1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAssembler.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDisassembler.h" 24 #include "llvm/MC/MCELFStreamer.h" 25 #include "llvm/MC/MCExpr.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/MC/MCObjectFileInfo.h" 30 #include "llvm/MC/MCParser/MCAsmLexer.h" 31 #include "llvm/MC/MCParser/MCAsmParser.h" 32 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/MC/MCSection.h" 36 #include "llvm/MC/MCStreamer.h" 37 #include "llvm/MC/MCSubtargetInfo.h" 38 #include "llvm/MC/MCSymbol.h" 39 #include "llvm/MC/MCTargetAsmParser.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/TargetParser.h" 43 #include "llvm/Support/COFF.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ELF.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SourceMgr.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 51 using namespace llvm; 52 53 namespace { 54 55 class ARMOperand; 56 57 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 58 59 class UnwindContext { 60 MCAsmParser &Parser; 61 62 typedef SmallVector<SMLoc, 4> Locs; 63 64 Locs FnStartLocs; 65 Locs CantUnwindLocs; 66 Locs PersonalityLocs; 67 Locs PersonalityIndexLocs; 68 Locs HandlerDataLocs; 69 int FPReg; 70 71 public: 72 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 73 74 bool hasFnStart() const { return !FnStartLocs.empty(); } 75 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 76 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 77 bool hasPersonality() const { 78 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 79 } 80 81 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 82 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 83 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 84 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 85 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 86 87 void saveFPReg(int Reg) { FPReg = Reg; } 88 int getFPReg() const { return FPReg; } 89 90 void emitFnStartLocNotes() const { 91 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 92 FI != FE; ++FI) 93 Parser.Note(*FI, ".fnstart was specified here"); 94 } 95 void emitCantUnwindLocNotes() const { 96 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 97 UE = CantUnwindLocs.end(); UI != UE; ++UI) 98 Parser.Note(*UI, ".cantunwind was specified here"); 99 } 100 void emitHandlerDataLocNotes() const { 101 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 102 HE = HandlerDataLocs.end(); HI != HE; ++HI) 103 Parser.Note(*HI, ".handlerdata was specified here"); 104 } 105 void emitPersonalityLocNotes() const { 106 for (Locs::const_iterator PI = PersonalityLocs.begin(), 107 PE = PersonalityLocs.end(), 108 PII = PersonalityIndexLocs.begin(), 109 PIE = PersonalityIndexLocs.end(); 110 PI != PE || PII != PIE;) { 111 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 112 Parser.Note(*PI++, ".personality was specified here"); 113 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 114 Parser.Note(*PII++, ".personalityindex was specified here"); 115 else 116 llvm_unreachable(".personality and .personalityindex cannot be " 117 "at the same location"); 118 } 119 } 120 121 void reset() { 122 FnStartLocs = Locs(); 123 CantUnwindLocs = Locs(); 124 PersonalityLocs = Locs(); 125 HandlerDataLocs = Locs(); 126 PersonalityIndexLocs = Locs(); 127 FPReg = ARM::SP; 128 } 129 }; 130 131 class ARMAsmParser : public MCTargetAsmParser { 132 MCSubtargetInfo &STI; 133 const MCInstrInfo &MII; 134 const MCRegisterInfo *MRI; 135 UnwindContext UC; 136 137 ARMTargetStreamer &getTargetStreamer() { 138 assert(getParser().getStreamer().getTargetStreamer() && 139 "do not have a target streamer"); 140 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 141 return static_cast<ARMTargetStreamer &>(TS); 142 } 143 144 // Map of register aliases registers via the .req directive. 145 StringMap<unsigned> RegisterReqs; 146 147 bool NextSymbolIsThumb; 148 149 struct { 150 ARMCC::CondCodes Cond; // Condition for IT block. 151 unsigned Mask:4; // Condition mask for instructions. 152 // Starting at first 1 (from lsb). 153 // '1' condition as indicated in IT. 154 // '0' inverse of condition (else). 155 // Count of instructions in IT block is 156 // 4 - trailingzeroes(mask) 157 158 bool FirstCond; // Explicit flag for when we're parsing the 159 // First instruction in the IT block. It's 160 // implied in the mask, so needs special 161 // handling. 162 163 unsigned CurPosition; // Current position in parsing of IT 164 // block. In range [0,3]. Initialized 165 // according to count of instructions in block. 166 // ~0U if no active IT block. 167 } ITState; 168 bool inITBlock() { return ITState.CurPosition != ~0U; } 169 bool lastInITBlock() { 170 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 171 } 172 void forwardITPosition() { 173 if (!inITBlock()) return; 174 // Move to the next instruction in the IT block, if there is one. If not, 175 // mark the block as done. 176 unsigned TZ = countTrailingZeros(ITState.Mask); 177 if (++ITState.CurPosition == 5 - TZ) 178 ITState.CurPosition = ~0U; // Done with the IT block after this. 179 } 180 181 void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { 182 return getParser().Note(L, Msg, Ranges); 183 } 184 bool Warning(SMLoc L, const Twine &Msg, 185 ArrayRef<SMRange> Ranges = None) { 186 return getParser().Warning(L, Msg, Ranges); 187 } 188 bool Error(SMLoc L, const Twine &Msg, 189 ArrayRef<SMRange> Ranges = None) { 190 return getParser().Error(L, Msg, Ranges); 191 } 192 193 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 194 unsigned ListNo, bool IsARPop = false); 195 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 196 unsigned ListNo); 197 198 int tryParseRegister(); 199 bool tryParseRegisterWithWriteBack(OperandVector &); 200 int tryParseShiftRegister(OperandVector &); 201 bool parseRegisterList(OperandVector &); 202 bool parseMemory(OperandVector &); 203 bool parseOperand(OperandVector &, StringRef Mnemonic); 204 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 205 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 206 unsigned &ShiftAmount); 207 bool parseLiteralValues(unsigned Size, SMLoc L); 208 bool parseDirectiveThumb(SMLoc L); 209 bool parseDirectiveARM(SMLoc L); 210 bool parseDirectiveThumbFunc(SMLoc L); 211 bool parseDirectiveCode(SMLoc L); 212 bool parseDirectiveSyntax(SMLoc L); 213 bool parseDirectiveReq(StringRef Name, SMLoc L); 214 bool parseDirectiveUnreq(SMLoc L); 215 bool parseDirectiveArch(SMLoc L); 216 bool parseDirectiveEabiAttr(SMLoc L); 217 bool parseDirectiveCPU(SMLoc L); 218 bool parseDirectiveFPU(SMLoc L); 219 bool parseDirectiveFnStart(SMLoc L); 220 bool parseDirectiveFnEnd(SMLoc L); 221 bool parseDirectiveCantUnwind(SMLoc L); 222 bool parseDirectivePersonality(SMLoc L); 223 bool parseDirectiveHandlerData(SMLoc L); 224 bool parseDirectiveSetFP(SMLoc L); 225 bool parseDirectivePad(SMLoc L); 226 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 227 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 228 bool parseDirectiveLtorg(SMLoc L); 229 bool parseDirectiveEven(SMLoc L); 230 bool parseDirectivePersonalityIndex(SMLoc L); 231 bool parseDirectiveUnwindRaw(SMLoc L); 232 bool parseDirectiveTLSDescSeq(SMLoc L); 233 bool parseDirectiveMovSP(SMLoc L); 234 bool parseDirectiveObjectArch(SMLoc L); 235 bool parseDirectiveArchExtension(SMLoc L); 236 bool parseDirectiveAlign(SMLoc L); 237 bool parseDirectiveThumbSet(SMLoc L); 238 239 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 240 bool &CarrySetting, unsigned &ProcessorIMod, 241 StringRef &ITMask); 242 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 243 bool &CanAcceptCarrySet, 244 bool &CanAcceptPredicationCode); 245 246 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 247 OperandVector &Operands); 248 bool isThumb() const { 249 // FIXME: Can tablegen auto-generate this? 250 return STI.getFeatureBits()[ARM::ModeThumb]; 251 } 252 bool isThumbOne() const { 253 return isThumb() && !STI.getFeatureBits()[ARM::FeatureThumb2]; 254 } 255 bool isThumbTwo() const { 256 return isThumb() && STI.getFeatureBits()[ARM::FeatureThumb2]; 257 } 258 bool hasThumb() const { 259 return STI.getFeatureBits()[ARM::HasV4TOps]; 260 } 261 bool hasV6Ops() const { 262 return STI.getFeatureBits()[ARM::HasV6Ops]; 263 } 264 bool hasV6MOps() const { 265 return STI.getFeatureBits()[ARM::HasV6MOps]; 266 } 267 bool hasV7Ops() const { 268 return STI.getFeatureBits()[ARM::HasV7Ops]; 269 } 270 bool hasV8Ops() const { 271 return STI.getFeatureBits()[ARM::HasV8Ops]; 272 } 273 bool hasARM() const { 274 return !STI.getFeatureBits()[ARM::FeatureNoARM]; 275 } 276 bool hasDSP() const { 277 return STI.getFeatureBits()[ARM::FeatureDSP]; 278 } 279 bool hasD16() const { 280 return STI.getFeatureBits()[ARM::FeatureD16]; 281 } 282 bool hasV8_1aOps() const { 283 return STI.getFeatureBits()[ARM::HasV8_1aOps]; 284 } 285 286 void SwitchMode() { 287 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 288 setAvailableFeatures(FB); 289 } 290 bool isMClass() const { 291 return STI.getFeatureBits()[ARM::FeatureMClass]; 292 } 293 294 /// @name Auto-generated Match Functions 295 /// { 296 297 #define GET_ASSEMBLER_HEADER 298 #include "ARMGenAsmMatcher.inc" 299 300 /// } 301 302 OperandMatchResultTy parseITCondCode(OperandVector &); 303 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 304 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 305 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 306 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 307 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 308 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 309 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 310 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 311 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 312 int High); 313 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 314 return parsePKHImm(O, "lsl", 0, 31); 315 } 316 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 317 return parsePKHImm(O, "asr", 1, 32); 318 } 319 OperandMatchResultTy parseSetEndImm(OperandVector &); 320 OperandMatchResultTy parseShifterImm(OperandVector &); 321 OperandMatchResultTy parseRotImm(OperandVector &); 322 OperandMatchResultTy parseModImm(OperandVector &); 323 OperandMatchResultTy parseBitfield(OperandVector &); 324 OperandMatchResultTy parsePostIdxReg(OperandVector &); 325 OperandMatchResultTy parseAM3Offset(OperandVector &); 326 OperandMatchResultTy parseFPImm(OperandVector &); 327 OperandMatchResultTy parseVectorList(OperandVector &); 328 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 329 SMLoc &EndLoc); 330 331 // Asm Match Converter Methods 332 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 333 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 334 335 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 336 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 337 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 338 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 339 340 public: 341 enum ARMMatchResultTy { 342 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 343 Match_RequiresNotITBlock, 344 Match_RequiresV6, 345 Match_RequiresThumb2, 346 Match_RequiresV8, 347 #define GET_OPERAND_DIAGNOSTIC_TYPES 348 #include "ARMGenAsmMatcher.inc" 349 350 }; 351 352 ARMAsmParser(MCSubtargetInfo &STI, MCAsmParser &Parser, 353 const MCInstrInfo &MII, const MCTargetOptions &Options) 354 : MCTargetAsmParser(Options), STI(STI), MII(MII), UC(Parser) { 355 MCAsmParserExtension::Initialize(Parser); 356 357 // Cache the MCRegisterInfo. 358 MRI = getContext().getRegisterInfo(); 359 360 // Initialize the set of available features. 361 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 362 363 // Not in an ITBlock to start with. 364 ITState.CurPosition = ~0U; 365 366 NextSymbolIsThumb = false; 367 } 368 369 // Implementation of the MCTargetAsmParser interface: 370 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 371 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 372 SMLoc NameLoc, OperandVector &Operands) override; 373 bool ParseDirective(AsmToken DirectiveID) override; 374 375 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 376 unsigned Kind) override; 377 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 378 379 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 380 OperandVector &Operands, MCStreamer &Out, 381 uint64_t &ErrorInfo, 382 bool MatchingInlineAsm) override; 383 void onLabelParsed(MCSymbol *Symbol) override; 384 }; 385 } // end anonymous namespace 386 387 namespace { 388 389 /// ARMOperand - Instances of this class represent a parsed ARM machine 390 /// operand. 391 class ARMOperand : public MCParsedAsmOperand { 392 enum KindTy { 393 k_CondCode, 394 k_CCOut, 395 k_ITCondMask, 396 k_CoprocNum, 397 k_CoprocReg, 398 k_CoprocOption, 399 k_Immediate, 400 k_MemBarrierOpt, 401 k_InstSyncBarrierOpt, 402 k_Memory, 403 k_PostIndexRegister, 404 k_MSRMask, 405 k_BankedReg, 406 k_ProcIFlags, 407 k_VectorIndex, 408 k_Register, 409 k_RegisterList, 410 k_DPRRegisterList, 411 k_SPRRegisterList, 412 k_VectorList, 413 k_VectorListAllLanes, 414 k_VectorListIndexed, 415 k_ShiftedRegister, 416 k_ShiftedImmediate, 417 k_ShifterImmediate, 418 k_RotateImmediate, 419 k_ModifiedImmediate, 420 k_BitfieldDescriptor, 421 k_Token 422 } Kind; 423 424 SMLoc StartLoc, EndLoc, AlignmentLoc; 425 SmallVector<unsigned, 8> Registers; 426 427 struct CCOp { 428 ARMCC::CondCodes Val; 429 }; 430 431 struct CopOp { 432 unsigned Val; 433 }; 434 435 struct CoprocOptionOp { 436 unsigned Val; 437 }; 438 439 struct ITMaskOp { 440 unsigned Mask:4; 441 }; 442 443 struct MBOptOp { 444 ARM_MB::MemBOpt Val; 445 }; 446 447 struct ISBOptOp { 448 ARM_ISB::InstSyncBOpt Val; 449 }; 450 451 struct IFlagsOp { 452 ARM_PROC::IFlags Val; 453 }; 454 455 struct MMaskOp { 456 unsigned Val; 457 }; 458 459 struct BankedRegOp { 460 unsigned Val; 461 }; 462 463 struct TokOp { 464 const char *Data; 465 unsigned Length; 466 }; 467 468 struct RegOp { 469 unsigned RegNum; 470 }; 471 472 // A vector register list is a sequential list of 1 to 4 registers. 473 struct VectorListOp { 474 unsigned RegNum; 475 unsigned Count; 476 unsigned LaneIndex; 477 bool isDoubleSpaced; 478 }; 479 480 struct VectorIndexOp { 481 unsigned Val; 482 }; 483 484 struct ImmOp { 485 const MCExpr *Val; 486 }; 487 488 /// Combined record for all forms of ARM address expressions. 489 struct MemoryOp { 490 unsigned BaseRegNum; 491 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 492 // was specified. 493 const MCConstantExpr *OffsetImm; // Offset immediate value 494 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 495 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 496 unsigned ShiftImm; // shift for OffsetReg. 497 unsigned Alignment; // 0 = no alignment specified 498 // n = alignment in bytes (2, 4, 8, 16, or 32) 499 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 500 }; 501 502 struct PostIdxRegOp { 503 unsigned RegNum; 504 bool isAdd; 505 ARM_AM::ShiftOpc ShiftTy; 506 unsigned ShiftImm; 507 }; 508 509 struct ShifterImmOp { 510 bool isASR; 511 unsigned Imm; 512 }; 513 514 struct RegShiftedRegOp { 515 ARM_AM::ShiftOpc ShiftTy; 516 unsigned SrcReg; 517 unsigned ShiftReg; 518 unsigned ShiftImm; 519 }; 520 521 struct RegShiftedImmOp { 522 ARM_AM::ShiftOpc ShiftTy; 523 unsigned SrcReg; 524 unsigned ShiftImm; 525 }; 526 527 struct RotImmOp { 528 unsigned Imm; 529 }; 530 531 struct ModImmOp { 532 unsigned Bits; 533 unsigned Rot; 534 }; 535 536 struct BitfieldOp { 537 unsigned LSB; 538 unsigned Width; 539 }; 540 541 union { 542 struct CCOp CC; 543 struct CopOp Cop; 544 struct CoprocOptionOp CoprocOption; 545 struct MBOptOp MBOpt; 546 struct ISBOptOp ISBOpt; 547 struct ITMaskOp ITMask; 548 struct IFlagsOp IFlags; 549 struct MMaskOp MMask; 550 struct BankedRegOp BankedReg; 551 struct TokOp Tok; 552 struct RegOp Reg; 553 struct VectorListOp VectorList; 554 struct VectorIndexOp VectorIndex; 555 struct ImmOp Imm; 556 struct MemoryOp Memory; 557 struct PostIdxRegOp PostIdxReg; 558 struct ShifterImmOp ShifterImm; 559 struct RegShiftedRegOp RegShiftedReg; 560 struct RegShiftedImmOp RegShiftedImm; 561 struct RotImmOp RotImm; 562 struct ModImmOp ModImm; 563 struct BitfieldOp Bitfield; 564 }; 565 566 public: 567 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 568 569 /// getStartLoc - Get the location of the first token of this operand. 570 SMLoc getStartLoc() const override { return StartLoc; } 571 /// getEndLoc - Get the location of the last token of this operand. 572 SMLoc getEndLoc() const override { return EndLoc; } 573 /// getLocRange - Get the range between the first and last token of this 574 /// operand. 575 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 576 577 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 578 SMLoc getAlignmentLoc() const { 579 assert(Kind == k_Memory && "Invalid access!"); 580 return AlignmentLoc; 581 } 582 583 ARMCC::CondCodes getCondCode() const { 584 assert(Kind == k_CondCode && "Invalid access!"); 585 return CC.Val; 586 } 587 588 unsigned getCoproc() const { 589 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 590 return Cop.Val; 591 } 592 593 StringRef getToken() const { 594 assert(Kind == k_Token && "Invalid access!"); 595 return StringRef(Tok.Data, Tok.Length); 596 } 597 598 unsigned getReg() const override { 599 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 600 return Reg.RegNum; 601 } 602 603 const SmallVectorImpl<unsigned> &getRegList() const { 604 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 605 Kind == k_SPRRegisterList) && "Invalid access!"); 606 return Registers; 607 } 608 609 const MCExpr *getImm() const { 610 assert(isImm() && "Invalid access!"); 611 return Imm.Val; 612 } 613 614 unsigned getVectorIndex() const { 615 assert(Kind == k_VectorIndex && "Invalid access!"); 616 return VectorIndex.Val; 617 } 618 619 ARM_MB::MemBOpt getMemBarrierOpt() const { 620 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 621 return MBOpt.Val; 622 } 623 624 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 625 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 626 return ISBOpt.Val; 627 } 628 629 ARM_PROC::IFlags getProcIFlags() const { 630 assert(Kind == k_ProcIFlags && "Invalid access!"); 631 return IFlags.Val; 632 } 633 634 unsigned getMSRMask() const { 635 assert(Kind == k_MSRMask && "Invalid access!"); 636 return MMask.Val; 637 } 638 639 unsigned getBankedReg() const { 640 assert(Kind == k_BankedReg && "Invalid access!"); 641 return BankedReg.Val; 642 } 643 644 bool isCoprocNum() const { return Kind == k_CoprocNum; } 645 bool isCoprocReg() const { return Kind == k_CoprocReg; } 646 bool isCoprocOption() const { return Kind == k_CoprocOption; } 647 bool isCondCode() const { return Kind == k_CondCode; } 648 bool isCCOut() const { return Kind == k_CCOut; } 649 bool isITMask() const { return Kind == k_ITCondMask; } 650 bool isITCondCode() const { return Kind == k_CondCode; } 651 bool isImm() const override { return Kind == k_Immediate; } 652 // checks whether this operand is an unsigned offset which fits is a field 653 // of specified width and scaled by a specific number of bits 654 template<unsigned width, unsigned scale> 655 bool isUnsignedOffset() const { 656 if (!isImm()) return false; 657 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 658 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 659 int64_t Val = CE->getValue(); 660 int64_t Align = 1LL << scale; 661 int64_t Max = Align * ((1LL << width) - 1); 662 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 663 } 664 return false; 665 } 666 // checks whether this operand is an signed offset which fits is a field 667 // of specified width and scaled by a specific number of bits 668 template<unsigned width, unsigned scale> 669 bool isSignedOffset() const { 670 if (!isImm()) return false; 671 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 672 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 673 int64_t Val = CE->getValue(); 674 int64_t Align = 1LL << scale; 675 int64_t Max = Align * ((1LL << (width-1)) - 1); 676 int64_t Min = -Align * (1LL << (width-1)); 677 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 678 } 679 return false; 680 } 681 682 // checks whether this operand is a memory operand computed as an offset 683 // applied to PC. the offset may have 8 bits of magnitude and is represented 684 // with two bits of shift. textually it may be either [pc, #imm], #imm or 685 // relocable expression... 686 bool isThumbMemPC() const { 687 int64_t Val = 0; 688 if (isImm()) { 689 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 690 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 691 if (!CE) return false; 692 Val = CE->getValue(); 693 } 694 else if (isMem()) { 695 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 696 if(Memory.BaseRegNum != ARM::PC) return false; 697 Val = Memory.OffsetImm->getValue(); 698 } 699 else return false; 700 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 701 } 702 bool isFPImm() const { 703 if (!isImm()) return false; 704 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 705 if (!CE) return false; 706 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 707 return Val != -1; 708 } 709 bool isFBits16() const { 710 if (!isImm()) return false; 711 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 712 if (!CE) return false; 713 int64_t Value = CE->getValue(); 714 return Value >= 0 && Value <= 16; 715 } 716 bool isFBits32() const { 717 if (!isImm()) return false; 718 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 719 if (!CE) return false; 720 int64_t Value = CE->getValue(); 721 return Value >= 1 && Value <= 32; 722 } 723 bool isImm8s4() const { 724 if (!isImm()) return false; 725 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 726 if (!CE) return false; 727 int64_t Value = CE->getValue(); 728 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 729 } 730 bool isImm0_1020s4() const { 731 if (!isImm()) return false; 732 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 733 if (!CE) return false; 734 int64_t Value = CE->getValue(); 735 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 736 } 737 bool isImm0_508s4() const { 738 if (!isImm()) return false; 739 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 740 if (!CE) return false; 741 int64_t Value = CE->getValue(); 742 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 743 } 744 bool isImm0_508s4Neg() const { 745 if (!isImm()) return false; 746 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 747 if (!CE) return false; 748 int64_t Value = -CE->getValue(); 749 // explicitly exclude zero. we want that to use the normal 0_508 version. 750 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 751 } 752 bool isImm0_239() const { 753 if (!isImm()) return false; 754 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 755 if (!CE) return false; 756 int64_t Value = CE->getValue(); 757 return Value >= 0 && Value < 240; 758 } 759 bool isImm0_255() const { 760 if (!isImm()) return false; 761 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 762 if (!CE) return false; 763 int64_t Value = CE->getValue(); 764 return Value >= 0 && Value < 256; 765 } 766 bool isImm0_4095() const { 767 if (!isImm()) return false; 768 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 769 if (!CE) return false; 770 int64_t Value = CE->getValue(); 771 return Value >= 0 && Value < 4096; 772 } 773 bool isImm0_4095Neg() const { 774 if (!isImm()) return false; 775 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 776 if (!CE) return false; 777 int64_t Value = -CE->getValue(); 778 return Value > 0 && Value < 4096; 779 } 780 bool isImm0_1() const { 781 if (!isImm()) return false; 782 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 783 if (!CE) return false; 784 int64_t Value = CE->getValue(); 785 return Value >= 0 && Value < 2; 786 } 787 bool isImm0_3() const { 788 if (!isImm()) return false; 789 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 790 if (!CE) return false; 791 int64_t Value = CE->getValue(); 792 return Value >= 0 && Value < 4; 793 } 794 bool isImm0_7() const { 795 if (!isImm()) return false; 796 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 797 if (!CE) return false; 798 int64_t Value = CE->getValue(); 799 return Value >= 0 && Value < 8; 800 } 801 bool isImm0_15() const { 802 if (!isImm()) return false; 803 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 804 if (!CE) return false; 805 int64_t Value = CE->getValue(); 806 return Value >= 0 && Value < 16; 807 } 808 bool isImm0_31() const { 809 if (!isImm()) return false; 810 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 811 if (!CE) return false; 812 int64_t Value = CE->getValue(); 813 return Value >= 0 && Value < 32; 814 } 815 bool isImm0_63() const { 816 if (!isImm()) return false; 817 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 818 if (!CE) return false; 819 int64_t Value = CE->getValue(); 820 return Value >= 0 && Value < 64; 821 } 822 bool isImm8() const { 823 if (!isImm()) return false; 824 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 825 if (!CE) return false; 826 int64_t Value = CE->getValue(); 827 return Value == 8; 828 } 829 bool isImm16() const { 830 if (!isImm()) return false; 831 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 832 if (!CE) return false; 833 int64_t Value = CE->getValue(); 834 return Value == 16; 835 } 836 bool isImm32() const { 837 if (!isImm()) return false; 838 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 839 if (!CE) return false; 840 int64_t Value = CE->getValue(); 841 return Value == 32; 842 } 843 bool isShrImm8() const { 844 if (!isImm()) return false; 845 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 846 if (!CE) return false; 847 int64_t Value = CE->getValue(); 848 return Value > 0 && Value <= 8; 849 } 850 bool isShrImm16() const { 851 if (!isImm()) return false; 852 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 853 if (!CE) return false; 854 int64_t Value = CE->getValue(); 855 return Value > 0 && Value <= 16; 856 } 857 bool isShrImm32() const { 858 if (!isImm()) return false; 859 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 860 if (!CE) return false; 861 int64_t Value = CE->getValue(); 862 return Value > 0 && Value <= 32; 863 } 864 bool isShrImm64() const { 865 if (!isImm()) return false; 866 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 867 if (!CE) return false; 868 int64_t Value = CE->getValue(); 869 return Value > 0 && Value <= 64; 870 } 871 bool isImm1_7() const { 872 if (!isImm()) return false; 873 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 874 if (!CE) return false; 875 int64_t Value = CE->getValue(); 876 return Value > 0 && Value < 8; 877 } 878 bool isImm1_15() const { 879 if (!isImm()) return false; 880 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 881 if (!CE) return false; 882 int64_t Value = CE->getValue(); 883 return Value > 0 && Value < 16; 884 } 885 bool isImm1_31() const { 886 if (!isImm()) return false; 887 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 888 if (!CE) return false; 889 int64_t Value = CE->getValue(); 890 return Value > 0 && Value < 32; 891 } 892 bool isImm1_16() const { 893 if (!isImm()) return false; 894 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 895 if (!CE) return false; 896 int64_t Value = CE->getValue(); 897 return Value > 0 && Value < 17; 898 } 899 bool isImm1_32() const { 900 if (!isImm()) return false; 901 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 902 if (!CE) return false; 903 int64_t Value = CE->getValue(); 904 return Value > 0 && Value < 33; 905 } 906 bool isImm0_32() const { 907 if (!isImm()) return false; 908 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 909 if (!CE) return false; 910 int64_t Value = CE->getValue(); 911 return Value >= 0 && Value < 33; 912 } 913 bool isImm0_65535() const { 914 if (!isImm()) return false; 915 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 916 if (!CE) return false; 917 int64_t Value = CE->getValue(); 918 return Value >= 0 && Value < 65536; 919 } 920 bool isImm256_65535Expr() const { 921 if (!isImm()) return false; 922 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 923 // If it's not a constant expression, it'll generate a fixup and be 924 // handled later. 925 if (!CE) return true; 926 int64_t Value = CE->getValue(); 927 return Value >= 256 && Value < 65536; 928 } 929 bool isImm0_65535Expr() const { 930 if (!isImm()) return false; 931 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 932 // If it's not a constant expression, it'll generate a fixup and be 933 // handled later. 934 if (!CE) return true; 935 int64_t Value = CE->getValue(); 936 return Value >= 0 && Value < 65536; 937 } 938 bool isImm24bit() const { 939 if (!isImm()) return false; 940 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 941 if (!CE) return false; 942 int64_t Value = CE->getValue(); 943 return Value >= 0 && Value <= 0xffffff; 944 } 945 bool isImmThumbSR() const { 946 if (!isImm()) return false; 947 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 948 if (!CE) return false; 949 int64_t Value = CE->getValue(); 950 return Value > 0 && Value < 33; 951 } 952 bool isPKHLSLImm() const { 953 if (!isImm()) return false; 954 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 955 if (!CE) return false; 956 int64_t Value = CE->getValue(); 957 return Value >= 0 && Value < 32; 958 } 959 bool isPKHASRImm() const { 960 if (!isImm()) return false; 961 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 962 if (!CE) return false; 963 int64_t Value = CE->getValue(); 964 return Value > 0 && Value <= 32; 965 } 966 bool isAdrLabel() const { 967 // If we have an immediate that's not a constant, treat it as a label 968 // reference needing a fixup. 969 if (isImm() && !isa<MCConstantExpr>(getImm())) 970 return true; 971 972 // If it is a constant, it must fit into a modified immediate encoding. 973 if (!isImm()) return false; 974 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 975 if (!CE) return false; 976 int64_t Value = CE->getValue(); 977 return (ARM_AM::getSOImmVal(Value) != -1 || 978 ARM_AM::getSOImmVal(-Value) != -1); 979 } 980 bool isT2SOImm() const { 981 if (!isImm()) return false; 982 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 983 if (!CE) return false; 984 int64_t Value = CE->getValue(); 985 return ARM_AM::getT2SOImmVal(Value) != -1; 986 } 987 bool isT2SOImmNot() const { 988 if (!isImm()) return false; 989 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 990 if (!CE) return false; 991 int64_t Value = CE->getValue(); 992 return ARM_AM::getT2SOImmVal(Value) == -1 && 993 ARM_AM::getT2SOImmVal(~Value) != -1; 994 } 995 bool isT2SOImmNeg() const { 996 if (!isImm()) return false; 997 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 998 if (!CE) return false; 999 int64_t Value = CE->getValue(); 1000 // Only use this when not representable as a plain so_imm. 1001 return ARM_AM::getT2SOImmVal(Value) == -1 && 1002 ARM_AM::getT2SOImmVal(-Value) != -1; 1003 } 1004 bool isSetEndImm() const { 1005 if (!isImm()) return false; 1006 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1007 if (!CE) return false; 1008 int64_t Value = CE->getValue(); 1009 return Value == 1 || Value == 0; 1010 } 1011 bool isReg() const override { return Kind == k_Register; } 1012 bool isRegList() const { return Kind == k_RegisterList; } 1013 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1014 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1015 bool isToken() const override { return Kind == k_Token; } 1016 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1017 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1018 bool isMem() const override { return Kind == k_Memory; } 1019 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1020 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1021 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1022 bool isRotImm() const { return Kind == k_RotateImmediate; } 1023 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1024 bool isModImmNot() const { 1025 if (!isImm()) return false; 1026 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1027 if (!CE) return false; 1028 int64_t Value = CE->getValue(); 1029 return ARM_AM::getSOImmVal(~Value) != -1; 1030 } 1031 bool isModImmNeg() const { 1032 if (!isImm()) return false; 1033 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1034 if (!CE) return false; 1035 int64_t Value = CE->getValue(); 1036 return ARM_AM::getSOImmVal(Value) == -1 && 1037 ARM_AM::getSOImmVal(-Value) != -1; 1038 } 1039 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1040 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1041 bool isPostIdxReg() const { 1042 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1043 } 1044 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1045 if (!isMem()) 1046 return false; 1047 // No offset of any kind. 1048 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1049 (alignOK || Memory.Alignment == Alignment); 1050 } 1051 bool isMemPCRelImm12() const { 1052 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1053 return false; 1054 // Base register must be PC. 1055 if (Memory.BaseRegNum != ARM::PC) 1056 return false; 1057 // Immediate offset in range [-4095, 4095]. 1058 if (!Memory.OffsetImm) return true; 1059 int64_t Val = Memory.OffsetImm->getValue(); 1060 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1061 } 1062 bool isAlignedMemory() const { 1063 return isMemNoOffset(true); 1064 } 1065 bool isAlignedMemoryNone() const { 1066 return isMemNoOffset(false, 0); 1067 } 1068 bool isDupAlignedMemoryNone() const { 1069 return isMemNoOffset(false, 0); 1070 } 1071 bool isAlignedMemory16() const { 1072 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1073 return true; 1074 return isMemNoOffset(false, 0); 1075 } 1076 bool isDupAlignedMemory16() const { 1077 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1078 return true; 1079 return isMemNoOffset(false, 0); 1080 } 1081 bool isAlignedMemory32() const { 1082 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1083 return true; 1084 return isMemNoOffset(false, 0); 1085 } 1086 bool isDupAlignedMemory32() const { 1087 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1088 return true; 1089 return isMemNoOffset(false, 0); 1090 } 1091 bool isAlignedMemory64() const { 1092 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1093 return true; 1094 return isMemNoOffset(false, 0); 1095 } 1096 bool isDupAlignedMemory64() const { 1097 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1098 return true; 1099 return isMemNoOffset(false, 0); 1100 } 1101 bool isAlignedMemory64or128() const { 1102 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1103 return true; 1104 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1105 return true; 1106 return isMemNoOffset(false, 0); 1107 } 1108 bool isDupAlignedMemory64or128() const { 1109 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1110 return true; 1111 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1112 return true; 1113 return isMemNoOffset(false, 0); 1114 } 1115 bool isAlignedMemory64or128or256() const { 1116 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1117 return true; 1118 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1119 return true; 1120 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1121 return true; 1122 return isMemNoOffset(false, 0); 1123 } 1124 bool isAddrMode2() const { 1125 if (!isMem() || Memory.Alignment != 0) return false; 1126 // Check for register offset. 1127 if (Memory.OffsetRegNum) return true; 1128 // Immediate offset in range [-4095, 4095]. 1129 if (!Memory.OffsetImm) return true; 1130 int64_t Val = Memory.OffsetImm->getValue(); 1131 return Val > -4096 && Val < 4096; 1132 } 1133 bool isAM2OffsetImm() const { 1134 if (!isImm()) return false; 1135 // Immediate offset in range [-4095, 4095]. 1136 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1137 if (!CE) return false; 1138 int64_t Val = CE->getValue(); 1139 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1140 } 1141 bool isAddrMode3() const { 1142 // If we have an immediate that's not a constant, treat it as a label 1143 // reference needing a fixup. If it is a constant, it's something else 1144 // and we reject it. 1145 if (isImm() && !isa<MCConstantExpr>(getImm())) 1146 return true; 1147 if (!isMem() || Memory.Alignment != 0) return false; 1148 // No shifts are legal for AM3. 1149 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1150 // Check for register offset. 1151 if (Memory.OffsetRegNum) return true; 1152 // Immediate offset in range [-255, 255]. 1153 if (!Memory.OffsetImm) return true; 1154 int64_t Val = Memory.OffsetImm->getValue(); 1155 // The #-0 offset is encoded as INT32_MIN, and we have to check 1156 // for this too. 1157 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1158 } 1159 bool isAM3Offset() const { 1160 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1161 return false; 1162 if (Kind == k_PostIndexRegister) 1163 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1164 // Immediate offset in range [-255, 255]. 1165 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1166 if (!CE) return false; 1167 int64_t Val = CE->getValue(); 1168 // Special case, #-0 is INT32_MIN. 1169 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1170 } 1171 bool isAddrMode5() const { 1172 // If we have an immediate that's not a constant, treat it as a label 1173 // reference needing a fixup. If it is a constant, it's something else 1174 // and we reject it. 1175 if (isImm() && !isa<MCConstantExpr>(getImm())) 1176 return true; 1177 if (!isMem() || Memory.Alignment != 0) return false; 1178 // Check for register offset. 1179 if (Memory.OffsetRegNum) return false; 1180 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1181 if (!Memory.OffsetImm) return true; 1182 int64_t Val = Memory.OffsetImm->getValue(); 1183 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1184 Val == INT32_MIN; 1185 } 1186 bool isMemTBB() const { 1187 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1188 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1189 return false; 1190 return true; 1191 } 1192 bool isMemTBH() const { 1193 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1194 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1195 Memory.Alignment != 0 ) 1196 return false; 1197 return true; 1198 } 1199 bool isMemRegOffset() const { 1200 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1201 return false; 1202 return true; 1203 } 1204 bool isT2MemRegOffset() const { 1205 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1206 Memory.Alignment != 0) 1207 return false; 1208 // Only lsl #{0, 1, 2, 3} allowed. 1209 if (Memory.ShiftType == ARM_AM::no_shift) 1210 return true; 1211 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1212 return false; 1213 return true; 1214 } 1215 bool isMemThumbRR() const { 1216 // Thumb reg+reg addressing is simple. Just two registers, a base and 1217 // an offset. No shifts, negations or any other complicating factors. 1218 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1219 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1220 return false; 1221 return isARMLowRegister(Memory.BaseRegNum) && 1222 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1223 } 1224 bool isMemThumbRIs4() const { 1225 if (!isMem() || Memory.OffsetRegNum != 0 || 1226 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1227 return false; 1228 // Immediate offset, multiple of 4 in range [0, 124]. 1229 if (!Memory.OffsetImm) return true; 1230 int64_t Val = Memory.OffsetImm->getValue(); 1231 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1232 } 1233 bool isMemThumbRIs2() const { 1234 if (!isMem() || Memory.OffsetRegNum != 0 || 1235 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1236 return false; 1237 // Immediate offset, multiple of 4 in range [0, 62]. 1238 if (!Memory.OffsetImm) return true; 1239 int64_t Val = Memory.OffsetImm->getValue(); 1240 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1241 } 1242 bool isMemThumbRIs1() const { 1243 if (!isMem() || Memory.OffsetRegNum != 0 || 1244 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1245 return false; 1246 // Immediate offset in range [0, 31]. 1247 if (!Memory.OffsetImm) return true; 1248 int64_t Val = Memory.OffsetImm->getValue(); 1249 return Val >= 0 && Val <= 31; 1250 } 1251 bool isMemThumbSPI() const { 1252 if (!isMem() || Memory.OffsetRegNum != 0 || 1253 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1254 return false; 1255 // Immediate offset, multiple of 4 in range [0, 1020]. 1256 if (!Memory.OffsetImm) return true; 1257 int64_t Val = Memory.OffsetImm->getValue(); 1258 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1259 } 1260 bool isMemImm8s4Offset() const { 1261 // If we have an immediate that's not a constant, treat it as a label 1262 // reference needing a fixup. If it is a constant, it's something else 1263 // and we reject it. 1264 if (isImm() && !isa<MCConstantExpr>(getImm())) 1265 return true; 1266 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1267 return false; 1268 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1269 if (!Memory.OffsetImm) return true; 1270 int64_t Val = Memory.OffsetImm->getValue(); 1271 // Special case, #-0 is INT32_MIN. 1272 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1273 } 1274 bool isMemImm0_1020s4Offset() const { 1275 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1276 return false; 1277 // Immediate offset a multiple of 4 in range [0, 1020]. 1278 if (!Memory.OffsetImm) return true; 1279 int64_t Val = Memory.OffsetImm->getValue(); 1280 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1281 } 1282 bool isMemImm8Offset() const { 1283 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1284 return false; 1285 // Base reg of PC isn't allowed for these encodings. 1286 if (Memory.BaseRegNum == ARM::PC) return false; 1287 // Immediate offset in range [-255, 255]. 1288 if (!Memory.OffsetImm) return true; 1289 int64_t Val = Memory.OffsetImm->getValue(); 1290 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1291 } 1292 bool isMemPosImm8Offset() const { 1293 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1294 return false; 1295 // Immediate offset in range [0, 255]. 1296 if (!Memory.OffsetImm) return true; 1297 int64_t Val = Memory.OffsetImm->getValue(); 1298 return Val >= 0 && Val < 256; 1299 } 1300 bool isMemNegImm8Offset() const { 1301 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1302 return false; 1303 // Base reg of PC isn't allowed for these encodings. 1304 if (Memory.BaseRegNum == ARM::PC) return false; 1305 // Immediate offset in range [-255, -1]. 1306 if (!Memory.OffsetImm) return false; 1307 int64_t Val = Memory.OffsetImm->getValue(); 1308 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1309 } 1310 bool isMemUImm12Offset() const { 1311 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1312 return false; 1313 // Immediate offset in range [0, 4095]. 1314 if (!Memory.OffsetImm) return true; 1315 int64_t Val = Memory.OffsetImm->getValue(); 1316 return (Val >= 0 && Val < 4096); 1317 } 1318 bool isMemImm12Offset() const { 1319 // If we have an immediate that's not a constant, treat it as a label 1320 // reference needing a fixup. If it is a constant, it's something else 1321 // and we reject it. 1322 if (isImm() && !isa<MCConstantExpr>(getImm())) 1323 return true; 1324 1325 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1326 return false; 1327 // Immediate offset in range [-4095, 4095]. 1328 if (!Memory.OffsetImm) return true; 1329 int64_t Val = Memory.OffsetImm->getValue(); 1330 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1331 } 1332 bool isPostIdxImm8() const { 1333 if (!isImm()) return false; 1334 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1335 if (!CE) return false; 1336 int64_t Val = CE->getValue(); 1337 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1338 } 1339 bool isPostIdxImm8s4() const { 1340 if (!isImm()) return false; 1341 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1342 if (!CE) return false; 1343 int64_t Val = CE->getValue(); 1344 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1345 (Val == INT32_MIN); 1346 } 1347 1348 bool isMSRMask() const { return Kind == k_MSRMask; } 1349 bool isBankedReg() const { return Kind == k_BankedReg; } 1350 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1351 1352 // NEON operands. 1353 bool isSingleSpacedVectorList() const { 1354 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1355 } 1356 bool isDoubleSpacedVectorList() const { 1357 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1358 } 1359 bool isVecListOneD() const { 1360 if (!isSingleSpacedVectorList()) return false; 1361 return VectorList.Count == 1; 1362 } 1363 1364 bool isVecListDPair() const { 1365 if (!isSingleSpacedVectorList()) return false; 1366 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1367 .contains(VectorList.RegNum)); 1368 } 1369 1370 bool isVecListThreeD() const { 1371 if (!isSingleSpacedVectorList()) return false; 1372 return VectorList.Count == 3; 1373 } 1374 1375 bool isVecListFourD() const { 1376 if (!isSingleSpacedVectorList()) return false; 1377 return VectorList.Count == 4; 1378 } 1379 1380 bool isVecListDPairSpaced() const { 1381 if (Kind != k_VectorList) return false; 1382 if (isSingleSpacedVectorList()) return false; 1383 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1384 .contains(VectorList.RegNum)); 1385 } 1386 1387 bool isVecListThreeQ() const { 1388 if (!isDoubleSpacedVectorList()) return false; 1389 return VectorList.Count == 3; 1390 } 1391 1392 bool isVecListFourQ() const { 1393 if (!isDoubleSpacedVectorList()) return false; 1394 return VectorList.Count == 4; 1395 } 1396 1397 bool isSingleSpacedVectorAllLanes() const { 1398 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1399 } 1400 bool isDoubleSpacedVectorAllLanes() const { 1401 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1402 } 1403 bool isVecListOneDAllLanes() const { 1404 if (!isSingleSpacedVectorAllLanes()) return false; 1405 return VectorList.Count == 1; 1406 } 1407 1408 bool isVecListDPairAllLanes() const { 1409 if (!isSingleSpacedVectorAllLanes()) return false; 1410 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1411 .contains(VectorList.RegNum)); 1412 } 1413 1414 bool isVecListDPairSpacedAllLanes() const { 1415 if (!isDoubleSpacedVectorAllLanes()) return false; 1416 return VectorList.Count == 2; 1417 } 1418 1419 bool isVecListThreeDAllLanes() const { 1420 if (!isSingleSpacedVectorAllLanes()) return false; 1421 return VectorList.Count == 3; 1422 } 1423 1424 bool isVecListThreeQAllLanes() const { 1425 if (!isDoubleSpacedVectorAllLanes()) return false; 1426 return VectorList.Count == 3; 1427 } 1428 1429 bool isVecListFourDAllLanes() const { 1430 if (!isSingleSpacedVectorAllLanes()) return false; 1431 return VectorList.Count == 4; 1432 } 1433 1434 bool isVecListFourQAllLanes() const { 1435 if (!isDoubleSpacedVectorAllLanes()) return false; 1436 return VectorList.Count == 4; 1437 } 1438 1439 bool isSingleSpacedVectorIndexed() const { 1440 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1441 } 1442 bool isDoubleSpacedVectorIndexed() const { 1443 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1444 } 1445 bool isVecListOneDByteIndexed() const { 1446 if (!isSingleSpacedVectorIndexed()) return false; 1447 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1448 } 1449 1450 bool isVecListOneDHWordIndexed() const { 1451 if (!isSingleSpacedVectorIndexed()) return false; 1452 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1453 } 1454 1455 bool isVecListOneDWordIndexed() const { 1456 if (!isSingleSpacedVectorIndexed()) return false; 1457 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1458 } 1459 1460 bool isVecListTwoDByteIndexed() const { 1461 if (!isSingleSpacedVectorIndexed()) return false; 1462 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1463 } 1464 1465 bool isVecListTwoDHWordIndexed() const { 1466 if (!isSingleSpacedVectorIndexed()) return false; 1467 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1468 } 1469 1470 bool isVecListTwoQWordIndexed() const { 1471 if (!isDoubleSpacedVectorIndexed()) return false; 1472 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1473 } 1474 1475 bool isVecListTwoQHWordIndexed() const { 1476 if (!isDoubleSpacedVectorIndexed()) return false; 1477 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1478 } 1479 1480 bool isVecListTwoDWordIndexed() const { 1481 if (!isSingleSpacedVectorIndexed()) return false; 1482 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1483 } 1484 1485 bool isVecListThreeDByteIndexed() const { 1486 if (!isSingleSpacedVectorIndexed()) return false; 1487 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1488 } 1489 1490 bool isVecListThreeDHWordIndexed() const { 1491 if (!isSingleSpacedVectorIndexed()) return false; 1492 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1493 } 1494 1495 bool isVecListThreeQWordIndexed() const { 1496 if (!isDoubleSpacedVectorIndexed()) return false; 1497 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1498 } 1499 1500 bool isVecListThreeQHWordIndexed() const { 1501 if (!isDoubleSpacedVectorIndexed()) return false; 1502 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1503 } 1504 1505 bool isVecListThreeDWordIndexed() const { 1506 if (!isSingleSpacedVectorIndexed()) return false; 1507 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1508 } 1509 1510 bool isVecListFourDByteIndexed() const { 1511 if (!isSingleSpacedVectorIndexed()) return false; 1512 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1513 } 1514 1515 bool isVecListFourDHWordIndexed() const { 1516 if (!isSingleSpacedVectorIndexed()) return false; 1517 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1518 } 1519 1520 bool isVecListFourQWordIndexed() const { 1521 if (!isDoubleSpacedVectorIndexed()) return false; 1522 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1523 } 1524 1525 bool isVecListFourQHWordIndexed() const { 1526 if (!isDoubleSpacedVectorIndexed()) return false; 1527 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1528 } 1529 1530 bool isVecListFourDWordIndexed() const { 1531 if (!isSingleSpacedVectorIndexed()) return false; 1532 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1533 } 1534 1535 bool isVectorIndex8() const { 1536 if (Kind != k_VectorIndex) return false; 1537 return VectorIndex.Val < 8; 1538 } 1539 bool isVectorIndex16() const { 1540 if (Kind != k_VectorIndex) return false; 1541 return VectorIndex.Val < 4; 1542 } 1543 bool isVectorIndex32() const { 1544 if (Kind != k_VectorIndex) return false; 1545 return VectorIndex.Val < 2; 1546 } 1547 1548 bool isNEONi8splat() const { 1549 if (!isImm()) return false; 1550 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1551 // Must be a constant. 1552 if (!CE) return false; 1553 int64_t Value = CE->getValue(); 1554 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1555 // value. 1556 return Value >= 0 && Value < 256; 1557 } 1558 1559 bool isNEONi16splat() const { 1560 if (isNEONByteReplicate(2)) 1561 return false; // Leave that for bytes replication and forbid by default. 1562 if (!isImm()) 1563 return false; 1564 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1565 // Must be a constant. 1566 if (!CE) return false; 1567 unsigned Value = CE->getValue(); 1568 return ARM_AM::isNEONi16splat(Value); 1569 } 1570 1571 bool isNEONi16splatNot() const { 1572 if (!isImm()) 1573 return false; 1574 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1575 // Must be a constant. 1576 if (!CE) return false; 1577 unsigned Value = CE->getValue(); 1578 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1579 } 1580 1581 bool isNEONi32splat() const { 1582 if (isNEONByteReplicate(4)) 1583 return false; // Leave that for bytes replication and forbid by default. 1584 if (!isImm()) 1585 return false; 1586 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1587 // Must be a constant. 1588 if (!CE) return false; 1589 unsigned Value = CE->getValue(); 1590 return ARM_AM::isNEONi32splat(Value); 1591 } 1592 1593 bool isNEONi32splatNot() const { 1594 if (!isImm()) 1595 return false; 1596 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1597 // Must be a constant. 1598 if (!CE) return false; 1599 unsigned Value = CE->getValue(); 1600 return ARM_AM::isNEONi32splat(~Value); 1601 } 1602 1603 bool isNEONByteReplicate(unsigned NumBytes) const { 1604 if (!isImm()) 1605 return false; 1606 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1607 // Must be a constant. 1608 if (!CE) 1609 return false; 1610 int64_t Value = CE->getValue(); 1611 if (!Value) 1612 return false; // Don't bother with zero. 1613 1614 unsigned char B = Value & 0xff; 1615 for (unsigned i = 1; i < NumBytes; ++i) { 1616 Value >>= 8; 1617 if ((Value & 0xff) != B) 1618 return false; 1619 } 1620 return true; 1621 } 1622 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1623 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1624 bool isNEONi32vmov() const { 1625 if (isNEONByteReplicate(4)) 1626 return false; // Let it to be classified as byte-replicate case. 1627 if (!isImm()) 1628 return false; 1629 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1630 // Must be a constant. 1631 if (!CE) 1632 return false; 1633 int64_t Value = CE->getValue(); 1634 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1635 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1636 // FIXME: This is probably wrong and a copy and paste from previous example 1637 return (Value >= 0 && Value < 256) || 1638 (Value >= 0x0100 && Value <= 0xff00) || 1639 (Value >= 0x010000 && Value <= 0xff0000) || 1640 (Value >= 0x01000000 && Value <= 0xff000000) || 1641 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1642 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1643 } 1644 bool isNEONi32vmovNeg() const { 1645 if (!isImm()) return false; 1646 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1647 // Must be a constant. 1648 if (!CE) return false; 1649 int64_t Value = ~CE->getValue(); 1650 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1651 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1652 // FIXME: This is probably wrong and a copy and paste from previous example 1653 return (Value >= 0 && Value < 256) || 1654 (Value >= 0x0100 && Value <= 0xff00) || 1655 (Value >= 0x010000 && Value <= 0xff0000) || 1656 (Value >= 0x01000000 && Value <= 0xff000000) || 1657 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1658 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1659 } 1660 1661 bool isNEONi64splat() const { 1662 if (!isImm()) return false; 1663 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1664 // Must be a constant. 1665 if (!CE) return false; 1666 uint64_t Value = CE->getValue(); 1667 // i64 value with each byte being either 0 or 0xff. 1668 for (unsigned i = 0; i < 8; ++i) 1669 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1670 return true; 1671 } 1672 1673 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1674 // Add as immediates when possible. Null MCExpr = 0. 1675 if (!Expr) 1676 Inst.addOperand(MCOperand::createImm(0)); 1677 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1678 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1679 else 1680 Inst.addOperand(MCOperand::createExpr(Expr)); 1681 } 1682 1683 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1684 assert(N == 2 && "Invalid number of operands!"); 1685 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1686 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1687 Inst.addOperand(MCOperand::createReg(RegNum)); 1688 } 1689 1690 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1691 assert(N == 1 && "Invalid number of operands!"); 1692 Inst.addOperand(MCOperand::createImm(getCoproc())); 1693 } 1694 1695 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1696 assert(N == 1 && "Invalid number of operands!"); 1697 Inst.addOperand(MCOperand::createImm(getCoproc())); 1698 } 1699 1700 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1701 assert(N == 1 && "Invalid number of operands!"); 1702 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1703 } 1704 1705 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1706 assert(N == 1 && "Invalid number of operands!"); 1707 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1708 } 1709 1710 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1711 assert(N == 1 && "Invalid number of operands!"); 1712 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1713 } 1714 1715 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1716 assert(N == 1 && "Invalid number of operands!"); 1717 Inst.addOperand(MCOperand::createReg(getReg())); 1718 } 1719 1720 void addRegOperands(MCInst &Inst, unsigned N) const { 1721 assert(N == 1 && "Invalid number of operands!"); 1722 Inst.addOperand(MCOperand::createReg(getReg())); 1723 } 1724 1725 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1726 assert(N == 3 && "Invalid number of operands!"); 1727 assert(isRegShiftedReg() && 1728 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1729 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1730 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1731 Inst.addOperand(MCOperand::createImm( 1732 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1733 } 1734 1735 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1736 assert(N == 2 && "Invalid number of operands!"); 1737 assert(isRegShiftedImm() && 1738 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1739 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1740 // Shift of #32 is encoded as 0 where permitted 1741 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1742 Inst.addOperand(MCOperand::createImm( 1743 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1744 } 1745 1746 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1747 assert(N == 1 && "Invalid number of operands!"); 1748 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1749 ShifterImm.Imm)); 1750 } 1751 1752 void addRegListOperands(MCInst &Inst, unsigned N) const { 1753 assert(N == 1 && "Invalid number of operands!"); 1754 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1755 for (SmallVectorImpl<unsigned>::const_iterator 1756 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1757 Inst.addOperand(MCOperand::createReg(*I)); 1758 } 1759 1760 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 1761 addRegListOperands(Inst, N); 1762 } 1763 1764 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 1765 addRegListOperands(Inst, N); 1766 } 1767 1768 void addRotImmOperands(MCInst &Inst, unsigned N) const { 1769 assert(N == 1 && "Invalid number of operands!"); 1770 // Encoded as val>>3. The printer handles display as 8, 16, 24. 1771 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 1772 } 1773 1774 void addModImmOperands(MCInst &Inst, unsigned N) const { 1775 assert(N == 1 && "Invalid number of operands!"); 1776 1777 // Support for fixups (MCFixup) 1778 if (isImm()) 1779 return addImmOperands(Inst, N); 1780 1781 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 1782 } 1783 1784 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 1785 assert(N == 1 && "Invalid number of operands!"); 1786 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1787 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 1788 Inst.addOperand(MCOperand::createImm(Enc)); 1789 } 1790 1791 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 1792 assert(N == 1 && "Invalid number of operands!"); 1793 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1794 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 1795 Inst.addOperand(MCOperand::createImm(Enc)); 1796 } 1797 1798 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 1799 assert(N == 1 && "Invalid number of operands!"); 1800 // Munge the lsb/width into a bitfield mask. 1801 unsigned lsb = Bitfield.LSB; 1802 unsigned width = Bitfield.Width; 1803 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 1804 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 1805 (32 - (lsb + width))); 1806 Inst.addOperand(MCOperand::createImm(Mask)); 1807 } 1808 1809 void addImmOperands(MCInst &Inst, unsigned N) const { 1810 assert(N == 1 && "Invalid number of operands!"); 1811 addExpr(Inst, getImm()); 1812 } 1813 1814 void addFBits16Operands(MCInst &Inst, unsigned N) const { 1815 assert(N == 1 && "Invalid number of operands!"); 1816 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1817 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 1818 } 1819 1820 void addFBits32Operands(MCInst &Inst, unsigned N) const { 1821 assert(N == 1 && "Invalid number of operands!"); 1822 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1823 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 1824 } 1825 1826 void addFPImmOperands(MCInst &Inst, unsigned N) const { 1827 assert(N == 1 && "Invalid number of operands!"); 1828 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1829 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1830 Inst.addOperand(MCOperand::createImm(Val)); 1831 } 1832 1833 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 1834 assert(N == 1 && "Invalid number of operands!"); 1835 // FIXME: We really want to scale the value here, but the LDRD/STRD 1836 // instruction don't encode operands that way yet. 1837 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1838 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1839 } 1840 1841 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 1842 assert(N == 1 && "Invalid number of operands!"); 1843 // The immediate is scaled by four in the encoding and is stored 1844 // in the MCInst as such. Lop off the low two bits here. 1845 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1846 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1847 } 1848 1849 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 1850 assert(N == 1 && "Invalid number of operands!"); 1851 // The immediate is scaled by four in the encoding and is stored 1852 // in the MCInst as such. Lop off the low two bits here. 1853 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1854 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 1855 } 1856 1857 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 1858 assert(N == 1 && "Invalid number of operands!"); 1859 // The immediate is scaled by four in the encoding and is stored 1860 // in the MCInst as such. Lop off the low two bits here. 1861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1862 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1863 } 1864 1865 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 1866 assert(N == 1 && "Invalid number of operands!"); 1867 // The constant encodes as the immediate-1, and we store in the instruction 1868 // the bits as encoded, so subtract off one here. 1869 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1870 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1871 } 1872 1873 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 1874 assert(N == 1 && "Invalid number of operands!"); 1875 // The constant encodes as the immediate-1, and we store in the instruction 1876 // the bits as encoded, so subtract off one here. 1877 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1878 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1879 } 1880 1881 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 1882 assert(N == 1 && "Invalid number of operands!"); 1883 // The constant encodes as the immediate, except for 32, which encodes as 1884 // zero. 1885 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1886 unsigned Imm = CE->getValue(); 1887 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 1888 } 1889 1890 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 1891 assert(N == 1 && "Invalid number of operands!"); 1892 // An ASR value of 32 encodes as 0, so that's how we want to add it to 1893 // the instruction as well. 1894 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1895 int Val = CE->getValue(); 1896 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 1897 } 1898 1899 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 1900 assert(N == 1 && "Invalid number of operands!"); 1901 // The operand is actually a t2_so_imm, but we have its bitwise 1902 // negation in the assembly source, so twiddle it here. 1903 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1904 Inst.addOperand(MCOperand::createImm(~CE->getValue())); 1905 } 1906 1907 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 1908 assert(N == 1 && "Invalid number of operands!"); 1909 // The operand is actually a t2_so_imm, but we have its 1910 // negation in the assembly source, so twiddle it here. 1911 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1912 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1913 } 1914 1915 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 1916 assert(N == 1 && "Invalid number of operands!"); 1917 // The operand is actually an imm0_4095, but we have its 1918 // negation in the assembly source, so twiddle it here. 1919 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1920 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1921 } 1922 1923 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 1924 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 1925 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 1926 return; 1927 } 1928 1929 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1930 assert(SR && "Unknown value type!"); 1931 Inst.addOperand(MCOperand::createExpr(SR)); 1932 } 1933 1934 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 1935 assert(N == 1 && "Invalid number of operands!"); 1936 if (isImm()) { 1937 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1938 if (CE) { 1939 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1940 return; 1941 } 1942 1943 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1944 assert(SR && "Unknown value type!"); 1945 Inst.addOperand(MCOperand::createExpr(SR)); 1946 return; 1947 } 1948 1949 assert(isMem() && "Unknown value type!"); 1950 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 1951 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 1952 } 1953 1954 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 1955 assert(N == 1 && "Invalid number of operands!"); 1956 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 1957 } 1958 1959 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 1960 assert(N == 1 && "Invalid number of operands!"); 1961 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 1962 } 1963 1964 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 1965 assert(N == 1 && "Invalid number of operands!"); 1966 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 1967 } 1968 1969 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 1970 assert(N == 1 && "Invalid number of operands!"); 1971 int32_t Imm = Memory.OffsetImm->getValue(); 1972 Inst.addOperand(MCOperand::createImm(Imm)); 1973 } 1974 1975 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 1976 assert(N == 1 && "Invalid number of operands!"); 1977 assert(isImm() && "Not an immediate!"); 1978 1979 // If we have an immediate that's not a constant, treat it as a label 1980 // reference needing a fixup. 1981 if (!isa<MCConstantExpr>(getImm())) { 1982 Inst.addOperand(MCOperand::createExpr(getImm())); 1983 return; 1984 } 1985 1986 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1987 int Val = CE->getValue(); 1988 Inst.addOperand(MCOperand::createImm(Val)); 1989 } 1990 1991 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 1992 assert(N == 2 && "Invalid number of operands!"); 1993 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 1994 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 1995 } 1996 1997 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 1998 addAlignedMemoryOperands(Inst, N); 1999 } 2000 2001 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2002 addAlignedMemoryOperands(Inst, N); 2003 } 2004 2005 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2006 addAlignedMemoryOperands(Inst, N); 2007 } 2008 2009 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2010 addAlignedMemoryOperands(Inst, N); 2011 } 2012 2013 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2014 addAlignedMemoryOperands(Inst, N); 2015 } 2016 2017 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2018 addAlignedMemoryOperands(Inst, N); 2019 } 2020 2021 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2022 addAlignedMemoryOperands(Inst, N); 2023 } 2024 2025 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2026 addAlignedMemoryOperands(Inst, N); 2027 } 2028 2029 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2030 addAlignedMemoryOperands(Inst, N); 2031 } 2032 2033 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2034 addAlignedMemoryOperands(Inst, N); 2035 } 2036 2037 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2038 addAlignedMemoryOperands(Inst, N); 2039 } 2040 2041 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2042 assert(N == 3 && "Invalid number of operands!"); 2043 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2044 if (!Memory.OffsetRegNum) { 2045 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2046 // Special case for #-0 2047 if (Val == INT32_MIN) Val = 0; 2048 if (Val < 0) Val = -Val; 2049 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2050 } else { 2051 // For register offset, we encode the shift type and negation flag 2052 // here. 2053 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2054 Memory.ShiftImm, Memory.ShiftType); 2055 } 2056 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2057 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2058 Inst.addOperand(MCOperand::createImm(Val)); 2059 } 2060 2061 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2062 assert(N == 2 && "Invalid number of operands!"); 2063 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2064 assert(CE && "non-constant AM2OffsetImm operand!"); 2065 int32_t Val = CE->getValue(); 2066 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2067 // Special case for #-0 2068 if (Val == INT32_MIN) Val = 0; 2069 if (Val < 0) Val = -Val; 2070 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2071 Inst.addOperand(MCOperand::createReg(0)); 2072 Inst.addOperand(MCOperand::createImm(Val)); 2073 } 2074 2075 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2076 assert(N == 3 && "Invalid number of operands!"); 2077 // If we have an immediate that's not a constant, treat it as a label 2078 // reference needing a fixup. If it is a constant, it's something else 2079 // and we reject it. 2080 if (isImm()) { 2081 Inst.addOperand(MCOperand::createExpr(getImm())); 2082 Inst.addOperand(MCOperand::createReg(0)); 2083 Inst.addOperand(MCOperand::createImm(0)); 2084 return; 2085 } 2086 2087 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2088 if (!Memory.OffsetRegNum) { 2089 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2090 // Special case for #-0 2091 if (Val == INT32_MIN) Val = 0; 2092 if (Val < 0) Val = -Val; 2093 Val = ARM_AM::getAM3Opc(AddSub, Val); 2094 } else { 2095 // For register offset, we encode the shift type and negation flag 2096 // here. 2097 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2098 } 2099 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2100 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2101 Inst.addOperand(MCOperand::createImm(Val)); 2102 } 2103 2104 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2105 assert(N == 2 && "Invalid number of operands!"); 2106 if (Kind == k_PostIndexRegister) { 2107 int32_t Val = 2108 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2109 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2110 Inst.addOperand(MCOperand::createImm(Val)); 2111 return; 2112 } 2113 2114 // Constant offset. 2115 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2116 int32_t Val = CE->getValue(); 2117 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2118 // Special case for #-0 2119 if (Val == INT32_MIN) Val = 0; 2120 if (Val < 0) Val = -Val; 2121 Val = ARM_AM::getAM3Opc(AddSub, Val); 2122 Inst.addOperand(MCOperand::createReg(0)); 2123 Inst.addOperand(MCOperand::createImm(Val)); 2124 } 2125 2126 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2127 assert(N == 2 && "Invalid number of operands!"); 2128 // If we have an immediate that's not a constant, treat it as a label 2129 // reference needing a fixup. If it is a constant, it's something else 2130 // and we reject it. 2131 if (isImm()) { 2132 Inst.addOperand(MCOperand::createExpr(getImm())); 2133 Inst.addOperand(MCOperand::createImm(0)); 2134 return; 2135 } 2136 2137 // The lower two bits are always zero and as such are not encoded. 2138 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2139 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2140 // Special case for #-0 2141 if (Val == INT32_MIN) Val = 0; 2142 if (Val < 0) Val = -Val; 2143 Val = ARM_AM::getAM5Opc(AddSub, Val); 2144 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2145 Inst.addOperand(MCOperand::createImm(Val)); 2146 } 2147 2148 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2149 assert(N == 2 && "Invalid number of operands!"); 2150 // If we have an immediate that's not a constant, treat it as a label 2151 // reference needing a fixup. If it is a constant, it's something else 2152 // and we reject it. 2153 if (isImm()) { 2154 Inst.addOperand(MCOperand::createExpr(getImm())); 2155 Inst.addOperand(MCOperand::createImm(0)); 2156 return; 2157 } 2158 2159 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2160 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2161 Inst.addOperand(MCOperand::createImm(Val)); 2162 } 2163 2164 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2165 assert(N == 2 && "Invalid number of operands!"); 2166 // The lower two bits are always zero and as such are not encoded. 2167 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2168 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2169 Inst.addOperand(MCOperand::createImm(Val)); 2170 } 2171 2172 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2173 assert(N == 2 && "Invalid number of operands!"); 2174 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2175 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2176 Inst.addOperand(MCOperand::createImm(Val)); 2177 } 2178 2179 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2180 addMemImm8OffsetOperands(Inst, N); 2181 } 2182 2183 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2184 addMemImm8OffsetOperands(Inst, N); 2185 } 2186 2187 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2188 assert(N == 2 && "Invalid number of operands!"); 2189 // If this is an immediate, it's a label reference. 2190 if (isImm()) { 2191 addExpr(Inst, getImm()); 2192 Inst.addOperand(MCOperand::createImm(0)); 2193 return; 2194 } 2195 2196 // Otherwise, it's a normal memory reg+offset. 2197 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2198 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2199 Inst.addOperand(MCOperand::createImm(Val)); 2200 } 2201 2202 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2203 assert(N == 2 && "Invalid number of operands!"); 2204 // If this is an immediate, it's a label reference. 2205 if (isImm()) { 2206 addExpr(Inst, getImm()); 2207 Inst.addOperand(MCOperand::createImm(0)); 2208 return; 2209 } 2210 2211 // Otherwise, it's a normal memory reg+offset. 2212 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2213 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2214 Inst.addOperand(MCOperand::createImm(Val)); 2215 } 2216 2217 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2218 assert(N == 2 && "Invalid number of operands!"); 2219 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2220 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2221 } 2222 2223 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2224 assert(N == 2 && "Invalid number of operands!"); 2225 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2226 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2227 } 2228 2229 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2230 assert(N == 3 && "Invalid number of operands!"); 2231 unsigned Val = 2232 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2233 Memory.ShiftImm, Memory.ShiftType); 2234 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2235 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2236 Inst.addOperand(MCOperand::createImm(Val)); 2237 } 2238 2239 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2240 assert(N == 3 && "Invalid number of operands!"); 2241 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2242 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2243 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2244 } 2245 2246 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2247 assert(N == 2 && "Invalid number of operands!"); 2248 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2249 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2250 } 2251 2252 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2253 assert(N == 2 && "Invalid number of operands!"); 2254 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2255 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2256 Inst.addOperand(MCOperand::createImm(Val)); 2257 } 2258 2259 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2260 assert(N == 2 && "Invalid number of operands!"); 2261 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2262 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2263 Inst.addOperand(MCOperand::createImm(Val)); 2264 } 2265 2266 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2267 assert(N == 2 && "Invalid number of operands!"); 2268 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2269 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2270 Inst.addOperand(MCOperand::createImm(Val)); 2271 } 2272 2273 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2274 assert(N == 2 && "Invalid number of operands!"); 2275 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2276 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2277 Inst.addOperand(MCOperand::createImm(Val)); 2278 } 2279 2280 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2281 assert(N == 1 && "Invalid number of operands!"); 2282 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2283 assert(CE && "non-constant post-idx-imm8 operand!"); 2284 int Imm = CE->getValue(); 2285 bool isAdd = Imm >= 0; 2286 if (Imm == INT32_MIN) Imm = 0; 2287 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2288 Inst.addOperand(MCOperand::createImm(Imm)); 2289 } 2290 2291 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2292 assert(N == 1 && "Invalid number of operands!"); 2293 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2294 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2295 int Imm = CE->getValue(); 2296 bool isAdd = Imm >= 0; 2297 if (Imm == INT32_MIN) Imm = 0; 2298 // Immediate is scaled by 4. 2299 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2300 Inst.addOperand(MCOperand::createImm(Imm)); 2301 } 2302 2303 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2304 assert(N == 2 && "Invalid number of operands!"); 2305 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2306 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2307 } 2308 2309 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2310 assert(N == 2 && "Invalid number of operands!"); 2311 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2312 // The sign, shift type, and shift amount are encoded in a single operand 2313 // using the AM2 encoding helpers. 2314 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2315 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2316 PostIdxReg.ShiftTy); 2317 Inst.addOperand(MCOperand::createImm(Imm)); 2318 } 2319 2320 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2321 assert(N == 1 && "Invalid number of operands!"); 2322 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2323 } 2324 2325 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2326 assert(N == 1 && "Invalid number of operands!"); 2327 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2328 } 2329 2330 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2331 assert(N == 1 && "Invalid number of operands!"); 2332 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2333 } 2334 2335 void addVecListOperands(MCInst &Inst, unsigned N) const { 2336 assert(N == 1 && "Invalid number of operands!"); 2337 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2338 } 2339 2340 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2341 assert(N == 2 && "Invalid number of operands!"); 2342 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2343 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2344 } 2345 2346 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2347 assert(N == 1 && "Invalid number of operands!"); 2348 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2349 } 2350 2351 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2352 assert(N == 1 && "Invalid number of operands!"); 2353 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2354 } 2355 2356 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2357 assert(N == 1 && "Invalid number of operands!"); 2358 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2359 } 2360 2361 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2362 assert(N == 1 && "Invalid number of operands!"); 2363 // The immediate encodes the type of constant as well as the value. 2364 // Mask in that this is an i8 splat. 2365 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2366 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2367 } 2368 2369 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2370 assert(N == 1 && "Invalid number of operands!"); 2371 // The immediate encodes the type of constant as well as the value. 2372 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2373 unsigned Value = CE->getValue(); 2374 Value = ARM_AM::encodeNEONi16splat(Value); 2375 Inst.addOperand(MCOperand::createImm(Value)); 2376 } 2377 2378 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2379 assert(N == 1 && "Invalid number of operands!"); 2380 // The immediate encodes the type of constant as well as the value. 2381 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2382 unsigned Value = CE->getValue(); 2383 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2384 Inst.addOperand(MCOperand::createImm(Value)); 2385 } 2386 2387 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2388 assert(N == 1 && "Invalid number of operands!"); 2389 // The immediate encodes the type of constant as well as the value. 2390 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2391 unsigned Value = CE->getValue(); 2392 Value = ARM_AM::encodeNEONi32splat(Value); 2393 Inst.addOperand(MCOperand::createImm(Value)); 2394 } 2395 2396 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2397 assert(N == 1 && "Invalid number of operands!"); 2398 // The immediate encodes the type of constant as well as the value. 2399 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2400 unsigned Value = CE->getValue(); 2401 Value = ARM_AM::encodeNEONi32splat(~Value); 2402 Inst.addOperand(MCOperand::createImm(Value)); 2403 } 2404 2405 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2406 assert(N == 1 && "Invalid number of operands!"); 2407 // The immediate encodes the type of constant as well as the value. 2408 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2409 unsigned Value = CE->getValue(); 2410 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2411 Inst.getOpcode() == ARM::VMOVv16i8) && 2412 "All vmvn instructions that wants to replicate non-zero byte " 2413 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2414 unsigned B = ((~Value) & 0xff); 2415 B |= 0xe00; // cmode = 0b1110 2416 Inst.addOperand(MCOperand::createImm(B)); 2417 } 2418 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2419 assert(N == 1 && "Invalid number of operands!"); 2420 // The immediate encodes the type of constant as well as the value. 2421 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2422 unsigned Value = CE->getValue(); 2423 if (Value >= 256 && Value <= 0xffff) 2424 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2425 else if (Value > 0xffff && Value <= 0xffffff) 2426 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2427 else if (Value > 0xffffff) 2428 Value = (Value >> 24) | 0x600; 2429 Inst.addOperand(MCOperand::createImm(Value)); 2430 } 2431 2432 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2433 assert(N == 1 && "Invalid number of operands!"); 2434 // The immediate encodes the type of constant as well as the value. 2435 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2436 unsigned Value = CE->getValue(); 2437 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2438 Inst.getOpcode() == ARM::VMOVv16i8) && 2439 "All instructions that wants to replicate non-zero byte " 2440 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2441 unsigned B = Value & 0xff; 2442 B |= 0xe00; // cmode = 0b1110 2443 Inst.addOperand(MCOperand::createImm(B)); 2444 } 2445 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2446 assert(N == 1 && "Invalid number of operands!"); 2447 // The immediate encodes the type of constant as well as the value. 2448 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2449 unsigned Value = ~CE->getValue(); 2450 if (Value >= 256 && Value <= 0xffff) 2451 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2452 else if (Value > 0xffff && Value <= 0xffffff) 2453 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2454 else if (Value > 0xffffff) 2455 Value = (Value >> 24) | 0x600; 2456 Inst.addOperand(MCOperand::createImm(Value)); 2457 } 2458 2459 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2460 assert(N == 1 && "Invalid number of operands!"); 2461 // The immediate encodes the type of constant as well as the value. 2462 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2463 uint64_t Value = CE->getValue(); 2464 unsigned Imm = 0; 2465 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2466 Imm |= (Value & 1) << i; 2467 } 2468 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2469 } 2470 2471 void print(raw_ostream &OS) const override; 2472 2473 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2474 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2475 Op->ITMask.Mask = Mask; 2476 Op->StartLoc = S; 2477 Op->EndLoc = S; 2478 return Op; 2479 } 2480 2481 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2482 SMLoc S) { 2483 auto Op = make_unique<ARMOperand>(k_CondCode); 2484 Op->CC.Val = CC; 2485 Op->StartLoc = S; 2486 Op->EndLoc = S; 2487 return Op; 2488 } 2489 2490 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2491 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2492 Op->Cop.Val = CopVal; 2493 Op->StartLoc = S; 2494 Op->EndLoc = S; 2495 return Op; 2496 } 2497 2498 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2499 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2500 Op->Cop.Val = CopVal; 2501 Op->StartLoc = S; 2502 Op->EndLoc = S; 2503 return Op; 2504 } 2505 2506 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2507 SMLoc E) { 2508 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2509 Op->Cop.Val = Val; 2510 Op->StartLoc = S; 2511 Op->EndLoc = E; 2512 return Op; 2513 } 2514 2515 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2516 auto Op = make_unique<ARMOperand>(k_CCOut); 2517 Op->Reg.RegNum = RegNum; 2518 Op->StartLoc = S; 2519 Op->EndLoc = S; 2520 return Op; 2521 } 2522 2523 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2524 auto Op = make_unique<ARMOperand>(k_Token); 2525 Op->Tok.Data = Str.data(); 2526 Op->Tok.Length = Str.size(); 2527 Op->StartLoc = S; 2528 Op->EndLoc = S; 2529 return Op; 2530 } 2531 2532 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2533 SMLoc E) { 2534 auto Op = make_unique<ARMOperand>(k_Register); 2535 Op->Reg.RegNum = RegNum; 2536 Op->StartLoc = S; 2537 Op->EndLoc = E; 2538 return Op; 2539 } 2540 2541 static std::unique_ptr<ARMOperand> 2542 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2543 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2544 SMLoc E) { 2545 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2546 Op->RegShiftedReg.ShiftTy = ShTy; 2547 Op->RegShiftedReg.SrcReg = SrcReg; 2548 Op->RegShiftedReg.ShiftReg = ShiftReg; 2549 Op->RegShiftedReg.ShiftImm = ShiftImm; 2550 Op->StartLoc = S; 2551 Op->EndLoc = E; 2552 return Op; 2553 } 2554 2555 static std::unique_ptr<ARMOperand> 2556 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2557 unsigned ShiftImm, SMLoc S, SMLoc E) { 2558 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2559 Op->RegShiftedImm.ShiftTy = ShTy; 2560 Op->RegShiftedImm.SrcReg = SrcReg; 2561 Op->RegShiftedImm.ShiftImm = ShiftImm; 2562 Op->StartLoc = S; 2563 Op->EndLoc = E; 2564 return Op; 2565 } 2566 2567 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2568 SMLoc S, SMLoc E) { 2569 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2570 Op->ShifterImm.isASR = isASR; 2571 Op->ShifterImm.Imm = Imm; 2572 Op->StartLoc = S; 2573 Op->EndLoc = E; 2574 return Op; 2575 } 2576 2577 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2578 SMLoc E) { 2579 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2580 Op->RotImm.Imm = Imm; 2581 Op->StartLoc = S; 2582 Op->EndLoc = E; 2583 return Op; 2584 } 2585 2586 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2587 SMLoc S, SMLoc E) { 2588 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2589 Op->ModImm.Bits = Bits; 2590 Op->ModImm.Rot = Rot; 2591 Op->StartLoc = S; 2592 Op->EndLoc = E; 2593 return Op; 2594 } 2595 2596 static std::unique_ptr<ARMOperand> 2597 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2598 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2599 Op->Bitfield.LSB = LSB; 2600 Op->Bitfield.Width = Width; 2601 Op->StartLoc = S; 2602 Op->EndLoc = E; 2603 return Op; 2604 } 2605 2606 static std::unique_ptr<ARMOperand> 2607 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2608 SMLoc StartLoc, SMLoc EndLoc) { 2609 assert (Regs.size() > 0 && "RegList contains no registers?"); 2610 KindTy Kind = k_RegisterList; 2611 2612 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2613 Kind = k_DPRRegisterList; 2614 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2615 contains(Regs.front().second)) 2616 Kind = k_SPRRegisterList; 2617 2618 // Sort based on the register encoding values. 2619 array_pod_sort(Regs.begin(), Regs.end()); 2620 2621 auto Op = make_unique<ARMOperand>(Kind); 2622 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2623 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2624 Op->Registers.push_back(I->second); 2625 Op->StartLoc = StartLoc; 2626 Op->EndLoc = EndLoc; 2627 return Op; 2628 } 2629 2630 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2631 unsigned Count, 2632 bool isDoubleSpaced, 2633 SMLoc S, SMLoc E) { 2634 auto Op = make_unique<ARMOperand>(k_VectorList); 2635 Op->VectorList.RegNum = RegNum; 2636 Op->VectorList.Count = Count; 2637 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2638 Op->StartLoc = S; 2639 Op->EndLoc = E; 2640 return Op; 2641 } 2642 2643 static std::unique_ptr<ARMOperand> 2644 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2645 SMLoc S, SMLoc E) { 2646 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2647 Op->VectorList.RegNum = RegNum; 2648 Op->VectorList.Count = Count; 2649 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2650 Op->StartLoc = S; 2651 Op->EndLoc = E; 2652 return Op; 2653 } 2654 2655 static std::unique_ptr<ARMOperand> 2656 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2657 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2658 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2659 Op->VectorList.RegNum = RegNum; 2660 Op->VectorList.Count = Count; 2661 Op->VectorList.LaneIndex = Index; 2662 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2663 Op->StartLoc = S; 2664 Op->EndLoc = E; 2665 return Op; 2666 } 2667 2668 static std::unique_ptr<ARMOperand> 2669 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2670 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2671 Op->VectorIndex.Val = Idx; 2672 Op->StartLoc = S; 2673 Op->EndLoc = E; 2674 return Op; 2675 } 2676 2677 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2678 SMLoc E) { 2679 auto Op = make_unique<ARMOperand>(k_Immediate); 2680 Op->Imm.Val = Val; 2681 Op->StartLoc = S; 2682 Op->EndLoc = E; 2683 return Op; 2684 } 2685 2686 static std::unique_ptr<ARMOperand> 2687 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2688 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2689 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2690 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2691 auto Op = make_unique<ARMOperand>(k_Memory); 2692 Op->Memory.BaseRegNum = BaseRegNum; 2693 Op->Memory.OffsetImm = OffsetImm; 2694 Op->Memory.OffsetRegNum = OffsetRegNum; 2695 Op->Memory.ShiftType = ShiftType; 2696 Op->Memory.ShiftImm = ShiftImm; 2697 Op->Memory.Alignment = Alignment; 2698 Op->Memory.isNegative = isNegative; 2699 Op->StartLoc = S; 2700 Op->EndLoc = E; 2701 Op->AlignmentLoc = AlignmentLoc; 2702 return Op; 2703 } 2704 2705 static std::unique_ptr<ARMOperand> 2706 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2707 unsigned ShiftImm, SMLoc S, SMLoc E) { 2708 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2709 Op->PostIdxReg.RegNum = RegNum; 2710 Op->PostIdxReg.isAdd = isAdd; 2711 Op->PostIdxReg.ShiftTy = ShiftTy; 2712 Op->PostIdxReg.ShiftImm = ShiftImm; 2713 Op->StartLoc = S; 2714 Op->EndLoc = E; 2715 return Op; 2716 } 2717 2718 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2719 SMLoc S) { 2720 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 2721 Op->MBOpt.Val = Opt; 2722 Op->StartLoc = S; 2723 Op->EndLoc = S; 2724 return Op; 2725 } 2726 2727 static std::unique_ptr<ARMOperand> 2728 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 2729 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 2730 Op->ISBOpt.Val = Opt; 2731 Op->StartLoc = S; 2732 Op->EndLoc = S; 2733 return Op; 2734 } 2735 2736 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 2737 SMLoc S) { 2738 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 2739 Op->IFlags.Val = IFlags; 2740 Op->StartLoc = S; 2741 Op->EndLoc = S; 2742 return Op; 2743 } 2744 2745 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 2746 auto Op = make_unique<ARMOperand>(k_MSRMask); 2747 Op->MMask.Val = MMask; 2748 Op->StartLoc = S; 2749 Op->EndLoc = S; 2750 return Op; 2751 } 2752 2753 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 2754 auto Op = make_unique<ARMOperand>(k_BankedReg); 2755 Op->BankedReg.Val = Reg; 2756 Op->StartLoc = S; 2757 Op->EndLoc = S; 2758 return Op; 2759 } 2760 }; 2761 2762 } // end anonymous namespace. 2763 2764 void ARMOperand::print(raw_ostream &OS) const { 2765 switch (Kind) { 2766 case k_CondCode: 2767 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 2768 break; 2769 case k_CCOut: 2770 OS << "<ccout " << getReg() << ">"; 2771 break; 2772 case k_ITCondMask: { 2773 static const char *const MaskStr[] = { 2774 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 2775 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 2776 }; 2777 assert((ITMask.Mask & 0xf) == ITMask.Mask); 2778 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 2779 break; 2780 } 2781 case k_CoprocNum: 2782 OS << "<coprocessor number: " << getCoproc() << ">"; 2783 break; 2784 case k_CoprocReg: 2785 OS << "<coprocessor register: " << getCoproc() << ">"; 2786 break; 2787 case k_CoprocOption: 2788 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 2789 break; 2790 case k_MSRMask: 2791 OS << "<mask: " << getMSRMask() << ">"; 2792 break; 2793 case k_BankedReg: 2794 OS << "<banked reg: " << getBankedReg() << ">"; 2795 break; 2796 case k_Immediate: 2797 OS << *getImm(); 2798 break; 2799 case k_MemBarrierOpt: 2800 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 2801 break; 2802 case k_InstSyncBarrierOpt: 2803 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 2804 break; 2805 case k_Memory: 2806 OS << "<memory " 2807 << " base:" << Memory.BaseRegNum; 2808 OS << ">"; 2809 break; 2810 case k_PostIndexRegister: 2811 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 2812 << PostIdxReg.RegNum; 2813 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 2814 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 2815 << PostIdxReg.ShiftImm; 2816 OS << ">"; 2817 break; 2818 case k_ProcIFlags: { 2819 OS << "<ARM_PROC::"; 2820 unsigned IFlags = getProcIFlags(); 2821 for (int i=2; i >= 0; --i) 2822 if (IFlags & (1 << i)) 2823 OS << ARM_PROC::IFlagsToString(1 << i); 2824 OS << ">"; 2825 break; 2826 } 2827 case k_Register: 2828 OS << "<register " << getReg() << ">"; 2829 break; 2830 case k_ShifterImmediate: 2831 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 2832 << " #" << ShifterImm.Imm << ">"; 2833 break; 2834 case k_ShiftedRegister: 2835 OS << "<so_reg_reg " 2836 << RegShiftedReg.SrcReg << " " 2837 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 2838 << " " << RegShiftedReg.ShiftReg << ">"; 2839 break; 2840 case k_ShiftedImmediate: 2841 OS << "<so_reg_imm " 2842 << RegShiftedImm.SrcReg << " " 2843 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 2844 << " #" << RegShiftedImm.ShiftImm << ">"; 2845 break; 2846 case k_RotateImmediate: 2847 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 2848 break; 2849 case k_ModifiedImmediate: 2850 OS << "<mod_imm #" << ModImm.Bits << ", #" 2851 << ModImm.Rot << ")>"; 2852 break; 2853 case k_BitfieldDescriptor: 2854 OS << "<bitfield " << "lsb: " << Bitfield.LSB 2855 << ", width: " << Bitfield.Width << ">"; 2856 break; 2857 case k_RegisterList: 2858 case k_DPRRegisterList: 2859 case k_SPRRegisterList: { 2860 OS << "<register_list "; 2861 2862 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2863 for (SmallVectorImpl<unsigned>::const_iterator 2864 I = RegList.begin(), E = RegList.end(); I != E; ) { 2865 OS << *I; 2866 if (++I < E) OS << ", "; 2867 } 2868 2869 OS << ">"; 2870 break; 2871 } 2872 case k_VectorList: 2873 OS << "<vector_list " << VectorList.Count << " * " 2874 << VectorList.RegNum << ">"; 2875 break; 2876 case k_VectorListAllLanes: 2877 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 2878 << VectorList.RegNum << ">"; 2879 break; 2880 case k_VectorListIndexed: 2881 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 2882 << VectorList.Count << " * " << VectorList.RegNum << ">"; 2883 break; 2884 case k_Token: 2885 OS << "'" << getToken() << "'"; 2886 break; 2887 case k_VectorIndex: 2888 OS << "<vectorindex " << getVectorIndex() << ">"; 2889 break; 2890 } 2891 } 2892 2893 /// @name Auto-generated Match Functions 2894 /// { 2895 2896 static unsigned MatchRegisterName(StringRef Name); 2897 2898 /// } 2899 2900 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 2901 SMLoc &StartLoc, SMLoc &EndLoc) { 2902 const AsmToken &Tok = getParser().getTok(); 2903 StartLoc = Tok.getLoc(); 2904 EndLoc = Tok.getEndLoc(); 2905 RegNo = tryParseRegister(); 2906 2907 return (RegNo == (unsigned)-1); 2908 } 2909 2910 /// Try to parse a register name. The token must be an Identifier when called, 2911 /// and if it is a register name the token is eaten and the register number is 2912 /// returned. Otherwise return -1. 2913 /// 2914 int ARMAsmParser::tryParseRegister() { 2915 MCAsmParser &Parser = getParser(); 2916 const AsmToken &Tok = Parser.getTok(); 2917 if (Tok.isNot(AsmToken::Identifier)) return -1; 2918 2919 std::string lowerCase = Tok.getString().lower(); 2920 unsigned RegNum = MatchRegisterName(lowerCase); 2921 if (!RegNum) { 2922 RegNum = StringSwitch<unsigned>(lowerCase) 2923 .Case("r13", ARM::SP) 2924 .Case("r14", ARM::LR) 2925 .Case("r15", ARM::PC) 2926 .Case("ip", ARM::R12) 2927 // Additional register name aliases for 'gas' compatibility. 2928 .Case("a1", ARM::R0) 2929 .Case("a2", ARM::R1) 2930 .Case("a3", ARM::R2) 2931 .Case("a4", ARM::R3) 2932 .Case("v1", ARM::R4) 2933 .Case("v2", ARM::R5) 2934 .Case("v3", ARM::R6) 2935 .Case("v4", ARM::R7) 2936 .Case("v5", ARM::R8) 2937 .Case("v6", ARM::R9) 2938 .Case("v7", ARM::R10) 2939 .Case("v8", ARM::R11) 2940 .Case("sb", ARM::R9) 2941 .Case("sl", ARM::R10) 2942 .Case("fp", ARM::R11) 2943 .Default(0); 2944 } 2945 if (!RegNum) { 2946 // Check for aliases registered via .req. Canonicalize to lower case. 2947 // That's more consistent since register names are case insensitive, and 2948 // it's how the original entry was passed in from MC/MCParser/AsmParser. 2949 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 2950 // If no match, return failure. 2951 if (Entry == RegisterReqs.end()) 2952 return -1; 2953 Parser.Lex(); // Eat identifier token. 2954 return Entry->getValue(); 2955 } 2956 2957 // Some FPUs only have 16 D registers, so D16-D31 are invalid 2958 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 2959 return -1; 2960 2961 Parser.Lex(); // Eat identifier token. 2962 2963 return RegNum; 2964 } 2965 2966 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 2967 // If a recoverable error occurs, return 1. If an irrecoverable error 2968 // occurs, return -1. An irrecoverable error is one where tokens have been 2969 // consumed in the process of trying to parse the shifter (i.e., when it is 2970 // indeed a shifter operand, but malformed). 2971 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 2972 MCAsmParser &Parser = getParser(); 2973 SMLoc S = Parser.getTok().getLoc(); 2974 const AsmToken &Tok = Parser.getTok(); 2975 if (Tok.isNot(AsmToken::Identifier)) 2976 return -1; 2977 2978 std::string lowerCase = Tok.getString().lower(); 2979 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 2980 .Case("asl", ARM_AM::lsl) 2981 .Case("lsl", ARM_AM::lsl) 2982 .Case("lsr", ARM_AM::lsr) 2983 .Case("asr", ARM_AM::asr) 2984 .Case("ror", ARM_AM::ror) 2985 .Case("rrx", ARM_AM::rrx) 2986 .Default(ARM_AM::no_shift); 2987 2988 if (ShiftTy == ARM_AM::no_shift) 2989 return 1; 2990 2991 Parser.Lex(); // Eat the operator. 2992 2993 // The source register for the shift has already been added to the 2994 // operand list, so we need to pop it off and combine it into the shifted 2995 // register operand instead. 2996 std::unique_ptr<ARMOperand> PrevOp( 2997 (ARMOperand *)Operands.pop_back_val().release()); 2998 if (!PrevOp->isReg()) 2999 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3000 int SrcReg = PrevOp->getReg(); 3001 3002 SMLoc EndLoc; 3003 int64_t Imm = 0; 3004 int ShiftReg = 0; 3005 if (ShiftTy == ARM_AM::rrx) { 3006 // RRX Doesn't have an explicit shift amount. The encoder expects 3007 // the shift register to be the same as the source register. Seems odd, 3008 // but OK. 3009 ShiftReg = SrcReg; 3010 } else { 3011 // Figure out if this is shifted by a constant or a register (for non-RRX). 3012 if (Parser.getTok().is(AsmToken::Hash) || 3013 Parser.getTok().is(AsmToken::Dollar)) { 3014 Parser.Lex(); // Eat hash. 3015 SMLoc ImmLoc = Parser.getTok().getLoc(); 3016 const MCExpr *ShiftExpr = nullptr; 3017 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3018 Error(ImmLoc, "invalid immediate shift value"); 3019 return -1; 3020 } 3021 // The expression must be evaluatable as an immediate. 3022 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3023 if (!CE) { 3024 Error(ImmLoc, "invalid immediate shift value"); 3025 return -1; 3026 } 3027 // Range check the immediate. 3028 // lsl, ror: 0 <= imm <= 31 3029 // lsr, asr: 0 <= imm <= 32 3030 Imm = CE->getValue(); 3031 if (Imm < 0 || 3032 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3033 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3034 Error(ImmLoc, "immediate shift value out of range"); 3035 return -1; 3036 } 3037 // shift by zero is a nop. Always send it through as lsl. 3038 // ('as' compatibility) 3039 if (Imm == 0) 3040 ShiftTy = ARM_AM::lsl; 3041 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3042 SMLoc L = Parser.getTok().getLoc(); 3043 EndLoc = Parser.getTok().getEndLoc(); 3044 ShiftReg = tryParseRegister(); 3045 if (ShiftReg == -1) { 3046 Error(L, "expected immediate or register in shift operand"); 3047 return -1; 3048 } 3049 } else { 3050 Error(Parser.getTok().getLoc(), 3051 "expected immediate or register in shift operand"); 3052 return -1; 3053 } 3054 } 3055 3056 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3057 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3058 ShiftReg, Imm, 3059 S, EndLoc)); 3060 else 3061 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3062 S, EndLoc)); 3063 3064 return 0; 3065 } 3066 3067 3068 /// Try to parse a register name. The token must be an Identifier when called. 3069 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3070 /// if there is a "writeback". 'true' if it's not a register. 3071 /// 3072 /// TODO this is likely to change to allow different register types and or to 3073 /// parse for a specific register type. 3074 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3075 MCAsmParser &Parser = getParser(); 3076 const AsmToken &RegTok = Parser.getTok(); 3077 int RegNo = tryParseRegister(); 3078 if (RegNo == -1) 3079 return true; 3080 3081 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3082 RegTok.getEndLoc())); 3083 3084 const AsmToken &ExclaimTok = Parser.getTok(); 3085 if (ExclaimTok.is(AsmToken::Exclaim)) { 3086 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3087 ExclaimTok.getLoc())); 3088 Parser.Lex(); // Eat exclaim token 3089 return false; 3090 } 3091 3092 // Also check for an index operand. This is only legal for vector registers, 3093 // but that'll get caught OK in operand matching, so we don't need to 3094 // explicitly filter everything else out here. 3095 if (Parser.getTok().is(AsmToken::LBrac)) { 3096 SMLoc SIdx = Parser.getTok().getLoc(); 3097 Parser.Lex(); // Eat left bracket token. 3098 3099 const MCExpr *ImmVal; 3100 if (getParser().parseExpression(ImmVal)) 3101 return true; 3102 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3103 if (!MCE) 3104 return TokError("immediate value expected for vector index"); 3105 3106 if (Parser.getTok().isNot(AsmToken::RBrac)) 3107 return Error(Parser.getTok().getLoc(), "']' expected"); 3108 3109 SMLoc E = Parser.getTok().getEndLoc(); 3110 Parser.Lex(); // Eat right bracket token. 3111 3112 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3113 SIdx, E, 3114 getContext())); 3115 } 3116 3117 return false; 3118 } 3119 3120 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3121 /// instruction with a symbolic operand name. 3122 /// We accept "crN" syntax for GAS compatibility. 3123 /// <operand-name> ::= <prefix><number> 3124 /// If CoprocOp is 'c', then: 3125 /// <prefix> ::= c | cr 3126 /// If CoprocOp is 'p', then : 3127 /// <prefix> ::= p 3128 /// <number> ::= integer in range [0, 15] 3129 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3130 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3131 // but efficient. 3132 if (Name.size() < 2 || Name[0] != CoprocOp) 3133 return -1; 3134 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3135 3136 switch (Name.size()) { 3137 default: return -1; 3138 case 1: 3139 switch (Name[0]) { 3140 default: return -1; 3141 case '0': return 0; 3142 case '1': return 1; 3143 case '2': return 2; 3144 case '3': return 3; 3145 case '4': return 4; 3146 case '5': return 5; 3147 case '6': return 6; 3148 case '7': return 7; 3149 case '8': return 8; 3150 case '9': return 9; 3151 } 3152 case 2: 3153 if (Name[0] != '1') 3154 return -1; 3155 switch (Name[1]) { 3156 default: return -1; 3157 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3158 // However, old cores (v5/v6) did use them in that way. 3159 case '0': return 10; 3160 case '1': return 11; 3161 case '2': return 12; 3162 case '3': return 13; 3163 case '4': return 14; 3164 case '5': return 15; 3165 } 3166 } 3167 } 3168 3169 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3170 ARMAsmParser::OperandMatchResultTy 3171 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3172 MCAsmParser &Parser = getParser(); 3173 SMLoc S = Parser.getTok().getLoc(); 3174 const AsmToken &Tok = Parser.getTok(); 3175 if (!Tok.is(AsmToken::Identifier)) 3176 return MatchOperand_NoMatch; 3177 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3178 .Case("eq", ARMCC::EQ) 3179 .Case("ne", ARMCC::NE) 3180 .Case("hs", ARMCC::HS) 3181 .Case("cs", ARMCC::HS) 3182 .Case("lo", ARMCC::LO) 3183 .Case("cc", ARMCC::LO) 3184 .Case("mi", ARMCC::MI) 3185 .Case("pl", ARMCC::PL) 3186 .Case("vs", ARMCC::VS) 3187 .Case("vc", ARMCC::VC) 3188 .Case("hi", ARMCC::HI) 3189 .Case("ls", ARMCC::LS) 3190 .Case("ge", ARMCC::GE) 3191 .Case("lt", ARMCC::LT) 3192 .Case("gt", ARMCC::GT) 3193 .Case("le", ARMCC::LE) 3194 .Case("al", ARMCC::AL) 3195 .Default(~0U); 3196 if (CC == ~0U) 3197 return MatchOperand_NoMatch; 3198 Parser.Lex(); // Eat the token. 3199 3200 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3201 3202 return MatchOperand_Success; 3203 } 3204 3205 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3206 /// token must be an Identifier when called, and if it is a coprocessor 3207 /// number, the token is eaten and the operand is added to the operand list. 3208 ARMAsmParser::OperandMatchResultTy 3209 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3210 MCAsmParser &Parser = getParser(); 3211 SMLoc S = Parser.getTok().getLoc(); 3212 const AsmToken &Tok = Parser.getTok(); 3213 if (Tok.isNot(AsmToken::Identifier)) 3214 return MatchOperand_NoMatch; 3215 3216 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3217 if (Num == -1) 3218 return MatchOperand_NoMatch; 3219 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3220 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3221 return MatchOperand_NoMatch; 3222 3223 Parser.Lex(); // Eat identifier token. 3224 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3225 return MatchOperand_Success; 3226 } 3227 3228 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3229 /// token must be an Identifier when called, and if it is a coprocessor 3230 /// number, the token is eaten and the operand is added to the operand list. 3231 ARMAsmParser::OperandMatchResultTy 3232 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3233 MCAsmParser &Parser = getParser(); 3234 SMLoc S = Parser.getTok().getLoc(); 3235 const AsmToken &Tok = Parser.getTok(); 3236 if (Tok.isNot(AsmToken::Identifier)) 3237 return MatchOperand_NoMatch; 3238 3239 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3240 if (Reg == -1) 3241 return MatchOperand_NoMatch; 3242 3243 Parser.Lex(); // Eat identifier token. 3244 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3245 return MatchOperand_Success; 3246 } 3247 3248 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3249 /// coproc_option : '{' imm0_255 '}' 3250 ARMAsmParser::OperandMatchResultTy 3251 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3252 MCAsmParser &Parser = getParser(); 3253 SMLoc S = Parser.getTok().getLoc(); 3254 3255 // If this isn't a '{', this isn't a coprocessor immediate operand. 3256 if (Parser.getTok().isNot(AsmToken::LCurly)) 3257 return MatchOperand_NoMatch; 3258 Parser.Lex(); // Eat the '{' 3259 3260 const MCExpr *Expr; 3261 SMLoc Loc = Parser.getTok().getLoc(); 3262 if (getParser().parseExpression(Expr)) { 3263 Error(Loc, "illegal expression"); 3264 return MatchOperand_ParseFail; 3265 } 3266 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3267 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3268 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3269 return MatchOperand_ParseFail; 3270 } 3271 int Val = CE->getValue(); 3272 3273 // Check for and consume the closing '}' 3274 if (Parser.getTok().isNot(AsmToken::RCurly)) 3275 return MatchOperand_ParseFail; 3276 SMLoc E = Parser.getTok().getEndLoc(); 3277 Parser.Lex(); // Eat the '}' 3278 3279 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3280 return MatchOperand_Success; 3281 } 3282 3283 // For register list parsing, we need to map from raw GPR register numbering 3284 // to the enumeration values. The enumeration values aren't sorted by 3285 // register number due to our using "sp", "lr" and "pc" as canonical names. 3286 static unsigned getNextRegister(unsigned Reg) { 3287 // If this is a GPR, we need to do it manually, otherwise we can rely 3288 // on the sort ordering of the enumeration since the other reg-classes 3289 // are sane. 3290 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3291 return Reg + 1; 3292 switch(Reg) { 3293 default: llvm_unreachable("Invalid GPR number!"); 3294 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3295 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3296 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3297 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3298 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3299 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3300 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3301 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3302 } 3303 } 3304 3305 // Return the low-subreg of a given Q register. 3306 static unsigned getDRegFromQReg(unsigned QReg) { 3307 switch (QReg) { 3308 default: llvm_unreachable("expected a Q register!"); 3309 case ARM::Q0: return ARM::D0; 3310 case ARM::Q1: return ARM::D2; 3311 case ARM::Q2: return ARM::D4; 3312 case ARM::Q3: return ARM::D6; 3313 case ARM::Q4: return ARM::D8; 3314 case ARM::Q5: return ARM::D10; 3315 case ARM::Q6: return ARM::D12; 3316 case ARM::Q7: return ARM::D14; 3317 case ARM::Q8: return ARM::D16; 3318 case ARM::Q9: return ARM::D18; 3319 case ARM::Q10: return ARM::D20; 3320 case ARM::Q11: return ARM::D22; 3321 case ARM::Q12: return ARM::D24; 3322 case ARM::Q13: return ARM::D26; 3323 case ARM::Q14: return ARM::D28; 3324 case ARM::Q15: return ARM::D30; 3325 } 3326 } 3327 3328 /// Parse a register list. 3329 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3330 MCAsmParser &Parser = getParser(); 3331 assert(Parser.getTok().is(AsmToken::LCurly) && 3332 "Token is not a Left Curly Brace"); 3333 SMLoc S = Parser.getTok().getLoc(); 3334 Parser.Lex(); // Eat '{' token. 3335 SMLoc RegLoc = Parser.getTok().getLoc(); 3336 3337 // Check the first register in the list to see what register class 3338 // this is a list of. 3339 int Reg = tryParseRegister(); 3340 if (Reg == -1) 3341 return Error(RegLoc, "register expected"); 3342 3343 // The reglist instructions have at most 16 registers, so reserve 3344 // space for that many. 3345 int EReg = 0; 3346 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3347 3348 // Allow Q regs and just interpret them as the two D sub-registers. 3349 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3350 Reg = getDRegFromQReg(Reg); 3351 EReg = MRI->getEncodingValue(Reg); 3352 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3353 ++Reg; 3354 } 3355 const MCRegisterClass *RC; 3356 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3357 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3358 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3359 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3360 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3361 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3362 else 3363 return Error(RegLoc, "invalid register in register list"); 3364 3365 // Store the register. 3366 EReg = MRI->getEncodingValue(Reg); 3367 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3368 3369 // This starts immediately after the first register token in the list, 3370 // so we can see either a comma or a minus (range separator) as a legal 3371 // next token. 3372 while (Parser.getTok().is(AsmToken::Comma) || 3373 Parser.getTok().is(AsmToken::Minus)) { 3374 if (Parser.getTok().is(AsmToken::Minus)) { 3375 Parser.Lex(); // Eat the minus. 3376 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3377 int EndReg = tryParseRegister(); 3378 if (EndReg == -1) 3379 return Error(AfterMinusLoc, "register expected"); 3380 // Allow Q regs and just interpret them as the two D sub-registers. 3381 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3382 EndReg = getDRegFromQReg(EndReg) + 1; 3383 // If the register is the same as the start reg, there's nothing 3384 // more to do. 3385 if (Reg == EndReg) 3386 continue; 3387 // The register must be in the same register class as the first. 3388 if (!RC->contains(EndReg)) 3389 return Error(AfterMinusLoc, "invalid register in register list"); 3390 // Ranges must go from low to high. 3391 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3392 return Error(AfterMinusLoc, "bad range in register list"); 3393 3394 // Add all the registers in the range to the register list. 3395 while (Reg != EndReg) { 3396 Reg = getNextRegister(Reg); 3397 EReg = MRI->getEncodingValue(Reg); 3398 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3399 } 3400 continue; 3401 } 3402 Parser.Lex(); // Eat the comma. 3403 RegLoc = Parser.getTok().getLoc(); 3404 int OldReg = Reg; 3405 const AsmToken RegTok = Parser.getTok(); 3406 Reg = tryParseRegister(); 3407 if (Reg == -1) 3408 return Error(RegLoc, "register expected"); 3409 // Allow Q regs and just interpret them as the two D sub-registers. 3410 bool isQReg = false; 3411 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3412 Reg = getDRegFromQReg(Reg); 3413 isQReg = true; 3414 } 3415 // The register must be in the same register class as the first. 3416 if (!RC->contains(Reg)) 3417 return Error(RegLoc, "invalid register in register list"); 3418 // List must be monotonically increasing. 3419 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3420 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3421 Warning(RegLoc, "register list not in ascending order"); 3422 else 3423 return Error(RegLoc, "register list not in ascending order"); 3424 } 3425 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3426 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3427 ") in register list"); 3428 continue; 3429 } 3430 // VFP register lists must also be contiguous. 3431 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3432 Reg != OldReg + 1) 3433 return Error(RegLoc, "non-contiguous register range"); 3434 EReg = MRI->getEncodingValue(Reg); 3435 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3436 if (isQReg) { 3437 EReg = MRI->getEncodingValue(++Reg); 3438 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3439 } 3440 } 3441 3442 if (Parser.getTok().isNot(AsmToken::RCurly)) 3443 return Error(Parser.getTok().getLoc(), "'}' expected"); 3444 SMLoc E = Parser.getTok().getEndLoc(); 3445 Parser.Lex(); // Eat '}' token. 3446 3447 // Push the register list operand. 3448 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3449 3450 // The ARM system instruction variants for LDM/STM have a '^' token here. 3451 if (Parser.getTok().is(AsmToken::Caret)) { 3452 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3453 Parser.Lex(); // Eat '^' token. 3454 } 3455 3456 return false; 3457 } 3458 3459 // Helper function to parse the lane index for vector lists. 3460 ARMAsmParser::OperandMatchResultTy ARMAsmParser:: 3461 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3462 MCAsmParser &Parser = getParser(); 3463 Index = 0; // Always return a defined index value. 3464 if (Parser.getTok().is(AsmToken::LBrac)) { 3465 Parser.Lex(); // Eat the '['. 3466 if (Parser.getTok().is(AsmToken::RBrac)) { 3467 // "Dn[]" is the 'all lanes' syntax. 3468 LaneKind = AllLanes; 3469 EndLoc = Parser.getTok().getEndLoc(); 3470 Parser.Lex(); // Eat the ']'. 3471 return MatchOperand_Success; 3472 } 3473 3474 // There's an optional '#' token here. Normally there wouldn't be, but 3475 // inline assemble puts one in, and it's friendly to accept that. 3476 if (Parser.getTok().is(AsmToken::Hash)) 3477 Parser.Lex(); // Eat '#' or '$'. 3478 3479 const MCExpr *LaneIndex; 3480 SMLoc Loc = Parser.getTok().getLoc(); 3481 if (getParser().parseExpression(LaneIndex)) { 3482 Error(Loc, "illegal expression"); 3483 return MatchOperand_ParseFail; 3484 } 3485 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3486 if (!CE) { 3487 Error(Loc, "lane index must be empty or an integer"); 3488 return MatchOperand_ParseFail; 3489 } 3490 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3491 Error(Parser.getTok().getLoc(), "']' expected"); 3492 return MatchOperand_ParseFail; 3493 } 3494 EndLoc = Parser.getTok().getEndLoc(); 3495 Parser.Lex(); // Eat the ']'. 3496 int64_t Val = CE->getValue(); 3497 3498 // FIXME: Make this range check context sensitive for .8, .16, .32. 3499 if (Val < 0 || Val > 7) { 3500 Error(Parser.getTok().getLoc(), "lane index out of range"); 3501 return MatchOperand_ParseFail; 3502 } 3503 Index = Val; 3504 LaneKind = IndexedLane; 3505 return MatchOperand_Success; 3506 } 3507 LaneKind = NoLanes; 3508 return MatchOperand_Success; 3509 } 3510 3511 // parse a vector register list 3512 ARMAsmParser::OperandMatchResultTy 3513 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3514 MCAsmParser &Parser = getParser(); 3515 VectorLaneTy LaneKind; 3516 unsigned LaneIndex; 3517 SMLoc S = Parser.getTok().getLoc(); 3518 // As an extension (to match gas), support a plain D register or Q register 3519 // (without encosing curly braces) as a single or double entry list, 3520 // respectively. 3521 if (Parser.getTok().is(AsmToken::Identifier)) { 3522 SMLoc E = Parser.getTok().getEndLoc(); 3523 int Reg = tryParseRegister(); 3524 if (Reg == -1) 3525 return MatchOperand_NoMatch; 3526 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3527 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3528 if (Res != MatchOperand_Success) 3529 return Res; 3530 switch (LaneKind) { 3531 case NoLanes: 3532 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3533 break; 3534 case AllLanes: 3535 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3536 S, E)); 3537 break; 3538 case IndexedLane: 3539 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3540 LaneIndex, 3541 false, S, E)); 3542 break; 3543 } 3544 return MatchOperand_Success; 3545 } 3546 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3547 Reg = getDRegFromQReg(Reg); 3548 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3549 if (Res != MatchOperand_Success) 3550 return Res; 3551 switch (LaneKind) { 3552 case NoLanes: 3553 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3554 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3555 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3556 break; 3557 case AllLanes: 3558 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3559 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3560 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3561 S, E)); 3562 break; 3563 case IndexedLane: 3564 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3565 LaneIndex, 3566 false, S, E)); 3567 break; 3568 } 3569 return MatchOperand_Success; 3570 } 3571 Error(S, "vector register expected"); 3572 return MatchOperand_ParseFail; 3573 } 3574 3575 if (Parser.getTok().isNot(AsmToken::LCurly)) 3576 return MatchOperand_NoMatch; 3577 3578 Parser.Lex(); // Eat '{' token. 3579 SMLoc RegLoc = Parser.getTok().getLoc(); 3580 3581 int Reg = tryParseRegister(); 3582 if (Reg == -1) { 3583 Error(RegLoc, "register expected"); 3584 return MatchOperand_ParseFail; 3585 } 3586 unsigned Count = 1; 3587 int Spacing = 0; 3588 unsigned FirstReg = Reg; 3589 // The list is of D registers, but we also allow Q regs and just interpret 3590 // them as the two D sub-registers. 3591 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3592 FirstReg = Reg = getDRegFromQReg(Reg); 3593 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3594 // it's ambiguous with four-register single spaced. 3595 ++Reg; 3596 ++Count; 3597 } 3598 3599 SMLoc E; 3600 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3601 return MatchOperand_ParseFail; 3602 3603 while (Parser.getTok().is(AsmToken::Comma) || 3604 Parser.getTok().is(AsmToken::Minus)) { 3605 if (Parser.getTok().is(AsmToken::Minus)) { 3606 if (!Spacing) 3607 Spacing = 1; // Register range implies a single spaced list. 3608 else if (Spacing == 2) { 3609 Error(Parser.getTok().getLoc(), 3610 "sequential registers in double spaced list"); 3611 return MatchOperand_ParseFail; 3612 } 3613 Parser.Lex(); // Eat the minus. 3614 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3615 int EndReg = tryParseRegister(); 3616 if (EndReg == -1) { 3617 Error(AfterMinusLoc, "register expected"); 3618 return MatchOperand_ParseFail; 3619 } 3620 // Allow Q regs and just interpret them as the two D sub-registers. 3621 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3622 EndReg = getDRegFromQReg(EndReg) + 1; 3623 // If the register is the same as the start reg, there's nothing 3624 // more to do. 3625 if (Reg == EndReg) 3626 continue; 3627 // The register must be in the same register class as the first. 3628 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3629 Error(AfterMinusLoc, "invalid register in register list"); 3630 return MatchOperand_ParseFail; 3631 } 3632 // Ranges must go from low to high. 3633 if (Reg > EndReg) { 3634 Error(AfterMinusLoc, "bad range in register list"); 3635 return MatchOperand_ParseFail; 3636 } 3637 // Parse the lane specifier if present. 3638 VectorLaneTy NextLaneKind; 3639 unsigned NextLaneIndex; 3640 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3641 MatchOperand_Success) 3642 return MatchOperand_ParseFail; 3643 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3644 Error(AfterMinusLoc, "mismatched lane index in register list"); 3645 return MatchOperand_ParseFail; 3646 } 3647 3648 // Add all the registers in the range to the register list. 3649 Count += EndReg - Reg; 3650 Reg = EndReg; 3651 continue; 3652 } 3653 Parser.Lex(); // Eat the comma. 3654 RegLoc = Parser.getTok().getLoc(); 3655 int OldReg = Reg; 3656 Reg = tryParseRegister(); 3657 if (Reg == -1) { 3658 Error(RegLoc, "register expected"); 3659 return MatchOperand_ParseFail; 3660 } 3661 // vector register lists must be contiguous. 3662 // It's OK to use the enumeration values directly here rather, as the 3663 // VFP register classes have the enum sorted properly. 3664 // 3665 // The list is of D registers, but we also allow Q regs and just interpret 3666 // them as the two D sub-registers. 3667 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3668 if (!Spacing) 3669 Spacing = 1; // Register range implies a single spaced list. 3670 else if (Spacing == 2) { 3671 Error(RegLoc, 3672 "invalid register in double-spaced list (must be 'D' register')"); 3673 return MatchOperand_ParseFail; 3674 } 3675 Reg = getDRegFromQReg(Reg); 3676 if (Reg != OldReg + 1) { 3677 Error(RegLoc, "non-contiguous register range"); 3678 return MatchOperand_ParseFail; 3679 } 3680 ++Reg; 3681 Count += 2; 3682 // Parse the lane specifier if present. 3683 VectorLaneTy NextLaneKind; 3684 unsigned NextLaneIndex; 3685 SMLoc LaneLoc = Parser.getTok().getLoc(); 3686 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3687 MatchOperand_Success) 3688 return MatchOperand_ParseFail; 3689 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3690 Error(LaneLoc, "mismatched lane index in register list"); 3691 return MatchOperand_ParseFail; 3692 } 3693 continue; 3694 } 3695 // Normal D register. 3696 // Figure out the register spacing (single or double) of the list if 3697 // we don't know it already. 3698 if (!Spacing) 3699 Spacing = 1 + (Reg == OldReg + 2); 3700 3701 // Just check that it's contiguous and keep going. 3702 if (Reg != OldReg + Spacing) { 3703 Error(RegLoc, "non-contiguous register range"); 3704 return MatchOperand_ParseFail; 3705 } 3706 ++Count; 3707 // Parse the lane specifier if present. 3708 VectorLaneTy NextLaneKind; 3709 unsigned NextLaneIndex; 3710 SMLoc EndLoc = Parser.getTok().getLoc(); 3711 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3712 return MatchOperand_ParseFail; 3713 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3714 Error(EndLoc, "mismatched lane index in register list"); 3715 return MatchOperand_ParseFail; 3716 } 3717 } 3718 3719 if (Parser.getTok().isNot(AsmToken::RCurly)) { 3720 Error(Parser.getTok().getLoc(), "'}' expected"); 3721 return MatchOperand_ParseFail; 3722 } 3723 E = Parser.getTok().getEndLoc(); 3724 Parser.Lex(); // Eat '}' token. 3725 3726 switch (LaneKind) { 3727 case NoLanes: 3728 // Two-register operands have been converted to the 3729 // composite register classes. 3730 if (Count == 2) { 3731 const MCRegisterClass *RC = (Spacing == 1) ? 3732 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3733 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3734 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3735 } 3736 3737 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 3738 (Spacing == 2), S, E)); 3739 break; 3740 case AllLanes: 3741 // Two-register operands have been converted to the 3742 // composite register classes. 3743 if (Count == 2) { 3744 const MCRegisterClass *RC = (Spacing == 1) ? 3745 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3746 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3747 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3748 } 3749 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 3750 (Spacing == 2), 3751 S, E)); 3752 break; 3753 case IndexedLane: 3754 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 3755 LaneIndex, 3756 (Spacing == 2), 3757 S, E)); 3758 break; 3759 } 3760 return MatchOperand_Success; 3761 } 3762 3763 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 3764 ARMAsmParser::OperandMatchResultTy 3765 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 3766 MCAsmParser &Parser = getParser(); 3767 SMLoc S = Parser.getTok().getLoc(); 3768 const AsmToken &Tok = Parser.getTok(); 3769 unsigned Opt; 3770 3771 if (Tok.is(AsmToken::Identifier)) { 3772 StringRef OptStr = Tok.getString(); 3773 3774 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 3775 .Case("sy", ARM_MB::SY) 3776 .Case("st", ARM_MB::ST) 3777 .Case("ld", ARM_MB::LD) 3778 .Case("sh", ARM_MB::ISH) 3779 .Case("ish", ARM_MB::ISH) 3780 .Case("shst", ARM_MB::ISHST) 3781 .Case("ishst", ARM_MB::ISHST) 3782 .Case("ishld", ARM_MB::ISHLD) 3783 .Case("nsh", ARM_MB::NSH) 3784 .Case("un", ARM_MB::NSH) 3785 .Case("nshst", ARM_MB::NSHST) 3786 .Case("nshld", ARM_MB::NSHLD) 3787 .Case("unst", ARM_MB::NSHST) 3788 .Case("osh", ARM_MB::OSH) 3789 .Case("oshst", ARM_MB::OSHST) 3790 .Case("oshld", ARM_MB::OSHLD) 3791 .Default(~0U); 3792 3793 // ishld, oshld, nshld and ld are only available from ARMv8. 3794 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 3795 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 3796 Opt = ~0U; 3797 3798 if (Opt == ~0U) 3799 return MatchOperand_NoMatch; 3800 3801 Parser.Lex(); // Eat identifier token. 3802 } else if (Tok.is(AsmToken::Hash) || 3803 Tok.is(AsmToken::Dollar) || 3804 Tok.is(AsmToken::Integer)) { 3805 if (Parser.getTok().isNot(AsmToken::Integer)) 3806 Parser.Lex(); // Eat '#' or '$'. 3807 SMLoc Loc = Parser.getTok().getLoc(); 3808 3809 const MCExpr *MemBarrierID; 3810 if (getParser().parseExpression(MemBarrierID)) { 3811 Error(Loc, "illegal expression"); 3812 return MatchOperand_ParseFail; 3813 } 3814 3815 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 3816 if (!CE) { 3817 Error(Loc, "constant expression expected"); 3818 return MatchOperand_ParseFail; 3819 } 3820 3821 int Val = CE->getValue(); 3822 if (Val & ~0xf) { 3823 Error(Loc, "immediate value out of range"); 3824 return MatchOperand_ParseFail; 3825 } 3826 3827 Opt = ARM_MB::RESERVED_0 + Val; 3828 } else 3829 return MatchOperand_ParseFail; 3830 3831 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 3832 return MatchOperand_Success; 3833 } 3834 3835 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 3836 ARMAsmParser::OperandMatchResultTy 3837 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 3838 MCAsmParser &Parser = getParser(); 3839 SMLoc S = Parser.getTok().getLoc(); 3840 const AsmToken &Tok = Parser.getTok(); 3841 unsigned Opt; 3842 3843 if (Tok.is(AsmToken::Identifier)) { 3844 StringRef OptStr = Tok.getString(); 3845 3846 if (OptStr.equals_lower("sy")) 3847 Opt = ARM_ISB::SY; 3848 else 3849 return MatchOperand_NoMatch; 3850 3851 Parser.Lex(); // Eat identifier token. 3852 } else if (Tok.is(AsmToken::Hash) || 3853 Tok.is(AsmToken::Dollar) || 3854 Tok.is(AsmToken::Integer)) { 3855 if (Parser.getTok().isNot(AsmToken::Integer)) 3856 Parser.Lex(); // Eat '#' or '$'. 3857 SMLoc Loc = Parser.getTok().getLoc(); 3858 3859 const MCExpr *ISBarrierID; 3860 if (getParser().parseExpression(ISBarrierID)) { 3861 Error(Loc, "illegal expression"); 3862 return MatchOperand_ParseFail; 3863 } 3864 3865 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 3866 if (!CE) { 3867 Error(Loc, "constant expression expected"); 3868 return MatchOperand_ParseFail; 3869 } 3870 3871 int Val = CE->getValue(); 3872 if (Val & ~0xf) { 3873 Error(Loc, "immediate value out of range"); 3874 return MatchOperand_ParseFail; 3875 } 3876 3877 Opt = ARM_ISB::RESERVED_0 + Val; 3878 } else 3879 return MatchOperand_ParseFail; 3880 3881 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 3882 (ARM_ISB::InstSyncBOpt)Opt, S)); 3883 return MatchOperand_Success; 3884 } 3885 3886 3887 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 3888 ARMAsmParser::OperandMatchResultTy 3889 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 3890 MCAsmParser &Parser = getParser(); 3891 SMLoc S = Parser.getTok().getLoc(); 3892 const AsmToken &Tok = Parser.getTok(); 3893 if (!Tok.is(AsmToken::Identifier)) 3894 return MatchOperand_NoMatch; 3895 StringRef IFlagsStr = Tok.getString(); 3896 3897 // An iflags string of "none" is interpreted to mean that none of the AIF 3898 // bits are set. Not a terribly useful instruction, but a valid encoding. 3899 unsigned IFlags = 0; 3900 if (IFlagsStr != "none") { 3901 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 3902 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 3903 .Case("a", ARM_PROC::A) 3904 .Case("i", ARM_PROC::I) 3905 .Case("f", ARM_PROC::F) 3906 .Default(~0U); 3907 3908 // If some specific iflag is already set, it means that some letter is 3909 // present more than once, this is not acceptable. 3910 if (Flag == ~0U || (IFlags & Flag)) 3911 return MatchOperand_NoMatch; 3912 3913 IFlags |= Flag; 3914 } 3915 } 3916 3917 Parser.Lex(); // Eat identifier token. 3918 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 3919 return MatchOperand_Success; 3920 } 3921 3922 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 3923 ARMAsmParser::OperandMatchResultTy 3924 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 3925 MCAsmParser &Parser = getParser(); 3926 SMLoc S = Parser.getTok().getLoc(); 3927 const AsmToken &Tok = Parser.getTok(); 3928 if (!Tok.is(AsmToken::Identifier)) 3929 return MatchOperand_NoMatch; 3930 StringRef Mask = Tok.getString(); 3931 3932 if (isMClass()) { 3933 // See ARMv6-M 10.1.1 3934 std::string Name = Mask.lower(); 3935 unsigned FlagsVal = StringSwitch<unsigned>(Name) 3936 // Note: in the documentation: 3937 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 3938 // for MSR APSR_nzcvq. 3939 // but we do make it an alias here. This is so to get the "mask encoding" 3940 // bits correct on MSR APSR writes. 3941 // 3942 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 3943 // should really only be allowed when writing a special register. Note 3944 // they get dropped in the MRS instruction reading a special register as 3945 // the SYSm field is only 8 bits. 3946 .Case("apsr", 0x800) 3947 .Case("apsr_nzcvq", 0x800) 3948 .Case("apsr_g", 0x400) 3949 .Case("apsr_nzcvqg", 0xc00) 3950 .Case("iapsr", 0x801) 3951 .Case("iapsr_nzcvq", 0x801) 3952 .Case("iapsr_g", 0x401) 3953 .Case("iapsr_nzcvqg", 0xc01) 3954 .Case("eapsr", 0x802) 3955 .Case("eapsr_nzcvq", 0x802) 3956 .Case("eapsr_g", 0x402) 3957 .Case("eapsr_nzcvqg", 0xc02) 3958 .Case("xpsr", 0x803) 3959 .Case("xpsr_nzcvq", 0x803) 3960 .Case("xpsr_g", 0x403) 3961 .Case("xpsr_nzcvqg", 0xc03) 3962 .Case("ipsr", 0x805) 3963 .Case("epsr", 0x806) 3964 .Case("iepsr", 0x807) 3965 .Case("msp", 0x808) 3966 .Case("psp", 0x809) 3967 .Case("primask", 0x810) 3968 .Case("basepri", 0x811) 3969 .Case("basepri_max", 0x812) 3970 .Case("faultmask", 0x813) 3971 .Case("control", 0x814) 3972 .Default(~0U); 3973 3974 if (FlagsVal == ~0U) 3975 return MatchOperand_NoMatch; 3976 3977 if (!hasDSP() && (FlagsVal & 0x400)) 3978 // The _g and _nzcvqg versions are only valid if the DSP extension is 3979 // available. 3980 return MatchOperand_NoMatch; 3981 3982 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 3983 // basepri, basepri_max and faultmask only valid for V7m. 3984 return MatchOperand_NoMatch; 3985 3986 Parser.Lex(); // Eat identifier token. 3987 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 3988 return MatchOperand_Success; 3989 } 3990 3991 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 3992 size_t Start = 0, Next = Mask.find('_'); 3993 StringRef Flags = ""; 3994 std::string SpecReg = Mask.slice(Start, Next).lower(); 3995 if (Next != StringRef::npos) 3996 Flags = Mask.slice(Next+1, Mask.size()); 3997 3998 // FlagsVal contains the complete mask: 3999 // 3-0: Mask 4000 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4001 unsigned FlagsVal = 0; 4002 4003 if (SpecReg == "apsr") { 4004 FlagsVal = StringSwitch<unsigned>(Flags) 4005 .Case("nzcvq", 0x8) // same as CPSR_f 4006 .Case("g", 0x4) // same as CPSR_s 4007 .Case("nzcvqg", 0xc) // same as CPSR_fs 4008 .Default(~0U); 4009 4010 if (FlagsVal == ~0U) { 4011 if (!Flags.empty()) 4012 return MatchOperand_NoMatch; 4013 else 4014 FlagsVal = 8; // No flag 4015 } 4016 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4017 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4018 if (Flags == "all" || Flags == "") 4019 Flags = "fc"; 4020 for (int i = 0, e = Flags.size(); i != e; ++i) { 4021 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4022 .Case("c", 1) 4023 .Case("x", 2) 4024 .Case("s", 4) 4025 .Case("f", 8) 4026 .Default(~0U); 4027 4028 // If some specific flag is already set, it means that some letter is 4029 // present more than once, this is not acceptable. 4030 if (FlagsVal == ~0U || (FlagsVal & Flag)) 4031 return MatchOperand_NoMatch; 4032 FlagsVal |= Flag; 4033 } 4034 } else // No match for special register. 4035 return MatchOperand_NoMatch; 4036 4037 // Special register without flags is NOT equivalent to "fc" flags. 4038 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4039 // two lines would enable gas compatibility at the expense of breaking 4040 // round-tripping. 4041 // 4042 // if (!FlagsVal) 4043 // FlagsVal = 0x9; 4044 4045 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4046 if (SpecReg == "spsr") 4047 FlagsVal |= 16; 4048 4049 Parser.Lex(); // Eat identifier token. 4050 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4051 return MatchOperand_Success; 4052 } 4053 4054 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4055 /// use in the MRS/MSR instructions added to support virtualization. 4056 ARMAsmParser::OperandMatchResultTy 4057 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4058 MCAsmParser &Parser = getParser(); 4059 SMLoc S = Parser.getTok().getLoc(); 4060 const AsmToken &Tok = Parser.getTok(); 4061 if (!Tok.is(AsmToken::Identifier)) 4062 return MatchOperand_NoMatch; 4063 StringRef RegName = Tok.getString(); 4064 4065 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4066 // and bit 5 is R. 4067 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4068 .Case("r8_usr", 0x00) 4069 .Case("r9_usr", 0x01) 4070 .Case("r10_usr", 0x02) 4071 .Case("r11_usr", 0x03) 4072 .Case("r12_usr", 0x04) 4073 .Case("sp_usr", 0x05) 4074 .Case("lr_usr", 0x06) 4075 .Case("r8_fiq", 0x08) 4076 .Case("r9_fiq", 0x09) 4077 .Case("r10_fiq", 0x0a) 4078 .Case("r11_fiq", 0x0b) 4079 .Case("r12_fiq", 0x0c) 4080 .Case("sp_fiq", 0x0d) 4081 .Case("lr_fiq", 0x0e) 4082 .Case("lr_irq", 0x10) 4083 .Case("sp_irq", 0x11) 4084 .Case("lr_svc", 0x12) 4085 .Case("sp_svc", 0x13) 4086 .Case("lr_abt", 0x14) 4087 .Case("sp_abt", 0x15) 4088 .Case("lr_und", 0x16) 4089 .Case("sp_und", 0x17) 4090 .Case("lr_mon", 0x1c) 4091 .Case("sp_mon", 0x1d) 4092 .Case("elr_hyp", 0x1e) 4093 .Case("sp_hyp", 0x1f) 4094 .Case("spsr_fiq", 0x2e) 4095 .Case("spsr_irq", 0x30) 4096 .Case("spsr_svc", 0x32) 4097 .Case("spsr_abt", 0x34) 4098 .Case("spsr_und", 0x36) 4099 .Case("spsr_mon", 0x3c) 4100 .Case("spsr_hyp", 0x3e) 4101 .Default(~0U); 4102 4103 if (Encoding == ~0U) 4104 return MatchOperand_NoMatch; 4105 4106 Parser.Lex(); // Eat identifier token. 4107 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4108 return MatchOperand_Success; 4109 } 4110 4111 ARMAsmParser::OperandMatchResultTy 4112 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4113 int High) { 4114 MCAsmParser &Parser = getParser(); 4115 const AsmToken &Tok = Parser.getTok(); 4116 if (Tok.isNot(AsmToken::Identifier)) { 4117 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4118 return MatchOperand_ParseFail; 4119 } 4120 StringRef ShiftName = Tok.getString(); 4121 std::string LowerOp = Op.lower(); 4122 std::string UpperOp = Op.upper(); 4123 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4124 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4125 return MatchOperand_ParseFail; 4126 } 4127 Parser.Lex(); // Eat shift type token. 4128 4129 // There must be a '#' and a shift amount. 4130 if (Parser.getTok().isNot(AsmToken::Hash) && 4131 Parser.getTok().isNot(AsmToken::Dollar)) { 4132 Error(Parser.getTok().getLoc(), "'#' expected"); 4133 return MatchOperand_ParseFail; 4134 } 4135 Parser.Lex(); // Eat hash token. 4136 4137 const MCExpr *ShiftAmount; 4138 SMLoc Loc = Parser.getTok().getLoc(); 4139 SMLoc EndLoc; 4140 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4141 Error(Loc, "illegal expression"); 4142 return MatchOperand_ParseFail; 4143 } 4144 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4145 if (!CE) { 4146 Error(Loc, "constant expression expected"); 4147 return MatchOperand_ParseFail; 4148 } 4149 int Val = CE->getValue(); 4150 if (Val < Low || Val > High) { 4151 Error(Loc, "immediate value out of range"); 4152 return MatchOperand_ParseFail; 4153 } 4154 4155 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4156 4157 return MatchOperand_Success; 4158 } 4159 4160 ARMAsmParser::OperandMatchResultTy 4161 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4162 MCAsmParser &Parser = getParser(); 4163 const AsmToken &Tok = Parser.getTok(); 4164 SMLoc S = Tok.getLoc(); 4165 if (Tok.isNot(AsmToken::Identifier)) { 4166 Error(S, "'be' or 'le' operand expected"); 4167 return MatchOperand_ParseFail; 4168 } 4169 int Val = StringSwitch<int>(Tok.getString().lower()) 4170 .Case("be", 1) 4171 .Case("le", 0) 4172 .Default(-1); 4173 Parser.Lex(); // Eat the token. 4174 4175 if (Val == -1) { 4176 Error(S, "'be' or 'le' operand expected"); 4177 return MatchOperand_ParseFail; 4178 } 4179 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4180 getContext()), 4181 S, Tok.getEndLoc())); 4182 return MatchOperand_Success; 4183 } 4184 4185 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4186 /// instructions. Legal values are: 4187 /// lsl #n 'n' in [0,31] 4188 /// asr #n 'n' in [1,32] 4189 /// n == 32 encoded as n == 0. 4190 ARMAsmParser::OperandMatchResultTy 4191 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4192 MCAsmParser &Parser = getParser(); 4193 const AsmToken &Tok = Parser.getTok(); 4194 SMLoc S = Tok.getLoc(); 4195 if (Tok.isNot(AsmToken::Identifier)) { 4196 Error(S, "shift operator 'asr' or 'lsl' expected"); 4197 return MatchOperand_ParseFail; 4198 } 4199 StringRef ShiftName = Tok.getString(); 4200 bool isASR; 4201 if (ShiftName == "lsl" || ShiftName == "LSL") 4202 isASR = false; 4203 else if (ShiftName == "asr" || ShiftName == "ASR") 4204 isASR = true; 4205 else { 4206 Error(S, "shift operator 'asr' or 'lsl' expected"); 4207 return MatchOperand_ParseFail; 4208 } 4209 Parser.Lex(); // Eat the operator. 4210 4211 // A '#' and a shift amount. 4212 if (Parser.getTok().isNot(AsmToken::Hash) && 4213 Parser.getTok().isNot(AsmToken::Dollar)) { 4214 Error(Parser.getTok().getLoc(), "'#' expected"); 4215 return MatchOperand_ParseFail; 4216 } 4217 Parser.Lex(); // Eat hash token. 4218 SMLoc ExLoc = Parser.getTok().getLoc(); 4219 4220 const MCExpr *ShiftAmount; 4221 SMLoc EndLoc; 4222 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4223 Error(ExLoc, "malformed shift expression"); 4224 return MatchOperand_ParseFail; 4225 } 4226 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4227 if (!CE) { 4228 Error(ExLoc, "shift amount must be an immediate"); 4229 return MatchOperand_ParseFail; 4230 } 4231 4232 int64_t Val = CE->getValue(); 4233 if (isASR) { 4234 // Shift amount must be in [1,32] 4235 if (Val < 1 || Val > 32) { 4236 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4237 return MatchOperand_ParseFail; 4238 } 4239 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4240 if (isThumb() && Val == 32) { 4241 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4242 return MatchOperand_ParseFail; 4243 } 4244 if (Val == 32) Val = 0; 4245 } else { 4246 // Shift amount must be in [1,32] 4247 if (Val < 0 || Val > 31) { 4248 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4249 return MatchOperand_ParseFail; 4250 } 4251 } 4252 4253 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4254 4255 return MatchOperand_Success; 4256 } 4257 4258 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4259 /// of instructions. Legal values are: 4260 /// ror #n 'n' in {0, 8, 16, 24} 4261 ARMAsmParser::OperandMatchResultTy 4262 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4263 MCAsmParser &Parser = getParser(); 4264 const AsmToken &Tok = Parser.getTok(); 4265 SMLoc S = Tok.getLoc(); 4266 if (Tok.isNot(AsmToken::Identifier)) 4267 return MatchOperand_NoMatch; 4268 StringRef ShiftName = Tok.getString(); 4269 if (ShiftName != "ror" && ShiftName != "ROR") 4270 return MatchOperand_NoMatch; 4271 Parser.Lex(); // Eat the operator. 4272 4273 // A '#' and a rotate amount. 4274 if (Parser.getTok().isNot(AsmToken::Hash) && 4275 Parser.getTok().isNot(AsmToken::Dollar)) { 4276 Error(Parser.getTok().getLoc(), "'#' expected"); 4277 return MatchOperand_ParseFail; 4278 } 4279 Parser.Lex(); // Eat hash token. 4280 SMLoc ExLoc = Parser.getTok().getLoc(); 4281 4282 const MCExpr *ShiftAmount; 4283 SMLoc EndLoc; 4284 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4285 Error(ExLoc, "malformed rotate expression"); 4286 return MatchOperand_ParseFail; 4287 } 4288 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4289 if (!CE) { 4290 Error(ExLoc, "rotate amount must be an immediate"); 4291 return MatchOperand_ParseFail; 4292 } 4293 4294 int64_t Val = CE->getValue(); 4295 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4296 // normally, zero is represented in asm by omitting the rotate operand 4297 // entirely. 4298 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4299 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4300 return MatchOperand_ParseFail; 4301 } 4302 4303 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4304 4305 return MatchOperand_Success; 4306 } 4307 4308 ARMAsmParser::OperandMatchResultTy 4309 ARMAsmParser::parseModImm(OperandVector &Operands) { 4310 MCAsmParser &Parser = getParser(); 4311 MCAsmLexer &Lexer = getLexer(); 4312 int64_t Imm1, Imm2; 4313 4314 SMLoc S = Parser.getTok().getLoc(); 4315 4316 // 1) A mod_imm operand can appear in the place of a register name: 4317 // add r0, #mod_imm 4318 // add r0, r0, #mod_imm 4319 // to correctly handle the latter, we bail out as soon as we see an 4320 // identifier. 4321 // 4322 // 2) Similarly, we do not want to parse into complex operands: 4323 // mov r0, #mod_imm 4324 // mov r0, :lower16:(_foo) 4325 if (Parser.getTok().is(AsmToken::Identifier) || 4326 Parser.getTok().is(AsmToken::Colon)) 4327 return MatchOperand_NoMatch; 4328 4329 // Hash (dollar) is optional as per the ARMARM 4330 if (Parser.getTok().is(AsmToken::Hash) || 4331 Parser.getTok().is(AsmToken::Dollar)) { 4332 // Avoid parsing into complex operands (#:) 4333 if (Lexer.peekTok().is(AsmToken::Colon)) 4334 return MatchOperand_NoMatch; 4335 4336 // Eat the hash (dollar) 4337 Parser.Lex(); 4338 } 4339 4340 SMLoc Sx1, Ex1; 4341 Sx1 = Parser.getTok().getLoc(); 4342 const MCExpr *Imm1Exp; 4343 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4344 Error(Sx1, "malformed expression"); 4345 return MatchOperand_ParseFail; 4346 } 4347 4348 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4349 4350 if (CE) { 4351 // Immediate must fit within 32-bits 4352 Imm1 = CE->getValue(); 4353 int Enc = ARM_AM::getSOImmVal(Imm1); 4354 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4355 // We have a match! 4356 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4357 (Enc & 0xF00) >> 7, 4358 Sx1, Ex1)); 4359 return MatchOperand_Success; 4360 } 4361 4362 // We have parsed an immediate which is not for us, fallback to a plain 4363 // immediate. This can happen for instruction aliases. For an example, 4364 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4365 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4366 // instruction with a mod_imm operand. The alias is defined such that the 4367 // parser method is shared, that's why we have to do this here. 4368 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4369 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4370 return MatchOperand_Success; 4371 } 4372 } else { 4373 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4374 // MCFixup). Fallback to a plain immediate. 4375 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4376 return MatchOperand_Success; 4377 } 4378 4379 // From this point onward, we expect the input to be a (#bits, #rot) pair 4380 if (Parser.getTok().isNot(AsmToken::Comma)) { 4381 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4382 return MatchOperand_ParseFail; 4383 } 4384 4385 if (Imm1 & ~0xFF) { 4386 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4387 return MatchOperand_ParseFail; 4388 } 4389 4390 // Eat the comma 4391 Parser.Lex(); 4392 4393 // Repeat for #rot 4394 SMLoc Sx2, Ex2; 4395 Sx2 = Parser.getTok().getLoc(); 4396 4397 // Eat the optional hash (dollar) 4398 if (Parser.getTok().is(AsmToken::Hash) || 4399 Parser.getTok().is(AsmToken::Dollar)) 4400 Parser.Lex(); 4401 4402 const MCExpr *Imm2Exp; 4403 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4404 Error(Sx2, "malformed expression"); 4405 return MatchOperand_ParseFail; 4406 } 4407 4408 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4409 4410 if (CE) { 4411 Imm2 = CE->getValue(); 4412 if (!(Imm2 & ~0x1E)) { 4413 // We have a match! 4414 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4415 return MatchOperand_Success; 4416 } 4417 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4418 return MatchOperand_ParseFail; 4419 } else { 4420 Error(Sx2, "constant expression expected"); 4421 return MatchOperand_ParseFail; 4422 } 4423 } 4424 4425 ARMAsmParser::OperandMatchResultTy 4426 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4427 MCAsmParser &Parser = getParser(); 4428 SMLoc S = Parser.getTok().getLoc(); 4429 // The bitfield descriptor is really two operands, the LSB and the width. 4430 if (Parser.getTok().isNot(AsmToken::Hash) && 4431 Parser.getTok().isNot(AsmToken::Dollar)) { 4432 Error(Parser.getTok().getLoc(), "'#' expected"); 4433 return MatchOperand_ParseFail; 4434 } 4435 Parser.Lex(); // Eat hash token. 4436 4437 const MCExpr *LSBExpr; 4438 SMLoc E = Parser.getTok().getLoc(); 4439 if (getParser().parseExpression(LSBExpr)) { 4440 Error(E, "malformed immediate expression"); 4441 return MatchOperand_ParseFail; 4442 } 4443 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4444 if (!CE) { 4445 Error(E, "'lsb' operand must be an immediate"); 4446 return MatchOperand_ParseFail; 4447 } 4448 4449 int64_t LSB = CE->getValue(); 4450 // The LSB must be in the range [0,31] 4451 if (LSB < 0 || LSB > 31) { 4452 Error(E, "'lsb' operand must be in the range [0,31]"); 4453 return MatchOperand_ParseFail; 4454 } 4455 E = Parser.getTok().getLoc(); 4456 4457 // Expect another immediate operand. 4458 if (Parser.getTok().isNot(AsmToken::Comma)) { 4459 Error(Parser.getTok().getLoc(), "too few operands"); 4460 return MatchOperand_ParseFail; 4461 } 4462 Parser.Lex(); // Eat hash token. 4463 if (Parser.getTok().isNot(AsmToken::Hash) && 4464 Parser.getTok().isNot(AsmToken::Dollar)) { 4465 Error(Parser.getTok().getLoc(), "'#' expected"); 4466 return MatchOperand_ParseFail; 4467 } 4468 Parser.Lex(); // Eat hash token. 4469 4470 const MCExpr *WidthExpr; 4471 SMLoc EndLoc; 4472 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4473 Error(E, "malformed immediate expression"); 4474 return MatchOperand_ParseFail; 4475 } 4476 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4477 if (!CE) { 4478 Error(E, "'width' operand must be an immediate"); 4479 return MatchOperand_ParseFail; 4480 } 4481 4482 int64_t Width = CE->getValue(); 4483 // The LSB must be in the range [1,32-lsb] 4484 if (Width < 1 || Width > 32 - LSB) { 4485 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4486 return MatchOperand_ParseFail; 4487 } 4488 4489 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4490 4491 return MatchOperand_Success; 4492 } 4493 4494 ARMAsmParser::OperandMatchResultTy 4495 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4496 // Check for a post-index addressing register operand. Specifically: 4497 // postidx_reg := '+' register {, shift} 4498 // | '-' register {, shift} 4499 // | register {, shift} 4500 4501 // This method must return MatchOperand_NoMatch without consuming any tokens 4502 // in the case where there is no match, as other alternatives take other 4503 // parse methods. 4504 MCAsmParser &Parser = getParser(); 4505 AsmToken Tok = Parser.getTok(); 4506 SMLoc S = Tok.getLoc(); 4507 bool haveEaten = false; 4508 bool isAdd = true; 4509 if (Tok.is(AsmToken::Plus)) { 4510 Parser.Lex(); // Eat the '+' token. 4511 haveEaten = true; 4512 } else if (Tok.is(AsmToken::Minus)) { 4513 Parser.Lex(); // Eat the '-' token. 4514 isAdd = false; 4515 haveEaten = true; 4516 } 4517 4518 SMLoc E = Parser.getTok().getEndLoc(); 4519 int Reg = tryParseRegister(); 4520 if (Reg == -1) { 4521 if (!haveEaten) 4522 return MatchOperand_NoMatch; 4523 Error(Parser.getTok().getLoc(), "register expected"); 4524 return MatchOperand_ParseFail; 4525 } 4526 4527 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4528 unsigned ShiftImm = 0; 4529 if (Parser.getTok().is(AsmToken::Comma)) { 4530 Parser.Lex(); // Eat the ','. 4531 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4532 return MatchOperand_ParseFail; 4533 4534 // FIXME: Only approximates end...may include intervening whitespace. 4535 E = Parser.getTok().getLoc(); 4536 } 4537 4538 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4539 ShiftImm, S, E)); 4540 4541 return MatchOperand_Success; 4542 } 4543 4544 ARMAsmParser::OperandMatchResultTy 4545 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4546 // Check for a post-index addressing register operand. Specifically: 4547 // am3offset := '+' register 4548 // | '-' register 4549 // | register 4550 // | # imm 4551 // | # + imm 4552 // | # - imm 4553 4554 // This method must return MatchOperand_NoMatch without consuming any tokens 4555 // in the case where there is no match, as other alternatives take other 4556 // parse methods. 4557 MCAsmParser &Parser = getParser(); 4558 AsmToken Tok = Parser.getTok(); 4559 SMLoc S = Tok.getLoc(); 4560 4561 // Do immediates first, as we always parse those if we have a '#'. 4562 if (Parser.getTok().is(AsmToken::Hash) || 4563 Parser.getTok().is(AsmToken::Dollar)) { 4564 Parser.Lex(); // Eat '#' or '$'. 4565 // Explicitly look for a '-', as we need to encode negative zero 4566 // differently. 4567 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4568 const MCExpr *Offset; 4569 SMLoc E; 4570 if (getParser().parseExpression(Offset, E)) 4571 return MatchOperand_ParseFail; 4572 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4573 if (!CE) { 4574 Error(S, "constant expression expected"); 4575 return MatchOperand_ParseFail; 4576 } 4577 // Negative zero is encoded as the flag value INT32_MIN. 4578 int32_t Val = CE->getValue(); 4579 if (isNegative && Val == 0) 4580 Val = INT32_MIN; 4581 4582 Operands.push_back( 4583 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4584 4585 return MatchOperand_Success; 4586 } 4587 4588 4589 bool haveEaten = false; 4590 bool isAdd = true; 4591 if (Tok.is(AsmToken::Plus)) { 4592 Parser.Lex(); // Eat the '+' token. 4593 haveEaten = true; 4594 } else if (Tok.is(AsmToken::Minus)) { 4595 Parser.Lex(); // Eat the '-' token. 4596 isAdd = false; 4597 haveEaten = true; 4598 } 4599 4600 Tok = Parser.getTok(); 4601 int Reg = tryParseRegister(); 4602 if (Reg == -1) { 4603 if (!haveEaten) 4604 return MatchOperand_NoMatch; 4605 Error(Tok.getLoc(), "register expected"); 4606 return MatchOperand_ParseFail; 4607 } 4608 4609 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4610 0, S, Tok.getEndLoc())); 4611 4612 return MatchOperand_Success; 4613 } 4614 4615 /// Convert parsed operands to MCInst. Needed here because this instruction 4616 /// only has two register operands, but multiplication is commutative so 4617 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4618 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4619 const OperandVector &Operands) { 4620 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4621 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4622 // If we have a three-operand form, make sure to set Rn to be the operand 4623 // that isn't the same as Rd. 4624 unsigned RegOp = 4; 4625 if (Operands.size() == 6 && 4626 ((ARMOperand &)*Operands[4]).getReg() == 4627 ((ARMOperand &)*Operands[3]).getReg()) 4628 RegOp = 5; 4629 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4630 Inst.addOperand(Inst.getOperand(0)); 4631 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4632 } 4633 4634 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4635 const OperandVector &Operands) { 4636 int CondOp = -1, ImmOp = -1; 4637 switch(Inst.getOpcode()) { 4638 case ARM::tB: 4639 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4640 4641 case ARM::t2B: 4642 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4643 4644 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4645 } 4646 // first decide whether or not the branch should be conditional 4647 // by looking at it's location relative to an IT block 4648 if(inITBlock()) { 4649 // inside an IT block we cannot have any conditional branches. any 4650 // such instructions needs to be converted to unconditional form 4651 switch(Inst.getOpcode()) { 4652 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4653 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4654 } 4655 } else { 4656 // outside IT blocks we can only have unconditional branches with AL 4657 // condition code or conditional branches with non-AL condition code 4658 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4659 switch(Inst.getOpcode()) { 4660 case ARM::tB: 4661 case ARM::tBcc: 4662 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4663 break; 4664 case ARM::t2B: 4665 case ARM::t2Bcc: 4666 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4667 break; 4668 } 4669 } 4670 4671 // now decide on encoding size based on branch target range 4672 switch(Inst.getOpcode()) { 4673 // classify tB as either t2B or t1B based on range of immediate operand 4674 case ARM::tB: { 4675 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4676 if (!op.isSignedOffset<11, 1>() && isThumbTwo()) 4677 Inst.setOpcode(ARM::t2B); 4678 break; 4679 } 4680 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4681 case ARM::tBcc: { 4682 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4683 if (!op.isSignedOffset<8, 1>() && isThumbTwo()) 4684 Inst.setOpcode(ARM::t2Bcc); 4685 break; 4686 } 4687 } 4688 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4689 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4690 } 4691 4692 /// Parse an ARM memory expression, return false if successful else return true 4693 /// or an error. The first token must be a '[' when called. 4694 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4695 MCAsmParser &Parser = getParser(); 4696 SMLoc S, E; 4697 assert(Parser.getTok().is(AsmToken::LBrac) && 4698 "Token is not a Left Bracket"); 4699 S = Parser.getTok().getLoc(); 4700 Parser.Lex(); // Eat left bracket token. 4701 4702 const AsmToken &BaseRegTok = Parser.getTok(); 4703 int BaseRegNum = tryParseRegister(); 4704 if (BaseRegNum == -1) 4705 return Error(BaseRegTok.getLoc(), "register expected"); 4706 4707 // The next token must either be a comma, a colon or a closing bracket. 4708 const AsmToken &Tok = Parser.getTok(); 4709 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4710 !Tok.is(AsmToken::RBrac)) 4711 return Error(Tok.getLoc(), "malformed memory operand"); 4712 4713 if (Tok.is(AsmToken::RBrac)) { 4714 E = Tok.getEndLoc(); 4715 Parser.Lex(); // Eat right bracket token. 4716 4717 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4718 ARM_AM::no_shift, 0, 0, false, 4719 S, E)); 4720 4721 // If there's a pre-indexing writeback marker, '!', just add it as a token 4722 // operand. It's rather odd, but syntactically valid. 4723 if (Parser.getTok().is(AsmToken::Exclaim)) { 4724 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4725 Parser.Lex(); // Eat the '!'. 4726 } 4727 4728 return false; 4729 } 4730 4731 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4732 "Lost colon or comma in memory operand?!"); 4733 if (Tok.is(AsmToken::Comma)) { 4734 Parser.Lex(); // Eat the comma. 4735 } 4736 4737 // If we have a ':', it's an alignment specifier. 4738 if (Parser.getTok().is(AsmToken::Colon)) { 4739 Parser.Lex(); // Eat the ':'. 4740 E = Parser.getTok().getLoc(); 4741 SMLoc AlignmentLoc = Tok.getLoc(); 4742 4743 const MCExpr *Expr; 4744 if (getParser().parseExpression(Expr)) 4745 return true; 4746 4747 // The expression has to be a constant. Memory references with relocations 4748 // don't come through here, as they use the <label> forms of the relevant 4749 // instructions. 4750 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4751 if (!CE) 4752 return Error (E, "constant expression expected"); 4753 4754 unsigned Align = 0; 4755 switch (CE->getValue()) { 4756 default: 4757 return Error(E, 4758 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4759 case 16: Align = 2; break; 4760 case 32: Align = 4; break; 4761 case 64: Align = 8; break; 4762 case 128: Align = 16; break; 4763 case 256: Align = 32; break; 4764 } 4765 4766 // Now we should have the closing ']' 4767 if (Parser.getTok().isNot(AsmToken::RBrac)) 4768 return Error(Parser.getTok().getLoc(), "']' expected"); 4769 E = Parser.getTok().getEndLoc(); 4770 Parser.Lex(); // Eat right bracket token. 4771 4772 // Don't worry about range checking the value here. That's handled by 4773 // the is*() predicates. 4774 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4775 ARM_AM::no_shift, 0, Align, 4776 false, S, E, AlignmentLoc)); 4777 4778 // If there's a pre-indexing writeback marker, '!', just add it as a token 4779 // operand. 4780 if (Parser.getTok().is(AsmToken::Exclaim)) { 4781 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4782 Parser.Lex(); // Eat the '!'. 4783 } 4784 4785 return false; 4786 } 4787 4788 // If we have a '#', it's an immediate offset, else assume it's a register 4789 // offset. Be friendly and also accept a plain integer (without a leading 4790 // hash) for gas compatibility. 4791 if (Parser.getTok().is(AsmToken::Hash) || 4792 Parser.getTok().is(AsmToken::Dollar) || 4793 Parser.getTok().is(AsmToken::Integer)) { 4794 if (Parser.getTok().isNot(AsmToken::Integer)) 4795 Parser.Lex(); // Eat '#' or '$'. 4796 E = Parser.getTok().getLoc(); 4797 4798 bool isNegative = getParser().getTok().is(AsmToken::Minus); 4799 const MCExpr *Offset; 4800 if (getParser().parseExpression(Offset)) 4801 return true; 4802 4803 // The expression has to be a constant. Memory references with relocations 4804 // don't come through here, as they use the <label> forms of the relevant 4805 // instructions. 4806 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4807 if (!CE) 4808 return Error (E, "constant expression expected"); 4809 4810 // If the constant was #-0, represent it as INT32_MIN. 4811 int32_t Val = CE->getValue(); 4812 if (isNegative && Val == 0) 4813 CE = MCConstantExpr::create(INT32_MIN, getContext()); 4814 4815 // Now we should have the closing ']' 4816 if (Parser.getTok().isNot(AsmToken::RBrac)) 4817 return Error(Parser.getTok().getLoc(), "']' expected"); 4818 E = Parser.getTok().getEndLoc(); 4819 Parser.Lex(); // Eat right bracket token. 4820 4821 // Don't worry about range checking the value here. That's handled by 4822 // the is*() predicates. 4823 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 4824 ARM_AM::no_shift, 0, 0, 4825 false, S, E)); 4826 4827 // If there's a pre-indexing writeback marker, '!', just add it as a token 4828 // operand. 4829 if (Parser.getTok().is(AsmToken::Exclaim)) { 4830 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4831 Parser.Lex(); // Eat the '!'. 4832 } 4833 4834 return false; 4835 } 4836 4837 // The register offset is optionally preceded by a '+' or '-' 4838 bool isNegative = false; 4839 if (Parser.getTok().is(AsmToken::Minus)) { 4840 isNegative = true; 4841 Parser.Lex(); // Eat the '-'. 4842 } else if (Parser.getTok().is(AsmToken::Plus)) { 4843 // Nothing to do. 4844 Parser.Lex(); // Eat the '+'. 4845 } 4846 4847 E = Parser.getTok().getLoc(); 4848 int OffsetRegNum = tryParseRegister(); 4849 if (OffsetRegNum == -1) 4850 return Error(E, "register expected"); 4851 4852 // If there's a shift operator, handle it. 4853 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 4854 unsigned ShiftImm = 0; 4855 if (Parser.getTok().is(AsmToken::Comma)) { 4856 Parser.Lex(); // Eat the ','. 4857 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 4858 return true; 4859 } 4860 4861 // Now we should have the closing ']' 4862 if (Parser.getTok().isNot(AsmToken::RBrac)) 4863 return Error(Parser.getTok().getLoc(), "']' expected"); 4864 E = Parser.getTok().getEndLoc(); 4865 Parser.Lex(); // Eat right bracket token. 4866 4867 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 4868 ShiftType, ShiftImm, 0, isNegative, 4869 S, E)); 4870 4871 // If there's a pre-indexing writeback marker, '!', just add it as a token 4872 // operand. 4873 if (Parser.getTok().is(AsmToken::Exclaim)) { 4874 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4875 Parser.Lex(); // Eat the '!'. 4876 } 4877 4878 return false; 4879 } 4880 4881 /// parseMemRegOffsetShift - one of these two: 4882 /// ( lsl | lsr | asr | ror ) , # shift_amount 4883 /// rrx 4884 /// return true if it parses a shift otherwise it returns false. 4885 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 4886 unsigned &Amount) { 4887 MCAsmParser &Parser = getParser(); 4888 SMLoc Loc = Parser.getTok().getLoc(); 4889 const AsmToken &Tok = Parser.getTok(); 4890 if (Tok.isNot(AsmToken::Identifier)) 4891 return true; 4892 StringRef ShiftName = Tok.getString(); 4893 if (ShiftName == "lsl" || ShiftName == "LSL" || 4894 ShiftName == "asl" || ShiftName == "ASL") 4895 St = ARM_AM::lsl; 4896 else if (ShiftName == "lsr" || ShiftName == "LSR") 4897 St = ARM_AM::lsr; 4898 else if (ShiftName == "asr" || ShiftName == "ASR") 4899 St = ARM_AM::asr; 4900 else if (ShiftName == "ror" || ShiftName == "ROR") 4901 St = ARM_AM::ror; 4902 else if (ShiftName == "rrx" || ShiftName == "RRX") 4903 St = ARM_AM::rrx; 4904 else 4905 return Error(Loc, "illegal shift operator"); 4906 Parser.Lex(); // Eat shift type token. 4907 4908 // rrx stands alone. 4909 Amount = 0; 4910 if (St != ARM_AM::rrx) { 4911 Loc = Parser.getTok().getLoc(); 4912 // A '#' and a shift amount. 4913 const AsmToken &HashTok = Parser.getTok(); 4914 if (HashTok.isNot(AsmToken::Hash) && 4915 HashTok.isNot(AsmToken::Dollar)) 4916 return Error(HashTok.getLoc(), "'#' expected"); 4917 Parser.Lex(); // Eat hash token. 4918 4919 const MCExpr *Expr; 4920 if (getParser().parseExpression(Expr)) 4921 return true; 4922 // Range check the immediate. 4923 // lsl, ror: 0 <= imm <= 31 4924 // lsr, asr: 0 <= imm <= 32 4925 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4926 if (!CE) 4927 return Error(Loc, "shift amount must be an immediate"); 4928 int64_t Imm = CE->getValue(); 4929 if (Imm < 0 || 4930 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 4931 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 4932 return Error(Loc, "immediate shift value out of range"); 4933 // If <ShiftTy> #0, turn it into a no_shift. 4934 if (Imm == 0) 4935 St = ARM_AM::lsl; 4936 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 4937 if (Imm == 32) 4938 Imm = 0; 4939 Amount = Imm; 4940 } 4941 4942 return false; 4943 } 4944 4945 /// parseFPImm - A floating point immediate expression operand. 4946 ARMAsmParser::OperandMatchResultTy 4947 ARMAsmParser::parseFPImm(OperandVector &Operands) { 4948 MCAsmParser &Parser = getParser(); 4949 // Anything that can accept a floating point constant as an operand 4950 // needs to go through here, as the regular parseExpression is 4951 // integer only. 4952 // 4953 // This routine still creates a generic Immediate operand, containing 4954 // a bitcast of the 64-bit floating point value. The various operands 4955 // that accept floats can check whether the value is valid for them 4956 // via the standard is*() predicates. 4957 4958 SMLoc S = Parser.getTok().getLoc(); 4959 4960 if (Parser.getTok().isNot(AsmToken::Hash) && 4961 Parser.getTok().isNot(AsmToken::Dollar)) 4962 return MatchOperand_NoMatch; 4963 4964 // Disambiguate the VMOV forms that can accept an FP immediate. 4965 // vmov.f32 <sreg>, #imm 4966 // vmov.f64 <dreg>, #imm 4967 // vmov.f32 <dreg>, #imm @ vector f32x2 4968 // vmov.f32 <qreg>, #imm @ vector f32x4 4969 // 4970 // There are also the NEON VMOV instructions which expect an 4971 // integer constant. Make sure we don't try to parse an FPImm 4972 // for these: 4973 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 4974 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 4975 bool isVmovf = TyOp.isToken() && 4976 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64"); 4977 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 4978 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 4979 Mnemonic.getToken() == "fconsts"); 4980 if (!(isVmovf || isFconst)) 4981 return MatchOperand_NoMatch; 4982 4983 Parser.Lex(); // Eat '#' or '$'. 4984 4985 // Handle negation, as that still comes through as a separate token. 4986 bool isNegative = false; 4987 if (Parser.getTok().is(AsmToken::Minus)) { 4988 isNegative = true; 4989 Parser.Lex(); 4990 } 4991 const AsmToken &Tok = Parser.getTok(); 4992 SMLoc Loc = Tok.getLoc(); 4993 if (Tok.is(AsmToken::Real) && isVmovf) { 4994 APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); 4995 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 4996 // If we had a '-' in front, toggle the sign bit. 4997 IntVal ^= (uint64_t)isNegative << 31; 4998 Parser.Lex(); // Eat the token. 4999 Operands.push_back(ARMOperand::CreateImm( 5000 MCConstantExpr::create(IntVal, getContext()), 5001 S, Parser.getTok().getLoc())); 5002 return MatchOperand_Success; 5003 } 5004 // Also handle plain integers. Instructions which allow floating point 5005 // immediates also allow a raw encoded 8-bit value. 5006 if (Tok.is(AsmToken::Integer) && isFconst) { 5007 int64_t Val = Tok.getIntVal(); 5008 Parser.Lex(); // Eat the token. 5009 if (Val > 255 || Val < 0) { 5010 Error(Loc, "encoded floating point value out of range"); 5011 return MatchOperand_ParseFail; 5012 } 5013 float RealVal = ARM_AM::getFPImmFloat(Val); 5014 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5015 5016 Operands.push_back(ARMOperand::CreateImm( 5017 MCConstantExpr::create(Val, getContext()), S, 5018 Parser.getTok().getLoc())); 5019 return MatchOperand_Success; 5020 } 5021 5022 Error(Loc, "invalid floating point immediate"); 5023 return MatchOperand_ParseFail; 5024 } 5025 5026 /// Parse a arm instruction operand. For now this parses the operand regardless 5027 /// of the mnemonic. 5028 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5029 MCAsmParser &Parser = getParser(); 5030 SMLoc S, E; 5031 5032 // Check if the current operand has a custom associated parser, if so, try to 5033 // custom parse the operand, or fallback to the general approach. 5034 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5035 if (ResTy == MatchOperand_Success) 5036 return false; 5037 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5038 // there was a match, but an error occurred, in which case, just return that 5039 // the operand parsing failed. 5040 if (ResTy == MatchOperand_ParseFail) 5041 return true; 5042 5043 switch (getLexer().getKind()) { 5044 default: 5045 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5046 return true; 5047 case AsmToken::Identifier: { 5048 // If we've seen a branch mnemonic, the next operand must be a label. This 5049 // is true even if the label is a register name. So "br r1" means branch to 5050 // label "r1". 5051 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5052 if (!ExpectLabel) { 5053 if (!tryParseRegisterWithWriteBack(Operands)) 5054 return false; 5055 int Res = tryParseShiftRegister(Operands); 5056 if (Res == 0) // success 5057 return false; 5058 else if (Res == -1) // irrecoverable error 5059 return true; 5060 // If this is VMRS, check for the apsr_nzcv operand. 5061 if (Mnemonic == "vmrs" && 5062 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5063 S = Parser.getTok().getLoc(); 5064 Parser.Lex(); 5065 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5066 return false; 5067 } 5068 } 5069 5070 // Fall though for the Identifier case that is not a register or a 5071 // special name. 5072 } 5073 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5074 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5075 case AsmToken::String: // quoted label names. 5076 case AsmToken::Dot: { // . as a branch target 5077 // This was not a register so parse other operands that start with an 5078 // identifier (like labels) as expressions and create them as immediates. 5079 const MCExpr *IdVal; 5080 S = Parser.getTok().getLoc(); 5081 if (getParser().parseExpression(IdVal)) 5082 return true; 5083 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5084 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5085 return false; 5086 } 5087 case AsmToken::LBrac: 5088 return parseMemory(Operands); 5089 case AsmToken::LCurly: 5090 return parseRegisterList(Operands); 5091 case AsmToken::Dollar: 5092 case AsmToken::Hash: { 5093 // #42 -> immediate. 5094 S = Parser.getTok().getLoc(); 5095 Parser.Lex(); 5096 5097 if (Parser.getTok().isNot(AsmToken::Colon)) { 5098 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5099 const MCExpr *ImmVal; 5100 if (getParser().parseExpression(ImmVal)) 5101 return true; 5102 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5103 if (CE) { 5104 int32_t Val = CE->getValue(); 5105 if (isNegative && Val == 0) 5106 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5107 } 5108 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5109 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5110 5111 // There can be a trailing '!' on operands that we want as a separate 5112 // '!' Token operand. Handle that here. For example, the compatibility 5113 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5114 if (Parser.getTok().is(AsmToken::Exclaim)) { 5115 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5116 Parser.getTok().getLoc())); 5117 Parser.Lex(); // Eat exclaim token 5118 } 5119 return false; 5120 } 5121 // w/ a ':' after the '#', it's just like a plain ':'. 5122 // FALLTHROUGH 5123 } 5124 case AsmToken::Colon: { 5125 // ":lower16:" and ":upper16:" expression prefixes 5126 // FIXME: Check it's an expression prefix, 5127 // e.g. (FOO - :lower16:BAR) isn't legal. 5128 ARMMCExpr::VariantKind RefKind; 5129 if (parsePrefix(RefKind)) 5130 return true; 5131 5132 const MCExpr *SubExprVal; 5133 if (getParser().parseExpression(SubExprVal)) 5134 return true; 5135 5136 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5137 getContext()); 5138 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5139 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5140 return false; 5141 } 5142 case AsmToken::Equal: { 5143 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5144 return Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5145 5146 Parser.Lex(); // Eat '=' 5147 const MCExpr *SubExprVal; 5148 if (getParser().parseExpression(SubExprVal)) 5149 return true; 5150 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5151 5152 const MCExpr *CPLoc = getTargetStreamer().addConstantPoolEntry(SubExprVal); 5153 Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E)); 5154 return false; 5155 } 5156 } 5157 } 5158 5159 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5160 // :lower16: and :upper16:. 5161 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5162 MCAsmParser &Parser = getParser(); 5163 RefKind = ARMMCExpr::VK_ARM_None; 5164 5165 // consume an optional '#' (GNU compatibility) 5166 if (getLexer().is(AsmToken::Hash)) 5167 Parser.Lex(); 5168 5169 // :lower16: and :upper16: modifiers 5170 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5171 Parser.Lex(); // Eat ':' 5172 5173 if (getLexer().isNot(AsmToken::Identifier)) { 5174 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5175 return true; 5176 } 5177 5178 enum { 5179 COFF = (1 << MCObjectFileInfo::IsCOFF), 5180 ELF = (1 << MCObjectFileInfo::IsELF), 5181 MACHO = (1 << MCObjectFileInfo::IsMachO) 5182 }; 5183 static const struct PrefixEntry { 5184 const char *Spelling; 5185 ARMMCExpr::VariantKind VariantKind; 5186 uint8_t SupportedFormats; 5187 } PrefixEntries[] = { 5188 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5189 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5190 }; 5191 5192 StringRef IDVal = Parser.getTok().getIdentifier(); 5193 5194 const auto &Prefix = 5195 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5196 [&IDVal](const PrefixEntry &PE) { 5197 return PE.Spelling == IDVal; 5198 }); 5199 if (Prefix == std::end(PrefixEntries)) { 5200 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5201 return true; 5202 } 5203 5204 uint8_t CurrentFormat; 5205 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5206 case MCObjectFileInfo::IsMachO: 5207 CurrentFormat = MACHO; 5208 break; 5209 case MCObjectFileInfo::IsELF: 5210 CurrentFormat = ELF; 5211 break; 5212 case MCObjectFileInfo::IsCOFF: 5213 CurrentFormat = COFF; 5214 break; 5215 } 5216 5217 if (~Prefix->SupportedFormats & CurrentFormat) { 5218 Error(Parser.getTok().getLoc(), 5219 "cannot represent relocation in the current file format"); 5220 return true; 5221 } 5222 5223 RefKind = Prefix->VariantKind; 5224 Parser.Lex(); 5225 5226 if (getLexer().isNot(AsmToken::Colon)) { 5227 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5228 return true; 5229 } 5230 Parser.Lex(); // Eat the last ':' 5231 5232 return false; 5233 } 5234 5235 /// \brief Given a mnemonic, split out possible predication code and carry 5236 /// setting letters to form a canonical mnemonic and flags. 5237 // 5238 // FIXME: Would be nice to autogen this. 5239 // FIXME: This is a bit of a maze of special cases. 5240 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5241 unsigned &PredicationCode, 5242 bool &CarrySetting, 5243 unsigned &ProcessorIMod, 5244 StringRef &ITMask) { 5245 PredicationCode = ARMCC::AL; 5246 CarrySetting = false; 5247 ProcessorIMod = 0; 5248 5249 // Ignore some mnemonics we know aren't predicated forms. 5250 // 5251 // FIXME: Would be nice to autogen this. 5252 if ((Mnemonic == "movs" && isThumb()) || 5253 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5254 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5255 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5256 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5257 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5258 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5259 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5260 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5261 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5262 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5263 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5264 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5265 Mnemonic.startswith("vsel")) 5266 return Mnemonic; 5267 5268 // First, split out any predication code. Ignore mnemonics we know aren't 5269 // predicated but do have a carry-set and so weren't caught above. 5270 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5271 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5272 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5273 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5274 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5275 .Case("eq", ARMCC::EQ) 5276 .Case("ne", ARMCC::NE) 5277 .Case("hs", ARMCC::HS) 5278 .Case("cs", ARMCC::HS) 5279 .Case("lo", ARMCC::LO) 5280 .Case("cc", ARMCC::LO) 5281 .Case("mi", ARMCC::MI) 5282 .Case("pl", ARMCC::PL) 5283 .Case("vs", ARMCC::VS) 5284 .Case("vc", ARMCC::VC) 5285 .Case("hi", ARMCC::HI) 5286 .Case("ls", ARMCC::LS) 5287 .Case("ge", ARMCC::GE) 5288 .Case("lt", ARMCC::LT) 5289 .Case("gt", ARMCC::GT) 5290 .Case("le", ARMCC::LE) 5291 .Case("al", ARMCC::AL) 5292 .Default(~0U); 5293 if (CC != ~0U) { 5294 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5295 PredicationCode = CC; 5296 } 5297 } 5298 5299 // Next, determine if we have a carry setting bit. We explicitly ignore all 5300 // the instructions we know end in 's'. 5301 if (Mnemonic.endswith("s") && 5302 !(Mnemonic == "cps" || Mnemonic == "mls" || 5303 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5304 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5305 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5306 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5307 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5308 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5309 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5310 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5311 (Mnemonic == "movs" && isThumb()))) { 5312 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5313 CarrySetting = true; 5314 } 5315 5316 // The "cps" instruction can have a interrupt mode operand which is glued into 5317 // the mnemonic. Check if this is the case, split it and parse the imod op 5318 if (Mnemonic.startswith("cps")) { 5319 // Split out any imod code. 5320 unsigned IMod = 5321 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5322 .Case("ie", ARM_PROC::IE) 5323 .Case("id", ARM_PROC::ID) 5324 .Default(~0U); 5325 if (IMod != ~0U) { 5326 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5327 ProcessorIMod = IMod; 5328 } 5329 } 5330 5331 // The "it" instruction has the condition mask on the end of the mnemonic. 5332 if (Mnemonic.startswith("it")) { 5333 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5334 Mnemonic = Mnemonic.slice(0, 2); 5335 } 5336 5337 return Mnemonic; 5338 } 5339 5340 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5341 /// inclusion of carry set or predication code operands. 5342 // 5343 // FIXME: It would be nice to autogen this. 5344 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5345 bool &CanAcceptCarrySet, 5346 bool &CanAcceptPredicationCode) { 5347 CanAcceptCarrySet = 5348 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5349 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5350 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5351 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5352 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5353 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5354 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5355 (!isThumb() && 5356 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5357 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5358 5359 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5360 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5361 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5362 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5363 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5364 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5365 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5366 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5367 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5368 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5369 (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) { 5370 // These mnemonics are never predicable 5371 CanAcceptPredicationCode = false; 5372 } else if (!isThumb()) { 5373 // Some instructions are only predicable in Thumb mode 5374 CanAcceptPredicationCode = 5375 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5376 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5377 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5378 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5379 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5380 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5381 !Mnemonic.startswith("srs"); 5382 } else if (isThumbOne()) { 5383 if (hasV6MOps()) 5384 CanAcceptPredicationCode = Mnemonic != "movs"; 5385 else 5386 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5387 } else 5388 CanAcceptPredicationCode = true; 5389 } 5390 5391 // \brief Some Thumb instructions have two operand forms that are not 5392 // available as three operand, convert to two operand form if possible. 5393 // 5394 // FIXME: We would really like to be able to tablegen'erate this. 5395 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5396 bool CarrySetting, 5397 OperandVector &Operands) { 5398 if (Operands.size() != 6) 5399 return; 5400 5401 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5402 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5403 if (!Op3.isReg() || !Op4.isReg()) 5404 return; 5405 5406 auto Op3Reg = Op3.getReg(); 5407 auto Op4Reg = Op4.getReg(); 5408 5409 // For most Thumb2 cases we just generate the 3 operand form and reduce 5410 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5411 // won't accept SP or PC so we do the transformation here taking care 5412 // with immediate range in the 'add sp, sp #imm' case. 5413 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5414 if (isThumbTwo()) { 5415 if (Mnemonic != "add") 5416 return; 5417 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5418 (Op5.isReg() && Op5.getReg() == ARM::PC); 5419 if (!TryTransform) { 5420 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5421 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5422 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5423 Op5.isImm() && !Op5.isImm0_508s4()); 5424 } 5425 if (!TryTransform) 5426 return; 5427 } else if (!isThumbOne()) 5428 return; 5429 5430 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5431 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5432 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5433 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5434 return; 5435 5436 // If first 2 operands of a 3 operand instruction are the same 5437 // then transform to 2 operand version of the same instruction 5438 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5439 bool Transform = Op3Reg == Op4Reg; 5440 5441 // For communtative operations, we might be able to transform if we swap 5442 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5443 // as tADDrsp. 5444 const ARMOperand *LastOp = &Op5; 5445 bool Swap = false; 5446 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5447 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5448 Mnemonic == "and" || Mnemonic == "eor" || 5449 Mnemonic == "adc" || Mnemonic == "orr")) { 5450 Swap = true; 5451 LastOp = &Op4; 5452 Transform = true; 5453 } 5454 5455 // If both registers are the same then remove one of them from 5456 // the operand list, with certain exceptions. 5457 if (Transform) { 5458 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5459 // 2 operand forms don't exist. 5460 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5461 LastOp->isReg()) 5462 Transform = false; 5463 5464 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5465 // 3-bits because the ARMARM says not to. 5466 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5467 Transform = false; 5468 } 5469 5470 if (Transform) { 5471 if (Swap) 5472 std::swap(Op4, Op5); 5473 Operands.erase(Operands.begin() + 3); 5474 } 5475 } 5476 5477 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5478 OperandVector &Operands) { 5479 // FIXME: This is all horribly hacky. We really need a better way to deal 5480 // with optional operands like this in the matcher table. 5481 5482 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5483 // another does not. Specifically, the MOVW instruction does not. So we 5484 // special case it here and remove the defaulted (non-setting) cc_out 5485 // operand if that's the instruction we're trying to match. 5486 // 5487 // We do this as post-processing of the explicit operands rather than just 5488 // conditionally adding the cc_out in the first place because we need 5489 // to check the type of the parsed immediate operand. 5490 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5491 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5492 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5493 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5494 return true; 5495 5496 // Register-register 'add' for thumb does not have a cc_out operand 5497 // when there are only two register operands. 5498 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5499 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5500 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5501 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5502 return true; 5503 // Register-register 'add' for thumb does not have a cc_out operand 5504 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5505 // have to check the immediate range here since Thumb2 has a variant 5506 // that can handle a different range and has a cc_out operand. 5507 if (((isThumb() && Mnemonic == "add") || 5508 (isThumbTwo() && Mnemonic == "sub")) && 5509 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5510 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5511 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5512 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5513 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5514 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5515 return true; 5516 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5517 // imm0_4095 variant. That's the least-preferred variant when 5518 // selecting via the generic "add" mnemonic, so to know that we 5519 // should remove the cc_out operand, we have to explicitly check that 5520 // it's not one of the other variants. Ugh. 5521 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5522 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5523 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5524 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5525 // Nest conditions rather than one big 'if' statement for readability. 5526 // 5527 // If both registers are low, we're in an IT block, and the immediate is 5528 // in range, we should use encoding T1 instead, which has a cc_out. 5529 if (inITBlock() && 5530 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5531 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5532 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5533 return false; 5534 // Check against T3. If the second register is the PC, this is an 5535 // alternate form of ADR, which uses encoding T4, so check for that too. 5536 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5537 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5538 return false; 5539 5540 // Otherwise, we use encoding T4, which does not have a cc_out 5541 // operand. 5542 return true; 5543 } 5544 5545 // The thumb2 multiply instruction doesn't have a CCOut register, so 5546 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5547 // use the 16-bit encoding or not. 5548 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5549 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5550 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5551 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5552 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5553 // If the registers aren't low regs, the destination reg isn't the 5554 // same as one of the source regs, or the cc_out operand is zero 5555 // outside of an IT block, we have to use the 32-bit encoding, so 5556 // remove the cc_out operand. 5557 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5558 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5559 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5560 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5561 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5562 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5563 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5564 return true; 5565 5566 // Also check the 'mul' syntax variant that doesn't specify an explicit 5567 // destination register. 5568 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5569 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5570 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5571 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5572 // If the registers aren't low regs or the cc_out operand is zero 5573 // outside of an IT block, we have to use the 32-bit encoding, so 5574 // remove the cc_out operand. 5575 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5576 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5577 !inITBlock())) 5578 return true; 5579 5580 5581 5582 // Register-register 'add/sub' for thumb does not have a cc_out operand 5583 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5584 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5585 // right, this will result in better diagnostics (which operand is off) 5586 // anyway. 5587 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5588 (Operands.size() == 5 || Operands.size() == 6) && 5589 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5590 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5591 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5592 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5593 (Operands.size() == 6 && 5594 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5595 return true; 5596 5597 return false; 5598 } 5599 5600 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5601 OperandVector &Operands) { 5602 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5603 unsigned RegIdx = 3; 5604 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5605 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32") { 5606 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5607 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32") 5608 RegIdx = 4; 5609 5610 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5611 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5612 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5613 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5614 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5615 return true; 5616 } 5617 return false; 5618 } 5619 5620 static bool isDataTypeToken(StringRef Tok) { 5621 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5622 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5623 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5624 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5625 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5626 Tok == ".f" || Tok == ".d"; 5627 } 5628 5629 // FIXME: This bit should probably be handled via an explicit match class 5630 // in the .td files that matches the suffix instead of having it be 5631 // a literal string token the way it is now. 5632 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5633 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5634 } 5635 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5636 unsigned VariantID); 5637 5638 static bool RequiresVFPRegListValidation(StringRef Inst, 5639 bool &AcceptSinglePrecisionOnly, 5640 bool &AcceptDoublePrecisionOnly) { 5641 if (Inst.size() < 7) 5642 return false; 5643 5644 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5645 StringRef AddressingMode = Inst.substr(4, 2); 5646 if (AddressingMode == "ia" || AddressingMode == "db" || 5647 AddressingMode == "ea" || AddressingMode == "fd") { 5648 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5649 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5650 return true; 5651 } 5652 } 5653 5654 return false; 5655 } 5656 5657 /// Parse an arm instruction mnemonic followed by its operands. 5658 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5659 SMLoc NameLoc, OperandVector &Operands) { 5660 MCAsmParser &Parser = getParser(); 5661 // FIXME: Can this be done via tablegen in some fashion? 5662 bool RequireVFPRegisterListCheck; 5663 bool AcceptSinglePrecisionOnly; 5664 bool AcceptDoublePrecisionOnly; 5665 RequireVFPRegisterListCheck = 5666 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5667 AcceptDoublePrecisionOnly); 5668 5669 // Apply mnemonic aliases before doing anything else, as the destination 5670 // mnemonic may include suffices and we want to handle them normally. 5671 // The generic tblgen'erated code does this later, at the start of 5672 // MatchInstructionImpl(), but that's too late for aliases that include 5673 // any sort of suffix. 5674 uint64_t AvailableFeatures = getAvailableFeatures(); 5675 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5676 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5677 5678 // First check for the ARM-specific .req directive. 5679 if (Parser.getTok().is(AsmToken::Identifier) && 5680 Parser.getTok().getIdentifier() == ".req") { 5681 parseDirectiveReq(Name, NameLoc); 5682 // We always return 'error' for this, as we're done with this 5683 // statement and don't need to match the 'instruction." 5684 return true; 5685 } 5686 5687 // Create the leading tokens for the mnemonic, split by '.' characters. 5688 size_t Start = 0, Next = Name.find('.'); 5689 StringRef Mnemonic = Name.slice(Start, Next); 5690 5691 // Split out the predication code and carry setting flag from the mnemonic. 5692 unsigned PredicationCode; 5693 unsigned ProcessorIMod; 5694 bool CarrySetting; 5695 StringRef ITMask; 5696 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5697 ProcessorIMod, ITMask); 5698 5699 // In Thumb1, only the branch (B) instruction can be predicated. 5700 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5701 Parser.eatToEndOfStatement(); 5702 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5703 } 5704 5705 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5706 5707 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5708 // is the mask as it will be for the IT encoding if the conditional 5709 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5710 // where the conditional bit0 is zero, the instruction post-processing 5711 // will adjust the mask accordingly. 5712 if (Mnemonic == "it") { 5713 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5714 if (ITMask.size() > 3) { 5715 Parser.eatToEndOfStatement(); 5716 return Error(Loc, "too many conditions on IT instruction"); 5717 } 5718 unsigned Mask = 8; 5719 for (unsigned i = ITMask.size(); i != 0; --i) { 5720 char pos = ITMask[i - 1]; 5721 if (pos != 't' && pos != 'e') { 5722 Parser.eatToEndOfStatement(); 5723 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5724 } 5725 Mask >>= 1; 5726 if (ITMask[i - 1] == 't') 5727 Mask |= 8; 5728 } 5729 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5730 } 5731 5732 // FIXME: This is all a pretty gross hack. We should automatically handle 5733 // optional operands like this via tblgen. 5734 5735 // Next, add the CCOut and ConditionCode operands, if needed. 5736 // 5737 // For mnemonics which can ever incorporate a carry setting bit or predication 5738 // code, our matching model involves us always generating CCOut and 5739 // ConditionCode operands to match the mnemonic "as written" and then we let 5740 // the matcher deal with finding the right instruction or generating an 5741 // appropriate error. 5742 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5743 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5744 5745 // If we had a carry-set on an instruction that can't do that, issue an 5746 // error. 5747 if (!CanAcceptCarrySet && CarrySetting) { 5748 Parser.eatToEndOfStatement(); 5749 return Error(NameLoc, "instruction '" + Mnemonic + 5750 "' can not set flags, but 's' suffix specified"); 5751 } 5752 // If we had a predication code on an instruction that can't do that, issue an 5753 // error. 5754 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 5755 Parser.eatToEndOfStatement(); 5756 return Error(NameLoc, "instruction '" + Mnemonic + 5757 "' is not predicable, but condition code specified"); 5758 } 5759 5760 // Add the carry setting operand, if necessary. 5761 if (CanAcceptCarrySet) { 5762 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 5763 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 5764 Loc)); 5765 } 5766 5767 // Add the predication code operand, if necessary. 5768 if (CanAcceptPredicationCode) { 5769 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 5770 CarrySetting); 5771 Operands.push_back(ARMOperand::CreateCondCode( 5772 ARMCC::CondCodes(PredicationCode), Loc)); 5773 } 5774 5775 // Add the processor imod operand, if necessary. 5776 if (ProcessorIMod) { 5777 Operands.push_back(ARMOperand::CreateImm( 5778 MCConstantExpr::create(ProcessorIMod, getContext()), 5779 NameLoc, NameLoc)); 5780 } else if (Mnemonic == "cps" && isMClass()) { 5781 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 5782 } 5783 5784 // Add the remaining tokens in the mnemonic. 5785 while (Next != StringRef::npos) { 5786 Start = Next; 5787 Next = Name.find('.', Start + 1); 5788 StringRef ExtraToken = Name.slice(Start, Next); 5789 5790 // Some NEON instructions have an optional datatype suffix that is 5791 // completely ignored. Check for that. 5792 if (isDataTypeToken(ExtraToken) && 5793 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 5794 continue; 5795 5796 // For for ARM mode generate an error if the .n qualifier is used. 5797 if (ExtraToken == ".n" && !isThumb()) { 5798 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5799 Parser.eatToEndOfStatement(); 5800 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 5801 "arm mode"); 5802 } 5803 5804 // The .n qualifier is always discarded as that is what the tables 5805 // and matcher expect. In ARM mode the .w qualifier has no effect, 5806 // so discard it to avoid errors that can be caused by the matcher. 5807 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 5808 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5809 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 5810 } 5811 } 5812 5813 // Read the remaining operands. 5814 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5815 // Read the first operand. 5816 if (parseOperand(Operands, Mnemonic)) { 5817 Parser.eatToEndOfStatement(); 5818 return true; 5819 } 5820 5821 while (getLexer().is(AsmToken::Comma)) { 5822 Parser.Lex(); // Eat the comma. 5823 5824 // Parse and remember the operand. 5825 if (parseOperand(Operands, Mnemonic)) { 5826 Parser.eatToEndOfStatement(); 5827 return true; 5828 } 5829 } 5830 } 5831 5832 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5833 SMLoc Loc = getLexer().getLoc(); 5834 Parser.eatToEndOfStatement(); 5835 return Error(Loc, "unexpected token in argument list"); 5836 } 5837 5838 Parser.Lex(); // Consume the EndOfStatement 5839 5840 if (RequireVFPRegisterListCheck) { 5841 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 5842 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 5843 return Error(Op.getStartLoc(), 5844 "VFP/Neon single precision register expected"); 5845 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 5846 return Error(Op.getStartLoc(), 5847 "VFP/Neon double precision register expected"); 5848 } 5849 5850 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 5851 5852 // Some instructions, mostly Thumb, have forms for the same mnemonic that 5853 // do and don't have a cc_out optional-def operand. With some spot-checks 5854 // of the operand list, we can figure out which variant we're trying to 5855 // parse and adjust accordingly before actually matching. We shouldn't ever 5856 // try to remove a cc_out operand that was explicitly set on the 5857 // mnemonic, of course (CarrySetting == true). Reason number #317 the 5858 // table driven matcher doesn't fit well with the ARM instruction set. 5859 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 5860 Operands.erase(Operands.begin() + 1); 5861 5862 // Some instructions have the same mnemonic, but don't always 5863 // have a predicate. Distinguish them here and delete the 5864 // predicate if needed. 5865 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 5866 Operands.erase(Operands.begin() + 1); 5867 5868 // ARM mode 'blx' need special handling, as the register operand version 5869 // is predicable, but the label operand version is not. So, we can't rely 5870 // on the Mnemonic based checking to correctly figure out when to put 5871 // a k_CondCode operand in the list. If we're trying to match the label 5872 // version, remove the k_CondCode operand here. 5873 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 5874 static_cast<ARMOperand &>(*Operands[2]).isImm()) 5875 Operands.erase(Operands.begin() + 1); 5876 5877 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 5878 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 5879 // a single GPRPair reg operand is used in the .td file to replace the two 5880 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 5881 // expressed as a GPRPair, so we have to manually merge them. 5882 // FIXME: We would really like to be able to tablegen'erate this. 5883 if (!isThumb() && Operands.size() > 4 && 5884 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 5885 Mnemonic == "stlexd")) { 5886 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 5887 unsigned Idx = isLoad ? 2 : 3; 5888 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 5889 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 5890 5891 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 5892 // Adjust only if Op1 and Op2 are GPRs. 5893 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 5894 MRC.contains(Op2.getReg())) { 5895 unsigned Reg1 = Op1.getReg(); 5896 unsigned Reg2 = Op2.getReg(); 5897 unsigned Rt = MRI->getEncodingValue(Reg1); 5898 unsigned Rt2 = MRI->getEncodingValue(Reg2); 5899 5900 // Rt2 must be Rt + 1 and Rt must be even. 5901 if (Rt + 1 != Rt2 || (Rt & 1)) { 5902 Error(Op2.getStartLoc(), isLoad 5903 ? "destination operands must be sequential" 5904 : "source operands must be sequential"); 5905 return true; 5906 } 5907 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 5908 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 5909 Operands[Idx] = 5910 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 5911 Operands.erase(Operands.begin() + Idx + 1); 5912 } 5913 } 5914 5915 // GNU Assembler extension (compatibility) 5916 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 5917 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 5918 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5919 if (Op3.isMem()) { 5920 assert(Op2.isReg() && "expected register argument"); 5921 5922 unsigned SuperReg = MRI->getMatchingSuperReg( 5923 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 5924 5925 assert(SuperReg && "expected register pair"); 5926 5927 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 5928 5929 Operands.insert( 5930 Operands.begin() + 3, 5931 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 5932 } 5933 } 5934 5935 // FIXME: As said above, this is all a pretty gross hack. This instruction 5936 // does not fit with other "subs" and tblgen. 5937 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 5938 // so the Mnemonic is the original name "subs" and delete the predicate 5939 // operand so it will match the table entry. 5940 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 5941 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5942 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 5943 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5944 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 5945 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5946 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 5947 Operands.erase(Operands.begin() + 1); 5948 } 5949 return false; 5950 } 5951 5952 // Validate context-sensitive operand constraints. 5953 5954 // return 'true' if register list contains non-low GPR registers, 5955 // 'false' otherwise. If Reg is in the register list or is HiReg, set 5956 // 'containsReg' to true. 5957 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 5958 unsigned Reg, unsigned HiReg, 5959 bool &containsReg) { 5960 containsReg = false; 5961 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 5962 unsigned OpReg = Inst.getOperand(i).getReg(); 5963 if (OpReg == Reg) 5964 containsReg = true; 5965 // Anything other than a low register isn't legal here. 5966 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 5967 return true; 5968 } 5969 return false; 5970 } 5971 5972 // Check if the specified regisgter is in the register list of the inst, 5973 // starting at the indicated operand number. 5974 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 5975 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 5976 unsigned OpReg = Inst.getOperand(i).getReg(); 5977 if (OpReg == Reg) 5978 return true; 5979 } 5980 return false; 5981 } 5982 5983 // Return true if instruction has the interesting property of being 5984 // allowed in IT blocks, but not being predicable. 5985 static bool instIsBreakpoint(const MCInst &Inst) { 5986 return Inst.getOpcode() == ARM::tBKPT || 5987 Inst.getOpcode() == ARM::BKPT || 5988 Inst.getOpcode() == ARM::tHLT || 5989 Inst.getOpcode() == ARM::HLT; 5990 5991 } 5992 5993 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 5994 const OperandVector &Operands, 5995 unsigned ListNo, bool IsARPop) { 5996 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 5997 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 5998 5999 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6000 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6001 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6002 6003 if (!IsARPop && ListContainsSP) 6004 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6005 "SP may not be in the register list"); 6006 else if (ListContainsPC && ListContainsLR) 6007 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6008 "PC and LR may not be in the register list simultaneously"); 6009 else if (inITBlock() && !lastInITBlock() && ListContainsPC) 6010 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6011 "instruction must be outside of IT block or the last " 6012 "instruction in an IT block"); 6013 return false; 6014 } 6015 6016 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6017 const OperandVector &Operands, 6018 unsigned ListNo) { 6019 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6020 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6021 6022 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6023 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6024 6025 if (ListContainsSP && ListContainsPC) 6026 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6027 "SP and PC may not be in the register list"); 6028 else if (ListContainsSP) 6029 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6030 "SP may not be in the register list"); 6031 else if (ListContainsPC) 6032 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6033 "PC may not be in the register list"); 6034 return false; 6035 } 6036 6037 // FIXME: We would really like to be able to tablegen'erate this. 6038 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6039 const OperandVector &Operands) { 6040 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6041 SMLoc Loc = Operands[0]->getStartLoc(); 6042 6043 // Check the IT block state first. 6044 // NOTE: BKPT and HLT instructions have the interesting property of being 6045 // allowed in IT blocks, but not being predicable. They just always execute. 6046 if (inITBlock() && !instIsBreakpoint(Inst)) { 6047 unsigned Bit = 1; 6048 if (ITState.FirstCond) 6049 ITState.FirstCond = false; 6050 else 6051 Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 6052 // The instruction must be predicable. 6053 if (!MCID.isPredicable()) 6054 return Error(Loc, "instructions in IT block must be predicable"); 6055 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6056 unsigned ITCond = Bit ? ITState.Cond : 6057 ARMCC::getOppositeCondition(ITState.Cond); 6058 if (Cond != ITCond) { 6059 // Find the condition code Operand to get its SMLoc information. 6060 SMLoc CondLoc; 6061 for (unsigned I = 1; I < Operands.size(); ++I) 6062 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6063 CondLoc = Operands[I]->getStartLoc(); 6064 return Error(CondLoc, "incorrect condition in IT block; got '" + 6065 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6066 "', but expected '" + 6067 ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'"); 6068 } 6069 // Check for non-'al' condition codes outside of the IT block. 6070 } else if (isThumbTwo() && MCID.isPredicable() && 6071 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6072 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6073 Inst.getOpcode() != ARM::t2Bcc) 6074 return Error(Loc, "predicated instructions must be in IT block"); 6075 6076 const unsigned Opcode = Inst.getOpcode(); 6077 switch (Opcode) { 6078 case ARM::LDRD: 6079 case ARM::LDRD_PRE: 6080 case ARM::LDRD_POST: { 6081 const unsigned RtReg = Inst.getOperand(0).getReg(); 6082 6083 // Rt can't be R14. 6084 if (RtReg == ARM::LR) 6085 return Error(Operands[3]->getStartLoc(), 6086 "Rt can't be R14"); 6087 6088 const unsigned Rt = MRI->getEncodingValue(RtReg); 6089 // Rt must be even-numbered. 6090 if ((Rt & 1) == 1) 6091 return Error(Operands[3]->getStartLoc(), 6092 "Rt must be even-numbered"); 6093 6094 // Rt2 must be Rt + 1. 6095 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6096 if (Rt2 != Rt + 1) 6097 return Error(Operands[3]->getStartLoc(), 6098 "destination operands must be sequential"); 6099 6100 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6101 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6102 // For addressing modes with writeback, the base register needs to be 6103 // different from the destination registers. 6104 if (Rn == Rt || Rn == Rt2) 6105 return Error(Operands[3]->getStartLoc(), 6106 "base register needs to be different from destination " 6107 "registers"); 6108 } 6109 6110 return false; 6111 } 6112 case ARM::t2LDRDi8: 6113 case ARM::t2LDRD_PRE: 6114 case ARM::t2LDRD_POST: { 6115 // Rt2 must be different from Rt. 6116 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6117 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6118 if (Rt2 == Rt) 6119 return Error(Operands[3]->getStartLoc(), 6120 "destination operands can't be identical"); 6121 return false; 6122 } 6123 case ARM::t2BXJ: { 6124 const unsigned RmReg = Inst.getOperand(0).getReg(); 6125 // Rm = SP is no longer unpredictable in v8-A 6126 if (RmReg == ARM::SP && !hasV8Ops()) 6127 return Error(Operands[2]->getStartLoc(), 6128 "r13 (SP) is an unpredictable operand to BXJ"); 6129 return false; 6130 } 6131 case ARM::STRD: { 6132 // Rt2 must be Rt + 1. 6133 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6134 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6135 if (Rt2 != Rt + 1) 6136 return Error(Operands[3]->getStartLoc(), 6137 "source operands must be sequential"); 6138 return false; 6139 } 6140 case ARM::STRD_PRE: 6141 case ARM::STRD_POST: { 6142 // Rt2 must be Rt + 1. 6143 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6144 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6145 if (Rt2 != Rt + 1) 6146 return Error(Operands[3]->getStartLoc(), 6147 "source operands must be sequential"); 6148 return false; 6149 } 6150 case ARM::STR_PRE_IMM: 6151 case ARM::STR_PRE_REG: 6152 case ARM::STR_POST_IMM: 6153 case ARM::STR_POST_REG: 6154 case ARM::STRH_PRE: 6155 case ARM::STRH_POST: 6156 case ARM::STRB_PRE_IMM: 6157 case ARM::STRB_PRE_REG: 6158 case ARM::STRB_POST_IMM: 6159 case ARM::STRB_POST_REG: { 6160 // Rt must be different from Rn. 6161 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6162 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6163 6164 if (Rt == Rn) 6165 return Error(Operands[3]->getStartLoc(), 6166 "source register and base register can't be identical"); 6167 return false; 6168 } 6169 case ARM::LDR_PRE_IMM: 6170 case ARM::LDR_PRE_REG: 6171 case ARM::LDR_POST_IMM: 6172 case ARM::LDR_POST_REG: 6173 case ARM::LDRH_PRE: 6174 case ARM::LDRH_POST: 6175 case ARM::LDRSH_PRE: 6176 case ARM::LDRSH_POST: 6177 case ARM::LDRB_PRE_IMM: 6178 case ARM::LDRB_PRE_REG: 6179 case ARM::LDRB_POST_IMM: 6180 case ARM::LDRB_POST_REG: 6181 case ARM::LDRSB_PRE: 6182 case ARM::LDRSB_POST: { 6183 // Rt must be different from Rn. 6184 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6185 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6186 6187 if (Rt == Rn) 6188 return Error(Operands[3]->getStartLoc(), 6189 "destination register and base register can't be identical"); 6190 return false; 6191 } 6192 case ARM::SBFX: 6193 case ARM::UBFX: { 6194 // Width must be in range [1, 32-lsb]. 6195 unsigned LSB = Inst.getOperand(2).getImm(); 6196 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6197 if (Widthm1 >= 32 - LSB) 6198 return Error(Operands[5]->getStartLoc(), 6199 "bitfield width must be in range [1,32-lsb]"); 6200 return false; 6201 } 6202 // Notionally handles ARM::tLDMIA_UPD too. 6203 case ARM::tLDMIA: { 6204 // If we're parsing Thumb2, the .w variant is available and handles 6205 // most cases that are normally illegal for a Thumb1 LDM instruction. 6206 // We'll make the transformation in processInstruction() if necessary. 6207 // 6208 // Thumb LDM instructions are writeback iff the base register is not 6209 // in the register list. 6210 unsigned Rn = Inst.getOperand(0).getReg(); 6211 bool HasWritebackToken = 6212 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6213 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6214 bool ListContainsBase; 6215 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6216 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6217 "registers must be in range r0-r7"); 6218 // If we should have writeback, then there should be a '!' token. 6219 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6220 return Error(Operands[2]->getStartLoc(), 6221 "writeback operator '!' expected"); 6222 // If we should not have writeback, there must not be a '!'. This is 6223 // true even for the 32-bit wide encodings. 6224 if (ListContainsBase && HasWritebackToken) 6225 return Error(Operands[3]->getStartLoc(), 6226 "writeback operator '!' not allowed when base register " 6227 "in register list"); 6228 6229 if (validatetLDMRegList(Inst, Operands, 3)) 6230 return true; 6231 break; 6232 } 6233 case ARM::LDMIA_UPD: 6234 case ARM::LDMDB_UPD: 6235 case ARM::LDMIB_UPD: 6236 case ARM::LDMDA_UPD: 6237 // ARM variants loading and updating the same register are only officially 6238 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6239 if (!hasV7Ops()) 6240 break; 6241 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6242 return Error(Operands.back()->getStartLoc(), 6243 "writeback register not allowed in register list"); 6244 break; 6245 case ARM::t2LDMIA: 6246 case ARM::t2LDMDB: 6247 if (validatetLDMRegList(Inst, Operands, 3)) 6248 return true; 6249 break; 6250 case ARM::t2STMIA: 6251 case ARM::t2STMDB: 6252 if (validatetSTMRegList(Inst, Operands, 3)) 6253 return true; 6254 break; 6255 case ARM::t2LDMIA_UPD: 6256 case ARM::t2LDMDB_UPD: 6257 case ARM::t2STMIA_UPD: 6258 case ARM::t2STMDB_UPD: { 6259 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6260 return Error(Operands.back()->getStartLoc(), 6261 "writeback register not allowed in register list"); 6262 6263 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6264 if (validatetLDMRegList(Inst, Operands, 3)) 6265 return true; 6266 } else { 6267 if (validatetSTMRegList(Inst, Operands, 3)) 6268 return true; 6269 } 6270 break; 6271 } 6272 case ARM::sysLDMIA_UPD: 6273 case ARM::sysLDMDA_UPD: 6274 case ARM::sysLDMDB_UPD: 6275 case ARM::sysLDMIB_UPD: 6276 if (!listContainsReg(Inst, 3, ARM::PC)) 6277 return Error(Operands[4]->getStartLoc(), 6278 "writeback register only allowed on system LDM " 6279 "if PC in register-list"); 6280 break; 6281 case ARM::sysSTMIA_UPD: 6282 case ARM::sysSTMDA_UPD: 6283 case ARM::sysSTMDB_UPD: 6284 case ARM::sysSTMIB_UPD: 6285 return Error(Operands[2]->getStartLoc(), 6286 "system STM cannot have writeback register"); 6287 case ARM::tMUL: { 6288 // The second source operand must be the same register as the destination 6289 // operand. 6290 // 6291 // In this case, we must directly check the parsed operands because the 6292 // cvtThumbMultiply() function is written in such a way that it guarantees 6293 // this first statement is always true for the new Inst. Essentially, the 6294 // destination is unconditionally copied into the second source operand 6295 // without checking to see if it matches what we actually parsed. 6296 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6297 ((ARMOperand &)*Operands[5]).getReg()) && 6298 (((ARMOperand &)*Operands[3]).getReg() != 6299 ((ARMOperand &)*Operands[4]).getReg())) { 6300 return Error(Operands[3]->getStartLoc(), 6301 "destination register must match source register"); 6302 } 6303 break; 6304 } 6305 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6306 // so only issue a diagnostic for thumb1. The instructions will be 6307 // switched to the t2 encodings in processInstruction() if necessary. 6308 case ARM::tPOP: { 6309 bool ListContainsBase; 6310 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6311 !isThumbTwo()) 6312 return Error(Operands[2]->getStartLoc(), 6313 "registers must be in range r0-r7 or pc"); 6314 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6315 return true; 6316 break; 6317 } 6318 case ARM::tPUSH: { 6319 bool ListContainsBase; 6320 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6321 !isThumbTwo()) 6322 return Error(Operands[2]->getStartLoc(), 6323 "registers must be in range r0-r7 or lr"); 6324 if (validatetSTMRegList(Inst, Operands, 2)) 6325 return true; 6326 break; 6327 } 6328 case ARM::tSTMIA_UPD: { 6329 bool ListContainsBase, InvalidLowList; 6330 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6331 0, ListContainsBase); 6332 if (InvalidLowList && !isThumbTwo()) 6333 return Error(Operands[4]->getStartLoc(), 6334 "registers must be in range r0-r7"); 6335 6336 // This would be converted to a 32-bit stm, but that's not valid if the 6337 // writeback register is in the list. 6338 if (InvalidLowList && ListContainsBase) 6339 return Error(Operands[4]->getStartLoc(), 6340 "writeback operator '!' not allowed when base register " 6341 "in register list"); 6342 6343 if (validatetSTMRegList(Inst, Operands, 4)) 6344 return true; 6345 break; 6346 } 6347 case ARM::tADDrSP: { 6348 // If the non-SP source operand and the destination operand are not the 6349 // same, we need thumb2 (for the wide encoding), or we have an error. 6350 if (!isThumbTwo() && 6351 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6352 return Error(Operands[4]->getStartLoc(), 6353 "source register must be the same as destination"); 6354 } 6355 break; 6356 } 6357 // Final range checking for Thumb unconditional branch instructions. 6358 case ARM::tB: 6359 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6360 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6361 break; 6362 case ARM::t2B: { 6363 int op = (Operands[2]->isImm()) ? 2 : 3; 6364 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6365 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6366 break; 6367 } 6368 // Final range checking for Thumb conditional branch instructions. 6369 case ARM::tBcc: 6370 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6371 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6372 break; 6373 case ARM::t2Bcc: { 6374 int Op = (Operands[2]->isImm()) ? 2 : 3; 6375 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6376 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6377 break; 6378 } 6379 case ARM::MOVi16: 6380 case ARM::t2MOVi16: 6381 case ARM::t2MOVTi16: 6382 { 6383 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6384 // especially when we turn it into a movw and the expression <symbol> does 6385 // not have a :lower16: or :upper16 as part of the expression. We don't 6386 // want the behavior of silently truncating, which can be unexpected and 6387 // lead to bugs that are difficult to find since this is an easy mistake 6388 // to make. 6389 int i = (Operands[3]->isImm()) ? 3 : 4; 6390 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6391 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6392 if (CE) break; 6393 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6394 if (!E) break; 6395 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6396 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6397 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6398 return Error( 6399 Op.getStartLoc(), 6400 "immediate expression for mov requires :lower16: or :upper16"); 6401 break; 6402 } 6403 } 6404 6405 return false; 6406 } 6407 6408 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6409 switch(Opc) { 6410 default: llvm_unreachable("unexpected opcode!"); 6411 // VST1LN 6412 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6413 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6414 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6415 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6416 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6417 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6418 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6419 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6420 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6421 6422 // VST2LN 6423 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6424 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6425 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6426 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6427 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6428 6429 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6430 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6431 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6432 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6433 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6434 6435 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6436 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6437 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6438 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6439 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6440 6441 // VST3LN 6442 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6443 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6444 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6445 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6446 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6447 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6448 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6449 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6450 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6451 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6452 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6453 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6454 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6455 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6456 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6457 6458 // VST3 6459 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6460 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6461 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6462 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6463 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6464 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6465 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6466 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6467 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6468 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6469 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6470 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6471 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6472 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6473 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6474 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6475 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6476 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6477 6478 // VST4LN 6479 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6480 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6481 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6482 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6483 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6484 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6485 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6486 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6487 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6488 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6489 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6490 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6491 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6492 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6493 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6494 6495 // VST4 6496 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6497 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6498 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6499 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6500 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6501 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6502 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6503 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6504 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6505 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6506 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6507 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6508 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6509 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6510 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6511 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6512 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6513 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6514 } 6515 } 6516 6517 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6518 switch(Opc) { 6519 default: llvm_unreachable("unexpected opcode!"); 6520 // VLD1LN 6521 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6522 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6523 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6524 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6525 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6526 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6527 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6528 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6529 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6530 6531 // VLD2LN 6532 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6533 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6534 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6535 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6536 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6537 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6538 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6539 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6540 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6541 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6542 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6543 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6544 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6545 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6546 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6547 6548 // VLD3DUP 6549 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6550 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6551 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6552 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6553 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6554 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6555 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6556 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6557 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6558 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6559 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6560 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6561 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6562 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6563 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6564 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6565 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6566 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6567 6568 // VLD3LN 6569 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6570 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6571 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6572 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6573 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6574 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6575 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6576 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6577 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6578 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6579 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6580 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6581 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6582 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6583 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6584 6585 // VLD3 6586 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6587 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6588 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6589 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6590 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6591 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6592 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6593 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6594 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6595 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6596 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6597 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6598 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6599 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6600 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6601 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6602 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6603 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6604 6605 // VLD4LN 6606 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6607 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6608 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6609 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6610 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6611 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6612 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6613 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6614 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6615 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6616 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6617 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6618 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6619 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6620 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6621 6622 // VLD4DUP 6623 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6624 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6625 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6626 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6627 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6628 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6629 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6630 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6631 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6632 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6633 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6634 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6635 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6636 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6637 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6638 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6639 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6640 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6641 6642 // VLD4 6643 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6644 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6645 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6646 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6647 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6648 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6649 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6650 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6651 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6652 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6653 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6654 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6655 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6656 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6657 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6658 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6659 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6660 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6661 } 6662 } 6663 6664 bool ARMAsmParser::processInstruction(MCInst &Inst, 6665 const OperandVector &Operands, 6666 MCStreamer &Out) { 6667 switch (Inst.getOpcode()) { 6668 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6669 case ARM::LDRT_POST: 6670 case ARM::LDRBT_POST: { 6671 const unsigned Opcode = 6672 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6673 : ARM::LDRBT_POST_IMM; 6674 MCInst TmpInst; 6675 TmpInst.setOpcode(Opcode); 6676 TmpInst.addOperand(Inst.getOperand(0)); 6677 TmpInst.addOperand(Inst.getOperand(1)); 6678 TmpInst.addOperand(Inst.getOperand(1)); 6679 TmpInst.addOperand(MCOperand::createReg(0)); 6680 TmpInst.addOperand(MCOperand::createImm(0)); 6681 TmpInst.addOperand(Inst.getOperand(2)); 6682 TmpInst.addOperand(Inst.getOperand(3)); 6683 Inst = TmpInst; 6684 return true; 6685 } 6686 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6687 case ARM::STRT_POST: 6688 case ARM::STRBT_POST: { 6689 const unsigned Opcode = 6690 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6691 : ARM::STRBT_POST_IMM; 6692 MCInst TmpInst; 6693 TmpInst.setOpcode(Opcode); 6694 TmpInst.addOperand(Inst.getOperand(1)); 6695 TmpInst.addOperand(Inst.getOperand(0)); 6696 TmpInst.addOperand(Inst.getOperand(1)); 6697 TmpInst.addOperand(MCOperand::createReg(0)); 6698 TmpInst.addOperand(MCOperand::createImm(0)); 6699 TmpInst.addOperand(Inst.getOperand(2)); 6700 TmpInst.addOperand(Inst.getOperand(3)); 6701 Inst = TmpInst; 6702 return true; 6703 } 6704 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6705 case ARM::ADDri: { 6706 if (Inst.getOperand(1).getReg() != ARM::PC || 6707 Inst.getOperand(5).getReg() != 0 || 6708 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6709 return false; 6710 MCInst TmpInst; 6711 TmpInst.setOpcode(ARM::ADR); 6712 TmpInst.addOperand(Inst.getOperand(0)); 6713 if (Inst.getOperand(2).isImm()) { 6714 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6715 // before passing it to the ADR instruction. 6716 unsigned Enc = Inst.getOperand(2).getImm(); 6717 TmpInst.addOperand(MCOperand::createImm( 6718 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6719 } else { 6720 // Turn PC-relative expression into absolute expression. 6721 // Reading PC provides the start of the current instruction + 8 and 6722 // the transform to adr is biased by that. 6723 MCSymbol *Dot = getContext().createTempSymbol(); 6724 Out.EmitLabel(Dot); 6725 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6726 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 6727 MCSymbolRefExpr::VK_None, 6728 getContext()); 6729 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 6730 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 6731 getContext()); 6732 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 6733 getContext()); 6734 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 6735 } 6736 TmpInst.addOperand(Inst.getOperand(3)); 6737 TmpInst.addOperand(Inst.getOperand(4)); 6738 Inst = TmpInst; 6739 return true; 6740 } 6741 // Aliases for alternate PC+imm syntax of LDR instructions. 6742 case ARM::t2LDRpcrel: 6743 // Select the narrow version if the immediate will fit. 6744 if (Inst.getOperand(1).getImm() > 0 && 6745 Inst.getOperand(1).getImm() <= 0xff && 6746 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 6747 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 6748 Inst.setOpcode(ARM::tLDRpci); 6749 else 6750 Inst.setOpcode(ARM::t2LDRpci); 6751 return true; 6752 case ARM::t2LDRBpcrel: 6753 Inst.setOpcode(ARM::t2LDRBpci); 6754 return true; 6755 case ARM::t2LDRHpcrel: 6756 Inst.setOpcode(ARM::t2LDRHpci); 6757 return true; 6758 case ARM::t2LDRSBpcrel: 6759 Inst.setOpcode(ARM::t2LDRSBpci); 6760 return true; 6761 case ARM::t2LDRSHpcrel: 6762 Inst.setOpcode(ARM::t2LDRSHpci); 6763 return true; 6764 // Handle NEON VST complex aliases. 6765 case ARM::VST1LNdWB_register_Asm_8: 6766 case ARM::VST1LNdWB_register_Asm_16: 6767 case ARM::VST1LNdWB_register_Asm_32: { 6768 MCInst TmpInst; 6769 // Shuffle the operands around so the lane index operand is in the 6770 // right place. 6771 unsigned Spacing; 6772 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6773 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6774 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6775 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6776 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6777 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6778 TmpInst.addOperand(Inst.getOperand(1)); // lane 6779 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6780 TmpInst.addOperand(Inst.getOperand(6)); 6781 Inst = TmpInst; 6782 return true; 6783 } 6784 6785 case ARM::VST2LNdWB_register_Asm_8: 6786 case ARM::VST2LNdWB_register_Asm_16: 6787 case ARM::VST2LNdWB_register_Asm_32: 6788 case ARM::VST2LNqWB_register_Asm_16: 6789 case ARM::VST2LNqWB_register_Asm_32: { 6790 MCInst TmpInst; 6791 // Shuffle the operands around so the lane index operand is in the 6792 // right place. 6793 unsigned Spacing; 6794 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6795 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6796 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6797 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6798 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6799 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6800 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6801 Spacing)); 6802 TmpInst.addOperand(Inst.getOperand(1)); // lane 6803 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6804 TmpInst.addOperand(Inst.getOperand(6)); 6805 Inst = TmpInst; 6806 return true; 6807 } 6808 6809 case ARM::VST3LNdWB_register_Asm_8: 6810 case ARM::VST3LNdWB_register_Asm_16: 6811 case ARM::VST3LNdWB_register_Asm_32: 6812 case ARM::VST3LNqWB_register_Asm_16: 6813 case ARM::VST3LNqWB_register_Asm_32: { 6814 MCInst TmpInst; 6815 // Shuffle the operands around so the lane index operand is in the 6816 // right place. 6817 unsigned Spacing; 6818 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6819 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6820 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6821 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6822 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6823 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6824 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6825 Spacing)); 6826 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6827 Spacing * 2)); 6828 TmpInst.addOperand(Inst.getOperand(1)); // lane 6829 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6830 TmpInst.addOperand(Inst.getOperand(6)); 6831 Inst = TmpInst; 6832 return true; 6833 } 6834 6835 case ARM::VST4LNdWB_register_Asm_8: 6836 case ARM::VST4LNdWB_register_Asm_16: 6837 case ARM::VST4LNdWB_register_Asm_32: 6838 case ARM::VST4LNqWB_register_Asm_16: 6839 case ARM::VST4LNqWB_register_Asm_32: { 6840 MCInst TmpInst; 6841 // Shuffle the operands around so the lane index operand is in the 6842 // right place. 6843 unsigned Spacing; 6844 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6845 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6846 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6847 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6848 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6849 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6850 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6851 Spacing)); 6852 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6853 Spacing * 2)); 6854 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6855 Spacing * 3)); 6856 TmpInst.addOperand(Inst.getOperand(1)); // lane 6857 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6858 TmpInst.addOperand(Inst.getOperand(6)); 6859 Inst = TmpInst; 6860 return true; 6861 } 6862 6863 case ARM::VST1LNdWB_fixed_Asm_8: 6864 case ARM::VST1LNdWB_fixed_Asm_16: 6865 case ARM::VST1LNdWB_fixed_Asm_32: { 6866 MCInst TmpInst; 6867 // Shuffle the operands around so the lane index operand is in the 6868 // right place. 6869 unsigned Spacing; 6870 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6871 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6872 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6873 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6874 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6875 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6876 TmpInst.addOperand(Inst.getOperand(1)); // lane 6877 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6878 TmpInst.addOperand(Inst.getOperand(5)); 6879 Inst = TmpInst; 6880 return true; 6881 } 6882 6883 case ARM::VST2LNdWB_fixed_Asm_8: 6884 case ARM::VST2LNdWB_fixed_Asm_16: 6885 case ARM::VST2LNdWB_fixed_Asm_32: 6886 case ARM::VST2LNqWB_fixed_Asm_16: 6887 case ARM::VST2LNqWB_fixed_Asm_32: { 6888 MCInst TmpInst; 6889 // Shuffle the operands around so the lane index operand is in the 6890 // right place. 6891 unsigned Spacing; 6892 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6893 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6894 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6895 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6896 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6897 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6898 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6899 Spacing)); 6900 TmpInst.addOperand(Inst.getOperand(1)); // lane 6901 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6902 TmpInst.addOperand(Inst.getOperand(5)); 6903 Inst = TmpInst; 6904 return true; 6905 } 6906 6907 case ARM::VST3LNdWB_fixed_Asm_8: 6908 case ARM::VST3LNdWB_fixed_Asm_16: 6909 case ARM::VST3LNdWB_fixed_Asm_32: 6910 case ARM::VST3LNqWB_fixed_Asm_16: 6911 case ARM::VST3LNqWB_fixed_Asm_32: { 6912 MCInst TmpInst; 6913 // Shuffle the operands around so the lane index operand is in the 6914 // right place. 6915 unsigned Spacing; 6916 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6917 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6918 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6919 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6920 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6921 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6922 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6923 Spacing)); 6924 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6925 Spacing * 2)); 6926 TmpInst.addOperand(Inst.getOperand(1)); // lane 6927 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6928 TmpInst.addOperand(Inst.getOperand(5)); 6929 Inst = TmpInst; 6930 return true; 6931 } 6932 6933 case ARM::VST4LNdWB_fixed_Asm_8: 6934 case ARM::VST4LNdWB_fixed_Asm_16: 6935 case ARM::VST4LNdWB_fixed_Asm_32: 6936 case ARM::VST4LNqWB_fixed_Asm_16: 6937 case ARM::VST4LNqWB_fixed_Asm_32: { 6938 MCInst TmpInst; 6939 // Shuffle the operands around so the lane index operand is in the 6940 // right place. 6941 unsigned Spacing; 6942 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6943 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6944 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6945 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6946 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 6947 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6948 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6949 Spacing)); 6950 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6951 Spacing * 2)); 6952 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6953 Spacing * 3)); 6954 TmpInst.addOperand(Inst.getOperand(1)); // lane 6955 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6956 TmpInst.addOperand(Inst.getOperand(5)); 6957 Inst = TmpInst; 6958 return true; 6959 } 6960 6961 case ARM::VST1LNdAsm_8: 6962 case ARM::VST1LNdAsm_16: 6963 case ARM::VST1LNdAsm_32: { 6964 MCInst TmpInst; 6965 // Shuffle the operands around so the lane index operand is in the 6966 // right place. 6967 unsigned Spacing; 6968 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6969 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6970 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6971 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6972 TmpInst.addOperand(Inst.getOperand(1)); // lane 6973 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6974 TmpInst.addOperand(Inst.getOperand(5)); 6975 Inst = TmpInst; 6976 return true; 6977 } 6978 6979 case ARM::VST2LNdAsm_8: 6980 case ARM::VST2LNdAsm_16: 6981 case ARM::VST2LNdAsm_32: 6982 case ARM::VST2LNqAsm_16: 6983 case ARM::VST2LNqAsm_32: { 6984 MCInst TmpInst; 6985 // Shuffle the operands around so the lane index operand is in the 6986 // right place. 6987 unsigned Spacing; 6988 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6989 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6990 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6991 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6992 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6993 Spacing)); 6994 TmpInst.addOperand(Inst.getOperand(1)); // lane 6995 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 6996 TmpInst.addOperand(Inst.getOperand(5)); 6997 Inst = TmpInst; 6998 return true; 6999 } 7000 7001 case ARM::VST3LNdAsm_8: 7002 case ARM::VST3LNdAsm_16: 7003 case ARM::VST3LNdAsm_32: 7004 case ARM::VST3LNqAsm_16: 7005 case ARM::VST3LNqAsm_32: { 7006 MCInst TmpInst; 7007 // Shuffle the operands around so the lane index operand is in the 7008 // right place. 7009 unsigned Spacing; 7010 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7011 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7012 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7013 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7014 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7015 Spacing)); 7016 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7017 Spacing * 2)); 7018 TmpInst.addOperand(Inst.getOperand(1)); // lane 7019 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7020 TmpInst.addOperand(Inst.getOperand(5)); 7021 Inst = TmpInst; 7022 return true; 7023 } 7024 7025 case ARM::VST4LNdAsm_8: 7026 case ARM::VST4LNdAsm_16: 7027 case ARM::VST4LNdAsm_32: 7028 case ARM::VST4LNqAsm_16: 7029 case ARM::VST4LNqAsm_32: { 7030 MCInst TmpInst; 7031 // Shuffle the operands around so the lane index operand is in the 7032 // right place. 7033 unsigned Spacing; 7034 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7035 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7036 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7037 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7038 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7039 Spacing)); 7040 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7041 Spacing * 2)); 7042 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7043 Spacing * 3)); 7044 TmpInst.addOperand(Inst.getOperand(1)); // lane 7045 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7046 TmpInst.addOperand(Inst.getOperand(5)); 7047 Inst = TmpInst; 7048 return true; 7049 } 7050 7051 // Handle NEON VLD complex aliases. 7052 case ARM::VLD1LNdWB_register_Asm_8: 7053 case ARM::VLD1LNdWB_register_Asm_16: 7054 case ARM::VLD1LNdWB_register_Asm_32: { 7055 MCInst TmpInst; 7056 // Shuffle the operands around so the lane index operand is in the 7057 // right place. 7058 unsigned Spacing; 7059 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7060 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7061 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7062 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7063 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7064 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7065 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7066 TmpInst.addOperand(Inst.getOperand(1)); // lane 7067 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7068 TmpInst.addOperand(Inst.getOperand(6)); 7069 Inst = TmpInst; 7070 return true; 7071 } 7072 7073 case ARM::VLD2LNdWB_register_Asm_8: 7074 case ARM::VLD2LNdWB_register_Asm_16: 7075 case ARM::VLD2LNdWB_register_Asm_32: 7076 case ARM::VLD2LNqWB_register_Asm_16: 7077 case ARM::VLD2LNqWB_register_Asm_32: { 7078 MCInst TmpInst; 7079 // Shuffle the operands around so the lane index operand is in the 7080 // right place. 7081 unsigned Spacing; 7082 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7083 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7084 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7085 Spacing)); 7086 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7087 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7088 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7089 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7090 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7091 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7092 Spacing)); 7093 TmpInst.addOperand(Inst.getOperand(1)); // lane 7094 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7095 TmpInst.addOperand(Inst.getOperand(6)); 7096 Inst = TmpInst; 7097 return true; 7098 } 7099 7100 case ARM::VLD3LNdWB_register_Asm_8: 7101 case ARM::VLD3LNdWB_register_Asm_16: 7102 case ARM::VLD3LNdWB_register_Asm_32: 7103 case ARM::VLD3LNqWB_register_Asm_16: 7104 case ARM::VLD3LNqWB_register_Asm_32: { 7105 MCInst TmpInst; 7106 // Shuffle the operands around so the lane index operand is in the 7107 // right place. 7108 unsigned Spacing; 7109 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7110 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7111 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7112 Spacing)); 7113 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7114 Spacing * 2)); 7115 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7116 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7117 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7118 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7119 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7120 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7121 Spacing)); 7122 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7123 Spacing * 2)); 7124 TmpInst.addOperand(Inst.getOperand(1)); // lane 7125 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7126 TmpInst.addOperand(Inst.getOperand(6)); 7127 Inst = TmpInst; 7128 return true; 7129 } 7130 7131 case ARM::VLD4LNdWB_register_Asm_8: 7132 case ARM::VLD4LNdWB_register_Asm_16: 7133 case ARM::VLD4LNdWB_register_Asm_32: 7134 case ARM::VLD4LNqWB_register_Asm_16: 7135 case ARM::VLD4LNqWB_register_Asm_32: { 7136 MCInst TmpInst; 7137 // Shuffle the operands around so the lane index operand is in the 7138 // right place. 7139 unsigned Spacing; 7140 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7141 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7142 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7143 Spacing)); 7144 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7145 Spacing * 2)); 7146 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7147 Spacing * 3)); 7148 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7149 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7150 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7151 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7152 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7153 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7154 Spacing)); 7155 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7156 Spacing * 2)); 7157 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7158 Spacing * 3)); 7159 TmpInst.addOperand(Inst.getOperand(1)); // lane 7160 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7161 TmpInst.addOperand(Inst.getOperand(6)); 7162 Inst = TmpInst; 7163 return true; 7164 } 7165 7166 case ARM::VLD1LNdWB_fixed_Asm_8: 7167 case ARM::VLD1LNdWB_fixed_Asm_16: 7168 case ARM::VLD1LNdWB_fixed_Asm_32: { 7169 MCInst TmpInst; 7170 // Shuffle the operands around so the lane index operand is in the 7171 // right place. 7172 unsigned Spacing; 7173 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7174 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7175 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7176 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7177 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7178 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7179 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7180 TmpInst.addOperand(Inst.getOperand(1)); // lane 7181 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7182 TmpInst.addOperand(Inst.getOperand(5)); 7183 Inst = TmpInst; 7184 return true; 7185 } 7186 7187 case ARM::VLD2LNdWB_fixed_Asm_8: 7188 case ARM::VLD2LNdWB_fixed_Asm_16: 7189 case ARM::VLD2LNdWB_fixed_Asm_32: 7190 case ARM::VLD2LNqWB_fixed_Asm_16: 7191 case ARM::VLD2LNqWB_fixed_Asm_32: { 7192 MCInst TmpInst; 7193 // Shuffle the operands around so the lane index operand is in the 7194 // right place. 7195 unsigned Spacing; 7196 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7197 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7198 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7199 Spacing)); 7200 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7201 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7202 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7203 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7204 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7205 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7206 Spacing)); 7207 TmpInst.addOperand(Inst.getOperand(1)); // lane 7208 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7209 TmpInst.addOperand(Inst.getOperand(5)); 7210 Inst = TmpInst; 7211 return true; 7212 } 7213 7214 case ARM::VLD3LNdWB_fixed_Asm_8: 7215 case ARM::VLD3LNdWB_fixed_Asm_16: 7216 case ARM::VLD3LNdWB_fixed_Asm_32: 7217 case ARM::VLD3LNqWB_fixed_Asm_16: 7218 case ARM::VLD3LNqWB_fixed_Asm_32: { 7219 MCInst TmpInst; 7220 // Shuffle the operands around so the lane index operand is in the 7221 // right place. 7222 unsigned Spacing; 7223 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7224 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7225 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7226 Spacing)); 7227 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7228 Spacing * 2)); 7229 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7230 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7231 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7232 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7233 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7234 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7235 Spacing)); 7236 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7237 Spacing * 2)); 7238 TmpInst.addOperand(Inst.getOperand(1)); // lane 7239 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7240 TmpInst.addOperand(Inst.getOperand(5)); 7241 Inst = TmpInst; 7242 return true; 7243 } 7244 7245 case ARM::VLD4LNdWB_fixed_Asm_8: 7246 case ARM::VLD4LNdWB_fixed_Asm_16: 7247 case ARM::VLD4LNdWB_fixed_Asm_32: 7248 case ARM::VLD4LNqWB_fixed_Asm_16: 7249 case ARM::VLD4LNqWB_fixed_Asm_32: { 7250 MCInst TmpInst; 7251 // Shuffle the operands around so the lane index operand is in the 7252 // right place. 7253 unsigned Spacing; 7254 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7255 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7256 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7257 Spacing)); 7258 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7259 Spacing * 2)); 7260 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7261 Spacing * 3)); 7262 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7263 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7264 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7265 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7266 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7267 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7268 Spacing)); 7269 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7270 Spacing * 2)); 7271 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7272 Spacing * 3)); 7273 TmpInst.addOperand(Inst.getOperand(1)); // lane 7274 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7275 TmpInst.addOperand(Inst.getOperand(5)); 7276 Inst = TmpInst; 7277 return true; 7278 } 7279 7280 case ARM::VLD1LNdAsm_8: 7281 case ARM::VLD1LNdAsm_16: 7282 case ARM::VLD1LNdAsm_32: { 7283 MCInst TmpInst; 7284 // Shuffle the operands around so the lane index operand is in the 7285 // right place. 7286 unsigned Spacing; 7287 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7288 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7289 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7290 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7291 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7292 TmpInst.addOperand(Inst.getOperand(1)); // lane 7293 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7294 TmpInst.addOperand(Inst.getOperand(5)); 7295 Inst = TmpInst; 7296 return true; 7297 } 7298 7299 case ARM::VLD2LNdAsm_8: 7300 case ARM::VLD2LNdAsm_16: 7301 case ARM::VLD2LNdAsm_32: 7302 case ARM::VLD2LNqAsm_16: 7303 case ARM::VLD2LNqAsm_32: { 7304 MCInst TmpInst; 7305 // Shuffle the operands around so the lane index operand is in the 7306 // right place. 7307 unsigned Spacing; 7308 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7309 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7310 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7311 Spacing)); 7312 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7313 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7314 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7315 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7316 Spacing)); 7317 TmpInst.addOperand(Inst.getOperand(1)); // lane 7318 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7319 TmpInst.addOperand(Inst.getOperand(5)); 7320 Inst = TmpInst; 7321 return true; 7322 } 7323 7324 case ARM::VLD3LNdAsm_8: 7325 case ARM::VLD3LNdAsm_16: 7326 case ARM::VLD3LNdAsm_32: 7327 case ARM::VLD3LNqAsm_16: 7328 case ARM::VLD3LNqAsm_32: { 7329 MCInst TmpInst; 7330 // Shuffle the operands around so the lane index operand is in the 7331 // right place. 7332 unsigned Spacing; 7333 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7334 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7335 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7336 Spacing)); 7337 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7338 Spacing * 2)); 7339 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7340 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7341 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7342 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7343 Spacing)); 7344 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7345 Spacing * 2)); 7346 TmpInst.addOperand(Inst.getOperand(1)); // lane 7347 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7348 TmpInst.addOperand(Inst.getOperand(5)); 7349 Inst = TmpInst; 7350 return true; 7351 } 7352 7353 case ARM::VLD4LNdAsm_8: 7354 case ARM::VLD4LNdAsm_16: 7355 case ARM::VLD4LNdAsm_32: 7356 case ARM::VLD4LNqAsm_16: 7357 case ARM::VLD4LNqAsm_32: { 7358 MCInst TmpInst; 7359 // Shuffle the operands around so the lane index operand is in the 7360 // right place. 7361 unsigned Spacing; 7362 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7363 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7364 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7365 Spacing)); 7366 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7367 Spacing * 2)); 7368 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7369 Spacing * 3)); 7370 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7371 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7372 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7373 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7374 Spacing)); 7375 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7376 Spacing * 2)); 7377 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7378 Spacing * 3)); 7379 TmpInst.addOperand(Inst.getOperand(1)); // lane 7380 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7381 TmpInst.addOperand(Inst.getOperand(5)); 7382 Inst = TmpInst; 7383 return true; 7384 } 7385 7386 // VLD3DUP single 3-element structure to all lanes instructions. 7387 case ARM::VLD3DUPdAsm_8: 7388 case ARM::VLD3DUPdAsm_16: 7389 case ARM::VLD3DUPdAsm_32: 7390 case ARM::VLD3DUPqAsm_8: 7391 case ARM::VLD3DUPqAsm_16: 7392 case ARM::VLD3DUPqAsm_32: { 7393 MCInst TmpInst; 7394 unsigned Spacing; 7395 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7396 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7397 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7398 Spacing)); 7399 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7400 Spacing * 2)); 7401 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7402 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7403 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7404 TmpInst.addOperand(Inst.getOperand(4)); 7405 Inst = TmpInst; 7406 return true; 7407 } 7408 7409 case ARM::VLD3DUPdWB_fixed_Asm_8: 7410 case ARM::VLD3DUPdWB_fixed_Asm_16: 7411 case ARM::VLD3DUPdWB_fixed_Asm_32: 7412 case ARM::VLD3DUPqWB_fixed_Asm_8: 7413 case ARM::VLD3DUPqWB_fixed_Asm_16: 7414 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7415 MCInst TmpInst; 7416 unsigned Spacing; 7417 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7418 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7419 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7420 Spacing)); 7421 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7422 Spacing * 2)); 7423 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7424 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7425 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7426 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7427 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7428 TmpInst.addOperand(Inst.getOperand(4)); 7429 Inst = TmpInst; 7430 return true; 7431 } 7432 7433 case ARM::VLD3DUPdWB_register_Asm_8: 7434 case ARM::VLD3DUPdWB_register_Asm_16: 7435 case ARM::VLD3DUPdWB_register_Asm_32: 7436 case ARM::VLD3DUPqWB_register_Asm_8: 7437 case ARM::VLD3DUPqWB_register_Asm_16: 7438 case ARM::VLD3DUPqWB_register_Asm_32: { 7439 MCInst TmpInst; 7440 unsigned Spacing; 7441 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7442 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7443 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7444 Spacing)); 7445 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7446 Spacing * 2)); 7447 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7448 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7449 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7450 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7451 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7452 TmpInst.addOperand(Inst.getOperand(5)); 7453 Inst = TmpInst; 7454 return true; 7455 } 7456 7457 // VLD3 multiple 3-element structure instructions. 7458 case ARM::VLD3dAsm_8: 7459 case ARM::VLD3dAsm_16: 7460 case ARM::VLD3dAsm_32: 7461 case ARM::VLD3qAsm_8: 7462 case ARM::VLD3qAsm_16: 7463 case ARM::VLD3qAsm_32: { 7464 MCInst TmpInst; 7465 unsigned Spacing; 7466 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7467 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7468 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7469 Spacing)); 7470 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7471 Spacing * 2)); 7472 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7473 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7474 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7475 TmpInst.addOperand(Inst.getOperand(4)); 7476 Inst = TmpInst; 7477 return true; 7478 } 7479 7480 case ARM::VLD3dWB_fixed_Asm_8: 7481 case ARM::VLD3dWB_fixed_Asm_16: 7482 case ARM::VLD3dWB_fixed_Asm_32: 7483 case ARM::VLD3qWB_fixed_Asm_8: 7484 case ARM::VLD3qWB_fixed_Asm_16: 7485 case ARM::VLD3qWB_fixed_Asm_32: { 7486 MCInst TmpInst; 7487 unsigned Spacing; 7488 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7489 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7490 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7491 Spacing)); 7492 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7493 Spacing * 2)); 7494 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7495 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7496 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7497 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7498 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7499 TmpInst.addOperand(Inst.getOperand(4)); 7500 Inst = TmpInst; 7501 return true; 7502 } 7503 7504 case ARM::VLD3dWB_register_Asm_8: 7505 case ARM::VLD3dWB_register_Asm_16: 7506 case ARM::VLD3dWB_register_Asm_32: 7507 case ARM::VLD3qWB_register_Asm_8: 7508 case ARM::VLD3qWB_register_Asm_16: 7509 case ARM::VLD3qWB_register_Asm_32: { 7510 MCInst TmpInst; 7511 unsigned Spacing; 7512 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7513 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7514 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7515 Spacing)); 7516 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7517 Spacing * 2)); 7518 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7519 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7520 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7521 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7522 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7523 TmpInst.addOperand(Inst.getOperand(5)); 7524 Inst = TmpInst; 7525 return true; 7526 } 7527 7528 // VLD4DUP single 3-element structure to all lanes instructions. 7529 case ARM::VLD4DUPdAsm_8: 7530 case ARM::VLD4DUPdAsm_16: 7531 case ARM::VLD4DUPdAsm_32: 7532 case ARM::VLD4DUPqAsm_8: 7533 case ARM::VLD4DUPqAsm_16: 7534 case ARM::VLD4DUPqAsm_32: { 7535 MCInst TmpInst; 7536 unsigned Spacing; 7537 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7538 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7539 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7540 Spacing)); 7541 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7542 Spacing * 2)); 7543 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7544 Spacing * 3)); 7545 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7546 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7547 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7548 TmpInst.addOperand(Inst.getOperand(4)); 7549 Inst = TmpInst; 7550 return true; 7551 } 7552 7553 case ARM::VLD4DUPdWB_fixed_Asm_8: 7554 case ARM::VLD4DUPdWB_fixed_Asm_16: 7555 case ARM::VLD4DUPdWB_fixed_Asm_32: 7556 case ARM::VLD4DUPqWB_fixed_Asm_8: 7557 case ARM::VLD4DUPqWB_fixed_Asm_16: 7558 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7559 MCInst TmpInst; 7560 unsigned Spacing; 7561 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7562 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7563 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7564 Spacing)); 7565 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7566 Spacing * 2)); 7567 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7568 Spacing * 3)); 7569 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7570 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7571 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7572 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7573 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7574 TmpInst.addOperand(Inst.getOperand(4)); 7575 Inst = TmpInst; 7576 return true; 7577 } 7578 7579 case ARM::VLD4DUPdWB_register_Asm_8: 7580 case ARM::VLD4DUPdWB_register_Asm_16: 7581 case ARM::VLD4DUPdWB_register_Asm_32: 7582 case ARM::VLD4DUPqWB_register_Asm_8: 7583 case ARM::VLD4DUPqWB_register_Asm_16: 7584 case ARM::VLD4DUPqWB_register_Asm_32: { 7585 MCInst TmpInst; 7586 unsigned Spacing; 7587 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7588 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7589 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7590 Spacing)); 7591 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7592 Spacing * 2)); 7593 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7594 Spacing * 3)); 7595 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7596 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7597 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7598 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7599 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7600 TmpInst.addOperand(Inst.getOperand(5)); 7601 Inst = TmpInst; 7602 return true; 7603 } 7604 7605 // VLD4 multiple 4-element structure instructions. 7606 case ARM::VLD4dAsm_8: 7607 case ARM::VLD4dAsm_16: 7608 case ARM::VLD4dAsm_32: 7609 case ARM::VLD4qAsm_8: 7610 case ARM::VLD4qAsm_16: 7611 case ARM::VLD4qAsm_32: { 7612 MCInst TmpInst; 7613 unsigned Spacing; 7614 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7615 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7616 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7617 Spacing)); 7618 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7619 Spacing * 2)); 7620 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7621 Spacing * 3)); 7622 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7623 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7624 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7625 TmpInst.addOperand(Inst.getOperand(4)); 7626 Inst = TmpInst; 7627 return true; 7628 } 7629 7630 case ARM::VLD4dWB_fixed_Asm_8: 7631 case ARM::VLD4dWB_fixed_Asm_16: 7632 case ARM::VLD4dWB_fixed_Asm_32: 7633 case ARM::VLD4qWB_fixed_Asm_8: 7634 case ARM::VLD4qWB_fixed_Asm_16: 7635 case ARM::VLD4qWB_fixed_Asm_32: { 7636 MCInst TmpInst; 7637 unsigned Spacing; 7638 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7639 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7640 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7641 Spacing)); 7642 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7643 Spacing * 2)); 7644 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7645 Spacing * 3)); 7646 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7647 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7648 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7649 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7650 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7651 TmpInst.addOperand(Inst.getOperand(4)); 7652 Inst = TmpInst; 7653 return true; 7654 } 7655 7656 case ARM::VLD4dWB_register_Asm_8: 7657 case ARM::VLD4dWB_register_Asm_16: 7658 case ARM::VLD4dWB_register_Asm_32: 7659 case ARM::VLD4qWB_register_Asm_8: 7660 case ARM::VLD4qWB_register_Asm_16: 7661 case ARM::VLD4qWB_register_Asm_32: { 7662 MCInst TmpInst; 7663 unsigned Spacing; 7664 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7665 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7666 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7667 Spacing)); 7668 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7669 Spacing * 2)); 7670 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7671 Spacing * 3)); 7672 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7673 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7674 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7675 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7676 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7677 TmpInst.addOperand(Inst.getOperand(5)); 7678 Inst = TmpInst; 7679 return true; 7680 } 7681 7682 // VST3 multiple 3-element structure instructions. 7683 case ARM::VST3dAsm_8: 7684 case ARM::VST3dAsm_16: 7685 case ARM::VST3dAsm_32: 7686 case ARM::VST3qAsm_8: 7687 case ARM::VST3qAsm_16: 7688 case ARM::VST3qAsm_32: { 7689 MCInst TmpInst; 7690 unsigned Spacing; 7691 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7692 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7693 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7694 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7695 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7696 Spacing)); 7697 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7698 Spacing * 2)); 7699 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7700 TmpInst.addOperand(Inst.getOperand(4)); 7701 Inst = TmpInst; 7702 return true; 7703 } 7704 7705 case ARM::VST3dWB_fixed_Asm_8: 7706 case ARM::VST3dWB_fixed_Asm_16: 7707 case ARM::VST3dWB_fixed_Asm_32: 7708 case ARM::VST3qWB_fixed_Asm_8: 7709 case ARM::VST3qWB_fixed_Asm_16: 7710 case ARM::VST3qWB_fixed_Asm_32: { 7711 MCInst TmpInst; 7712 unsigned Spacing; 7713 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7714 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7715 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7716 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7717 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7718 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7719 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7720 Spacing)); 7721 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7722 Spacing * 2)); 7723 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7724 TmpInst.addOperand(Inst.getOperand(4)); 7725 Inst = TmpInst; 7726 return true; 7727 } 7728 7729 case ARM::VST3dWB_register_Asm_8: 7730 case ARM::VST3dWB_register_Asm_16: 7731 case ARM::VST3dWB_register_Asm_32: 7732 case ARM::VST3qWB_register_Asm_8: 7733 case ARM::VST3qWB_register_Asm_16: 7734 case ARM::VST3qWB_register_Asm_32: { 7735 MCInst TmpInst; 7736 unsigned Spacing; 7737 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7738 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7739 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7740 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7741 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7742 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7743 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7744 Spacing)); 7745 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7746 Spacing * 2)); 7747 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7748 TmpInst.addOperand(Inst.getOperand(5)); 7749 Inst = TmpInst; 7750 return true; 7751 } 7752 7753 // VST4 multiple 3-element structure instructions. 7754 case ARM::VST4dAsm_8: 7755 case ARM::VST4dAsm_16: 7756 case ARM::VST4dAsm_32: 7757 case ARM::VST4qAsm_8: 7758 case ARM::VST4qAsm_16: 7759 case ARM::VST4qAsm_32: { 7760 MCInst TmpInst; 7761 unsigned Spacing; 7762 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7763 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7764 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7765 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7766 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7767 Spacing)); 7768 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7769 Spacing * 2)); 7770 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7771 Spacing * 3)); 7772 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7773 TmpInst.addOperand(Inst.getOperand(4)); 7774 Inst = TmpInst; 7775 return true; 7776 } 7777 7778 case ARM::VST4dWB_fixed_Asm_8: 7779 case ARM::VST4dWB_fixed_Asm_16: 7780 case ARM::VST4dWB_fixed_Asm_32: 7781 case ARM::VST4qWB_fixed_Asm_8: 7782 case ARM::VST4qWB_fixed_Asm_16: 7783 case ARM::VST4qWB_fixed_Asm_32: { 7784 MCInst TmpInst; 7785 unsigned Spacing; 7786 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7787 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7788 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7789 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7790 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7791 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7792 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7793 Spacing)); 7794 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7795 Spacing * 2)); 7796 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7797 Spacing * 3)); 7798 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7799 TmpInst.addOperand(Inst.getOperand(4)); 7800 Inst = TmpInst; 7801 return true; 7802 } 7803 7804 case ARM::VST4dWB_register_Asm_8: 7805 case ARM::VST4dWB_register_Asm_16: 7806 case ARM::VST4dWB_register_Asm_32: 7807 case ARM::VST4qWB_register_Asm_8: 7808 case ARM::VST4qWB_register_Asm_16: 7809 case ARM::VST4qWB_register_Asm_32: { 7810 MCInst TmpInst; 7811 unsigned Spacing; 7812 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7813 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7814 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7815 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7816 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7817 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7818 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7819 Spacing)); 7820 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7821 Spacing * 2)); 7822 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7823 Spacing * 3)); 7824 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7825 TmpInst.addOperand(Inst.getOperand(5)); 7826 Inst = TmpInst; 7827 return true; 7828 } 7829 7830 // Handle encoding choice for the shift-immediate instructions. 7831 case ARM::t2LSLri: 7832 case ARM::t2LSRri: 7833 case ARM::t2ASRri: { 7834 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7835 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7836 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 7837 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 7838 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 7839 unsigned NewOpc; 7840 switch (Inst.getOpcode()) { 7841 default: llvm_unreachable("unexpected opcode"); 7842 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 7843 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 7844 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 7845 } 7846 // The Thumb1 operands aren't in the same order. Awesome, eh? 7847 MCInst TmpInst; 7848 TmpInst.setOpcode(NewOpc); 7849 TmpInst.addOperand(Inst.getOperand(0)); 7850 TmpInst.addOperand(Inst.getOperand(5)); 7851 TmpInst.addOperand(Inst.getOperand(1)); 7852 TmpInst.addOperand(Inst.getOperand(2)); 7853 TmpInst.addOperand(Inst.getOperand(3)); 7854 TmpInst.addOperand(Inst.getOperand(4)); 7855 Inst = TmpInst; 7856 return true; 7857 } 7858 return false; 7859 } 7860 7861 // Handle the Thumb2 mode MOV complex aliases. 7862 case ARM::t2MOVsr: 7863 case ARM::t2MOVSsr: { 7864 // Which instruction to expand to depends on the CCOut operand and 7865 // whether we're in an IT block if the register operands are low 7866 // registers. 7867 bool isNarrow = false; 7868 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7869 isARMLowRegister(Inst.getOperand(1).getReg()) && 7870 isARMLowRegister(Inst.getOperand(2).getReg()) && 7871 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 7872 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 7873 isNarrow = true; 7874 MCInst TmpInst; 7875 unsigned newOpc; 7876 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 7877 default: llvm_unreachable("unexpected opcode!"); 7878 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 7879 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 7880 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 7881 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 7882 } 7883 TmpInst.setOpcode(newOpc); 7884 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7885 if (isNarrow) 7886 TmpInst.addOperand(MCOperand::createReg( 7887 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7888 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7889 TmpInst.addOperand(Inst.getOperand(2)); // Rm 7890 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7891 TmpInst.addOperand(Inst.getOperand(5)); 7892 if (!isNarrow) 7893 TmpInst.addOperand(MCOperand::createReg( 7894 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 7895 Inst = TmpInst; 7896 return true; 7897 } 7898 case ARM::t2MOVsi: 7899 case ARM::t2MOVSsi: { 7900 // Which instruction to expand to depends on the CCOut operand and 7901 // whether we're in an IT block if the register operands are low 7902 // registers. 7903 bool isNarrow = false; 7904 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 7905 isARMLowRegister(Inst.getOperand(1).getReg()) && 7906 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 7907 isNarrow = true; 7908 MCInst TmpInst; 7909 unsigned newOpc; 7910 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { 7911 default: llvm_unreachable("unexpected opcode!"); 7912 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 7913 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 7914 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 7915 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 7916 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 7917 } 7918 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 7919 if (Amount == 32) Amount = 0; 7920 TmpInst.setOpcode(newOpc); 7921 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7922 if (isNarrow) 7923 TmpInst.addOperand(MCOperand::createReg( 7924 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7925 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7926 if (newOpc != ARM::t2RRX) 7927 TmpInst.addOperand(MCOperand::createImm(Amount)); 7928 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7929 TmpInst.addOperand(Inst.getOperand(4)); 7930 if (!isNarrow) 7931 TmpInst.addOperand(MCOperand::createReg( 7932 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 7933 Inst = TmpInst; 7934 return true; 7935 } 7936 // Handle the ARM mode MOV complex aliases. 7937 case ARM::ASRr: 7938 case ARM::LSRr: 7939 case ARM::LSLr: 7940 case ARM::RORr: { 7941 ARM_AM::ShiftOpc ShiftTy; 7942 switch(Inst.getOpcode()) { 7943 default: llvm_unreachable("unexpected opcode!"); 7944 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 7945 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 7946 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 7947 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 7948 } 7949 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 7950 MCInst TmpInst; 7951 TmpInst.setOpcode(ARM::MOVsr); 7952 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7953 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7954 TmpInst.addOperand(Inst.getOperand(2)); // Rm 7955 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 7956 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7957 TmpInst.addOperand(Inst.getOperand(4)); 7958 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 7959 Inst = TmpInst; 7960 return true; 7961 } 7962 case ARM::ASRi: 7963 case ARM::LSRi: 7964 case ARM::LSLi: 7965 case ARM::RORi: { 7966 ARM_AM::ShiftOpc ShiftTy; 7967 switch(Inst.getOpcode()) { 7968 default: llvm_unreachable("unexpected opcode!"); 7969 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 7970 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 7971 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 7972 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 7973 } 7974 // A shift by zero is a plain MOVr, not a MOVsi. 7975 unsigned Amt = Inst.getOperand(2).getImm(); 7976 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 7977 // A shift by 32 should be encoded as 0 when permitted 7978 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 7979 Amt = 0; 7980 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 7981 MCInst TmpInst; 7982 TmpInst.setOpcode(Opc); 7983 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7984 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7985 if (Opc == ARM::MOVsi) 7986 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 7987 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7988 TmpInst.addOperand(Inst.getOperand(4)); 7989 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 7990 Inst = TmpInst; 7991 return true; 7992 } 7993 case ARM::RRXi: { 7994 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 7995 MCInst TmpInst; 7996 TmpInst.setOpcode(ARM::MOVsi); 7997 TmpInst.addOperand(Inst.getOperand(0)); // Rd 7998 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7999 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8000 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8001 TmpInst.addOperand(Inst.getOperand(3)); 8002 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8003 Inst = TmpInst; 8004 return true; 8005 } 8006 case ARM::t2LDMIA_UPD: { 8007 // If this is a load of a single register, then we should use 8008 // a post-indexed LDR instruction instead, per the ARM ARM. 8009 if (Inst.getNumOperands() != 5) 8010 return false; 8011 MCInst TmpInst; 8012 TmpInst.setOpcode(ARM::t2LDR_POST); 8013 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8014 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8015 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8016 TmpInst.addOperand(MCOperand::createImm(4)); 8017 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8018 TmpInst.addOperand(Inst.getOperand(3)); 8019 Inst = TmpInst; 8020 return true; 8021 } 8022 case ARM::t2STMDB_UPD: { 8023 // If this is a store of a single register, then we should use 8024 // a pre-indexed STR instruction instead, per the ARM ARM. 8025 if (Inst.getNumOperands() != 5) 8026 return false; 8027 MCInst TmpInst; 8028 TmpInst.setOpcode(ARM::t2STR_PRE); 8029 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8030 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8031 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8032 TmpInst.addOperand(MCOperand::createImm(-4)); 8033 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8034 TmpInst.addOperand(Inst.getOperand(3)); 8035 Inst = TmpInst; 8036 return true; 8037 } 8038 case ARM::LDMIA_UPD: 8039 // If this is a load of a single register via a 'pop', then we should use 8040 // a post-indexed LDR instruction instead, per the ARM ARM. 8041 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8042 Inst.getNumOperands() == 5) { 8043 MCInst TmpInst; 8044 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8045 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8046 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8047 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8048 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8049 TmpInst.addOperand(MCOperand::createImm(4)); 8050 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8051 TmpInst.addOperand(Inst.getOperand(3)); 8052 Inst = TmpInst; 8053 return true; 8054 } 8055 break; 8056 case ARM::STMDB_UPD: 8057 // If this is a store of a single register via a 'push', then we should use 8058 // a pre-indexed STR instruction instead, per the ARM ARM. 8059 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8060 Inst.getNumOperands() == 5) { 8061 MCInst TmpInst; 8062 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8063 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8064 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8065 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8066 TmpInst.addOperand(MCOperand::createImm(-4)); 8067 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8068 TmpInst.addOperand(Inst.getOperand(3)); 8069 Inst = TmpInst; 8070 } 8071 break; 8072 case ARM::t2ADDri12: 8073 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8074 // mnemonic was used (not "addw"), encoding T3 is preferred. 8075 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8076 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8077 break; 8078 Inst.setOpcode(ARM::t2ADDri); 8079 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8080 break; 8081 case ARM::t2SUBri12: 8082 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8083 // mnemonic was used (not "subw"), encoding T3 is preferred. 8084 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8085 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8086 break; 8087 Inst.setOpcode(ARM::t2SUBri); 8088 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8089 break; 8090 case ARM::tADDi8: 8091 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8092 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8093 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8094 // to encoding T1 if <Rd> is omitted." 8095 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8096 Inst.setOpcode(ARM::tADDi3); 8097 return true; 8098 } 8099 break; 8100 case ARM::tSUBi8: 8101 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8102 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8103 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8104 // to encoding T1 if <Rd> is omitted." 8105 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8106 Inst.setOpcode(ARM::tSUBi3); 8107 return true; 8108 } 8109 break; 8110 case ARM::t2ADDri: 8111 case ARM::t2SUBri: { 8112 // If the destination and first source operand are the same, and 8113 // the flags are compatible with the current IT status, use encoding T2 8114 // instead of T3. For compatibility with the system 'as'. Make sure the 8115 // wide encoding wasn't explicit. 8116 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8117 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8118 (unsigned)Inst.getOperand(2).getImm() > 255 || 8119 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8120 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8121 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8122 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8123 break; 8124 MCInst TmpInst; 8125 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8126 ARM::tADDi8 : ARM::tSUBi8); 8127 TmpInst.addOperand(Inst.getOperand(0)); 8128 TmpInst.addOperand(Inst.getOperand(5)); 8129 TmpInst.addOperand(Inst.getOperand(0)); 8130 TmpInst.addOperand(Inst.getOperand(2)); 8131 TmpInst.addOperand(Inst.getOperand(3)); 8132 TmpInst.addOperand(Inst.getOperand(4)); 8133 Inst = TmpInst; 8134 return true; 8135 } 8136 case ARM::t2ADDrr: { 8137 // If the destination and first source operand are the same, and 8138 // there's no setting of the flags, use encoding T2 instead of T3. 8139 // Note that this is only for ADD, not SUB. This mirrors the system 8140 // 'as' behaviour. Also take advantage of ADD being commutative. 8141 // Make sure the wide encoding wasn't explicit. 8142 bool Swap = false; 8143 auto DestReg = Inst.getOperand(0).getReg(); 8144 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8145 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8146 Transform = true; 8147 Swap = true; 8148 } 8149 if (!Transform || 8150 Inst.getOperand(5).getReg() != 0 || 8151 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8152 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8153 break; 8154 MCInst TmpInst; 8155 TmpInst.setOpcode(ARM::tADDhirr); 8156 TmpInst.addOperand(Inst.getOperand(0)); 8157 TmpInst.addOperand(Inst.getOperand(0)); 8158 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8159 TmpInst.addOperand(Inst.getOperand(3)); 8160 TmpInst.addOperand(Inst.getOperand(4)); 8161 Inst = TmpInst; 8162 return true; 8163 } 8164 case ARM::tADDrSP: { 8165 // If the non-SP source operand and the destination operand are not the 8166 // same, we need to use the 32-bit encoding if it's available. 8167 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8168 Inst.setOpcode(ARM::t2ADDrr); 8169 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8170 return true; 8171 } 8172 break; 8173 } 8174 case ARM::tB: 8175 // A Thumb conditional branch outside of an IT block is a tBcc. 8176 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8177 Inst.setOpcode(ARM::tBcc); 8178 return true; 8179 } 8180 break; 8181 case ARM::t2B: 8182 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8183 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8184 Inst.setOpcode(ARM::t2Bcc); 8185 return true; 8186 } 8187 break; 8188 case ARM::t2Bcc: 8189 // If the conditional is AL or we're in an IT block, we really want t2B. 8190 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8191 Inst.setOpcode(ARM::t2B); 8192 return true; 8193 } 8194 break; 8195 case ARM::tBcc: 8196 // If the conditional is AL, we really want tB. 8197 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8198 Inst.setOpcode(ARM::tB); 8199 return true; 8200 } 8201 break; 8202 case ARM::tLDMIA: { 8203 // If the register list contains any high registers, or if the writeback 8204 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8205 // instead if we're in Thumb2. Otherwise, this should have generated 8206 // an error in validateInstruction(). 8207 unsigned Rn = Inst.getOperand(0).getReg(); 8208 bool hasWritebackToken = 8209 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8210 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8211 bool listContainsBase; 8212 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8213 (!listContainsBase && !hasWritebackToken) || 8214 (listContainsBase && hasWritebackToken)) { 8215 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8216 assert (isThumbTwo()); 8217 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8218 // If we're switching to the updating version, we need to insert 8219 // the writeback tied operand. 8220 if (hasWritebackToken) 8221 Inst.insert(Inst.begin(), 8222 MCOperand::createReg(Inst.getOperand(0).getReg())); 8223 return true; 8224 } 8225 break; 8226 } 8227 case ARM::tSTMIA_UPD: { 8228 // If the register list contains any high registers, we need to use 8229 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8230 // should have generated an error in validateInstruction(). 8231 unsigned Rn = Inst.getOperand(0).getReg(); 8232 bool listContainsBase; 8233 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8234 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8235 assert (isThumbTwo()); 8236 Inst.setOpcode(ARM::t2STMIA_UPD); 8237 return true; 8238 } 8239 break; 8240 } 8241 case ARM::tPOP: { 8242 bool listContainsBase; 8243 // If the register list contains any high registers, we need to use 8244 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8245 // should have generated an error in validateInstruction(). 8246 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8247 return false; 8248 assert (isThumbTwo()); 8249 Inst.setOpcode(ARM::t2LDMIA_UPD); 8250 // Add the base register and writeback operands. 8251 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8252 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8253 return true; 8254 } 8255 case ARM::tPUSH: { 8256 bool listContainsBase; 8257 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8258 return false; 8259 assert (isThumbTwo()); 8260 Inst.setOpcode(ARM::t2STMDB_UPD); 8261 // Add the base register and writeback operands. 8262 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8263 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8264 return true; 8265 } 8266 case ARM::t2MOVi: { 8267 // If we can use the 16-bit encoding and the user didn't explicitly 8268 // request the 32-bit variant, transform it here. 8269 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8270 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8271 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8272 Inst.getOperand(4).getReg() == ARM::CPSR) || 8273 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8274 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8275 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8276 // The operands aren't in the same order for tMOVi8... 8277 MCInst TmpInst; 8278 TmpInst.setOpcode(ARM::tMOVi8); 8279 TmpInst.addOperand(Inst.getOperand(0)); 8280 TmpInst.addOperand(Inst.getOperand(4)); 8281 TmpInst.addOperand(Inst.getOperand(1)); 8282 TmpInst.addOperand(Inst.getOperand(2)); 8283 TmpInst.addOperand(Inst.getOperand(3)); 8284 Inst = TmpInst; 8285 return true; 8286 } 8287 break; 8288 } 8289 case ARM::t2MOVr: { 8290 // If we can use the 16-bit encoding and the user didn't explicitly 8291 // request the 32-bit variant, transform it here. 8292 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8293 isARMLowRegister(Inst.getOperand(1).getReg()) && 8294 Inst.getOperand(2).getImm() == ARMCC::AL && 8295 Inst.getOperand(4).getReg() == ARM::CPSR && 8296 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8297 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8298 // The operands aren't the same for tMOV[S]r... (no cc_out) 8299 MCInst TmpInst; 8300 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8301 TmpInst.addOperand(Inst.getOperand(0)); 8302 TmpInst.addOperand(Inst.getOperand(1)); 8303 TmpInst.addOperand(Inst.getOperand(2)); 8304 TmpInst.addOperand(Inst.getOperand(3)); 8305 Inst = TmpInst; 8306 return true; 8307 } 8308 break; 8309 } 8310 case ARM::t2SXTH: 8311 case ARM::t2SXTB: 8312 case ARM::t2UXTH: 8313 case ARM::t2UXTB: { 8314 // If we can use the 16-bit encoding and the user didn't explicitly 8315 // request the 32-bit variant, transform it here. 8316 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8317 isARMLowRegister(Inst.getOperand(1).getReg()) && 8318 Inst.getOperand(2).getImm() == 0 && 8319 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8320 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8321 unsigned NewOpc; 8322 switch (Inst.getOpcode()) { 8323 default: llvm_unreachable("Illegal opcode!"); 8324 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8325 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8326 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8327 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8328 } 8329 // The operands aren't the same for thumb1 (no rotate operand). 8330 MCInst TmpInst; 8331 TmpInst.setOpcode(NewOpc); 8332 TmpInst.addOperand(Inst.getOperand(0)); 8333 TmpInst.addOperand(Inst.getOperand(1)); 8334 TmpInst.addOperand(Inst.getOperand(3)); 8335 TmpInst.addOperand(Inst.getOperand(4)); 8336 Inst = TmpInst; 8337 return true; 8338 } 8339 break; 8340 } 8341 case ARM::MOVsi: { 8342 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8343 // rrx shifts and asr/lsr of #32 is encoded as 0 8344 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8345 return false; 8346 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8347 // Shifting by zero is accepted as a vanilla 'MOVr' 8348 MCInst TmpInst; 8349 TmpInst.setOpcode(ARM::MOVr); 8350 TmpInst.addOperand(Inst.getOperand(0)); 8351 TmpInst.addOperand(Inst.getOperand(1)); 8352 TmpInst.addOperand(Inst.getOperand(3)); 8353 TmpInst.addOperand(Inst.getOperand(4)); 8354 TmpInst.addOperand(Inst.getOperand(5)); 8355 Inst = TmpInst; 8356 return true; 8357 } 8358 return false; 8359 } 8360 case ARM::ANDrsi: 8361 case ARM::ORRrsi: 8362 case ARM::EORrsi: 8363 case ARM::BICrsi: 8364 case ARM::SUBrsi: 8365 case ARM::ADDrsi: { 8366 unsigned newOpc; 8367 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8368 if (SOpc == ARM_AM::rrx) return false; 8369 switch (Inst.getOpcode()) { 8370 default: llvm_unreachable("unexpected opcode!"); 8371 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8372 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8373 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8374 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8375 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8376 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8377 } 8378 // If the shift is by zero, use the non-shifted instruction definition. 8379 // The exception is for right shifts, where 0 == 32 8380 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8381 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8382 MCInst TmpInst; 8383 TmpInst.setOpcode(newOpc); 8384 TmpInst.addOperand(Inst.getOperand(0)); 8385 TmpInst.addOperand(Inst.getOperand(1)); 8386 TmpInst.addOperand(Inst.getOperand(2)); 8387 TmpInst.addOperand(Inst.getOperand(4)); 8388 TmpInst.addOperand(Inst.getOperand(5)); 8389 TmpInst.addOperand(Inst.getOperand(6)); 8390 Inst = TmpInst; 8391 return true; 8392 } 8393 return false; 8394 } 8395 case ARM::ITasm: 8396 case ARM::t2IT: { 8397 // The mask bits for all but the first condition are represented as 8398 // the low bit of the condition code value implies 't'. We currently 8399 // always have 1 implies 't', so XOR toggle the bits if the low bit 8400 // of the condition code is zero. 8401 MCOperand &MO = Inst.getOperand(1); 8402 unsigned Mask = MO.getImm(); 8403 unsigned OrigMask = Mask; 8404 unsigned TZ = countTrailingZeros(Mask); 8405 if ((Inst.getOperand(0).getImm() & 1) == 0) { 8406 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 8407 Mask ^= (0xE << TZ) & 0xF; 8408 } 8409 MO.setImm(Mask); 8410 8411 // Set up the IT block state according to the IT instruction we just 8412 // matched. 8413 assert(!inITBlock() && "nested IT blocks?!"); 8414 ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8415 ITState.Mask = OrigMask; // Use the original mask, not the updated one. 8416 ITState.CurPosition = 0; 8417 ITState.FirstCond = true; 8418 break; 8419 } 8420 case ARM::t2LSLrr: 8421 case ARM::t2LSRrr: 8422 case ARM::t2ASRrr: 8423 case ARM::t2SBCrr: 8424 case ARM::t2RORrr: 8425 case ARM::t2BICrr: 8426 { 8427 // Assemblers should use the narrow encodings of these instructions when permissible. 8428 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8429 isARMLowRegister(Inst.getOperand(2).getReg())) && 8430 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8431 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8432 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8433 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8434 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8435 ".w"))) { 8436 unsigned NewOpc; 8437 switch (Inst.getOpcode()) { 8438 default: llvm_unreachable("unexpected opcode"); 8439 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8440 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8441 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8442 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8443 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8444 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8445 } 8446 MCInst TmpInst; 8447 TmpInst.setOpcode(NewOpc); 8448 TmpInst.addOperand(Inst.getOperand(0)); 8449 TmpInst.addOperand(Inst.getOperand(5)); 8450 TmpInst.addOperand(Inst.getOperand(1)); 8451 TmpInst.addOperand(Inst.getOperand(2)); 8452 TmpInst.addOperand(Inst.getOperand(3)); 8453 TmpInst.addOperand(Inst.getOperand(4)); 8454 Inst = TmpInst; 8455 return true; 8456 } 8457 return false; 8458 } 8459 case ARM::t2ANDrr: 8460 case ARM::t2EORrr: 8461 case ARM::t2ADCrr: 8462 case ARM::t2ORRrr: 8463 { 8464 // Assemblers should use the narrow encodings of these instructions when permissible. 8465 // These instructions are special in that they are commutable, so shorter encodings 8466 // are available more often. 8467 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8468 isARMLowRegister(Inst.getOperand(2).getReg())) && 8469 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8470 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8471 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8472 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8473 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8474 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8475 ".w"))) { 8476 unsigned NewOpc; 8477 switch (Inst.getOpcode()) { 8478 default: llvm_unreachable("unexpected opcode"); 8479 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8480 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8481 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8482 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8483 } 8484 MCInst TmpInst; 8485 TmpInst.setOpcode(NewOpc); 8486 TmpInst.addOperand(Inst.getOperand(0)); 8487 TmpInst.addOperand(Inst.getOperand(5)); 8488 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8489 TmpInst.addOperand(Inst.getOperand(1)); 8490 TmpInst.addOperand(Inst.getOperand(2)); 8491 } else { 8492 TmpInst.addOperand(Inst.getOperand(2)); 8493 TmpInst.addOperand(Inst.getOperand(1)); 8494 } 8495 TmpInst.addOperand(Inst.getOperand(3)); 8496 TmpInst.addOperand(Inst.getOperand(4)); 8497 Inst = TmpInst; 8498 return true; 8499 } 8500 return false; 8501 } 8502 } 8503 return false; 8504 } 8505 8506 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8507 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8508 // suffix depending on whether they're in an IT block or not. 8509 unsigned Opc = Inst.getOpcode(); 8510 const MCInstrDesc &MCID = MII.get(Opc); 8511 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8512 assert(MCID.hasOptionalDef() && 8513 "optionally flag setting instruction missing optional def operand"); 8514 assert(MCID.NumOperands == Inst.getNumOperands() && 8515 "operand count mismatch!"); 8516 // Find the optional-def operand (cc_out). 8517 unsigned OpNo; 8518 for (OpNo = 0; 8519 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8520 ++OpNo) 8521 ; 8522 // If we're parsing Thumb1, reject it completely. 8523 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8524 return Match_MnemonicFail; 8525 // If we're parsing Thumb2, which form is legal depends on whether we're 8526 // in an IT block. 8527 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8528 !inITBlock()) 8529 return Match_RequiresITBlock; 8530 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8531 inITBlock()) 8532 return Match_RequiresNotITBlock; 8533 } else if (isThumbOne()) { 8534 // Some high-register supporting Thumb1 encodings only allow both registers 8535 // to be from r0-r7 when in Thumb2. 8536 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8537 isARMLowRegister(Inst.getOperand(1).getReg()) && 8538 isARMLowRegister(Inst.getOperand(2).getReg())) 8539 return Match_RequiresThumb2; 8540 // Others only require ARMv6 or later. 8541 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8542 isARMLowRegister(Inst.getOperand(0).getReg()) && 8543 isARMLowRegister(Inst.getOperand(1).getReg())) 8544 return Match_RequiresV6; 8545 } 8546 8547 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8548 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8549 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8550 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8551 return Match_RequiresV8; 8552 else if (Inst.getOperand(I).getReg() == ARM::PC) 8553 return Match_InvalidOperand; 8554 } 8555 8556 return Match_Success; 8557 } 8558 8559 namespace llvm { 8560 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { 8561 return true; // In an assembly source, no need to second-guess 8562 } 8563 } 8564 8565 static const char *getSubtargetFeatureName(uint64_t Val); 8566 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 8567 OperandVector &Operands, 8568 MCStreamer &Out, uint64_t &ErrorInfo, 8569 bool MatchingInlineAsm) { 8570 MCInst Inst; 8571 unsigned MatchResult; 8572 8573 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 8574 MatchingInlineAsm); 8575 switch (MatchResult) { 8576 case Match_Success: 8577 // Context sensitive operand constraints aren't handled by the matcher, 8578 // so check them here. 8579 if (validateInstruction(Inst, Operands)) { 8580 // Still progress the IT block, otherwise one wrong condition causes 8581 // nasty cascading errors. 8582 forwardITPosition(); 8583 return true; 8584 } 8585 8586 { // processInstruction() updates inITBlock state, we need to save it away 8587 bool wasInITBlock = inITBlock(); 8588 8589 // Some instructions need post-processing to, for example, tweak which 8590 // encoding is selected. Loop on it while changes happen so the 8591 // individual transformations can chain off each other. E.g., 8592 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 8593 while (processInstruction(Inst, Operands, Out)) 8594 ; 8595 8596 // Only after the instruction is fully processed, we can validate it 8597 if (wasInITBlock && hasV8Ops() && isThumb() && 8598 !isV8EligibleForIT(&Inst)) { 8599 Warning(IDLoc, "deprecated instruction in IT block"); 8600 } 8601 } 8602 8603 // Only move forward at the very end so that everything in validate 8604 // and process gets a consistent answer about whether we're in an IT 8605 // block. 8606 forwardITPosition(); 8607 8608 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 8609 // doesn't actually encode. 8610 if (Inst.getOpcode() == ARM::ITasm) 8611 return false; 8612 8613 Inst.setLoc(IDLoc); 8614 Out.EmitInstruction(Inst, STI); 8615 return false; 8616 case Match_MissingFeature: { 8617 assert(ErrorInfo && "Unknown missing feature!"); 8618 // Special case the error message for the very common case where only 8619 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 8620 std::string Msg = "instruction requires:"; 8621 uint64_t Mask = 1; 8622 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 8623 if (ErrorInfo & Mask) { 8624 Msg += " "; 8625 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 8626 } 8627 Mask <<= 1; 8628 } 8629 return Error(IDLoc, Msg); 8630 } 8631 case Match_InvalidOperand: { 8632 SMLoc ErrorLoc = IDLoc; 8633 if (ErrorInfo != ~0ULL) { 8634 if (ErrorInfo >= Operands.size()) 8635 return Error(IDLoc, "too few operands for instruction"); 8636 8637 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8638 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8639 } 8640 8641 return Error(ErrorLoc, "invalid operand for instruction"); 8642 } 8643 case Match_MnemonicFail: 8644 return Error(IDLoc, "invalid instruction", 8645 ((ARMOperand &)*Operands[0]).getLocRange()); 8646 case Match_RequiresNotITBlock: 8647 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 8648 case Match_RequiresITBlock: 8649 return Error(IDLoc, "instruction only valid inside IT block"); 8650 case Match_RequiresV6: 8651 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 8652 case Match_RequiresThumb2: 8653 return Error(IDLoc, "instruction variant requires Thumb2"); 8654 case Match_RequiresV8: 8655 return Error(IDLoc, "instruction variant requires ARMv8 or later"); 8656 case Match_ImmRange0_15: { 8657 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8658 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8659 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 8660 } 8661 case Match_ImmRange0_239: { 8662 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8663 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8664 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 8665 } 8666 case Match_AlignedMemoryRequiresNone: 8667 case Match_DupAlignedMemoryRequiresNone: 8668 case Match_AlignedMemoryRequires16: 8669 case Match_DupAlignedMemoryRequires16: 8670 case Match_AlignedMemoryRequires32: 8671 case Match_DupAlignedMemoryRequires32: 8672 case Match_AlignedMemoryRequires64: 8673 case Match_DupAlignedMemoryRequires64: 8674 case Match_AlignedMemoryRequires64or128: 8675 case Match_DupAlignedMemoryRequires64or128: 8676 case Match_AlignedMemoryRequires64or128or256: 8677 { 8678 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 8679 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8680 switch (MatchResult) { 8681 default: 8682 llvm_unreachable("Missing Match_Aligned type"); 8683 case Match_AlignedMemoryRequiresNone: 8684 case Match_DupAlignedMemoryRequiresNone: 8685 return Error(ErrorLoc, "alignment must be omitted"); 8686 case Match_AlignedMemoryRequires16: 8687 case Match_DupAlignedMemoryRequires16: 8688 return Error(ErrorLoc, "alignment must be 16 or omitted"); 8689 case Match_AlignedMemoryRequires32: 8690 case Match_DupAlignedMemoryRequires32: 8691 return Error(ErrorLoc, "alignment must be 32 or omitted"); 8692 case Match_AlignedMemoryRequires64: 8693 case Match_DupAlignedMemoryRequires64: 8694 return Error(ErrorLoc, "alignment must be 64 or omitted"); 8695 case Match_AlignedMemoryRequires64or128: 8696 case Match_DupAlignedMemoryRequires64or128: 8697 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 8698 case Match_AlignedMemoryRequires64or128or256: 8699 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 8700 } 8701 } 8702 } 8703 8704 llvm_unreachable("Implement any new match types added!"); 8705 } 8706 8707 /// parseDirective parses the arm specific directives 8708 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 8709 const MCObjectFileInfo::Environment Format = 8710 getContext().getObjectFileInfo()->getObjectFileType(); 8711 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8712 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 8713 8714 StringRef IDVal = DirectiveID.getIdentifier(); 8715 if (IDVal == ".word") 8716 return parseLiteralValues(4, DirectiveID.getLoc()); 8717 else if (IDVal == ".short" || IDVal == ".hword") 8718 return parseLiteralValues(2, DirectiveID.getLoc()); 8719 else if (IDVal == ".thumb") 8720 return parseDirectiveThumb(DirectiveID.getLoc()); 8721 else if (IDVal == ".arm") 8722 return parseDirectiveARM(DirectiveID.getLoc()); 8723 else if (IDVal == ".thumb_func") 8724 return parseDirectiveThumbFunc(DirectiveID.getLoc()); 8725 else if (IDVal == ".code") 8726 return parseDirectiveCode(DirectiveID.getLoc()); 8727 else if (IDVal == ".syntax") 8728 return parseDirectiveSyntax(DirectiveID.getLoc()); 8729 else if (IDVal == ".unreq") 8730 return parseDirectiveUnreq(DirectiveID.getLoc()); 8731 else if (IDVal == ".fnend") 8732 return parseDirectiveFnEnd(DirectiveID.getLoc()); 8733 else if (IDVal == ".cantunwind") 8734 return parseDirectiveCantUnwind(DirectiveID.getLoc()); 8735 else if (IDVal == ".personality") 8736 return parseDirectivePersonality(DirectiveID.getLoc()); 8737 else if (IDVal == ".handlerdata") 8738 return parseDirectiveHandlerData(DirectiveID.getLoc()); 8739 else if (IDVal == ".setfp") 8740 return parseDirectiveSetFP(DirectiveID.getLoc()); 8741 else if (IDVal == ".pad") 8742 return parseDirectivePad(DirectiveID.getLoc()); 8743 else if (IDVal == ".save") 8744 return parseDirectiveRegSave(DirectiveID.getLoc(), false); 8745 else if (IDVal == ".vsave") 8746 return parseDirectiveRegSave(DirectiveID.getLoc(), true); 8747 else if (IDVal == ".ltorg" || IDVal == ".pool") 8748 return parseDirectiveLtorg(DirectiveID.getLoc()); 8749 else if (IDVal == ".even") 8750 return parseDirectiveEven(DirectiveID.getLoc()); 8751 else if (IDVal == ".personalityindex") 8752 return parseDirectivePersonalityIndex(DirectiveID.getLoc()); 8753 else if (IDVal == ".unwind_raw") 8754 return parseDirectiveUnwindRaw(DirectiveID.getLoc()); 8755 else if (IDVal == ".movsp") 8756 return parseDirectiveMovSP(DirectiveID.getLoc()); 8757 else if (IDVal == ".arch_extension") 8758 return parseDirectiveArchExtension(DirectiveID.getLoc()); 8759 else if (IDVal == ".align") 8760 return parseDirectiveAlign(DirectiveID.getLoc()); 8761 else if (IDVal == ".thumb_set") 8762 return parseDirectiveThumbSet(DirectiveID.getLoc()); 8763 8764 if (!IsMachO && !IsCOFF) { 8765 if (IDVal == ".arch") 8766 return parseDirectiveArch(DirectiveID.getLoc()); 8767 else if (IDVal == ".cpu") 8768 return parseDirectiveCPU(DirectiveID.getLoc()); 8769 else if (IDVal == ".eabi_attribute") 8770 return parseDirectiveEabiAttr(DirectiveID.getLoc()); 8771 else if (IDVal == ".fpu") 8772 return parseDirectiveFPU(DirectiveID.getLoc()); 8773 else if (IDVal == ".fnstart") 8774 return parseDirectiveFnStart(DirectiveID.getLoc()); 8775 else if (IDVal == ".inst") 8776 return parseDirectiveInst(DirectiveID.getLoc()); 8777 else if (IDVal == ".inst.n") 8778 return parseDirectiveInst(DirectiveID.getLoc(), 'n'); 8779 else if (IDVal == ".inst.w") 8780 return parseDirectiveInst(DirectiveID.getLoc(), 'w'); 8781 else if (IDVal == ".object_arch") 8782 return parseDirectiveObjectArch(DirectiveID.getLoc()); 8783 else if (IDVal == ".tlsdescseq") 8784 return parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 8785 } 8786 8787 return true; 8788 } 8789 8790 /// parseLiteralValues 8791 /// ::= .hword expression [, expression]* 8792 /// ::= .short expression [, expression]* 8793 /// ::= .word expression [, expression]* 8794 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 8795 MCAsmParser &Parser = getParser(); 8796 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8797 for (;;) { 8798 const MCExpr *Value; 8799 if (getParser().parseExpression(Value)) { 8800 Parser.eatToEndOfStatement(); 8801 return false; 8802 } 8803 8804 getParser().getStreamer().EmitValue(Value, Size); 8805 8806 if (getLexer().is(AsmToken::EndOfStatement)) 8807 break; 8808 8809 // FIXME: Improve diagnostic. 8810 if (getLexer().isNot(AsmToken::Comma)) { 8811 Error(L, "unexpected token in directive"); 8812 return false; 8813 } 8814 Parser.Lex(); 8815 } 8816 } 8817 8818 Parser.Lex(); 8819 return false; 8820 } 8821 8822 /// parseDirectiveThumb 8823 /// ::= .thumb 8824 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 8825 MCAsmParser &Parser = getParser(); 8826 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8827 Error(L, "unexpected token in directive"); 8828 return false; 8829 } 8830 Parser.Lex(); 8831 8832 if (!hasThumb()) { 8833 Error(L, "target does not support Thumb mode"); 8834 return false; 8835 } 8836 8837 if (!isThumb()) 8838 SwitchMode(); 8839 8840 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 8841 return false; 8842 } 8843 8844 /// parseDirectiveARM 8845 /// ::= .arm 8846 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 8847 MCAsmParser &Parser = getParser(); 8848 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8849 Error(L, "unexpected token in directive"); 8850 return false; 8851 } 8852 Parser.Lex(); 8853 8854 if (!hasARM()) { 8855 Error(L, "target does not support ARM mode"); 8856 return false; 8857 } 8858 8859 if (isThumb()) 8860 SwitchMode(); 8861 8862 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 8863 return false; 8864 } 8865 8866 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 8867 if (NextSymbolIsThumb) { 8868 getParser().getStreamer().EmitThumbFunc(Symbol); 8869 NextSymbolIsThumb = false; 8870 } 8871 } 8872 8873 /// parseDirectiveThumbFunc 8874 /// ::= .thumbfunc symbol_name 8875 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 8876 MCAsmParser &Parser = getParser(); 8877 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 8878 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8879 8880 // Darwin asm has (optionally) function name after .thumb_func direction 8881 // ELF doesn't 8882 if (IsMachO) { 8883 const AsmToken &Tok = Parser.getTok(); 8884 if (Tok.isNot(AsmToken::EndOfStatement)) { 8885 if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) { 8886 Error(L, "unexpected token in .thumb_func directive"); 8887 return false; 8888 } 8889 8890 MCSymbol *Func = 8891 getParser().getContext().getOrCreateSymbol(Tok.getIdentifier()); 8892 getParser().getStreamer().EmitThumbFunc(Func); 8893 Parser.Lex(); // Consume the identifier token. 8894 return false; 8895 } 8896 } 8897 8898 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8899 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8900 Parser.eatToEndOfStatement(); 8901 return false; 8902 } 8903 8904 NextSymbolIsThumb = true; 8905 return false; 8906 } 8907 8908 /// parseDirectiveSyntax 8909 /// ::= .syntax unified | divided 8910 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 8911 MCAsmParser &Parser = getParser(); 8912 const AsmToken &Tok = Parser.getTok(); 8913 if (Tok.isNot(AsmToken::Identifier)) { 8914 Error(L, "unexpected token in .syntax directive"); 8915 return false; 8916 } 8917 8918 StringRef Mode = Tok.getString(); 8919 if (Mode == "unified" || Mode == "UNIFIED") { 8920 Parser.Lex(); 8921 } else if (Mode == "divided" || Mode == "DIVIDED") { 8922 Error(L, "'.syntax divided' arm asssembly not supported"); 8923 return false; 8924 } else { 8925 Error(L, "unrecognized syntax mode in .syntax directive"); 8926 return false; 8927 } 8928 8929 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8930 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8931 return false; 8932 } 8933 Parser.Lex(); 8934 8935 // TODO tell the MC streamer the mode 8936 // getParser().getStreamer().Emit???(); 8937 return false; 8938 } 8939 8940 /// parseDirectiveCode 8941 /// ::= .code 16 | 32 8942 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 8943 MCAsmParser &Parser = getParser(); 8944 const AsmToken &Tok = Parser.getTok(); 8945 if (Tok.isNot(AsmToken::Integer)) { 8946 Error(L, "unexpected token in .code directive"); 8947 return false; 8948 } 8949 int64_t Val = Parser.getTok().getIntVal(); 8950 if (Val != 16 && Val != 32) { 8951 Error(L, "invalid operand to .code directive"); 8952 return false; 8953 } 8954 Parser.Lex(); 8955 8956 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8957 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 8958 return false; 8959 } 8960 Parser.Lex(); 8961 8962 if (Val == 16) { 8963 if (!hasThumb()) { 8964 Error(L, "target does not support Thumb mode"); 8965 return false; 8966 } 8967 8968 if (!isThumb()) 8969 SwitchMode(); 8970 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 8971 } else { 8972 if (!hasARM()) { 8973 Error(L, "target does not support ARM mode"); 8974 return false; 8975 } 8976 8977 if (isThumb()) 8978 SwitchMode(); 8979 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 8980 } 8981 8982 return false; 8983 } 8984 8985 /// parseDirectiveReq 8986 /// ::= name .req registername 8987 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 8988 MCAsmParser &Parser = getParser(); 8989 Parser.Lex(); // Eat the '.req' token. 8990 unsigned Reg; 8991 SMLoc SRegLoc, ERegLoc; 8992 if (ParseRegister(Reg, SRegLoc, ERegLoc)) { 8993 Parser.eatToEndOfStatement(); 8994 Error(SRegLoc, "register name expected"); 8995 return false; 8996 } 8997 8998 // Shouldn't be anything else. 8999 if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { 9000 Parser.eatToEndOfStatement(); 9001 Error(Parser.getTok().getLoc(), "unexpected input in .req directive."); 9002 return false; 9003 } 9004 9005 Parser.Lex(); // Consume the EndOfStatement 9006 9007 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) { 9008 Error(SRegLoc, "redefinition of '" + Name + "' does not match original."); 9009 return false; 9010 } 9011 9012 return false; 9013 } 9014 9015 /// parseDirectiveUneq 9016 /// ::= .unreq registername 9017 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9018 MCAsmParser &Parser = getParser(); 9019 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9020 Parser.eatToEndOfStatement(); 9021 Error(L, "unexpected input in .unreq directive."); 9022 return false; 9023 } 9024 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9025 Parser.Lex(); // Eat the identifier. 9026 return false; 9027 } 9028 9029 /// parseDirectiveArch 9030 /// ::= .arch token 9031 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9032 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9033 9034 unsigned ID = ARM::parseArch(Arch); 9035 9036 if (ID == ARM::AK_INVALID) { 9037 Error(L, "Unknown arch name"); 9038 return false; 9039 } 9040 9041 Triple T; 9042 STI.setDefaultFeatures(T.getARMCPUForArch(Arch)); 9043 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9044 9045 getTargetStreamer().emitArch(ID); 9046 return false; 9047 } 9048 9049 /// parseDirectiveEabiAttr 9050 /// ::= .eabi_attribute int, int [, "str"] 9051 /// ::= .eabi_attribute Tag_name, int [, "str"] 9052 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9053 MCAsmParser &Parser = getParser(); 9054 int64_t Tag; 9055 SMLoc TagLoc; 9056 TagLoc = Parser.getTok().getLoc(); 9057 if (Parser.getTok().is(AsmToken::Identifier)) { 9058 StringRef Name = Parser.getTok().getIdentifier(); 9059 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9060 if (Tag == -1) { 9061 Error(TagLoc, "attribute name not recognised: " + Name); 9062 Parser.eatToEndOfStatement(); 9063 return false; 9064 } 9065 Parser.Lex(); 9066 } else { 9067 const MCExpr *AttrExpr; 9068 9069 TagLoc = Parser.getTok().getLoc(); 9070 if (Parser.parseExpression(AttrExpr)) { 9071 Parser.eatToEndOfStatement(); 9072 return false; 9073 } 9074 9075 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9076 if (!CE) { 9077 Error(TagLoc, "expected numeric constant"); 9078 Parser.eatToEndOfStatement(); 9079 return false; 9080 } 9081 9082 Tag = CE->getValue(); 9083 } 9084 9085 if (Parser.getTok().isNot(AsmToken::Comma)) { 9086 Error(Parser.getTok().getLoc(), "comma expected"); 9087 Parser.eatToEndOfStatement(); 9088 return false; 9089 } 9090 Parser.Lex(); // skip comma 9091 9092 StringRef StringValue = ""; 9093 bool IsStringValue = false; 9094 9095 int64_t IntegerValue = 0; 9096 bool IsIntegerValue = false; 9097 9098 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9099 IsStringValue = true; 9100 else if (Tag == ARMBuildAttrs::compatibility) { 9101 IsStringValue = true; 9102 IsIntegerValue = true; 9103 } else if (Tag < 32 || Tag % 2 == 0) 9104 IsIntegerValue = true; 9105 else if (Tag % 2 == 1) 9106 IsStringValue = true; 9107 else 9108 llvm_unreachable("invalid tag type"); 9109 9110 if (IsIntegerValue) { 9111 const MCExpr *ValueExpr; 9112 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9113 if (Parser.parseExpression(ValueExpr)) { 9114 Parser.eatToEndOfStatement(); 9115 return false; 9116 } 9117 9118 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9119 if (!CE) { 9120 Error(ValueExprLoc, "expected numeric constant"); 9121 Parser.eatToEndOfStatement(); 9122 return false; 9123 } 9124 9125 IntegerValue = CE->getValue(); 9126 } 9127 9128 if (Tag == ARMBuildAttrs::compatibility) { 9129 if (Parser.getTok().isNot(AsmToken::Comma)) 9130 IsStringValue = false; 9131 if (Parser.getTok().isNot(AsmToken::Comma)) { 9132 Error(Parser.getTok().getLoc(), "comma expected"); 9133 Parser.eatToEndOfStatement(); 9134 return false; 9135 } else { 9136 Parser.Lex(); 9137 } 9138 } 9139 9140 if (IsStringValue) { 9141 if (Parser.getTok().isNot(AsmToken::String)) { 9142 Error(Parser.getTok().getLoc(), "bad string constant"); 9143 Parser.eatToEndOfStatement(); 9144 return false; 9145 } 9146 9147 StringValue = Parser.getTok().getStringContents(); 9148 Parser.Lex(); 9149 } 9150 9151 if (IsIntegerValue && IsStringValue) { 9152 assert(Tag == ARMBuildAttrs::compatibility); 9153 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9154 } else if (IsIntegerValue) 9155 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9156 else if (IsStringValue) 9157 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9158 return false; 9159 } 9160 9161 /// parseDirectiveCPU 9162 /// ::= .cpu str 9163 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9164 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9165 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9166 9167 // FIXME: This is using table-gen data, but should be moved to 9168 // ARMTargetParser once that is table-gen'd. 9169 if (!STI.isCPUStringValid(CPU)) { 9170 Error(L, "Unknown CPU name"); 9171 return false; 9172 } 9173 9174 STI.setDefaultFeatures(CPU); 9175 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9176 9177 return false; 9178 } 9179 /// parseDirectiveFPU 9180 /// ::= .fpu str 9181 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9182 SMLoc FPUNameLoc = getTok().getLoc(); 9183 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9184 9185 unsigned ID = ARM::parseFPU(FPU); 9186 std::vector<const char *> Features; 9187 if (!ARM::getFPUFeatures(ID, Features)) { 9188 Error(FPUNameLoc, "Unknown FPU name"); 9189 return false; 9190 } 9191 9192 for (auto Feature : Features) 9193 STI.ApplyFeatureFlag(Feature); 9194 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9195 9196 getTargetStreamer().emitFPU(ID); 9197 return false; 9198 } 9199 9200 /// parseDirectiveFnStart 9201 /// ::= .fnstart 9202 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9203 if (UC.hasFnStart()) { 9204 Error(L, ".fnstart starts before the end of previous one"); 9205 UC.emitFnStartLocNotes(); 9206 return false; 9207 } 9208 9209 // Reset the unwind directives parser state 9210 UC.reset(); 9211 9212 getTargetStreamer().emitFnStart(); 9213 9214 UC.recordFnStart(L); 9215 return false; 9216 } 9217 9218 /// parseDirectiveFnEnd 9219 /// ::= .fnend 9220 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9221 // Check the ordering of unwind directives 9222 if (!UC.hasFnStart()) { 9223 Error(L, ".fnstart must precede .fnend directive"); 9224 return false; 9225 } 9226 9227 // Reset the unwind directives parser state 9228 getTargetStreamer().emitFnEnd(); 9229 9230 UC.reset(); 9231 return false; 9232 } 9233 9234 /// parseDirectiveCantUnwind 9235 /// ::= .cantunwind 9236 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9237 UC.recordCantUnwind(L); 9238 9239 // Check the ordering of unwind directives 9240 if (!UC.hasFnStart()) { 9241 Error(L, ".fnstart must precede .cantunwind directive"); 9242 return false; 9243 } 9244 if (UC.hasHandlerData()) { 9245 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9246 UC.emitHandlerDataLocNotes(); 9247 return false; 9248 } 9249 if (UC.hasPersonality()) { 9250 Error(L, ".cantunwind can't be used with .personality directive"); 9251 UC.emitPersonalityLocNotes(); 9252 return false; 9253 } 9254 9255 getTargetStreamer().emitCantUnwind(); 9256 return false; 9257 } 9258 9259 /// parseDirectivePersonality 9260 /// ::= .personality name 9261 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9262 MCAsmParser &Parser = getParser(); 9263 bool HasExistingPersonality = UC.hasPersonality(); 9264 9265 UC.recordPersonality(L); 9266 9267 // Check the ordering of unwind directives 9268 if (!UC.hasFnStart()) { 9269 Error(L, ".fnstart must precede .personality directive"); 9270 return false; 9271 } 9272 if (UC.cantUnwind()) { 9273 Error(L, ".personality can't be used with .cantunwind directive"); 9274 UC.emitCantUnwindLocNotes(); 9275 return false; 9276 } 9277 if (UC.hasHandlerData()) { 9278 Error(L, ".personality must precede .handlerdata directive"); 9279 UC.emitHandlerDataLocNotes(); 9280 return false; 9281 } 9282 if (HasExistingPersonality) { 9283 Parser.eatToEndOfStatement(); 9284 Error(L, "multiple personality directives"); 9285 UC.emitPersonalityLocNotes(); 9286 return false; 9287 } 9288 9289 // Parse the name of the personality routine 9290 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9291 Parser.eatToEndOfStatement(); 9292 Error(L, "unexpected input in .personality directive."); 9293 return false; 9294 } 9295 StringRef Name(Parser.getTok().getIdentifier()); 9296 Parser.Lex(); 9297 9298 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9299 getTargetStreamer().emitPersonality(PR); 9300 return false; 9301 } 9302 9303 /// parseDirectiveHandlerData 9304 /// ::= .handlerdata 9305 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9306 UC.recordHandlerData(L); 9307 9308 // Check the ordering of unwind directives 9309 if (!UC.hasFnStart()) { 9310 Error(L, ".fnstart must precede .personality directive"); 9311 return false; 9312 } 9313 if (UC.cantUnwind()) { 9314 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9315 UC.emitCantUnwindLocNotes(); 9316 return false; 9317 } 9318 9319 getTargetStreamer().emitHandlerData(); 9320 return false; 9321 } 9322 9323 /// parseDirectiveSetFP 9324 /// ::= .setfp fpreg, spreg [, offset] 9325 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9326 MCAsmParser &Parser = getParser(); 9327 // Check the ordering of unwind directives 9328 if (!UC.hasFnStart()) { 9329 Error(L, ".fnstart must precede .setfp directive"); 9330 return false; 9331 } 9332 if (UC.hasHandlerData()) { 9333 Error(L, ".setfp must precede .handlerdata directive"); 9334 return false; 9335 } 9336 9337 // Parse fpreg 9338 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9339 int FPReg = tryParseRegister(); 9340 if (FPReg == -1) { 9341 Error(FPRegLoc, "frame pointer register expected"); 9342 return false; 9343 } 9344 9345 // Consume comma 9346 if (Parser.getTok().isNot(AsmToken::Comma)) { 9347 Error(Parser.getTok().getLoc(), "comma expected"); 9348 return false; 9349 } 9350 Parser.Lex(); // skip comma 9351 9352 // Parse spreg 9353 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9354 int SPReg = tryParseRegister(); 9355 if (SPReg == -1) { 9356 Error(SPRegLoc, "stack pointer register expected"); 9357 return false; 9358 } 9359 9360 if (SPReg != ARM::SP && SPReg != UC.getFPReg()) { 9361 Error(SPRegLoc, "register should be either $sp or the latest fp register"); 9362 return false; 9363 } 9364 9365 // Update the frame pointer register 9366 UC.saveFPReg(FPReg); 9367 9368 // Parse offset 9369 int64_t Offset = 0; 9370 if (Parser.getTok().is(AsmToken::Comma)) { 9371 Parser.Lex(); // skip comma 9372 9373 if (Parser.getTok().isNot(AsmToken::Hash) && 9374 Parser.getTok().isNot(AsmToken::Dollar)) { 9375 Error(Parser.getTok().getLoc(), "'#' expected"); 9376 return false; 9377 } 9378 Parser.Lex(); // skip hash token. 9379 9380 const MCExpr *OffsetExpr; 9381 SMLoc ExLoc = Parser.getTok().getLoc(); 9382 SMLoc EndLoc; 9383 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9384 Error(ExLoc, "malformed setfp offset"); 9385 return false; 9386 } 9387 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9388 if (!CE) { 9389 Error(ExLoc, "setfp offset must be an immediate"); 9390 return false; 9391 } 9392 9393 Offset = CE->getValue(); 9394 } 9395 9396 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9397 static_cast<unsigned>(SPReg), Offset); 9398 return false; 9399 } 9400 9401 /// parseDirective 9402 /// ::= .pad offset 9403 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9404 MCAsmParser &Parser = getParser(); 9405 // Check the ordering of unwind directives 9406 if (!UC.hasFnStart()) { 9407 Error(L, ".fnstart must precede .pad directive"); 9408 return false; 9409 } 9410 if (UC.hasHandlerData()) { 9411 Error(L, ".pad must precede .handlerdata directive"); 9412 return false; 9413 } 9414 9415 // Parse the offset 9416 if (Parser.getTok().isNot(AsmToken::Hash) && 9417 Parser.getTok().isNot(AsmToken::Dollar)) { 9418 Error(Parser.getTok().getLoc(), "'#' expected"); 9419 return false; 9420 } 9421 Parser.Lex(); // skip hash token. 9422 9423 const MCExpr *OffsetExpr; 9424 SMLoc ExLoc = Parser.getTok().getLoc(); 9425 SMLoc EndLoc; 9426 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9427 Error(ExLoc, "malformed pad offset"); 9428 return false; 9429 } 9430 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9431 if (!CE) { 9432 Error(ExLoc, "pad offset must be an immediate"); 9433 return false; 9434 } 9435 9436 getTargetStreamer().emitPad(CE->getValue()); 9437 return false; 9438 } 9439 9440 /// parseDirectiveRegSave 9441 /// ::= .save { registers } 9442 /// ::= .vsave { registers } 9443 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9444 // Check the ordering of unwind directives 9445 if (!UC.hasFnStart()) { 9446 Error(L, ".fnstart must precede .save or .vsave directives"); 9447 return false; 9448 } 9449 if (UC.hasHandlerData()) { 9450 Error(L, ".save or .vsave must precede .handlerdata directive"); 9451 return false; 9452 } 9453 9454 // RAII object to make sure parsed operands are deleted. 9455 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9456 9457 // Parse the register list 9458 if (parseRegisterList(Operands)) 9459 return false; 9460 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9461 if (!IsVector && !Op.isRegList()) { 9462 Error(L, ".save expects GPR registers"); 9463 return false; 9464 } 9465 if (IsVector && !Op.isDPRRegList()) { 9466 Error(L, ".vsave expects DPR registers"); 9467 return false; 9468 } 9469 9470 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9471 return false; 9472 } 9473 9474 /// parseDirectiveInst 9475 /// ::= .inst opcode [, ...] 9476 /// ::= .inst.n opcode [, ...] 9477 /// ::= .inst.w opcode [, ...] 9478 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9479 MCAsmParser &Parser = getParser(); 9480 int Width; 9481 9482 if (isThumb()) { 9483 switch (Suffix) { 9484 case 'n': 9485 Width = 2; 9486 break; 9487 case 'w': 9488 Width = 4; 9489 break; 9490 default: 9491 Parser.eatToEndOfStatement(); 9492 Error(Loc, "cannot determine Thumb instruction size, " 9493 "use inst.n/inst.w instead"); 9494 return false; 9495 } 9496 } else { 9497 if (Suffix) { 9498 Parser.eatToEndOfStatement(); 9499 Error(Loc, "width suffixes are invalid in ARM mode"); 9500 return false; 9501 } 9502 Width = 4; 9503 } 9504 9505 if (getLexer().is(AsmToken::EndOfStatement)) { 9506 Parser.eatToEndOfStatement(); 9507 Error(Loc, "expected expression following directive"); 9508 return false; 9509 } 9510 9511 for (;;) { 9512 const MCExpr *Expr; 9513 9514 if (getParser().parseExpression(Expr)) { 9515 Error(Loc, "expected expression"); 9516 return false; 9517 } 9518 9519 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9520 if (!Value) { 9521 Error(Loc, "expected constant expression"); 9522 return false; 9523 } 9524 9525 switch (Width) { 9526 case 2: 9527 if (Value->getValue() > 0xffff) { 9528 Error(Loc, "inst.n operand is too big, use inst.w instead"); 9529 return false; 9530 } 9531 break; 9532 case 4: 9533 if (Value->getValue() > 0xffffffff) { 9534 Error(Loc, 9535 StringRef(Suffix ? "inst.w" : "inst") + " operand is too big"); 9536 return false; 9537 } 9538 break; 9539 default: 9540 llvm_unreachable("only supported widths are 2 and 4"); 9541 } 9542 9543 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9544 9545 if (getLexer().is(AsmToken::EndOfStatement)) 9546 break; 9547 9548 if (getLexer().isNot(AsmToken::Comma)) { 9549 Error(Loc, "unexpected token in directive"); 9550 return false; 9551 } 9552 9553 Parser.Lex(); 9554 } 9555 9556 Parser.Lex(); 9557 return false; 9558 } 9559 9560 /// parseDirectiveLtorg 9561 /// ::= .ltorg | .pool 9562 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9563 getTargetStreamer().emitCurrentConstantPool(); 9564 return false; 9565 } 9566 9567 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9568 const MCSection *Section = getStreamer().getCurrentSection().first; 9569 9570 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9571 TokError("unexpected token in directive"); 9572 return false; 9573 } 9574 9575 if (!Section) { 9576 getStreamer().InitSections(false); 9577 Section = getStreamer().getCurrentSection().first; 9578 } 9579 9580 assert(Section && "must have section to emit alignment"); 9581 if (Section->UseCodeAlign()) 9582 getStreamer().EmitCodeAlignment(2); 9583 else 9584 getStreamer().EmitValueToAlignment(2); 9585 9586 return false; 9587 } 9588 9589 /// parseDirectivePersonalityIndex 9590 /// ::= .personalityindex index 9591 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9592 MCAsmParser &Parser = getParser(); 9593 bool HasExistingPersonality = UC.hasPersonality(); 9594 9595 UC.recordPersonalityIndex(L); 9596 9597 if (!UC.hasFnStart()) { 9598 Parser.eatToEndOfStatement(); 9599 Error(L, ".fnstart must precede .personalityindex directive"); 9600 return false; 9601 } 9602 if (UC.cantUnwind()) { 9603 Parser.eatToEndOfStatement(); 9604 Error(L, ".personalityindex cannot be used with .cantunwind"); 9605 UC.emitCantUnwindLocNotes(); 9606 return false; 9607 } 9608 if (UC.hasHandlerData()) { 9609 Parser.eatToEndOfStatement(); 9610 Error(L, ".personalityindex must precede .handlerdata directive"); 9611 UC.emitHandlerDataLocNotes(); 9612 return false; 9613 } 9614 if (HasExistingPersonality) { 9615 Parser.eatToEndOfStatement(); 9616 Error(L, "multiple personality directives"); 9617 UC.emitPersonalityLocNotes(); 9618 return false; 9619 } 9620 9621 const MCExpr *IndexExpression; 9622 SMLoc IndexLoc = Parser.getTok().getLoc(); 9623 if (Parser.parseExpression(IndexExpression)) { 9624 Parser.eatToEndOfStatement(); 9625 return false; 9626 } 9627 9628 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9629 if (!CE) { 9630 Parser.eatToEndOfStatement(); 9631 Error(IndexLoc, "index must be a constant number"); 9632 return false; 9633 } 9634 if (CE->getValue() < 0 || 9635 CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) { 9636 Parser.eatToEndOfStatement(); 9637 Error(IndexLoc, "personality routine index should be in range [0-3]"); 9638 return false; 9639 } 9640 9641 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9642 return false; 9643 } 9644 9645 /// parseDirectiveUnwindRaw 9646 /// ::= .unwind_raw offset, opcode [, opcode...] 9647 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9648 MCAsmParser &Parser = getParser(); 9649 if (!UC.hasFnStart()) { 9650 Parser.eatToEndOfStatement(); 9651 Error(L, ".fnstart must precede .unwind_raw directives"); 9652 return false; 9653 } 9654 9655 int64_t StackOffset; 9656 9657 const MCExpr *OffsetExpr; 9658 SMLoc OffsetLoc = getLexer().getLoc(); 9659 if (getLexer().is(AsmToken::EndOfStatement) || 9660 getParser().parseExpression(OffsetExpr)) { 9661 Error(OffsetLoc, "expected expression"); 9662 Parser.eatToEndOfStatement(); 9663 return false; 9664 } 9665 9666 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9667 if (!CE) { 9668 Error(OffsetLoc, "offset must be a constant"); 9669 Parser.eatToEndOfStatement(); 9670 return false; 9671 } 9672 9673 StackOffset = CE->getValue(); 9674 9675 if (getLexer().isNot(AsmToken::Comma)) { 9676 Error(getLexer().getLoc(), "expected comma"); 9677 Parser.eatToEndOfStatement(); 9678 return false; 9679 } 9680 Parser.Lex(); 9681 9682 SmallVector<uint8_t, 16> Opcodes; 9683 for (;;) { 9684 const MCExpr *OE; 9685 9686 SMLoc OpcodeLoc = getLexer().getLoc(); 9687 if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) { 9688 Error(OpcodeLoc, "expected opcode expression"); 9689 Parser.eatToEndOfStatement(); 9690 return false; 9691 } 9692 9693 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9694 if (!OC) { 9695 Error(OpcodeLoc, "opcode value must be a constant"); 9696 Parser.eatToEndOfStatement(); 9697 return false; 9698 } 9699 9700 const int64_t Opcode = OC->getValue(); 9701 if (Opcode & ~0xff) { 9702 Error(OpcodeLoc, "invalid opcode"); 9703 Parser.eatToEndOfStatement(); 9704 return false; 9705 } 9706 9707 Opcodes.push_back(uint8_t(Opcode)); 9708 9709 if (getLexer().is(AsmToken::EndOfStatement)) 9710 break; 9711 9712 if (getLexer().isNot(AsmToken::Comma)) { 9713 Error(getLexer().getLoc(), "unexpected token in directive"); 9714 Parser.eatToEndOfStatement(); 9715 return false; 9716 } 9717 9718 Parser.Lex(); 9719 } 9720 9721 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9722 9723 Parser.Lex(); 9724 return false; 9725 } 9726 9727 /// parseDirectiveTLSDescSeq 9728 /// ::= .tlsdescseq tls-variable 9729 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 9730 MCAsmParser &Parser = getParser(); 9731 9732 if (getLexer().isNot(AsmToken::Identifier)) { 9733 TokError("expected variable after '.tlsdescseq' directive"); 9734 Parser.eatToEndOfStatement(); 9735 return false; 9736 } 9737 9738 const MCSymbolRefExpr *SRE = 9739 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 9740 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 9741 Lex(); 9742 9743 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9744 Error(Parser.getTok().getLoc(), "unexpected token"); 9745 Parser.eatToEndOfStatement(); 9746 return false; 9747 } 9748 9749 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 9750 return false; 9751 } 9752 9753 /// parseDirectiveMovSP 9754 /// ::= .movsp reg [, #offset] 9755 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 9756 MCAsmParser &Parser = getParser(); 9757 if (!UC.hasFnStart()) { 9758 Parser.eatToEndOfStatement(); 9759 Error(L, ".fnstart must precede .movsp directives"); 9760 return false; 9761 } 9762 if (UC.getFPReg() != ARM::SP) { 9763 Parser.eatToEndOfStatement(); 9764 Error(L, "unexpected .movsp directive"); 9765 return false; 9766 } 9767 9768 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9769 int SPReg = tryParseRegister(); 9770 if (SPReg == -1) { 9771 Parser.eatToEndOfStatement(); 9772 Error(SPRegLoc, "register expected"); 9773 return false; 9774 } 9775 9776 if (SPReg == ARM::SP || SPReg == ARM::PC) { 9777 Parser.eatToEndOfStatement(); 9778 Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 9779 return false; 9780 } 9781 9782 int64_t Offset = 0; 9783 if (Parser.getTok().is(AsmToken::Comma)) { 9784 Parser.Lex(); 9785 9786 if (Parser.getTok().isNot(AsmToken::Hash)) { 9787 Error(Parser.getTok().getLoc(), "expected #constant"); 9788 Parser.eatToEndOfStatement(); 9789 return false; 9790 } 9791 Parser.Lex(); 9792 9793 const MCExpr *OffsetExpr; 9794 SMLoc OffsetLoc = Parser.getTok().getLoc(); 9795 if (Parser.parseExpression(OffsetExpr)) { 9796 Parser.eatToEndOfStatement(); 9797 Error(OffsetLoc, "malformed offset expression"); 9798 return false; 9799 } 9800 9801 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9802 if (!CE) { 9803 Parser.eatToEndOfStatement(); 9804 Error(OffsetLoc, "offset must be an immediate constant"); 9805 return false; 9806 } 9807 9808 Offset = CE->getValue(); 9809 } 9810 9811 getTargetStreamer().emitMovSP(SPReg, Offset); 9812 UC.saveFPReg(SPReg); 9813 9814 return false; 9815 } 9816 9817 /// parseDirectiveObjectArch 9818 /// ::= .object_arch name 9819 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 9820 MCAsmParser &Parser = getParser(); 9821 if (getLexer().isNot(AsmToken::Identifier)) { 9822 Error(getLexer().getLoc(), "unexpected token"); 9823 Parser.eatToEndOfStatement(); 9824 return false; 9825 } 9826 9827 StringRef Arch = Parser.getTok().getString(); 9828 SMLoc ArchLoc = Parser.getTok().getLoc(); 9829 getLexer().Lex(); 9830 9831 unsigned ID = ARM::parseArch(Arch); 9832 9833 if (ID == ARM::AK_INVALID) { 9834 Error(ArchLoc, "unknown architecture '" + Arch + "'"); 9835 Parser.eatToEndOfStatement(); 9836 return false; 9837 } 9838 9839 getTargetStreamer().emitObjectArch(ID); 9840 9841 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9842 Error(getLexer().getLoc(), "unexpected token"); 9843 Parser.eatToEndOfStatement(); 9844 } 9845 9846 return false; 9847 } 9848 9849 /// parseDirectiveAlign 9850 /// ::= .align 9851 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 9852 // NOTE: if this is not the end of the statement, fall back to the target 9853 // agnostic handling for this directive which will correctly handle this. 9854 if (getLexer().isNot(AsmToken::EndOfStatement)) 9855 return true; 9856 9857 // '.align' is target specifically handled to mean 2**2 byte alignment. 9858 if (getStreamer().getCurrentSection().first->UseCodeAlign()) 9859 getStreamer().EmitCodeAlignment(4, 0); 9860 else 9861 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 9862 9863 return false; 9864 } 9865 9866 /// parseDirectiveThumbSet 9867 /// ::= .thumb_set name, value 9868 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 9869 MCAsmParser &Parser = getParser(); 9870 9871 StringRef Name; 9872 if (Parser.parseIdentifier(Name)) { 9873 TokError("expected identifier after '.thumb_set'"); 9874 Parser.eatToEndOfStatement(); 9875 return false; 9876 } 9877 9878 if (getLexer().isNot(AsmToken::Comma)) { 9879 TokError("expected comma after name '" + Name + "'"); 9880 Parser.eatToEndOfStatement(); 9881 return false; 9882 } 9883 Lex(); 9884 9885 MCSymbol *Sym; 9886 const MCExpr *Value; 9887 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 9888 Parser, Sym, Value)) 9889 return true; 9890 9891 getTargetStreamer().emitThumbSet(Sym, Value); 9892 return false; 9893 } 9894 9895 /// Force static initialization. 9896 extern "C" void LLVMInitializeARMAsmParser() { 9897 RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget); 9898 RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget); 9899 RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget); 9900 RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget); 9901 } 9902 9903 #define GET_REGISTER_MATCHER 9904 #define GET_SUBTARGET_FEATURE_NAME 9905 #define GET_MATCHER_IMPLEMENTATION 9906 #include "ARMGenAsmMatcher.inc" 9907 9908 // FIXME: This structure should be moved inside ARMTargetParser 9909 // when we start to table-generate them, and we can use the ARM 9910 // flags below, that were generated by table-gen. 9911 static const struct { 9912 const unsigned Kind; 9913 const unsigned ArchCheck; 9914 const FeatureBitset Features; 9915 } Extensions[] = { 9916 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 9917 { ARM::AEK_CRYPTO, Feature_HasV8, 9918 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 9919 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 9920 { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 9921 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 9922 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 9923 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 9924 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 9925 // FIXME: Only available in A-class, isel not predicated 9926 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 9927 // FIXME: Unsupported extensions. 9928 { ARM::AEK_OS, Feature_None, {} }, 9929 { ARM::AEK_IWMMXT, Feature_None, {} }, 9930 { ARM::AEK_IWMMXT2, Feature_None, {} }, 9931 { ARM::AEK_MAVERICK, Feature_None, {} }, 9932 { ARM::AEK_XSCALE, Feature_None, {} }, 9933 }; 9934 9935 /// parseDirectiveArchExtension 9936 /// ::= .arch_extension [no]feature 9937 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 9938 MCAsmParser &Parser = getParser(); 9939 9940 if (getLexer().isNot(AsmToken::Identifier)) { 9941 Error(getLexer().getLoc(), "unexpected token"); 9942 Parser.eatToEndOfStatement(); 9943 return false; 9944 } 9945 9946 StringRef Name = Parser.getTok().getString(); 9947 SMLoc ExtLoc = Parser.getTok().getLoc(); 9948 getLexer().Lex(); 9949 9950 bool EnableFeature = true; 9951 if (Name.startswith_lower("no")) { 9952 EnableFeature = false; 9953 Name = Name.substr(2); 9954 } 9955 unsigned FeatureKind = ARM::parseArchExt(Name); 9956 if (FeatureKind == ARM::AEK_INVALID) 9957 Error(ExtLoc, "unknown architectural extension: " + Name); 9958 9959 for (const auto &Extension : Extensions) { 9960 if (Extension.Kind != FeatureKind) 9961 continue; 9962 9963 if (Extension.Features.none()) 9964 report_fatal_error("unsupported architectural extension: " + Name); 9965 9966 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) { 9967 Error(ExtLoc, "architectural extension '" + Name + "' is not " 9968 "allowed for the current base architecture"); 9969 return false; 9970 } 9971 9972 FeatureBitset ToggleFeatures = EnableFeature 9973 ? (~STI.getFeatureBits() & Extension.Features) 9974 : ( STI.getFeatureBits() & Extension.Features); 9975 9976 uint64_t Features = 9977 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 9978 setAvailableFeatures(Features); 9979 return false; 9980 } 9981 9982 Error(ExtLoc, "unknown architectural extension: " + Name); 9983 Parser.eatToEndOfStatement(); 9984 return false; 9985 } 9986 9987 // Define this matcher function after the auto-generated include so we 9988 // have the match class enum definitions. 9989 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 9990 unsigned Kind) { 9991 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 9992 // If the kind is a token for a literal immediate, check if our asm 9993 // operand matches. This is for InstAliases which have a fixed-value 9994 // immediate in the syntax. 9995 switch (Kind) { 9996 default: break; 9997 case MCK__35_0: 9998 if (Op.isImm()) 9999 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10000 if (CE->getValue() == 0) 10001 return Match_Success; 10002 break; 10003 case MCK_ModImm: 10004 if (Op.isImm()) { 10005 const MCExpr *SOExpr = Op.getImm(); 10006 int64_t Value; 10007 if (!SOExpr->evaluateAsAbsolute(Value)) 10008 return Match_Success; 10009 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10010 "expression value must be representable in 32 bits"); 10011 } 10012 break; 10013 case MCK_rGPR: 10014 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10015 return Match_Success; 10016 break; 10017 case MCK_GPRPair: 10018 if (Op.isReg() && 10019 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10020 return Match_Success; 10021 break; 10022 } 10023 return Match_InvalidOperand; 10024 } 10025