1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ARMFeatures.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMBaseInfo.h" 13 #include "MCTargetDesc/ARMMCExpr.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/MC/MCAsmInfo.h" 21 #include "llvm/MC/MCAssembler.h" 22 #include "llvm/MC/MCContext.h" 23 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 24 #include "llvm/MC/MCELFStreamer.h" 25 #include "llvm/MC/MCExpr.h" 26 #include "llvm/MC/MCInst.h" 27 #include "llvm/MC/MCInstrDesc.h" 28 #include "llvm/MC/MCInstrInfo.h" 29 #include "llvm/MC/MCObjectFileInfo.h" 30 #include "llvm/MC/MCParser/MCAsmLexer.h" 31 #include "llvm/MC/MCParser/MCAsmParser.h" 32 #include "llvm/MC/MCParser/MCAsmParserUtils.h" 33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 34 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 35 #include "llvm/MC/MCRegisterInfo.h" 36 #include "llvm/MC/MCSection.h" 37 #include "llvm/MC/MCStreamer.h" 38 #include "llvm/MC/MCSubtargetInfo.h" 39 #include "llvm/MC/MCSymbol.h" 40 #include "llvm/Support/ARMBuildAttributes.h" 41 #include "llvm/Support/ARMEHABI.h" 42 #include "llvm/Support/COFF.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ELF.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SourceMgr.h" 47 #include "llvm/Support/TargetParser.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 51 using namespace llvm; 52 53 namespace { 54 55 class ARMOperand; 56 57 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane }; 58 59 class UnwindContext { 60 MCAsmParser &Parser; 61 62 typedef SmallVector<SMLoc, 4> Locs; 63 64 Locs FnStartLocs; 65 Locs CantUnwindLocs; 66 Locs PersonalityLocs; 67 Locs PersonalityIndexLocs; 68 Locs HandlerDataLocs; 69 int FPReg; 70 71 public: 72 UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {} 73 74 bool hasFnStart() const { return !FnStartLocs.empty(); } 75 bool cantUnwind() const { return !CantUnwindLocs.empty(); } 76 bool hasHandlerData() const { return !HandlerDataLocs.empty(); } 77 bool hasPersonality() const { 78 return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty()); 79 } 80 81 void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); } 82 void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); } 83 void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); } 84 void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); } 85 void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); } 86 87 void saveFPReg(int Reg) { FPReg = Reg; } 88 int getFPReg() const { return FPReg; } 89 90 void emitFnStartLocNotes() const { 91 for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end(); 92 FI != FE; ++FI) 93 Parser.Note(*FI, ".fnstart was specified here"); 94 } 95 void emitCantUnwindLocNotes() const { 96 for (Locs::const_iterator UI = CantUnwindLocs.begin(), 97 UE = CantUnwindLocs.end(); UI != UE; ++UI) 98 Parser.Note(*UI, ".cantunwind was specified here"); 99 } 100 void emitHandlerDataLocNotes() const { 101 for (Locs::const_iterator HI = HandlerDataLocs.begin(), 102 HE = HandlerDataLocs.end(); HI != HE; ++HI) 103 Parser.Note(*HI, ".handlerdata was specified here"); 104 } 105 void emitPersonalityLocNotes() const { 106 for (Locs::const_iterator PI = PersonalityLocs.begin(), 107 PE = PersonalityLocs.end(), 108 PII = PersonalityIndexLocs.begin(), 109 PIE = PersonalityIndexLocs.end(); 110 PI != PE || PII != PIE;) { 111 if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer())) 112 Parser.Note(*PI++, ".personality was specified here"); 113 else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer())) 114 Parser.Note(*PII++, ".personalityindex was specified here"); 115 else 116 llvm_unreachable(".personality and .personalityindex cannot be " 117 "at the same location"); 118 } 119 } 120 121 void reset() { 122 FnStartLocs = Locs(); 123 CantUnwindLocs = Locs(); 124 PersonalityLocs = Locs(); 125 HandlerDataLocs = Locs(); 126 PersonalityIndexLocs = Locs(); 127 FPReg = ARM::SP; 128 } 129 }; 130 131 class ARMAsmParser : public MCTargetAsmParser { 132 const MCInstrInfo &MII; 133 const MCRegisterInfo *MRI; 134 UnwindContext UC; 135 136 ARMTargetStreamer &getTargetStreamer() { 137 assert(getParser().getStreamer().getTargetStreamer() && 138 "do not have a target streamer"); 139 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 140 return static_cast<ARMTargetStreamer &>(TS); 141 } 142 143 // Map of register aliases registers via the .req directive. 144 StringMap<unsigned> RegisterReqs; 145 146 bool NextSymbolIsThumb; 147 148 struct { 149 ARMCC::CondCodes Cond; // Condition for IT block. 150 unsigned Mask:4; // Condition mask for instructions. 151 // Starting at first 1 (from lsb). 152 // '1' condition as indicated in IT. 153 // '0' inverse of condition (else). 154 // Count of instructions in IT block is 155 // 4 - trailingzeroes(mask) 156 157 bool FirstCond; // Explicit flag for when we're parsing the 158 // First instruction in the IT block. It's 159 // implied in the mask, so needs special 160 // handling. 161 162 unsigned CurPosition; // Current position in parsing of IT 163 // block. In range [0,3]. Initialized 164 // according to count of instructions in block. 165 // ~0U if no active IT block. 166 } ITState; 167 bool inITBlock() { return ITState.CurPosition != ~0U; } 168 bool lastInITBlock() { 169 return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask); 170 } 171 void forwardITPosition() { 172 if (!inITBlock()) return; 173 // Move to the next instruction in the IT block, if there is one. If not, 174 // mark the block as done. 175 unsigned TZ = countTrailingZeros(ITState.Mask); 176 if (++ITState.CurPosition == 5 - TZ) 177 ITState.CurPosition = ~0U; // Done with the IT block after this. 178 } 179 180 void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) { 181 return getParser().Note(L, Msg, Ranges); 182 } 183 bool Warning(SMLoc L, const Twine &Msg, 184 ArrayRef<SMRange> Ranges = None) { 185 return getParser().Warning(L, Msg, Ranges); 186 } 187 bool Error(SMLoc L, const Twine &Msg, 188 ArrayRef<SMRange> Ranges = None) { 189 return getParser().Error(L, Msg, Ranges); 190 } 191 192 bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands, 193 unsigned ListNo, bool IsARPop = false); 194 bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands, 195 unsigned ListNo); 196 197 int tryParseRegister(); 198 bool tryParseRegisterWithWriteBack(OperandVector &); 199 int tryParseShiftRegister(OperandVector &); 200 bool parseRegisterList(OperandVector &); 201 bool parseMemory(OperandVector &); 202 bool parseOperand(OperandVector &, StringRef Mnemonic); 203 bool parsePrefix(ARMMCExpr::VariantKind &RefKind); 204 bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType, 205 unsigned &ShiftAmount); 206 bool parseLiteralValues(unsigned Size, SMLoc L); 207 bool parseDirectiveThumb(SMLoc L); 208 bool parseDirectiveARM(SMLoc L); 209 bool parseDirectiveThumbFunc(SMLoc L); 210 bool parseDirectiveCode(SMLoc L); 211 bool parseDirectiveSyntax(SMLoc L); 212 bool parseDirectiveReq(StringRef Name, SMLoc L); 213 bool parseDirectiveUnreq(SMLoc L); 214 bool parseDirectiveArch(SMLoc L); 215 bool parseDirectiveEabiAttr(SMLoc L); 216 bool parseDirectiveCPU(SMLoc L); 217 bool parseDirectiveFPU(SMLoc L); 218 bool parseDirectiveFnStart(SMLoc L); 219 bool parseDirectiveFnEnd(SMLoc L); 220 bool parseDirectiveCantUnwind(SMLoc L); 221 bool parseDirectivePersonality(SMLoc L); 222 bool parseDirectiveHandlerData(SMLoc L); 223 bool parseDirectiveSetFP(SMLoc L); 224 bool parseDirectivePad(SMLoc L); 225 bool parseDirectiveRegSave(SMLoc L, bool IsVector); 226 bool parseDirectiveInst(SMLoc L, char Suffix = '\0'); 227 bool parseDirectiveLtorg(SMLoc L); 228 bool parseDirectiveEven(SMLoc L); 229 bool parseDirectivePersonalityIndex(SMLoc L); 230 bool parseDirectiveUnwindRaw(SMLoc L); 231 bool parseDirectiveTLSDescSeq(SMLoc L); 232 bool parseDirectiveMovSP(SMLoc L); 233 bool parseDirectiveObjectArch(SMLoc L); 234 bool parseDirectiveArchExtension(SMLoc L); 235 bool parseDirectiveAlign(SMLoc L); 236 bool parseDirectiveThumbSet(SMLoc L); 237 238 StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode, 239 bool &CarrySetting, unsigned &ProcessorIMod, 240 StringRef &ITMask); 241 void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 242 bool &CanAcceptCarrySet, 243 bool &CanAcceptPredicationCode); 244 245 void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting, 246 OperandVector &Operands); 247 bool isThumb() const { 248 // FIXME: Can tablegen auto-generate this? 249 return getSTI().getFeatureBits()[ARM::ModeThumb]; 250 } 251 bool isThumbOne() const { 252 return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2]; 253 } 254 bool isThumbTwo() const { 255 return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2]; 256 } 257 bool hasThumb() const { 258 return getSTI().getFeatureBits()[ARM::HasV4TOps]; 259 } 260 bool hasThumb2() const { 261 return getSTI().getFeatureBits()[ARM::FeatureThumb2]; 262 } 263 bool hasV6Ops() const { 264 return getSTI().getFeatureBits()[ARM::HasV6Ops]; 265 } 266 bool hasV6T2Ops() const { 267 return getSTI().getFeatureBits()[ARM::HasV6T2Ops]; 268 } 269 bool hasV6MOps() const { 270 return getSTI().getFeatureBits()[ARM::HasV6MOps]; 271 } 272 bool hasV7Ops() const { 273 return getSTI().getFeatureBits()[ARM::HasV7Ops]; 274 } 275 bool hasV8Ops() const { 276 return getSTI().getFeatureBits()[ARM::HasV8Ops]; 277 } 278 bool hasV8MBaseline() const { 279 return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps]; 280 } 281 bool hasV8MMainline() const { 282 return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps]; 283 } 284 bool has8MSecExt() const { 285 return getSTI().getFeatureBits()[ARM::Feature8MSecExt]; 286 } 287 bool hasARM() const { 288 return !getSTI().getFeatureBits()[ARM::FeatureNoARM]; 289 } 290 bool hasDSP() const { 291 return getSTI().getFeatureBits()[ARM::FeatureDSP]; 292 } 293 bool hasD16() const { 294 return getSTI().getFeatureBits()[ARM::FeatureD16]; 295 } 296 bool hasV8_1aOps() const { 297 return getSTI().getFeatureBits()[ARM::HasV8_1aOps]; 298 } 299 300 void SwitchMode() { 301 MCSubtargetInfo &STI = copySTI(); 302 uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb)); 303 setAvailableFeatures(FB); 304 } 305 void FixModeAfterArchChange(bool WasThumb, SMLoc Loc); 306 bool isMClass() const { 307 return getSTI().getFeatureBits()[ARM::FeatureMClass]; 308 } 309 310 /// @name Auto-generated Match Functions 311 /// { 312 313 #define GET_ASSEMBLER_HEADER 314 #include "ARMGenAsmMatcher.inc" 315 316 /// } 317 318 OperandMatchResultTy parseITCondCode(OperandVector &); 319 OperandMatchResultTy parseCoprocNumOperand(OperandVector &); 320 OperandMatchResultTy parseCoprocRegOperand(OperandVector &); 321 OperandMatchResultTy parseCoprocOptionOperand(OperandVector &); 322 OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &); 323 OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &); 324 OperandMatchResultTy parseProcIFlagsOperand(OperandVector &); 325 OperandMatchResultTy parseMSRMaskOperand(OperandVector &); 326 OperandMatchResultTy parseBankedRegOperand(OperandVector &); 327 OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low, 328 int High); 329 OperandMatchResultTy parsePKHLSLImm(OperandVector &O) { 330 return parsePKHImm(O, "lsl", 0, 31); 331 } 332 OperandMatchResultTy parsePKHASRImm(OperandVector &O) { 333 return parsePKHImm(O, "asr", 1, 32); 334 } 335 OperandMatchResultTy parseSetEndImm(OperandVector &); 336 OperandMatchResultTy parseShifterImm(OperandVector &); 337 OperandMatchResultTy parseRotImm(OperandVector &); 338 OperandMatchResultTy parseModImm(OperandVector &); 339 OperandMatchResultTy parseBitfield(OperandVector &); 340 OperandMatchResultTy parsePostIdxReg(OperandVector &); 341 OperandMatchResultTy parseAM3Offset(OperandVector &); 342 OperandMatchResultTy parseFPImm(OperandVector &); 343 OperandMatchResultTy parseVectorList(OperandVector &); 344 OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, 345 SMLoc &EndLoc); 346 347 // Asm Match Converter Methods 348 void cvtThumbMultiply(MCInst &Inst, const OperandVector &); 349 void cvtThumbBranches(MCInst &Inst, const OperandVector &); 350 351 bool validateInstruction(MCInst &Inst, const OperandVector &Ops); 352 bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out); 353 bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands); 354 bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands); 355 356 public: 357 enum ARMMatchResultTy { 358 Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY, 359 Match_RequiresNotITBlock, 360 Match_RequiresV6, 361 Match_RequiresThumb2, 362 Match_RequiresV8, 363 #define GET_OPERAND_DIAGNOSTIC_TYPES 364 #include "ARMGenAsmMatcher.inc" 365 366 }; 367 368 ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser, 369 const MCInstrInfo &MII, const MCTargetOptions &Options) 370 : MCTargetAsmParser(Options, STI), MII(MII), UC(Parser) { 371 MCAsmParserExtension::Initialize(Parser); 372 373 // Cache the MCRegisterInfo. 374 MRI = getContext().getRegisterInfo(); 375 376 // Initialize the set of available features. 377 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 378 379 // Not in an ITBlock to start with. 380 ITState.CurPosition = ~0U; 381 382 NextSymbolIsThumb = false; 383 } 384 385 // Implementation of the MCTargetAsmParser interface: 386 bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; 387 bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 388 SMLoc NameLoc, OperandVector &Operands) override; 389 bool ParseDirective(AsmToken DirectiveID) override; 390 391 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 392 unsigned Kind) override; 393 unsigned checkTargetMatchPredicate(MCInst &Inst) override; 394 395 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 396 OperandVector &Operands, MCStreamer &Out, 397 uint64_t &ErrorInfo, 398 bool MatchingInlineAsm) override; 399 void onLabelParsed(MCSymbol *Symbol) override; 400 }; 401 } // end anonymous namespace 402 403 namespace { 404 405 /// ARMOperand - Instances of this class represent a parsed ARM machine 406 /// operand. 407 class ARMOperand : public MCParsedAsmOperand { 408 enum KindTy { 409 k_CondCode, 410 k_CCOut, 411 k_ITCondMask, 412 k_CoprocNum, 413 k_CoprocReg, 414 k_CoprocOption, 415 k_Immediate, 416 k_MemBarrierOpt, 417 k_InstSyncBarrierOpt, 418 k_Memory, 419 k_PostIndexRegister, 420 k_MSRMask, 421 k_BankedReg, 422 k_ProcIFlags, 423 k_VectorIndex, 424 k_Register, 425 k_RegisterList, 426 k_DPRRegisterList, 427 k_SPRRegisterList, 428 k_VectorList, 429 k_VectorListAllLanes, 430 k_VectorListIndexed, 431 k_ShiftedRegister, 432 k_ShiftedImmediate, 433 k_ShifterImmediate, 434 k_RotateImmediate, 435 k_ModifiedImmediate, 436 k_ConstantPoolImmediate, 437 k_BitfieldDescriptor, 438 k_Token, 439 } Kind; 440 441 SMLoc StartLoc, EndLoc, AlignmentLoc; 442 SmallVector<unsigned, 8> Registers; 443 444 struct CCOp { 445 ARMCC::CondCodes Val; 446 }; 447 448 struct CopOp { 449 unsigned Val; 450 }; 451 452 struct CoprocOptionOp { 453 unsigned Val; 454 }; 455 456 struct ITMaskOp { 457 unsigned Mask:4; 458 }; 459 460 struct MBOptOp { 461 ARM_MB::MemBOpt Val; 462 }; 463 464 struct ISBOptOp { 465 ARM_ISB::InstSyncBOpt Val; 466 }; 467 468 struct IFlagsOp { 469 ARM_PROC::IFlags Val; 470 }; 471 472 struct MMaskOp { 473 unsigned Val; 474 }; 475 476 struct BankedRegOp { 477 unsigned Val; 478 }; 479 480 struct TokOp { 481 const char *Data; 482 unsigned Length; 483 }; 484 485 struct RegOp { 486 unsigned RegNum; 487 }; 488 489 // A vector register list is a sequential list of 1 to 4 registers. 490 struct VectorListOp { 491 unsigned RegNum; 492 unsigned Count; 493 unsigned LaneIndex; 494 bool isDoubleSpaced; 495 }; 496 497 struct VectorIndexOp { 498 unsigned Val; 499 }; 500 501 struct ImmOp { 502 const MCExpr *Val; 503 }; 504 505 /// Combined record for all forms of ARM address expressions. 506 struct MemoryOp { 507 unsigned BaseRegNum; 508 // Offset is in OffsetReg or OffsetImm. If both are zero, no offset 509 // was specified. 510 const MCConstantExpr *OffsetImm; // Offset immediate value 511 unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL 512 ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg 513 unsigned ShiftImm; // shift for OffsetReg. 514 unsigned Alignment; // 0 = no alignment specified 515 // n = alignment in bytes (2, 4, 8, 16, or 32) 516 unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit) 517 }; 518 519 struct PostIdxRegOp { 520 unsigned RegNum; 521 bool isAdd; 522 ARM_AM::ShiftOpc ShiftTy; 523 unsigned ShiftImm; 524 }; 525 526 struct ShifterImmOp { 527 bool isASR; 528 unsigned Imm; 529 }; 530 531 struct RegShiftedRegOp { 532 ARM_AM::ShiftOpc ShiftTy; 533 unsigned SrcReg; 534 unsigned ShiftReg; 535 unsigned ShiftImm; 536 }; 537 538 struct RegShiftedImmOp { 539 ARM_AM::ShiftOpc ShiftTy; 540 unsigned SrcReg; 541 unsigned ShiftImm; 542 }; 543 544 struct RotImmOp { 545 unsigned Imm; 546 }; 547 548 struct ModImmOp { 549 unsigned Bits; 550 unsigned Rot; 551 }; 552 553 struct BitfieldOp { 554 unsigned LSB; 555 unsigned Width; 556 }; 557 558 union { 559 struct CCOp CC; 560 struct CopOp Cop; 561 struct CoprocOptionOp CoprocOption; 562 struct MBOptOp MBOpt; 563 struct ISBOptOp ISBOpt; 564 struct ITMaskOp ITMask; 565 struct IFlagsOp IFlags; 566 struct MMaskOp MMask; 567 struct BankedRegOp BankedReg; 568 struct TokOp Tok; 569 struct RegOp Reg; 570 struct VectorListOp VectorList; 571 struct VectorIndexOp VectorIndex; 572 struct ImmOp Imm; 573 struct MemoryOp Memory; 574 struct PostIdxRegOp PostIdxReg; 575 struct ShifterImmOp ShifterImm; 576 struct RegShiftedRegOp RegShiftedReg; 577 struct RegShiftedImmOp RegShiftedImm; 578 struct RotImmOp RotImm; 579 struct ModImmOp ModImm; 580 struct BitfieldOp Bitfield; 581 }; 582 583 public: 584 ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} 585 586 /// getStartLoc - Get the location of the first token of this operand. 587 SMLoc getStartLoc() const override { return StartLoc; } 588 /// getEndLoc - Get the location of the last token of this operand. 589 SMLoc getEndLoc() const override { return EndLoc; } 590 /// getLocRange - Get the range between the first and last token of this 591 /// operand. 592 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 593 594 /// getAlignmentLoc - Get the location of the Alignment token of this operand. 595 SMLoc getAlignmentLoc() const { 596 assert(Kind == k_Memory && "Invalid access!"); 597 return AlignmentLoc; 598 } 599 600 ARMCC::CondCodes getCondCode() const { 601 assert(Kind == k_CondCode && "Invalid access!"); 602 return CC.Val; 603 } 604 605 unsigned getCoproc() const { 606 assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!"); 607 return Cop.Val; 608 } 609 610 StringRef getToken() const { 611 assert(Kind == k_Token && "Invalid access!"); 612 return StringRef(Tok.Data, Tok.Length); 613 } 614 615 unsigned getReg() const override { 616 assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!"); 617 return Reg.RegNum; 618 } 619 620 const SmallVectorImpl<unsigned> &getRegList() const { 621 assert((Kind == k_RegisterList || Kind == k_DPRRegisterList || 622 Kind == k_SPRRegisterList) && "Invalid access!"); 623 return Registers; 624 } 625 626 const MCExpr *getImm() const { 627 assert(isImm() && "Invalid access!"); 628 return Imm.Val; 629 } 630 631 const MCExpr *getConstantPoolImm() const { 632 assert(isConstantPoolImm() && "Invalid access!"); 633 return Imm.Val; 634 } 635 636 unsigned getVectorIndex() const { 637 assert(Kind == k_VectorIndex && "Invalid access!"); 638 return VectorIndex.Val; 639 } 640 641 ARM_MB::MemBOpt getMemBarrierOpt() const { 642 assert(Kind == k_MemBarrierOpt && "Invalid access!"); 643 return MBOpt.Val; 644 } 645 646 ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const { 647 assert(Kind == k_InstSyncBarrierOpt && "Invalid access!"); 648 return ISBOpt.Val; 649 } 650 651 ARM_PROC::IFlags getProcIFlags() const { 652 assert(Kind == k_ProcIFlags && "Invalid access!"); 653 return IFlags.Val; 654 } 655 656 unsigned getMSRMask() const { 657 assert(Kind == k_MSRMask && "Invalid access!"); 658 return MMask.Val; 659 } 660 661 unsigned getBankedReg() const { 662 assert(Kind == k_BankedReg && "Invalid access!"); 663 return BankedReg.Val; 664 } 665 666 bool isCoprocNum() const { return Kind == k_CoprocNum; } 667 bool isCoprocReg() const { return Kind == k_CoprocReg; } 668 bool isCoprocOption() const { return Kind == k_CoprocOption; } 669 bool isCondCode() const { return Kind == k_CondCode; } 670 bool isCCOut() const { return Kind == k_CCOut; } 671 bool isITMask() const { return Kind == k_ITCondMask; } 672 bool isITCondCode() const { return Kind == k_CondCode; } 673 bool isImm() const override { 674 return Kind == k_Immediate; 675 } 676 // checks whether this operand is an unsigned offset which fits is a field 677 // of specified width and scaled by a specific number of bits 678 template<unsigned width, unsigned scale> 679 bool isUnsignedOffset() const { 680 if (!isImm()) return false; 681 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 682 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 683 int64_t Val = CE->getValue(); 684 int64_t Align = 1LL << scale; 685 int64_t Max = Align * ((1LL << width) - 1); 686 return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max); 687 } 688 return false; 689 } 690 // checks whether this operand is an signed offset which fits is a field 691 // of specified width and scaled by a specific number of bits 692 template<unsigned width, unsigned scale> 693 bool isSignedOffset() const { 694 if (!isImm()) return false; 695 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 696 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) { 697 int64_t Val = CE->getValue(); 698 int64_t Align = 1LL << scale; 699 int64_t Max = Align * ((1LL << (width-1)) - 1); 700 int64_t Min = -Align * (1LL << (width-1)); 701 return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max); 702 } 703 return false; 704 } 705 706 // checks whether this operand is a memory operand computed as an offset 707 // applied to PC. the offset may have 8 bits of magnitude and is represented 708 // with two bits of shift. textually it may be either [pc, #imm], #imm or 709 // relocable expression... 710 bool isThumbMemPC() const { 711 int64_t Val = 0; 712 if (isImm()) { 713 if (isa<MCSymbolRefExpr>(Imm.Val)) return true; 714 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val); 715 if (!CE) return false; 716 Val = CE->getValue(); 717 } 718 else if (isMem()) { 719 if(!Memory.OffsetImm || Memory.OffsetRegNum) return false; 720 if(Memory.BaseRegNum != ARM::PC) return false; 721 Val = Memory.OffsetImm->getValue(); 722 } 723 else return false; 724 return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020); 725 } 726 bool isFPImm() const { 727 if (!isImm()) return false; 728 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 729 if (!CE) return false; 730 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 731 return Val != -1; 732 } 733 bool isFBits16() const { 734 if (!isImm()) return false; 735 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 736 if (!CE) return false; 737 int64_t Value = CE->getValue(); 738 return Value >= 0 && Value <= 16; 739 } 740 bool isFBits32() const { 741 if (!isImm()) return false; 742 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 743 if (!CE) return false; 744 int64_t Value = CE->getValue(); 745 return Value >= 1 && Value <= 32; 746 } 747 bool isImm8s4() const { 748 if (!isImm()) return false; 749 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 750 if (!CE) return false; 751 int64_t Value = CE->getValue(); 752 return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020; 753 } 754 bool isImm0_1020s4() const { 755 if (!isImm()) return false; 756 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 757 if (!CE) return false; 758 int64_t Value = CE->getValue(); 759 return ((Value & 3) == 0) && Value >= 0 && Value <= 1020; 760 } 761 bool isImm0_508s4() const { 762 if (!isImm()) return false; 763 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 764 if (!CE) return false; 765 int64_t Value = CE->getValue(); 766 return ((Value & 3) == 0) && Value >= 0 && Value <= 508; 767 } 768 bool isImm0_508s4Neg() const { 769 if (!isImm()) return false; 770 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 771 if (!CE) return false; 772 int64_t Value = -CE->getValue(); 773 // explicitly exclude zero. we want that to use the normal 0_508 version. 774 return ((Value & 3) == 0) && Value > 0 && Value <= 508; 775 } 776 bool isImm0_239() const { 777 if (!isImm()) return false; 778 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 779 if (!CE) return false; 780 int64_t Value = CE->getValue(); 781 return Value >= 0 && Value < 240; 782 } 783 bool isImm0_255() const { 784 if (!isImm()) return false; 785 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 786 if (!CE) return false; 787 int64_t Value = CE->getValue(); 788 return Value >= 0 && Value < 256; 789 } 790 bool isImm0_4095() const { 791 if (!isImm()) return false; 792 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 793 if (!CE) return false; 794 int64_t Value = CE->getValue(); 795 return Value >= 0 && Value < 4096; 796 } 797 bool isImm0_4095Neg() const { 798 if (!isImm()) return false; 799 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 800 if (!CE) return false; 801 int64_t Value = -CE->getValue(); 802 return Value > 0 && Value < 4096; 803 } 804 bool isImm0_1() const { 805 if (!isImm()) return false; 806 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 807 if (!CE) return false; 808 int64_t Value = CE->getValue(); 809 return Value >= 0 && Value < 2; 810 } 811 bool isImm0_3() const { 812 if (!isImm()) return false; 813 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 814 if (!CE) return false; 815 int64_t Value = CE->getValue(); 816 return Value >= 0 && Value < 4; 817 } 818 bool isImm0_7() const { 819 if (!isImm()) return false; 820 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 821 if (!CE) return false; 822 int64_t Value = CE->getValue(); 823 return Value >= 0 && Value < 8; 824 } 825 bool isImm0_15() const { 826 if (!isImm()) return false; 827 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 828 if (!CE) return false; 829 int64_t Value = CE->getValue(); 830 return Value >= 0 && Value < 16; 831 } 832 bool isImm0_31() const { 833 if (!isImm()) return false; 834 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 835 if (!CE) return false; 836 int64_t Value = CE->getValue(); 837 return Value >= 0 && Value < 32; 838 } 839 bool isImm0_63() const { 840 if (!isImm()) return false; 841 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 842 if (!CE) return false; 843 int64_t Value = CE->getValue(); 844 return Value >= 0 && Value < 64; 845 } 846 bool isImm8() const { 847 if (!isImm()) return false; 848 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 849 if (!CE) return false; 850 int64_t Value = CE->getValue(); 851 return Value == 8; 852 } 853 bool isImm16() const { 854 if (!isImm()) return false; 855 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 856 if (!CE) return false; 857 int64_t Value = CE->getValue(); 858 return Value == 16; 859 } 860 bool isImm32() const { 861 if (!isImm()) return false; 862 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 863 if (!CE) return false; 864 int64_t Value = CE->getValue(); 865 return Value == 32; 866 } 867 bool isShrImm8() const { 868 if (!isImm()) return false; 869 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 870 if (!CE) return false; 871 int64_t Value = CE->getValue(); 872 return Value > 0 && Value <= 8; 873 } 874 bool isShrImm16() const { 875 if (!isImm()) return false; 876 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 877 if (!CE) return false; 878 int64_t Value = CE->getValue(); 879 return Value > 0 && Value <= 16; 880 } 881 bool isShrImm32() const { 882 if (!isImm()) return false; 883 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 884 if (!CE) return false; 885 int64_t Value = CE->getValue(); 886 return Value > 0 && Value <= 32; 887 } 888 bool isShrImm64() const { 889 if (!isImm()) return false; 890 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 891 if (!CE) return false; 892 int64_t Value = CE->getValue(); 893 return Value > 0 && Value <= 64; 894 } 895 bool isImm1_7() const { 896 if (!isImm()) return false; 897 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 898 if (!CE) return false; 899 int64_t Value = CE->getValue(); 900 return Value > 0 && Value < 8; 901 } 902 bool isImm1_15() const { 903 if (!isImm()) return false; 904 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 905 if (!CE) return false; 906 int64_t Value = CE->getValue(); 907 return Value > 0 && Value < 16; 908 } 909 bool isImm1_31() const { 910 if (!isImm()) return false; 911 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 912 if (!CE) return false; 913 int64_t Value = CE->getValue(); 914 return Value > 0 && Value < 32; 915 } 916 bool isImm1_16() const { 917 if (!isImm()) return false; 918 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 919 if (!CE) return false; 920 int64_t Value = CE->getValue(); 921 return Value > 0 && Value < 17; 922 } 923 bool isImm1_32() const { 924 if (!isImm()) return false; 925 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 926 if (!CE) return false; 927 int64_t Value = CE->getValue(); 928 return Value > 0 && Value < 33; 929 } 930 bool isImm0_32() const { 931 if (!isImm()) return false; 932 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 933 if (!CE) return false; 934 int64_t Value = CE->getValue(); 935 return Value >= 0 && Value < 33; 936 } 937 bool isImm0_65535() const { 938 if (!isImm()) return false; 939 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 940 if (!CE) return false; 941 int64_t Value = CE->getValue(); 942 return Value >= 0 && Value < 65536; 943 } 944 bool isImm256_65535Expr() const { 945 if (!isImm()) return false; 946 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 947 // If it's not a constant expression, it'll generate a fixup and be 948 // handled later. 949 if (!CE) return true; 950 int64_t Value = CE->getValue(); 951 return Value >= 256 && Value < 65536; 952 } 953 bool isImm0_65535Expr() const { 954 if (!isImm()) return false; 955 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 956 // If it's not a constant expression, it'll generate a fixup and be 957 // handled later. 958 if (!CE) return true; 959 int64_t Value = CE->getValue(); 960 return Value >= 0 && Value < 65536; 961 } 962 bool isImm24bit() const { 963 if (!isImm()) return false; 964 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 965 if (!CE) return false; 966 int64_t Value = CE->getValue(); 967 return Value >= 0 && Value <= 0xffffff; 968 } 969 bool isImmThumbSR() const { 970 if (!isImm()) return false; 971 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 972 if (!CE) return false; 973 int64_t Value = CE->getValue(); 974 return Value > 0 && Value < 33; 975 } 976 bool isPKHLSLImm() const { 977 if (!isImm()) return false; 978 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 979 if (!CE) return false; 980 int64_t Value = CE->getValue(); 981 return Value >= 0 && Value < 32; 982 } 983 bool isPKHASRImm() const { 984 if (!isImm()) return false; 985 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 986 if (!CE) return false; 987 int64_t Value = CE->getValue(); 988 return Value > 0 && Value <= 32; 989 } 990 bool isAdrLabel() const { 991 // If we have an immediate that's not a constant, treat it as a label 992 // reference needing a fixup. 993 if (isImm() && !isa<MCConstantExpr>(getImm())) 994 return true; 995 996 // If it is a constant, it must fit into a modified immediate encoding. 997 if (!isImm()) return false; 998 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 999 if (!CE) return false; 1000 int64_t Value = CE->getValue(); 1001 return (ARM_AM::getSOImmVal(Value) != -1 || 1002 ARM_AM::getSOImmVal(-Value) != -1); 1003 } 1004 bool isT2SOImm() const { 1005 if (!isImm()) return false; 1006 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1007 if (!CE) return false; 1008 int64_t Value = CE->getValue(); 1009 return ARM_AM::getT2SOImmVal(Value) != -1; 1010 } 1011 bool isT2SOImmNot() const { 1012 if (!isImm()) return false; 1013 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1014 if (!CE) return false; 1015 int64_t Value = CE->getValue(); 1016 return ARM_AM::getT2SOImmVal(Value) == -1 && 1017 ARM_AM::getT2SOImmVal(~Value) != -1; 1018 } 1019 bool isT2SOImmNeg() const { 1020 if (!isImm()) return false; 1021 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1022 if (!CE) return false; 1023 int64_t Value = CE->getValue(); 1024 // Only use this when not representable as a plain so_imm. 1025 return ARM_AM::getT2SOImmVal(Value) == -1 && 1026 ARM_AM::getT2SOImmVal(-Value) != -1; 1027 } 1028 bool isSetEndImm() const { 1029 if (!isImm()) return false; 1030 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1031 if (!CE) return false; 1032 int64_t Value = CE->getValue(); 1033 return Value == 1 || Value == 0; 1034 } 1035 bool isReg() const override { return Kind == k_Register; } 1036 bool isRegList() const { return Kind == k_RegisterList; } 1037 bool isDPRRegList() const { return Kind == k_DPRRegisterList; } 1038 bool isSPRRegList() const { return Kind == k_SPRRegisterList; } 1039 bool isToken() const override { return Kind == k_Token; } 1040 bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; } 1041 bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; } 1042 bool isMem() const override { return Kind == k_Memory; } 1043 bool isShifterImm() const { return Kind == k_ShifterImmediate; } 1044 bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; } 1045 bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; } 1046 bool isRotImm() const { return Kind == k_RotateImmediate; } 1047 bool isModImm() const { return Kind == k_ModifiedImmediate; } 1048 bool isModImmNot() const { 1049 if (!isImm()) return false; 1050 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1051 if (!CE) return false; 1052 int64_t Value = CE->getValue(); 1053 return ARM_AM::getSOImmVal(~Value) != -1; 1054 } 1055 bool isModImmNeg() const { 1056 if (!isImm()) return false; 1057 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1058 if (!CE) return false; 1059 int64_t Value = CE->getValue(); 1060 return ARM_AM::getSOImmVal(Value) == -1 && 1061 ARM_AM::getSOImmVal(-Value) != -1; 1062 } 1063 bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; } 1064 bool isBitfield() const { return Kind == k_BitfieldDescriptor; } 1065 bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; } 1066 bool isPostIdxReg() const { 1067 return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift; 1068 } 1069 bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const { 1070 if (!isMem()) 1071 return false; 1072 // No offset of any kind. 1073 return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr && 1074 (alignOK || Memory.Alignment == Alignment); 1075 } 1076 bool isMemPCRelImm12() const { 1077 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1078 return false; 1079 // Base register must be PC. 1080 if (Memory.BaseRegNum != ARM::PC) 1081 return false; 1082 // Immediate offset in range [-4095, 4095]. 1083 if (!Memory.OffsetImm) return true; 1084 int64_t Val = Memory.OffsetImm->getValue(); 1085 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1086 } 1087 bool isAlignedMemory() const { 1088 return isMemNoOffset(true); 1089 } 1090 bool isAlignedMemoryNone() const { 1091 return isMemNoOffset(false, 0); 1092 } 1093 bool isDupAlignedMemoryNone() const { 1094 return isMemNoOffset(false, 0); 1095 } 1096 bool isAlignedMemory16() const { 1097 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1098 return true; 1099 return isMemNoOffset(false, 0); 1100 } 1101 bool isDupAlignedMemory16() const { 1102 if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2. 1103 return true; 1104 return isMemNoOffset(false, 0); 1105 } 1106 bool isAlignedMemory32() const { 1107 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1108 return true; 1109 return isMemNoOffset(false, 0); 1110 } 1111 bool isDupAlignedMemory32() const { 1112 if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4. 1113 return true; 1114 return isMemNoOffset(false, 0); 1115 } 1116 bool isAlignedMemory64() const { 1117 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1118 return true; 1119 return isMemNoOffset(false, 0); 1120 } 1121 bool isDupAlignedMemory64() const { 1122 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1123 return true; 1124 return isMemNoOffset(false, 0); 1125 } 1126 bool isAlignedMemory64or128() const { 1127 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1128 return true; 1129 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1130 return true; 1131 return isMemNoOffset(false, 0); 1132 } 1133 bool isDupAlignedMemory64or128() const { 1134 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1135 return true; 1136 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1137 return true; 1138 return isMemNoOffset(false, 0); 1139 } 1140 bool isAlignedMemory64or128or256() const { 1141 if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8. 1142 return true; 1143 if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16. 1144 return true; 1145 if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32. 1146 return true; 1147 return isMemNoOffset(false, 0); 1148 } 1149 bool isAddrMode2() const { 1150 if (!isMem() || Memory.Alignment != 0) return false; 1151 // Check for register offset. 1152 if (Memory.OffsetRegNum) return true; 1153 // Immediate offset in range [-4095, 4095]. 1154 if (!Memory.OffsetImm) return true; 1155 int64_t Val = Memory.OffsetImm->getValue(); 1156 return Val > -4096 && Val < 4096; 1157 } 1158 bool isAM2OffsetImm() const { 1159 if (!isImm()) return false; 1160 // Immediate offset in range [-4095, 4095]. 1161 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1162 if (!CE) return false; 1163 int64_t Val = CE->getValue(); 1164 return (Val == INT32_MIN) || (Val > -4096 && Val < 4096); 1165 } 1166 bool isAddrMode3() const { 1167 // If we have an immediate that's not a constant, treat it as a label 1168 // reference needing a fixup. If it is a constant, it's something else 1169 // and we reject it. 1170 if (isImm() && !isa<MCConstantExpr>(getImm())) 1171 return true; 1172 if (!isMem() || Memory.Alignment != 0) return false; 1173 // No shifts are legal for AM3. 1174 if (Memory.ShiftType != ARM_AM::no_shift) return false; 1175 // Check for register offset. 1176 if (Memory.OffsetRegNum) return true; 1177 // Immediate offset in range [-255, 255]. 1178 if (!Memory.OffsetImm) return true; 1179 int64_t Val = Memory.OffsetImm->getValue(); 1180 // The #-0 offset is encoded as INT32_MIN, and we have to check 1181 // for this too. 1182 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1183 } 1184 bool isAM3Offset() const { 1185 if (Kind != k_Immediate && Kind != k_PostIndexRegister) 1186 return false; 1187 if (Kind == k_PostIndexRegister) 1188 return PostIdxReg.ShiftTy == ARM_AM::no_shift; 1189 // Immediate offset in range [-255, 255]. 1190 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1191 if (!CE) return false; 1192 int64_t Val = CE->getValue(); 1193 // Special case, #-0 is INT32_MIN. 1194 return (Val > -256 && Val < 256) || Val == INT32_MIN; 1195 } 1196 bool isAddrMode5() const { 1197 // If we have an immediate that's not a constant, treat it as a label 1198 // reference needing a fixup. If it is a constant, it's something else 1199 // and we reject it. 1200 if (isImm() && !isa<MCConstantExpr>(getImm())) 1201 return true; 1202 if (!isMem() || Memory.Alignment != 0) return false; 1203 // Check for register offset. 1204 if (Memory.OffsetRegNum) return false; 1205 // Immediate offset in range [-1020, 1020] and a multiple of 4. 1206 if (!Memory.OffsetImm) return true; 1207 int64_t Val = Memory.OffsetImm->getValue(); 1208 return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) || 1209 Val == INT32_MIN; 1210 } 1211 bool isAddrMode5FP16() const { 1212 // If we have an immediate that's not a constant, treat it as a label 1213 // reference needing a fixup. If it is a constant, it's something else 1214 // and we reject it. 1215 if (isImm() && !isa<MCConstantExpr>(getImm())) 1216 return true; 1217 if (!isMem() || Memory.Alignment != 0) return false; 1218 // Check for register offset. 1219 if (Memory.OffsetRegNum) return false; 1220 // Immediate offset in range [-510, 510] and a multiple of 2. 1221 if (!Memory.OffsetImm) return true; 1222 int64_t Val = Memory.OffsetImm->getValue(); 1223 return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) || Val == INT32_MIN; 1224 } 1225 bool isMemTBB() const { 1226 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1227 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1228 return false; 1229 return true; 1230 } 1231 bool isMemTBH() const { 1232 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1233 Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 || 1234 Memory.Alignment != 0 ) 1235 return false; 1236 return true; 1237 } 1238 bool isMemRegOffset() const { 1239 if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0) 1240 return false; 1241 return true; 1242 } 1243 bool isT2MemRegOffset() const { 1244 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1245 Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC) 1246 return false; 1247 // Only lsl #{0, 1, 2, 3} allowed. 1248 if (Memory.ShiftType == ARM_AM::no_shift) 1249 return true; 1250 if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3) 1251 return false; 1252 return true; 1253 } 1254 bool isMemThumbRR() const { 1255 // Thumb reg+reg addressing is simple. Just two registers, a base and 1256 // an offset. No shifts, negations or any other complicating factors. 1257 if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative || 1258 Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0) 1259 return false; 1260 return isARMLowRegister(Memory.BaseRegNum) && 1261 (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum)); 1262 } 1263 bool isMemThumbRIs4() const { 1264 if (!isMem() || Memory.OffsetRegNum != 0 || 1265 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1266 return false; 1267 // Immediate offset, multiple of 4 in range [0, 124]. 1268 if (!Memory.OffsetImm) return true; 1269 int64_t Val = Memory.OffsetImm->getValue(); 1270 return Val >= 0 && Val <= 124 && (Val % 4) == 0; 1271 } 1272 bool isMemThumbRIs2() const { 1273 if (!isMem() || Memory.OffsetRegNum != 0 || 1274 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1275 return false; 1276 // Immediate offset, multiple of 4 in range [0, 62]. 1277 if (!Memory.OffsetImm) return true; 1278 int64_t Val = Memory.OffsetImm->getValue(); 1279 return Val >= 0 && Val <= 62 && (Val % 2) == 0; 1280 } 1281 bool isMemThumbRIs1() const { 1282 if (!isMem() || Memory.OffsetRegNum != 0 || 1283 !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0) 1284 return false; 1285 // Immediate offset in range [0, 31]. 1286 if (!Memory.OffsetImm) return true; 1287 int64_t Val = Memory.OffsetImm->getValue(); 1288 return Val >= 0 && Val <= 31; 1289 } 1290 bool isMemThumbSPI() const { 1291 if (!isMem() || Memory.OffsetRegNum != 0 || 1292 Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0) 1293 return false; 1294 // Immediate offset, multiple of 4 in range [0, 1020]. 1295 if (!Memory.OffsetImm) return true; 1296 int64_t Val = Memory.OffsetImm->getValue(); 1297 return Val >= 0 && Val <= 1020 && (Val % 4) == 0; 1298 } 1299 bool isMemImm8s4Offset() const { 1300 // If we have an immediate that's not a constant, treat it as a label 1301 // reference needing a fixup. If it is a constant, it's something else 1302 // and we reject it. 1303 if (isImm() && !isa<MCConstantExpr>(getImm())) 1304 return true; 1305 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1306 return false; 1307 // Immediate offset a multiple of 4 in range [-1020, 1020]. 1308 if (!Memory.OffsetImm) return true; 1309 int64_t Val = Memory.OffsetImm->getValue(); 1310 // Special case, #-0 is INT32_MIN. 1311 return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN; 1312 } 1313 bool isMemImm0_1020s4Offset() const { 1314 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1315 return false; 1316 // Immediate offset a multiple of 4 in range [0, 1020]. 1317 if (!Memory.OffsetImm) return true; 1318 int64_t Val = Memory.OffsetImm->getValue(); 1319 return Val >= 0 && Val <= 1020 && (Val & 3) == 0; 1320 } 1321 bool isMemImm8Offset() const { 1322 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1323 return false; 1324 // Base reg of PC isn't allowed for these encodings. 1325 if (Memory.BaseRegNum == ARM::PC) return false; 1326 // Immediate offset in range [-255, 255]. 1327 if (!Memory.OffsetImm) return true; 1328 int64_t Val = Memory.OffsetImm->getValue(); 1329 return (Val == INT32_MIN) || (Val > -256 && Val < 256); 1330 } 1331 bool isMemPosImm8Offset() const { 1332 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1333 return false; 1334 // Immediate offset in range [0, 255]. 1335 if (!Memory.OffsetImm) return true; 1336 int64_t Val = Memory.OffsetImm->getValue(); 1337 return Val >= 0 && Val < 256; 1338 } 1339 bool isMemNegImm8Offset() const { 1340 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1341 return false; 1342 // Base reg of PC isn't allowed for these encodings. 1343 if (Memory.BaseRegNum == ARM::PC) return false; 1344 // Immediate offset in range [-255, -1]. 1345 if (!Memory.OffsetImm) return false; 1346 int64_t Val = Memory.OffsetImm->getValue(); 1347 return (Val == INT32_MIN) || (Val > -256 && Val < 0); 1348 } 1349 bool isMemUImm12Offset() const { 1350 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1351 return false; 1352 // Immediate offset in range [0, 4095]. 1353 if (!Memory.OffsetImm) return true; 1354 int64_t Val = Memory.OffsetImm->getValue(); 1355 return (Val >= 0 && Val < 4096); 1356 } 1357 bool isMemImm12Offset() const { 1358 // If we have an immediate that's not a constant, treat it as a label 1359 // reference needing a fixup. If it is a constant, it's something else 1360 // and we reject it. 1361 1362 if (isImm() && !isa<MCConstantExpr>(getImm())) 1363 return true; 1364 1365 if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0) 1366 return false; 1367 // Immediate offset in range [-4095, 4095]. 1368 if (!Memory.OffsetImm) return true; 1369 int64_t Val = Memory.OffsetImm->getValue(); 1370 return (Val > -4096 && Val < 4096) || (Val == INT32_MIN); 1371 } 1372 bool isConstPoolAsmImm() const { 1373 // Delay processing of Constant Pool Immediate, this will turn into 1374 // a constant. Match no other operand 1375 return (isConstantPoolImm()); 1376 } 1377 bool isPostIdxImm8() const { 1378 if (!isImm()) return false; 1379 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1380 if (!CE) return false; 1381 int64_t Val = CE->getValue(); 1382 return (Val > -256 && Val < 256) || (Val == INT32_MIN); 1383 } 1384 bool isPostIdxImm8s4() const { 1385 if (!isImm()) return false; 1386 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1387 if (!CE) return false; 1388 int64_t Val = CE->getValue(); 1389 return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) || 1390 (Val == INT32_MIN); 1391 } 1392 1393 bool isMSRMask() const { return Kind == k_MSRMask; } 1394 bool isBankedReg() const { return Kind == k_BankedReg; } 1395 bool isProcIFlags() const { return Kind == k_ProcIFlags; } 1396 1397 // NEON operands. 1398 bool isSingleSpacedVectorList() const { 1399 return Kind == k_VectorList && !VectorList.isDoubleSpaced; 1400 } 1401 bool isDoubleSpacedVectorList() const { 1402 return Kind == k_VectorList && VectorList.isDoubleSpaced; 1403 } 1404 bool isVecListOneD() const { 1405 if (!isSingleSpacedVectorList()) return false; 1406 return VectorList.Count == 1; 1407 } 1408 1409 bool isVecListDPair() const { 1410 if (!isSingleSpacedVectorList()) return false; 1411 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1412 .contains(VectorList.RegNum)); 1413 } 1414 1415 bool isVecListThreeD() const { 1416 if (!isSingleSpacedVectorList()) return false; 1417 return VectorList.Count == 3; 1418 } 1419 1420 bool isVecListFourD() const { 1421 if (!isSingleSpacedVectorList()) return false; 1422 return VectorList.Count == 4; 1423 } 1424 1425 bool isVecListDPairSpaced() const { 1426 if (Kind != k_VectorList) return false; 1427 if (isSingleSpacedVectorList()) return false; 1428 return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID] 1429 .contains(VectorList.RegNum)); 1430 } 1431 1432 bool isVecListThreeQ() const { 1433 if (!isDoubleSpacedVectorList()) return false; 1434 return VectorList.Count == 3; 1435 } 1436 1437 bool isVecListFourQ() const { 1438 if (!isDoubleSpacedVectorList()) return false; 1439 return VectorList.Count == 4; 1440 } 1441 1442 bool isSingleSpacedVectorAllLanes() const { 1443 return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced; 1444 } 1445 bool isDoubleSpacedVectorAllLanes() const { 1446 return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced; 1447 } 1448 bool isVecListOneDAllLanes() const { 1449 if (!isSingleSpacedVectorAllLanes()) return false; 1450 return VectorList.Count == 1; 1451 } 1452 1453 bool isVecListDPairAllLanes() const { 1454 if (!isSingleSpacedVectorAllLanes()) return false; 1455 return (ARMMCRegisterClasses[ARM::DPairRegClassID] 1456 .contains(VectorList.RegNum)); 1457 } 1458 1459 bool isVecListDPairSpacedAllLanes() const { 1460 if (!isDoubleSpacedVectorAllLanes()) return false; 1461 return VectorList.Count == 2; 1462 } 1463 1464 bool isVecListThreeDAllLanes() const { 1465 if (!isSingleSpacedVectorAllLanes()) return false; 1466 return VectorList.Count == 3; 1467 } 1468 1469 bool isVecListThreeQAllLanes() const { 1470 if (!isDoubleSpacedVectorAllLanes()) return false; 1471 return VectorList.Count == 3; 1472 } 1473 1474 bool isVecListFourDAllLanes() const { 1475 if (!isSingleSpacedVectorAllLanes()) return false; 1476 return VectorList.Count == 4; 1477 } 1478 1479 bool isVecListFourQAllLanes() const { 1480 if (!isDoubleSpacedVectorAllLanes()) return false; 1481 return VectorList.Count == 4; 1482 } 1483 1484 bool isSingleSpacedVectorIndexed() const { 1485 return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced; 1486 } 1487 bool isDoubleSpacedVectorIndexed() const { 1488 return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced; 1489 } 1490 bool isVecListOneDByteIndexed() const { 1491 if (!isSingleSpacedVectorIndexed()) return false; 1492 return VectorList.Count == 1 && VectorList.LaneIndex <= 7; 1493 } 1494 1495 bool isVecListOneDHWordIndexed() const { 1496 if (!isSingleSpacedVectorIndexed()) return false; 1497 return VectorList.Count == 1 && VectorList.LaneIndex <= 3; 1498 } 1499 1500 bool isVecListOneDWordIndexed() const { 1501 if (!isSingleSpacedVectorIndexed()) return false; 1502 return VectorList.Count == 1 && VectorList.LaneIndex <= 1; 1503 } 1504 1505 bool isVecListTwoDByteIndexed() const { 1506 if (!isSingleSpacedVectorIndexed()) return false; 1507 return VectorList.Count == 2 && VectorList.LaneIndex <= 7; 1508 } 1509 1510 bool isVecListTwoDHWordIndexed() const { 1511 if (!isSingleSpacedVectorIndexed()) return false; 1512 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1513 } 1514 1515 bool isVecListTwoQWordIndexed() const { 1516 if (!isDoubleSpacedVectorIndexed()) return false; 1517 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1518 } 1519 1520 bool isVecListTwoQHWordIndexed() const { 1521 if (!isDoubleSpacedVectorIndexed()) return false; 1522 return VectorList.Count == 2 && VectorList.LaneIndex <= 3; 1523 } 1524 1525 bool isVecListTwoDWordIndexed() const { 1526 if (!isSingleSpacedVectorIndexed()) return false; 1527 return VectorList.Count == 2 && VectorList.LaneIndex <= 1; 1528 } 1529 1530 bool isVecListThreeDByteIndexed() const { 1531 if (!isSingleSpacedVectorIndexed()) return false; 1532 return VectorList.Count == 3 && VectorList.LaneIndex <= 7; 1533 } 1534 1535 bool isVecListThreeDHWordIndexed() const { 1536 if (!isSingleSpacedVectorIndexed()) return false; 1537 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1538 } 1539 1540 bool isVecListThreeQWordIndexed() const { 1541 if (!isDoubleSpacedVectorIndexed()) return false; 1542 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1543 } 1544 1545 bool isVecListThreeQHWordIndexed() const { 1546 if (!isDoubleSpacedVectorIndexed()) return false; 1547 return VectorList.Count == 3 && VectorList.LaneIndex <= 3; 1548 } 1549 1550 bool isVecListThreeDWordIndexed() const { 1551 if (!isSingleSpacedVectorIndexed()) return false; 1552 return VectorList.Count == 3 && VectorList.LaneIndex <= 1; 1553 } 1554 1555 bool isVecListFourDByteIndexed() const { 1556 if (!isSingleSpacedVectorIndexed()) return false; 1557 return VectorList.Count == 4 && VectorList.LaneIndex <= 7; 1558 } 1559 1560 bool isVecListFourDHWordIndexed() const { 1561 if (!isSingleSpacedVectorIndexed()) return false; 1562 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1563 } 1564 1565 bool isVecListFourQWordIndexed() const { 1566 if (!isDoubleSpacedVectorIndexed()) return false; 1567 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1568 } 1569 1570 bool isVecListFourQHWordIndexed() const { 1571 if (!isDoubleSpacedVectorIndexed()) return false; 1572 return VectorList.Count == 4 && VectorList.LaneIndex <= 3; 1573 } 1574 1575 bool isVecListFourDWordIndexed() const { 1576 if (!isSingleSpacedVectorIndexed()) return false; 1577 return VectorList.Count == 4 && VectorList.LaneIndex <= 1; 1578 } 1579 1580 bool isVectorIndex8() const { 1581 if (Kind != k_VectorIndex) return false; 1582 return VectorIndex.Val < 8; 1583 } 1584 bool isVectorIndex16() const { 1585 if (Kind != k_VectorIndex) return false; 1586 return VectorIndex.Val < 4; 1587 } 1588 bool isVectorIndex32() const { 1589 if (Kind != k_VectorIndex) return false; 1590 return VectorIndex.Val < 2; 1591 } 1592 1593 bool isNEONi8splat() const { 1594 if (!isImm()) return false; 1595 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1596 // Must be a constant. 1597 if (!CE) return false; 1598 int64_t Value = CE->getValue(); 1599 // i8 value splatted across 8 bytes. The immediate is just the 8 byte 1600 // value. 1601 return Value >= 0 && Value < 256; 1602 } 1603 1604 bool isNEONi16splat() const { 1605 if (isNEONByteReplicate(2)) 1606 return false; // Leave that for bytes replication and forbid by default. 1607 if (!isImm()) 1608 return false; 1609 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1610 // Must be a constant. 1611 if (!CE) return false; 1612 unsigned Value = CE->getValue(); 1613 return ARM_AM::isNEONi16splat(Value); 1614 } 1615 1616 bool isNEONi16splatNot() const { 1617 if (!isImm()) 1618 return false; 1619 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1620 // Must be a constant. 1621 if (!CE) return false; 1622 unsigned Value = CE->getValue(); 1623 return ARM_AM::isNEONi16splat(~Value & 0xffff); 1624 } 1625 1626 bool isNEONi32splat() const { 1627 if (isNEONByteReplicate(4)) 1628 return false; // Leave that for bytes replication and forbid by default. 1629 if (!isImm()) 1630 return false; 1631 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1632 // Must be a constant. 1633 if (!CE) return false; 1634 unsigned Value = CE->getValue(); 1635 return ARM_AM::isNEONi32splat(Value); 1636 } 1637 1638 bool isNEONi32splatNot() const { 1639 if (!isImm()) 1640 return false; 1641 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1642 // Must be a constant. 1643 if (!CE) return false; 1644 unsigned Value = CE->getValue(); 1645 return ARM_AM::isNEONi32splat(~Value); 1646 } 1647 1648 bool isNEONByteReplicate(unsigned NumBytes) const { 1649 if (!isImm()) 1650 return false; 1651 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1652 // Must be a constant. 1653 if (!CE) 1654 return false; 1655 int64_t Value = CE->getValue(); 1656 if (!Value) 1657 return false; // Don't bother with zero. 1658 1659 unsigned char B = Value & 0xff; 1660 for (unsigned i = 1; i < NumBytes; ++i) { 1661 Value >>= 8; 1662 if ((Value & 0xff) != B) 1663 return false; 1664 } 1665 return true; 1666 } 1667 bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); } 1668 bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); } 1669 bool isNEONi32vmov() const { 1670 if (isNEONByteReplicate(4)) 1671 return false; // Let it to be classified as byte-replicate case. 1672 if (!isImm()) 1673 return false; 1674 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1675 // Must be a constant. 1676 if (!CE) 1677 return false; 1678 int64_t Value = CE->getValue(); 1679 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1680 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1681 // FIXME: This is probably wrong and a copy and paste from previous example 1682 return (Value >= 0 && Value < 256) || 1683 (Value >= 0x0100 && Value <= 0xff00) || 1684 (Value >= 0x010000 && Value <= 0xff0000) || 1685 (Value >= 0x01000000 && Value <= 0xff000000) || 1686 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1687 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1688 } 1689 bool isNEONi32vmovNeg() const { 1690 if (!isImm()) return false; 1691 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1692 // Must be a constant. 1693 if (!CE) return false; 1694 int64_t Value = ~CE->getValue(); 1695 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X, 1696 // for VMOV/VMVN only, 00Xf or 0Xff are also accepted. 1697 // FIXME: This is probably wrong and a copy and paste from previous example 1698 return (Value >= 0 && Value < 256) || 1699 (Value >= 0x0100 && Value <= 0xff00) || 1700 (Value >= 0x010000 && Value <= 0xff0000) || 1701 (Value >= 0x01000000 && Value <= 0xff000000) || 1702 (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) || 1703 (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff); 1704 } 1705 1706 bool isNEONi64splat() const { 1707 if (!isImm()) return false; 1708 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1709 // Must be a constant. 1710 if (!CE) return false; 1711 uint64_t Value = CE->getValue(); 1712 // i64 value with each byte being either 0 or 0xff. 1713 for (unsigned i = 0; i < 8; ++i) 1714 if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false; 1715 return true; 1716 } 1717 1718 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 1719 // Add as immediates when possible. Null MCExpr = 0. 1720 if (!Expr) 1721 Inst.addOperand(MCOperand::createImm(0)); 1722 else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) 1723 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1724 else 1725 Inst.addOperand(MCOperand::createExpr(Expr)); 1726 } 1727 1728 void addCondCodeOperands(MCInst &Inst, unsigned N) const { 1729 assert(N == 2 && "Invalid number of operands!"); 1730 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1731 unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR; 1732 Inst.addOperand(MCOperand::createReg(RegNum)); 1733 } 1734 1735 void addCoprocNumOperands(MCInst &Inst, unsigned N) const { 1736 assert(N == 1 && "Invalid number of operands!"); 1737 Inst.addOperand(MCOperand::createImm(getCoproc())); 1738 } 1739 1740 void addCoprocRegOperands(MCInst &Inst, unsigned N) const { 1741 assert(N == 1 && "Invalid number of operands!"); 1742 Inst.addOperand(MCOperand::createImm(getCoproc())); 1743 } 1744 1745 void addCoprocOptionOperands(MCInst &Inst, unsigned N) const { 1746 assert(N == 1 && "Invalid number of operands!"); 1747 Inst.addOperand(MCOperand::createImm(CoprocOption.Val)); 1748 } 1749 1750 void addITMaskOperands(MCInst &Inst, unsigned N) const { 1751 assert(N == 1 && "Invalid number of operands!"); 1752 Inst.addOperand(MCOperand::createImm(ITMask.Mask)); 1753 } 1754 1755 void addITCondCodeOperands(MCInst &Inst, unsigned N) const { 1756 assert(N == 1 && "Invalid number of operands!"); 1757 Inst.addOperand(MCOperand::createImm(unsigned(getCondCode()))); 1758 } 1759 1760 void addCCOutOperands(MCInst &Inst, unsigned N) const { 1761 assert(N == 1 && "Invalid number of operands!"); 1762 Inst.addOperand(MCOperand::createReg(getReg())); 1763 } 1764 1765 void addRegOperands(MCInst &Inst, unsigned N) const { 1766 assert(N == 1 && "Invalid number of operands!"); 1767 Inst.addOperand(MCOperand::createReg(getReg())); 1768 } 1769 1770 void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const { 1771 assert(N == 3 && "Invalid number of operands!"); 1772 assert(isRegShiftedReg() && 1773 "addRegShiftedRegOperands() on non-RegShiftedReg!"); 1774 Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg)); 1775 Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg)); 1776 Inst.addOperand(MCOperand::createImm( 1777 ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm))); 1778 } 1779 1780 void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const { 1781 assert(N == 2 && "Invalid number of operands!"); 1782 assert(isRegShiftedImm() && 1783 "addRegShiftedImmOperands() on non-RegShiftedImm!"); 1784 Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg)); 1785 // Shift of #32 is encoded as 0 where permitted 1786 unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm); 1787 Inst.addOperand(MCOperand::createImm( 1788 ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm))); 1789 } 1790 1791 void addShifterImmOperands(MCInst &Inst, unsigned N) const { 1792 assert(N == 1 && "Invalid number of operands!"); 1793 Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) | 1794 ShifterImm.Imm)); 1795 } 1796 1797 void addRegListOperands(MCInst &Inst, unsigned N) const { 1798 assert(N == 1 && "Invalid number of operands!"); 1799 const SmallVectorImpl<unsigned> &RegList = getRegList(); 1800 for (SmallVectorImpl<unsigned>::const_iterator 1801 I = RegList.begin(), E = RegList.end(); I != E; ++I) 1802 Inst.addOperand(MCOperand::createReg(*I)); 1803 } 1804 1805 void addDPRRegListOperands(MCInst &Inst, unsigned N) const { 1806 addRegListOperands(Inst, N); 1807 } 1808 1809 void addSPRRegListOperands(MCInst &Inst, unsigned N) const { 1810 addRegListOperands(Inst, N); 1811 } 1812 1813 void addRotImmOperands(MCInst &Inst, unsigned N) const { 1814 assert(N == 1 && "Invalid number of operands!"); 1815 // Encoded as val>>3. The printer handles display as 8, 16, 24. 1816 Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3)); 1817 } 1818 1819 void addModImmOperands(MCInst &Inst, unsigned N) const { 1820 assert(N == 1 && "Invalid number of operands!"); 1821 1822 // Support for fixups (MCFixup) 1823 if (isImm()) 1824 return addImmOperands(Inst, N); 1825 1826 Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7))); 1827 } 1828 1829 void addModImmNotOperands(MCInst &Inst, unsigned N) const { 1830 assert(N == 1 && "Invalid number of operands!"); 1831 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1832 uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue()); 1833 Inst.addOperand(MCOperand::createImm(Enc)); 1834 } 1835 1836 void addModImmNegOperands(MCInst &Inst, unsigned N) const { 1837 assert(N == 1 && "Invalid number of operands!"); 1838 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1839 uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue()); 1840 Inst.addOperand(MCOperand::createImm(Enc)); 1841 } 1842 1843 void addBitfieldOperands(MCInst &Inst, unsigned N) const { 1844 assert(N == 1 && "Invalid number of operands!"); 1845 // Munge the lsb/width into a bitfield mask. 1846 unsigned lsb = Bitfield.LSB; 1847 unsigned width = Bitfield.Width; 1848 // Make a 32-bit mask w/ the referenced bits clear and all other bits set. 1849 uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >> 1850 (32 - (lsb + width))); 1851 Inst.addOperand(MCOperand::createImm(Mask)); 1852 } 1853 1854 void addImmOperands(MCInst &Inst, unsigned N) const { 1855 assert(N == 1 && "Invalid number of operands!"); 1856 addExpr(Inst, getImm()); 1857 } 1858 1859 void addFBits16Operands(MCInst &Inst, unsigned N) const { 1860 assert(N == 1 && "Invalid number of operands!"); 1861 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1862 Inst.addOperand(MCOperand::createImm(16 - CE->getValue())); 1863 } 1864 1865 void addFBits32Operands(MCInst &Inst, unsigned N) const { 1866 assert(N == 1 && "Invalid number of operands!"); 1867 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1868 Inst.addOperand(MCOperand::createImm(32 - CE->getValue())); 1869 } 1870 1871 void addFPImmOperands(MCInst &Inst, unsigned N) const { 1872 assert(N == 1 && "Invalid number of operands!"); 1873 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1874 int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue())); 1875 Inst.addOperand(MCOperand::createImm(Val)); 1876 } 1877 1878 void addImm8s4Operands(MCInst &Inst, unsigned N) const { 1879 assert(N == 1 && "Invalid number of operands!"); 1880 // FIXME: We really want to scale the value here, but the LDRD/STRD 1881 // instruction don't encode operands that way yet. 1882 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1883 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1884 } 1885 1886 void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const { 1887 assert(N == 1 && "Invalid number of operands!"); 1888 // The immediate is scaled by four in the encoding and is stored 1889 // in the MCInst as such. Lop off the low two bits here. 1890 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1891 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1892 } 1893 1894 void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const { 1895 assert(N == 1 && "Invalid number of operands!"); 1896 // The immediate is scaled by four in the encoding and is stored 1897 // in the MCInst as such. Lop off the low two bits here. 1898 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1899 Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4))); 1900 } 1901 1902 void addImm0_508s4Operands(MCInst &Inst, unsigned N) const { 1903 assert(N == 1 && "Invalid number of operands!"); 1904 // The immediate is scaled by four in the encoding and is stored 1905 // in the MCInst as such. Lop off the low two bits here. 1906 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1907 Inst.addOperand(MCOperand::createImm(CE->getValue() / 4)); 1908 } 1909 1910 void addImm1_16Operands(MCInst &Inst, unsigned N) const { 1911 assert(N == 1 && "Invalid number of operands!"); 1912 // The constant encodes as the immediate-1, and we store in the instruction 1913 // the bits as encoded, so subtract off one here. 1914 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1915 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1916 } 1917 1918 void addImm1_32Operands(MCInst &Inst, unsigned N) const { 1919 assert(N == 1 && "Invalid number of operands!"); 1920 // The constant encodes as the immediate-1, and we store in the instruction 1921 // the bits as encoded, so subtract off one here. 1922 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1923 Inst.addOperand(MCOperand::createImm(CE->getValue() - 1)); 1924 } 1925 1926 void addImmThumbSROperands(MCInst &Inst, unsigned N) const { 1927 assert(N == 1 && "Invalid number of operands!"); 1928 // The constant encodes as the immediate, except for 32, which encodes as 1929 // zero. 1930 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1931 unsigned Imm = CE->getValue(); 1932 Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm))); 1933 } 1934 1935 void addPKHASRImmOperands(MCInst &Inst, unsigned N) const { 1936 assert(N == 1 && "Invalid number of operands!"); 1937 // An ASR value of 32 encodes as 0, so that's how we want to add it to 1938 // the instruction as well. 1939 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1940 int Val = CE->getValue(); 1941 Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val)); 1942 } 1943 1944 void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const { 1945 assert(N == 1 && "Invalid number of operands!"); 1946 // The operand is actually a t2_so_imm, but we have its bitwise 1947 // negation in the assembly source, so twiddle it here. 1948 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1949 Inst.addOperand(MCOperand::createImm(~CE->getValue())); 1950 } 1951 1952 void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const { 1953 assert(N == 1 && "Invalid number of operands!"); 1954 // The operand is actually a t2_so_imm, but we have its 1955 // negation in the assembly source, so twiddle it here. 1956 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1957 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1958 } 1959 1960 void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const { 1961 assert(N == 1 && "Invalid number of operands!"); 1962 // The operand is actually an imm0_4095, but we have its 1963 // negation in the assembly source, so twiddle it here. 1964 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1965 Inst.addOperand(MCOperand::createImm(-CE->getValue())); 1966 } 1967 1968 void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const { 1969 if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) { 1970 Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2)); 1971 return; 1972 } 1973 1974 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1975 assert(SR && "Unknown value type!"); 1976 Inst.addOperand(MCOperand::createExpr(SR)); 1977 } 1978 1979 void addThumbMemPCOperands(MCInst &Inst, unsigned N) const { 1980 assert(N == 1 && "Invalid number of operands!"); 1981 if (isImm()) { 1982 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 1983 if (CE) { 1984 Inst.addOperand(MCOperand::createImm(CE->getValue())); 1985 return; 1986 } 1987 1988 const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val); 1989 1990 assert(SR && "Unknown value type!"); 1991 Inst.addOperand(MCOperand::createExpr(SR)); 1992 return; 1993 } 1994 1995 assert(isMem() && "Unknown value type!"); 1996 assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!"); 1997 Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue())); 1998 } 1999 2000 void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const { 2001 assert(N == 1 && "Invalid number of operands!"); 2002 Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt()))); 2003 } 2004 2005 void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const { 2006 assert(N == 1 && "Invalid number of operands!"); 2007 Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt()))); 2008 } 2009 2010 void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const { 2011 assert(N == 1 && "Invalid number of operands!"); 2012 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2013 } 2014 2015 void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const { 2016 assert(N == 1 && "Invalid number of operands!"); 2017 int32_t Imm = Memory.OffsetImm->getValue(); 2018 Inst.addOperand(MCOperand::createImm(Imm)); 2019 } 2020 2021 void addAdrLabelOperands(MCInst &Inst, unsigned N) const { 2022 assert(N == 1 && "Invalid number of operands!"); 2023 assert(isImm() && "Not an immediate!"); 2024 2025 // If we have an immediate that's not a constant, treat it as a label 2026 // reference needing a fixup. 2027 if (!isa<MCConstantExpr>(getImm())) { 2028 Inst.addOperand(MCOperand::createExpr(getImm())); 2029 return; 2030 } 2031 2032 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2033 int Val = CE->getValue(); 2034 Inst.addOperand(MCOperand::createImm(Val)); 2035 } 2036 2037 void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const { 2038 assert(N == 2 && "Invalid number of operands!"); 2039 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2040 Inst.addOperand(MCOperand::createImm(Memory.Alignment)); 2041 } 2042 2043 void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2044 addAlignedMemoryOperands(Inst, N); 2045 } 2046 2047 void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const { 2048 addAlignedMemoryOperands(Inst, N); 2049 } 2050 2051 void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2052 addAlignedMemoryOperands(Inst, N); 2053 } 2054 2055 void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const { 2056 addAlignedMemoryOperands(Inst, N); 2057 } 2058 2059 void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2060 addAlignedMemoryOperands(Inst, N); 2061 } 2062 2063 void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const { 2064 addAlignedMemoryOperands(Inst, N); 2065 } 2066 2067 void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2068 addAlignedMemoryOperands(Inst, N); 2069 } 2070 2071 void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const { 2072 addAlignedMemoryOperands(Inst, N); 2073 } 2074 2075 void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2076 addAlignedMemoryOperands(Inst, N); 2077 } 2078 2079 void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const { 2080 addAlignedMemoryOperands(Inst, N); 2081 } 2082 2083 void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const { 2084 addAlignedMemoryOperands(Inst, N); 2085 } 2086 2087 void addAddrMode2Operands(MCInst &Inst, unsigned N) const { 2088 assert(N == 3 && "Invalid number of operands!"); 2089 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2090 if (!Memory.OffsetRegNum) { 2091 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2092 // Special case for #-0 2093 if (Val == INT32_MIN) Val = 0; 2094 if (Val < 0) Val = -Val; 2095 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2096 } else { 2097 // For register offset, we encode the shift type and negation flag 2098 // here. 2099 Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2100 Memory.ShiftImm, Memory.ShiftType); 2101 } 2102 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2103 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2104 Inst.addOperand(MCOperand::createImm(Val)); 2105 } 2106 2107 void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const { 2108 assert(N == 2 && "Invalid number of operands!"); 2109 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2110 assert(CE && "non-constant AM2OffsetImm operand!"); 2111 int32_t Val = CE->getValue(); 2112 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2113 // Special case for #-0 2114 if (Val == INT32_MIN) Val = 0; 2115 if (Val < 0) Val = -Val; 2116 Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift); 2117 Inst.addOperand(MCOperand::createReg(0)); 2118 Inst.addOperand(MCOperand::createImm(Val)); 2119 } 2120 2121 void addAddrMode3Operands(MCInst &Inst, unsigned N) const { 2122 assert(N == 3 && "Invalid number of operands!"); 2123 // If we have an immediate that's not a constant, treat it as a label 2124 // reference needing a fixup. If it is a constant, it's something else 2125 // and we reject it. 2126 if (isImm()) { 2127 Inst.addOperand(MCOperand::createExpr(getImm())); 2128 Inst.addOperand(MCOperand::createReg(0)); 2129 Inst.addOperand(MCOperand::createImm(0)); 2130 return; 2131 } 2132 2133 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2134 if (!Memory.OffsetRegNum) { 2135 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2136 // Special case for #-0 2137 if (Val == INT32_MIN) Val = 0; 2138 if (Val < 0) Val = -Val; 2139 Val = ARM_AM::getAM3Opc(AddSub, Val); 2140 } else { 2141 // For register offset, we encode the shift type and negation flag 2142 // here. 2143 Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0); 2144 } 2145 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2146 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2147 Inst.addOperand(MCOperand::createImm(Val)); 2148 } 2149 2150 void addAM3OffsetOperands(MCInst &Inst, unsigned N) const { 2151 assert(N == 2 && "Invalid number of operands!"); 2152 if (Kind == k_PostIndexRegister) { 2153 int32_t Val = 2154 ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0); 2155 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2156 Inst.addOperand(MCOperand::createImm(Val)); 2157 return; 2158 } 2159 2160 // Constant offset. 2161 const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm()); 2162 int32_t Val = CE->getValue(); 2163 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2164 // Special case for #-0 2165 if (Val == INT32_MIN) Val = 0; 2166 if (Val < 0) Val = -Val; 2167 Val = ARM_AM::getAM3Opc(AddSub, Val); 2168 Inst.addOperand(MCOperand::createReg(0)); 2169 Inst.addOperand(MCOperand::createImm(Val)); 2170 } 2171 2172 void addAddrMode5Operands(MCInst &Inst, unsigned N) const { 2173 assert(N == 2 && "Invalid number of operands!"); 2174 // If we have an immediate that's not a constant, treat it as a label 2175 // reference needing a fixup. If it is a constant, it's something else 2176 // and we reject it. 2177 if (isImm()) { 2178 Inst.addOperand(MCOperand::createExpr(getImm())); 2179 Inst.addOperand(MCOperand::createImm(0)); 2180 return; 2181 } 2182 2183 // The lower two bits are always zero and as such are not encoded. 2184 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2185 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2186 // Special case for #-0 2187 if (Val == INT32_MIN) Val = 0; 2188 if (Val < 0) Val = -Val; 2189 Val = ARM_AM::getAM5Opc(AddSub, Val); 2190 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2191 Inst.addOperand(MCOperand::createImm(Val)); 2192 } 2193 2194 void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const { 2195 assert(N == 2 && "Invalid number of operands!"); 2196 // If we have an immediate that's not a constant, treat it as a label 2197 // reference needing a fixup. If it is a constant, it's something else 2198 // and we reject it. 2199 if (isImm()) { 2200 Inst.addOperand(MCOperand::createExpr(getImm())); 2201 Inst.addOperand(MCOperand::createImm(0)); 2202 return; 2203 } 2204 2205 // The lower bit is always zero and as such is not encoded. 2206 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0; 2207 ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add; 2208 // Special case for #-0 2209 if (Val == INT32_MIN) Val = 0; 2210 if (Val < 0) Val = -Val; 2211 Val = ARM_AM::getAM5FP16Opc(AddSub, Val); 2212 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2213 Inst.addOperand(MCOperand::createImm(Val)); 2214 } 2215 2216 void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const { 2217 assert(N == 2 && "Invalid number of operands!"); 2218 // If we have an immediate that's not a constant, treat it as a label 2219 // reference needing a fixup. If it is a constant, it's something else 2220 // and we reject it. 2221 if (isImm()) { 2222 Inst.addOperand(MCOperand::createExpr(getImm())); 2223 Inst.addOperand(MCOperand::createImm(0)); 2224 return; 2225 } 2226 2227 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2228 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2229 Inst.addOperand(MCOperand::createImm(Val)); 2230 } 2231 2232 void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const { 2233 assert(N == 2 && "Invalid number of operands!"); 2234 // The lower two bits are always zero and as such are not encoded. 2235 int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0; 2236 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2237 Inst.addOperand(MCOperand::createImm(Val)); 2238 } 2239 2240 void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2241 assert(N == 2 && "Invalid number of operands!"); 2242 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2243 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2244 Inst.addOperand(MCOperand::createImm(Val)); 2245 } 2246 2247 void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2248 addMemImm8OffsetOperands(Inst, N); 2249 } 2250 2251 void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const { 2252 addMemImm8OffsetOperands(Inst, N); 2253 } 2254 2255 void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2256 assert(N == 2 && "Invalid number of operands!"); 2257 // If this is an immediate, it's a label reference. 2258 if (isImm()) { 2259 addExpr(Inst, getImm()); 2260 Inst.addOperand(MCOperand::createImm(0)); 2261 return; 2262 } 2263 2264 // Otherwise, it's a normal memory reg+offset. 2265 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2266 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2267 Inst.addOperand(MCOperand::createImm(Val)); 2268 } 2269 2270 void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const { 2271 assert(N == 2 && "Invalid number of operands!"); 2272 // If this is an immediate, it's a label reference. 2273 if (isImm()) { 2274 addExpr(Inst, getImm()); 2275 Inst.addOperand(MCOperand::createImm(0)); 2276 return; 2277 } 2278 2279 // Otherwise, it's a normal memory reg+offset. 2280 int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0; 2281 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2282 Inst.addOperand(MCOperand::createImm(Val)); 2283 } 2284 2285 void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const { 2286 assert(N == 1 && "Invalid number of operands!"); 2287 // This is container for the immediate that we will create the constant 2288 // pool from 2289 addExpr(Inst, getConstantPoolImm()); 2290 return; 2291 } 2292 2293 void addMemTBBOperands(MCInst &Inst, unsigned N) const { 2294 assert(N == 2 && "Invalid number of operands!"); 2295 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2296 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2297 } 2298 2299 void addMemTBHOperands(MCInst &Inst, unsigned N) const { 2300 assert(N == 2 && "Invalid number of operands!"); 2301 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2302 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2303 } 2304 2305 void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2306 assert(N == 3 && "Invalid number of operands!"); 2307 unsigned Val = 2308 ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 2309 Memory.ShiftImm, Memory.ShiftType); 2310 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2311 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2312 Inst.addOperand(MCOperand::createImm(Val)); 2313 } 2314 2315 void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const { 2316 assert(N == 3 && "Invalid number of operands!"); 2317 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2318 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2319 Inst.addOperand(MCOperand::createImm(Memory.ShiftImm)); 2320 } 2321 2322 void addMemThumbRROperands(MCInst &Inst, unsigned N) const { 2323 assert(N == 2 && "Invalid number of operands!"); 2324 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2325 Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum)); 2326 } 2327 2328 void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const { 2329 assert(N == 2 && "Invalid number of operands!"); 2330 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2331 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2332 Inst.addOperand(MCOperand::createImm(Val)); 2333 } 2334 2335 void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const { 2336 assert(N == 2 && "Invalid number of operands!"); 2337 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0; 2338 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2339 Inst.addOperand(MCOperand::createImm(Val)); 2340 } 2341 2342 void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const { 2343 assert(N == 2 && "Invalid number of operands!"); 2344 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0; 2345 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2346 Inst.addOperand(MCOperand::createImm(Val)); 2347 } 2348 2349 void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const { 2350 assert(N == 2 && "Invalid number of operands!"); 2351 int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0; 2352 Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum)); 2353 Inst.addOperand(MCOperand::createImm(Val)); 2354 } 2355 2356 void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const { 2357 assert(N == 1 && "Invalid number of operands!"); 2358 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2359 assert(CE && "non-constant post-idx-imm8 operand!"); 2360 int Imm = CE->getValue(); 2361 bool isAdd = Imm >= 0; 2362 if (Imm == INT32_MIN) Imm = 0; 2363 Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8; 2364 Inst.addOperand(MCOperand::createImm(Imm)); 2365 } 2366 2367 void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const { 2368 assert(N == 1 && "Invalid number of operands!"); 2369 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2370 assert(CE && "non-constant post-idx-imm8s4 operand!"); 2371 int Imm = CE->getValue(); 2372 bool isAdd = Imm >= 0; 2373 if (Imm == INT32_MIN) Imm = 0; 2374 // Immediate is scaled by 4. 2375 Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8; 2376 Inst.addOperand(MCOperand::createImm(Imm)); 2377 } 2378 2379 void addPostIdxRegOperands(MCInst &Inst, unsigned N) const { 2380 assert(N == 2 && "Invalid number of operands!"); 2381 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2382 Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd)); 2383 } 2384 2385 void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const { 2386 assert(N == 2 && "Invalid number of operands!"); 2387 Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum)); 2388 // The sign, shift type, and shift amount are encoded in a single operand 2389 // using the AM2 encoding helpers. 2390 ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub; 2391 unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm, 2392 PostIdxReg.ShiftTy); 2393 Inst.addOperand(MCOperand::createImm(Imm)); 2394 } 2395 2396 void addMSRMaskOperands(MCInst &Inst, unsigned N) const { 2397 assert(N == 1 && "Invalid number of operands!"); 2398 Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask()))); 2399 } 2400 2401 void addBankedRegOperands(MCInst &Inst, unsigned N) const { 2402 assert(N == 1 && "Invalid number of operands!"); 2403 Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg()))); 2404 } 2405 2406 void addProcIFlagsOperands(MCInst &Inst, unsigned N) const { 2407 assert(N == 1 && "Invalid number of operands!"); 2408 Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags()))); 2409 } 2410 2411 void addVecListOperands(MCInst &Inst, unsigned N) const { 2412 assert(N == 1 && "Invalid number of operands!"); 2413 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2414 } 2415 2416 void addVecListIndexedOperands(MCInst &Inst, unsigned N) const { 2417 assert(N == 2 && "Invalid number of operands!"); 2418 Inst.addOperand(MCOperand::createReg(VectorList.RegNum)); 2419 Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex)); 2420 } 2421 2422 void addVectorIndex8Operands(MCInst &Inst, unsigned N) const { 2423 assert(N == 1 && "Invalid number of operands!"); 2424 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2425 } 2426 2427 void addVectorIndex16Operands(MCInst &Inst, unsigned N) const { 2428 assert(N == 1 && "Invalid number of operands!"); 2429 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2430 } 2431 2432 void addVectorIndex32Operands(MCInst &Inst, unsigned N) const { 2433 assert(N == 1 && "Invalid number of operands!"); 2434 Inst.addOperand(MCOperand::createImm(getVectorIndex())); 2435 } 2436 2437 void addNEONi8splatOperands(MCInst &Inst, unsigned N) const { 2438 assert(N == 1 && "Invalid number of operands!"); 2439 // The immediate encodes the type of constant as well as the value. 2440 // Mask in that this is an i8 splat. 2441 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2442 Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00)); 2443 } 2444 2445 void addNEONi16splatOperands(MCInst &Inst, unsigned N) const { 2446 assert(N == 1 && "Invalid number of operands!"); 2447 // The immediate encodes the type of constant as well as the value. 2448 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2449 unsigned Value = CE->getValue(); 2450 Value = ARM_AM::encodeNEONi16splat(Value); 2451 Inst.addOperand(MCOperand::createImm(Value)); 2452 } 2453 2454 void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const { 2455 assert(N == 1 && "Invalid number of operands!"); 2456 // The immediate encodes the type of constant as well as the value. 2457 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2458 unsigned Value = CE->getValue(); 2459 Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff); 2460 Inst.addOperand(MCOperand::createImm(Value)); 2461 } 2462 2463 void addNEONi32splatOperands(MCInst &Inst, unsigned N) const { 2464 assert(N == 1 && "Invalid number of operands!"); 2465 // The immediate encodes the type of constant as well as the value. 2466 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2467 unsigned Value = CE->getValue(); 2468 Value = ARM_AM::encodeNEONi32splat(Value); 2469 Inst.addOperand(MCOperand::createImm(Value)); 2470 } 2471 2472 void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const { 2473 assert(N == 1 && "Invalid number of operands!"); 2474 // The immediate encodes the type of constant as well as the value. 2475 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2476 unsigned Value = CE->getValue(); 2477 Value = ARM_AM::encodeNEONi32splat(~Value); 2478 Inst.addOperand(MCOperand::createImm(Value)); 2479 } 2480 2481 void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const { 2482 assert(N == 1 && "Invalid number of operands!"); 2483 // The immediate encodes the type of constant as well as the value. 2484 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2485 unsigned Value = CE->getValue(); 2486 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2487 Inst.getOpcode() == ARM::VMOVv16i8) && 2488 "All vmvn instructions that wants to replicate non-zero byte " 2489 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2490 unsigned B = ((~Value) & 0xff); 2491 B |= 0xe00; // cmode = 0b1110 2492 Inst.addOperand(MCOperand::createImm(B)); 2493 } 2494 void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const { 2495 assert(N == 1 && "Invalid number of operands!"); 2496 // The immediate encodes the type of constant as well as the value. 2497 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2498 unsigned Value = CE->getValue(); 2499 if (Value >= 256 && Value <= 0xffff) 2500 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2501 else if (Value > 0xffff && Value <= 0xffffff) 2502 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2503 else if (Value > 0xffffff) 2504 Value = (Value >> 24) | 0x600; 2505 Inst.addOperand(MCOperand::createImm(Value)); 2506 } 2507 2508 void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const { 2509 assert(N == 1 && "Invalid number of operands!"); 2510 // The immediate encodes the type of constant as well as the value. 2511 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2512 unsigned Value = CE->getValue(); 2513 assert((Inst.getOpcode() == ARM::VMOVv8i8 || 2514 Inst.getOpcode() == ARM::VMOVv16i8) && 2515 "All instructions that wants to replicate non-zero byte " 2516 "always must be replaced with VMOVv8i8 or VMOVv16i8."); 2517 unsigned B = Value & 0xff; 2518 B |= 0xe00; // cmode = 0b1110 2519 Inst.addOperand(MCOperand::createImm(B)); 2520 } 2521 void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const { 2522 assert(N == 1 && "Invalid number of operands!"); 2523 // The immediate encodes the type of constant as well as the value. 2524 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2525 unsigned Value = ~CE->getValue(); 2526 if (Value >= 256 && Value <= 0xffff) 2527 Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200); 2528 else if (Value > 0xffff && Value <= 0xffffff) 2529 Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400); 2530 else if (Value > 0xffffff) 2531 Value = (Value >> 24) | 0x600; 2532 Inst.addOperand(MCOperand::createImm(Value)); 2533 } 2534 2535 void addNEONi64splatOperands(MCInst &Inst, unsigned N) const { 2536 assert(N == 1 && "Invalid number of operands!"); 2537 // The immediate encodes the type of constant as well as the value. 2538 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); 2539 uint64_t Value = CE->getValue(); 2540 unsigned Imm = 0; 2541 for (unsigned i = 0; i < 8; ++i, Value >>= 8) { 2542 Imm |= (Value & 1) << i; 2543 } 2544 Inst.addOperand(MCOperand::createImm(Imm | 0x1e00)); 2545 } 2546 2547 void print(raw_ostream &OS) const override; 2548 2549 static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) { 2550 auto Op = make_unique<ARMOperand>(k_ITCondMask); 2551 Op->ITMask.Mask = Mask; 2552 Op->StartLoc = S; 2553 Op->EndLoc = S; 2554 return Op; 2555 } 2556 2557 static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC, 2558 SMLoc S) { 2559 auto Op = make_unique<ARMOperand>(k_CondCode); 2560 Op->CC.Val = CC; 2561 Op->StartLoc = S; 2562 Op->EndLoc = S; 2563 return Op; 2564 } 2565 2566 static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) { 2567 auto Op = make_unique<ARMOperand>(k_CoprocNum); 2568 Op->Cop.Val = CopVal; 2569 Op->StartLoc = S; 2570 Op->EndLoc = S; 2571 return Op; 2572 } 2573 2574 static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) { 2575 auto Op = make_unique<ARMOperand>(k_CoprocReg); 2576 Op->Cop.Val = CopVal; 2577 Op->StartLoc = S; 2578 Op->EndLoc = S; 2579 return Op; 2580 } 2581 2582 static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S, 2583 SMLoc E) { 2584 auto Op = make_unique<ARMOperand>(k_CoprocOption); 2585 Op->Cop.Val = Val; 2586 Op->StartLoc = S; 2587 Op->EndLoc = E; 2588 return Op; 2589 } 2590 2591 static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) { 2592 auto Op = make_unique<ARMOperand>(k_CCOut); 2593 Op->Reg.RegNum = RegNum; 2594 Op->StartLoc = S; 2595 Op->EndLoc = S; 2596 return Op; 2597 } 2598 2599 static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) { 2600 auto Op = make_unique<ARMOperand>(k_Token); 2601 Op->Tok.Data = Str.data(); 2602 Op->Tok.Length = Str.size(); 2603 Op->StartLoc = S; 2604 Op->EndLoc = S; 2605 return Op; 2606 } 2607 2608 static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S, 2609 SMLoc E) { 2610 auto Op = make_unique<ARMOperand>(k_Register); 2611 Op->Reg.RegNum = RegNum; 2612 Op->StartLoc = S; 2613 Op->EndLoc = E; 2614 return Op; 2615 } 2616 2617 static std::unique_ptr<ARMOperand> 2618 CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2619 unsigned ShiftReg, unsigned ShiftImm, SMLoc S, 2620 SMLoc E) { 2621 auto Op = make_unique<ARMOperand>(k_ShiftedRegister); 2622 Op->RegShiftedReg.ShiftTy = ShTy; 2623 Op->RegShiftedReg.SrcReg = SrcReg; 2624 Op->RegShiftedReg.ShiftReg = ShiftReg; 2625 Op->RegShiftedReg.ShiftImm = ShiftImm; 2626 Op->StartLoc = S; 2627 Op->EndLoc = E; 2628 return Op; 2629 } 2630 2631 static std::unique_ptr<ARMOperand> 2632 CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg, 2633 unsigned ShiftImm, SMLoc S, SMLoc E) { 2634 auto Op = make_unique<ARMOperand>(k_ShiftedImmediate); 2635 Op->RegShiftedImm.ShiftTy = ShTy; 2636 Op->RegShiftedImm.SrcReg = SrcReg; 2637 Op->RegShiftedImm.ShiftImm = ShiftImm; 2638 Op->StartLoc = S; 2639 Op->EndLoc = E; 2640 return Op; 2641 } 2642 2643 static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm, 2644 SMLoc S, SMLoc E) { 2645 auto Op = make_unique<ARMOperand>(k_ShifterImmediate); 2646 Op->ShifterImm.isASR = isASR; 2647 Op->ShifterImm.Imm = Imm; 2648 Op->StartLoc = S; 2649 Op->EndLoc = E; 2650 return Op; 2651 } 2652 2653 static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S, 2654 SMLoc E) { 2655 auto Op = make_unique<ARMOperand>(k_RotateImmediate); 2656 Op->RotImm.Imm = Imm; 2657 Op->StartLoc = S; 2658 Op->EndLoc = E; 2659 return Op; 2660 } 2661 2662 static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot, 2663 SMLoc S, SMLoc E) { 2664 auto Op = make_unique<ARMOperand>(k_ModifiedImmediate); 2665 Op->ModImm.Bits = Bits; 2666 Op->ModImm.Rot = Rot; 2667 Op->StartLoc = S; 2668 Op->EndLoc = E; 2669 return Op; 2670 } 2671 2672 static std::unique_ptr<ARMOperand> 2673 CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) { 2674 auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate); 2675 Op->Imm.Val = Val; 2676 Op->StartLoc = S; 2677 Op->EndLoc = E; 2678 return Op; 2679 } 2680 2681 static std::unique_ptr<ARMOperand> 2682 CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) { 2683 auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor); 2684 Op->Bitfield.LSB = LSB; 2685 Op->Bitfield.Width = Width; 2686 Op->StartLoc = S; 2687 Op->EndLoc = E; 2688 return Op; 2689 } 2690 2691 static std::unique_ptr<ARMOperand> 2692 CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 2693 SMLoc StartLoc, SMLoc EndLoc) { 2694 assert (Regs.size() > 0 && "RegList contains no registers?"); 2695 KindTy Kind = k_RegisterList; 2696 2697 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second)) 2698 Kind = k_DPRRegisterList; 2699 else if (ARMMCRegisterClasses[ARM::SPRRegClassID]. 2700 contains(Regs.front().second)) 2701 Kind = k_SPRRegisterList; 2702 2703 // Sort based on the register encoding values. 2704 array_pod_sort(Regs.begin(), Regs.end()); 2705 2706 auto Op = make_unique<ARMOperand>(Kind); 2707 for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator 2708 I = Regs.begin(), E = Regs.end(); I != E; ++I) 2709 Op->Registers.push_back(I->second); 2710 Op->StartLoc = StartLoc; 2711 Op->EndLoc = EndLoc; 2712 return Op; 2713 } 2714 2715 static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum, 2716 unsigned Count, 2717 bool isDoubleSpaced, 2718 SMLoc S, SMLoc E) { 2719 auto Op = make_unique<ARMOperand>(k_VectorList); 2720 Op->VectorList.RegNum = RegNum; 2721 Op->VectorList.Count = Count; 2722 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2723 Op->StartLoc = S; 2724 Op->EndLoc = E; 2725 return Op; 2726 } 2727 2728 static std::unique_ptr<ARMOperand> 2729 CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced, 2730 SMLoc S, SMLoc E) { 2731 auto Op = make_unique<ARMOperand>(k_VectorListAllLanes); 2732 Op->VectorList.RegNum = RegNum; 2733 Op->VectorList.Count = Count; 2734 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2735 Op->StartLoc = S; 2736 Op->EndLoc = E; 2737 return Op; 2738 } 2739 2740 static std::unique_ptr<ARMOperand> 2741 CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index, 2742 bool isDoubleSpaced, SMLoc S, SMLoc E) { 2743 auto Op = make_unique<ARMOperand>(k_VectorListIndexed); 2744 Op->VectorList.RegNum = RegNum; 2745 Op->VectorList.Count = Count; 2746 Op->VectorList.LaneIndex = Index; 2747 Op->VectorList.isDoubleSpaced = isDoubleSpaced; 2748 Op->StartLoc = S; 2749 Op->EndLoc = E; 2750 return Op; 2751 } 2752 2753 static std::unique_ptr<ARMOperand> 2754 CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) { 2755 auto Op = make_unique<ARMOperand>(k_VectorIndex); 2756 Op->VectorIndex.Val = Idx; 2757 Op->StartLoc = S; 2758 Op->EndLoc = E; 2759 return Op; 2760 } 2761 2762 static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S, 2763 SMLoc E) { 2764 auto Op = make_unique<ARMOperand>(k_Immediate); 2765 Op->Imm.Val = Val; 2766 Op->StartLoc = S; 2767 Op->EndLoc = E; 2768 return Op; 2769 } 2770 2771 static std::unique_ptr<ARMOperand> 2772 CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm, 2773 unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType, 2774 unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S, 2775 SMLoc E, SMLoc AlignmentLoc = SMLoc()) { 2776 auto Op = make_unique<ARMOperand>(k_Memory); 2777 Op->Memory.BaseRegNum = BaseRegNum; 2778 Op->Memory.OffsetImm = OffsetImm; 2779 Op->Memory.OffsetRegNum = OffsetRegNum; 2780 Op->Memory.ShiftType = ShiftType; 2781 Op->Memory.ShiftImm = ShiftImm; 2782 Op->Memory.Alignment = Alignment; 2783 Op->Memory.isNegative = isNegative; 2784 Op->StartLoc = S; 2785 Op->EndLoc = E; 2786 Op->AlignmentLoc = AlignmentLoc; 2787 return Op; 2788 } 2789 2790 static std::unique_ptr<ARMOperand> 2791 CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy, 2792 unsigned ShiftImm, SMLoc S, SMLoc E) { 2793 auto Op = make_unique<ARMOperand>(k_PostIndexRegister); 2794 Op->PostIdxReg.RegNum = RegNum; 2795 Op->PostIdxReg.isAdd = isAdd; 2796 Op->PostIdxReg.ShiftTy = ShiftTy; 2797 Op->PostIdxReg.ShiftImm = ShiftImm; 2798 Op->StartLoc = S; 2799 Op->EndLoc = E; 2800 return Op; 2801 } 2802 2803 static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, 2804 SMLoc S) { 2805 auto Op = make_unique<ARMOperand>(k_MemBarrierOpt); 2806 Op->MBOpt.Val = Opt; 2807 Op->StartLoc = S; 2808 Op->EndLoc = S; 2809 return Op; 2810 } 2811 2812 static std::unique_ptr<ARMOperand> 2813 CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) { 2814 auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt); 2815 Op->ISBOpt.Val = Opt; 2816 Op->StartLoc = S; 2817 Op->EndLoc = S; 2818 return Op; 2819 } 2820 2821 static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags, 2822 SMLoc S) { 2823 auto Op = make_unique<ARMOperand>(k_ProcIFlags); 2824 Op->IFlags.Val = IFlags; 2825 Op->StartLoc = S; 2826 Op->EndLoc = S; 2827 return Op; 2828 } 2829 2830 static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) { 2831 auto Op = make_unique<ARMOperand>(k_MSRMask); 2832 Op->MMask.Val = MMask; 2833 Op->StartLoc = S; 2834 Op->EndLoc = S; 2835 return Op; 2836 } 2837 2838 static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) { 2839 auto Op = make_unique<ARMOperand>(k_BankedReg); 2840 Op->BankedReg.Val = Reg; 2841 Op->StartLoc = S; 2842 Op->EndLoc = S; 2843 return Op; 2844 } 2845 }; 2846 2847 } // end anonymous namespace. 2848 2849 void ARMOperand::print(raw_ostream &OS) const { 2850 switch (Kind) { 2851 case k_CondCode: 2852 OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">"; 2853 break; 2854 case k_CCOut: 2855 OS << "<ccout " << getReg() << ">"; 2856 break; 2857 case k_ITCondMask: { 2858 static const char *const MaskStr[] = { 2859 "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)", 2860 "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)" 2861 }; 2862 assert((ITMask.Mask & 0xf) == ITMask.Mask); 2863 OS << "<it-mask " << MaskStr[ITMask.Mask] << ">"; 2864 break; 2865 } 2866 case k_CoprocNum: 2867 OS << "<coprocessor number: " << getCoproc() << ">"; 2868 break; 2869 case k_CoprocReg: 2870 OS << "<coprocessor register: " << getCoproc() << ">"; 2871 break; 2872 case k_CoprocOption: 2873 OS << "<coprocessor option: " << CoprocOption.Val << ">"; 2874 break; 2875 case k_MSRMask: 2876 OS << "<mask: " << getMSRMask() << ">"; 2877 break; 2878 case k_BankedReg: 2879 OS << "<banked reg: " << getBankedReg() << ">"; 2880 break; 2881 case k_Immediate: 2882 OS << *getImm(); 2883 break; 2884 case k_MemBarrierOpt: 2885 OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">"; 2886 break; 2887 case k_InstSyncBarrierOpt: 2888 OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">"; 2889 break; 2890 case k_Memory: 2891 OS << "<memory " 2892 << " base:" << Memory.BaseRegNum; 2893 OS << ">"; 2894 break; 2895 case k_PostIndexRegister: 2896 OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-") 2897 << PostIdxReg.RegNum; 2898 if (PostIdxReg.ShiftTy != ARM_AM::no_shift) 2899 OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " " 2900 << PostIdxReg.ShiftImm; 2901 OS << ">"; 2902 break; 2903 case k_ProcIFlags: { 2904 OS << "<ARM_PROC::"; 2905 unsigned IFlags = getProcIFlags(); 2906 for (int i=2; i >= 0; --i) 2907 if (IFlags & (1 << i)) 2908 OS << ARM_PROC::IFlagsToString(1 << i); 2909 OS << ">"; 2910 break; 2911 } 2912 case k_Register: 2913 OS << "<register " << getReg() << ">"; 2914 break; 2915 case k_ShifterImmediate: 2916 OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl") 2917 << " #" << ShifterImm.Imm << ">"; 2918 break; 2919 case k_ShiftedRegister: 2920 OS << "<so_reg_reg " 2921 << RegShiftedReg.SrcReg << " " 2922 << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy) 2923 << " " << RegShiftedReg.ShiftReg << ">"; 2924 break; 2925 case k_ShiftedImmediate: 2926 OS << "<so_reg_imm " 2927 << RegShiftedImm.SrcReg << " " 2928 << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy) 2929 << " #" << RegShiftedImm.ShiftImm << ">"; 2930 break; 2931 case k_RotateImmediate: 2932 OS << "<ror " << " #" << (RotImm.Imm * 8) << ">"; 2933 break; 2934 case k_ModifiedImmediate: 2935 OS << "<mod_imm #" << ModImm.Bits << ", #" 2936 << ModImm.Rot << ")>"; 2937 break; 2938 case k_ConstantPoolImmediate: 2939 OS << "<constant_pool_imm #" << *getConstantPoolImm(); 2940 break; 2941 case k_BitfieldDescriptor: 2942 OS << "<bitfield " << "lsb: " << Bitfield.LSB 2943 << ", width: " << Bitfield.Width << ">"; 2944 break; 2945 case k_RegisterList: 2946 case k_DPRRegisterList: 2947 case k_SPRRegisterList: { 2948 OS << "<register_list "; 2949 2950 const SmallVectorImpl<unsigned> &RegList = getRegList(); 2951 for (SmallVectorImpl<unsigned>::const_iterator 2952 I = RegList.begin(), E = RegList.end(); I != E; ) { 2953 OS << *I; 2954 if (++I < E) OS << ", "; 2955 } 2956 2957 OS << ">"; 2958 break; 2959 } 2960 case k_VectorList: 2961 OS << "<vector_list " << VectorList.Count << " * " 2962 << VectorList.RegNum << ">"; 2963 break; 2964 case k_VectorListAllLanes: 2965 OS << "<vector_list(all lanes) " << VectorList.Count << " * " 2966 << VectorList.RegNum << ">"; 2967 break; 2968 case k_VectorListIndexed: 2969 OS << "<vector_list(lane " << VectorList.LaneIndex << ") " 2970 << VectorList.Count << " * " << VectorList.RegNum << ">"; 2971 break; 2972 case k_Token: 2973 OS << "'" << getToken() << "'"; 2974 break; 2975 case k_VectorIndex: 2976 OS << "<vectorindex " << getVectorIndex() << ">"; 2977 break; 2978 } 2979 } 2980 2981 /// @name Auto-generated Match Functions 2982 /// { 2983 2984 static unsigned MatchRegisterName(StringRef Name); 2985 2986 /// } 2987 2988 bool ARMAsmParser::ParseRegister(unsigned &RegNo, 2989 SMLoc &StartLoc, SMLoc &EndLoc) { 2990 const AsmToken &Tok = getParser().getTok(); 2991 StartLoc = Tok.getLoc(); 2992 EndLoc = Tok.getEndLoc(); 2993 RegNo = tryParseRegister(); 2994 2995 return (RegNo == (unsigned)-1); 2996 } 2997 2998 /// Try to parse a register name. The token must be an Identifier when called, 2999 /// and if it is a register name the token is eaten and the register number is 3000 /// returned. Otherwise return -1. 3001 /// 3002 int ARMAsmParser::tryParseRegister() { 3003 MCAsmParser &Parser = getParser(); 3004 const AsmToken &Tok = Parser.getTok(); 3005 if (Tok.isNot(AsmToken::Identifier)) return -1; 3006 3007 std::string lowerCase = Tok.getString().lower(); 3008 unsigned RegNum = MatchRegisterName(lowerCase); 3009 if (!RegNum) { 3010 RegNum = StringSwitch<unsigned>(lowerCase) 3011 .Case("r13", ARM::SP) 3012 .Case("r14", ARM::LR) 3013 .Case("r15", ARM::PC) 3014 .Case("ip", ARM::R12) 3015 // Additional register name aliases for 'gas' compatibility. 3016 .Case("a1", ARM::R0) 3017 .Case("a2", ARM::R1) 3018 .Case("a3", ARM::R2) 3019 .Case("a4", ARM::R3) 3020 .Case("v1", ARM::R4) 3021 .Case("v2", ARM::R5) 3022 .Case("v3", ARM::R6) 3023 .Case("v4", ARM::R7) 3024 .Case("v5", ARM::R8) 3025 .Case("v6", ARM::R9) 3026 .Case("v7", ARM::R10) 3027 .Case("v8", ARM::R11) 3028 .Case("sb", ARM::R9) 3029 .Case("sl", ARM::R10) 3030 .Case("fp", ARM::R11) 3031 .Default(0); 3032 } 3033 if (!RegNum) { 3034 // Check for aliases registered via .req. Canonicalize to lower case. 3035 // That's more consistent since register names are case insensitive, and 3036 // it's how the original entry was passed in from MC/MCParser/AsmParser. 3037 StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase); 3038 // If no match, return failure. 3039 if (Entry == RegisterReqs.end()) 3040 return -1; 3041 Parser.Lex(); // Eat identifier token. 3042 return Entry->getValue(); 3043 } 3044 3045 // Some FPUs only have 16 D registers, so D16-D31 are invalid 3046 if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31) 3047 return -1; 3048 3049 Parser.Lex(); // Eat identifier token. 3050 3051 return RegNum; 3052 } 3053 3054 // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0. 3055 // If a recoverable error occurs, return 1. If an irrecoverable error 3056 // occurs, return -1. An irrecoverable error is one where tokens have been 3057 // consumed in the process of trying to parse the shifter (i.e., when it is 3058 // indeed a shifter operand, but malformed). 3059 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) { 3060 MCAsmParser &Parser = getParser(); 3061 SMLoc S = Parser.getTok().getLoc(); 3062 const AsmToken &Tok = Parser.getTok(); 3063 if (Tok.isNot(AsmToken::Identifier)) 3064 return -1; 3065 3066 std::string lowerCase = Tok.getString().lower(); 3067 ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase) 3068 .Case("asl", ARM_AM::lsl) 3069 .Case("lsl", ARM_AM::lsl) 3070 .Case("lsr", ARM_AM::lsr) 3071 .Case("asr", ARM_AM::asr) 3072 .Case("ror", ARM_AM::ror) 3073 .Case("rrx", ARM_AM::rrx) 3074 .Default(ARM_AM::no_shift); 3075 3076 if (ShiftTy == ARM_AM::no_shift) 3077 return 1; 3078 3079 Parser.Lex(); // Eat the operator. 3080 3081 // The source register for the shift has already been added to the 3082 // operand list, so we need to pop it off and combine it into the shifted 3083 // register operand instead. 3084 std::unique_ptr<ARMOperand> PrevOp( 3085 (ARMOperand *)Operands.pop_back_val().release()); 3086 if (!PrevOp->isReg()) 3087 return Error(PrevOp->getStartLoc(), "shift must be of a register"); 3088 int SrcReg = PrevOp->getReg(); 3089 3090 SMLoc EndLoc; 3091 int64_t Imm = 0; 3092 int ShiftReg = 0; 3093 if (ShiftTy == ARM_AM::rrx) { 3094 // RRX Doesn't have an explicit shift amount. The encoder expects 3095 // the shift register to be the same as the source register. Seems odd, 3096 // but OK. 3097 ShiftReg = SrcReg; 3098 } else { 3099 // Figure out if this is shifted by a constant or a register (for non-RRX). 3100 if (Parser.getTok().is(AsmToken::Hash) || 3101 Parser.getTok().is(AsmToken::Dollar)) { 3102 Parser.Lex(); // Eat hash. 3103 SMLoc ImmLoc = Parser.getTok().getLoc(); 3104 const MCExpr *ShiftExpr = nullptr; 3105 if (getParser().parseExpression(ShiftExpr, EndLoc)) { 3106 Error(ImmLoc, "invalid immediate shift value"); 3107 return -1; 3108 } 3109 // The expression must be evaluatable as an immediate. 3110 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr); 3111 if (!CE) { 3112 Error(ImmLoc, "invalid immediate shift value"); 3113 return -1; 3114 } 3115 // Range check the immediate. 3116 // lsl, ror: 0 <= imm <= 31 3117 // lsr, asr: 0 <= imm <= 32 3118 Imm = CE->getValue(); 3119 if (Imm < 0 || 3120 ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) || 3121 ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) { 3122 Error(ImmLoc, "immediate shift value out of range"); 3123 return -1; 3124 } 3125 // shift by zero is a nop. Always send it through as lsl. 3126 // ('as' compatibility) 3127 if (Imm == 0) 3128 ShiftTy = ARM_AM::lsl; 3129 } else if (Parser.getTok().is(AsmToken::Identifier)) { 3130 SMLoc L = Parser.getTok().getLoc(); 3131 EndLoc = Parser.getTok().getEndLoc(); 3132 ShiftReg = tryParseRegister(); 3133 if (ShiftReg == -1) { 3134 Error(L, "expected immediate or register in shift operand"); 3135 return -1; 3136 } 3137 } else { 3138 Error(Parser.getTok().getLoc(), 3139 "expected immediate or register in shift operand"); 3140 return -1; 3141 } 3142 } 3143 3144 if (ShiftReg && ShiftTy != ARM_AM::rrx) 3145 Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg, 3146 ShiftReg, Imm, 3147 S, EndLoc)); 3148 else 3149 Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm, 3150 S, EndLoc)); 3151 3152 return 0; 3153 } 3154 3155 3156 /// Try to parse a register name. The token must be an Identifier when called. 3157 /// If it's a register, an AsmOperand is created. Another AsmOperand is created 3158 /// if there is a "writeback". 'true' if it's not a register. 3159 /// 3160 /// TODO this is likely to change to allow different register types and or to 3161 /// parse for a specific register type. 3162 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) { 3163 MCAsmParser &Parser = getParser(); 3164 const AsmToken &RegTok = Parser.getTok(); 3165 int RegNo = tryParseRegister(); 3166 if (RegNo == -1) 3167 return true; 3168 3169 Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(), 3170 RegTok.getEndLoc())); 3171 3172 const AsmToken &ExclaimTok = Parser.getTok(); 3173 if (ExclaimTok.is(AsmToken::Exclaim)) { 3174 Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(), 3175 ExclaimTok.getLoc())); 3176 Parser.Lex(); // Eat exclaim token 3177 return false; 3178 } 3179 3180 // Also check for an index operand. This is only legal for vector registers, 3181 // but that'll get caught OK in operand matching, so we don't need to 3182 // explicitly filter everything else out here. 3183 if (Parser.getTok().is(AsmToken::LBrac)) { 3184 SMLoc SIdx = Parser.getTok().getLoc(); 3185 Parser.Lex(); // Eat left bracket token. 3186 3187 const MCExpr *ImmVal; 3188 if (getParser().parseExpression(ImmVal)) 3189 return true; 3190 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal); 3191 if (!MCE) 3192 return TokError("immediate value expected for vector index"); 3193 3194 if (Parser.getTok().isNot(AsmToken::RBrac)) 3195 return Error(Parser.getTok().getLoc(), "']' expected"); 3196 3197 SMLoc E = Parser.getTok().getEndLoc(); 3198 Parser.Lex(); // Eat right bracket token. 3199 3200 Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(), 3201 SIdx, E, 3202 getContext())); 3203 } 3204 3205 return false; 3206 } 3207 3208 /// MatchCoprocessorOperandName - Try to parse an coprocessor related 3209 /// instruction with a symbolic operand name. 3210 /// We accept "crN" syntax for GAS compatibility. 3211 /// <operand-name> ::= <prefix><number> 3212 /// If CoprocOp is 'c', then: 3213 /// <prefix> ::= c | cr 3214 /// If CoprocOp is 'p', then : 3215 /// <prefix> ::= p 3216 /// <number> ::= integer in range [0, 15] 3217 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) { 3218 // Use the same layout as the tablegen'erated register name matcher. Ugly, 3219 // but efficient. 3220 if (Name.size() < 2 || Name[0] != CoprocOp) 3221 return -1; 3222 Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front(); 3223 3224 switch (Name.size()) { 3225 default: return -1; 3226 case 1: 3227 switch (Name[0]) { 3228 default: return -1; 3229 case '0': return 0; 3230 case '1': return 1; 3231 case '2': return 2; 3232 case '3': return 3; 3233 case '4': return 4; 3234 case '5': return 5; 3235 case '6': return 6; 3236 case '7': return 7; 3237 case '8': return 8; 3238 case '9': return 9; 3239 } 3240 case 2: 3241 if (Name[0] != '1') 3242 return -1; 3243 switch (Name[1]) { 3244 default: return -1; 3245 // CP10 and CP11 are VFP/NEON and so vector instructions should be used. 3246 // However, old cores (v5/v6) did use them in that way. 3247 case '0': return 10; 3248 case '1': return 11; 3249 case '2': return 12; 3250 case '3': return 13; 3251 case '4': return 14; 3252 case '5': return 15; 3253 } 3254 } 3255 } 3256 3257 /// parseITCondCode - Try to parse a condition code for an IT instruction. 3258 ARMAsmParser::OperandMatchResultTy 3259 ARMAsmParser::parseITCondCode(OperandVector &Operands) { 3260 MCAsmParser &Parser = getParser(); 3261 SMLoc S = Parser.getTok().getLoc(); 3262 const AsmToken &Tok = Parser.getTok(); 3263 if (!Tok.is(AsmToken::Identifier)) 3264 return MatchOperand_NoMatch; 3265 unsigned CC = StringSwitch<unsigned>(Tok.getString().lower()) 3266 .Case("eq", ARMCC::EQ) 3267 .Case("ne", ARMCC::NE) 3268 .Case("hs", ARMCC::HS) 3269 .Case("cs", ARMCC::HS) 3270 .Case("lo", ARMCC::LO) 3271 .Case("cc", ARMCC::LO) 3272 .Case("mi", ARMCC::MI) 3273 .Case("pl", ARMCC::PL) 3274 .Case("vs", ARMCC::VS) 3275 .Case("vc", ARMCC::VC) 3276 .Case("hi", ARMCC::HI) 3277 .Case("ls", ARMCC::LS) 3278 .Case("ge", ARMCC::GE) 3279 .Case("lt", ARMCC::LT) 3280 .Case("gt", ARMCC::GT) 3281 .Case("le", ARMCC::LE) 3282 .Case("al", ARMCC::AL) 3283 .Default(~0U); 3284 if (CC == ~0U) 3285 return MatchOperand_NoMatch; 3286 Parser.Lex(); // Eat the token. 3287 3288 Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S)); 3289 3290 return MatchOperand_Success; 3291 } 3292 3293 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The 3294 /// token must be an Identifier when called, and if it is a coprocessor 3295 /// number, the token is eaten and the operand is added to the operand list. 3296 ARMAsmParser::OperandMatchResultTy 3297 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) { 3298 MCAsmParser &Parser = getParser(); 3299 SMLoc S = Parser.getTok().getLoc(); 3300 const AsmToken &Tok = Parser.getTok(); 3301 if (Tok.isNot(AsmToken::Identifier)) 3302 return MatchOperand_NoMatch; 3303 3304 int Num = MatchCoprocessorOperandName(Tok.getString(), 'p'); 3305 if (Num == -1) 3306 return MatchOperand_NoMatch; 3307 // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions 3308 if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11)) 3309 return MatchOperand_NoMatch; 3310 3311 Parser.Lex(); // Eat identifier token. 3312 Operands.push_back(ARMOperand::CreateCoprocNum(Num, S)); 3313 return MatchOperand_Success; 3314 } 3315 3316 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The 3317 /// token must be an Identifier when called, and if it is a coprocessor 3318 /// number, the token is eaten and the operand is added to the operand list. 3319 ARMAsmParser::OperandMatchResultTy 3320 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) { 3321 MCAsmParser &Parser = getParser(); 3322 SMLoc S = Parser.getTok().getLoc(); 3323 const AsmToken &Tok = Parser.getTok(); 3324 if (Tok.isNot(AsmToken::Identifier)) 3325 return MatchOperand_NoMatch; 3326 3327 int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c'); 3328 if (Reg == -1) 3329 return MatchOperand_NoMatch; 3330 3331 Parser.Lex(); // Eat identifier token. 3332 Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S)); 3333 return MatchOperand_Success; 3334 } 3335 3336 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand. 3337 /// coproc_option : '{' imm0_255 '}' 3338 ARMAsmParser::OperandMatchResultTy 3339 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) { 3340 MCAsmParser &Parser = getParser(); 3341 SMLoc S = Parser.getTok().getLoc(); 3342 3343 // If this isn't a '{', this isn't a coprocessor immediate operand. 3344 if (Parser.getTok().isNot(AsmToken::LCurly)) 3345 return MatchOperand_NoMatch; 3346 Parser.Lex(); // Eat the '{' 3347 3348 const MCExpr *Expr; 3349 SMLoc Loc = Parser.getTok().getLoc(); 3350 if (getParser().parseExpression(Expr)) { 3351 Error(Loc, "illegal expression"); 3352 return MatchOperand_ParseFail; 3353 } 3354 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 3355 if (!CE || CE->getValue() < 0 || CE->getValue() > 255) { 3356 Error(Loc, "coprocessor option must be an immediate in range [0, 255]"); 3357 return MatchOperand_ParseFail; 3358 } 3359 int Val = CE->getValue(); 3360 3361 // Check for and consume the closing '}' 3362 if (Parser.getTok().isNot(AsmToken::RCurly)) 3363 return MatchOperand_ParseFail; 3364 SMLoc E = Parser.getTok().getEndLoc(); 3365 Parser.Lex(); // Eat the '}' 3366 3367 Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E)); 3368 return MatchOperand_Success; 3369 } 3370 3371 // For register list parsing, we need to map from raw GPR register numbering 3372 // to the enumeration values. The enumeration values aren't sorted by 3373 // register number due to our using "sp", "lr" and "pc" as canonical names. 3374 static unsigned getNextRegister(unsigned Reg) { 3375 // If this is a GPR, we need to do it manually, otherwise we can rely 3376 // on the sort ordering of the enumeration since the other reg-classes 3377 // are sane. 3378 if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3379 return Reg + 1; 3380 switch(Reg) { 3381 default: llvm_unreachable("Invalid GPR number!"); 3382 case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2; 3383 case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4; 3384 case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6; 3385 case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8; 3386 case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10; 3387 case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12; 3388 case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR; 3389 case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0; 3390 } 3391 } 3392 3393 // Return the low-subreg of a given Q register. 3394 static unsigned getDRegFromQReg(unsigned QReg) { 3395 switch (QReg) { 3396 default: llvm_unreachable("expected a Q register!"); 3397 case ARM::Q0: return ARM::D0; 3398 case ARM::Q1: return ARM::D2; 3399 case ARM::Q2: return ARM::D4; 3400 case ARM::Q3: return ARM::D6; 3401 case ARM::Q4: return ARM::D8; 3402 case ARM::Q5: return ARM::D10; 3403 case ARM::Q6: return ARM::D12; 3404 case ARM::Q7: return ARM::D14; 3405 case ARM::Q8: return ARM::D16; 3406 case ARM::Q9: return ARM::D18; 3407 case ARM::Q10: return ARM::D20; 3408 case ARM::Q11: return ARM::D22; 3409 case ARM::Q12: return ARM::D24; 3410 case ARM::Q13: return ARM::D26; 3411 case ARM::Q14: return ARM::D28; 3412 case ARM::Q15: return ARM::D30; 3413 } 3414 } 3415 3416 /// Parse a register list. 3417 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) { 3418 MCAsmParser &Parser = getParser(); 3419 assert(Parser.getTok().is(AsmToken::LCurly) && 3420 "Token is not a Left Curly Brace"); 3421 SMLoc S = Parser.getTok().getLoc(); 3422 Parser.Lex(); // Eat '{' token. 3423 SMLoc RegLoc = Parser.getTok().getLoc(); 3424 3425 // Check the first register in the list to see what register class 3426 // this is a list of. 3427 int Reg = tryParseRegister(); 3428 if (Reg == -1) 3429 return Error(RegLoc, "register expected"); 3430 3431 // The reglist instructions have at most 16 registers, so reserve 3432 // space for that many. 3433 int EReg = 0; 3434 SmallVector<std::pair<unsigned, unsigned>, 16> Registers; 3435 3436 // Allow Q regs and just interpret them as the two D sub-registers. 3437 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3438 Reg = getDRegFromQReg(Reg); 3439 EReg = MRI->getEncodingValue(Reg); 3440 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3441 ++Reg; 3442 } 3443 const MCRegisterClass *RC; 3444 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3445 RC = &ARMMCRegisterClasses[ARM::GPRRegClassID]; 3446 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) 3447 RC = &ARMMCRegisterClasses[ARM::DPRRegClassID]; 3448 else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg)) 3449 RC = &ARMMCRegisterClasses[ARM::SPRRegClassID]; 3450 else 3451 return Error(RegLoc, "invalid register in register list"); 3452 3453 // Store the register. 3454 EReg = MRI->getEncodingValue(Reg); 3455 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3456 3457 // This starts immediately after the first register token in the list, 3458 // so we can see either a comma or a minus (range separator) as a legal 3459 // next token. 3460 while (Parser.getTok().is(AsmToken::Comma) || 3461 Parser.getTok().is(AsmToken::Minus)) { 3462 if (Parser.getTok().is(AsmToken::Minus)) { 3463 Parser.Lex(); // Eat the minus. 3464 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3465 int EndReg = tryParseRegister(); 3466 if (EndReg == -1) 3467 return Error(AfterMinusLoc, "register expected"); 3468 // Allow Q regs and just interpret them as the two D sub-registers. 3469 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3470 EndReg = getDRegFromQReg(EndReg) + 1; 3471 // If the register is the same as the start reg, there's nothing 3472 // more to do. 3473 if (Reg == EndReg) 3474 continue; 3475 // The register must be in the same register class as the first. 3476 if (!RC->contains(EndReg)) 3477 return Error(AfterMinusLoc, "invalid register in register list"); 3478 // Ranges must go from low to high. 3479 if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg)) 3480 return Error(AfterMinusLoc, "bad range in register list"); 3481 3482 // Add all the registers in the range to the register list. 3483 while (Reg != EndReg) { 3484 Reg = getNextRegister(Reg); 3485 EReg = MRI->getEncodingValue(Reg); 3486 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3487 } 3488 continue; 3489 } 3490 Parser.Lex(); // Eat the comma. 3491 RegLoc = Parser.getTok().getLoc(); 3492 int OldReg = Reg; 3493 const AsmToken RegTok = Parser.getTok(); 3494 Reg = tryParseRegister(); 3495 if (Reg == -1) 3496 return Error(RegLoc, "register expected"); 3497 // Allow Q regs and just interpret them as the two D sub-registers. 3498 bool isQReg = false; 3499 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3500 Reg = getDRegFromQReg(Reg); 3501 isQReg = true; 3502 } 3503 // The register must be in the same register class as the first. 3504 if (!RC->contains(Reg)) 3505 return Error(RegLoc, "invalid register in register list"); 3506 // List must be monotonically increasing. 3507 if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) { 3508 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 3509 Warning(RegLoc, "register list not in ascending order"); 3510 else 3511 return Error(RegLoc, "register list not in ascending order"); 3512 } 3513 if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) { 3514 Warning(RegLoc, "duplicated register (" + RegTok.getString() + 3515 ") in register list"); 3516 continue; 3517 } 3518 // VFP register lists must also be contiguous. 3519 if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] && 3520 Reg != OldReg + 1) 3521 return Error(RegLoc, "non-contiguous register range"); 3522 EReg = MRI->getEncodingValue(Reg); 3523 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3524 if (isQReg) { 3525 EReg = MRI->getEncodingValue(++Reg); 3526 Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg)); 3527 } 3528 } 3529 3530 if (Parser.getTok().isNot(AsmToken::RCurly)) 3531 return Error(Parser.getTok().getLoc(), "'}' expected"); 3532 SMLoc E = Parser.getTok().getEndLoc(); 3533 Parser.Lex(); // Eat '}' token. 3534 3535 // Push the register list operand. 3536 Operands.push_back(ARMOperand::CreateRegList(Registers, S, E)); 3537 3538 // The ARM system instruction variants for LDM/STM have a '^' token here. 3539 if (Parser.getTok().is(AsmToken::Caret)) { 3540 Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc())); 3541 Parser.Lex(); // Eat '^' token. 3542 } 3543 3544 return false; 3545 } 3546 3547 // Helper function to parse the lane index for vector lists. 3548 ARMAsmParser::OperandMatchResultTy ARMAsmParser:: 3549 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) { 3550 MCAsmParser &Parser = getParser(); 3551 Index = 0; // Always return a defined index value. 3552 if (Parser.getTok().is(AsmToken::LBrac)) { 3553 Parser.Lex(); // Eat the '['. 3554 if (Parser.getTok().is(AsmToken::RBrac)) { 3555 // "Dn[]" is the 'all lanes' syntax. 3556 LaneKind = AllLanes; 3557 EndLoc = Parser.getTok().getEndLoc(); 3558 Parser.Lex(); // Eat the ']'. 3559 return MatchOperand_Success; 3560 } 3561 3562 // There's an optional '#' token here. Normally there wouldn't be, but 3563 // inline assemble puts one in, and it's friendly to accept that. 3564 if (Parser.getTok().is(AsmToken::Hash)) 3565 Parser.Lex(); // Eat '#' or '$'. 3566 3567 const MCExpr *LaneIndex; 3568 SMLoc Loc = Parser.getTok().getLoc(); 3569 if (getParser().parseExpression(LaneIndex)) { 3570 Error(Loc, "illegal expression"); 3571 return MatchOperand_ParseFail; 3572 } 3573 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex); 3574 if (!CE) { 3575 Error(Loc, "lane index must be empty or an integer"); 3576 return MatchOperand_ParseFail; 3577 } 3578 if (Parser.getTok().isNot(AsmToken::RBrac)) { 3579 Error(Parser.getTok().getLoc(), "']' expected"); 3580 return MatchOperand_ParseFail; 3581 } 3582 EndLoc = Parser.getTok().getEndLoc(); 3583 Parser.Lex(); // Eat the ']'. 3584 int64_t Val = CE->getValue(); 3585 3586 // FIXME: Make this range check context sensitive for .8, .16, .32. 3587 if (Val < 0 || Val > 7) { 3588 Error(Parser.getTok().getLoc(), "lane index out of range"); 3589 return MatchOperand_ParseFail; 3590 } 3591 Index = Val; 3592 LaneKind = IndexedLane; 3593 return MatchOperand_Success; 3594 } 3595 LaneKind = NoLanes; 3596 return MatchOperand_Success; 3597 } 3598 3599 // parse a vector register list 3600 ARMAsmParser::OperandMatchResultTy 3601 ARMAsmParser::parseVectorList(OperandVector &Operands) { 3602 MCAsmParser &Parser = getParser(); 3603 VectorLaneTy LaneKind; 3604 unsigned LaneIndex; 3605 SMLoc S = Parser.getTok().getLoc(); 3606 // As an extension (to match gas), support a plain D register or Q register 3607 // (without encosing curly braces) as a single or double entry list, 3608 // respectively. 3609 if (Parser.getTok().is(AsmToken::Identifier)) { 3610 SMLoc E = Parser.getTok().getEndLoc(); 3611 int Reg = tryParseRegister(); 3612 if (Reg == -1) 3613 return MatchOperand_NoMatch; 3614 if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 3615 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3616 if (Res != MatchOperand_Success) 3617 return Res; 3618 switch (LaneKind) { 3619 case NoLanes: 3620 Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E)); 3621 break; 3622 case AllLanes: 3623 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false, 3624 S, E)); 3625 break; 3626 case IndexedLane: 3627 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1, 3628 LaneIndex, 3629 false, S, E)); 3630 break; 3631 } 3632 return MatchOperand_Success; 3633 } 3634 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3635 Reg = getDRegFromQReg(Reg); 3636 OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E); 3637 if (Res != MatchOperand_Success) 3638 return Res; 3639 switch (LaneKind) { 3640 case NoLanes: 3641 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3642 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3643 Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E)); 3644 break; 3645 case AllLanes: 3646 Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0, 3647 &ARMMCRegisterClasses[ARM::DPairRegClassID]); 3648 Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false, 3649 S, E)); 3650 break; 3651 case IndexedLane: 3652 Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2, 3653 LaneIndex, 3654 false, S, E)); 3655 break; 3656 } 3657 return MatchOperand_Success; 3658 } 3659 Error(S, "vector register expected"); 3660 return MatchOperand_ParseFail; 3661 } 3662 3663 if (Parser.getTok().isNot(AsmToken::LCurly)) 3664 return MatchOperand_NoMatch; 3665 3666 Parser.Lex(); // Eat '{' token. 3667 SMLoc RegLoc = Parser.getTok().getLoc(); 3668 3669 int Reg = tryParseRegister(); 3670 if (Reg == -1) { 3671 Error(RegLoc, "register expected"); 3672 return MatchOperand_ParseFail; 3673 } 3674 unsigned Count = 1; 3675 int Spacing = 0; 3676 unsigned FirstReg = Reg; 3677 // The list is of D registers, but we also allow Q regs and just interpret 3678 // them as the two D sub-registers. 3679 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3680 FirstReg = Reg = getDRegFromQReg(Reg); 3681 Spacing = 1; // double-spacing requires explicit D registers, otherwise 3682 // it's ambiguous with four-register single spaced. 3683 ++Reg; 3684 ++Count; 3685 } 3686 3687 SMLoc E; 3688 if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success) 3689 return MatchOperand_ParseFail; 3690 3691 while (Parser.getTok().is(AsmToken::Comma) || 3692 Parser.getTok().is(AsmToken::Minus)) { 3693 if (Parser.getTok().is(AsmToken::Minus)) { 3694 if (!Spacing) 3695 Spacing = 1; // Register range implies a single spaced list. 3696 else if (Spacing == 2) { 3697 Error(Parser.getTok().getLoc(), 3698 "sequential registers in double spaced list"); 3699 return MatchOperand_ParseFail; 3700 } 3701 Parser.Lex(); // Eat the minus. 3702 SMLoc AfterMinusLoc = Parser.getTok().getLoc(); 3703 int EndReg = tryParseRegister(); 3704 if (EndReg == -1) { 3705 Error(AfterMinusLoc, "register expected"); 3706 return MatchOperand_ParseFail; 3707 } 3708 // Allow Q regs and just interpret them as the two D sub-registers. 3709 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg)) 3710 EndReg = getDRegFromQReg(EndReg) + 1; 3711 // If the register is the same as the start reg, there's nothing 3712 // more to do. 3713 if (Reg == EndReg) 3714 continue; 3715 // The register must be in the same register class as the first. 3716 if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) { 3717 Error(AfterMinusLoc, "invalid register in register list"); 3718 return MatchOperand_ParseFail; 3719 } 3720 // Ranges must go from low to high. 3721 if (Reg > EndReg) { 3722 Error(AfterMinusLoc, "bad range in register list"); 3723 return MatchOperand_ParseFail; 3724 } 3725 // Parse the lane specifier if present. 3726 VectorLaneTy NextLaneKind; 3727 unsigned NextLaneIndex; 3728 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3729 MatchOperand_Success) 3730 return MatchOperand_ParseFail; 3731 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3732 Error(AfterMinusLoc, "mismatched lane index in register list"); 3733 return MatchOperand_ParseFail; 3734 } 3735 3736 // Add all the registers in the range to the register list. 3737 Count += EndReg - Reg; 3738 Reg = EndReg; 3739 continue; 3740 } 3741 Parser.Lex(); // Eat the comma. 3742 RegLoc = Parser.getTok().getLoc(); 3743 int OldReg = Reg; 3744 Reg = tryParseRegister(); 3745 if (Reg == -1) { 3746 Error(RegLoc, "register expected"); 3747 return MatchOperand_ParseFail; 3748 } 3749 // vector register lists must be contiguous. 3750 // It's OK to use the enumeration values directly here rather, as the 3751 // VFP register classes have the enum sorted properly. 3752 // 3753 // The list is of D registers, but we also allow Q regs and just interpret 3754 // them as the two D sub-registers. 3755 if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) { 3756 if (!Spacing) 3757 Spacing = 1; // Register range implies a single spaced list. 3758 else if (Spacing == 2) { 3759 Error(RegLoc, 3760 "invalid register in double-spaced list (must be 'D' register')"); 3761 return MatchOperand_ParseFail; 3762 } 3763 Reg = getDRegFromQReg(Reg); 3764 if (Reg != OldReg + 1) { 3765 Error(RegLoc, "non-contiguous register range"); 3766 return MatchOperand_ParseFail; 3767 } 3768 ++Reg; 3769 Count += 2; 3770 // Parse the lane specifier if present. 3771 VectorLaneTy NextLaneKind; 3772 unsigned NextLaneIndex; 3773 SMLoc LaneLoc = Parser.getTok().getLoc(); 3774 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != 3775 MatchOperand_Success) 3776 return MatchOperand_ParseFail; 3777 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3778 Error(LaneLoc, "mismatched lane index in register list"); 3779 return MatchOperand_ParseFail; 3780 } 3781 continue; 3782 } 3783 // Normal D register. 3784 // Figure out the register spacing (single or double) of the list if 3785 // we don't know it already. 3786 if (!Spacing) 3787 Spacing = 1 + (Reg == OldReg + 2); 3788 3789 // Just check that it's contiguous and keep going. 3790 if (Reg != OldReg + Spacing) { 3791 Error(RegLoc, "non-contiguous register range"); 3792 return MatchOperand_ParseFail; 3793 } 3794 ++Count; 3795 // Parse the lane specifier if present. 3796 VectorLaneTy NextLaneKind; 3797 unsigned NextLaneIndex; 3798 SMLoc EndLoc = Parser.getTok().getLoc(); 3799 if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success) 3800 return MatchOperand_ParseFail; 3801 if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) { 3802 Error(EndLoc, "mismatched lane index in register list"); 3803 return MatchOperand_ParseFail; 3804 } 3805 } 3806 3807 if (Parser.getTok().isNot(AsmToken::RCurly)) { 3808 Error(Parser.getTok().getLoc(), "'}' expected"); 3809 return MatchOperand_ParseFail; 3810 } 3811 E = Parser.getTok().getEndLoc(); 3812 Parser.Lex(); // Eat '}' token. 3813 3814 switch (LaneKind) { 3815 case NoLanes: 3816 // Two-register operands have been converted to the 3817 // composite register classes. 3818 if (Count == 2) { 3819 const MCRegisterClass *RC = (Spacing == 1) ? 3820 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3821 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3822 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3823 } 3824 3825 Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count, 3826 (Spacing == 2), S, E)); 3827 break; 3828 case AllLanes: 3829 // Two-register operands have been converted to the 3830 // composite register classes. 3831 if (Count == 2) { 3832 const MCRegisterClass *RC = (Spacing == 1) ? 3833 &ARMMCRegisterClasses[ARM::DPairRegClassID] : 3834 &ARMMCRegisterClasses[ARM::DPairSpcRegClassID]; 3835 FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC); 3836 } 3837 Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count, 3838 (Spacing == 2), 3839 S, E)); 3840 break; 3841 case IndexedLane: 3842 Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count, 3843 LaneIndex, 3844 (Spacing == 2), 3845 S, E)); 3846 break; 3847 } 3848 return MatchOperand_Success; 3849 } 3850 3851 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options. 3852 ARMAsmParser::OperandMatchResultTy 3853 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) { 3854 MCAsmParser &Parser = getParser(); 3855 SMLoc S = Parser.getTok().getLoc(); 3856 const AsmToken &Tok = Parser.getTok(); 3857 unsigned Opt; 3858 3859 if (Tok.is(AsmToken::Identifier)) { 3860 StringRef OptStr = Tok.getString(); 3861 3862 Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower()) 3863 .Case("sy", ARM_MB::SY) 3864 .Case("st", ARM_MB::ST) 3865 .Case("ld", ARM_MB::LD) 3866 .Case("sh", ARM_MB::ISH) 3867 .Case("ish", ARM_MB::ISH) 3868 .Case("shst", ARM_MB::ISHST) 3869 .Case("ishst", ARM_MB::ISHST) 3870 .Case("ishld", ARM_MB::ISHLD) 3871 .Case("nsh", ARM_MB::NSH) 3872 .Case("un", ARM_MB::NSH) 3873 .Case("nshst", ARM_MB::NSHST) 3874 .Case("nshld", ARM_MB::NSHLD) 3875 .Case("unst", ARM_MB::NSHST) 3876 .Case("osh", ARM_MB::OSH) 3877 .Case("oshst", ARM_MB::OSHST) 3878 .Case("oshld", ARM_MB::OSHLD) 3879 .Default(~0U); 3880 3881 // ishld, oshld, nshld and ld are only available from ARMv8. 3882 if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD || 3883 Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD)) 3884 Opt = ~0U; 3885 3886 if (Opt == ~0U) 3887 return MatchOperand_NoMatch; 3888 3889 Parser.Lex(); // Eat identifier token. 3890 } else if (Tok.is(AsmToken::Hash) || 3891 Tok.is(AsmToken::Dollar) || 3892 Tok.is(AsmToken::Integer)) { 3893 if (Parser.getTok().isNot(AsmToken::Integer)) 3894 Parser.Lex(); // Eat '#' or '$'. 3895 SMLoc Loc = Parser.getTok().getLoc(); 3896 3897 const MCExpr *MemBarrierID; 3898 if (getParser().parseExpression(MemBarrierID)) { 3899 Error(Loc, "illegal expression"); 3900 return MatchOperand_ParseFail; 3901 } 3902 3903 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID); 3904 if (!CE) { 3905 Error(Loc, "constant expression expected"); 3906 return MatchOperand_ParseFail; 3907 } 3908 3909 int Val = CE->getValue(); 3910 if (Val & ~0xf) { 3911 Error(Loc, "immediate value out of range"); 3912 return MatchOperand_ParseFail; 3913 } 3914 3915 Opt = ARM_MB::RESERVED_0 + Val; 3916 } else 3917 return MatchOperand_ParseFail; 3918 3919 Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S)); 3920 return MatchOperand_Success; 3921 } 3922 3923 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options. 3924 ARMAsmParser::OperandMatchResultTy 3925 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) { 3926 MCAsmParser &Parser = getParser(); 3927 SMLoc S = Parser.getTok().getLoc(); 3928 const AsmToken &Tok = Parser.getTok(); 3929 unsigned Opt; 3930 3931 if (Tok.is(AsmToken::Identifier)) { 3932 StringRef OptStr = Tok.getString(); 3933 3934 if (OptStr.equals_lower("sy")) 3935 Opt = ARM_ISB::SY; 3936 else 3937 return MatchOperand_NoMatch; 3938 3939 Parser.Lex(); // Eat identifier token. 3940 } else if (Tok.is(AsmToken::Hash) || 3941 Tok.is(AsmToken::Dollar) || 3942 Tok.is(AsmToken::Integer)) { 3943 if (Parser.getTok().isNot(AsmToken::Integer)) 3944 Parser.Lex(); // Eat '#' or '$'. 3945 SMLoc Loc = Parser.getTok().getLoc(); 3946 3947 const MCExpr *ISBarrierID; 3948 if (getParser().parseExpression(ISBarrierID)) { 3949 Error(Loc, "illegal expression"); 3950 return MatchOperand_ParseFail; 3951 } 3952 3953 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID); 3954 if (!CE) { 3955 Error(Loc, "constant expression expected"); 3956 return MatchOperand_ParseFail; 3957 } 3958 3959 int Val = CE->getValue(); 3960 if (Val & ~0xf) { 3961 Error(Loc, "immediate value out of range"); 3962 return MatchOperand_ParseFail; 3963 } 3964 3965 Opt = ARM_ISB::RESERVED_0 + Val; 3966 } else 3967 return MatchOperand_ParseFail; 3968 3969 Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt( 3970 (ARM_ISB::InstSyncBOpt)Opt, S)); 3971 return MatchOperand_Success; 3972 } 3973 3974 3975 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction. 3976 ARMAsmParser::OperandMatchResultTy 3977 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) { 3978 MCAsmParser &Parser = getParser(); 3979 SMLoc S = Parser.getTok().getLoc(); 3980 const AsmToken &Tok = Parser.getTok(); 3981 if (!Tok.is(AsmToken::Identifier)) 3982 return MatchOperand_NoMatch; 3983 StringRef IFlagsStr = Tok.getString(); 3984 3985 // An iflags string of "none" is interpreted to mean that none of the AIF 3986 // bits are set. Not a terribly useful instruction, but a valid encoding. 3987 unsigned IFlags = 0; 3988 if (IFlagsStr != "none") { 3989 for (int i = 0, e = IFlagsStr.size(); i != e; ++i) { 3990 unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1)) 3991 .Case("a", ARM_PROC::A) 3992 .Case("i", ARM_PROC::I) 3993 .Case("f", ARM_PROC::F) 3994 .Default(~0U); 3995 3996 // If some specific iflag is already set, it means that some letter is 3997 // present more than once, this is not acceptable. 3998 if (Flag == ~0U || (IFlags & Flag)) 3999 return MatchOperand_NoMatch; 4000 4001 IFlags |= Flag; 4002 } 4003 } 4004 4005 Parser.Lex(); // Eat identifier token. 4006 Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S)); 4007 return MatchOperand_Success; 4008 } 4009 4010 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction. 4011 ARMAsmParser::OperandMatchResultTy 4012 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) { 4013 MCAsmParser &Parser = getParser(); 4014 SMLoc S = Parser.getTok().getLoc(); 4015 const AsmToken &Tok = Parser.getTok(); 4016 if (!Tok.is(AsmToken::Identifier)) 4017 return MatchOperand_NoMatch; 4018 StringRef Mask = Tok.getString(); 4019 4020 if (isMClass()) { 4021 // See ARMv6-M 10.1.1 4022 std::string Name = Mask.lower(); 4023 unsigned FlagsVal = StringSwitch<unsigned>(Name) 4024 // Note: in the documentation: 4025 // ARM deprecates using MSR APSR without a _<bits> qualifier as an alias 4026 // for MSR APSR_nzcvq. 4027 // but we do make it an alias here. This is so to get the "mask encoding" 4028 // bits correct on MSR APSR writes. 4029 // 4030 // FIXME: Note the 0xc00 "mask encoding" bits version of the registers 4031 // should really only be allowed when writing a special register. Note 4032 // they get dropped in the MRS instruction reading a special register as 4033 // the SYSm field is only 8 bits. 4034 .Case("apsr", 0x800) 4035 .Case("apsr_nzcvq", 0x800) 4036 .Case("apsr_g", 0x400) 4037 .Case("apsr_nzcvqg", 0xc00) 4038 .Case("iapsr", 0x801) 4039 .Case("iapsr_nzcvq", 0x801) 4040 .Case("iapsr_g", 0x401) 4041 .Case("iapsr_nzcvqg", 0xc01) 4042 .Case("eapsr", 0x802) 4043 .Case("eapsr_nzcvq", 0x802) 4044 .Case("eapsr_g", 0x402) 4045 .Case("eapsr_nzcvqg", 0xc02) 4046 .Case("xpsr", 0x803) 4047 .Case("xpsr_nzcvq", 0x803) 4048 .Case("xpsr_g", 0x403) 4049 .Case("xpsr_nzcvqg", 0xc03) 4050 .Case("ipsr", 0x805) 4051 .Case("epsr", 0x806) 4052 .Case("iepsr", 0x807) 4053 .Case("msp", 0x808) 4054 .Case("psp", 0x809) 4055 .Case("primask", 0x810) 4056 .Case("basepri", 0x811) 4057 .Case("basepri_max", 0x812) 4058 .Case("faultmask", 0x813) 4059 .Case("control", 0x814) 4060 .Case("msplim", 0x80a) 4061 .Case("psplim", 0x80b) 4062 .Case("msp_ns", 0x888) 4063 .Case("psp_ns", 0x889) 4064 .Case("msplim_ns", 0x88a) 4065 .Case("psplim_ns", 0x88b) 4066 .Case("primask_ns", 0x890) 4067 .Case("basepri_ns", 0x891) 4068 .Case("basepri_max_ns", 0x892) 4069 .Case("faultmask_ns", 0x893) 4070 .Case("control_ns", 0x894) 4071 .Case("sp_ns", 0x898) 4072 .Default(~0U); 4073 4074 if (FlagsVal == ~0U) 4075 return MatchOperand_NoMatch; 4076 4077 if (!hasDSP() && (FlagsVal & 0x400)) 4078 // The _g and _nzcvqg versions are only valid if the DSP extension is 4079 // available. 4080 return MatchOperand_NoMatch; 4081 4082 if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813) 4083 // basepri, basepri_max and faultmask only valid for V7m. 4084 return MatchOperand_NoMatch; 4085 4086 if (!has8MSecExt() && (FlagsVal == 0x80a || FlagsVal == 0x80b || 4087 (FlagsVal > 0x814 && FlagsVal < 0xc00))) 4088 return MatchOperand_NoMatch; 4089 4090 if (!hasV8MMainline() && (FlagsVal == 0x88a || FlagsVal == 0x88b || 4091 (FlagsVal > 0x890 && FlagsVal <= 0x893))) 4092 return MatchOperand_NoMatch; 4093 4094 Parser.Lex(); // Eat identifier token. 4095 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4096 return MatchOperand_Success; 4097 } 4098 4099 // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf" 4100 size_t Start = 0, Next = Mask.find('_'); 4101 StringRef Flags = ""; 4102 std::string SpecReg = Mask.slice(Start, Next).lower(); 4103 if (Next != StringRef::npos) 4104 Flags = Mask.slice(Next+1, Mask.size()); 4105 4106 // FlagsVal contains the complete mask: 4107 // 3-0: Mask 4108 // 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4109 unsigned FlagsVal = 0; 4110 4111 if (SpecReg == "apsr") { 4112 FlagsVal = StringSwitch<unsigned>(Flags) 4113 .Case("nzcvq", 0x8) // same as CPSR_f 4114 .Case("g", 0x4) // same as CPSR_s 4115 .Case("nzcvqg", 0xc) // same as CPSR_fs 4116 .Default(~0U); 4117 4118 if (FlagsVal == ~0U) { 4119 if (!Flags.empty()) 4120 return MatchOperand_NoMatch; 4121 else 4122 FlagsVal = 8; // No flag 4123 } 4124 } else if (SpecReg == "cpsr" || SpecReg == "spsr") { 4125 // cpsr_all is an alias for cpsr_fc, as is plain cpsr. 4126 if (Flags == "all" || Flags == "") 4127 Flags = "fc"; 4128 for (int i = 0, e = Flags.size(); i != e; ++i) { 4129 unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1)) 4130 .Case("c", 1) 4131 .Case("x", 2) 4132 .Case("s", 4) 4133 .Case("f", 8) 4134 .Default(~0U); 4135 4136 // If some specific flag is already set, it means that some letter is 4137 // present more than once, this is not acceptable. 4138 if (FlagsVal == ~0U || (FlagsVal & Flag)) 4139 return MatchOperand_NoMatch; 4140 FlagsVal |= Flag; 4141 } 4142 } else // No match for special register. 4143 return MatchOperand_NoMatch; 4144 4145 // Special register without flags is NOT equivalent to "fc" flags. 4146 // NOTE: This is a divergence from gas' behavior. Uncommenting the following 4147 // two lines would enable gas compatibility at the expense of breaking 4148 // round-tripping. 4149 // 4150 // if (!FlagsVal) 4151 // FlagsVal = 0x9; 4152 4153 // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1) 4154 if (SpecReg == "spsr") 4155 FlagsVal |= 16; 4156 4157 Parser.Lex(); // Eat identifier token. 4158 Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S)); 4159 return MatchOperand_Success; 4160 } 4161 4162 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for 4163 /// use in the MRS/MSR instructions added to support virtualization. 4164 ARMAsmParser::OperandMatchResultTy 4165 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) { 4166 MCAsmParser &Parser = getParser(); 4167 SMLoc S = Parser.getTok().getLoc(); 4168 const AsmToken &Tok = Parser.getTok(); 4169 if (!Tok.is(AsmToken::Identifier)) 4170 return MatchOperand_NoMatch; 4171 StringRef RegName = Tok.getString(); 4172 4173 // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM 4174 // and bit 5 is R. 4175 unsigned Encoding = StringSwitch<unsigned>(RegName.lower()) 4176 .Case("r8_usr", 0x00) 4177 .Case("r9_usr", 0x01) 4178 .Case("r10_usr", 0x02) 4179 .Case("r11_usr", 0x03) 4180 .Case("r12_usr", 0x04) 4181 .Case("sp_usr", 0x05) 4182 .Case("lr_usr", 0x06) 4183 .Case("r8_fiq", 0x08) 4184 .Case("r9_fiq", 0x09) 4185 .Case("r10_fiq", 0x0a) 4186 .Case("r11_fiq", 0x0b) 4187 .Case("r12_fiq", 0x0c) 4188 .Case("sp_fiq", 0x0d) 4189 .Case("lr_fiq", 0x0e) 4190 .Case("lr_irq", 0x10) 4191 .Case("sp_irq", 0x11) 4192 .Case("lr_svc", 0x12) 4193 .Case("sp_svc", 0x13) 4194 .Case("lr_abt", 0x14) 4195 .Case("sp_abt", 0x15) 4196 .Case("lr_und", 0x16) 4197 .Case("sp_und", 0x17) 4198 .Case("lr_mon", 0x1c) 4199 .Case("sp_mon", 0x1d) 4200 .Case("elr_hyp", 0x1e) 4201 .Case("sp_hyp", 0x1f) 4202 .Case("spsr_fiq", 0x2e) 4203 .Case("spsr_irq", 0x30) 4204 .Case("spsr_svc", 0x32) 4205 .Case("spsr_abt", 0x34) 4206 .Case("spsr_und", 0x36) 4207 .Case("spsr_mon", 0x3c) 4208 .Case("spsr_hyp", 0x3e) 4209 .Default(~0U); 4210 4211 if (Encoding == ~0U) 4212 return MatchOperand_NoMatch; 4213 4214 Parser.Lex(); // Eat identifier token. 4215 Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S)); 4216 return MatchOperand_Success; 4217 } 4218 4219 ARMAsmParser::OperandMatchResultTy 4220 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low, 4221 int High) { 4222 MCAsmParser &Parser = getParser(); 4223 const AsmToken &Tok = Parser.getTok(); 4224 if (Tok.isNot(AsmToken::Identifier)) { 4225 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4226 return MatchOperand_ParseFail; 4227 } 4228 StringRef ShiftName = Tok.getString(); 4229 std::string LowerOp = Op.lower(); 4230 std::string UpperOp = Op.upper(); 4231 if (ShiftName != LowerOp && ShiftName != UpperOp) { 4232 Error(Parser.getTok().getLoc(), Op + " operand expected."); 4233 return MatchOperand_ParseFail; 4234 } 4235 Parser.Lex(); // Eat shift type token. 4236 4237 // There must be a '#' and a shift amount. 4238 if (Parser.getTok().isNot(AsmToken::Hash) && 4239 Parser.getTok().isNot(AsmToken::Dollar)) { 4240 Error(Parser.getTok().getLoc(), "'#' expected"); 4241 return MatchOperand_ParseFail; 4242 } 4243 Parser.Lex(); // Eat hash token. 4244 4245 const MCExpr *ShiftAmount; 4246 SMLoc Loc = Parser.getTok().getLoc(); 4247 SMLoc EndLoc; 4248 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4249 Error(Loc, "illegal expression"); 4250 return MatchOperand_ParseFail; 4251 } 4252 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4253 if (!CE) { 4254 Error(Loc, "constant expression expected"); 4255 return MatchOperand_ParseFail; 4256 } 4257 int Val = CE->getValue(); 4258 if (Val < Low || Val > High) { 4259 Error(Loc, "immediate value out of range"); 4260 return MatchOperand_ParseFail; 4261 } 4262 4263 Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc)); 4264 4265 return MatchOperand_Success; 4266 } 4267 4268 ARMAsmParser::OperandMatchResultTy 4269 ARMAsmParser::parseSetEndImm(OperandVector &Operands) { 4270 MCAsmParser &Parser = getParser(); 4271 const AsmToken &Tok = Parser.getTok(); 4272 SMLoc S = Tok.getLoc(); 4273 if (Tok.isNot(AsmToken::Identifier)) { 4274 Error(S, "'be' or 'le' operand expected"); 4275 return MatchOperand_ParseFail; 4276 } 4277 int Val = StringSwitch<int>(Tok.getString().lower()) 4278 .Case("be", 1) 4279 .Case("le", 0) 4280 .Default(-1); 4281 Parser.Lex(); // Eat the token. 4282 4283 if (Val == -1) { 4284 Error(S, "'be' or 'le' operand expected"); 4285 return MatchOperand_ParseFail; 4286 } 4287 Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val, 4288 getContext()), 4289 S, Tok.getEndLoc())); 4290 return MatchOperand_Success; 4291 } 4292 4293 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT 4294 /// instructions. Legal values are: 4295 /// lsl #n 'n' in [0,31] 4296 /// asr #n 'n' in [1,32] 4297 /// n == 32 encoded as n == 0. 4298 ARMAsmParser::OperandMatchResultTy 4299 ARMAsmParser::parseShifterImm(OperandVector &Operands) { 4300 MCAsmParser &Parser = getParser(); 4301 const AsmToken &Tok = Parser.getTok(); 4302 SMLoc S = Tok.getLoc(); 4303 if (Tok.isNot(AsmToken::Identifier)) { 4304 Error(S, "shift operator 'asr' or 'lsl' expected"); 4305 return MatchOperand_ParseFail; 4306 } 4307 StringRef ShiftName = Tok.getString(); 4308 bool isASR; 4309 if (ShiftName == "lsl" || ShiftName == "LSL") 4310 isASR = false; 4311 else if (ShiftName == "asr" || ShiftName == "ASR") 4312 isASR = true; 4313 else { 4314 Error(S, "shift operator 'asr' or 'lsl' expected"); 4315 return MatchOperand_ParseFail; 4316 } 4317 Parser.Lex(); // Eat the operator. 4318 4319 // A '#' and a shift amount. 4320 if (Parser.getTok().isNot(AsmToken::Hash) && 4321 Parser.getTok().isNot(AsmToken::Dollar)) { 4322 Error(Parser.getTok().getLoc(), "'#' expected"); 4323 return MatchOperand_ParseFail; 4324 } 4325 Parser.Lex(); // Eat hash token. 4326 SMLoc ExLoc = Parser.getTok().getLoc(); 4327 4328 const MCExpr *ShiftAmount; 4329 SMLoc EndLoc; 4330 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4331 Error(ExLoc, "malformed shift expression"); 4332 return MatchOperand_ParseFail; 4333 } 4334 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4335 if (!CE) { 4336 Error(ExLoc, "shift amount must be an immediate"); 4337 return MatchOperand_ParseFail; 4338 } 4339 4340 int64_t Val = CE->getValue(); 4341 if (isASR) { 4342 // Shift amount must be in [1,32] 4343 if (Val < 1 || Val > 32) { 4344 Error(ExLoc, "'asr' shift amount must be in range [1,32]"); 4345 return MatchOperand_ParseFail; 4346 } 4347 // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode. 4348 if (isThumb() && Val == 32) { 4349 Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode"); 4350 return MatchOperand_ParseFail; 4351 } 4352 if (Val == 32) Val = 0; 4353 } else { 4354 // Shift amount must be in [1,32] 4355 if (Val < 0 || Val > 31) { 4356 Error(ExLoc, "'lsr' shift amount must be in range [0,31]"); 4357 return MatchOperand_ParseFail; 4358 } 4359 } 4360 4361 Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc)); 4362 4363 return MatchOperand_Success; 4364 } 4365 4366 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family 4367 /// of instructions. Legal values are: 4368 /// ror #n 'n' in {0, 8, 16, 24} 4369 ARMAsmParser::OperandMatchResultTy 4370 ARMAsmParser::parseRotImm(OperandVector &Operands) { 4371 MCAsmParser &Parser = getParser(); 4372 const AsmToken &Tok = Parser.getTok(); 4373 SMLoc S = Tok.getLoc(); 4374 if (Tok.isNot(AsmToken::Identifier)) 4375 return MatchOperand_NoMatch; 4376 StringRef ShiftName = Tok.getString(); 4377 if (ShiftName != "ror" && ShiftName != "ROR") 4378 return MatchOperand_NoMatch; 4379 Parser.Lex(); // Eat the operator. 4380 4381 // A '#' and a rotate amount. 4382 if (Parser.getTok().isNot(AsmToken::Hash) && 4383 Parser.getTok().isNot(AsmToken::Dollar)) { 4384 Error(Parser.getTok().getLoc(), "'#' expected"); 4385 return MatchOperand_ParseFail; 4386 } 4387 Parser.Lex(); // Eat hash token. 4388 SMLoc ExLoc = Parser.getTok().getLoc(); 4389 4390 const MCExpr *ShiftAmount; 4391 SMLoc EndLoc; 4392 if (getParser().parseExpression(ShiftAmount, EndLoc)) { 4393 Error(ExLoc, "malformed rotate expression"); 4394 return MatchOperand_ParseFail; 4395 } 4396 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount); 4397 if (!CE) { 4398 Error(ExLoc, "rotate amount must be an immediate"); 4399 return MatchOperand_ParseFail; 4400 } 4401 4402 int64_t Val = CE->getValue(); 4403 // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension) 4404 // normally, zero is represented in asm by omitting the rotate operand 4405 // entirely. 4406 if (Val != 8 && Val != 16 && Val != 24 && Val != 0) { 4407 Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24"); 4408 return MatchOperand_ParseFail; 4409 } 4410 4411 Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc)); 4412 4413 return MatchOperand_Success; 4414 } 4415 4416 ARMAsmParser::OperandMatchResultTy 4417 ARMAsmParser::parseModImm(OperandVector &Operands) { 4418 MCAsmParser &Parser = getParser(); 4419 MCAsmLexer &Lexer = getLexer(); 4420 int64_t Imm1, Imm2; 4421 4422 SMLoc S = Parser.getTok().getLoc(); 4423 4424 // 1) A mod_imm operand can appear in the place of a register name: 4425 // add r0, #mod_imm 4426 // add r0, r0, #mod_imm 4427 // to correctly handle the latter, we bail out as soon as we see an 4428 // identifier. 4429 // 4430 // 2) Similarly, we do not want to parse into complex operands: 4431 // mov r0, #mod_imm 4432 // mov r0, :lower16:(_foo) 4433 if (Parser.getTok().is(AsmToken::Identifier) || 4434 Parser.getTok().is(AsmToken::Colon)) 4435 return MatchOperand_NoMatch; 4436 4437 // Hash (dollar) is optional as per the ARMARM 4438 if (Parser.getTok().is(AsmToken::Hash) || 4439 Parser.getTok().is(AsmToken::Dollar)) { 4440 // Avoid parsing into complex operands (#:) 4441 if (Lexer.peekTok().is(AsmToken::Colon)) 4442 return MatchOperand_NoMatch; 4443 4444 // Eat the hash (dollar) 4445 Parser.Lex(); 4446 } 4447 4448 SMLoc Sx1, Ex1; 4449 Sx1 = Parser.getTok().getLoc(); 4450 const MCExpr *Imm1Exp; 4451 if (getParser().parseExpression(Imm1Exp, Ex1)) { 4452 Error(Sx1, "malformed expression"); 4453 return MatchOperand_ParseFail; 4454 } 4455 4456 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp); 4457 4458 if (CE) { 4459 // Immediate must fit within 32-bits 4460 Imm1 = CE->getValue(); 4461 int Enc = ARM_AM::getSOImmVal(Imm1); 4462 if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) { 4463 // We have a match! 4464 Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF), 4465 (Enc & 0xF00) >> 7, 4466 Sx1, Ex1)); 4467 return MatchOperand_Success; 4468 } 4469 4470 // We have parsed an immediate which is not for us, fallback to a plain 4471 // immediate. This can happen for instruction aliases. For an example, 4472 // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform 4473 // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite 4474 // instruction with a mod_imm operand. The alias is defined such that the 4475 // parser method is shared, that's why we have to do this here. 4476 if (Parser.getTok().is(AsmToken::EndOfStatement)) { 4477 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4478 return MatchOperand_Success; 4479 } 4480 } else { 4481 // Operands like #(l1 - l2) can only be evaluated at a later stage (via an 4482 // MCFixup). Fallback to a plain immediate. 4483 Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1)); 4484 return MatchOperand_Success; 4485 } 4486 4487 // From this point onward, we expect the input to be a (#bits, #rot) pair 4488 if (Parser.getTok().isNot(AsmToken::Comma)) { 4489 Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]"); 4490 return MatchOperand_ParseFail; 4491 } 4492 4493 if (Imm1 & ~0xFF) { 4494 Error(Sx1, "immediate operand must a number in the range [0, 255]"); 4495 return MatchOperand_ParseFail; 4496 } 4497 4498 // Eat the comma 4499 Parser.Lex(); 4500 4501 // Repeat for #rot 4502 SMLoc Sx2, Ex2; 4503 Sx2 = Parser.getTok().getLoc(); 4504 4505 // Eat the optional hash (dollar) 4506 if (Parser.getTok().is(AsmToken::Hash) || 4507 Parser.getTok().is(AsmToken::Dollar)) 4508 Parser.Lex(); 4509 4510 const MCExpr *Imm2Exp; 4511 if (getParser().parseExpression(Imm2Exp, Ex2)) { 4512 Error(Sx2, "malformed expression"); 4513 return MatchOperand_ParseFail; 4514 } 4515 4516 CE = dyn_cast<MCConstantExpr>(Imm2Exp); 4517 4518 if (CE) { 4519 Imm2 = CE->getValue(); 4520 if (!(Imm2 & ~0x1E)) { 4521 // We have a match! 4522 Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2)); 4523 return MatchOperand_Success; 4524 } 4525 Error(Sx2, "immediate operand must an even number in the range [0, 30]"); 4526 return MatchOperand_ParseFail; 4527 } else { 4528 Error(Sx2, "constant expression expected"); 4529 return MatchOperand_ParseFail; 4530 } 4531 } 4532 4533 ARMAsmParser::OperandMatchResultTy 4534 ARMAsmParser::parseBitfield(OperandVector &Operands) { 4535 MCAsmParser &Parser = getParser(); 4536 SMLoc S = Parser.getTok().getLoc(); 4537 // The bitfield descriptor is really two operands, the LSB and the width. 4538 if (Parser.getTok().isNot(AsmToken::Hash) && 4539 Parser.getTok().isNot(AsmToken::Dollar)) { 4540 Error(Parser.getTok().getLoc(), "'#' expected"); 4541 return MatchOperand_ParseFail; 4542 } 4543 Parser.Lex(); // Eat hash token. 4544 4545 const MCExpr *LSBExpr; 4546 SMLoc E = Parser.getTok().getLoc(); 4547 if (getParser().parseExpression(LSBExpr)) { 4548 Error(E, "malformed immediate expression"); 4549 return MatchOperand_ParseFail; 4550 } 4551 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr); 4552 if (!CE) { 4553 Error(E, "'lsb' operand must be an immediate"); 4554 return MatchOperand_ParseFail; 4555 } 4556 4557 int64_t LSB = CE->getValue(); 4558 // The LSB must be in the range [0,31] 4559 if (LSB < 0 || LSB > 31) { 4560 Error(E, "'lsb' operand must be in the range [0,31]"); 4561 return MatchOperand_ParseFail; 4562 } 4563 E = Parser.getTok().getLoc(); 4564 4565 // Expect another immediate operand. 4566 if (Parser.getTok().isNot(AsmToken::Comma)) { 4567 Error(Parser.getTok().getLoc(), "too few operands"); 4568 return MatchOperand_ParseFail; 4569 } 4570 Parser.Lex(); // Eat hash token. 4571 if (Parser.getTok().isNot(AsmToken::Hash) && 4572 Parser.getTok().isNot(AsmToken::Dollar)) { 4573 Error(Parser.getTok().getLoc(), "'#' expected"); 4574 return MatchOperand_ParseFail; 4575 } 4576 Parser.Lex(); // Eat hash token. 4577 4578 const MCExpr *WidthExpr; 4579 SMLoc EndLoc; 4580 if (getParser().parseExpression(WidthExpr, EndLoc)) { 4581 Error(E, "malformed immediate expression"); 4582 return MatchOperand_ParseFail; 4583 } 4584 CE = dyn_cast<MCConstantExpr>(WidthExpr); 4585 if (!CE) { 4586 Error(E, "'width' operand must be an immediate"); 4587 return MatchOperand_ParseFail; 4588 } 4589 4590 int64_t Width = CE->getValue(); 4591 // The LSB must be in the range [1,32-lsb] 4592 if (Width < 1 || Width > 32 - LSB) { 4593 Error(E, "'width' operand must be in the range [1,32-lsb]"); 4594 return MatchOperand_ParseFail; 4595 } 4596 4597 Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc)); 4598 4599 return MatchOperand_Success; 4600 } 4601 4602 ARMAsmParser::OperandMatchResultTy 4603 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) { 4604 // Check for a post-index addressing register operand. Specifically: 4605 // postidx_reg := '+' register {, shift} 4606 // | '-' register {, shift} 4607 // | register {, shift} 4608 4609 // This method must return MatchOperand_NoMatch without consuming any tokens 4610 // in the case where there is no match, as other alternatives take other 4611 // parse methods. 4612 MCAsmParser &Parser = getParser(); 4613 AsmToken Tok = Parser.getTok(); 4614 SMLoc S = Tok.getLoc(); 4615 bool haveEaten = false; 4616 bool isAdd = true; 4617 if (Tok.is(AsmToken::Plus)) { 4618 Parser.Lex(); // Eat the '+' token. 4619 haveEaten = true; 4620 } else if (Tok.is(AsmToken::Minus)) { 4621 Parser.Lex(); // Eat the '-' token. 4622 isAdd = false; 4623 haveEaten = true; 4624 } 4625 4626 SMLoc E = Parser.getTok().getEndLoc(); 4627 int Reg = tryParseRegister(); 4628 if (Reg == -1) { 4629 if (!haveEaten) 4630 return MatchOperand_NoMatch; 4631 Error(Parser.getTok().getLoc(), "register expected"); 4632 return MatchOperand_ParseFail; 4633 } 4634 4635 ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift; 4636 unsigned ShiftImm = 0; 4637 if (Parser.getTok().is(AsmToken::Comma)) { 4638 Parser.Lex(); // Eat the ','. 4639 if (parseMemRegOffsetShift(ShiftTy, ShiftImm)) 4640 return MatchOperand_ParseFail; 4641 4642 // FIXME: Only approximates end...may include intervening whitespace. 4643 E = Parser.getTok().getLoc(); 4644 } 4645 4646 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy, 4647 ShiftImm, S, E)); 4648 4649 return MatchOperand_Success; 4650 } 4651 4652 ARMAsmParser::OperandMatchResultTy 4653 ARMAsmParser::parseAM3Offset(OperandVector &Operands) { 4654 // Check for a post-index addressing register operand. Specifically: 4655 // am3offset := '+' register 4656 // | '-' register 4657 // | register 4658 // | # imm 4659 // | # + imm 4660 // | # - imm 4661 4662 // This method must return MatchOperand_NoMatch without consuming any tokens 4663 // in the case where there is no match, as other alternatives take other 4664 // parse methods. 4665 MCAsmParser &Parser = getParser(); 4666 AsmToken Tok = Parser.getTok(); 4667 SMLoc S = Tok.getLoc(); 4668 4669 // Do immediates first, as we always parse those if we have a '#'. 4670 if (Parser.getTok().is(AsmToken::Hash) || 4671 Parser.getTok().is(AsmToken::Dollar)) { 4672 Parser.Lex(); // Eat '#' or '$'. 4673 // Explicitly look for a '-', as we need to encode negative zero 4674 // differently. 4675 bool isNegative = Parser.getTok().is(AsmToken::Minus); 4676 const MCExpr *Offset; 4677 SMLoc E; 4678 if (getParser().parseExpression(Offset, E)) 4679 return MatchOperand_ParseFail; 4680 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4681 if (!CE) { 4682 Error(S, "constant expression expected"); 4683 return MatchOperand_ParseFail; 4684 } 4685 // Negative zero is encoded as the flag value INT32_MIN. 4686 int32_t Val = CE->getValue(); 4687 if (isNegative && Val == 0) 4688 Val = INT32_MIN; 4689 4690 Operands.push_back( 4691 ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E)); 4692 4693 return MatchOperand_Success; 4694 } 4695 4696 4697 bool haveEaten = false; 4698 bool isAdd = true; 4699 if (Tok.is(AsmToken::Plus)) { 4700 Parser.Lex(); // Eat the '+' token. 4701 haveEaten = true; 4702 } else if (Tok.is(AsmToken::Minus)) { 4703 Parser.Lex(); // Eat the '-' token. 4704 isAdd = false; 4705 haveEaten = true; 4706 } 4707 4708 Tok = Parser.getTok(); 4709 int Reg = tryParseRegister(); 4710 if (Reg == -1) { 4711 if (!haveEaten) 4712 return MatchOperand_NoMatch; 4713 Error(Tok.getLoc(), "register expected"); 4714 return MatchOperand_ParseFail; 4715 } 4716 4717 Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift, 4718 0, S, Tok.getEndLoc())); 4719 4720 return MatchOperand_Success; 4721 } 4722 4723 /// Convert parsed operands to MCInst. Needed here because this instruction 4724 /// only has two register operands, but multiplication is commutative so 4725 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN". 4726 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst, 4727 const OperandVector &Operands) { 4728 ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1); 4729 ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1); 4730 // If we have a three-operand form, make sure to set Rn to be the operand 4731 // that isn't the same as Rd. 4732 unsigned RegOp = 4; 4733 if (Operands.size() == 6 && 4734 ((ARMOperand &)*Operands[4]).getReg() == 4735 ((ARMOperand &)*Operands[3]).getReg()) 4736 RegOp = 5; 4737 ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1); 4738 Inst.addOperand(Inst.getOperand(0)); 4739 ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2); 4740 } 4741 4742 void ARMAsmParser::cvtThumbBranches(MCInst &Inst, 4743 const OperandVector &Operands) { 4744 int CondOp = -1, ImmOp = -1; 4745 switch(Inst.getOpcode()) { 4746 case ARM::tB: 4747 case ARM::tBcc: CondOp = 1; ImmOp = 2; break; 4748 4749 case ARM::t2B: 4750 case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break; 4751 4752 default: llvm_unreachable("Unexpected instruction in cvtThumbBranches"); 4753 } 4754 // first decide whether or not the branch should be conditional 4755 // by looking at it's location relative to an IT block 4756 if(inITBlock()) { 4757 // inside an IT block we cannot have any conditional branches. any 4758 // such instructions needs to be converted to unconditional form 4759 switch(Inst.getOpcode()) { 4760 case ARM::tBcc: Inst.setOpcode(ARM::tB); break; 4761 case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break; 4762 } 4763 } else { 4764 // outside IT blocks we can only have unconditional branches with AL 4765 // condition code or conditional branches with non-AL condition code 4766 unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode(); 4767 switch(Inst.getOpcode()) { 4768 case ARM::tB: 4769 case ARM::tBcc: 4770 Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 4771 break; 4772 case ARM::t2B: 4773 case ARM::t2Bcc: 4774 Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc); 4775 break; 4776 } 4777 } 4778 4779 // now decide on encoding size based on branch target range 4780 switch(Inst.getOpcode()) { 4781 // classify tB as either t2B or t1B based on range of immediate operand 4782 case ARM::tB: { 4783 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4784 if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline()) 4785 Inst.setOpcode(ARM::t2B); 4786 break; 4787 } 4788 // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand 4789 case ARM::tBcc: { 4790 ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]); 4791 if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline()) 4792 Inst.setOpcode(ARM::t2Bcc); 4793 break; 4794 } 4795 } 4796 ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1); 4797 ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2); 4798 } 4799 4800 /// Parse an ARM memory expression, return false if successful else return true 4801 /// or an error. The first token must be a '[' when called. 4802 bool ARMAsmParser::parseMemory(OperandVector &Operands) { 4803 MCAsmParser &Parser = getParser(); 4804 SMLoc S, E; 4805 assert(Parser.getTok().is(AsmToken::LBrac) && 4806 "Token is not a Left Bracket"); 4807 S = Parser.getTok().getLoc(); 4808 Parser.Lex(); // Eat left bracket token. 4809 4810 const AsmToken &BaseRegTok = Parser.getTok(); 4811 int BaseRegNum = tryParseRegister(); 4812 if (BaseRegNum == -1) 4813 return Error(BaseRegTok.getLoc(), "register expected"); 4814 4815 // The next token must either be a comma, a colon or a closing bracket. 4816 const AsmToken &Tok = Parser.getTok(); 4817 if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) && 4818 !Tok.is(AsmToken::RBrac)) 4819 return Error(Tok.getLoc(), "malformed memory operand"); 4820 4821 if (Tok.is(AsmToken::RBrac)) { 4822 E = Tok.getEndLoc(); 4823 Parser.Lex(); // Eat right bracket token. 4824 4825 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4826 ARM_AM::no_shift, 0, 0, false, 4827 S, E)); 4828 4829 // If there's a pre-indexing writeback marker, '!', just add it as a token 4830 // operand. It's rather odd, but syntactically valid. 4831 if (Parser.getTok().is(AsmToken::Exclaim)) { 4832 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4833 Parser.Lex(); // Eat the '!'. 4834 } 4835 4836 return false; 4837 } 4838 4839 assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) && 4840 "Lost colon or comma in memory operand?!"); 4841 if (Tok.is(AsmToken::Comma)) { 4842 Parser.Lex(); // Eat the comma. 4843 } 4844 4845 // If we have a ':', it's an alignment specifier. 4846 if (Parser.getTok().is(AsmToken::Colon)) { 4847 Parser.Lex(); // Eat the ':'. 4848 E = Parser.getTok().getLoc(); 4849 SMLoc AlignmentLoc = Tok.getLoc(); 4850 4851 const MCExpr *Expr; 4852 if (getParser().parseExpression(Expr)) 4853 return true; 4854 4855 // The expression has to be a constant. Memory references with relocations 4856 // don't come through here, as they use the <label> forms of the relevant 4857 // instructions. 4858 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 4859 if (!CE) 4860 return Error (E, "constant expression expected"); 4861 4862 unsigned Align = 0; 4863 switch (CE->getValue()) { 4864 default: 4865 return Error(E, 4866 "alignment specifier must be 16, 32, 64, 128, or 256 bits"); 4867 case 16: Align = 2; break; 4868 case 32: Align = 4; break; 4869 case 64: Align = 8; break; 4870 case 128: Align = 16; break; 4871 case 256: Align = 32; break; 4872 } 4873 4874 // Now we should have the closing ']' 4875 if (Parser.getTok().isNot(AsmToken::RBrac)) 4876 return Error(Parser.getTok().getLoc(), "']' expected"); 4877 E = Parser.getTok().getEndLoc(); 4878 Parser.Lex(); // Eat right bracket token. 4879 4880 // Don't worry about range checking the value here. That's handled by 4881 // the is*() predicates. 4882 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0, 4883 ARM_AM::no_shift, 0, Align, 4884 false, S, E, AlignmentLoc)); 4885 4886 // If there's a pre-indexing writeback marker, '!', just add it as a token 4887 // operand. 4888 if (Parser.getTok().is(AsmToken::Exclaim)) { 4889 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4890 Parser.Lex(); // Eat the '!'. 4891 } 4892 4893 return false; 4894 } 4895 4896 // If we have a '#', it's an immediate offset, else assume it's a register 4897 // offset. Be friendly and also accept a plain integer (without a leading 4898 // hash) for gas compatibility. 4899 if (Parser.getTok().is(AsmToken::Hash) || 4900 Parser.getTok().is(AsmToken::Dollar) || 4901 Parser.getTok().is(AsmToken::Integer)) { 4902 if (Parser.getTok().isNot(AsmToken::Integer)) 4903 Parser.Lex(); // Eat '#' or '$'. 4904 E = Parser.getTok().getLoc(); 4905 4906 bool isNegative = getParser().getTok().is(AsmToken::Minus); 4907 const MCExpr *Offset; 4908 if (getParser().parseExpression(Offset)) 4909 return true; 4910 4911 // The expression has to be a constant. Memory references with relocations 4912 // don't come through here, as they use the <label> forms of the relevant 4913 // instructions. 4914 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset); 4915 if (!CE) 4916 return Error (E, "constant expression expected"); 4917 4918 // If the constant was #-0, represent it as INT32_MIN. 4919 int32_t Val = CE->getValue(); 4920 if (isNegative && Val == 0) 4921 CE = MCConstantExpr::create(INT32_MIN, getContext()); 4922 4923 // Now we should have the closing ']' 4924 if (Parser.getTok().isNot(AsmToken::RBrac)) 4925 return Error(Parser.getTok().getLoc(), "']' expected"); 4926 E = Parser.getTok().getEndLoc(); 4927 Parser.Lex(); // Eat right bracket token. 4928 4929 // Don't worry about range checking the value here. That's handled by 4930 // the is*() predicates. 4931 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0, 4932 ARM_AM::no_shift, 0, 0, 4933 false, S, E)); 4934 4935 // If there's a pre-indexing writeback marker, '!', just add it as a token 4936 // operand. 4937 if (Parser.getTok().is(AsmToken::Exclaim)) { 4938 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4939 Parser.Lex(); // Eat the '!'. 4940 } 4941 4942 return false; 4943 } 4944 4945 // The register offset is optionally preceded by a '+' or '-' 4946 bool isNegative = false; 4947 if (Parser.getTok().is(AsmToken::Minus)) { 4948 isNegative = true; 4949 Parser.Lex(); // Eat the '-'. 4950 } else if (Parser.getTok().is(AsmToken::Plus)) { 4951 // Nothing to do. 4952 Parser.Lex(); // Eat the '+'. 4953 } 4954 4955 E = Parser.getTok().getLoc(); 4956 int OffsetRegNum = tryParseRegister(); 4957 if (OffsetRegNum == -1) 4958 return Error(E, "register expected"); 4959 4960 // If there's a shift operator, handle it. 4961 ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift; 4962 unsigned ShiftImm = 0; 4963 if (Parser.getTok().is(AsmToken::Comma)) { 4964 Parser.Lex(); // Eat the ','. 4965 if (parseMemRegOffsetShift(ShiftType, ShiftImm)) 4966 return true; 4967 } 4968 4969 // Now we should have the closing ']' 4970 if (Parser.getTok().isNot(AsmToken::RBrac)) 4971 return Error(Parser.getTok().getLoc(), "']' expected"); 4972 E = Parser.getTok().getEndLoc(); 4973 Parser.Lex(); // Eat right bracket token. 4974 4975 Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum, 4976 ShiftType, ShiftImm, 0, isNegative, 4977 S, E)); 4978 4979 // If there's a pre-indexing writeback marker, '!', just add it as a token 4980 // operand. 4981 if (Parser.getTok().is(AsmToken::Exclaim)) { 4982 Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc())); 4983 Parser.Lex(); // Eat the '!'. 4984 } 4985 4986 return false; 4987 } 4988 4989 /// parseMemRegOffsetShift - one of these two: 4990 /// ( lsl | lsr | asr | ror ) , # shift_amount 4991 /// rrx 4992 /// return true if it parses a shift otherwise it returns false. 4993 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St, 4994 unsigned &Amount) { 4995 MCAsmParser &Parser = getParser(); 4996 SMLoc Loc = Parser.getTok().getLoc(); 4997 const AsmToken &Tok = Parser.getTok(); 4998 if (Tok.isNot(AsmToken::Identifier)) 4999 return true; 5000 StringRef ShiftName = Tok.getString(); 5001 if (ShiftName == "lsl" || ShiftName == "LSL" || 5002 ShiftName == "asl" || ShiftName == "ASL") 5003 St = ARM_AM::lsl; 5004 else if (ShiftName == "lsr" || ShiftName == "LSR") 5005 St = ARM_AM::lsr; 5006 else if (ShiftName == "asr" || ShiftName == "ASR") 5007 St = ARM_AM::asr; 5008 else if (ShiftName == "ror" || ShiftName == "ROR") 5009 St = ARM_AM::ror; 5010 else if (ShiftName == "rrx" || ShiftName == "RRX") 5011 St = ARM_AM::rrx; 5012 else 5013 return Error(Loc, "illegal shift operator"); 5014 Parser.Lex(); // Eat shift type token. 5015 5016 // rrx stands alone. 5017 Amount = 0; 5018 if (St != ARM_AM::rrx) { 5019 Loc = Parser.getTok().getLoc(); 5020 // A '#' and a shift amount. 5021 const AsmToken &HashTok = Parser.getTok(); 5022 if (HashTok.isNot(AsmToken::Hash) && 5023 HashTok.isNot(AsmToken::Dollar)) 5024 return Error(HashTok.getLoc(), "'#' expected"); 5025 Parser.Lex(); // Eat hash token. 5026 5027 const MCExpr *Expr; 5028 if (getParser().parseExpression(Expr)) 5029 return true; 5030 // Range check the immediate. 5031 // lsl, ror: 0 <= imm <= 31 5032 // lsr, asr: 0 <= imm <= 32 5033 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr); 5034 if (!CE) 5035 return Error(Loc, "shift amount must be an immediate"); 5036 int64_t Imm = CE->getValue(); 5037 if (Imm < 0 || 5038 ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) || 5039 ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32)) 5040 return Error(Loc, "immediate shift value out of range"); 5041 // If <ShiftTy> #0, turn it into a no_shift. 5042 if (Imm == 0) 5043 St = ARM_AM::lsl; 5044 // For consistency, treat lsr #32 and asr #32 as having immediate value 0. 5045 if (Imm == 32) 5046 Imm = 0; 5047 Amount = Imm; 5048 } 5049 5050 return false; 5051 } 5052 5053 /// parseFPImm - A floating point immediate expression operand. 5054 ARMAsmParser::OperandMatchResultTy 5055 ARMAsmParser::parseFPImm(OperandVector &Operands) { 5056 MCAsmParser &Parser = getParser(); 5057 // Anything that can accept a floating point constant as an operand 5058 // needs to go through here, as the regular parseExpression is 5059 // integer only. 5060 // 5061 // This routine still creates a generic Immediate operand, containing 5062 // a bitcast of the 64-bit floating point value. The various operands 5063 // that accept floats can check whether the value is valid for them 5064 // via the standard is*() predicates. 5065 5066 SMLoc S = Parser.getTok().getLoc(); 5067 5068 if (Parser.getTok().isNot(AsmToken::Hash) && 5069 Parser.getTok().isNot(AsmToken::Dollar)) 5070 return MatchOperand_NoMatch; 5071 5072 // Disambiguate the VMOV forms that can accept an FP immediate. 5073 // vmov.f32 <sreg>, #imm 5074 // vmov.f64 <dreg>, #imm 5075 // vmov.f32 <dreg>, #imm @ vector f32x2 5076 // vmov.f32 <qreg>, #imm @ vector f32x4 5077 // 5078 // There are also the NEON VMOV instructions which expect an 5079 // integer constant. Make sure we don't try to parse an FPImm 5080 // for these: 5081 // vmov.i{8|16|32|64} <dreg|qreg>, #imm 5082 ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]); 5083 bool isVmovf = TyOp.isToken() && 5084 (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" || 5085 TyOp.getToken() == ".f16"); 5086 ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]); 5087 bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" || 5088 Mnemonic.getToken() == "fconsts"); 5089 if (!(isVmovf || isFconst)) 5090 return MatchOperand_NoMatch; 5091 5092 Parser.Lex(); // Eat '#' or '$'. 5093 5094 // Handle negation, as that still comes through as a separate token. 5095 bool isNegative = false; 5096 if (Parser.getTok().is(AsmToken::Minus)) { 5097 isNegative = true; 5098 Parser.Lex(); 5099 } 5100 const AsmToken &Tok = Parser.getTok(); 5101 SMLoc Loc = Tok.getLoc(); 5102 if (Tok.is(AsmToken::Real) && isVmovf) { 5103 APFloat RealVal(APFloat::IEEEsingle, Tok.getString()); 5104 uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); 5105 // If we had a '-' in front, toggle the sign bit. 5106 IntVal ^= (uint64_t)isNegative << 31; 5107 Parser.Lex(); // Eat the token. 5108 Operands.push_back(ARMOperand::CreateImm( 5109 MCConstantExpr::create(IntVal, getContext()), 5110 S, Parser.getTok().getLoc())); 5111 return MatchOperand_Success; 5112 } 5113 // Also handle plain integers. Instructions which allow floating point 5114 // immediates also allow a raw encoded 8-bit value. 5115 if (Tok.is(AsmToken::Integer) && isFconst) { 5116 int64_t Val = Tok.getIntVal(); 5117 Parser.Lex(); // Eat the token. 5118 if (Val > 255 || Val < 0) { 5119 Error(Loc, "encoded floating point value out of range"); 5120 return MatchOperand_ParseFail; 5121 } 5122 float RealVal = ARM_AM::getFPImmFloat(Val); 5123 Val = APFloat(RealVal).bitcastToAPInt().getZExtValue(); 5124 5125 Operands.push_back(ARMOperand::CreateImm( 5126 MCConstantExpr::create(Val, getContext()), S, 5127 Parser.getTok().getLoc())); 5128 return MatchOperand_Success; 5129 } 5130 5131 Error(Loc, "invalid floating point immediate"); 5132 return MatchOperand_ParseFail; 5133 } 5134 5135 /// Parse a arm instruction operand. For now this parses the operand regardless 5136 /// of the mnemonic. 5137 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { 5138 MCAsmParser &Parser = getParser(); 5139 SMLoc S, E; 5140 5141 // Check if the current operand has a custom associated parser, if so, try to 5142 // custom parse the operand, or fallback to the general approach. 5143 OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); 5144 if (ResTy == MatchOperand_Success) 5145 return false; 5146 // If there wasn't a custom match, try the generic matcher below. Otherwise, 5147 // there was a match, but an error occurred, in which case, just return that 5148 // the operand parsing failed. 5149 if (ResTy == MatchOperand_ParseFail) 5150 return true; 5151 5152 switch (getLexer().getKind()) { 5153 default: 5154 Error(Parser.getTok().getLoc(), "unexpected token in operand"); 5155 return true; 5156 case AsmToken::Identifier: { 5157 // If we've seen a branch mnemonic, the next operand must be a label. This 5158 // is true even if the label is a register name. So "br r1" means branch to 5159 // label "r1". 5160 bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl"; 5161 if (!ExpectLabel) { 5162 if (!tryParseRegisterWithWriteBack(Operands)) 5163 return false; 5164 int Res = tryParseShiftRegister(Operands); 5165 if (Res == 0) // success 5166 return false; 5167 else if (Res == -1) // irrecoverable error 5168 return true; 5169 // If this is VMRS, check for the apsr_nzcv operand. 5170 if (Mnemonic == "vmrs" && 5171 Parser.getTok().getString().equals_lower("apsr_nzcv")) { 5172 S = Parser.getTok().getLoc(); 5173 Parser.Lex(); 5174 Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S)); 5175 return false; 5176 } 5177 } 5178 5179 // Fall though for the Identifier case that is not a register or a 5180 // special name. 5181 } 5182 case AsmToken::LParen: // parenthesized expressions like (_strcmp-4) 5183 case AsmToken::Integer: // things like 1f and 2b as a branch targets 5184 case AsmToken::String: // quoted label names. 5185 case AsmToken::Dot: { // . as a branch target 5186 // This was not a register so parse other operands that start with an 5187 // identifier (like labels) as expressions and create them as immediates. 5188 const MCExpr *IdVal; 5189 S = Parser.getTok().getLoc(); 5190 if (getParser().parseExpression(IdVal)) 5191 return true; 5192 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5193 Operands.push_back(ARMOperand::CreateImm(IdVal, S, E)); 5194 return false; 5195 } 5196 case AsmToken::LBrac: 5197 return parseMemory(Operands); 5198 case AsmToken::LCurly: 5199 return parseRegisterList(Operands); 5200 case AsmToken::Dollar: 5201 case AsmToken::Hash: { 5202 // #42 -> immediate. 5203 S = Parser.getTok().getLoc(); 5204 Parser.Lex(); 5205 5206 if (Parser.getTok().isNot(AsmToken::Colon)) { 5207 bool isNegative = Parser.getTok().is(AsmToken::Minus); 5208 const MCExpr *ImmVal; 5209 if (getParser().parseExpression(ImmVal)) 5210 return true; 5211 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal); 5212 if (CE) { 5213 int32_t Val = CE->getValue(); 5214 if (isNegative && Val == 0) 5215 ImmVal = MCConstantExpr::create(INT32_MIN, getContext()); 5216 } 5217 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5218 Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E)); 5219 5220 // There can be a trailing '!' on operands that we want as a separate 5221 // '!' Token operand. Handle that here. For example, the compatibility 5222 // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'. 5223 if (Parser.getTok().is(AsmToken::Exclaim)) { 5224 Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(), 5225 Parser.getTok().getLoc())); 5226 Parser.Lex(); // Eat exclaim token 5227 } 5228 return false; 5229 } 5230 // w/ a ':' after the '#', it's just like a plain ':'. 5231 // FALLTHROUGH 5232 } 5233 case AsmToken::Colon: { 5234 S = Parser.getTok().getLoc(); 5235 // ":lower16:" and ":upper16:" expression prefixes 5236 // FIXME: Check it's an expression prefix, 5237 // e.g. (FOO - :lower16:BAR) isn't legal. 5238 ARMMCExpr::VariantKind RefKind; 5239 if (parsePrefix(RefKind)) 5240 return true; 5241 5242 const MCExpr *SubExprVal; 5243 if (getParser().parseExpression(SubExprVal)) 5244 return true; 5245 5246 const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal, 5247 getContext()); 5248 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5249 Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E)); 5250 return false; 5251 } 5252 case AsmToken::Equal: { 5253 S = Parser.getTok().getLoc(); 5254 if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val) 5255 return Error(S, "unexpected token in operand"); 5256 Parser.Lex(); // Eat '=' 5257 const MCExpr *SubExprVal; 5258 if (getParser().parseExpression(SubExprVal)) 5259 return true; 5260 E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 5261 Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E)); 5262 return false; 5263 } 5264 } 5265 } 5266 5267 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e. 5268 // :lower16: and :upper16:. 5269 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) { 5270 MCAsmParser &Parser = getParser(); 5271 RefKind = ARMMCExpr::VK_ARM_None; 5272 5273 // consume an optional '#' (GNU compatibility) 5274 if (getLexer().is(AsmToken::Hash)) 5275 Parser.Lex(); 5276 5277 // :lower16: and :upper16: modifiers 5278 assert(getLexer().is(AsmToken::Colon) && "expected a :"); 5279 Parser.Lex(); // Eat ':' 5280 5281 if (getLexer().isNot(AsmToken::Identifier)) { 5282 Error(Parser.getTok().getLoc(), "expected prefix identifier in operand"); 5283 return true; 5284 } 5285 5286 enum { 5287 COFF = (1 << MCObjectFileInfo::IsCOFF), 5288 ELF = (1 << MCObjectFileInfo::IsELF), 5289 MACHO = (1 << MCObjectFileInfo::IsMachO) 5290 }; 5291 static const struct PrefixEntry { 5292 const char *Spelling; 5293 ARMMCExpr::VariantKind VariantKind; 5294 uint8_t SupportedFormats; 5295 } PrefixEntries[] = { 5296 { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO }, 5297 { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO }, 5298 }; 5299 5300 StringRef IDVal = Parser.getTok().getIdentifier(); 5301 5302 const auto &Prefix = 5303 std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries), 5304 [&IDVal](const PrefixEntry &PE) { 5305 return PE.Spelling == IDVal; 5306 }); 5307 if (Prefix == std::end(PrefixEntries)) { 5308 Error(Parser.getTok().getLoc(), "unexpected prefix in operand"); 5309 return true; 5310 } 5311 5312 uint8_t CurrentFormat; 5313 switch (getContext().getObjectFileInfo()->getObjectFileType()) { 5314 case MCObjectFileInfo::IsMachO: 5315 CurrentFormat = MACHO; 5316 break; 5317 case MCObjectFileInfo::IsELF: 5318 CurrentFormat = ELF; 5319 break; 5320 case MCObjectFileInfo::IsCOFF: 5321 CurrentFormat = COFF; 5322 break; 5323 } 5324 5325 if (~Prefix->SupportedFormats & CurrentFormat) { 5326 Error(Parser.getTok().getLoc(), 5327 "cannot represent relocation in the current file format"); 5328 return true; 5329 } 5330 5331 RefKind = Prefix->VariantKind; 5332 Parser.Lex(); 5333 5334 if (getLexer().isNot(AsmToken::Colon)) { 5335 Error(Parser.getTok().getLoc(), "unexpected token after prefix"); 5336 return true; 5337 } 5338 Parser.Lex(); // Eat the last ':' 5339 5340 return false; 5341 } 5342 5343 /// \brief Given a mnemonic, split out possible predication code and carry 5344 /// setting letters to form a canonical mnemonic and flags. 5345 // 5346 // FIXME: Would be nice to autogen this. 5347 // FIXME: This is a bit of a maze of special cases. 5348 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic, 5349 unsigned &PredicationCode, 5350 bool &CarrySetting, 5351 unsigned &ProcessorIMod, 5352 StringRef &ITMask) { 5353 PredicationCode = ARMCC::AL; 5354 CarrySetting = false; 5355 ProcessorIMod = 0; 5356 5357 // Ignore some mnemonics we know aren't predicated forms. 5358 // 5359 // FIXME: Would be nice to autogen this. 5360 if ((Mnemonic == "movs" && isThumb()) || 5361 Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" || 5362 Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" || 5363 Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" || 5364 Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" || 5365 Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" || 5366 Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" || 5367 Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" || 5368 Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" || 5369 Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || 5370 Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || 5371 Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" || 5372 Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" || 5373 Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" || 5374 Mnemonic == "bxns" || Mnemonic == "blxns") 5375 return Mnemonic; 5376 5377 // First, split out any predication code. Ignore mnemonics we know aren't 5378 // predicated but do have a carry-set and so weren't caught above. 5379 if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" && 5380 Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" && 5381 Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" && 5382 Mnemonic != "sbcs" && Mnemonic != "rscs") { 5383 unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2)) 5384 .Case("eq", ARMCC::EQ) 5385 .Case("ne", ARMCC::NE) 5386 .Case("hs", ARMCC::HS) 5387 .Case("cs", ARMCC::HS) 5388 .Case("lo", ARMCC::LO) 5389 .Case("cc", ARMCC::LO) 5390 .Case("mi", ARMCC::MI) 5391 .Case("pl", ARMCC::PL) 5392 .Case("vs", ARMCC::VS) 5393 .Case("vc", ARMCC::VC) 5394 .Case("hi", ARMCC::HI) 5395 .Case("ls", ARMCC::LS) 5396 .Case("ge", ARMCC::GE) 5397 .Case("lt", ARMCC::LT) 5398 .Case("gt", ARMCC::GT) 5399 .Case("le", ARMCC::LE) 5400 .Case("al", ARMCC::AL) 5401 .Default(~0U); 5402 if (CC != ~0U) { 5403 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2); 5404 PredicationCode = CC; 5405 } 5406 } 5407 5408 // Next, determine if we have a carry setting bit. We explicitly ignore all 5409 // the instructions we know end in 's'. 5410 if (Mnemonic.endswith("s") && 5411 !(Mnemonic == "cps" || Mnemonic == "mls" || 5412 Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" || 5413 Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" || 5414 Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" || 5415 Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" || 5416 Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" || 5417 Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" || 5418 Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" || 5419 Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" || 5420 (Mnemonic == "movs" && isThumb()))) { 5421 Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1); 5422 CarrySetting = true; 5423 } 5424 5425 // The "cps" instruction can have a interrupt mode operand which is glued into 5426 // the mnemonic. Check if this is the case, split it and parse the imod op 5427 if (Mnemonic.startswith("cps")) { 5428 // Split out any imod code. 5429 unsigned IMod = 5430 StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2)) 5431 .Case("ie", ARM_PROC::IE) 5432 .Case("id", ARM_PROC::ID) 5433 .Default(~0U); 5434 if (IMod != ~0U) { 5435 Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2); 5436 ProcessorIMod = IMod; 5437 } 5438 } 5439 5440 // The "it" instruction has the condition mask on the end of the mnemonic. 5441 if (Mnemonic.startswith("it")) { 5442 ITMask = Mnemonic.slice(2, Mnemonic.size()); 5443 Mnemonic = Mnemonic.slice(0, 2); 5444 } 5445 5446 return Mnemonic; 5447 } 5448 5449 /// \brief Given a canonical mnemonic, determine if the instruction ever allows 5450 /// inclusion of carry set or predication code operands. 5451 // 5452 // FIXME: It would be nice to autogen this. 5453 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst, 5454 bool &CanAcceptCarrySet, 5455 bool &CanAcceptPredicationCode) { 5456 CanAcceptCarrySet = 5457 Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5458 Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" || 5459 Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" || 5460 Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" || 5461 Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" || 5462 Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" || 5463 Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" || 5464 (!isThumb() && 5465 (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" || 5466 Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull")); 5467 5468 if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" || 5469 Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" || 5470 Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" || 5471 Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") || 5472 Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" || 5473 Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" || 5474 Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" || 5475 Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" || 5476 Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" || 5477 Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") || 5478 (FullInst.startswith("vmull") && FullInst.endswith(".p64")) || 5479 Mnemonic == "vmovx" || Mnemonic == "vins") { 5480 // These mnemonics are never predicable 5481 CanAcceptPredicationCode = false; 5482 } else if (!isThumb()) { 5483 // Some instructions are only predicable in Thumb mode 5484 CanAcceptPredicationCode = 5485 Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" && 5486 Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" && 5487 Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" && 5488 Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" && 5489 Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" && 5490 Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") && 5491 !Mnemonic.startswith("srs"); 5492 } else if (isThumbOne()) { 5493 if (hasV6MOps()) 5494 CanAcceptPredicationCode = Mnemonic != "movs"; 5495 else 5496 CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs"; 5497 } else 5498 CanAcceptPredicationCode = true; 5499 } 5500 5501 // \brief Some Thumb instructions have two operand forms that are not 5502 // available as three operand, convert to two operand form if possible. 5503 // 5504 // FIXME: We would really like to be able to tablegen'erate this. 5505 void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic, 5506 bool CarrySetting, 5507 OperandVector &Operands) { 5508 if (Operands.size() != 6) 5509 return; 5510 5511 const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]); 5512 auto &Op4 = static_cast<ARMOperand &>(*Operands[4]); 5513 if (!Op3.isReg() || !Op4.isReg()) 5514 return; 5515 5516 auto Op3Reg = Op3.getReg(); 5517 auto Op4Reg = Op4.getReg(); 5518 5519 // For most Thumb2 cases we just generate the 3 operand form and reduce 5520 // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr) 5521 // won't accept SP or PC so we do the transformation here taking care 5522 // with immediate range in the 'add sp, sp #imm' case. 5523 auto &Op5 = static_cast<ARMOperand &>(*Operands[5]); 5524 if (isThumbTwo()) { 5525 if (Mnemonic != "add") 5526 return; 5527 bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC || 5528 (Op5.isReg() && Op5.getReg() == ARM::PC); 5529 if (!TryTransform) { 5530 TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP || 5531 (Op5.isReg() && Op5.getReg() == ARM::SP)) && 5532 !(Op3Reg == ARM::SP && Op4Reg == ARM::SP && 5533 Op5.isImm() && !Op5.isImm0_508s4()); 5534 } 5535 if (!TryTransform) 5536 return; 5537 } else if (!isThumbOne()) 5538 return; 5539 5540 if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" || 5541 Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" || 5542 Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" || 5543 Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) 5544 return; 5545 5546 // If first 2 operands of a 3 operand instruction are the same 5547 // then transform to 2 operand version of the same instruction 5548 // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1' 5549 bool Transform = Op3Reg == Op4Reg; 5550 5551 // For communtative operations, we might be able to transform if we swap 5552 // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially 5553 // as tADDrsp. 5554 const ARMOperand *LastOp = &Op5; 5555 bool Swap = false; 5556 if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() && 5557 ((Mnemonic == "add" && Op4Reg != ARM::SP) || 5558 Mnemonic == "and" || Mnemonic == "eor" || 5559 Mnemonic == "adc" || Mnemonic == "orr")) { 5560 Swap = true; 5561 LastOp = &Op4; 5562 Transform = true; 5563 } 5564 5565 // If both registers are the same then remove one of them from 5566 // the operand list, with certain exceptions. 5567 if (Transform) { 5568 // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the 5569 // 2 operand forms don't exist. 5570 if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") && 5571 LastOp->isReg()) 5572 Transform = false; 5573 5574 // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into 5575 // 3-bits because the ARMARM says not to. 5576 if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7()) 5577 Transform = false; 5578 } 5579 5580 if (Transform) { 5581 if (Swap) 5582 std::swap(Op4, Op5); 5583 Operands.erase(Operands.begin() + 3); 5584 } 5585 } 5586 5587 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic, 5588 OperandVector &Operands) { 5589 // FIXME: This is all horribly hacky. We really need a better way to deal 5590 // with optional operands like this in the matcher table. 5591 5592 // The 'mov' mnemonic is special. One variant has a cc_out operand, while 5593 // another does not. Specifically, the MOVW instruction does not. So we 5594 // special case it here and remove the defaulted (non-setting) cc_out 5595 // operand if that's the instruction we're trying to match. 5596 // 5597 // We do this as post-processing of the explicit operands rather than just 5598 // conditionally adding the cc_out in the first place because we need 5599 // to check the type of the parsed immediate operand. 5600 if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() && 5601 !static_cast<ARMOperand &>(*Operands[4]).isModImm() && 5602 static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() && 5603 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5604 return true; 5605 5606 // Register-register 'add' for thumb does not have a cc_out operand 5607 // when there are only two register operands. 5608 if (isThumb() && Mnemonic == "add" && Operands.size() == 5 && 5609 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5610 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5611 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0) 5612 return true; 5613 // Register-register 'add' for thumb does not have a cc_out operand 5614 // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do 5615 // have to check the immediate range here since Thumb2 has a variant 5616 // that can handle a different range and has a cc_out operand. 5617 if (((isThumb() && Mnemonic == "add") || 5618 (isThumbTwo() && Mnemonic == "sub")) && 5619 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5620 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5621 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP && 5622 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5623 ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) || 5624 static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4())) 5625 return true; 5626 // For Thumb2, add/sub immediate does not have a cc_out operand for the 5627 // imm0_4095 variant. That's the least-preferred variant when 5628 // selecting via the generic "add" mnemonic, so to know that we 5629 // should remove the cc_out operand, we have to explicitly check that 5630 // it's not one of the other variants. Ugh. 5631 if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") && 5632 Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() && 5633 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5634 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 5635 // Nest conditions rather than one big 'if' statement for readability. 5636 // 5637 // If both registers are low, we're in an IT block, and the immediate is 5638 // in range, we should use encoding T1 instead, which has a cc_out. 5639 if (inITBlock() && 5640 isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) && 5641 isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) && 5642 static_cast<ARMOperand &>(*Operands[5]).isImm0_7()) 5643 return false; 5644 // Check against T3. If the second register is the PC, this is an 5645 // alternate form of ADR, which uses encoding T4, so check for that too. 5646 if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC && 5647 static_cast<ARMOperand &>(*Operands[5]).isT2SOImm()) 5648 return false; 5649 5650 // Otherwise, we use encoding T4, which does not have a cc_out 5651 // operand. 5652 return true; 5653 } 5654 5655 // The thumb2 multiply instruction doesn't have a CCOut register, so 5656 // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to 5657 // use the 16-bit encoding or not. 5658 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 && 5659 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5660 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5661 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5662 static_cast<ARMOperand &>(*Operands[5]).isReg() && 5663 // If the registers aren't low regs, the destination reg isn't the 5664 // same as one of the source regs, or the cc_out operand is zero 5665 // outside of an IT block, we have to use the 32-bit encoding, so 5666 // remove the cc_out operand. 5667 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5668 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5669 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) || 5670 !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() != 5671 static_cast<ARMOperand &>(*Operands[5]).getReg() && 5672 static_cast<ARMOperand &>(*Operands[3]).getReg() != 5673 static_cast<ARMOperand &>(*Operands[4]).getReg()))) 5674 return true; 5675 5676 // Also check the 'mul' syntax variant that doesn't specify an explicit 5677 // destination register. 5678 if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 && 5679 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5680 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5681 static_cast<ARMOperand &>(*Operands[4]).isReg() && 5682 // If the registers aren't low regs or the cc_out operand is zero 5683 // outside of an IT block, we have to use the 32-bit encoding, so 5684 // remove the cc_out operand. 5685 (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) || 5686 !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) || 5687 !inITBlock())) 5688 return true; 5689 5690 5691 5692 // Register-register 'add/sub' for thumb does not have a cc_out operand 5693 // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also 5694 // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't 5695 // right, this will result in better diagnostics (which operand is off) 5696 // anyway. 5697 if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") && 5698 (Operands.size() == 5 || Operands.size() == 6) && 5699 static_cast<ARMOperand &>(*Operands[3]).isReg() && 5700 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP && 5701 static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 && 5702 (static_cast<ARMOperand &>(*Operands[4]).isImm() || 5703 (Operands.size() == 6 && 5704 static_cast<ARMOperand &>(*Operands[5]).isImm()))) 5705 return true; 5706 5707 return false; 5708 } 5709 5710 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic, 5711 OperandVector &Operands) { 5712 // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON 5713 unsigned RegIdx = 3; 5714 if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") && 5715 (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" || 5716 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) { 5717 if (static_cast<ARMOperand &>(*Operands[3]).isToken() && 5718 (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" || 5719 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16")) 5720 RegIdx = 4; 5721 5722 if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() && 5723 (ARMMCRegisterClasses[ARM::DPRRegClassID].contains( 5724 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) || 5725 ARMMCRegisterClasses[ARM::QPRRegClassID].contains( 5726 static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()))) 5727 return true; 5728 } 5729 return false; 5730 } 5731 5732 static bool isDataTypeToken(StringRef Tok) { 5733 return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" || 5734 Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" || 5735 Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" || 5736 Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" || 5737 Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" || 5738 Tok == ".f" || Tok == ".d"; 5739 } 5740 5741 // FIXME: This bit should probably be handled via an explicit match class 5742 // in the .td files that matches the suffix instead of having it be 5743 // a literal string token the way it is now. 5744 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) { 5745 return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm"); 5746 } 5747 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features, 5748 unsigned VariantID); 5749 5750 static bool RequiresVFPRegListValidation(StringRef Inst, 5751 bool &AcceptSinglePrecisionOnly, 5752 bool &AcceptDoublePrecisionOnly) { 5753 if (Inst.size() < 7) 5754 return false; 5755 5756 if (Inst.startswith("fldm") || Inst.startswith("fstm")) { 5757 StringRef AddressingMode = Inst.substr(4, 2); 5758 if (AddressingMode == "ia" || AddressingMode == "db" || 5759 AddressingMode == "ea" || AddressingMode == "fd") { 5760 AcceptSinglePrecisionOnly = Inst[6] == 's'; 5761 AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x'; 5762 return true; 5763 } 5764 } 5765 5766 return false; 5767 } 5768 5769 /// Parse an arm instruction mnemonic followed by its operands. 5770 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, 5771 SMLoc NameLoc, OperandVector &Operands) { 5772 MCAsmParser &Parser = getParser(); 5773 // FIXME: Can this be done via tablegen in some fashion? 5774 bool RequireVFPRegisterListCheck; 5775 bool AcceptSinglePrecisionOnly; 5776 bool AcceptDoublePrecisionOnly; 5777 RequireVFPRegisterListCheck = 5778 RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly, 5779 AcceptDoublePrecisionOnly); 5780 5781 // Apply mnemonic aliases before doing anything else, as the destination 5782 // mnemonic may include suffices and we want to handle them normally. 5783 // The generic tblgen'erated code does this later, at the start of 5784 // MatchInstructionImpl(), but that's too late for aliases that include 5785 // any sort of suffix. 5786 uint64_t AvailableFeatures = getAvailableFeatures(); 5787 unsigned AssemblerDialect = getParser().getAssemblerDialect(); 5788 applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect); 5789 5790 // First check for the ARM-specific .req directive. 5791 if (Parser.getTok().is(AsmToken::Identifier) && 5792 Parser.getTok().getIdentifier() == ".req") { 5793 parseDirectiveReq(Name, NameLoc); 5794 // We always return 'error' for this, as we're done with this 5795 // statement and don't need to match the 'instruction." 5796 return true; 5797 } 5798 5799 // Create the leading tokens for the mnemonic, split by '.' characters. 5800 size_t Start = 0, Next = Name.find('.'); 5801 StringRef Mnemonic = Name.slice(Start, Next); 5802 5803 // Split out the predication code and carry setting flag from the mnemonic. 5804 unsigned PredicationCode; 5805 unsigned ProcessorIMod; 5806 bool CarrySetting; 5807 StringRef ITMask; 5808 Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting, 5809 ProcessorIMod, ITMask); 5810 5811 // In Thumb1, only the branch (B) instruction can be predicated. 5812 if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") { 5813 Parser.eatToEndOfStatement(); 5814 return Error(NameLoc, "conditional execution not supported in Thumb1"); 5815 } 5816 5817 Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc)); 5818 5819 // Handle the IT instruction ITMask. Convert it to a bitmask. This 5820 // is the mask as it will be for the IT encoding if the conditional 5821 // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case 5822 // where the conditional bit0 is zero, the instruction post-processing 5823 // will adjust the mask accordingly. 5824 if (Mnemonic == "it") { 5825 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2); 5826 if (ITMask.size() > 3) { 5827 Parser.eatToEndOfStatement(); 5828 return Error(Loc, "too many conditions on IT instruction"); 5829 } 5830 unsigned Mask = 8; 5831 for (unsigned i = ITMask.size(); i != 0; --i) { 5832 char pos = ITMask[i - 1]; 5833 if (pos != 't' && pos != 'e') { 5834 Parser.eatToEndOfStatement(); 5835 return Error(Loc, "illegal IT block condition mask '" + ITMask + "'"); 5836 } 5837 Mask >>= 1; 5838 if (ITMask[i - 1] == 't') 5839 Mask |= 8; 5840 } 5841 Operands.push_back(ARMOperand::CreateITMask(Mask, Loc)); 5842 } 5843 5844 // FIXME: This is all a pretty gross hack. We should automatically handle 5845 // optional operands like this via tblgen. 5846 5847 // Next, add the CCOut and ConditionCode operands, if needed. 5848 // 5849 // For mnemonics which can ever incorporate a carry setting bit or predication 5850 // code, our matching model involves us always generating CCOut and 5851 // ConditionCode operands to match the mnemonic "as written" and then we let 5852 // the matcher deal with finding the right instruction or generating an 5853 // appropriate error. 5854 bool CanAcceptCarrySet, CanAcceptPredicationCode; 5855 getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode); 5856 5857 // If we had a carry-set on an instruction that can't do that, issue an 5858 // error. 5859 if (!CanAcceptCarrySet && CarrySetting) { 5860 Parser.eatToEndOfStatement(); 5861 return Error(NameLoc, "instruction '" + Mnemonic + 5862 "' can not set flags, but 's' suffix specified"); 5863 } 5864 // If we had a predication code on an instruction that can't do that, issue an 5865 // error. 5866 if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) { 5867 Parser.eatToEndOfStatement(); 5868 return Error(NameLoc, "instruction '" + Mnemonic + 5869 "' is not predicable, but condition code specified"); 5870 } 5871 5872 // Add the carry setting operand, if necessary. 5873 if (CanAcceptCarrySet) { 5874 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size()); 5875 Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0, 5876 Loc)); 5877 } 5878 5879 // Add the predication code operand, if necessary. 5880 if (CanAcceptPredicationCode) { 5881 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() + 5882 CarrySetting); 5883 Operands.push_back(ARMOperand::CreateCondCode( 5884 ARMCC::CondCodes(PredicationCode), Loc)); 5885 } 5886 5887 // Add the processor imod operand, if necessary. 5888 if (ProcessorIMod) { 5889 Operands.push_back(ARMOperand::CreateImm( 5890 MCConstantExpr::create(ProcessorIMod, getContext()), 5891 NameLoc, NameLoc)); 5892 } else if (Mnemonic == "cps" && isMClass()) { 5893 return Error(NameLoc, "instruction 'cps' requires effect for M-class"); 5894 } 5895 5896 // Add the remaining tokens in the mnemonic. 5897 while (Next != StringRef::npos) { 5898 Start = Next; 5899 Next = Name.find('.', Start + 1); 5900 StringRef ExtraToken = Name.slice(Start, Next); 5901 5902 // Some NEON instructions have an optional datatype suffix that is 5903 // completely ignored. Check for that. 5904 if (isDataTypeToken(ExtraToken) && 5905 doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken)) 5906 continue; 5907 5908 // For for ARM mode generate an error if the .n qualifier is used. 5909 if (ExtraToken == ".n" && !isThumb()) { 5910 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5911 Parser.eatToEndOfStatement(); 5912 return Error(Loc, "instruction with .n (narrow) qualifier not allowed in " 5913 "arm mode"); 5914 } 5915 5916 // The .n qualifier is always discarded as that is what the tables 5917 // and matcher expect. In ARM mode the .w qualifier has no effect, 5918 // so discard it to avoid errors that can be caused by the matcher. 5919 if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) { 5920 SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start); 5921 Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc)); 5922 } 5923 } 5924 5925 // Read the remaining operands. 5926 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5927 // Read the first operand. 5928 if (parseOperand(Operands, Mnemonic)) { 5929 Parser.eatToEndOfStatement(); 5930 return true; 5931 } 5932 5933 while (getLexer().is(AsmToken::Comma)) { 5934 Parser.Lex(); // Eat the comma. 5935 5936 // Parse and remember the operand. 5937 if (parseOperand(Operands, Mnemonic)) { 5938 Parser.eatToEndOfStatement(); 5939 return true; 5940 } 5941 } 5942 } 5943 5944 if (getLexer().isNot(AsmToken::EndOfStatement)) { 5945 SMLoc Loc = getLexer().getLoc(); 5946 Parser.eatToEndOfStatement(); 5947 return Error(Loc, "unexpected token in argument list"); 5948 } 5949 5950 Parser.Lex(); // Consume the EndOfStatement 5951 5952 if (RequireVFPRegisterListCheck) { 5953 ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back()); 5954 if (AcceptSinglePrecisionOnly && !Op.isSPRRegList()) 5955 return Error(Op.getStartLoc(), 5956 "VFP/Neon single precision register expected"); 5957 if (AcceptDoublePrecisionOnly && !Op.isDPRRegList()) 5958 return Error(Op.getStartLoc(), 5959 "VFP/Neon double precision register expected"); 5960 } 5961 5962 tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands); 5963 5964 // Some instructions, mostly Thumb, have forms for the same mnemonic that 5965 // do and don't have a cc_out optional-def operand. With some spot-checks 5966 // of the operand list, we can figure out which variant we're trying to 5967 // parse and adjust accordingly before actually matching. We shouldn't ever 5968 // try to remove a cc_out operand that was explicitly set on the 5969 // mnemonic, of course (CarrySetting == true). Reason number #317 the 5970 // table driven matcher doesn't fit well with the ARM instruction set. 5971 if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) 5972 Operands.erase(Operands.begin() + 1); 5973 5974 // Some instructions have the same mnemonic, but don't always 5975 // have a predicate. Distinguish them here and delete the 5976 // predicate if needed. 5977 if (shouldOmitPredicateOperand(Mnemonic, Operands)) 5978 Operands.erase(Operands.begin() + 1); 5979 5980 // ARM mode 'blx' need special handling, as the register operand version 5981 // is predicable, but the label operand version is not. So, we can't rely 5982 // on the Mnemonic based checking to correctly figure out when to put 5983 // a k_CondCode operand in the list. If we're trying to match the label 5984 // version, remove the k_CondCode operand here. 5985 if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 && 5986 static_cast<ARMOperand &>(*Operands[2]).isImm()) 5987 Operands.erase(Operands.begin() + 1); 5988 5989 // Adjust operands of ldrexd/strexd to MCK_GPRPair. 5990 // ldrexd/strexd require even/odd GPR pair. To enforce this constraint, 5991 // a single GPRPair reg operand is used in the .td file to replace the two 5992 // GPRs. However, when parsing from asm, the two GRPs cannot be automatically 5993 // expressed as a GPRPair, so we have to manually merge them. 5994 // FIXME: We would really like to be able to tablegen'erate this. 5995 if (!isThumb() && Operands.size() > 4 && 5996 (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" || 5997 Mnemonic == "stlexd")) { 5998 bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd"); 5999 unsigned Idx = isLoad ? 2 : 3; 6000 ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]); 6001 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]); 6002 6003 const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID); 6004 // Adjust only if Op1 and Op2 are GPRs. 6005 if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) && 6006 MRC.contains(Op2.getReg())) { 6007 unsigned Reg1 = Op1.getReg(); 6008 unsigned Reg2 = Op2.getReg(); 6009 unsigned Rt = MRI->getEncodingValue(Reg1); 6010 unsigned Rt2 = MRI->getEncodingValue(Reg2); 6011 6012 // Rt2 must be Rt + 1 and Rt must be even. 6013 if (Rt + 1 != Rt2 || (Rt & 1)) { 6014 Error(Op2.getStartLoc(), isLoad 6015 ? "destination operands must be sequential" 6016 : "source operands must be sequential"); 6017 return true; 6018 } 6019 unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0, 6020 &(MRI->getRegClass(ARM::GPRPairRegClassID))); 6021 Operands[Idx] = 6022 ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc()); 6023 Operands.erase(Operands.begin() + Idx + 1); 6024 } 6025 } 6026 6027 // GNU Assembler extension (compatibility) 6028 if ((Mnemonic == "ldrd" || Mnemonic == "strd")) { 6029 ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]); 6030 ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]); 6031 if (Op3.isMem()) { 6032 assert(Op2.isReg() && "expected register argument"); 6033 6034 unsigned SuperReg = MRI->getMatchingSuperReg( 6035 Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID)); 6036 6037 assert(SuperReg && "expected register pair"); 6038 6039 unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1); 6040 6041 Operands.insert( 6042 Operands.begin() + 3, 6043 ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc())); 6044 } 6045 } 6046 6047 // FIXME: As said above, this is all a pretty gross hack. This instruction 6048 // does not fit with other "subs" and tblgen. 6049 // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction 6050 // so the Mnemonic is the original name "subs" and delete the predicate 6051 // operand so it will match the table entry. 6052 if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 && 6053 static_cast<ARMOperand &>(*Operands[3]).isReg() && 6054 static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC && 6055 static_cast<ARMOperand &>(*Operands[4]).isReg() && 6056 static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR && 6057 static_cast<ARMOperand &>(*Operands[5]).isImm()) { 6058 Operands.front() = ARMOperand::CreateToken(Name, NameLoc); 6059 Operands.erase(Operands.begin() + 1); 6060 } 6061 return false; 6062 } 6063 6064 // Validate context-sensitive operand constraints. 6065 6066 // return 'true' if register list contains non-low GPR registers, 6067 // 'false' otherwise. If Reg is in the register list or is HiReg, set 6068 // 'containsReg' to true. 6069 static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo, 6070 unsigned Reg, unsigned HiReg, 6071 bool &containsReg) { 6072 containsReg = false; 6073 for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) { 6074 unsigned OpReg = Inst.getOperand(i).getReg(); 6075 if (OpReg == Reg) 6076 containsReg = true; 6077 // Anything other than a low register isn't legal here. 6078 if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg)) 6079 return true; 6080 } 6081 return false; 6082 } 6083 6084 // Check if the specified regisgter is in the register list of the inst, 6085 // starting at the indicated operand number. 6086 static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) { 6087 for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) { 6088 unsigned OpReg = Inst.getOperand(i).getReg(); 6089 if (OpReg == Reg) 6090 return true; 6091 } 6092 return false; 6093 } 6094 6095 // Return true if instruction has the interesting property of being 6096 // allowed in IT blocks, but not being predicable. 6097 static bool instIsBreakpoint(const MCInst &Inst) { 6098 return Inst.getOpcode() == ARM::tBKPT || 6099 Inst.getOpcode() == ARM::BKPT || 6100 Inst.getOpcode() == ARM::tHLT || 6101 Inst.getOpcode() == ARM::HLT; 6102 6103 } 6104 6105 bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst, 6106 const OperandVector &Operands, 6107 unsigned ListNo, bool IsARPop) { 6108 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6109 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6110 6111 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6112 bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR); 6113 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6114 6115 if (!IsARPop && ListContainsSP) 6116 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6117 "SP may not be in the register list"); 6118 else if (ListContainsPC && ListContainsLR) 6119 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6120 "PC and LR may not be in the register list simultaneously"); 6121 else if (inITBlock() && !lastInITBlock() && ListContainsPC) 6122 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6123 "instruction must be outside of IT block or the last " 6124 "instruction in an IT block"); 6125 return false; 6126 } 6127 6128 bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst, 6129 const OperandVector &Operands, 6130 unsigned ListNo) { 6131 const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]); 6132 bool HasWritebackToken = Op.isToken() && Op.getToken() == "!"; 6133 6134 bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP); 6135 bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC); 6136 6137 if (ListContainsSP && ListContainsPC) 6138 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6139 "SP and PC may not be in the register list"); 6140 else if (ListContainsSP) 6141 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6142 "SP may not be in the register list"); 6143 else if (ListContainsPC) 6144 return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(), 6145 "PC may not be in the register list"); 6146 return false; 6147 } 6148 6149 // FIXME: We would really like to be able to tablegen'erate this. 6150 bool ARMAsmParser::validateInstruction(MCInst &Inst, 6151 const OperandVector &Operands) { 6152 const MCInstrDesc &MCID = MII.get(Inst.getOpcode()); 6153 SMLoc Loc = Operands[0]->getStartLoc(); 6154 6155 // Check the IT block state first. 6156 // NOTE: BKPT and HLT instructions have the interesting property of being 6157 // allowed in IT blocks, but not being predicable. They just always execute. 6158 if (inITBlock() && !instIsBreakpoint(Inst)) { 6159 unsigned Bit = 1; 6160 if (ITState.FirstCond) 6161 ITState.FirstCond = false; 6162 else 6163 Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1; 6164 // The instruction must be predicable. 6165 if (!MCID.isPredicable()) 6166 return Error(Loc, "instructions in IT block must be predicable"); 6167 unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm(); 6168 unsigned ITCond = Bit ? ITState.Cond : 6169 ARMCC::getOppositeCondition(ITState.Cond); 6170 if (Cond != ITCond) { 6171 // Find the condition code Operand to get its SMLoc information. 6172 SMLoc CondLoc; 6173 for (unsigned I = 1; I < Operands.size(); ++I) 6174 if (static_cast<ARMOperand &>(*Operands[I]).isCondCode()) 6175 CondLoc = Operands[I]->getStartLoc(); 6176 return Error(CondLoc, "incorrect condition in IT block; got '" + 6177 StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) + 6178 "', but expected '" + 6179 ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'"); 6180 } 6181 // Check for non-'al' condition codes outside of the IT block. 6182 } else if (isThumbTwo() && MCID.isPredicable() && 6183 Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() != 6184 ARMCC::AL && Inst.getOpcode() != ARM::tBcc && 6185 Inst.getOpcode() != ARM::t2Bcc) 6186 return Error(Loc, "predicated instructions must be in IT block"); 6187 6188 const unsigned Opcode = Inst.getOpcode(); 6189 switch (Opcode) { 6190 case ARM::LDRD: 6191 case ARM::LDRD_PRE: 6192 case ARM::LDRD_POST: { 6193 const unsigned RtReg = Inst.getOperand(0).getReg(); 6194 6195 // Rt can't be R14. 6196 if (RtReg == ARM::LR) 6197 return Error(Operands[3]->getStartLoc(), 6198 "Rt can't be R14"); 6199 6200 const unsigned Rt = MRI->getEncodingValue(RtReg); 6201 // Rt must be even-numbered. 6202 if ((Rt & 1) == 1) 6203 return Error(Operands[3]->getStartLoc(), 6204 "Rt must be even-numbered"); 6205 6206 // Rt2 must be Rt + 1. 6207 const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6208 if (Rt2 != Rt + 1) 6209 return Error(Operands[3]->getStartLoc(), 6210 "destination operands must be sequential"); 6211 6212 if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) { 6213 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg()); 6214 // For addressing modes with writeback, the base register needs to be 6215 // different from the destination registers. 6216 if (Rn == Rt || Rn == Rt2) 6217 return Error(Operands[3]->getStartLoc(), 6218 "base register needs to be different from destination " 6219 "registers"); 6220 } 6221 6222 return false; 6223 } 6224 case ARM::t2LDRDi8: 6225 case ARM::t2LDRD_PRE: 6226 case ARM::t2LDRD_POST: { 6227 // Rt2 must be different from Rt. 6228 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6229 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6230 if (Rt2 == Rt) 6231 return Error(Operands[3]->getStartLoc(), 6232 "destination operands can't be identical"); 6233 return false; 6234 } 6235 case ARM::t2BXJ: { 6236 const unsigned RmReg = Inst.getOperand(0).getReg(); 6237 // Rm = SP is no longer unpredictable in v8-A 6238 if (RmReg == ARM::SP && !hasV8Ops()) 6239 return Error(Operands[2]->getStartLoc(), 6240 "r13 (SP) is an unpredictable operand to BXJ"); 6241 return false; 6242 } 6243 case ARM::STRD: { 6244 // Rt2 must be Rt + 1. 6245 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6246 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6247 if (Rt2 != Rt + 1) 6248 return Error(Operands[3]->getStartLoc(), 6249 "source operands must be sequential"); 6250 return false; 6251 } 6252 case ARM::STRD_PRE: 6253 case ARM::STRD_POST: { 6254 // Rt2 must be Rt + 1. 6255 unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6256 unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6257 if (Rt2 != Rt + 1) 6258 return Error(Operands[3]->getStartLoc(), 6259 "source operands must be sequential"); 6260 return false; 6261 } 6262 case ARM::STR_PRE_IMM: 6263 case ARM::STR_PRE_REG: 6264 case ARM::STR_POST_IMM: 6265 case ARM::STR_POST_REG: 6266 case ARM::STRH_PRE: 6267 case ARM::STRH_POST: 6268 case ARM::STRB_PRE_IMM: 6269 case ARM::STRB_PRE_REG: 6270 case ARM::STRB_POST_IMM: 6271 case ARM::STRB_POST_REG: { 6272 // Rt must be different from Rn. 6273 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg()); 6274 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6275 6276 if (Rt == Rn) 6277 return Error(Operands[3]->getStartLoc(), 6278 "source register and base register can't be identical"); 6279 return false; 6280 } 6281 case ARM::LDR_PRE_IMM: 6282 case ARM::LDR_PRE_REG: 6283 case ARM::LDR_POST_IMM: 6284 case ARM::LDR_POST_REG: 6285 case ARM::LDRH_PRE: 6286 case ARM::LDRH_POST: 6287 case ARM::LDRSH_PRE: 6288 case ARM::LDRSH_POST: 6289 case ARM::LDRB_PRE_IMM: 6290 case ARM::LDRB_PRE_REG: 6291 case ARM::LDRB_POST_IMM: 6292 case ARM::LDRB_POST_REG: 6293 case ARM::LDRSB_PRE: 6294 case ARM::LDRSB_POST: { 6295 // Rt must be different from Rn. 6296 const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg()); 6297 const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg()); 6298 6299 if (Rt == Rn) 6300 return Error(Operands[3]->getStartLoc(), 6301 "destination register and base register can't be identical"); 6302 return false; 6303 } 6304 case ARM::SBFX: 6305 case ARM::UBFX: { 6306 // Width must be in range [1, 32-lsb]. 6307 unsigned LSB = Inst.getOperand(2).getImm(); 6308 unsigned Widthm1 = Inst.getOperand(3).getImm(); 6309 if (Widthm1 >= 32 - LSB) 6310 return Error(Operands[5]->getStartLoc(), 6311 "bitfield width must be in range [1,32-lsb]"); 6312 return false; 6313 } 6314 // Notionally handles ARM::tLDMIA_UPD too. 6315 case ARM::tLDMIA: { 6316 // If we're parsing Thumb2, the .w variant is available and handles 6317 // most cases that are normally illegal for a Thumb1 LDM instruction. 6318 // We'll make the transformation in processInstruction() if necessary. 6319 // 6320 // Thumb LDM instructions are writeback iff the base register is not 6321 // in the register list. 6322 unsigned Rn = Inst.getOperand(0).getReg(); 6323 bool HasWritebackToken = 6324 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 6325 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 6326 bool ListContainsBase; 6327 if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo()) 6328 return Error(Operands[3 + HasWritebackToken]->getStartLoc(), 6329 "registers must be in range r0-r7"); 6330 // If we should have writeback, then there should be a '!' token. 6331 if (!ListContainsBase && !HasWritebackToken && !isThumbTwo()) 6332 return Error(Operands[2]->getStartLoc(), 6333 "writeback operator '!' expected"); 6334 // If we should not have writeback, there must not be a '!'. This is 6335 // true even for the 32-bit wide encodings. 6336 if (ListContainsBase && HasWritebackToken) 6337 return Error(Operands[3]->getStartLoc(), 6338 "writeback operator '!' not allowed when base register " 6339 "in register list"); 6340 6341 if (validatetLDMRegList(Inst, Operands, 3)) 6342 return true; 6343 break; 6344 } 6345 case ARM::LDMIA_UPD: 6346 case ARM::LDMDB_UPD: 6347 case ARM::LDMIB_UPD: 6348 case ARM::LDMDA_UPD: 6349 // ARM variants loading and updating the same register are only officially 6350 // UNPREDICTABLE on v7 upwards. Goodness knows what they did before. 6351 if (!hasV7Ops()) 6352 break; 6353 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6354 return Error(Operands.back()->getStartLoc(), 6355 "writeback register not allowed in register list"); 6356 break; 6357 case ARM::t2LDMIA: 6358 case ARM::t2LDMDB: 6359 if (validatetLDMRegList(Inst, Operands, 3)) 6360 return true; 6361 break; 6362 case ARM::t2STMIA: 6363 case ARM::t2STMDB: 6364 if (validatetSTMRegList(Inst, Operands, 3)) 6365 return true; 6366 break; 6367 case ARM::t2LDMIA_UPD: 6368 case ARM::t2LDMDB_UPD: 6369 case ARM::t2STMIA_UPD: 6370 case ARM::t2STMDB_UPD: { 6371 if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg())) 6372 return Error(Operands.back()->getStartLoc(), 6373 "writeback register not allowed in register list"); 6374 6375 if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 6376 if (validatetLDMRegList(Inst, Operands, 3)) 6377 return true; 6378 } else { 6379 if (validatetSTMRegList(Inst, Operands, 3)) 6380 return true; 6381 } 6382 break; 6383 } 6384 case ARM::sysLDMIA_UPD: 6385 case ARM::sysLDMDA_UPD: 6386 case ARM::sysLDMDB_UPD: 6387 case ARM::sysLDMIB_UPD: 6388 if (!listContainsReg(Inst, 3, ARM::PC)) 6389 return Error(Operands[4]->getStartLoc(), 6390 "writeback register only allowed on system LDM " 6391 "if PC in register-list"); 6392 break; 6393 case ARM::sysSTMIA_UPD: 6394 case ARM::sysSTMDA_UPD: 6395 case ARM::sysSTMDB_UPD: 6396 case ARM::sysSTMIB_UPD: 6397 return Error(Operands[2]->getStartLoc(), 6398 "system STM cannot have writeback register"); 6399 case ARM::tMUL: { 6400 // The second source operand must be the same register as the destination 6401 // operand. 6402 // 6403 // In this case, we must directly check the parsed operands because the 6404 // cvtThumbMultiply() function is written in such a way that it guarantees 6405 // this first statement is always true for the new Inst. Essentially, the 6406 // destination is unconditionally copied into the second source operand 6407 // without checking to see if it matches what we actually parsed. 6408 if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() != 6409 ((ARMOperand &)*Operands[5]).getReg()) && 6410 (((ARMOperand &)*Operands[3]).getReg() != 6411 ((ARMOperand &)*Operands[4]).getReg())) { 6412 return Error(Operands[3]->getStartLoc(), 6413 "destination register must match source register"); 6414 } 6415 break; 6416 } 6417 // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2, 6418 // so only issue a diagnostic for thumb1. The instructions will be 6419 // switched to the t2 encodings in processInstruction() if necessary. 6420 case ARM::tPOP: { 6421 bool ListContainsBase; 6422 if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) && 6423 !isThumbTwo()) 6424 return Error(Operands[2]->getStartLoc(), 6425 "registers must be in range r0-r7 or pc"); 6426 if (validatetLDMRegList(Inst, Operands, 2, !isMClass())) 6427 return true; 6428 break; 6429 } 6430 case ARM::tPUSH: { 6431 bool ListContainsBase; 6432 if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) && 6433 !isThumbTwo()) 6434 return Error(Operands[2]->getStartLoc(), 6435 "registers must be in range r0-r7 or lr"); 6436 if (validatetSTMRegList(Inst, Operands, 2)) 6437 return true; 6438 break; 6439 } 6440 case ARM::tSTMIA_UPD: { 6441 bool ListContainsBase, InvalidLowList; 6442 InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(), 6443 0, ListContainsBase); 6444 if (InvalidLowList && !isThumbTwo()) 6445 return Error(Operands[4]->getStartLoc(), 6446 "registers must be in range r0-r7"); 6447 6448 // This would be converted to a 32-bit stm, but that's not valid if the 6449 // writeback register is in the list. 6450 if (InvalidLowList && ListContainsBase) 6451 return Error(Operands[4]->getStartLoc(), 6452 "writeback operator '!' not allowed when base register " 6453 "in register list"); 6454 6455 if (validatetSTMRegList(Inst, Operands, 4)) 6456 return true; 6457 break; 6458 } 6459 case ARM::tADDrSP: { 6460 // If the non-SP source operand and the destination operand are not the 6461 // same, we need thumb2 (for the wide encoding), or we have an error. 6462 if (!isThumbTwo() && 6463 Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 6464 return Error(Operands[4]->getStartLoc(), 6465 "source register must be the same as destination"); 6466 } 6467 break; 6468 } 6469 // Final range checking for Thumb unconditional branch instructions. 6470 case ARM::tB: 6471 if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>()) 6472 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6473 break; 6474 case ARM::t2B: { 6475 int op = (Operands[2]->isImm()) ? 2 : 3; 6476 if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>()) 6477 return Error(Operands[op]->getStartLoc(), "branch target out of range"); 6478 break; 6479 } 6480 // Final range checking for Thumb conditional branch instructions. 6481 case ARM::tBcc: 6482 if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>()) 6483 return Error(Operands[2]->getStartLoc(), "branch target out of range"); 6484 break; 6485 case ARM::t2Bcc: { 6486 int Op = (Operands[2]->isImm()) ? 2 : 3; 6487 if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>()) 6488 return Error(Operands[Op]->getStartLoc(), "branch target out of range"); 6489 break; 6490 } 6491 case ARM::MOVi16: 6492 case ARM::t2MOVi16: 6493 case ARM::t2MOVTi16: 6494 { 6495 // We want to avoid misleadingly allowing something like "mov r0, <symbol>" 6496 // especially when we turn it into a movw and the expression <symbol> does 6497 // not have a :lower16: or :upper16 as part of the expression. We don't 6498 // want the behavior of silently truncating, which can be unexpected and 6499 // lead to bugs that are difficult to find since this is an easy mistake 6500 // to make. 6501 int i = (Operands[3]->isImm()) ? 3 : 4; 6502 ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]); 6503 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()); 6504 if (CE) break; 6505 const MCExpr *E = dyn_cast<MCExpr>(Op.getImm()); 6506 if (!E) break; 6507 const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E); 6508 if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 && 6509 ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16)) 6510 return Error( 6511 Op.getStartLoc(), 6512 "immediate expression for mov requires :lower16: or :upper16"); 6513 break; 6514 } 6515 } 6516 6517 return false; 6518 } 6519 6520 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) { 6521 switch(Opc) { 6522 default: llvm_unreachable("unexpected opcode!"); 6523 // VST1LN 6524 case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6525 case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6526 case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6527 case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD; 6528 case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD; 6529 case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD; 6530 case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8; 6531 case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16; 6532 case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32; 6533 6534 // VST2LN 6535 case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6536 case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6537 case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6538 case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6539 case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6540 6541 case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD; 6542 case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD; 6543 case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD; 6544 case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD; 6545 case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD; 6546 6547 case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8; 6548 case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16; 6549 case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32; 6550 case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16; 6551 case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32; 6552 6553 // VST3LN 6554 case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6555 case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6556 case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6557 case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD; 6558 case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6559 case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD; 6560 case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD; 6561 case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD; 6562 case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD; 6563 case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD; 6564 case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8; 6565 case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16; 6566 case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32; 6567 case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16; 6568 case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32; 6569 6570 // VST3 6571 case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6572 case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6573 case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6574 case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6575 case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6576 case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6577 case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD; 6578 case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD; 6579 case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD; 6580 case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD; 6581 case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD; 6582 case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD; 6583 case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8; 6584 case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16; 6585 case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32; 6586 case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8; 6587 case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16; 6588 case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32; 6589 6590 // VST4LN 6591 case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6592 case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6593 case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6594 case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD; 6595 case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6596 case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD; 6597 case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD; 6598 case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD; 6599 case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD; 6600 case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD; 6601 case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8; 6602 case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16; 6603 case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32; 6604 case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16; 6605 case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32; 6606 6607 // VST4 6608 case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6609 case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6610 case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6611 case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6612 case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6613 case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6614 case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD; 6615 case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD; 6616 case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD; 6617 case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD; 6618 case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD; 6619 case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD; 6620 case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8; 6621 case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16; 6622 case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32; 6623 case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8; 6624 case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16; 6625 case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32; 6626 } 6627 } 6628 6629 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) { 6630 switch(Opc) { 6631 default: llvm_unreachable("unexpected opcode!"); 6632 // VLD1LN 6633 case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6634 case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6635 case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6636 case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD; 6637 case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD; 6638 case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD; 6639 case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8; 6640 case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16; 6641 case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32; 6642 6643 // VLD2LN 6644 case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6645 case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6646 case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6647 case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD; 6648 case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6649 case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD; 6650 case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD; 6651 case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD; 6652 case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD; 6653 case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD; 6654 case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8; 6655 case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16; 6656 case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32; 6657 case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16; 6658 case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32; 6659 6660 // VLD3DUP 6661 case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6662 case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6663 case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6664 case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD; 6665 case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6666 case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6667 case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD; 6668 case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD; 6669 case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD; 6670 case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD; 6671 case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD; 6672 case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD; 6673 case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8; 6674 case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16; 6675 case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32; 6676 case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8; 6677 case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16; 6678 case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32; 6679 6680 // VLD3LN 6681 case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6682 case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6683 case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6684 case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD; 6685 case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6686 case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD; 6687 case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD; 6688 case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD; 6689 case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD; 6690 case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD; 6691 case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8; 6692 case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16; 6693 case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32; 6694 case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16; 6695 case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32; 6696 6697 // VLD3 6698 case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6699 case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6700 case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6701 case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6702 case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6703 case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6704 case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD; 6705 case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD; 6706 case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD; 6707 case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD; 6708 case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD; 6709 case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD; 6710 case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8; 6711 case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16; 6712 case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32; 6713 case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8; 6714 case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16; 6715 case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32; 6716 6717 // VLD4LN 6718 case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6719 case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6720 case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6721 case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6722 case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6723 case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD; 6724 case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD; 6725 case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD; 6726 case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD; 6727 case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD; 6728 case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8; 6729 case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16; 6730 case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32; 6731 case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16; 6732 case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32; 6733 6734 // VLD4DUP 6735 case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6736 case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6737 case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6738 case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD; 6739 case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD; 6740 case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6741 case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD; 6742 case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD; 6743 case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD; 6744 case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD; 6745 case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD; 6746 case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD; 6747 case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8; 6748 case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16; 6749 case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32; 6750 case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8; 6751 case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16; 6752 case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32; 6753 6754 // VLD4 6755 case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6756 case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6757 case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6758 case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6759 case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6760 case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6761 case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD; 6762 case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD; 6763 case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD; 6764 case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD; 6765 case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD; 6766 case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD; 6767 case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8; 6768 case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16; 6769 case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32; 6770 case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8; 6771 case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16; 6772 case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32; 6773 } 6774 } 6775 6776 bool ARMAsmParser::processInstruction(MCInst &Inst, 6777 const OperandVector &Operands, 6778 MCStreamer &Out) { 6779 switch (Inst.getOpcode()) { 6780 // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction. 6781 case ARM::LDRT_POST: 6782 case ARM::LDRBT_POST: { 6783 const unsigned Opcode = 6784 (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM 6785 : ARM::LDRBT_POST_IMM; 6786 MCInst TmpInst; 6787 TmpInst.setOpcode(Opcode); 6788 TmpInst.addOperand(Inst.getOperand(0)); 6789 TmpInst.addOperand(Inst.getOperand(1)); 6790 TmpInst.addOperand(Inst.getOperand(1)); 6791 TmpInst.addOperand(MCOperand::createReg(0)); 6792 TmpInst.addOperand(MCOperand::createImm(0)); 6793 TmpInst.addOperand(Inst.getOperand(2)); 6794 TmpInst.addOperand(Inst.getOperand(3)); 6795 Inst = TmpInst; 6796 return true; 6797 } 6798 // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction. 6799 case ARM::STRT_POST: 6800 case ARM::STRBT_POST: { 6801 const unsigned Opcode = 6802 (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM 6803 : ARM::STRBT_POST_IMM; 6804 MCInst TmpInst; 6805 TmpInst.setOpcode(Opcode); 6806 TmpInst.addOperand(Inst.getOperand(1)); 6807 TmpInst.addOperand(Inst.getOperand(0)); 6808 TmpInst.addOperand(Inst.getOperand(1)); 6809 TmpInst.addOperand(MCOperand::createReg(0)); 6810 TmpInst.addOperand(MCOperand::createImm(0)); 6811 TmpInst.addOperand(Inst.getOperand(2)); 6812 TmpInst.addOperand(Inst.getOperand(3)); 6813 Inst = TmpInst; 6814 return true; 6815 } 6816 // Alias for alternate form of 'ADR Rd, #imm' instruction. 6817 case ARM::ADDri: { 6818 if (Inst.getOperand(1).getReg() != ARM::PC || 6819 Inst.getOperand(5).getReg() != 0 || 6820 !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm())) 6821 return false; 6822 MCInst TmpInst; 6823 TmpInst.setOpcode(ARM::ADR); 6824 TmpInst.addOperand(Inst.getOperand(0)); 6825 if (Inst.getOperand(2).isImm()) { 6826 // Immediate (mod_imm) will be in its encoded form, we must unencode it 6827 // before passing it to the ADR instruction. 6828 unsigned Enc = Inst.getOperand(2).getImm(); 6829 TmpInst.addOperand(MCOperand::createImm( 6830 ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7))); 6831 } else { 6832 // Turn PC-relative expression into absolute expression. 6833 // Reading PC provides the start of the current instruction + 8 and 6834 // the transform to adr is biased by that. 6835 MCSymbol *Dot = getContext().createTempSymbol(); 6836 Out.EmitLabel(Dot); 6837 const MCExpr *OpExpr = Inst.getOperand(2).getExpr(); 6838 const MCExpr *InstPC = MCSymbolRefExpr::create(Dot, 6839 MCSymbolRefExpr::VK_None, 6840 getContext()); 6841 const MCExpr *Const8 = MCConstantExpr::create(8, getContext()); 6842 const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8, 6843 getContext()); 6844 const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr, 6845 getContext()); 6846 TmpInst.addOperand(MCOperand::createExpr(FixupAddr)); 6847 } 6848 TmpInst.addOperand(Inst.getOperand(3)); 6849 TmpInst.addOperand(Inst.getOperand(4)); 6850 Inst = TmpInst; 6851 return true; 6852 } 6853 // Aliases for alternate PC+imm syntax of LDR instructions. 6854 case ARM::t2LDRpcrel: 6855 // Select the narrow version if the immediate will fit. 6856 if (Inst.getOperand(1).getImm() > 0 && 6857 Inst.getOperand(1).getImm() <= 0xff && 6858 !(static_cast<ARMOperand &>(*Operands[2]).isToken() && 6859 static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w")) 6860 Inst.setOpcode(ARM::tLDRpci); 6861 else 6862 Inst.setOpcode(ARM::t2LDRpci); 6863 return true; 6864 case ARM::t2LDRBpcrel: 6865 Inst.setOpcode(ARM::t2LDRBpci); 6866 return true; 6867 case ARM::t2LDRHpcrel: 6868 Inst.setOpcode(ARM::t2LDRHpci); 6869 return true; 6870 case ARM::t2LDRSBpcrel: 6871 Inst.setOpcode(ARM::t2LDRSBpci); 6872 return true; 6873 case ARM::t2LDRSHpcrel: 6874 Inst.setOpcode(ARM::t2LDRSHpci); 6875 return true; 6876 case ARM::LDRConstPool: 6877 case ARM::tLDRConstPool: 6878 case ARM::t2LDRConstPool: { 6879 // Pseudo instruction ldr rt, =immediate is converted to a 6880 // MOV rt, immediate if immediate is known and representable 6881 // otherwise we create a constant pool entry that we load from. 6882 MCInst TmpInst; 6883 if (Inst.getOpcode() == ARM::LDRConstPool) 6884 TmpInst.setOpcode(ARM::LDRi12); 6885 else if (Inst.getOpcode() == ARM::tLDRConstPool) 6886 TmpInst.setOpcode(ARM::tLDRpci); 6887 else if (Inst.getOpcode() == ARM::t2LDRConstPool) 6888 TmpInst.setOpcode(ARM::t2LDRpci); 6889 const ARMOperand &PoolOperand = 6890 static_cast<ARMOperand &>(*Operands[3]); 6891 const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm(); 6892 // If SubExprVal is a constant we may be able to use a MOV 6893 if (isa<MCConstantExpr>(SubExprVal) && 6894 Inst.getOperand(0).getReg() != ARM::PC && 6895 Inst.getOperand(0).getReg() != ARM::SP) { 6896 int64_t Value = 6897 (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue(); 6898 bool UseMov = true; 6899 bool MovHasS = true; 6900 if (Inst.getOpcode() == ARM::LDRConstPool) { 6901 // ARM Constant 6902 if (ARM_AM::getSOImmVal(Value) != -1) { 6903 Value = ARM_AM::getSOImmVal(Value); 6904 TmpInst.setOpcode(ARM::MOVi); 6905 } 6906 else if (ARM_AM::getSOImmVal(~Value) != -1) { 6907 Value = ARM_AM::getSOImmVal(~Value); 6908 TmpInst.setOpcode(ARM::MVNi); 6909 } 6910 else if (hasV6T2Ops() && 6911 Value >=0 && Value < 65536) { 6912 TmpInst.setOpcode(ARM::MOVi16); 6913 MovHasS = false; 6914 } 6915 else 6916 UseMov = false; 6917 } 6918 else { 6919 // Thumb/Thumb2 Constant 6920 if (hasThumb2() && 6921 ARM_AM::getT2SOImmVal(Value) != -1) 6922 TmpInst.setOpcode(ARM::t2MOVi); 6923 else if (hasThumb2() && 6924 ARM_AM::getT2SOImmVal(~Value) != -1) { 6925 TmpInst.setOpcode(ARM::t2MVNi); 6926 Value = ~Value; 6927 } 6928 else if (hasV8MBaseline() && 6929 Value >=0 && Value < 65536) { 6930 TmpInst.setOpcode(ARM::t2MOVi16); 6931 MovHasS = false; 6932 } 6933 else 6934 UseMov = false; 6935 } 6936 if (UseMov) { 6937 TmpInst.addOperand(Inst.getOperand(0)); // Rt 6938 TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate 6939 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 6940 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 6941 if (MovHasS) 6942 TmpInst.addOperand(MCOperand::createReg(0)); // S 6943 Inst = TmpInst; 6944 return true; 6945 } 6946 } 6947 // No opportunity to use MOV/MVN create constant pool 6948 const MCExpr *CPLoc = 6949 getTargetStreamer().addConstantPoolEntry(SubExprVal, 6950 PoolOperand.getStartLoc()); 6951 TmpInst.addOperand(Inst.getOperand(0)); // Rt 6952 TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool 6953 if (TmpInst.getOpcode() == ARM::LDRi12) 6954 TmpInst.addOperand(MCOperand::createImm(0)); // unused offset 6955 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 6956 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 6957 Inst = TmpInst; 6958 return true; 6959 } 6960 // Handle NEON VST complex aliases. 6961 case ARM::VST1LNdWB_register_Asm_8: 6962 case ARM::VST1LNdWB_register_Asm_16: 6963 case ARM::VST1LNdWB_register_Asm_32: { 6964 MCInst TmpInst; 6965 // Shuffle the operands around so the lane index operand is in the 6966 // right place. 6967 unsigned Spacing; 6968 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6969 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6970 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6971 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6972 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6973 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6974 TmpInst.addOperand(Inst.getOperand(1)); // lane 6975 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 6976 TmpInst.addOperand(Inst.getOperand(6)); 6977 Inst = TmpInst; 6978 return true; 6979 } 6980 6981 case ARM::VST2LNdWB_register_Asm_8: 6982 case ARM::VST2LNdWB_register_Asm_16: 6983 case ARM::VST2LNdWB_register_Asm_32: 6984 case ARM::VST2LNqWB_register_Asm_16: 6985 case ARM::VST2LNqWB_register_Asm_32: { 6986 MCInst TmpInst; 6987 // Shuffle the operands around so the lane index operand is in the 6988 // right place. 6989 unsigned Spacing; 6990 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 6991 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 6992 TmpInst.addOperand(Inst.getOperand(2)); // Rn 6993 TmpInst.addOperand(Inst.getOperand(3)); // alignment 6994 TmpInst.addOperand(Inst.getOperand(4)); // Rm 6995 TmpInst.addOperand(Inst.getOperand(0)); // Vd 6996 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 6997 Spacing)); 6998 TmpInst.addOperand(Inst.getOperand(1)); // lane 6999 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7000 TmpInst.addOperand(Inst.getOperand(6)); 7001 Inst = TmpInst; 7002 return true; 7003 } 7004 7005 case ARM::VST3LNdWB_register_Asm_8: 7006 case ARM::VST3LNdWB_register_Asm_16: 7007 case ARM::VST3LNdWB_register_Asm_32: 7008 case ARM::VST3LNqWB_register_Asm_16: 7009 case ARM::VST3LNqWB_register_Asm_32: { 7010 MCInst TmpInst; 7011 // Shuffle the operands around so the lane index operand is in the 7012 // right place. 7013 unsigned Spacing; 7014 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7015 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7016 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7017 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7018 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7019 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7020 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7021 Spacing)); 7022 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7023 Spacing * 2)); 7024 TmpInst.addOperand(Inst.getOperand(1)); // lane 7025 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7026 TmpInst.addOperand(Inst.getOperand(6)); 7027 Inst = TmpInst; 7028 return true; 7029 } 7030 7031 case ARM::VST4LNdWB_register_Asm_8: 7032 case ARM::VST4LNdWB_register_Asm_16: 7033 case ARM::VST4LNdWB_register_Asm_32: 7034 case ARM::VST4LNqWB_register_Asm_16: 7035 case ARM::VST4LNqWB_register_Asm_32: { 7036 MCInst TmpInst; 7037 // Shuffle the operands around so the lane index operand is in the 7038 // right place. 7039 unsigned Spacing; 7040 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7041 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7042 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7043 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7044 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7045 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7046 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7047 Spacing)); 7048 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7049 Spacing * 2)); 7050 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7051 Spacing * 3)); 7052 TmpInst.addOperand(Inst.getOperand(1)); // lane 7053 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7054 TmpInst.addOperand(Inst.getOperand(6)); 7055 Inst = TmpInst; 7056 return true; 7057 } 7058 7059 case ARM::VST1LNdWB_fixed_Asm_8: 7060 case ARM::VST1LNdWB_fixed_Asm_16: 7061 case ARM::VST1LNdWB_fixed_Asm_32: { 7062 MCInst TmpInst; 7063 // Shuffle the operands around so the lane index operand is in the 7064 // right place. 7065 unsigned Spacing; 7066 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7067 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7068 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7069 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7070 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7071 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7072 TmpInst.addOperand(Inst.getOperand(1)); // lane 7073 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7074 TmpInst.addOperand(Inst.getOperand(5)); 7075 Inst = TmpInst; 7076 return true; 7077 } 7078 7079 case ARM::VST2LNdWB_fixed_Asm_8: 7080 case ARM::VST2LNdWB_fixed_Asm_16: 7081 case ARM::VST2LNdWB_fixed_Asm_32: 7082 case ARM::VST2LNqWB_fixed_Asm_16: 7083 case ARM::VST2LNqWB_fixed_Asm_32: { 7084 MCInst TmpInst; 7085 // Shuffle the operands around so the lane index operand is in the 7086 // right place. 7087 unsigned Spacing; 7088 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7089 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7090 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7091 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7092 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7093 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7094 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7095 Spacing)); 7096 TmpInst.addOperand(Inst.getOperand(1)); // lane 7097 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7098 TmpInst.addOperand(Inst.getOperand(5)); 7099 Inst = TmpInst; 7100 return true; 7101 } 7102 7103 case ARM::VST3LNdWB_fixed_Asm_8: 7104 case ARM::VST3LNdWB_fixed_Asm_16: 7105 case ARM::VST3LNdWB_fixed_Asm_32: 7106 case ARM::VST3LNqWB_fixed_Asm_16: 7107 case ARM::VST3LNqWB_fixed_Asm_32: { 7108 MCInst TmpInst; 7109 // Shuffle the operands around so the lane index operand is in the 7110 // right place. 7111 unsigned Spacing; 7112 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7113 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7114 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7115 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7116 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7117 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7118 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7119 Spacing)); 7120 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7121 Spacing * 2)); 7122 TmpInst.addOperand(Inst.getOperand(1)); // lane 7123 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7124 TmpInst.addOperand(Inst.getOperand(5)); 7125 Inst = TmpInst; 7126 return true; 7127 } 7128 7129 case ARM::VST4LNdWB_fixed_Asm_8: 7130 case ARM::VST4LNdWB_fixed_Asm_16: 7131 case ARM::VST4LNdWB_fixed_Asm_32: 7132 case ARM::VST4LNqWB_fixed_Asm_16: 7133 case ARM::VST4LNqWB_fixed_Asm_32: { 7134 MCInst TmpInst; 7135 // Shuffle the operands around so the lane index operand is in the 7136 // right place. 7137 unsigned Spacing; 7138 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7139 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7140 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7141 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7142 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7143 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7144 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7145 Spacing)); 7146 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7147 Spacing * 2)); 7148 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7149 Spacing * 3)); 7150 TmpInst.addOperand(Inst.getOperand(1)); // lane 7151 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7152 TmpInst.addOperand(Inst.getOperand(5)); 7153 Inst = TmpInst; 7154 return true; 7155 } 7156 7157 case ARM::VST1LNdAsm_8: 7158 case ARM::VST1LNdAsm_16: 7159 case ARM::VST1LNdAsm_32: { 7160 MCInst TmpInst; 7161 // Shuffle the operands around so the lane index operand is in the 7162 // right place. 7163 unsigned Spacing; 7164 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7165 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7166 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7167 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7168 TmpInst.addOperand(Inst.getOperand(1)); // lane 7169 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7170 TmpInst.addOperand(Inst.getOperand(5)); 7171 Inst = TmpInst; 7172 return true; 7173 } 7174 7175 case ARM::VST2LNdAsm_8: 7176 case ARM::VST2LNdAsm_16: 7177 case ARM::VST2LNdAsm_32: 7178 case ARM::VST2LNqAsm_16: 7179 case ARM::VST2LNqAsm_32: { 7180 MCInst TmpInst; 7181 // Shuffle the operands around so the lane index operand is in the 7182 // right place. 7183 unsigned Spacing; 7184 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7185 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7186 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7187 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7188 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7189 Spacing)); 7190 TmpInst.addOperand(Inst.getOperand(1)); // lane 7191 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7192 TmpInst.addOperand(Inst.getOperand(5)); 7193 Inst = TmpInst; 7194 return true; 7195 } 7196 7197 case ARM::VST3LNdAsm_8: 7198 case ARM::VST3LNdAsm_16: 7199 case ARM::VST3LNdAsm_32: 7200 case ARM::VST3LNqAsm_16: 7201 case ARM::VST3LNqAsm_32: { 7202 MCInst TmpInst; 7203 // Shuffle the operands around so the lane index operand is in the 7204 // right place. 7205 unsigned Spacing; 7206 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7207 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7208 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7209 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7210 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7211 Spacing)); 7212 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7213 Spacing * 2)); 7214 TmpInst.addOperand(Inst.getOperand(1)); // lane 7215 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7216 TmpInst.addOperand(Inst.getOperand(5)); 7217 Inst = TmpInst; 7218 return true; 7219 } 7220 7221 case ARM::VST4LNdAsm_8: 7222 case ARM::VST4LNdAsm_16: 7223 case ARM::VST4LNdAsm_32: 7224 case ARM::VST4LNqAsm_16: 7225 case ARM::VST4LNqAsm_32: { 7226 MCInst TmpInst; 7227 // Shuffle the operands around so the lane index operand is in the 7228 // right place. 7229 unsigned Spacing; 7230 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7231 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7232 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7233 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7234 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7235 Spacing)); 7236 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7237 Spacing * 2)); 7238 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7239 Spacing * 3)); 7240 TmpInst.addOperand(Inst.getOperand(1)); // lane 7241 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7242 TmpInst.addOperand(Inst.getOperand(5)); 7243 Inst = TmpInst; 7244 return true; 7245 } 7246 7247 // Handle NEON VLD complex aliases. 7248 case ARM::VLD1LNdWB_register_Asm_8: 7249 case ARM::VLD1LNdWB_register_Asm_16: 7250 case ARM::VLD1LNdWB_register_Asm_32: { 7251 MCInst TmpInst; 7252 // Shuffle the operands around so the lane index operand is in the 7253 // right place. 7254 unsigned Spacing; 7255 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7256 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7257 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7258 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7259 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7260 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7261 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7262 TmpInst.addOperand(Inst.getOperand(1)); // lane 7263 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7264 TmpInst.addOperand(Inst.getOperand(6)); 7265 Inst = TmpInst; 7266 return true; 7267 } 7268 7269 case ARM::VLD2LNdWB_register_Asm_8: 7270 case ARM::VLD2LNdWB_register_Asm_16: 7271 case ARM::VLD2LNdWB_register_Asm_32: 7272 case ARM::VLD2LNqWB_register_Asm_16: 7273 case ARM::VLD2LNqWB_register_Asm_32: { 7274 MCInst TmpInst; 7275 // Shuffle the operands around so the lane index operand is in the 7276 // right place. 7277 unsigned Spacing; 7278 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7279 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7280 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7281 Spacing)); 7282 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7283 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7284 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7285 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7286 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7287 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7288 Spacing)); 7289 TmpInst.addOperand(Inst.getOperand(1)); // lane 7290 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7291 TmpInst.addOperand(Inst.getOperand(6)); 7292 Inst = TmpInst; 7293 return true; 7294 } 7295 7296 case ARM::VLD3LNdWB_register_Asm_8: 7297 case ARM::VLD3LNdWB_register_Asm_16: 7298 case ARM::VLD3LNdWB_register_Asm_32: 7299 case ARM::VLD3LNqWB_register_Asm_16: 7300 case ARM::VLD3LNqWB_register_Asm_32: { 7301 MCInst TmpInst; 7302 // Shuffle the operands around so the lane index operand is in the 7303 // right place. 7304 unsigned Spacing; 7305 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7306 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7307 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7308 Spacing)); 7309 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7310 Spacing * 2)); 7311 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7312 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7313 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7314 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7315 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7316 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7317 Spacing)); 7318 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7319 Spacing * 2)); 7320 TmpInst.addOperand(Inst.getOperand(1)); // lane 7321 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7322 TmpInst.addOperand(Inst.getOperand(6)); 7323 Inst = TmpInst; 7324 return true; 7325 } 7326 7327 case ARM::VLD4LNdWB_register_Asm_8: 7328 case ARM::VLD4LNdWB_register_Asm_16: 7329 case ARM::VLD4LNdWB_register_Asm_32: 7330 case ARM::VLD4LNqWB_register_Asm_16: 7331 case ARM::VLD4LNqWB_register_Asm_32: { 7332 MCInst TmpInst; 7333 // Shuffle the operands around so the lane index operand is in the 7334 // right place. 7335 unsigned Spacing; 7336 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7337 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7338 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7339 Spacing)); 7340 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7341 Spacing * 2)); 7342 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7343 Spacing * 3)); 7344 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7345 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7346 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7347 TmpInst.addOperand(Inst.getOperand(4)); // Rm 7348 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7349 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7350 Spacing)); 7351 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7352 Spacing * 2)); 7353 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7354 Spacing * 3)); 7355 TmpInst.addOperand(Inst.getOperand(1)); // lane 7356 TmpInst.addOperand(Inst.getOperand(5)); // CondCode 7357 TmpInst.addOperand(Inst.getOperand(6)); 7358 Inst = TmpInst; 7359 return true; 7360 } 7361 7362 case ARM::VLD1LNdWB_fixed_Asm_8: 7363 case ARM::VLD1LNdWB_fixed_Asm_16: 7364 case ARM::VLD1LNdWB_fixed_Asm_32: { 7365 MCInst TmpInst; 7366 // Shuffle the operands around so the lane index operand is in the 7367 // right place. 7368 unsigned Spacing; 7369 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7370 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7371 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7372 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7373 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7374 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7375 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7376 TmpInst.addOperand(Inst.getOperand(1)); // lane 7377 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7378 TmpInst.addOperand(Inst.getOperand(5)); 7379 Inst = TmpInst; 7380 return true; 7381 } 7382 7383 case ARM::VLD2LNdWB_fixed_Asm_8: 7384 case ARM::VLD2LNdWB_fixed_Asm_16: 7385 case ARM::VLD2LNdWB_fixed_Asm_32: 7386 case ARM::VLD2LNqWB_fixed_Asm_16: 7387 case ARM::VLD2LNqWB_fixed_Asm_32: { 7388 MCInst TmpInst; 7389 // Shuffle the operands around so the lane index operand is in the 7390 // right place. 7391 unsigned Spacing; 7392 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7393 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7394 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7395 Spacing)); 7396 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7397 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7398 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7399 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7400 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7401 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7402 Spacing)); 7403 TmpInst.addOperand(Inst.getOperand(1)); // lane 7404 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7405 TmpInst.addOperand(Inst.getOperand(5)); 7406 Inst = TmpInst; 7407 return true; 7408 } 7409 7410 case ARM::VLD3LNdWB_fixed_Asm_8: 7411 case ARM::VLD3LNdWB_fixed_Asm_16: 7412 case ARM::VLD3LNdWB_fixed_Asm_32: 7413 case ARM::VLD3LNqWB_fixed_Asm_16: 7414 case ARM::VLD3LNqWB_fixed_Asm_32: { 7415 MCInst TmpInst; 7416 // Shuffle the operands around so the lane index operand is in the 7417 // right place. 7418 unsigned Spacing; 7419 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7420 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7421 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7422 Spacing)); 7423 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7424 Spacing * 2)); 7425 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7426 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7427 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7428 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7429 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7430 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7431 Spacing)); 7432 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7433 Spacing * 2)); 7434 TmpInst.addOperand(Inst.getOperand(1)); // lane 7435 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7436 TmpInst.addOperand(Inst.getOperand(5)); 7437 Inst = TmpInst; 7438 return true; 7439 } 7440 7441 case ARM::VLD4LNdWB_fixed_Asm_8: 7442 case ARM::VLD4LNdWB_fixed_Asm_16: 7443 case ARM::VLD4LNdWB_fixed_Asm_32: 7444 case ARM::VLD4LNqWB_fixed_Asm_16: 7445 case ARM::VLD4LNqWB_fixed_Asm_32: { 7446 MCInst TmpInst; 7447 // Shuffle the operands around so the lane index operand is in the 7448 // right place. 7449 unsigned Spacing; 7450 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7451 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7452 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7453 Spacing)); 7454 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7455 Spacing * 2)); 7456 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7457 Spacing * 3)); 7458 TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb 7459 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7460 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7461 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7462 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7463 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7464 Spacing)); 7465 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7466 Spacing * 2)); 7467 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7468 Spacing * 3)); 7469 TmpInst.addOperand(Inst.getOperand(1)); // lane 7470 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7471 TmpInst.addOperand(Inst.getOperand(5)); 7472 Inst = TmpInst; 7473 return true; 7474 } 7475 7476 case ARM::VLD1LNdAsm_8: 7477 case ARM::VLD1LNdAsm_16: 7478 case ARM::VLD1LNdAsm_32: { 7479 MCInst TmpInst; 7480 // Shuffle the operands around so the lane index operand is in the 7481 // right place. 7482 unsigned Spacing; 7483 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7484 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7485 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7486 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7487 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7488 TmpInst.addOperand(Inst.getOperand(1)); // lane 7489 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7490 TmpInst.addOperand(Inst.getOperand(5)); 7491 Inst = TmpInst; 7492 return true; 7493 } 7494 7495 case ARM::VLD2LNdAsm_8: 7496 case ARM::VLD2LNdAsm_16: 7497 case ARM::VLD2LNdAsm_32: 7498 case ARM::VLD2LNqAsm_16: 7499 case ARM::VLD2LNqAsm_32: { 7500 MCInst TmpInst; 7501 // Shuffle the operands around so the lane index operand is in the 7502 // right place. 7503 unsigned Spacing; 7504 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7505 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7506 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7507 Spacing)); 7508 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7509 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7510 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7511 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7512 Spacing)); 7513 TmpInst.addOperand(Inst.getOperand(1)); // lane 7514 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7515 TmpInst.addOperand(Inst.getOperand(5)); 7516 Inst = TmpInst; 7517 return true; 7518 } 7519 7520 case ARM::VLD3LNdAsm_8: 7521 case ARM::VLD3LNdAsm_16: 7522 case ARM::VLD3LNdAsm_32: 7523 case ARM::VLD3LNqAsm_16: 7524 case ARM::VLD3LNqAsm_32: { 7525 MCInst TmpInst; 7526 // Shuffle the operands around so the lane index operand is in the 7527 // right place. 7528 unsigned Spacing; 7529 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7530 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7531 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7532 Spacing)); 7533 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7534 Spacing * 2)); 7535 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7536 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7537 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7538 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7539 Spacing)); 7540 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7541 Spacing * 2)); 7542 TmpInst.addOperand(Inst.getOperand(1)); // lane 7543 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7544 TmpInst.addOperand(Inst.getOperand(5)); 7545 Inst = TmpInst; 7546 return true; 7547 } 7548 7549 case ARM::VLD4LNdAsm_8: 7550 case ARM::VLD4LNdAsm_16: 7551 case ARM::VLD4LNdAsm_32: 7552 case ARM::VLD4LNqAsm_16: 7553 case ARM::VLD4LNqAsm_32: { 7554 MCInst TmpInst; 7555 // Shuffle the operands around so the lane index operand is in the 7556 // right place. 7557 unsigned Spacing; 7558 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7559 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7560 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7561 Spacing)); 7562 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7563 Spacing * 2)); 7564 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7565 Spacing * 3)); 7566 TmpInst.addOperand(Inst.getOperand(2)); // Rn 7567 TmpInst.addOperand(Inst.getOperand(3)); // alignment 7568 TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd) 7569 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7570 Spacing)); 7571 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7572 Spacing * 2)); 7573 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7574 Spacing * 3)); 7575 TmpInst.addOperand(Inst.getOperand(1)); // lane 7576 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7577 TmpInst.addOperand(Inst.getOperand(5)); 7578 Inst = TmpInst; 7579 return true; 7580 } 7581 7582 // VLD3DUP single 3-element structure to all lanes instructions. 7583 case ARM::VLD3DUPdAsm_8: 7584 case ARM::VLD3DUPdAsm_16: 7585 case ARM::VLD3DUPdAsm_32: 7586 case ARM::VLD3DUPqAsm_8: 7587 case ARM::VLD3DUPqAsm_16: 7588 case ARM::VLD3DUPqAsm_32: { 7589 MCInst TmpInst; 7590 unsigned Spacing; 7591 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7592 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7593 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7594 Spacing)); 7595 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7596 Spacing * 2)); 7597 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7598 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7599 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7600 TmpInst.addOperand(Inst.getOperand(4)); 7601 Inst = TmpInst; 7602 return true; 7603 } 7604 7605 case ARM::VLD3DUPdWB_fixed_Asm_8: 7606 case ARM::VLD3DUPdWB_fixed_Asm_16: 7607 case ARM::VLD3DUPdWB_fixed_Asm_32: 7608 case ARM::VLD3DUPqWB_fixed_Asm_8: 7609 case ARM::VLD3DUPqWB_fixed_Asm_16: 7610 case ARM::VLD3DUPqWB_fixed_Asm_32: { 7611 MCInst TmpInst; 7612 unsigned Spacing; 7613 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7614 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7615 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7616 Spacing)); 7617 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7618 Spacing * 2)); 7619 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7620 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7621 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7622 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7623 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7624 TmpInst.addOperand(Inst.getOperand(4)); 7625 Inst = TmpInst; 7626 return true; 7627 } 7628 7629 case ARM::VLD3DUPdWB_register_Asm_8: 7630 case ARM::VLD3DUPdWB_register_Asm_16: 7631 case ARM::VLD3DUPdWB_register_Asm_32: 7632 case ARM::VLD3DUPqWB_register_Asm_8: 7633 case ARM::VLD3DUPqWB_register_Asm_16: 7634 case ARM::VLD3DUPqWB_register_Asm_32: { 7635 MCInst TmpInst; 7636 unsigned Spacing; 7637 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7638 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7639 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7640 Spacing)); 7641 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7642 Spacing * 2)); 7643 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7644 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7645 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7646 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7647 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7648 TmpInst.addOperand(Inst.getOperand(5)); 7649 Inst = TmpInst; 7650 return true; 7651 } 7652 7653 // VLD3 multiple 3-element structure instructions. 7654 case ARM::VLD3dAsm_8: 7655 case ARM::VLD3dAsm_16: 7656 case ARM::VLD3dAsm_32: 7657 case ARM::VLD3qAsm_8: 7658 case ARM::VLD3qAsm_16: 7659 case ARM::VLD3qAsm_32: { 7660 MCInst TmpInst; 7661 unsigned Spacing; 7662 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7663 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7664 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7665 Spacing)); 7666 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7667 Spacing * 2)); 7668 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7669 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7670 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7671 TmpInst.addOperand(Inst.getOperand(4)); 7672 Inst = TmpInst; 7673 return true; 7674 } 7675 7676 case ARM::VLD3dWB_fixed_Asm_8: 7677 case ARM::VLD3dWB_fixed_Asm_16: 7678 case ARM::VLD3dWB_fixed_Asm_32: 7679 case ARM::VLD3qWB_fixed_Asm_8: 7680 case ARM::VLD3qWB_fixed_Asm_16: 7681 case ARM::VLD3qWB_fixed_Asm_32: { 7682 MCInst TmpInst; 7683 unsigned Spacing; 7684 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7685 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7686 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7687 Spacing)); 7688 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7689 Spacing * 2)); 7690 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7691 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7692 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7693 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7694 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7695 TmpInst.addOperand(Inst.getOperand(4)); 7696 Inst = TmpInst; 7697 return true; 7698 } 7699 7700 case ARM::VLD3dWB_register_Asm_8: 7701 case ARM::VLD3dWB_register_Asm_16: 7702 case ARM::VLD3dWB_register_Asm_32: 7703 case ARM::VLD3qWB_register_Asm_8: 7704 case ARM::VLD3qWB_register_Asm_16: 7705 case ARM::VLD3qWB_register_Asm_32: { 7706 MCInst TmpInst; 7707 unsigned Spacing; 7708 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7709 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7710 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7711 Spacing)); 7712 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7713 Spacing * 2)); 7714 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7715 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7716 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7717 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7718 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7719 TmpInst.addOperand(Inst.getOperand(5)); 7720 Inst = TmpInst; 7721 return true; 7722 } 7723 7724 // VLD4DUP single 3-element structure to all lanes instructions. 7725 case ARM::VLD4DUPdAsm_8: 7726 case ARM::VLD4DUPdAsm_16: 7727 case ARM::VLD4DUPdAsm_32: 7728 case ARM::VLD4DUPqAsm_8: 7729 case ARM::VLD4DUPqAsm_16: 7730 case ARM::VLD4DUPqAsm_32: { 7731 MCInst TmpInst; 7732 unsigned Spacing; 7733 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7734 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7735 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7736 Spacing)); 7737 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7738 Spacing * 2)); 7739 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7740 Spacing * 3)); 7741 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7742 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7743 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7744 TmpInst.addOperand(Inst.getOperand(4)); 7745 Inst = TmpInst; 7746 return true; 7747 } 7748 7749 case ARM::VLD4DUPdWB_fixed_Asm_8: 7750 case ARM::VLD4DUPdWB_fixed_Asm_16: 7751 case ARM::VLD4DUPdWB_fixed_Asm_32: 7752 case ARM::VLD4DUPqWB_fixed_Asm_8: 7753 case ARM::VLD4DUPqWB_fixed_Asm_16: 7754 case ARM::VLD4DUPqWB_fixed_Asm_32: { 7755 MCInst TmpInst; 7756 unsigned Spacing; 7757 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7758 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7759 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7760 Spacing)); 7761 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7762 Spacing * 2)); 7763 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7764 Spacing * 3)); 7765 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7766 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7767 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7768 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7769 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7770 TmpInst.addOperand(Inst.getOperand(4)); 7771 Inst = TmpInst; 7772 return true; 7773 } 7774 7775 case ARM::VLD4DUPdWB_register_Asm_8: 7776 case ARM::VLD4DUPdWB_register_Asm_16: 7777 case ARM::VLD4DUPdWB_register_Asm_32: 7778 case ARM::VLD4DUPqWB_register_Asm_8: 7779 case ARM::VLD4DUPqWB_register_Asm_16: 7780 case ARM::VLD4DUPqWB_register_Asm_32: { 7781 MCInst TmpInst; 7782 unsigned Spacing; 7783 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7784 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7785 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7786 Spacing)); 7787 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7788 Spacing * 2)); 7789 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7790 Spacing * 3)); 7791 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7792 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7793 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7794 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7795 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7796 TmpInst.addOperand(Inst.getOperand(5)); 7797 Inst = TmpInst; 7798 return true; 7799 } 7800 7801 // VLD4 multiple 4-element structure instructions. 7802 case ARM::VLD4dAsm_8: 7803 case ARM::VLD4dAsm_16: 7804 case ARM::VLD4dAsm_32: 7805 case ARM::VLD4qAsm_8: 7806 case ARM::VLD4qAsm_16: 7807 case ARM::VLD4qAsm_32: { 7808 MCInst TmpInst; 7809 unsigned Spacing; 7810 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7811 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7812 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7813 Spacing)); 7814 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7815 Spacing * 2)); 7816 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7817 Spacing * 3)); 7818 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7819 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7820 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7821 TmpInst.addOperand(Inst.getOperand(4)); 7822 Inst = TmpInst; 7823 return true; 7824 } 7825 7826 case ARM::VLD4dWB_fixed_Asm_8: 7827 case ARM::VLD4dWB_fixed_Asm_16: 7828 case ARM::VLD4dWB_fixed_Asm_32: 7829 case ARM::VLD4qWB_fixed_Asm_8: 7830 case ARM::VLD4qWB_fixed_Asm_16: 7831 case ARM::VLD4qWB_fixed_Asm_32: { 7832 MCInst TmpInst; 7833 unsigned Spacing; 7834 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7835 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7836 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7837 Spacing)); 7838 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7839 Spacing * 2)); 7840 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7841 Spacing * 3)); 7842 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7843 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7844 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7845 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7846 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7847 TmpInst.addOperand(Inst.getOperand(4)); 7848 Inst = TmpInst; 7849 return true; 7850 } 7851 7852 case ARM::VLD4dWB_register_Asm_8: 7853 case ARM::VLD4dWB_register_Asm_16: 7854 case ARM::VLD4dWB_register_Asm_32: 7855 case ARM::VLD4qWB_register_Asm_8: 7856 case ARM::VLD4qWB_register_Asm_16: 7857 case ARM::VLD4qWB_register_Asm_32: { 7858 MCInst TmpInst; 7859 unsigned Spacing; 7860 TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing)); 7861 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7862 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7863 Spacing)); 7864 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7865 Spacing * 2)); 7866 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7867 Spacing * 3)); 7868 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7869 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7870 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7871 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7872 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7873 TmpInst.addOperand(Inst.getOperand(5)); 7874 Inst = TmpInst; 7875 return true; 7876 } 7877 7878 // VST3 multiple 3-element structure instructions. 7879 case ARM::VST3dAsm_8: 7880 case ARM::VST3dAsm_16: 7881 case ARM::VST3dAsm_32: 7882 case ARM::VST3qAsm_8: 7883 case ARM::VST3qAsm_16: 7884 case ARM::VST3qAsm_32: { 7885 MCInst TmpInst; 7886 unsigned Spacing; 7887 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7888 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7889 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7890 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7891 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7892 Spacing)); 7893 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7894 Spacing * 2)); 7895 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7896 TmpInst.addOperand(Inst.getOperand(4)); 7897 Inst = TmpInst; 7898 return true; 7899 } 7900 7901 case ARM::VST3dWB_fixed_Asm_8: 7902 case ARM::VST3dWB_fixed_Asm_16: 7903 case ARM::VST3dWB_fixed_Asm_32: 7904 case ARM::VST3qWB_fixed_Asm_8: 7905 case ARM::VST3qWB_fixed_Asm_16: 7906 case ARM::VST3qWB_fixed_Asm_32: { 7907 MCInst TmpInst; 7908 unsigned Spacing; 7909 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7910 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7911 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7912 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7913 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7914 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7915 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7916 Spacing)); 7917 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7918 Spacing * 2)); 7919 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7920 TmpInst.addOperand(Inst.getOperand(4)); 7921 Inst = TmpInst; 7922 return true; 7923 } 7924 7925 case ARM::VST3dWB_register_Asm_8: 7926 case ARM::VST3dWB_register_Asm_16: 7927 case ARM::VST3dWB_register_Asm_32: 7928 case ARM::VST3qWB_register_Asm_8: 7929 case ARM::VST3qWB_register_Asm_16: 7930 case ARM::VST3qWB_register_Asm_32: { 7931 MCInst TmpInst; 7932 unsigned Spacing; 7933 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7934 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7935 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7936 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7937 TmpInst.addOperand(Inst.getOperand(3)); // Rm 7938 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7939 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7940 Spacing)); 7941 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7942 Spacing * 2)); 7943 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 7944 TmpInst.addOperand(Inst.getOperand(5)); 7945 Inst = TmpInst; 7946 return true; 7947 } 7948 7949 // VST4 multiple 3-element structure instructions. 7950 case ARM::VST4dAsm_8: 7951 case ARM::VST4dAsm_16: 7952 case ARM::VST4dAsm_32: 7953 case ARM::VST4qAsm_8: 7954 case ARM::VST4qAsm_16: 7955 case ARM::VST4qAsm_32: { 7956 MCInst TmpInst; 7957 unsigned Spacing; 7958 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7959 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7960 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7961 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7962 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7963 Spacing)); 7964 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7965 Spacing * 2)); 7966 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7967 Spacing * 3)); 7968 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7969 TmpInst.addOperand(Inst.getOperand(4)); 7970 Inst = TmpInst; 7971 return true; 7972 } 7973 7974 case ARM::VST4dWB_fixed_Asm_8: 7975 case ARM::VST4dWB_fixed_Asm_16: 7976 case ARM::VST4dWB_fixed_Asm_32: 7977 case ARM::VST4qWB_fixed_Asm_8: 7978 case ARM::VST4qWB_fixed_Asm_16: 7979 case ARM::VST4qWB_fixed_Asm_32: { 7980 MCInst TmpInst; 7981 unsigned Spacing; 7982 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 7983 TmpInst.addOperand(Inst.getOperand(1)); // Rn 7984 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 7985 TmpInst.addOperand(Inst.getOperand(2)); // alignment 7986 TmpInst.addOperand(MCOperand::createReg(0)); // Rm 7987 TmpInst.addOperand(Inst.getOperand(0)); // Vd 7988 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7989 Spacing)); 7990 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7991 Spacing * 2)); 7992 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 7993 Spacing * 3)); 7994 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 7995 TmpInst.addOperand(Inst.getOperand(4)); 7996 Inst = TmpInst; 7997 return true; 7998 } 7999 8000 case ARM::VST4dWB_register_Asm_8: 8001 case ARM::VST4dWB_register_Asm_16: 8002 case ARM::VST4dWB_register_Asm_32: 8003 case ARM::VST4qWB_register_Asm_8: 8004 case ARM::VST4qWB_register_Asm_16: 8005 case ARM::VST4qWB_register_Asm_32: { 8006 MCInst TmpInst; 8007 unsigned Spacing; 8008 TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing)); 8009 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8010 TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn 8011 TmpInst.addOperand(Inst.getOperand(2)); // alignment 8012 TmpInst.addOperand(Inst.getOperand(3)); // Rm 8013 TmpInst.addOperand(Inst.getOperand(0)); // Vd 8014 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8015 Spacing)); 8016 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8017 Spacing * 2)); 8018 TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() + 8019 Spacing * 3)); 8020 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8021 TmpInst.addOperand(Inst.getOperand(5)); 8022 Inst = TmpInst; 8023 return true; 8024 } 8025 8026 // Handle encoding choice for the shift-immediate instructions. 8027 case ARM::t2LSLri: 8028 case ARM::t2LSRri: 8029 case ARM::t2ASRri: { 8030 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8031 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8032 Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) && 8033 !(static_cast<ARMOperand &>(*Operands[3]).isToken() && 8034 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) { 8035 unsigned NewOpc; 8036 switch (Inst.getOpcode()) { 8037 default: llvm_unreachable("unexpected opcode"); 8038 case ARM::t2LSLri: NewOpc = ARM::tLSLri; break; 8039 case ARM::t2LSRri: NewOpc = ARM::tLSRri; break; 8040 case ARM::t2ASRri: NewOpc = ARM::tASRri; break; 8041 } 8042 // The Thumb1 operands aren't in the same order. Awesome, eh? 8043 MCInst TmpInst; 8044 TmpInst.setOpcode(NewOpc); 8045 TmpInst.addOperand(Inst.getOperand(0)); 8046 TmpInst.addOperand(Inst.getOperand(5)); 8047 TmpInst.addOperand(Inst.getOperand(1)); 8048 TmpInst.addOperand(Inst.getOperand(2)); 8049 TmpInst.addOperand(Inst.getOperand(3)); 8050 TmpInst.addOperand(Inst.getOperand(4)); 8051 Inst = TmpInst; 8052 return true; 8053 } 8054 return false; 8055 } 8056 8057 // Handle the Thumb2 mode MOV complex aliases. 8058 case ARM::t2MOVsr: 8059 case ARM::t2MOVSsr: { 8060 // Which instruction to expand to depends on the CCOut operand and 8061 // whether we're in an IT block if the register operands are low 8062 // registers. 8063 bool isNarrow = false; 8064 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8065 isARMLowRegister(Inst.getOperand(1).getReg()) && 8066 isARMLowRegister(Inst.getOperand(2).getReg()) && 8067 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8068 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr)) 8069 isNarrow = true; 8070 MCInst TmpInst; 8071 unsigned newOpc; 8072 switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) { 8073 default: llvm_unreachable("unexpected opcode!"); 8074 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break; 8075 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break; 8076 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break; 8077 case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break; 8078 } 8079 TmpInst.setOpcode(newOpc); 8080 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8081 if (isNarrow) 8082 TmpInst.addOperand(MCOperand::createReg( 8083 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8084 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8085 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8086 TmpInst.addOperand(Inst.getOperand(4)); // CondCode 8087 TmpInst.addOperand(Inst.getOperand(5)); 8088 if (!isNarrow) 8089 TmpInst.addOperand(MCOperand::createReg( 8090 Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0)); 8091 Inst = TmpInst; 8092 return true; 8093 } 8094 case ARM::t2MOVsi: 8095 case ARM::t2MOVSsi: { 8096 // Which instruction to expand to depends on the CCOut operand and 8097 // whether we're in an IT block if the register operands are low 8098 // registers. 8099 bool isNarrow = false; 8100 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8101 isARMLowRegister(Inst.getOperand(1).getReg()) && 8102 inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi)) 8103 isNarrow = true; 8104 MCInst TmpInst; 8105 unsigned newOpc; 8106 switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) { 8107 default: llvm_unreachable("unexpected opcode!"); 8108 case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break; 8109 case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break; 8110 case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break; 8111 case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break; 8112 case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break; 8113 } 8114 unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()); 8115 if (Amount == 32) Amount = 0; 8116 TmpInst.setOpcode(newOpc); 8117 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8118 if (isNarrow) 8119 TmpInst.addOperand(MCOperand::createReg( 8120 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8121 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8122 if (newOpc != ARM::t2RRX) 8123 TmpInst.addOperand(MCOperand::createImm(Amount)); 8124 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8125 TmpInst.addOperand(Inst.getOperand(4)); 8126 if (!isNarrow) 8127 TmpInst.addOperand(MCOperand::createReg( 8128 Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0)); 8129 Inst = TmpInst; 8130 return true; 8131 } 8132 // Handle the ARM mode MOV complex aliases. 8133 case ARM::ASRr: 8134 case ARM::LSRr: 8135 case ARM::LSLr: 8136 case ARM::RORr: { 8137 ARM_AM::ShiftOpc ShiftTy; 8138 switch(Inst.getOpcode()) { 8139 default: llvm_unreachable("unexpected opcode!"); 8140 case ARM::ASRr: ShiftTy = ARM_AM::asr; break; 8141 case ARM::LSRr: ShiftTy = ARM_AM::lsr; break; 8142 case ARM::LSLr: ShiftTy = ARM_AM::lsl; break; 8143 case ARM::RORr: ShiftTy = ARM_AM::ror; break; 8144 } 8145 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0); 8146 MCInst TmpInst; 8147 TmpInst.setOpcode(ARM::MOVsr); 8148 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8149 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8150 TmpInst.addOperand(Inst.getOperand(2)); // Rm 8151 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8152 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8153 TmpInst.addOperand(Inst.getOperand(4)); 8154 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8155 Inst = TmpInst; 8156 return true; 8157 } 8158 case ARM::ASRi: 8159 case ARM::LSRi: 8160 case ARM::LSLi: 8161 case ARM::RORi: { 8162 ARM_AM::ShiftOpc ShiftTy; 8163 switch(Inst.getOpcode()) { 8164 default: llvm_unreachable("unexpected opcode!"); 8165 case ARM::ASRi: ShiftTy = ARM_AM::asr; break; 8166 case ARM::LSRi: ShiftTy = ARM_AM::lsr; break; 8167 case ARM::LSLi: ShiftTy = ARM_AM::lsl; break; 8168 case ARM::RORi: ShiftTy = ARM_AM::ror; break; 8169 } 8170 // A shift by zero is a plain MOVr, not a MOVsi. 8171 unsigned Amt = Inst.getOperand(2).getImm(); 8172 unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi; 8173 // A shift by 32 should be encoded as 0 when permitted 8174 if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr)) 8175 Amt = 0; 8176 unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt); 8177 MCInst TmpInst; 8178 TmpInst.setOpcode(Opc); 8179 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8180 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8181 if (Opc == ARM::MOVsi) 8182 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8183 TmpInst.addOperand(Inst.getOperand(3)); // CondCode 8184 TmpInst.addOperand(Inst.getOperand(4)); 8185 TmpInst.addOperand(Inst.getOperand(5)); // cc_out 8186 Inst = TmpInst; 8187 return true; 8188 } 8189 case ARM::RRXi: { 8190 unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0); 8191 MCInst TmpInst; 8192 TmpInst.setOpcode(ARM::MOVsi); 8193 TmpInst.addOperand(Inst.getOperand(0)); // Rd 8194 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8195 TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty 8196 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8197 TmpInst.addOperand(Inst.getOperand(3)); 8198 TmpInst.addOperand(Inst.getOperand(4)); // cc_out 8199 Inst = TmpInst; 8200 return true; 8201 } 8202 case ARM::t2LDMIA_UPD: { 8203 // If this is a load of a single register, then we should use 8204 // a post-indexed LDR instruction instead, per the ARM ARM. 8205 if (Inst.getNumOperands() != 5) 8206 return false; 8207 MCInst TmpInst; 8208 TmpInst.setOpcode(ARM::t2LDR_POST); 8209 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8210 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8211 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8212 TmpInst.addOperand(MCOperand::createImm(4)); 8213 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8214 TmpInst.addOperand(Inst.getOperand(3)); 8215 Inst = TmpInst; 8216 return true; 8217 } 8218 case ARM::t2STMDB_UPD: { 8219 // If this is a store of a single register, then we should use 8220 // a pre-indexed STR instruction instead, per the ARM ARM. 8221 if (Inst.getNumOperands() != 5) 8222 return false; 8223 MCInst TmpInst; 8224 TmpInst.setOpcode(ARM::t2STR_PRE); 8225 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8226 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8227 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8228 TmpInst.addOperand(MCOperand::createImm(-4)); 8229 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8230 TmpInst.addOperand(Inst.getOperand(3)); 8231 Inst = TmpInst; 8232 return true; 8233 } 8234 case ARM::LDMIA_UPD: 8235 // If this is a load of a single register via a 'pop', then we should use 8236 // a post-indexed LDR instruction instead, per the ARM ARM. 8237 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" && 8238 Inst.getNumOperands() == 5) { 8239 MCInst TmpInst; 8240 TmpInst.setOpcode(ARM::LDR_POST_IMM); 8241 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8242 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8243 TmpInst.addOperand(Inst.getOperand(1)); // Rn 8244 TmpInst.addOperand(MCOperand::createReg(0)); // am2offset 8245 TmpInst.addOperand(MCOperand::createImm(4)); 8246 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8247 TmpInst.addOperand(Inst.getOperand(3)); 8248 Inst = TmpInst; 8249 return true; 8250 } 8251 break; 8252 case ARM::STMDB_UPD: 8253 // If this is a store of a single register via a 'push', then we should use 8254 // a pre-indexed STR instruction instead, per the ARM ARM. 8255 if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" && 8256 Inst.getNumOperands() == 5) { 8257 MCInst TmpInst; 8258 TmpInst.setOpcode(ARM::STR_PRE_IMM); 8259 TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb 8260 TmpInst.addOperand(Inst.getOperand(4)); // Rt 8261 TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12 8262 TmpInst.addOperand(MCOperand::createImm(-4)); 8263 TmpInst.addOperand(Inst.getOperand(2)); // CondCode 8264 TmpInst.addOperand(Inst.getOperand(3)); 8265 Inst = TmpInst; 8266 } 8267 break; 8268 case ARM::t2ADDri12: 8269 // If the immediate fits for encoding T3 (t2ADDri) and the generic "add" 8270 // mnemonic was used (not "addw"), encoding T3 is preferred. 8271 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" || 8272 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8273 break; 8274 Inst.setOpcode(ARM::t2ADDri); 8275 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8276 break; 8277 case ARM::t2SUBri12: 8278 // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub" 8279 // mnemonic was used (not "subw"), encoding T3 is preferred. 8280 if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" || 8281 ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1) 8282 break; 8283 Inst.setOpcode(ARM::t2SUBri); 8284 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8285 break; 8286 case ARM::tADDi8: 8287 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8288 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8289 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8290 // to encoding T1 if <Rd> is omitted." 8291 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8292 Inst.setOpcode(ARM::tADDi3); 8293 return true; 8294 } 8295 break; 8296 case ARM::tSUBi8: 8297 // If the immediate is in the range 0-7, we want tADDi3 iff Rd was 8298 // explicitly specified. From the ARM ARM: "Encoding T1 is preferred 8299 // to encoding T2 if <Rd> is specified and encoding T2 is preferred 8300 // to encoding T1 if <Rd> is omitted." 8301 if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) { 8302 Inst.setOpcode(ARM::tSUBi3); 8303 return true; 8304 } 8305 break; 8306 case ARM::t2ADDri: 8307 case ARM::t2SUBri: { 8308 // If the destination and first source operand are the same, and 8309 // the flags are compatible with the current IT status, use encoding T2 8310 // instead of T3. For compatibility with the system 'as'. Make sure the 8311 // wide encoding wasn't explicit. 8312 if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() || 8313 !isARMLowRegister(Inst.getOperand(0).getReg()) || 8314 (unsigned)Inst.getOperand(2).getImm() > 255 || 8315 ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) || 8316 (inITBlock() && Inst.getOperand(5).getReg() != 0)) || 8317 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8318 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8319 break; 8320 MCInst TmpInst; 8321 TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ? 8322 ARM::tADDi8 : ARM::tSUBi8); 8323 TmpInst.addOperand(Inst.getOperand(0)); 8324 TmpInst.addOperand(Inst.getOperand(5)); 8325 TmpInst.addOperand(Inst.getOperand(0)); 8326 TmpInst.addOperand(Inst.getOperand(2)); 8327 TmpInst.addOperand(Inst.getOperand(3)); 8328 TmpInst.addOperand(Inst.getOperand(4)); 8329 Inst = TmpInst; 8330 return true; 8331 } 8332 case ARM::t2ADDrr: { 8333 // If the destination and first source operand are the same, and 8334 // there's no setting of the flags, use encoding T2 instead of T3. 8335 // Note that this is only for ADD, not SUB. This mirrors the system 8336 // 'as' behaviour. Also take advantage of ADD being commutative. 8337 // Make sure the wide encoding wasn't explicit. 8338 bool Swap = false; 8339 auto DestReg = Inst.getOperand(0).getReg(); 8340 bool Transform = DestReg == Inst.getOperand(1).getReg(); 8341 if (!Transform && DestReg == Inst.getOperand(2).getReg()) { 8342 Transform = true; 8343 Swap = true; 8344 } 8345 if (!Transform || 8346 Inst.getOperand(5).getReg() != 0 || 8347 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8348 static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) 8349 break; 8350 MCInst TmpInst; 8351 TmpInst.setOpcode(ARM::tADDhirr); 8352 TmpInst.addOperand(Inst.getOperand(0)); 8353 TmpInst.addOperand(Inst.getOperand(0)); 8354 TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2)); 8355 TmpInst.addOperand(Inst.getOperand(3)); 8356 TmpInst.addOperand(Inst.getOperand(4)); 8357 Inst = TmpInst; 8358 return true; 8359 } 8360 case ARM::tADDrSP: { 8361 // If the non-SP source operand and the destination operand are not the 8362 // same, we need to use the 32-bit encoding if it's available. 8363 if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) { 8364 Inst.setOpcode(ARM::t2ADDrr); 8365 Inst.addOperand(MCOperand::createReg(0)); // cc_out 8366 return true; 8367 } 8368 break; 8369 } 8370 case ARM::tB: 8371 // A Thumb conditional branch outside of an IT block is a tBcc. 8372 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) { 8373 Inst.setOpcode(ARM::tBcc); 8374 return true; 8375 } 8376 break; 8377 case ARM::t2B: 8378 // A Thumb2 conditional branch outside of an IT block is a t2Bcc. 8379 if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){ 8380 Inst.setOpcode(ARM::t2Bcc); 8381 return true; 8382 } 8383 break; 8384 case ARM::t2Bcc: 8385 // If the conditional is AL or we're in an IT block, we really want t2B. 8386 if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) { 8387 Inst.setOpcode(ARM::t2B); 8388 return true; 8389 } 8390 break; 8391 case ARM::tBcc: 8392 // If the conditional is AL, we really want tB. 8393 if (Inst.getOperand(1).getImm() == ARMCC::AL) { 8394 Inst.setOpcode(ARM::tB); 8395 return true; 8396 } 8397 break; 8398 case ARM::tLDMIA: { 8399 // If the register list contains any high registers, or if the writeback 8400 // doesn't match what tLDMIA can do, we need to use the 32-bit encoding 8401 // instead if we're in Thumb2. Otherwise, this should have generated 8402 // an error in validateInstruction(). 8403 unsigned Rn = Inst.getOperand(0).getReg(); 8404 bool hasWritebackToken = 8405 (static_cast<ARMOperand &>(*Operands[3]).isToken() && 8406 static_cast<ARMOperand &>(*Operands[3]).getToken() == "!"); 8407 bool listContainsBase; 8408 if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) || 8409 (!listContainsBase && !hasWritebackToken) || 8410 (listContainsBase && hasWritebackToken)) { 8411 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8412 assert (isThumbTwo()); 8413 Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA); 8414 // If we're switching to the updating version, we need to insert 8415 // the writeback tied operand. 8416 if (hasWritebackToken) 8417 Inst.insert(Inst.begin(), 8418 MCOperand::createReg(Inst.getOperand(0).getReg())); 8419 return true; 8420 } 8421 break; 8422 } 8423 case ARM::tSTMIA_UPD: { 8424 // If the register list contains any high registers, we need to use 8425 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8426 // should have generated an error in validateInstruction(). 8427 unsigned Rn = Inst.getOperand(0).getReg(); 8428 bool listContainsBase; 8429 if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) { 8430 // 16-bit encoding isn't sufficient. Switch to the 32-bit version. 8431 assert (isThumbTwo()); 8432 Inst.setOpcode(ARM::t2STMIA_UPD); 8433 return true; 8434 } 8435 break; 8436 } 8437 case ARM::tPOP: { 8438 bool listContainsBase; 8439 // If the register list contains any high registers, we need to use 8440 // the 32-bit encoding instead if we're in Thumb2. Otherwise, this 8441 // should have generated an error in validateInstruction(). 8442 if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase)) 8443 return false; 8444 assert (isThumbTwo()); 8445 Inst.setOpcode(ARM::t2LDMIA_UPD); 8446 // Add the base register and writeback operands. 8447 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8448 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8449 return true; 8450 } 8451 case ARM::tPUSH: { 8452 bool listContainsBase; 8453 if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase)) 8454 return false; 8455 assert (isThumbTwo()); 8456 Inst.setOpcode(ARM::t2STMDB_UPD); 8457 // Add the base register and writeback operands. 8458 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8459 Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP)); 8460 return true; 8461 } 8462 case ARM::t2MOVi: { 8463 // If we can use the 16-bit encoding and the user didn't explicitly 8464 // request the 32-bit variant, transform it here. 8465 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8466 (unsigned)Inst.getOperand(1).getImm() <= 255 && 8467 ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL && 8468 Inst.getOperand(4).getReg() == ARM::CPSR) || 8469 (inITBlock() && Inst.getOperand(4).getReg() == 0)) && 8470 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8471 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8472 // The operands aren't in the same order for tMOVi8... 8473 MCInst TmpInst; 8474 TmpInst.setOpcode(ARM::tMOVi8); 8475 TmpInst.addOperand(Inst.getOperand(0)); 8476 TmpInst.addOperand(Inst.getOperand(4)); 8477 TmpInst.addOperand(Inst.getOperand(1)); 8478 TmpInst.addOperand(Inst.getOperand(2)); 8479 TmpInst.addOperand(Inst.getOperand(3)); 8480 Inst = TmpInst; 8481 return true; 8482 } 8483 break; 8484 } 8485 case ARM::t2MOVr: { 8486 // If we can use the 16-bit encoding and the user didn't explicitly 8487 // request the 32-bit variant, transform it here. 8488 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8489 isARMLowRegister(Inst.getOperand(1).getReg()) && 8490 Inst.getOperand(2).getImm() == ARMCC::AL && 8491 Inst.getOperand(4).getReg() == ARM::CPSR && 8492 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8493 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8494 // The operands aren't the same for tMOV[S]r... (no cc_out) 8495 MCInst TmpInst; 8496 TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr); 8497 TmpInst.addOperand(Inst.getOperand(0)); 8498 TmpInst.addOperand(Inst.getOperand(1)); 8499 TmpInst.addOperand(Inst.getOperand(2)); 8500 TmpInst.addOperand(Inst.getOperand(3)); 8501 Inst = TmpInst; 8502 return true; 8503 } 8504 break; 8505 } 8506 case ARM::t2SXTH: 8507 case ARM::t2SXTB: 8508 case ARM::t2UXTH: 8509 case ARM::t2UXTB: { 8510 // If we can use the 16-bit encoding and the user didn't explicitly 8511 // request the 32-bit variant, transform it here. 8512 if (isARMLowRegister(Inst.getOperand(0).getReg()) && 8513 isARMLowRegister(Inst.getOperand(1).getReg()) && 8514 Inst.getOperand(2).getImm() == 0 && 8515 (!static_cast<ARMOperand &>(*Operands[2]).isToken() || 8516 static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) { 8517 unsigned NewOpc; 8518 switch (Inst.getOpcode()) { 8519 default: llvm_unreachable("Illegal opcode!"); 8520 case ARM::t2SXTH: NewOpc = ARM::tSXTH; break; 8521 case ARM::t2SXTB: NewOpc = ARM::tSXTB; break; 8522 case ARM::t2UXTH: NewOpc = ARM::tUXTH; break; 8523 case ARM::t2UXTB: NewOpc = ARM::tUXTB; break; 8524 } 8525 // The operands aren't the same for thumb1 (no rotate operand). 8526 MCInst TmpInst; 8527 TmpInst.setOpcode(NewOpc); 8528 TmpInst.addOperand(Inst.getOperand(0)); 8529 TmpInst.addOperand(Inst.getOperand(1)); 8530 TmpInst.addOperand(Inst.getOperand(3)); 8531 TmpInst.addOperand(Inst.getOperand(4)); 8532 Inst = TmpInst; 8533 return true; 8534 } 8535 break; 8536 } 8537 case ARM::MOVsi: { 8538 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm()); 8539 // rrx shifts and asr/lsr of #32 is encoded as 0 8540 if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 8541 return false; 8542 if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) { 8543 // Shifting by zero is accepted as a vanilla 'MOVr' 8544 MCInst TmpInst; 8545 TmpInst.setOpcode(ARM::MOVr); 8546 TmpInst.addOperand(Inst.getOperand(0)); 8547 TmpInst.addOperand(Inst.getOperand(1)); 8548 TmpInst.addOperand(Inst.getOperand(3)); 8549 TmpInst.addOperand(Inst.getOperand(4)); 8550 TmpInst.addOperand(Inst.getOperand(5)); 8551 Inst = TmpInst; 8552 return true; 8553 } 8554 return false; 8555 } 8556 case ARM::ANDrsi: 8557 case ARM::ORRrsi: 8558 case ARM::EORrsi: 8559 case ARM::BICrsi: 8560 case ARM::SUBrsi: 8561 case ARM::ADDrsi: { 8562 unsigned newOpc; 8563 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm()); 8564 if (SOpc == ARM_AM::rrx) return false; 8565 switch (Inst.getOpcode()) { 8566 default: llvm_unreachable("unexpected opcode!"); 8567 case ARM::ANDrsi: newOpc = ARM::ANDrr; break; 8568 case ARM::ORRrsi: newOpc = ARM::ORRrr; break; 8569 case ARM::EORrsi: newOpc = ARM::EORrr; break; 8570 case ARM::BICrsi: newOpc = ARM::BICrr; break; 8571 case ARM::SUBrsi: newOpc = ARM::SUBrr; break; 8572 case ARM::ADDrsi: newOpc = ARM::ADDrr; break; 8573 } 8574 // If the shift is by zero, use the non-shifted instruction definition. 8575 // The exception is for right shifts, where 0 == 32 8576 if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 && 8577 !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) { 8578 MCInst TmpInst; 8579 TmpInst.setOpcode(newOpc); 8580 TmpInst.addOperand(Inst.getOperand(0)); 8581 TmpInst.addOperand(Inst.getOperand(1)); 8582 TmpInst.addOperand(Inst.getOperand(2)); 8583 TmpInst.addOperand(Inst.getOperand(4)); 8584 TmpInst.addOperand(Inst.getOperand(5)); 8585 TmpInst.addOperand(Inst.getOperand(6)); 8586 Inst = TmpInst; 8587 return true; 8588 } 8589 return false; 8590 } 8591 case ARM::ITasm: 8592 case ARM::t2IT: { 8593 // The mask bits for all but the first condition are represented as 8594 // the low bit of the condition code value implies 't'. We currently 8595 // always have 1 implies 't', so XOR toggle the bits if the low bit 8596 // of the condition code is zero. 8597 MCOperand &MO = Inst.getOperand(1); 8598 unsigned Mask = MO.getImm(); 8599 unsigned OrigMask = Mask; 8600 unsigned TZ = countTrailingZeros(Mask); 8601 if ((Inst.getOperand(0).getImm() & 1) == 0) { 8602 assert(Mask && TZ <= 3 && "illegal IT mask value!"); 8603 Mask ^= (0xE << TZ) & 0xF; 8604 } 8605 MO.setImm(Mask); 8606 8607 // Set up the IT block state according to the IT instruction we just 8608 // matched. 8609 assert(!inITBlock() && "nested IT blocks?!"); 8610 ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm()); 8611 ITState.Mask = OrigMask; // Use the original mask, not the updated one. 8612 ITState.CurPosition = 0; 8613 ITState.FirstCond = true; 8614 break; 8615 } 8616 case ARM::t2LSLrr: 8617 case ARM::t2LSRrr: 8618 case ARM::t2ASRrr: 8619 case ARM::t2SBCrr: 8620 case ARM::t2RORrr: 8621 case ARM::t2BICrr: 8622 { 8623 // Assemblers should use the narrow encodings of these instructions when permissible. 8624 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8625 isARMLowRegister(Inst.getOperand(2).getReg())) && 8626 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() && 8627 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8628 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8629 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8630 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8631 ".w"))) { 8632 unsigned NewOpc; 8633 switch (Inst.getOpcode()) { 8634 default: llvm_unreachable("unexpected opcode"); 8635 case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break; 8636 case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break; 8637 case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break; 8638 case ARM::t2SBCrr: NewOpc = ARM::tSBC; break; 8639 case ARM::t2RORrr: NewOpc = ARM::tROR; break; 8640 case ARM::t2BICrr: NewOpc = ARM::tBIC; break; 8641 } 8642 MCInst TmpInst; 8643 TmpInst.setOpcode(NewOpc); 8644 TmpInst.addOperand(Inst.getOperand(0)); 8645 TmpInst.addOperand(Inst.getOperand(5)); 8646 TmpInst.addOperand(Inst.getOperand(1)); 8647 TmpInst.addOperand(Inst.getOperand(2)); 8648 TmpInst.addOperand(Inst.getOperand(3)); 8649 TmpInst.addOperand(Inst.getOperand(4)); 8650 Inst = TmpInst; 8651 return true; 8652 } 8653 return false; 8654 } 8655 case ARM::t2ANDrr: 8656 case ARM::t2EORrr: 8657 case ARM::t2ADCrr: 8658 case ARM::t2ORRrr: 8659 { 8660 // Assemblers should use the narrow encodings of these instructions when permissible. 8661 // These instructions are special in that they are commutable, so shorter encodings 8662 // are available more often. 8663 if ((isARMLowRegister(Inst.getOperand(1).getReg()) && 8664 isARMLowRegister(Inst.getOperand(2).getReg())) && 8665 (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() || 8666 Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) && 8667 ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) || 8668 (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) && 8669 (!static_cast<ARMOperand &>(*Operands[3]).isToken() || 8670 !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower( 8671 ".w"))) { 8672 unsigned NewOpc; 8673 switch (Inst.getOpcode()) { 8674 default: llvm_unreachable("unexpected opcode"); 8675 case ARM::t2ADCrr: NewOpc = ARM::tADC; break; 8676 case ARM::t2ANDrr: NewOpc = ARM::tAND; break; 8677 case ARM::t2EORrr: NewOpc = ARM::tEOR; break; 8678 case ARM::t2ORRrr: NewOpc = ARM::tORR; break; 8679 } 8680 MCInst TmpInst; 8681 TmpInst.setOpcode(NewOpc); 8682 TmpInst.addOperand(Inst.getOperand(0)); 8683 TmpInst.addOperand(Inst.getOperand(5)); 8684 if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) { 8685 TmpInst.addOperand(Inst.getOperand(1)); 8686 TmpInst.addOperand(Inst.getOperand(2)); 8687 } else { 8688 TmpInst.addOperand(Inst.getOperand(2)); 8689 TmpInst.addOperand(Inst.getOperand(1)); 8690 } 8691 TmpInst.addOperand(Inst.getOperand(3)); 8692 TmpInst.addOperand(Inst.getOperand(4)); 8693 Inst = TmpInst; 8694 return true; 8695 } 8696 return false; 8697 } 8698 } 8699 return false; 8700 } 8701 8702 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) { 8703 // 16-bit thumb arithmetic instructions either require or preclude the 'S' 8704 // suffix depending on whether they're in an IT block or not. 8705 unsigned Opc = Inst.getOpcode(); 8706 const MCInstrDesc &MCID = MII.get(Opc); 8707 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 8708 assert(MCID.hasOptionalDef() && 8709 "optionally flag setting instruction missing optional def operand"); 8710 assert(MCID.NumOperands == Inst.getNumOperands() && 8711 "operand count mismatch!"); 8712 // Find the optional-def operand (cc_out). 8713 unsigned OpNo; 8714 for (OpNo = 0; 8715 !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands; 8716 ++OpNo) 8717 ; 8718 // If we're parsing Thumb1, reject it completely. 8719 if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR) 8720 return Match_MnemonicFail; 8721 // If we're parsing Thumb2, which form is legal depends on whether we're 8722 // in an IT block. 8723 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR && 8724 !inITBlock()) 8725 return Match_RequiresITBlock; 8726 if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR && 8727 inITBlock()) 8728 return Match_RequiresNotITBlock; 8729 } else if (isThumbOne()) { 8730 // Some high-register supporting Thumb1 encodings only allow both registers 8731 // to be from r0-r7 when in Thumb2. 8732 if (Opc == ARM::tADDhirr && !hasV6MOps() && 8733 isARMLowRegister(Inst.getOperand(1).getReg()) && 8734 isARMLowRegister(Inst.getOperand(2).getReg())) 8735 return Match_RequiresThumb2; 8736 // Others only require ARMv6 or later. 8737 else if (Opc == ARM::tMOVr && !hasV6Ops() && 8738 isARMLowRegister(Inst.getOperand(0).getReg()) && 8739 isARMLowRegister(Inst.getOperand(1).getReg())) 8740 return Match_RequiresV6; 8741 } 8742 8743 for (unsigned I = 0; I < MCID.NumOperands; ++I) 8744 if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) { 8745 // rGPRRegClass excludes PC, and also excluded SP before ARMv8 8746 if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops()) 8747 return Match_RequiresV8; 8748 else if (Inst.getOperand(I).getReg() == ARM::PC) 8749 return Match_InvalidOperand; 8750 } 8751 8752 return Match_Success; 8753 } 8754 8755 namespace llvm { 8756 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) { 8757 return true; // In an assembly source, no need to second-guess 8758 } 8759 } 8760 8761 static const char *getSubtargetFeatureName(uint64_t Val); 8762 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 8763 OperandVector &Operands, 8764 MCStreamer &Out, uint64_t &ErrorInfo, 8765 bool MatchingInlineAsm) { 8766 MCInst Inst; 8767 unsigned MatchResult; 8768 8769 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, 8770 MatchingInlineAsm); 8771 switch (MatchResult) { 8772 case Match_Success: 8773 // Context sensitive operand constraints aren't handled by the matcher, 8774 // so check them here. 8775 if (validateInstruction(Inst, Operands)) { 8776 // Still progress the IT block, otherwise one wrong condition causes 8777 // nasty cascading errors. 8778 forwardITPosition(); 8779 return true; 8780 } 8781 8782 { // processInstruction() updates inITBlock state, we need to save it away 8783 bool wasInITBlock = inITBlock(); 8784 8785 // Some instructions need post-processing to, for example, tweak which 8786 // encoding is selected. Loop on it while changes happen so the 8787 // individual transformations can chain off each other. E.g., 8788 // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8) 8789 while (processInstruction(Inst, Operands, Out)) 8790 ; 8791 8792 // Only after the instruction is fully processed, we can validate it 8793 if (wasInITBlock && hasV8Ops() && isThumb() && 8794 !isV8EligibleForIT(&Inst)) { 8795 Warning(IDLoc, "deprecated instruction in IT block"); 8796 } 8797 } 8798 8799 // Only move forward at the very end so that everything in validate 8800 // and process gets a consistent answer about whether we're in an IT 8801 // block. 8802 forwardITPosition(); 8803 8804 // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and 8805 // doesn't actually encode. 8806 if (Inst.getOpcode() == ARM::ITasm) 8807 return false; 8808 8809 Inst.setLoc(IDLoc); 8810 Out.EmitInstruction(Inst, getSTI()); 8811 return false; 8812 case Match_MissingFeature: { 8813 assert(ErrorInfo && "Unknown missing feature!"); 8814 // Special case the error message for the very common case where only 8815 // a single subtarget feature is missing (Thumb vs. ARM, e.g.). 8816 std::string Msg = "instruction requires:"; 8817 uint64_t Mask = 1; 8818 for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { 8819 if (ErrorInfo & Mask) { 8820 Msg += " "; 8821 Msg += getSubtargetFeatureName(ErrorInfo & Mask); 8822 } 8823 Mask <<= 1; 8824 } 8825 return Error(IDLoc, Msg); 8826 } 8827 case Match_InvalidOperand: { 8828 SMLoc ErrorLoc = IDLoc; 8829 if (ErrorInfo != ~0ULL) { 8830 if (ErrorInfo >= Operands.size()) 8831 return Error(IDLoc, "too few operands for instruction"); 8832 8833 ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8834 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8835 } 8836 8837 return Error(ErrorLoc, "invalid operand for instruction"); 8838 } 8839 case Match_MnemonicFail: 8840 return Error(IDLoc, "invalid instruction", 8841 ((ARMOperand &)*Operands[0]).getLocRange()); 8842 case Match_RequiresNotITBlock: 8843 return Error(IDLoc, "flag setting instruction only valid outside IT block"); 8844 case Match_RequiresITBlock: 8845 return Error(IDLoc, "instruction only valid inside IT block"); 8846 case Match_RequiresV6: 8847 return Error(IDLoc, "instruction variant requires ARMv6 or later"); 8848 case Match_RequiresThumb2: 8849 return Error(IDLoc, "instruction variant requires Thumb2"); 8850 case Match_RequiresV8: 8851 return Error(IDLoc, "instruction variant requires ARMv8 or later"); 8852 case Match_ImmRange0_15: { 8853 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8854 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8855 return Error(ErrorLoc, "immediate operand must be in the range [0,15]"); 8856 } 8857 case Match_ImmRange0_239: { 8858 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc(); 8859 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8860 return Error(ErrorLoc, "immediate operand must be in the range [0,239]"); 8861 } 8862 case Match_AlignedMemoryRequiresNone: 8863 case Match_DupAlignedMemoryRequiresNone: 8864 case Match_AlignedMemoryRequires16: 8865 case Match_DupAlignedMemoryRequires16: 8866 case Match_AlignedMemoryRequires32: 8867 case Match_DupAlignedMemoryRequires32: 8868 case Match_AlignedMemoryRequires64: 8869 case Match_DupAlignedMemoryRequires64: 8870 case Match_AlignedMemoryRequires64or128: 8871 case Match_DupAlignedMemoryRequires64or128: 8872 case Match_AlignedMemoryRequires64or128or256: 8873 { 8874 SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc(); 8875 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 8876 switch (MatchResult) { 8877 default: 8878 llvm_unreachable("Missing Match_Aligned type"); 8879 case Match_AlignedMemoryRequiresNone: 8880 case Match_DupAlignedMemoryRequiresNone: 8881 return Error(ErrorLoc, "alignment must be omitted"); 8882 case Match_AlignedMemoryRequires16: 8883 case Match_DupAlignedMemoryRequires16: 8884 return Error(ErrorLoc, "alignment must be 16 or omitted"); 8885 case Match_AlignedMemoryRequires32: 8886 case Match_DupAlignedMemoryRequires32: 8887 return Error(ErrorLoc, "alignment must be 32 or omitted"); 8888 case Match_AlignedMemoryRequires64: 8889 case Match_DupAlignedMemoryRequires64: 8890 return Error(ErrorLoc, "alignment must be 64 or omitted"); 8891 case Match_AlignedMemoryRequires64or128: 8892 case Match_DupAlignedMemoryRequires64or128: 8893 return Error(ErrorLoc, "alignment must be 64, 128 or omitted"); 8894 case Match_AlignedMemoryRequires64or128or256: 8895 return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted"); 8896 } 8897 } 8898 } 8899 8900 llvm_unreachable("Implement any new match types added!"); 8901 } 8902 8903 /// parseDirective parses the arm specific directives 8904 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) { 8905 const MCObjectFileInfo::Environment Format = 8906 getContext().getObjectFileInfo()->getObjectFileType(); 8907 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 8908 bool IsCOFF = Format == MCObjectFileInfo::IsCOFF; 8909 8910 StringRef IDVal = DirectiveID.getIdentifier(); 8911 if (IDVal == ".word") 8912 return parseLiteralValues(4, DirectiveID.getLoc()); 8913 else if (IDVal == ".short" || IDVal == ".hword") 8914 return parseLiteralValues(2, DirectiveID.getLoc()); 8915 else if (IDVal == ".thumb") 8916 return parseDirectiveThumb(DirectiveID.getLoc()); 8917 else if (IDVal == ".arm") 8918 return parseDirectiveARM(DirectiveID.getLoc()); 8919 else if (IDVal == ".thumb_func") 8920 return parseDirectiveThumbFunc(DirectiveID.getLoc()); 8921 else if (IDVal == ".code") 8922 return parseDirectiveCode(DirectiveID.getLoc()); 8923 else if (IDVal == ".syntax") 8924 return parseDirectiveSyntax(DirectiveID.getLoc()); 8925 else if (IDVal == ".unreq") 8926 return parseDirectiveUnreq(DirectiveID.getLoc()); 8927 else if (IDVal == ".fnend") 8928 return parseDirectiveFnEnd(DirectiveID.getLoc()); 8929 else if (IDVal == ".cantunwind") 8930 return parseDirectiveCantUnwind(DirectiveID.getLoc()); 8931 else if (IDVal == ".personality") 8932 return parseDirectivePersonality(DirectiveID.getLoc()); 8933 else if (IDVal == ".handlerdata") 8934 return parseDirectiveHandlerData(DirectiveID.getLoc()); 8935 else if (IDVal == ".setfp") 8936 return parseDirectiveSetFP(DirectiveID.getLoc()); 8937 else if (IDVal == ".pad") 8938 return parseDirectivePad(DirectiveID.getLoc()); 8939 else if (IDVal == ".save") 8940 return parseDirectiveRegSave(DirectiveID.getLoc(), false); 8941 else if (IDVal == ".vsave") 8942 return parseDirectiveRegSave(DirectiveID.getLoc(), true); 8943 else if (IDVal == ".ltorg" || IDVal == ".pool") 8944 return parseDirectiveLtorg(DirectiveID.getLoc()); 8945 else if (IDVal == ".even") 8946 return parseDirectiveEven(DirectiveID.getLoc()); 8947 else if (IDVal == ".personalityindex") 8948 return parseDirectivePersonalityIndex(DirectiveID.getLoc()); 8949 else if (IDVal == ".unwind_raw") 8950 return parseDirectiveUnwindRaw(DirectiveID.getLoc()); 8951 else if (IDVal == ".movsp") 8952 return parseDirectiveMovSP(DirectiveID.getLoc()); 8953 else if (IDVal == ".arch_extension") 8954 return parseDirectiveArchExtension(DirectiveID.getLoc()); 8955 else if (IDVal == ".align") 8956 return parseDirectiveAlign(DirectiveID.getLoc()); 8957 else if (IDVal == ".thumb_set") 8958 return parseDirectiveThumbSet(DirectiveID.getLoc()); 8959 8960 if (!IsMachO && !IsCOFF) { 8961 if (IDVal == ".arch") 8962 return parseDirectiveArch(DirectiveID.getLoc()); 8963 else if (IDVal == ".cpu") 8964 return parseDirectiveCPU(DirectiveID.getLoc()); 8965 else if (IDVal == ".eabi_attribute") 8966 return parseDirectiveEabiAttr(DirectiveID.getLoc()); 8967 else if (IDVal == ".fpu") 8968 return parseDirectiveFPU(DirectiveID.getLoc()); 8969 else if (IDVal == ".fnstart") 8970 return parseDirectiveFnStart(DirectiveID.getLoc()); 8971 else if (IDVal == ".inst") 8972 return parseDirectiveInst(DirectiveID.getLoc()); 8973 else if (IDVal == ".inst.n") 8974 return parseDirectiveInst(DirectiveID.getLoc(), 'n'); 8975 else if (IDVal == ".inst.w") 8976 return parseDirectiveInst(DirectiveID.getLoc(), 'w'); 8977 else if (IDVal == ".object_arch") 8978 return parseDirectiveObjectArch(DirectiveID.getLoc()); 8979 else if (IDVal == ".tlsdescseq") 8980 return parseDirectiveTLSDescSeq(DirectiveID.getLoc()); 8981 } 8982 8983 return true; 8984 } 8985 8986 /// parseLiteralValues 8987 /// ::= .hword expression [, expression]* 8988 /// ::= .short expression [, expression]* 8989 /// ::= .word expression [, expression]* 8990 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) { 8991 MCAsmParser &Parser = getParser(); 8992 if (getLexer().isNot(AsmToken::EndOfStatement)) { 8993 for (;;) { 8994 const MCExpr *Value; 8995 if (getParser().parseExpression(Value)) { 8996 Parser.eatToEndOfStatement(); 8997 return false; 8998 } 8999 9000 getParser().getStreamer().EmitValue(Value, Size, L); 9001 9002 if (getLexer().is(AsmToken::EndOfStatement)) 9003 break; 9004 9005 // FIXME: Improve diagnostic. 9006 if (getLexer().isNot(AsmToken::Comma)) { 9007 Error(L, "unexpected token in directive"); 9008 return false; 9009 } 9010 Parser.Lex(); 9011 } 9012 } 9013 9014 Parser.Lex(); 9015 return false; 9016 } 9017 9018 /// parseDirectiveThumb 9019 /// ::= .thumb 9020 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) { 9021 MCAsmParser &Parser = getParser(); 9022 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9023 Error(L, "unexpected token in directive"); 9024 return false; 9025 } 9026 Parser.Lex(); 9027 9028 if (!hasThumb()) { 9029 Error(L, "target does not support Thumb mode"); 9030 return false; 9031 } 9032 9033 if (!isThumb()) 9034 SwitchMode(); 9035 9036 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9037 return false; 9038 } 9039 9040 /// parseDirectiveARM 9041 /// ::= .arm 9042 bool ARMAsmParser::parseDirectiveARM(SMLoc L) { 9043 MCAsmParser &Parser = getParser(); 9044 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9045 Error(L, "unexpected token in directive"); 9046 return false; 9047 } 9048 Parser.Lex(); 9049 9050 if (!hasARM()) { 9051 Error(L, "target does not support ARM mode"); 9052 return false; 9053 } 9054 9055 if (isThumb()) 9056 SwitchMode(); 9057 9058 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9059 return false; 9060 } 9061 9062 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) { 9063 if (NextSymbolIsThumb) { 9064 getParser().getStreamer().EmitThumbFunc(Symbol); 9065 NextSymbolIsThumb = false; 9066 } 9067 } 9068 9069 /// parseDirectiveThumbFunc 9070 /// ::= .thumbfunc symbol_name 9071 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) { 9072 MCAsmParser &Parser = getParser(); 9073 const auto Format = getContext().getObjectFileInfo()->getObjectFileType(); 9074 bool IsMachO = Format == MCObjectFileInfo::IsMachO; 9075 9076 // Darwin asm has (optionally) function name after .thumb_func direction 9077 // ELF doesn't 9078 if (IsMachO) { 9079 const AsmToken &Tok = Parser.getTok(); 9080 if (Tok.isNot(AsmToken::EndOfStatement)) { 9081 if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) { 9082 Error(L, "unexpected token in .thumb_func directive"); 9083 return false; 9084 } 9085 9086 MCSymbol *Func = 9087 getParser().getContext().getOrCreateSymbol(Tok.getIdentifier()); 9088 getParser().getStreamer().EmitThumbFunc(Func); 9089 Parser.Lex(); // Consume the identifier token. 9090 return false; 9091 } 9092 } 9093 9094 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9095 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9096 Parser.eatToEndOfStatement(); 9097 return false; 9098 } 9099 9100 NextSymbolIsThumb = true; 9101 return false; 9102 } 9103 9104 /// parseDirectiveSyntax 9105 /// ::= .syntax unified | divided 9106 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) { 9107 MCAsmParser &Parser = getParser(); 9108 const AsmToken &Tok = Parser.getTok(); 9109 if (Tok.isNot(AsmToken::Identifier)) { 9110 Error(L, "unexpected token in .syntax directive"); 9111 return false; 9112 } 9113 9114 StringRef Mode = Tok.getString(); 9115 if (Mode == "unified" || Mode == "UNIFIED") { 9116 Parser.Lex(); 9117 } else if (Mode == "divided" || Mode == "DIVIDED") { 9118 Error(L, "'.syntax divided' arm asssembly not supported"); 9119 return false; 9120 } else { 9121 Error(L, "unrecognized syntax mode in .syntax directive"); 9122 return false; 9123 } 9124 9125 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9126 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9127 return false; 9128 } 9129 Parser.Lex(); 9130 9131 // TODO tell the MC streamer the mode 9132 // getParser().getStreamer().Emit???(); 9133 return false; 9134 } 9135 9136 /// parseDirectiveCode 9137 /// ::= .code 16 | 32 9138 bool ARMAsmParser::parseDirectiveCode(SMLoc L) { 9139 MCAsmParser &Parser = getParser(); 9140 const AsmToken &Tok = Parser.getTok(); 9141 if (Tok.isNot(AsmToken::Integer)) { 9142 Error(L, "unexpected token in .code directive"); 9143 return false; 9144 } 9145 int64_t Val = Parser.getTok().getIntVal(); 9146 if (Val != 16 && Val != 32) { 9147 Error(L, "invalid operand to .code directive"); 9148 return false; 9149 } 9150 Parser.Lex(); 9151 9152 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9153 Error(Parser.getTok().getLoc(), "unexpected token in directive"); 9154 return false; 9155 } 9156 Parser.Lex(); 9157 9158 if (Val == 16) { 9159 if (!hasThumb()) { 9160 Error(L, "target does not support Thumb mode"); 9161 return false; 9162 } 9163 9164 if (!isThumb()) 9165 SwitchMode(); 9166 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); 9167 } else { 9168 if (!hasARM()) { 9169 Error(L, "target does not support ARM mode"); 9170 return false; 9171 } 9172 9173 if (isThumb()) 9174 SwitchMode(); 9175 getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); 9176 } 9177 9178 return false; 9179 } 9180 9181 /// parseDirectiveReq 9182 /// ::= name .req registername 9183 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) { 9184 MCAsmParser &Parser = getParser(); 9185 Parser.Lex(); // Eat the '.req' token. 9186 unsigned Reg; 9187 SMLoc SRegLoc, ERegLoc; 9188 if (ParseRegister(Reg, SRegLoc, ERegLoc)) { 9189 Parser.eatToEndOfStatement(); 9190 Error(SRegLoc, "register name expected"); 9191 return false; 9192 } 9193 9194 // Shouldn't be anything else. 9195 if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { 9196 Parser.eatToEndOfStatement(); 9197 Error(Parser.getTok().getLoc(), "unexpected input in .req directive."); 9198 return false; 9199 } 9200 9201 Parser.Lex(); // Consume the EndOfStatement 9202 9203 if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) { 9204 Error(SRegLoc, "redefinition of '" + Name + "' does not match original."); 9205 return false; 9206 } 9207 9208 return false; 9209 } 9210 9211 /// parseDirectiveUneq 9212 /// ::= .unreq registername 9213 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) { 9214 MCAsmParser &Parser = getParser(); 9215 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9216 Parser.eatToEndOfStatement(); 9217 Error(L, "unexpected input in .unreq directive."); 9218 return false; 9219 } 9220 RegisterReqs.erase(Parser.getTok().getIdentifier().lower()); 9221 Parser.Lex(); // Eat the identifier. 9222 return false; 9223 } 9224 9225 // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was 9226 // before, if supported by the new target, or emit mapping symbols for the mode 9227 // switch. 9228 void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) { 9229 if (WasThumb != isThumb()) { 9230 if (WasThumb && hasThumb()) { 9231 // Stay in Thumb mode 9232 SwitchMode(); 9233 } else if (!WasThumb && hasARM()) { 9234 // Stay in ARM mode 9235 SwitchMode(); 9236 } else { 9237 // Mode switch forced, because the new arch doesn't support the old mode. 9238 getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16 9239 : MCAF_Code32); 9240 // Warn about the implcit mode switch. GAS does not switch modes here, 9241 // but instead stays in the old mode, reporting an error on any following 9242 // instructions as the mode does not exist on the target. 9243 Warning(Loc, Twine("new target does not support ") + 9244 (WasThumb ? "thumb" : "arm") + " mode, switching to " + 9245 (!WasThumb ? "thumb" : "arm") + " mode"); 9246 } 9247 } 9248 } 9249 9250 /// parseDirectiveArch 9251 /// ::= .arch token 9252 bool ARMAsmParser::parseDirectiveArch(SMLoc L) { 9253 StringRef Arch = getParser().parseStringToEndOfStatement().trim(); 9254 9255 unsigned ID = ARM::parseArch(Arch); 9256 9257 if (ID == ARM::AK_INVALID) { 9258 Error(L, "Unknown arch name"); 9259 return false; 9260 } 9261 9262 bool WasThumb = isThumb(); 9263 Triple T; 9264 MCSubtargetInfo &STI = copySTI(); 9265 STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str()); 9266 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9267 FixModeAfterArchChange(WasThumb, L); 9268 9269 getTargetStreamer().emitArch(ID); 9270 return false; 9271 } 9272 9273 /// parseDirectiveEabiAttr 9274 /// ::= .eabi_attribute int, int [, "str"] 9275 /// ::= .eabi_attribute Tag_name, int [, "str"] 9276 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) { 9277 MCAsmParser &Parser = getParser(); 9278 int64_t Tag; 9279 SMLoc TagLoc; 9280 TagLoc = Parser.getTok().getLoc(); 9281 if (Parser.getTok().is(AsmToken::Identifier)) { 9282 StringRef Name = Parser.getTok().getIdentifier(); 9283 Tag = ARMBuildAttrs::AttrTypeFromString(Name); 9284 if (Tag == -1) { 9285 Error(TagLoc, "attribute name not recognised: " + Name); 9286 Parser.eatToEndOfStatement(); 9287 return false; 9288 } 9289 Parser.Lex(); 9290 } else { 9291 const MCExpr *AttrExpr; 9292 9293 TagLoc = Parser.getTok().getLoc(); 9294 if (Parser.parseExpression(AttrExpr)) { 9295 Parser.eatToEndOfStatement(); 9296 return false; 9297 } 9298 9299 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr); 9300 if (!CE) { 9301 Error(TagLoc, "expected numeric constant"); 9302 Parser.eatToEndOfStatement(); 9303 return false; 9304 } 9305 9306 Tag = CE->getValue(); 9307 } 9308 9309 if (Parser.getTok().isNot(AsmToken::Comma)) { 9310 Error(Parser.getTok().getLoc(), "comma expected"); 9311 Parser.eatToEndOfStatement(); 9312 return false; 9313 } 9314 Parser.Lex(); // skip comma 9315 9316 StringRef StringValue = ""; 9317 bool IsStringValue = false; 9318 9319 int64_t IntegerValue = 0; 9320 bool IsIntegerValue = false; 9321 9322 if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name) 9323 IsStringValue = true; 9324 else if (Tag == ARMBuildAttrs::compatibility) { 9325 IsStringValue = true; 9326 IsIntegerValue = true; 9327 } else if (Tag < 32 || Tag % 2 == 0) 9328 IsIntegerValue = true; 9329 else if (Tag % 2 == 1) 9330 IsStringValue = true; 9331 else 9332 llvm_unreachable("invalid tag type"); 9333 9334 if (IsIntegerValue) { 9335 const MCExpr *ValueExpr; 9336 SMLoc ValueExprLoc = Parser.getTok().getLoc(); 9337 if (Parser.parseExpression(ValueExpr)) { 9338 Parser.eatToEndOfStatement(); 9339 return false; 9340 } 9341 9342 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr); 9343 if (!CE) { 9344 Error(ValueExprLoc, "expected numeric constant"); 9345 Parser.eatToEndOfStatement(); 9346 return false; 9347 } 9348 9349 IntegerValue = CE->getValue(); 9350 } 9351 9352 if (Tag == ARMBuildAttrs::compatibility) { 9353 if (Parser.getTok().isNot(AsmToken::Comma)) 9354 IsStringValue = false; 9355 if (Parser.getTok().isNot(AsmToken::Comma)) { 9356 Error(Parser.getTok().getLoc(), "comma expected"); 9357 Parser.eatToEndOfStatement(); 9358 return false; 9359 } else { 9360 Parser.Lex(); 9361 } 9362 } 9363 9364 if (IsStringValue) { 9365 if (Parser.getTok().isNot(AsmToken::String)) { 9366 Error(Parser.getTok().getLoc(), "bad string constant"); 9367 Parser.eatToEndOfStatement(); 9368 return false; 9369 } 9370 9371 StringValue = Parser.getTok().getStringContents(); 9372 Parser.Lex(); 9373 } 9374 9375 if (IsIntegerValue && IsStringValue) { 9376 assert(Tag == ARMBuildAttrs::compatibility); 9377 getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue); 9378 } else if (IsIntegerValue) 9379 getTargetStreamer().emitAttribute(Tag, IntegerValue); 9380 else if (IsStringValue) 9381 getTargetStreamer().emitTextAttribute(Tag, StringValue); 9382 return false; 9383 } 9384 9385 /// parseDirectiveCPU 9386 /// ::= .cpu str 9387 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) { 9388 StringRef CPU = getParser().parseStringToEndOfStatement().trim(); 9389 getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU); 9390 9391 // FIXME: This is using table-gen data, but should be moved to 9392 // ARMTargetParser once that is table-gen'd. 9393 if (!getSTI().isCPUStringValid(CPU)) { 9394 Error(L, "Unknown CPU name"); 9395 return false; 9396 } 9397 9398 bool WasThumb = isThumb(); 9399 MCSubtargetInfo &STI = copySTI(); 9400 STI.setDefaultFeatures(CPU, ""); 9401 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9402 FixModeAfterArchChange(WasThumb, L); 9403 9404 return false; 9405 } 9406 /// parseDirectiveFPU 9407 /// ::= .fpu str 9408 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) { 9409 SMLoc FPUNameLoc = getTok().getLoc(); 9410 StringRef FPU = getParser().parseStringToEndOfStatement().trim(); 9411 9412 unsigned ID = ARM::parseFPU(FPU); 9413 std::vector<const char *> Features; 9414 if (!ARM::getFPUFeatures(ID, Features)) { 9415 Error(FPUNameLoc, "Unknown FPU name"); 9416 return false; 9417 } 9418 9419 MCSubtargetInfo &STI = copySTI(); 9420 for (auto Feature : Features) 9421 STI.ApplyFeatureFlag(Feature); 9422 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 9423 9424 getTargetStreamer().emitFPU(ID); 9425 return false; 9426 } 9427 9428 /// parseDirectiveFnStart 9429 /// ::= .fnstart 9430 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) { 9431 if (UC.hasFnStart()) { 9432 Error(L, ".fnstart starts before the end of previous one"); 9433 UC.emitFnStartLocNotes(); 9434 return false; 9435 } 9436 9437 // Reset the unwind directives parser state 9438 UC.reset(); 9439 9440 getTargetStreamer().emitFnStart(); 9441 9442 UC.recordFnStart(L); 9443 return false; 9444 } 9445 9446 /// parseDirectiveFnEnd 9447 /// ::= .fnend 9448 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) { 9449 // Check the ordering of unwind directives 9450 if (!UC.hasFnStart()) { 9451 Error(L, ".fnstart must precede .fnend directive"); 9452 return false; 9453 } 9454 9455 // Reset the unwind directives parser state 9456 getTargetStreamer().emitFnEnd(); 9457 9458 UC.reset(); 9459 return false; 9460 } 9461 9462 /// parseDirectiveCantUnwind 9463 /// ::= .cantunwind 9464 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) { 9465 UC.recordCantUnwind(L); 9466 9467 // Check the ordering of unwind directives 9468 if (!UC.hasFnStart()) { 9469 Error(L, ".fnstart must precede .cantunwind directive"); 9470 return false; 9471 } 9472 if (UC.hasHandlerData()) { 9473 Error(L, ".cantunwind can't be used with .handlerdata directive"); 9474 UC.emitHandlerDataLocNotes(); 9475 return false; 9476 } 9477 if (UC.hasPersonality()) { 9478 Error(L, ".cantunwind can't be used with .personality directive"); 9479 UC.emitPersonalityLocNotes(); 9480 return false; 9481 } 9482 9483 getTargetStreamer().emitCantUnwind(); 9484 return false; 9485 } 9486 9487 /// parseDirectivePersonality 9488 /// ::= .personality name 9489 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) { 9490 MCAsmParser &Parser = getParser(); 9491 bool HasExistingPersonality = UC.hasPersonality(); 9492 9493 UC.recordPersonality(L); 9494 9495 // Check the ordering of unwind directives 9496 if (!UC.hasFnStart()) { 9497 Error(L, ".fnstart must precede .personality directive"); 9498 return false; 9499 } 9500 if (UC.cantUnwind()) { 9501 Error(L, ".personality can't be used with .cantunwind directive"); 9502 UC.emitCantUnwindLocNotes(); 9503 return false; 9504 } 9505 if (UC.hasHandlerData()) { 9506 Error(L, ".personality must precede .handlerdata directive"); 9507 UC.emitHandlerDataLocNotes(); 9508 return false; 9509 } 9510 if (HasExistingPersonality) { 9511 Parser.eatToEndOfStatement(); 9512 Error(L, "multiple personality directives"); 9513 UC.emitPersonalityLocNotes(); 9514 return false; 9515 } 9516 9517 // Parse the name of the personality routine 9518 if (Parser.getTok().isNot(AsmToken::Identifier)) { 9519 Parser.eatToEndOfStatement(); 9520 Error(L, "unexpected input in .personality directive."); 9521 return false; 9522 } 9523 StringRef Name(Parser.getTok().getIdentifier()); 9524 Parser.Lex(); 9525 9526 MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name); 9527 getTargetStreamer().emitPersonality(PR); 9528 return false; 9529 } 9530 9531 /// parseDirectiveHandlerData 9532 /// ::= .handlerdata 9533 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) { 9534 UC.recordHandlerData(L); 9535 9536 // Check the ordering of unwind directives 9537 if (!UC.hasFnStart()) { 9538 Error(L, ".fnstart must precede .personality directive"); 9539 return false; 9540 } 9541 if (UC.cantUnwind()) { 9542 Error(L, ".handlerdata can't be used with .cantunwind directive"); 9543 UC.emitCantUnwindLocNotes(); 9544 return false; 9545 } 9546 9547 getTargetStreamer().emitHandlerData(); 9548 return false; 9549 } 9550 9551 /// parseDirectiveSetFP 9552 /// ::= .setfp fpreg, spreg [, offset] 9553 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) { 9554 MCAsmParser &Parser = getParser(); 9555 // Check the ordering of unwind directives 9556 if (!UC.hasFnStart()) { 9557 Error(L, ".fnstart must precede .setfp directive"); 9558 return false; 9559 } 9560 if (UC.hasHandlerData()) { 9561 Error(L, ".setfp must precede .handlerdata directive"); 9562 return false; 9563 } 9564 9565 // Parse fpreg 9566 SMLoc FPRegLoc = Parser.getTok().getLoc(); 9567 int FPReg = tryParseRegister(); 9568 if (FPReg == -1) { 9569 Error(FPRegLoc, "frame pointer register expected"); 9570 return false; 9571 } 9572 9573 // Consume comma 9574 if (Parser.getTok().isNot(AsmToken::Comma)) { 9575 Error(Parser.getTok().getLoc(), "comma expected"); 9576 return false; 9577 } 9578 Parser.Lex(); // skip comma 9579 9580 // Parse spreg 9581 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9582 int SPReg = tryParseRegister(); 9583 if (SPReg == -1) { 9584 Error(SPRegLoc, "stack pointer register expected"); 9585 return false; 9586 } 9587 9588 if (SPReg != ARM::SP && SPReg != UC.getFPReg()) { 9589 Error(SPRegLoc, "register should be either $sp or the latest fp register"); 9590 return false; 9591 } 9592 9593 // Update the frame pointer register 9594 UC.saveFPReg(FPReg); 9595 9596 // Parse offset 9597 int64_t Offset = 0; 9598 if (Parser.getTok().is(AsmToken::Comma)) { 9599 Parser.Lex(); // skip comma 9600 9601 if (Parser.getTok().isNot(AsmToken::Hash) && 9602 Parser.getTok().isNot(AsmToken::Dollar)) { 9603 Error(Parser.getTok().getLoc(), "'#' expected"); 9604 return false; 9605 } 9606 Parser.Lex(); // skip hash token. 9607 9608 const MCExpr *OffsetExpr; 9609 SMLoc ExLoc = Parser.getTok().getLoc(); 9610 SMLoc EndLoc; 9611 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9612 Error(ExLoc, "malformed setfp offset"); 9613 return false; 9614 } 9615 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9616 if (!CE) { 9617 Error(ExLoc, "setfp offset must be an immediate"); 9618 return false; 9619 } 9620 9621 Offset = CE->getValue(); 9622 } 9623 9624 getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg), 9625 static_cast<unsigned>(SPReg), Offset); 9626 return false; 9627 } 9628 9629 /// parseDirective 9630 /// ::= .pad offset 9631 bool ARMAsmParser::parseDirectivePad(SMLoc L) { 9632 MCAsmParser &Parser = getParser(); 9633 // Check the ordering of unwind directives 9634 if (!UC.hasFnStart()) { 9635 Error(L, ".fnstart must precede .pad directive"); 9636 return false; 9637 } 9638 if (UC.hasHandlerData()) { 9639 Error(L, ".pad must precede .handlerdata directive"); 9640 return false; 9641 } 9642 9643 // Parse the offset 9644 if (Parser.getTok().isNot(AsmToken::Hash) && 9645 Parser.getTok().isNot(AsmToken::Dollar)) { 9646 Error(Parser.getTok().getLoc(), "'#' expected"); 9647 return false; 9648 } 9649 Parser.Lex(); // skip hash token. 9650 9651 const MCExpr *OffsetExpr; 9652 SMLoc ExLoc = Parser.getTok().getLoc(); 9653 SMLoc EndLoc; 9654 if (getParser().parseExpression(OffsetExpr, EndLoc)) { 9655 Error(ExLoc, "malformed pad offset"); 9656 return false; 9657 } 9658 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9659 if (!CE) { 9660 Error(ExLoc, "pad offset must be an immediate"); 9661 return false; 9662 } 9663 9664 getTargetStreamer().emitPad(CE->getValue()); 9665 return false; 9666 } 9667 9668 /// parseDirectiveRegSave 9669 /// ::= .save { registers } 9670 /// ::= .vsave { registers } 9671 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) { 9672 // Check the ordering of unwind directives 9673 if (!UC.hasFnStart()) { 9674 Error(L, ".fnstart must precede .save or .vsave directives"); 9675 return false; 9676 } 9677 if (UC.hasHandlerData()) { 9678 Error(L, ".save or .vsave must precede .handlerdata directive"); 9679 return false; 9680 } 9681 9682 // RAII object to make sure parsed operands are deleted. 9683 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; 9684 9685 // Parse the register list 9686 if (parseRegisterList(Operands)) 9687 return false; 9688 ARMOperand &Op = (ARMOperand &)*Operands[0]; 9689 if (!IsVector && !Op.isRegList()) { 9690 Error(L, ".save expects GPR registers"); 9691 return false; 9692 } 9693 if (IsVector && !Op.isDPRRegList()) { 9694 Error(L, ".vsave expects DPR registers"); 9695 return false; 9696 } 9697 9698 getTargetStreamer().emitRegSave(Op.getRegList(), IsVector); 9699 return false; 9700 } 9701 9702 /// parseDirectiveInst 9703 /// ::= .inst opcode [, ...] 9704 /// ::= .inst.n opcode [, ...] 9705 /// ::= .inst.w opcode [, ...] 9706 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) { 9707 MCAsmParser &Parser = getParser(); 9708 int Width; 9709 9710 if (isThumb()) { 9711 switch (Suffix) { 9712 case 'n': 9713 Width = 2; 9714 break; 9715 case 'w': 9716 Width = 4; 9717 break; 9718 default: 9719 Parser.eatToEndOfStatement(); 9720 Error(Loc, "cannot determine Thumb instruction size, " 9721 "use inst.n/inst.w instead"); 9722 return false; 9723 } 9724 } else { 9725 if (Suffix) { 9726 Parser.eatToEndOfStatement(); 9727 Error(Loc, "width suffixes are invalid in ARM mode"); 9728 return false; 9729 } 9730 Width = 4; 9731 } 9732 9733 if (getLexer().is(AsmToken::EndOfStatement)) { 9734 Parser.eatToEndOfStatement(); 9735 Error(Loc, "expected expression following directive"); 9736 return false; 9737 } 9738 9739 for (;;) { 9740 const MCExpr *Expr; 9741 9742 if (getParser().parseExpression(Expr)) { 9743 Error(Loc, "expected expression"); 9744 return false; 9745 } 9746 9747 const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr); 9748 if (!Value) { 9749 Error(Loc, "expected constant expression"); 9750 return false; 9751 } 9752 9753 switch (Width) { 9754 case 2: 9755 if (Value->getValue() > 0xffff) { 9756 Error(Loc, "inst.n operand is too big, use inst.w instead"); 9757 return false; 9758 } 9759 break; 9760 case 4: 9761 if (Value->getValue() > 0xffffffff) { 9762 Error(Loc, 9763 StringRef(Suffix ? "inst.w" : "inst") + " operand is too big"); 9764 return false; 9765 } 9766 break; 9767 default: 9768 llvm_unreachable("only supported widths are 2 and 4"); 9769 } 9770 9771 getTargetStreamer().emitInst(Value->getValue(), Suffix); 9772 9773 if (getLexer().is(AsmToken::EndOfStatement)) 9774 break; 9775 9776 if (getLexer().isNot(AsmToken::Comma)) { 9777 Error(Loc, "unexpected token in directive"); 9778 return false; 9779 } 9780 9781 Parser.Lex(); 9782 } 9783 9784 Parser.Lex(); 9785 return false; 9786 } 9787 9788 /// parseDirectiveLtorg 9789 /// ::= .ltorg | .pool 9790 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) { 9791 getTargetStreamer().emitCurrentConstantPool(); 9792 return false; 9793 } 9794 9795 bool ARMAsmParser::parseDirectiveEven(SMLoc L) { 9796 const MCSection *Section = getStreamer().getCurrentSection().first; 9797 9798 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9799 TokError("unexpected token in directive"); 9800 return false; 9801 } 9802 9803 if (!Section) { 9804 getStreamer().InitSections(false); 9805 Section = getStreamer().getCurrentSection().first; 9806 } 9807 9808 assert(Section && "must have section to emit alignment"); 9809 if (Section->UseCodeAlign()) 9810 getStreamer().EmitCodeAlignment(2); 9811 else 9812 getStreamer().EmitValueToAlignment(2); 9813 9814 return false; 9815 } 9816 9817 /// parseDirectivePersonalityIndex 9818 /// ::= .personalityindex index 9819 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) { 9820 MCAsmParser &Parser = getParser(); 9821 bool HasExistingPersonality = UC.hasPersonality(); 9822 9823 UC.recordPersonalityIndex(L); 9824 9825 if (!UC.hasFnStart()) { 9826 Parser.eatToEndOfStatement(); 9827 Error(L, ".fnstart must precede .personalityindex directive"); 9828 return false; 9829 } 9830 if (UC.cantUnwind()) { 9831 Parser.eatToEndOfStatement(); 9832 Error(L, ".personalityindex cannot be used with .cantunwind"); 9833 UC.emitCantUnwindLocNotes(); 9834 return false; 9835 } 9836 if (UC.hasHandlerData()) { 9837 Parser.eatToEndOfStatement(); 9838 Error(L, ".personalityindex must precede .handlerdata directive"); 9839 UC.emitHandlerDataLocNotes(); 9840 return false; 9841 } 9842 if (HasExistingPersonality) { 9843 Parser.eatToEndOfStatement(); 9844 Error(L, "multiple personality directives"); 9845 UC.emitPersonalityLocNotes(); 9846 return false; 9847 } 9848 9849 const MCExpr *IndexExpression; 9850 SMLoc IndexLoc = Parser.getTok().getLoc(); 9851 if (Parser.parseExpression(IndexExpression)) { 9852 Parser.eatToEndOfStatement(); 9853 return false; 9854 } 9855 9856 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression); 9857 if (!CE) { 9858 Parser.eatToEndOfStatement(); 9859 Error(IndexLoc, "index must be a constant number"); 9860 return false; 9861 } 9862 if (CE->getValue() < 0 || 9863 CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) { 9864 Parser.eatToEndOfStatement(); 9865 Error(IndexLoc, "personality routine index should be in range [0-3]"); 9866 return false; 9867 } 9868 9869 getTargetStreamer().emitPersonalityIndex(CE->getValue()); 9870 return false; 9871 } 9872 9873 /// parseDirectiveUnwindRaw 9874 /// ::= .unwind_raw offset, opcode [, opcode...] 9875 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) { 9876 MCAsmParser &Parser = getParser(); 9877 if (!UC.hasFnStart()) { 9878 Parser.eatToEndOfStatement(); 9879 Error(L, ".fnstart must precede .unwind_raw directives"); 9880 return false; 9881 } 9882 9883 int64_t StackOffset; 9884 9885 const MCExpr *OffsetExpr; 9886 SMLoc OffsetLoc = getLexer().getLoc(); 9887 if (getLexer().is(AsmToken::EndOfStatement) || 9888 getParser().parseExpression(OffsetExpr)) { 9889 Error(OffsetLoc, "expected expression"); 9890 Parser.eatToEndOfStatement(); 9891 return false; 9892 } 9893 9894 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 9895 if (!CE) { 9896 Error(OffsetLoc, "offset must be a constant"); 9897 Parser.eatToEndOfStatement(); 9898 return false; 9899 } 9900 9901 StackOffset = CE->getValue(); 9902 9903 if (getLexer().isNot(AsmToken::Comma)) { 9904 Error(getLexer().getLoc(), "expected comma"); 9905 Parser.eatToEndOfStatement(); 9906 return false; 9907 } 9908 Parser.Lex(); 9909 9910 SmallVector<uint8_t, 16> Opcodes; 9911 for (;;) { 9912 const MCExpr *OE; 9913 9914 SMLoc OpcodeLoc = getLexer().getLoc(); 9915 if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) { 9916 Error(OpcodeLoc, "expected opcode expression"); 9917 Parser.eatToEndOfStatement(); 9918 return false; 9919 } 9920 9921 const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE); 9922 if (!OC) { 9923 Error(OpcodeLoc, "opcode value must be a constant"); 9924 Parser.eatToEndOfStatement(); 9925 return false; 9926 } 9927 9928 const int64_t Opcode = OC->getValue(); 9929 if (Opcode & ~0xff) { 9930 Error(OpcodeLoc, "invalid opcode"); 9931 Parser.eatToEndOfStatement(); 9932 return false; 9933 } 9934 9935 Opcodes.push_back(uint8_t(Opcode)); 9936 9937 if (getLexer().is(AsmToken::EndOfStatement)) 9938 break; 9939 9940 if (getLexer().isNot(AsmToken::Comma)) { 9941 Error(getLexer().getLoc(), "unexpected token in directive"); 9942 Parser.eatToEndOfStatement(); 9943 return false; 9944 } 9945 9946 Parser.Lex(); 9947 } 9948 9949 getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes); 9950 9951 Parser.Lex(); 9952 return false; 9953 } 9954 9955 /// parseDirectiveTLSDescSeq 9956 /// ::= .tlsdescseq tls-variable 9957 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) { 9958 MCAsmParser &Parser = getParser(); 9959 9960 if (getLexer().isNot(AsmToken::Identifier)) { 9961 TokError("expected variable after '.tlsdescseq' directive"); 9962 Parser.eatToEndOfStatement(); 9963 return false; 9964 } 9965 9966 const MCSymbolRefExpr *SRE = 9967 MCSymbolRefExpr::create(Parser.getTok().getIdentifier(), 9968 MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext()); 9969 Lex(); 9970 9971 if (getLexer().isNot(AsmToken::EndOfStatement)) { 9972 Error(Parser.getTok().getLoc(), "unexpected token"); 9973 Parser.eatToEndOfStatement(); 9974 return false; 9975 } 9976 9977 getTargetStreamer().AnnotateTLSDescriptorSequence(SRE); 9978 return false; 9979 } 9980 9981 /// parseDirectiveMovSP 9982 /// ::= .movsp reg [, #offset] 9983 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) { 9984 MCAsmParser &Parser = getParser(); 9985 if (!UC.hasFnStart()) { 9986 Parser.eatToEndOfStatement(); 9987 Error(L, ".fnstart must precede .movsp directives"); 9988 return false; 9989 } 9990 if (UC.getFPReg() != ARM::SP) { 9991 Parser.eatToEndOfStatement(); 9992 Error(L, "unexpected .movsp directive"); 9993 return false; 9994 } 9995 9996 SMLoc SPRegLoc = Parser.getTok().getLoc(); 9997 int SPReg = tryParseRegister(); 9998 if (SPReg == -1) { 9999 Parser.eatToEndOfStatement(); 10000 Error(SPRegLoc, "register expected"); 10001 return false; 10002 } 10003 10004 if (SPReg == ARM::SP || SPReg == ARM::PC) { 10005 Parser.eatToEndOfStatement(); 10006 Error(SPRegLoc, "sp and pc are not permitted in .movsp directive"); 10007 return false; 10008 } 10009 10010 int64_t Offset = 0; 10011 if (Parser.getTok().is(AsmToken::Comma)) { 10012 Parser.Lex(); 10013 10014 if (Parser.getTok().isNot(AsmToken::Hash)) { 10015 Error(Parser.getTok().getLoc(), "expected #constant"); 10016 Parser.eatToEndOfStatement(); 10017 return false; 10018 } 10019 Parser.Lex(); 10020 10021 const MCExpr *OffsetExpr; 10022 SMLoc OffsetLoc = Parser.getTok().getLoc(); 10023 if (Parser.parseExpression(OffsetExpr)) { 10024 Parser.eatToEndOfStatement(); 10025 Error(OffsetLoc, "malformed offset expression"); 10026 return false; 10027 } 10028 10029 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr); 10030 if (!CE) { 10031 Parser.eatToEndOfStatement(); 10032 Error(OffsetLoc, "offset must be an immediate constant"); 10033 return false; 10034 } 10035 10036 Offset = CE->getValue(); 10037 } 10038 10039 getTargetStreamer().emitMovSP(SPReg, Offset); 10040 UC.saveFPReg(SPReg); 10041 10042 return false; 10043 } 10044 10045 /// parseDirectiveObjectArch 10046 /// ::= .object_arch name 10047 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) { 10048 MCAsmParser &Parser = getParser(); 10049 if (getLexer().isNot(AsmToken::Identifier)) { 10050 Error(getLexer().getLoc(), "unexpected token"); 10051 Parser.eatToEndOfStatement(); 10052 return false; 10053 } 10054 10055 StringRef Arch = Parser.getTok().getString(); 10056 SMLoc ArchLoc = Parser.getTok().getLoc(); 10057 getLexer().Lex(); 10058 10059 unsigned ID = ARM::parseArch(Arch); 10060 10061 if (ID == ARM::AK_INVALID) { 10062 Error(ArchLoc, "unknown architecture '" + Arch + "'"); 10063 Parser.eatToEndOfStatement(); 10064 return false; 10065 } 10066 10067 getTargetStreamer().emitObjectArch(ID); 10068 10069 if (getLexer().isNot(AsmToken::EndOfStatement)) { 10070 Error(getLexer().getLoc(), "unexpected token"); 10071 Parser.eatToEndOfStatement(); 10072 } 10073 10074 return false; 10075 } 10076 10077 /// parseDirectiveAlign 10078 /// ::= .align 10079 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) { 10080 // NOTE: if this is not the end of the statement, fall back to the target 10081 // agnostic handling for this directive which will correctly handle this. 10082 if (getLexer().isNot(AsmToken::EndOfStatement)) 10083 return true; 10084 10085 // '.align' is target specifically handled to mean 2**2 byte alignment. 10086 const MCSection *Section = getStreamer().getCurrentSection().first; 10087 assert(Section && "must have section to emit alignment"); 10088 if (Section->UseCodeAlign()) 10089 getStreamer().EmitCodeAlignment(4, 0); 10090 else 10091 getStreamer().EmitValueToAlignment(4, 0, 1, 0); 10092 10093 return false; 10094 } 10095 10096 /// parseDirectiveThumbSet 10097 /// ::= .thumb_set name, value 10098 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) { 10099 MCAsmParser &Parser = getParser(); 10100 10101 StringRef Name; 10102 if (Parser.parseIdentifier(Name)) { 10103 TokError("expected identifier after '.thumb_set'"); 10104 Parser.eatToEndOfStatement(); 10105 return false; 10106 } 10107 10108 if (getLexer().isNot(AsmToken::Comma)) { 10109 TokError("expected comma after name '" + Name + "'"); 10110 Parser.eatToEndOfStatement(); 10111 return false; 10112 } 10113 Lex(); 10114 10115 MCSymbol *Sym; 10116 const MCExpr *Value; 10117 if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true, 10118 Parser, Sym, Value)) 10119 return true; 10120 10121 getTargetStreamer().emitThumbSet(Sym, Value); 10122 return false; 10123 } 10124 10125 /// Force static initialization. 10126 extern "C" void LLVMInitializeARMAsmParser() { 10127 RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget); 10128 RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget); 10129 RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget); 10130 RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget); 10131 } 10132 10133 #define GET_REGISTER_MATCHER 10134 #define GET_SUBTARGET_FEATURE_NAME 10135 #define GET_MATCHER_IMPLEMENTATION 10136 #include "ARMGenAsmMatcher.inc" 10137 10138 // FIXME: This structure should be moved inside ARMTargetParser 10139 // when we start to table-generate them, and we can use the ARM 10140 // flags below, that were generated by table-gen. 10141 static const struct { 10142 const unsigned Kind; 10143 const uint64_t ArchCheck; 10144 const FeatureBitset Features; 10145 } Extensions[] = { 10146 { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} }, 10147 { ARM::AEK_CRYPTO, Feature_HasV8, 10148 {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10149 { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} }, 10150 { (ARM::AEK_HWDIV | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass, 10151 {ARM::FeatureHWDiv, ARM::FeatureHWDivARM} }, 10152 { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} }, 10153 { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} }, 10154 { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} }, 10155 // FIXME: Only available in A-class, isel not predicated 10156 { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} }, 10157 { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} }, 10158 // FIXME: Unsupported extensions. 10159 { ARM::AEK_OS, Feature_None, {} }, 10160 { ARM::AEK_IWMMXT, Feature_None, {} }, 10161 { ARM::AEK_IWMMXT2, Feature_None, {} }, 10162 { ARM::AEK_MAVERICK, Feature_None, {} }, 10163 { ARM::AEK_XSCALE, Feature_None, {} }, 10164 }; 10165 10166 /// parseDirectiveArchExtension 10167 /// ::= .arch_extension [no]feature 10168 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) { 10169 MCAsmParser &Parser = getParser(); 10170 10171 if (getLexer().isNot(AsmToken::Identifier)) { 10172 Error(getLexer().getLoc(), "unexpected token"); 10173 Parser.eatToEndOfStatement(); 10174 return false; 10175 } 10176 10177 StringRef Name = Parser.getTok().getString(); 10178 SMLoc ExtLoc = Parser.getTok().getLoc(); 10179 getLexer().Lex(); 10180 10181 bool EnableFeature = true; 10182 if (Name.startswith_lower("no")) { 10183 EnableFeature = false; 10184 Name = Name.substr(2); 10185 } 10186 unsigned FeatureKind = ARM::parseArchExt(Name); 10187 if (FeatureKind == ARM::AEK_INVALID) 10188 Error(ExtLoc, "unknown architectural extension: " + Name); 10189 10190 for (const auto &Extension : Extensions) { 10191 if (Extension.Kind != FeatureKind) 10192 continue; 10193 10194 if (Extension.Features.none()) 10195 report_fatal_error("unsupported architectural extension: " + Name); 10196 10197 if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) { 10198 Error(ExtLoc, "architectural extension '" + Name + "' is not " 10199 "allowed for the current base architecture"); 10200 return false; 10201 } 10202 10203 MCSubtargetInfo &STI = copySTI(); 10204 FeatureBitset ToggleFeatures = EnableFeature 10205 ? (~STI.getFeatureBits() & Extension.Features) 10206 : ( STI.getFeatureBits() & Extension.Features); 10207 10208 uint64_t Features = 10209 ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures)); 10210 setAvailableFeatures(Features); 10211 return false; 10212 } 10213 10214 Error(ExtLoc, "unknown architectural extension: " + Name); 10215 Parser.eatToEndOfStatement(); 10216 return false; 10217 } 10218 10219 // Define this matcher function after the auto-generated include so we 10220 // have the match class enum definitions. 10221 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 10222 unsigned Kind) { 10223 ARMOperand &Op = static_cast<ARMOperand &>(AsmOp); 10224 // If the kind is a token for a literal immediate, check if our asm 10225 // operand matches. This is for InstAliases which have a fixed-value 10226 // immediate in the syntax. 10227 switch (Kind) { 10228 default: break; 10229 case MCK__35_0: 10230 if (Op.isImm()) 10231 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm())) 10232 if (CE->getValue() == 0) 10233 return Match_Success; 10234 break; 10235 case MCK_ModImm: 10236 if (Op.isImm()) { 10237 const MCExpr *SOExpr = Op.getImm(); 10238 int64_t Value; 10239 if (!SOExpr->evaluateAsAbsolute(Value)) 10240 return Match_Success; 10241 assert((Value >= INT32_MIN && Value <= UINT32_MAX) && 10242 "expression value must be representable in 32 bits"); 10243 } 10244 break; 10245 case MCK_rGPR: 10246 if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP) 10247 return Match_Success; 10248 break; 10249 case MCK_GPRPair: 10250 if (Op.isReg() && 10251 MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg())) 10252 return Match_Success; 10253 break; 10254 } 10255 return Match_InvalidOperand; 10256 } 10257