035 bool &EmitInITBlock, 9036 MCStreamer &Out) { 9037 // If we can't use an implicit IT block here, just match as normal. 9038 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 9039 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 9040 9041 // Try to match the instruction in an extension of the current IT block (if 9042 // there is one). 9043 if (inImplicitITBlock()) { 9044 extendImplicitITBlock(ITState.Cond); 9045 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9046 Match_Success) { 9047 // The match succeded, but we still have to check that the instruction is 9048 // valid in this implicit IT block. 9049 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9050 if (MCID.isPredicable()) { 9051 ARMCC::CondCodes InstCond = 9052 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9053 .getImm(); 9054 ARMCC::CondCodes ITCond = currentITCond(); 9055 if (InstCond == ITCond) { 9056 EmitInITBlock = true; 9057 return Match_Success; 9058 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 9059 invertCurrentITCondition(); 9060 EmitInITBlock = true; 9061 return Match_Success; 9062 } 9063 } 9064 } 9065 rewindImplicitITPosition(); 9066 } 9067 9068 // Finish the current IT block, and try to match outside any IT block. 9069 flushPendingInstructions(Out); 9070 unsigned PlainMatchResult = 9071 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 9072 if (PlainMatchResult == Match_Success) { 9073 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9074 if (MCID.isPredicable()) { 9075 ARMCC::CondCodes InstCond = 9076 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9077 .getImm(); 9078 // Some forms of the branch instruction have their own condition code 9079 // fields, so can be conditionally executed without an IT block. 9080 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 9081 EmitInITBlock = false; 9082 return Match_Success; 9083 } 9084 if (InstCond == ARMCC::AL) { 9085 EmitInITBlock = false; 9086 return Match_Success; 9087 } 9088 } else { 9089 EmitInITBlock = false; 9090 return Match_Success; 9091 } 9092 } 9093 9094 // Try to match in a new IT block. The matcher doesn't check the actual 9095 // condition, so we create an IT block with a dummy condition, and fix it up 9096 // once we know the actual condition. 9097 startImplicitITBlock(); 9098 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 9099 Match_Success) { 9100 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 9101 if (MCID.isPredicable()) { 9102 ITState.Cond = 9103 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 9104 .getImm(); 9105 EmitInITBlock = true; 9106 return Match_Success; 9107 } 9108 } 9109 discardImplicitITBlock(); 9110 9111 // If none of these succeed, return the error we got when trying to match 9112 // outside any IT blocks. 9113 EmitInITBlock = false; 9114 return PlainMatchResult; 9115 } 9116 9117 static std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS, 9118 unsigned VariantID = 0); 9119 9120 static const char *getSubtargetFeatureName(uint64_t Val); 9121 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 9122 OperandVector &Operands, 9123 MCStreamer &Out, uint64_t &ErrorInfo, 9124 bool MatchingInlineAsm) { 9125 MCInst Inst; 9126 unsigned MatchResult; 9127 bool PendConditionalInstruction = false; 9128 9129 SmallVector<NearMissInfo, 4> NearMisses; 9130 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 9131 PendConditionalInstruction, Out); 9132 9133 switch (MatchResult) { 9134 case Match_Success: 9135 // Context sensitive operand constraints aren't handled by the matcher, 9136 // so check them here. 9137 if (validateInstruction(Inst, Operands)) { 9138 // Still progress the IT block, otherwise one wrong condition causes 9139 // nasty cascading errors. 9140 forwardITPosition(); 9141 return true; 9142 } 9143 9144 { // processInstruction() updates inITBlock state, we need to save it away 9145 bool wasInITBlock = inITBlock(); 9146 9147 // Some instructions need post-processing to, for example, tweak which 9148 // encoding is selected. Loop on it while changes happen so the 9149 // individual transformations can chain off each other. E.g., 9150 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 9151 while (processInstruction(Inst, Operands, Out)) 9152 ; 9153 9154 // Only after the instruction is fully processed, we can validate it 9155 if (wasInITBlock && hasV8Ops() && isThumb() && 9156 !isV8EligibleForIT(&Inst)) { 9157 Warning(IDLoc, "deprecated instruction in IT block"); 9158 } 9159 } 9160 9161 // Only move forward at the very end so that everything in validate 9162 // and process gets a consistent answer about whether we're in an IT 9163 // block. 9164 forwardITPosition(); 9165 9166 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 9167 // doesn't actually encode. 9168 if (Inst.getOpcode() == ARM::ITasm) 9169 return false; 9170 9171 Inst.setLoc(IDLoc); 9172 if (PendConditionalInstruction) { 9173 PendingConditionalInsts.push_back(Inst); 9174 if (isITBlockFull() || isITBlockTerminator(Inst)) 9175 flushPendingInstructions(Out); 9176 } else { 9177 Out.EmitInstruction(Inst, getSTI()); 9178 } 9179 return false; 9180 case Match_NearMisses: 9181 ReportNearMisses(NearMisses, IDLoc, Operands); 9182 return true; 9183 case Match_MnemonicFail: { 9184 uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 9185 std::string Suggestion = ARMMnemonicSpellCheck( 9186 ((ARMOperand &)*Operands[0]).getToken(), FBS); 9187 return Error(IDLoc, "invalid instruction" + Suggestion, 9188 ((ARMOperand &)*Operands[0]).getLocRange()); 9189 } 9190 } 9191 9192 llvm_unreachable("Implement any new match types added!"); 9193 } 9194 9195 /// parseDirective parses the arm specific directives 9196 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 9197 const MCObjectFileInfo::Environment Format = 9198 getContext().getObjectFileInfo()->getObjectFileType(); 9199 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9200 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 9201 9202 StringRef IDVal = DirectiveID.getIdentifier(); 9203 if (IDVal == ".word") 9204 parseLiteralValues(4, DirectiveID.getLoc()); 9205 else if (IDVal == ".short" || IDVal == ".hword") 9206 parseLiteralValues(2, DirectiveID.getLoc()); 9207 else if (IDVal == ".thumb") 9208 parseDirectiveThumb(DirectiveID.getLoc()); 9209 else if (IDVal == ".arm") 9210 parseDirectiveARM(DirectiveID.getLoc()); 9211 else if (IDVal == ".thumb_func") 9212 parseDirectiveThumbFunc(DirectiveID.getLoc()); 9213 else if (IDVal == ".code") 9214 parseDirectiveCode(DirectiveID.getLoc()); 9215 else if (IDVal == ".syntax") 9216 parseDirectiveSyntax(DirectiveID.getLoc()); 9217 else if (IDVal == ".unreq") 9218 parseDirectiveUnreq(DirectiveID.getLoc()); 9219 else if (IDVal == ".fnend") 9220 parseDirectiveFnEnd(DirectiveID.getLoc()); 9221 else if (IDVal == ".cantunwind") 9222 parseDirectiveCantUnwind(DirectiveID.getLoc()); 9223 else if (IDVal == ".personality") 9224 parseDirectivePersonality(DirectiveID.getLoc()); 9225 else if (IDVal == ".handlerdata") 9226 parseDirectiveHandlerData(DirectiveID.getLoc()); 9227 else if (IDVal == ".setfp") 9228 parseDirectiveSetFP(DirectiveID.getLoc()); 9229 else if (IDVal == ".pad") 9230 parseDirectivePad(DirectiveID.getLoc()); 9231 else if (IDVal == ".save") 9232 parseDirectiveRegSave(DirectiveID.getLoc(), false); 9233 else if (IDVal == ".vsave") 9234 parseDirectiveRegSave(DirectiveID.getLoc(), true); 9235 else if (IDVal == ".ltorg" || IDVal == ".pool") 9236 parseDirectiveLtorg(DirectiveID.getLoc()); 9237 else if (IDVal == ".even") 9238 parseDirectiveEven(DirectiveID.getLoc()); 9239 else if (IDVal == ".personalityindex") 9240 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 9241 else if (IDVal == ".unwind_raw") 9242 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 9243 else if (IDVal == ".movsp") 9244 parseDirectiveMovSP(DirectiveID.getLoc()); 9245 else if (IDVal == ".arch_extension") 9246 parseDirectiveArchExtension(DirectiveID.getLoc()); 9247 else if (IDVal == ".align") 9248 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 9249 else if (IDVal == ".thumb_set") 9250 parseDirectiveThumbSet(DirectiveID.getLoc()); 9251 else if (!IsMachO && !IsCOFF) { 9252 if (IDVal == ".arch") 9253 parseDirectiveArch(DirectiveID.getLoc()); 9254 else if (IDVal == ".cpu") 9255 parseDirectiveCPU(DirectiveID.getLoc()); 9256 else if (IDVal == ".eabi_attribute") 9257 parseDirectiveEabiAttr(DirectiveID.getLoc()); 9258 else if (IDVal == ".fpu") 9259 parseDirectiveFPU(DirectiveID.getLoc()); 9260 else if (IDVal == ".fnstart") 9261 parseDirectiveFnStart(DirectiveID.getLoc()); 9262 else if (IDVal == ".inst") 9263 parseDirectiveInst(DirectiveID.getLoc()); 9264 else if (IDVal == ".inst.n") 9265 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 9266 else if (IDVal == ".inst.w") 9267 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 9268 else if (IDVal == ".object_arch") 9269 parseDirectiveObjectArch(DirectiveID.getLoc()); 9270 else if (IDVal == ".tlsdescseq") 9271 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 9272 else 9273 return true; 9274 } else 9275 return true; 9276 return false; 9277 } 9278 9279 /// parseLiteralValues 9280 /// ::= .hword expression [, expression]* 9281 /// ::= .short expression [, expression]* 9282 /// ::= .word expression [, expression]* 9283 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 9284 auto parseOne = [&]() -> bool { 9285 const MCExpr *Value; 9286 if (getParser().parseExpression(Value)) 9287 return true; 9288 getParser().getStreamer().EmitValue(Value, Size, L); 9289 return false; 9290 }; 9291 return (parseMany(parseOne)); 9292 } 9293 9294 /// parseDirectiveThumb 9295 /// ::= .thumb 9296 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9297 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9298 check(!hasThumb(), L, "target does not support Thumb mode")) 9299 return true; 9300 9301 if (!isThumb()) 9302 SwitchMode(); 9303 9304 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9305 return false; 9306 } 9307 9308 /// parseDirectiveARM 9309 /// ::= .arm 9310 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9311 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 9312 check(!hasARM(), L, "target does not support ARM mode")) 9313 return true; 9314 9315 if (isThumb()) 9316 SwitchMode(); 9317 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9318 return false; 9319 } 9320 9321 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9322 // We need to flush the current implicit IT block on a label, because it is 9323 // not legal to branch into an IT block. 9324 flushPendingInstructions(getStreamer()); 9325 if (NextSymbolIsThumb) { 9326 getParser().getStreamer().EmitThumbFunc(Symbol); 9327 NextSymbolIsThumb = false; 9328 } 9329 } 9330 9331 /// parseDirectiveThumbFunc 9332 /// ::= .thumbfunc symbol_name 9333 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9334 MCAsmParser &Parser = getParser(); 9335 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9336 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9337 9338 // Darwin asm has (optionally) function name after .thumb_func direction 9339 // ELF doesn't 9340 9341 if (IsMachO) { 9342 if (Parser.getTok().is(AsmToken::Identifier) || 9343 Parser.getTok().is(AsmToken::String)) { 9344 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 9345 Parser.getTok().getIdentifier()); 9346 getParser().getStreamer().EmitThumbFunc(Func); 9347 Parser.Lex(); 9348 if (parseToken(AsmToken::EndOfStatement, 9349 "unexpected token in '.thumb_func' directive")) 9350 return true; 9351 return false; 9352 } 9353 } 9354 9355 if (parseToken(AsmToken::EndOfStatement, 9356 "unexpected token in '.thumb_func' directive")) 9357 return true; 9358 9359 NextSymbolIsThumb = true; 9360 return false; 9361 } 9362 9363 /// parseDirectiveSyntax 9364 /// ::= .syntax unified | divided 9365 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9366 MCAsmParser &Parser = getParser(); 9367 const AsmToken &Tok = Parser.getTok(); 9368 if (Tok.isNot(AsmToken::Identifier)) { 9369 Error(L, "unexpected token in .syntax directive"); 9370 return false; 9371 } 9372 9373 StringRef Mode = Tok.getString(); 9374 Parser.Lex(); 9375 if (check(Mode == "divided" || Mode == "DIVIDED", L, 9376 "'.syntax divided' arm assembly not supported") || 9377 check(Mode != "unified" && Mode != "UNIFIED", L, 9378 "unrecognized syntax mode in .syntax directive") || 9379 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9380 return true; 9381 9382 // TODO tell the MC streamer the mode 9383 // getParser().getStreamer().Emit???(); 9384 return false; 9385 } 9386 9387 /// parseDirectiveCode 9388 /// ::= .code 16 | 32 9389 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9390 MCAsmParser &Parser = getParser(); 9391 const AsmToken &Tok = Parser.getTok(); 9392 if (Tok.isNot(AsmToken::Integer)) 9393 return Error(L, "unexpected token in .code directive"); 9394 int64_t Val = Parser.getTok().getIntVal(); 9395 if (Val != 16 && Val != 32) { 9396 Error(L, "invalid operand to .code directive"); 9397 return false; 9398 } 9399 Parser.Lex(); 9400 9401 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9402 return true; 9403 9404 if (Val == 16) { 9405 if (!hasThumb()) 9406 return Error(L, "target does not support Thumb mode"); 9407 9408 if (!isThumb()) 9409 SwitchMode(); 9410 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9411 } else { 9412 if (!hasARM()) 9413 return Error(L, "target does not support ARM mode"); 9414 9415 if (isThumb()) 9416 SwitchMode(); 9417 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9418 } 9419 9420 return false; 9421 } 9422 9423 /// parseDirectiveReq 9424 /// ::= name .req registername 9425 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9426 MCAsmParser &Parser = getParser(); 9427 Parser.Lex(); // Eat the '.req' token. 9428 unsigned Reg; 9429 SMLoc SRegLoc, ERegLoc; 9430 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 9431 "register name expected") || 9432 parseToken(AsmToken::EndOfStatement, 9433 "unexpected input in .req directive.")) 9434 return true; 9435 9436 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 9437 return Error(SRegLoc, 9438 "redefinition of '" + Name + "' does not match original."); 9439 9440 return false; 9441 } 9442 9443 /// parseDirectiveUneq 9444 /// ::= .unreq registername 9445 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9446 MCAsmParser &Parser = getParser(); 9447 if (Parser.getTok().isNot(AsmToken::Identifier)) 9448 return Error(L, "unexpected input in .unreq directive."); 9449 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9450 Parser.Lex(); // Eat the identifier. 9451 if (parseToken(AsmToken::EndOfStatement, 9452 "unexpected input in '.unreq' directive")) 9453 return true; 9454 return false; 9455 } 9456 9457 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9458 // before, if supported by the new target, or emit mapping symbols for the mode 9459 // switch. 9460 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9461 if (WasThumb != isThumb()) { 9462 if (WasThumb && hasThumb()) { 9463 // Stay in Thumb mode 9464 SwitchMode(); 9465 } else if (!WasThumb && hasARM()) { 9466 // Stay in ARM mode 9467 SwitchMode(); 9468 } else { 9469 // Mode switch forced, because the new arch doesn't support the old mode. 9470 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9471 : MCAF_Code32); 9472 // Warn about the implcit mode switch. GAS does not switch modes here, 9473 // but instead stays in the old mode, reporting an error on any following 9474 // instructions as the mode does not exist on the target. 9475 Warning(Loc, Twine("new target does not support ") + 9476 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9477 (!WasThumb ? "thumb" : "arm") + " mode"); 9478 } 9479 } 9480 } 9481 9482 /// parseDirectiveArch 9483 /// ::= .arch token 9484 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9485 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9486 ARM::ArchKind ID = ARM::parseArch(Arch); 9487 9488 if (ID == ARM::ArchKind::INVALID) 9489 return Error(L, "Unknown arch name"); 9490 9491 bool WasThumb = isThumb(); 9492 Triple T; 9493 MCSubtargetInfo &STI = copySTI(); 9494 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9495 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9496 FixModeAfterArchChange(WasThumb, L); 9497 9498 getTargetStreamer().emitArch(ID); 9499 return false; 9500 } 9501 9502 /// parseDirectiveEabiAttr 9503 /// ::= .eabi_attribute int, int [, "str"] 9504 /// ::= .eabi_attribute Tag_name, int [, "str"] 9505 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9506 MCAsmParser &Parser = getParser(); 9507 int64_t Tag; 9508 SMLoc TagLoc; 9509 TagLoc = Parser.getTok().getLoc(); 9510 if (Parser.getTok().is(AsmToken::Identifier)) { 9511 StringRef Name = Parser.getTok().getIdentifier(); 9512 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9513 if (Tag == -1) { 9514 Error(TagLoc, "attribute name not recognised: " + Name); 9515 return false; 9516 } 9517 Parser.Lex(); 9518 } else { 9519 const MCExpr *AttrExpr; 9520 9521 TagLoc = Parser.getTok().getLoc(); 9522 if (Parser.parseExpression(AttrExpr)) 9523 return true; 9524 9525 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9526 if (check(!CE, TagLoc, "expected numeric constant")) 9527 return true; 9528 9529 Tag = CE->getValue(); 9530 } 9531 9532 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9533 return true; 9534 9535 StringRef StringValue = ""; 9536 bool IsStringValue = false; 9537 9538 int64_t IntegerValue = 0; 9539 bool IsIntegerValue = false; 9540 9541 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9542 IsStringValue = true; 9543 else if (Tag == ARMBuildAttrs::compatibility) { 9544 IsStringValue = true; 9545 IsIntegerValue = true; 9546 } else if (Tag < 32 || Tag % 2 == 0) 9547 IsIntegerValue = true; 9548 else if (Tag % 2 == 1) 9549 IsStringValue = true; 9550 else 9551 llvm_unreachable("invalid tag type"); 9552 9553 if (IsIntegerValue) { 9554 const MCExpr *ValueExpr; 9555 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9556 if (Parser.parseExpression(ValueExpr)) 9557 return true; 9558 9559 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9560 if (!CE) 9561 return Error(ValueExprLoc, "expected numeric constant"); 9562 IntegerValue = CE->getValue(); 9563 } 9564 9565 if (Tag == ARMBuildAttrs::compatibility) { 9566 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 9567 return true; 9568 } 9569 9570 if (IsStringValue) { 9571 if (Parser.getTok().isNot(AsmToken::String)) 9572 return Error(Parser.getTok().getLoc(), "bad string constant"); 9573 9574 StringValue = Parser.getTok().getStringContents(); 9575 Parser.Lex(); 9576 } 9577 9578 if (Parser.parseToken(AsmToken::EndOfStatement, 9579 "unexpected token in '.eabi_attribute' directive")) 9580 return true; 9581 9582 if (IsIntegerValue && IsStringValue) { 9583 assert(Tag == ARMBuildAttrs::compatibility); 9584 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9585 } else if (IsIntegerValue) 9586 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9587 else if (IsStringValue) 9588 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9589 return false; 9590 } 9591 9592 /// parseDirectiveCPU 9593 /// ::= .cpu str 9594 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9595 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9596 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9597 9598 // FIXME: This is using table-gen data, but should be moved to 9599 // ARMTargetParser once that is table-gen'd. 9600 if (!getSTI().isCPUStringValid(CPU)) 9601 return Error(L, "Unknown CPU name"); 9602 9603 bool WasThumb = isThumb(); 9604 MCSubtargetInfo &STI = copySTI(); 9605 STI.setDefaultFeatures(CPU, ""); 9606 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9607 FixModeAfterArchChange(WasThumb, L); 9608 9609 return false; 9610 } 9611 9612 /// parseDirectiveFPU 9613 /// ::= .fpu str 9614 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9615 SMLoc FPUNameLoc = getTok().getLoc(); 9616 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9617 9618 unsigned ID = ARM::parseFPU(FPU); 9619 std::vector<StringRef> Features; 9620 if (!ARM::getFPUFeatures(ID, Features)) 9621 return Error(FPUNameLoc, "Unknown FPU name"); 9622 9623 MCSubtargetInfo &STI = copySTI(); 9624 for (auto Feature : Features) 9625 STI.ApplyFeatureFlag(Feature); 9626 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9627 9628 getTargetStreamer().emitFPU(ID); 9629 return false; 9630 } 9631 9632 /// parseDirectiveFnStart 9633 /// ::= .fnstart 9634 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9635 if (parseToken(AsmToken::EndOfStatement, 9636 "unexpected token in '.fnstart' directive")) 9637 return true; 9638 9639 if (UC.hasFnStart()) { 9640 Error(L, ".fnstart starts before the end of previous one"); 9641 UC.emitFnStartLocNotes(); 9642 return true; 9643 } 9644 9645 // Reset the unwind directives parser state 9646 UC.reset(); 9647 9648 getTargetStreamer().emitFnStart(); 9649 9650 UC.recordFnStart(L); 9651 return false; 9652 } 9653 9654 /// parseDirectiveFnEnd 9655 /// ::= .fnend 9656 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9657 if (parseToken(AsmToken::EndOfStatement, 9658 "unexpected token in '.fnend' directive")) 9659 return true; 9660 // Check the ordering of unwind directives 9661 if (!UC.hasFnStart()) 9662 return Error(L, ".fnstart must precede .fnend directive"); 9663 9664 // Reset the unwind directives parser state 9665 getTargetStreamer().emitFnEnd(); 9666 9667 UC.reset(); 9668 return false; 9669 } 9670 9671 /// parseDirectiveCantUnwind 9672 /// ::= .cantunwind 9673 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9674 if (parseToken(AsmToken::EndOfStatement, 9675 "unexpected token in '.cantunwind' directive")) 9676 return true; 9677 9678 UC.recordCantUnwind(L); 9679 // Check the ordering of unwind directives 9680 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 9681 return true; 9682 9683 if (UC.hasHandlerData()) { 9684 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9685 UC.emitHandlerDataLocNotes(); 9686 return true; 9687 } 9688 if (UC.hasPersonality()) { 9689 Error(L, ".cantunwind can't be used with .personality directive"); 9690 UC.emitPersonalityLocNotes(); 9691 return true; 9692 } 9693 9694 getTargetStreamer().emitCantUnwind(); 9695 return false; 9696 } 9697 9698 /// parseDirectivePersonality 9699 /// ::= .personality name 9700 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9701 MCAsmParser &Parser = getParser(); 9702 bool HasExistingPersonality = UC.hasPersonality(); 9703 9704 // Parse the name of the personality routine 9705 if (Parser.getTok().isNot(AsmToken::Identifier)) 9706 return Error(L, "unexpected input in .personality directive."); 9707 StringRef Name(Parser.getTok().getIdentifier()); 9708 Parser.Lex(); 9709 9710 if (parseToken(AsmToken::EndOfStatement, 9711 "unexpected token in '.personality' directive")) 9712 return true; 9713 9714 UC.recordPersonality(L); 9715 9716 // Check the ordering of unwind directives 9717 if (!UC.hasFnStart()) 9718 return Error(L, ".fnstart must precede .personality directive"); 9719 if (UC.cantUnwind()) { 9720 Error(L, ".personality can't be used with .cantunwind directive"); 9721 UC.emitCantUnwindLocNotes(); 9722 return true; 9723 } 9724 if (UC.hasHandlerData()) { 9725 Error(L, ".personality must precede .handlerdata directive"); 9726 UC.emitHandlerDataLocNotes(); 9727 return true; 9728 } 9729 if (HasExistingPersonality) { 9730 Error(L, "multiple personality directives"); 9731 UC.emitPersonalityLocNotes(); 9732 return true; 9733 } 9734 9735 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9736 getTargetStreamer().emitPersonality(PR); 9737 return false; 9738 } 9739 9740 /// parseDirectiveHandlerData 9741 /// ::= .handlerdata 9742 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9743 if (parseToken(AsmToken::EndOfStatement, 9744 "unexpected token in '.handlerdata' directive")) 9745 return true; 9746 9747 UC.recordHandlerData(L); 9748 // Check the ordering of unwind directives 9749 if (!UC.hasFnStart()) 9750 return Error(L, ".fnstart must precede .personality directive"); 9751 if (UC.cantUnwind()) { 9752 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9753 UC.emitCantUnwindLocNotes(); 9754 return true; 9755 } 9756 9757 getTargetStreamer().emitHandlerData(); 9758 return false; 9759 } 9760 9761 /// parseDirectiveSetFP 9762 /// ::= .setfp fpreg, spreg [, offset] 9763 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9764 MCAsmParser &Parser = getParser(); 9765 // Check the ordering of unwind directives 9766 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 9767 check(UC.hasHandlerData(), L, 9768 ".setfp must precede .handlerdata directive")) 9769 return true; 9770 9771 // Parse fpreg 9772 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9773 int FPReg = tryParseRegister(); 9774 9775 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 9776 Parser.parseToken(AsmToken::Comma, "comma expected")) 9777 return true; 9778 9779 // Parse spreg 9780 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9781 int SPReg = tryParseRegister(); 9782 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 9783 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 9784 "register should be either $sp or the latest fp register")) 9785 return true; 9786 9787 // Update the frame pointer register 9788 UC.saveFPReg(FPReg); 9789 9790 // Parse offset 9791 int64_t Offset = 0; 9792 if (Parser.parseOptionalToken(AsmToken::Comma)) { 9793 if (Parser.getTok().isNot(AsmToken::Hash) && 9794 Parser.getTok().isNot(AsmToken::Dollar)) 9795 return Error(Parser.getTok().getLoc(), "'#' expected"); 9796 Parser.Lex(); // skip hash token. 9797 9798 const MCExpr *OffsetExpr; 9799 SMLoc ExLoc = Parser.getTok().getLoc(); 9800 SMLoc EndLoc; 9801 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9802 return Error(ExLoc, "malformed setfp offset"); 9803 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9804 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 9805 return true; 9806 Offset = CE->getValue(); 9807 } 9808 9809 if (Parser.parseToken(AsmToken::EndOfStatement)) 9810 return true; 9811 9812 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9813 static_cast<unsigned>(SPReg), Offset); 9814 return false; 9815 } 9816 9817 /// parseDirective 9818 /// ::= .pad offset 9819 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9820 MCAsmParser &Parser = getParser(); 9821 // Check the ordering of unwind directives 9822 if (!UC.hasFnStart()) 9823 return Error(L, ".fnstart must precede .pad directive"); 9824 if (UC.hasHandlerData()) 9825 return Error(L, ".pad must precede .handlerdata directive"); 9826 9827 // Parse the offset 9828 if (Parser.getTok().isNot(AsmToken::Hash) && 9829 Parser.getTok().isNot(AsmToken::Dollar)) 9830 return Error(Parser.getTok().getLoc(), "'#' expected"); 9831 Parser.Lex(); // skip hash token. 9832 9833 const MCExpr *OffsetExpr; 9834 SMLoc ExLoc = Parser.getTok().getLoc(); 9835 SMLoc EndLoc; 9836 if (getParser().parseExpression(OffsetExpr, EndLoc)) 9837 return Error(ExLoc, "malformed pad offset"); 9838 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9839 if (!CE) 9840 return Error(ExLoc, "pad offset must be an immediate"); 9841 9842 if (parseToken(AsmToken::EndOfStatement, 9843 "unexpected token in '.pad' directive")) 9844 return true; 9845 9846 getTargetStreamer().emitPad(CE->getValue()); 9847 return false; 9848 } 9849 9850 /// parseDirectiveRegSave 9851 /// ::= .save { registers } 9852 /// ::= .vsave { registers } 9853 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9854 // Check the ordering of unwind directives 9855 if (!UC.hasFnStart()) 9856 return Error(L, ".fnstart must precede .save or .vsave directives"); 9857 if (UC.hasHandlerData()) 9858 return Error(L, ".save or .vsave must precede .handlerdata directive"); 9859 9860 // RAII object to make sure parsed operands are deleted. 9861 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9862 9863 // Parse the register list 9864 if (parseRegisterList(Operands) || 9865 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9866 return true; 9867 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9868 if (!IsVector && !Op.isRegList()) 9869 return Error(L, ".save expects GPR registers"); 9870 if (IsVector && !Op.isDPRRegList()) 9871 return Error(L, ".vsave expects DPR registers"); 9872 9873 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9874 return false; 9875 } 9876 9877 /// parseDirectiveInst 9878 /// ::= .inst opcode [, ...] 9879 /// ::= .inst.n opcode [, ...] 9880 /// ::= .inst.w opcode [, ...] 9881 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9882 int Width = 4; 9883 9884 if (isThumb()) { 9885 switch (Suffix) { 9886 case 'n': 9887 Width = 2; 9888 break; 9889 case 'w': 9890 break; 9891 default: 9892 return Error(Loc, "cannot determine Thumb instruction size, " 9893 "use inst.n/inst.w instead"); 9894 } 9895 } else { 9896 if (Suffix) 9897 return Error(Loc, "width suffixes are invalid in ARM mode"); 9898 } 9899 9900 auto parseOne = [&]() -> bool { 9901 const MCExpr *Expr; 9902 if (getParser().parseExpression(Expr)) 9903 return true; 9904 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9905 if (!Value) { 9906 return Error(Loc, "expected constant expression"); 9907 } 9908 9909 switch (Width) { 9910 case 2: 9911 if (Value->getValue() > 0xffff) 9912 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 9913 break; 9914 case 4: 9915 if (Value->getValue() > 0xffffffff) 9916 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 9917 " operand is too big"); 9918 break; 9919 default: 9920 llvm_unreachable("only supported widths are 2 and 4"); 9921 } 9922 9923 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9924 return false; 9925 }; 9926 9927 if (parseOptionalToken(AsmToken::EndOfStatement)) 9928 return Error(Loc, "expected expression following directive"); 9929 if (parseMany(parseOne)) 9930 return true; 9931 return false; 9932 } 9933 9934 /// parseDirectiveLtorg 9935 /// ::= .ltorg | .pool 9936 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9937 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9938 return true; 9939 getTargetStreamer().emitCurrentConstantPool(); 9940 return false; 9941 } 9942 9943 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9944 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 9945 9946 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 9947 return true; 9948 9949 if (!Section) { 9950 getStreamer().InitSections(false); 9951 Section = getStreamer().getCurrentSectionOnly(); 9952 } 9953 9954 assert(Section && "must have section to emit alignment"); 9955 if (Section->UseCodeAlign()) 9956 getStreamer().EmitCodeAlignment(2); 9957 else 9958 getStreamer().EmitValueToAlignment(2); 9959 9960 return false; 9961 } 9962 9963 /// parseDirectivePersonalityIndex 9964 /// ::= .personalityindex index 9965 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9966 MCAsmParser &Parser = getParser(); 9967 bool HasExistingPersonality = UC.hasPersonality(); 9968 9969 const MCExpr *IndexExpression; 9970 SMLoc IndexLoc = Parser.getTok().getLoc(); 9971 if (Parser.parseExpression(IndexExpression) || 9972 parseToken(AsmToken::EndOfStatement, 9973 "unexpected token in '.personalityindex' directive")) { 9974 return true; 9975 } 9976 9977 UC.recordPersonalityIndex(L); 9978 9979 if (!UC.hasFnStart()) { 9980 return Error(L, ".fnstart must precede .personalityindex directive"); 9981 } 9982 if (UC.cantUnwind()) { 9983 Error(L, ".personalityindex cannot be used with .cantunwind"); 9984 UC.emitCantUnwindLocNotes(); 9985 return true; 9986 } 9987 if (UC.hasHandlerData()) { 9988 Error(L, ".personalityindex must precede .handlerdata directive"); 9989 UC.emitHandlerDataLocNotes(); 9990 return true; 9991 } 9992 if (HasExistingPersonality) { 9993 Error(L, "multiple personality directives"); 9994 UC.emitPersonalityLocNotes(); 9995 return true; 9996 } 9997 9998 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9999 if (!CE) 10000 return Error(IndexLoc, "index must be a constant number"); 10001 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 10002 return Error(IndexLoc, 10003 "personality routine index should be in range [0-3]"); 10004 10005 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 10006 return false; 10007 } 10008 10009 /// parseDirectiveUnwindRaw 10010 /// ::= .unwind_raw offset, opcode [, opcode...] 10011 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 10012 MCAsmParser &Parser = getParser(); 10013 int64_t StackOffset; 10014 const MCExpr *OffsetExpr; 10015 SMLoc OffsetLoc = getLexer().getLoc(); 10016 10017 if (!UC.hasFnStart()) 10018 return Error(L, ".fnstart must precede .unwind_raw directives"); 10019 if (getParser().parseExpression(OffsetExpr)) 10020 return Error(OffsetLoc, "expected expression"); 10021 10022 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10023 if (!CE) 10024 return Error(OffsetLoc, "offset must be a constant"); 10025 10026 StackOffset = CE->getValue(); 10027 10028 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 10029 return true; 10030 10031 SmallVector<uint8_t, 16> Opcodes; 10032 10033 auto parseOne = [&]() -> bool { 10034 const MCExpr *OE; 10035 SMLoc OpcodeLoc = getLexer().getLoc(); 10036 if (check(getLexer().is(AsmToken::EndOfStatement) || 10037 Parser.parseExpression(OE), 10038 OpcodeLoc, "expected opcode expression")) 10039 return true; 10040 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 10041 if (!OC) 10042 return Error(OpcodeLoc, "opcode value must be a constant"); 10043 const int64_t Opcode = OC->getValue(); 10044 if (Opcode & ~0xff) 10045 return Error(OpcodeLoc, "invalid opcode"); 10046 Opcodes.push_back(uint8_t(Opcode)); 10047 return false; 10048 }; 10049 10050 // Must have at least 1 element 10051 SMLoc OpcodeLoc = getLexer().getLoc(); 10052 if (parseOptionalToken(AsmToken::EndOfStatement)) 10053 return Error(OpcodeLoc, "expected opcode expression"); 10054 if (parseMany(parseOne)) 10055 return true; 10056 10057 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 10058 return false; 10059 } 10060 10061 /// parseDirectiveTLSDescSeq 10062 /// ::= .tlsdescseq tls-variable 10063 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 10064 MCAsmParser &Parser = getParser(); 10065 10066 if (getLexer().isNot(AsmToken::Identifier)) 10067 return TokError("expected variable after '.tlsdescseq' directive"); 10068 10069 const MCSymbolRefExpr *SRE = 10070 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 10071 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 10072 Lex(); 10073 10074 if (parseToken(AsmToken::EndOfStatement, 10075 "unexpected token in '.tlsdescseq' directive")) 10076 return true; 10077 10078 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 10079 return false; 10080 } 10081 10082 /// parseDirectiveMovSP 10083 /// ::= .movsp reg [, #offset] 10084 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 10085 MCAsmParser &Parser = getParser(); 10086 if (!UC.hasFnStart()) 10087 return Error(L, ".fnstart must precede .movsp directives"); 10088 if (UC.getFPReg() != ARM::SP) 10089 return Error(L, "unexpected .movsp directive"); 10090 10091 SMLoc SPRegLoc = Parser.getTok().getLoc(); 10092 int SPReg = tryParseRegister(); 10093 if (SPReg == -1) 10094 return Error(SPRegLoc, "register expected"); 10095 if (SPReg == ARM::SP || SPReg == ARM::PC) 10096 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10097 10098 int64_t Offset = 0; 10099 if (Parser.parseOptionalToken(AsmToken::Comma)) { 10100 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 10101 return true; 10102 10103 const MCExpr *OffsetExpr; 10104 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10105 10106 if (Parser.parseExpression(OffsetExpr)) 10107 return Error(OffsetLoc, "malformed offset expression"); 10108 10109 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10110 if (!CE) 10111 return Error(OffsetLoc, "offset must be an immediate constant"); 10112 10113 Offset = CE->getValue(); 10114 } 10115 10116 if (parseToken(AsmToken::EndOfStatement, 10117 "unexpected token in '.movsp' directive")) 10118 return true; 10119 10120 getTargetStreamer().emitMovSP(SPReg, Offset); 10121 UC.saveFPReg(SPReg); 10122 10123 return false; 10124 } 10125 10126 /// parseDirectiveObjectArch 10127 /// ::= .object_arch name 10128 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10129 MCAsmParser &Parser = getParser(); 10130 if (getLexer().isNot(AsmToken::Identifier)) 10131 return Error(getLexer().getLoc(), "unexpected token"); 10132 10133 StringRef Arch = Parser.getTok().getString(); 10134 SMLoc ArchLoc = Parser.getTok().getLoc(); 10135 Lex(); 10136 10137 ARM::ArchKind ID = ARM::parseArch(Arch); 10138 10139 if (ID == ARM::ArchKind::INVALID) 10140 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10141 if (parseToken(AsmToken::EndOfStatement)) 10142 return true; 10143 10144 getTargetStreamer().emitObjectArch(ID); 10145 return false; 10146 } 10147 10148 /// parseDirectiveAlign 10149 /// ::= .align 10150 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10151 // NOTE: if this is not the end of the statement, fall back to the target 10152 // agnostic handling for this directive which will correctly handle this. 10153 if (parseOptionalToken(AsmToken::EndOfStatement)) { 10154 // '.align' is target specifically handled to mean 2**2 byte alignment. 10155 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 10156 assert(Section && "must have section to emit alignment"); 10157 if (Section->UseCodeAlign()) 10158 getStreamer().EmitCodeAlignment(4, 0); 10159 else 10160 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10161 return false; 10162 } 10163 return true; 10164 } 10165 10166 /// parseDirectiveThumbSet 10167 /// ::= .thumb_set name, value 10168 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10169 MCAsmParser &Parser = getParser(); 10170 10171 StringRef Name; 10172 if (check(Parser.parseIdentifier(Name), 10173 "expected identifier after '.thumb_set'") || 10174 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 10175 return true; 10176 10177 MCSymbol *Sym; 10178 const MCExpr *Value; 10179 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10180 Parser, Sym, Value)) 10181 return true; 10182 10183 getTargetStreamer().emitThumbSet(Sym, Value); 10184 return false; 10185 } 10186 10187 /// Force static initialization. 10188 extern "C" void LLVMInitializeARMAsmParser() { 10189 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 10190 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 10191 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 10192 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 10193 } 10194 10195 #define GET_REGISTER_MATCHER 10196 #define GET_SUBTARGET_FEATURE_NAME 10197 #define GET_MATCHER_IMPLEMENTATION 10198 #define GET_MNEMONIC_SPELL_CHECKER 10199 #include "ARMGenAsmMatcher.inc" 10200 10201 // Some diagnostics need to vary with subtarget features, so they are handled 10202 // here. For example, the DPR class has either 16 or 32 registers, depending 10203 // on the FPU available. 10204 const char * 10205 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 10206 switch (MatchError) { 10207 // rGPR contains sp starting with ARMv8. 10208 case Match_rGPR: 10209 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 10210 : "operand must be a register in range [r0, r12] or r14"; 10211 // DPR contains 16 registers for some FPUs, and 32 for others. 10212 case Match_DPR: 10213 return hasD16() ? "operand must be a register in range [d0, d15]" 10214 : "operand must be a register in range [d0, d31]"; 10215 case Match_DPR_RegList: 10216 return hasD16() ? "operand must be a list of registers in range [d0, d15]" 10217 : "operand must be a list of registers in range [d0, d31]"; 10218 10219 // For all other diags, use the static string from tablegen. 10220 default: 10221 return getMatchKindDiag(MatchError); 10222 } 10223 } 10224 10225 // Process the list of near-misses, throwing away ones we don't want to report 10226 // to the user, and converting the rest to a source location and string that 10227 // should be reported. 10228 void 10229 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 10230 SmallVectorImpl<NearMissMessage> &NearMissesOut, 10231 SMLoc IDLoc, OperandVector &Operands) { 10232 // TODO: If operand didn't match, sub in a dummy one and run target 10233 // predicate, so that we can avoid reporting near-misses that are invalid? 10234 // TODO: Many operand types dont have SuperClasses set, so we report 10235 // redundant ones. 10236 // TODO: Some operands are superclasses of registers (e.g. 10237 // MCK_RegShiftedImm), we don't have any way to represent that currently. 10238 // TODO: This is not all ARM-specific, can some of it be factored out? 10239 10240 // Record some information about near-misses that we have already seen, so 10241 // that we can avoid reporting redundant ones. For example, if there are 10242 // variants of an instruction that take 8- and 16-bit immediates, we want 10243 // to only report the widest one. 10244 std::multimap<unsigned, unsigned> OperandMissesSeen; 10245 SmallSet<uint64_t, 4> FeatureMissesSeen; 10246 bool ReportedTooFewOperands = false; 10247 10248 // Process the near-misses in reverse order, so that we see more general ones 10249 // first, and so can avoid emitting more specific ones. 10250 for (NearMissInfo &I : reverse(NearMissesIn)) { 10251 switch (I.getKind()) { 10252 case NearMissInfo::NearMissOperand: { 10253 SMLoc OperandLoc = 10254 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 10255 const char *OperandDiag = 10256 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 10257 10258 // If we have already emitted a message for a superclass, don't also report 10259 // the sub-class. We consider all operand classes that we don't have a 10260 // specialised diagnostic for to be equal for the propose of this check, 10261 // so that we don't report the generic error multiple times on the same 10262 // operand. 10263 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 10264 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 10265 if (std::any_of(PrevReports.first, PrevReports.second, 10266 [DupCheckMatchClass]( 10267 const std::pair<unsigned, unsigned> Pair) { 10268 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 10269 return Pair.second == DupCheckMatchClass; 10270 else 10271 return isSubclass((MatchClassKind)DupCheckMatchClass, 10272 (MatchClassKind)Pair.second); 10273 })) 10274 break; 10275 OperandMissesSeen.insert( 10276 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 10277 10278 NearMissMessage Message; 10279 Message.Loc = OperandLoc; 10280 if (OperandDiag) { 10281 Message.Message = OperandDiag; 10282 } else if (I.getOperandClass() == InvalidMatchClass) { 10283 Message.Message = "too many operands for instruction"; 10284 } else { 10285 Message.Message = "invalid operand for instruction"; 10286 LLVM_DEBUG( 10287 dbgs() << "Missing diagnostic string for operand class " 10288 << getMatchClassName((MatchClassKind)I.getOperandClass()) 10289 << I.getOperandClass() << ", error " << I.getOperandError() 10290 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 10291 } 10292 NearMissesOut.emplace_back(Message); 10293 break; 10294 } 10295 case NearMissInfo::NearMissFeature: { 10296 uint64_t MissingFeatures = I.getFeatures(); 10297 // Don't report the same set of features twice. 10298 if (FeatureMissesSeen.count(MissingFeatures)) 10299 break; 10300 FeatureMissesSeen.insert(MissingFeatures); 10301 10302 // Special case: don't report a feature set which includes arm-mode for 10303 // targets that don't have ARM mode. 10304 if ((MissingFeatures & Feature_IsARM) && !hasARM()) 10305 break; 10306 // Don't report any near-misses that both require switching instruction 10307 // set, and adding other subtarget features. 10308 if (isThumb() && (MissingFeatures & Feature_IsARM) && 10309 (MissingFeatures & ~Feature_IsARM)) 10310 break; 10311 if (!isThumb() && (MissingFeatures & Feature_IsThumb) && 10312 (MissingFeatures & ~Feature_IsThumb)) 10313 break; 10314 if (!isThumb() && (MissingFeatures & Feature_IsThumb2) && 10315 (MissingFeatures & ~(Feature_IsThumb2 | Feature_IsThumb))) 10316 break; 10317 if (isMClass() && (MissingFeatures & Feature_HasNEON)) 10318 break; 10319 10320 NearMissMessage Message; 10321 Message.Loc = IDLoc; 10322 raw_svector_ostream OS(Message.Message); 10323 10324 OS << "instruction requires:"; 10325 uint64_t Mask = 1; 10326 for (unsigned MaskPos = 0; MaskPos < (sizeof(MissingFeatures) * 8 - 1); 10327 ++MaskPos) { 10328 if (MissingFeatures & Mask) { 10329 OS << " " << getSubtargetFeatureName(MissingFeatures & Mask); 10330 } 10331 Mask <<= 1; 10332 } 10333 NearMissesOut.emplace_back(Message); 10334 10335 break; 10336 } 10337 case NearMissInfo::NearMissPredicate: { 10338 NearMissMessage Message; 10339 Message.Loc = IDLoc; 10340 switch (I.getPredicateError()) { 10341 case Match_RequiresNotITBlock: 10342 Message.Message = "flag setting instruction only valid outside IT block"; 10343 break; 10344 case Match_RequiresITBlock: 10345 Message.Message = "instruction only valid inside IT block"; 10346 break; 10347 case Match_RequiresV6: 10348 Message.Message = "instruction variant requires ARMv6 or later"; 10349 break; 10350 case Match_RequiresThumb2: 10351 Message.Message = "instruction variant requires Thumb2"; 10352 break; 10353 case Match_RequiresV8: 10354 Message.Message = "instruction variant requires ARMv8 or later"; 10355 break; 10356 case Match_RequiresFlagSetting: 10357 Message.Message = "no flag-preserving variant of this instruction available"; 10358 break; 10359 case Match_InvalidOperand: 10360 Message.Message = "invalid operand for instruction"; 10361 break; 10362 default: 10363 llvm_unreachable("Unhandled target predicate error"); 10364 break; 10365 } 10366 NearMissesOut.emplace_back(Message); 10367 break; 10368 } 10369 case NearMissInfo::NearMissTooFewOperands: { 10370 if (!ReportedTooFewOperands) { 10371 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 10372 NearMissesOut.emplace_back(NearMissMessage{ 10373 EndLoc, StringRef("too few operands for instruction")}); 10374 ReportedTooFewOperands = true; 10375 } 10376 break; 10377 } 10378 case NearMissInfo::NoNearMiss: 10379 // This should never leave the matcher. 10380 llvm_unreachable("not a near-miss"); 10381 break; 10382 } 10383 } 10384 } 10385 10386 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 10387 SMLoc IDLoc, OperandVector &Operands) { 10388 SmallVector<NearMissMessage, 4> Messages; 10389 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 10390 10391 if (Messages.size() == 0) { 10392 // No near-misses were found, so the best we can do is "invalid 10393 // instruction". 10394 Error(IDLoc, "invalid instruction"); 10395 } else if (Messages.size() == 1) { 10396 // One near miss was found, report it as the sole error. 10397 Error(Messages[0].Loc, Messages[0].Message); 10398 } else { 10399 // More than one near miss, so report a generic "invalid instruction" 10400 // error, followed by notes for each of the near-misses. 10401 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 10402 for (auto &M : Messages) { 10403 Note(M.Loc, M.Message); 10404 } 10405 } 10406 } 10407 10408 // FIXME: This structure should be moved inside ARMTargetParser 10409 // when we start to table-generate them, and we can use the ARM 10410 // flags below, that were generated by table-gen. 10411 static const struct { 10412 const unsigned Kind; 10413 const uint64_t ArchCheck; 10414 const FeatureBitset Features; 10415 } Extensions[] = { 10416 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10417 { ARM::AEK_CRYPTO, Feature_HasV8, 10418 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10419 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10420 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10421 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 10422 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10423 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10424 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10425 // FIXME: Only available in A-class, isel not predicated 10426 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10427 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10428 { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} }, 10429 // FIXME: Unsupported extensions. 10430 { ARM::AEK_OS, Feature_None, {} }, 10431 { ARM::AEK_IWMMXT, Feature_None, {} }, 10432 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10433 { ARM::AEK_MAVERICK, Feature_None, {} }, 10434 { ARM::AEK_XSCALE, Feature_None, {} }, 10435 }; 10436 10437 /// parseDirectiveArchExtension 10438 /// ::= .arch_extension [no]feature 10439 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10440 MCAsmParser &Parser = getParser(); 10441 10442 if (getLexer().isNot(AsmToken::Identifier)) 10443 return Error(getLexer().getLoc(), "expected architecture extension name"); 10444 10445 StringRef Name = Parser.getTok().getString(); 10446 SMLoc ExtLoc = Parser.getTok().getLoc(); 10447 Lex(); 10448 10449 if (parseToken(AsmToken::EndOfStatement, 10450 "unexpected token in '.arch_extension' directive")) 10451 return true; 10452 10453 bool EnableFeature = true; 10454 if (Name.startswith_lower("no")) { 10455 EnableFeature = false; 10456 Name = Name.substr(2); 10457 } 10458 unsigned FeatureKind = ARM::parseArchExt(Name); 10459 if (FeatureKind == ARM::AEK_INVALID) 10460 return Error(ExtLoc, "unknown architectural extension: " + Name); 10461 10462 for (const auto &Extension : Extensions) { 10463 if (Extension.Kind != FeatureKind) 10464 continue; 10465 10466 if (Extension.Features.none()) 10467 return Error(ExtLoc, "unsupported architectural extension: " + Name); 10468 10469 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 10470 return Error(ExtLoc, "architectural extension '" + Name + 10471 "' is not " 10472 "allowed for the current base architecture"); 10473 10474 MCSubtargetInfo &STI = copySTI(); 10475 FeatureBitset ToggleFeatures = EnableFeature 10476 ? (~STI.getFeatureBits() & Extension.Features) 10477 : ( STI.getFeatureBits() & Extension.Features); 10478 10479 uint64_t Features = 10480 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10481 setAvailableFeatures(Features); 10482 return false; 10483 } 10484 10485 return Error(ExtLoc, "unknown architectural extension: " + Name); 10486 } 10487 10488 // Define this matcher function after the auto-generated include so we 10489 // have the match class enum definitions. 10490 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10491 unsigned Kind) { 10492 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10493 // If the kind is a token for a literal immediate, check if our asm 10494 // operand matches. This is for InstAliases which have a fixed-value 10495 // immediate in the syntax. 10496 switch (Kind) { 10497 default: break; 10498 case MCK__35_0: 10499 if (Op.isImm()) 10500 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10501 if (CE->getValue() == 0) 10502 return Match_Success; 10503 break; 10504 case MCK_ModImm: 10505 if (Op.isImm()) { 10506 const MCExpr *SOExpr = Op.getImm(); 10507 int64_t Value; 10508 if (!SOExpr->evaluateAsAbsolute(Value)) 10509 return Match_Success; 10510 assert((Value >= std::numeric_limits<int32_t>::min() && 10511 Value <= std::numeric_limits<uint32_t>::max()) && 10512 "expression value must be representable in 32 bits"); 10513 } 10514 break; 10515 case MCK_rGPR: 10516 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10517 return Match_Success; 10518 return Match_rGPR; 10519 case MCK_GPRPair: 10520 if (Op.isReg() && 10521 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10522 return Match_Success; 10523 break; 10524 } 10525 return Match_InvalidOperand; 10526 } 10527