1 //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ARMFeatures.h" 10 #include "ARMBaseInstrInfo.h" 11 #include "Utils/ARMBaseInfo.h" 12 #include "MCTargetDesc/ARMAddressingModes.h" 13 #include "MCTargetDesc/ARMBaseInfo.h" 14 #include "MCTargetDesc/ARMInstPrinter.h" 15 #include "MCTargetDesc/ARMMCExpr.h" 16 #include "MCTargetDesc/ARMMCTargetDesc.h" 17 #include "TargetInfo/ARMTargetInfo.h" 18 #include "llvm/ADT/APFloat.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCInstrDesc.h" 33 #include "llvm/MC/MCInstrInfo.h" 34 #include "llvm/MC/MCObjectFileInfo.h" 35 #include "llvm/MC/MCParser/MCAsmLexer.h" 36 #include "llvm/MC/MCParser/MCAsmParser.h" 37 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 38 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 39 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 40 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSubtargetInfo.h" 45 #include "llvm/MC/MCSymbol.h" 46 #include "llvm/MC/SubtargetFeature.h" 47 #include "llvm/Support/ARMBuildAttributes.h" 48 #include "llvm/Support/ARMEHABI.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/SMLoc.h" 55 #include "llvm/Support/TargetParser.h" 56 #include "llvm/Support/TargetRegistry.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <iterator> 63 #include <limits> 64 #include <memory> 65 #include <string> 66 #include <utility> 67 #include <vector> 68 69 #define DEBUG_TYPE "asm-parser" 70 71 using namespace llvm; 72 73 namespace llvm { 74 extern const MCInstrDesc ARMInsts[]; 75 } // end namespace llvm 76 77 namespace { 78 79 enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly }; 80 81 static cl::opt<ImplicitItModeTy> ImplicitItMode( 82 "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly), 83 cl::desc("Allow conditional instructions outdside of an IT block"), 84 cl::values(clEnumValN(ImplicitItModeTy::Always, "always", 85 "Accept in both ISAs, emit implicit ITs in Thumb"), 86 clEnumValN(ImplicitItModeTy::Never, "never", 87 "Warn in ARM, reject in Thumb"), 88 clEnumValN(ImplicitItModeTy::ARMOnly, "arm", 89 "Accept in ARM, reject in Thumb"), 90 clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb", 91 "Warn in ARM, emit implicit ITs in Thumb"))); 92 93 static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes", 94 cl::init(false)); 95 96 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 97 98 static inline unsigned extractITMaskBit(unsigned Mask, unsigned Position) { 99 // Position==0 means we're not in an IT block at all. Position==1 100 // means we want the first state bit, which is always 0 (Then). 101 // Position==2 means we want the second state bit, stored at bit 3 102 // of Mask, and so on downwards. So (5 - Position) will shift the 103 // right bit down to bit 0, including the always-0 bit at bit 4 for 104 // the mandatory initial Then. 105 return (Mask >> (5 - Position) & 1); 106 } 107 108 class UnwindContext { 109 using Locs = SmallVector<SMLoc, 4>; 110 111 MCAsmParser &Parser; 112 Locs FnStartLocs; 113 Locs CantUnwindLocs; 114 Locs PersonalityLocs; 115 Locs PersonalityIndexLocs; 116 Locs HandlerDataLocs; 117 int FPReg; 118 119 public: 120 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 121 122 bool hasFnStart() const { return !FnStartLocs.empty(); } 123 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 124 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 125 126 bool hasPersonality() const { 127 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 128 } 129 130 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 131 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 132 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 133 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 134 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 135 136 void saveFPReg(int Reg) { FPReg = Reg; } 137 int getFPReg() const { return FPReg; } 138 139 void emitFnStartLocNotes() const { 140 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 141 FI != FE; ++FI) 142 Parser.Note(*FI, ".fnstart was specified here"); 143 } 144 145 void emitCantUnwindLocNotes() const { 146 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 147 UE = CantUnwindLocs.end(); UI != UE; ++UI) 148 Parser.Note(*UI, ".cantunwind was specified here"); 149 } 150 151 void emitHandlerDataLocNotes() const { 152 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 153 HE = HandlerDataLocs.end(); HI != HE; ++HI) 154 Parser.Note(*HI, ".handlerdata was specified here"); 155 } 156 157 void emitPersonalityLocNotes() const { 158 for (Locs::const_iterator PI = PersonalityLocs.begin(), 159 PE = PersonalityLocs.end(), 160 PII = PersonalityIndexLocs.begin(), 161 PIE = PersonalityIndexLocs.end(); 162 PI != PE || PII != PIE;) { 163 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 164 Parser.Note(*PI++, ".personality was specified here"); 165 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 166 Parser.Note(*PII++, ".personalityindex was specified here"); 167 else 168 llvm_unreachable(".personality and .personalityindex cannot be " 169 "at the same location"); 170 } 171 } 172 173 void reset() { 174 FnStartLocs = Locs(); 175 CantUnwindLocs = Locs(); 176 PersonalityLocs = Locs(); 177 HandlerDataLocs = Locs(); 178 PersonalityIndexLocs = Locs(); 179 FPReg = ARM::SP; 180 } 181 }; 182 183 184 class ARMAsmParser : public MCTargetAsmParser { 185 const MCRegisterInfo *MRI; 186 UnwindContext UC; 187 188 ARMTargetStreamer &getTargetStreamer() { 189 assert(getParser().getStreamer().getTargetStreamer() && 190 "do not have a target streamer"); 191 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 192 return static_cast<ARMTargetStreamer &>(TS); 193 } 194 195 // Map of register aliases registers via the .req directive. 196 StringMap<unsigned> RegisterReqs; 197 198 bool NextSymbolIsThumb; 199 200 bool useImplicitITThumb() const { 201 return ImplicitItMode == ImplicitItModeTy::Always || 202 ImplicitItMode == ImplicitItModeTy::ThumbOnly; 203 } 204 205 bool useImplicitITARM() const { 206 return ImplicitItMode == ImplicitItModeTy::Always || 207 ImplicitItMode == ImplicitItModeTy::ARMOnly; 208 } 209 210 struct { 211 ARMCC::CondCodes Cond; // Condition for IT block. 212 unsigned Mask:4; // Condition mask for instructions. 213 // Starting at first 1 (from lsb). 214 // '1' condition as indicated in IT. 215 // '0' inverse of condition (else). 216 // Count of instructions in IT block is 217 // 4 - trailingzeroes(mask) 218 // Note that this does not have the same encoding 219 // as in the IT instruction, which also depends 220 // on the low bit of the condition code. 221 222 unsigned CurPosition; // Current position in parsing of IT 223 // block. In range [0,4], with 0 being the IT 224 // instruction itself. Initialized according to 225 // count of instructions in block. ~0U if no 226 // active IT block. 227 228 bool IsExplicit; // true - The IT instruction was present in the 229 // input, we should not modify it. 230 // false - The IT instruction was added 231 // implicitly, we can extend it if that 232 // would be legal. 233 } ITState; 234 235 SmallVector<MCInst, 4> PendingConditionalInsts; 236 237 void flushPendingInstructions(MCStreamer &Out) override { 238 if (!inImplicitITBlock()) { 239 assert(PendingConditionalInsts.size() == 0); 240 return; 241 } 242 243 // Emit the IT instruction 244 MCInst ITInst; 245 ITInst.setOpcode(ARM::t2IT); 246 ITInst.addOperand(MCOperand::createImm(ITState.Cond)); 247 ITInst.addOperand(MCOperand::createImm(ITState.Mask)); 248 Out.EmitInstruction(ITInst, getSTI()); 249 250 // Emit the conditonal instructions 251 assert(PendingConditionalInsts.size() <= 4); 252 for (const MCInst &Inst : PendingConditionalInsts) { 253 Out.EmitInstruction(Inst, getSTI()); 254 } 255 PendingConditionalInsts.clear(); 256 257 // Clear the IT state 258 ITState.Mask = 0; 259 ITState.CurPosition = ~0U; 260 } 261 262 bool inITBlock() { return ITState.CurPosition != ~0U; } 263 bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; } 264 bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; } 265 266 bool lastInITBlock() { 267 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 268 } 269 270 void forwardITPosition() { 271 if (!inITBlock()) return; 272 // Move to the next instruction in the IT block, if there is one. If not, 273 // mark the block as done, except for implicit IT blocks, which we leave 274 // open until we find an instruction that can't be added to it. 275 unsigned TZ = countTrailingZeros(ITState.Mask); 276 if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit) 277 ITState.CurPosition = ~0U; // Done with the IT block after this. 278 } 279 280 // Rewind the state of the current IT block, removing the last slot from it. 281 void rewindImplicitITPosition() { 282 assert(inImplicitITBlock()); 283 assert(ITState.CurPosition > 1); 284 ITState.CurPosition--; 285 unsigned TZ = countTrailingZeros(ITState.Mask); 286 unsigned NewMask = 0; 287 NewMask |= ITState.Mask & (0xC << TZ); 288 NewMask |= 0x2 << TZ; 289 ITState.Mask = NewMask; 290 } 291 292 // Rewind the state of the current IT block, removing the last slot from it. 293 // If we were at the first slot, this closes the IT block. 294 void discardImplicitITBlock() { 295 assert(inImplicitITBlock()); 296 assert(ITState.CurPosition == 1); 297 ITState.CurPosition = ~0U; 298 } 299 300 // Return the low-subreg of a given Q register. 301 unsigned getDRegFromQReg(unsigned QReg) const { 302 return MRI->getSubReg(QReg, ARM::dsub_0); 303 } 304 305 // Get the condition code corresponding to the current IT block slot. 306 ARMCC::CondCodes currentITCond() { 307 unsigned MaskBit = extractITMaskBit(ITState.Mask, ITState.CurPosition); 308 return MaskBit ? ARMCC::getOppositeCondition(ITState.Cond) : ITState.Cond; 309 } 310 311 // Invert the condition of the current IT block slot without changing any 312 // other slots in the same block. 313 void invertCurrentITCondition() { 314 if (ITState.CurPosition == 1) { 315 ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond); 316 } else { 317 ITState.Mask ^= 1 << (5 - ITState.CurPosition); 318 } 319 } 320 321 // Returns true if the current IT block is full (all 4 slots used). 322 bool isITBlockFull() { 323 return inITBlock() && (ITState.Mask & 1); 324 } 325 326 // Extend the current implicit IT block to have one more slot with the given 327 // condition code. 328 void extendImplicitITBlock(ARMCC::CondCodes Cond) { 329 assert(inImplicitITBlock()); 330 assert(!isITBlockFull()); 331 assert(Cond == ITState.Cond || 332 Cond == ARMCC::getOppositeCondition(ITState.Cond)); 333 unsigned TZ = countTrailingZeros(ITState.Mask); 334 unsigned NewMask = 0; 335 // Keep any existing condition bits. 336 NewMask |= ITState.Mask & (0xE << TZ); 337 // Insert the new condition bit. 338 NewMask |= (Cond != ITState.Cond) << TZ; 339 // Move the trailing 1 down one bit. 340 NewMask |= 1 << (TZ - 1); 341 ITState.Mask = NewMask; 342 } 343 344 // Create a new implicit IT block with a dummy condition code. 345 void startImplicitITBlock() { 346 assert(!inITBlock()); 347 ITState.Cond = ARMCC::AL; 348 ITState.Mask = 8; 349 ITState.CurPosition = 1; 350 ITState.IsExplicit = false; 351 } 352 353 // Create a new explicit IT block with the given condition and mask. 354 // The mask should be in the format used in ARMOperand and 355 // MCOperand, with a 1 implying 'e', regardless of the low bit of 356 // the condition. 357 void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) { 358 assert(!inITBlock()); 359 ITState.Cond = Cond; 360 ITState.Mask = Mask; 361 ITState.CurPosition = 0; 362 ITState.IsExplicit = true; 363 } 364 365 struct { 366 unsigned Mask : 4; 367 unsigned CurPosition; 368 } VPTState; 369 bool inVPTBlock() { return VPTState.CurPosition != ~0U; } 370 void forwardVPTPosition() { 371 if (!inVPTBlock()) return; 372 unsigned TZ = countTrailingZeros(VPTState.Mask); 373 if (++VPTState.CurPosition == 5 - TZ) 374 VPTState.CurPosition = ~0U; 375 } 376 377 void Note(SMLoc L, const Twine &Msg, SMRange Range = None) { 378 return getParser().Note(L, Msg, Range); 379 } 380 381 bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) { 382 return getParser().Warning(L, Msg, Range); 383 } 384 385 bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) { 386 return getParser().Error(L, Msg, Range); 387 } 388 389 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 390 unsigned ListNo, bool IsARPop = false); 391 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 392 unsigned ListNo); 393 394 int tryParseRegister(); 395 bool tryParseRegisterWithWriteBack(OperandVector &); 396 int tryParseShiftRegister(OperandVector &); 397 bool parseRegisterList(OperandVector &, bool EnforceOrder = true); 398 bool parseMemory(OperandVector &); 399 bool parseOperand(OperandVector &, StringRef Mnemonic); 400 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 401 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 402 unsigned &ShiftAmount); 403 bool parseLiteralValues(unsigned Size, SMLoc L); 404 bool parseDirectiveThumb(SMLoc L); 405 bool parseDirectiveARM(SMLoc L); 406 bool parseDirectiveThumbFunc(SMLoc L); 407 bool parseDirectiveCode(SMLoc L); 408 bool parseDirectiveSyntax(SMLoc L); 409 bool parseDirectiveReq(StringRef Name, SMLoc L); 410 bool parseDirectiveUnreq(SMLoc L); 411 bool parseDirectiveArch(SMLoc L); 412 bool parseDirectiveEabiAttr(SMLoc L); 413 bool parseDirectiveCPU(SMLoc L); 414 bool parseDirectiveFPU(SMLoc L); 415 bool parseDirectiveFnStart(SMLoc L); 416 bool parseDirectiveFnEnd(SMLoc L); 417 bool parseDirectiveCantUnwind(SMLoc L); 418 bool parseDirectivePersonality(SMLoc L); 419 bool parseDirectiveHandlerData(SMLoc L); 420 bool parseDirectiveSetFP(SMLoc L); 421 bool parseDirectivePad(SMLoc L); 422 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 423 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 424 bool parseDirectiveLtorg(SMLoc L); 425 bool parseDirectiveEven(SMLoc L); 426 bool parseDirectivePersonalityIndex(SMLoc L); 427 bool parseDirectiveUnwindRaw(SMLoc L); 428 bool parseDirectiveTLSDescSeq(SMLoc L); 429 bool parseDirectiveMovSP(SMLoc L); 430 bool parseDirectiveObjectArch(SMLoc L); 431 bool parseDirectiveArchExtension(SMLoc L); 432 bool parseDirectiveAlign(SMLoc L); 433 bool parseDirectiveThumbSet(SMLoc L); 434 435 bool isMnemonicVPTPredicable(StringRef Mnemonic, StringRef ExtraToken); 436 StringRef splitMnemonic(StringRef Mnemonic, StringRef ExtraToken, 437 unsigned &PredicationCode, 438 unsigned &VPTPredicationCode, bool &CarrySetting, 439 unsigned &ProcessorIMod, StringRef &ITMask); 440 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef ExtraToken, 441 StringRef FullInst, bool &CanAcceptCarrySet, 442 bool &CanAcceptPredicationCode, 443 bool &CanAcceptVPTPredicationCode); 444 445 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 446 OperandVector &Operands); 447 bool isThumb() const { 448 // FIXME: Can tablegen auto-generate this? 449 return getSTI().getFeatureBits()[ARM::ModeThumb]; 450 } 451 452 bool isThumbOne() const { 453 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 454 } 455 456 bool isThumbTwo() const { 457 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 458 } 459 460 bool hasThumb() const { 461 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 462 } 463 464 bool hasThumb2() const { 465 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 466 } 467 468 bool hasV6Ops() const { 469 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 470 } 471 472 bool hasV6T2Ops() const { 473 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 474 } 475 476 bool hasV6MOps() const { 477 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 478 } 479 480 bool hasV7Ops() const { 481 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 482 } 483 484 bool hasV8Ops() const { 485 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 486 } 487 488 bool hasV8MBaseline() const { 489 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 490 } 491 492 bool hasV8MMainline() const { 493 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 494 } 495 bool hasV8_1MMainline() const { 496 return getSTI().getFeatureBits()[ARM::HasV8_1MMainlineOps]; 497 } 498 bool hasMVE() const { 499 return getSTI().getFeatureBits()[ARM::HasMVEIntegerOps]; 500 } 501 bool hasMVEFloat() const { 502 return getSTI().getFeatureBits()[ARM::HasMVEFloatOps]; 503 } 504 bool has8MSecExt() const { 505 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 506 } 507 508 bool hasARM() const { 509 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 510 } 511 512 bool hasDSP() const { 513 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 514 } 515 516 bool hasD32() const { 517 return getSTI().getFeatureBits()[ARM::FeatureD32]; 518 } 519 520 bool hasV8_1aOps() const { 521 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 522 } 523 524 bool hasRAS() const { 525 return getSTI().getFeatureBits()[ARM::FeatureRAS]; 526 } 527 528 void SwitchMode() { 529 MCSubtargetInfo &STI = copySTI(); 530 auto FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 531 setAvailableFeatures(FB); 532 } 533 534 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 535 536 bool isMClass() const { 537 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 538 } 539 540 /// @name Auto-generated Match Functions 541 /// { 542 543 #define GET_ASSEMBLER_HEADER 544 #include "ARMGenAsmMatcher.inc" 545 546 /// } 547 548 OperandMatchResultTy parseITCondCode(OperandVector &); 549 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 550 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 551 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 552 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 553 OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &); 554 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 555 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 556 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 557 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 558 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 559 int High); 560 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 561 return parsePKHImm(O, "lsl", 0, 31); 562 } 563 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 564 return parsePKHImm(O, "asr", 1, 32); 565 } 566 OperandMatchResultTy parseSetEndImm(OperandVector &); 567 OperandMatchResultTy parseShifterImm(OperandVector &); 568 OperandMatchResultTy parseRotImm(OperandVector &); 569 OperandMatchResultTy parseModImm(OperandVector &); 570 OperandMatchResultTy parseBitfield(OperandVector &); 571 OperandMatchResultTy parsePostIdxReg(OperandVector &); 572 OperandMatchResultTy parseAM3Offset(OperandVector &); 573 OperandMatchResultTy parseFPImm(OperandVector &); 574 OperandMatchResultTy parseVectorList(OperandVector &); 575 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 576 SMLoc &EndLoc); 577 578 // Asm Match Converter Methods 579 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 580 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 581 void cvtMVEVMOVQtoDReg(MCInst &Inst, const OperandVector &); 582 583 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 584 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 585 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 586 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 587 bool shouldOmitVectorPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 588 bool isITBlockTerminator(MCInst &Inst) const; 589 void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands); 590 bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands, 591 bool Load, bool ARMMode, bool Writeback); 592 593 public: 594 enum ARMMatchResultTy { 595 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 596 Match_RequiresNotITBlock, 597 Match_RequiresV6, 598 Match_RequiresThumb2, 599 Match_RequiresV8, 600 Match_RequiresFlagSetting, 601 #define GET_OPERAND_DIAGNOSTIC_TYPES 602 #include "ARMGenAsmMatcher.inc" 603 604 }; 605 606 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 607 const MCInstrInfo &MII, const MCTargetOptions &Options) 608 : MCTargetAsmParser(Options, STI, MII), UC(Parser) { 609 MCAsmParserExtension::Initialize(Parser); 610 611 // Cache the MCRegisterInfo. 612 MRI = getContext().getRegisterInfo(); 613 614 // Initialize the set of available features. 615 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 616 617 // Add build attributes based on the selected target. 618 if (AddBuildAttributes) 619 getTargetStreamer().emitTargetAttributes(STI); 620 621 // Not in an ITBlock to start with. 622 ITState.CurPosition = ~0U; 623 624 VPTState.CurPosition = ~0U; 625 626 NextSymbolIsThumb = false; 627 } 628 629 // Implementation of the MCTargetAsmParser interface: 630 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 631 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 632 SMLoc NameLoc, OperandVector &Operands) override; 633 bool ParseDirective(AsmToken DirectiveID) override; 634 635 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 636 unsigned Kind) override; 637 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 638 639 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 640 OperandVector &Operands, MCStreamer &Out, 641 uint64_t &ErrorInfo, 642 bool MatchingInlineAsm) override; 643 unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst, 644 SmallVectorImpl<NearMissInfo> &NearMisses, 645 bool MatchingInlineAsm, bool &EmitInITBlock, 646 MCStreamer &Out); 647 648 struct NearMissMessage { 649 SMLoc Loc; 650 SmallString<128> Message; 651 }; 652 653 const char *getCustomOperandDiag(ARMMatchResultTy MatchError); 654 655 void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 656 SmallVectorImpl<NearMissMessage> &NearMissesOut, 657 SMLoc IDLoc, OperandVector &Operands); 658 void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc, 659 OperandVector &Operands); 660 661 void doBeforeLabelEmit(MCSymbol *Symbol) override; 662 663 void onLabelParsed(MCSymbol *Symbol) override; 664 }; 665 666 /// ARMOperand - Instances of this class represent a parsed ARM machine 667 /// operand. 668 class ARMOperand : public MCParsedAsmOperand { 669 enum KindTy { 670 k_CondCode, 671 k_VPTPred, 672 k_CCOut, 673 k_ITCondMask, 674 k_CoprocNum, 675 k_CoprocReg, 676 k_CoprocOption, 677 k_Immediate, 678 k_MemBarrierOpt, 679 k_InstSyncBarrierOpt, 680 k_TraceSyncBarrierOpt, 681 k_Memory, 682 k_PostIndexRegister, 683 k_MSRMask, 684 k_BankedReg, 685 k_ProcIFlags, 686 k_VectorIndex, 687 k_Register, 688 k_RegisterList, 689 k_RegisterListWithAPSR, 690 k_DPRRegisterList, 691 k_SPRRegisterList, 692 k_FPSRegisterListWithVPR, 693 k_FPDRegisterListWithVPR, 694 k_VectorList, 695 k_VectorListAllLanes, 696 k_VectorListIndexed, 697 k_ShiftedRegister, 698 k_ShiftedImmediate, 699 k_ShifterImmediate, 700 k_RotateImmediate, 701 k_ModifiedImmediate, 702 k_ConstantPoolImmediate, 703 k_BitfieldDescriptor, 704 k_Token, 705 } Kind; 706 707 SMLoc StartLoc, EndLoc, AlignmentLoc; 708 SmallVector<unsigned, 8> Registers; 709 710 struct CCOp { 711 ARMCC::CondCodes Val; 712 }; 713 714 struct VCCOp { 715 ARMVCC::VPTCodes Val; 716 }; 717 718 struct CopOp { 719 unsigned Val; 720 }; 721 722 struct CoprocOptionOp { 723 unsigned Val; 724 }; 725 726 struct ITMaskOp { 727 unsigned Mask:4; 728 }; 729 730 struct MBOptOp { 731 ARM_MB::MemBOpt Val; 732 }; 733 734 struct ISBOptOp { 735 ARM_ISB::InstSyncBOpt Val; 736 }; 737 738 struct TSBOptOp { 739 ARM_TSB::TraceSyncBOpt Val; 740 }; 741 742 struct IFlagsOp { 743 ARM_PROC::IFlags Val; 744 }; 745 746 struct MMaskOp { 747 unsigned Val; 748 }; 749 750 struct BankedRegOp { 751 unsigned Val; 752 }; 753 754 struct TokOp { 755 const char *Data; 756 unsigned Length; 757 }; 758 759 struct RegOp { 760 unsigned RegNum; 761 }; 762 763 // A vector register list is a sequential list of 1 to 4 registers. 764 struct VectorListOp { 765 unsigned RegNum; 766 unsigned Count; 767 unsigned LaneIndex; 768 bool isDoubleSpaced; 769 }; 770 771 struct VectorIndexOp { 772 unsigned Val; 773 }; 774 775 struct ImmOp { 776 const MCExpr *Val; 777 }; 778 779 /// Combined record for all forms of ARM address expressions. 780 struct MemoryOp { 781 unsigned BaseRegNum; 782 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 783 // was specified. 784 const MCConstantExpr *OffsetImm; // Offset immediate value 785 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 786 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 787 unsigned ShiftImm; // shift for OffsetReg. 788 unsigned Alignment; // 0 = no alignment specified 789 // n = alignment in bytes (2, 4, 8, 16, or 32) 790 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 791 }; 792 793 struct PostIdxRegOp { 794 unsigned RegNum; 795 bool isAdd; 796 ARM_AM::ShiftOpc ShiftTy; 797 unsigned ShiftImm; 798 }; 799 800 struct ShifterImmOp { 801 bool isASR; 802 unsigned Imm; 803 }; 804 805 struct RegShiftedRegOp { 806 ARM_AM::ShiftOpc ShiftTy; 807 unsigned SrcReg; 808 unsigned ShiftReg; 809 unsigned ShiftImm; 810 }; 811 812 struct RegShiftedImmOp { 813 ARM_AM::ShiftOpc ShiftTy; 814 unsigned SrcReg; 815 unsigned ShiftImm; 816 }; 817 818 struct RotImmOp { 819 unsigned Imm; 820 }; 821 822 struct ModImmOp { 823 unsigned Bits; 824 unsigned Rot; 825 }; 826 827 struct BitfieldOp { 828 unsigned LSB; 829 unsigned Width; 830 }; 831 832 union { 833 struct CCOp CC; 834 struct VCCOp VCC; 835 struct CopOp Cop; 836 struct CoprocOptionOp CoprocOption; 837 struct MBOptOp MBOpt; 838 struct ISBOptOp ISBOpt; 839 struct TSBOptOp TSBOpt; 840 struct ITMaskOp ITMask; 841 struct IFlagsOp IFlags; 842 struct MMaskOp MMask; 843 struct BankedRegOp BankedReg; 844 struct TokOp Tok; 845 struct RegOp Reg; 846 struct VectorListOp VectorList; 847 struct VectorIndexOp VectorIndex; 848 struct ImmOp Imm; 849 struct MemoryOp Memory; 850 struct PostIdxRegOp PostIdxReg; 851 struct ShifterImmOp ShifterImm; 852 struct RegShiftedRegOp RegShiftedReg; 853 struct RegShiftedImmOp RegShiftedImm; 854 struct RotImmOp RotImm; 855 struct ModImmOp ModImm; 856 struct BitfieldOp Bitfield; 857 }; 858 859 public: 860 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 861 862 /// getStartLoc - Get the location of the first token of this operand. 863 SMLoc getStartLoc() const override { return StartLoc; } 864 865 /// getEndLoc - Get the location of the last token of this operand. 866 SMLoc getEndLoc() const override { return EndLoc; } 867 868 /// getLocRange - Get the range between the first and last token of this 869 /// operand. 870 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 871 872 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 873 SMLoc getAlignmentLoc() const { 874 assert(Kind == k_Memory && "Invalid access!"); 875 return AlignmentLoc; 876 } 877 878 ARMCC::CondCodes getCondCode() const { 879 assert(Kind == k_CondCode && "Invalid access!"); 880 return CC.Val; 881 } 882 883 ARMVCC::VPTCodes getVPTPred() const { 884 assert(isVPTPred() && "Invalid access!"); 885 return VCC.Val; 886 } 887 888 unsigned getCoproc() const { 889 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 890 return Cop.Val; 891 } 892 893 StringRef getToken() const { 894 assert(Kind == k_Token && "Invalid access!"); 895 return StringRef(Tok.Data, Tok.Length); 896 } 897 898 unsigned getReg() const override { 899 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 900 return Reg.RegNum; 901 } 902 903 const SmallVectorImpl<unsigned> &getRegList() const { 904 assert((Kind == k_RegisterList || Kind == k_RegisterListWithAPSR || 905 Kind == k_DPRRegisterList || Kind == k_SPRRegisterList || 906 Kind == k_FPSRegisterListWithVPR || 907 Kind == k_FPDRegisterListWithVPR) && 908 "Invalid access!"); 909 return Registers; 910 } 911 912 const MCExpr *getImm() const { 913 assert(isImm() && "Invalid access!"); 914 return Imm.Val; 915 } 916 917 const MCExpr *getConstantPoolImm() const { 918 assert(isConstantPoolImm() && "Invalid access!"); 919 return Imm.Val; 920 } 921 922 unsigned getVectorIndex() const { 923 assert(Kind == k_VectorIndex && "Invalid access!"); 924 return VectorIndex.Val; 925 } 926 927 ARM_MB::MemBOpt getMemBarrierOpt() const { 928 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 929 return MBOpt.Val; 930 } 931 932 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 933 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 934 return ISBOpt.Val; 935 } 936 937 ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const { 938 assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!"); 939 return TSBOpt.Val; 940 } 941 942 ARM_PROC::IFlags getProcIFlags() const { 943 assert(Kind == k_ProcIFlags && "Invalid access!"); 944 return IFlags.Val; 945 } 946 947 unsigned getMSRMask() const { 948 assert(Kind == k_MSRMask && "Invalid access!"); 949 return MMask.Val; 950 } 951 952 unsigned getBankedReg() const { 953 assert(Kind == k_BankedReg && "Invalid access!"); 954 return BankedReg.Val; 955 } 956 957 bool isCoprocNum() const { return Kind == k_CoprocNum; } 958 bool isCoprocReg() const { return Kind == k_CoprocReg; } 959 bool isCoprocOption() const { return Kind == k_CoprocOption; } 960 bool isCondCode() const { return Kind == k_CondCode; } 961 bool isVPTPred() const { return Kind == k_VPTPred; } 962 bool isCCOut() const { return Kind == k_CCOut; } 963 bool isITMask() const { return Kind == k_ITCondMask; } 964 bool isITCondCode() const { return Kind == k_CondCode; } 965 bool isImm() const override { 966 return Kind == k_Immediate; 967 } 968 969 bool isARMBranchTarget() const { 970 if (!isImm()) return false; 971 972 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 973 return CE->getValue() % 4 == 0; 974 return true; 975 } 976 977 978 bool isThumbBranchTarget() const { 979 if (!isImm()) return false; 980 981 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) 982 return CE->getValue() % 2 == 0; 983 return true; 984 } 985 986 // checks whether this operand is an unsigned offset which fits is a field 987 // of specified width and scaled by a specific number of bits 988 template<unsigned width, unsigned scale> 989 bool isUnsignedOffset() const { 990 if (!isImm()) return false; 991 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 992 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 993 int64_t Val = CE->getValue(); 994 int64_t Align = 1LL << scale; 995 int64_t Max = Align * ((1LL << width) - 1); 996 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 997 } 998 return false; 999 } 1000 1001 // checks whether this operand is an signed offset which fits is a field 1002 // of specified width and scaled by a specific number of bits 1003 template<unsigned width, unsigned scale> 1004 bool isSignedOffset() const { 1005 if (!isImm()) return false; 1006 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1007 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1008 int64_t Val = CE->getValue(); 1009 int64_t Align = 1LL << scale; 1010 int64_t Max = Align * ((1LL << (width-1)) - 1); 1011 int64_t Min = -Align * (1LL << (width-1)); 1012 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 1013 } 1014 return false; 1015 } 1016 1017 // checks whether this operand is an offset suitable for the LE / 1018 // LETP instructions in Arm v8.1M 1019 bool isLEOffset() const { 1020 if (!isImm()) return false; 1021 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1022 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 1023 int64_t Val = CE->getValue(); 1024 return Val < 0 && Val >= -4094 && (Val & 1) == 0; 1025 } 1026 return false; 1027 } 1028 1029 // checks whether this operand is a memory operand computed as an offset 1030 // applied to PC. the offset may have 8 bits of magnitude and is represented 1031 // with two bits of shift. textually it may be either [pc, #imm], #imm or 1032 // relocable expression... 1033 bool isThumbMemPC() const { 1034 int64_t Val = 0; 1035 if (isImm()) { 1036 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 1037 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 1038 if (!CE) return false; 1039 Val = CE->getValue(); 1040 } 1041 else if (isGPRMem()) { 1042 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 1043 if(Memory.BaseRegNum != ARM::PC) return false; 1044 Val = Memory.OffsetImm->getValue(); 1045 } 1046 else return false; 1047 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 1048 } 1049 1050 bool isFPImm() const { 1051 if (!isImm()) return false; 1052 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1053 if (!CE) return false; 1054 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1055 return Val != -1; 1056 } 1057 1058 template<int64_t N, int64_t M> 1059 bool isImmediate() const { 1060 if (!isImm()) return false; 1061 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1062 if (!CE) return false; 1063 int64_t Value = CE->getValue(); 1064 return Value >= N && Value <= M; 1065 } 1066 1067 template<int64_t N, int64_t M> 1068 bool isImmediateS4() const { 1069 if (!isImm()) return false; 1070 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1071 if (!CE) return false; 1072 int64_t Value = CE->getValue(); 1073 return ((Value & 3) == 0) && Value >= N && Value <= M; 1074 } 1075 template<int64_t N, int64_t M> 1076 bool isImmediateS2() const { 1077 if (!isImm()) return false; 1078 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1079 if (!CE) return false; 1080 int64_t Value = CE->getValue(); 1081 return ((Value & 1) == 0) && Value >= N && Value <= M; 1082 } 1083 bool isFBits16() const { 1084 return isImmediate<0, 17>(); 1085 } 1086 bool isFBits32() const { 1087 return isImmediate<1, 33>(); 1088 } 1089 bool isImm8s4() const { 1090 return isImmediateS4<-1020, 1020>(); 1091 } 1092 bool isImm7s4() const { 1093 return isImmediateS4<-508, 508>(); 1094 } 1095 bool isImm7Shift0() const { 1096 return isImmediate<-127, 127>(); 1097 } 1098 bool isImm7Shift1() const { 1099 return isImmediateS2<-255, 255>(); 1100 } 1101 bool isImm7Shift2() const { 1102 return isImmediateS4<-511, 511>(); 1103 } 1104 bool isImm7() const { 1105 return isImmediate<-127, 127>(); 1106 } 1107 bool isImm0_1020s4() const { 1108 return isImmediateS4<0, 1020>(); 1109 } 1110 bool isImm0_508s4() const { 1111 return isImmediateS4<0, 508>(); 1112 } 1113 bool isImm0_508s4Neg() const { 1114 if (!isImm()) return false; 1115 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1116 if (!CE) return false; 1117 int64_t Value = -CE->getValue(); 1118 // explicitly exclude zero. we want that to use the normal 0_508 version. 1119 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 1120 } 1121 1122 bool isImm0_4095Neg() const { 1123 if (!isImm()) return false; 1124 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1125 if (!CE) return false; 1126 // isImm0_4095Neg is used with 32-bit immediates only. 1127 // 32-bit immediates are zero extended to 64-bit when parsed, 1128 // thus simple -CE->getValue() results in a big negative number, 1129 // not a small positive number as intended 1130 if ((CE->getValue() >> 32) > 0) return false; 1131 uint32_t Value = -static_cast<uint32_t>(CE->getValue()); 1132 return Value > 0 && Value < 4096; 1133 } 1134 1135 bool isImm0_7() const { 1136 return isImmediate<0, 7>(); 1137 } 1138 1139 bool isImm1_16() const { 1140 return isImmediate<1, 16>(); 1141 } 1142 1143 bool isImm1_32() const { 1144 return isImmediate<1, 32>(); 1145 } 1146 1147 bool isImm8_255() const { 1148 return isImmediate<8, 255>(); 1149 } 1150 1151 bool isImm256_65535Expr() const { 1152 if (!isImm()) return false; 1153 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1154 // If it's not a constant expression, it'll generate a fixup and be 1155 // handled later. 1156 if (!CE) return true; 1157 int64_t Value = CE->getValue(); 1158 return Value >= 256 && Value < 65536; 1159 } 1160 1161 bool isImm0_65535Expr() const { 1162 if (!isImm()) return false; 1163 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1164 // If it's not a constant expression, it'll generate a fixup and be 1165 // handled later. 1166 if (!CE) return true; 1167 int64_t Value = CE->getValue(); 1168 return Value >= 0 && Value < 65536; 1169 } 1170 1171 bool isImm24bit() const { 1172 return isImmediate<0, 0xffffff + 1>(); 1173 } 1174 1175 bool isImmThumbSR() const { 1176 return isImmediate<1, 33>(); 1177 } 1178 1179 template<int shift> 1180 bool isExpImmValue(uint64_t Value) const { 1181 uint64_t mask = (1 << shift) - 1; 1182 if ((Value & mask) != 0 || (Value >> shift) > 0xff) 1183 return false; 1184 return true; 1185 } 1186 1187 template<int shift> 1188 bool isExpImm() const { 1189 if (!isImm()) return false; 1190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1191 if (!CE) return false; 1192 1193 return isExpImmValue<shift>(CE->getValue()); 1194 } 1195 1196 template<int shift, int size> 1197 bool isInvertedExpImm() const { 1198 if (!isImm()) return false; 1199 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1200 if (!CE) return false; 1201 1202 uint64_t OriginalValue = CE->getValue(); 1203 uint64_t InvertedValue = OriginalValue ^ (((uint64_t)1 << size) - 1); 1204 return isExpImmValue<shift>(InvertedValue); 1205 } 1206 1207 bool isPKHLSLImm() const { 1208 return isImmediate<0, 32>(); 1209 } 1210 1211 bool isPKHASRImm() const { 1212 return isImmediate<0, 33>(); 1213 } 1214 1215 bool isAdrLabel() const { 1216 // If we have an immediate that's not a constant, treat it as a label 1217 // reference needing a fixup. 1218 if (isImm() && !isa<MCConstantExpr>(getImm())) 1219 return true; 1220 1221 // If it is a constant, it must fit into a modified immediate encoding. 1222 if (!isImm()) return false; 1223 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1224 if (!CE) return false; 1225 int64_t Value = CE->getValue(); 1226 return (ARM_AM::getSOImmVal(Value) != -1 || 1227 ARM_AM::getSOImmVal(-Value) != -1); 1228 } 1229 1230 bool isT2SOImm() const { 1231 // If we have an immediate that's not a constant, treat it as an expression 1232 // needing a fixup. 1233 if (isImm() && !isa<MCConstantExpr>(getImm())) { 1234 // We want to avoid matching :upper16: and :lower16: as we want these 1235 // expressions to match in isImm0_65535Expr() 1236 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm()); 1237 return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 1238 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)); 1239 } 1240 if (!isImm()) return false; 1241 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1242 if (!CE) return false; 1243 int64_t Value = CE->getValue(); 1244 return ARM_AM::getT2SOImmVal(Value) != -1; 1245 } 1246 1247 bool isT2SOImmNot() const { 1248 if (!isImm()) return false; 1249 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1250 if (!CE) return false; 1251 int64_t Value = CE->getValue(); 1252 return ARM_AM::getT2SOImmVal(Value) == -1 && 1253 ARM_AM::getT2SOImmVal(~Value) != -1; 1254 } 1255 1256 bool isT2SOImmNeg() const { 1257 if (!isImm()) return false; 1258 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1259 if (!CE) return false; 1260 int64_t Value = CE->getValue(); 1261 // Only use this when not representable as a plain so_imm. 1262 return ARM_AM::getT2SOImmVal(Value) == -1 && 1263 ARM_AM::getT2SOImmVal(-Value) != -1; 1264 } 1265 1266 bool isSetEndImm() const { 1267 if (!isImm()) return false; 1268 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1269 if (!CE) return false; 1270 int64_t Value = CE->getValue(); 1271 return Value == 1 || Value == 0; 1272 } 1273 1274 bool isReg() const override { return Kind == k_Register; } 1275 bool isRegList() const { return Kind == k_RegisterList; } 1276 bool isRegListWithAPSR() const { 1277 return Kind == k_RegisterListWithAPSR || Kind == k_RegisterList; 1278 } 1279 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1280 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1281 bool isFPSRegListWithVPR() const { return Kind == k_FPSRegisterListWithVPR; } 1282 bool isFPDRegListWithVPR() const { return Kind == k_FPDRegisterListWithVPR; } 1283 bool isToken() const override { return Kind == k_Token; } 1284 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1285 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1286 bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; } 1287 bool isMem() const override { 1288 return isGPRMem() || isMVEMem(); 1289 } 1290 bool isMVEMem() const { 1291 if (Kind != k_Memory) 1292 return false; 1293 if (Memory.BaseRegNum && 1294 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum) && 1295 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Memory.BaseRegNum)) 1296 return false; 1297 if (Memory.OffsetRegNum && 1298 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1299 Memory.OffsetRegNum)) 1300 return false; 1301 return true; 1302 } 1303 bool isGPRMem() const { 1304 if (Kind != k_Memory) 1305 return false; 1306 if (Memory.BaseRegNum && 1307 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum)) 1308 return false; 1309 if (Memory.OffsetRegNum && 1310 !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum)) 1311 return false; 1312 return true; 1313 } 1314 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1315 bool isRegShiftedReg() const { 1316 return Kind == k_ShiftedRegister && 1317 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1318 RegShiftedReg.SrcReg) && 1319 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1320 RegShiftedReg.ShiftReg); 1321 } 1322 bool isRegShiftedImm() const { 1323 return Kind == k_ShiftedImmediate && 1324 ARMMCRegisterClasses[ARM::GPRRegClassID].contains( 1325 RegShiftedImm.SrcReg); 1326 } 1327 bool isRotImm() const { return Kind == k_RotateImmediate; } 1328 1329 template<unsigned Min, unsigned Max> 1330 bool isPowerTwoInRange() const { 1331 if (!isImm()) return false; 1332 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1333 if (!CE) return false; 1334 int64_t Value = CE->getValue(); 1335 return Value > 0 && countPopulation((uint64_t)Value) == 1 && 1336 Value >= Min && Value <= Max; 1337 } 1338 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1339 1340 bool isModImmNot() const { 1341 if (!isImm()) return false; 1342 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1343 if (!CE) return false; 1344 int64_t Value = CE->getValue(); 1345 return ARM_AM::getSOImmVal(~Value) != -1; 1346 } 1347 1348 bool isModImmNeg() const { 1349 if (!isImm()) return false; 1350 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1351 if (!CE) return false; 1352 int64_t Value = CE->getValue(); 1353 return ARM_AM::getSOImmVal(Value) == -1 && 1354 ARM_AM::getSOImmVal(-Value) != -1; 1355 } 1356 1357 bool isThumbModImmNeg1_7() const { 1358 if (!isImm()) return false; 1359 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1360 if (!CE) return false; 1361 int32_t Value = -(int32_t)CE->getValue(); 1362 return 0 < Value && Value < 8; 1363 } 1364 1365 bool isThumbModImmNeg8_255() const { 1366 if (!isImm()) return false; 1367 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1368 if (!CE) return false; 1369 int32_t Value = -(int32_t)CE->getValue(); 1370 return 7 < Value && Value < 256; 1371 } 1372 1373 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1374 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1375 bool isPostIdxRegShifted() const { 1376 return Kind == k_PostIndexRegister && 1377 ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum); 1378 } 1379 bool isPostIdxReg() const { 1380 return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift; 1381 } 1382 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1383 if (!isGPRMem()) 1384 return false; 1385 // No offset of any kind. 1386 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1387 (alignOK || Memory.Alignment == Alignment); 1388 } 1389 bool isMemNoOffsetT2(bool alignOK = false, unsigned Alignment = 0) const { 1390 if (!isGPRMem()) 1391 return false; 1392 1393 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1394 Memory.BaseRegNum)) 1395 return false; 1396 1397 // No offset of any kind. 1398 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1399 (alignOK || Memory.Alignment == Alignment); 1400 } 1401 bool isMemNoOffsetT2NoSp(bool alignOK = false, unsigned Alignment = 0) const { 1402 if (!isGPRMem()) 1403 return false; 1404 1405 if (!ARMMCRegisterClasses[ARM::rGPRRegClassID].contains( 1406 Memory.BaseRegNum)) 1407 return false; 1408 1409 // No offset of any kind. 1410 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1411 (alignOK || Memory.Alignment == Alignment); 1412 } 1413 bool isMemNoOffsetT(bool alignOK = false, unsigned Alignment = 0) const { 1414 if (!isGPRMem()) 1415 return false; 1416 1417 if (!ARMMCRegisterClasses[ARM::tGPRRegClassID].contains( 1418 Memory.BaseRegNum)) 1419 return false; 1420 1421 // No offset of any kind. 1422 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1423 (alignOK || Memory.Alignment == Alignment); 1424 } 1425 bool isMemPCRelImm12() const { 1426 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1427 return false; 1428 // Base register must be PC. 1429 if (Memory.BaseRegNum != ARM::PC) 1430 return false; 1431 // Immediate offset in range [-4095, 4095]. 1432 if (!Memory.OffsetImm) return true; 1433 int64_t Val = Memory.OffsetImm->getValue(); 1434 return (Val > -4096 && Val < 4096) || 1435 (Val == std::numeric_limits<int32_t>::min()); 1436 } 1437 1438 bool isAlignedMemory() const { 1439 return isMemNoOffset(true); 1440 } 1441 1442 bool isAlignedMemoryNone() const { 1443 return isMemNoOffset(false, 0); 1444 } 1445 1446 bool isDupAlignedMemoryNone() const { 1447 return isMemNoOffset(false, 0); 1448 } 1449 1450 bool isAlignedMemory16() const { 1451 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1452 return true; 1453 return isMemNoOffset(false, 0); 1454 } 1455 1456 bool isDupAlignedMemory16() const { 1457 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1458 return true; 1459 return isMemNoOffset(false, 0); 1460 } 1461 1462 bool isAlignedMemory32() const { 1463 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1464 return true; 1465 return isMemNoOffset(false, 0); 1466 } 1467 1468 bool isDupAlignedMemory32() const { 1469 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1470 return true; 1471 return isMemNoOffset(false, 0); 1472 } 1473 1474 bool isAlignedMemory64() const { 1475 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1476 return true; 1477 return isMemNoOffset(false, 0); 1478 } 1479 1480 bool isDupAlignedMemory64() const { 1481 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1482 return true; 1483 return isMemNoOffset(false, 0); 1484 } 1485 1486 bool isAlignedMemory64or128() const { 1487 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1488 return true; 1489 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1490 return true; 1491 return isMemNoOffset(false, 0); 1492 } 1493 1494 bool isDupAlignedMemory64or128() const { 1495 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1496 return true; 1497 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1498 return true; 1499 return isMemNoOffset(false, 0); 1500 } 1501 1502 bool isAlignedMemory64or128or256() const { 1503 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1504 return true; 1505 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1506 return true; 1507 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1508 return true; 1509 return isMemNoOffset(false, 0); 1510 } 1511 1512 bool isAddrMode2() const { 1513 if (!isGPRMem() || Memory.Alignment != 0) return false; 1514 // Check for register offset. 1515 if (Memory.OffsetRegNum) return true; 1516 // Immediate offset in range [-4095, 4095]. 1517 if (!Memory.OffsetImm) return true; 1518 int64_t Val = Memory.OffsetImm->getValue(); 1519 return Val > -4096 && Val < 4096; 1520 } 1521 1522 bool isAM2OffsetImm() const { 1523 if (!isImm()) return false; 1524 // Immediate offset in range [-4095, 4095]. 1525 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1526 if (!CE) return false; 1527 int64_t Val = CE->getValue(); 1528 return (Val == std::numeric_limits<int32_t>::min()) || 1529 (Val > -4096 && Val < 4096); 1530 } 1531 1532 bool isAddrMode3() const { 1533 // If we have an immediate that's not a constant, treat it as a label 1534 // reference needing a fixup. If it is a constant, it's something else 1535 // and we reject it. 1536 if (isImm() && !isa<MCConstantExpr>(getImm())) 1537 return true; 1538 if (!isGPRMem() || Memory.Alignment != 0) return false; 1539 // No shifts are legal for AM3. 1540 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1541 // Check for register offset. 1542 if (Memory.OffsetRegNum) return true; 1543 // Immediate offset in range [-255, 255]. 1544 if (!Memory.OffsetImm) return true; 1545 int64_t Val = Memory.OffsetImm->getValue(); 1546 // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we 1547 // have to check for this too. 1548 return (Val > -256 && Val < 256) || 1549 Val == std::numeric_limits<int32_t>::min(); 1550 } 1551 1552 bool isAM3Offset() const { 1553 if (isPostIdxReg()) 1554 return true; 1555 if (!isImm()) 1556 return false; 1557 // Immediate offset in range [-255, 255]. 1558 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1559 if (!CE) return false; 1560 int64_t Val = CE->getValue(); 1561 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1562 return (Val > -256 && Val < 256) || 1563 Val == std::numeric_limits<int32_t>::min(); 1564 } 1565 1566 bool isAddrMode5() const { 1567 // If we have an immediate that's not a constant, treat it as a label 1568 // reference needing a fixup. If it is a constant, it's something else 1569 // and we reject it. 1570 if (isImm() && !isa<MCConstantExpr>(getImm())) 1571 return true; 1572 if (!isGPRMem() || Memory.Alignment != 0) return false; 1573 // Check for register offset. 1574 if (Memory.OffsetRegNum) return false; 1575 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1576 if (!Memory.OffsetImm) return true; 1577 int64_t Val = Memory.OffsetImm->getValue(); 1578 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1579 Val == std::numeric_limits<int32_t>::min(); 1580 } 1581 1582 bool isAddrMode5FP16() const { 1583 // If we have an immediate that's not a constant, treat it as a label 1584 // reference needing a fixup. If it is a constant, it's something else 1585 // and we reject it. 1586 if (isImm() && !isa<MCConstantExpr>(getImm())) 1587 return true; 1588 if (!isGPRMem() || Memory.Alignment != 0) return false; 1589 // Check for register offset. 1590 if (Memory.OffsetRegNum) return false; 1591 // Immediate offset in range [-510, 510] and a multiple of 2. 1592 if (!Memory.OffsetImm) return true; 1593 int64_t Val = Memory.OffsetImm->getValue(); 1594 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || 1595 Val == std::numeric_limits<int32_t>::min(); 1596 } 1597 1598 bool isMemTBB() const { 1599 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1600 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1601 return false; 1602 return true; 1603 } 1604 1605 bool isMemTBH() const { 1606 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1607 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1608 Memory.Alignment != 0 ) 1609 return false; 1610 return true; 1611 } 1612 1613 bool isMemRegOffset() const { 1614 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1615 return false; 1616 return true; 1617 } 1618 1619 bool isT2MemRegOffset() const { 1620 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1621 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1622 return false; 1623 // Only lsl #{0, 1, 2, 3} allowed. 1624 if (Memory.ShiftType == ARM_AM::no_shift) 1625 return true; 1626 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1627 return false; 1628 return true; 1629 } 1630 1631 bool isMemThumbRR() const { 1632 // Thumb reg+reg addressing is simple. Just two registers, a base and 1633 // an offset. No shifts, negations or any other complicating factors. 1634 if (!isGPRMem() || !Memory.OffsetRegNum || Memory.isNegative || 1635 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1636 return false; 1637 return isARMLowRegister(Memory.BaseRegNum) && 1638 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1639 } 1640 1641 bool isMemThumbRIs4() const { 1642 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1643 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1644 return false; 1645 // Immediate offset, multiple of 4 in range [0, 124]. 1646 if (!Memory.OffsetImm) return true; 1647 int64_t Val = Memory.OffsetImm->getValue(); 1648 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1649 } 1650 1651 bool isMemThumbRIs2() const { 1652 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1653 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1654 return false; 1655 // Immediate offset, multiple of 4 in range [0, 62]. 1656 if (!Memory.OffsetImm) return true; 1657 int64_t Val = Memory.OffsetImm->getValue(); 1658 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1659 } 1660 1661 bool isMemThumbRIs1() const { 1662 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1663 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1664 return false; 1665 // Immediate offset in range [0, 31]. 1666 if (!Memory.OffsetImm) return true; 1667 int64_t Val = Memory.OffsetImm->getValue(); 1668 return Val >= 0 && Val <= 31; 1669 } 1670 1671 bool isMemThumbSPI() const { 1672 if (!isGPRMem() || Memory.OffsetRegNum != 0 || 1673 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1674 return false; 1675 // Immediate offset, multiple of 4 in range [0, 1020]. 1676 if (!Memory.OffsetImm) return true; 1677 int64_t Val = Memory.OffsetImm->getValue(); 1678 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1679 } 1680 1681 bool isMemImm8s4Offset() const { 1682 // If we have an immediate that's not a constant, treat it as a label 1683 // reference needing a fixup. If it is a constant, it's something else 1684 // and we reject it. 1685 if (isImm() && !isa<MCConstantExpr>(getImm())) 1686 return true; 1687 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1688 return false; 1689 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1690 if (!Memory.OffsetImm) return true; 1691 int64_t Val = Memory.OffsetImm->getValue(); 1692 // Special case, #-0 is std::numeric_limits<int32_t>::min(). 1693 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || 1694 Val == std::numeric_limits<int32_t>::min(); 1695 } 1696 bool isMemImm7s4Offset() const { 1697 // If we have an immediate that's not a constant, treat it as a label 1698 // reference needing a fixup. If it is a constant, it's something else 1699 // and we reject it. 1700 if (isImm() && !isa<MCConstantExpr>(getImm())) 1701 return true; 1702 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1703 !ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1704 Memory.BaseRegNum)) 1705 return false; 1706 // Immediate offset a multiple of 4 in range [-508, 508]. 1707 if (!Memory.OffsetImm) return true; 1708 int64_t Val = Memory.OffsetImm->getValue(); 1709 // Special case, #-0 is INT32_MIN. 1710 return (Val >= -508 && Val <= 508 && (Val & 3) == 0) || Val == INT32_MIN; 1711 } 1712 bool isMemImm0_1020s4Offset() const { 1713 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1714 return false; 1715 // Immediate offset a multiple of 4 in range [0, 1020]. 1716 if (!Memory.OffsetImm) return true; 1717 int64_t Val = Memory.OffsetImm->getValue(); 1718 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1719 } 1720 1721 bool isMemImm8Offset() const { 1722 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1723 return false; 1724 // Base reg of PC isn't allowed for these encodings. 1725 if (Memory.BaseRegNum == ARM::PC) return false; 1726 // Immediate offset in range [-255, 255]. 1727 if (!Memory.OffsetImm) return true; 1728 int64_t Val = Memory.OffsetImm->getValue(); 1729 return (Val == std::numeric_limits<int32_t>::min()) || 1730 (Val > -256 && Val < 256); 1731 } 1732 1733 template<unsigned Bits, unsigned RegClassID> 1734 bool isMemImm7ShiftedOffset() const { 1735 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0 || 1736 !ARMMCRegisterClasses[RegClassID].contains(Memory.BaseRegNum)) 1737 return false; 1738 1739 // Expect an immediate offset equal to an element of the range 1740 // [-127, 127], shifted left by Bits. 1741 1742 if (!Memory.OffsetImm) return true; 1743 int64_t Val = Memory.OffsetImm->getValue(); 1744 1745 // INT32_MIN is a special-case value (indicating the encoding with 1746 // zero offset and the subtract bit set) 1747 if (Val == INT32_MIN) 1748 return true; 1749 1750 unsigned Divisor = 1U << Bits; 1751 1752 // Check that the low bits are zero 1753 if (Val % Divisor != 0) 1754 return false; 1755 1756 // Check that the remaining offset is within range. 1757 Val /= Divisor; 1758 return (Val >= -127 && Val <= 127); 1759 } 1760 1761 template <int shift> bool isMemRegRQOffset() const { 1762 if (!isMVEMem() || Memory.OffsetImm != 0 || Memory.Alignment != 0) 1763 return false; 1764 1765 if (!ARMMCRegisterClasses[ARM::GPRnopcRegClassID].contains( 1766 Memory.BaseRegNum)) 1767 return false; 1768 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1769 Memory.OffsetRegNum)) 1770 return false; 1771 1772 if (shift == 0 && Memory.ShiftType != ARM_AM::no_shift) 1773 return false; 1774 1775 if (shift > 0 && 1776 (Memory.ShiftType != ARM_AM::uxtw || Memory.ShiftImm != shift)) 1777 return false; 1778 1779 return true; 1780 } 1781 1782 template <int shift> bool isMemRegQOffset() const { 1783 if (!isMVEMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1784 return false; 1785 1786 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1787 Memory.BaseRegNum)) 1788 return false; 1789 1790 if(!Memory.OffsetImm) return true; 1791 static_assert(shift < 56, 1792 "Such that we dont shift by a value higher than 62"); 1793 int64_t Val = Memory.OffsetImm->getValue(); 1794 1795 // The value must be a multiple of (1 << shift) 1796 if ((Val & ((1U << shift) - 1)) != 0) 1797 return false; 1798 1799 // And be in the right range, depending on the amount that it is shifted 1800 // by. Shift 0, is equal to 7 unsigned bits, the sign bit is set 1801 // separately. 1802 int64_t Range = (1U << (7+shift)) - 1; 1803 return (Val == INT32_MIN) || (Val > -Range && Val < Range); 1804 } 1805 1806 bool isMemPosImm8Offset() const { 1807 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1808 return false; 1809 // Immediate offset in range [0, 255]. 1810 if (!Memory.OffsetImm) return true; 1811 int64_t Val = Memory.OffsetImm->getValue(); 1812 return Val >= 0 && Val < 256; 1813 } 1814 1815 bool isMemNegImm8Offset() const { 1816 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1817 return false; 1818 // Base reg of PC isn't allowed for these encodings. 1819 if (Memory.BaseRegNum == ARM::PC) return false; 1820 // Immediate offset in range [-255, -1]. 1821 if (!Memory.OffsetImm) return false; 1822 int64_t Val = Memory.OffsetImm->getValue(); 1823 return (Val == std::numeric_limits<int32_t>::min()) || 1824 (Val > -256 && Val < 0); 1825 } 1826 1827 bool isMemUImm12Offset() const { 1828 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1829 return false; 1830 // Immediate offset in range [0, 4095]. 1831 if (!Memory.OffsetImm) return true; 1832 int64_t Val = Memory.OffsetImm->getValue(); 1833 return (Val >= 0 && Val < 4096); 1834 } 1835 1836 bool isMemImm12Offset() const { 1837 // If we have an immediate that's not a constant, treat it as a label 1838 // reference needing a fixup. If it is a constant, it's something else 1839 // and we reject it. 1840 1841 if (isImm() && !isa<MCConstantExpr>(getImm())) 1842 return true; 1843 1844 if (!isGPRMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1845 return false; 1846 // Immediate offset in range [-4095, 4095]. 1847 if (!Memory.OffsetImm) return true; 1848 int64_t Val = Memory.OffsetImm->getValue(); 1849 return (Val > -4096 && Val < 4096) || 1850 (Val == std::numeric_limits<int32_t>::min()); 1851 } 1852 1853 bool isConstPoolAsmImm() const { 1854 // Delay processing of Constant Pool Immediate, this will turn into 1855 // a constant. Match no other operand 1856 return (isConstantPoolImm()); 1857 } 1858 1859 bool isPostIdxImm8() const { 1860 if (!isImm()) return false; 1861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1862 if (!CE) return false; 1863 int64_t Val = CE->getValue(); 1864 return (Val > -256 && Val < 256) || 1865 (Val == std::numeric_limits<int32_t>::min()); 1866 } 1867 1868 bool isPostIdxImm8s4() const { 1869 if (!isImm()) return false; 1870 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1871 if (!CE) return false; 1872 int64_t Val = CE->getValue(); 1873 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1874 (Val == std::numeric_limits<int32_t>::min()); 1875 } 1876 1877 bool isMSRMask() const { return Kind == k_MSRMask; } 1878 bool isBankedReg() const { return Kind == k_BankedReg; } 1879 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1880 1881 // NEON operands. 1882 bool isSingleSpacedVectorList() const { 1883 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1884 } 1885 1886 bool isDoubleSpacedVectorList() const { 1887 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1888 } 1889 1890 bool isVecListOneD() const { 1891 if (!isSingleSpacedVectorList()) return false; 1892 return VectorList.Count == 1; 1893 } 1894 1895 bool isVecListTwoMQ() const { 1896 return isSingleSpacedVectorList() && VectorList.Count == 2 && 1897 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1898 VectorList.RegNum); 1899 } 1900 1901 bool isVecListDPair() const { 1902 if (!isSingleSpacedVectorList()) return false; 1903 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1904 .contains(VectorList.RegNum)); 1905 } 1906 1907 bool isVecListThreeD() const { 1908 if (!isSingleSpacedVectorList()) return false; 1909 return VectorList.Count == 3; 1910 } 1911 1912 bool isVecListFourD() const { 1913 if (!isSingleSpacedVectorList()) return false; 1914 return VectorList.Count == 4; 1915 } 1916 1917 bool isVecListDPairSpaced() const { 1918 if (Kind != k_VectorList) return false; 1919 if (isSingleSpacedVectorList()) return false; 1920 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1921 .contains(VectorList.RegNum)); 1922 } 1923 1924 bool isVecListThreeQ() const { 1925 if (!isDoubleSpacedVectorList()) return false; 1926 return VectorList.Count == 3; 1927 } 1928 1929 bool isVecListFourQ() const { 1930 if (!isDoubleSpacedVectorList()) return false; 1931 return VectorList.Count == 4; 1932 } 1933 1934 bool isVecListFourMQ() const { 1935 return isSingleSpacedVectorList() && VectorList.Count == 4 && 1936 ARMMCRegisterClasses[ARM::MQPRRegClassID].contains( 1937 VectorList.RegNum); 1938 } 1939 1940 bool isSingleSpacedVectorAllLanes() const { 1941 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1942 } 1943 1944 bool isDoubleSpacedVectorAllLanes() const { 1945 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1946 } 1947 1948 bool isVecListOneDAllLanes() const { 1949 if (!isSingleSpacedVectorAllLanes()) return false; 1950 return VectorList.Count == 1; 1951 } 1952 1953 bool isVecListDPairAllLanes() const { 1954 if (!isSingleSpacedVectorAllLanes()) return false; 1955 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1956 .contains(VectorList.RegNum)); 1957 } 1958 1959 bool isVecListDPairSpacedAllLanes() const { 1960 if (!isDoubleSpacedVectorAllLanes()) return false; 1961 return VectorList.Count == 2; 1962 } 1963 1964 bool isVecListThreeDAllLanes() const { 1965 if (!isSingleSpacedVectorAllLanes()) return false; 1966 return VectorList.Count == 3; 1967 } 1968 1969 bool isVecListThreeQAllLanes() const { 1970 if (!isDoubleSpacedVectorAllLanes()) return false; 1971 return VectorList.Count == 3; 1972 } 1973 1974 bool isVecListFourDAllLanes() const { 1975 if (!isSingleSpacedVectorAllLanes()) return false; 1976 return VectorList.Count == 4; 1977 } 1978 1979 bool isVecListFourQAllLanes() const { 1980 if (!isDoubleSpacedVectorAllLanes()) return false; 1981 return VectorList.Count == 4; 1982 } 1983 1984 bool isSingleSpacedVectorIndexed() const { 1985 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1986 } 1987 1988 bool isDoubleSpacedVectorIndexed() const { 1989 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1990 } 1991 1992 bool isVecListOneDByteIndexed() const { 1993 if (!isSingleSpacedVectorIndexed()) return false; 1994 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1995 } 1996 1997 bool isVecListOneDHWordIndexed() const { 1998 if (!isSingleSpacedVectorIndexed()) return false; 1999 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 2000 } 2001 2002 bool isVecListOneDWordIndexed() const { 2003 if (!isSingleSpacedVectorIndexed()) return false; 2004 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 2005 } 2006 2007 bool isVecListTwoDByteIndexed() const { 2008 if (!isSingleSpacedVectorIndexed()) return false; 2009 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 2010 } 2011 2012 bool isVecListTwoDHWordIndexed() const { 2013 if (!isSingleSpacedVectorIndexed()) return false; 2014 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2015 } 2016 2017 bool isVecListTwoQWordIndexed() const { 2018 if (!isDoubleSpacedVectorIndexed()) return false; 2019 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2020 } 2021 2022 bool isVecListTwoQHWordIndexed() const { 2023 if (!isDoubleSpacedVectorIndexed()) return false; 2024 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 2025 } 2026 2027 bool isVecListTwoDWordIndexed() const { 2028 if (!isSingleSpacedVectorIndexed()) return false; 2029 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 2030 } 2031 2032 bool isVecListThreeDByteIndexed() const { 2033 if (!isSingleSpacedVectorIndexed()) return false; 2034 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 2035 } 2036 2037 bool isVecListThreeDHWordIndexed() const { 2038 if (!isSingleSpacedVectorIndexed()) return false; 2039 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2040 } 2041 2042 bool isVecListThreeQWordIndexed() const { 2043 if (!isDoubleSpacedVectorIndexed()) return false; 2044 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2045 } 2046 2047 bool isVecListThreeQHWordIndexed() const { 2048 if (!isDoubleSpacedVectorIndexed()) return false; 2049 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 2050 } 2051 2052 bool isVecListThreeDWordIndexed() const { 2053 if (!isSingleSpacedVectorIndexed()) return false; 2054 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 2055 } 2056 2057 bool isVecListFourDByteIndexed() const { 2058 if (!isSingleSpacedVectorIndexed()) return false; 2059 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 2060 } 2061 2062 bool isVecListFourDHWordIndexed() const { 2063 if (!isSingleSpacedVectorIndexed()) return false; 2064 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2065 } 2066 2067 bool isVecListFourQWordIndexed() const { 2068 if (!isDoubleSpacedVectorIndexed()) return false; 2069 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2070 } 2071 2072 bool isVecListFourQHWordIndexed() const { 2073 if (!isDoubleSpacedVectorIndexed()) return false; 2074 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 2075 } 2076 2077 bool isVecListFourDWordIndexed() const { 2078 if (!isSingleSpacedVectorIndexed()) return false; 2079 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 2080 } 2081 2082 bool isVectorIndex() const { return Kind == k_VectorIndex; } 2083 2084 template <unsigned NumLanes> 2085 bool isVectorIndexInRange() const { 2086 if (Kind != k_VectorIndex) return false; 2087 return VectorIndex.Val < NumLanes; 2088 } 2089 2090 bool isVectorIndex8() const { return isVectorIndexInRange<8>(); } 2091 bool isVectorIndex16() const { return isVectorIndexInRange<4>(); } 2092 bool isVectorIndex32() const { return isVectorIndexInRange<2>(); } 2093 bool isVectorIndex64() const { return isVectorIndexInRange<1>(); } 2094 2095 template<int PermittedValue, int OtherPermittedValue> 2096 bool isMVEPairVectorIndex() const { 2097 if (Kind != k_VectorIndex) return false; 2098 return VectorIndex.Val == PermittedValue || 2099 VectorIndex.Val == OtherPermittedValue; 2100 } 2101 2102 bool isNEONi8splat() const { 2103 if (!isImm()) return false; 2104 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2105 // Must be a constant. 2106 if (!CE) return false; 2107 int64_t Value = CE->getValue(); 2108 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 2109 // value. 2110 return Value >= 0 && Value < 256; 2111 } 2112 2113 bool isNEONi16splat() const { 2114 if (isNEONByteReplicate(2)) 2115 return false; // Leave that for bytes replication and forbid by default. 2116 if (!isImm()) 2117 return false; 2118 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2119 // Must be a constant. 2120 if (!CE) return false; 2121 unsigned Value = CE->getValue(); 2122 return ARM_AM::isNEONi16splat(Value); 2123 } 2124 2125 bool isNEONi16splatNot() const { 2126 if (!isImm()) 2127 return false; 2128 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2129 // Must be a constant. 2130 if (!CE) return false; 2131 unsigned Value = CE->getValue(); 2132 return ARM_AM::isNEONi16splat(~Value & 0xffff); 2133 } 2134 2135 bool isNEONi32splat() const { 2136 if (isNEONByteReplicate(4)) 2137 return false; // Leave that for bytes replication and forbid by default. 2138 if (!isImm()) 2139 return false; 2140 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2141 // Must be a constant. 2142 if (!CE) return false; 2143 unsigned Value = CE->getValue(); 2144 return ARM_AM::isNEONi32splat(Value); 2145 } 2146 2147 bool isNEONi32splatNot() const { 2148 if (!isImm()) 2149 return false; 2150 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2151 // Must be a constant. 2152 if (!CE) return false; 2153 unsigned Value = CE->getValue(); 2154 return ARM_AM::isNEONi32splat(~Value); 2155 } 2156 2157 static bool isValidNEONi32vmovImm(int64_t Value) { 2158 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 2159 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 2160 return ((Value & 0xffffffffffffff00) == 0) || 2161 ((Value & 0xffffffffffff00ff) == 0) || 2162 ((Value & 0xffffffffff00ffff) == 0) || 2163 ((Value & 0xffffffff00ffffff) == 0) || 2164 ((Value & 0xffffffffffff00ff) == 0xff) || 2165 ((Value & 0xffffffffff00ffff) == 0xffff); 2166 } 2167 2168 bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const { 2169 assert((Width == 8 || Width == 16 || Width == 32) && 2170 "Invalid element width"); 2171 assert(NumElems * Width <= 64 && "Invalid result width"); 2172 2173 if (!isImm()) 2174 return false; 2175 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2176 // Must be a constant. 2177 if (!CE) 2178 return false; 2179 int64_t Value = CE->getValue(); 2180 if (!Value) 2181 return false; // Don't bother with zero. 2182 if (Inv) 2183 Value = ~Value; 2184 2185 uint64_t Mask = (1ull << Width) - 1; 2186 uint64_t Elem = Value & Mask; 2187 if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0) 2188 return false; 2189 if (Width == 32 && !isValidNEONi32vmovImm(Elem)) 2190 return false; 2191 2192 for (unsigned i = 1; i < NumElems; ++i) { 2193 Value >>= Width; 2194 if ((Value & Mask) != Elem) 2195 return false; 2196 } 2197 return true; 2198 } 2199 2200 bool isNEONByteReplicate(unsigned NumBytes) const { 2201 return isNEONReplicate(8, NumBytes, false); 2202 } 2203 2204 static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) { 2205 assert((FromW == 8 || FromW == 16 || FromW == 32) && 2206 "Invalid source width"); 2207 assert((ToW == 16 || ToW == 32 || ToW == 64) && 2208 "Invalid destination width"); 2209 assert(FromW < ToW && "ToW is not less than FromW"); 2210 } 2211 2212 template<unsigned FromW, unsigned ToW> 2213 bool isNEONmovReplicate() const { 2214 checkNeonReplicateArgs(FromW, ToW); 2215 if (ToW == 64 && isNEONi64splat()) 2216 return false; 2217 return isNEONReplicate(FromW, ToW / FromW, false); 2218 } 2219 2220 template<unsigned FromW, unsigned ToW> 2221 bool isNEONinvReplicate() const { 2222 checkNeonReplicateArgs(FromW, ToW); 2223 return isNEONReplicate(FromW, ToW / FromW, true); 2224 } 2225 2226 bool isNEONi32vmov() const { 2227 if (isNEONByteReplicate(4)) 2228 return false; // Let it to be classified as byte-replicate case. 2229 if (!isImm()) 2230 return false; 2231 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2232 // Must be a constant. 2233 if (!CE) 2234 return false; 2235 return isValidNEONi32vmovImm(CE->getValue()); 2236 } 2237 2238 bool isNEONi32vmovNeg() const { 2239 if (!isImm()) return false; 2240 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2241 // Must be a constant. 2242 if (!CE) return false; 2243 return isValidNEONi32vmovImm(~CE->getValue()); 2244 } 2245 2246 bool isNEONi64splat() const { 2247 if (!isImm()) return false; 2248 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2249 // Must be a constant. 2250 if (!CE) return false; 2251 uint64_t Value = CE->getValue(); 2252 // i64 value with each byte being either 0 or 0xff. 2253 for (unsigned i = 0; i < 8; ++i, Value >>= 8) 2254 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 2255 return true; 2256 } 2257 2258 template<int64_t Angle, int64_t Remainder> 2259 bool isComplexRotation() const { 2260 if (!isImm()) return false; 2261 2262 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2263 if (!CE) return false; 2264 uint64_t Value = CE->getValue(); 2265 2266 return (Value % Angle == Remainder && Value <= 270); 2267 } 2268 2269 bool isMVELongShift() const { 2270 if (!isImm()) return false; 2271 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2272 // Must be a constant. 2273 if (!CE) return false; 2274 uint64_t Value = CE->getValue(); 2275 return Value >= 1 && Value <= 32; 2276 } 2277 2278 bool isMveSaturateOp() const { 2279 if (!isImm()) return false; 2280 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2281 if (!CE) return false; 2282 uint64_t Value = CE->getValue(); 2283 return Value == 48 || Value == 64; 2284 } 2285 2286 bool isITCondCodeNoAL() const { 2287 if (!isITCondCode()) return false; 2288 ARMCC::CondCodes CC = getCondCode(); 2289 return CC != ARMCC::AL; 2290 } 2291 2292 bool isITCondCodeRestrictedI() const { 2293 if (!isITCondCode()) 2294 return false; 2295 ARMCC::CondCodes CC = getCondCode(); 2296 return CC == ARMCC::EQ || CC == ARMCC::NE; 2297 } 2298 2299 bool isITCondCodeRestrictedS() const { 2300 if (!isITCondCode()) 2301 return false; 2302 ARMCC::CondCodes CC = getCondCode(); 2303 return CC == ARMCC::LT || CC == ARMCC::GT || CC == ARMCC::LE || 2304 CC == ARMCC::GE; 2305 } 2306 2307 bool isITCondCodeRestrictedU() const { 2308 if (!isITCondCode()) 2309 return false; 2310 ARMCC::CondCodes CC = getCondCode(); 2311 return CC == ARMCC::HS || CC == ARMCC::HI; 2312 } 2313 2314 bool isITCondCodeRestrictedFP() const { 2315 if (!isITCondCode()) 2316 return false; 2317 ARMCC::CondCodes CC = getCondCode(); 2318 return CC == ARMCC::EQ || CC == ARMCC::NE || CC == ARMCC::LT || 2319 CC == ARMCC::GT || CC == ARMCC::LE || CC == ARMCC::GE; 2320 } 2321 2322 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 2323 // Add as immediates when possible. Null MCExpr = 0. 2324 if (!Expr) 2325 Inst.addOperand(MCOperand::createImm(0)); 2326 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 2327 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2328 else 2329 Inst.addOperand(MCOperand::createExpr(Expr)); 2330 } 2331 2332 void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const { 2333 assert(N == 1 && "Invalid number of operands!"); 2334 addExpr(Inst, getImm()); 2335 } 2336 2337 void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const { 2338 assert(N == 1 && "Invalid number of operands!"); 2339 addExpr(Inst, getImm()); 2340 } 2341 2342 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 2343 assert(N == 2 && "Invalid number of operands!"); 2344 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2345 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 2346 Inst.addOperand(MCOperand::createReg(RegNum)); 2347 } 2348 2349 void addVPTPredNOperands(MCInst &Inst, unsigned N) const { 2350 assert(N == 2 && "Invalid number of operands!"); 2351 Inst.addOperand(MCOperand::createImm(unsigned(getVPTPred()))); 2352 unsigned RegNum = getVPTPred() == ARMVCC::None ? 0: ARM::P0; 2353 Inst.addOperand(MCOperand::createReg(RegNum)); 2354 } 2355 2356 void addVPTPredROperands(MCInst &Inst, unsigned N) const { 2357 assert(N == 3 && "Invalid number of operands!"); 2358 addVPTPredNOperands(Inst, N-1); 2359 unsigned RegNum; 2360 if (getVPTPred() == ARMVCC::None) { 2361 RegNum = 0; 2362 } else { 2363 unsigned NextOpIndex = Inst.getNumOperands(); 2364 const MCInstrDesc &MCID = ARMInsts[Inst.getOpcode()]; 2365 int TiedOp = MCID.getOperandConstraint(NextOpIndex, MCOI::TIED_TO); 2366 assert(TiedOp >= 0 && 2367 "Inactive register in vpred_r is not tied to an output!"); 2368 RegNum = Inst.getOperand(TiedOp).getReg(); 2369 } 2370 Inst.addOperand(MCOperand::createReg(RegNum)); 2371 } 2372 2373 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 2374 assert(N == 1 && "Invalid number of operands!"); 2375 Inst.addOperand(MCOperand::createImm(getCoproc())); 2376 } 2377 2378 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 2379 assert(N == 1 && "Invalid number of operands!"); 2380 Inst.addOperand(MCOperand::createImm(getCoproc())); 2381 } 2382 2383 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 2384 assert(N == 1 && "Invalid number of operands!"); 2385 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 2386 } 2387 2388 void addITMaskOperands(MCInst &Inst, unsigned N) const { 2389 assert(N == 1 && "Invalid number of operands!"); 2390 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 2391 } 2392 2393 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 2394 assert(N == 1 && "Invalid number of operands!"); 2395 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 2396 } 2397 2398 void addITCondCodeInvOperands(MCInst &Inst, unsigned N) const { 2399 assert(N == 1 && "Invalid number of operands!"); 2400 Inst.addOperand(MCOperand::createImm(unsigned(ARMCC::getOppositeCondition(getCondCode())))); 2401 } 2402 2403 void addCCOutOperands(MCInst &Inst, unsigned N) const { 2404 assert(N == 1 && "Invalid number of operands!"); 2405 Inst.addOperand(MCOperand::createReg(getReg())); 2406 } 2407 2408 void addRegOperands(MCInst &Inst, unsigned N) const { 2409 assert(N == 1 && "Invalid number of operands!"); 2410 Inst.addOperand(MCOperand::createReg(getReg())); 2411 } 2412 2413 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 2414 assert(N == 3 && "Invalid number of operands!"); 2415 assert(isRegShiftedReg() && 2416 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 2417 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 2418 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 2419 Inst.addOperand(MCOperand::createImm( 2420 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 2421 } 2422 2423 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 2424 assert(N == 2 && "Invalid number of operands!"); 2425 assert(isRegShiftedImm() && 2426 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 2427 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 2428 // Shift of #32 is encoded as 0 where permitted 2429 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 2430 Inst.addOperand(MCOperand::createImm( 2431 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 2432 } 2433 2434 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 2435 assert(N == 1 && "Invalid number of operands!"); 2436 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 2437 ShifterImm.Imm)); 2438 } 2439 2440 void addRegListOperands(MCInst &Inst, unsigned N) const { 2441 assert(N == 1 && "Invalid number of operands!"); 2442 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2443 for (SmallVectorImpl<unsigned>::const_iterator 2444 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2445 Inst.addOperand(MCOperand::createReg(*I)); 2446 } 2447 2448 void addRegListWithAPSROperands(MCInst &Inst, unsigned N) const { 2449 assert(N == 1 && "Invalid number of operands!"); 2450 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2451 for (SmallVectorImpl<unsigned>::const_iterator 2452 I = RegList.begin(), E = RegList.end(); I != E; ++I) 2453 Inst.addOperand(MCOperand::createReg(*I)); 2454 } 2455 2456 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 2457 addRegListOperands(Inst, N); 2458 } 2459 2460 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 2461 addRegListOperands(Inst, N); 2462 } 2463 2464 void addFPSRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2465 addRegListOperands(Inst, N); 2466 } 2467 2468 void addFPDRegListWithVPROperands(MCInst &Inst, unsigned N) const { 2469 addRegListOperands(Inst, N); 2470 } 2471 2472 void addRotImmOperands(MCInst &Inst, unsigned N) const { 2473 assert(N == 1 && "Invalid number of operands!"); 2474 // Encoded as val>>3. The printer handles display as 8, 16, 24. 2475 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 2476 } 2477 2478 void addModImmOperands(MCInst &Inst, unsigned N) const { 2479 assert(N == 1 && "Invalid number of operands!"); 2480 2481 // Support for fixups (MCFixup) 2482 if (isImm()) 2483 return addImmOperands(Inst, N); 2484 2485 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 2486 } 2487 2488 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 2489 assert(N == 1 && "Invalid number of operands!"); 2490 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2491 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 2492 Inst.addOperand(MCOperand::createImm(Enc)); 2493 } 2494 2495 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 2496 assert(N == 1 && "Invalid number of operands!"); 2497 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2498 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 2499 Inst.addOperand(MCOperand::createImm(Enc)); 2500 } 2501 2502 void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const { 2503 assert(N == 1 && "Invalid number of operands!"); 2504 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2505 uint32_t Val = -CE->getValue(); 2506 Inst.addOperand(MCOperand::createImm(Val)); 2507 } 2508 2509 void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const { 2510 assert(N == 1 && "Invalid number of operands!"); 2511 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2512 uint32_t Val = -CE->getValue(); 2513 Inst.addOperand(MCOperand::createImm(Val)); 2514 } 2515 2516 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 2517 assert(N == 1 && "Invalid number of operands!"); 2518 // Munge the lsb/width into a bitfield mask. 2519 unsigned lsb = Bitfield.LSB; 2520 unsigned width = Bitfield.Width; 2521 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 2522 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 2523 (32 - (lsb + width))); 2524 Inst.addOperand(MCOperand::createImm(Mask)); 2525 } 2526 2527 void addImmOperands(MCInst &Inst, unsigned N) const { 2528 assert(N == 1 && "Invalid number of operands!"); 2529 addExpr(Inst, getImm()); 2530 } 2531 2532 void addFBits16Operands(MCInst &Inst, unsigned N) const { 2533 assert(N == 1 && "Invalid number of operands!"); 2534 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2535 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 2536 } 2537 2538 void addFBits32Operands(MCInst &Inst, unsigned N) const { 2539 assert(N == 1 && "Invalid number of operands!"); 2540 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2541 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 2542 } 2543 2544 void addFPImmOperands(MCInst &Inst, unsigned N) const { 2545 assert(N == 1 && "Invalid number of operands!"); 2546 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2547 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 2548 Inst.addOperand(MCOperand::createImm(Val)); 2549 } 2550 2551 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 2552 assert(N == 1 && "Invalid number of operands!"); 2553 // FIXME: We really want to scale the value here, but the LDRD/STRD 2554 // instruction don't encode operands that way yet. 2555 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2556 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2557 } 2558 2559 void addImm7s4Operands(MCInst &Inst, unsigned N) const { 2560 assert(N == 1 && "Invalid number of operands!"); 2561 // FIXME: We really want to scale the value here, but the VSTR/VLDR_VSYSR 2562 // instruction don't encode operands that way yet. 2563 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2564 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2565 } 2566 2567 void addImm7Shift0Operands(MCInst &Inst, unsigned N) const { 2568 assert(N == 1 && "Invalid number of operands!"); 2569 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2570 assert(CE != nullptr && "Invalid operand type!"); 2571 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2572 } 2573 2574 void addImm7Shift1Operands(MCInst &Inst, unsigned N) const { 2575 assert(N == 1 && "Invalid number of operands!"); 2576 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2577 assert(CE != nullptr && "Invalid operand type!"); 2578 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2579 } 2580 2581 void addImm7Shift2Operands(MCInst &Inst, unsigned N) const { 2582 assert(N == 1 && "Invalid number of operands!"); 2583 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2584 assert(CE != nullptr && "Invalid operand type!"); 2585 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2586 } 2587 2588 void addImm7Operands(MCInst &Inst, unsigned N) const { 2589 assert(N == 1 && "Invalid number of operands!"); 2590 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2591 assert(CE != nullptr && "Invalid operand type!"); 2592 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2593 } 2594 2595 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 2596 assert(N == 1 && "Invalid number of operands!"); 2597 // The immediate is scaled by four in the encoding and is stored 2598 // in the MCInst as such. Lop off the low two bits here. 2599 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2600 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2601 } 2602 2603 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 2604 assert(N == 1 && "Invalid number of operands!"); 2605 // The immediate is scaled by four in the encoding and is stored 2606 // in the MCInst as such. Lop off the low two bits here. 2607 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2608 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 2609 } 2610 2611 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 2612 assert(N == 1 && "Invalid number of operands!"); 2613 // The immediate is scaled by four in the encoding and is stored 2614 // in the MCInst as such. Lop off the low two bits here. 2615 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2616 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 2617 } 2618 2619 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 2620 assert(N == 1 && "Invalid number of operands!"); 2621 // The constant encodes as the immediate-1, and we store in the instruction 2622 // the bits as encoded, so subtract off one here. 2623 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2624 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2625 } 2626 2627 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 2628 assert(N == 1 && "Invalid number of operands!"); 2629 // The constant encodes as the immediate-1, and we store in the instruction 2630 // the bits as encoded, so subtract off one here. 2631 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2632 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 2633 } 2634 2635 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 2636 assert(N == 1 && "Invalid number of operands!"); 2637 // The constant encodes as the immediate, except for 32, which encodes as 2638 // zero. 2639 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2640 unsigned Imm = CE->getValue(); 2641 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 2642 } 2643 2644 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 2645 assert(N == 1 && "Invalid number of operands!"); 2646 // An ASR value of 32 encodes as 0, so that's how we want to add it to 2647 // the instruction as well. 2648 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2649 int Val = CE->getValue(); 2650 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 2651 } 2652 2653 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 2654 assert(N == 1 && "Invalid number of operands!"); 2655 // The operand is actually a t2_so_imm, but we have its bitwise 2656 // negation in the assembly source, so twiddle it here. 2657 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2658 Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue())); 2659 } 2660 2661 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 2662 assert(N == 1 && "Invalid number of operands!"); 2663 // The operand is actually a t2_so_imm, but we have its 2664 // negation in the assembly source, so twiddle it here. 2665 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2666 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2667 } 2668 2669 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 2670 assert(N == 1 && "Invalid number of operands!"); 2671 // The operand is actually an imm0_4095, but we have its 2672 // negation in the assembly source, so twiddle it here. 2673 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2674 Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue())); 2675 } 2676 2677 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 2678 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 2679 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 2680 return; 2681 } 2682 2683 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2684 assert(SR && "Unknown value type!"); 2685 Inst.addOperand(MCOperand::createExpr(SR)); 2686 } 2687 2688 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 2689 assert(N == 1 && "Invalid number of operands!"); 2690 if (isImm()) { 2691 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2692 if (CE) { 2693 Inst.addOperand(MCOperand::createImm(CE->getValue())); 2694 return; 2695 } 2696 2697 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 2698 2699 assert(SR && "Unknown value type!"); 2700 Inst.addOperand(MCOperand::createExpr(SR)); 2701 return; 2702 } 2703 2704 assert(isGPRMem() && "Unknown value type!"); 2705 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 2706 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 2707 } 2708 2709 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2710 assert(N == 1 && "Invalid number of operands!"); 2711 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2712 } 2713 2714 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2715 assert(N == 1 && "Invalid number of operands!"); 2716 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2717 } 2718 2719 void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2720 assert(N == 1 && "Invalid number of operands!"); 2721 Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt()))); 2722 } 2723 2724 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2725 assert(N == 1 && "Invalid number of operands!"); 2726 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2727 } 2728 2729 void addMemNoOffsetT2Operands(MCInst &Inst, unsigned N) const { 2730 assert(N == 1 && "Invalid number of operands!"); 2731 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2732 } 2733 2734 void addMemNoOffsetT2NoSpOperands(MCInst &Inst, unsigned N) const { 2735 assert(N == 1 && "Invalid number of operands!"); 2736 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2737 } 2738 2739 void addMemNoOffsetTOperands(MCInst &Inst, unsigned N) const { 2740 assert(N == 1 && "Invalid number of operands!"); 2741 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2742 } 2743 2744 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2745 assert(N == 1 && "Invalid number of operands!"); 2746 int32_t Imm = Memory.OffsetImm->getValue(); 2747 Inst.addOperand(MCOperand::createImm(Imm)); 2748 } 2749 2750 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2751 assert(N == 1 && "Invalid number of operands!"); 2752 assert(isImm() && "Not an immediate!"); 2753 2754 // If we have an immediate that's not a constant, treat it as a label 2755 // reference needing a fixup. 2756 if (!isa<MCConstantExpr>(getImm())) { 2757 Inst.addOperand(MCOperand::createExpr(getImm())); 2758 return; 2759 } 2760 2761 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2762 int Val = CE->getValue(); 2763 Inst.addOperand(MCOperand::createImm(Val)); 2764 } 2765 2766 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2767 assert(N == 2 && "Invalid number of operands!"); 2768 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2769 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2770 } 2771 2772 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2773 addAlignedMemoryOperands(Inst, N); 2774 } 2775 2776 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2777 addAlignedMemoryOperands(Inst, N); 2778 } 2779 2780 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2781 addAlignedMemoryOperands(Inst, N); 2782 } 2783 2784 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2785 addAlignedMemoryOperands(Inst, N); 2786 } 2787 2788 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2789 addAlignedMemoryOperands(Inst, N); 2790 } 2791 2792 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2793 addAlignedMemoryOperands(Inst, N); 2794 } 2795 2796 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2797 addAlignedMemoryOperands(Inst, N); 2798 } 2799 2800 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2801 addAlignedMemoryOperands(Inst, N); 2802 } 2803 2804 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2805 addAlignedMemoryOperands(Inst, N); 2806 } 2807 2808 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2809 addAlignedMemoryOperands(Inst, N); 2810 } 2811 2812 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2813 addAlignedMemoryOperands(Inst, N); 2814 } 2815 2816 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2817 assert(N == 3 && "Invalid number of operands!"); 2818 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2819 if (!Memory.OffsetRegNum) { 2820 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2821 // Special case for #-0 2822 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2823 if (Val < 0) Val = -Val; 2824 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2825 } else { 2826 // For register offset, we encode the shift type and negation flag 2827 // here. 2828 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2829 Memory.ShiftImm, Memory.ShiftType); 2830 } 2831 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2832 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2833 Inst.addOperand(MCOperand::createImm(Val)); 2834 } 2835 2836 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2837 assert(N == 2 && "Invalid number of operands!"); 2838 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2839 assert(CE && "non-constant AM2OffsetImm operand!"); 2840 int32_t Val = CE->getValue(); 2841 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2842 // Special case for #-0 2843 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2844 if (Val < 0) Val = -Val; 2845 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2846 Inst.addOperand(MCOperand::createReg(0)); 2847 Inst.addOperand(MCOperand::createImm(Val)); 2848 } 2849 2850 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2851 assert(N == 3 && "Invalid number of operands!"); 2852 // If we have an immediate that's not a constant, treat it as a label 2853 // reference needing a fixup. If it is a constant, it's something else 2854 // and we reject it. 2855 if (isImm()) { 2856 Inst.addOperand(MCOperand::createExpr(getImm())); 2857 Inst.addOperand(MCOperand::createReg(0)); 2858 Inst.addOperand(MCOperand::createImm(0)); 2859 return; 2860 } 2861 2862 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2863 if (!Memory.OffsetRegNum) { 2864 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2865 // Special case for #-0 2866 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2867 if (Val < 0) Val = -Val; 2868 Val = ARM_AM::getAM3Opc(AddSub, Val); 2869 } else { 2870 // For register offset, we encode the shift type and negation flag 2871 // here. 2872 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2873 } 2874 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2875 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2876 Inst.addOperand(MCOperand::createImm(Val)); 2877 } 2878 2879 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2880 assert(N == 2 && "Invalid number of operands!"); 2881 if (Kind == k_PostIndexRegister) { 2882 int32_t Val = 2883 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2884 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2885 Inst.addOperand(MCOperand::createImm(Val)); 2886 return; 2887 } 2888 2889 // Constant offset. 2890 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2891 int32_t Val = CE->getValue(); 2892 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2893 // Special case for #-0 2894 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2895 if (Val < 0) Val = -Val; 2896 Val = ARM_AM::getAM3Opc(AddSub, Val); 2897 Inst.addOperand(MCOperand::createReg(0)); 2898 Inst.addOperand(MCOperand::createImm(Val)); 2899 } 2900 2901 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2902 assert(N == 2 && "Invalid number of operands!"); 2903 // If we have an immediate that's not a constant, treat it as a label 2904 // reference needing a fixup. If it is a constant, it's something else 2905 // and we reject it. 2906 if (isImm()) { 2907 Inst.addOperand(MCOperand::createExpr(getImm())); 2908 Inst.addOperand(MCOperand::createImm(0)); 2909 return; 2910 } 2911 2912 // The lower two bits are always zero and as such are not encoded. 2913 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2914 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2915 // Special case for #-0 2916 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2917 if (Val < 0) Val = -Val; 2918 Val = ARM_AM::getAM5Opc(AddSub, Val); 2919 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2920 Inst.addOperand(MCOperand::createImm(Val)); 2921 } 2922 2923 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2924 assert(N == 2 && "Invalid number of operands!"); 2925 // If we have an immediate that's not a constant, treat it as a label 2926 // reference needing a fixup. If it is a constant, it's something else 2927 // and we reject it. 2928 if (isImm()) { 2929 Inst.addOperand(MCOperand::createExpr(getImm())); 2930 Inst.addOperand(MCOperand::createImm(0)); 2931 return; 2932 } 2933 2934 // The lower bit is always zero and as such is not encoded. 2935 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2936 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2937 // Special case for #-0 2938 if (Val == std::numeric_limits<int32_t>::min()) Val = 0; 2939 if (Val < 0) Val = -Val; 2940 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2941 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2942 Inst.addOperand(MCOperand::createImm(Val)); 2943 } 2944 2945 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2946 assert(N == 2 && "Invalid number of operands!"); 2947 // If we have an immediate that's not a constant, treat it as a label 2948 // reference needing a fixup. If it is a constant, it's something else 2949 // and we reject it. 2950 if (isImm()) { 2951 Inst.addOperand(MCOperand::createExpr(getImm())); 2952 Inst.addOperand(MCOperand::createImm(0)); 2953 return; 2954 } 2955 2956 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2957 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2958 Inst.addOperand(MCOperand::createImm(Val)); 2959 } 2960 2961 void addMemImm7s4OffsetOperands(MCInst &Inst, unsigned N) const { 2962 assert(N == 2 && "Invalid number of operands!"); 2963 // If we have an immediate that's not a constant, treat it as a label 2964 // reference needing a fixup. If it is a constant, it's something else 2965 // and we reject it. 2966 if (isImm()) { 2967 Inst.addOperand(MCOperand::createExpr(getImm())); 2968 Inst.addOperand(MCOperand::createImm(0)); 2969 return; 2970 } 2971 2972 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2973 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2974 Inst.addOperand(MCOperand::createImm(Val)); 2975 } 2976 2977 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2978 assert(N == 2 && "Invalid number of operands!"); 2979 // The lower two bits are always zero and as such are not encoded. 2980 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2981 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2982 Inst.addOperand(MCOperand::createImm(Val)); 2983 } 2984 2985 void addMemImmOffsetOperands(MCInst &Inst, unsigned N) const { 2986 assert(N == 2 && "Invalid number of operands!"); 2987 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2988 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2989 Inst.addOperand(MCOperand::createImm(Val)); 2990 } 2991 2992 void addMemRegRQOffsetOperands(MCInst &Inst, unsigned N) const { 2993 assert(N == 2 && "Invalid number of operands!"); 2994 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2995 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2996 } 2997 2998 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2999 assert(N == 2 && "Invalid number of operands!"); 3000 // If this is an immediate, it's a label reference. 3001 if (isImm()) { 3002 addExpr(Inst, getImm()); 3003 Inst.addOperand(MCOperand::createImm(0)); 3004 return; 3005 } 3006 3007 // Otherwise, it's a normal memory reg+offset. 3008 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3009 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3010 Inst.addOperand(MCOperand::createImm(Val)); 3011 } 3012 3013 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 3014 assert(N == 2 && "Invalid number of operands!"); 3015 // If this is an immediate, it's a label reference. 3016 if (isImm()) { 3017 addExpr(Inst, getImm()); 3018 Inst.addOperand(MCOperand::createImm(0)); 3019 return; 3020 } 3021 3022 // Otherwise, it's a normal memory reg+offset. 3023 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 3024 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3025 Inst.addOperand(MCOperand::createImm(Val)); 3026 } 3027 3028 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 3029 assert(N == 1 && "Invalid number of operands!"); 3030 // This is container for the immediate that we will create the constant 3031 // pool from 3032 addExpr(Inst, getConstantPoolImm()); 3033 return; 3034 } 3035 3036 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 3037 assert(N == 2 && "Invalid number of operands!"); 3038 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3039 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3040 } 3041 3042 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 3043 assert(N == 2 && "Invalid number of operands!"); 3044 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3045 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3046 } 3047 3048 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3049 assert(N == 3 && "Invalid number of operands!"); 3050 unsigned Val = 3051 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 3052 Memory.ShiftImm, Memory.ShiftType); 3053 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3054 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3055 Inst.addOperand(MCOperand::createImm(Val)); 3056 } 3057 3058 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 3059 assert(N == 3 && "Invalid number of operands!"); 3060 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3061 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3062 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 3063 } 3064 3065 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 3066 assert(N == 2 && "Invalid number of operands!"); 3067 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3068 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 3069 } 3070 3071 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 3072 assert(N == 2 && "Invalid number of operands!"); 3073 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3074 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3075 Inst.addOperand(MCOperand::createImm(Val)); 3076 } 3077 3078 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 3079 assert(N == 2 && "Invalid number of operands!"); 3080 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 3081 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3082 Inst.addOperand(MCOperand::createImm(Val)); 3083 } 3084 3085 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 3086 assert(N == 2 && "Invalid number of operands!"); 3087 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 3088 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3089 Inst.addOperand(MCOperand::createImm(Val)); 3090 } 3091 3092 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 3093 assert(N == 2 && "Invalid number of operands!"); 3094 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 3095 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 3096 Inst.addOperand(MCOperand::createImm(Val)); 3097 } 3098 3099 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 3100 assert(N == 1 && "Invalid number of operands!"); 3101 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3102 assert(CE && "non-constant post-idx-imm8 operand!"); 3103 int Imm = CE->getValue(); 3104 bool isAdd = Imm >= 0; 3105 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3106 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 3107 Inst.addOperand(MCOperand::createImm(Imm)); 3108 } 3109 3110 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 3111 assert(N == 1 && "Invalid number of operands!"); 3112 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3113 assert(CE && "non-constant post-idx-imm8s4 operand!"); 3114 int Imm = CE->getValue(); 3115 bool isAdd = Imm >= 0; 3116 if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0; 3117 // Immediate is scaled by 4. 3118 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 3119 Inst.addOperand(MCOperand::createImm(Imm)); 3120 } 3121 3122 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 3123 assert(N == 2 && "Invalid number of operands!"); 3124 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3125 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 3126 } 3127 3128 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 3129 assert(N == 2 && "Invalid number of operands!"); 3130 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 3131 // The sign, shift type, and shift amount are encoded in a single operand 3132 // using the AM2 encoding helpers. 3133 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 3134 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 3135 PostIdxReg.ShiftTy); 3136 Inst.addOperand(MCOperand::createImm(Imm)); 3137 } 3138 3139 void addPowerTwoOperands(MCInst &Inst, unsigned N) const { 3140 assert(N == 1 && "Invalid number of operands!"); 3141 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3142 Inst.addOperand(MCOperand::createImm(CE->getValue())); 3143 } 3144 3145 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 3146 assert(N == 1 && "Invalid number of operands!"); 3147 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 3148 } 3149 3150 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 3151 assert(N == 1 && "Invalid number of operands!"); 3152 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 3153 } 3154 3155 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 3156 assert(N == 1 && "Invalid number of operands!"); 3157 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 3158 } 3159 3160 void addVecListOperands(MCInst &Inst, unsigned N) const { 3161 assert(N == 1 && "Invalid number of operands!"); 3162 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3163 } 3164 3165 void addMVEVecListOperands(MCInst &Inst, unsigned N) const { 3166 assert(N == 1 && "Invalid number of operands!"); 3167 3168 // When we come here, the VectorList field will identify a range 3169 // of q-registers by its base register and length, and it will 3170 // have already been error-checked to be the expected length of 3171 // range and contain only q-regs in the range q0-q7. So we can 3172 // count on the base register being in the range q0-q6 (for 2 3173 // regs) or q0-q4 (for 4) 3174 // 3175 // The MVE instructions taking a register range of this kind will 3176 // need an operand in the QQPR or QQQQPR class, representing the 3177 // entire range as a unit. So we must translate into that class, 3178 // by finding the index of the base register in the MQPR reg 3179 // class, and returning the super-register at the corresponding 3180 // index in the target class. 3181 3182 const MCRegisterClass *RC_in = &ARMMCRegisterClasses[ARM::MQPRRegClassID]; 3183 const MCRegisterClass *RC_out = (VectorList.Count == 2) ? 3184 &ARMMCRegisterClasses[ARM::QQPRRegClassID] : 3185 &ARMMCRegisterClasses[ARM::QQQQPRRegClassID]; 3186 3187 unsigned I, E = RC_out->getNumRegs(); 3188 for (I = 0; I < E; I++) 3189 if (RC_in->getRegister(I) == VectorList.RegNum) 3190 break; 3191 assert(I < E && "Invalid vector list start register!"); 3192 3193 Inst.addOperand(MCOperand::createReg(RC_out->getRegister(I))); 3194 } 3195 3196 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 3197 assert(N == 2 && "Invalid number of operands!"); 3198 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 3199 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 3200 } 3201 3202 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 3203 assert(N == 1 && "Invalid number of operands!"); 3204 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3205 } 3206 3207 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 3208 assert(N == 1 && "Invalid number of operands!"); 3209 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3210 } 3211 3212 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 3213 assert(N == 1 && "Invalid number of operands!"); 3214 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3215 } 3216 3217 void addVectorIndex64Operands(MCInst &Inst, unsigned N) const { 3218 assert(N == 1 && "Invalid number of operands!"); 3219 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3220 } 3221 3222 void addMVEVectorIndexOperands(MCInst &Inst, unsigned N) const { 3223 assert(N == 1 && "Invalid number of operands!"); 3224 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3225 } 3226 3227 void addMVEPairVectorIndexOperands(MCInst &Inst, unsigned N) const { 3228 assert(N == 1 && "Invalid number of operands!"); 3229 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 3230 } 3231 3232 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 3233 assert(N == 1 && "Invalid number of operands!"); 3234 // The immediate encodes the type of constant as well as the value. 3235 // Mask in that this is an i8 splat. 3236 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3237 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 3238 } 3239 3240 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 3241 assert(N == 1 && "Invalid number of operands!"); 3242 // The immediate encodes the type of constant as well as the value. 3243 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3244 unsigned Value = CE->getValue(); 3245 Value = ARM_AM::encodeNEONi16splat(Value); 3246 Inst.addOperand(MCOperand::createImm(Value)); 3247 } 3248 3249 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 3250 assert(N == 1 && "Invalid number of operands!"); 3251 // The immediate encodes the type of constant as well as the value. 3252 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3253 unsigned Value = CE->getValue(); 3254 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 3255 Inst.addOperand(MCOperand::createImm(Value)); 3256 } 3257 3258 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 3259 assert(N == 1 && "Invalid number of operands!"); 3260 // The immediate encodes the type of constant as well as the value. 3261 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3262 unsigned Value = CE->getValue(); 3263 Value = ARM_AM::encodeNEONi32splat(Value); 3264 Inst.addOperand(MCOperand::createImm(Value)); 3265 } 3266 3267 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 3268 assert(N == 1 && "Invalid number of operands!"); 3269 // The immediate encodes the type of constant as well as the value. 3270 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3271 unsigned Value = CE->getValue(); 3272 Value = ARM_AM::encodeNEONi32splat(~Value); 3273 Inst.addOperand(MCOperand::createImm(Value)); 3274 } 3275 3276 void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const { 3277 // The immediate encodes the type of constant as well as the value. 3278 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3279 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 3280 Inst.getOpcode() == ARM::VMOVv16i8) && 3281 "All instructions that wants to replicate non-zero byte " 3282 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 3283 unsigned Value = CE->getValue(); 3284 if (Inv) 3285 Value = ~Value; 3286 unsigned B = Value & 0xff; 3287 B |= 0xe00; // cmode = 0b1110 3288 Inst.addOperand(MCOperand::createImm(B)); 3289 } 3290 3291 void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3292 assert(N == 1 && "Invalid number of operands!"); 3293 addNEONi8ReplicateOperands(Inst, true); 3294 } 3295 3296 static unsigned encodeNeonVMOVImmediate(unsigned Value) { 3297 if (Value >= 256 && Value <= 0xffff) 3298 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 3299 else if (Value > 0xffff && Value <= 0xffffff) 3300 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 3301 else if (Value > 0xffffff) 3302 Value = (Value >> 24) | 0x600; 3303 return Value; 3304 } 3305 3306 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 3307 assert(N == 1 && "Invalid number of operands!"); 3308 // The immediate encodes the type of constant as well as the value. 3309 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3310 unsigned Value = encodeNeonVMOVImmediate(CE->getValue()); 3311 Inst.addOperand(MCOperand::createImm(Value)); 3312 } 3313 3314 void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const { 3315 assert(N == 1 && "Invalid number of operands!"); 3316 addNEONi8ReplicateOperands(Inst, false); 3317 } 3318 3319 void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const { 3320 assert(N == 1 && "Invalid number of operands!"); 3321 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3322 assert((Inst.getOpcode() == ARM::VMOVv4i16 || 3323 Inst.getOpcode() == ARM::VMOVv8i16 || 3324 Inst.getOpcode() == ARM::VMVNv4i16 || 3325 Inst.getOpcode() == ARM::VMVNv8i16) && 3326 "All instructions that want to replicate non-zero half-word " 3327 "always must be replaced with V{MOV,MVN}v{4,8}i16."); 3328 uint64_t Value = CE->getValue(); 3329 unsigned Elem = Value & 0xffff; 3330 if (Elem >= 256) 3331 Elem = (Elem >> 8) | 0x200; 3332 Inst.addOperand(MCOperand::createImm(Elem)); 3333 } 3334 3335 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 3336 assert(N == 1 && "Invalid number of operands!"); 3337 // The immediate encodes the type of constant as well as the value. 3338 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3339 unsigned Value = encodeNeonVMOVImmediate(~CE->getValue()); 3340 Inst.addOperand(MCOperand::createImm(Value)); 3341 } 3342 3343 void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const { 3344 assert(N == 1 && "Invalid number of operands!"); 3345 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3346 assert((Inst.getOpcode() == ARM::VMOVv2i32 || 3347 Inst.getOpcode() == ARM::VMOVv4i32 || 3348 Inst.getOpcode() == ARM::VMVNv2i32 || 3349 Inst.getOpcode() == ARM::VMVNv4i32) && 3350 "All instructions that want to replicate non-zero word " 3351 "always must be replaced with V{MOV,MVN}v{2,4}i32."); 3352 uint64_t Value = CE->getValue(); 3353 unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff); 3354 Inst.addOperand(MCOperand::createImm(Elem)); 3355 } 3356 3357 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 3358 assert(N == 1 && "Invalid number of operands!"); 3359 // The immediate encodes the type of constant as well as the value. 3360 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3361 uint64_t Value = CE->getValue(); 3362 unsigned Imm = 0; 3363 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 3364 Imm |= (Value & 1) << i; 3365 } 3366 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 3367 } 3368 3369 void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const { 3370 assert(N == 1 && "Invalid number of operands!"); 3371 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3372 Inst.addOperand(MCOperand::createImm(CE->getValue() / 90)); 3373 } 3374 3375 void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const { 3376 assert(N == 1 && "Invalid number of operands!"); 3377 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3378 Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180)); 3379 } 3380 3381 void addMveSaturateOperands(MCInst &Inst, unsigned N) const { 3382 assert(N == 1 && "Invalid number of operands!"); 3383 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 3384 unsigned Imm = CE->getValue(); 3385 assert((Imm == 48 || Imm == 64) && "Invalid saturate operand"); 3386 Inst.addOperand(MCOperand::createImm(Imm == 48 ? 1 : 0)); 3387 } 3388 3389 void print(raw_ostream &OS) const override; 3390 3391 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 3392 auto Op = make_unique<ARMOperand>(k_ITCondMask); 3393 Op->ITMask.Mask = Mask; 3394 Op->StartLoc = S; 3395 Op->EndLoc = S; 3396 return Op; 3397 } 3398 3399 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 3400 SMLoc S) { 3401 auto Op = make_unique<ARMOperand>(k_CondCode); 3402 Op->CC.Val = CC; 3403 Op->StartLoc = S; 3404 Op->EndLoc = S; 3405 return Op; 3406 } 3407 3408 static std::unique_ptr<ARMOperand> CreateVPTPred(ARMVCC::VPTCodes CC, 3409 SMLoc S) { 3410 auto Op = make_unique<ARMOperand>(k_VPTPred); 3411 Op->VCC.Val = CC; 3412 Op->StartLoc = S; 3413 Op->EndLoc = S; 3414 return Op; 3415 } 3416 3417 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 3418 auto Op = make_unique<ARMOperand>(k_CoprocNum); 3419 Op->Cop.Val = CopVal; 3420 Op->StartLoc = S; 3421 Op->EndLoc = S; 3422 return Op; 3423 } 3424 3425 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 3426 auto Op = make_unique<ARMOperand>(k_CoprocReg); 3427 Op->Cop.Val = CopVal; 3428 Op->StartLoc = S; 3429 Op->EndLoc = S; 3430 return Op; 3431 } 3432 3433 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 3434 SMLoc E) { 3435 auto Op = make_unique<ARMOperand>(k_CoprocOption); 3436 Op->Cop.Val = Val; 3437 Op->StartLoc = S; 3438 Op->EndLoc = E; 3439 return Op; 3440 } 3441 3442 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 3443 auto Op = make_unique<ARMOperand>(k_CCOut); 3444 Op->Reg.RegNum = RegNum; 3445 Op->StartLoc = S; 3446 Op->EndLoc = S; 3447 return Op; 3448 } 3449 3450 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 3451 auto Op = make_unique<ARMOperand>(k_Token); 3452 Op->Tok.Data = Str.data(); 3453 Op->Tok.Length = Str.size(); 3454 Op->StartLoc = S; 3455 Op->EndLoc = S; 3456 return Op; 3457 } 3458 3459 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 3460 SMLoc E) { 3461 auto Op = make_unique<ARMOperand>(k_Register); 3462 Op->Reg.RegNum = RegNum; 3463 Op->StartLoc = S; 3464 Op->EndLoc = E; 3465 return Op; 3466 } 3467 3468 static std::unique_ptr<ARMOperand> 3469 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3470 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 3471 SMLoc E) { 3472 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 3473 Op->RegShiftedReg.ShiftTy = ShTy; 3474 Op->RegShiftedReg.SrcReg = SrcReg; 3475 Op->RegShiftedReg.ShiftReg = ShiftReg; 3476 Op->RegShiftedReg.ShiftImm = ShiftImm; 3477 Op->StartLoc = S; 3478 Op->EndLoc = E; 3479 return Op; 3480 } 3481 3482 static std::unique_ptr<ARMOperand> 3483 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 3484 unsigned ShiftImm, SMLoc S, SMLoc E) { 3485 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 3486 Op->RegShiftedImm.ShiftTy = ShTy; 3487 Op->RegShiftedImm.SrcReg = SrcReg; 3488 Op->RegShiftedImm.ShiftImm = ShiftImm; 3489 Op->StartLoc = S; 3490 Op->EndLoc = E; 3491 return Op; 3492 } 3493 3494 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 3495 SMLoc S, SMLoc E) { 3496 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 3497 Op->ShifterImm.isASR = isASR; 3498 Op->ShifterImm.Imm = Imm; 3499 Op->StartLoc = S; 3500 Op->EndLoc = E; 3501 return Op; 3502 } 3503 3504 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 3505 SMLoc E) { 3506 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 3507 Op->RotImm.Imm = Imm; 3508 Op->StartLoc = S; 3509 Op->EndLoc = E; 3510 return Op; 3511 } 3512 3513 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 3514 SMLoc S, SMLoc E) { 3515 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 3516 Op->ModImm.Bits = Bits; 3517 Op->ModImm.Rot = Rot; 3518 Op->StartLoc = S; 3519 Op->EndLoc = E; 3520 return Op; 3521 } 3522 3523 static std::unique_ptr<ARMOperand> 3524 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 3525 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 3526 Op->Imm.Val = Val; 3527 Op->StartLoc = S; 3528 Op->EndLoc = E; 3529 return Op; 3530 } 3531 3532 static std::unique_ptr<ARMOperand> 3533 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 3534 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 3535 Op->Bitfield.LSB = LSB; 3536 Op->Bitfield.Width = Width; 3537 Op->StartLoc = S; 3538 Op->EndLoc = E; 3539 return Op; 3540 } 3541 3542 static std::unique_ptr<ARMOperand> 3543 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 3544 SMLoc StartLoc, SMLoc EndLoc) { 3545 assert(Regs.size() > 0 && "RegList contains no registers?"); 3546 KindTy Kind = k_RegisterList; 3547 3548 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 3549 Regs.front().second)) { 3550 if (Regs.back().second == ARM::VPR) 3551 Kind = k_FPDRegisterListWithVPR; 3552 else 3553 Kind = k_DPRRegisterList; 3554 } else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 3555 Regs.front().second)) { 3556 if (Regs.back().second == ARM::VPR) 3557 Kind = k_FPSRegisterListWithVPR; 3558 else 3559 Kind = k_SPRRegisterList; 3560 } 3561 3562 // Sort based on the register encoding values. 3563 array_pod_sort(Regs.begin(), Regs.end()); 3564 3565 if (Kind == k_RegisterList && Regs.back().second == ARM::APSR) 3566 Kind = k_RegisterListWithAPSR; 3567 3568 auto Op = make_unique<ARMOperand>(Kind); 3569 for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator 3570 I = Regs.begin(), E = Regs.end(); I != E; ++I) 3571 Op->Registers.push_back(I->second); 3572 3573 Op->StartLoc = StartLoc; 3574 Op->EndLoc = EndLoc; 3575 return Op; 3576 } 3577 3578 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 3579 unsigned Count, 3580 bool isDoubleSpaced, 3581 SMLoc S, SMLoc E) { 3582 auto Op = make_unique<ARMOperand>(k_VectorList); 3583 Op->VectorList.RegNum = RegNum; 3584 Op->VectorList.Count = Count; 3585 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3586 Op->StartLoc = S; 3587 Op->EndLoc = E; 3588 return Op; 3589 } 3590 3591 static std::unique_ptr<ARMOperand> 3592 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 3593 SMLoc S, SMLoc E) { 3594 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 3595 Op->VectorList.RegNum = RegNum; 3596 Op->VectorList.Count = Count; 3597 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3598 Op->StartLoc = S; 3599 Op->EndLoc = E; 3600 return Op; 3601 } 3602 3603 static std::unique_ptr<ARMOperand> 3604 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 3605 bool isDoubleSpaced, SMLoc S, SMLoc E) { 3606 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 3607 Op->VectorList.RegNum = RegNum; 3608 Op->VectorList.Count = Count; 3609 Op->VectorList.LaneIndex = Index; 3610 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 3611 Op->StartLoc = S; 3612 Op->EndLoc = E; 3613 return Op; 3614 } 3615 3616 static std::unique_ptr<ARMOperand> 3617 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 3618 auto Op = make_unique<ARMOperand>(k_VectorIndex); 3619 Op->VectorIndex.Val = Idx; 3620 Op->StartLoc = S; 3621 Op->EndLoc = E; 3622 return Op; 3623 } 3624 3625 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 3626 SMLoc E) { 3627 auto Op = make_unique<ARMOperand>(k_Immediate); 3628 Op->Imm.Val = Val; 3629 Op->StartLoc = S; 3630 Op->EndLoc = E; 3631 return Op; 3632 } 3633 3634 static std::unique_ptr<ARMOperand> 3635 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 3636 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 3637 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 3638 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 3639 auto Op = make_unique<ARMOperand>(k_Memory); 3640 Op->Memory.BaseRegNum = BaseRegNum; 3641 Op->Memory.OffsetImm = OffsetImm; 3642 Op->Memory.OffsetRegNum = OffsetRegNum; 3643 Op->Memory.ShiftType = ShiftType; 3644 Op->Memory.ShiftImm = ShiftImm; 3645 Op->Memory.Alignment = Alignment; 3646 Op->Memory.isNegative = isNegative; 3647 Op->StartLoc = S; 3648 Op->EndLoc = E; 3649 Op->AlignmentLoc = AlignmentLoc; 3650 return Op; 3651 } 3652 3653 static std::unique_ptr<ARMOperand> 3654 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 3655 unsigned ShiftImm, SMLoc S, SMLoc E) { 3656 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 3657 Op->PostIdxReg.RegNum = RegNum; 3658 Op->PostIdxReg.isAdd = isAdd; 3659 Op->PostIdxReg.ShiftTy = ShiftTy; 3660 Op->PostIdxReg.ShiftImm = ShiftImm; 3661 Op->StartLoc = S; 3662 Op->EndLoc = E; 3663 return Op; 3664 } 3665 3666 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 3667 SMLoc S) { 3668 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 3669 Op->MBOpt.Val = Opt; 3670 Op->StartLoc = S; 3671 Op->EndLoc = S; 3672 return Op; 3673 } 3674 3675 static std::unique_ptr<ARMOperand> 3676 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 3677 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 3678 Op->ISBOpt.Val = Opt; 3679 Op->StartLoc = S; 3680 Op->EndLoc = S; 3681 return Op; 3682 } 3683 3684 static std::unique_ptr<ARMOperand> 3685 CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) { 3686 auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt); 3687 Op->TSBOpt.Val = Opt; 3688 Op->StartLoc = S; 3689 Op->EndLoc = S; 3690 return Op; 3691 } 3692 3693 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 3694 SMLoc S) { 3695 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 3696 Op->IFlags.Val = IFlags; 3697 Op->StartLoc = S; 3698 Op->EndLoc = S; 3699 return Op; 3700 } 3701 3702 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 3703 auto Op = make_unique<ARMOperand>(k_MSRMask); 3704 Op->MMask.Val = MMask; 3705 Op->StartLoc = S; 3706 Op->EndLoc = S; 3707 return Op; 3708 } 3709 3710 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 3711 auto Op = make_unique<ARMOperand>(k_BankedReg); 3712 Op->BankedReg.Val = Reg; 3713 Op->StartLoc = S; 3714 Op->EndLoc = S; 3715 return Op; 3716 } 3717 }; 3718 3719 } // end anonymous namespace. 3720 3721 void ARMOperand::print(raw_ostream &OS) const { 3722 auto RegName = [](unsigned Reg) { 3723 if (Reg) 3724 return ARMInstPrinter::getRegisterName(Reg); 3725 else 3726 return "noreg"; 3727 }; 3728 3729 switch (Kind) { 3730 case k_CondCode: 3731 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 3732 break; 3733 case k_VPTPred: 3734 OS << "<ARMVCC::" << ARMVPTPredToString(getVPTPred()) << ">"; 3735 break; 3736 case k_CCOut: 3737 OS << "<ccout " << RegName(getReg()) << ">"; 3738 break; 3739 case k_ITCondMask: { 3740 static const char *const MaskStr[] = { 3741 "(invalid)", "(tttt)", "(ttt)", "(ttte)", 3742 "(tt)", "(ttet)", "(tte)", "(ttee)", 3743 "(t)", "(tett)", "(tet)", "(tete)", 3744 "(te)", "(teet)", "(tee)", "(teee)", 3745 }; 3746 assert((ITMask.Mask & 0xf) == ITMask.Mask); 3747 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 3748 break; 3749 } 3750 case k_CoprocNum: 3751 OS << "<coprocessor number: " << getCoproc() << ">"; 3752 break; 3753 case k_CoprocReg: 3754 OS << "<coprocessor register: " << getCoproc() << ">"; 3755 break; 3756 case k_CoprocOption: 3757 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 3758 break; 3759 case k_MSRMask: 3760 OS << "<mask: " << getMSRMask() << ">"; 3761 break; 3762 case k_BankedReg: 3763 OS << "<banked reg: " << getBankedReg() << ">"; 3764 break; 3765 case k_Immediate: 3766 OS << *getImm(); 3767 break; 3768 case k_MemBarrierOpt: 3769 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 3770 break; 3771 case k_InstSyncBarrierOpt: 3772 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 3773 break; 3774 case k_TraceSyncBarrierOpt: 3775 OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">"; 3776 break; 3777 case k_Memory: 3778 OS << "<memory"; 3779 if (Memory.BaseRegNum) 3780 OS << " base:" << RegName(Memory.BaseRegNum); 3781 if (Memory.OffsetImm) 3782 OS << " offset-imm:" << *Memory.OffsetImm; 3783 if (Memory.OffsetRegNum) 3784 OS << " offset-reg:" << (Memory.isNegative ? "-" : "") 3785 << RegName(Memory.OffsetRegNum); 3786 if (Memory.ShiftType != ARM_AM::no_shift) { 3787 OS << " shift-type:" << ARM_AM::getShiftOpcStr(Memory.ShiftType); 3788 OS << " shift-imm:" << Memory.ShiftImm; 3789 } 3790 if (Memory.Alignment) 3791 OS << " alignment:" << Memory.Alignment; 3792 OS << ">"; 3793 break; 3794 case k_PostIndexRegister: 3795 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 3796 << RegName(PostIdxReg.RegNum); 3797 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 3798 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 3799 << PostIdxReg.ShiftImm; 3800 OS << ">"; 3801 break; 3802 case k_ProcIFlags: { 3803 OS << "<ARM_PROC::"; 3804 unsigned IFlags = getProcIFlags(); 3805 for (int i=2; i >= 0; --i) 3806 if (IFlags & (1 << i)) 3807 OS << ARM_PROC::IFlagsToString(1 << i); 3808 OS << ">"; 3809 break; 3810 } 3811 case k_Register: 3812 OS << "<register " << RegName(getReg()) << ">"; 3813 break; 3814 case k_ShifterImmediate: 3815 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 3816 << " #" << ShifterImm.Imm << ">"; 3817 break; 3818 case k_ShiftedRegister: 3819 OS << "<so_reg_reg " << RegName(RegShiftedReg.SrcReg) << " " 3820 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) << " " 3821 << RegName(RegShiftedReg.ShiftReg) << ">"; 3822 break; 3823 case k_ShiftedImmediate: 3824 OS << "<so_reg_imm " << RegName(RegShiftedImm.SrcReg) << " " 3825 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) << " #" 3826 << RegShiftedImm.ShiftImm << ">"; 3827 break; 3828 case k_RotateImmediate: 3829 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 3830 break; 3831 case k_ModifiedImmediate: 3832 OS << "<mod_imm #" << ModImm.Bits << ", #" 3833 << ModImm.Rot << ")>"; 3834 break; 3835 case k_ConstantPoolImmediate: 3836 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 3837 break; 3838 case k_BitfieldDescriptor: 3839 OS << "<bitfield " << "lsb: " << Bitfield.LSB 3840 << ", width: " << Bitfield.Width << ">"; 3841 break; 3842 case k_RegisterList: 3843 case k_RegisterListWithAPSR: 3844 case k_DPRRegisterList: 3845 case k_SPRRegisterList: 3846 case k_FPSRegisterListWithVPR: 3847 case k_FPDRegisterListWithVPR: { 3848 OS << "<register_list "; 3849 3850 const SmallVectorImpl<unsigned> &RegList = getRegList(); 3851 for (SmallVectorImpl<unsigned>::const_iterator 3852 I = RegList.begin(), E = RegList.end(); I != E; ) { 3853 OS << RegName(*I); 3854 if (++I < E) OS << ", "; 3855 } 3856 3857 OS << ">"; 3858 break; 3859 } 3860 case k_VectorList: 3861 OS << "<vector_list " << VectorList.Count << " * " 3862 << RegName(VectorList.RegNum) << ">"; 3863 break; 3864 case k_VectorListAllLanes: 3865 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 3866 << RegName(VectorList.RegNum) << ">"; 3867 break; 3868 case k_VectorListIndexed: 3869 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 3870 << VectorList.Count << " * " << RegName(VectorList.RegNum) << ">"; 3871 break; 3872 case k_Token: 3873 OS << "'" << getToken() << "'"; 3874 break; 3875 case k_VectorIndex: 3876 OS << "<vectorindex " << getVectorIndex() << ">"; 3877 break; 3878 } 3879 } 3880 3881 /// @name Auto-generated Match Functions 3882 /// { 3883 3884 static unsigned MatchRegisterName(StringRef Name); 3885 3886 /// } 3887 3888 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 3889 SMLoc &StartLoc, SMLoc &EndLoc) { 3890 const AsmToken &Tok = getParser().getTok(); 3891 StartLoc = Tok.getLoc(); 3892 EndLoc = Tok.getEndLoc(); 3893 RegNo = tryParseRegister(); 3894 3895 return (RegNo == (unsigned)-1); 3896 } 3897 3898 /// Try to parse a register name. The token must be an Identifier when called, 3899 /// and if it is a register name the token is eaten and the register number is 3900 /// returned. Otherwise return -1. 3901 int ARMAsmParser::tryParseRegister() { 3902 MCAsmParser &Parser = getParser(); 3903 const AsmToken &Tok = Parser.getTok(); 3904 if (Tok.isNot(AsmToken::Identifier)) return -1; 3905 3906 std::string lowerCase = Tok.getString().lower(); 3907 unsigned RegNum = MatchRegisterName(lowerCase); 3908 if (!RegNum) { 3909 RegNum = StringSwitch<unsigned>(lowerCase) 3910 .Case("r13", ARM::SP) 3911 .Case("r14", ARM::LR) 3912 .Case("r15", ARM::PC) 3913 .Case("ip", ARM::R12) 3914 // Additional register name aliases for 'gas' compatibility. 3915 .Case("a1", ARM::R0) 3916 .Case("a2", ARM::R1) 3917 .Case("a3", ARM::R2) 3918 .Case("a4", ARM::R3) 3919 .Case("v1", ARM::R4) 3920 .Case("v2", ARM::R5) 3921 .Case("v3", ARM::R6) 3922 .Case("v4", ARM::R7) 3923 .Case("v5", ARM::R8) 3924 .Case("v6", ARM::R9) 3925 .Case("v7", ARM::R10) 3926 .Case("v8", ARM::R11) 3927 .Case("sb", ARM::R9) 3928 .Case("sl", ARM::R10) 3929 .Case("fp", ARM::R11) 3930 .Default(0); 3931 } 3932 if (!RegNum) { 3933 // Check for aliases registered via .req. Canonicalize to lower case. 3934 // That's more consistent since register names are case insensitive, and 3935 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3936 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3937 // If no match, return failure. 3938 if (Entry == RegisterReqs.end()) 3939 return -1; 3940 Parser.Lex(); // Eat identifier token. 3941 return Entry->getValue(); 3942 } 3943 3944 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3945 if (!hasD32() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3946 return -1; 3947 3948 Parser.Lex(); // Eat identifier token. 3949 3950 return RegNum; 3951 } 3952 3953 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3954 // If a recoverable error occurs, return 1. If an irrecoverable error 3955 // occurs, return -1. An irrecoverable error is one where tokens have been 3956 // consumed in the process of trying to parse the shifter (i.e., when it is 3957 // indeed a shifter operand, but malformed). 3958 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3959 MCAsmParser &Parser = getParser(); 3960 SMLoc S = Parser.getTok().getLoc(); 3961 const AsmToken &Tok = Parser.getTok(); 3962 if (Tok.isNot(AsmToken::Identifier)) 3963 return -1; 3964 3965 std::string lowerCase = Tok.getString().lower(); 3966 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3967 .Case("asl", ARM_AM::lsl) 3968 .Case("lsl", ARM_AM::lsl) 3969 .Case("lsr", ARM_AM::lsr) 3970 .Case("asr", ARM_AM::asr) 3971 .Case("ror", ARM_AM::ror) 3972 .Case("rrx", ARM_AM::rrx) 3973 .Default(ARM_AM::no_shift); 3974 3975 if (ShiftTy == ARM_AM::no_shift) 3976 return 1; 3977 3978 Parser.Lex(); // Eat the operator. 3979 3980 // The source register for the shift has already been added to the 3981 // operand list, so we need to pop it off and combine it into the shifted 3982 // register operand instead. 3983 std::unique_ptr<ARMOperand> PrevOp( 3984 (ARMOperand *)Operands.pop_back_val().release()); 3985 if (!PrevOp->isReg()) 3986 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3987 int SrcReg = PrevOp->getReg(); 3988 3989 SMLoc EndLoc; 3990 int64_t Imm = 0; 3991 int ShiftReg = 0; 3992 if (ShiftTy == ARM_AM::rrx) { 3993 // RRX Doesn't have an explicit shift amount. The encoder expects 3994 // the shift register to be the same as the source register. Seems odd, 3995 // but OK. 3996 ShiftReg = SrcReg; 3997 } else { 3998 // Figure out if this is shifted by a constant or a register (for non-RRX). 3999 if (Parser.getTok().is(AsmToken::Hash) || 4000 Parser.getTok().is(AsmToken::Dollar)) { 4001 Parser.Lex(); // Eat hash. 4002 SMLoc ImmLoc = Parser.getTok().getLoc(); 4003 const MCExpr *ShiftExpr = nullptr; 4004 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 4005 Error(ImmLoc, "invalid immediate shift value"); 4006 return -1; 4007 } 4008 // The expression must be evaluatable as an immediate. 4009 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 4010 if (!CE) { 4011 Error(ImmLoc, "invalid immediate shift value"); 4012 return -1; 4013 } 4014 // Range check the immediate. 4015 // lsl, ror: 0 <= imm <= 31 4016 // lsr, asr: 0 <= imm <= 32 4017 Imm = CE->getValue(); 4018 if (Imm < 0 || 4019 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 4020 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 4021 Error(ImmLoc, "immediate shift value out of range"); 4022 return -1; 4023 } 4024 // shift by zero is a nop. Always send it through as lsl. 4025 // ('as' compatibility) 4026 if (Imm == 0) 4027 ShiftTy = ARM_AM::lsl; 4028 } else if (Parser.getTok().is(AsmToken::Identifier)) { 4029 SMLoc L = Parser.getTok().getLoc(); 4030 EndLoc = Parser.getTok().getEndLoc(); 4031 ShiftReg = tryParseRegister(); 4032 if (ShiftReg == -1) { 4033 Error(L, "expected immediate or register in shift operand"); 4034 return -1; 4035 } 4036 } else { 4037 Error(Parser.getTok().getLoc(), 4038 "expected immediate or register in shift operand"); 4039 return -1; 4040 } 4041 } 4042 4043 if (ShiftReg && ShiftTy != ARM_AM::rrx) 4044 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 4045 ShiftReg, Imm, 4046 S, EndLoc)); 4047 else 4048 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 4049 S, EndLoc)); 4050 4051 return 0; 4052 } 4053 4054 /// Try to parse a register name. The token must be an Identifier when called. 4055 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 4056 /// if there is a "writeback". 'true' if it's not a register. 4057 /// 4058 /// TODO this is likely to change to allow different register types and or to 4059 /// parse for a specific register type. 4060 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 4061 MCAsmParser &Parser = getParser(); 4062 SMLoc RegStartLoc = Parser.getTok().getLoc(); 4063 SMLoc RegEndLoc = Parser.getTok().getEndLoc(); 4064 int RegNo = tryParseRegister(); 4065 if (RegNo == -1) 4066 return true; 4067 4068 Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc)); 4069 4070 const AsmToken &ExclaimTok = Parser.getTok(); 4071 if (ExclaimTok.is(AsmToken::Exclaim)) { 4072 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 4073 ExclaimTok.getLoc())); 4074 Parser.Lex(); // Eat exclaim token 4075 return false; 4076 } 4077 4078 // Also check for an index operand. This is only legal for vector registers, 4079 // but that'll get caught OK in operand matching, so we don't need to 4080 // explicitly filter everything else out here. 4081 if (Parser.getTok().is(AsmToken::LBrac)) { 4082 SMLoc SIdx = Parser.getTok().getLoc(); 4083 Parser.Lex(); // Eat left bracket token. 4084 4085 const MCExpr *ImmVal; 4086 if (getParser().parseExpression(ImmVal)) 4087 return true; 4088 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 4089 if (!MCE) 4090 return TokError("immediate value expected for vector index"); 4091 4092 if (Parser.getTok().isNot(AsmToken::RBrac)) 4093 return Error(Parser.getTok().getLoc(), "']' expected"); 4094 4095 SMLoc E = Parser.getTok().getEndLoc(); 4096 Parser.Lex(); // Eat right bracket token. 4097 4098 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 4099 SIdx, E, 4100 getContext())); 4101 } 4102 4103 return false; 4104 } 4105 4106 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 4107 /// instruction with a symbolic operand name. 4108 /// We accept "crN" syntax for GAS compatibility. 4109 /// <operand-name> ::= <prefix><number> 4110 /// If CoprocOp is 'c', then: 4111 /// <prefix> ::= c | cr 4112 /// If CoprocOp is 'p', then : 4113 /// <prefix> ::= p 4114 /// <number> ::= integer in range [0, 15] 4115 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 4116 // Use the same layout as the tablegen'erated register name matcher. Ugly, 4117 // but efficient. 4118 if (Name.size() < 2 || Name[0] != CoprocOp) 4119 return -1; 4120 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 4121 4122 switch (Name.size()) { 4123 default: return -1; 4124 case 1: 4125 switch (Name[0]) { 4126 default: return -1; 4127 case '0': return 0; 4128 case '1': return 1; 4129 case '2': return 2; 4130 case '3': return 3; 4131 case '4': return 4; 4132 case '5': return 5; 4133 case '6': return 6; 4134 case '7': return 7; 4135 case '8': return 8; 4136 case '9': return 9; 4137 } 4138 case 2: 4139 if (Name[0] != '1') 4140 return -1; 4141 switch (Name[1]) { 4142 default: return -1; 4143 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 4144 // However, old cores (v5/v6) did use them in that way. 4145 case '0': return 10; 4146 case '1': return 11; 4147 case '2': return 12; 4148 case '3': return 13; 4149 case '4': return 14; 4150 case '5': return 15; 4151 } 4152 } 4153 } 4154 4155 /// parseITCondCode - Try to parse a condition code for an IT instruction. 4156 OperandMatchResultTy 4157 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 4158 MCAsmParser &Parser = getParser(); 4159 SMLoc S = Parser.getTok().getLoc(); 4160 const AsmToken &Tok = Parser.getTok(); 4161 if (!Tok.is(AsmToken::Identifier)) 4162 return MatchOperand_NoMatch; 4163 unsigned CC = ARMCondCodeFromString(Tok.getString()); 4164 if (CC == ~0U) 4165 return MatchOperand_NoMatch; 4166 Parser.Lex(); // Eat the token. 4167 4168 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 4169 4170 return MatchOperand_Success; 4171 } 4172 4173 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 4174 /// token must be an Identifier when called, and if it is a coprocessor 4175 /// number, the token is eaten and the operand is added to the operand list. 4176 OperandMatchResultTy 4177 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 4178 MCAsmParser &Parser = getParser(); 4179 SMLoc S = Parser.getTok().getLoc(); 4180 const AsmToken &Tok = Parser.getTok(); 4181 if (Tok.isNot(AsmToken::Identifier)) 4182 return MatchOperand_NoMatch; 4183 4184 int Num = MatchCoprocessorOperandName(Tok.getString().lower(), 'p'); 4185 if (Num == -1) 4186 return MatchOperand_NoMatch; 4187 if (!isValidCoprocessorNumber(Num, getSTI().getFeatureBits())) 4188 return MatchOperand_NoMatch; 4189 4190 Parser.Lex(); // Eat identifier token. 4191 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 4192 return MatchOperand_Success; 4193 } 4194 4195 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 4196 /// token must be an Identifier when called, and if it is a coprocessor 4197 /// number, the token is eaten and the operand is added to the operand list. 4198 OperandMatchResultTy 4199 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 4200 MCAsmParser &Parser = getParser(); 4201 SMLoc S = Parser.getTok().getLoc(); 4202 const AsmToken &Tok = Parser.getTok(); 4203 if (Tok.isNot(AsmToken::Identifier)) 4204 return MatchOperand_NoMatch; 4205 4206 int Reg = MatchCoprocessorOperandName(Tok.getString().lower(), 'c'); 4207 if (Reg == -1) 4208 return MatchOperand_NoMatch; 4209 4210 Parser.Lex(); // Eat identifier token. 4211 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 4212 return MatchOperand_Success; 4213 } 4214 4215 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 4216 /// coproc_option : '{' imm0_255 '}' 4217 OperandMatchResultTy 4218 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 4219 MCAsmParser &Parser = getParser(); 4220 SMLoc S = Parser.getTok().getLoc(); 4221 4222 // If this isn't a '{', this isn't a coprocessor immediate operand. 4223 if (Parser.getTok().isNot(AsmToken::LCurly)) 4224 return MatchOperand_NoMatch; 4225 Parser.Lex(); // Eat the '{' 4226 4227 const MCExpr *Expr; 4228 SMLoc Loc = Parser.getTok().getLoc(); 4229 if (getParser().parseExpression(Expr)) { 4230 Error(Loc, "illegal expression"); 4231 return MatchOperand_ParseFail; 4232 } 4233 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4234 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 4235 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 4236 return MatchOperand_ParseFail; 4237 } 4238 int Val = CE->getValue(); 4239 4240 // Check for and consume the closing '}' 4241 if (Parser.getTok().isNot(AsmToken::RCurly)) 4242 return MatchOperand_ParseFail; 4243 SMLoc E = Parser.getTok().getEndLoc(); 4244 Parser.Lex(); // Eat the '}' 4245 4246 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 4247 return MatchOperand_Success; 4248 } 4249 4250 // For register list parsing, we need to map from raw GPR register numbering 4251 // to the enumeration values. The enumeration values aren't sorted by 4252 // register number due to our using "sp", "lr" and "pc" as canonical names. 4253 static unsigned getNextRegister(unsigned Reg) { 4254 // If this is a GPR, we need to do it manually, otherwise we can rely 4255 // on the sort ordering of the enumeration since the other reg-classes 4256 // are sane. 4257 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4258 return Reg + 1; 4259 switch(Reg) { 4260 default: llvm_unreachable("Invalid GPR number!"); 4261 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 4262 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 4263 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 4264 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 4265 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 4266 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 4267 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 4268 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 4269 } 4270 } 4271 4272 /// Parse a register list. 4273 bool ARMAsmParser::parseRegisterList(OperandVector &Operands, 4274 bool EnforceOrder) { 4275 MCAsmParser &Parser = getParser(); 4276 if (Parser.getTok().isNot(AsmToken::LCurly)) 4277 return TokError("Token is not a Left Curly Brace"); 4278 SMLoc S = Parser.getTok().getLoc(); 4279 Parser.Lex(); // Eat '{' token. 4280 SMLoc RegLoc = Parser.getTok().getLoc(); 4281 4282 // Check the first register in the list to see what register class 4283 // this is a list of. 4284 int Reg = tryParseRegister(); 4285 if (Reg == -1) 4286 return Error(RegLoc, "register expected"); 4287 4288 // The reglist instructions have at most 16 registers, so reserve 4289 // space for that many. 4290 int EReg = 0; 4291 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 4292 4293 // Allow Q regs and just interpret them as the two D sub-registers. 4294 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4295 Reg = getDRegFromQReg(Reg); 4296 EReg = MRI->getEncodingValue(Reg); 4297 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 4298 ++Reg; 4299 } 4300 const MCRegisterClass *RC; 4301 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4302 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 4303 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 4304 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 4305 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 4306 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 4307 else if (ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4308 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4309 else 4310 return Error(RegLoc, "invalid register in register list"); 4311 4312 // Store the register. 4313 EReg = MRI->getEncodingValue(Reg); 4314 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 4315 4316 // This starts immediately after the first register token in the list, 4317 // so we can see either a comma or a minus (range separator) as a legal 4318 // next token. 4319 while (Parser.getTok().is(AsmToken::Comma) || 4320 Parser.getTok().is(AsmToken::Minus)) { 4321 if (Parser.getTok().is(AsmToken::Minus)) { 4322 Parser.Lex(); // Eat the minus. 4323 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4324 int EndReg = tryParseRegister(); 4325 if (EndReg == -1) 4326 return Error(AfterMinusLoc, "register expected"); 4327 // Allow Q regs and just interpret them as the two D sub-registers. 4328 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4329 EndReg = getDRegFromQReg(EndReg) + 1; 4330 // If the register is the same as the start reg, there's nothing 4331 // more to do. 4332 if (Reg == EndReg) 4333 continue; 4334 // The register must be in the same register class as the first. 4335 if (!RC->contains(EndReg)) 4336 return Error(AfterMinusLoc, "invalid register in register list"); 4337 // Ranges must go from low to high. 4338 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 4339 return Error(AfterMinusLoc, "bad range in register list"); 4340 4341 // Add all the registers in the range to the register list. 4342 while (Reg != EndReg) { 4343 Reg = getNextRegister(Reg); 4344 EReg = MRI->getEncodingValue(Reg); 4345 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 4346 } 4347 continue; 4348 } 4349 Parser.Lex(); // Eat the comma. 4350 RegLoc = Parser.getTok().getLoc(); 4351 int OldReg = Reg; 4352 const AsmToken RegTok = Parser.getTok(); 4353 Reg = tryParseRegister(); 4354 if (Reg == -1) 4355 return Error(RegLoc, "register expected"); 4356 // Allow Q regs and just interpret them as the two D sub-registers. 4357 bool isQReg = false; 4358 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4359 Reg = getDRegFromQReg(Reg); 4360 isQReg = true; 4361 } 4362 if (!RC->contains(Reg) && 4363 RC->getID() == ARMMCRegisterClasses[ARM::GPRRegClassID].getID() && 4364 ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) { 4365 // switch the register classes, as GPRwithAPSRnospRegClassID is a partial 4366 // subset of GPRRegClassId except it contains APSR as well. 4367 RC = &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID]; 4368 } 4369 if (Reg == ARM::VPR && (RC == &ARMMCRegisterClasses[ARM::SPRRegClassID] || 4370 RC == &ARMMCRegisterClasses[ARM::DPRRegClassID])) { 4371 RC = &ARMMCRegisterClasses[ARM::FPWithVPRRegClassID]; 4372 EReg = MRI->getEncodingValue(Reg); 4373 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 4374 continue; 4375 } 4376 // The register must be in the same register class as the first. 4377 if (!RC->contains(Reg)) 4378 return Error(RegLoc, "invalid register in register list"); 4379 // In most cases, the list must be monotonically increasing. An 4380 // exception is CLRM, which is order-independent anyway, so 4381 // there's no potential for confusion if you write clrm {r2,r1} 4382 // instead of clrm {r1,r2}. 4383 if (EnforceOrder && 4384 MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 4385 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 4386 Warning(RegLoc, "register list not in ascending order"); 4387 else if (!ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains(Reg)) 4388 return Error(RegLoc, "register list not in ascending order"); 4389 } 4390 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 4391 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 4392 ") in register list"); 4393 continue; 4394 } 4395 // VFP register lists must also be contiguous. 4396 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 4397 RC != &ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID] && 4398 Reg != OldReg + 1) 4399 return Error(RegLoc, "non-contiguous register range"); 4400 EReg = MRI->getEncodingValue(Reg); 4401 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 4402 if (isQReg) { 4403 EReg = MRI->getEncodingValue(++Reg); 4404 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 4405 } 4406 } 4407 4408 if (Parser.getTok().isNot(AsmToken::RCurly)) 4409 return Error(Parser.getTok().getLoc(), "'}' expected"); 4410 SMLoc E = Parser.getTok().getEndLoc(); 4411 Parser.Lex(); // Eat '}' token. 4412 4413 // Push the register list operand. 4414 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 4415 4416 // The ARM system instruction variants for LDM/STM have a '^' token here. 4417 if (Parser.getTok().is(AsmToken::Caret)) { 4418 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 4419 Parser.Lex(); // Eat '^' token. 4420 } 4421 4422 return false; 4423 } 4424 4425 // Helper function to parse the lane index for vector lists. 4426 OperandMatchResultTy ARMAsmParser:: 4427 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 4428 MCAsmParser &Parser = getParser(); 4429 Index = 0; // Always return a defined index value. 4430 if (Parser.getTok().is(AsmToken::LBrac)) { 4431 Parser.Lex(); // Eat the '['. 4432 if (Parser.getTok().is(AsmToken::RBrac)) { 4433 // "Dn[]" is the 'all lanes' syntax. 4434 LaneKind = AllLanes; 4435 EndLoc = Parser.getTok().getEndLoc(); 4436 Parser.Lex(); // Eat the ']'. 4437 return MatchOperand_Success; 4438 } 4439 4440 // There's an optional '#' token here. Normally there wouldn't be, but 4441 // inline assemble puts one in, and it's friendly to accept that. 4442 if (Parser.getTok().is(AsmToken::Hash)) 4443 Parser.Lex(); // Eat '#' or '$'. 4444 4445 const MCExpr *LaneIndex; 4446 SMLoc Loc = Parser.getTok().getLoc(); 4447 if (getParser().parseExpression(LaneIndex)) { 4448 Error(Loc, "illegal expression"); 4449 return MatchOperand_ParseFail; 4450 } 4451 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 4452 if (!CE) { 4453 Error(Loc, "lane index must be empty or an integer"); 4454 return MatchOperand_ParseFail; 4455 } 4456 if (Parser.getTok().isNot(AsmToken::RBrac)) { 4457 Error(Parser.getTok().getLoc(), "']' expected"); 4458 return MatchOperand_ParseFail; 4459 } 4460 EndLoc = Parser.getTok().getEndLoc(); 4461 Parser.Lex(); // Eat the ']'. 4462 int64_t Val = CE->getValue(); 4463 4464 // FIXME: Make this range check context sensitive for .8, .16, .32. 4465 if (Val < 0 || Val > 7) { 4466 Error(Parser.getTok().getLoc(), "lane index out of range"); 4467 return MatchOperand_ParseFail; 4468 } 4469 Index = Val; 4470 LaneKind = IndexedLane; 4471 return MatchOperand_Success; 4472 } 4473 LaneKind = NoLanes; 4474 return MatchOperand_Success; 4475 } 4476 4477 // parse a vector register list 4478 OperandMatchResultTy 4479 ARMAsmParser::parseVectorList(OperandVector &Operands) { 4480 MCAsmParser &Parser = getParser(); 4481 VectorLaneTy LaneKind; 4482 unsigned LaneIndex; 4483 SMLoc S = Parser.getTok().getLoc(); 4484 // As an extension (to match gas), support a plain D register or Q register 4485 // (without encosing curly braces) as a single or double entry list, 4486 // respectively. 4487 if (!hasMVE() && Parser.getTok().is(AsmToken::Identifier)) { 4488 SMLoc E = Parser.getTok().getEndLoc(); 4489 int Reg = tryParseRegister(); 4490 if (Reg == -1) 4491 return MatchOperand_NoMatch; 4492 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 4493 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4494 if (Res != MatchOperand_Success) 4495 return Res; 4496 switch (LaneKind) { 4497 case NoLanes: 4498 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 4499 break; 4500 case AllLanes: 4501 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 4502 S, E)); 4503 break; 4504 case IndexedLane: 4505 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 4506 LaneIndex, 4507 false, S, E)); 4508 break; 4509 } 4510 return MatchOperand_Success; 4511 } 4512 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4513 Reg = getDRegFromQReg(Reg); 4514 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 4515 if (Res != MatchOperand_Success) 4516 return Res; 4517 switch (LaneKind) { 4518 case NoLanes: 4519 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4520 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4521 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 4522 break; 4523 case AllLanes: 4524 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 4525 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 4526 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 4527 S, E)); 4528 break; 4529 case IndexedLane: 4530 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 4531 LaneIndex, 4532 false, S, E)); 4533 break; 4534 } 4535 return MatchOperand_Success; 4536 } 4537 Error(S, "vector register expected"); 4538 return MatchOperand_ParseFail; 4539 } 4540 4541 if (Parser.getTok().isNot(AsmToken::LCurly)) 4542 return MatchOperand_NoMatch; 4543 4544 Parser.Lex(); // Eat '{' token. 4545 SMLoc RegLoc = Parser.getTok().getLoc(); 4546 4547 int Reg = tryParseRegister(); 4548 if (Reg == -1) { 4549 Error(RegLoc, "register expected"); 4550 return MatchOperand_ParseFail; 4551 } 4552 unsigned Count = 1; 4553 int Spacing = 0; 4554 unsigned FirstReg = Reg; 4555 4556 if (hasMVE() && !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4557 Error(Parser.getTok().getLoc(), "vector register in range Q0-Q7 expected"); 4558 return MatchOperand_ParseFail; 4559 } 4560 // The list is of D registers, but we also allow Q regs and just interpret 4561 // them as the two D sub-registers. 4562 else if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4563 FirstReg = Reg = getDRegFromQReg(Reg); 4564 Spacing = 1; // double-spacing requires explicit D registers, otherwise 4565 // it's ambiguous with four-register single spaced. 4566 ++Reg; 4567 ++Count; 4568 } 4569 4570 SMLoc E; 4571 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 4572 return MatchOperand_ParseFail; 4573 4574 while (Parser.getTok().is(AsmToken::Comma) || 4575 Parser.getTok().is(AsmToken::Minus)) { 4576 if (Parser.getTok().is(AsmToken::Minus)) { 4577 if (!Spacing) 4578 Spacing = 1; // Register range implies a single spaced list. 4579 else if (Spacing == 2) { 4580 Error(Parser.getTok().getLoc(), 4581 "sequential registers in double spaced list"); 4582 return MatchOperand_ParseFail; 4583 } 4584 Parser.Lex(); // Eat the minus. 4585 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 4586 int EndReg = tryParseRegister(); 4587 if (EndReg == -1) { 4588 Error(AfterMinusLoc, "register expected"); 4589 return MatchOperand_ParseFail; 4590 } 4591 // Allow Q regs and just interpret them as the two D sub-registers. 4592 if (!hasMVE() && ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 4593 EndReg = getDRegFromQReg(EndReg) + 1; 4594 // If the register is the same as the start reg, there's nothing 4595 // more to do. 4596 if (Reg == EndReg) 4597 continue; 4598 // The register must be in the same register class as the first. 4599 if ((hasMVE() && 4600 !ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(EndReg)) || 4601 (!hasMVE() && 4602 !ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg))) { 4603 Error(AfterMinusLoc, "invalid register in register list"); 4604 return MatchOperand_ParseFail; 4605 } 4606 // Ranges must go from low to high. 4607 if (Reg > EndReg) { 4608 Error(AfterMinusLoc, "bad range in register list"); 4609 return MatchOperand_ParseFail; 4610 } 4611 // Parse the lane specifier if present. 4612 VectorLaneTy NextLaneKind; 4613 unsigned NextLaneIndex; 4614 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4615 MatchOperand_Success) 4616 return MatchOperand_ParseFail; 4617 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4618 Error(AfterMinusLoc, "mismatched lane index in register list"); 4619 return MatchOperand_ParseFail; 4620 } 4621 4622 // Add all the registers in the range to the register list. 4623 Count += EndReg - Reg; 4624 Reg = EndReg; 4625 continue; 4626 } 4627 Parser.Lex(); // Eat the comma. 4628 RegLoc = Parser.getTok().getLoc(); 4629 int OldReg = Reg; 4630 Reg = tryParseRegister(); 4631 if (Reg == -1) { 4632 Error(RegLoc, "register expected"); 4633 return MatchOperand_ParseFail; 4634 } 4635 4636 if (hasMVE()) { 4637 if (!ARMMCRegisterClasses[ARM::MQPRRegClassID].contains(Reg)) { 4638 Error(RegLoc, "vector register in range Q0-Q7 expected"); 4639 return MatchOperand_ParseFail; 4640 } 4641 Spacing = 1; 4642 } 4643 // vector register lists must be contiguous. 4644 // It's OK to use the enumeration values directly here rather, as the 4645 // VFP register classes have the enum sorted properly. 4646 // 4647 // The list is of D registers, but we also allow Q regs and just interpret 4648 // them as the two D sub-registers. 4649 else if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 4650 if (!Spacing) 4651 Spacing = 1; // Register range implies a single spaced list. 4652 else if (Spacing == 2) { 4653 Error(RegLoc, 4654 "invalid register in double-spaced list (must be 'D' register')"); 4655 return MatchOperand_ParseFail; 4656 } 4657 Reg = getDRegFromQReg(Reg); 4658 if (Reg != OldReg + 1) { 4659 Error(RegLoc, "non-contiguous register range"); 4660 return MatchOperand_ParseFail; 4661 } 4662 ++Reg; 4663 Count += 2; 4664 // Parse the lane specifier if present. 4665 VectorLaneTy NextLaneKind; 4666 unsigned NextLaneIndex; 4667 SMLoc LaneLoc = Parser.getTok().getLoc(); 4668 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 4669 MatchOperand_Success) 4670 return MatchOperand_ParseFail; 4671 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4672 Error(LaneLoc, "mismatched lane index in register list"); 4673 return MatchOperand_ParseFail; 4674 } 4675 continue; 4676 } 4677 // Normal D register. 4678 // Figure out the register spacing (single or double) of the list if 4679 // we don't know it already. 4680 if (!Spacing) 4681 Spacing = 1 + (Reg == OldReg + 2); 4682 4683 // Just check that it's contiguous and keep going. 4684 if (Reg != OldReg + Spacing) { 4685 Error(RegLoc, "non-contiguous register range"); 4686 return MatchOperand_ParseFail; 4687 } 4688 ++Count; 4689 // Parse the lane specifier if present. 4690 VectorLaneTy NextLaneKind; 4691 unsigned NextLaneIndex; 4692 SMLoc EndLoc = Parser.getTok().getLoc(); 4693 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 4694 return MatchOperand_ParseFail; 4695 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 4696 Error(EndLoc, "mismatched lane index in register list"); 4697 return MatchOperand_ParseFail; 4698 } 4699 } 4700 4701 if (Parser.getTok().isNot(AsmToken::RCurly)) { 4702 Error(Parser.getTok().getLoc(), "'}' expected"); 4703 return MatchOperand_ParseFail; 4704 } 4705 E = Parser.getTok().getEndLoc(); 4706 Parser.Lex(); // Eat '}' token. 4707 4708 switch (LaneKind) { 4709 case NoLanes: 4710 case AllLanes: { 4711 // Two-register operands have been converted to the 4712 // composite register classes. 4713 if (Count == 2 && !hasMVE()) { 4714 const MCRegisterClass *RC = (Spacing == 1) ? 4715 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 4716 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 4717 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 4718 } 4719 auto Create = (LaneKind == NoLanes ? ARMOperand::CreateVectorList : 4720 ARMOperand::CreateVectorListAllLanes); 4721 Operands.push_back(Create(FirstReg, Count, (Spacing == 2), S, E)); 4722 break; 4723 } 4724 case IndexedLane: 4725 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 4726 LaneIndex, 4727 (Spacing == 2), 4728 S, E)); 4729 break; 4730 } 4731 return MatchOperand_Success; 4732 } 4733 4734 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 4735 OperandMatchResultTy 4736 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 4737 MCAsmParser &Parser = getParser(); 4738 SMLoc S = Parser.getTok().getLoc(); 4739 const AsmToken &Tok = Parser.getTok(); 4740 unsigned Opt; 4741 4742 if (Tok.is(AsmToken::Identifier)) { 4743 StringRef OptStr = Tok.getString(); 4744 4745 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 4746 .Case("sy", ARM_MB::SY) 4747 .Case("st", ARM_MB::ST) 4748 .Case("ld", ARM_MB::LD) 4749 .Case("sh", ARM_MB::ISH) 4750 .Case("ish", ARM_MB::ISH) 4751 .Case("shst", ARM_MB::ISHST) 4752 .Case("ishst", ARM_MB::ISHST) 4753 .Case("ishld", ARM_MB::ISHLD) 4754 .Case("nsh", ARM_MB::NSH) 4755 .Case("un", ARM_MB::NSH) 4756 .Case("nshst", ARM_MB::NSHST) 4757 .Case("nshld", ARM_MB::NSHLD) 4758 .Case("unst", ARM_MB::NSHST) 4759 .Case("osh", ARM_MB::OSH) 4760 .Case("oshst", ARM_MB::OSHST) 4761 .Case("oshld", ARM_MB::OSHLD) 4762 .Default(~0U); 4763 4764 // ishld, oshld, nshld and ld are only available from ARMv8. 4765 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 4766 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 4767 Opt = ~0U; 4768 4769 if (Opt == ~0U) 4770 return MatchOperand_NoMatch; 4771 4772 Parser.Lex(); // Eat identifier token. 4773 } else if (Tok.is(AsmToken::Hash) || 4774 Tok.is(AsmToken::Dollar) || 4775 Tok.is(AsmToken::Integer)) { 4776 if (Parser.getTok().isNot(AsmToken::Integer)) 4777 Parser.Lex(); // Eat '#' or '$'. 4778 SMLoc Loc = Parser.getTok().getLoc(); 4779 4780 const MCExpr *MemBarrierID; 4781 if (getParser().parseExpression(MemBarrierID)) { 4782 Error(Loc, "illegal expression"); 4783 return MatchOperand_ParseFail; 4784 } 4785 4786 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 4787 if (!CE) { 4788 Error(Loc, "constant expression expected"); 4789 return MatchOperand_ParseFail; 4790 } 4791 4792 int Val = CE->getValue(); 4793 if (Val & ~0xf) { 4794 Error(Loc, "immediate value out of range"); 4795 return MatchOperand_ParseFail; 4796 } 4797 4798 Opt = ARM_MB::RESERVED_0 + Val; 4799 } else 4800 return MatchOperand_ParseFail; 4801 4802 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 4803 return MatchOperand_Success; 4804 } 4805 4806 OperandMatchResultTy 4807 ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) { 4808 MCAsmParser &Parser = getParser(); 4809 SMLoc S = Parser.getTok().getLoc(); 4810 const AsmToken &Tok = Parser.getTok(); 4811 4812 if (Tok.isNot(AsmToken::Identifier)) 4813 return MatchOperand_NoMatch; 4814 4815 if (!Tok.getString().equals_lower("csync")) 4816 return MatchOperand_NoMatch; 4817 4818 Parser.Lex(); // Eat identifier token. 4819 4820 Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S)); 4821 return MatchOperand_Success; 4822 } 4823 4824 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 4825 OperandMatchResultTy 4826 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 4827 MCAsmParser &Parser = getParser(); 4828 SMLoc S = Parser.getTok().getLoc(); 4829 const AsmToken &Tok = Parser.getTok(); 4830 unsigned Opt; 4831 4832 if (Tok.is(AsmToken::Identifier)) { 4833 StringRef OptStr = Tok.getString(); 4834 4835 if (OptStr.equals_lower("sy")) 4836 Opt = ARM_ISB::SY; 4837 else 4838 return MatchOperand_NoMatch; 4839 4840 Parser.Lex(); // Eat identifier token. 4841 } else if (Tok.is(AsmToken::Hash) || 4842 Tok.is(AsmToken::Dollar) || 4843 Tok.is(AsmToken::Integer)) { 4844 if (Parser.getTok().isNot(AsmToken::Integer)) 4845 Parser.Lex(); // Eat '#' or '$'. 4846 SMLoc Loc = Parser.getTok().getLoc(); 4847 4848 const MCExpr *ISBarrierID; 4849 if (getParser().parseExpression(ISBarrierID)) { 4850 Error(Loc, "illegal expression"); 4851 return MatchOperand_ParseFail; 4852 } 4853 4854 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 4855 if (!CE) { 4856 Error(Loc, "constant expression expected"); 4857 return MatchOperand_ParseFail; 4858 } 4859 4860 int Val = CE->getValue(); 4861 if (Val & ~0xf) { 4862 Error(Loc, "immediate value out of range"); 4863 return MatchOperand_ParseFail; 4864 } 4865 4866 Opt = ARM_ISB::RESERVED_0 + Val; 4867 } else 4868 return MatchOperand_ParseFail; 4869 4870 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 4871 (ARM_ISB::InstSyncBOpt)Opt, S)); 4872 return MatchOperand_Success; 4873 } 4874 4875 4876 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 4877 OperandMatchResultTy 4878 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 4879 MCAsmParser &Parser = getParser(); 4880 SMLoc S = Parser.getTok().getLoc(); 4881 const AsmToken &Tok = Parser.getTok(); 4882 if (!Tok.is(AsmToken::Identifier)) 4883 return MatchOperand_NoMatch; 4884 StringRef IFlagsStr = Tok.getString(); 4885 4886 // An iflags string of "none" is interpreted to mean that none of the AIF 4887 // bits are set. Not a terribly useful instruction, but a valid encoding. 4888 unsigned IFlags = 0; 4889 if (IFlagsStr != "none") { 4890 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 4891 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower()) 4892 .Case("a", ARM_PROC::A) 4893 .Case("i", ARM_PROC::I) 4894 .Case("f", ARM_PROC::F) 4895 .Default(~0U); 4896 4897 // If some specific iflag is already set, it means that some letter is 4898 // present more than once, this is not acceptable. 4899 if (Flag == ~0U || (IFlags & Flag)) 4900 return MatchOperand_NoMatch; 4901 4902 IFlags |= Flag; 4903 } 4904 } 4905 4906 Parser.Lex(); // Eat identifier token. 4907 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4908 return MatchOperand_Success; 4909 } 4910 4911 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4912 OperandMatchResultTy 4913 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4914 MCAsmParser &Parser = getParser(); 4915 SMLoc S = Parser.getTok().getLoc(); 4916 const AsmToken &Tok = Parser.getTok(); 4917 4918 if (Tok.is(AsmToken::Integer)) { 4919 int64_t Val = Tok.getIntVal(); 4920 if (Val > 255 || Val < 0) { 4921 return MatchOperand_NoMatch; 4922 } 4923 unsigned SYSmvalue = Val & 0xFF; 4924 Parser.Lex(); 4925 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4926 return MatchOperand_Success; 4927 } 4928 4929 if (!Tok.is(AsmToken::Identifier)) 4930 return MatchOperand_NoMatch; 4931 StringRef Mask = Tok.getString(); 4932 4933 if (isMClass()) { 4934 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower()); 4935 if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits())) 4936 return MatchOperand_NoMatch; 4937 4938 unsigned SYSmvalue = TheReg->Encoding & 0xFFF; 4939 4940 Parser.Lex(); // Eat identifier token. 4941 Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S)); 4942 return MatchOperand_Success; 4943 } 4944 4945 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4946 size_t Start = 0, Next = Mask.find('_'); 4947 StringRef Flags = ""; 4948 std::string SpecReg = Mask.slice(Start, Next).lower(); 4949 if (Next != StringRef::npos) 4950 Flags = Mask.slice(Next+1, Mask.size()); 4951 4952 // FlagsVal contains the complete mask: 4953 // 3-0: Mask 4954 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4955 unsigned FlagsVal = 0; 4956 4957 if (SpecReg == "apsr") { 4958 FlagsVal = StringSwitch<unsigned>(Flags) 4959 .Case("nzcvq", 0x8) // same as CPSR_f 4960 .Case("g", 0x4) // same as CPSR_s 4961 .Case("nzcvqg", 0xc) // same as CPSR_fs 4962 .Default(~0U); 4963 4964 if (FlagsVal == ~0U) { 4965 if (!Flags.empty()) 4966 return MatchOperand_NoMatch; 4967 else 4968 FlagsVal = 8; // No flag 4969 } 4970 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4971 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4972 if (Flags == "all" || Flags == "") 4973 Flags = "fc"; 4974 for (int i = 0, e = Flags.size(); i != e; ++i) { 4975 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4976 .Case("c", 1) 4977 .Case("x", 2) 4978 .Case("s", 4) 4979 .Case("f", 8) 4980 .Default(~0U); 4981 4982 // If some specific flag is already set, it means that some letter is 4983 // present more than once, this is not acceptable. 4984 if (Flag == ~0U || (FlagsVal & Flag)) 4985 return MatchOperand_NoMatch; 4986 FlagsVal |= Flag; 4987 } 4988 } else // No match for special register. 4989 return MatchOperand_NoMatch; 4990 4991 // Special register without flags is NOT equivalent to "fc" flags. 4992 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4993 // two lines would enable gas compatibility at the expense of breaking 4994 // round-tripping. 4995 // 4996 // if (!FlagsVal) 4997 // FlagsVal = 0x9; 4998 4999 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 5000 if (SpecReg == "spsr") 5001 FlagsVal |= 16; 5002 5003 Parser.Lex(); // Eat identifier token. 5004 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 5005 return MatchOperand_Success; 5006 } 5007 5008 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 5009 /// use in the MRS/MSR instructions added to support virtualization. 5010 OperandMatchResultTy 5011 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 5012 MCAsmParser &Parser = getParser(); 5013 SMLoc S = Parser.getTok().getLoc(); 5014 const AsmToken &Tok = Parser.getTok(); 5015 if (!Tok.is(AsmToken::Identifier)) 5016 return MatchOperand_NoMatch; 5017 StringRef RegName = Tok.getString(); 5018 5019 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower()); 5020 if (!TheReg) 5021 return MatchOperand_NoMatch; 5022 unsigned Encoding = TheReg->Encoding; 5023 5024 Parser.Lex(); // Eat identifier token. 5025 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 5026 return MatchOperand_Success; 5027 } 5028 5029 OperandMatchResultTy 5030 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 5031 int High) { 5032 MCAsmParser &Parser = getParser(); 5033 const AsmToken &Tok = Parser.getTok(); 5034 if (Tok.isNot(AsmToken::Identifier)) { 5035 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5036 return MatchOperand_ParseFail; 5037 } 5038 StringRef ShiftName = Tok.getString(); 5039 std::string LowerOp = Op.lower(); 5040 std::string UpperOp = Op.upper(); 5041 if (ShiftName != LowerOp && ShiftName != UpperOp) { 5042 Error(Parser.getTok().getLoc(), Op + " operand expected."); 5043 return MatchOperand_ParseFail; 5044 } 5045 Parser.Lex(); // Eat shift type token. 5046 5047 // There must be a '#' and a shift amount. 5048 if (Parser.getTok().isNot(AsmToken::Hash) && 5049 Parser.getTok().isNot(AsmToken::Dollar)) { 5050 Error(Parser.getTok().getLoc(), "'#' expected"); 5051 return MatchOperand_ParseFail; 5052 } 5053 Parser.Lex(); // Eat hash token. 5054 5055 const MCExpr *ShiftAmount; 5056 SMLoc Loc = Parser.getTok().getLoc(); 5057 SMLoc EndLoc; 5058 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5059 Error(Loc, "illegal expression"); 5060 return MatchOperand_ParseFail; 5061 } 5062 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5063 if (!CE) { 5064 Error(Loc, "constant expression expected"); 5065 return MatchOperand_ParseFail; 5066 } 5067 int Val = CE->getValue(); 5068 if (Val < Low || Val > High) { 5069 Error(Loc, "immediate value out of range"); 5070 return MatchOperand_ParseFail; 5071 } 5072 5073 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 5074 5075 return MatchOperand_Success; 5076 } 5077 5078 OperandMatchResultTy 5079 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 5080 MCAsmParser &Parser = getParser(); 5081 const AsmToken &Tok = Parser.getTok(); 5082 SMLoc S = Tok.getLoc(); 5083 if (Tok.isNot(AsmToken::Identifier)) { 5084 Error(S, "'be' or 'le' operand expected"); 5085 return MatchOperand_ParseFail; 5086 } 5087 int Val = StringSwitch<int>(Tok.getString().lower()) 5088 .Case("be", 1) 5089 .Case("le", 0) 5090 .Default(-1); 5091 Parser.Lex(); // Eat the token. 5092 5093 if (Val == -1) { 5094 Error(S, "'be' or 'le' operand expected"); 5095 return MatchOperand_ParseFail; 5096 } 5097 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 5098 getContext()), 5099 S, Tok.getEndLoc())); 5100 return MatchOperand_Success; 5101 } 5102 5103 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 5104 /// instructions. Legal values are: 5105 /// lsl #n 'n' in [0,31] 5106 /// asr #n 'n' in [1,32] 5107 /// n == 32 encoded as n == 0. 5108 OperandMatchResultTy 5109 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 5110 MCAsmParser &Parser = getParser(); 5111 const AsmToken &Tok = Parser.getTok(); 5112 SMLoc S = Tok.getLoc(); 5113 if (Tok.isNot(AsmToken::Identifier)) { 5114 Error(S, "shift operator 'asr' or 'lsl' expected"); 5115 return MatchOperand_ParseFail; 5116 } 5117 StringRef ShiftName = Tok.getString(); 5118 bool isASR; 5119 if (ShiftName == "lsl" || ShiftName == "LSL") 5120 isASR = false; 5121 else if (ShiftName == "asr" || ShiftName == "ASR") 5122 isASR = true; 5123 else { 5124 Error(S, "shift operator 'asr' or 'lsl' expected"); 5125 return MatchOperand_ParseFail; 5126 } 5127 Parser.Lex(); // Eat the operator. 5128 5129 // A '#' and a shift amount. 5130 if (Parser.getTok().isNot(AsmToken::Hash) && 5131 Parser.getTok().isNot(AsmToken::Dollar)) { 5132 Error(Parser.getTok().getLoc(), "'#' expected"); 5133 return MatchOperand_ParseFail; 5134 } 5135 Parser.Lex(); // Eat hash token. 5136 SMLoc ExLoc = Parser.getTok().getLoc(); 5137 5138 const MCExpr *ShiftAmount; 5139 SMLoc EndLoc; 5140 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5141 Error(ExLoc, "malformed shift expression"); 5142 return MatchOperand_ParseFail; 5143 } 5144 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5145 if (!CE) { 5146 Error(ExLoc, "shift amount must be an immediate"); 5147 return MatchOperand_ParseFail; 5148 } 5149 5150 int64_t Val = CE->getValue(); 5151 if (isASR) { 5152 // Shift amount must be in [1,32] 5153 if (Val < 1 || Val > 32) { 5154 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 5155 return MatchOperand_ParseFail; 5156 } 5157 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 5158 if (isThumb() && Val == 32) { 5159 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 5160 return MatchOperand_ParseFail; 5161 } 5162 if (Val == 32) Val = 0; 5163 } else { 5164 // Shift amount must be in [1,32] 5165 if (Val < 0 || Val > 31) { 5166 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 5167 return MatchOperand_ParseFail; 5168 } 5169 } 5170 5171 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 5172 5173 return MatchOperand_Success; 5174 } 5175 5176 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 5177 /// of instructions. Legal values are: 5178 /// ror #n 'n' in {0, 8, 16, 24} 5179 OperandMatchResultTy 5180 ARMAsmParser::parseRotImm(OperandVector &Operands) { 5181 MCAsmParser &Parser = getParser(); 5182 const AsmToken &Tok = Parser.getTok(); 5183 SMLoc S = Tok.getLoc(); 5184 if (Tok.isNot(AsmToken::Identifier)) 5185 return MatchOperand_NoMatch; 5186 StringRef ShiftName = Tok.getString(); 5187 if (ShiftName != "ror" && ShiftName != "ROR") 5188 return MatchOperand_NoMatch; 5189 Parser.Lex(); // Eat the operator. 5190 5191 // A '#' and a rotate amount. 5192 if (Parser.getTok().isNot(AsmToken::Hash) && 5193 Parser.getTok().isNot(AsmToken::Dollar)) { 5194 Error(Parser.getTok().getLoc(), "'#' expected"); 5195 return MatchOperand_ParseFail; 5196 } 5197 Parser.Lex(); // Eat hash token. 5198 SMLoc ExLoc = Parser.getTok().getLoc(); 5199 5200 const MCExpr *ShiftAmount; 5201 SMLoc EndLoc; 5202 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 5203 Error(ExLoc, "malformed rotate expression"); 5204 return MatchOperand_ParseFail; 5205 } 5206 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 5207 if (!CE) { 5208 Error(ExLoc, "rotate amount must be an immediate"); 5209 return MatchOperand_ParseFail; 5210 } 5211 5212 int64_t Val = CE->getValue(); 5213 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 5214 // normally, zero is represented in asm by omitting the rotate operand 5215 // entirely. 5216 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 5217 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 5218 return MatchOperand_ParseFail; 5219 } 5220 5221 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 5222 5223 return MatchOperand_Success; 5224 } 5225 5226 OperandMatchResultTy 5227 ARMAsmParser::parseModImm(OperandVector &Operands) { 5228 MCAsmParser &Parser = getParser(); 5229 MCAsmLexer &Lexer = getLexer(); 5230 int64_t Imm1, Imm2; 5231 5232 SMLoc S = Parser.getTok().getLoc(); 5233 5234 // 1) A mod_imm operand can appear in the place of a register name: 5235 // add r0, #mod_imm 5236 // add r0, r0, #mod_imm 5237 // to correctly handle the latter, we bail out as soon as we see an 5238 // identifier. 5239 // 5240 // 2) Similarly, we do not want to parse into complex operands: 5241 // mov r0, #mod_imm 5242 // mov r0, :lower16:(_foo) 5243 if (Parser.getTok().is(AsmToken::Identifier) || 5244 Parser.getTok().is(AsmToken::Colon)) 5245 return MatchOperand_NoMatch; 5246 5247 // Hash (dollar) is optional as per the ARMARM 5248 if (Parser.getTok().is(AsmToken::Hash) || 5249 Parser.getTok().is(AsmToken::Dollar)) { 5250 // Avoid parsing into complex operands (#:) 5251 if (Lexer.peekTok().is(AsmToken::Colon)) 5252 return MatchOperand_NoMatch; 5253 5254 // Eat the hash (dollar) 5255 Parser.Lex(); 5256 } 5257 5258 SMLoc Sx1, Ex1; 5259 Sx1 = Parser.getTok().getLoc(); 5260 const MCExpr *Imm1Exp; 5261 if (getParser().parseExpression(Imm1Exp, Ex1)) { 5262 Error(Sx1, "malformed expression"); 5263 return MatchOperand_ParseFail; 5264 } 5265 5266 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 5267 5268 if (CE) { 5269 // Immediate must fit within 32-bits 5270 Imm1 = CE->getValue(); 5271 int Enc = ARM_AM::getSOImmVal(Imm1); 5272 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 5273 // We have a match! 5274 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 5275 (Enc & 0xF00) >> 7, 5276 Sx1, Ex1)); 5277 return MatchOperand_Success; 5278 } 5279 5280 // We have parsed an immediate which is not for us, fallback to a plain 5281 // immediate. This can happen for instruction aliases. For an example, 5282 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 5283 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 5284 // instruction with a mod_imm operand. The alias is defined such that the 5285 // parser method is shared, that's why we have to do this here. 5286 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 5287 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5288 return MatchOperand_Success; 5289 } 5290 } else { 5291 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 5292 // MCFixup). Fallback to a plain immediate. 5293 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 5294 return MatchOperand_Success; 5295 } 5296 5297 // From this point onward, we expect the input to be a (#bits, #rot) pair 5298 if (Parser.getTok().isNot(AsmToken::Comma)) { 5299 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 5300 return MatchOperand_ParseFail; 5301 } 5302 5303 if (Imm1 & ~0xFF) { 5304 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 5305 return MatchOperand_ParseFail; 5306 } 5307 5308 // Eat the comma 5309 Parser.Lex(); 5310 5311 // Repeat for #rot 5312 SMLoc Sx2, Ex2; 5313 Sx2 = Parser.getTok().getLoc(); 5314 5315 // Eat the optional hash (dollar) 5316 if (Parser.getTok().is(AsmToken::Hash) || 5317 Parser.getTok().is(AsmToken::Dollar)) 5318 Parser.Lex(); 5319 5320 const MCExpr *Imm2Exp; 5321 if (getParser().parseExpression(Imm2Exp, Ex2)) { 5322 Error(Sx2, "malformed expression"); 5323 return MatchOperand_ParseFail; 5324 } 5325 5326 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 5327 5328 if (CE) { 5329 Imm2 = CE->getValue(); 5330 if (!(Imm2 & ~0x1E)) { 5331 // We have a match! 5332 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 5333 return MatchOperand_Success; 5334 } 5335 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 5336 return MatchOperand_ParseFail; 5337 } else { 5338 Error(Sx2, "constant expression expected"); 5339 return MatchOperand_ParseFail; 5340 } 5341 } 5342 5343 OperandMatchResultTy 5344 ARMAsmParser::parseBitfield(OperandVector &Operands) { 5345 MCAsmParser &Parser = getParser(); 5346 SMLoc S = Parser.getTok().getLoc(); 5347 // The bitfield descriptor is really two operands, the LSB and the width. 5348 if (Parser.getTok().isNot(AsmToken::Hash) && 5349 Parser.getTok().isNot(AsmToken::Dollar)) { 5350 Error(Parser.getTok().getLoc(), "'#' expected"); 5351 return MatchOperand_ParseFail; 5352 } 5353 Parser.Lex(); // Eat hash token. 5354 5355 const MCExpr *LSBExpr; 5356 SMLoc E = Parser.getTok().getLoc(); 5357 if (getParser().parseExpression(LSBExpr)) { 5358 Error(E, "malformed immediate expression"); 5359 return MatchOperand_ParseFail; 5360 } 5361 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 5362 if (!CE) { 5363 Error(E, "'lsb' operand must be an immediate"); 5364 return MatchOperand_ParseFail; 5365 } 5366 5367 int64_t LSB = CE->getValue(); 5368 // The LSB must be in the range [0,31] 5369 if (LSB < 0 || LSB > 31) { 5370 Error(E, "'lsb' operand must be in the range [0,31]"); 5371 return MatchOperand_ParseFail; 5372 } 5373 E = Parser.getTok().getLoc(); 5374 5375 // Expect another immediate operand. 5376 if (Parser.getTok().isNot(AsmToken::Comma)) { 5377 Error(Parser.getTok().getLoc(), "too few operands"); 5378 return MatchOperand_ParseFail; 5379 } 5380 Parser.Lex(); // Eat hash token. 5381 if (Parser.getTok().isNot(AsmToken::Hash) && 5382 Parser.getTok().isNot(AsmToken::Dollar)) { 5383 Error(Parser.getTok().getLoc(), "'#' expected"); 5384 return MatchOperand_ParseFail; 5385 } 5386 Parser.Lex(); // Eat hash token. 5387 5388 const MCExpr *WidthExpr; 5389 SMLoc EndLoc; 5390 if (getParser().parseExpression(WidthExpr, EndLoc)) { 5391 Error(E, "malformed immediate expression"); 5392 return MatchOperand_ParseFail; 5393 } 5394 CE = dyn_cast<MCConstantExpr>(WidthExpr); 5395 if (!CE) { 5396 Error(E, "'width' operand must be an immediate"); 5397 return MatchOperand_ParseFail; 5398 } 5399 5400 int64_t Width = CE->getValue(); 5401 // The LSB must be in the range [1,32-lsb] 5402 if (Width < 1 || Width > 32 - LSB) { 5403 Error(E, "'width' operand must be in the range [1,32-lsb]"); 5404 return MatchOperand_ParseFail; 5405 } 5406 5407 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 5408 5409 return MatchOperand_Success; 5410 } 5411 5412 OperandMatchResultTy 5413 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 5414 // Check for a post-index addressing register operand. Specifically: 5415 // postidx_reg := '+' register {, shift} 5416 // | '-' register {, shift} 5417 // | register {, shift} 5418 5419 // This method must return MatchOperand_NoMatch without consuming any tokens 5420 // in the case where there is no match, as other alternatives take other 5421 // parse methods. 5422 MCAsmParser &Parser = getParser(); 5423 AsmToken Tok = Parser.getTok(); 5424 SMLoc S = Tok.getLoc(); 5425 bool haveEaten = false; 5426 bool isAdd = true; 5427 if (Tok.is(AsmToken::Plus)) { 5428 Parser.Lex(); // Eat the '+' token. 5429 haveEaten = true; 5430 } else if (Tok.is(AsmToken::Minus)) { 5431 Parser.Lex(); // Eat the '-' token. 5432 isAdd = false; 5433 haveEaten = true; 5434 } 5435 5436 SMLoc E = Parser.getTok().getEndLoc(); 5437 int Reg = tryParseRegister(); 5438 if (Reg == -1) { 5439 if (!haveEaten) 5440 return MatchOperand_NoMatch; 5441 Error(Parser.getTok().getLoc(), "register expected"); 5442 return MatchOperand_ParseFail; 5443 } 5444 5445 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 5446 unsigned ShiftImm = 0; 5447 if (Parser.getTok().is(AsmToken::Comma)) { 5448 Parser.Lex(); // Eat the ','. 5449 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 5450 return MatchOperand_ParseFail; 5451 5452 // FIXME: Only approximates end...may include intervening whitespace. 5453 E = Parser.getTok().getLoc(); 5454 } 5455 5456 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 5457 ShiftImm, S, E)); 5458 5459 return MatchOperand_Success; 5460 } 5461 5462 OperandMatchResultTy 5463 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 5464 // Check for a post-index addressing register operand. Specifically: 5465 // am3offset := '+' register 5466 // | '-' register 5467 // | register 5468 // | # imm 5469 // | # + imm 5470 // | # - imm 5471 5472 // This method must return MatchOperand_NoMatch without consuming any tokens 5473 // in the case where there is no match, as other alternatives take other 5474 // parse methods. 5475 MCAsmParser &Parser = getParser(); 5476 AsmToken Tok = Parser.getTok(); 5477 SMLoc S = Tok.getLoc(); 5478 5479 // Do immediates first, as we always parse those if we have a '#'. 5480 if (Parser.getTok().is(AsmToken::Hash) || 5481 Parser.getTok().is(AsmToken::Dollar)) { 5482 Parser.Lex(); // Eat '#' or '$'. 5483 // Explicitly look for a '-', as we need to encode negative zero 5484 // differently. 5485 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5486 const MCExpr *Offset; 5487 SMLoc E; 5488 if (getParser().parseExpression(Offset, E)) 5489 return MatchOperand_ParseFail; 5490 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5491 if (!CE) { 5492 Error(S, "constant expression expected"); 5493 return MatchOperand_ParseFail; 5494 } 5495 // Negative zero is encoded as the flag value 5496 // std::numeric_limits<int32_t>::min(). 5497 int32_t Val = CE->getValue(); 5498 if (isNegative && Val == 0) 5499 Val = std::numeric_limits<int32_t>::min(); 5500 5501 Operands.push_back( 5502 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 5503 5504 return MatchOperand_Success; 5505 } 5506 5507 bool haveEaten = false; 5508 bool isAdd = true; 5509 if (Tok.is(AsmToken::Plus)) { 5510 Parser.Lex(); // Eat the '+' token. 5511 haveEaten = true; 5512 } else if (Tok.is(AsmToken::Minus)) { 5513 Parser.Lex(); // Eat the '-' token. 5514 isAdd = false; 5515 haveEaten = true; 5516 } 5517 5518 Tok = Parser.getTok(); 5519 int Reg = tryParseRegister(); 5520 if (Reg == -1) { 5521 if (!haveEaten) 5522 return MatchOperand_NoMatch; 5523 Error(Tok.getLoc(), "register expected"); 5524 return MatchOperand_ParseFail; 5525 } 5526 5527 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 5528 0, S, Tok.getEndLoc())); 5529 5530 return MatchOperand_Success; 5531 } 5532 5533 /// Convert parsed operands to MCInst. Needed here because this instruction 5534 /// only has two register operands, but multiplication is commutative so 5535 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 5536 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 5537 const OperandVector &Operands) { 5538 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 5539 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 5540 // If we have a three-operand form, make sure to set Rn to be the operand 5541 // that isn't the same as Rd. 5542 unsigned RegOp = 4; 5543 if (Operands.size() == 6 && 5544 ((ARMOperand &)*Operands[4]).getReg() == 5545 ((ARMOperand &)*Operands[3]).getReg()) 5546 RegOp = 5; 5547 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 5548 Inst.addOperand(Inst.getOperand(0)); 5549 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 5550 } 5551 5552 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 5553 const OperandVector &Operands) { 5554 int CondOp = -1, ImmOp = -1; 5555 switch(Inst.getOpcode()) { 5556 case ARM::tB: 5557 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 5558 5559 case ARM::t2B: 5560 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 5561 5562 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 5563 } 5564 // first decide whether or not the branch should be conditional 5565 // by looking at it's location relative to an IT block 5566 if(inITBlock()) { 5567 // inside an IT block we cannot have any conditional branches. any 5568 // such instructions needs to be converted to unconditional form 5569 switch(Inst.getOpcode()) { 5570 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 5571 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 5572 } 5573 } else { 5574 // outside IT blocks we can only have unconditional branches with AL 5575 // condition code or conditional branches with non-AL condition code 5576 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 5577 switch(Inst.getOpcode()) { 5578 case ARM::tB: 5579 case ARM::tBcc: 5580 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 5581 break; 5582 case ARM::t2B: 5583 case ARM::t2Bcc: 5584 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 5585 break; 5586 } 5587 } 5588 5589 // now decide on encoding size based on branch target range 5590 switch(Inst.getOpcode()) { 5591 // classify tB as either t2B or t1B based on range of immediate operand 5592 case ARM::tB: { 5593 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5594 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 5595 Inst.setOpcode(ARM::t2B); 5596 break; 5597 } 5598 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 5599 case ARM::tBcc: { 5600 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 5601 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 5602 Inst.setOpcode(ARM::t2Bcc); 5603 break; 5604 } 5605 } 5606 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 5607 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 5608 } 5609 5610 void ARMAsmParser::cvtMVEVMOVQtoDReg( 5611 MCInst &Inst, const OperandVector &Operands) { 5612 5613 // mnemonic, condition code, Rt, Rt2, Qd, idx, Qd again, idx2 5614 assert(Operands.size() == 8); 5615 5616 ((ARMOperand &)*Operands[2]).addRegOperands(Inst, 1); // Rt 5617 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); // Rt2 5618 ((ARMOperand &)*Operands[4]).addRegOperands(Inst, 1); // Qd 5619 ((ARMOperand &)*Operands[5]).addMVEPairVectorIndexOperands(Inst, 1); // idx 5620 // skip second copy of Qd in Operands[6] 5621 ((ARMOperand &)*Operands[7]).addMVEPairVectorIndexOperands(Inst, 1); // idx2 5622 ((ARMOperand &)*Operands[1]).addCondCodeOperands(Inst, 2); // condition code 5623 } 5624 5625 /// Parse an ARM memory expression, return false if successful else return true 5626 /// or an error. The first token must be a '[' when called. 5627 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 5628 MCAsmParser &Parser = getParser(); 5629 SMLoc S, E; 5630 if (Parser.getTok().isNot(AsmToken::LBrac)) 5631 return TokError("Token is not a Left Bracket"); 5632 S = Parser.getTok().getLoc(); 5633 Parser.Lex(); // Eat left bracket token. 5634 5635 const AsmToken &BaseRegTok = Parser.getTok(); 5636 int BaseRegNum = tryParseRegister(); 5637 if (BaseRegNum == -1) 5638 return Error(BaseRegTok.getLoc(), "register expected"); 5639 5640 // The next token must either be a comma, a colon or a closing bracket. 5641 const AsmToken &Tok = Parser.getTok(); 5642 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 5643 !Tok.is(AsmToken::RBrac)) 5644 return Error(Tok.getLoc(), "malformed memory operand"); 5645 5646 if (Tok.is(AsmToken::RBrac)) { 5647 E = Tok.getEndLoc(); 5648 Parser.Lex(); // Eat right bracket token. 5649 5650 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5651 ARM_AM::no_shift, 0, 0, false, 5652 S, E)); 5653 5654 // If there's a pre-indexing writeback marker, '!', just add it as a token 5655 // operand. It's rather odd, but syntactically valid. 5656 if (Parser.getTok().is(AsmToken::Exclaim)) { 5657 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5658 Parser.Lex(); // Eat the '!'. 5659 } 5660 5661 return false; 5662 } 5663 5664 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 5665 "Lost colon or comma in memory operand?!"); 5666 if (Tok.is(AsmToken::Comma)) { 5667 Parser.Lex(); // Eat the comma. 5668 } 5669 5670 // If we have a ':', it's an alignment specifier. 5671 if (Parser.getTok().is(AsmToken::Colon)) { 5672 Parser.Lex(); // Eat the ':'. 5673 E = Parser.getTok().getLoc(); 5674 SMLoc AlignmentLoc = Tok.getLoc(); 5675 5676 const MCExpr *Expr; 5677 if (getParser().parseExpression(Expr)) 5678 return true; 5679 5680 // The expression has to be a constant. Memory references with relocations 5681 // don't come through here, as they use the <label> forms of the relevant 5682 // instructions. 5683 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5684 if (!CE) 5685 return Error (E, "constant expression expected"); 5686 5687 unsigned Align = 0; 5688 switch (CE->getValue()) { 5689 default: 5690 return Error(E, 5691 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 5692 case 16: Align = 2; break; 5693 case 32: Align = 4; break; 5694 case 64: Align = 8; break; 5695 case 128: Align = 16; break; 5696 case 256: Align = 32; break; 5697 } 5698 5699 // Now we should have the closing ']' 5700 if (Parser.getTok().isNot(AsmToken::RBrac)) 5701 return Error(Parser.getTok().getLoc(), "']' expected"); 5702 E = Parser.getTok().getEndLoc(); 5703 Parser.Lex(); // Eat right bracket token. 5704 5705 // Don't worry about range checking the value here. That's handled by 5706 // the is*() predicates. 5707 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 5708 ARM_AM::no_shift, 0, Align, 5709 false, S, E, AlignmentLoc)); 5710 5711 // If there's a pre-indexing writeback marker, '!', just add it as a token 5712 // operand. 5713 if (Parser.getTok().is(AsmToken::Exclaim)) { 5714 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5715 Parser.Lex(); // Eat the '!'. 5716 } 5717 5718 return false; 5719 } 5720 5721 // If we have a '#', it's an immediate offset, else assume it's a register 5722 // offset. Be friendly and also accept a plain integer (without a leading 5723 // hash) for gas compatibility. 5724 if (Parser.getTok().is(AsmToken::Hash) || 5725 Parser.getTok().is(AsmToken::Dollar) || 5726 Parser.getTok().is(AsmToken::Integer)) { 5727 if (Parser.getTok().isNot(AsmToken::Integer)) 5728 Parser.Lex(); // Eat '#' or '$'. 5729 E = Parser.getTok().getLoc(); 5730 5731 bool isNegative = getParser().getTok().is(AsmToken::Minus); 5732 const MCExpr *Offset; 5733 if (getParser().parseExpression(Offset)) 5734 return true; 5735 5736 // The expression has to be a constant. Memory references with relocations 5737 // don't come through here, as they use the <label> forms of the relevant 5738 // instructions. 5739 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 5740 if (!CE) 5741 return Error (E, "constant expression expected"); 5742 5743 // If the constant was #-0, represent it as 5744 // std::numeric_limits<int32_t>::min(). 5745 int32_t Val = CE->getValue(); 5746 if (isNegative && Val == 0) 5747 CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 5748 getContext()); 5749 5750 // Now we should have the closing ']' 5751 if (Parser.getTok().isNot(AsmToken::RBrac)) 5752 return Error(Parser.getTok().getLoc(), "']' expected"); 5753 E = Parser.getTok().getEndLoc(); 5754 Parser.Lex(); // Eat right bracket token. 5755 5756 // Don't worry about range checking the value here. That's handled by 5757 // the is*() predicates. 5758 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 5759 ARM_AM::no_shift, 0, 0, 5760 false, S, E)); 5761 5762 // If there's a pre-indexing writeback marker, '!', just add it as a token 5763 // operand. 5764 if (Parser.getTok().is(AsmToken::Exclaim)) { 5765 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5766 Parser.Lex(); // Eat the '!'. 5767 } 5768 5769 return false; 5770 } 5771 5772 // The register offset is optionally preceded by a '+' or '-' 5773 bool isNegative = false; 5774 if (Parser.getTok().is(AsmToken::Minus)) { 5775 isNegative = true; 5776 Parser.Lex(); // Eat the '-'. 5777 } else if (Parser.getTok().is(AsmToken::Plus)) { 5778 // Nothing to do. 5779 Parser.Lex(); // Eat the '+'. 5780 } 5781 5782 E = Parser.getTok().getLoc(); 5783 int OffsetRegNum = tryParseRegister(); 5784 if (OffsetRegNum == -1) 5785 return Error(E, "register expected"); 5786 5787 // If there's a shift operator, handle it. 5788 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 5789 unsigned ShiftImm = 0; 5790 if (Parser.getTok().is(AsmToken::Comma)) { 5791 Parser.Lex(); // Eat the ','. 5792 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 5793 return true; 5794 } 5795 5796 // Now we should have the closing ']' 5797 if (Parser.getTok().isNot(AsmToken::RBrac)) 5798 return Error(Parser.getTok().getLoc(), "']' expected"); 5799 E = Parser.getTok().getEndLoc(); 5800 Parser.Lex(); // Eat right bracket token. 5801 5802 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 5803 ShiftType, ShiftImm, 0, isNegative, 5804 S, E)); 5805 5806 // If there's a pre-indexing writeback marker, '!', just add it as a token 5807 // operand. 5808 if (Parser.getTok().is(AsmToken::Exclaim)) { 5809 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 5810 Parser.Lex(); // Eat the '!'. 5811 } 5812 5813 return false; 5814 } 5815 5816 /// parseMemRegOffsetShift - one of these two: 5817 /// ( lsl | lsr | asr | ror ) , # shift_amount 5818 /// rrx 5819 /// return true if it parses a shift otherwise it returns false. 5820 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 5821 unsigned &Amount) { 5822 MCAsmParser &Parser = getParser(); 5823 SMLoc Loc = Parser.getTok().getLoc(); 5824 const AsmToken &Tok = Parser.getTok(); 5825 if (Tok.isNot(AsmToken::Identifier)) 5826 return Error(Loc, "illegal shift operator"); 5827 StringRef ShiftName = Tok.getString(); 5828 if (ShiftName == "lsl" || ShiftName == "LSL" || 5829 ShiftName == "asl" || ShiftName == "ASL") 5830 St = ARM_AM::lsl; 5831 else if (ShiftName == "lsr" || ShiftName == "LSR") 5832 St = ARM_AM::lsr; 5833 else if (ShiftName == "asr" || ShiftName == "ASR") 5834 St = ARM_AM::asr; 5835 else if (ShiftName == "ror" || ShiftName == "ROR") 5836 St = ARM_AM::ror; 5837 else if (ShiftName == "rrx" || ShiftName == "RRX") 5838 St = ARM_AM::rrx; 5839 else if (ShiftName == "uxtw" || ShiftName == "UXTW") 5840 St = ARM_AM::uxtw; 5841 else 5842 return Error(Loc, "illegal shift operator"); 5843 Parser.Lex(); // Eat shift type token. 5844 5845 // rrx stands alone. 5846 Amount = 0; 5847 if (St != ARM_AM::rrx) { 5848 Loc = Parser.getTok().getLoc(); 5849 // A '#' and a shift amount. 5850 const AsmToken &HashTok = Parser.getTok(); 5851 if (HashTok.isNot(AsmToken::Hash) && 5852 HashTok.isNot(AsmToken::Dollar)) 5853 return Error(HashTok.getLoc(), "'#' expected"); 5854 Parser.Lex(); // Eat hash token. 5855 5856 const MCExpr *Expr; 5857 if (getParser().parseExpression(Expr)) 5858 return true; 5859 // Range check the immediate. 5860 // lsl, ror: 0 <= imm <= 31 5861 // lsr, asr: 0 <= imm <= 32 5862 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5863 if (!CE) 5864 return Error(Loc, "shift amount must be an immediate"); 5865 int64_t Imm = CE->getValue(); 5866 if (Imm < 0 || 5867 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5868 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5869 return Error(Loc, "immediate shift value out of range"); 5870 // If <ShiftTy> #0, turn it into a no_shift. 5871 if (Imm == 0) 5872 St = ARM_AM::lsl; 5873 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5874 if (Imm == 32) 5875 Imm = 0; 5876 Amount = Imm; 5877 } 5878 5879 return false; 5880 } 5881 5882 /// parseFPImm - A floating point immediate expression operand. 5883 OperandMatchResultTy 5884 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5885 MCAsmParser &Parser = getParser(); 5886 // Anything that can accept a floating point constant as an operand 5887 // needs to go through here, as the regular parseExpression is 5888 // integer only. 5889 // 5890 // This routine still creates a generic Immediate operand, containing 5891 // a bitcast of the 64-bit floating point value. The various operands 5892 // that accept floats can check whether the value is valid for them 5893 // via the standard is*() predicates. 5894 5895 SMLoc S = Parser.getTok().getLoc(); 5896 5897 if (Parser.getTok().isNot(AsmToken::Hash) && 5898 Parser.getTok().isNot(AsmToken::Dollar)) 5899 return MatchOperand_NoMatch; 5900 5901 // Disambiguate the VMOV forms that can accept an FP immediate. 5902 // vmov.f32 <sreg>, #imm 5903 // vmov.f64 <dreg>, #imm 5904 // vmov.f32 <dreg>, #imm @ vector f32x2 5905 // vmov.f32 <qreg>, #imm @ vector f32x4 5906 // 5907 // There are also the NEON VMOV instructions which expect an 5908 // integer constant. Make sure we don't try to parse an FPImm 5909 // for these: 5910 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5911 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5912 bool isVmovf = TyOp.isToken() && 5913 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5914 TyOp.getToken() == ".f16"); 5915 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5916 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5917 Mnemonic.getToken() == "fconsts"); 5918 if (!(isVmovf || isFconst)) 5919 return MatchOperand_NoMatch; 5920 5921 Parser.Lex(); // Eat '#' or '$'. 5922 5923 // Handle negation, as that still comes through as a separate token. 5924 bool isNegative = false; 5925 if (Parser.getTok().is(AsmToken::Minus)) { 5926 isNegative = true; 5927 Parser.Lex(); 5928 } 5929 const AsmToken &Tok = Parser.getTok(); 5930 SMLoc Loc = Tok.getLoc(); 5931 if (Tok.is(AsmToken::Real) && isVmovf) { 5932 APFloat RealVal(APFloat::IEEEsingle(), Tok.getString()); 5933 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5934 // If we had a '-' in front, toggle the sign bit. 5935 IntVal ^= (uint64_t)isNegative << 31; 5936 Parser.Lex(); // Eat the token. 5937 Operands.push_back(ARMOperand::CreateImm( 5938 MCConstantExpr::create(IntVal, getContext()), 5939 S, Parser.getTok().getLoc())); 5940 return MatchOperand_Success; 5941 } 5942 // Also handle plain integers. Instructions which allow floating point 5943 // immediates also allow a raw encoded 8-bit value. 5944 if (Tok.is(AsmToken::Integer) && isFconst) { 5945 int64_t Val = Tok.getIntVal(); 5946 Parser.Lex(); // Eat the token. 5947 if (Val > 255 || Val < 0) { 5948 Error(Loc, "encoded floating point value out of range"); 5949 return MatchOperand_ParseFail; 5950 } 5951 float RealVal = ARM_AM::getFPImmFloat(Val); 5952 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5953 5954 Operands.push_back(ARMOperand::CreateImm( 5955 MCConstantExpr::create(Val, getContext()), S, 5956 Parser.getTok().getLoc())); 5957 return MatchOperand_Success; 5958 } 5959 5960 Error(Loc, "invalid floating point immediate"); 5961 return MatchOperand_ParseFail; 5962 } 5963 5964 /// Parse a arm instruction operand. For now this parses the operand regardless 5965 /// of the mnemonic. 5966 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5967 MCAsmParser &Parser = getParser(); 5968 SMLoc S, E; 5969 5970 // Check if the current operand has a custom associated parser, if so, try to 5971 // custom parse the operand, or fallback to the general approach. 5972 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5973 if (ResTy == MatchOperand_Success) 5974 return false; 5975 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5976 // there was a match, but an error occurred, in which case, just return that 5977 // the operand parsing failed. 5978 if (ResTy == MatchOperand_ParseFail) 5979 return true; 5980 5981 switch (getLexer().getKind()) { 5982 default: 5983 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5984 return true; 5985 case AsmToken::Identifier: { 5986 // If we've seen a branch mnemonic, the next operand must be a label. This 5987 // is true even if the label is a register name. So "br r1" means branch to 5988 // label "r1". 5989 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5990 if (!ExpectLabel) { 5991 if (!tryParseRegisterWithWriteBack(Operands)) 5992 return false; 5993 int Res = tryParseShiftRegister(Operands); 5994 if (Res == 0) // success 5995 return false; 5996 else if (Res == -1) // irrecoverable error 5997 return true; 5998 // If this is VMRS, check for the apsr_nzcv operand. 5999 if (Mnemonic == "vmrs" && 6000 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 6001 S = Parser.getTok().getLoc(); 6002 Parser.Lex(); 6003 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 6004 return false; 6005 } 6006 } 6007 6008 // Fall though for the Identifier case that is not a register or a 6009 // special name. 6010 LLVM_FALLTHROUGH; 6011 } 6012 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 6013 case AsmToken::Integer: // things like 1f and 2b as a branch targets 6014 case AsmToken::String: // quoted label names. 6015 case AsmToken::Dot: { // . as a branch target 6016 // This was not a register so parse other operands that start with an 6017 // identifier (like labels) as expressions and create them as immediates. 6018 const MCExpr *IdVal; 6019 S = Parser.getTok().getLoc(); 6020 if (getParser().parseExpression(IdVal)) 6021 return true; 6022 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6023 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 6024 return false; 6025 } 6026 case AsmToken::LBrac: 6027 return parseMemory(Operands); 6028 case AsmToken::LCurly: 6029 return parseRegisterList(Operands, !Mnemonic.startswith("clr")); 6030 case AsmToken::Dollar: 6031 case AsmToken::Hash: 6032 // #42 -> immediate. 6033 S = Parser.getTok().getLoc(); 6034 Parser.Lex(); 6035 6036 if (Parser.getTok().isNot(AsmToken::Colon)) { 6037 bool isNegative = Parser.getTok().is(AsmToken::Minus); 6038 const MCExpr *ImmVal; 6039 if (getParser().parseExpression(ImmVal)) 6040 return true; 6041 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 6042 if (CE) { 6043 int32_t Val = CE->getValue(); 6044 if (isNegative && Val == 0) 6045 ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(), 6046 getContext()); 6047 } 6048 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6049 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 6050 6051 // There can be a trailing '!' on operands that we want as a separate 6052 // '!' Token operand. Handle that here. For example, the compatibility 6053 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 6054 if (Parser.getTok().is(AsmToken::Exclaim)) { 6055 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 6056 Parser.getTok().getLoc())); 6057 Parser.Lex(); // Eat exclaim token 6058 } 6059 return false; 6060 } 6061 // w/ a ':' after the '#', it's just like a plain ':'. 6062 LLVM_FALLTHROUGH; 6063 6064 case AsmToken::Colon: { 6065 S = Parser.getTok().getLoc(); 6066 // ":lower16:" and ":upper16:" expression prefixes 6067 // FIXME: Check it's an expression prefix, 6068 // e.g. (FOO - :lower16:BAR) isn't legal. 6069 ARMMCExpr::VariantKind RefKind; 6070 if (parsePrefix(RefKind)) 6071 return true; 6072 6073 const MCExpr *SubExprVal; 6074 if (getParser().parseExpression(SubExprVal)) 6075 return true; 6076 6077 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 6078 getContext()); 6079 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6080 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 6081 return false; 6082 } 6083 case AsmToken::Equal: { 6084 S = Parser.getTok().getLoc(); 6085 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 6086 return Error(S, "unexpected token in operand"); 6087 Parser.Lex(); // Eat '=' 6088 const MCExpr *SubExprVal; 6089 if (getParser().parseExpression(SubExprVal)) 6090 return true; 6091 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 6092 6093 // execute-only: we assume that assembly programmers know what they are 6094 // doing and allow literal pool creation here 6095 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 6096 return false; 6097 } 6098 } 6099 } 6100 6101 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 6102 // :lower16: and :upper16:. 6103 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 6104 MCAsmParser &Parser = getParser(); 6105 RefKind = ARMMCExpr::VK_ARM_None; 6106 6107 // consume an optional '#' (GNU compatibility) 6108 if (getLexer().is(AsmToken::Hash)) 6109 Parser.Lex(); 6110 6111 // :lower16: and :upper16: modifiers 6112 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 6113 Parser.Lex(); // Eat ':' 6114 6115 if (getLexer().isNot(AsmToken::Identifier)) { 6116 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 6117 return true; 6118 } 6119 6120 enum { 6121 COFF = (1 << MCObjectFileInfo::IsCOFF), 6122 ELF = (1 << MCObjectFileInfo::IsELF), 6123 MACHO = (1 << MCObjectFileInfo::IsMachO), 6124 WASM = (1 << MCObjectFileInfo::IsWasm), 6125 }; 6126 static const struct PrefixEntry { 6127 const char *Spelling; 6128 ARMMCExpr::VariantKind VariantKind; 6129 uint8_t SupportedFormats; 6130 } PrefixEntries[] = { 6131 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 6132 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 6133 }; 6134 6135 StringRef IDVal = Parser.getTok().getIdentifier(); 6136 6137 const auto &Prefix = 6138 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 6139 [&IDVal](const PrefixEntry &PE) { 6140 return PE.Spelling == IDVal; 6141 }); 6142 if (Prefix == std::end(PrefixEntries)) { 6143 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 6144 return true; 6145 } 6146 6147 uint8_t CurrentFormat; 6148 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 6149 case MCObjectFileInfo::IsMachO: 6150 CurrentFormat = MACHO; 6151 break; 6152 case MCObjectFileInfo::IsELF: 6153 CurrentFormat = ELF; 6154 break; 6155 case MCObjectFileInfo::IsCOFF: 6156 CurrentFormat = COFF; 6157 break; 6158 case MCObjectFileInfo::IsWasm: 6159 CurrentFormat = WASM; 6160 break; 6161 case MCObjectFileInfo::IsXCOFF: 6162 llvm_unreachable("unexpected object format"); 6163 break; 6164 } 6165 6166 if (~Prefix->SupportedFormats & CurrentFormat) { 6167 Error(Parser.getTok().getLoc(), 6168 "cannot represent relocation in the current file format"); 6169 return true; 6170 } 6171 6172 RefKind = Prefix->VariantKind; 6173 Parser.Lex(); 6174 6175 if (getLexer().isNot(AsmToken::Colon)) { 6176 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 6177 return true; 6178 } 6179 Parser.Lex(); // Eat the last ':' 6180 6181 return false; 6182 } 6183 6184 /// Given a mnemonic, split out possible predication code and carry 6185 /// setting letters to form a canonical mnemonic and flags. 6186 // 6187 // FIXME: Would be nice to autogen this. 6188 // FIXME: This is a bit of a maze of special cases. 6189 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 6190 StringRef ExtraToken, 6191 unsigned &PredicationCode, 6192 unsigned &VPTPredicationCode, 6193 bool &CarrySetting, 6194 unsigned &ProcessorIMod, 6195 StringRef &ITMask) { 6196 PredicationCode = ARMCC::AL; 6197 VPTPredicationCode = ARMVCC::None; 6198 CarrySetting = false; 6199 ProcessorIMod = 0; 6200 6201 // Ignore some mnemonics we know aren't predicated forms. 6202 // 6203 // FIXME: Would be nice to autogen this. 6204 if ((Mnemonic == "movs" && isThumb()) || 6205 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 6206 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 6207 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 6208 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 6209 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 6210 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 6211 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 6212 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 6213 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 6214 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 6215 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 6216 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 6217 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 6218 Mnemonic == "bxns" || Mnemonic == "blxns" || 6219 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6220 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6221 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6222 Mnemonic == "wls" || Mnemonic == "le" || Mnemonic == "dls" || 6223 Mnemonic == "csel" || Mnemonic == "csinc" || 6224 Mnemonic == "csinv" || Mnemonic == "csneg" || Mnemonic == "cinc" || 6225 Mnemonic == "cinv" || Mnemonic == "cneg" || Mnemonic == "cset" || 6226 Mnemonic == "csetm") 6227 return Mnemonic; 6228 6229 // First, split out any predication code. Ignore mnemonics we know aren't 6230 // predicated but do have a carry-set and so weren't caught above. 6231 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 6232 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 6233 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 6234 Mnemonic != "sbcs" && Mnemonic != "rscs" && 6235 !(hasMVE() && 6236 (Mnemonic == "vmine" || 6237 Mnemonic == "vshle" || Mnemonic == "vshlt" || Mnemonic == "vshllt" || 6238 Mnemonic == "vrshle" || Mnemonic == "vrshlt" || 6239 Mnemonic == "vmvne" || Mnemonic == "vorne" || 6240 Mnemonic == "vnege" || Mnemonic == "vnegt" || 6241 Mnemonic == "vmule" || Mnemonic == "vmult" || 6242 Mnemonic == "vrintne" || 6243 Mnemonic == "vcmult" || Mnemonic == "vcmule" || 6244 Mnemonic == "vpsele" || Mnemonic == "vpselt" || 6245 Mnemonic.startswith("vq")))) { 6246 unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2)); 6247 if (CC != ~0U) { 6248 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 6249 PredicationCode = CC; 6250 } 6251 } 6252 6253 // Next, determine if we have a carry setting bit. We explicitly ignore all 6254 // the instructions we know end in 's'. 6255 if (Mnemonic.endswith("s") && 6256 !(Mnemonic == "cps" || Mnemonic == "mls" || 6257 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 6258 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 6259 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 6260 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 6261 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 6262 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 6263 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 6264 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 6265 Mnemonic == "bxns" || Mnemonic == "blxns" || Mnemonic == "vfmas" || 6266 Mnemonic == "vmlas" || 6267 (Mnemonic == "movs" && isThumb()))) { 6268 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 6269 CarrySetting = true; 6270 } 6271 6272 // The "cps" instruction can have a interrupt mode operand which is glued into 6273 // the mnemonic. Check if this is the case, split it and parse the imod op 6274 if (Mnemonic.startswith("cps")) { 6275 // Split out any imod code. 6276 unsigned IMod = 6277 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 6278 .Case("ie", ARM_PROC::IE) 6279 .Case("id", ARM_PROC::ID) 6280 .Default(~0U); 6281 if (IMod != ~0U) { 6282 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 6283 ProcessorIMod = IMod; 6284 } 6285 } 6286 6287 if (isMnemonicVPTPredicable(Mnemonic, ExtraToken) && Mnemonic != "vmovlt" && 6288 Mnemonic != "vshllt" && Mnemonic != "vrshrnt" && Mnemonic != "vshrnt" && 6289 Mnemonic != "vqrshrunt" && Mnemonic != "vqshrunt" && 6290 Mnemonic != "vqrshrnt" && Mnemonic != "vqshrnt" && Mnemonic != "vmullt" && 6291 Mnemonic != "vqmovnt" && Mnemonic != "vqmovunt" && 6292 Mnemonic != "vqmovnt" && Mnemonic != "vmovnt" && Mnemonic != "vqdmullt" && 6293 Mnemonic != "vpnot" && Mnemonic != "vcvtt" && Mnemonic != "vcvt") { 6294 unsigned CC = ARMVectorCondCodeFromString(Mnemonic.substr(Mnemonic.size()-1)); 6295 if (CC != ~0U) { 6296 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-1); 6297 VPTPredicationCode = CC; 6298 } 6299 return Mnemonic; 6300 } 6301 6302 // The "it" instruction has the condition mask on the end of the mnemonic. 6303 if (Mnemonic.startswith("it")) { 6304 ITMask = Mnemonic.slice(2, Mnemonic.size()); 6305 Mnemonic = Mnemonic.slice(0, 2); 6306 } 6307 6308 if (Mnemonic.startswith("vpst")) { 6309 ITMask = Mnemonic.slice(4, Mnemonic.size()); 6310 Mnemonic = Mnemonic.slice(0, 4); 6311 } 6312 else if (Mnemonic.startswith("vpt")) { 6313 ITMask = Mnemonic.slice(3, Mnemonic.size()); 6314 Mnemonic = Mnemonic.slice(0, 3); 6315 } 6316 6317 return Mnemonic; 6318 } 6319 6320 /// Given a canonical mnemonic, determine if the instruction ever allows 6321 /// inclusion of carry set or predication code operands. 6322 // 6323 // FIXME: It would be nice to autogen this. 6324 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, 6325 StringRef ExtraToken, 6326 StringRef FullInst, 6327 bool &CanAcceptCarrySet, 6328 bool &CanAcceptPredicationCode, 6329 bool &CanAcceptVPTPredicationCode) { 6330 CanAcceptVPTPredicationCode = isMnemonicVPTPredicable(Mnemonic, ExtraToken); 6331 6332 CanAcceptCarrySet = 6333 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6334 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 6335 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 6336 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 6337 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 6338 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 6339 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 6340 (!isThumb() && 6341 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 6342 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 6343 6344 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 6345 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 6346 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 6347 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 6348 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 6349 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 6350 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 6351 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 6352 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 6353 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 6354 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 6355 Mnemonic == "vmovx" || Mnemonic == "vins" || 6356 Mnemonic == "vudot" || Mnemonic == "vsdot" || 6357 Mnemonic == "vcmla" || Mnemonic == "vcadd" || 6358 Mnemonic == "vfmal" || Mnemonic == "vfmsl" || 6359 Mnemonic == "sb" || Mnemonic == "ssbb" || 6360 Mnemonic == "pssbb" || 6361 Mnemonic == "bfcsel" || Mnemonic == "wls" || 6362 Mnemonic == "dls" || Mnemonic == "le" || Mnemonic == "csel" || 6363 Mnemonic == "csinc" || Mnemonic == "csinv" || Mnemonic == "csneg" || 6364 Mnemonic == "cinc" || Mnemonic == "cinv" || Mnemonic == "cneg" || 6365 Mnemonic == "cset" || Mnemonic == "csetm" || 6366 Mnemonic.startswith("vpt") || Mnemonic.startswith("vpst") || 6367 (hasMVE() && 6368 (Mnemonic.startswith("vst2") || Mnemonic.startswith("vld2") || 6369 Mnemonic.startswith("vst4") || Mnemonic.startswith("vld4") || 6370 Mnemonic.startswith("wlstp") || Mnemonic.startswith("dlstp") || 6371 Mnemonic.startswith("letp")))) { 6372 // These mnemonics are never predicable 6373 CanAcceptPredicationCode = false; 6374 } else if (!isThumb()) { 6375 // Some instructions are only predicable in Thumb mode 6376 CanAcceptPredicationCode = 6377 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 6378 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 6379 Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" && 6380 Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" && 6381 Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" && 6382 Mnemonic != "stc2" && Mnemonic != "stc2l" && 6383 Mnemonic != "tsb" && 6384 !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs"); 6385 } else if (isThumbOne()) { 6386 if (hasV6MOps()) 6387 CanAcceptPredicationCode = Mnemonic != "movs"; 6388 else 6389 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 6390 } else 6391 CanAcceptPredicationCode = true; 6392 } 6393 6394 // Some Thumb instructions have two operand forms that are not 6395 // available as three operand, convert to two operand form if possible. 6396 // 6397 // FIXME: We would really like to be able to tablegen'erate this. 6398 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 6399 bool CarrySetting, 6400 OperandVector &Operands) { 6401 if (Operands.size() != 6) 6402 return; 6403 6404 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6405 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 6406 if (!Op3.isReg() || !Op4.isReg()) 6407 return; 6408 6409 auto Op3Reg = Op3.getReg(); 6410 auto Op4Reg = Op4.getReg(); 6411 6412 // For most Thumb2 cases we just generate the 3 operand form and reduce 6413 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 6414 // won't accept SP or PC so we do the transformation here taking care 6415 // with immediate range in the 'add sp, sp #imm' case. 6416 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 6417 if (isThumbTwo()) { 6418 if (Mnemonic != "add") 6419 return; 6420 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 6421 (Op5.isReg() && Op5.getReg() == ARM::PC); 6422 if (!TryTransform) { 6423 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 6424 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 6425 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 6426 Op5.isImm() && !Op5.isImm0_508s4()); 6427 } 6428 if (!TryTransform) 6429 return; 6430 } else if (!isThumbOne()) 6431 return; 6432 6433 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 6434 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 6435 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 6436 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 6437 return; 6438 6439 // If first 2 operands of a 3 operand instruction are the same 6440 // then transform to 2 operand version of the same instruction 6441 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 6442 bool Transform = Op3Reg == Op4Reg; 6443 6444 // For communtative operations, we might be able to transform if we swap 6445 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 6446 // as tADDrsp. 6447 const ARMOperand *LastOp = &Op5; 6448 bool Swap = false; 6449 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 6450 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 6451 Mnemonic == "and" || Mnemonic == "eor" || 6452 Mnemonic == "adc" || Mnemonic == "orr")) { 6453 Swap = true; 6454 LastOp = &Op4; 6455 Transform = true; 6456 } 6457 6458 // If both registers are the same then remove one of them from 6459 // the operand list, with certain exceptions. 6460 if (Transform) { 6461 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 6462 // 2 operand forms don't exist. 6463 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 6464 LastOp->isReg()) 6465 Transform = false; 6466 6467 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 6468 // 3-bits because the ARMARM says not to. 6469 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 6470 Transform = false; 6471 } 6472 6473 if (Transform) { 6474 if (Swap) 6475 std::swap(Op4, Op5); 6476 Operands.erase(Operands.begin() + 3); 6477 } 6478 } 6479 6480 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 6481 OperandVector &Operands) { 6482 // FIXME: This is all horribly hacky. We really need a better way to deal 6483 // with optional operands like this in the matcher table. 6484 6485 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 6486 // another does not. Specifically, the MOVW instruction does not. So we 6487 // special case it here and remove the defaulted (non-setting) cc_out 6488 // operand if that's the instruction we're trying to match. 6489 // 6490 // We do this as post-processing of the explicit operands rather than just 6491 // conditionally adding the cc_out in the first place because we need 6492 // to check the type of the parsed immediate operand. 6493 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 6494 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 6495 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 6496 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6497 return true; 6498 6499 // Register-register 'add' for thumb does not have a cc_out operand 6500 // when there are only two register operands. 6501 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 6502 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6503 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6504 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 6505 return true; 6506 // Register-register 'add' for thumb does not have a cc_out operand 6507 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 6508 // have to check the immediate range here since Thumb2 has a variant 6509 // that can handle a different range and has a cc_out operand. 6510 if (((isThumb() && Mnemonic == "add") || 6511 (isThumbTwo() && Mnemonic == "sub")) && 6512 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6513 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6514 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 6515 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6516 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 6517 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 6518 return true; 6519 // For Thumb2, add/sub immediate does not have a cc_out operand for the 6520 // imm0_4095 variant. That's the least-preferred variant when 6521 // selecting via the generic "add" mnemonic, so to know that we 6522 // should remove the cc_out operand, we have to explicitly check that 6523 // it's not one of the other variants. Ugh. 6524 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 6525 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 6526 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6527 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6528 // Nest conditions rather than one big 'if' statement for readability. 6529 // 6530 // If both registers are low, we're in an IT block, and the immediate is 6531 // in range, we should use encoding T1 instead, which has a cc_out. 6532 if (inITBlock() && 6533 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 6534 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 6535 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 6536 return false; 6537 // Check against T3. If the second register is the PC, this is an 6538 // alternate form of ADR, which uses encoding T4, so check for that too. 6539 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 6540 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 6541 return false; 6542 6543 // Otherwise, we use encoding T4, which does not have a cc_out 6544 // operand. 6545 return true; 6546 } 6547 6548 // The thumb2 multiply instruction doesn't have a CCOut register, so 6549 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 6550 // use the 16-bit encoding or not. 6551 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 6552 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6553 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6554 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6555 static_cast<ARMOperand &>(*Operands[5]).isReg() && 6556 // If the registers aren't low regs, the destination reg isn't the 6557 // same as one of the source regs, or the cc_out operand is zero 6558 // outside of an IT block, we have to use the 32-bit encoding, so 6559 // remove the cc_out operand. 6560 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6561 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6562 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 6563 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 6564 static_cast<ARMOperand &>(*Operands[5]).getReg() && 6565 static_cast<ARMOperand &>(*Operands[3]).getReg() != 6566 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 6567 return true; 6568 6569 // Also check the 'mul' syntax variant that doesn't specify an explicit 6570 // destination register. 6571 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 6572 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6573 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6574 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6575 // If the registers aren't low regs or the cc_out operand is zero 6576 // outside of an IT block, we have to use the 32-bit encoding, so 6577 // remove the cc_out operand. 6578 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 6579 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 6580 !inITBlock())) 6581 return true; 6582 6583 // Register-register 'add/sub' for thumb does not have a cc_out operand 6584 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 6585 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 6586 // right, this will result in better diagnostics (which operand is off) 6587 // anyway. 6588 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 6589 (Operands.size() == 5 || Operands.size() == 6) && 6590 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6591 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 6592 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 6593 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 6594 (Operands.size() == 6 && 6595 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 6596 return true; 6597 6598 return false; 6599 } 6600 6601 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 6602 OperandVector &Operands) { 6603 // VRINT{Z, X} have a predicate operand in VFP, but not in NEON 6604 unsigned RegIdx = 3; 6605 if ((((Mnemonic == "vrintz" || Mnemonic == "vrintx") && !hasMVE()) || 6606 Mnemonic == "vrintr") && 6607 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 6608 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 6609 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6610 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 6611 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 6612 RegIdx = 4; 6613 6614 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 6615 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6616 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 6617 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6618 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 6619 return true; 6620 } 6621 return false; 6622 } 6623 6624 bool ARMAsmParser::shouldOmitVectorPredicateOperand(StringRef Mnemonic, 6625 OperandVector &Operands) { 6626 if (!hasMVE() || Operands.size() < 3) 6627 return true; 6628 6629 if (Mnemonic.startswith("vld2") || Mnemonic.startswith("vld4") || 6630 Mnemonic.startswith("vst2") || Mnemonic.startswith("vst4")) 6631 return true; 6632 6633 if (Mnemonic.startswith("vctp") || Mnemonic.startswith("vpnot")) 6634 return false; 6635 6636 if (Mnemonic.startswith("vmov") && 6637 !(Mnemonic.startswith("vmovl") || Mnemonic.startswith("vmovn") || 6638 Mnemonic.startswith("vmovx"))) { 6639 for (auto &Operand : Operands) { 6640 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6641 ((*Operand).isReg() && 6642 (ARMMCRegisterClasses[ARM::SPRRegClassID].contains( 6643 (*Operand).getReg()) || 6644 ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 6645 (*Operand).getReg())))) { 6646 return true; 6647 } 6648 } 6649 return false; 6650 } else { 6651 for (auto &Operand : Operands) { 6652 // We check the larger class QPR instead of just the legal class 6653 // MQPR, to more accurately report errors when using Q registers 6654 // outside of the allowed range. 6655 if (static_cast<ARMOperand &>(*Operand).isVectorIndex() || 6656 (Operand->isReg() && 6657 (ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 6658 Operand->getReg())))) 6659 return false; 6660 } 6661 return true; 6662 } 6663 } 6664 6665 static bool isDataTypeToken(StringRef Tok) { 6666 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 6667 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 6668 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 6669 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 6670 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 6671 Tok == ".f" || Tok == ".d"; 6672 } 6673 6674 // FIXME: This bit should probably be handled via an explicit match class 6675 // in the .td files that matches the suffix instead of having it be 6676 // a literal string token the way it is now. 6677 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 6678 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 6679 } 6680 6681 static void applyMnemonicAliases(StringRef &Mnemonic, 6682 const FeatureBitset &Features, 6683 unsigned VariantID); 6684 6685 // The GNU assembler has aliases of ldrd and strd with the second register 6686 // omitted. We don't have a way to do that in tablegen, so fix it up here. 6687 // 6688 // We have to be careful to not emit an invalid Rt2 here, because the rest of 6689 // the assmebly parser could then generate confusing diagnostics refering to 6690 // it. If we do find anything that prevents us from doing the transformation we 6691 // bail out, and let the assembly parser report an error on the instruction as 6692 // it is written. 6693 void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic, 6694 OperandVector &Operands) { 6695 if (Mnemonic != "ldrd" && Mnemonic != "strd") 6696 return; 6697 if (Operands.size() < 4) 6698 return; 6699 6700 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6701 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6702 6703 if (!Op2.isReg()) 6704 return; 6705 if (!Op3.isGPRMem()) 6706 return; 6707 6708 const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID); 6709 if (!GPR.contains(Op2.getReg())) 6710 return; 6711 6712 unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg()); 6713 if (!isThumb() && (RtEncoding & 1)) { 6714 // In ARM mode, the registers must be from an aligned pair, this 6715 // restriction does not apply in Thumb mode. 6716 return; 6717 } 6718 if (Op2.getReg() == ARM::PC) 6719 return; 6720 unsigned PairedReg = GPR.getRegister(RtEncoding + 1); 6721 if (!PairedReg || PairedReg == ARM::PC || 6722 (PairedReg == ARM::SP && !hasV8Ops())) 6723 return; 6724 6725 Operands.insert( 6726 Operands.begin() + 3, 6727 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6728 } 6729 6730 /// Parse an arm instruction mnemonic followed by its operands. 6731 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 6732 SMLoc NameLoc, OperandVector &Operands) { 6733 MCAsmParser &Parser = getParser(); 6734 6735 // Apply mnemonic aliases before doing anything else, as the destination 6736 // mnemonic may include suffices and we want to handle them normally. 6737 // The generic tblgen'erated code does this later, at the start of 6738 // MatchInstructionImpl(), but that's too late for aliases that include 6739 // any sort of suffix. 6740 const FeatureBitset &AvailableFeatures = getAvailableFeatures(); 6741 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 6742 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 6743 6744 // First check for the ARM-specific .req directive. 6745 if (Parser.getTok().is(AsmToken::Identifier) && 6746 Parser.getTok().getIdentifier() == ".req") { 6747 parseDirectiveReq(Name, NameLoc); 6748 // We always return 'error' for this, as we're done with this 6749 // statement and don't need to match the 'instruction." 6750 return true; 6751 } 6752 6753 // Create the leading tokens for the mnemonic, split by '.' characters. 6754 size_t Start = 0, Next = Name.find('.'); 6755 StringRef Mnemonic = Name.slice(Start, Next); 6756 StringRef ExtraToken = Name.slice(Next, Name.find(' ', Next + 1)); 6757 6758 // Split out the predication code and carry setting flag from the mnemonic. 6759 unsigned PredicationCode; 6760 unsigned VPTPredicationCode; 6761 unsigned ProcessorIMod; 6762 bool CarrySetting; 6763 StringRef ITMask; 6764 Mnemonic = splitMnemonic(Mnemonic, ExtraToken, PredicationCode, VPTPredicationCode, 6765 CarrySetting, ProcessorIMod, ITMask); 6766 6767 // In Thumb1, only the branch (B) instruction can be predicated. 6768 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 6769 return Error(NameLoc, "conditional execution not supported in Thumb1"); 6770 } 6771 6772 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 6773 6774 // Handle the mask for IT and VPT instructions. In ARMOperand and 6775 // MCOperand, this is stored in a format independent of the 6776 // condition code: the lowest set bit indicates the end of the 6777 // encoding, and above that, a 1 bit indicates 'else', and an 0 6778 // indicates 'then'. E.g. 6779 // IT -> 1000 6780 // ITx -> x100 (ITT -> 0100, ITE -> 1100) 6781 // ITxy -> xy10 (e.g. ITET -> 1010) 6782 // ITxyz -> xyz1 (e.g. ITEET -> 1101) 6783 if (Mnemonic == "it" || Mnemonic.startswith("vpt") || 6784 Mnemonic.startswith("vpst")) { 6785 SMLoc Loc = Mnemonic == "it" ? SMLoc::getFromPointer(NameLoc.getPointer() + 2) : 6786 Mnemonic == "vpt" ? SMLoc::getFromPointer(NameLoc.getPointer() + 3) : 6787 SMLoc::getFromPointer(NameLoc.getPointer() + 4); 6788 if (ITMask.size() > 3) { 6789 if (Mnemonic == "it") 6790 return Error(Loc, "too many conditions on IT instruction"); 6791 return Error(Loc, "too many conditions on VPT instruction"); 6792 } 6793 unsigned Mask = 8; 6794 for (unsigned i = ITMask.size(); i != 0; --i) { 6795 char pos = ITMask[i - 1]; 6796 if (pos != 't' && pos != 'e') { 6797 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 6798 } 6799 Mask >>= 1; 6800 if (ITMask[i - 1] == 'e') 6801 Mask |= 8; 6802 } 6803 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 6804 } 6805 6806 // FIXME: This is all a pretty gross hack. We should automatically handle 6807 // optional operands like this via tblgen. 6808 6809 // Next, add the CCOut and ConditionCode operands, if needed. 6810 // 6811 // For mnemonics which can ever incorporate a carry setting bit or predication 6812 // code, our matching model involves us always generating CCOut and 6813 // ConditionCode operands to match the mnemonic "as written" and then we let 6814 // the matcher deal with finding the right instruction or generating an 6815 // appropriate error. 6816 bool CanAcceptCarrySet, CanAcceptPredicationCode, CanAcceptVPTPredicationCode; 6817 getMnemonicAcceptInfo(Mnemonic, ExtraToken, Name, CanAcceptCarrySet, 6818 CanAcceptPredicationCode, CanAcceptVPTPredicationCode); 6819 6820 // If we had a carry-set on an instruction that can't do that, issue an 6821 // error. 6822 if (!CanAcceptCarrySet && CarrySetting) { 6823 return Error(NameLoc, "instruction '" + Mnemonic + 6824 "' can not set flags, but 's' suffix specified"); 6825 } 6826 // If we had a predication code on an instruction that can't do that, issue an 6827 // error. 6828 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 6829 return Error(NameLoc, "instruction '" + Mnemonic + 6830 "' is not predicable, but condition code specified"); 6831 } 6832 6833 // If we had a VPT predication code on an instruction that can't do that, issue an 6834 // error. 6835 if (!CanAcceptVPTPredicationCode && VPTPredicationCode != ARMVCC::None) { 6836 return Error(NameLoc, "instruction '" + Mnemonic + 6837 "' is not VPT predicable, but VPT code T/E is specified"); 6838 } 6839 6840 // Add the carry setting operand, if necessary. 6841 if (CanAcceptCarrySet) { 6842 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 6843 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 6844 Loc)); 6845 } 6846 6847 // Add the predication code operand, if necessary. 6848 if (CanAcceptPredicationCode) { 6849 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6850 CarrySetting); 6851 Operands.push_back(ARMOperand::CreateCondCode( 6852 ARMCC::CondCodes(PredicationCode), Loc)); 6853 } 6854 6855 // Add the VPT predication code operand, if necessary. 6856 // FIXME: We don't add them for the instructions filtered below as these can 6857 // have custom operands which need special parsing. This parsing requires 6858 // the operand to be in the same place in the OperandVector as their 6859 // definition in tblgen. Since these instructions may also have the 6860 // scalar predication operand we do not add the vector one and leave until 6861 // now to fix it up. 6862 if (CanAcceptVPTPredicationCode && Mnemonic != "vmov" && 6863 !Mnemonic.startswith("vcmp") && 6864 !(Mnemonic.startswith("vcvt") && Mnemonic != "vcvta" && 6865 Mnemonic != "vcvtn" && Mnemonic != "vcvtp" && Mnemonic != "vcvtm")) { 6866 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 6867 CarrySetting); 6868 Operands.push_back(ARMOperand::CreateVPTPred( 6869 ARMVCC::VPTCodes(VPTPredicationCode), Loc)); 6870 } 6871 6872 // Add the processor imod operand, if necessary. 6873 if (ProcessorIMod) { 6874 Operands.push_back(ARMOperand::CreateImm( 6875 MCConstantExpr::create(ProcessorIMod, getContext()), 6876 NameLoc, NameLoc)); 6877 } else if (Mnemonic == "cps" && isMClass()) { 6878 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 6879 } 6880 6881 // Add the remaining tokens in the mnemonic. 6882 while (Next != StringRef::npos) { 6883 Start = Next; 6884 Next = Name.find('.', Start + 1); 6885 ExtraToken = Name.slice(Start, Next); 6886 6887 // Some NEON instructions have an optional datatype suffix that is 6888 // completely ignored. Check for that. 6889 if (isDataTypeToken(ExtraToken) && 6890 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 6891 continue; 6892 6893 // For for ARM mode generate an error if the .n qualifier is used. 6894 if (ExtraToken == ".n" && !isThumb()) { 6895 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6896 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 6897 "arm mode"); 6898 } 6899 6900 // The .n qualifier is always discarded as that is what the tables 6901 // and matcher expect. In ARM mode the .w qualifier has no effect, 6902 // so discard it to avoid errors that can be caused by the matcher. 6903 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 6904 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 6905 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 6906 } 6907 } 6908 6909 // Read the remaining operands. 6910 if (getLexer().isNot(AsmToken::EndOfStatement)) { 6911 // Read the first operand. 6912 if (parseOperand(Operands, Mnemonic)) { 6913 return true; 6914 } 6915 6916 while (parseOptionalToken(AsmToken::Comma)) { 6917 // Parse and remember the operand. 6918 if (parseOperand(Operands, Mnemonic)) { 6919 return true; 6920 } 6921 } 6922 } 6923 6924 if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list")) 6925 return true; 6926 6927 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 6928 6929 // Some instructions, mostly Thumb, have forms for the same mnemonic that 6930 // do and don't have a cc_out optional-def operand. With some spot-checks 6931 // of the operand list, we can figure out which variant we're trying to 6932 // parse and adjust accordingly before actually matching. We shouldn't ever 6933 // try to remove a cc_out operand that was explicitly set on the 6934 // mnemonic, of course (CarrySetting == true). Reason number #317 the 6935 // table driven matcher doesn't fit well with the ARM instruction set. 6936 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 6937 Operands.erase(Operands.begin() + 1); 6938 6939 // Some instructions have the same mnemonic, but don't always 6940 // have a predicate. Distinguish them here and delete the 6941 // appropriate predicate if needed. This could be either the scalar 6942 // predication code or the vector predication code. 6943 if (PredicationCode == ARMCC::AL && 6944 shouldOmitPredicateOperand(Mnemonic, Operands)) 6945 Operands.erase(Operands.begin() + 1); 6946 6947 6948 if (hasMVE()) { 6949 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands) && 6950 Mnemonic == "vmov" && PredicationCode == ARMCC::LT) { 6951 // Very nasty hack to deal with the vector predicated variant of vmovlt 6952 // the scalar predicated vmov with condition 'lt'. We can not tell them 6953 // apart until we have parsed their operands. 6954 Operands.erase(Operands.begin() + 1); 6955 Operands.erase(Operands.begin()); 6956 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 6957 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 6958 Mnemonic.size() - 1 + CarrySetting); 6959 Operands.insert(Operands.begin(), 6960 ARMOperand::CreateVPTPred(ARMVCC::None, PLoc)); 6961 Operands.insert(Operands.begin(), 6962 ARMOperand::CreateToken(StringRef("vmovlt"), MLoc)); 6963 } else if (Mnemonic == "vcvt" && PredicationCode == ARMCC::NE && 6964 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 6965 // Another nasty hack to deal with the ambiguity between vcvt with scalar 6966 // predication 'ne' and vcvtn with vector predication 'e'. As above we 6967 // can only distinguish between the two after we have parsed their 6968 // operands. 6969 Operands.erase(Operands.begin() + 1); 6970 Operands.erase(Operands.begin()); 6971 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 6972 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 6973 Mnemonic.size() - 1 + CarrySetting); 6974 Operands.insert(Operands.begin(), 6975 ARMOperand::CreateVPTPred(ARMVCC::Else, PLoc)); 6976 Operands.insert(Operands.begin(), 6977 ARMOperand::CreateToken(StringRef("vcvtn"), MLoc)); 6978 } else if (Mnemonic == "vmul" && PredicationCode == ARMCC::LT && 6979 !shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 6980 // Another hack, this time to distinguish between scalar predicated vmul 6981 // with 'lt' predication code and the vector instruction vmullt with 6982 // vector predication code "none" 6983 Operands.erase(Operands.begin() + 1); 6984 Operands.erase(Operands.begin()); 6985 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 6986 Operands.insert(Operands.begin(), 6987 ARMOperand::CreateToken(StringRef("vmullt"), MLoc)); 6988 } 6989 // For vmov and vcmp, as mentioned earlier, we did not add the vector 6990 // predication code, since these may contain operands that require 6991 // special parsing. So now we have to see if they require vector 6992 // predication and replace the scalar one with the vector predication 6993 // operand if that is the case. 6994 else if (Mnemonic == "vmov" || Mnemonic.startswith("vcmp") || 6995 (Mnemonic.startswith("vcvt") && !Mnemonic.startswith("vcvta") && 6996 !Mnemonic.startswith("vcvtn") && !Mnemonic.startswith("vcvtp") && 6997 !Mnemonic.startswith("vcvtm"))) { 6998 if (!shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 6999 // We could not split the vector predicate off vcvt because it might 7000 // have been the scalar vcvtt instruction. Now we know its a vector 7001 // instruction, we still need to check whether its the vector 7002 // predicated vcvt with 'Then' predication or the vector vcvtt. We can 7003 // distinguish the two based on the suffixes, if it is any of 7004 // ".f16.f32", ".f32.f16", ".f16.f64" or ".f64.f16" then it is the vcvtt. 7005 if (Mnemonic.startswith("vcvtt") && Operands.size() >= 4) { 7006 auto Sz1 = static_cast<ARMOperand &>(*Operands[2]); 7007 auto Sz2 = static_cast<ARMOperand &>(*Operands[3]); 7008 if (!(Sz1.isToken() && Sz1.getToken().startswith(".f") && 7009 Sz2.isToken() && Sz2.getToken().startswith(".f"))) { 7010 Operands.erase(Operands.begin()); 7011 SMLoc MLoc = SMLoc::getFromPointer(NameLoc.getPointer()); 7012 VPTPredicationCode = ARMVCC::Then; 7013 7014 Mnemonic = Mnemonic.substr(0, 4); 7015 Operands.insert(Operands.begin(), 7016 ARMOperand::CreateToken(Mnemonic, MLoc)); 7017 } 7018 } 7019 Operands.erase(Operands.begin() + 1); 7020 SMLoc PLoc = SMLoc::getFromPointer(NameLoc.getPointer() + 7021 Mnemonic.size() + CarrySetting); 7022 Operands.insert(Operands.begin() + 1, 7023 ARMOperand::CreateVPTPred( 7024 ARMVCC::VPTCodes(VPTPredicationCode), PLoc)); 7025 } 7026 } else if (CanAcceptVPTPredicationCode) { 7027 // For all other instructions, make sure only one of the two 7028 // predication operands is left behind, depending on whether we should 7029 // use the vector predication. 7030 if (shouldOmitVectorPredicateOperand(Mnemonic, Operands)) { 7031 if (CanAcceptPredicationCode) 7032 Operands.erase(Operands.begin() + 2); 7033 else 7034 Operands.erase(Operands.begin() + 1); 7035 } else if (CanAcceptPredicationCode && PredicationCode == ARMCC::AL) { 7036 Operands.erase(Operands.begin() + 1); 7037 } 7038 } 7039 } 7040 7041 if (VPTPredicationCode != ARMVCC::None) { 7042 bool usedVPTPredicationCode = false; 7043 for (unsigned I = 1; I < Operands.size(); ++I) 7044 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7045 usedVPTPredicationCode = true; 7046 if (!usedVPTPredicationCode) { 7047 // If we have a VPT predication code and we haven't just turned it 7048 // into an operand, then it was a mistake for splitMnemonic to 7049 // separate it from the rest of the mnemonic in the first place, 7050 // and this may lead to wrong disassembly (e.g. scalar floating 7051 // point VCMPE is actually a different instruction from VCMP, so 7052 // we mustn't treat them the same). In that situation, glue it 7053 // back on. 7054 Mnemonic = Name.slice(0, Mnemonic.size() + 1); 7055 Operands.erase(Operands.begin()); 7056 Operands.insert(Operands.begin(), 7057 ARMOperand::CreateToken(Mnemonic, NameLoc)); 7058 } 7059 } 7060 7061 // ARM mode 'blx' need special handling, as the register operand version 7062 // is predicable, but the label operand version is not. So, we can't rely 7063 // on the Mnemonic based checking to correctly figure out when to put 7064 // a k_CondCode operand in the list. If we're trying to match the label 7065 // version, remove the k_CondCode operand here. 7066 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 7067 static_cast<ARMOperand &>(*Operands[2]).isImm()) 7068 Operands.erase(Operands.begin() + 1); 7069 7070 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 7071 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 7072 // a single GPRPair reg operand is used in the .td file to replace the two 7073 // GPRs. However, when parsing from asm, the two GRPs cannot be 7074 // automatically 7075 // expressed as a GPRPair, so we have to manually merge them. 7076 // FIXME: We would really like to be able to tablegen'erate this. 7077 if (!isThumb() && Operands.size() > 4 && 7078 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 7079 Mnemonic == "stlexd")) { 7080 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 7081 unsigned Idx = isLoad ? 2 : 3; 7082 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 7083 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 7084 7085 const MCRegisterClass &MRC = MRI->getRegClass(ARM::GPRRegClassID); 7086 // Adjust only if Op1 and Op2 are GPRs. 7087 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 7088 MRC.contains(Op2.getReg())) { 7089 unsigned Reg1 = Op1.getReg(); 7090 unsigned Reg2 = Op2.getReg(); 7091 unsigned Rt = MRI->getEncodingValue(Reg1); 7092 unsigned Rt2 = MRI->getEncodingValue(Reg2); 7093 7094 // Rt2 must be Rt + 1 and Rt must be even. 7095 if (Rt + 1 != Rt2 || (Rt & 1)) { 7096 return Error(Op2.getStartLoc(), 7097 isLoad ? "destination operands must be sequential" 7098 : "source operands must be sequential"); 7099 } 7100 unsigned NewReg = MRI->getMatchingSuperReg( 7101 Reg1, ARM::gsub_0, &(MRI->getRegClass(ARM::GPRPairRegClassID))); 7102 Operands[Idx] = 7103 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 7104 Operands.erase(Operands.begin() + Idx + 1); 7105 } 7106 } 7107 7108 // GNU Assembler extension (compatibility). 7109 fixupGNULDRDAlias(Mnemonic, Operands); 7110 7111 // FIXME: As said above, this is all a pretty gross hack. This instruction 7112 // does not fit with other "subs" and tblgen. 7113 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 7114 // so the Mnemonic is the original name "subs" and delete the predicate 7115 // operand so it will match the table entry. 7116 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 7117 static_cast<ARMOperand &>(*Operands[3]).isReg() && 7118 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 7119 static_cast<ARMOperand &>(*Operands[4]).isReg() && 7120 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 7121 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 7122 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 7123 Operands.erase(Operands.begin() + 1); 7124 } 7125 return false; 7126 } 7127 7128 // Validate context-sensitive operand constraints. 7129 7130 // return 'true' if register list contains non-low GPR registers, 7131 // 'false' otherwise. If Reg is in the register list or is HiReg, set 7132 // 'containsReg' to true. 7133 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 7134 unsigned Reg, unsigned HiReg, 7135 bool &containsReg) { 7136 containsReg = false; 7137 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 7138 unsigned OpReg = Inst.getOperand(i).getReg(); 7139 if (OpReg == Reg) 7140 containsReg = true; 7141 // Anything other than a low register isn't legal here. 7142 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 7143 return true; 7144 } 7145 return false; 7146 } 7147 7148 // Check if the specified regisgter is in the register list of the inst, 7149 // starting at the indicated operand number. 7150 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 7151 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 7152 unsigned OpReg = Inst.getOperand(i).getReg(); 7153 if (OpReg == Reg) 7154 return true; 7155 } 7156 return false; 7157 } 7158 7159 // Return true if instruction has the interesting property of being 7160 // allowed in IT blocks, but not being predicable. 7161 static bool instIsBreakpoint(const MCInst &Inst) { 7162 return Inst.getOpcode() == ARM::tBKPT || 7163 Inst.getOpcode() == ARM::BKPT || 7164 Inst.getOpcode() == ARM::tHLT || 7165 Inst.getOpcode() == ARM::HLT; 7166 } 7167 7168 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 7169 const OperandVector &Operands, 7170 unsigned ListNo, bool IsARPop) { 7171 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7172 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7173 7174 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7175 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 7176 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7177 7178 if (!IsARPop && ListContainsSP) 7179 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7180 "SP may not be in the register list"); 7181 else if (ListContainsPC && ListContainsLR) 7182 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7183 "PC and LR may not be in the register list simultaneously"); 7184 return false; 7185 } 7186 7187 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 7188 const OperandVector &Operands, 7189 unsigned ListNo) { 7190 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 7191 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 7192 7193 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 7194 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 7195 7196 if (ListContainsSP && ListContainsPC) 7197 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7198 "SP and PC may not be in the register list"); 7199 else if (ListContainsSP) 7200 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7201 "SP may not be in the register list"); 7202 else if (ListContainsPC) 7203 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 7204 "PC may not be in the register list"); 7205 return false; 7206 } 7207 7208 bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst, 7209 const OperandVector &Operands, 7210 bool Load, bool ARMMode, bool Writeback) { 7211 unsigned RtIndex = Load || !Writeback ? 0 : 1; 7212 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg()); 7213 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg()); 7214 7215 if (ARMMode) { 7216 // Rt can't be R14. 7217 if (Rt == 14) 7218 return Error(Operands[3]->getStartLoc(), 7219 "Rt can't be R14"); 7220 7221 // Rt must be even-numbered. 7222 if ((Rt & 1) == 1) 7223 return Error(Operands[3]->getStartLoc(), 7224 "Rt must be even-numbered"); 7225 7226 // Rt2 must be Rt + 1. 7227 if (Rt2 != Rt + 1) { 7228 if (Load) 7229 return Error(Operands[3]->getStartLoc(), 7230 "destination operands must be sequential"); 7231 else 7232 return Error(Operands[3]->getStartLoc(), 7233 "source operands must be sequential"); 7234 } 7235 7236 // FIXME: Diagnose m == 15 7237 // FIXME: Diagnose ldrd with m == t || m == t2. 7238 } 7239 7240 if (!ARMMode && Load) { 7241 if (Rt2 == Rt) 7242 return Error(Operands[3]->getStartLoc(), 7243 "destination operands can't be identical"); 7244 } 7245 7246 if (Writeback) { 7247 unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7248 7249 if (Rn == Rt || Rn == Rt2) { 7250 if (Load) 7251 return Error(Operands[3]->getStartLoc(), 7252 "base register needs to be different from destination " 7253 "registers"); 7254 else 7255 return Error(Operands[3]->getStartLoc(), 7256 "source register and base register can't be identical"); 7257 } 7258 7259 // FIXME: Diagnose ldrd/strd with writeback and n == 15. 7260 // (Except the immediate form of ldrd?) 7261 } 7262 7263 return false; 7264 } 7265 7266 static int findFirstVectorPredOperandIdx(const MCInstrDesc &MCID) { 7267 for (unsigned i = 0; i < MCID.NumOperands; ++i) { 7268 if (ARM::isVpred(MCID.OpInfo[i].OperandType)) 7269 return i; 7270 } 7271 return -1; 7272 } 7273 7274 static bool isVectorPredicable(const MCInstrDesc &MCID) { 7275 return findFirstVectorPredOperandIdx(MCID) != -1; 7276 } 7277 7278 // FIXME: We would really like to be able to tablegen'erate this. 7279 bool ARMAsmParser::validateInstruction(MCInst &Inst, 7280 const OperandVector &Operands) { 7281 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 7282 SMLoc Loc = Operands[0]->getStartLoc(); 7283 7284 // Check the IT block state first. 7285 // NOTE: BKPT and HLT instructions have the interesting property of being 7286 // allowed in IT blocks, but not being predicable. They just always execute. 7287 if (inITBlock() && !instIsBreakpoint(Inst)) { 7288 // The instruction must be predicable. 7289 if (!MCID.isPredicable()) 7290 return Error(Loc, "instructions in IT block must be predicable"); 7291 ARMCC::CondCodes Cond = ARMCC::CondCodes( 7292 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm()); 7293 if (Cond != currentITCond()) { 7294 // Find the condition code Operand to get its SMLoc information. 7295 SMLoc CondLoc; 7296 for (unsigned I = 1; I < Operands.size(); ++I) 7297 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 7298 CondLoc = Operands[I]->getStartLoc(); 7299 return Error(CondLoc, "incorrect condition in IT block; got '" + 7300 StringRef(ARMCondCodeToString(Cond)) + 7301 "', but expected '" + 7302 ARMCondCodeToString(currentITCond()) + "'"); 7303 } 7304 // Check for non-'al' condition codes outside of the IT block. 7305 } else if (isThumbTwo() && MCID.isPredicable() && 7306 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7307 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 7308 Inst.getOpcode() != ARM::t2Bcc && 7309 Inst.getOpcode() != ARM::t2BFic) { 7310 return Error(Loc, "predicated instructions must be in IT block"); 7311 } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() && 7312 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 7313 ARMCC::AL) { 7314 return Warning(Loc, "predicated instructions should be in IT block"); 7315 } else if (!MCID.isPredicable()) { 7316 // Check the instruction doesn't have a predicate operand anyway 7317 // that it's not allowed to use. Sometimes this happens in order 7318 // to keep instructions the same shape even though one cannot 7319 // legally be predicated, e.g. vmul.f16 vs vmul.f32. 7320 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) { 7321 if (MCID.OpInfo[i].isPredicate()) { 7322 if (Inst.getOperand(i).getImm() != ARMCC::AL) 7323 return Error(Loc, "instruction is not predicable"); 7324 break; 7325 } 7326 } 7327 } 7328 7329 // PC-setting instructions in an IT block, but not the last instruction of 7330 // the block, are UNPREDICTABLE. 7331 if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) { 7332 return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block"); 7333 } 7334 7335 if (inVPTBlock() && !instIsBreakpoint(Inst)) { 7336 unsigned Bit = extractITMaskBit(VPTState.Mask, VPTState.CurPosition); 7337 if (!isVectorPredicable(MCID)) 7338 return Error(Loc, "instruction in VPT block must be predicable"); 7339 unsigned Pred = Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm(); 7340 unsigned VPTPred = Bit ? ARMVCC::Else : ARMVCC::Then; 7341 if (Pred != VPTPred) { 7342 SMLoc PredLoc; 7343 for (unsigned I = 1; I < Operands.size(); ++I) 7344 if (static_cast<ARMOperand &>(*Operands[I]).isVPTPred()) 7345 PredLoc = Operands[I]->getStartLoc(); 7346 return Error(PredLoc, "incorrect predication in VPT block; got '" + 7347 StringRef(ARMVPTPredToString(ARMVCC::VPTCodes(Pred))) + 7348 "', but expected '" + 7349 ARMVPTPredToString(ARMVCC::VPTCodes(VPTPred)) + "'"); 7350 } 7351 } 7352 else if (isVectorPredicable(MCID) && 7353 Inst.getOperand(findFirstVectorPredOperandIdx(MCID)).getImm() != 7354 ARMVCC::None) 7355 return Error(Loc, "VPT predicated instructions must be in VPT block"); 7356 7357 const unsigned Opcode = Inst.getOpcode(); 7358 switch (Opcode) { 7359 case ARM::t2IT: { 7360 // Encoding is unpredictable if it ever results in a notional 'NV' 7361 // predicate. Since we don't parse 'NV' directly this means an 'AL' 7362 // predicate with an "else" mask bit. 7363 unsigned Cond = Inst.getOperand(0).getImm(); 7364 unsigned Mask = Inst.getOperand(1).getImm(); 7365 7366 // Conditions only allowing a 't' are those with no set bit except 7367 // the lowest-order one that indicates the end of the sequence. In 7368 // other words, powers of 2. 7369 if (Cond == ARMCC::AL && countPopulation(Mask) != 1) 7370 return Error(Loc, "unpredictable IT predicate sequence"); 7371 break; 7372 } 7373 case ARM::LDRD: 7374 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7375 /*Writeback*/false)) 7376 return true; 7377 break; 7378 case ARM::LDRD_PRE: 7379 case ARM::LDRD_POST: 7380 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true, 7381 /*Writeback*/true)) 7382 return true; 7383 break; 7384 case ARM::t2LDRDi8: 7385 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7386 /*Writeback*/false)) 7387 return true; 7388 break; 7389 case ARM::t2LDRD_PRE: 7390 case ARM::t2LDRD_POST: 7391 if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false, 7392 /*Writeback*/true)) 7393 return true; 7394 break; 7395 case ARM::t2BXJ: { 7396 const unsigned RmReg = Inst.getOperand(0).getReg(); 7397 // Rm = SP is no longer unpredictable in v8-A 7398 if (RmReg == ARM::SP && !hasV8Ops()) 7399 return Error(Operands[2]->getStartLoc(), 7400 "r13 (SP) is an unpredictable operand to BXJ"); 7401 return false; 7402 } 7403 case ARM::STRD: 7404 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7405 /*Writeback*/false)) 7406 return true; 7407 break; 7408 case ARM::STRD_PRE: 7409 case ARM::STRD_POST: 7410 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true, 7411 /*Writeback*/true)) 7412 return true; 7413 break; 7414 case ARM::t2STRD_PRE: 7415 case ARM::t2STRD_POST: 7416 if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false, 7417 /*Writeback*/true)) 7418 return true; 7419 break; 7420 case ARM::STR_PRE_IMM: 7421 case ARM::STR_PRE_REG: 7422 case ARM::t2STR_PRE: 7423 case ARM::STR_POST_IMM: 7424 case ARM::STR_POST_REG: 7425 case ARM::t2STR_POST: 7426 case ARM::STRH_PRE: 7427 case ARM::t2STRH_PRE: 7428 case ARM::STRH_POST: 7429 case ARM::t2STRH_POST: 7430 case ARM::STRB_PRE_IMM: 7431 case ARM::STRB_PRE_REG: 7432 case ARM::t2STRB_PRE: 7433 case ARM::STRB_POST_IMM: 7434 case ARM::STRB_POST_REG: 7435 case ARM::t2STRB_POST: { 7436 // Rt must be different from Rn. 7437 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7438 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7439 7440 if (Rt == Rn) 7441 return Error(Operands[3]->getStartLoc(), 7442 "source register and base register can't be identical"); 7443 return false; 7444 } 7445 case ARM::LDR_PRE_IMM: 7446 case ARM::LDR_PRE_REG: 7447 case ARM::t2LDR_PRE: 7448 case ARM::LDR_POST_IMM: 7449 case ARM::LDR_POST_REG: 7450 case ARM::t2LDR_POST: 7451 case ARM::LDRH_PRE: 7452 case ARM::t2LDRH_PRE: 7453 case ARM::LDRH_POST: 7454 case ARM::t2LDRH_POST: 7455 case ARM::LDRSH_PRE: 7456 case ARM::t2LDRSH_PRE: 7457 case ARM::LDRSH_POST: 7458 case ARM::t2LDRSH_POST: 7459 case ARM::LDRB_PRE_IMM: 7460 case ARM::LDRB_PRE_REG: 7461 case ARM::t2LDRB_PRE: 7462 case ARM::LDRB_POST_IMM: 7463 case ARM::LDRB_POST_REG: 7464 case ARM::t2LDRB_POST: 7465 case ARM::LDRSB_PRE: 7466 case ARM::t2LDRSB_PRE: 7467 case ARM::LDRSB_POST: 7468 case ARM::t2LDRSB_POST: { 7469 // Rt must be different from Rn. 7470 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7471 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7472 7473 if (Rt == Rn) 7474 return Error(Operands[3]->getStartLoc(), 7475 "destination register and base register can't be identical"); 7476 return false; 7477 } 7478 7479 case ARM::MVE_VLDRBU8_rq: 7480 case ARM::MVE_VLDRBU16_rq: 7481 case ARM::MVE_VLDRBS16_rq: 7482 case ARM::MVE_VLDRBU32_rq: 7483 case ARM::MVE_VLDRBS32_rq: 7484 case ARM::MVE_VLDRHU16_rq: 7485 case ARM::MVE_VLDRHU16_rq_u: 7486 case ARM::MVE_VLDRHU32_rq: 7487 case ARM::MVE_VLDRHU32_rq_u: 7488 case ARM::MVE_VLDRHS32_rq: 7489 case ARM::MVE_VLDRHS32_rq_u: 7490 case ARM::MVE_VLDRWU32_rq: 7491 case ARM::MVE_VLDRWU32_rq_u: 7492 case ARM::MVE_VLDRDU64_rq: 7493 case ARM::MVE_VLDRDU64_rq_u: 7494 case ARM::MVE_VLDRWU32_qi: 7495 case ARM::MVE_VLDRWU32_qi_pre: 7496 case ARM::MVE_VLDRDU64_qi: 7497 case ARM::MVE_VLDRDU64_qi_pre: { 7498 // Qd must be different from Qm. 7499 unsigned QdIdx = 0, QmIdx = 2; 7500 bool QmIsPointer = false; 7501 switch (Opcode) { 7502 case ARM::MVE_VLDRWU32_qi: 7503 case ARM::MVE_VLDRDU64_qi: 7504 QmIdx = 1; 7505 QmIsPointer = true; 7506 break; 7507 case ARM::MVE_VLDRWU32_qi_pre: 7508 case ARM::MVE_VLDRDU64_qi_pre: 7509 QdIdx = 1; 7510 QmIsPointer = true; 7511 break; 7512 } 7513 7514 const unsigned Qd = MRI->getEncodingValue(Inst.getOperand(QdIdx).getReg()); 7515 const unsigned Qm = MRI->getEncodingValue(Inst.getOperand(QmIdx).getReg()); 7516 7517 if (Qd == Qm) { 7518 return Error(Operands[3]->getStartLoc(), 7519 Twine("destination vector register and vector ") + 7520 (QmIsPointer ? "pointer" : "offset") + 7521 " register can't be identical"); 7522 } 7523 return false; 7524 } 7525 7526 case ARM::SBFX: 7527 case ARM::t2SBFX: 7528 case ARM::UBFX: 7529 case ARM::t2UBFX: { 7530 // Width must be in range [1, 32-lsb]. 7531 unsigned LSB = Inst.getOperand(2).getImm(); 7532 unsigned Widthm1 = Inst.getOperand(3).getImm(); 7533 if (Widthm1 >= 32 - LSB) 7534 return Error(Operands[5]->getStartLoc(), 7535 "bitfield width must be in range [1,32-lsb]"); 7536 return false; 7537 } 7538 // Notionally handles ARM::tLDMIA_UPD too. 7539 case ARM::tLDMIA: { 7540 // If we're parsing Thumb2, the .w variant is available and handles 7541 // most cases that are normally illegal for a Thumb1 LDM instruction. 7542 // We'll make the transformation in processInstruction() if necessary. 7543 // 7544 // Thumb LDM instructions are writeback iff the base register is not 7545 // in the register list. 7546 unsigned Rn = Inst.getOperand(0).getReg(); 7547 bool HasWritebackToken = 7548 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 7549 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 7550 bool ListContainsBase; 7551 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 7552 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 7553 "registers must be in range r0-r7"); 7554 // If we should have writeback, then there should be a '!' token. 7555 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 7556 return Error(Operands[2]->getStartLoc(), 7557 "writeback operator '!' expected"); 7558 // If we should not have writeback, there must not be a '!'. This is 7559 // true even for the 32-bit wide encodings. 7560 if (ListContainsBase && HasWritebackToken) 7561 return Error(Operands[3]->getStartLoc(), 7562 "writeback operator '!' not allowed when base register " 7563 "in register list"); 7564 7565 if (validatetLDMRegList(Inst, Operands, 3)) 7566 return true; 7567 break; 7568 } 7569 case ARM::LDMIA_UPD: 7570 case ARM::LDMDB_UPD: 7571 case ARM::LDMIB_UPD: 7572 case ARM::LDMDA_UPD: 7573 // ARM variants loading and updating the same register are only officially 7574 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 7575 if (!hasV7Ops()) 7576 break; 7577 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7578 return Error(Operands.back()->getStartLoc(), 7579 "writeback register not allowed in register list"); 7580 break; 7581 case ARM::t2LDMIA: 7582 case ARM::t2LDMDB: 7583 if (validatetLDMRegList(Inst, Operands, 3)) 7584 return true; 7585 break; 7586 case ARM::t2STMIA: 7587 case ARM::t2STMDB: 7588 if (validatetSTMRegList(Inst, Operands, 3)) 7589 return true; 7590 break; 7591 case ARM::t2LDMIA_UPD: 7592 case ARM::t2LDMDB_UPD: 7593 case ARM::t2STMIA_UPD: 7594 case ARM::t2STMDB_UPD: 7595 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 7596 return Error(Operands.back()->getStartLoc(), 7597 "writeback register not allowed in register list"); 7598 7599 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 7600 if (validatetLDMRegList(Inst, Operands, 3)) 7601 return true; 7602 } else { 7603 if (validatetSTMRegList(Inst, Operands, 3)) 7604 return true; 7605 } 7606 break; 7607 7608 case ARM::sysLDMIA_UPD: 7609 case ARM::sysLDMDA_UPD: 7610 case ARM::sysLDMDB_UPD: 7611 case ARM::sysLDMIB_UPD: 7612 if (!listContainsReg(Inst, 3, ARM::PC)) 7613 return Error(Operands[4]->getStartLoc(), 7614 "writeback register only allowed on system LDM " 7615 "if PC in register-list"); 7616 break; 7617 case ARM::sysSTMIA_UPD: 7618 case ARM::sysSTMDA_UPD: 7619 case ARM::sysSTMDB_UPD: 7620 case ARM::sysSTMIB_UPD: 7621 return Error(Operands[2]->getStartLoc(), 7622 "system STM cannot have writeback register"); 7623 case ARM::tMUL: 7624 // The second source operand must be the same register as the destination 7625 // operand. 7626 // 7627 // In this case, we must directly check the parsed operands because the 7628 // cvtThumbMultiply() function is written in such a way that it guarantees 7629 // this first statement is always true for the new Inst. Essentially, the 7630 // destination is unconditionally copied into the second source operand 7631 // without checking to see if it matches what we actually parsed. 7632 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 7633 ((ARMOperand &)*Operands[5]).getReg()) && 7634 (((ARMOperand &)*Operands[3]).getReg() != 7635 ((ARMOperand &)*Operands[4]).getReg())) { 7636 return Error(Operands[3]->getStartLoc(), 7637 "destination register must match source register"); 7638 } 7639 break; 7640 7641 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 7642 // so only issue a diagnostic for thumb1. The instructions will be 7643 // switched to the t2 encodings in processInstruction() if necessary. 7644 case ARM::tPOP: { 7645 bool ListContainsBase; 7646 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 7647 !isThumbTwo()) 7648 return Error(Operands[2]->getStartLoc(), 7649 "registers must be in range r0-r7 or pc"); 7650 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 7651 return true; 7652 break; 7653 } 7654 case ARM::tPUSH: { 7655 bool ListContainsBase; 7656 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 7657 !isThumbTwo()) 7658 return Error(Operands[2]->getStartLoc(), 7659 "registers must be in range r0-r7 or lr"); 7660 if (validatetSTMRegList(Inst, Operands, 2)) 7661 return true; 7662 break; 7663 } 7664 case ARM::tSTMIA_UPD: { 7665 bool ListContainsBase, InvalidLowList; 7666 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 7667 0, ListContainsBase); 7668 if (InvalidLowList && !isThumbTwo()) 7669 return Error(Operands[4]->getStartLoc(), 7670 "registers must be in range r0-r7"); 7671 7672 // This would be converted to a 32-bit stm, but that's not valid if the 7673 // writeback register is in the list. 7674 if (InvalidLowList && ListContainsBase) 7675 return Error(Operands[4]->getStartLoc(), 7676 "writeback operator '!' not allowed when base register " 7677 "in register list"); 7678 7679 if (validatetSTMRegList(Inst, Operands, 4)) 7680 return true; 7681 break; 7682 } 7683 case ARM::tADDrSP: 7684 // If the non-SP source operand and the destination operand are not the 7685 // same, we need thumb2 (for the wide encoding), or we have an error. 7686 if (!isThumbTwo() && 7687 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 7688 return Error(Operands[4]->getStartLoc(), 7689 "source register must be the same as destination"); 7690 } 7691 break; 7692 7693 case ARM::t2ADDri: 7694 case ARM::t2ADDri12: 7695 case ARM::t2ADDrr: 7696 case ARM::t2ADDrs: 7697 case ARM::t2SUBri: 7698 case ARM::t2SUBri12: 7699 case ARM::t2SUBrr: 7700 case ARM::t2SUBrs: 7701 if (Inst.getOperand(0).getReg() == ARM::SP && 7702 Inst.getOperand(1).getReg() != ARM::SP) 7703 return Error(Operands[4]->getStartLoc(), 7704 "source register must be sp if destination is sp"); 7705 break; 7706 7707 // Final range checking for Thumb unconditional branch instructions. 7708 case ARM::tB: 7709 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 7710 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7711 break; 7712 case ARM::t2B: { 7713 int op = (Operands[2]->isImm()) ? 2 : 3; 7714 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 7715 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 7716 break; 7717 } 7718 // Final range checking for Thumb conditional branch instructions. 7719 case ARM::tBcc: 7720 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 7721 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7722 break; 7723 case ARM::t2Bcc: { 7724 int Op = (Operands[2]->isImm()) ? 2 : 3; 7725 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 7726 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 7727 break; 7728 } 7729 case ARM::tCBZ: 7730 case ARM::tCBNZ: { 7731 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>()) 7732 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 7733 break; 7734 } 7735 case ARM::MOVi16: 7736 case ARM::MOVTi16: 7737 case ARM::t2MOVi16: 7738 case ARM::t2MOVTi16: 7739 { 7740 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 7741 // especially when we turn it into a movw and the expression <symbol> does 7742 // not have a :lower16: or :upper16 as part of the expression. We don't 7743 // want the behavior of silently truncating, which can be unexpected and 7744 // lead to bugs that are difficult to find since this is an easy mistake 7745 // to make. 7746 int i = (Operands[3]->isImm()) ? 3 : 4; 7747 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 7748 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 7749 if (CE) break; 7750 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 7751 if (!E) break; 7752 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 7753 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 7754 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 7755 return Error( 7756 Op.getStartLoc(), 7757 "immediate expression for mov requires :lower16: or :upper16"); 7758 break; 7759 } 7760 case ARM::HINT: 7761 case ARM::t2HINT: { 7762 unsigned Imm8 = Inst.getOperand(0).getImm(); 7763 unsigned Pred = Inst.getOperand(1).getImm(); 7764 // ESB is not predicable (pred must be AL). Without the RAS extension, this 7765 // behaves as any other unallocated hint. 7766 if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS()) 7767 return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not " 7768 "predicable, but condition " 7769 "code specified"); 7770 if (Imm8 == 0x14 && Pred != ARMCC::AL) 7771 return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not " 7772 "predicable, but condition " 7773 "code specified"); 7774 break; 7775 } 7776 case ARM::t2BFi: 7777 case ARM::t2BFr: 7778 case ARM::t2BFLi: 7779 case ARM::t2BFLr: { 7780 if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<4, 1>() || 7781 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 7782 return Error(Operands[2]->getStartLoc(), 7783 "branch location out of range or not a multiple of 2"); 7784 7785 if (Opcode == ARM::t2BFi) { 7786 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<16, 1>()) 7787 return Error(Operands[3]->getStartLoc(), 7788 "branch target out of range or not a multiple of 2"); 7789 } else if (Opcode == ARM::t2BFLi) { 7790 if (!static_cast<ARMOperand &>(*Operands[3]).isSignedOffset<18, 1>()) 7791 return Error(Operands[3]->getStartLoc(), 7792 "branch target out of range or not a multiple of 2"); 7793 } 7794 break; 7795 } 7796 case ARM::t2BFic: { 7797 if (!static_cast<ARMOperand &>(*Operands[1]).isUnsignedOffset<4, 1>() || 7798 (Inst.getOperand(0).isImm() && Inst.getOperand(0).getImm() == 0)) 7799 return Error(Operands[1]->getStartLoc(), 7800 "branch location out of range or not a multiple of 2"); 7801 7802 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<16, 1>()) 7803 return Error(Operands[2]->getStartLoc(), 7804 "branch target out of range or not a multiple of 2"); 7805 7806 assert(Inst.getOperand(0).isImm() == Inst.getOperand(2).isImm() && 7807 "branch location and else branch target should either both be " 7808 "immediates or both labels"); 7809 7810 if (Inst.getOperand(0).isImm() && Inst.getOperand(2).isImm()) { 7811 int Diff = Inst.getOperand(2).getImm() - Inst.getOperand(0).getImm(); 7812 if (Diff != 4 && Diff != 2) 7813 return Error( 7814 Operands[3]->getStartLoc(), 7815 "else branch target must be 2 or 4 greater than the branch location"); 7816 } 7817 break; 7818 } 7819 case ARM::t2CLRM: { 7820 for (unsigned i = 2; i < Inst.getNumOperands(); i++) { 7821 if (Inst.getOperand(i).isReg() && 7822 !ARMMCRegisterClasses[ARM::GPRwithAPSRnospRegClassID].contains( 7823 Inst.getOperand(i).getReg())) { 7824 return Error(Operands[2]->getStartLoc(), 7825 "invalid register in register list. Valid registers are " 7826 "r0-r12, lr/r14 and APSR."); 7827 } 7828 } 7829 break; 7830 } 7831 case ARM::DSB: 7832 case ARM::t2DSB: { 7833 7834 if (Inst.getNumOperands() < 2) 7835 break; 7836 7837 unsigned Option = Inst.getOperand(0).getImm(); 7838 unsigned Pred = Inst.getOperand(1).getImm(); 7839 7840 // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL). 7841 if (Option == 0 && Pred != ARMCC::AL) 7842 return Error(Operands[1]->getStartLoc(), 7843 "instruction 'ssbb' is not predicable, but condition code " 7844 "specified"); 7845 if (Option == 4 && Pred != ARMCC::AL) 7846 return Error(Operands[1]->getStartLoc(), 7847 "instruction 'pssbb' is not predicable, but condition code " 7848 "specified"); 7849 break; 7850 } 7851 case ARM::VMOVRRS: { 7852 // Source registers must be sequential. 7853 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 7854 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 7855 if (Sm1 != Sm + 1) 7856 return Error(Operands[5]->getStartLoc(), 7857 "source operands must be sequential"); 7858 break; 7859 } 7860 case ARM::VMOVSRR: { 7861 // Destination registers must be sequential. 7862 const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 7863 const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 7864 if (Sm1 != Sm + 1) 7865 return Error(Operands[3]->getStartLoc(), 7866 "destination operands must be sequential"); 7867 break; 7868 } 7869 case ARM::VLDMDIA: 7870 case ARM::VSTMDIA: { 7871 ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]); 7872 auto &RegList = Op.getRegList(); 7873 if (RegList.size() < 1 || RegList.size() > 16) 7874 return Error(Operands[3]->getStartLoc(), 7875 "list of registers must be at least 1 and at most 16"); 7876 break; 7877 } 7878 case ARM::MVE_VQDMULLs32bh: 7879 case ARM::MVE_VQDMULLs32th: 7880 case ARM::MVE_VCMULf32: 7881 case ARM::MVE_VMULLs32bh: 7882 case ARM::MVE_VMULLs32th: 7883 case ARM::MVE_VMULLu32bh: 7884 case ARM::MVE_VMULLu32th: { 7885 if (Operands[3]->getReg() == Operands[4]->getReg()) { 7886 return Error (Operands[3]->getStartLoc(), 7887 "Qd register and Qn register can't be identical"); 7888 } 7889 if (Operands[3]->getReg() == Operands[5]->getReg()) { 7890 return Error (Operands[3]->getStartLoc(), 7891 "Qd register and Qm register can't be identical"); 7892 } 7893 break; 7894 } 7895 case ARM::MVE_VMOV_rr_q: { 7896 if (Operands[4]->getReg() != Operands[6]->getReg()) 7897 return Error (Operands[4]->getStartLoc(), "Q-registers must be the same"); 7898 if (static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() != 7899 static_cast<ARMOperand &>(*Operands[7]).getVectorIndex() + 2) 7900 return Error (Operands[5]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 7901 break; 7902 } 7903 case ARM::MVE_VMOV_q_rr: { 7904 if (Operands[2]->getReg() != Operands[4]->getReg()) 7905 return Error (Operands[2]->getStartLoc(), "Q-registers must be the same"); 7906 if (static_cast<ARMOperand &>(*Operands[3]).getVectorIndex() != 7907 static_cast<ARMOperand &>(*Operands[5]).getVectorIndex() + 2) 7908 return Error (Operands[3]->getStartLoc(), "Q-register indexes must be 2 and 0 or 3 and 1"); 7909 break; 7910 } 7911 } 7912 7913 return false; 7914 } 7915 7916 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 7917 switch(Opc) { 7918 default: llvm_unreachable("unexpected opcode!"); 7919 // VST1LN 7920 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 7921 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 7922 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 7923 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 7924 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 7925 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 7926 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 7927 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 7928 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 7929 7930 // VST2LN 7931 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 7932 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 7933 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 7934 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 7935 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 7936 7937 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 7938 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 7939 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 7940 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 7941 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 7942 7943 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 7944 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 7945 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 7946 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 7947 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 7948 7949 // VST3LN 7950 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 7951 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 7952 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 7953 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 7954 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 7955 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 7956 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 7957 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 7958 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 7959 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 7960 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 7961 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 7962 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 7963 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 7964 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 7965 7966 // VST3 7967 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 7968 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 7969 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 7970 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 7971 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 7972 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 7973 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 7974 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 7975 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 7976 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 7977 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 7978 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 7979 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 7980 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 7981 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 7982 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 7983 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 7984 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 7985 7986 // VST4LN 7987 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 7988 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 7989 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 7990 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 7991 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 7992 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 7993 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 7994 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 7995 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 7996 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 7997 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 7998 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 7999 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 8000 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 8001 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 8002 8003 // VST4 8004 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8005 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8006 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8007 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8008 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8009 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8010 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 8011 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 8012 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 8013 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 8014 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 8015 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 8016 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 8017 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 8018 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 8019 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 8020 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 8021 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 8022 } 8023 } 8024 8025 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 8026 switch(Opc) { 8027 default: llvm_unreachable("unexpected opcode!"); 8028 // VLD1LN 8029 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8030 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8031 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8032 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 8033 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 8034 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 8035 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 8036 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 8037 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 8038 8039 // VLD2LN 8040 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8041 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8042 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8043 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 8044 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8045 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 8046 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 8047 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 8048 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 8049 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 8050 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 8051 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 8052 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 8053 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 8054 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 8055 8056 // VLD3DUP 8057 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8058 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8059 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8060 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 8061 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8062 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8063 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 8064 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 8065 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 8066 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 8067 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 8068 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 8069 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 8070 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 8071 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 8072 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 8073 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 8074 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 8075 8076 // VLD3LN 8077 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8078 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8079 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8080 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 8081 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8082 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 8083 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 8084 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 8085 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 8086 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 8087 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 8088 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 8089 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 8090 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 8091 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 8092 8093 // VLD3 8094 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8095 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8096 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8097 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8098 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8099 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8100 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 8101 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 8102 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 8103 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 8104 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 8105 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 8106 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 8107 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 8108 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 8109 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 8110 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 8111 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 8112 8113 // VLD4LN 8114 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8115 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8116 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8117 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8118 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8119 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 8120 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 8121 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 8122 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 8123 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 8124 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 8125 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 8126 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 8127 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 8128 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 8129 8130 // VLD4DUP 8131 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8132 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8133 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8134 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 8135 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 8136 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8137 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 8138 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 8139 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 8140 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 8141 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 8142 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 8143 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 8144 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 8145 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 8146 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 8147 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 8148 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 8149 8150 // VLD4 8151 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8152 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8153 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8154 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8155 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8156 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8157 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 8158 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 8159 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 8160 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 8161 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 8162 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 8163 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 8164 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 8165 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 8166 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 8167 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 8168 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 8169 } 8170 } 8171 8172 bool ARMAsmParser::processInstruction(MCInst &Inst, 8173 const OperandVector &Operands, 8174 MCStreamer &Out) { 8175 // Check if we have the wide qualifier, because if it's present we 8176 // must avoid selecting a 16-bit thumb instruction. 8177 bool HasWideQualifier = false; 8178 for (auto &Op : Operands) { 8179 ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op); 8180 if (ARMOp.isToken() && ARMOp.getToken() == ".w") { 8181 HasWideQualifier = true; 8182 break; 8183 } 8184 } 8185 8186 switch (Inst.getOpcode()) { 8187 case ARM::MVE_VORNIZ0v4i32: 8188 case ARM::MVE_VORNIZ0v8i16: 8189 case ARM::MVE_VORNIZ8v4i32: 8190 case ARM::MVE_VORNIZ8v8i16: 8191 case ARM::MVE_VORNIZ16v4i32: 8192 case ARM::MVE_VORNIZ24v4i32: 8193 case ARM::MVE_VANDIZ0v4i32: 8194 case ARM::MVE_VANDIZ0v8i16: 8195 case ARM::MVE_VANDIZ8v4i32: 8196 case ARM::MVE_VANDIZ8v8i16: 8197 case ARM::MVE_VANDIZ16v4i32: 8198 case ARM::MVE_VANDIZ24v4i32: { 8199 unsigned Opcode; 8200 bool imm16 = false; 8201 switch(Inst.getOpcode()) { 8202 case ARM::MVE_VORNIZ0v4i32: Opcode = ARM::MVE_VORRIZ0v4i32; break; 8203 case ARM::MVE_VORNIZ0v8i16: Opcode = ARM::MVE_VORRIZ0v8i16; imm16 = true; break; 8204 case ARM::MVE_VORNIZ8v4i32: Opcode = ARM::MVE_VORRIZ8v4i32; break; 8205 case ARM::MVE_VORNIZ8v8i16: Opcode = ARM::MVE_VORRIZ8v8i16; imm16 = true; break; 8206 case ARM::MVE_VORNIZ16v4i32: Opcode = ARM::MVE_VORRIZ16v4i32; break; 8207 case ARM::MVE_VORNIZ24v4i32: Opcode = ARM::MVE_VORRIZ24v4i32; break; 8208 case ARM::MVE_VANDIZ0v4i32: Opcode = ARM::MVE_VBICIZ0v4i32; break; 8209 case ARM::MVE_VANDIZ0v8i16: Opcode = ARM::MVE_VBICIZ0v8i16; imm16 = true; break; 8210 case ARM::MVE_VANDIZ8v4i32: Opcode = ARM::MVE_VBICIZ8v4i32; break; 8211 case ARM::MVE_VANDIZ8v8i16: Opcode = ARM::MVE_VBICIZ8v8i16; imm16 = true; break; 8212 case ARM::MVE_VANDIZ16v4i32: Opcode = ARM::MVE_VBICIZ16v4i32; break; 8213 case ARM::MVE_VANDIZ24v4i32: Opcode = ARM::MVE_VBICIZ24v4i32; break; 8214 default: llvm_unreachable("unexpected opcode"); 8215 } 8216 8217 MCInst TmpInst; 8218 TmpInst.setOpcode(Opcode); 8219 TmpInst.addOperand(Inst.getOperand(0)); 8220 TmpInst.addOperand(Inst.getOperand(1)); 8221 8222 // invert immediate 8223 unsigned imm = ~Inst.getOperand(2).getImm() & (imm16 ? 0xffff : 0xffffffff); 8224 TmpInst.addOperand(MCOperand::createImm(imm)); 8225 8226 TmpInst.addOperand(Inst.getOperand(3)); 8227 TmpInst.addOperand(Inst.getOperand(4)); 8228 Inst = TmpInst; 8229 return true; 8230 } 8231 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 8232 case ARM::LDRT_POST: 8233 case ARM::LDRBT_POST: { 8234 const unsigned Opcode = 8235 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 8236 : ARM::LDRBT_POST_IMM; 8237 MCInst TmpInst; 8238 TmpInst.setOpcode(Opcode); 8239 TmpInst.addOperand(Inst.getOperand(0)); 8240 TmpInst.addOperand(Inst.getOperand(1)); 8241 TmpInst.addOperand(Inst.getOperand(1)); 8242 TmpInst.addOperand(MCOperand::createReg(0)); 8243 TmpInst.addOperand(MCOperand::createImm(0)); 8244 TmpInst.addOperand(Inst.getOperand(2)); 8245 TmpInst.addOperand(Inst.getOperand(3)); 8246 Inst = TmpInst; 8247 return true; 8248 } 8249 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 8250 case ARM::STRT_POST: 8251 case ARM::STRBT_POST: { 8252 const unsigned Opcode = 8253 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 8254 : ARM::STRBT_POST_IMM; 8255 MCInst TmpInst; 8256 TmpInst.setOpcode(Opcode); 8257 TmpInst.addOperand(Inst.getOperand(1)); 8258 TmpInst.addOperand(Inst.getOperand(0)); 8259 TmpInst.addOperand(Inst.getOperand(1)); 8260 TmpInst.addOperand(MCOperand::createReg(0)); 8261 TmpInst.addOperand(MCOperand::createImm(0)); 8262 TmpInst.addOperand(Inst.getOperand(2)); 8263 TmpInst.addOperand(Inst.getOperand(3)); 8264 Inst = TmpInst; 8265 return true; 8266 } 8267 // Alias for alternate form of 'ADR Rd, #imm' instruction. 8268 case ARM::ADDri: { 8269 if (Inst.getOperand(1).getReg() != ARM::PC || 8270 Inst.getOperand(5).getReg() != 0 || 8271 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 8272 return false; 8273 MCInst TmpInst; 8274 TmpInst.setOpcode(ARM::ADR); 8275 TmpInst.addOperand(Inst.getOperand(0)); 8276 if (Inst.getOperand(2).isImm()) { 8277 // Immediate (mod_imm) will be in its encoded form, we must unencode it 8278 // before passing it to the ADR instruction. 8279 unsigned Enc = Inst.getOperand(2).getImm(); 8280 TmpInst.addOperand(MCOperand::createImm( 8281 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 8282 } else { 8283 // Turn PC-relative expression into absolute expression. 8284 // Reading PC provides the start of the current instruction + 8 and 8285 // the transform to adr is biased by that. 8286 MCSymbol *Dot = getContext().createTempSymbol(); 8287 Out.EmitLabel(Dot); 8288 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 8289 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 8290 MCSymbolRefExpr::VK_None, 8291 getContext()); 8292 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 8293 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 8294 getContext()); 8295 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 8296 getContext()); 8297 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 8298 } 8299 TmpInst.addOperand(Inst.getOperand(3)); 8300 TmpInst.addOperand(Inst.getOperand(4)); 8301 Inst = TmpInst; 8302 return true; 8303 } 8304 // Aliases for alternate PC+imm syntax of LDR instructions. 8305 case ARM::t2LDRpcrel: 8306 // Select the narrow version if the immediate will fit. 8307 if (Inst.getOperand(1).getImm() > 0 && 8308 Inst.getOperand(1).getImm() <= 0xff && 8309 !HasWideQualifier) 8310 Inst.setOpcode(ARM::tLDRpci); 8311 else 8312 Inst.setOpcode(ARM::t2LDRpci); 8313 return true; 8314 case ARM::t2LDRBpcrel: 8315 Inst.setOpcode(ARM::t2LDRBpci); 8316 return true; 8317 case ARM::t2LDRHpcrel: 8318 Inst.setOpcode(ARM::t2LDRHpci); 8319 return true; 8320 case ARM::t2LDRSBpcrel: 8321 Inst.setOpcode(ARM::t2LDRSBpci); 8322 return true; 8323 case ARM::t2LDRSHpcrel: 8324 Inst.setOpcode(ARM::t2LDRSHpci); 8325 return true; 8326 case ARM::LDRConstPool: 8327 case ARM::tLDRConstPool: 8328 case ARM::t2LDRConstPool: { 8329 // Pseudo instruction ldr rt, =immediate is converted to a 8330 // MOV rt, immediate if immediate is known and representable 8331 // otherwise we create a constant pool entry that we load from. 8332 MCInst TmpInst; 8333 if (Inst.getOpcode() == ARM::LDRConstPool) 8334 TmpInst.setOpcode(ARM::LDRi12); 8335 else if (Inst.getOpcode() == ARM::tLDRConstPool) 8336 TmpInst.setOpcode(ARM::tLDRpci); 8337 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 8338 TmpInst.setOpcode(ARM::t2LDRpci); 8339 const ARMOperand &PoolOperand = 8340 (HasWideQualifier ? 8341 static_cast<ARMOperand &>(*Operands[4]) : 8342 static_cast<ARMOperand &>(*Operands[3])); 8343 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 8344 // If SubExprVal is a constant we may be able to use a MOV 8345 if (isa<MCConstantExpr>(SubExprVal) && 8346 Inst.getOperand(0).getReg() != ARM::PC && 8347 Inst.getOperand(0).getReg() != ARM::SP) { 8348 int64_t Value = 8349 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 8350 bool UseMov = true; 8351 bool MovHasS = true; 8352 if (Inst.getOpcode() == ARM::LDRConstPool) { 8353 // ARM Constant 8354 if (ARM_AM::getSOImmVal(Value) != -1) { 8355 Value = ARM_AM::getSOImmVal(Value); 8356 TmpInst.setOpcode(ARM::MOVi); 8357 } 8358 else if (ARM_AM::getSOImmVal(~Value) != -1) { 8359 Value = ARM_AM::getSOImmVal(~Value); 8360 TmpInst.setOpcode(ARM::MVNi); 8361 } 8362 else if (hasV6T2Ops() && 8363 Value >=0 && Value < 65536) { 8364 TmpInst.setOpcode(ARM::MOVi16); 8365 MovHasS = false; 8366 } 8367 else 8368 UseMov = false; 8369 } 8370 else { 8371 // Thumb/Thumb2 Constant 8372 if (hasThumb2() && 8373 ARM_AM::getT2SOImmVal(Value) != -1) 8374 TmpInst.setOpcode(ARM::t2MOVi); 8375 else if (hasThumb2() && 8376 ARM_AM::getT2SOImmVal(~Value) != -1) { 8377 TmpInst.setOpcode(ARM::t2MVNi); 8378 Value = ~Value; 8379 } 8380 else if (hasV8MBaseline() && 8381 Value >=0 && Value < 65536) { 8382 TmpInst.setOpcode(ARM::t2MOVi16); 8383 MovHasS = false; 8384 } 8385 else 8386 UseMov = false; 8387 } 8388 if (UseMov) { 8389 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8390 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 8391 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8392 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8393 if (MovHasS) 8394 TmpInst.addOperand(MCOperand::createReg(0)); // S 8395 Inst = TmpInst; 8396 return true; 8397 } 8398 } 8399 // No opportunity to use MOV/MVN create constant pool 8400 const MCExpr *CPLoc = 8401 getTargetStreamer().addConstantPoolEntry(SubExprVal, 8402 PoolOperand.getStartLoc()); 8403 TmpInst.addOperand(Inst.getOperand(0)); // Rt 8404 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 8405 if (TmpInst.getOpcode() == ARM::LDRi12) 8406 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 8407 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8408 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8409 Inst = TmpInst; 8410 return true; 8411 } 8412 // Handle NEON VST complex aliases. 8413 case ARM::VST1LNdWB_register_Asm_8: 8414 case ARM::VST1LNdWB_register_Asm_16: 8415 case ARM::VST1LNdWB_register_Asm_32: { 8416 MCInst TmpInst; 8417 // Shuffle the operands around so the lane index operand is in the 8418 // right place. 8419 unsigned Spacing; 8420 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8421 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8422 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8423 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8424 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8425 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8426 TmpInst.addOperand(Inst.getOperand(1)); // lane 8427 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8428 TmpInst.addOperand(Inst.getOperand(6)); 8429 Inst = TmpInst; 8430 return true; 8431 } 8432 8433 case ARM::VST2LNdWB_register_Asm_8: 8434 case ARM::VST2LNdWB_register_Asm_16: 8435 case ARM::VST2LNdWB_register_Asm_32: 8436 case ARM::VST2LNqWB_register_Asm_16: 8437 case ARM::VST2LNqWB_register_Asm_32: { 8438 MCInst TmpInst; 8439 // Shuffle the operands around so the lane index operand is in the 8440 // right place. 8441 unsigned Spacing; 8442 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8443 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8444 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8445 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8446 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8447 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8448 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8449 Spacing)); 8450 TmpInst.addOperand(Inst.getOperand(1)); // lane 8451 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8452 TmpInst.addOperand(Inst.getOperand(6)); 8453 Inst = TmpInst; 8454 return true; 8455 } 8456 8457 case ARM::VST3LNdWB_register_Asm_8: 8458 case ARM::VST3LNdWB_register_Asm_16: 8459 case ARM::VST3LNdWB_register_Asm_32: 8460 case ARM::VST3LNqWB_register_Asm_16: 8461 case ARM::VST3LNqWB_register_Asm_32: { 8462 MCInst TmpInst; 8463 // Shuffle the operands around so the lane index operand is in the 8464 // right place. 8465 unsigned Spacing; 8466 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8467 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8468 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8469 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8470 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8471 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8472 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8473 Spacing)); 8474 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8475 Spacing * 2)); 8476 TmpInst.addOperand(Inst.getOperand(1)); // lane 8477 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8478 TmpInst.addOperand(Inst.getOperand(6)); 8479 Inst = TmpInst; 8480 return true; 8481 } 8482 8483 case ARM::VST4LNdWB_register_Asm_8: 8484 case ARM::VST4LNdWB_register_Asm_16: 8485 case ARM::VST4LNdWB_register_Asm_32: 8486 case ARM::VST4LNqWB_register_Asm_16: 8487 case ARM::VST4LNqWB_register_Asm_32: { 8488 MCInst TmpInst; 8489 // Shuffle the operands around so the lane index operand is in the 8490 // right place. 8491 unsigned Spacing; 8492 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8493 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8494 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8495 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8496 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8497 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8498 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8499 Spacing)); 8500 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8501 Spacing * 2)); 8502 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8503 Spacing * 3)); 8504 TmpInst.addOperand(Inst.getOperand(1)); // lane 8505 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8506 TmpInst.addOperand(Inst.getOperand(6)); 8507 Inst = TmpInst; 8508 return true; 8509 } 8510 8511 case ARM::VST1LNdWB_fixed_Asm_8: 8512 case ARM::VST1LNdWB_fixed_Asm_16: 8513 case ARM::VST1LNdWB_fixed_Asm_32: { 8514 MCInst TmpInst; 8515 // Shuffle the operands around so the lane index operand is in the 8516 // right place. 8517 unsigned Spacing; 8518 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8519 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8520 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8521 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8522 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8523 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8524 TmpInst.addOperand(Inst.getOperand(1)); // lane 8525 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8526 TmpInst.addOperand(Inst.getOperand(5)); 8527 Inst = TmpInst; 8528 return true; 8529 } 8530 8531 case ARM::VST2LNdWB_fixed_Asm_8: 8532 case ARM::VST2LNdWB_fixed_Asm_16: 8533 case ARM::VST2LNdWB_fixed_Asm_32: 8534 case ARM::VST2LNqWB_fixed_Asm_16: 8535 case ARM::VST2LNqWB_fixed_Asm_32: { 8536 MCInst TmpInst; 8537 // Shuffle the operands around so the lane index operand is in the 8538 // right place. 8539 unsigned Spacing; 8540 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8541 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8542 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8543 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8544 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8545 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8546 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8547 Spacing)); 8548 TmpInst.addOperand(Inst.getOperand(1)); // lane 8549 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8550 TmpInst.addOperand(Inst.getOperand(5)); 8551 Inst = TmpInst; 8552 return true; 8553 } 8554 8555 case ARM::VST3LNdWB_fixed_Asm_8: 8556 case ARM::VST3LNdWB_fixed_Asm_16: 8557 case ARM::VST3LNdWB_fixed_Asm_32: 8558 case ARM::VST3LNqWB_fixed_Asm_16: 8559 case ARM::VST3LNqWB_fixed_Asm_32: { 8560 MCInst TmpInst; 8561 // Shuffle the operands around so the lane index operand is in the 8562 // right place. 8563 unsigned Spacing; 8564 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8565 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8566 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8567 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8568 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8569 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8570 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8571 Spacing)); 8572 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8573 Spacing * 2)); 8574 TmpInst.addOperand(Inst.getOperand(1)); // lane 8575 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8576 TmpInst.addOperand(Inst.getOperand(5)); 8577 Inst = TmpInst; 8578 return true; 8579 } 8580 8581 case ARM::VST4LNdWB_fixed_Asm_8: 8582 case ARM::VST4LNdWB_fixed_Asm_16: 8583 case ARM::VST4LNdWB_fixed_Asm_32: 8584 case ARM::VST4LNqWB_fixed_Asm_16: 8585 case ARM::VST4LNqWB_fixed_Asm_32: { 8586 MCInst TmpInst; 8587 // Shuffle the operands around so the lane index operand is in the 8588 // right place. 8589 unsigned Spacing; 8590 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8591 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8592 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8593 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8594 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8595 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8596 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8597 Spacing)); 8598 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8599 Spacing * 2)); 8600 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8601 Spacing * 3)); 8602 TmpInst.addOperand(Inst.getOperand(1)); // lane 8603 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8604 TmpInst.addOperand(Inst.getOperand(5)); 8605 Inst = TmpInst; 8606 return true; 8607 } 8608 8609 case ARM::VST1LNdAsm_8: 8610 case ARM::VST1LNdAsm_16: 8611 case ARM::VST1LNdAsm_32: { 8612 MCInst TmpInst; 8613 // Shuffle the operands around so the lane index operand is in the 8614 // right place. 8615 unsigned Spacing; 8616 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8617 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8618 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8619 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8620 TmpInst.addOperand(Inst.getOperand(1)); // lane 8621 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8622 TmpInst.addOperand(Inst.getOperand(5)); 8623 Inst = TmpInst; 8624 return true; 8625 } 8626 8627 case ARM::VST2LNdAsm_8: 8628 case ARM::VST2LNdAsm_16: 8629 case ARM::VST2LNdAsm_32: 8630 case ARM::VST2LNqAsm_16: 8631 case ARM::VST2LNqAsm_32: { 8632 MCInst TmpInst; 8633 // Shuffle the operands around so the lane index operand is in the 8634 // right place. 8635 unsigned Spacing; 8636 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8637 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8638 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8639 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8640 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8641 Spacing)); 8642 TmpInst.addOperand(Inst.getOperand(1)); // lane 8643 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8644 TmpInst.addOperand(Inst.getOperand(5)); 8645 Inst = TmpInst; 8646 return true; 8647 } 8648 8649 case ARM::VST3LNdAsm_8: 8650 case ARM::VST3LNdAsm_16: 8651 case ARM::VST3LNdAsm_32: 8652 case ARM::VST3LNqAsm_16: 8653 case ARM::VST3LNqAsm_32: { 8654 MCInst TmpInst; 8655 // Shuffle the operands around so the lane index operand is in the 8656 // right place. 8657 unsigned Spacing; 8658 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8659 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8660 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8661 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8662 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8663 Spacing)); 8664 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8665 Spacing * 2)); 8666 TmpInst.addOperand(Inst.getOperand(1)); // lane 8667 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8668 TmpInst.addOperand(Inst.getOperand(5)); 8669 Inst = TmpInst; 8670 return true; 8671 } 8672 8673 case ARM::VST4LNdAsm_8: 8674 case ARM::VST4LNdAsm_16: 8675 case ARM::VST4LNdAsm_32: 8676 case ARM::VST4LNqAsm_16: 8677 case ARM::VST4LNqAsm_32: { 8678 MCInst TmpInst; 8679 // Shuffle the operands around so the lane index operand is in the 8680 // right place. 8681 unsigned Spacing; 8682 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8683 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8684 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8685 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8686 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8687 Spacing)); 8688 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8689 Spacing * 2)); 8690 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8691 Spacing * 3)); 8692 TmpInst.addOperand(Inst.getOperand(1)); // lane 8693 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8694 TmpInst.addOperand(Inst.getOperand(5)); 8695 Inst = TmpInst; 8696 return true; 8697 } 8698 8699 // Handle NEON VLD complex aliases. 8700 case ARM::VLD1LNdWB_register_Asm_8: 8701 case ARM::VLD1LNdWB_register_Asm_16: 8702 case ARM::VLD1LNdWB_register_Asm_32: { 8703 MCInst TmpInst; 8704 // Shuffle the operands around so the lane index operand is in the 8705 // right place. 8706 unsigned Spacing; 8707 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8708 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8709 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8710 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8711 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8712 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8713 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8714 TmpInst.addOperand(Inst.getOperand(1)); // lane 8715 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8716 TmpInst.addOperand(Inst.getOperand(6)); 8717 Inst = TmpInst; 8718 return true; 8719 } 8720 8721 case ARM::VLD2LNdWB_register_Asm_8: 8722 case ARM::VLD2LNdWB_register_Asm_16: 8723 case ARM::VLD2LNdWB_register_Asm_32: 8724 case ARM::VLD2LNqWB_register_Asm_16: 8725 case ARM::VLD2LNqWB_register_Asm_32: { 8726 MCInst TmpInst; 8727 // Shuffle the operands around so the lane index operand is in the 8728 // right place. 8729 unsigned Spacing; 8730 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8731 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8732 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8733 Spacing)); 8734 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8735 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8736 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8737 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8738 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8739 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8740 Spacing)); 8741 TmpInst.addOperand(Inst.getOperand(1)); // lane 8742 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8743 TmpInst.addOperand(Inst.getOperand(6)); 8744 Inst = TmpInst; 8745 return true; 8746 } 8747 8748 case ARM::VLD3LNdWB_register_Asm_8: 8749 case ARM::VLD3LNdWB_register_Asm_16: 8750 case ARM::VLD3LNdWB_register_Asm_32: 8751 case ARM::VLD3LNqWB_register_Asm_16: 8752 case ARM::VLD3LNqWB_register_Asm_32: { 8753 MCInst TmpInst; 8754 // Shuffle the operands around so the lane index operand is in the 8755 // right place. 8756 unsigned Spacing; 8757 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8758 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8759 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8760 Spacing)); 8761 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8762 Spacing * 2)); 8763 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8764 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8765 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8766 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8767 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8768 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8769 Spacing)); 8770 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8771 Spacing * 2)); 8772 TmpInst.addOperand(Inst.getOperand(1)); // lane 8773 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8774 TmpInst.addOperand(Inst.getOperand(6)); 8775 Inst = TmpInst; 8776 return true; 8777 } 8778 8779 case ARM::VLD4LNdWB_register_Asm_8: 8780 case ARM::VLD4LNdWB_register_Asm_16: 8781 case ARM::VLD4LNdWB_register_Asm_32: 8782 case ARM::VLD4LNqWB_register_Asm_16: 8783 case ARM::VLD4LNqWB_register_Asm_32: { 8784 MCInst TmpInst; 8785 // Shuffle the operands around so the lane index operand is in the 8786 // right place. 8787 unsigned Spacing; 8788 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8789 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8790 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8791 Spacing)); 8792 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8793 Spacing * 2)); 8794 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8795 Spacing * 3)); 8796 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8797 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8798 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8799 TmpInst.addOperand(Inst.getOperand(4)); // Rm 8800 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8801 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8802 Spacing)); 8803 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8804 Spacing * 2)); 8805 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8806 Spacing * 3)); 8807 TmpInst.addOperand(Inst.getOperand(1)); // lane 8808 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 8809 TmpInst.addOperand(Inst.getOperand(6)); 8810 Inst = TmpInst; 8811 return true; 8812 } 8813 8814 case ARM::VLD1LNdWB_fixed_Asm_8: 8815 case ARM::VLD1LNdWB_fixed_Asm_16: 8816 case ARM::VLD1LNdWB_fixed_Asm_32: { 8817 MCInst TmpInst; 8818 // Shuffle the operands around so the lane index operand is in the 8819 // right place. 8820 unsigned Spacing; 8821 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8822 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8823 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8824 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8825 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8826 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8827 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8828 TmpInst.addOperand(Inst.getOperand(1)); // lane 8829 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8830 TmpInst.addOperand(Inst.getOperand(5)); 8831 Inst = TmpInst; 8832 return true; 8833 } 8834 8835 case ARM::VLD2LNdWB_fixed_Asm_8: 8836 case ARM::VLD2LNdWB_fixed_Asm_16: 8837 case ARM::VLD2LNdWB_fixed_Asm_32: 8838 case ARM::VLD2LNqWB_fixed_Asm_16: 8839 case ARM::VLD2LNqWB_fixed_Asm_32: { 8840 MCInst TmpInst; 8841 // Shuffle the operands around so the lane index operand is in the 8842 // right place. 8843 unsigned Spacing; 8844 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8845 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8846 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8847 Spacing)); 8848 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8849 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8850 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8851 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8852 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8853 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8854 Spacing)); 8855 TmpInst.addOperand(Inst.getOperand(1)); // lane 8856 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8857 TmpInst.addOperand(Inst.getOperand(5)); 8858 Inst = TmpInst; 8859 return true; 8860 } 8861 8862 case ARM::VLD3LNdWB_fixed_Asm_8: 8863 case ARM::VLD3LNdWB_fixed_Asm_16: 8864 case ARM::VLD3LNdWB_fixed_Asm_32: 8865 case ARM::VLD3LNqWB_fixed_Asm_16: 8866 case ARM::VLD3LNqWB_fixed_Asm_32: { 8867 MCInst TmpInst; 8868 // Shuffle the operands around so the lane index operand is in the 8869 // right place. 8870 unsigned Spacing; 8871 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8872 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8873 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8874 Spacing)); 8875 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8876 Spacing * 2)); 8877 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8878 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8879 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8880 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8881 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8882 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8883 Spacing)); 8884 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8885 Spacing * 2)); 8886 TmpInst.addOperand(Inst.getOperand(1)); // lane 8887 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8888 TmpInst.addOperand(Inst.getOperand(5)); 8889 Inst = TmpInst; 8890 return true; 8891 } 8892 8893 case ARM::VLD4LNdWB_fixed_Asm_8: 8894 case ARM::VLD4LNdWB_fixed_Asm_16: 8895 case ARM::VLD4LNdWB_fixed_Asm_32: 8896 case ARM::VLD4LNqWB_fixed_Asm_16: 8897 case ARM::VLD4LNqWB_fixed_Asm_32: { 8898 MCInst TmpInst; 8899 // Shuffle the operands around so the lane index operand is in the 8900 // right place. 8901 unsigned Spacing; 8902 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8903 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8904 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8905 Spacing)); 8906 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8907 Spacing * 2)); 8908 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8909 Spacing * 3)); 8910 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 8911 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8912 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8913 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 8914 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8915 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8916 Spacing)); 8917 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8918 Spacing * 2)); 8919 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8920 Spacing * 3)); 8921 TmpInst.addOperand(Inst.getOperand(1)); // lane 8922 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8923 TmpInst.addOperand(Inst.getOperand(5)); 8924 Inst = TmpInst; 8925 return true; 8926 } 8927 8928 case ARM::VLD1LNdAsm_8: 8929 case ARM::VLD1LNdAsm_16: 8930 case ARM::VLD1LNdAsm_32: { 8931 MCInst TmpInst; 8932 // Shuffle the operands around so the lane index operand is in the 8933 // right place. 8934 unsigned Spacing; 8935 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8936 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8937 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8938 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8939 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8940 TmpInst.addOperand(Inst.getOperand(1)); // lane 8941 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8942 TmpInst.addOperand(Inst.getOperand(5)); 8943 Inst = TmpInst; 8944 return true; 8945 } 8946 8947 case ARM::VLD2LNdAsm_8: 8948 case ARM::VLD2LNdAsm_16: 8949 case ARM::VLD2LNdAsm_32: 8950 case ARM::VLD2LNqAsm_16: 8951 case ARM::VLD2LNqAsm_32: { 8952 MCInst TmpInst; 8953 // Shuffle the operands around so the lane index operand is in the 8954 // right place. 8955 unsigned Spacing; 8956 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8957 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8958 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8959 Spacing)); 8960 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8961 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8962 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8963 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8964 Spacing)); 8965 TmpInst.addOperand(Inst.getOperand(1)); // lane 8966 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8967 TmpInst.addOperand(Inst.getOperand(5)); 8968 Inst = TmpInst; 8969 return true; 8970 } 8971 8972 case ARM::VLD3LNdAsm_8: 8973 case ARM::VLD3LNdAsm_16: 8974 case ARM::VLD3LNdAsm_32: 8975 case ARM::VLD3LNqAsm_16: 8976 case ARM::VLD3LNqAsm_32: { 8977 MCInst TmpInst; 8978 // Shuffle the operands around so the lane index operand is in the 8979 // right place. 8980 unsigned Spacing; 8981 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 8982 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8983 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8984 Spacing)); 8985 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8986 Spacing * 2)); 8987 TmpInst.addOperand(Inst.getOperand(2)); // Rn 8988 TmpInst.addOperand(Inst.getOperand(3)); // alignment 8989 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 8990 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8991 Spacing)); 8992 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8993 Spacing * 2)); 8994 TmpInst.addOperand(Inst.getOperand(1)); // lane 8995 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8996 TmpInst.addOperand(Inst.getOperand(5)); 8997 Inst = TmpInst; 8998 return true; 8999 } 9000 9001 case ARM::VLD4LNdAsm_8: 9002 case ARM::VLD4LNdAsm_16: 9003 case ARM::VLD4LNdAsm_32: 9004 case ARM::VLD4LNqAsm_16: 9005 case ARM::VLD4LNqAsm_32: { 9006 MCInst TmpInst; 9007 // Shuffle the operands around so the lane index operand is in the 9008 // right place. 9009 unsigned Spacing; 9010 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9011 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9012 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9013 Spacing)); 9014 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9015 Spacing * 2)); 9016 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9017 Spacing * 3)); 9018 TmpInst.addOperand(Inst.getOperand(2)); // Rn 9019 TmpInst.addOperand(Inst.getOperand(3)); // alignment 9020 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 9021 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9022 Spacing)); 9023 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9024 Spacing * 2)); 9025 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9026 Spacing * 3)); 9027 TmpInst.addOperand(Inst.getOperand(1)); // lane 9028 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9029 TmpInst.addOperand(Inst.getOperand(5)); 9030 Inst = TmpInst; 9031 return true; 9032 } 9033 9034 // VLD3DUP single 3-element structure to all lanes instructions. 9035 case ARM::VLD3DUPdAsm_8: 9036 case ARM::VLD3DUPdAsm_16: 9037 case ARM::VLD3DUPdAsm_32: 9038 case ARM::VLD3DUPqAsm_8: 9039 case ARM::VLD3DUPqAsm_16: 9040 case ARM::VLD3DUPqAsm_32: { 9041 MCInst TmpInst; 9042 unsigned Spacing; 9043 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9044 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9045 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9046 Spacing)); 9047 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9048 Spacing * 2)); 9049 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9050 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9051 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9052 TmpInst.addOperand(Inst.getOperand(4)); 9053 Inst = TmpInst; 9054 return true; 9055 } 9056 9057 case ARM::VLD3DUPdWB_fixed_Asm_8: 9058 case ARM::VLD3DUPdWB_fixed_Asm_16: 9059 case ARM::VLD3DUPdWB_fixed_Asm_32: 9060 case ARM::VLD3DUPqWB_fixed_Asm_8: 9061 case ARM::VLD3DUPqWB_fixed_Asm_16: 9062 case ARM::VLD3DUPqWB_fixed_Asm_32: { 9063 MCInst TmpInst; 9064 unsigned Spacing; 9065 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9066 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9067 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9068 Spacing)); 9069 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9070 Spacing * 2)); 9071 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9072 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9073 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9074 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9075 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9076 TmpInst.addOperand(Inst.getOperand(4)); 9077 Inst = TmpInst; 9078 return true; 9079 } 9080 9081 case ARM::VLD3DUPdWB_register_Asm_8: 9082 case ARM::VLD3DUPdWB_register_Asm_16: 9083 case ARM::VLD3DUPdWB_register_Asm_32: 9084 case ARM::VLD3DUPqWB_register_Asm_8: 9085 case ARM::VLD3DUPqWB_register_Asm_16: 9086 case ARM::VLD3DUPqWB_register_Asm_32: { 9087 MCInst TmpInst; 9088 unsigned Spacing; 9089 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9090 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9091 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9092 Spacing)); 9093 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9094 Spacing * 2)); 9095 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9096 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9097 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9098 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9099 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9100 TmpInst.addOperand(Inst.getOperand(5)); 9101 Inst = TmpInst; 9102 return true; 9103 } 9104 9105 // VLD3 multiple 3-element structure instructions. 9106 case ARM::VLD3dAsm_8: 9107 case ARM::VLD3dAsm_16: 9108 case ARM::VLD3dAsm_32: 9109 case ARM::VLD3qAsm_8: 9110 case ARM::VLD3qAsm_16: 9111 case ARM::VLD3qAsm_32: { 9112 MCInst TmpInst; 9113 unsigned Spacing; 9114 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9115 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9116 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9117 Spacing)); 9118 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9119 Spacing * 2)); 9120 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9121 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9122 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9123 TmpInst.addOperand(Inst.getOperand(4)); 9124 Inst = TmpInst; 9125 return true; 9126 } 9127 9128 case ARM::VLD3dWB_fixed_Asm_8: 9129 case ARM::VLD3dWB_fixed_Asm_16: 9130 case ARM::VLD3dWB_fixed_Asm_32: 9131 case ARM::VLD3qWB_fixed_Asm_8: 9132 case ARM::VLD3qWB_fixed_Asm_16: 9133 case ARM::VLD3qWB_fixed_Asm_32: { 9134 MCInst TmpInst; 9135 unsigned Spacing; 9136 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9137 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9138 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9139 Spacing)); 9140 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9141 Spacing * 2)); 9142 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9143 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9144 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9145 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9146 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9147 TmpInst.addOperand(Inst.getOperand(4)); 9148 Inst = TmpInst; 9149 return true; 9150 } 9151 9152 case ARM::VLD3dWB_register_Asm_8: 9153 case ARM::VLD3dWB_register_Asm_16: 9154 case ARM::VLD3dWB_register_Asm_32: 9155 case ARM::VLD3qWB_register_Asm_8: 9156 case ARM::VLD3qWB_register_Asm_16: 9157 case ARM::VLD3qWB_register_Asm_32: { 9158 MCInst TmpInst; 9159 unsigned Spacing; 9160 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9161 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9162 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9163 Spacing)); 9164 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9165 Spacing * 2)); 9166 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9167 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9168 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9169 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9170 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9171 TmpInst.addOperand(Inst.getOperand(5)); 9172 Inst = TmpInst; 9173 return true; 9174 } 9175 9176 // VLD4DUP single 3-element structure to all lanes instructions. 9177 case ARM::VLD4DUPdAsm_8: 9178 case ARM::VLD4DUPdAsm_16: 9179 case ARM::VLD4DUPdAsm_32: 9180 case ARM::VLD4DUPqAsm_8: 9181 case ARM::VLD4DUPqAsm_16: 9182 case ARM::VLD4DUPqAsm_32: { 9183 MCInst TmpInst; 9184 unsigned Spacing; 9185 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9186 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9187 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9188 Spacing)); 9189 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9190 Spacing * 2)); 9191 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9192 Spacing * 3)); 9193 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9194 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9195 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9196 TmpInst.addOperand(Inst.getOperand(4)); 9197 Inst = TmpInst; 9198 return true; 9199 } 9200 9201 case ARM::VLD4DUPdWB_fixed_Asm_8: 9202 case ARM::VLD4DUPdWB_fixed_Asm_16: 9203 case ARM::VLD4DUPdWB_fixed_Asm_32: 9204 case ARM::VLD4DUPqWB_fixed_Asm_8: 9205 case ARM::VLD4DUPqWB_fixed_Asm_16: 9206 case ARM::VLD4DUPqWB_fixed_Asm_32: { 9207 MCInst TmpInst; 9208 unsigned Spacing; 9209 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9210 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9211 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9212 Spacing)); 9213 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9214 Spacing * 2)); 9215 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9216 Spacing * 3)); 9217 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9218 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9219 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9220 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9221 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9222 TmpInst.addOperand(Inst.getOperand(4)); 9223 Inst = TmpInst; 9224 return true; 9225 } 9226 9227 case ARM::VLD4DUPdWB_register_Asm_8: 9228 case ARM::VLD4DUPdWB_register_Asm_16: 9229 case ARM::VLD4DUPdWB_register_Asm_32: 9230 case ARM::VLD4DUPqWB_register_Asm_8: 9231 case ARM::VLD4DUPqWB_register_Asm_16: 9232 case ARM::VLD4DUPqWB_register_Asm_32: { 9233 MCInst TmpInst; 9234 unsigned Spacing; 9235 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9236 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9237 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9238 Spacing)); 9239 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9240 Spacing * 2)); 9241 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9242 Spacing * 3)); 9243 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9244 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9245 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9246 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9247 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9248 TmpInst.addOperand(Inst.getOperand(5)); 9249 Inst = TmpInst; 9250 return true; 9251 } 9252 9253 // VLD4 multiple 4-element structure instructions. 9254 case ARM::VLD4dAsm_8: 9255 case ARM::VLD4dAsm_16: 9256 case ARM::VLD4dAsm_32: 9257 case ARM::VLD4qAsm_8: 9258 case ARM::VLD4qAsm_16: 9259 case ARM::VLD4qAsm_32: { 9260 MCInst TmpInst; 9261 unsigned Spacing; 9262 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9263 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9264 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9265 Spacing)); 9266 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9267 Spacing * 2)); 9268 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9269 Spacing * 3)); 9270 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9271 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9272 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9273 TmpInst.addOperand(Inst.getOperand(4)); 9274 Inst = TmpInst; 9275 return true; 9276 } 9277 9278 case ARM::VLD4dWB_fixed_Asm_8: 9279 case ARM::VLD4dWB_fixed_Asm_16: 9280 case ARM::VLD4dWB_fixed_Asm_32: 9281 case ARM::VLD4qWB_fixed_Asm_8: 9282 case ARM::VLD4qWB_fixed_Asm_16: 9283 case ARM::VLD4qWB_fixed_Asm_32: { 9284 MCInst TmpInst; 9285 unsigned Spacing; 9286 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9287 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9288 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9289 Spacing)); 9290 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9291 Spacing * 2)); 9292 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9293 Spacing * 3)); 9294 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9295 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9296 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9297 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9298 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9299 TmpInst.addOperand(Inst.getOperand(4)); 9300 Inst = TmpInst; 9301 return true; 9302 } 9303 9304 case ARM::VLD4dWB_register_Asm_8: 9305 case ARM::VLD4dWB_register_Asm_16: 9306 case ARM::VLD4dWB_register_Asm_32: 9307 case ARM::VLD4qWB_register_Asm_8: 9308 case ARM::VLD4qWB_register_Asm_16: 9309 case ARM::VLD4qWB_register_Asm_32: { 9310 MCInst TmpInst; 9311 unsigned Spacing; 9312 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 9313 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9314 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9315 Spacing)); 9316 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9317 Spacing * 2)); 9318 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9319 Spacing * 3)); 9320 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9321 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9322 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9323 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9324 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9325 TmpInst.addOperand(Inst.getOperand(5)); 9326 Inst = TmpInst; 9327 return true; 9328 } 9329 9330 // VST3 multiple 3-element structure instructions. 9331 case ARM::VST3dAsm_8: 9332 case ARM::VST3dAsm_16: 9333 case ARM::VST3dAsm_32: 9334 case ARM::VST3qAsm_8: 9335 case ARM::VST3qAsm_16: 9336 case ARM::VST3qAsm_32: { 9337 MCInst TmpInst; 9338 unsigned Spacing; 9339 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9340 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9341 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9342 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9343 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9344 Spacing)); 9345 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9346 Spacing * 2)); 9347 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9348 TmpInst.addOperand(Inst.getOperand(4)); 9349 Inst = TmpInst; 9350 return true; 9351 } 9352 9353 case ARM::VST3dWB_fixed_Asm_8: 9354 case ARM::VST3dWB_fixed_Asm_16: 9355 case ARM::VST3dWB_fixed_Asm_32: 9356 case ARM::VST3qWB_fixed_Asm_8: 9357 case ARM::VST3qWB_fixed_Asm_16: 9358 case ARM::VST3qWB_fixed_Asm_32: { 9359 MCInst TmpInst; 9360 unsigned Spacing; 9361 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9362 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9363 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9364 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9365 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9366 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9367 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9368 Spacing)); 9369 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9370 Spacing * 2)); 9371 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9372 TmpInst.addOperand(Inst.getOperand(4)); 9373 Inst = TmpInst; 9374 return true; 9375 } 9376 9377 case ARM::VST3dWB_register_Asm_8: 9378 case ARM::VST3dWB_register_Asm_16: 9379 case ARM::VST3dWB_register_Asm_32: 9380 case ARM::VST3qWB_register_Asm_8: 9381 case ARM::VST3qWB_register_Asm_16: 9382 case ARM::VST3qWB_register_Asm_32: { 9383 MCInst TmpInst; 9384 unsigned Spacing; 9385 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9386 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9387 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9388 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9389 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9390 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9391 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9392 Spacing)); 9393 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9394 Spacing * 2)); 9395 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9396 TmpInst.addOperand(Inst.getOperand(5)); 9397 Inst = TmpInst; 9398 return true; 9399 } 9400 9401 // VST4 multiple 3-element structure instructions. 9402 case ARM::VST4dAsm_8: 9403 case ARM::VST4dAsm_16: 9404 case ARM::VST4dAsm_32: 9405 case ARM::VST4qAsm_8: 9406 case ARM::VST4qAsm_16: 9407 case ARM::VST4qAsm_32: { 9408 MCInst TmpInst; 9409 unsigned Spacing; 9410 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9411 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9412 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9413 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9414 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9415 Spacing)); 9416 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9417 Spacing * 2)); 9418 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9419 Spacing * 3)); 9420 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9421 TmpInst.addOperand(Inst.getOperand(4)); 9422 Inst = TmpInst; 9423 return true; 9424 } 9425 9426 case ARM::VST4dWB_fixed_Asm_8: 9427 case ARM::VST4dWB_fixed_Asm_16: 9428 case ARM::VST4dWB_fixed_Asm_32: 9429 case ARM::VST4qWB_fixed_Asm_8: 9430 case ARM::VST4qWB_fixed_Asm_16: 9431 case ARM::VST4qWB_fixed_Asm_32: { 9432 MCInst TmpInst; 9433 unsigned Spacing; 9434 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9435 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9436 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9437 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9438 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 9439 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9440 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9441 Spacing)); 9442 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9443 Spacing * 2)); 9444 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9445 Spacing * 3)); 9446 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9447 TmpInst.addOperand(Inst.getOperand(4)); 9448 Inst = TmpInst; 9449 return true; 9450 } 9451 9452 case ARM::VST4dWB_register_Asm_8: 9453 case ARM::VST4dWB_register_Asm_16: 9454 case ARM::VST4dWB_register_Asm_32: 9455 case ARM::VST4qWB_register_Asm_8: 9456 case ARM::VST4qWB_register_Asm_16: 9457 case ARM::VST4qWB_register_Asm_32: { 9458 MCInst TmpInst; 9459 unsigned Spacing; 9460 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 9461 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9462 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 9463 TmpInst.addOperand(Inst.getOperand(2)); // alignment 9464 TmpInst.addOperand(Inst.getOperand(3)); // Rm 9465 TmpInst.addOperand(Inst.getOperand(0)); // Vd 9466 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9467 Spacing)); 9468 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9469 Spacing * 2)); 9470 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 9471 Spacing * 3)); 9472 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9473 TmpInst.addOperand(Inst.getOperand(5)); 9474 Inst = TmpInst; 9475 return true; 9476 } 9477 9478 // Handle encoding choice for the shift-immediate instructions. 9479 case ARM::t2LSLri: 9480 case ARM::t2LSRri: 9481 case ARM::t2ASRri: 9482 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9483 isARMLowRegister(Inst.getOperand(1).getReg()) && 9484 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9485 !HasWideQualifier) { 9486 unsigned NewOpc; 9487 switch (Inst.getOpcode()) { 9488 default: llvm_unreachable("unexpected opcode"); 9489 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 9490 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 9491 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 9492 } 9493 // The Thumb1 operands aren't in the same order. Awesome, eh? 9494 MCInst TmpInst; 9495 TmpInst.setOpcode(NewOpc); 9496 TmpInst.addOperand(Inst.getOperand(0)); 9497 TmpInst.addOperand(Inst.getOperand(5)); 9498 TmpInst.addOperand(Inst.getOperand(1)); 9499 TmpInst.addOperand(Inst.getOperand(2)); 9500 TmpInst.addOperand(Inst.getOperand(3)); 9501 TmpInst.addOperand(Inst.getOperand(4)); 9502 Inst = TmpInst; 9503 return true; 9504 } 9505 return false; 9506 9507 // Handle the Thumb2 mode MOV complex aliases. 9508 case ARM::t2MOVsr: 9509 case ARM::t2MOVSsr: { 9510 // Which instruction to expand to depends on the CCOut operand and 9511 // whether we're in an IT block if the register operands are low 9512 // registers. 9513 bool isNarrow = false; 9514 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9515 isARMLowRegister(Inst.getOperand(1).getReg()) && 9516 isARMLowRegister(Inst.getOperand(2).getReg()) && 9517 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 9518 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) && 9519 !HasWideQualifier) 9520 isNarrow = true; 9521 MCInst TmpInst; 9522 unsigned newOpc; 9523 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 9524 default: llvm_unreachable("unexpected opcode!"); 9525 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 9526 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 9527 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 9528 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 9529 } 9530 TmpInst.setOpcode(newOpc); 9531 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9532 if (isNarrow) 9533 TmpInst.addOperand(MCOperand::createReg( 9534 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9535 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9536 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9537 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 9538 TmpInst.addOperand(Inst.getOperand(5)); 9539 if (!isNarrow) 9540 TmpInst.addOperand(MCOperand::createReg( 9541 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 9542 Inst = TmpInst; 9543 return true; 9544 } 9545 case ARM::t2MOVsi: 9546 case ARM::t2MOVSsi: { 9547 // Which instruction to expand to depends on the CCOut operand and 9548 // whether we're in an IT block if the register operands are low 9549 // registers. 9550 bool isNarrow = false; 9551 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9552 isARMLowRegister(Inst.getOperand(1).getReg()) && 9553 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) && 9554 !HasWideQualifier) 9555 isNarrow = true; 9556 MCInst TmpInst; 9557 unsigned newOpc; 9558 unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 9559 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 9560 bool isMov = false; 9561 // MOV rd, rm, LSL #0 is actually a MOV instruction 9562 if (Shift == ARM_AM::lsl && Amount == 0) { 9563 isMov = true; 9564 // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of 9565 // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is 9566 // unpredictable in an IT block so the 32-bit encoding T3 has to be used 9567 // instead. 9568 if (inITBlock()) { 9569 isNarrow = false; 9570 } 9571 newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr; 9572 } else { 9573 switch(Shift) { 9574 default: llvm_unreachable("unexpected opcode!"); 9575 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 9576 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 9577 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 9578 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 9579 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 9580 } 9581 } 9582 if (Amount == 32) Amount = 0; 9583 TmpInst.setOpcode(newOpc); 9584 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9585 if (isNarrow && !isMov) 9586 TmpInst.addOperand(MCOperand::createReg( 9587 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9588 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9589 if (newOpc != ARM::t2RRX && !isMov) 9590 TmpInst.addOperand(MCOperand::createImm(Amount)); 9591 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9592 TmpInst.addOperand(Inst.getOperand(4)); 9593 if (!isNarrow) 9594 TmpInst.addOperand(MCOperand::createReg( 9595 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 9596 Inst = TmpInst; 9597 return true; 9598 } 9599 // Handle the ARM mode MOV complex aliases. 9600 case ARM::ASRr: 9601 case ARM::LSRr: 9602 case ARM::LSLr: 9603 case ARM::RORr: { 9604 ARM_AM::ShiftOpc ShiftTy; 9605 switch(Inst.getOpcode()) { 9606 default: llvm_unreachable("unexpected opcode!"); 9607 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 9608 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 9609 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 9610 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 9611 } 9612 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 9613 MCInst TmpInst; 9614 TmpInst.setOpcode(ARM::MOVsr); 9615 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9616 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9617 TmpInst.addOperand(Inst.getOperand(2)); // Rm 9618 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9619 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9620 TmpInst.addOperand(Inst.getOperand(4)); 9621 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9622 Inst = TmpInst; 9623 return true; 9624 } 9625 case ARM::ASRi: 9626 case ARM::LSRi: 9627 case ARM::LSLi: 9628 case ARM::RORi: { 9629 ARM_AM::ShiftOpc ShiftTy; 9630 switch(Inst.getOpcode()) { 9631 default: llvm_unreachable("unexpected opcode!"); 9632 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 9633 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 9634 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 9635 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 9636 } 9637 // A shift by zero is a plain MOVr, not a MOVsi. 9638 unsigned Amt = Inst.getOperand(2).getImm(); 9639 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 9640 // A shift by 32 should be encoded as 0 when permitted 9641 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 9642 Amt = 0; 9643 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 9644 MCInst TmpInst; 9645 TmpInst.setOpcode(Opc); 9646 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9647 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9648 if (Opc == ARM::MOVsi) 9649 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9650 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 9651 TmpInst.addOperand(Inst.getOperand(4)); 9652 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 9653 Inst = TmpInst; 9654 return true; 9655 } 9656 case ARM::RRXi: { 9657 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 9658 MCInst TmpInst; 9659 TmpInst.setOpcode(ARM::MOVsi); 9660 TmpInst.addOperand(Inst.getOperand(0)); // Rd 9661 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9662 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 9663 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9664 TmpInst.addOperand(Inst.getOperand(3)); 9665 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 9666 Inst = TmpInst; 9667 return true; 9668 } 9669 case ARM::t2LDMIA_UPD: { 9670 // If this is a load of a single register, then we should use 9671 // a post-indexed LDR instruction instead, per the ARM ARM. 9672 if (Inst.getNumOperands() != 5) 9673 return false; 9674 MCInst TmpInst; 9675 TmpInst.setOpcode(ARM::t2LDR_POST); 9676 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9677 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9678 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9679 TmpInst.addOperand(MCOperand::createImm(4)); 9680 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9681 TmpInst.addOperand(Inst.getOperand(3)); 9682 Inst = TmpInst; 9683 return true; 9684 } 9685 case ARM::t2STMDB_UPD: { 9686 // If this is a store of a single register, then we should use 9687 // a pre-indexed STR instruction instead, per the ARM ARM. 9688 if (Inst.getNumOperands() != 5) 9689 return false; 9690 MCInst TmpInst; 9691 TmpInst.setOpcode(ARM::t2STR_PRE); 9692 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9693 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9694 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9695 TmpInst.addOperand(MCOperand::createImm(-4)); 9696 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9697 TmpInst.addOperand(Inst.getOperand(3)); 9698 Inst = TmpInst; 9699 return true; 9700 } 9701 case ARM::LDMIA_UPD: 9702 // If this is a load of a single register via a 'pop', then we should use 9703 // a post-indexed LDR instruction instead, per the ARM ARM. 9704 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 9705 Inst.getNumOperands() == 5) { 9706 MCInst TmpInst; 9707 TmpInst.setOpcode(ARM::LDR_POST_IMM); 9708 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9709 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9710 TmpInst.addOperand(Inst.getOperand(1)); // Rn 9711 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 9712 TmpInst.addOperand(MCOperand::createImm(4)); 9713 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9714 TmpInst.addOperand(Inst.getOperand(3)); 9715 Inst = TmpInst; 9716 return true; 9717 } 9718 break; 9719 case ARM::STMDB_UPD: 9720 // If this is a store of a single register via a 'push', then we should use 9721 // a pre-indexed STR instruction instead, per the ARM ARM. 9722 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 9723 Inst.getNumOperands() == 5) { 9724 MCInst TmpInst; 9725 TmpInst.setOpcode(ARM::STR_PRE_IMM); 9726 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 9727 TmpInst.addOperand(Inst.getOperand(4)); // Rt 9728 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 9729 TmpInst.addOperand(MCOperand::createImm(-4)); 9730 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 9731 TmpInst.addOperand(Inst.getOperand(3)); 9732 Inst = TmpInst; 9733 } 9734 break; 9735 case ARM::t2ADDri12: 9736 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 9737 // mnemonic was used (not "addw"), encoding T3 is preferred. 9738 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 9739 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 9740 break; 9741 Inst.setOpcode(ARM::t2ADDri); 9742 Inst.addOperand(MCOperand::createReg(0)); // cc_out 9743 break; 9744 case ARM::t2SUBri12: 9745 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 9746 // mnemonic was used (not "subw"), encoding T3 is preferred. 9747 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 9748 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 9749 break; 9750 Inst.setOpcode(ARM::t2SUBri); 9751 Inst.addOperand(MCOperand::createReg(0)); // cc_out 9752 break; 9753 case ARM::tADDi8: 9754 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 9755 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 9756 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 9757 // to encoding T1 if <Rd> is omitted." 9758 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 9759 Inst.setOpcode(ARM::tADDi3); 9760 return true; 9761 } 9762 break; 9763 case ARM::tSUBi8: 9764 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 9765 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 9766 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 9767 // to encoding T1 if <Rd> is omitted." 9768 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 9769 Inst.setOpcode(ARM::tSUBi3); 9770 return true; 9771 } 9772 break; 9773 case ARM::t2ADDri: 9774 case ARM::t2SUBri: { 9775 // If the destination and first source operand are the same, and 9776 // the flags are compatible with the current IT status, use encoding T2 9777 // instead of T3. For compatibility with the system 'as'. Make sure the 9778 // wide encoding wasn't explicit. 9779 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 9780 !isARMLowRegister(Inst.getOperand(0).getReg()) || 9781 (Inst.getOperand(2).isImm() && 9782 (unsigned)Inst.getOperand(2).getImm() > 255) || 9783 Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) || 9784 HasWideQualifier) 9785 break; 9786 MCInst TmpInst; 9787 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 9788 ARM::tADDi8 : ARM::tSUBi8); 9789 TmpInst.addOperand(Inst.getOperand(0)); 9790 TmpInst.addOperand(Inst.getOperand(5)); 9791 TmpInst.addOperand(Inst.getOperand(0)); 9792 TmpInst.addOperand(Inst.getOperand(2)); 9793 TmpInst.addOperand(Inst.getOperand(3)); 9794 TmpInst.addOperand(Inst.getOperand(4)); 9795 Inst = TmpInst; 9796 return true; 9797 } 9798 case ARM::t2ADDrr: { 9799 // If the destination and first source operand are the same, and 9800 // there's no setting of the flags, use encoding T2 instead of T3. 9801 // Note that this is only for ADD, not SUB. This mirrors the system 9802 // 'as' behaviour. Also take advantage of ADD being commutative. 9803 // Make sure the wide encoding wasn't explicit. 9804 bool Swap = false; 9805 auto DestReg = Inst.getOperand(0).getReg(); 9806 bool Transform = DestReg == Inst.getOperand(1).getReg(); 9807 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 9808 Transform = true; 9809 Swap = true; 9810 } 9811 if (!Transform || 9812 Inst.getOperand(5).getReg() != 0 || 9813 HasWideQualifier) 9814 break; 9815 MCInst TmpInst; 9816 TmpInst.setOpcode(ARM::tADDhirr); 9817 TmpInst.addOperand(Inst.getOperand(0)); 9818 TmpInst.addOperand(Inst.getOperand(0)); 9819 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 9820 TmpInst.addOperand(Inst.getOperand(3)); 9821 TmpInst.addOperand(Inst.getOperand(4)); 9822 Inst = TmpInst; 9823 return true; 9824 } 9825 case ARM::tADDrSP: 9826 // If the non-SP source operand and the destination operand are not the 9827 // same, we need to use the 32-bit encoding if it's available. 9828 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 9829 Inst.setOpcode(ARM::t2ADDrr); 9830 Inst.addOperand(MCOperand::createReg(0)); // cc_out 9831 return true; 9832 } 9833 break; 9834 case ARM::tB: 9835 // A Thumb conditional branch outside of an IT block is a tBcc. 9836 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 9837 Inst.setOpcode(ARM::tBcc); 9838 return true; 9839 } 9840 break; 9841 case ARM::t2B: 9842 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 9843 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 9844 Inst.setOpcode(ARM::t2Bcc); 9845 return true; 9846 } 9847 break; 9848 case ARM::t2Bcc: 9849 // If the conditional is AL or we're in an IT block, we really want t2B. 9850 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 9851 Inst.setOpcode(ARM::t2B); 9852 return true; 9853 } 9854 break; 9855 case ARM::tBcc: 9856 // If the conditional is AL, we really want tB. 9857 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 9858 Inst.setOpcode(ARM::tB); 9859 return true; 9860 } 9861 break; 9862 case ARM::tLDMIA: { 9863 // If the register list contains any high registers, or if the writeback 9864 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 9865 // instead if we're in Thumb2. Otherwise, this should have generated 9866 // an error in validateInstruction(). 9867 unsigned Rn = Inst.getOperand(0).getReg(); 9868 bool hasWritebackToken = 9869 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 9870 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 9871 bool listContainsBase; 9872 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 9873 (!listContainsBase && !hasWritebackToken) || 9874 (listContainsBase && hasWritebackToken)) { 9875 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 9876 assert(isThumbTwo()); 9877 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 9878 // If we're switching to the updating version, we need to insert 9879 // the writeback tied operand. 9880 if (hasWritebackToken) 9881 Inst.insert(Inst.begin(), 9882 MCOperand::createReg(Inst.getOperand(0).getReg())); 9883 return true; 9884 } 9885 break; 9886 } 9887 case ARM::tSTMIA_UPD: { 9888 // If the register list contains any high registers, we need to use 9889 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 9890 // should have generated an error in validateInstruction(). 9891 unsigned Rn = Inst.getOperand(0).getReg(); 9892 bool listContainsBase; 9893 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 9894 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 9895 assert(isThumbTwo()); 9896 Inst.setOpcode(ARM::t2STMIA_UPD); 9897 return true; 9898 } 9899 break; 9900 } 9901 case ARM::tPOP: { 9902 bool listContainsBase; 9903 // If the register list contains any high registers, we need to use 9904 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 9905 // should have generated an error in validateInstruction(). 9906 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 9907 return false; 9908 assert(isThumbTwo()); 9909 Inst.setOpcode(ARM::t2LDMIA_UPD); 9910 // Add the base register and writeback operands. 9911 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9912 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9913 return true; 9914 } 9915 case ARM::tPUSH: { 9916 bool listContainsBase; 9917 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 9918 return false; 9919 assert(isThumbTwo()); 9920 Inst.setOpcode(ARM::t2STMDB_UPD); 9921 // Add the base register and writeback operands. 9922 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9923 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 9924 return true; 9925 } 9926 case ARM::t2MOVi: 9927 // If we can use the 16-bit encoding and the user didn't explicitly 9928 // request the 32-bit variant, transform it here. 9929 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9930 (Inst.getOperand(1).isImm() && 9931 (unsigned)Inst.getOperand(1).getImm() <= 255) && 9932 Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 9933 !HasWideQualifier) { 9934 // The operands aren't in the same order for tMOVi8... 9935 MCInst TmpInst; 9936 TmpInst.setOpcode(ARM::tMOVi8); 9937 TmpInst.addOperand(Inst.getOperand(0)); 9938 TmpInst.addOperand(Inst.getOperand(4)); 9939 TmpInst.addOperand(Inst.getOperand(1)); 9940 TmpInst.addOperand(Inst.getOperand(2)); 9941 TmpInst.addOperand(Inst.getOperand(3)); 9942 Inst = TmpInst; 9943 return true; 9944 } 9945 break; 9946 9947 case ARM::t2MOVr: 9948 // If we can use the 16-bit encoding and the user didn't explicitly 9949 // request the 32-bit variant, transform it here. 9950 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9951 isARMLowRegister(Inst.getOperand(1).getReg()) && 9952 Inst.getOperand(2).getImm() == ARMCC::AL && 9953 Inst.getOperand(4).getReg() == ARM::CPSR && 9954 !HasWideQualifier) { 9955 // The operands aren't the same for tMOV[S]r... (no cc_out) 9956 MCInst TmpInst; 9957 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 9958 TmpInst.addOperand(Inst.getOperand(0)); 9959 TmpInst.addOperand(Inst.getOperand(1)); 9960 TmpInst.addOperand(Inst.getOperand(2)); 9961 TmpInst.addOperand(Inst.getOperand(3)); 9962 Inst = TmpInst; 9963 return true; 9964 } 9965 break; 9966 9967 case ARM::t2SXTH: 9968 case ARM::t2SXTB: 9969 case ARM::t2UXTH: 9970 case ARM::t2UXTB: 9971 // If we can use the 16-bit encoding and the user didn't explicitly 9972 // request the 32-bit variant, transform it here. 9973 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 9974 isARMLowRegister(Inst.getOperand(1).getReg()) && 9975 Inst.getOperand(2).getImm() == 0 && 9976 !HasWideQualifier) { 9977 unsigned NewOpc; 9978 switch (Inst.getOpcode()) { 9979 default: llvm_unreachable("Illegal opcode!"); 9980 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 9981 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 9982 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 9983 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 9984 } 9985 // The operands aren't the same for thumb1 (no rotate operand). 9986 MCInst TmpInst; 9987 TmpInst.setOpcode(NewOpc); 9988 TmpInst.addOperand(Inst.getOperand(0)); 9989 TmpInst.addOperand(Inst.getOperand(1)); 9990 TmpInst.addOperand(Inst.getOperand(3)); 9991 TmpInst.addOperand(Inst.getOperand(4)); 9992 Inst = TmpInst; 9993 return true; 9994 } 9995 break; 9996 9997 case ARM::MOVsi: { 9998 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 9999 // rrx shifts and asr/lsr of #32 is encoded as 0 10000 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 10001 return false; 10002 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 10003 // Shifting by zero is accepted as a vanilla 'MOVr' 10004 MCInst TmpInst; 10005 TmpInst.setOpcode(ARM::MOVr); 10006 TmpInst.addOperand(Inst.getOperand(0)); 10007 TmpInst.addOperand(Inst.getOperand(1)); 10008 TmpInst.addOperand(Inst.getOperand(3)); 10009 TmpInst.addOperand(Inst.getOperand(4)); 10010 TmpInst.addOperand(Inst.getOperand(5)); 10011 Inst = TmpInst; 10012 return true; 10013 } 10014 return false; 10015 } 10016 case ARM::ANDrsi: 10017 case ARM::ORRrsi: 10018 case ARM::EORrsi: 10019 case ARM::BICrsi: 10020 case ARM::SUBrsi: 10021 case ARM::ADDrsi: { 10022 unsigned newOpc; 10023 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 10024 if (SOpc == ARM_AM::rrx) return false; 10025 switch (Inst.getOpcode()) { 10026 default: llvm_unreachable("unexpected opcode!"); 10027 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 10028 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 10029 case ARM::EORrsi: newOpc = ARM::EORrr; break; 10030 case ARM::BICrsi: newOpc = ARM::BICrr; break; 10031 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 10032 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 10033 } 10034 // If the shift is by zero, use the non-shifted instruction definition. 10035 // The exception is for right shifts, where 0 == 32 10036 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 10037 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 10038 MCInst TmpInst; 10039 TmpInst.setOpcode(newOpc); 10040 TmpInst.addOperand(Inst.getOperand(0)); 10041 TmpInst.addOperand(Inst.getOperand(1)); 10042 TmpInst.addOperand(Inst.getOperand(2)); 10043 TmpInst.addOperand(Inst.getOperand(4)); 10044 TmpInst.addOperand(Inst.getOperand(5)); 10045 TmpInst.addOperand(Inst.getOperand(6)); 10046 Inst = TmpInst; 10047 return true; 10048 } 10049 return false; 10050 } 10051 case ARM::ITasm: 10052 case ARM::t2IT: { 10053 // Set up the IT block state according to the IT instruction we just 10054 // matched. 10055 assert(!inITBlock() && "nested IT blocks?!"); 10056 startExplicitITBlock(ARMCC::CondCodes(Inst.getOperand(0).getImm()), 10057 Inst.getOperand(1).getImm()); 10058 break; 10059 } 10060 case ARM::t2LSLrr: 10061 case ARM::t2LSRrr: 10062 case ARM::t2ASRrr: 10063 case ARM::t2SBCrr: 10064 case ARM::t2RORrr: 10065 case ARM::t2BICrr: 10066 // Assemblers should use the narrow encodings of these instructions when permissible. 10067 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10068 isARMLowRegister(Inst.getOperand(2).getReg())) && 10069 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 10070 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10071 !HasWideQualifier) { 10072 unsigned NewOpc; 10073 switch (Inst.getOpcode()) { 10074 default: llvm_unreachable("unexpected opcode"); 10075 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 10076 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 10077 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 10078 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 10079 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 10080 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 10081 } 10082 MCInst TmpInst; 10083 TmpInst.setOpcode(NewOpc); 10084 TmpInst.addOperand(Inst.getOperand(0)); 10085 TmpInst.addOperand(Inst.getOperand(5)); 10086 TmpInst.addOperand(Inst.getOperand(1)); 10087 TmpInst.addOperand(Inst.getOperand(2)); 10088 TmpInst.addOperand(Inst.getOperand(3)); 10089 TmpInst.addOperand(Inst.getOperand(4)); 10090 Inst = TmpInst; 10091 return true; 10092 } 10093 return false; 10094 10095 case ARM::t2ANDrr: 10096 case ARM::t2EORrr: 10097 case ARM::t2ADCrr: 10098 case ARM::t2ORRrr: 10099 // Assemblers should use the narrow encodings of these instructions when permissible. 10100 // These instructions are special in that they are commutable, so shorter encodings 10101 // are available more often. 10102 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 10103 isARMLowRegister(Inst.getOperand(2).getReg())) && 10104 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 10105 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 10106 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 10107 !HasWideQualifier) { 10108 unsigned NewOpc; 10109 switch (Inst.getOpcode()) { 10110 default: llvm_unreachable("unexpected opcode"); 10111 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 10112 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 10113 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 10114 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 10115 } 10116 MCInst TmpInst; 10117 TmpInst.setOpcode(NewOpc); 10118 TmpInst.addOperand(Inst.getOperand(0)); 10119 TmpInst.addOperand(Inst.getOperand(5)); 10120 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 10121 TmpInst.addOperand(Inst.getOperand(1)); 10122 TmpInst.addOperand(Inst.getOperand(2)); 10123 } else { 10124 TmpInst.addOperand(Inst.getOperand(2)); 10125 TmpInst.addOperand(Inst.getOperand(1)); 10126 } 10127 TmpInst.addOperand(Inst.getOperand(3)); 10128 TmpInst.addOperand(Inst.getOperand(4)); 10129 Inst = TmpInst; 10130 return true; 10131 } 10132 return false; 10133 case ARM::MVE_VPST: 10134 case ARM::MVE_VPTv16i8: 10135 case ARM::MVE_VPTv8i16: 10136 case ARM::MVE_VPTv4i32: 10137 case ARM::MVE_VPTv16u8: 10138 case ARM::MVE_VPTv8u16: 10139 case ARM::MVE_VPTv4u32: 10140 case ARM::MVE_VPTv16s8: 10141 case ARM::MVE_VPTv8s16: 10142 case ARM::MVE_VPTv4s32: 10143 case ARM::MVE_VPTv4f32: 10144 case ARM::MVE_VPTv8f16: 10145 case ARM::MVE_VPTv16i8r: 10146 case ARM::MVE_VPTv8i16r: 10147 case ARM::MVE_VPTv4i32r: 10148 case ARM::MVE_VPTv16u8r: 10149 case ARM::MVE_VPTv8u16r: 10150 case ARM::MVE_VPTv4u32r: 10151 case ARM::MVE_VPTv16s8r: 10152 case ARM::MVE_VPTv8s16r: 10153 case ARM::MVE_VPTv4s32r: 10154 case ARM::MVE_VPTv4f32r: 10155 case ARM::MVE_VPTv8f16r: { 10156 assert(!inVPTBlock() && "Nested VPT blocks are not allowed"); 10157 MCOperand &MO = Inst.getOperand(0); 10158 VPTState.Mask = MO.getImm(); 10159 VPTState.CurPosition = 0; 10160 break; 10161 } 10162 } 10163 return false; 10164 } 10165 10166 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 10167 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 10168 // suffix depending on whether they're in an IT block or not. 10169 unsigned Opc = Inst.getOpcode(); 10170 const MCInstrDesc &MCID = MII.get(Opc); 10171 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 10172 assert(MCID.hasOptionalDef() && 10173 "optionally flag setting instruction missing optional def operand"); 10174 assert(MCID.NumOperands == Inst.getNumOperands() && 10175 "operand count mismatch!"); 10176 // Find the optional-def operand (cc_out). 10177 unsigned OpNo; 10178 for (OpNo = 0; 10179 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 10180 ++OpNo) 10181 ; 10182 // If we're parsing Thumb1, reject it completely. 10183 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 10184 return Match_RequiresFlagSetting; 10185 // If we're parsing Thumb2, which form is legal depends on whether we're 10186 // in an IT block. 10187 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 10188 !inITBlock()) 10189 return Match_RequiresITBlock; 10190 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 10191 inITBlock()) 10192 return Match_RequiresNotITBlock; 10193 // LSL with zero immediate is not allowed in an IT block 10194 if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock()) 10195 return Match_RequiresNotITBlock; 10196 } else if (isThumbOne()) { 10197 // Some high-register supporting Thumb1 encodings only allow both registers 10198 // to be from r0-r7 when in Thumb2. 10199 if (Opc == ARM::tADDhirr && !hasV6MOps() && 10200 isARMLowRegister(Inst.getOperand(1).getReg()) && 10201 isARMLowRegister(Inst.getOperand(2).getReg())) 10202 return Match_RequiresThumb2; 10203 // Others only require ARMv6 or later. 10204 else if (Opc == ARM::tMOVr && !hasV6Ops() && 10205 isARMLowRegister(Inst.getOperand(0).getReg()) && 10206 isARMLowRegister(Inst.getOperand(1).getReg())) 10207 return Match_RequiresV6; 10208 } 10209 10210 // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex 10211 // than the loop below can handle, so it uses the GPRnopc register class and 10212 // we do SP handling here. 10213 if (Opc == ARM::t2MOVr && !hasV8Ops()) 10214 { 10215 // SP as both source and destination is not allowed 10216 if (Inst.getOperand(0).getReg() == ARM::SP && 10217 Inst.getOperand(1).getReg() == ARM::SP) 10218 return Match_RequiresV8; 10219 // When flags-setting SP as either source or destination is not allowed 10220 if (Inst.getOperand(4).getReg() == ARM::CPSR && 10221 (Inst.getOperand(0).getReg() == ARM::SP || 10222 Inst.getOperand(1).getReg() == ARM::SP)) 10223 return Match_RequiresV8; 10224 } 10225 10226 switch (Inst.getOpcode()) { 10227 case ARM::VMRS: 10228 case ARM::VMSR: 10229 case ARM::VMRS_FPCXTS: 10230 case ARM::VMRS_FPCXTNS: 10231 case ARM::VMSR_FPCXTS: 10232 case ARM::VMSR_FPCXTNS: 10233 case ARM::VMRS_FPSCR_NZCVQC: 10234 case ARM::VMSR_FPSCR_NZCVQC: 10235 case ARM::FMSTAT: 10236 case ARM::VMRS_VPR: 10237 case ARM::VMRS_P0: 10238 case ARM::VMSR_VPR: 10239 case ARM::VMSR_P0: 10240 // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of 10241 // ARMv8-A. 10242 if (Inst.getOperand(0).isReg() && Inst.getOperand(0).getReg() == ARM::SP && 10243 (isThumb() && !hasV8Ops())) 10244 return Match_InvalidOperand; 10245 break; 10246 default: 10247 break; 10248 } 10249 10250 for (unsigned I = 0; I < MCID.NumOperands; ++I) 10251 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 10252 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 10253 const auto &Op = Inst.getOperand(I); 10254 if (!Op.isReg()) { 10255 // This can happen in awkward cases with tied operands, e.g. a 10256 // writeback load/store with a complex addressing mode in 10257 // which there's an output operand corresponding to the 10258 // updated written-back base register: the Tablegen-generated 10259 // AsmMatcher will have written a placeholder operand to that 10260 // slot in the form of an immediate 0, because it can't 10261 // generate the register part of the complex addressing-mode 10262 // operand ahead of time. 10263 continue; 10264 } 10265 10266 unsigned Reg = Op.getReg(); 10267 if ((Reg == ARM::SP) && !hasV8Ops()) 10268 return Match_RequiresV8; 10269 else if (Reg == ARM::PC) 10270 return Match_InvalidOperand; 10271 } 10272 10273 return Match_Success; 10274 } 10275 10276 namespace llvm { 10277 10278 template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) { 10279 return true; // In an assembly source, no need to second-guess 10280 } 10281 10282 } // end namespace llvm 10283 10284 // Returns true if Inst is unpredictable if it is in and IT block, but is not 10285 // the last instruction in the block. 10286 bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const { 10287 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10288 10289 // All branch & call instructions terminate IT blocks with the exception of 10290 // SVC. 10291 if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) || 10292 MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch()) 10293 return true; 10294 10295 // Any arithmetic instruction which writes to the PC also terminates the IT 10296 // block. 10297 if (MCID.hasDefOfPhysReg(Inst, ARM::PC, *MRI)) 10298 return true; 10299 10300 return false; 10301 } 10302 10303 unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst, 10304 SmallVectorImpl<NearMissInfo> &NearMisses, 10305 bool MatchingInlineAsm, 10306 bool &EmitInITBlock, 10307 MCStreamer &Out) { 10308 // If we can't use an implicit IT block here, just match as normal. 10309 if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb()) 10310 return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10311 10312 // Try to match the instruction in an extension of the current IT block (if 10313 // there is one). 10314 if (inImplicitITBlock()) { 10315 extendImplicitITBlock(ITState.Cond); 10316 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10317 Match_Success) { 10318 // The match succeded, but we still have to check that the instruction is 10319 // valid in this implicit IT block. 10320 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10321 if (MCID.isPredicable()) { 10322 ARMCC::CondCodes InstCond = 10323 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10324 .getImm(); 10325 ARMCC::CondCodes ITCond = currentITCond(); 10326 if (InstCond == ITCond) { 10327 EmitInITBlock = true; 10328 return Match_Success; 10329 } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) { 10330 invertCurrentITCondition(); 10331 EmitInITBlock = true; 10332 return Match_Success; 10333 } 10334 } 10335 } 10336 rewindImplicitITPosition(); 10337 } 10338 10339 // Finish the current IT block, and try to match outside any IT block. 10340 flushPendingInstructions(Out); 10341 unsigned PlainMatchResult = 10342 MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm); 10343 if (PlainMatchResult == Match_Success) { 10344 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10345 if (MCID.isPredicable()) { 10346 ARMCC::CondCodes InstCond = 10347 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10348 .getImm(); 10349 // Some forms of the branch instruction have their own condition code 10350 // fields, so can be conditionally executed without an IT block. 10351 if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) { 10352 EmitInITBlock = false; 10353 return Match_Success; 10354 } 10355 if (InstCond == ARMCC::AL) { 10356 EmitInITBlock = false; 10357 return Match_Success; 10358 } 10359 } else { 10360 EmitInITBlock = false; 10361 return Match_Success; 10362 } 10363 } 10364 10365 // Try to match in a new IT block. The matcher doesn't check the actual 10366 // condition, so we create an IT block with a dummy condition, and fix it up 10367 // once we know the actual condition. 10368 startImplicitITBlock(); 10369 if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) == 10370 Match_Success) { 10371 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 10372 if (MCID.isPredicable()) { 10373 ITState.Cond = 10374 (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx()) 10375 .getImm(); 10376 EmitInITBlock = true; 10377 return Match_Success; 10378 } 10379 } 10380 discardImplicitITBlock(); 10381 10382 // If none of these succeed, return the error we got when trying to match 10383 // outside any IT blocks. 10384 EmitInITBlock = false; 10385 return PlainMatchResult; 10386 } 10387 10388 static std::string ARMMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 10389 unsigned VariantID = 0); 10390 10391 static const char *getSubtargetFeatureName(uint64_t Val); 10392 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 10393 OperandVector &Operands, 10394 MCStreamer &Out, uint64_t &ErrorInfo, 10395 bool MatchingInlineAsm) { 10396 MCInst Inst; 10397 unsigned MatchResult; 10398 bool PendConditionalInstruction = false; 10399 10400 SmallVector<NearMissInfo, 4> NearMisses; 10401 MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm, 10402 PendConditionalInstruction, Out); 10403 10404 switch (MatchResult) { 10405 case Match_Success: 10406 LLVM_DEBUG(dbgs() << "Parsed as: "; 10407 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10408 dbgs() << "\n"); 10409 10410 // Context sensitive operand constraints aren't handled by the matcher, 10411 // so check them here. 10412 if (validateInstruction(Inst, Operands)) { 10413 // Still progress the IT block, otherwise one wrong condition causes 10414 // nasty cascading errors. 10415 forwardITPosition(); 10416 forwardVPTPosition(); 10417 return true; 10418 } 10419 10420 { // processInstruction() updates inITBlock state, we need to save it away 10421 bool wasInITBlock = inITBlock(); 10422 10423 // Some instructions need post-processing to, for example, tweak which 10424 // encoding is selected. Loop on it while changes happen so the 10425 // individual transformations can chain off each other. E.g., 10426 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 10427 while (processInstruction(Inst, Operands, Out)) 10428 LLVM_DEBUG(dbgs() << "Changed to: "; 10429 Inst.dump_pretty(dbgs(), MII.getName(Inst.getOpcode())); 10430 dbgs() << "\n"); 10431 10432 // Only after the instruction is fully processed, we can validate it 10433 if (wasInITBlock && hasV8Ops() && isThumb() && 10434 !isV8EligibleForIT(&Inst)) { 10435 Warning(IDLoc, "deprecated instruction in IT block"); 10436 } 10437 } 10438 10439 // Only move forward at the very end so that everything in validate 10440 // and process gets a consistent answer about whether we're in an IT 10441 // block. 10442 forwardITPosition(); 10443 forwardVPTPosition(); 10444 10445 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 10446 // doesn't actually encode. 10447 if (Inst.getOpcode() == ARM::ITasm) 10448 return false; 10449 10450 Inst.setLoc(IDLoc); 10451 if (PendConditionalInstruction) { 10452 PendingConditionalInsts.push_back(Inst); 10453 if (isITBlockFull() || isITBlockTerminator(Inst)) 10454 flushPendingInstructions(Out); 10455 } else { 10456 Out.EmitInstruction(Inst, getSTI()); 10457 } 10458 return false; 10459 case Match_NearMisses: 10460 ReportNearMisses(NearMisses, IDLoc, Operands); 10461 return true; 10462 case Match_MnemonicFail: { 10463 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 10464 std::string Suggestion = ARMMnemonicSpellCheck( 10465 ((ARMOperand &)*Operands[0]).getToken(), FBS); 10466 return Error(IDLoc, "invalid instruction" + Suggestion, 10467 ((ARMOperand &)*Operands[0]).getLocRange()); 10468 } 10469 } 10470 10471 llvm_unreachable("Implement any new match types added!"); 10472 } 10473 10474 /// parseDirective parses the arm specific directives 10475 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 10476 const MCObjectFileInfo::Environment Format = 10477 getContext().getObjectFileInfo()->getObjectFileType(); 10478 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10479 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 10480 10481 StringRef IDVal = DirectiveID.getIdentifier(); 10482 if (IDVal == ".word") 10483 parseLiteralValues(4, DirectiveID.getLoc()); 10484 else if (IDVal == ".short" || IDVal == ".hword") 10485 parseLiteralValues(2, DirectiveID.getLoc()); 10486 else if (IDVal == ".thumb") 10487 parseDirectiveThumb(DirectiveID.getLoc()); 10488 else if (IDVal == ".arm") 10489 parseDirectiveARM(DirectiveID.getLoc()); 10490 else if (IDVal == ".thumb_func") 10491 parseDirectiveThumbFunc(DirectiveID.getLoc()); 10492 else if (IDVal == ".code") 10493 parseDirectiveCode(DirectiveID.getLoc()); 10494 else if (IDVal == ".syntax") 10495 parseDirectiveSyntax(DirectiveID.getLoc()); 10496 else if (IDVal == ".unreq") 10497 parseDirectiveUnreq(DirectiveID.getLoc()); 10498 else if (IDVal == ".fnend") 10499 parseDirectiveFnEnd(DirectiveID.getLoc()); 10500 else if (IDVal == ".cantunwind") 10501 parseDirectiveCantUnwind(DirectiveID.getLoc()); 10502 else if (IDVal == ".personality") 10503 parseDirectivePersonality(DirectiveID.getLoc()); 10504 else if (IDVal == ".handlerdata") 10505 parseDirectiveHandlerData(DirectiveID.getLoc()); 10506 else if (IDVal == ".setfp") 10507 parseDirectiveSetFP(DirectiveID.getLoc()); 10508 else if (IDVal == ".pad") 10509 parseDirectivePad(DirectiveID.getLoc()); 10510 else if (IDVal == ".save") 10511 parseDirectiveRegSave(DirectiveID.getLoc(), false); 10512 else if (IDVal == ".vsave") 10513 parseDirectiveRegSave(DirectiveID.getLoc(), true); 10514 else if (IDVal == ".ltorg" || IDVal == ".pool") 10515 parseDirectiveLtorg(DirectiveID.getLoc()); 10516 else if (IDVal == ".even") 10517 parseDirectiveEven(DirectiveID.getLoc()); 10518 else if (IDVal == ".personalityindex") 10519 parseDirectivePersonalityIndex(DirectiveID.getLoc()); 10520 else if (IDVal == ".unwind_raw") 10521 parseDirectiveUnwindRaw(DirectiveID.getLoc()); 10522 else if (IDVal == ".movsp") 10523 parseDirectiveMovSP(DirectiveID.getLoc()); 10524 else if (IDVal == ".arch_extension") 10525 parseDirectiveArchExtension(DirectiveID.getLoc()); 10526 else if (IDVal == ".align") 10527 return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure. 10528 else if (IDVal == ".thumb_set") 10529 parseDirectiveThumbSet(DirectiveID.getLoc()); 10530 else if (IDVal == ".inst") 10531 parseDirectiveInst(DirectiveID.getLoc()); 10532 else if (IDVal == ".inst.n") 10533 parseDirectiveInst(DirectiveID.getLoc(), 'n'); 10534 else if (IDVal == ".inst.w") 10535 parseDirectiveInst(DirectiveID.getLoc(), 'w'); 10536 else if (!IsMachO && !IsCOFF) { 10537 if (IDVal == ".arch") 10538 parseDirectiveArch(DirectiveID.getLoc()); 10539 else if (IDVal == ".cpu") 10540 parseDirectiveCPU(DirectiveID.getLoc()); 10541 else if (IDVal == ".eabi_attribute") 10542 parseDirectiveEabiAttr(DirectiveID.getLoc()); 10543 else if (IDVal == ".fpu") 10544 parseDirectiveFPU(DirectiveID.getLoc()); 10545 else if (IDVal == ".fnstart") 10546 parseDirectiveFnStart(DirectiveID.getLoc()); 10547 else if (IDVal == ".object_arch") 10548 parseDirectiveObjectArch(DirectiveID.getLoc()); 10549 else if (IDVal == ".tlsdescseq") 10550 parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 10551 else 10552 return true; 10553 } else 10554 return true; 10555 return false; 10556 } 10557 10558 /// parseLiteralValues 10559 /// ::= .hword expression [, expression]* 10560 /// ::= .short expression [, expression]* 10561 /// ::= .word expression [, expression]* 10562 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 10563 auto parseOne = [&]() -> bool { 10564 const MCExpr *Value; 10565 if (getParser().parseExpression(Value)) 10566 return true; 10567 getParser().getStreamer().EmitValue(Value, Size, L); 10568 return false; 10569 }; 10570 return (parseMany(parseOne)); 10571 } 10572 10573 /// parseDirectiveThumb 10574 /// ::= .thumb 10575 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 10576 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10577 check(!hasThumb(), L, "target does not support Thumb mode")) 10578 return true; 10579 10580 if (!isThumb()) 10581 SwitchMode(); 10582 10583 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 10584 return false; 10585 } 10586 10587 /// parseDirectiveARM 10588 /// ::= .arm 10589 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 10590 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") || 10591 check(!hasARM(), L, "target does not support ARM mode")) 10592 return true; 10593 10594 if (isThumb()) 10595 SwitchMode(); 10596 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 10597 return false; 10598 } 10599 10600 void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) { 10601 // We need to flush the current implicit IT block on a label, because it is 10602 // not legal to branch into an IT block. 10603 flushPendingInstructions(getStreamer()); 10604 } 10605 10606 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 10607 if (NextSymbolIsThumb) { 10608 getParser().getStreamer().EmitThumbFunc(Symbol); 10609 NextSymbolIsThumb = false; 10610 } 10611 } 10612 10613 /// parseDirectiveThumbFunc 10614 /// ::= .thumbfunc symbol_name 10615 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 10616 MCAsmParser &Parser = getParser(); 10617 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 10618 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 10619 10620 // Darwin asm has (optionally) function name after .thumb_func direction 10621 // ELF doesn't 10622 10623 if (IsMachO) { 10624 if (Parser.getTok().is(AsmToken::Identifier) || 10625 Parser.getTok().is(AsmToken::String)) { 10626 MCSymbol *Func = getParser().getContext().getOrCreateSymbol( 10627 Parser.getTok().getIdentifier()); 10628 getParser().getStreamer().EmitThumbFunc(Func); 10629 Parser.Lex(); 10630 if (parseToken(AsmToken::EndOfStatement, 10631 "unexpected token in '.thumb_func' directive")) 10632 return true; 10633 return false; 10634 } 10635 } 10636 10637 if (parseToken(AsmToken::EndOfStatement, 10638 "unexpected token in '.thumb_func' directive")) 10639 return true; 10640 10641 NextSymbolIsThumb = true; 10642 return false; 10643 } 10644 10645 /// parseDirectiveSyntax 10646 /// ::= .syntax unified | divided 10647 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 10648 MCAsmParser &Parser = getParser(); 10649 const AsmToken &Tok = Parser.getTok(); 10650 if (Tok.isNot(AsmToken::Identifier)) { 10651 Error(L, "unexpected token in .syntax directive"); 10652 return false; 10653 } 10654 10655 StringRef Mode = Tok.getString(); 10656 Parser.Lex(); 10657 if (check(Mode == "divided" || Mode == "DIVIDED", L, 10658 "'.syntax divided' arm assembly not supported") || 10659 check(Mode != "unified" && Mode != "UNIFIED", L, 10660 "unrecognized syntax mode in .syntax directive") || 10661 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10662 return true; 10663 10664 // TODO tell the MC streamer the mode 10665 // getParser().getStreamer().Emit???(); 10666 return false; 10667 } 10668 10669 /// parseDirectiveCode 10670 /// ::= .code 16 | 32 10671 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 10672 MCAsmParser &Parser = getParser(); 10673 const AsmToken &Tok = Parser.getTok(); 10674 if (Tok.isNot(AsmToken::Integer)) 10675 return Error(L, "unexpected token in .code directive"); 10676 int64_t Val = Parser.getTok().getIntVal(); 10677 if (Val != 16 && Val != 32) { 10678 Error(L, "invalid operand to .code directive"); 10679 return false; 10680 } 10681 Parser.Lex(); 10682 10683 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 10684 return true; 10685 10686 if (Val == 16) { 10687 if (!hasThumb()) 10688 return Error(L, "target does not support Thumb mode"); 10689 10690 if (!isThumb()) 10691 SwitchMode(); 10692 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 10693 } else { 10694 if (!hasARM()) 10695 return Error(L, "target does not support ARM mode"); 10696 10697 if (isThumb()) 10698 SwitchMode(); 10699 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 10700 } 10701 10702 return false; 10703 } 10704 10705 /// parseDirectiveReq 10706 /// ::= name .req registername 10707 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 10708 MCAsmParser &Parser = getParser(); 10709 Parser.Lex(); // Eat the '.req' token. 10710 unsigned Reg; 10711 SMLoc SRegLoc, ERegLoc; 10712 if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc, 10713 "register name expected") || 10714 parseToken(AsmToken::EndOfStatement, 10715 "unexpected input in .req directive.")) 10716 return true; 10717 10718 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) 10719 return Error(SRegLoc, 10720 "redefinition of '" + Name + "' does not match original."); 10721 10722 return false; 10723 } 10724 10725 /// parseDirectiveUneq 10726 /// ::= .unreq registername 10727 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 10728 MCAsmParser &Parser = getParser(); 10729 if (Parser.getTok().isNot(AsmToken::Identifier)) 10730 return Error(L, "unexpected input in .unreq directive."); 10731 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 10732 Parser.Lex(); // Eat the identifier. 10733 if (parseToken(AsmToken::EndOfStatement, 10734 "unexpected input in '.unreq' directive")) 10735 return true; 10736 return false; 10737 } 10738 10739 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 10740 // before, if supported by the new target, or emit mapping symbols for the mode 10741 // switch. 10742 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 10743 if (WasThumb != isThumb()) { 10744 if (WasThumb && hasThumb()) { 10745 // Stay in Thumb mode 10746 SwitchMode(); 10747 } else if (!WasThumb && hasARM()) { 10748 // Stay in ARM mode 10749 SwitchMode(); 10750 } else { 10751 // Mode switch forced, because the new arch doesn't support the old mode. 10752 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 10753 : MCAF_Code32); 10754 // Warn about the implcit mode switch. GAS does not switch modes here, 10755 // but instead stays in the old mode, reporting an error on any following 10756 // instructions as the mode does not exist on the target. 10757 Warning(Loc, Twine("new target does not support ") + 10758 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 10759 (!WasThumb ? "thumb" : "arm") + " mode"); 10760 } 10761 } 10762 } 10763 10764 /// parseDirectiveArch 10765 /// ::= .arch token 10766 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 10767 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 10768 ARM::ArchKind ID = ARM::parseArch(Arch); 10769 10770 if (ID == ARM::ArchKind::INVALID) 10771 return Error(L, "Unknown arch name"); 10772 10773 bool WasThumb = isThumb(); 10774 Triple T; 10775 MCSubtargetInfo &STI = copySTI(); 10776 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 10777 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10778 FixModeAfterArchChange(WasThumb, L); 10779 10780 getTargetStreamer().emitArch(ID); 10781 return false; 10782 } 10783 10784 /// parseDirectiveEabiAttr 10785 /// ::= .eabi_attribute int, int [, "str"] 10786 /// ::= .eabi_attribute Tag_name, int [, "str"] 10787 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 10788 MCAsmParser &Parser = getParser(); 10789 int64_t Tag; 10790 SMLoc TagLoc; 10791 TagLoc = Parser.getTok().getLoc(); 10792 if (Parser.getTok().is(AsmToken::Identifier)) { 10793 StringRef Name = Parser.getTok().getIdentifier(); 10794 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 10795 if (Tag == -1) { 10796 Error(TagLoc, "attribute name not recognised: " + Name); 10797 return false; 10798 } 10799 Parser.Lex(); 10800 } else { 10801 const MCExpr *AttrExpr; 10802 10803 TagLoc = Parser.getTok().getLoc(); 10804 if (Parser.parseExpression(AttrExpr)) 10805 return true; 10806 10807 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 10808 if (check(!CE, TagLoc, "expected numeric constant")) 10809 return true; 10810 10811 Tag = CE->getValue(); 10812 } 10813 10814 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 10815 return true; 10816 10817 StringRef StringValue = ""; 10818 bool IsStringValue = false; 10819 10820 int64_t IntegerValue = 0; 10821 bool IsIntegerValue = false; 10822 10823 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 10824 IsStringValue = true; 10825 else if (Tag == ARMBuildAttrs::compatibility) { 10826 IsStringValue = true; 10827 IsIntegerValue = true; 10828 } else if (Tag < 32 || Tag % 2 == 0) 10829 IsIntegerValue = true; 10830 else if (Tag % 2 == 1) 10831 IsStringValue = true; 10832 else 10833 llvm_unreachable("invalid tag type"); 10834 10835 if (IsIntegerValue) { 10836 const MCExpr *ValueExpr; 10837 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 10838 if (Parser.parseExpression(ValueExpr)) 10839 return true; 10840 10841 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 10842 if (!CE) 10843 return Error(ValueExprLoc, "expected numeric constant"); 10844 IntegerValue = CE->getValue(); 10845 } 10846 10847 if (Tag == ARMBuildAttrs::compatibility) { 10848 if (Parser.parseToken(AsmToken::Comma, "comma expected")) 10849 return true; 10850 } 10851 10852 if (IsStringValue) { 10853 if (Parser.getTok().isNot(AsmToken::String)) 10854 return Error(Parser.getTok().getLoc(), "bad string constant"); 10855 10856 StringValue = Parser.getTok().getStringContents(); 10857 Parser.Lex(); 10858 } 10859 10860 if (Parser.parseToken(AsmToken::EndOfStatement, 10861 "unexpected token in '.eabi_attribute' directive")) 10862 return true; 10863 10864 if (IsIntegerValue && IsStringValue) { 10865 assert(Tag == ARMBuildAttrs::compatibility); 10866 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 10867 } else if (IsIntegerValue) 10868 getTargetStreamer().emitAttribute(Tag, IntegerValue); 10869 else if (IsStringValue) 10870 getTargetStreamer().emitTextAttribute(Tag, StringValue); 10871 return false; 10872 } 10873 10874 /// parseDirectiveCPU 10875 /// ::= .cpu str 10876 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 10877 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 10878 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 10879 10880 // FIXME: This is using table-gen data, but should be moved to 10881 // ARMTargetParser once that is table-gen'd. 10882 if (!getSTI().isCPUStringValid(CPU)) 10883 return Error(L, "Unknown CPU name"); 10884 10885 bool WasThumb = isThumb(); 10886 MCSubtargetInfo &STI = copySTI(); 10887 STI.setDefaultFeatures(CPU, ""); 10888 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10889 FixModeAfterArchChange(WasThumb, L); 10890 10891 return false; 10892 } 10893 10894 /// parseDirectiveFPU 10895 /// ::= .fpu str 10896 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 10897 SMLoc FPUNameLoc = getTok().getLoc(); 10898 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 10899 10900 unsigned ID = ARM::parseFPU(FPU); 10901 std::vector<StringRef> Features; 10902 if (!ARM::getFPUFeatures(ID, Features)) 10903 return Error(FPUNameLoc, "Unknown FPU name"); 10904 10905 MCSubtargetInfo &STI = copySTI(); 10906 for (auto Feature : Features) 10907 STI.ApplyFeatureFlag(Feature); 10908 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 10909 10910 getTargetStreamer().emitFPU(ID); 10911 return false; 10912 } 10913 10914 /// parseDirectiveFnStart 10915 /// ::= .fnstart 10916 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 10917 if (parseToken(AsmToken::EndOfStatement, 10918 "unexpected token in '.fnstart' directive")) 10919 return true; 10920 10921 if (UC.hasFnStart()) { 10922 Error(L, ".fnstart starts before the end of previous one"); 10923 UC.emitFnStartLocNotes(); 10924 return true; 10925 } 10926 10927 // Reset the unwind directives parser state 10928 UC.reset(); 10929 10930 getTargetStreamer().emitFnStart(); 10931 10932 UC.recordFnStart(L); 10933 return false; 10934 } 10935 10936 /// parseDirectiveFnEnd 10937 /// ::= .fnend 10938 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 10939 if (parseToken(AsmToken::EndOfStatement, 10940 "unexpected token in '.fnend' directive")) 10941 return true; 10942 // Check the ordering of unwind directives 10943 if (!UC.hasFnStart()) 10944 return Error(L, ".fnstart must precede .fnend directive"); 10945 10946 // Reset the unwind directives parser state 10947 getTargetStreamer().emitFnEnd(); 10948 10949 UC.reset(); 10950 return false; 10951 } 10952 10953 /// parseDirectiveCantUnwind 10954 /// ::= .cantunwind 10955 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 10956 if (parseToken(AsmToken::EndOfStatement, 10957 "unexpected token in '.cantunwind' directive")) 10958 return true; 10959 10960 UC.recordCantUnwind(L); 10961 // Check the ordering of unwind directives 10962 if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive")) 10963 return true; 10964 10965 if (UC.hasHandlerData()) { 10966 Error(L, ".cantunwind can't be used with .handlerdata directive"); 10967 UC.emitHandlerDataLocNotes(); 10968 return true; 10969 } 10970 if (UC.hasPersonality()) { 10971 Error(L, ".cantunwind can't be used with .personality directive"); 10972 UC.emitPersonalityLocNotes(); 10973 return true; 10974 } 10975 10976 getTargetStreamer().emitCantUnwind(); 10977 return false; 10978 } 10979 10980 /// parseDirectivePersonality 10981 /// ::= .personality name 10982 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 10983 MCAsmParser &Parser = getParser(); 10984 bool HasExistingPersonality = UC.hasPersonality(); 10985 10986 // Parse the name of the personality routine 10987 if (Parser.getTok().isNot(AsmToken::Identifier)) 10988 return Error(L, "unexpected input in .personality directive."); 10989 StringRef Name(Parser.getTok().getIdentifier()); 10990 Parser.Lex(); 10991 10992 if (parseToken(AsmToken::EndOfStatement, 10993 "unexpected token in '.personality' directive")) 10994 return true; 10995 10996 UC.recordPersonality(L); 10997 10998 // Check the ordering of unwind directives 10999 if (!UC.hasFnStart()) 11000 return Error(L, ".fnstart must precede .personality directive"); 11001 if (UC.cantUnwind()) { 11002 Error(L, ".personality can't be used with .cantunwind directive"); 11003 UC.emitCantUnwindLocNotes(); 11004 return true; 11005 } 11006 if (UC.hasHandlerData()) { 11007 Error(L, ".personality must precede .handlerdata directive"); 11008 UC.emitHandlerDataLocNotes(); 11009 return true; 11010 } 11011 if (HasExistingPersonality) { 11012 Error(L, "multiple personality directives"); 11013 UC.emitPersonalityLocNotes(); 11014 return true; 11015 } 11016 11017 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 11018 getTargetStreamer().emitPersonality(PR); 11019 return false; 11020 } 11021 11022 /// parseDirectiveHandlerData 11023 /// ::= .handlerdata 11024 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 11025 if (parseToken(AsmToken::EndOfStatement, 11026 "unexpected token in '.handlerdata' directive")) 11027 return true; 11028 11029 UC.recordHandlerData(L); 11030 // Check the ordering of unwind directives 11031 if (!UC.hasFnStart()) 11032 return Error(L, ".fnstart must precede .personality directive"); 11033 if (UC.cantUnwind()) { 11034 Error(L, ".handlerdata can't be used with .cantunwind directive"); 11035 UC.emitCantUnwindLocNotes(); 11036 return true; 11037 } 11038 11039 getTargetStreamer().emitHandlerData(); 11040 return false; 11041 } 11042 11043 /// parseDirectiveSetFP 11044 /// ::= .setfp fpreg, spreg [, offset] 11045 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 11046 MCAsmParser &Parser = getParser(); 11047 // Check the ordering of unwind directives 11048 if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") || 11049 check(UC.hasHandlerData(), L, 11050 ".setfp must precede .handlerdata directive")) 11051 return true; 11052 11053 // Parse fpreg 11054 SMLoc FPRegLoc = Parser.getTok().getLoc(); 11055 int FPReg = tryParseRegister(); 11056 11057 if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") || 11058 Parser.parseToken(AsmToken::Comma, "comma expected")) 11059 return true; 11060 11061 // Parse spreg 11062 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11063 int SPReg = tryParseRegister(); 11064 if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") || 11065 check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc, 11066 "register should be either $sp or the latest fp register")) 11067 return true; 11068 11069 // Update the frame pointer register 11070 UC.saveFPReg(FPReg); 11071 11072 // Parse offset 11073 int64_t Offset = 0; 11074 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11075 if (Parser.getTok().isNot(AsmToken::Hash) && 11076 Parser.getTok().isNot(AsmToken::Dollar)) 11077 return Error(Parser.getTok().getLoc(), "'#' expected"); 11078 Parser.Lex(); // skip hash token. 11079 11080 const MCExpr *OffsetExpr; 11081 SMLoc ExLoc = Parser.getTok().getLoc(); 11082 SMLoc EndLoc; 11083 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11084 return Error(ExLoc, "malformed setfp offset"); 11085 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11086 if (check(!CE, ExLoc, "setfp offset must be an immediate")) 11087 return true; 11088 Offset = CE->getValue(); 11089 } 11090 11091 if (Parser.parseToken(AsmToken::EndOfStatement)) 11092 return true; 11093 11094 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 11095 static_cast<unsigned>(SPReg), Offset); 11096 return false; 11097 } 11098 11099 /// parseDirective 11100 /// ::= .pad offset 11101 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 11102 MCAsmParser &Parser = getParser(); 11103 // Check the ordering of unwind directives 11104 if (!UC.hasFnStart()) 11105 return Error(L, ".fnstart must precede .pad directive"); 11106 if (UC.hasHandlerData()) 11107 return Error(L, ".pad must precede .handlerdata directive"); 11108 11109 // Parse the offset 11110 if (Parser.getTok().isNot(AsmToken::Hash) && 11111 Parser.getTok().isNot(AsmToken::Dollar)) 11112 return Error(Parser.getTok().getLoc(), "'#' expected"); 11113 Parser.Lex(); // skip hash token. 11114 11115 const MCExpr *OffsetExpr; 11116 SMLoc ExLoc = Parser.getTok().getLoc(); 11117 SMLoc EndLoc; 11118 if (getParser().parseExpression(OffsetExpr, EndLoc)) 11119 return Error(ExLoc, "malformed pad offset"); 11120 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11121 if (!CE) 11122 return Error(ExLoc, "pad offset must be an immediate"); 11123 11124 if (parseToken(AsmToken::EndOfStatement, 11125 "unexpected token in '.pad' directive")) 11126 return true; 11127 11128 getTargetStreamer().emitPad(CE->getValue()); 11129 return false; 11130 } 11131 11132 /// parseDirectiveRegSave 11133 /// ::= .save { registers } 11134 /// ::= .vsave { registers } 11135 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 11136 // Check the ordering of unwind directives 11137 if (!UC.hasFnStart()) 11138 return Error(L, ".fnstart must precede .save or .vsave directives"); 11139 if (UC.hasHandlerData()) 11140 return Error(L, ".save or .vsave must precede .handlerdata directive"); 11141 11142 // RAII object to make sure parsed operands are deleted. 11143 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 11144 11145 // Parse the register list 11146 if (parseRegisterList(Operands) || 11147 parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11148 return true; 11149 ARMOperand &Op = (ARMOperand &)*Operands[0]; 11150 if (!IsVector && !Op.isRegList()) 11151 return Error(L, ".save expects GPR registers"); 11152 if (IsVector && !Op.isDPRRegList()) 11153 return Error(L, ".vsave expects DPR registers"); 11154 11155 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 11156 return false; 11157 } 11158 11159 /// parseDirectiveInst 11160 /// ::= .inst opcode [, ...] 11161 /// ::= .inst.n opcode [, ...] 11162 /// ::= .inst.w opcode [, ...] 11163 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 11164 int Width = 4; 11165 11166 if (isThumb()) { 11167 switch (Suffix) { 11168 case 'n': 11169 Width = 2; 11170 break; 11171 case 'w': 11172 break; 11173 default: 11174 Width = 0; 11175 break; 11176 } 11177 } else { 11178 if (Suffix) 11179 return Error(Loc, "width suffixes are invalid in ARM mode"); 11180 } 11181 11182 auto parseOne = [&]() -> bool { 11183 const MCExpr *Expr; 11184 if (getParser().parseExpression(Expr)) 11185 return true; 11186 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 11187 if (!Value) { 11188 return Error(Loc, "expected constant expression"); 11189 } 11190 11191 char CurSuffix = Suffix; 11192 switch (Width) { 11193 case 2: 11194 if (Value->getValue() > 0xffff) 11195 return Error(Loc, "inst.n operand is too big, use inst.w instead"); 11196 break; 11197 case 4: 11198 if (Value->getValue() > 0xffffffff) 11199 return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") + 11200 " operand is too big"); 11201 break; 11202 case 0: 11203 // Thumb mode, no width indicated. Guess from the opcode, if possible. 11204 if (Value->getValue() < 0xe800) 11205 CurSuffix = 'n'; 11206 else if (Value->getValue() >= 0xe8000000) 11207 CurSuffix = 'w'; 11208 else 11209 return Error(Loc, "cannot determine Thumb instruction size, " 11210 "use inst.n/inst.w instead"); 11211 break; 11212 default: 11213 llvm_unreachable("only supported widths are 2 and 4"); 11214 } 11215 11216 getTargetStreamer().emitInst(Value->getValue(), CurSuffix); 11217 return false; 11218 }; 11219 11220 if (parseOptionalToken(AsmToken::EndOfStatement)) 11221 return Error(Loc, "expected expression following directive"); 11222 if (parseMany(parseOne)) 11223 return true; 11224 return false; 11225 } 11226 11227 /// parseDirectiveLtorg 11228 /// ::= .ltorg | .pool 11229 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 11230 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11231 return true; 11232 getTargetStreamer().emitCurrentConstantPool(); 11233 return false; 11234 } 11235 11236 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 11237 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11238 11239 if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive")) 11240 return true; 11241 11242 if (!Section) { 11243 getStreamer().InitSections(false); 11244 Section = getStreamer().getCurrentSectionOnly(); 11245 } 11246 11247 assert(Section && "must have section to emit alignment"); 11248 if (Section->UseCodeAlign()) 11249 getStreamer().EmitCodeAlignment(2); 11250 else 11251 getStreamer().EmitValueToAlignment(2); 11252 11253 return false; 11254 } 11255 11256 /// parseDirectivePersonalityIndex 11257 /// ::= .personalityindex index 11258 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 11259 MCAsmParser &Parser = getParser(); 11260 bool HasExistingPersonality = UC.hasPersonality(); 11261 11262 const MCExpr *IndexExpression; 11263 SMLoc IndexLoc = Parser.getTok().getLoc(); 11264 if (Parser.parseExpression(IndexExpression) || 11265 parseToken(AsmToken::EndOfStatement, 11266 "unexpected token in '.personalityindex' directive")) { 11267 return true; 11268 } 11269 11270 UC.recordPersonalityIndex(L); 11271 11272 if (!UC.hasFnStart()) { 11273 return Error(L, ".fnstart must precede .personalityindex directive"); 11274 } 11275 if (UC.cantUnwind()) { 11276 Error(L, ".personalityindex cannot be used with .cantunwind"); 11277 UC.emitCantUnwindLocNotes(); 11278 return true; 11279 } 11280 if (UC.hasHandlerData()) { 11281 Error(L, ".personalityindex must precede .handlerdata directive"); 11282 UC.emitHandlerDataLocNotes(); 11283 return true; 11284 } 11285 if (HasExistingPersonality) { 11286 Error(L, "multiple personality directives"); 11287 UC.emitPersonalityLocNotes(); 11288 return true; 11289 } 11290 11291 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 11292 if (!CE) 11293 return Error(IndexLoc, "index must be a constant number"); 11294 if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) 11295 return Error(IndexLoc, 11296 "personality routine index should be in range [0-3]"); 11297 11298 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 11299 return false; 11300 } 11301 11302 /// parseDirectiveUnwindRaw 11303 /// ::= .unwind_raw offset, opcode [, opcode...] 11304 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 11305 MCAsmParser &Parser = getParser(); 11306 int64_t StackOffset; 11307 const MCExpr *OffsetExpr; 11308 SMLoc OffsetLoc = getLexer().getLoc(); 11309 11310 if (!UC.hasFnStart()) 11311 return Error(L, ".fnstart must precede .unwind_raw directives"); 11312 if (getParser().parseExpression(OffsetExpr)) 11313 return Error(OffsetLoc, "expected expression"); 11314 11315 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11316 if (!CE) 11317 return Error(OffsetLoc, "offset must be a constant"); 11318 11319 StackOffset = CE->getValue(); 11320 11321 if (Parser.parseToken(AsmToken::Comma, "expected comma")) 11322 return true; 11323 11324 SmallVector<uint8_t, 16> Opcodes; 11325 11326 auto parseOne = [&]() -> bool { 11327 const MCExpr *OE; 11328 SMLoc OpcodeLoc = getLexer().getLoc(); 11329 if (check(getLexer().is(AsmToken::EndOfStatement) || 11330 Parser.parseExpression(OE), 11331 OpcodeLoc, "expected opcode expression")) 11332 return true; 11333 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 11334 if (!OC) 11335 return Error(OpcodeLoc, "opcode value must be a constant"); 11336 const int64_t Opcode = OC->getValue(); 11337 if (Opcode & ~0xff) 11338 return Error(OpcodeLoc, "invalid opcode"); 11339 Opcodes.push_back(uint8_t(Opcode)); 11340 return false; 11341 }; 11342 11343 // Must have at least 1 element 11344 SMLoc OpcodeLoc = getLexer().getLoc(); 11345 if (parseOptionalToken(AsmToken::EndOfStatement)) 11346 return Error(OpcodeLoc, "expected opcode expression"); 11347 if (parseMany(parseOne)) 11348 return true; 11349 11350 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 11351 return false; 11352 } 11353 11354 /// parseDirectiveTLSDescSeq 11355 /// ::= .tlsdescseq tls-variable 11356 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 11357 MCAsmParser &Parser = getParser(); 11358 11359 if (getLexer().isNot(AsmToken::Identifier)) 11360 return TokError("expected variable after '.tlsdescseq' directive"); 11361 11362 const MCSymbolRefExpr *SRE = 11363 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 11364 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 11365 Lex(); 11366 11367 if (parseToken(AsmToken::EndOfStatement, 11368 "unexpected token in '.tlsdescseq' directive")) 11369 return true; 11370 11371 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 11372 return false; 11373 } 11374 11375 /// parseDirectiveMovSP 11376 /// ::= .movsp reg [, #offset] 11377 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 11378 MCAsmParser &Parser = getParser(); 11379 if (!UC.hasFnStart()) 11380 return Error(L, ".fnstart must precede .movsp directives"); 11381 if (UC.getFPReg() != ARM::SP) 11382 return Error(L, "unexpected .movsp directive"); 11383 11384 SMLoc SPRegLoc = Parser.getTok().getLoc(); 11385 int SPReg = tryParseRegister(); 11386 if (SPReg == -1) 11387 return Error(SPRegLoc, "register expected"); 11388 if (SPReg == ARM::SP || SPReg == ARM::PC) 11389 return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 11390 11391 int64_t Offset = 0; 11392 if (Parser.parseOptionalToken(AsmToken::Comma)) { 11393 if (Parser.parseToken(AsmToken::Hash, "expected #constant")) 11394 return true; 11395 11396 const MCExpr *OffsetExpr; 11397 SMLoc OffsetLoc = Parser.getTok().getLoc(); 11398 11399 if (Parser.parseExpression(OffsetExpr)) 11400 return Error(OffsetLoc, "malformed offset expression"); 11401 11402 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 11403 if (!CE) 11404 return Error(OffsetLoc, "offset must be an immediate constant"); 11405 11406 Offset = CE->getValue(); 11407 } 11408 11409 if (parseToken(AsmToken::EndOfStatement, 11410 "unexpected token in '.movsp' directive")) 11411 return true; 11412 11413 getTargetStreamer().emitMovSP(SPReg, Offset); 11414 UC.saveFPReg(SPReg); 11415 11416 return false; 11417 } 11418 11419 /// parseDirectiveObjectArch 11420 /// ::= .object_arch name 11421 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 11422 MCAsmParser &Parser = getParser(); 11423 if (getLexer().isNot(AsmToken::Identifier)) 11424 return Error(getLexer().getLoc(), "unexpected token"); 11425 11426 StringRef Arch = Parser.getTok().getString(); 11427 SMLoc ArchLoc = Parser.getTok().getLoc(); 11428 Lex(); 11429 11430 ARM::ArchKind ID = ARM::parseArch(Arch); 11431 11432 if (ID == ARM::ArchKind::INVALID) 11433 return Error(ArchLoc, "unknown architecture '" + Arch + "'"); 11434 if (parseToken(AsmToken::EndOfStatement)) 11435 return true; 11436 11437 getTargetStreamer().emitObjectArch(ID); 11438 return false; 11439 } 11440 11441 /// parseDirectiveAlign 11442 /// ::= .align 11443 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 11444 // NOTE: if this is not the end of the statement, fall back to the target 11445 // agnostic handling for this directive which will correctly handle this. 11446 if (parseOptionalToken(AsmToken::EndOfStatement)) { 11447 // '.align' is target specifically handled to mean 2**2 byte alignment. 11448 const MCSection *Section = getStreamer().getCurrentSectionOnly(); 11449 assert(Section && "must have section to emit alignment"); 11450 if (Section->UseCodeAlign()) 11451 getStreamer().EmitCodeAlignment(4, 0); 11452 else 11453 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 11454 return false; 11455 } 11456 return true; 11457 } 11458 11459 /// parseDirectiveThumbSet 11460 /// ::= .thumb_set name, value 11461 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 11462 MCAsmParser &Parser = getParser(); 11463 11464 StringRef Name; 11465 if (check(Parser.parseIdentifier(Name), 11466 "expected identifier after '.thumb_set'") || 11467 parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'")) 11468 return true; 11469 11470 MCSymbol *Sym; 11471 const MCExpr *Value; 11472 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 11473 Parser, Sym, Value)) 11474 return true; 11475 11476 getTargetStreamer().emitThumbSet(Sym, Value); 11477 return false; 11478 } 11479 11480 /// Force static initialization. 11481 extern "C" void LLVMInitializeARMAsmParser() { 11482 RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget()); 11483 RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget()); 11484 RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget()); 11485 RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget()); 11486 } 11487 11488 #define GET_REGISTER_MATCHER 11489 #define GET_SUBTARGET_FEATURE_NAME 11490 #define GET_MATCHER_IMPLEMENTATION 11491 #define GET_MNEMONIC_SPELL_CHECKER 11492 #include "ARMGenAsmMatcher.inc" 11493 11494 // Some diagnostics need to vary with subtarget features, so they are handled 11495 // here. For example, the DPR class has either 16 or 32 registers, depending 11496 // on the FPU available. 11497 const char * 11498 ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) { 11499 switch (MatchError) { 11500 // rGPR contains sp starting with ARMv8. 11501 case Match_rGPR: 11502 return hasV8Ops() ? "operand must be a register in range [r0, r14]" 11503 : "operand must be a register in range [r0, r12] or r14"; 11504 // DPR contains 16 registers for some FPUs, and 32 for others. 11505 case Match_DPR: 11506 return hasD32() ? "operand must be a register in range [d0, d31]" 11507 : "operand must be a register in range [d0, d15]"; 11508 case Match_DPR_RegList: 11509 return hasD32() ? "operand must be a list of registers in range [d0, d31]" 11510 : "operand must be a list of registers in range [d0, d15]"; 11511 11512 // For all other diags, use the static string from tablegen. 11513 default: 11514 return getMatchKindDiag(MatchError); 11515 } 11516 } 11517 11518 // Process the list of near-misses, throwing away ones we don't want to report 11519 // to the user, and converting the rest to a source location and string that 11520 // should be reported. 11521 void 11522 ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn, 11523 SmallVectorImpl<NearMissMessage> &NearMissesOut, 11524 SMLoc IDLoc, OperandVector &Operands) { 11525 // TODO: If operand didn't match, sub in a dummy one and run target 11526 // predicate, so that we can avoid reporting near-misses that are invalid? 11527 // TODO: Many operand types dont have SuperClasses set, so we report 11528 // redundant ones. 11529 // TODO: Some operands are superclasses of registers (e.g. 11530 // MCK_RegShiftedImm), we don't have any way to represent that currently. 11531 // TODO: This is not all ARM-specific, can some of it be factored out? 11532 11533 // Record some information about near-misses that we have already seen, so 11534 // that we can avoid reporting redundant ones. For example, if there are 11535 // variants of an instruction that take 8- and 16-bit immediates, we want 11536 // to only report the widest one. 11537 std::multimap<unsigned, unsigned> OperandMissesSeen; 11538 SmallSet<FeatureBitset, 4> FeatureMissesSeen; 11539 bool ReportedTooFewOperands = false; 11540 11541 // Process the near-misses in reverse order, so that we see more general ones 11542 // first, and so can avoid emitting more specific ones. 11543 for (NearMissInfo &I : reverse(NearMissesIn)) { 11544 switch (I.getKind()) { 11545 case NearMissInfo::NearMissOperand: { 11546 SMLoc OperandLoc = 11547 ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc(); 11548 const char *OperandDiag = 11549 getCustomOperandDiag((ARMMatchResultTy)I.getOperandError()); 11550 11551 // If we have already emitted a message for a superclass, don't also report 11552 // the sub-class. We consider all operand classes that we don't have a 11553 // specialised diagnostic for to be equal for the propose of this check, 11554 // so that we don't report the generic error multiple times on the same 11555 // operand. 11556 unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U; 11557 auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex()); 11558 if (std::any_of(PrevReports.first, PrevReports.second, 11559 [DupCheckMatchClass]( 11560 const std::pair<unsigned, unsigned> Pair) { 11561 if (DupCheckMatchClass == ~0U || Pair.second == ~0U) 11562 return Pair.second == DupCheckMatchClass; 11563 else 11564 return isSubclass((MatchClassKind)DupCheckMatchClass, 11565 (MatchClassKind)Pair.second); 11566 })) 11567 break; 11568 OperandMissesSeen.insert( 11569 std::make_pair(I.getOperandIndex(), DupCheckMatchClass)); 11570 11571 NearMissMessage Message; 11572 Message.Loc = OperandLoc; 11573 if (OperandDiag) { 11574 Message.Message = OperandDiag; 11575 } else if (I.getOperandClass() == InvalidMatchClass) { 11576 Message.Message = "too many operands for instruction"; 11577 } else { 11578 Message.Message = "invalid operand for instruction"; 11579 LLVM_DEBUG( 11580 dbgs() << "Missing diagnostic string for operand class " 11581 << getMatchClassName((MatchClassKind)I.getOperandClass()) 11582 << I.getOperandClass() << ", error " << I.getOperandError() 11583 << ", opcode " << MII.getName(I.getOpcode()) << "\n"); 11584 } 11585 NearMissesOut.emplace_back(Message); 11586 break; 11587 } 11588 case NearMissInfo::NearMissFeature: { 11589 const FeatureBitset &MissingFeatures = I.getFeatures(); 11590 // Don't report the same set of features twice. 11591 if (FeatureMissesSeen.count(MissingFeatures)) 11592 break; 11593 FeatureMissesSeen.insert(MissingFeatures); 11594 11595 // Special case: don't report a feature set which includes arm-mode for 11596 // targets that don't have ARM mode. 11597 if (MissingFeatures.test(Feature_IsARMBit) && !hasARM()) 11598 break; 11599 // Don't report any near-misses that both require switching instruction 11600 // set, and adding other subtarget features. 11601 if (isThumb() && MissingFeatures.test(Feature_IsARMBit) && 11602 MissingFeatures.count() > 1) 11603 break; 11604 if (!isThumb() && MissingFeatures.test(Feature_IsThumbBit) && 11605 MissingFeatures.count() > 1) 11606 break; 11607 if (!isThumb() && MissingFeatures.test(Feature_IsThumb2Bit) && 11608 (MissingFeatures & ~FeatureBitset({Feature_IsThumb2Bit, 11609 Feature_IsThumbBit})).any()) 11610 break; 11611 if (isMClass() && MissingFeatures.test(Feature_HasNEONBit)) 11612 break; 11613 11614 NearMissMessage Message; 11615 Message.Loc = IDLoc; 11616 raw_svector_ostream OS(Message.Message); 11617 11618 OS << "instruction requires:"; 11619 for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i) 11620 if (MissingFeatures.test(i)) 11621 OS << ' ' << getSubtargetFeatureName(i); 11622 11623 NearMissesOut.emplace_back(Message); 11624 11625 break; 11626 } 11627 case NearMissInfo::NearMissPredicate: { 11628 NearMissMessage Message; 11629 Message.Loc = IDLoc; 11630 switch (I.getPredicateError()) { 11631 case Match_RequiresNotITBlock: 11632 Message.Message = "flag setting instruction only valid outside IT block"; 11633 break; 11634 case Match_RequiresITBlock: 11635 Message.Message = "instruction only valid inside IT block"; 11636 break; 11637 case Match_RequiresV6: 11638 Message.Message = "instruction variant requires ARMv6 or later"; 11639 break; 11640 case Match_RequiresThumb2: 11641 Message.Message = "instruction variant requires Thumb2"; 11642 break; 11643 case Match_RequiresV8: 11644 Message.Message = "instruction variant requires ARMv8 or later"; 11645 break; 11646 case Match_RequiresFlagSetting: 11647 Message.Message = "no flag-preserving variant of this instruction available"; 11648 break; 11649 case Match_InvalidOperand: 11650 Message.Message = "invalid operand for instruction"; 11651 break; 11652 default: 11653 llvm_unreachable("Unhandled target predicate error"); 11654 break; 11655 } 11656 NearMissesOut.emplace_back(Message); 11657 break; 11658 } 11659 case NearMissInfo::NearMissTooFewOperands: { 11660 if (!ReportedTooFewOperands) { 11661 SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc(); 11662 NearMissesOut.emplace_back(NearMissMessage{ 11663 EndLoc, StringRef("too few operands for instruction")}); 11664 ReportedTooFewOperands = true; 11665 } 11666 break; 11667 } 11668 case NearMissInfo::NoNearMiss: 11669 // This should never leave the matcher. 11670 llvm_unreachable("not a near-miss"); 11671 break; 11672 } 11673 } 11674 } 11675 11676 void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, 11677 SMLoc IDLoc, OperandVector &Operands) { 11678 SmallVector<NearMissMessage, 4> Messages; 11679 FilterNearMisses(NearMisses, Messages, IDLoc, Operands); 11680 11681 if (Messages.size() == 0) { 11682 // No near-misses were found, so the best we can do is "invalid 11683 // instruction". 11684 Error(IDLoc, "invalid instruction"); 11685 } else if (Messages.size() == 1) { 11686 // One near miss was found, report it as the sole error. 11687 Error(Messages[0].Loc, Messages[0].Message); 11688 } else { 11689 // More than one near miss, so report a generic "invalid instruction" 11690 // error, followed by notes for each of the near-misses. 11691 Error(IDLoc, "invalid instruction, any one of the following would fix this:"); 11692 for (auto &M : Messages) { 11693 Note(M.Loc, M.Message); 11694 } 11695 } 11696 } 11697 11698 /// parseDirectiveArchExtension 11699 /// ::= .arch_extension [no]feature 11700 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 11701 // FIXME: This structure should be moved inside ARMTargetParser 11702 // when we start to table-generate them, and we can use the ARM 11703 // flags below, that were generated by table-gen. 11704 static const struct { 11705 const unsigned Kind; 11706 const FeatureBitset ArchCheck; 11707 const FeatureBitset Features; 11708 } Extensions[] = { 11709 { ARM::AEK_CRC, {Feature_HasV8Bit}, {ARM::FeatureCRC} }, 11710 { ARM::AEK_CRYPTO, {Feature_HasV8Bit}, 11711 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 11712 { ARM::AEK_FP, {Feature_HasV8Bit}, 11713 {ARM::FeatureVFP2_D16_SP, ARM::FeatureFPARMv8} }, 11714 { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), 11715 {Feature_HasV7Bit, Feature_IsNotMClassBit}, 11716 {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} }, 11717 { ARM::AEK_MP, {Feature_HasV7Bit, Feature_IsNotMClassBit}, 11718 {ARM::FeatureMP} }, 11719 { ARM::AEK_SIMD, {Feature_HasV8Bit}, 11720 {ARM::FeatureNEON, ARM::FeatureVFP2_D16_SP, ARM::FeatureFPARMv8} }, 11721 { ARM::AEK_SEC, {Feature_HasV6KBit}, {ARM::FeatureTrustZone} }, 11722 // FIXME: Only available in A-class, isel not predicated 11723 { ARM::AEK_VIRT, {Feature_HasV7Bit}, {ARM::FeatureVirtualization} }, 11724 { ARM::AEK_FP16, {Feature_HasV8_2aBit}, 11725 {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 11726 { ARM::AEK_RAS, {Feature_HasV8Bit}, {ARM::FeatureRAS} }, 11727 { ARM::AEK_LOB, {Feature_HasV8_1MMainlineBit}, {ARM::FeatureLOB} }, 11728 // FIXME: Unsupported extensions. 11729 { ARM::AEK_OS, {}, {} }, 11730 { ARM::AEK_IWMMXT, {}, {} }, 11731 { ARM::AEK_IWMMXT2, {}, {} }, 11732 { ARM::AEK_MAVERICK, {}, {} }, 11733 { ARM::AEK_XSCALE, {}, {} }, 11734 }; 11735 11736 MCAsmParser &Parser = getParser(); 11737 11738 if (getLexer().isNot(AsmToken::Identifier)) 11739 return Error(getLexer().getLoc(), "expected architecture extension name"); 11740 11741 StringRef Name = Parser.getTok().getString(); 11742 SMLoc ExtLoc = Parser.getTok().getLoc(); 11743 Lex(); 11744 11745 if (parseToken(AsmToken::EndOfStatement, 11746 "unexpected token in '.arch_extension' directive")) 11747 return true; 11748 11749 bool EnableFeature = true; 11750 if (Name.startswith_lower("no")) { 11751 EnableFeature = false; 11752 Name = Name.substr(2); 11753 } 11754 unsigned FeatureKind = ARM::parseArchExt(Name); 11755 if (FeatureKind == ARM::AEK_INVALID) 11756 return Error(ExtLoc, "unknown architectural extension: " + Name); 11757 11758 for (const auto &Extension : Extensions) { 11759 if (Extension.Kind != FeatureKind) 11760 continue; 11761 11762 if (Extension.Features.none()) 11763 return Error(ExtLoc, "unsupported architectural extension: " + Name); 11764 11765 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) 11766 return Error(ExtLoc, "architectural extension '" + Name + 11767 "' is not " 11768 "allowed for the current base architecture"); 11769 11770 MCSubtargetInfo &STI = copySTI(); 11771 if (EnableFeature) { 11772 STI.SetFeatureBitsTransitively(Extension.Features); 11773 } else { 11774 STI.ClearFeatureBitsTransitively(Extension.Features); 11775 } 11776 FeatureBitset Features = ComputeAvailableFeatures(STI.getFeatureBits()); 11777 setAvailableFeatures(Features); 11778 return false; 11779 } 11780 11781 return Error(ExtLoc, "unknown architectural extension: " + Name); 11782 } 11783 11784 // Define this matcher function after the auto-generated include so we 11785 // have the match class enum definitions. 11786 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 11787 unsigned Kind) { 11788 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 11789 // If the kind is a token for a literal immediate, check if our asm 11790 // operand matches. This is for InstAliases which have a fixed-value 11791 // immediate in the syntax. 11792 switch (Kind) { 11793 default: break; 11794 case MCK__35_0: 11795 if (Op.isImm()) 11796 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11797 if (CE->getValue() == 0) 11798 return Match_Success; 11799 break; 11800 case MCK__35_8: 11801 if (Op.isImm()) 11802 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11803 if (CE->getValue() == 8) 11804 return Match_Success; 11805 break; 11806 case MCK__35_16: 11807 if (Op.isImm()) 11808 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 11809 if (CE->getValue() == 16) 11810 return Match_Success; 11811 break; 11812 case MCK_ModImm: 11813 if (Op.isImm()) { 11814 const MCExpr *SOExpr = Op.getImm(); 11815 int64_t Value; 11816 if (!SOExpr->evaluateAsAbsolute(Value)) 11817 return Match_Success; 11818 assert((Value >= std::numeric_limits<int32_t>::min() && 11819 Value <= std::numeric_limits<uint32_t>::max()) && 11820 "expression value must be representable in 32 bits"); 11821 } 11822 break; 11823 case MCK_rGPR: 11824 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 11825 return Match_Success; 11826 return Match_rGPR; 11827 case MCK_GPRPair: 11828 if (Op.isReg() && 11829 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 11830 return Match_Success; 11831 break; 11832 } 11833 return Match_InvalidOperand; 11834 } 11835 11836 bool ARMAsmParser::isMnemonicVPTPredicable(StringRef Mnemonic, 11837 StringRef ExtraToken) { 11838 if (!hasMVE()) 11839 return false; 11840 11841 return Mnemonic.startswith("vabav") || Mnemonic.startswith("vaddv") || 11842 Mnemonic.startswith("vaddlv") || Mnemonic.startswith("vminnmv") || 11843 Mnemonic.startswith("vminnmav") || Mnemonic.startswith("vminv") || 11844 Mnemonic.startswith("vminav") || Mnemonic.startswith("vmaxnmv") || 11845 Mnemonic.startswith("vmaxnmav") || Mnemonic.startswith("vmaxv") || 11846 Mnemonic.startswith("vmaxav") || Mnemonic.startswith("vmladav") || 11847 Mnemonic.startswith("vrmlaldavh") || Mnemonic.startswith("vrmlalvh") || 11848 Mnemonic.startswith("vmlsdav") || Mnemonic.startswith("vmlav") || 11849 Mnemonic.startswith("vmlaldav") || Mnemonic.startswith("vmlalv") || 11850 Mnemonic.startswith("vmaxnm") || Mnemonic.startswith("vminnm") || 11851 Mnemonic.startswith("vmax") || Mnemonic.startswith("vmin") || 11852 Mnemonic.startswith("vshlc") || Mnemonic.startswith("vmovlt") || 11853 Mnemonic.startswith("vmovlb") || Mnemonic.startswith("vshll") || 11854 Mnemonic.startswith("vrshrn") || Mnemonic.startswith("vshrn") || 11855 Mnemonic.startswith("vqrshrun") || Mnemonic.startswith("vqshrun") || 11856 Mnemonic.startswith("vqrshrn") || Mnemonic.startswith("vqshrn") || 11857 Mnemonic.startswith("vbic") || Mnemonic.startswith("vrev64") || 11858 Mnemonic.startswith("vrev32") || Mnemonic.startswith("vrev16") || 11859 Mnemonic.startswith("vmvn") || Mnemonic.startswith("veor") || 11860 Mnemonic.startswith("vorn") || Mnemonic.startswith("vorr") || 11861 Mnemonic.startswith("vand") || Mnemonic.startswith("vmul") || 11862 Mnemonic.startswith("vqrdmulh") || Mnemonic.startswith("vqdmulh") || 11863 Mnemonic.startswith("vsub") || Mnemonic.startswith("vadd") || 11864 Mnemonic.startswith("vqsub") || Mnemonic.startswith("vqadd") || 11865 Mnemonic.startswith("vabd") || Mnemonic.startswith("vrhadd") || 11866 Mnemonic.startswith("vhsub") || Mnemonic.startswith("vhadd") || 11867 Mnemonic.startswith("vdup") || Mnemonic.startswith("vcls") || 11868 Mnemonic.startswith("vclz") || Mnemonic.startswith("vneg") || 11869 Mnemonic.startswith("vabs") || Mnemonic.startswith("vqneg") || 11870 Mnemonic.startswith("vqabs") || 11871 (Mnemonic.startswith("vrint") && Mnemonic != "vrintr") || 11872 Mnemonic.startswith("vcmla") || Mnemonic.startswith("vfma") || 11873 Mnemonic.startswith("vfms") || Mnemonic.startswith("vcadd") || 11874 Mnemonic.startswith("vadd") || Mnemonic.startswith("vsub") || 11875 Mnemonic.startswith("vshl") || Mnemonic.startswith("vqshl") || 11876 Mnemonic.startswith("vqrshl") || Mnemonic.startswith("vrshl") || 11877 Mnemonic.startswith("vsri") || Mnemonic.startswith("vsli") || 11878 Mnemonic.startswith("vrshr") || Mnemonic.startswith("vshr") || 11879 Mnemonic.startswith("vpsel") || Mnemonic.startswith("vcmp") || 11880 Mnemonic.startswith("vqdmladh") || Mnemonic.startswith("vqrdmladh") || 11881 Mnemonic.startswith("vqdmlsdh") || Mnemonic.startswith("vqrdmlsdh") || 11882 Mnemonic.startswith("vcmul") || Mnemonic.startswith("vrmulh") || 11883 Mnemonic.startswith("vqmovn") || Mnemonic.startswith("vqmovun") || 11884 Mnemonic.startswith("vmovnt") || Mnemonic.startswith("vmovnb") || 11885 Mnemonic.startswith("vmaxa") || Mnemonic.startswith("vmaxnma") || 11886 Mnemonic.startswith("vhcadd") || Mnemonic.startswith("vadc") || 11887 Mnemonic.startswith("vsbc") || Mnemonic.startswith("vrshr") || 11888 Mnemonic.startswith("vshr") || Mnemonic.startswith("vstrb") || 11889 Mnemonic.startswith("vldrb") || 11890 (Mnemonic.startswith("vstrh") && Mnemonic != "vstrhi") || 11891 (Mnemonic.startswith("vldrh") && Mnemonic != "vldrhi") || 11892 Mnemonic.startswith("vstrw") || Mnemonic.startswith("vldrw") || 11893 Mnemonic.startswith("vldrd") || Mnemonic.startswith("vstrd") || 11894 Mnemonic.startswith("vqdmull") || Mnemonic.startswith("vbrsr") || 11895 Mnemonic.startswith("vfmas") || Mnemonic.startswith("vmlas") || 11896 Mnemonic.startswith("vmla") || Mnemonic.startswith("vqdmlash") || 11897 Mnemonic.startswith("vqdmlah") || Mnemonic.startswith("vqrdmlash") || 11898 Mnemonic.startswith("vqrdmlah") || Mnemonic.startswith("viwdup") || 11899 Mnemonic.startswith("vdwdup") || Mnemonic.startswith("vidup") || 11900 Mnemonic.startswith("vddup") || Mnemonic.startswith("vctp") || 11901 Mnemonic.startswith("vpnot") || Mnemonic.startswith("vbic") || 11902 Mnemonic.startswith("vrmlsldavh") || Mnemonic.startswith("vmlsldav") || 11903 Mnemonic.startswith("vcvt") || 11904 (Mnemonic.startswith("vmov") && 11905 !(ExtraToken == ".f16" || ExtraToken == ".32" || 11906 ExtraToken == ".16" || ExtraToken == ".8")); 11907 } 11908